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Résumé
L’endothéline-1 (ET-1) est un peptide vasoactif extrêmement puissant qui possède une 

forte activité mitogénique dans les cellules du muscle lisse vasculaire (VSMCs). Il a été 

démontré que l’ET-1 est impliquée dans plusieurs maladies cardio-vasculaires, comme 

l’athérosclérose, l'hypertension, la resténose après l'angioplastie, l’insuffisance cardiaque 

et l'arythmie. L’ET-1 exerce ses effets via plusieurs voies de signalisation qui incluent le 

Ca2+, les protéines kinases activées par les mitogènes (MAPKs) y compris les kinases 

régulées par les signaux extracellulaires (ERK1/2) et la voie de la phosphatidylinositol 3-

kinase (PI-3K)/protein kinase B (PKB). Plusieurs études ont démontré que les dérivés 

réactifs de l'oxygène (ROS) peuvent jouer un rôle important dans la signalisation 

d’ERK1/2 et de PKB induite par plusieurs facteurs de croissance et hormones. 

Nous avons précédemment montré que l'ET-1 produit des ROS qui agissent comme 

médiateur de la signalisation cellulaire induite par l’ET-1. Le peroxyde d’hydrogène 

(H2O2), une molécule qui appartient à la famille des ROS, peut activer les voies de la 

MAPK et de la PKB dans les VSMCs. Par ailleurs, nos résultats suggèrent également que 

le Ca2+ et la calmoduline (CaM) sont essentiels pour la phosphorylation d’ERK1/2, de 

p38 et de PKB induite par le H2O2 dans les VSMCs. La Ca2+/CaM-dependent protein 

kinases II (CaMKII) est une sérine/thréonine protéine kinase multifonctionnelle activée 

par le Ca2+/CaM. Il a été montré que la CaMKII est impliquée dans les voies de 

signalisation induite par le H2O2 dans les cellules endothéliales. Cependant, le rôle de la 

CaMKII dans la phosphorylation d’ERK1/2, de PKB et de la proline-rich tyrosine kinase 

2 (Pyk2) induite par l’ET-1 et le H2O2, de même que son rôle dans l’effet hypertrophique 

et prolifératif de l’ET-1 dans les VSMCs demeure inexploré.  
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Le monoxyde d’azote (NO) est une molécule vasoactive impliquée dans la régulation de 

plusieurs réponses hormonales. Le NO peut moduler la signalisation contrôlant la 

croissance cellulaire induite par plusieurs agonistes d’où son rôle protecteur dans le 

système vasculaire.  

Des études ont montré que le NO peut inhiber la voie de Ras/Raf/ERK1/2 et la voie de 

PKB induite par le facteur de croissance endothélial (EGF) et l’angiotensine II (Ang II). 

Beaucoup d’autres travaux ont mis en évidence un cross-talk entre les voies de 

signalisation activées par l’ET-1 et le NO. La capacité du NO à inhiber la signalisation 

intracellulaire induite par l’ET-1 dans les VSMCs demeure inconnue. Le travail présenté 

dans cette thèse vise à déterminer le rôle du système Ca2+-CaM-CaMKII dans la 

phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 et le H2O2 ainsi que 

son rôle dans la croissance et la prolifération cellulaire induites par l’ET-1 dans les 

VSMCs. Nous avons également testé le rôle du NO dans la phosphorylation d’ERK1/2, 

de PKB et de Pyk2 ainsi que la synthèse protéique induite par l’ET-1. 

 

Dans la première partie de notre étude, nous avons examiné le rôle de la CaMKII dans la 

phosphorylation d’ERK1/2 et de PKB induite par l’ET-1 dans les VSMCs en utilisant 

trois approches différentes i.e. l'usage d'inhibiteurs pharmacologiques, un peptide auto-

inhibiteur de la CaMKII  (CaMKII AIP) et la technique de siRNA. Nous avons démontré 

que la CaMKII est impliquée dans la phosphorylation d’ERK1/2 et de PKB induite par 

l’ET-1 dans les VSMCs. Des études précédentes ont montré à l’aide d’inhibiteurs 

pharmacologiques comme le KN-93 que l'Ang II et les agents induisant une 

augmentation de la concentration en Ca2+ intracellulaire comme l’ionomycine, 
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provoquent la phosphorylation d’ERK1/2 via la CaM dans les VSMCs. Cependant, en 

utilisant différentes approches, nos études ont montré pour la première fois une 

implication de la CaMKII dans la phosphorylation d’ERK1/2 et de PKB induite par l’ET-

1 dans les VSMCs. Nous avons également rapporté pour la première fois, un rôle crucial 

de la CaMKII dans la pathophysiologie vasculaire associée à l’ET-1 puisque l’activation 

de la CaMKII joue un rôle important dans l’hypertrophie et la croissance cellulaire. 

Dans la deuxième partie, à la lumière des études précédentes qui montraient que les ROS 

agissent comme médiateurs de la signalisation induite par l’ET-1 dans les VSMCs, nous 

avons examiné si la CaMKII est également impliquée dans l’activation des voies 

d’ERK1/2 et de PKB induite par le H2O2. En utilisant des approches pharmacologiques et 

moléculaires, nous avons montré, comme pour l’ET-1, que la CaMKII joue un rôle 

critique en amont de la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par le 

H2O2. 

Nous avons précédemment montré que la transactivation du récepteur de type I de 

l’insulin-like growth factor (IGF-1R) est nécessaire à l’activation de PKB induite par le 

H2O2. Pour cette raison, nous avons examiné l'effet de l'inhibition de la CaMKII par 

l’inhibiteur pharmacologique ou par le knock-down de la CaMKII sur la phosphorylation 

d’IGF-1R induite par le H2O2. Les résultats démontrent que la CaMKII joue un rôle 

critique en amont de la phosphorylation d’ERK1/2, de PKB et d’IGF-1R induite par le 

H2O2.  

Dans la troisième partie de notre étude, nous avons également examiné le mécanisme 

moléculaire par lequel le NO exerce ses effets anti-mitogéniques et anti-hypertrophiques 

dans la signalisation induite par l’ET-1. En testant l'effet de deux différents donneurs de 
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NO (S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP)) et  un 

inhibiteur de NO synthase, le N (G)-nitro-L-arginine methyl ester (L-NAME) dans la 

phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1, nous avons observé 

que le NO a un effet inhibiteur sur la signalisation induite par l’ET-1 dans les VSMCs. 

Par ailleurs, le 8-Br-GMPc, un analogue du GMPc, a un effet similaire à celui des deux 

donneurs du NO, tandis que l’oxadiazole quinoxaline (ODQ), un inhibiteur de la 

guanylate cyclase soluble, inverse l'effet inhibiteur du NO. Nous concluons que le NO 

diminue la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1 d’une 

manière dépendante du GMPc. Le NO inhibe aussi les effets hypertrophiques de l’ET-1 

puisque le traitement avec le SNAP diminue la synthèse des protéines induite par l’ET-1.  

 

En résumé, les études présentées dans cette thèse démontrent que l’ET-1 et le H2O2 sont 

des activateurs de la phosphorylation d’ERK1/2, de PKB et de Pyk2 dans les VSMCs et 

que la CaMKII s’avère nécessaire pour ce processus, en agissant en amont de l’activation 

de IGF-1R induite par le H2O2 dans les VSMCs. Elles montrent également que le NO 

inhibe la phosphorylation d’ERK1/2, de PKB et de Pyk2 induite par l’ET-1.  Enfin, nos 

travaux  suggèrent aussi que l’activation de la CaMKII stimule la synthèse des protéines 

et de l’ADN induites par l’ET-1 alors que le NO inhibe la synthèse des protéines induite 

par ET-1. 

Mots clés: Endothéline ; Peroxyde d'hydrogène ; CaMKII ; Monoxyde d’azote ; Système 

vasculaire ; PKB; ERK1/2; IGF-1R; Hypertrophie.  
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Abstract

Endothelin-1 has emerged as an extremely potent vasoactive peptide exhibiting 

potent mitogenic activity in vascular smooth muscle cells (VSMCs). A critical role of 

ET-1 in many cardiovascular diseases, such as atherosclerosis, hypertension, restenosis 

after angioplasty, heart failure and arrhythmia has been suggested. ET-1 exerts its effects 

through multiple signaling pathways which include Ca2+, mitogen-activated protein 

kinases (MAPKs) including extracellular signal-regulated kinases 1/2 (ERK1/2) and 

phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB)/Akt pathways. Several 

studies have also demonstrated that reactive oxygen species (ROS) may play an 

important role in mediating the signals of several growth factors and peptides hormones 

linked to these pathways. We have previously reported that ET-1 generates ROS which 

mediates ET-1-induced signaling. H2O2, an important ROS molecule, activates both 

MAPKs and PKB signaling in VSMCs. In addition, we have also suggested that Ca2+ and 

CaM are essential to trigger H2O2-induced ERK1/2, p38 and PKB phosphorylation in A-

10 VSMCs. Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a 

multifunctional serine/threonine protein kinase which is believed to transduce the 

downstream effects of Ca2+/CaM, and has been shown to be involved in H2O2-induced 

signaling in endothelial cells. However, a role of CaMKII in mediating ET-1 and H2O2-

induced ERK1/2, PKB, Pyk2 phosphorylation, as well as its effect on hypertrophic and 

proliferative responses of ET-1 in VSMCs remains unexplored. Interestingly, a role of 

CaMKII in several cardiovascular diseases has been reported and studies showing that 
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pharmacological inhibition of CaMKII, by using KN-93, prevent arrhythmic activity 

improved vascular dysfunction in diabetes or in Ang II-induced hypertension.  

Nitric oxide (NO) is also an important reactive species and vasoactive molecule 

involved in the regulation of several hormone-mediated responses. NO has been 

suggested to modify growth-promoting signaling events and thus may serve as a vascular 

protective agent. Studies have shown that NO can attenuate EGF and Ang II-induced 

Ras/Raf/ERK1/2 as well as increase in PKB phosphorylation signaling pathways. There 

is also evidence for a potential cross-talk between ET-1 and NO, however not much 

information on the ability of NO to modify ET-1-induced signaling in VSMCs is 

available. Therefore, the work presented in this thesis has investigated the role of 

CaMKII system in ET-1 and H2O2-induced ERK1/2, PKB and Pyk2 phosphorylation, as 

well as in cell growth and proliferation evoked by ET-1 in VSMCs. We also investigated 

the role of NO in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation as well as 

protein synthesis.   

 In the first part of our studies, by using three different approaches, i.e. use of 

pharmacological inhibitors, a CaMKII AIP (autoinhibitor peptide) and siRNA techniques, 

we have investigated the involvement of CaMKII in ET-1-induced ERK1/2 and PKB 

phosphorylation in A-10 VSMC. We have demonstrated that CaMKII mediates the effect 

of ET-1 on ERK1/2 and PKB phosphorylation in A-10 VSMC.  

By using pharmacological inhibitor alone such as, KN-93, earlier studies have reported 

that AngII and Ca2+ elevating agents, such as ionomycin, exert their effects on ERK1/2 

phosphorylation via CaM-dependent pathways in VSMC. However, by using multiple 

approaches, our studies, have provided the first evidence to suggest an involvement of 
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CaMKII in mediating the effect of ET-1 on ERK1/2 and PKB phosphorylation in A-10 

VSMC. We have also reported for the first time, a crucial role of CaMKII in vascular 

pathophysiology related to ET-1 by regulating the growth and hypertrophic events by 

using the technique of [3H]leucine and [3H]thymidine incorporation. 

In the second part, in view of earlier studies showing that ROS mediates ET-1-induced 

signaling events in VSMC, we have also investigated if CaMKII is also implicated in 

H2O2-induced activation of ERK1/2 and PKB pathways. By using both pharmacological 

and molecular approaches, we show that similar to ET-1, CaMKII serves as a critical 

upstream component in triggering H2O2-induced ERK1/2, PKB and Pyk2 

phosphorylation in VSMC. Furthermore, since we have previously reported that IGF-1R 

transactivation is needed for H2O2-induced PKB activation, we have investigated the 

effect of CaMKII inhibition and knocking-down on IGF-1R phosphorylation evoked by 

H2O2. Taken together, these results demonstrate that CaMKII plays a critical upstream 

role in mediating the effect of H2O2 on ERK1/2, PKB and IGF-1R phosphorylation.  

In the third part of our studies, we have investigated the molecular mechanism by which 

NO exerts its anti-mitogenic and anti-hypertrophic effect on ET-1-induced signaling. By 

testing the effect of two different NO donors (SNAP and SNP) and L-NAME, an 

inhibitor of NO synthase, in ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation, we 

observed that NO has an inhibitory effect in ET-1-induced signaling in VSMC. In 

addition, 8-Br-cGMP, an analogue of cGMP, exerted similar effect to that of NO donors 

whereas, oxadiazole quinoxalin (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), 

reversed the inhibitory effect of NO. We conclude that NO, in a cGMP-dependent 

manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB and Pyk2 and also 
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antagonized the hypertrophic effects of ET-1, since SNAP treatment decreased the 

protein synthesis induced by ET-1. 

 

In summary, the studies presented in this thesis demonstrate that both ET-1 and 

H2O2 induce ERK1/2, PKB and Pyk2 phosphorylation in VSMC and CaMKII activation 

is required for these events. We have also shown that CaMKII phosphorylation is 

upstream of H2O2-induced IGF-1R transactivation in VSMC. We have also provided 

evidence that NO attenuates ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. 

Finally, we have established that CaMKII activation stimulates ET-1-evoked protein and 

DNA synthesis, yet NO attenuates protein synthesis induced by ET-1.   

 

Keywords : Endothelin; Hydrogen peroxide; CaMKII; Nitric oxide; Vascular; Protein 

Kinase B; Extracellular Signal-Regulated Kinase1/2; IGF-1R; Growth.  
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1 Endothelin  

Endothelin (ET) was discovered by Yanagisawa and co-workers in 1988 (1) 

who also characterized and cloned it from porcine aortic endothelial cells (1). ET is one 

of the most potent vasoconstrictors that exhibits inotropic and mitogenic properties, 

influences salt and water homeostasis and stimulates the renin-angiotensin-aldosterone 

as well as sympathetic system (2-4). The overall effect of ET is usually to increase 

vascular tone and blood pressure. ET is believed to play an important role in vascular 

remodelling associated with experimental and human hypertension (4;5). Increased 

vascular smooth muscle cell (VSMC) hypertrophy, migration and proliferation are 

among the key events that contribute to remodeling of the vasculature associated with 

cardiovascular diseases. ET-1 exerts its physiological action by activating several signal 

transduction pathways linked to cellular hypertrophy, growth, migration and 

proliferation in several cell types including cardiomyocytes (6;7), kidney mesangial 

cells (8), and in the vascular system (9;10).  

 

1-1 Structure of ETs  

ET is a 21 amino acid peptide which exists in at least three isoforms, ET-1, ET-

2 and ET-3 (11). All ET isopeptides share a common structure, two disulfide bonds 

(Cys1-Cys15 and Cys3-Cys11), a cluster of three polar charged side chains on amino acid 

residues 8-10 and a hydrophobic C-terminus (residues 16-21) containing the aromatic 

indole side chain at Trp21 (Fig. 1). ET-2 contains two amino acid substitutions (Trp6-

Leu7) and shares 90% sequence homology with ET-1. ET-3 contains six amino acid  
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substitutions (Thr2, Phe4-Thr5-Tyr6-Lys7 and Tyr14) and shares 71% sequence 

homology with ET-1 and ET-2. The hydrophobic C-terminus of ET is essential for its 

bioactivity, as well as the loop configuration (12). Among the three ETs, ET-1 is the 

most important isopeptide in the vasculature (Fig. 1).  

 

1-2 Regulation and sites of generation of ET-1 

1-2-1 Regulation 

Generation of ET-1 is increased by several factors, including vasoactive hormones, 

growth factors, hypoxia, shear stress, lipoproteins, free radicals, endotoxin and 

cyclosporin (13) (Fig 2) whereas factors that increase intracellular level of cyclic 

guanosine monophosphate (cGMP), including endothelium-derived nitric oxide, 

nitrovasodilators, natriuretic peptides, heparin and prostaglandins (13) are known to 

inhibit the production of ET-1 (Table1 shows a list of factors that influence ET-1 

secretion). Each member of the ET family is represented by a separate gene that 

encodes a specific precursor for the mature isoform (11). In the 5' flanking region there 

are binding sites for activating protein 1 and nuclear factor 1, which mediate the 

induction of mRNA for ET-1 by angiotensin II (Ang II) and transforming growth 

factor-�, respectively (14). The 3' flanking region of the mRNA contains adenine-

uracil-rich sequences that mediate selective destabilization of preproendothelin-1 

mRNA, accounting for its relatively short biological half life of 15 min.  

 

 

 

 



 5

 

 

 

 



 6

 

 

 

 



 7

1-2-2 Site of generation 

Endothelial cells express a high level of mRNA for preproendothelin-1 and intracellular 

converting enzyme. Compared to other cell types, endothelial cells are the major site of 

ET-1 generation (11). ET-1 is also produced by the heart, kidney, posterior pituitary 

and central nervous system (13). Human aortic vascular smooth muscle cells also 

express mRNA for ET-1, although its production is about 100-fold less than that in 

endothelial cells. Limited amounts of ET-2 are produced in endothelial cells, heart and 

kidney (15;16). ET-3 appears to be expressed in the endocrine, gastro-intestinal and 

central nervous systems, but not in endothelial cells (13) 

 

1-3 Biosynthesis of ET 

The initial product of the human ET-1 gene is preproendothelin-1, a 212 amino acid 

peptide (Fig.2). Proendothelin-1 is formed after removal of a short secretory sequence, 

and is then cleaved by furin to generate a 38 amino acid peptide, bigET-1 (1). BigET-1 

does not appear to have any direct actions (17). The formation of mature ET-1 requires 

cleavage of bigET-1 by one of several unique ET converting enzymes (ECE). This 

family of metalloproteases is related to neutral endopeptidase-24.11 and Kell protein, 

but not to Ang II converting enzyme. ECE-1 is the physiologically active ECE (18). It 

possesses two splice variants, ECE-1a and ECE-1b, which have functionally distinct 

roles and tissue distributions (19). ECE-1a is expressed in the Golgi apparatus of 

‘producer’ cells, such as endothelial cells, and appears to be responsible for 

intracellular processing of bigET-1 to ET-1 in such cells. ECE-1b is expressed in 

‘responder’ cells, such as vascular smooth muscle cells, and is transported to the plasma 
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membrane where it acts to cleave extracellular bigET-1. Two more isoforms, ECE-1c 

and ECE-1d have also been identified (20). A second form of ECE (ECE-2) has been 

cloned and characterized (21). ECE-2 is similar to ECE-1 in that it is membrane bound, 

inhibited by phosphoramidon and exhibits selectivity for bigET-1. However, ECE-2 is 

active only at acidic pH (5.5) and is not expressed on the cell's surface (21). Thus, 

ECE-2 could act as an intracellular enzyme responsible for the conversion of 

endogenously synthesized big ET-1 in acidic environments. ECE-1 and ECE-2 are 

relatively selective for big ET-1, having much less activity in cleaving big ET-2 and big 

ET-3. It is probable that there is other, as yet unidentified, ECE that are responsible for 

cleavage of ET-2 and ET-3. Both ECE-1 and ECE-2 are inhibited by phosphoramidon, 

but not by selective neutral endopeptidase and angiotensin converting enzyme (ACE) 

inhibitors (13)  

 

1-4 Plasma concentrations and clearance of ET-1 

In healthy subjects, circulating concentrations of ET-1 in venous plasma are in the range 

1–10 pmol/l (22;23). This concentration is lower than those which cause vascular 

contraction in vitro and in vivo, although concentrations at the interface between an 

endothelial cell and vascular smooth muscle are likely to be much higher. It has been 

reported that cultured endothelial cells secrete ET-1 into basolateral (abluminally) 

compartment and not in the apical (luminally) compartment (24). Thus, ET-1 appears to 

be primarily a locally acting paracrine substance rather than a circulating endocrine 

hormone. Venous plasma bigET-1 and the inactive C-terminal fragment of ET-1 

concentrations have been used as a marker for endothelial synthesis of the peptide and 
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reflect better the exact amount of ET-1 generated as compared to ET-1 concentration 

(25), because circulating ET-1 is rapidly eliminated from the circulation. Although 

clearance of ET-1 from the circulation is very rapid and its biological half-life is about 

one min its pressor effects are maintained for about one hour (26). ET degradation 

happens mainly locally by endopeptidases (neutral endopeptidase, NEP) and cathepsins 

G generated from endothelial (in vascular) and epithelial cells (in lung) (27;28). ET-1 

circulating is eliminated by kidney, liver and especially lungs which are responsible for 

50% of elimination of ET-1 in human (29). A second metabolic pathway of ET appears to 

be mediated through receptor binding and then internalization (28). Pulmonary clearance 

of labelled ET-1 can be blocked by pretreatment with a large dose of unlabelled ET-1, 

suggesting that clearance of ET-1 is receptor-dependent (26). Blockade of ET receptors 

of the ETB subtype, but not of the ETA subtype, increases plasma concentrations of ET-1 

and ET-3 (30) and prolongs the biological half life of exogenous [125I]-endothelin-1(31). 

This blockade increases circulating level of ET-1 within 15 min (30;32) without affecting 

bigET-1 and C-terminal fragments concentrations (25), confirming that this increase is 

mediated by displacement of ET-1 from receptors rather than through peptide synthesis. 

These reports also suggest that ETB receptors play an important role in ET-1 clearance. 

 

1-5 ET-1 receptors   

ET-1 exerts its biological actions through the activation of two receptor subtypes, ETA 

and ETB (33;34). Both ETA and ETB, receptors belong to a large family of 

transmembrane guanine nucleotide-binding protein-coupled receptors (GPCRs). They 

contain seven transmembrane domains of 22-26 hydrophobic amino acids in their �400-
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aminoacid sequences with an N-terminal extracellular region and C-terminal intracellular 

region (33-35). It is currently not clear whether receptors dimerization into homo-or 

heterodimers plays a role in ET-1 receptors activity and function in vivo (36). ETA 

receptors are highly expressed in VSMC but are also found in cardiomyocytes, 

fibroblasts, hepatocytes, adipocytes, osteoblasts and brain neurons (33;37) and exhibit 

higher affinities for ET-1 and ET-2 than for ET-3 (33). Potent peptide and non-peptide 

ETA antagonists have been synthesized, the prototype being the pentapeptide BQ-123 

(38). ETB receptors exist predominantly in endothelial cells and smooth muscle cells, but 

are also found in cardiomyocytes, hepatocytes, fibroblasts, osteoblasts, different types of 

epithelial cells and neurons and have equal subnanomolar affinities for all ET iso-

peptides (34). ET-1 binding to ETA and ETB receptors on smooth muscles produces 

vasoconstriction, cell growth and cell adhesion (39) (Fig.3). The binding of ET-1 to 

endothelial ETB receptors stimulates the release of nitric oxide and prostacyclin (Fig.3) 

which prevents apoptosis, inhibits ET converting enzyme-1 (ECE-1) expression in 

endothelial cells and plays an important role in ET-1 clearance (40;41). Several agonists 

selectively activate the ETB over the ETA receptors which include ET-3 (~2000-fold 

selectivity) and sarafotoxin S6c (~300 000-fold selectivity) (42). Up to date several 

selective and non-selective ET-1 receptors inhibitors have been discovered. For example, 

BQ-788 is a selective peptide antagonist of the ETB receptor (43). The majority of 

currently used ET agonists are shown in Table 2.  
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1-6 Biological actions of ET 

1-6-1 Action of ET in the vasculature 

In VSMCs, activation of ETA and ETB by ETs is responsible for persistent 

vasoconstrictor response, whereas stimulation of ETB, in the endothelium, causes a 

transient vasodilatation, which usually precedes vasoconstriction. The vasodilatation is 

attributed to the release of nitric oxide via activation of endothelial NO synthase. It has 

been reported that ET-1-induced PKB phosphorylation leads to phosphorylation and 

activation of NO synthase in endothelial cells (44). Prostacyclin production has been also 

involved in ETB-mediated vasodilatation (41). It has been suggested that NO release and 

vasodilatation are mediated by ETB1, whereas the subsequent vasoconstriction depends 

on ETB2 receptors (45). The ETs increase blood pressure in vivo in animals for at least 

one hour after a bolus dose (1) and in human, intravenous infusion of ET-1 increases 

blood pressure by 5–10% at doses of about one pmol/kg per min administered for over 

one hour (46). The coronary and renal vascular beds are most sensitive to the 

vasoconstrictor effects of systemic ET-1 (47). The mesenteric bed also constricts in 

response to systemic ET-1, whereas the hindquarter skeletal muscle bed exhibits only a 

little constriction (48). These differences among beds may be related to differences in 

constrictor (ETA and ETB) and dilator receptors (ETB) in these beds. The pressor effect of 

bolus doses of ET is usually preceded by transient hypotension that is most marked for 

ET-3 (49). When concentrations of ET-1 rise more slowly, hypotension does not occur 

(50). The hypotensive response to bolus administration of ET is used for demonstrating 

the endothelial actions of the ETs. 
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As a long-term effect in VSMC, ETs have been proven to evoke mitogenic activity and 

this effect seems to be mediated through ETA receptors activation (51;52). In addition to 

being a potent mitogen  for VSMC, ET-1 also potentiates the mitogenic effects of growth 

factors such as PDGF, EGF and basic fibroblast growth factor (bFGF)  and is considered 

as a co-mitogen with these growth factors (52). 

