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ABSTRACT

geveral exact results on the second mouents of sample autocorre=
lations, for both Gaussian and non-Gaussian series, are presented. General
formulae for the mean, variance and covariances of sample autocorrelations
are given for Ehe case where the variables in a gequence are exchangeable.
Bounds for the variances and covariances of sample autocorrelations from an
arbitrary random sequence are derived. The bounds on variances are used to
obtain exact upper limits on critical values for tests of randomness based
on sample autocorrelations, without any assumption on the form of the
distribution. Exact and explicit formulae for the variances and covariances
of sample autocorrelations from a Gaussian white noise are given. It is
observed that the latter results hold for all spherically symmetric distribu-
tions. A simulation experiment, with Gaussian series, indicates that nor=-
malizing each sample autocorrelation with its exact mean and variance,
instead of the usual approximate moments, can improve considerably the
accuracy of the asymptotic N(O,1) distribution to obtain critical values

for tests of randomness. The exact gecond moments of rank autocorrelations

are also studied.




RESUME

Ce texte présente plusieurs résultats exacts sur les seconds mo-
ments des autocorrélations &chantillonnales, pour des séries gaussiennes
ou non-gaussiennes. Nous donnons d'abord des formules géﬁérales pour la
movenne, la variance et les covariances des autocorrélations échantillon-
nales, dans le cas ol les variables de la série sont interchangeables.
Nous déduisons de celles-ci des bornes pour les variances et les covarian-
ces des autocorrélations &échantillonnales. Ces bornes sont utilisées pour
obtenir des limites exactes sur les points critiques lorsqu'on teste le
caractére aléatoire d'une série chronologique, sans qu'aucune hypothése
soit nécessaire sur la forme de la distribution sous-jacente. Nous don-
nons des formules exactes et explicites pour les variances et covariances
des autocorrélations dans le cas ol la série est un bruit blanc gaussien.
Nous montrons que ces résultats sont aussi valides lorsque la distribu-
tion de la série est sphériquement symétrique. Nous présentons les ré-
sultats d'une simulation qui indiquent clai£e$§nt qu'on approxime beau-
coup mieux la distribution des autocorrélations échantillonnales en nor-
malisant celles-ci avec la moyenne et la variance exactes et en utilisant
la loi N(0, 1) asymptotique, plutdt qu'en employant les seconds moments

approximatifs couramment en usage. Nous &tudions aussi les variances et

covariances exactes d'autocorrélations basées sur les rangs des observations.




1. INTRODUCTION

Sample autocorrelations are one of the main instruments of time
series analysis. They are especially useful to test the randomness of a
time series and to assess dependence at various lags. Several definitions
have been proposed. We considerihere the most standard one, as it is

used for example to identify time series model (Box and Jenkins, 1976, p.32):

given n observations Xl,...,Xn, the sample autocorrelation at lag k is

n-k _ _
121 (X4-X) Ky
r. = , 1sk<n-1, (1.1)
k n _9
i (X,-X)
=1
_ n
where X = X2 Xi/n is the sample mean. We find especially important that
i=1

the data be expressed in deviations from their sample mean because, in most
practical situations, the true mean is unknown. This characteristic. will

play an important role below.

We will be concerned here by some exact distributional properties
of sample autocorrelations, under the important null hypothesis of random-
ness. Both normal and non-normal distributions will be considered. Tests
based on sample autocorrelations typically use critical values based on their
asymptotic normal distribution {(Bartlett, 1946; Anderson and Walker, 1964):
both the moments of T, (mean and variance) and the form of the distribution
are approximate. Despite the fact that autocorrelation coefficients are
widely applied in empirical research, few exact results have been published
on their sampling properties; see the reviews of Anderson (1971, Chap- 6)
and Kendall, Stuart and Ord (1983, Chap. 48). Moran (1948) gave the exact

mean of Ty x = 1, for an arbitrary random series, and the exact variance

of the first autocorrelation r for a normal random series; later (1967a),
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he obtained an upper bound on the variance of rl, valid for all random series,
Using the method of Sawa (1978), De Gooijer (1980) gave formulae that allow
to evaluate numerically the first four moments of each sample autocorrelation,
when the data come from a general autoregressive moving average Gaussian
process: his formulae however are not explicit and require numerical inte-
grations that may be expensive. Actually, no author has given exact and
explicit formulae for the variances Var(rk), k = 2, or threir covariances,

