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1 Project Description

The purpose of this research project is to come up with an econometric model that forecasts short-term

nominal exchange rates for Canada, Australia, New Zealand, South Africa, and South Korea, vis-à-vis

the United States. The currencies of the first four countries are considered “commodity” currencies

because natural ressources account for a considerable portion of their exports’ revenue. In contrast, it

is South Korea’s imports that are significantly composed of natural ressources. The reason for including

South Korea in the study is to see whether or not variations in the price of the commodities have an

impact on the exchange rate from both the export and import sides. According to Amano and van Norden

(1998), among other factors, variations in the price of the commodities are suspected of influencing the

exchange rate through their impact on the terms of trade.

The major inspiration for this study is Molodtsova and Papell (2009)’s paper, which incorporates the

Taylor rule in an econometric model to forecast 1-month ahead nominal exchange rates for twelve OECD

countries. The model works well for most of the countries but less so for Canada and Australia. The

authors attribute this relative worse performance to the nature of these countries’ currencies. This obser-

vation provides for the main motivation of this paper: improve the Taylor rule model given by Molodtsova

and Papell for Canada and Australia by incorporating commodity prices in the econometric model, and

including the currencies of New Zealand, South Africa, and South Korea, to verify if the currencies of

major exporters or importers of natural ressources can be forecasted by the same econometric equa-

tion. According to Chen & Rogoff (2003) such a model would be valuable to a developing country whose

main source of income is exports of commodities as they move towards a floating exchange rate regime.

There is an extensive literature analysing the impact of commodity prices on exchange rate fore-

casting. Amano and van Norden (1998) provide evidence that oil prices have a considerable impact on

real exchange rates for Canada, although the relationship holds only over long-run horizons. Chen and

Rogoff (2003) finds that the US dollar price of the commodity export has a strong influence on floating

real rates for Canada, New Zealand, and Australia. Chen (2004) incorporates commodity prices into

the classical exchange rate forecasting models for Australia, Canada and New Zealand. She finds that

commodity prices improve not only the out-of-sample forecasting performance but also the in-sample fit

of the classical models.

As demonstrated by the graphs in appendix A, it appears that real commodity prices are strongly

related with nominal exchange rates, especially for Canada, Australia and South Africa, from the early
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80s onward. The relationship is not so evident for New Zealand. This papel further investigates this

relationship by focusing on one month-ahead out-of-sample forecasts of the exchange rate of these

countries. The exchange rate forecasting model used is the Taylor rule model given by Molodtsova and

Papell (2009) completed by each country’s respective commodity price: oil prices for Canada and South

Korea, coal prices for Australia, lamb prices for New Zealand and gold prices for South Africa. It turns

out that the best evidence that models with commodity prices outperform both the random walk and

models without commodity prices is given by Canada and South Africa, followed by Australia and New

Zealand. In the case of South Korea, neither the taylor-rule based model from Molodtsova and Papell

(2009) nor the commodity prices augmented models outperform the random walk.

2 Theory

2.1 The Taylor rule

The Taylor rule stipulates that central banks pursuing a policy of economic stabilisation, should react to

changes in inflation or in output gap by adjusting the short term nominal interest rate in the following

manner: if either inflation is above its target and/or output rises above potential output, central banks

should raise its nominal interest rate in order to bring the economy back to equilibrium. Clarida et al.

(1999, p. 1696) refers to this policy reaction as a “countercyclical response to demand shocks”.

Following Clarida et al. (1999, p. 1695) the Taylor rule is specified as:

i∗t = α+ γπ(πt − π̄) + γxxt , with α = r̄ + π̄, γπ > 1, γx > 0 (1)

where i∗t is the target interest rate, π̄ is the target inflation rate, and r̄ is the long-run equilibrium real

interest rate.

The variable xt represents output gap, which is defined as the output that the economy can produce

without raising or lowering the inflation rate. The constants γπ and γx are the weights representing

central banks’ reactions to the variations in the inflation rate and the output gap, respectively. If γπ > γx,

this implies that changes in i∗t will be higher if a shock is caused by inflation rate deviations from its target

level than by variations in output gap.

In order to derive the econometric forecasting equation , Molodtsova and Papell (2009) states the

Taylor rule for the United States as follows:

i∗t = πt + φ(πt − π∗) + γyt + r∗ (2)

where i∗t is the target for the short-term nominal interest rate, πt is the inflation rate, π∗
t is the target level
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of inflation, yt is the output gap, and r∗ is the equilibrium level of the real interest rate.