 

1-6-2 Action of ET in the heart 

The biological effect of ET-1 on cardiac tissue has been reported in several studies. ET 

has been found to exert a positive inotropic effect on human myocardium in vitro by 

activation of the sodium proton exchanger and increasing sensitization of cardiac 

myofilaments to Ca2+ (53). Recently, the activation of Na+/H+ exchange by ETs has been 

shown to be mediated by PKC (54). Na+/H+ exchange causing an increase in intracellular 

Na+ concentration and alkalinisation (37). While the former effect activates the Na+/Ca2+ 

exchange leading to an increase in intracellular Ca2+ concentration and myocardial 

contractility, the latter (alkalinisation) improves myofibrillar Ca2+ sensitivity (37). 

At the same time ET-1 evokes prolongation of the duration of the action potential (55). 

Thus, this pharmacological action of ET-1 may contribute to the pro-arrythmogenic 

property of the peptide when it is endogenously released or exogenously applied (56). 

Interestingly, in postmyocardial infarction of heart failure, ET-1 induces more positive 

inotropic response compared to healthy heart because of a high responsiveness to ET-1 in 

this pathological state (57). ETs also influence heart function indirectly by inducing 

vasoconstriction in coronary artery. Furthermore, it has been suggested that, during 
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exercise, ET-1 level was significantly increased in heart and ET-1 participates in the 

modulation of cardiac function during exercise in rats (58). 

 

1-6-3 Action of ET-1 in the nervous system  

An intracerebroventricular administration of ET in conscious rats, dose-dependently 

elevated blood pressure and also increased heart rate (59). These effects depend on ETA 

receptors activation and not ETB receptors (60). Many other laboratories have confirmed 

these results (61;62) which suggested a central pressor action of ET. On the other hand, 

Makino et al have shown that intracerebroventricular administration of ET increases 

plasma catecholamine levels suggesting that the central pressor action of ET might be 

mediated by catecholamine release to the periphery (63). In contrast, however, 

Yamamoto et al have reported that intracerebroventricular ET-1 stimulates vasopressin 

secretion leading to increased blood pressure with a reduction in renal water and 

electrolyte excretion (62). It has been also reported that ET via both sympathetic nervous 

system and hypothalamo-pituitary-adrenal axis, and through its interaction with brain 

natriuretic peptide (BNP) in the central nervous system may regulate cardiovascular and 

hormonal functions. (63).  

 

1-6-4 Action of ET in the Kidney 

 Many cells in the kidney produce ET-1 (64). Renal ET-1 and receptors localize 

predominantly in the medulla, and the production of ET-1 in this region exceeds that of 

anywhere else in the body (65). The contribution of ET-1 to regulation of renal function 

under normal physiological conditions has been studied by several groups. The effect of 
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ET-1 in the renal medulla is natriuretic, diuretic and hypotensive. Although, it is largely 

accepted that ET-1 action promotes sodium and water excretion thereby induce diuresis 

under physiological circumstances (66-68), other studies have suggested an attenuating 

role of ET-1 in urinary sodium excretion (69;70). Recently, by using transgenic mice 

exhibiting collecting duct-specific knockout of ET-1, data from Kohan et al have 

confirmed the fact that ET-1 promotes sodium and water excretion (71;72). Several 

potential mechanism by which ET-1 induces sodium and water excretion have been 

proposed, one of which involves ET-1-induced inhibition of tubular Na+/K+-ATPase 

activity in the proximal tubule and collecting duct (66). In addition, ET-1 has also shown 

to block reabsorption of water in the collecting duct by inhibiting the effects of anti-

diuretic hormone (ADH) on tubular osmotic permeability (67). The natriuretic and 

diuretic effects of ET-1 appear to occur via ETB receptor since the effects were 

specifically blocked only by ETB receptor agonists and not by ETB A receptor antagonist 

(73). In addition, it has been reported that ETBB receptor knockout mice have hypertension 

secondary to renal retention of sodium (19). 

Due to its potent vasoconstrictor action, ET-1 has been considered to be important in 

regulating renal vascular tone. ET-1 contracts afferent and efferent arterioles equally in 

vitro (74) and thus reduces both renal plasma flow and glomerular filtration rate (GFR) 

(75). Both ETA and ETB receptors participate in ET-1-mediated vasoconstriction of 

afferent arterioles (76).  
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1-6-5 Action of ET in the endocrine system 

ET-1 has also been shown to stimulate secretion of several hormones throughout the 

body. ET-1 stimulates both cortical and medullo adrenal hormones, it enhances the 

release of aldosterone from isolated cortical zona glomerulosa cells (77) and of 

adrenaline from medullary chromaffin cells (78). ET-1 stimulates production and release 

of atrial natriuretic peptide (ANP) by cultured atrial myocytes in vitro and in vivo 

(79;80). An inhibitory role of ET-1 on renin release from isolated rat glomeruli (81) and 

from rat juxtaglomerular cells (82) has also been reported. On other hand ET-1 has been 

reported to stimulate endothelial ACE activity (83). Taken together these findings show 

that ET-1 has contrasting effects on the renin–angiotensin system. ET-1 and ET-3 have 

also been found to be implicated in the release of testosterone by stimulating basal and 

gonadotrophin-induced testosterone production although the effects of ET-3 were less 

marked in rat Leydig cells (84). 

In adipose tissue, ET-1 inhibits adiponectin secretion through a phosphatidylinositol 4,5-

bisphosphate/actin-dependent mechanism (85). It has been reported that a decrease in 

adiponectin (secreted by white adipose tissues) expression and secretion have been 

positively correlated with a decrease in insulin sensitivity (85). More recently, by using 

RT-PCR and real-time PCR analyses, Chai et al have proposed another mechanism by 

which ET-1 evokes insulin resistance, they have demonstrated that ET-1 is able to 

increase IL-6 secretion from adipocytes which is a critical step for insulin resistance.(86). 
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1-7 Role of ET-1 in cardiovascular diseases  

Because of the ability of ET system to modulate a wide variety of cellular function it has 

been implicated in the pathophysiology of cardiovascular diseases such as, hypertension, 

atherosclerosis, coronary artery disease, heart failure as well as in diabetes, primary 

pulmonary hypertension, pulmonary fibrosis, scleroderma, renal failure, prostate cancer 

and its metastasis (87-90).  

 

1-7-1 ET-1 in hypertension  

1-7-1-1 ET-1 in experimental hypertension   

Significant increases in plasma ET-1 levels are consistently seen in only certain models 

of hypertension. Deoxycorticosterone acetate (DOCA) salt-hypertensive rats, Dahl salt-

sensitive rats, Ang II-induced hypertension, 1-kidney 1-clip Goldblatt hypertensive rats, 

and stroke-prone spontaneously hypertensive rats (SHRs) are among the models that 

exhibit an increase in systemic levels of ET-1 (91;92). As a consequence of the enhanced 

production of ET-1 in these models, ET-1 contributes to the remodeling of arteries in 

hypertension (93). Interestingly, the models of experimental hypertension that evoke 

increase in ET-1 systemic level also exhibit hypertrophic remodeling of resistance 

arteries with increased cross-sectional area, which is believed to be the results of the ET-

1 action (94), rather than the eutrophic remodeling without true vascular hypertrophy 

often found in essential hypertension and in spontaneously hypertensive rats (93).   

Flamant et al have suggested a critical role of EGF receptor transactivation in the 

vascular fibrotic response that is associated with ET-1-dependent vascular remodelling 

(95). It has also been reported that ET-1 stimulates DNA synthesis of VSMC which is an 
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index of proliferation and remodelling, via ETA receptor (52) and through transactivation 

of EGFR (96). Studies using vessels from male Wistar rats have revealed the mechanism 

by which ET-1 induces remodelling. These studies have suggested that ET-1- induced 

inward eutrophic remodelling seems to response to sustained contraction, which involves 

collagen reorganization through �3-integrins (97). It has been reported that ET-1 activates 

NADPH oxidase in VSMC and in blood vessels (98) and ET-1-induced proliferation may 

be mediated partly by increased ROS production (99). In aldosterone-induced 

hypertension systolic blood pressure, plasma ET-1, systemic oxidative stress, and 

vascular NADPH activity was increased. Enhancements of collagen, fibronectin and 

intercellular adhesion molecule (ICAM-1) have been shown to be associated with small 

artery hypertrophic remodeling in this hypertensive model (100). In the same study, BMS 

182874, an ETA receptor antagonism, attenuated vascular remodeling, fibrosis and 

oxidative stress as well as adhesion molecule expression in aldosterone-induced 

hypertension (100). Involvement of ET-1 in renal and cardiac target organ damage in 

hypertension has been documented. Studies have confirmed an implication of ET-1 in 

renal fibrosis through stimulation of growth factors and by inducing inflammation in 

hypertensive rats (101). In these studies an increase in renal ET-1 in hypertensive rats 

was shown to be associated with enhancements in transforming growth factor (TGF)-�1, 

basic fibroblast growth factor (bFGF), procollagen I expression and matrix 

metalloproteinase (MMP)-2 activity. In addition, it was also demonstrated that a selective 

ETA antagonist was able to normalize these events. (101). Although, the role of ET-1 in 

promoting renal fibrosis has been confirmed, implication of ET-1 in renal damage 

associated with hypertension is still controversial. It has been demonstrated that in Ang 
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II-infused mice, the non-selective ET-1 receptor blocker, bosentan, prevented activation 

of the procollagen gene (102). By using the same blocker, Muller et al have shown a 

reduction in renal damage in rats overexpressing human angiotensinogen and human 

renin, that develop hypertension (103). On the other hand, Rothermund et al have 

suggested that ET-1 is not involved in renal damage and mortality in primary renin-

dependent hypertension (104). Recently, it has been demonstrated that a selective ETA 

receptor blockade not only reduces podocyte (cells of the visceral epithelium in the 

kidneys) injury and end-organ but also improves growth and survival independently of 

hypertension (105). In the heart, ETA (106) or combined ETA/ETB (103) or ECE inhibitor 

(107) blockade prevented target organ damage in hypertension animal models. Recently, 

Vanourkova et al gave evidence showning that blockade of the ET-1 system prevented 

the rise in cardiac ET-1 concentration in transgenic rats with inducible malignant 

hypertension. They suggested that ET-1 receptor blockade may provide evidence for ET 

blockade as a tool to protect rats from hypertensive cardiac damage (108). 

 

1-7-1-2 ET-1 in essential hypertension.   

Systemic concentration of ET-1 does not reflect the real production of ET-1 because ET 

is generated and acts locally. Studies investigating the role of ET in essential 

hypertension have revealed no change in plasma ET-1 concentration in hypertensive 

patients as compared with normotensive (4), whereas, plasma ET-1 level rises in African 

Americans hypertensive subjects (109). It has been shown that the increases of plasma 

ET concentration seem to be related to aging, smoking and renal dysfunction rather than 

essential hypertension (110). ETA receptor antagonists cause vasodilatation in forearm 
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vessels of both normotensive and essential hypertensive patients (111), and improve 

impaired vasodilation in hypertensive patients. On the other hand, the ETB antagonist 

induces vasoconstriction on forearm resistance arteries in normotensive subjects 

(112;113) and  had a vasodilator action on the forearm circulation of hypertensive 

subjects (113), indicating that a vasoconstrictor effect of ETB receptors could be found in 

hypertensive but not normotensive individuals. African Americans patients appear to 

have increased numbers of smooth muscle vasoconstrictor ETB receptors (109;114), 

which may explain the important role of the ET-1 system in these subjects. Both selective 

and dual-acting ET-1 receptor blockers can reduce systemic blood pressure in animal 

models and in hypertensive patients. Clinical studies recruiting 293 patients with mild-to-

moderate essential hypertension revealed that bosentan, an antagonist of both ETA and 

ETB receptors, was able to significant lower diastolic blood pressure in these patients. 

This reduction was similar to that observed with the ACE inhibitor enalapril (115). 

Furthermore, in animal experimentation, combination of ET-1 receptor antagonist, 

bosentan and ACE inhibitor leads to additional hypotensive effect in hypertensive dogs 

(116). The selective ETA antagonist darusentan reduced systolic blood pressure by 6.0 to 

11.3 mm Hg (117). Elevation of liver enzymes, a side-effect found with bosentan, was 

not encountered with darusentan in this study. Recently, safety and efficacy of darusentan 

have been evaluated in the treatment of hypertension and heart failure (118). Although, 

the effect of ECE inhibitor has not been studied in essential hypertension in human, 

encouraging results have been reported in SHR where phosphoramidon, an ECE 

inhibitor, lowered mean arterial pressure when infused in conscious SHRs (119). 
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Data from recent study shows that moderate aerobic exercise reduces ET-1-mediated 

vasoconstrictor tone. These reductions in ET-1 system activation may be the mechanism 

by which exercising contribute to the known beneficial affects to prevent or treat 

hypertension. (120). Finally, as mention above, aging is cardiovascular risk factor which 

exhibits increased ET-1 system activation which may be one cause of aging-promoted 

hypertension (121). 

1-7-2 ET-1 in atherosclerosis  

Endothelial cell injury, inflammation, monocyte infiltration of the vessel wall, cytokines 

and growth factors releases, migration of VSMC to the intima, and lipid accumulation in 

foam cells are the main characteristics of atherosclerosis (87). Evidence from several 

groups has suggested the involvement of ET-1 in development and progression of 

atherosclerosis (87;122). It has been documented that ET-1 is a chemoattractant for 

monocytes and macrophages and acts as a comitogen for VSMC (123;124). Lerman et al 

have shown a significant increase in plasma ET-1 concentration and this increase is 

correlated with the number of atherosclerotic lesions in atherosclerotic patients (125). 

Together with the fact that ET-1 has a short half-life in the circulation (126), these raised 

plasma levels are likely to be due to increased tissue ET-1 production. Upregulation of 

ET-1 and ET receptors have been demonstrated in atherosclerotic lesions in human and 

experimental animal models (127). Recently, another parameter of ET system which is 

ECE-1, has been shown to be significantly increased in apolipoprotein E-deficient (apoE) 

atherosclerotic mice (128). By studying ET-1 mRNA expression in normal and 

atherosclerotic human coronary arteries, Winkles et al. have suggested that endothelial 
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cells, monocyte-derived macrophages and VSMCs within the atherosclerotic lesion are 

capable of synthesising ET-1 (129). In the same regard, it has been reported by using 

cultured human VSMC from atherosclerotic coronary arteries that ET-1 production is 

markedly increased in coronary atherosclerotic plaques which may contribute to the 

development or progression of coronary artery disease (130). Both ETA and ETB 

receptors have been shown to be linked to atherosclerosis pathology. It has been 

demonstrated that both receptors are localized in endothelial cells, smooth muscle cells 

and macrophages in atherosclerotic plaques in hyperlipidemic hamsters (131). Moreover, 

chronic ETA receptor blockade normalized NO-mediated endothelial dysfunction and 

reduced atheroma formation in atherosclerotic apolipoprotein E-deficient mice (132). In 

human, infusion of the selective ETA receptor antagonist BQ123, improves coronary 

vascular function in patients with atherosclerosis. These data suggest that ET-1 receptor 

blockade may be a new therapeutic strategy to improve coronary vascular function in 

patients with atherosclerosis (122).  Additional mechanism by which ET-1 induces 

atherosclerosis has been revelled recently. Ballinger et al have demonstrated that ET-1, 

via ETA receptors, induces changes in the structure of glycosaminoglycan (GAG) that 

increases its binding to low density lipoprotein (LDL) and modifies its lipid binding 

proprieties within the vascular wall (133).  

Neointimal formation is the major cause of vessel occlusion observed following balloon 

angioplasty. Injury to the vascular endothelium and underlying tissue initiates intimal 

thickening with migration of medial VSMCs towards the intima where they change from 

the contractile to synthetic phenotype. The resultant thickened intimal layer forms a 

pronounced neointima, narrowing the vessel lumen and acting as pro-atherosclerosis 
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(134). ETA receptors have been identified on proliferating cells in the neointima of 

porcine vein grafts and balloon-injured porcine coronary arteries (135). Infusion of 

exogenous ET-1 has been shown to potentiate the development of intimal hyperplasia 

following balloon catheter injury (136) whilst mixed ETA/ETB receptor antagonists or 

ECE inhibitor reduced angioplasty-induced neointima formation (135;137;138) which 

further support a role of ET-1 system in this process.  

1-7-3 ET-1, Gi protein and hypertension 

Guanine nucleotide regulatory proteins (G proteins) are a family of GTP-binding proteins 

that play an important role in the regulation of a variety of signal transduction systems, 

including the adenylyl cyclase/cAMP system. The activity of adenylyl cyclase is 

regulated by two G proteins, Gs (stimulatory) and Gi (inhibitory). Alterations in the 

levels of Gi proteins and cAMP levels that result in the impaired cellular functions lead to 

various pathological states such as hypertension. Studies have been shown an increased 

expression of Gi proteins and Gi protein mRNA in hearts and aortas from spontaneously 

hypertensive rats (SHR) and in hearts from experimental hypertensive rats including 

deoxycorticosterone acetate (DOCA)-salt hypertensive rats and  1 kidney 1 clip (1K1C) 

rats with established hypertension with established hypertension (139-142). VSMC from 

SHR exhibited enhanced levels of Gi� protein as compared to WKY rats, which were 

restored to control levels by antioxidants, suggesting a role of oxidative stress in this 

process. (143). ET-1 treatment has been shown to increase both Gi�-2 and Gi�-3 

expression without affecting Gs� expression level in A10 VSMC (144) this may explain 

the mechanism by which ET-1 contribute to established hypertension. Similar to ET-1, 
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Ang II and arginine vaspressin have been also reported to increase the levels of Gi� 

proteins in VSMC, whereas atrial natriuretric peptides (ANP) and nitric NO, which 

increase cGMP levels, decreased Gi� protein expression in the cells (144-146). In this 

context, it seems that ET-1 and NO have opposite action on Gi� expression and adenylyl 

cyclise activity which explains le vascular protection effect of NO as well as the 

mechanism by which ET-1 contribute to establish hypertension.     

1-7-4 ET-1 in heart failure  

Circulating ET-1 levels have been shown to be increased not only in animal model but 

also in humans with heart failure (147;148).  In addition, the degree of plasma levels of 

ET-1 correlates with the magnitude of alterations in cardiac hemodynamics and 

functional class (149). It seems that low cardiac output, observed in heart failure, serves 

as a stimulus for endot release because very high levels have been documented in animals 

with low cardiac output and low ventricular filling pressures produced by thoracic 

inferior vena cava constriction (150). Both selective (ETA receptor) and non-selective 

(ETA/ETB receptors) ET receptor inhibitor have been shown to be beneficial in limiting 

heart failure complication. Indeed, oral ET-receptor antagonist, bosentan, improved 

systemic and pulmonary hemodynamics in heart failure patients. (151), same results have 

been seen with a selective ETA receptor inhibitor (152). In fact a selective ETA receptor 

blockade improved cardiac index in patients with congestive heart failure (152). Ohnishi 

et al compared the effects of selective ETA and mixed ET A/B receptor antagonism using 

FR139317 and TAK-044, respectively, in conscious dogs with heart failure. Both agents 

improved cardiac function in these studies (153). Recently, by using anesthetized rats, 
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Rufanova et al have shown that myocardial contractility was restored and cardiac 

relaxation significantly improved after the application of  PP36 an inhibitor of ECE 

application suggesting a crucial role of ET production in this pathophysiology state (154). 

 

1-8 ET-1induced signaling in vascular smooth muscle cells 

ET-1 exerts its physiological actions through the activation of multiple signaling 

pathways which include the PLC/DAG/IP3, MAPKs, and PI3-K/PKB pathways. As 

shown in Fig. 4 and 8, many receptor and non-receptor tyrosine kinases also play a role in 

initiating the ET-1-induced signaling events. The cellular events triggered by the 

activation of these signalling pathways play important role in regulating the cellular 

growth, proliferation, contraction and survival of VSMC, and aberration in this pathways 

results in the pathological states. 

 

1-8-1 ET-1-induced activation of phoshoinositide cascade  

The binding of ET-1 to its receptor activates heterotrimeric guanine nucleotide binding 

(G) proteins such as Gq which is the best characterized signal transducer for ETA 

receptor. As with all heterotrimeric G-proteins, Gq consists of an �-subunit (�q, or 

related �-subunit, such as �11), a member of the �-subunit family as well as a member 

of the �-subunit family and is associated with the membrane (35;155). In the inactive 

Gq heterotrimer, �q is ligated to guanosine diphosphate (GDP) and exchange of GDP 

for guanosine triphosphate (GTP) on �q leads to the dissociation of �q(GTP) and  ��� 

and both remain associated with the membrane (35). Their dissociation leads to the 

activation of phosphoinositide-specific phospholipase C��� (PLC �) (156;157), which 
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then hydrolyzes the membrane phospholipid, phosphatidylinositol-4’,5’-bisphosphate 

[PtdIns(4,5)P2] to generate two second messengers: hydrophobic diacylglycerol (DAG), 

which remains in the membrane, and soluble inositol-1’,4’,5’-trisphosphate 

[Ins(1,4,5)P3] (156;157). Ins(1,4,5)P3 diffuses into the cytoplasm and activates calcium 

channels of the sarcoplasmic reticulum, which leads to an increase in Ca2+ levels in the 

sarcoplasm and cell contraction. DAG together with Ca2+ activates the 

phosphatidylserine-dependent protein kinase, protein kinase C (PKC) (Fig.4). The PKC 

family of serine/threonine kinases have been subdivided into three groups: the classical 

or conventional PKCs, which require DAG and Ca2+, include the isoenzymes����� and � 

(158), the novel PKC (nPKC) which are DAG-dependent, but Ca2+-independent, 

include the isoenzymes  ���	��
������ and   (158;159) and the atypical PKC (aPKC), 

which are independent of DAG and Ca2+ and include � and � isoenzymes (158;160). 

ET-1 has been shown to activate PKC in cardiomyocytes (161) and in other cells 

(162;163). Many studies have implicated PKC in the deleterious vascular effects of a 

variety of pathologies including diabetes and hypertension (164). PKC has been shown 

to be involved in ET-1-induced signalling in VSMCs (165;166). Moreover, growing 

evidence suggests that PKC activity modulates proliferation (166;167) and contraction 

of VSMCs evoked by ET-1 (168). Recntly, by using human VSMC, Chen et al have 

reported an implication of PKC in ET-1-induced ERK activation through ETA receptors 

(169). Thus, ET-1-induced activation of PKC and its downstream effects appear to be 

important in regulating vascular functions.  

In addition to PLC via Gq, ETA and ETB receptor subtypes are functionally coupled to 

adenylate cyclase, via Gs in VSMC and Gi in endothelial cells respectively. (170;171). It 
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has been also reported in other cell types that the calcium signal induced by ET-1 is 

consequent to both an activation of PLC and inhibition of the calcium pump, both 

effectors being coupled to the ETB receptor by different G proteins, Gq and Gs, 

respectively (172). 

1-8-2 Calcium calmodulin system in ET-1 signaling  

It has been shown that, in VSMC, ET-1 evokes increase in intracellular calcium 

concentration via a stimulated plasma membrane Ca2+ entry and/or sarcoplasmic 

reticulum Ca2+ release (173-175). Cytoplasmic Ca2+ is tightly controlled and in the 

unstimulated state it is believed to be around 100 nM.  In response to various signalings 

this concentration can rise up to 300-500 nM this increased Ca2+ signals participates in 

many cellular functions including short-term contractile, secretory, or metabolic 

responses to longer term regulation of transcription, growth, and cell division (176). 

Through the activation of PLC�, ET-1 generates the second messengers IP3 and DAG. 

IP3 diffuses rapidly within the cytosol and interacts with IP3 receptors (IP3R) located on 

the endoplasmic reticulum, which function as calcium channels to release calcium stored 

in the endoplasmic reticulum lumen and generate the initial calcium signal phase as 

mention in the previously section. The resulting depletion of calcium stored within the 

endoplasmic reticulum lumen functions as the primary trigger for a message that is 

returned to the plasma membrane. The lowered luminal Ca2+  causes dissociation of Ca2+  

bound to the low-affinity EF-hand Ca2+ -binding site on the N-terminus of stromal-

interacting molecule (STIM)1, which is considered as a ‘‘sensor’’ of Ca2+ within ER Ca2+  

store (177). This Ca2+ dissociation causes STIM1 molecules to aggregate and be 

translocated close to the plasma membrane (177). At this level STIM1 interacts directly 
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with Orai1 protein, (178) which serve as highly Ca2+-selective store-operated channel 

(179) and allow entry of external calcium. This sustained calcium entry phase mediates 

longer term cytosolic calcium signals and provides a means to replenish intracellular 

stores (180).  