even when the series is a normal white noise. The vast maiority of the
results available either deal with alternative definitions of autocorrela-
tions (coefficients with known mean, circular definition, etc...) cor remain
approximate; see, for example, R.L. Anderson (1942), T.W. Anderson (1971,
Chap. 6), Anderson and Walker (1964), 0.D. Anderson (1979 a,b; 1982), Davies,
Triggs and Newbold (1977), Davies and Newbold (1980), Jerkins (1954, 1956),
Kendall (1954), Koopmans (1942), Kendall, Stuart and Ord (1983, Chap. 48),
Knoke (1977, 1979), Marriott and Pope (1954), Ochi (1583), Quenouille (1949),
Phillips (1977, 1978), Ramasubban (1972), Sawa (1978), Shenton and Johnson
(1965), Taibah and Kassab (1981), von Neumann (1942), White (1961, 1962).

It is important to note, in particular, that exact results that hold for

n-k n "
XX L. X° (where the meen is
sample autocorrelations of the form 21 X t+k/t=l ‘ (

assumed to be zero), are not generally valid for standard autocorrelations,
as defined in (1.1). Cdncerning non-normal series, evidence on the properties
of sample autocorrelations for specific distributions was given by Cox (1966},

Moran (1967 a,b; 1970), Quenouille (1948) and Knoke (1977).

In this paper, we present several exact results on the first and
second moments of sample autocorrelations, for both normal and non-normal
series, and discuss their application in testing the randomness of a time

. series. We consider in turn four wide classes of series: A) series of



exchangeable random variables; B) random series {or random samples), i.e.
independent and identically distributed (i.i.d.) random variables with an
arbitrary distribution; C) series with a spherically symmetric distribution;
D) normal random series. Though we are most interested by the hypothesis
of randomness (B or D), we wili see that many results that hold for Bor D

actually hold under the more general assumptions A or C.

In Section 2, we derive general formulae for the mean, variance
and covariances of sample autocorrelations, from an arbitrary series of
exchangeable random variables, for all lags and sample sizes. Since randon
series belong to this class, these formulae apply to any sequence of i.i.d.
random variables. An important case of variables that are exchang=able
without being independent is the sequence of ranks from a sample of i.i.d.
random variables. In the sequel, we apply and specialize these formulae.
First, we obtain upper bounds on the variances as well as upper and lower
bounds for the covgriances of autocorrelation coefficients (at all lags)
when the variables in the series are exchangeable. Consequently these
hold for any sequence of i.i.d. variables, irrespective of the form of the
distribution. The bounds are tight in the sense that they are very closé
to what one gets assuming the variables are i.i.d. normal. Second, we
discuss how to apply these inequalities to obtain upper bounds on the cri-
tical values of tests of randomness based on sample autocorrelations, and
thereby get simple, exact as well as distribution-free tests of randomness.
Third, we specialize the general formulae to the case of rank autocorrela-
tions obtained by replacing each observation in (1.1) by its rank. Previous
studies of such coefficients gave only approximate expression for Var(rk);

see Wald and Wolfowitz (1943), Knoke (1977), Bartels (1982), Dufour, Lepage

and Zeidan (1982).
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In Section 3, we counsider series of i.i.d. normal random variables-
and, more generally, series that obey a spherically symmetric (s.s.) distri-
bution. We first note that the distribution of sample autccorrelations is
exactly the same under these two assumptions: accordingly, to study the lat~
ter case, we can assume normality. Noté, on the other hand, that certain
s.s. distributions, e.g. the multivariate Cauchy, differ considerably from
that of a normal white noise. We then giQe exact and explicit formulae for
the variances and covariances of sample autocorrelations, applicable to all
lags and sample sizes. We see also in numerical cbmparisons that the varian—
ces obtained under the normality assumption are very close to the upper bounds
given in Section 2, except possibly when n is small (n < 20). Finally, we
consider the standard problem of testing the randomness of a normal time
series using sample autocorrelations. We suggest that each coefficient r,
can and should be normalized with the exact mean and variance given above,
as opposed to the approximate mean (zero) and variance typically used:
through a Monte Carlo simulation, we find that evactly normalized sample
autocorrelations have distributions that are generally better approximated
by the asymptotic N(0,1) distribution and thus yield more accurate critical
values; in many cases, the difference is important. We end in Section 4

with a few concluding remarks.