The Taylor rule for the domestic countries is the same as the one above except that it also includes

a term for the real exchange rate qt:

i∗t = πt + φ(πt − π∗) + γyt + r∗ + qt (3)

Following the argument by Clarida et al. (1999) that the Federal Reserve has a tendency to smooth

interest rate adjustments, Molodtsova and Papell (2009) allow for the actual observable interest rate it

to partially adjust to the target rate as follows:

it = (1− ρ)i∗t + ρit−1 + vt (4)

By substituting Eq. (3) into Eq. (4), we get the following equation:

it = (1− ρ)[πt + φ(πt − π∗) + γyt + r∗ + δqt] + ρit−1 + vt, with δ = 0 for the US (5)

The interest rate reaction function of the domestic country (Eq. 5) is then subtracted from that of the

United States ( Eq. (5) with δ = 0 ). After collecting some terms, we get:

it − ĩt = α+ αππt − α̃ππ̃t + αyyt − α̃yỹt + ρit−1 − ρ̃̃it−1 − α̃q q̃t + ηt (6)

where ~ denotes variables and coefficients for the domestic countries, and

απ = (1− ρ)(1 + φ), αy = γ(1− ρ), αq = δ(1− ρ), α = (1− ρ)(φπ∗ + r∗) = constant

Shocks in any of the right-hand side variables in the interest rate differential equation (Eq. 6) will

have an impact on the exchange rate. Molodtsova and Papell (2009) makes four predictions:

1. If inflation in the United States rises above the target, the Fed will raise the interest rate to cool

down the economy. Higher interest rates lead to an immediate appreciation of the dollar because

there will be an influx of foreign capital into the country and thus, an increase the demand for US

dollars. According to the overshooting model developed by Dornbusch (1976), which depends on

the validity of the Uncovered Interest Rate Parity (UIRP) assumption, the immediate appreciation

of the dollar will be followed by a depreciation. Molodtsova and Papell (2009) argue, however, that

recent empirical work demonstrates that UIRP does not hold in the short run. Instead, based on

the results of Gourinchas and Tornell (2004), Molodtsova and Papell (2009) propose that a rise in

interest rates cause an immediate appreciation that continues on. Furthermore, if the other country

also follows a Taylor rule, an increase in its inflation will cause the dollar to depreciate since the

other country will raise its interest rate and thus attract more foreign capital than the US.

2. If the American output gap increases, the Fed will raise the interest rate causing the dollar to

appreciate. If instead, it’s the other country’s output gap that increases, its central bank will raise
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its interest rate, leading to a depreciation of the dollar.

3. If the real exchange rate for the other country depreciates, its central bank will increase the interest

rate causing an appreciation of its currency and a depreciatin of the dollar.

4. Assuming there is interest rate smoothing, a higher lagged interest rate increases current and

expected future interest rates, which leads to an immediate and sustained dollar appreciation. If,

instead, it is the other country’s lagged interest rate that is higher, the dollar would depreciate.

The impact on the exchange rate caused by a macroeconomic shock is thus due to changes in the

nominal interest rate. In order to directly capture the effects of a shock on the exchange rate, Molodtsova

and Papell (2009) combine the four predictions made above with Eq. (6) to produce the Taylor rule-

based exchange rate forecasting equation:

"st+1 = ω − ωππt + ω̃ππ̃t − ωyyt + ω̃yỹt − ωit−1 + ω̃ĩt−1 + ω̃q q̃t + ηt (7)

where st is the natural log of the nominal exchange rate, defined as the US dollar price of one unit of the

domestic currency, so that an increase in st is a depreciation of the American dollar.

The reversal of the signs between Eqs. (6) and (7) captures the effect that anything that causes

the interest rate in the US to be higher than that of domestic country will lead to an immediate and

sustained appreciation of the US dollar (i.e. st decreases). It is not possible to relate the magnitude of

the coefficients of the two equations because it is not known ex-ante how exactly changes in the interest

rate differential will impact the exchange rate.

Based on different assumptions about the coefficients, there are sixteen models nested in Eq. (7).

These assumptions are:

• Asymmetric (ω̃q #= 0) or symmetric (ω̃q = 0): a symmetric equation means that the domestic

country does not target the exchange rate

• Smoothing (ω̃i #= 0, ωi #= 0) or no smoothing (ω̃i = ωi = 0): no smoothing means that the interest

rate adjusts to its target level within the period.

• Homogeneous coefficients (ω̃π = ωπ, ω̃y = ωy, ω̃i = ωi) or heterogeneous coefficients (ω̃π #= ωπ,

ω̃y #= ωy, ω̃i #= ωi): homogeneous coefficients imply that the impact on the exchange rate caused

by a macroeconomic shock will be the same regardless of the country where the shock originates.

• No constant (ω = 0) or with a constant (ω #= 0).
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Now that we know how the Taylor rule can be used to forecast exchange rates, I’ll explain how variations

in the international prices of commodities can also have an impact on the exchange rates of Australia,

Canada, New Zealand, South Africa and South Korea.

2.2 Commodity prices

For small, open economies such as the ones considered in this paper, the prices for most of their

commodity exports are determined in international markets and the volume of their exports do not have

an impact on the prices set by these markets; that is, they are price takers. Since commodities represent

a large portion of these countries’ exports, fluctuations in commodity prices may lead to fluctuations on

the exchange rate through its impact on the country’s terms of trade .