The other product of PLC activation, DAG, also has important effects on calcium entry 

channels. Transient receptor potential channels (TRPC) have been reported to play a 

major role in GPCR-induced Ca2+ entry in VSMC and other cell types (180;181). DAG 

has been shown to triggers Na+ entry via TRPC6 activation (178;182) which in turn 

induces membrane depolarization resulting in  activation of Ca2+ entry through L-type 

voltage-activated Ca2+ channels (178).The TRPC6 channels also appear to be activated 

by mechanical stretch, resulting again in depolarization and L-type Ca2+ channel 

activation (183). 

An important effector of Ca2+ is calmodulin (CaM) and many diverse actions of Ca 2+ and 

CaM signaling are known to be mediated through Ca2+/CaM-dependent protein kinases 

(CaMK). CaMKs are serine/threonine kinases that are regulated by Ca2+ liganded CaM. 

Myosin light chain kinase (MLCK) and phosphorylase kinase are Ca2+/CaM-dependent 

protein kinases which are dedicated to a particular substrate. Elongation factor-2 (EF-2) 

kinase (originally termed CaMKIII) is also a kinase dedicated to the phosphorylation of a 

single substrate (184). In contrast, CaMKs are multifunctional CaMKs (185) some 

member of this family e.g. CaMKI, II and IV exhibit a board substrate specificity 

whereas others members are more selective. In the context of cardiovascular system, 

CaMKII has generated a lot of interest because of its potential involvement in myocardial 

physiology and diseases (186) 
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Fig.4: Activation of MAPK pathway by ET-1 in VSMC. ET-1 receptor stimulation 
leads to G-protein b� activation which activates PLC �. Activated PLC � converts PIP2 
to IP3 and diacylglycerol (DAG). IP3 elevates the concentration of intracellular calcium 
and participates in muscle contraction. DAG activates PKC. PKC and/or 
Ca2+/Calmodulin (CaM)-dependant protein kinase (CaMK) activate receptor and non-
receptor tyrosine kinases. Activation of these components signals the stimulation of 
Ras/Raf/ MEK /ERK1/2, p38 mapk and JNK. The MAPK family members are 
translocated to nucleus and regulate nuclear events by activating transcription factors 
through phosphorylation. 
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1-8-2-1 CaMKII  

There are four known isoforms of CaMKII (�, �, �, �) which are encoded by separate 

genes.  and �-CaMKII are the predominant neuronal isoforms and the�� and � isoforms 

are expressed in diverse tissues including the heart (187). In heart, the predominant 

isoform is�� (188) whereas both � and ��isoforms have been shown to be express in 

VSMC (189;190). 

1-8-2-1-1 Structure of CaMKII 

Monomeric structure

The CaMKII monomer consists of an NH2-terminal catalytic domain, a centrally located 

regulatory domain, and a COOH-terminal association domain (Fig.5). The catalytic 

domain is needed to catalyze the transfer of the phosphate from ATP to serine or 

threonines embedded within a CaMKII consensus motif (191). The regulatory domain 

contains a pseudosubstrate sequence that, under basal conditions, binds and constrains the 

catalytic domain. A CaM binding domain is located in the regulatory domain. The 

pseudosubstrate sequence is found around an activating "autophosphorylation" site at 

Thr286 for ���isoform� (Thr287 for �) (192) and a recently identified activating oxidation 

site (Met281/Met282) (193). Phosphorylation of Thr286 or oxidation of Met281 and Met282 

prevents the re-association of the catalytic and regulatory domains even after dissociation 

of Ca2+/CaM complex, thereby enhancing the CaMKII signal. An inhibitory 

autophosphorylation site, Thr 306/307, reacts with the Ca2+-CaM binding sequence. Basal 

phosphorylation occurs preferentially at Thr306, preventing Ca2+/CaM binding, resulting 

in decreased CaMKII activity (194). The association domain is responsible for the 

assembly of CaMKII monomers into the holoenzyme.  
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Holoenzyme structure  

The partial structure of the CaMKII holoenzyme has been determined by 

crystallographical studies. These studies have revealed that the ~600 kDa holoenzyme 

consists of two central rings stacked on top of each other, with a diameter of ~145 Å, 

formed by interaction of multiple association domains. This central ring serves as the 

scaffold from which an outer ring, consisting of the regulatory and catalytic domains, 

 

 

Fig.5 Linear diagram of a prototypical CaMKII subunit. The catalytic domain is 

autoinhibeted by pseudosubstrate autoregultory sequence that is disinhibited following 

Ca2+/CaM binding. The association domain produces the native form of the enzyme, a 

multimeric holoenzyme composed of 12 subunits. Isoform differences present in 

the���������and � isoforms of CaMKII are contributed primarily by a region of multiple 

alternatively  spliced sequences, termed variable insert, which reside in the association 

domain. Conserved site of autophosphorylation are indicated in autoregulatory domain.  

From (Hudmon and Schulman Biochem. J.  364: 593-611, 2002)  
 

 

arises (195). The holoenzyme is either a dodecameric (196;197) or a tetradecameric (195) 

structure. This arrangement allows for a high concentration of catalytic domains that can 
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interact with target proteins, including adjacent CaMKII monomers within the 

holoenzyme. CaMKII autophosphorylation (at Thr286 for � or Thr287 for �) critically 

depends on the arrangement of monomers within the holoenzyme. In vitro studies 

revealed that the holoenzyme structure is critical for autophosphorylation graded activity 

responses related to the frequency and duration of intracellular Ca2+ transients (198).  

1-8-2-1-2 Activation of CaMKII 

CaMKII requires Ca2+/CaM for activation (Fig.6). CaM is a bi-lobed intracellular protein 

that contains four Ca2+-binding EF hands (2 EF hands in each lobe). Under basal 

conditions, CaMKII is inactive because of intramolecular binding of the catalytic domain 

to the regulatory domain. However, a fraction of CaMKII is active even under this 

condition, because autophosphorylated Thr286/287 is detectable even in quiescent cells 

(199). This inhibitory interaction between the catalytic and regulatory domains prevents 

substrate and ATP binding (200-202). Calcified CaM (CaM and Ca2+ complex) binds to 

the regulatory domain, inducing a conformational change that frees the catalytic domain 

from its pseudosubtrate (203). The allosteric rearrangement of CaMKII  upon binding 

with Ca2+/CaM allows access to the ATP binding pocket, which in turn allows CaMKII to 

catalyze the transfer of a phosphate donor group to downstream targets, including its 

autophosphorylation. Autophosphorylation, which occurs by an intra-holoenzyme 

reaction (204), has several important implications for CaMKII activity. First, Thr286/287 

autophosphorylation results in a 1,000-fold increase in the affinity for binding with CaM, 

a property known as "CaM  
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Fig.6 CaMKII undergoes multiple autoregulatory states that may have an impact on its 
function following       Ca2+/CaM activation      From (Houdmon and Schulman Biochem.
J. 364, 593-611, 2002)  
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 35

trapping" (205). Second, autophosphorylation results in the ability of the kinase to 

maintain catalytic activity even in the absence of CaM binding (192). Under resting 

conditions, phosphorylation occurs preferentially at Thr306, preventing Ca2+/CaM binding, 

which in turn results in decreased CaMKII activity.  

 

1-8-2-1-3 Role of CaMKII in heart diseases  

There is a growing evidence for a pathophysiological role of CaMKII in cardiac 

hypertrophy and heart failure for review, see reference (206). ET-1 has been shown to 

increase the activity of CaMKII and induces hypertrophy in cardiomyocyte. Pretreatment 

with KN-62, a CaMK inhibitor, was able to suppress ET-1-induced cardiomyocyte 

hypertrophy measured by �-myosin heavy chain promoter activation and [3H] 

phenylalanine uptake (207). Hypertrophic responses induces by Leukemia inhibitory 

factor (LIF), a glycoprotein cytokine, was also attenuated by CaMKII inhibitor in 

cardiomyocytes (208). Furthermore, an increase in CaMKII expression (209) and activity 

(210) has been reported in hypertrophied myocardium from spontaneously hypertensive 

rat (SHR).  More recently, by using hearts extracted from CaMKII��null mice, a critical 

role of CaMKII in pathological cardiac hypertrophy and remodeling has been reported 

(211). CaMKII upregulation and activation has been found to play a role in development 

and maintenance of heart failure (208). Further evidence linking CaMKII and heart 

failure comes from studies suggesting that mice with genetic CaMKII inhibition reverse 

heart failure-associated changes (212). The mechanism by which CaMKII induces its 

cardiac alteration seems to be modulation of ryanodine receptor thereby regulating the 

Ca2+ leak from sarcoplasmic reticulum (213). CaMKII activation plays a role not only in 
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heart failure and cardiac hypertrophy but also in cardiac arrtythmias. It has been reported 

that CaMKII is a proarrhythmic signaling molecule in cardiac hypertrophy in vivo. (214) 

and calmodulin kinase inhibition prevents development of the arrhythmogenic transient 

inward current. (215). 

 

1-8-2-1-4 Role of CaMKII in vascular diseases  

Similar to the cardiac system, an involvement of CaMKII in regulating vascular function 

has also been suggested. It has been shown that CaMKII regulates proliferation of VSMC 

in thoracic aorta, (216) and in rat carotid arteries (217). Others studies indicated 

involvement of CaMKII in cell migration. siRNA-mediated suppression of CaMKII�2 

resulted in the inhibition of wound-induced Golgi reorganization and ERK1/2 activation 

leading to cell migration (218) and insulin-stimulated cGMP inhibits VSMC migration by 

inhibiting CaMKII (219). In addition, by using an antisense knockdown of CaMKII 

gamma, it has been reported that CaMKII is essential for ERK-mediated signaling in 

differentiated smooth muscle cells (220). This notion is further supported by studies 

showing that pharmacological blockade of CaMKII by KN-93 improved vascular 

hyperplasia and hypertension in AngII-induced hypertensive rats (221), and normalized 

aberrant vascular reactivity in diabetes-induced vascular dysfunction (222;223). 

Furthermore, norepinephrine and Ang II-induced arachidonic acid release, which is 

considered as the first step of inflammation, have been shown to be mediated by 

CaMKII��activation in rabbit aortic smooth muscle cells (189;224). More recently, 

CaMKII has been also found to be induced in smooth muscle cells during the response of 

an artery to injury and is a positive regulator of proliferation and migration in the vessel 
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wall contributing to neointima formation and vascular remodeling (217). Since a 

hightened proliferation and migration of VSMC are hallmarks of vascular disease, 

CaMKII has been suggested to play an important role in the pathogenesis of vascular 

diseases (221;222). 

 

1-8-3 ET-1-induced activation of MAPK cascade in VSMC 

ET-1 receptor activation also leads to the stimulation of MAP Kinase cascade (Fig.4). 

The first component of this cascade is Ras, a member of the small GTP-binding protein 

family. Ras cycles between an active GTP-bound conformation and an inactive GDP 

bound form (225). Once activated, Ras, bound to membrane, recruits Raf, also known 

as mitogen activated protein kinase kinase kinase MAPKKK (226). Raf phosphorylates 

MEK or MAPKK at specific serine/threonine residues, which in turn, phosphorylates 

MAPKs, such as extracellular signal regulated kinases 1 and 2 (ERK1/2) on threonine 

and tyrosine residues (227). MAPKs are serine/threonine protein kinases, which are 

activated in response to a variety of external stimuli such as growth factors, hormones 

and stress (228-233). Several reports have demonstrated that ET-1 activates ERK1/2 

signaling pathway in many cell types including cardiomyocytes (6), fibroblasts (234), 

glomerular mesangial cells (235) and VSMCs (10). ERK1/2, p38mapk and c-Jun N-

terminal kinases (JNK) are the principal MAPKs (236;237). MEK1/2 phosphorylate 

ERK1/2, which promote growth signaling, whereas, MEK 4/7 and MEK 3/6 

phosphorylate JNK and p38mapk respectively, which control survival, differentiation and 

inflammation (41;230;237;238). Several studies have suggested that the activation of 

MAPKs in response to ET-1 was responsible to promote proliferation in VSMC 
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(10;239). It has been demonstrated that ERK5, a new member of the MAPK family, 

which is involved in cell differentiation and cell cycle, is activated by ET-1 and 

angiotensin II , another vasoactive peptide with similar effects as ET-1, in VSMCs 

(240). A role of MAPKs activation in regulating the contraction of VSMCs in response 

to ET-1 and angiotensin II has also been reported (241-243).  

Activation of ERK1/2 leads to the phosphorylation of downstream cytosolic regulatory 

proteins, such as p90rsk which phosphorylates ribosomal proteins and participates in 

protein synthesis (244). Also, ERK1/2 and other MAPK family members are 

translocated from the cytosol to the nucleus (237;245) and phosphorylate many 

transcription factors which lead to activation of genes involved in growth and 

differentiation (237;246)(Fig.4). ET-1 also activates (but to a lesser degree than ERKs) 

JNK and p38mapk cascades in cardiomyocytes (6;247), in VSMC (248) as well as in 

mesangial cells (8). In addition to Ras, several other small G-protein families such as 

Rho, Rab and Ran have been shown to be stimulated by ET-1 (225). ET-1 activates 

members of the Rho family in cardiomyocytes (249) and fibroblasts (250), which are 

positive regulators of p38mapk pathway (251). The precise events that mediate ET-1 

induced activation of Ras/Raf/MEK and ERK1/2 remain poorly characterized, 

however, there is some evidence supporting the involvement of PKC in Ras activation 

in many cell types including cardiomyocytes (161) and rat myometrial cells (162). A 

possible role of a calcium-regulated cytoplasmic proline-rich tyrosine kinase 2, Pyk2 

(also known as related adhesion focal tyrosine kinase (RAFTK), focal adhesion kinase-

2 (FAK-2) and cell adhesion kinase � (CAK �), calcium-dependent tyrosine kinase 

(CADTK)), in the activation of MAPK has been suggested in primary astrocytes 
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(252;253) and rat kidney mesangial cells (254). Pyk2 is also activated by ET-1 in 

VSMCs and may serve as an upstream regulator of MAPK cascade in VSMCs (10). In 

several other cell types, Ca2+- and PKC-dependent Pyk2 activation (255) has been 

shown to link GPCRs to upstream regulators of MAPK-signaling, such as Src, Shc, 

Grb2, son of the sevenless (SOS) and the Ras guanosine nucleotide exchange factor 

(254;256;257).. Previous data has shown that ET-1-induced association of Pyk2 

through the binding of its autophosphorylated Tyr-402 to the SH2 (Src-homology 2) 

domain of c-Src leads to c-Src activation in many cell types including mesangial cells 

(254;256) and cardiomyocytes (258). Activated c-Src bound to Pyk2 might directly 

phosphorylate adjacent cellular proteins, such as p130Cas, which then act as docking 

protein to recruit its effectors able to activate JNK (259;260) in cardiomyocytes (247). 

Other studies have suggested that CaMKII may serve as an upstream regulator of 

MAPK pathway in VSMCs through the activation of Pyk2 (261), however a role of 

CaMKII in ET-1 evoked ERK1/2 activation is not Known. 

 

1-8-4 ET-1-induced PI3-K activation in VSMC. 

Phosphatidylinositol-3 kinases (PI3-Ks), which are a family of both protein and lipid 

kinases have also emerged as an important effector of ET-1 action. PI3-K catalyzes the 

transfer of phosphate from ATP to the 3’position of the inositol ring of the membrane-

localized phosphoinositides such as phosphatidylinositol (PtdIns), phosphatidylinositol-4-

phosphate (PtdIns-4-P) and phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) and 

generates PtdIns-3-P, PtdIns-3,4-P2 and PtdIns-3,4,5-P3 respectively (Fig.7). These 

phospholipids act as second messengers to activate several proteins kinase such as  
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Fig. 7 Major pathways of phosphoinositol metabolism. (A) Structure of 
phosphoinositol (PtdIns) which is phosphorylated on the myoinositol head group to 
produce different phosphoinositides  (B) Metabolic pathways involved in PtdIns 
metabolism and the key role of lipid kinases and phosphatases. IP3, inositol 1,4,5-
triphosphate; DAG, diacylglycerol. Solid lines refer to well-established pathways.  
From  (Oudit GY et al PJ Mol Cell Cardiol. 37:449-71, 2004).  
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PtdIns-3,4,5-P3 dependent protein kinase (PDK), protein kinase B ( PKB)/Akt and 70 

KDa ribosomal protein S6 kinase  (p70S6K )(262). 

PI3-Ks are divided into three classes based on their structure and mechanism of 

regulation (262). Class I PI3-Ks generate PtdIns-3-P, PtdIns-3,4-P2,  PtdIns-3,4,5-P3 and 

are activated by receptor tyrosine kinases and G-protein-coupled receptors (263). Class II 

PI3-Ks generate PtdIns-3-P and PtdIns-3,4-P2 and possess a lipid binding domain, 

whereas, Class III PI3-Ks generate PtdIns-3-P only (263). Class I PI3-Ks are ubiquitously 

expressed and represent the dominant form in cardiovascular tissues (264)(Fig.7). Class I 

PI3-Ks are subdivided further into class IA and IB, and are heterodimeric proteins 

consisting of a catalytic and a regulatory (accessory) subunit. The catalytic subunits of 

class IA- PI3-K exist in three isoforms: p110� p110� and p110�, among these, p110� 

has more ubiquitous distribution than p110� and p110�. Similarly, the regulatory adaptor 

subunit for classIA-PI3-K also has several isoforms: p85� ,p85� and p55� which are 

products of three genes and their splice variants (237). The class IA PI3-Ks are believed 

to be typically activated in response to tyrosine kinase coupled stimuli. In contrast to 

class IA PI3-K, the class IB enzyme (PI3-K�) consist of a catalytic subunit PI3-K (p110�) 

and a regulatory subunit (p101) and are usually activated by G �� subunits of G proteins 

liberated by GPCR activation (264).  

 Except for rat glomerular mesangial cells where ET-1 was shown to directly increase the 

catalytic activity of PI3-K (161), a direct activation of PI3-K in VSMC has not been 

documented. However, an involvement of PI3-K as an upstream mediator of several ET-1 

induced responses has been reported. For example, a role of PI3-K in ET-1-induced Ca 2+ 

influx in carotid artery and in basilar artery contraction was recently shown by using 
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wortmannin and LY 294002 specific inhibitor of PI3-K (265;266). In mesangial cells, 

ET-1 receptor activation has been shown to stimulate PI3-K phosphorylation through Ras 

(257). Also, in rabbit internal carotid artery VSMCs, PI3-K appeared to be involved in 

ET-1-induced Pyk2 tyrosine phosphorylation (265). Conversely, studies using 

angiotensin (Ang II), a vasoactive peptide with similar effects to ET-1, have suggested 

that Pyk2 regulates PI3-K cascade specifically via interaction of Pyk2 with p130Cas 

which lead to their association with PI3-K in VSMC (49). Moreover, the recent work 

demonstrating that mice lacking PI3-K� are protected from angiotensin-evoked smooth 

muscle contraction and hypertension provides further support for an important role of 

PI3-K signalling in vascular pathobiology (267).  

 

1-8-5 ET-1-induced PKB activation in VSMC. 

Several downstream targets of PI3-K have been identified. However, the most widely 

studied target is PKB, also known as Akt (a product of akt proto-oncogene). PKB is a 

serine/threonine kinase with three identified isoforms in mammalian system: 

PKB�/Akt1, PKB�/Akt2 and PKB�/Akt3 (268-270). They are activated by dual 

phosphorylation on threonine and serine residues (Thr308 and Ser473 for PKB�, Thr309 

and Ser474 for PKB��and finely Thr302 and Ser472) for PKB ��(271) and contain a central 

catalytic kinase domain with specificity for serine or threonine residues in substrate 

proteins (271). N-terminal of PKB possesses a pleckstrin homology (PH) domain that 

binds phospholipids generated by PI3-K activation. A short glycine-rich region that 

bridges the PH domain to the catalytic domain follows the PH domain. The C-terminus 

of PKB is hydrophobic and possesses a proline-rich domain (272). 
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The lipid products of PI3-K bind with high affinity and specificity to the PH-domain of 

PKB with a preference of PtdIns-3,4-P2 over PtdIns-3,4,5-P3 (273). This binding 

induces translocation of PKB to the plasma membrane where its phosphorylation on 

Thr308 by  PDK-1 and Ser473 by a hypothetical kinase termed as PDK-2 is required 

for its complete activation (273) (Fig. 8).  

ET-1 has been shown to increase PKB activation in cardiomyocytes (274), in 

myofibroblast (275), in human umbilical vein endothelial cells (276) and in human 

osteoarthritis chondrocytes as well as in A-10 VSMCs (10). An involvement of PKB in 

vascular disease was suggested from studies in which an enhanced PKB activity was 

associated with angiotensin-induced hypertension in New Zealand White rats (277). 

Furthermore, a role of PKB in regulating the ploidy levels and hypertrophy of VSMCs 

has also been suggested in a model of hypertension (278). Several different substrates 

of PKB have been identified which include members of the cell survival/apoptosis 

cascade such as Bcl2 associated death promoter (BAD) (272;279), caspase (280) and 

glycogen synthase kinase 3 (GSK-3) (281), as well as key regulators of protein 

synthesis and cell growth such as mammalian target of rapamycin mTOR (282) (Fig.8). 

Thus, the stimulation of PI3-K/PKB signalling in response to ET-1 receptor activation 

has implications in regulating not only survival and death but also hypertrophic 

responses in VSMCs.  

 

1-8-6 ET-1-induced growth factor receptor transactivation 

There is an increasing body of evidence to suggest that vasoactive peptides such as ET-1 

whose receptor belong to GPCR family stimulate intracellular signalling pathway through  
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Fig.8: Activatin of  PI-3K/Akt pathway by ET-1 in VSMC. ET-1 receptor stimulation 
leads to G-protein b� activation which activates PLC�. Activated PLC� converts PIP2 to 
IP3 and diacylglycerol (DAG). IP3 elevates the concentration of intracellular calcium and 
participates in muscle contraction. DAG activates PKC. PKC and/or Ca2+/Calmodulin 
(CaM)-dependant protein kinase (CaMK) activate receptor and non-receptor tyrosine 
kinases such as Src and Pyk2. Activation of these components can eventually contribute 
to the activation of PI3-K. PI3K activation leads to the production of PI(3,4,5)P3 from PI 
(4,5) which results in recruitment and activation of PKB. PKB has several effectors. 
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transactivation of receptor protein tyrosine kinases (R-PTK) (283). Among the various R-

PTK, the role of EGF-R, IGF-R and PDGF-R in this process has been investigated in 

some detail(284;285). 

 

1-8-6-1 Role of EGF-R 

The EGF-R is a R-PTK that is ubiquitously expressed in a variety of cell types, with the 

most abundant expression in epithelial cells and many cancer cells (286-288). It contains 

an extracellular ligand binding domain, a single transmembrane domain and a 

cytoplasmic tyrosine kinase autophosphorylation and regulatory domain (reviewed in 

(289)). EGF-R undergoes dimerization to induce autophosphorylation of tyrosine 

residues in its tyrosine kinase domain in response to ligand binding (287;290). 

Dimerization activates the intrinsic PTK activity of the intracellular domain leading to the 

phosphorylation of several key tyrosine residues. Phosphorylated tyrosines serve as 

docking sites for binding with Src homology 2 (SH-2) domain containing signaling 

proteins which trigger downstream events. The phosphorylation of EGF-R on Tyr1068 

recruits of the adaptor protein Grb2, leading to the activation of Ras/ERK1/2 pathway. 

 ET-1 has been shown to transactivate EGF-R by tyrosine phosphorylation in many cell 

types (96;258;291), and a critical role of this transactivation  in mediating ET-1-induced 

ERK1/2 activation has been suggested (96).  An increase in EGF-R phosphorylation and 

ERK1/2 activation was also reported in freshly isolated rat aorta in response to ET-1 

stimulation, and PD153035, an EGF-R PTK inhibitor, blocked ERK1/2 phosphorylation 

in these studies (258). An involvement of ET-1-induced EGF-R transactivation has been 

implicated in protein and DNA synthesis and c-Fox gene transcription in VSMCs 
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(96;292). In contrast  to the results of Iwasaki et al showing that ET-1-induced protein 

synthesis could be blocked by AG1478, an other blocker of EGF-R  , in vivo studies have 

failed to show any inhibitory effect of this inhibitor on total protein synthesis is small 

mesenteric arteries (293). However, these investigators did not examine the effect of 

AG1478 on EGF-R phosphorylation. A requirement of EGF-R transactivation in ET-1-

induced vascular contraction has also been shown in rabbit basilary artery rings (294) and 

in mouse aortic ring segments (95). Chansel et al reported that the ET-1-induced 

vasoconstriction in carotid artery segments in mice dependent also on EGF-R 

transactivation (291). This contractile response was dependent on ERK1/2 activation 

because pharmacological blockade of this pathway inhibited ET-1-induced contraction in 

basilary artery rings (294). Although, several studies in VSMCs  have suggested an 

involvement of ETA receptor in ET-1-induced EGF-R transactivation, recently , by using 

either the full-length ETB receptor or a N-terminally truncated,  a role of ETB receptor in 

this process has also been suggested (295). It thus appears that EGF-R transactivation 

plays a role not only in growth promoting /hypertrophic responses of ET-1, but also in 

mediating the contractile events induced by these two vasoactive peptides.  