2. RESULTS FOR EXCHANGEABLE VARIABLES

2.1 Definitions and notations

Let X Xn be a sequence of exchangeable random variables:

ERREE
i.e. for any permutation (dl,...,dn) of the integers (1,...,n), the distri-

bution of (Xd ,...,Xd ) is the same as the distribution of(xl,...,xn). Clearly,
1 n

independent and identically distributed random variables are exchangeable.



On the other hand, exchangeable varisbles are not necessarily independent.

For example, random variables having a joint symmetric normal distribution
(see Rao, 1973, p. 196) are exchangeable even if the correlation p between
any two of them is large (e.g. 0=0.99). The ranks of independent observa-
tions from a common continuous distribution have a uniform distribution and
thus form a sequence of exchangeable variables; yet they are not independent.
The same results on ranks actually holds if we only assume that the observa-
tions are exchangeable and have a continuous distribution, a common hypothesis
in nonparametric statistics (see Hdjek and §1d4Kk, 1967, p. 37). We will use
below the following property of exchangeable variables: if M = M(Xl,...,Xn)
is a permutation-symmetric function of the observations, i.e.

M(Xdl,...,an) = M(le...,xn)
for any permutation (dl""’dn) of (1,...,n), then the variables Xl—M,..,,
Xn—M are also exchangeable (see Fligner, Hogg and Killeen, 1976). For
further details on the notion of exchangeability, see Galambos (1982) and

the references therein.

If we define

z, = X, - X, 1i=1,...,0,

where X is the mean of the Xi's, we can write

n-k
121 ZyZ5ak
r, = , 1=k sn-l. (2.1)

if the Xi's are exchangeable, the Zi's are also exchangeable since X is a

permutation-symmetric function of xl,...,xn.

Assuming P[Xl = XZ = ,..=X] =0, we will now derive results

n

on the variances and covariances of the sample autocorrelations that hold



under the mere assumption of exchangeability of the variables Xl""’xh'

In particular, they hold whenever xl,...,xn are i.i.d. with an arbitrary

continuous distribution.

2.2 Variance of rk

Under the assumption that X‘l,...,Xn are i.i.d. (with a

continuous distribution), it is possible to show that

= - (n-k) “1-
E [rk] = - iD 1<k €n-1; (2.2)

see Moran (1948), Kendall, Stuart and Ord (1983, Vol. 3, p. $51) . However
one sees easily that the proof of this result depends only on the

exchangeability of Zl""’zn and thus the result holds whenever

Xl""’xn are exchangeable. We require P[X1 = X2 = ,,., = Xn] =0 to
ensure that T, exists with probability 1.
To obtain the variance of T we first observe that the nume-
rator of ri can be written as
n 2 n-k 2 2 n~2k 2
Z Z = 3 Z . . + . 2, .
2y B P G B TR R B B T B Ziak 2y Py

where I, denotes summation over 1i,j = 1,...,n-k such that i, i+k, j
and j+k are all distinct. From the exchangeability of Zl,...,Zn, we
can write

n

2 2\ -2 2 .2 2
E [rk] = E (iil Zi) {(n-k) Zl Z2 + 2(n-2k) Zl 22 Z3

+ ((n-k)2 - 2(n-2k) - (n-k)) Z, I, Z4 24}
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n
3 N\ o2 [ (a=k) % .2 .2 _ 2(n=2k) x 2
E (151 Zi) { o E AL T ae @D & At

2
((n-k)* = 2(n-2k) - (n-k)) ;*
* n(n-1) (n-2) (n-3) L2322 Zm}

*
where 2 denotes summation over all unequal suffixes varying from 1

to n. Denote the power sums by

Using the following jdentities (Kendall, Stuart and 0Ord, 1983, Vol. 3, p. 708)

* 2 2 2
*2 _ 2

v*Z 2, 2,2 = 382 - 6S
“ %% 7 m 2 4

we get that

2, _ (n=k) 3 2 {2a(n=2k) - 3(n-k) (n-k-1)} 2. _
E [rk] n(a-1) ( 1 ECSA/SZJ) + (1) (n-2) (n-3) (2E[SA/52] l)

1
= n(n-1) (n-2) (n-3)

[{-n3 + (kD) n2-k(n+6K) } E[s4/s§1

5 2 (n-ked) + 3(n-k) + Sk(n+k))

Lt
~~
b ]
2
~s

The variance then follows from the familiar formula Var(r,) = E[rk] - (E[rk]} .
where E[rk] is given by (2.1). In order to obtain an explicit formula

for Var(rk), all we need is 3[54/321. We will consider below two cases:

i) the rk's are computed from the ranks of exchangeable observations;

ii) the sample Xl""’xn hag a spherically symmetric distribution

(which include the case of a normal random sample). When E[SA/Sgl cannot

be evaluated analytically, the approximation discussed by Moran (1967&,1970)

can be useful.




2.3 Covariance between rk and 29

Let k < h., The numerator of rkrh can be written as

n-k n-h

: z oz,2z,,. 2,2,
jo1 gey b A¥E T3 Ty

n-h 2 n-h-k 2 n-h-k 2
z0 2., 2 4 .
1 “i+k “i+h - Zith Zyene 55 Y iil 23 Zivk Prantk

2 7. 4z, z,2.. 2,1 (2.4)
1

+ X Z, . . . L, ’
. Zj+(h—k) j+h 3 i+k 7 “j+h

where I, denotes summation over i=1,...,a~k and j = 1,...,n-h such
that i, i+k, j and j+h are 21l distinct. By a development similar to

the one used to obtain E[rﬁ] , we find (for k < h)

-2 , 5 2
E[rkrhj E [Sz {{2(n-h) + 2(n-h-k)] Zl Z2 23

+ [(n-k) (n=h) - &(n-h) + 2k] Zl 22 23 4}]

2 L) - 2k 2
E [Sz { a(a (a2) (254 7 8))

[(n-h) (a=k=4) + 2k] o2 _ o
* =D (aeD) (aedy . S T8 )}J

- {(n-h) {(n+k) = 2kh}
n{(n-1) (n~2) (n=3)

. e
(2E(8,/85] - 1) . (2.5

The covariznce follows from the familiar formula

COV(rk,rh) = E[rkrh] - E[rk]E[rh].




2.4 Bounds for Var(rk) and Cov(rk,rh)

Using the above results, we will now give bounds on the second

moments of r, . For this purpose, we will use the following inequality on

k
2
84/52 : for any sequence of real numbers Zl,...,Zn,
1/m<s,/s?s1 ; | ' (2.6)
$5,/5, =1 3 :

if Zi =0,1i=1,...,n, we adopt the convention 84/53 = 1, The lower

bound is obtained by applying Cauchy's inequality (see Moran, 1967a, p. 397).

To get the upper bound, set

Z,
i

i/ n \172 ’
Iz
j=1

W i=1,...,0 ;

n

it is then immediate that 0 s Wi <1, 2 wi = 1 and
i=1
n n
SA/SE = Z wi s 2z w? =1
i=1 i=1 1

Thus, for any probability distribution on the Zi's, we have
1/n S E Esa/sil $1. (2.7

If we notice that the coefficient of E [54/551 in (2.3) is
negative for all k (whenever n > 3), we get an upper bound for Var(rk)
by replacing E [54/853 by 1/n:

0 = (ennd + ko)’ + 202-9-0)n - tk(kd) | (5 g
a(n-1)2(a-2) (n-3)

Var(rk) 4
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where k21 and n > 3. For k = 1, we retrieve the result of Moran

(1967):

n-2
n(n-1)

Var(rl) <
If we use polynomial division and retain only the terms up to order n‘z, the

upper bound for Ty becomes

n-k -3
Var(rk) < :;E_'+ O(n ™)

We could not show that Var(rkf is bounded away from zeroc. Indeed, if we

substitute 1 for E [34/833 in (2.3), we find

{2n(n-2k) - 3(n-k) (n-k-1) }
n(n-1) (n-2) (n-3)

E [ri] >

which is negative for k small with respect to n.