 

1-8-6-2 Role of IGF-1R 

The IGF-1R is also a R-PTK that shares structural and functional homology with the 

insulin receptor. The mature receptor is a tetramer consisting of 2 extracellular �-chains 

and 2 intracellular �-chains (296). The �-chains include an intracellular tyrosine kinase 

domain that is believed to be essential for most of the receptor’s biologic effects (297). 

Binding of IGF-1 or Insulin (at very high concentrations) induces the activation of PTK 
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domain of IGF-1R� subunit which in turn activates the autophosphorylation of the 

receptor (reviewed in (298)). One of the earliest steps in signal transduction initiated by 

the IGF-1R is the phosphorylation of adaptor/docking proteins such as insulin receptor 

substrate (IRS-1 or IRS-2) and Shc (299;300). IRS-1, an important substrate for both the 

insulin and the IGF-1 receptor, contains multiple tyrosine phosphorylation sites that 

recognize and bind to SH2-domain containing signaling molecules, such as Grb2, Nck, 

the p85 subunit of PI3-K and the SH2 domain-containing tyrosine phosphatase-2 (SHP-2) 

(299). Of these, the binding of Grb2/Sos to tyrosine-phosphorylated IRS-1 activates Ras, 

which then stimulates the Raf-1/MAPK cascade (301). Shc can also interact directly with 

IGF-1R (302). After tyrosine phosphorylation of Shc, it recruits the Grb2/Sos complex 

and activates the Ras/Raf-1/MEK/ERK pathway (301). The activated IGF-1R also 

triggers the activation of PI3-K and its downstream targets PKB and p70s6k (303;304).  

It has been shown that ET-1 transactivates IGF-1R via Src kinase, and that activation of 

IGF-1R results in PI3-K mediated Akt phosphorylation therby ET-1 triggers the 

development and progression of prostate cancer cell (305). In VSMC, we have shown 

recently a requirement of IGF-1R in ET-1-induced PKB phosphorylation. These studies 

have shown that ET-1 was able to phosphorylate IGF-1R and inhibition of IGF-1R using 

AG1024, a selective pharmacological inhibitor of IGF-1R-PTK activity, attenuated both 

PKB phosphorylation and cell growth evoked by ET-1 (306). 

There is also some evidence indicating that transactivation of EGFR mediates the 

responses of IGF-1R in some cell types suggesting the existence of a cross-talk between 

IGF-R and EGF-R transactivation (307). Moreover, the studies showing that dominant 

negative or antisense oligonucleotide of IGF-1R are able to attenuate neointima 
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formation in an injured carotid artery rat model (308) and reduce AT1 receptors 

expression and function in spontaneously hypertensive rats (309) supports a potential 

pathogenic role of upregulated IGF-1R signalling in vascular disease.  

 Although several studies have shown that PDGFR undergoes tyrosine phosphorylation in 

response to Ang II in vitro and in vivo (310;311) an effect of ET-1 on PDGFR 

transactivation has not been established in VSMC (292) 

 

1-8-6-3 Mechanism of growth factor receptors transactivation  

 The mechanism by which vasoactive peptides transactivate growth factor 

receptors is not fully understood, yet several possible mechanisms have been suggested. 

The first mechanism involves metalloproteinase-induced cleavage of pro-heparin binding 

EGF (proHB-EGF) to HB-EGF which binds to the ectodomain of EGFR, and activates 

downstream signalling events (312). Both ET-1- and AngII-induced EGFR 

transactivation have been found to be sensitive to inhibition by a series of 

metalloproteinase inhibitors such as GM6001, doxycyclin and batimastat (291;312). 

These inhibitors were also shown to block downstream signaling induced by ET-1 and 

AngII in VSMC (291;313). Several matrix metalloproteinases have been identified and 

some of these have been implicated in cardiovascular pathophysiology. For example, an 

involvement of MMP2/9, a member of MMP family, in the development of pressure-

induced enhanced myogenic tone in mouse resistance artery has been reported (314). A 

role of ADAM 17, also known as tumor necrosis factor (TNF) alpha-converting enzyme 

(TACE), in mediating AngII-induced VSMC hypertrophy and EGFR transactivation was 

recently demonstrated (315). Interestingly, another ADAM family member, ADAM10, 
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was shown to have no role in AngII-induced EGFR transactivation in this system (315), 

whereas a requirement of ADAM 12 in AngII-induced cardiac hypertrophy and HB-EGF 

release was demonstrated (316). It seems that requirement of specific MMPs/ADAMs to 

release HB-EGF from pro-HB-EGF is dependent on cell type and physiological context. 

Although, MMPs are crucial for EGFR transactivation, a similar role of MMPs in 

PDGFR or IGF-1R transactivation remains to be established.   

In VSMCs, ET-1 and other vasoactive peptides mediate their responses through the 

generation of reactive oxygen species (ROS) (10;240). ROS have been suggested to serve 

as critical signaling molecules (317), and it may be possible that ROS generation could 

be among the mechanisms by which vasoactive peptides transactivate EGFR. In fact, by 

using different antioxidants, a requirement of ROS generation in ET-1 and Ang II-

induced phosphorylation of EGFR has been demonstrated (318).  There is also some 

suggestion for a role of ROS generation in MMP activation (319)  

The precise mechanism by which ROS contributes to the transactivation of growth factor 

receptors-PTKs is still unclear. However, in view of the ability of ROS to inhibit 

PTPases, such as PTP-1B(320)and SH-2 domain-containing tyrosine phosphatase -2 

(SHP-2) (321;322), it is possible that ROS can shift the equilibrium of the 

phosphorylation-dephosphorylation cycle, culminating in a net increase of tyrosine 

phosphorylation of R-PTK and /or other PTKs (284;323;324). The activated PTKs can 

thus promote the assembly of signaling components essential to trigger the ERK1/2 and 

PKB signaling pathways. It should be noted that a potential role of several non-receptors 

PTKs, such a Src and Pyk-2, in inducing AngII-induced EGFR transactivation has also 

been demonstrated (318;325).  
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2 Reactive oxygen species 

During the last few years, evidence has accumulated to suggest that the generation of 

reactive oxygen species (ROS) play a crucial role in the development and the progression 

of vascular dysfunction (326;327). More recent reports have confirmed this concept 

(328). Under oxidative stress conditions, excessive endogenous formation of ROS 

overcomes cellular antioxidant defense mechanisms, which results in ROS-initiated 

modification of lipids, proteins, carbohydrates and DNA (327). ROS are very small, 

rapidly diffusible, highly reactive molecules and include hydroxyl radicals (OH.), 

superoxide anion (O2
.-) and non-radical derivative such as hydrogen peroxide (H2O2) 

(Fig.9). Mitochondria is among the sources of endogenous ROS, which convert 1-2 % of 

consumed molecular oxygen into superoxide anion (329). In VSMCs and endothelial 

cells, NADH/NADPH oxidases represent the most important source of O2
.- (330). 

NADPH oxidase catalyzes the NADPH-dependent reduction of oxygen to O2
.-, which is 

converted to H2O2 either by a protonation reaction or by the action of superoxide 

dismutase (SOD). H2O2 is reduced to H2O by catalase or glutathion peroxidase. Under 

certain conditions and in presence of metals, H2O2 can generate the extremely active OH. 

via Fenton or Haber-Weiss reaction (233) (Fig.9).  

 

2-1 ROS mediates ET-1 signaling 

ET-1 has been shown to activate NADPH oxidase, thereby increasing O2
.- levels in 

endothelial cells (331) and cardiomyocytes (332) and stimulates O2
.- production in 

pulmonary smooth muscle cells (333). Studies, from Fei lab, have shown that ET-1 can 

activate NADPH oxidase in VSMC (334) and that, in vivo, free radicals generated in this  
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                        Fig 9. Key steps in the production of reactive oxygen species 
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manner could play important roles in mineralocorticoid-induced hypertension, 

(98;335;336). Findings also suggest that ET-1 can increase O2
.- levels via activation of 

NADPH oxidase in DOCA-salt rats (98). More recently, it has been documented that ET-

1 induces Ca2+ sensitization through activation of RhoA/ROK signaling induced by ROS 

in pulmonary VSM (337) and induces the activation of L-type Ca2+ channels via 

stimulation of NAD(P)H-derived superoxide production in cardiac myocytes (332). 

Increased ROS generation has been associated with a variety of cardiovascular 

pathologies (326) including hypertension (338) and atherosclerosis (339). Pathogenesis of 

cardiovascular diseases by activating ROS are thought to participate in the cellular 

signaling pathways responsible for promoting cell growth (340) and proliferation (234). It 

has been demonstrated that ET-1 induces JNK and p38mapk activation through ROS 

generation but not ERK1/2 (341). These findings are consistent with those of Fei et al. 

(334), who demonstrated that JNK activation but not ERK1/2 activation by ET-1 was 

significantly inhibited by antioxidants in rat smooth muscle cells. Conversely, a study 

demonstrated the involvement of ROS in ET-1-induced activation of ERK1/2 pathway as 

well as JNK and p38mapk in cardiac fibroblasts (234). Moreover, our laboratory has 

demonstrated a role of ROS in ET-1-induced activation of ERK1/2, PKB, and Pyk2 

signaling in VSMCs (10;284;324). 

ROS, such as H2O2 has been shown to induce increases in cytoplamic Ca2+ in a number of 

cell types including cells from vascular system (342). This finding was first reported by 

Hyslop et al. (343). The mechanism by which H2O2 induces intracellular Ca2+ is not fully 

clarified, however several hypotheses have been proposed. A potential role of  

extracellular Ca2+ entry into cells through voltage dependent Ca2+ channels and  
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intracellular Ca2+ from caffeine- and noradrenaline-sensitive stores in mediating H2O2-

induced   contractile responses of aortic ring has been suggested (344). It has also been 

reported that the activation of the tyrosine kinase c-Src contributes to the activation of 

store-mediated Ca2+ entry in platelets by H2O2 (345). In addition the increase in 

cytoplasmic Ca2+evoked by H2O2 in endothelial cells, appears to be derived totally from 

intracellular stores since BABTA-AM could attenuate this increase (346). Recently, 

Hecquet et al. have demonstrated a novel mechanism of H2O2-mediated disruption of 

endothelial barrier function that is attributable to a rise in intracellular Ca2+ mediated by 

Ca2+ entry through oxidant-sensitive channels named transient receptor potential 

melastatin (TRPM2) (347). 

 

2-2 ROS in cardiovascular pathophysiology  

Oxidative stress plays an important role in the pathophysiology of cardiovascular 

diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy and heart 

failure. Although several sources of ROS may be involved, a family of NADPH oxidases 

appears to be important for redox signaling. It has been reported that both NADPH 

oxidase subunit expression and activity are increased in Ang II-induced hypertension in 

rats (338;348) and the fact that ROS concentration is increased in hypertensive mice 

(349) indicate strongly the critical role of oxidative stress in hypertension. Treatment 

with an NADPH oxidase inhibitor decreases vascular O2
- production and attenuates Ang 

II-induced elevation in blood pressure (350). Some subunits of NADPH oxidase have 

been reported to be implicated in hypertension. Nox1-deficient mice and p47phox- 

deficient mice have reduced vascular O2
- production and blunted pressor responses to 
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Ang II (351;352) whilst transgenic mice overexpressing Nox1 in smooth muscle show 

enhanced O2
- levels and blood pressure in response to Ang II (353). In SHR, the 

mechanism by which oxidative stress induced hypertension seems to be the enhanced 

expression of Gi� proteins and adenylyl cyclase singaling in VSMCs (143). Furthermore, 

many other studies reported that antioxidants such as N-acetyl-cysteine, tempol and 

vitamins E and C prevent the development of hypertension in several animal models 

(354-356). 

 Evidence supports important pathophysiological roles for redox-sensitive signaling 

pathways in the processes underlying left ventricular hypertrophy, adverse left ventricular 

remodelling and congestive heart failure. Experimental (357) and clinical (358) studies 

have suggested that oxidative stress is increased in heart failure, and also have indicated 

that the degree of free radical production is linked to the severity of the disease.  

Hypertrophy of isolated cardiomyocytes induced by ET-1 or Ang II has been shown to 

involve increased ROS production (359). Similarly, the inhibition of cellular SOD 

activity, which leads to increased intracellular ROS levels, induces hypertrophy of 

isolated cardiomyocytes (360). Increased ROS production also promotes the development 

of interstitial and perivascular fibrosis as well as promoting increased extracellular matrix 

turnover, at least in part through the activation of MMP(361). Recently, evidence 

suggested that ROS may also induce specific changes in the function of proteins involved 

in myocardial excitation–contraction coupling, which include the sarcoplasmic reticulum 

Ca2+ ATPase pump, ryanodine receptor and contractile proteins (362). Thus it appears 

that ROS, via its effects on signaling pathways linked to hypertrophy, proliferation, and 

growth may contribute to various cardiovascular pathologies. 
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3 Nitric oxide   

NO is a free radical that was previously described as a non-prostaglandin, endothelium-

derived relaxing factor (EDRF) (40;363) and is involved in the regulation of a large 

number of biological processes (40;363). Efforts to understand the role of NO in the 

cardiovascular nervous and immune systems have revealed that it can modulate a variety 

of cellular and pathologies events including cell proliferation, growth, apoptosis, 

inflammation, kidney function, diabetes, oxidative stress and aging  (364;365). Most 

notably, NO has emerged as an important cardiovascular protective agent by its ability to 

exert anti-hypertrophic, anti-proliferative and anti apoptotic effect in cardiovascular 

system (366;367). 

 

3-1 Relationship between ET-1 and Nitric oxide  

Both ET-1 and NO are two endothelium- derived mediators that act as mutual antagonists 

in maintaining vascular tone as well as other physiological and pathological processes 

(368;369). In endothelial cells, the binding of ET-1 to ETB receptors, stimulates the 

release of NO which diffuses in to the smooth muscle cells and induces physiological 

effects. It has been suggested that long term exposure of endothelial cells to ET-1 

decreased NO levels by both degradation and attenuation of NO production resulting in 

endothelial dysfunction (370). It was also shown that endothelium-restricted 

overexpression of ET-1 caused endothelial dysfunction and a decrease in the level of NO 

(371). And the results from pre-clinical and clinical data further support this notion that 

the blockade of ET receptor function improves NO bioavailability and endothelial 
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function in pathological situations (370). However the precise molecular details by which 

NO antagonize the physiological effects of ET-1 in VSMCs remains to clarify. 

 

3-2 Formation of nitric oxide 

NO is formed from the aminoacid, L-arginine, in an oxidative reaction that consumes 

molecular oxygen and reducing equivalents in the form of NADPH (364;365;372) (Fig. 

10). Reaction products are NO, NADP+ and citrulline. NO is produced by the enzyme 

nitric oxide synthase (NOS), by the deamination of L-arginine. NOS is an enzyme 

requiring FAD, FMN, heme, Ca2+, calmodulin and 6(R)-tetra-hydro-L-biopterin (BH4) as 

cofactors (372). Since NO is a signaling hydrophobic molecule small enough to pass 

across the target-cell plasma membrane, NO cannot be stored and released as needed 

(363). NO acts locally because it has a short half-life (5-10 seconds) in the extracellular 

space before it is converted to nitrates and nitrites by oxygen and water (364). 
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                               Fig.10. The NOS-catalysed reaction   
                                From  (Andrew, P. J et al. Cardiovasc Res  43:521-531;1999) 
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3-3 NOS isoforms  

Three distinct NOS enzymes, each a product of a unique gene, have been identified and 

characterized (363;364;373). The neuronal form (nNOS or NOS-1) is a Ca2+-dependent 

enzyme found in neuronal tissue and skeletal muscle. Four splice variants of full lengh 

nNOS (nNOS�) have been identified recently (nNOS�, nNOS�, nNOS� and nNOS-2). 

The second isoform of NOS (iNOS or NOS-2) is inducible in a variety of cells and 

tissues in response to cytokine or endotoxin activation. Although, it is largely believed 

that in normal condition VSMCs do not express iNOS, regulation of iNOS gene 

expression in VSMCs has been reviewed (374). The third form, first found in vascular 

endothelial cells (eNOS or NOS-3), is also Ca2+-dependent, but differs from the neuronal 

form by its smaller size. eNOS is myristoylated and palmitoylated at the N-terminus. 

Those modifications are required to localize it to the plasmalemmal caveolae of 

endothelial cells. Human enzymes exhibit approximately 51-57 % homology at the 

aminoacid level (363;373). Structurally, all NOS isozymes consist of a carboxy-terminal 

reductase domain which binds the flavin cofactors. A Ca2+/calmodulin binding domain 

lies in the center followed by an oxygenase domain where binding of heme, O2, BH4 and 

arginine substrate take place (373).  

 

3-4 Nitric oxide function  

NO cellular signaling involves the regulated synthesis of NO by eNOS in the vascular 

endothelium, diffusion of NO into adjacent smooth muscle cell and activation of the 

soluble isoform of guanylate cyclase (sGC) (375). When NO binds to the pentacoordinate 
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ferrous heme of the sGC that appears to be uniquely tuned to interact with NO, a 

conformational change occur in the enzyme, stimulating its catalytic activity (376). NO 

causes relaxation of the smooth muscle by mediating the formation of cGMP that acts as 

a second messenger and activates the cGMP-dependent protein kinases (protein kinase G) 

(375;377), which in turn, facilitates the phosphorylation of various proteins as well as the 

reduction of intracellular calcium concentrations by different mechanisms  (378). 

Moreover, NO also targets many proteins either by nitrosylation of thiol residues, 

nitration of tyrosine or oxidizing DNA and proteins (378). Increasing evidence indicates 

also that NO may inactivate NADPH oxidase by inhibiting its assembling process, thus 

reducing the ROS levels (379). In higher concentrations, NO can react rapidly with 

superoxide (O2
-) to form peroxynitrite (ONOO-), a potent oxidant with the potential to 

disrupt protein structures by nitrating the protein tyrosine residues (380). Although NO 

signaling is complex as a result of its interactions with ROS, heme groups on proteins, 

sulfhydryl groups, and other cellular targets, the activation of guanylate cyclase remains 

among the important pathway in mediating NO action (375).  

 

3-5 Guanylate cyclase  

Guanylate cyclase is an enzyme that catalyses the conversion of the guanosine 

triphosphate (GTP) to 3’-5’-guanosine monophosphate (cGMP). The guanylate cyclase is 

found in many cellular compartments (378). Two major forms of guanylate cyclases are 

known, the particulate guanylate cyclase and the soluble guanylate cyclase. It is generally 

believed that activation of soluble guanylate cyclase (sGC) is the principal intracellular 

event that initiates relaxation (381;382). The activity of the sGC is regulated by 
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nitrovasodilators, oxidation products of fatty acid and free radicals (383). sGC is a 

heterodimer of two subunits � and �. Each subunit is divided in three different domains: 

the heme-binding domain, the catalytic domain and the dimerization domain 

(383)(Fig.12). N-terminal of each subunit contains heme as a prosthetic group which 

serves as a site for NO binding (383). sGC lacking the heme moiety, is not able to be 

activated by NO (383). Heme is attached to the protein portion of the enzyme by an 

imidazole axial ligand and binding of the heme is specific to the � subunit of the N-

terminal region (384;385). C-terminal of each subunit possesses a catalytic domain with a 

high homology sequence between the monomers (384;385). Coexpression of the catalytic 

domain of both subunits is necessary for GC activity. There is the dimerization domain 

between both domains described above that mediates the association of the heterodimer 

which is essential for the catalytic subunit (384;385). NO binding to the heme of the sGC 

results in the formation of a complex penta-coordinate heme-nitrosyl that breaks the axial 

histidine link (385). This conformational change exposes the catalytic site to GTP, 

leading to the activation of the enzyme and conversion of GTP to cGMP by sGC in the 

presence of Mg2+ or Mn2+ ions (375)  (Fig. 11). Recently, the vital importance of sGC for 

mammalian physiology was directly confirmed by generation of sGC knockout mice. The 

absence of sGC protein resulted in a significant increase in blood pressure (386)  
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Fig.11. Schematic representation of a soluble guanylate cyclase �/� heterodimer. The 
N-terminal region constitutes a haem-binding domain with His105 providing the axial 
ligand to the fifth coordinate of the haem-iron. The central portion of each subunit 
contains sequences which mediate dimerization of the monomers, a prerequisite for 
catalytic activity. The C-terminal region forms the catalytic domain, responsible for 
substrate binding (GTP) and conversion to cGMP.   
Adapted from (Hobbs et al.Trends Pharmacol Sci. 18:484-491, 1997)  
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3-6  Regulation of cGMP production 

In most tissues, the intracellular concentration of cGMP is determined by the rate of 

formation which is regulated by agonist-induced stimulation of a cyclase and hydrolysis 

of cGMP by a related group of phosphodiesterase E (PDE) (387)(Fig.12). There are at 

least seven known distinct mammalian PDE families. Each one differs from the other in 

biochemical and physical properties, responses to specific effectors, inhibitors and 

regulatory control mechanisms (387). Type V PDE has been isolated from a number of 

tissues including human platelets (388), trachea (389) and VSMC (390) and is commonly 

referred to as cGMP-specific PDE. PDE V is characterized by selectively hydrolyzing 

only cGMP, independently of Ca2+/calmodulin. Inhibitors of PDE V such as A02131-1 

have vasodilating and anti-aggregating properties, which may protect the vascular wall 

against arteriosclerotic changes (388).  

 

3-7 NO in signal transduction 

The endothelium serves as the principal physiological source of NO in blood vessels 

(391). As evidenced, NO contributes to the regulation of several hormone-mediated 

responses (392;393). In addition to its vasodilating effect, NO can also inhibit 

atherogenesis (363), thrombocyte aggregation (394) and VSMC proliferation (387;391) 

and migration (395). There is also increasing body of evidence suggesting that NO is able 

to antagonize the physiological and pathophysiological effects (162;375) of growth 

factors and vasoactive peptides such as EGF (387), PDGF (396) and bFGF (395). This is 

probably achieved by inhibiting one or several of the signaling events induced by these 

factors (363;391;395;397). According to several studies, mitogens such as ET-1 stimulate  
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                              Fig.12. The nitric oxide/cGMP signal transduction  

                                                From  (Lloyd-Jones  and Bloch . Annu Rev Med 47: 365-375, 1996)  
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the synthesis of DNA and cell proliferation by activating the phosphorylation cascade of 

MAPK (234;239;398). The potential mechanism that could modulate VSMC proliferation 

is the release of NO by the endothelium either via a cGMP-dependent (375;387) or a 

cGMP-independent mechanisms (399;400). In cardiomyocytes, ET-1-induced protein 

synthesis (401;402) has also been shown to be inhibited by NO (403). Furthermore, NO 

was found to suppress the Ang II-induced activation of three major MAPKs, ERK1/2, 

p38mapk and JNK (404) as well as Pyk2 (393) in cardiac fibroblasts. However, it is not 

known whether NO, similar to its effect on growth factor and Ang II-induced responses, 

can also modulate signaling events triggered by ET-1 receptor activation in VSMC. In 

smooth muscle-derived A7r5 cells, NO has been shown to regulate PDGF-induced 

activation of PKB (392). These data implicate PKB signaling cascade as an important 

mitogenic pathway that is subjected to modulation by NO in VSMC (392). However, the 

role of NO/cGMP in modulating PKB signaling pathway in response to ET-1 has not yet 

been investigated in any cell type. 
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4 Hypothesis and objectives  

As discussed above, ET-1 and NO are very potent active molecules, by virtue of their 

ability to regulate various cardiovascular function they play an important role in health 

and diseases. ET-1 activates multiple signaling pathways including MAPK and PI3-

K/PKB which mediate the hypertrophic and proliferative responses in VSMC. An 

important role of ROS generation in mediating the effect of ET-1 has been demonstrated 

and both ROS and ET-1 have been reported to activate similar signaling pathways. 