We get bounds for E [rkrh] and Cov(ry,,r,) from (2.5) and
(2.7). If (a-h)(n+k) - 2kh 2 0 (this inequality holds if k, h =z n/2),
we have (for k < h)

_ {(n-h) (n+k) - 2kh}

! <Elrr]s {(n=h) (n+k) - 2kh}
n (n-1)(n-3)

x'h a(n-1) (n=2) (n-3) (2.9)

Bounds for Cov(rk,rh) follow by substracting E[rRJE[rhl from each

3

member of (2.9). Up to order n °, the bounds are (for k < h)

- Z&E%Eiél.+ O(n-4) S Cov(ry,ry) < 2&5%21 + 0(n"4) . (2.10)
n n

For (n-h)(n+k) - 2kh < 0, upper and lower bounds in (2.9) and (2.10) are

interchanged.
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2.5 Rank serial correlation

Let Xl,...,Xh be exchangeable random variables and let

(Rl""’Rh) be the corresponding vector of ranks. Then

1
P [(Rl""’Rn) = (dl,...,dn)] = o7

for any permutation (dl,...,dn) of (1,...,n) and thus the ranks are also

exchangeable variables. The rank serial correlation at lag k is defined

by
n-k _ _
151 (R,-R) (Ri+k-R)
)Lk = ’ l < k < n-1l >
n =2
zZ (Ri—R)
(=1
n
- 1 . n+l . ,
where R== Z R, = —= ., In this case, the denominator of 4, 1is
nog 2 k

constant so that it is equivalent to study the rank serial covariances
n-k

c = 2z (Ri - R)(R

K R), 1<k <£n-1.
i=1

itk

Wald and Wolfowitz (1943) proposed to use a circular version of hk to
test randomness and proved its asymptotic normality. Rank serial
correlations, in circular and noncircular form, were studied further or
compared with other tests by various authors: e.g. Stuart (1956),

Knoke (1977), Dufour (198l), Bartels (1982). In particular, Bartels shows
that asymptotically, the rank version of the von Neumann ratio statistic

is a linear transformation of &l.

In order to obtain the exact variance-covariance structure

of the rank (non-circular) autocorrelations, we need to evaluate

E [Sa/Sgl. In this situation, we see easily that
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n
- _ w2 _ n(n+l) (n-1
;= 2 Ry =R 12 ’
i=1
S, = nlntl) (3n3 - 3n2 - 23n + 7)
4 240 *
Consequently,
4 _ 3 (30 = 30% - 230 + 7) (.11
2 5 2 :
S n(n+l) (n-1)

Var(&k) and Cov(&k,nh) can be obtained directly by substituting (2.11) in

(2.3) and (2.5). For example, the variance of nl is

50 - 24n° + 2002 + S4n - 16
5n2(n-l)3

Var(nl) =

2.6 Distribution-free tests based on sample autocorrelations

Sample autocorrelations are frequently used to test the
randomness of a time series Xl,...,Xn, against serial correlaticn alter-

natives. For example, serial dependence at lag k may be represented as

H, Corr(Xt,X = o # 0, t=1, ..., n-k.

t+k) -

where 1 £ k < n-1. Under the null hypothesis of randomness (HO), the

expected value of r is zero (or very close to it) while, under an

k
alternative of the form Hk’ it 1s close to Py (at least for n-k

sufficiently large). Actually, from (2.2), we know that the expected

value of rk is

b = -(n-k)/{n(n-1)}

under HO. Tests that use sample autocorrelations are typically based on

an asymptotic normal approximation with an approximate standard error for
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r, ¢ n_i or {(n-k)/n(n+2)}% (see Box and Jenkins,1976, p. 35; Ljung and

Box, 1978). Further, even under the standard normality assumption, the

distribution of T,

in this respect is the van Neumann's test for serial dependence at lag 1

is not well tabulated; the only exact test available

(von Neumann, 1941; Hart, 1942; Hart and von Neumann, 1942).