Moreover, Ca2+ has emerged as a key second messenger to transduce the effect of ET-1 

as well as ROS. Furthermore, NO has been shown to serve as an anti-hypertrophic and 

serve as and anti-proliferative agent in many cell types. However, the precise mechanism 

by which Ca2+ contribute to ET-1 and ROS-induced signaling and physiological 

responses, and how NO can modulate these effects in VSMCs remain unexplored 

therefore the following studies have been undertaken to better understand this process. 

Thus, the purposes of the present studies were to elucidate: 

1. The implication of CaMKII which is downstream effector Ca2+ action in ET-1 

induced ERK1/2 and PKB signaling in VSMCs.  Therefore, the first objective of 

the present studies was to examine the role of CaMKII in ET-induced signaling as 

well as growth and proliferation in VSMCs. 

2. Since ET-1 mediates its effects through the generation of ROS, we investigated 

the role of CaMKII in H O  induced ERK and PKB phosphorylation as well as 

IGF-1R phosphorylation. 

2 2
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3. To better understand the molecular mechanism by which NO antagonizes the anti 

proliferative and hypertrophic effect of ET-1, we have also investigated the effect 

of NO system on ET-1-sensitive signaling. In these studies, we first elucidated the 

role of NO on key components of ET-1 signaling system, ERK1/2, PKB and Pyk-

2 as well as protein synthesis in VSMCs. We then used 8-Bromo-cGMP, a cyclic 

GMP analogue and ODQ, an inhibitor of sGC, to examine whether NO acting 

through a cGMP-dependent mechanism.  
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Will be submitted soon to Cardiovascular Research 
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AAbbssttrraacctt    

We have shown earlier that in vascular smooth muscle cells (VSMC), H2O2-

induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein 

kinase B (PKB), two key mediators of growth-promoting and proliferative responses, are 

mediated through Ca2+ and Calmodulin (CaM)-dependent downstream signals. Moreover, 

endothelin-1 (ET-1), a powerful vasoactive peptide with a pathogenic role in vascular 

disease, requires H2O2 generation to elicit its responses. Therefore, in the present studies, 

we have investigated a possible role of CaM and its effector, Ca2+/CaM-dependent 

protein kinaseII (CaMKII) in mediating the ET-1-induced ERK1/2 and PKB 

phosphorylation by using pharmacological inhibitors, CaMKII inhibitor peptide and 

small interfering RNA (siRNA) technique. W-7 and calmidazolium, antagonists of CaM, 

as well as KN-93, a specific inhibitor of CaMKII, attenuated ET-1-induced ERK1/2 and 

PKB phosphorylation in a dose-dependent fashion.  However, KN-92, an inactive 

analogue of KN-93 was without effect.  Transfection of VSMC with CaMKII inhibitory 

peptide (AA 281-309) corresponding to auto-inhibitory domain (AID) of CaMKII, 

attenuated ET-1-induced phosphorylation of ERK1/2 and PKB. Furthermore, significant 

knock-down of CaMKII expression by using CaMKII� siRNA and reduced ET-1-

induced ERK1/2 and PKB phosphorylation, whereas, control siRNA was without any 

effect on these events. Blockaded of CaM and CaMK-II by W-7 and KN-93, respectively, 

significantly reduced ET-1-induced increase in protein and DNA synthesis. In addition, 

ET-1 also induced Thr286 phosphorylation of CaMKII which is associated with its 

enhanced catalytic activity. Taken together, these data demonstrate that CaM/CaMKII� 
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plays an important role in mediating the stimulatory action of ET-1 on ERK1/2 and PKB 

phosphorylation as well as on hypertrophic and proliferative responses in VSMC.    

 

Key words:  Cell signaling, endothelin-1, calmodulin, CaMKII, VSMC.  Hypertrophy, 

proliferation: ERK-1/2, PKB/Akt 
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IInnttrroodduuccttiioonn  

 Endothelin-1 (ET-1) is a potent vasoconstrictor peptide (1) which also exhibits 

mitogenic activity in vascular smooth muscle cells (VSMC) (2-4).  A possible role for 

ET-1 in the pathogenesis of many diseases, such as atherosclerosis (5), hypertension (6) 

and restenosis after angioplasty has been suggested (7). ET-1 exerts its biological 

actions through the activation of two receptor subtypes, ETA and ETB (8, 9). Both 

receptors belong to a large family of transmembrane guanine nucleotide-binding 

protein-coupled receptors (GPCRs). ETA receptors are highly expressed in VSMC but 

are also found in cardiomyocytes, fibroblasts, hepatocytes, adipocytes, osteoblasts and 

brain neurons (8, 10) and exhibit higher affinities for ET-1 and ET-2 than for ET-3 (8). 

ETB receptors exist predominantly in endothelial cells and smooth muscle cells, but are 

also found in cardiomyocytes, hepatocytes, fibroblasts, osteoblasts, different epithelial 

cells and neurons and have equal subnanomolar affinities for all ET iso-peptides (9).  

ET-1 binding to ETA receptors on smooth muscle produces vasoconstriction, cell 

growth and cell adhesion (11) whereas the binding of ET-1 to endothelial ETB receptors 

stimulates the release of nitric oxide and prostacyclin (12, 13).  

ET-1 exerts its effects through multiple signaling pathways which include Ca2+ (14), 

mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated 

kinases 1/2 (ERK1/2), c-Jun-NH2-terminal kinase (JNK) and p38mapk (15-19) and 

Akt/phosphatidylinositol 3-kinase (PI-3K)/protein kinase B (PKB) (19, 20). Activation 

of receptor and non-receptor protein tyrosine kinases (PTKs) in transducing ET-1-

induced signaling responses have also been suggested (18, 21-24). PTKs activated by 
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ET-1 include epidermal growth factor (EGF) (24), c-Src (21, 23, 25) and a Ca2+-

dependent PTK, Pyk2 (26). 

Several studies have demonstrated that reactive oxygen species (ROS) play an 

important role in mediating the signals of several growth factors, peptides hormones, 

and cytokines, such as platelet-derived growth factor, EGF, angiotensin II, insulin and 

interleukin-1. ET-1 has also been shown to augment ROS production in VSMC (27, 

28). H2O2, an important ROS molecule, has been reported to activate both MAPKs and 

PKB signaling in many cell types including VSMC (29-31). We have shown earlier that 

Ca2+ and CaM are essential to trigger H2O2- induced ERK1/2, p38 and PKB 

phosphorylation in A-10 VSMC (32). CaM exerts its effects through Ca2+/ CaM 

dependent protein (CaMKII) which is a multifunctional serine/threonine protein kinase 

and is believed to transduce the downstream effects of Ca2+/CaM (32). CaMKII is 

maintained in an inactive state by an autoinhibitory domain (AID), the binding of 

Ca2+/CaM complex to the CaM binding domain reverses this auto inhibition by 

changing the confirmation of CaMKII inducing its autophosphorylation at Thr286 (33). 

 

Angiotensin II (Ang II) has been shown to increase CaMKII phosphorylation and 

activity, and a role of CaMKII in AngII-induced activation of ERK1/2 has been 

demonstrated in VSMC (34). However, a role of CaMKII in mediating ET-1-induced 

ERK1/2 and PKB phosphorylation and its effect on hypertrophic and proliferative 

responses in VSMC remains unexplored. Therefore, in the present studies, by using a 

series of pharmacological inhibitors and genetic approaches, we investigated the 
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involvement of CaM and CaMKII� in ET-1-induced ERK1/2 and PKB 

phosphorylation, as well as protein and DNA synthesis, in A-10 VSMC. 

Materials and Methods 

MMaatteerriiaallss
ET-1 was purchased from American Peptide Inc (USA). BQ-123, BQ-788, 

calmidazolium, W-7, KN-93, KN-92 and CaMKII autoinhibitory domain (AID) specific 

peptide inhibitor (AA 281-309, autoinhibitory peptide (AIP)) were obtained from 

Calbiochem and Lipofectamine was form Invitrogen, Canada. Monoclonal phospho-

specific- Thr202 -Tyr204-ERK1/2 antibody, polyclonal ERK1/2 antibody, CaMKII� siRNA 

(catalogue number sc-29901), control siRNA (catalogue number sc-37007), transfection 

reagent for siRNA (catalogue number sc-29528), phospho-specific-Thr286-CaMKII, anti-

CaMKII�, and �-actin antibodies were from Santa Cruz Biotech (Santa Cruz, CA). 

CaMKII� siRNA is a pool of 3 target-specific, 20-25 nucleotide siRNAs designed to 

knock down gene expression of CaMKII�. The non-specific siRNA (scrambled) consist 

of non-targeting 21 nucleotides with no homology to rat genes. The phospho-specific-

Ser473-PKB and total PKB antibodies as well as horseradish peroxidase-conjugated anti-

rabbit antibodies were procured from New England Biolabs (Beverly, MA). The 

enhanced chemiluminescence (ECL) detection system kit, (3H) Thymidine and L-(4,5-

3H) leucine were from was from Amersham Pharmacia Biotech (Baie d’Urfé, QC, 

Canada).  
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MMeetthhooddss
Cell culture 

VSMC derived from embryonic rat thoracic aorta A-10 cells were maintained in 

culture with Dulbecco’s modified eagle medium (DMEM) containing 10% fetal bovine 

serum at 370C in a humidified atmosphere of 5% CO2 as described earlier (26). The cells 

were grown to 80-90% confluence in 60-mm plates and incubated in serum-free DMEM 

5h prior to the treatments. 

Transfection with CaMKII inhibitory peptide 

A-10 VSMCs at 80-90 % confluence were transfected with a CaMKII-specific AID 

domain inhibitory peptide (2ng/ml) by using lipofectamine (4μg/ml) (35). Transfections 

were performed in serum and antibiotics-free media DMEM for 2h then 10% of serum 

was added. Protein phosphorylation by ET-1 in peptide-transfected cells was examined 

48h later. 

siRNA transfection protocol 

A-10 VSMCs at 80-90 % confluence were transfected with CaMKII� siRNA or control 

scrambled siRNA (final concentration of CaMKII� or scrambled, non-specific siRNA 

was 70 nM) according to the manufacturer’s protocol. Transfections were performed in 

serum and antibiotics-free DMEM. A mixture of CaMKII� siRNA or control scrambled 

siRNA and transfection reagent was added to cells and incubated for 6h at 37oC then 

serum was added to reach 10% of FBS. Cells were incubated for an additional 48h before 

stimulation with ET-1. 
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Cell lysis and Immunoblotting 

Cells incubated in the absence or presence of various agents were washed twice with ice-

cold PBS and lysed in 200 �l of buffer (25 mM Tris-HCl, pH 7.5, 25 mM NaCl, 1 mM 

Na orthovanadate, 10 mM Na fluoride, 10 mM Na pyrophosphate, 2 mM benzamidine, 2 

mM ethylenebis(oxyethylenenitrolo)-tetraacetic acid, 2 mM ethylenediamine tetraacetic 

acid, 1 mM phenylmethylsulfonyl fluoride, 10 �g/ml aprotinin, 1% Triton X-100, 0.1% 

sodium dodecyl sulfate (SDS), and 0.5 �g/ml leupeptin) on ice. The cell lysates were 

centrifuged at 12,000g for 10 min at 40C. Protein concentrations were measured by 

Bradford assay. Equal amounts of protein were subjected to 7.5% SDS-polyacrylamide 

gel (SDS-PAGE), transferred to PVDF membranes (Millipore, MA, USA) and incubated 

with respective primary antibodies, (monoclonal phospho-specific- Thr202 -Tyr204-

ERK1/2 antibody (1:4,000), polyclonal phospho-specific-Ser473-PKB antibody (1:1,000). 

phospho-specific-Thr286-CaMKII antibody (1:2,000)). The antigen-antibody complex was 

detected by a horseradish peroxidase-conjugated second antibody (1:2000), and protein 

bands were visualized by ECL. The intensity of specific bands was quantified by NIH 

Image software as described previously (36). 

Measurement of [Methyl 3H-4] thymidine incorporation: DNA Synthesis in the cells 

was evaluated by incorporation of [Methyl 3H-4] thymidine into cells.  A10 VSMCs at 

80-90% confluence were serum-starved for 16hrs to induce cell quiescence.  The cells 

were then incubated with ET-1 (100nM) alone or after pretreatment with calmidazolium 

(10�M) or KN-93, (10�M) or KN-92 (10�M) for 30 min, left to incubate for another 

24hrs, in [3H] thymidine (1�ci/dish).  Cells were washed twice with cold PBS, and 1 ml 
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of cold 5% trichloroacetic acid was added for 30 min to precipitate protein.  The 

precipitates were subsequently washed twice with ice cold water and resuspended in 

500ml of 0.4 M NaOH and radioactivity incorporated into DNA was determined by a 

liquid scintillation counter (28). 

[3H] Leucine incorporation:  Protein Synthesis was assessed by incorporation of [3H] 

leucine into protein.  A10 VSMCs at 80-90% confluence were serum-starved for 16hrs to 

induce cell quiescence.  The cells were treated with ET-1 (100nM) alone or after 

pretreatment with calmidazolium, or KN-93 or KN-92 for 30 min, and left to incubate for 

another 24 hrs.  [3H] leucine, 1�ci/dish, was added  at the same time as ET-1.  Cells were 

washed twice with cold PBS, and 1 ml of cold 5% trichloroacetic acid was added for 30 

min to precipitate protein. The precipitates were subsequently washed twice with ice cold 

water and resuspended in 500 �l of 0.4 M NaOH and radioactivity incorported into 

protein was determined by liquid a scintillation counter (28). 

Statistics                

The data are means ± SE of at least three individual experiments. Statistical significance 

was determined with paired or unpaired Student’s t test and p<0.05 was considered 

significant. 
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Results 

ET-1 induces ERK1/2, PKB and CaMKII phosphorylation via ETA and not ETB 

receptors in A-10 VSMCs 

Several studies have reported the involvement of ETA receptors in ET-1-induced 

signalling in VSMC.  However, specific involvement of ETA receptors in ET-1-induced 

PKB activation has not been investigated.  Therefore, by using BQ-123 and BQ-788, 

blockers of ETA and ETB receptors, respectively, we assessed the specific contributions 

of these receptors in mediating the effect of ET-1 on PKB phosphorylation. As shown in 

Fig.1, pretreatment of A-10 VSMC with BQ-123 for 30 min caused a significant 

reduction in ET-1-induced ERK1/2 (Fig.1A) and PKB (Fig. 1B) phosphorylation 

whereas; BQ-788 was without effect.  These data established the implication of ETA and 

not ETB receptor subtype in ET-1-induced PKB and ERK1/2 phosphorylation. The two 

inhibitors alone did not affect the basal phosphorylation of ERK1/2 and PKB. 

Dose-dependent attenuation of ET-1-induced ERK1/2 and PKB phosphorylation by 

CaM and CaMKII inhibitor in A-10 VSMCs. 

We have shown earlier that CaM is required for H2O2-induced PKB phosphorylation in 

A-10 VSMC (32). Since ET-1 induced ROS production we examined the involvement of 

both calmodulin and its downstream effecter, CaMKII, in ET-1-induced ERK1/2 and 

PKB phosphorylation. As shown in Fig.2, pretreatment of A-10 VSMCs with W-7 and 

calmidazolium, specific inhibitors of CaM, for 30 min, dose-dependently attenuated ET-

1-induced phosphorylation of these two signaling component. However, PKB appeared to 

be more sensitive to the inhibitory effect of both W-7 and calmidazolium than ERK1/2. 

Almost complete attenuation of ET-1-stimulated phosphorylation of PKB was observed 
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at 10 μM of W-7 or calmidazolium (Fig.2 A and C). In contrast, a higher concentration of 

these inhibitors was required to inhibit ET-1-enhanced phosphorylation of ERK1/2 (Fig.2 

B and D). We next investigated the effect of the blockade of CaMKII on ET-1-induced 

responses using KN-93.  KN-93 inhibits CaMKII activity by competitively binding to 

CaM binding domain of CaMKII.  As shown in Fig.3, KN-93 treatment dose-dependently 

inhibited ET-1-induced ERK-1/2 (panel B) and PKB (panel A) phosphorylation.  

However, KN-93 inhibited the PKB phosphorylation more potently than the 

phosphorylation of ERK1/2.  (Fig.3 A and B). 

CaMKII inhibitory peptide (AIP) and CaMKII siRNA attenuates ET-1 -induced 

ERK1/2 and PKB phosphorylation. 

To provide additional proof for the involvement of CaMKII in ET-1-induced responses, 

we have used a peptide corresponding to the autoinhibitory domain (AID) of CaMKII 

(AA 281-309) (AIP) and siRNA approaches to confirm the results obtained using 

chemical inhibitors.  Transfection of A-10 VSMC for 48h with this AIP markedly 

reduced ET-1-induced phosphorylation of ERK1/2 and PKB (Fig.4).  In addition, we also 

used siRNA of CaMKII� to knock-down CaMKII� expression in A-10 VSMC, to 

evaluate its role in ET-1-induced responses.  As shown in Fig.5, transfection of A-10 

VSMC with siRNA of CaMKII� resulted in about 70% reduction in the expression of 

CaMKII� protein, whereas control siRNA to CaMKII� was without effect.  siRNA of 

CaMKII� also had no effect on the expression of �-actin (Fig.5).  The cells with siRNA-

induced knock-down of CaMKII� showed a significant inhibition in the phosphorylation 

of ERK1/2 (Fig.6B) and PKB (Fig.6A) in response to ET-1. 
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ET-1-induced CaMKII phosphorylation in A-10 VSMC 

Ang II has been shown to activate CaMKII (37) in VSMC, therefore, we wished to 

investigate if ET-1 would exert a similar effect on CaMKII.  This was tested by 

determining the Thr286 phosphorylation of CaMKII, which has been shown to enhance its 

catalytic activity.  As shown in Fig.7 treatment of A-10 VSMC with ET-1 resulted in a 

rapid and sustained phosphorylation of CaMKII, which was detectable within 2 min and 

remained elevated for up to 30 min.  

 

CaM and CaMKII inhibitors attenuated ET-1-stimulated [3H]leucine and  

[3H]thymidine  incorporation. 

Since activation of ERK1/2 and PKB signaling has been implicated in mediating the 

hypertrophic and proliferative responses of ET-1 (38), we next examined whether there 

was a correlation between CaMKII-induced inhibition and ET-1-induced PKB and 

ERK1/2 phosphorylation and protein and DNA synthesis. As shown in Fig.8, ET-1 

increased both [3H]leucine (Fig.8A) and [3H]thymidine (Fig.8B) incorporation into 

cellular protein and DNA, respectively, by about 50% over control. However, the 

inhibition of CaM by using W-7, or the inhibition of CaMKII by KN-93 reduced ET-1-

induced [3H]leucine and [3H]tymidine incorporation to almost basal level.  KN-92 was 

without any effect on protein and DNA synthesis induced by ET-1in A-10 VSMC.  
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Discussion 

 

Since ET-1 rises intracellular Ca 2+ concentration via PLC/DAG/IP3 pathway, in VSMC 

(19) and Ca2+ exerts many of its effect through CaM and CaMKII, we investigated the 

role of CaMKII in mediating the responses of ET-1 in VSMC. By using three different 

approaches, i.e. use of pharmacological inhibitors, a CaMKII AIP and siRNA techniques 

here, we have demonstrated that CaMKII� mediates the effect of ET-1 on ERK1/2 and 

PKB phosphorylation in A-10 VSMC. By using pharmacological inhibitor alone such as, 

KN-93, earlier studies have reported that AngII and Ca2+ elevation agents, such as 

ionomycin, exert their effects on ERK1/2 phosphorylation via CaM-dependent pathways 

in VSMC (34, 37). However, our studies, by using multiple approaches, have provided 

the first evidence to suggest an involvement of CaMKII� in mediating the effect of ET-1 

on ERK1/2 and PKB phosphorylation in A-10 VSMC. 

We have also shown that ET-1 induced the phosphorylation of CaMKII in Thr286.  

The phosphorylation of this site in AID of CaMKII has been shown to activate the 

catalytic activity of CaMKII (39).   Since Ca2+ ionophore ionomycin has also been shown 

to increase the phosphorylation of CaMKII� in VSMC  (40), it is possible to ET-1-

induced Ca2+ release (through Ca2+/CaM binding to AID) contributes to this 

autophosphorylation reaction in A10 VSMC.  However, the precise mechanism by which 

activated CaMKII� participates in the activation of ERK1/2 and PKB remains to be 

elucidated.  ET-1 has been shown to activate a Ca2+-dependent PTK, which has been 

linked with the activation of ERK1/2 and PKB pathways  (41, 42).  Since ET-1 activates 

Pyk-2 in A10 VSMC, it is possible that CaMKII�, through some yet unidentified 
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intermediary protein, contributes to the activation of Pyk-2 and/or other PTKs, which 

eventually activate ERK1/2 and PKB signalling pathways. 

It is well known that ERK1/2 and PKB play a crucial role in mediating VSMC 

hypertrophy and proliferation  (43).  Interestingly, the present study shows an inhibitory 

effect of W-7 and KN-93 on ET-1-induced DNA and protein synthesis.  It may therefore 

be suggested that the ability of CaMKII to stimulate ERK1/2 and PKB pathways may 

serve as a potential mechanism by which ET-1 induces growth and proliferative 

responses in VSMC. 

A role of CaMKII in several pathophysiological events in different cell type, such 

as VSMC (44) and cardiomyocytes (45) has been suggested and in heart, ET-1-induced  

cardiomyocyte hypertrophy has been linked to CaMKII activation  (45).  Moreover, 

studies showing that inhibition of CaMKII by using KN-93 improved vascular 

dysfunction (46) in animal models of diabetes or in AngII-induced hypertension (47), 

suggesting that abberant activation of CaMKII may be involved in these vascular 

pathologies. 

 

In conclusion, we have shown that CaMKII� plays an important intermediary role 

in activating ET-1-induced signalling of ERK1/2 and PKB pathways, which are also 

intimately linked to its hypertrophic and proliferative responses.  It may be suggested that 

by regulating the growth promoting and hypertrophic events, CaMKII plays an important 

role in vascular pathophysiology. 
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Figures legends  

Figure 1. Effect of BQ-123 and BQ-788 inhibitors of ETA and ETB receptors, 

respectively on ET-1-induced ERK1/2 and PKB phosphorylation in A-10 VSMCs. 

Serum-starved quiescent A-10 cells were pretreated with or without BQ-123 or BQ-788 

10�M for 30 min followed by 100nM of ET-1 for 5 min. Cell lysates were 

immunoblotted by phospho-specific-Thr202 -Tyr204-ERK1/2 antibodies (A), and phospho-

specific-Ser473-PKB antibodies (B), as shown in the middle panels of each section. Blots 

were also analyzed for total ERK1/2 and PKB (bottom panels of each section). Top 

panels, (bar diagrams) in each section represent average data quantified by densitometric 

scanning of immunoblots. Values are the means � SE of at least 3 independent 

experiments and are expressed as percentage phosphorylation where phosphorylation 

observed with ET-1 alone is defined as 100%. *P< 0.05 considered as statistically 

significance versus ET-1 stimulation alone. 

Figure 2. Dose-dependent effect of W-7 and calmidazolium, two calmodulin inhibitors, 

on ET-1-induced ERK1/2 and PKB phosphorylation in A-10 VSMCs. Serum-starved 

quiescent A-10 cells were pretreated with or without the indicated W-7 (section A and B) 

or calmidazolium (section C and D)  concentrations for 30 min followed by 100nM of 

ET-1 for 5 min. Cell lysates were immunoblotted by phospho-specific-Ser473-PKB 

antibodies (A and C) and phospho-specific- Thr202 -Tyr204-ERK1/2 antibodies (B and D), 

as shown in the middle panels of each section. Blots were also analyzed for total ERK1/2 

and PKB (bottom panels of each section). Top panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots. Values are 

the means � SE of at least 3 independent experiments and are expressed as percentage 
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phosphorylation where phosphorylation observed with ET-1 alone is defined as 100%. 

*P< 0.05 considered as statistically significance versus ET-1 stimulation alone.  

Figure 3. Dose-dependent effect of KN-93, CaMKII inhibitor, on ET-1-induced ERK1/2 

and PKB phosphorylation in A-10 VSMCs. Serum-starved quiescent A-10 cells were 

pretreated with or without the indicated KN-93 concentrations for 30 min followed by 

100nM of ET-1 for 5 min. Cell lysates were immunoblotted by phospho-specific-Ser473-

PKB antibodies (A) and phospho-specific- Thr202 -Tyr204-ERK1/2 antibodies (B), as 

shown in the middle panels of each section. Blots were also analyzed for total ERK1/2 

and PKB (bottom panels of each section). Top panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots. Values are 

the means � SE of at least 3 independent experiments and are expressed as percentage 

phosphorylation where phosphorylation observed with ET-1 alone is defined as 100%. 

*P< 0.05 considered as statistically significance versus ET-1 stimulation alone.  

Figure 4. Effect of an inhibitory peptide of CaMKII (AA 281-309) on ET-1-induced 

ERK1/2 and PKB phosphorylation in A-10 VSMCs. A-10 VSMC were transfected, using 

lipofectamin, with an  inhibitory peptide for 48h prior stimulation of ET-1 (100nM, 

5min). The effect of lipofectamin on ET-1-induced ERK1/2 and PKB phosphorylation 

was used as a control. Cell lysates were immunoblotted by phospho-specific-Ser473-PKB 

antibodies (A) and phospho-specific- Thr202 -Tyr204-ERK1/2 antibodies (B), as shown in 

the middle panels of each section. Blots were also analyzed for total ERK1/2 and PKB 

(Bottom panels of each section). Top panels (bar diagrams) in each section represent 

average data quantified by densitometric scanning of immunoblots. Values are the means 

� SE of at least 3 independent experiments and are expressed as percentage 
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phosphorylation where phosphorylation observed with ET-1 alone is defined as 100%. 

*P< 0.05 considered as statistically significance versus ET-1 stimulation alone.  

Figure 5. CaMKII siRNA knocks down the expression of CaMKII in A-10 cells.    

A-10 VSMC were transfected, using Santa Cruz transfection reagent (sc-37007), with 

CaMKII siRNA (sc-29901) or control siRNA (sc-37007)for 24hrs, and cell lysates were 

immunoblotted with CaMKII� or �-actin antibodies. Values are the means � SE of 3 

independent experiments and are expressed as % expression over basal. *P< 0.05 versus 

control siRNA. 

Figure 6. Effect of CaMKII siRNA on ET-1-induced ERK1/2 and PKB phosphorylation 

in A-10 VSMCs. A-10 VSMC were transfected with CaMKII� siRNA (cat #sc-37007) 

(70nM) or control siRNA for 24h prior to stimulation with ET-1 (100nM, 5min). Cell 

lysates were immunoblotted by phospho-specific-Ser473-PKB antibodies (A) and 

phospho-specific-Tyr204-ERK1/2 antibodies (B), as shown in the middle panels of each 

section. Blots were also analyzed for total ERK1/2 and PKB (Bottom panels of each 

section). Top panels (bar diagrams) in each section represent average data quantified by 

densitometric scanning of pERK1/2 or pPKB immunoblots. Values are the means � SE of 

at least 3 independent experiments and are expressed as percentage phosphorylation 

where phosphorylation observed with ET-1 alone is defined as 100%. *P< 0.05 versus 

ET-1 alone. 

Figure.7. Time course of ET-1-induced CaMKII phosphorylation in A-10 VSMC. 

Serum-starved quiescent A-10 cells were treated with ET-1 100nM for indicated times. 

Cell lysates were immunoblotted with phospho-specific-Thr286-CaMKII antibodies 
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(middle panel) and total CaMKII (Bottom panel). Top panels (bar diagrams) represent 

average data quantified by densitometric scanning of p-CaMKII immunoblots. Values are 

the means � SE of at least 3 independent experiments and are expressed as fold increase. 

*P< 0.05 versus time 0 min.  

Figure 8. Effects of W-7 and KN-93 on ET-1-induced [3H]leucine and [3H]thymidine  

incorporation. Serum-starved quiescent A-10 cells were stimulated with ET-1 (100 nM). 

Cells were pretreated or not with 10 �M of W-7 or KN-93 for 30 min before ET-1 

stimulation, then the cells were labeled to equilibrium with [3H]leucine or [3H]thymidine  

as described in Materials and Methods. Values are the means � SE of 3 independent 

experiments and are expressed as percentage of change in [3H]leucine (A) or 

[3H]thymidine (B)  incorporated into total cellular proteins or DNA over the basal values. 

*P< 0.05 versus control and † p <0.05 versus ET-1 alone.  
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AAbbssttrraacctt    

We have shown earlier a requirement of Ca2+ and calmodulin (CaM) in H2O2-induced 

activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase 

B (PKB), key mediators of growth promoting, proliferative and hypertrophic responses in 

vascular smooth muscle cells (VSMC). Since the effect of CaM is mediated through 

CaM-dependent protein kinaseII (CaMKII), we have investigated here the potential role 

of CaMKII in H2O2-induced ERK1/2 and PKB phosphorylation by using 

pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide and siRNA 

knockdown strategies for CaMKII�. Calmidazolium and W-7, antagonists of CaM as 

well as KN-93, a specific inhibitor of CaMKII, attenuated H2O2-induced responses on 

ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H2O2, 

calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase 

(G/GO)-induced phosphorylation of ERK1/2 and PKB in these cells.  Transfection of 

VSMC with CaMKII auto-inhibitory peptide (AIP) corresponding to auto-inhibitory 

domain (AA 281-309) of CaMKII and with siRNA of CaMKII�, attenuated H2O2-

induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 

blocked H2O2-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) 

phosphorylation. Moreover, treatment of VSMC with CaMKII��siRNA abolished the 

H2O2-induced IGF-1-R phosphorylation. H2O2 treatment also induced Thr286 

phosphorylation of CaMKII which was inhibited by both calmidazolium and KN-93. 

These results demonstrate that CaMKII plays a critical upstream role in mediating the 

effect of H2O2 on ERK1/2, PKB and IGF-1R phosphorylation.  Key words:  Oxidative 

stress signaling, H2O2, VSMC, CaMKII, ERK1/2, PKB, Pyk-2, IGF-1R. 
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IInnttrroodduuccttiioonn  

Oxidative stress is believed to play a critical role in the pathogenesis of several 

diseases such as cancer [1], diabetes [2,3] and cardiovascular pathophysiology, including 

hypertension and atherosclerosis[4-6]. Excessive endogenous formation of reactive 

oxygen species (ROS) overcomes cellular antioxidant defense mechanisms, leading to 

oxidative stress. Superoxide anion (O2
�•) and hydrogen peroxide (H2O2) are among the 

most important ROS molecules. In VSMC, NAD(P)H oxidase is one of the primary 

enzymes responsible for the generation of O2
�• [7]. NAD(P)H oxidase catalyzes O2

�•
 

production by the one electron reduction of O2 where NAD(P)H is the electron donor. 

Under physiological conditions, O2
�• undergoes dismutation either spontaneously or by a 

reaction catalyzed by superoxide dismutase (SOD) to produce H2O2 which is more stable 

than O2
�•and is a freely diffusible ROS molecule [8]. Normally H2O2 is scavenged by 

catalase and glutathione peroxidase to produce H2O [9,10]. However, an aberration either 

in generation or scavenging of H2O2 or other ROS molecules has been suggested to 

contribute the pathophysiology of various diseases including cardiovascular diseases[4-

6]. A direct role of H2O2 in angiotensin (AngII)-induced vasculature hypertrophy has also 

been suggested recently in a model of hypertensive vascular disease [11]. Exogenous 

H2O2 activates several signaling protein kinases such as mitogen activated protein kinases 

(MAPK) and protein kinase B (PKB) [12-15] which have been proposed to play key roles 

in mediating the hypertrophic response in VSMC [16]. Although the precise mechanism 

and intermediary steps by which H2O2 activates these signaling pathways remain poorly 

characterized, our earlier studies have reported that tyrosine phosphorylation of �-subunit 

IGF-1R is an important step in tranducing the effect of H2O2 on the phosphorylation of 
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ERK1/2, PKB and Pyk-2 in VSMC [17,18]. In addition, we have also demonstrated that 

Ca2+ and Calmodulin (CaM) play an important role in mediating H2O2-induced ERK1/2 

and PKB phosphorylation in VSMC [13]. CaMKII is a multifunctional serine/threonine 

protein kinase which is believed to transduce the downstream effects of Ca2+/CaM [19]. 

CaMKII holoenzyme is a multimeric protein which contains 12 subunits arranged in two 

sets of six subunits that form a stacked hexagonally shaped rings [19]. Each subunit of 

CaMKII  contains three main regions: a N-terminal catalytic region responsible for 

catalyzing the phosphotransferase  reaction, a regulatory region that contains Ca2+/CaM 

binding sites and autoinhibitory domain (AID) and the C-terminal subunit association 

region responsible for assembling the multimeric holoenzyme [19]. In the absence of 

bound Ca2+/CaM, the CaMKII is maintained in an inactive state because of an interaction 

of the AID with the catalytic domain of its own subunit [20]. The Ca2+/CaM complex 

binds to a sequence that overlaps the AID and causes a conformational change, thereby 

relieving the inhibitory effect of AID on the catalytic activity and inducing the 

phosphorylation of the CaMKII in thr286 and enhancing its kinase activity [19] 

AngII, which transduces its effect through ROS generation [21], has been shown to 

phosphorylate and activate CaMKII in VSMC, and AngII-induced activation of ERK1/2 

has been shown to be blocked by pharmacological inhibitor of CaMKII [22]. However, a 

role of CaMKII in mediating H2O2-induced phosphorylation of ERK1/2, PKB, Pyk2 and 

IGF-1R in VSMC remains unexplored. Therefore, in the present studies, by using a series 

of pharmacological inhibitors and molecular approaches, we have investigated the 

involvement of CaMKII and associated pathways in H2O2-induced phosphorylation of 

these signaling components in A-10 VSMC.    
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Materials and Methods 

MMaatteerriiaallss  

H2O2 , glucose and glucose oxidase were procured from Sigma (St. Louis, MO, USA). 

Calmidazolium, W-7, KN-93, KN-92 and CaMKII autoinhibitory domain (AID) specific 

peptide inhibitor (AA 281-309, autoinhibitory peptide (AIP)) were obtained from 

Calbiochem and Lipofectamine was form Invitrogen, Canada. Monoclonal phospho-

specific- Thr202 -Tyr204-ERK1/2 antibody, polyclonal ERK1/2 antibody, CaMKII � 

siRNA (catalogue number sc-29901), control siRNA (catalogue number sc-37007), 

transfection reagent for siRNA (catalogue number sc-29528), phospho-specific-Thr286-

CaMKII, anti-CaMKII�, anti-IGF-1R and �-actin antibodies were from Santa Cruz 

Biotech (Santa Cruz, CA). CaMKII� siRNA is a pool of 3 target-specific, 20-25 

nucleotide siRNAs designed to knock down gene expression of CaMKII�. The non-

specific siRNA (scrambled) consist of non-targeting 21 nucleotides with no homology to 

rat genes. The phospho-specific-Ser473-PKB, total PKB, phospho-specific-Tyr402-Pyk2, 

total Pyk2 antibodies as well as horseradish peroxidase-conjugated anti-rabbit antibodies 

were procured from New England Biolabs (Beverly, MA). Anti-pIGF-1R was obtained 

from Biosource. The enhanced chemiluminescence (ECL) detection system kit was from 

Amersham Pharmacia Biotech (Baie d’Urfé, QC, Canada).  

Cell culture 

VSMC derived from embryonic rat thoracic aorta A-10 cells were maintained in culture 

with Dulbecco’s modified eagle medium (DMEM)containing 10% fetal bovine serum at 

370C in a humidified atmosphere of 5% CO2 as described earlier [23]. The cells were 
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grown to 80-90% confluence in 60-mm plates and incubated in serum-free DMEM 5h 

prior to the treatments. 

Transfection with CaMKII auto- inhibitory peptide 

A-10 VSMCs at 80-90 % confluence were transfected with a CaMKII-specific (281-309) 

auto-inhibitory peptide (AIP) (2ng/ml) by using lipofectamine (4μg/ml) [24]. 

Transfections were performed in serum and antibiotics-free DMEM for 2h then serum 

was added to reach a final concentration of 10%. H2O2-induced signaling responses in 

peptide-transfected or control cells were examined 48h later. 

Transfection with siRNA 

A-10 VSMCs at 80-90 % confluence were transfected with CaMKII� siRNA or control 

scrambled siRNA (final concentration of CaMKII� or scrambled, non-specific siRNA 

was 70 nM) according to the manufacturer’s protocol. Transfections were performed in 

serum and antibiotics-free DMEM. A mixture of CaMKII� siRNA or control scrambled 

siRNA and transfection reagent was added to cells and incubated for 6h at 37oC then 

serum was added to reach 10% of FBS. Cells were incubated for an additional 48h before 

stimulation with H2O2 

Cell treatment, lysis and Immunoblotting 

A-10 VSMCs, made quiescent by serum deprivation for 5 h, were treated in the absence 

or presence of various agents (e.g. H2O2, W-7, calmidazolium, KN-93, AIP or siRNA) at 

37oC as indicated in the legends to each figure. None of these treatments altered the 

viability of cells. Following these treatments the cells were washed twice with ice-cold 

PBS and lysed in 200 μl of buffer (25 mM Tris-HCl, pH 7.5, 25 mM NaCl, 1 mM Na 

orthovanadate, 10 mM Na fluoride, 10 mM Na pyrophosphate, 2 mM benzamidine, 2 
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mM ethylenebis(oxyethylenenitrolo)-tetraacetic acid, 2 mM ethylenediamine tetraacetic 

acid, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, 1% Triton X-100, 0.1% 

sodium dodecyl sulfate (SDS), and 0.5 μg/ml leupeptin) on ice. The cell lysates were 

centrifuged at 12,000 g for 10 min at 40C. Protein concentrations were measured by 

Bradford assay. Equal amounts of protein were subjected to 7.5% SDS-polyacrylamide 

gel (SDS-PAGE), transferred to PVDF membranes (Millipore, MA, USA) and incubated 

with respective primary antibodies, (monoclonal phospho-specific- Thr202 -Tyr204-

ERK1/2 antibody (1:4,000), polyclonal phospho-specific-Ser473-PKB antibody, phospho-

specific-Tyr402-Pyk2 and phospho-specific-IGF-1R antibody (1:1,000). phospho-specific-

Thr286-CaMKII antibody (1:2,000). The antigen-antibody complex was detected by a 

horseradish peroxidase-conjugated second antibody (1:2000), and protein bands were 

visualized by ECL. The intensity of specific bands was quantified by NIH Image 

software as described previously [25]. 

Statistics 

The data are means ± SE of at least three individual experiments. Statistical significance 

was determined with paired or unpaired Student’s t test, and p<0.05 was considered 

significant. 
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Results 

Pharmacological inhibitors of CaM abolish H2O2-induced ERK1/2 and PKB 

phosphorylation in A-10 VSMCs. We have reported earlier that Ca2+-dependent events 

are essential to tranduce the signals of H2O2 to enhance the phosphorylation of ERK1/2 

and PKB in A-10 VSMC [13]. Since CaM mediates various actions of Ca2+, we examined 

the involvement of CaM in H2O2-induced ERK1/2 and PKB phosphorylation. As shown 

in Fig.1, pretreatment of A-10 VSMCs with W-7 and calmidazolium, specific inhibitors 

of CaM, dose-dependently attenuated H2O2-induced phosphorylation of both ERK1/2 and 

PKB. However, as compared to ERK1/2, PKB appeared to be more sensitive to the 

inhibitory effect of both W-7 and calmidazolium, and exhibited almost complete 

attenuation of H2O2-stimulated phosphorylation of PKB at 5 μM of W-7 and 10 μM of 

calmidazolium (Fig.1 A and C). In contrast, a higher concentration of these inhibitors was 

required to attain the same level of inhibition of H2O2-enhanced phosphorylation of 

ERK1/2 (Fig.1, B and D).

CaMKII inhibitor attenuates H2O2 -induced ERK1/2 and PKB phosphorylation in A-10 

VSMC. CaMKII is a downstream signaling molecule that participates in mediating the 

effects of CaM [19]. Therefore, we examined whether CaMKII mediates the effect of 

H2O2 in enhancing the phosphorylation of ERK1/2 and PKB in A-10 VSMC. As shown 

in Fig.2, pretreatment of VSMC with KN-93, a specific CaMKII inhibitor which inhibits 

CaMKII by competitively binding to the CaM binding domain of the enzyme, dose-

dependently blocked the stimulatory effect of H2O2 on both ERK1/2 and PKB 

phosphorylation. 
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Calmodulin and CaMKII inhibitors attenuate glucose/glucose oxidase -induced 

ERK1/2 and PKB phosphorylation in A-10 VSMC. In order to investigate if 

endogenously generated H2O2 would exert a similar effect on ERK1/2 and PKB 

phosphorylation in A-10 VSMC as was observed with the exogenously added H2O2, we 

examined the effect of glucose (G) and glucose oxidase (GO), known to generate H2O2 

extracellulary [26], on ERK1/2 and PKB phosphorylation in these cells. As shown in 

Fig.3 A and B, G/GO treatment dose-dependently enhanced the phosphorylation of both 

ERK1/2 and PKB. However, as compared to PKB, G/GO caused a more potent 

phosphorylation of ERK1/2. Time course of G/GO response using 0.64 U/ml GO 

revealed that phosphorylation of both ERK1/2 and PKB by G/GO treatment was rapid 

(Fig.3 C and D) and was detectable at 5min. However, as compared to the 

phosphorylation of ERK1/2 which remained elevated during the 30 min of treatment 

(Fig.3D), PKB phosphorylation was transient and was decreased to the basal levels 

within 15 min of treatment (Fig.3C).  

Next, we determined whether similar to exogenously H2O2, pharmacological blockade of 

CaM or CaMKII will exert an inhibitory effect on G/GO-induced phosphorylation of 

ERK1/2 and PKB. As shown in Fig.4, pretreatment of cells with either calmidazolium or 

KN-93 prior to the addition of G/GO significantly inhibited G/GO-evoked 

phosphorylation of both PKB (Fig.4A) and ERK1/2 (Fig.4B). 

 

CaMKII inhibitory peptide (AIP) and CaMKII siRNA attenuates H2O2 -induced 

ERK1/2 and PKB phosphorylation. In addition to the use of classical pharmacological 

inhibitors of CaM and CaMKII, we also confirmed the involvement of CaMKII in 
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mediating H2O2 responses by two additional approaches. In approach one, we utilized a 

peptide (AIP) corresponding to the AID of CaMKII (AA 281-309). As shown in Fig.5 

transfection of A-10 VSMC for 48-h with AIP, markedly reduced H2O2-induced 

phosphorylation of both ERK1/2 and PKB (Fig.5). Lipofectamin, the transfection 

reagent, had no effect on H2O2-induced ERK1/2 and PKB phosphorylation (Fig.5). In the 

second approach, CaMKII� expression was suppressed by siRNA-induced knock down 

of CaMKII� . As shown in Fig. 6A, siRNA-induced knock-down of CaMKII� decreased 

the expression of CaMKII� by about 90% but had no effect on the expression of �-actin. 

The cells treated with siRNA to CaMKII� exhibited a significantly attenuated effect of 

H2O2 on the phosphorylation of both PKB and ERK1/2 (Fig. 6B and C respectively). 

However, control siRNA was without any effect on CaMKII� expression (Fig.6 A) or on 

H2O2-induced ERK1/2 and PKB phosphorylation (Fig.6 B,C)  

H2O2 induces CaMKII phosphorylation in A-10 VSMC. Since Thr286 phosphorylation is 

critical for the activation of CaMKII activity, therefore, we wished to determine the effect 

of H2O2 on CaMKII phosphorylation in A-10 VSMC. To determine the effect of H2O2 on 

Thr286 autophosphorylation, A-10 VSMC were treated for different time periods with 

H2O2 and the lysates were immunoblotted with a specific antibody that recognizes 

CaMKII phosphorylation on Thr286. As shown in Fig.7A, H2O2 -induced the 

phosphorylation of CaMKII in a time-dependent fashion which peaked within 2 min of 

exposure with H2O2 and then declined to basal values at 10 min. Furthermore, both 

calmidazolium and KN-93 inhibited the phosphorylation of CaMKII induced by H2O2, 

whereas KN-92, an inactive analog of KN-93 was without any effect (Fig.7B) . 
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Calmidazolium and KN-93 blocked H2O2-induced phosphorylation of Pyk-2. We have 

demonstrated that Pyk-2, a non-receptor Ca2+-dependent proline rich tyrosine kinase is 

phosphorylated in response to H2O2    in A-10 VSMC [17]. A potential role of Pyk-2 in 

AngII-induced PKB signaling has been suggested [27]. Therefore, we investigated the 

effect of pharmacological blockade of CaM or CaMKII on H2O2- induced 

phosphorylation of Pyk-2. As shown in Fig.8 both calmidazolium and KN-93 prevented 

the phosphorylation of Pyk-2 induced by H2O2.  In contrast, KN-92  was without effect on 

H2O2-induced response. 

Calmidazolium, KN-93 and CaMKII� siRNA  blocked H2O2-induced phosphorylation 

of IGF-1R. We have previously demonstrated that H2O2-induced the tyrosine 

phosphorylation of the ��subunit of IGF-1R and pharmacological blockade of the 

tyrosine kinase activity of IGF-1R inhibited H2O2-stimulted phosphorylation of ERK1/2, 

PKB and Pyk-2 in A10 VSMC [17,18]. Therefore, we examined the effect of CaM or 

CaMKII blockade on H2O2–induced tyrosine phosphorylation of IGF-1R. As shown in 

Fig.9,A,C,D both calmidazolium and KN-93 significantly reduced H2O2-stimulated 

phosphorylation of IGF-1R. Similarly, siRNA-induced suppression of CaMKII� also 

exerted an inhibitory effect on the H2O2-evoked IGF-1R phosphorylation (Fig.9, B). 
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Discussion 

H2O2 has been shown to increase the intracellular Ca2+ concentration [28] and  we have 

reported in earlier studies that both Ca2+ and  CaM play a critical role in transducing 

H2O2-induced signaling events in VSMC [13]. In the studies presented here, we 

demonstrated that activation of CaMKII, a downstream effector of Ca2+/CaM responses, 

is required to enhance H2O2-induced phosphorylation of ERK1/2 and PKB. This 

conclusion is based on the use of highly selective pharmacological inhibitors of CaM and 

CaMKII. We have also confirmed the participation of CaMKII� in mediating the H2O2-

induced phosphorylation of ERK1/2 and PKB by using siRNA to specifically knock 

down CaMKII�  

Although, the involvement of CaMKII in H2O2-induced responses on NF-kappaB 

activation in T-lymphocytes [29], on ERK1/2 and p38MAPK activation and in eNOS 

expression in endothelial cells  [24,30], and on JNK and p38MAPK activation  in VSMC 

[31], have been demonstrated , to our knowledge, the data presented here are the first to 

show a role of CaMKII� in mediating the effect of H2O2 on ERK1/2 and PKB 

phosphorylation in A10 VSMC. 

In addition to H2O2   other agonists such as AngII, norepinephrine, epidermal growth 

factor, ionomycin  and ATP have also been shown to activate MAPK signaling via 

CaMKII [22,32]. Our findings showing that H2O2 enhanced the phosphorylation of 

CaMKII in Thr286, further supports a role of activated CaMKII in H2O2-induced 

responses in VSMC. These data are also consistent with H2O2–induced increase in the 

phosphorylation of CaMKII reported in astrocytes  [33] and T-Jurkat-lymphocytes [34]. 

In contrast, our results do not support the observation of Robison et al, who showed a 
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decrease in CaMKII activity in response to H2O2 in neurons [35]. It should be noted that 

in addition to CaMKII, other receptor and non-receptor tyrosine kinase such as IGF-1R 

and Pyk-2  have been implicated in H2O2-induced signaling events in VSMC [17,36,37]. 

Our earlier studies have demonstrated that H2O2 enhanced the tyrosine phosphorylation of 

IGF-1R ��subunit  and this event contributed to the initiation of H2O2-evoked PKB 

phosphorylation with an intermediary role of Pyk-2 [17]. It has been shown that 

phosphorylated form of  Pyk-2 interacts with several signaling molecules such as Shc and 

Grb2 implicated in ERK1/2 activation, and with p85 subunit of phosphatidyl inositol 3-

kinase which is involved in PKB activation  [38]. Pyk-2 also mediates the effect of AngII 

in inducing ERK1/2 and PKB activation in VSMC [27]. Since ROS generation is critical 

in transducing AngII response, it is possible that Pyk-2 plays a similar role in H2O2-

induced effects on ERK1/2 and PKB phosphorylation. Our findings that inhibition of 

either CaM or CaMKII significantly attenuated H2O2-induced phosphorylation of Pyk-2 

indicates a requirement of CaMKII in enhancing Pyk-2 phosphorylation and suggest the 

participation of Pyk-2 in the signaling cascade leading to the activation of ERK1/2 and 

PKB in response to H2O2 in VSMC. The results showing that blockade of CaMKII� 

either by pharmacological approach or by siRNA-induced silencing of CaMKII� 

inhibited H2O2–induced tyrosine phosphorylation of IGF-1R, suggests an upstream role 

of CaMKII� in this process. Although ionomycin-induced increase in EGF-R 

phosphorylation had earlier been shown to be mediated through CaMKII-dependent 

pathway [32], our current studies are the first to report that CaMKII� plays a key  role in 

mediating H2O2-induced phosphorylation of IGF-1R, Pyk-2,  ERK1/2 and PKB. 
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An  involvement of CaMKII in regulating the proliferation, migration and differentiation 

of VSMC has been shown in several studies [39-43]. Since a hightened proliferation and 

migration of VSMC are hallmarks of vascular disease, and excessive generation of ROS 

has been suggested to play an important role in the pathogenesis of vascular diseases [5-

7,11] it may be suggested that ROS-induced upregulation of  CaMKII, through IGF-1R, 

ERK1/2 and PKB signaling pathways may contribute to aberrant VSMC functions 

associated with these disorders.  This notion is further supported by studies showing that 

pharmacological blockade of CaMKII by KN-93 improved vascular hyperplasia and 

hypertension in AngII-induced hypertensive rats [44], and normalized aberrant vascular 

reactivity in diabetes-induced vascular dysfunction [45]. 