In view of this, an interesting application of the variance
bounds given in Section (2.4) is to provide very general bounds on critical
values for tests based on sample autocorrelations: such bounds are valid

'

irrespective of any assumption on the distribution of ths Xt s or, more

generally, of any further knowledge of the distribution of L The only

restriction is P [Xl =X = ... = Xn] = 0. We can obtain such bounds
easily by using Chebyshev's inequality: under HO' we have that

P [lrk—ukl 2 Xck] < 1/\2
for any A > 0, where Cy = Var(rk). Further, let oiu be the bound on

Var(rk) given in (2.8). Since Sy < g, . , we also have

kU
2 . .
- 2 Ao < 1/X Lo 0. 2.12
P [Irk ukl kU] 1", ( )
Under Hp, E[rk] - = 6 . Thus to test H, against an alternative of
serial dependence at lag k, it is natural to consider a critical region

~ x re ¢ is chosen so that
of the form ]rk “kl c O » vhere ¢, is chos t

P[hgmk|2c613=a,

the level of the test. However, neither g, mor ¢ are known generally.

From (2.12), we know that

P Uriyl 2 oyl < @
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3
where = (1/a)?, so that Ao 2co . If |r Ty ukl 2 A\ Oy » Ve

a ku ak

know that L is significantly different from its expected value under
HO for a test of level less than or equal to a. Typical values of

Xa are X.OS = 4,47, X.lO = 3.16 .

H

The critical region lrk—gk[ 2 ckU/a yields a level-a exact
conservative test of HO against H, . Though, the bound is somewhat crude,
19
it has the attractive property of being valid irrespective of the form of

the underlying distribution. It provides a threshold beyond which Ty

must be viewed significant at level a even if we do not know the exact
critical value or the form of the underlying distribution. For example,

if n=280, k=1, a = 0.10 and r, = 0.5, we have W = -0.0125 and

11 (3.16)01U = 0,351 : a value of r, as

low as 0.5 can be viewed as significant at the 107 level under very weak

gy = 0.111, so that Irl—u

assumptions.

3. RESULTS FOR NORMAL AND SPHERICALLY SYMMETRIC

DISTRIBUTIONS

~

We will now specialize the above results to the case cf a
normal random sample. Since results obtained under the normality assump-
tion remain exactly valid for the more general class of spherically symme-

tric distributions, we will cast them in this framework.

3.1 Spherically symmetric distributions

Let X and FH be nxl vectors with X random and p

fixed. The vector X has a spherically symmetric (s.s.) distribution

about p 1if and only if G(X-y) has the same distribution as X - p
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for all orthogonal nxn matrices G. This class of distributions is
extensively studied in Kelker (1970) and Lord (1954). Various statistical
applications are discussed by Kariya and LCaton (1977), Kariya (1977),

King (1980, 1981) and Zellner (1976). Chmielewski (1981) provides a

bibliography.

The density of a vector X with a s.s. distribution, if it exists,
is a function of the norm of X - 4 only and its characteristic function
$(t) is of the form (L) = y(c't) exp(iEﬁgj,where t= (tl,...,tn)"GRﬁ.
The class of s.s. distributions includes such distributions as the multi-
variate normal and the multivariate Student-t with covariance matrix GZIn,

a multivariate Cauchy, a multivariate exponential, etc.

Let X = (Xl,...,Xn)' and p = ¢ 1 where 1 = (1,...,1)' is oxl.

I

Denote 2i =X, - X, i=l,...,n and Z = (Zl,...,Zn)'. We can write

Z =M (3.1)
where M = I - (1/n)1 1' 1is a nxn symmetric idempotent matrix of rank n-1.
Further we can find a nxn orthogonal matrix P such that

In—l 0

P'MP =
0 0

Let P = (Pl’ PZ) where Pl is nx(n-1) and P2 is nxl. Then, if { has a s.s.
distribution about g, the vector W=2/ilz!| has a distribution 1dentical to
the one of the vector PI(E/HQH), where U has a multinormal distribution

N(O, In_l); fl-l denotes the Euclidean norm. We can see this as follows.

= P'Y = ' Ty = pt = p! : - ;
Let v = P X (31, 22) where Xl Plg_and v, P2§, It is then simple
to check that
= ' = ! =
Z=Pyvy, Z'Z=wvi, ¥=p v /lv,) (3.2

where P!'P. = 1 and P

' = : .
1F1 n-1 1 1 =0. Further, by considering the characteristic
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function of vy» we can see easily that vi has a s.s. distribution about

zero. The result then follows by applying Theorem 2.1 of Kariya and Eaton

(1977).