In conclusion, we have shown that CaMKII� serves as a critical upstream component in 

triggering the H2O2-induced signaling cascade resulting in the phosphorylation of IGF-

1R, ERK1/2 and PKB in VSMC. It may be suggested that through the activation of these 

signaling events CaMKII contributes to the regulation of various cellular processes 

including cell growth, proliferation, hypertrophy and survival in VSMC, and a 

dysregulation of CaMKII activity may play an important role in the pathogenesis of 

vascular disease. 
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Figures legends  

Figure 1.  Pharmacological inhibition of CaM abolishes H2O2-induced ERK1/2 and PKB 

phosphorylation in A-10 VSMCs. Serum-starved quiescent A-10 cells were pretreated in 

the absence (0) or presence of the indicated concentration of W-7 (section A and B) or 

calmidazolium (section C and D) for 30 min followed by stimulation with 250 μM of 

H2O2 for 5 min. Cell lysates were immunoblotted with phospho-specific-Ser473-PKB 

antibodies (A and C) and phospho-specific-Thr 202-Tyr204-ERK1/2 antibodies (B and D), 

as shown in the middle panels of each section. Blots were also analyzed for total ERK1/2 

and PKB (bottom panels of each section). Top panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots showing in 

the middle panel. Values are the means � SE of at least 3 independent experiments and 

are expressed as percentage of control, taken as 100%. P< 0.05 considered as statistically 

significance versus H2O2 stimulation alone. 

* indicates that P < 0.05, ** indicates that P <0.005, and # indicates that P <0.0005.   

Figure 2. CaMKII inhibitor attenuates H2O2-induced ERK1/2 and PKB phosphorylation 

in A-10 VSMCs. Serum-starved quiescent A-10 cells were pretreated in the absence (0) 

or presence of the indicated KN-93 concentrations for 30 min followed by stimulation 

with 250 μM of H2O2 for 5 min. Cell lysates were immunoblotted with phospho-specific-

Ser473-PKB antibodies (A) and phospho-specific- Thr202 -Tyr204-ERK1/2 antibodies (B), 

as shown in the middle panels of each section. Blots were also analyzed for total ERK1/2 

and PKB (bottom panels of each section). Top panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots showing in 

the middle panel. Values are the means � SE of at least 3 independent experiments and 
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are expressed as percentage of control, taken as 100%. P< 0.05 considered as statistically 

significance versus H2O2 stimulation alone. * indicates that P < 0.05, ** indicates that P 

<0.005 and # indicates that P <0.0005.   

Figure 3: Dose response and time course of glucose/glucose oxidase-induced ERK1/2 

and PKB phosphorylation in A-10 VSMCs. Serum-starved quiescent A-10 cells were 

treated without (0) or with 6mM glucose (G) and the indicated concentrations of glucose 

oxidase (GO) for 10 min (A and B) and without (0) or with G/GO (6mM/0.64 U/ml) for 

the indicated time periods (C and D). Cell lysates were immunoblotted with phospho-

specific-Ser473-PKB antibodies (A and C) and phospho-specific-Thr 202-Tyr204-ERK1/2 

antibodies (B and D), as shown in the middle panels of each section. Blots were also 

analyzed for total ERK1/2 and PKB (bottom panels of each section). Top panels (bar 

diagrams) in each section represent average data quantified by densitometric scanning of 

immunoblots shown in the middle panel. Values are the means � SE of at least 3 

independent experiments and are expressed as percentage of control, taken as 100%. P< 

0.05 considered as statistically significance versus control. 

* indicates that P < 0.05, ** indicates that P <0.005, and # indicates that P <0.0005.   

Figure. 4. Calmodulin and CaMKII inhibition blocks ERK1/2 and PKB phosphorylation 

induced by G/GO. 

Serum-starved quiescent A-10 cells were pretreated in the absence (0) or presence of 

CMZ, KN-92 or KN-93 (10 M) for 30 min followed by stimulation  with G/GO 

(6mM/0.64U/ml) for 10 min. Cell lysates were immunoblotted with phospho-specific-

Ser473-PKB antibodies (A) and phospho-specific-Thr 202-Tyr204-ERK1/2 antibodies (B), 

as shown in the middle panels of each section. Blots were also analyzed for total ERK1/2 
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and PKB (bottom panels of each section). Top panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots shown in the 

middle panel. Values are the means � SE of at least 3 independent experiments and are 

expressed as percentage of control, taken as 100%. P< 0.05 considered as statistically 

significance versus G/GO stimulation. 

* indicates that P < 0.05, ** indicates that P <0.005, and # indicates that P <0.0005.   

Figure 5. CaMKII AIP peptide (AA 281-309) attenuates H2O2-induced ERK1/2 and PKB 

phosphorylation in A-10 VSMCs. Cells were transfected, using lipofectamin, with 

CaMKII autoinhibitory peptide (AIP) for 48-h prior to stimulation with H2O2  (250 μM, 

5min). The cells treated with lipofectamin alone were used as control. Cell lysates were 

immunoblotted with phospho-specific-Ser473-PKB antibodies (A) and phospho-specific-

Thr 202-Tyr204ERK1/2 antibodies (B), as shown in the middle panels of each section. 

Blots were also analyzed for total ERK1/2 and PKB (Bottom panels of each section). Top 

panels (bar diagrams) in each section represent average data quantified by densitometric 

scanning of immunoblots showing in the middle panel. Values are the means � SE of at 

least 3 independent experiments and are expressed as percentage of control, taken as 

100%. P< 0.05 considered as statistically significance versus H2O2 stimulation alone. # 

indicates that P < 0.0005.  

Figure 6.  CaMKII� siRNA attenuates H2O2-induced ERK1/2 and PKB phosphorylation 

in A-10 VSMCs. A-10 VSMC were transfected with CaMKII siRNA or control siRNA 

for 48h prior to stimulation with H2O2 (250 μM, 5min). Cell lysates were immunoblotted 

with CaMKII� antibodies (A), phospho-specific-Ser473-PKB antibodies (B) and phospho-

specific-Thr202-Tyr204-ERK1/2 antibodies (C). Blots were also analyzed for total PKB 
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and ERK1/2 (Bottom panels of B and C). Top panels (bar diagrams) in B and C represent 

average data quantified by densitometric scanning of immunoblots of p-Proteins showing 

in the middle panel. Blots in panel A was also blotted with � actin. Values are the means 

� SE of at least 3 independent experiments and are expressed as percentage of control, 

taken as 100%.  P< 0.05 considered as statistically significance versus H2O2 stimulation 

alone. ** indicates that P < 0.005 and # indicates that P < 0.0005. 

Figure.7. H2O2 induces the phosphorylation of CaMKII which is blocked by CaM and 

CaMKII inhibitors  in A-10 VSMC.  

(A): Serum-starved quiescent A-10 cells were treated with H2O2 (250 μM) for indicated 

time periods. (B): Quiescent A-10 cells were pretreated in the absence (0) or presence of 

calmidazolium(CMZ), KN-92 or KN-93 (10�M) for 30 min followed by stimulation with 

250 μM of H2O2 for 5 min. Cell lysates were immunoblotted with phospho-specific-

Thr286-CaMKII antibodies (middle panel in each section) and total CaMKII� antibodies 

(Bottom panel in each section). Top panels in each section (bar diagrams) represent 

average data quantified by densitometric scanning of immunoblots of p-CaMKII. Values 

are the means � SE of at least 3 independent experiments are expressed as percentage of 

control, taken as 100%. P< 0.05 considered as statistically significance versus control for 

(A) and versus H2O2 stimulation alone for (B). * indicates that P < 0.05, ** indicates that

P <0.005 and # indicates that P <0.0005.   

Figure.8. CaMKII inhibition blockes Pyk-2 phosphorylation induced by H2O2

Serum-starved quiescent A-10 cells were pretreated in the absence (0) or presence of 

CMZ, KN-92 or KN-93 (10�M) for 30 min followed by stimulation with 250 μM of 
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H2O2 for 5 min. Cell lysates were immunoblotted with phospho-Pyk-2 antibodies (middle 

panel ) and total Pyk-2 antibodies (Bottom panel). Top panels in each section (bar 

diagrams) represent average data quantified by densitometric scanning of immunoblots of 

p-Pyk-2.  Values are the means � SE of at least 3 independent experiments are expressed 

as percentage of control, taken as 100%. P< 0.05 considered as statistically significance 

versus H2O2 stimulation alone. * indicates that P < 0.05, ** indicates that P <0.005. 

Figure. 9. CaMKII� inhibition attenuates IGF-1R phosphorylation induced by H2O2

Serum-starved quiescent A-10 cells were pretreated in the absence (0) or presence of 

CMZ, KN-92 or KN-93 (10�M) for 30 min followed by stimulation with 250 �M of 

H2O2 for 5 min (A). In (B), A-10 VSMCs were transfected with either control siRNA or 

CaMKII  siRNA, as described in the legend to Fig 4, 48-h prior to stimulation with 250 

μM of H2O2 for 5 min.  In (C) and (D): Quiescent A-10 VSMC were pretreated with the 

indicated concentrations of CMZ (C) and KN-93 (D) for 30 min followed by stimulation 

with 250 μM of H2O2 for 5 min. Cell lysates were immunoblotted with p-IGF-1R 

antibodies that recognize the phosphorylated form of IGF-1R (phospho-Tyr1131/1135/1136) 

(middle panel in each section) and total IGF-R antibodies (Bottom panel in each section). 

Top panels in each section (bar diagrams) represent average data quantified by 

densitometric scanning of immunoblots of p-IGF-1R. Values are the means � SE of at 

least 3 independent experiments are expressed as percentage of control, taken as 100%. 

P< 0.05 considered as statistically significance versus H2O2 stimulation alone. * indicates 

that P < 0.05, ** indicates that P <0.005. 
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Abstract  

Nitric oxide (NO), in addition to its vasodilator action, has also been shown to 

antagonize the mitogenic and hypertrophic responses of growth factors and 

vasoactive peptides such as endothelin-1 (ET-1) in vascular smooth muscle cells 

(VSMCs). However, the mechanism by which NO exerts its anti-mitogenic and 

anti-hypertrophic effect remains unknown. Therefore, the aim of this study was 

to determine if NO generation would modify ET-1-induced signaling pathways 

involved in cellular growth, proliferation and hypertrophy in A-10 VSMC. 

Treatment of A-10 VSMCs with S-nitroso-N-acetylpenicillamine (SNAP) or 

sodium nitroprusside (SNP), two NO donors, attenuated the ET-1-enhanced 

phosphorylation of several key components of growth promoting and 

hypertrophic signaling pathways such as ERK1/2, PKB and Pyk2. On the other 

hand, the inhibition of the endogenous NO generation by using N-nitro-L- 

arginine methyl ester (L-NAME), a NO synthase inhibitor, increased the ET-1-

induced phophosphorylation of these signaling components. Since, NO 

mediates its effect principally through a cyclic GMP/soluble guanylyl cyclase 

(sGC) pathway, we investigated the role of these molecules in NO action. 8-Br-

cGMP, a non-metabolizable and cell permeable analogue of cGMP, exhibited a 

similar effect to that of SNAP and SNP. Furthermore, oxadiazole quinoxalin 

(ODQ), an inhibitor of sGC, reversed the inhibitory effect of NO on ET-1-

induced responses. SNAP treatment also decreased the protein synthesis 

induced by ET-1. Taken together, these data demonstrate that NO, in a cGMP-
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dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB 

and Pyk2 and also antagonized the hypertrophic effects of ET-1. It may be 

suggested that NO-induced generation of cGMP contributes to the inhibition of 

ET-1-induced mitogenic and hypertrophic responses in VSMCs. (260words) 

Key words:  Cell signaling, protein synthesis, endothelin-1, NO.  
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Introduction 

  Endothelin-1 (ET-1) is a 21-amino acid peptide and is considered as a 

potent vasoconstrictor (47). It also exhibits mitogenic activity in vascular 

smooth muscle cells (VSMC) (5; 23; 24), suggesting a possible role for ET-1 in 

the pathogenesis of many diseases, such as atherosclerosis (29), hypertension 

(18) and restenosis after angioplasty (11). 

 ET-1 exerts its effects through heteromeric G-protein-coupled receptor 

(GPCR) that is linked to multiple signaling pathways which include 

phospholipases C and D (13), Ca2+ (32), mitogen-activated protein kinases 

(MAPKs) including extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun-

NH2-terminal kinase (JNK) and p38mapk (7; 8; 39; 50; 51) and 

phosphatidylinositol 3-kinase (PI-3K) (8; 17). Activation of receptor and non-

receptor protein tyrosine kinases (PTKs) in transducing ET-1-induced signaling 

responses have also been suggested (16; 26; 27; 39; 49). PTKs activated by ET-

1 include epidermal growth factor (EGF) (27), c-Src (16; 26; 38) and a Ca2+-

dependent PTK, Pyk2 (26; 39). Of particular interest, ET-1 mediates Pyk2 

activation which contributes to ERK1/2 (26) and JNK (27) signaling in 

cardiomyocytes and p38mapk (39) in mesangial cells. 

  

 Nitric oxide (NO) is a free radical that has been suggested to play  an 

important role in cardiovascular function (38). NO mediates relaxation principally 

through the stimulation of soluble guanylyl cyclase (sGC), leading to enhanced 
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production of intracellular cGMP, which in turn, activates cGMP-dependent 

protein kinases (PKG) (30). NO can also influence cellular events by a PKG-

independent mechanism (14; 22), and is also able to react with superoxide anion 

to form the reactive peroxynitrite radical (25), a potent oxidant with the potential 

to disrupt protein structures by nitrating the tyrosine residues in protein (48). In 

addition to its vasodilating effect, NO has been suggested to antagonize the 

physiological and pathophysiological effects of several growth factors such as 

EGF (52), angiotensin II (AII) (46) as well as ET-1 (1). This is probably achieved 

by inhibiting one or more serine/ threonine/ tyrosine kinases implicated in the 

signaling events induced by these factors. Several studies using AII, have shown 

that NO suppressed the activation of ERK1/2, p38mapk and JNK (45) as well as 

Pyk2 (46) in cardiac fibroblasts. It has also been recently reported that in rat 

neonatal pulmonary vascular smooth muscle cells a NO donor inhibited ET-1-

induced ERK1/2 phosphorylation (3). However, to our knowledge, a possible 

contribution of NO on ET-1-induced activation of other signaling events has not 

been investigated in VSMC. Therefore, in the present studies, we have examined 

the effect of NO on ET-1-stimulated phosphorylation of ERK1/2, PKB and Pyk2, 

the key mediators of growth-promoting, proliferative, hyperthrophic survival 

responses. In addition, we have also examined whether NO acts via a cGMP-

dependent mechanism in eliciting these responses.  
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Materials and Methods 

Materials
ET-1 was purchased from Peninsula Laboratories (Belmont, CA, USA), 

and S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP), 8-

Bromo-guanosine 3’, 5’-cyclic monophosphate (8-Br-cGMP) and 1H-

�1,2,4�Oxadiazolo�4,3-a�quinoxalin-1-one (ODQ), were obtained from 

Calbiochem (San Diego, CA). L-NAME was purchased form Sigma Aldrich (St-

Louis, MO). Monoclonal phospho-specific-Tyr204-ERK1/2 antibody, polyclonal 

ERK1/2 antibody, eNOS antibody, iNOS antibody and horseradish peroxidase-

conjugated goat anti-mouse immunoglobulin were from Santa Cruz Biotech 

(Santa Cruz, CA). The phospho-specific-Ser473-PKB and total PKB as well as 

phospho-specific-Tyr402-Pyk2 and total Pyk2 antibodies were procured from 

New England Biolabs (Beverly, MA). The enhanced chemiluminescence (ECL) 

detection system kit and L-(4,5-3H) leucine were from Amersham Pharmacia 

Biotech (Baie d’Urfé, QC, Canada). Human umbilical vein endothelial cells 

(HUVEC) was a gift from Dr  Eric Thorin, Montreal Cardiology Institute. 

 

Methods
Cell culture 

A-10 VSMC derived from embryonic rat thoracic aorta cells were 

maintained in culture with DMEM containing 10% fetal bovine serum at 370C in 

a humidified atmosphere of 5% CO2 as described earlier (40). The cells were 
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grown to 80-90% confluence in 60-mm plates and incubated in serum-free 

DMEM 20 h prior to the treatments. 

Cell lysis and Immunoblotting 

Cells incubated in the absence or presence of various agents were washed 

twice with ice-cold PBS and lysed in 200 �l of buffer (25 mM Tris-HCl, pH 7.5, 

25 mM NaCl, 1 mM Na orthovanadate, 10 mM Na fluoride, 10 mM Na 

pyrophosphate, 2 mM benzamidine, 2 mM ethylenebis(oxyethylenenitrolo)-

tetraacetic acid, 2 mM ethylenediamine tetraacetic acid, 1 mM 

phenylmethylsulfonyl fluoride, 10 �g/ml aprotinin, 1% Triton X-100, 0.1% 

sodium dodecyl sulfate (SDS), and 0.5 �g/ml leupeptin) on ice. The cell lysates 

were centrifuged at 12,000g for 10 min at 40C. Protein concentrations were 

measured by Bradford assay. Equal amounts of protein were subjected to either 

7.5% or 10% SDS-polyacrylamide gel (SDS-PAGE), transferred to PVDF 

membranes (Millipore, MA, USA) and incubated with respective primary 

antibodies, (monoclonal phospho-specific-Tyr204-ERK1/2 antibody (1:2,000), 

polyclonal phospho-specific-Ser473-PKB antibody (1:4,000), phospho-specific-

Tyr402-Pyk2 antibody (1:1,000), eNOS or iNOS antibodies (1:2,000)). The 

antigen-antibody complex was detected by a horseradish peroxidase-conjugated 

second antibody (1:4000), and protein bands were visualized by ECL. The 

intensity of specific bands was quantified by NIH Image software as described 

previously (31). 
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Measurement of [3H]leucine Incorporation 

A-10 cells were treated for 20 h with endothelin-1 (10 nM; Belmont, CA, 

USA). Protein synthesis was assessed by the addition of 2 �Ci/mL of 

�3H]leucine (ICN Biomedicals, Inc., Costa Mesa, CA, USA) for a period of 20 h. 

To assess the role of NO, cells were pretreated for 30 min with 10 or 100 μM of 

S-nitroso-N-acetylpenicillamine (SNAP) (Calbiochem, San Diego, CA) which 

spontaneously generates NO. Following the completion of the experimental 

protocol, A-10 cells were washed twice with cold PBS, and 1 ml of cold 5% 

trichloroacetic acid was added for 30 min to precipitate protein. The precipitates 

were subsequently washed twice with cold water and resuspended in 500 �l of 

0.4 M NaOH. Aliquots were counted in a scintillation counter. 

              Statistics 

Statistical analysis was performed by one-way, repeated-measures analysis 

of variance (ANOVA) followed by a Fisher post hoc test. All data are reported 

as means + SE. The differences between means were considered significant at 

P� 0.05. 
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Results 

 

Both SNAP and SNP inhibited ET-1-induced phosphorylation of ERK1/2, 

PKB and Pyk2  in A-10 VSMCs 

In order to determine if the anti-mitogenic and anti-proliferative effects of 

NO are mediated by its ability to attenuate growth-promoting signaling pathway 

in VSMC, we examined the effect of S-nitroso-N-acetylpenicillamine (SNAP), 

which spontaneously generates NO, on ET-1-induced phosphorylation of 

ERK1/2, PKB and Pyk2. As shown in Fig. 1, pretreatment of A-10 VSMC with 

SNAP for 15 min dose-dependently attenuated ET-1-induced phosphorylation of 

all of these protein kinases. Among the kinases, PKB appeared to be more 

sensitive to the inhibitory effect of SNAP and exhibited almost complete 

attenuation of ET-1-stimulated phosphorylation at 10 �M (Fig. 1B). In contrast, 

ET-1-enhanced phosphorylation of ERK1/2 and Pyk2 was inhibited significantly 

only at 300 �M SNAP.  

In addition, sodium nitroprusside (SNP), another NO donor also exhibited 

a similar effect and attenuated ET-1-induced ERK1/2, PKB and Pyk2 

phosphorylation to varying degrees (Fig. 2).    
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L-NAME potentiated ET-1-induced phosphorylation of ERK1/2, PKB and 

Pyk2  in A-10 VSMCs. 

 To  examine if decreasing the endogenous NO production by inhibition of 

nitric oxide synthase (NOS) activity would modify the effect of ET-1 on various 

signaling components, we investigated the effect of pretreatment of A-10 VSMC 

with L-NAME, a specific inhibitor of NOS on ET-1-induced phosphorylation of 

ERK1/2, PKB and Pyk2. As shown in Fig.3, L-NAME treatment, at both the 

doses used, potentiated the response of ET-1 on all three signaling component 

examined. 100 �M L-NAME potentiated ET-1-induced ERK1/2 

phosphorylation by 4 fold (Fig. 3A), whereas only 2 fold potentiation in PKB 

and Pyk2 phosphorylation was observed under these conditions (Fig. 3B,C). 

Although, it is generally believed that VSMC are devoid of NOS, however, the 

ability of L-NAME to potentiate ET-1-induced signaling suggested the presence 

of NOS in A10-VSMC. This possibility was evaluated by subjecting the total 

cellular lysates of A10-VSMC or HUVEC to western blotting using specific 

antibodies against eNOS and iNOS. As shown in Fig.4A, A10 cells exhibited a 

significant expression of eNOS in the basal state. However, as compared to 

HUVEC the expression level of eNOS in A10-VSMC  was much less. Under 

these conditions iNOS could not be detected in A10-VSMC (data not shown). 

Furthermore, treatment of A10-VSMC with ET-1 or L-NAME did not alter the 

eNOS expression in these cells (Fig.4B)                   

8-Br-cGMP inhibited ET-1-induced phosphorylation of ERK1/2, PKB and 

Pyk2  in A-10 VSMCs 
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Since SNAP-induced production of NO would cause an elevation in 

cGMP, we evaluated the possibility that the effect of SNAP on ET-1-induced 

responses was mediated by a mechanism involving cGMP. We tested this by 

pretreating the cells with 8-Br-cGMP, a non-metabolizable and cell permeable 

analogue of cGMP. As shown in Fig.5, treatment of cells with 8-Br-cGMP 

decreased ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. 100 �M 8-

Br-cGMP inhibited ET-1-induced ERK1/2 and Pyk2 phosphorylation almost 

completely , whereas,  50% inhibition  in PKB phosphorylation was observed. 

ODQ reversed the inhibitory effect of SNAP on ET-1-induced ERK1/2, PKB 

and Pyk2 in A-10 VSMCs 

Since NO stimulates cGMP production by activating a soluble form of 

guanylate cyclase, we wished to determine the contribution of this enzyme in 

SNAP-induced attenuation of ET-1 response. To validate this possibility, we 

used ODQ, a selective inhibitor of the soluble guanylate cyclase (sGC), which 

prevents the generation of cGMP from GTP. For these experiments, cells were 

preincubated with ODQ for 15 min, then with 300 �M SNAP for 15 min and 

finally stimulated with 10 nM ET-1 for 5 min. As shown in Fig. 6, A-C, 

pretreatment with 10 �M ODQ resulted in a significant reversal in the inhibitory 

effect of SNAP on ET-1-stimulated ERK1/2, PKB and Pyk2 phosphorylation. 