A useful consequence of this property is the following: any
statistic of the form T(W) has a distribution which is independent of
the functional form of the s.s. distribution of X, provided & = <1. We

can thus study its distribution assuming X is N(:], In). In particular.

from the definition of sample autocorrelations, we have

n-k

= E < -
rk ' wiwi+k , 12k <n-l
i=1

where W = (wl,...,wn)'. Therefore, the vector of sample autocorrelations
has the same distribution whenever X has a s.s. distributicn with ¢ = ul :

we can study its distribution by assuming X is N(:1, In).

3.2 Exact variances and covariances

To obtain explicit formulae for Var(rk) and Cov(rk, rh), we need

2 .
E[SS/SZI' Since

S4/5;

where W = Z/lzll, we know from the previous section that the distribution

of SA/Si is the same for all s.s. distributions. Assuming normality, Moran

(1948) found that

- 3(n-1) 3.3
E[Sz./si] a(ntl) (3.3)
1f we substitute (3.3) into (2.3), we find after some algebra:
2
2% - (+3yn3 + 3k’ + 2k(k+)n - 4k (3.4)

Var(r,) =
" (n+1)n? (n-1)2
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Up to order n_z, Var(rk) is given by

- n-(k+2) -3
Var(rk) _—:;?——_ + 0(n 7).

We derive the covariance between rk and rh in a similar way

from (2.5) and get

_ 2{kh(n-1) - (n-h)(nz-k)}
(a+1)n’ (n-1)2

Cov(rk, rh) . (3.5)

where 1 <= k <« h = n~1. Developing up to order n—z, we have
2 -
Cov(rk, rh) =-;§-+ O(n 3)

which is in agreement with a result of Fuller (1976, p. 242).

In a Monte Carlo study on the asymptotic efficiency of tests for
randomness, Knoke (1977) compared various test statistics. One of them is
n-1

T= Z
=1

(,.l.l]—l

and the critical region was determined from a normal approximation with
the exact mean obtained from (2.2) and an empirical variance. If we use
expressions (3.4) and (3.5) of this paper, it is straightforward to

compute the exact variance of T.

3.3 Comparison of the normal variance with the upper bound

2
For large n, the exact variance for a normal sample, say OkN’
2 .
is almost identical to the upper bound Sy obtained for exchangeable
random variables. Effectively, we have

2 n=(k+2) -3
OkN = + 0(n 7)

n
and
2 n-k -3
Sy " 7 + 0(n 7)
n
It is immediate that lim 02 /02 = 1, Table 1 gives the exact ratio

kU kN
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ciu/ciN for various values of k and n. We see that the upper bound is

nearly attained in the normal case even for samples as small as 20.

Table 1: Values of the ratio 02 /02 for various values of k and n.

kU /KN
) 1 2 3 4 5 10 15 20 25
s|1.67 1.70 1.96 2.42 - - — - —
ol1.25 1.25 1.24  1.25 1.26  -- — — -
15 [1.15 1.15 1.15 1.15 1.15 1.17 - — -
pl1.11 1.1l 1.1l 1.11 1.11 1.1 1.1 — -
2 |1.09 1.09 1.09 1.09 1.09 1.09  1.09  1.10 —
3|1.07 1.07 1.07 1.07 1.07 1.07 1.07  1.07  1.09
i0l1.05 1.05 1.05 1.05 1.05 1.05 1.05  1.05  1.05
sol1.06 1.04 1.06 1.04 1.04 1.064  1.04  1.0&6  1.04
100 1.02 1.02 1.02 1.02 1.02 1.02  1.02  1.02  1.02
200|1.001 1.01 1.01 1.01 1.01 1.01 1.0l  1.01 1.0l

3.4 Some numerical results

Tests of randomness that use sample autocorrelations r, are
usually based on an asymptotic normal distribution with mean O and approxi-
mate standard error nn% (Box and Pierce, 1970) or {(n—k)/n(n+2)}% {Ljung
and Box, 1978). 1t is worthwhile to see what is the gain realized by
replacing the approximate mean and variance by the exact mean in (2.2)

and the exact variance in (3.4).

To investigate this issue, we conducted the following Monte Carlo
experiment. For each of five different series lenghts (n=10,29,30,50,100),
10 000 independent reélizations of a normal white noise were generated using
the subroutine GGUBS of IMSL(1980), and for each realization, sample
autocorrelations r, at several lags were computed. We then examined the
quality of the asymptotic N(0,1) approximation for three different versions
of the normalized statistics Rk = (rk - uk)lck. The three normalizations

S1, S2 and S3 were defined as follows: for S1, B = 0 and o = n_%; for S2,
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= 0 and o= {(n=k)/n(n+2)}%; for 83, My is the exact mean in (2.2) and

%%

N(0,1) approximation, we examined the empirical frequencies of rejection of

the exact standard error in (3.4). To appreciate the accuracy of the

the null hypothesis of randomness by tests with three different nomiral
levels (5, 10 and 20 percent). Further, for each value of n and k, we
considered three types of tests: one-sided tests against positive serial
dependence (R), one-sided tests against negative serial dependence (L) and

two-sided tests (B).

The results of the experiment are presented in Table 2. We make
the following observations. First, for S1, thes N(0,l) distribution provides
a relatively poor approximation, even for series of 100 observatioms.
Second, the approximation is better for S2, but the empirical significance
levels of the one-sided tests remain appreciably different of the theoritical
levels (at least for short series of 50 observations cr less). Third, the
best results are obtained with the normalization S3: the agreement between
the empirical and the theoritical levels is very good both for one-sided
and two-sided tests and the approximation is satisfactory even for series of
10 observations. These results clearly suggest that the normalization based
on the exact mean and variance of rk is preferable to the approximate norma-

lizations currently in use. Further, it is easy to implemen: the exact

formulae in computer programs.

4. CONCLUDING REMARKS

We described, in this paper, a number of exact and robust properties
of sample autocorrelations. By robust properties, we mean properties that
hold under wide distributional assumptions, not necessarily properties of

robustness to outliers (Martin, 1981). We gave general expressions as well
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Tests are based on aaymptotic N(0,1) approxim

B refers

one-sided test asgainst positive gnd negative dependence respectively.

for S2, and ak-(Var(rk)}i trom formula (3.4) for S3, R and I refer to

to a two-sided test.
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as bounds for the second moments of sample autocorrelations, when the
variables in a sequence are exchangeable. The latter thus hold for an
arbitrary random sequence. We also gave the exact variances and covariances
of autocorrelation coefficients in two important cases: rank autocorrela-
tions from an arbitrary random sequence and standard sample autocorrelations

from a normal white noise. The latter also hold for s.s. distributions.

The bounds on the second moments are surprisingly tight: the
upper bounds on the variances are of order n-l while those one the absolute
value of the covariances are of order n-z. The bounds on the variances also
yield exact upper limits on critical values for tests of randomness based on
sample autocorrelations, without any assumption on the form of the distribu-
tion. In the normal case, we found in a Monte Carlo simulation that norma-
lizing the sample autocorrelaticns with their exact mean and variance, instead
of the usual approximations, can improve considerably the accuracy cof the
asymptotic N(0,1) distribution. Actually, in the simulations performed, the
empirical levels obtained with the exact normalization were practically
identical to the theoretical levels (of 5, 10 or 20 perceat). We thus
recommend strongly to use the exact means and variances when testing ran-
domness with sample autocorrelations. Note here that tail probabilities
for sample autocorrelations (in the normal case} can in crinciple be
obtained by using the method of Imhof (1961); see Ramasubban (1972}, Sneek
(1983). This remains,however, relatively costly and no table of exact
critical values for sample autocorrelations is yet available. Clearly
simple improvements in the quality of the asymptotic normal approximation,

as described above, remain an attractive practical alterpative.

Finally, we can note that the robust properties given above also

illustrate clearly the fact (known in theory) that the sample autocorrelations




i

P

-1

are not always a good indicator of independence. For example, E{rl]= -

for both an arbitrary random sample and for a symmetric normal distribution

(o]

where the pairwise correlation between any two observations is P=0.99 (sinc
the latter yelds exchangeable random variables). Similarly, the distribu~
tions of sample autocorrelations is the same for all spherically symmetric
distributions, including that of a normal white necise: except for cthe latter,
variables from a s.s. distribution are not independent {(Kelker, 1970). This
does not mean that sample autocorrelations cannot be used to test randomness.

But appropriate assumptions excluding certain forms of dependence are required.
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