Under these conditions however, pretreatment of cells with ODQ alone did not 

modify ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation. (Fig.6D)  
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SNAP inhibited ET-1-stimulated [3H]leucine incorporation into proteins 

Activation of ERK1/2, PKB and Pyk2 signaling has been implicated in 

mediating the hypertrophic response of ET-1 (42). Therefore, we next examined 

whether there was a correlation between the response of SNAP and ET-1-

induced protein synthesis. As shown in Fig.7, ET-1 increased [3H]leucine 

incorporation in total cellular proteins by about 50% over control. However, 

pretreatment of cells with SNAP  dose-dependently decreased ET-1-induced 

[3H]leucine incorporation with almost complete attenuation observed at 100 �M 

of SNAP. SNAP alone did not significantly affect basal [3H]leucine uptake. 
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Discussion 

  

Here we have provided evidence showing that NO generation induced by SNAP 

and SNP significantly attenuated  ET-1-enhanced phosphorylation of ERK1/2, 

PKB and Pyk2  in VSMC. We have also demonstrated that SNAP treatment was 

able to antagonize ET-1-induced total protein synthesis, an index of 

hypertrophy, in VSMC. Since both ERK1/2 and PKB pathways play critical 

role in mediating  hypertrophic and cell survival responses (8),  it is reasonable 

to suggest that the ability of NO donors to inhibit ET-1-induced activation of 

these pathways is responsible for the antihypertrophic and vascular protective 

effect of NO. Although NO donors have been found to attenuate EGF (52), 

Platelet-Derived Growth Factor (PDGF) (35) and AII (44) stimulated 

proliferation of VSMC and cardiac fibroblasts, studies reported here are the first 

to demonstrate an effect of NO on ET-1-induced phosphorylation of ERK1/2, 

PKB and Pyk2 in A-10 VSMC. These results are similar to the studies in 

neonatal pulmonary VSMC, in which SNP treatment was found to inhibit ET-1-

induced ERK1/2 phosphorylation (3) and in rat cardiac fibroblasts, where AII-

induced phosphorylation of ERK1/2 and Pyk2 was blocked by SNAP (45; 46). 

However, our work represents the first study demonstrating that NO 

antagonizes ET-1-induced PKB and Pyk2 activation as well as ET-1-induced 

protein synthesis in VSMC.   

 The demonstration that pharmacological inhibition of basal NO production 

by using L-NAME augmented ET-1 responses on ERK1/2, PKB and Pyk2 
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phosphorylation support an inhibitory role of NO on ET-1-induced signaling 

events in A10-VSMC. A similar increase in ET-1-induced phosphorylation of 

ERK1/2 in L-NAME treated pulmonary artery VSMC has also been 

demonstrated (3). It is generally believed that VSMC are devoid of NOS 

activity however, recently, both iNOS and eNOS immunoreactivity as well as 

NOS activities have been detected in isolated VSMC (9; 10; 34). Our results 

showing that A10-VSMC express eNOS in the basal state, further supports the 

presence of eNOS in VSMC. Thus it is possible that L-NAME-induced 

inhibition of eNOS by decreasing NO bioavailability potentiates ET-1-induced 

signaling events in these cells. 

NO is believed to exert its  physiological effect through activation of sGC, a 

heme containing protein (20). Binding of NO to the heme iron leads to allosteric 

modification of sGC, resulting in its enhanced catalytic activity to produce 

cGMP (21). cGMP, thus generated, elicits its downstream responses by 

interacting with its target proteins such as PKG (37). Additional non-

sGC/cGMP-dependent mechanism of NO action has also been suggested, which 

include ONOO- catalyzed post-translational modification of protein via 

nitration of tyrosine residues (6). However, our results showing that 8-Br-cGMP 

mimicked the effect of SNAP and SNP in decreasing ET-1-induced  ERK1/2, 

PKB and Pyk2 phosphorylation suggest that an intermediary role of cGMP in 

exerting this inhibitory response. Further proof for the involvement of sGC in 

this processes has been provided by using ODQ, a specific inhibitor of sGC 

which can block SNAP-induced elevations in cGMP levels in rat aortic VSMC 
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(28), A-10 VSMC (4), endothelial cells (19) and cardiomyocytes (36). We 

found that ODQ treatment of A-10 VSMC was able to significantly reverse the 

inhibitory effect of SNAP on ET-1-induced ERK1/2, PKB and Pyk2 

phosphorylation. A similar involvement of cGMP/PKG pathway in NO-induced 

inhibition of ERK1/2 phosphorylation by ET-1 in cardiomyocytes and in 

pulmonary artery VSMC has also been reported (3; 12). The fact that 8-Br-

cGMP caused only partial inhibition of ET-1-induced PKB phosphorylation and 

ODQ was not able to completely reverse the SNAP-induced responses in our 

studies suggest a partial contribution of non-cGMP-dependent events in 

mediating the effect of NO donors in ET-1-induced responses. These cGMP-

independent mechanisms include nitration of some upstream signaling 

components resulting in attenuation of their catalytic activity. Existence of 

cGMP-independent mechanism in mediating the antiproliferative effects of NO 

has also been suggested from other studies in which ODQ, despite lowering 

NO-induced cGMP levels, failed to reverse the antiproliferative effect of NO 

donors in pulmonary microvascular smooth muscle cells (41) or in human 

endothelial cells (19). In these studies , however the effect of ODQ on signaling 

pathways linked to proliferative responses was not investigated.        

 The precise mechanism by which cGMP inhibits ERK1/2 signaling 

remains elusive however, the ability of PKG, the downstream effector of cGMP 

action, to phosphorylate  c-Raf kinase on Ser 43 and the resulting uncoupling 

between Ras-Raf  might contribute to this effect (43). Since the upstream 

elements leading the PKB phosphorylation are different from that of ERK1/2 
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(8), the precise mechanism by which cGMP/PKG system attenuates PKB 

phosphorylation remain undefined.  

Pyk2 is a Ca2+ -dependent proline rich-non receptor protein tyrosine kinase 

which plays an essential role in Ang II-induced ERK1/2 signaling and 

hypertrophy in VSMC  (33)    Pyk2 is activated by autophosphorylation in 

Tyr402 located in its catalytic domain (2). It thus may also be possible that 

SNAP/cGMP-induced decrease in Pyk2 phosphorylation observed in our studies 

contributed to the attenuating effect of SNAP on ET-1-induced signaling in A-

10 VSMC. NO generation has been shown to attenuate IGF-1 and insulin-

induced elevation in H2O2 levels through a cGMP dependent event in VSMC 

(53). ET-1–induced ERK1/2 and PKB signaling is known to require activation 

of NADPH-oxidase system and resultant H2O2 generation (15). Thus, it is 

possible that a NO/cGMP induced reduction in H2O2 generation contributes to 

the decrease in ET-1 response observed in our studies.        

       

Taken together, we have demonstrated that SNAP and SNP, a NO 

donors, inhibit ET-1-stimulated increase of ERK1/2, PKB and Pyk2 

phosphorylation through a  cGMP/sGC-dependent mechanism in A-10 VSMC. 

We have also provided evidence showing that ET-1-stimulated protein 

synthesis, a hallmark of hypertrophic response, is also attenuated by NO donor 

SNAP in A-10 VSMC. Since ERK1/2, PKB and Pyk2 plays a crucial role in 

mediating VSMC growth and hypertrophy, it may be suggested that the ability 

of NO to attenuate these pathways may serve as a potential mechanism by 

 



 153

which NO counteracts the growth promoting and hypertrophic responses of ET-

1 in VSMC. 
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Figure legends  

Figure 1. Dose-dependent effect of the NO donor, SNAP on ET-1-induced 

ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serum-starved 

quiescent A-10 cells were pretreated without or with the indicated SNAP 

concentrations for 15 min followed by 10 nM of ET-1 for 5 min. Cell lysates 

were immunoblotted by phospho-specific-Tyr204-ERK1/2 antibodies (A), 

phospho-specific-Ser473-PKB antibodies (B) and phospho-specific-Tyr402-Pyk2 

antibodies (C), as shown in the top panels of each section. Blots were also 

analyzed for total ERK1/2, PKB and Pyk2 (middle panels of each section). 

bottom panels, (bar diagrams) in each section represent average data quantified 

by densitometric scanning of immunoblots. Values are the means � SE of at 

least 3 independent experiments and are expressed as percentage 

phosphorylation where phosphorylation observed with ET-1 alone is defined as 

100%. (A) *P< 0.0001 vs control, †P< 0.0001 vs ET-1. (B) *P< 0.0001 vs 

control, †P< 0.0001 vs ET-1. (C) *P< 0.002 vs control, †P< 0.0003 vs ET-1. 

Figure 2. Dose-dependent effect of the NO donor, SNP on ET-1-induced 

ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serum-starved 

quiescent A-10 cells were pretreated without or with the indicated SNP 

concentrations for 15 min followed by 10 nM of ET-1 for 5 min. Cell lysates 

were immunoblotted by phospho-specific-Tyr204-ERK1/2 antibodies (A), 

phospho-specific-Ser473-PKB antibodies (B) and phospho-specific-Tyr402-Pyk2 

antibodies (C), as shown in the top panels of each section. Blots were also 

analyzed for total ERK1/2, PKB and Pyk2 (middle panels of each section). 
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Bottom panels (bar diagrams) in each section represent average data quantified 

by densitometric scanning of immunoblots. Values are the means � SE of at 

least 3 independent experiments and are expressed as percentage 

phosphorylation where phosphorylation observed with ET-1 alone is defined as 

100%. (A) *P< 0.0003 vs control, †P< 0.0001 vs ET-1. (B) *P< 0.001 vs 

control, †P< 0.0006 vs ET-1. (C) *P< 0.0003 vs control, †P< 0.0002 vs ET-1. 

Figure 3. Effect of L-NAME, a NO synthase inhibitor,  on ET-1-induced 

ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serum-starved 

quiescent A-10 cells were pretreated without or with the indicated L-NAME 

concentrations for 30 min followed by 10 nM of ET-1 for 5 min. Cell lysates 

were immunoblotted by phospho-specific-Tyr204-ERK1/2 antibodies (A) and 

phospho-specific-Ser473-PKB antibodies (B), and phospho-specific-Tyr402-Pyk2 

antibodies (C), as shown in the top panels of each section. Blots were also 

analyzed for total ERK1/2, PKB and Pyk2 (middle panels of each section). 

Bottom panels (bar diagrams) in each section represent average data quantified 

by densitometric scanning of immunoblots. Values are the means � SE of at 

least 3 independent experiments and are expressed as percentage 

phosphorylation where phosphorylation observed with ET-1 alone is defined as 

100%. (A)     *P< 0.003 vs control, †P< 0.005 vs ET-1. (B) *P< 0.0001 vs 

control, †P< 0.0003 vs ET-1. (C) *P< 0.0001 vs control, †P< 0.0005 vs ET-1. 
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Figure 4.  Expression of eNOS in A10-VSMC. Total cellular lysates from 

HUVEC (15�g) or A10-VSMC (60�g) were subjectd to SDS-PAGE followed 

by immunoblotting using eNOS antibody as described in the materials and 

methods (A); Serum-starved quiescent A-10 cells were pretreated without or 

with the indicated L-NAME concentrations for 30 min followed by 10 nM of 

ET-1 for 5 min. Cell lysates were immunoblotted by using eNOS specific 

antibody (B). 

Figure 5. Effect of a stable analogue of cGMP, 8-Br-cGMP on ET-1-induced 

ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serum-starved 

quiescent A-10 cells were pretreated without or with the indicated 8-Br-cGMP 

concentrations for 15 min followed by 10 nM of ET-1 for 5 min. Cell lysates 

were immunoblotted by phospho-specific-Tyr204-ERK1/2 antibodies (A) and 

phospho-specific-Ser473-PKB antibodies (B), and phospho-specific-Tyr402-Pyk2 

antibodies (C), as shown in the top panels of each section. Blots were also 

analyzed for total ERK1/2, PKB and Pyk2 (middle panels of each section). 

Bottom panels (bar diagrams) in each section represent average data quantified 

by densitometric scanning of immunoblots. Values are the means � SE of at 

least 3 independent experiments and are expressed as percentage 

phosphorylation where phosphorylation observed with ET-1 alone is defined as 

100%. (A)     *P< 0.003 vs control, †P< 0.005 vs ET-1. (B) *P< 0.0001 vs 

control, †P< 0.0003 vs ET-1. (C) *P< 0.001 vs control, †P< 0.005 vs ET-1.  
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Figure 6. Effect of the inhibitor of the soluble guanylate cyclase, ODQ on ET-1-

induced ERK1/2, PKB and Pyk2 phosphorylation in A-10 VSMCs. Serum-

starved quiescent A-10 cells were pretreated without or with the indicated ODQ 

concentrations for 15 min before addition of 300 �M SNAP for 15 min followed 

by 10 nM of ET-1 for 5 min. Cell lysates were immunoblotted by phospho-

specific-Tyr204-ERK1/2 antibodies (A), phospho-specific-Ser473-PKB antibodies 

(B) and phospho-specific-Tyr402-Pyk2 antibodies (C), as shown in the top panels 

of each section. Blots were also analyzed for total ERK1/2, PKB and Pyk2 

(middle panels of each section). Bottom panels (bar diagrams) in each section 

represent average data quantified by densitometric scanning of immunoblots. 

Values are the means � SE of at least 3 independent experiments and are 

expressed as percentage phosphorylation where phosphorylation observed with 

ET-1 alone is defined as 100%.   (A) *P< 0.0002 vs control, †P< 0.007 vs ET-1, 

‡ P< 0.002 vs SNAP + ET-1. (B) *P< 0.0002 vs control, †P< 0.0006 vs ET-1, ‡

P< 0.003 vs SNAP + ET-1. (C) *P< 0.0005 vs control, †P< 0.002 vs ET-1, ‡ P< 

0.02 vs SNAP +   ET-1. Section (D) shows the effect of ODQ on basal or on ET-

1-induced ERK1/2, PKB and Pyk2 phosphorylation.    

Figure 7 Effect of different concentrations of SNAP on ET-1-induced 

[3H]leucine incorporation into proteins. Serum-starved quiescent A-10 cells 

were pretreated with 10 and 100 �M of SNAP for 30 min  before  ET-1 (10 nM) 

stimulation , then the cells were labeled to equilibrium with [3H]leucine for 20 h 

as described in Materials and Methods. Values are the means � SE of 3 
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independent experiments and are expressed as percentage of change in 

[3H]leucine incorporated into total cellular proteins over the basal values. *P< 

0.002 vs control, †P< 0.004 vs ET-1.  
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FIGURE 6 
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CHAPTER-5 

GENERAL DISCUSSION 

 

ET-1, the most potent vasoconstrictor peptide was discovered only 20 years ago. 

Although studies done during the last 2 decades have clarified the physiological and 

pathophysiological role of ET-1 in multiple systems, many questions in this field still 

remain unresolved.  

In the vascular system, ET-1 has a basal vasoconstriction role (tonic role) and an 

upregulated ET-1 system has been suggested among the contributing factors in to the 

development of vascular disease such as hypertension and atherosclerosis. ET-1 

contributes also to myocardial contractility, chronotropy and arrhythogenesis, as well as 

congestive heart failure, renal disorders and pulmonary diseases. Based on recent 

experimental data, treatment with newly available ET-1 antagonists is likely to inhibit 

ET-1-induced functional and structural alterations in the vasculature. However, a better 

knowledge of ET-1 signaling transduction pathways would be important for devising 

specific therapeutic agents directed against critical components of signaling systems 

implicated in vascular remodeling.  

ET-1 elicits its effects through the stimulation of its G-protein-coupled receptors (GPCR) 

which leads to the recruitment of multiple signaling pathways which includes protein 

kinases of the Raf family and lipid kinases of the phosphatidylinositol 3-kinase (PI-3K) 
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family. Both pathways are shown to be involved in cellular growth and proliferation two 

important phenomenons by which ET-1 triggers some of pathophysiological states. In 

parallel, it is also known that ET-1 increases intracellular Ca2+ concentration in many cell 

types including VSMCs and induces vascular contractility via the activity of Ca2+ and 

calmodulin (CaM) system. CaMKII is a multifunctional serine/threonine protein kinase 

which is believed to transduce the downstream effects of Ca2+/CaM.  A role of CaMKII 

in mediating various physiological functions in several systems and pathophysiological 

events in different cell types, such as VSMCs (405) and cardiomyocytes (207) has been 

suggested and in heart, ET-1-induced cardiomiocyte hypertophy has been linked to 

CaMKII activation (207). Recently, Tiel et al have suggested a proarrhythmic effect of 

CaMKII by showing that CaMKII activation is a part of arrhythmia mechanism of 

Timothy syndrome(406). Moreover, studies showing that inhibition of CaMKII by KN-

93 prevents arrhythmic activity in rabbit pulmonary veins (407), decreases early 

afterdepolarizations in rabbit heart (408) and improves vascular dysfunction in animal 

models of diabetes (222) or in Ang II-induced hypertension (221), suggesting that 

aberrant activation of CaMKII may be involved in these cardiovascular pathologies.

The involvement of CaMKII system in ET-1 induced signaling was not studied before, 

therefore we investigated the role of CaMKII in ET-1-induced ERK1/2, PKB and Pyk2 

signaling which are believed to be key players in mediating growth-promoting, 

proliferative, migratory, survival and death responses in the cell. In these studies, we used 

three different strategies: classical pharmacological inhibitors, transfection of cells with 

CaMKII inhibitory peptide (AA 281-309) corresponding to auto-inhibitory domain of 

CaMKII and finally use of small interfering RNA (siRNA) technique. These studies are 
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the first to report an activation of CaMKII by ET-1 in VSMCs in Fig.2 article 1. This 

finding supports the idea that CaMKII plays a role in ET-1-induced signaling in VSMC. 

We further confirm this idea by showning that CaMKII phosphorylation was required for 

ET-1-induced ERK1/2, PKB and Pyk2 phosphorylation in VSMC. We have also shown 

in these studies that ET-1 was able to induce an increase in both protein and DNA 

synthesis which is consistent with other studies done in VSMC. However, these studies 

are the first to report an inhibitory effect of both CaM and CaMKII antagonists on ET-1-

induced both growth and proliferation in VSMC which suggests a probable role of 

CaMKII in vascular diseases related to ET-1. Thus, CaMKII inhibition may be a good 

strategy to prevent or treat these pathologies.  

Several studies have indicated that ROS play an essential role in propagating the signals 

of many growth factors, peptide hormones and cytokines such as EGF, Ang- II (409) and 

tumor necrosis factor-� (TNF-�) (410). Increased ROS generation has been associated 

with a variety of cardiovascular pathologies including hypertension and atherosclerosis. 

In our laboratory, we have shown earlier that ROS is generated by ET-1 in VSMC and 

these ROS are needed to mediate ET-1-induced activation of ERK1/2, PKB, and Pyk2 

signaling as well as protein synthesis (10). We have also reported earlier a requirement of 

Ca2+ and CaM in H2O2-induced activation ERK1/2 and PKB (411). On  the other hand, 

CaMKII have been shown to be upstream of H2O2-induced ERK1/2 phosphorylation in 

endothelial cells (412). Thus, the contribution of CaMKII in H2O2-induced ERK1/2, PKB 

and Pyk2 in VSMC remains obscure and needs to be clarified. Therefore, in the second 

article of this thesis, we investigated the role of CaMKII in H2O2-induced ERK1/2, PKB 

and Pyk2 phosphorylation in VSMC and since we have shown earlier the ability of H2O2 
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to activate Pyk2 and IGF-1R (324), we extended these studies to examine the role of 

CaMKII in Pyk2 and IGF-1R phosphorylation induced by H2O2. Our results provided 

evidence that CaMKII is upstream of Pyk2 phosphorylation induced by H2O2 and also 

CaMKII phosphorylation is needed for H2O2 evoked IGF-1R transactivation in VSMCs. 

In this article we have shown a time course of H2O2 induced CaMKII phosphorylation 

(Fig.5 Article 2). This data shows for the first time a phosphorylation of CaMKII induced 

by H2O2 in VSMC. Overall, our data reveal that CaMKII serves as a critical upstream 

component in triggering the H2O2-induced signaling cascade resulting in the 

phosphorylation of IGF-1R, Pyk2, ERK1/2 and PKB in VSMC. It may be suggested that 

through the activation of these signaling events CaMKII contributes to the regulation of 

various cellular processes including cell growth, proliferation, hypertrophy and survival 

in VSMC. Dysregulation of CaMKII activity may thus play an important role in the 

pathogenesis of vascular disease. NO is another important free radical that has been 

shown to contribute to the regulation of several hormone-mediated responses such as 

attenuation of the proliferative stimulation of VSMCs and cardiac fibroblasts induced by 

EGF (387) and Ang II (413). It has been suggested that NO might exert these effects by 

modifying the growth-promoting signaling events. The support for this notion is provided 

from studies in which NO was shown to attenuate ras/ERK1/2 signaling in response to 

EGF (387) and Ang II (404) as well as PKB in response to PDGF (392). NO was also 

shown to attenuate Ang II-stimulated Pyk2 phosphorylation in cardiac fibroblasts (393). 

Recently, ET-1-induced cardiomyocyte hypertrophy also has been fund to be attenuated 

by NO through cGMP production (366). Despite the fact that a potential cross-talk 

between ET-1 and NO exists, and NO is believed to counteract the effects of ET-1, not 
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much information on the ability of NO to modify ET-1-induced signaling in VSMCs is 

available. The only study to investigate a role of NO in ET-1-induced responses in 

VSMCs was from Sand’s laboratory in which they have been investigating the effect of 

NO on ET-1-induced vascular contraction in human placental arteries. In these studies, 

they have reported an inhibitory effect of NO in arteries contraction induced by ET-

1(414).Therefore, in the present studies, we have investigated if NO generation would 

modify ET-1-induced signaling pathways involved in cell growth and proliferation. Our 

data indicated that addition of the NO donors, SNAP or SNP decreased the 

phosphorylation level of ERK1/2, PKB and Pyk2 induced by ET-1. On another hand 

inhibition of NO generation by a pretreatment with NO inhibitor, L-NAME, increases 

these responses.  These results are similar to previous studies in which Ang II-induced 

phosphorylation of ERK1/2 and Pyk2 was blocked by SNAP. This work represents the 

first detailed investigation on the effect of NO system on multiple signaling systems 

induced by ET-1 in VSMC. This study demonstrated that NO antagonizes ET-1-induced 

signaling in VSMC. Pyk2 has also been implicated in Ang II and ET-1-induced MAPK 

activation in cardiac fibroblasts and VSMC. Thus, it is possible that Pyk2 serves as an 

upstream mediator of MAPK cascade induced by ET-1 in A-10 VSMC. In these studies, 

we have also shown that A10 VSMC express eNOS as compared to endothelial cells 

which support our finding by detecting the source of NO in these cells. 

We have also demonstrated a role of cGMP in mediating the attenuating effect of NO on 

ET-1 signaling pathway by using 8-Br-cGMP. The results showed that 8-Br-cGMP 

decreased ERK1/2, PKB and Pyk2 phosphorylation induced by ET-1and it thus 

mimicked the inhibitory effect of SNAP and SNP. We further evaluated an involvement 
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of soluble guanylate cyclase by using a specific inhibitor, ODQ, and demonstrated that it 

could reverse the inhibitory effect of SNAP on ET-1-induced ERK1/2, PKB and Pyk2 

phosphorylation. It has been previously shown that ODQ can block SNAP-induced 

elevation in cGMP levels in rat aortic VSMC (415), endothelial cells (367) and 

cardiomyocytes (416). Finally, we also provide evidence showing that ET-1-stimulated 

protein synthesis, a hallmark of hypertrophic response, is also attenuated by NO donor, 

SNAP.  

 

Taken together, we demonstrate that NO inhibits the ET-1-stimulated increase in the 

phosphorylation state of ERK1/2, PKB and Pyk2 in A-10 VSMC. Since ERK1/2, PKB 

and Pyk2 plays a crucial role by mediating VSMC growth and hypertrophy, it may be 

suggested that the ability of NO to attenuate these pathways may serve as a potential 

mechanism by which NO counteracts the biological responses of ET-1. 
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CHAPTER-6 

Conclusion and Perspectives 

Overall, the studies presented in this thesis (Fig. 13) demonstrate that CaMKII activation 

is needed for both ET-1 and H2O2 (which is known to play an essential role in 

propagating the signals of ET-1) -induced phosphorylation of ERK1/2, PKB and Pyk2. 

Also our work demonstrates a critical role of CaMKII in mediating H2O2-induced IGF-

1R transactivation in VSMCs. On the other hand, we have demonstrated that NO 

antagonizes ET-1-induced activation of above signaling pathways. Finally, we have 

demonstrated that CaMKII activation and NO generation have opposite effect on 

hypertrophic and proliferative responses induced by ET-1 in VSMCs which are 

associated to several cardiovascular diseases. The results presented in this thesis have 

uncovered a key upstream role of CaMKII in triggering ET-1 and H2O2-induced signaling 

events in VSMC.  The results presented in this thesis highlight the protective role of NO 

and the pro-pathogenic role of CaMKII in vasculature. Since both NO and CaMKII are 

involved in ET-1-induced signaling pathways and since both of these components are 

Ca/CaM dependent, it will be important to test the effect of NO on ET-1-induced 

CaMKII activation as well as its effect on ET-1 and H2O2-induced growth factor 

receptors transactivation because role of NO in growth factor receptors transactivation 

has not been studied before. Clarifying these points will help us to better understand the 

vasoactive peptide and redox-induced signaling in VSMCs.  
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Fig.13. A model summarizing mechanism by which  ET-1 and H2O2-induced signaling in 
VSMC with implication of CaMKII and NO. 
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