According to Lafrance and Van Norden (1995), a rise in commodity prices leads to improvements

in a country’s terms of trade by raising the value of the exports. An increase in exports revenue leads

to higher domestic income, which then increases aggregate demand. Higher demand places upward

pressure on prices and thus on the inflation rate. If the central bank pursue a policy of economic stability,

it will most likely raise interest rates to decrease aggregate demand in order to bring the economy back to

equilibrium. As explained in the previous section, an increase in interest rates leads to an appreciation of

the country’s currency. Therefore, an increase in the world price of commodities lead to an appreciation

(i.e. st increases) of the domestic currency through its impact on the bank’s reaction to increased

aggregate demand.

Chen (2004) gives an additional channel through which commodity prices may affect exchange rates.

An increase in the world commodity prices places upward pressures on the domestic prices as explained

above. Since prices cannot vary instantaneously, the nominal exchange rate has to depreciate in order

to preserve the country’s Purchasing Power Parity (PPP). This can easily be seen by the formula for the

real exchange rate. According to the definition of nominal exchange rate used byMolodtsova and Papell

(2009) and I, the real exchange rate is defined as1 :

qt = st + pt − p∗t (8)

where st is the natural log of the nominal exchange rate, p∗t is the natural log of the foreign price level,

and pt is the natural log of the domestic price level. When PPP holds, qt = 0. If there is an upward

pressure on the domestic price level pt , st has to decrease in the short run so as to keep qt constant.
1The note de repère 5 of Prof. Martens clearly specifies how the real exchange is determined according to the different

definitions of the nominal exchange rate. His note can be found at www.sceco.umontreal.ca/ecodev/NR5.pdf.
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A decrease in st is an appreciation of the American dollar and thus a depreciation of the commodity

currency.

There are thus two opposing forces on the exchange rate as a result of increases on commodity

prices. It is not possible to know theoretically which one of these forces dominate the other. The

coefficient on commodity price is left positve because that is what Chen (2004) do. Furthermore, there

is considerable controverse on whether or not PPP holds so it is more likely that the first effect explained

dominates the second.

3 Literature review

3.1 Molodtsova and Papell (2009)

As mentionned in section 2, Molodtsova and Papell (2009) use the Taylor rule-based econometric equa-

tion (7) to forecast short-term (1 month) nominal exchange rates for 12 OECD countries vis-à-vis the

United States for the post-Bretton Woods period. They compare the out-of-sample predictability of the

Taylor rule’s model against a random walk without drift as well as against other conventional exchange

rate models such as interest rate differentials, purchasing power parity, and monetary fundamentals. For

the one-month-ahead forecasts made by the Taylor rule-based models, Molodtsova and Papell (2009)

find statistically significant evidence of exchange rate predictability for 11 out of the 12 OECD countries

at the 5% level.

The data used for estimating the forecasting model comes from the IMF’s International Financial

Statistics database and run from March 1973 to December 1998 for the Euro zone countries and to

June 2006 for the other countries. All data have monthly frequencies except for the seasonally adjusted

industrial production for Australia and Switzerland, and the CPI for Australia, which are available only

quarterly. The authors then use the “quadratic-match average” option in Eviews 4.0 to convert these

series into monthly frequencies.

The output gap is calculated using seasonally adjusted industrial production as a proxy for GDP. The

authors use three different trends to compute the output gap: linear trend, quadratic trend and the trend

obtained by a Hodrick-Prescott filter. Furthermore, the output gap is calculated in a quasi-real fashion

whereby only data up to period t is used to get the output gap at time t. This is done to simulate the

reality whereby policy makers use only data that is available to them (i.e. ex-ante) when they make their

decisions.
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The authors use data over the period of March 1973 to February 1982 for estimation and save the

rest for out-of-sample forecasting. OLS estimation are performed with rolling regressions where the first

120 data points are used and the forecast for the next period is generated. The first data point is then

dropped, a data point at the end of the sample is added, and the model is re-estimated. The forecast for

the next period is again generated. The process continues on until the last data point in the sample is

reached.

As is the standard in the literature since the seminal work by Meese and Rogoff (1983), the out-

of-sample performance of the exchange rate forecasting models is evaluated by testing its predictive

ability against that of a random walk. The measure of predictive ability most commonly used is the Mean

Squared Prediction Error (MSPE). Diebold and Mariano (1995) and West (1996) offer a procedure for

testing for predicitive ability based on MSPE comparisons. Molodtsova and Papell (2009) point out,

however, that these methods are not applicable in their study because two nested models are being

compared. More specifically, the random walk under the null is nested within the model under the

alternative (i.e. the model under the alternative becomes the random walk if the coefficients in the

alternative model are set equal to zero). According to Molodtsova and Papell (2009), the Diebold and

Mariano or the West tests lead to non-normal test statistics when applied to nested models. Instead

of these tests, the authors favour the procedure proposed by Clark and West (2006, 2007) to test for

predictive ability because the procedure was specifically developed for testing nested models.

As mentionned in section 2, depending on the assumptions made about the coefficients of the fore-

casting model, there are sixteen model specifications, each with three different measures of output gap.

Therefore, 48 Taylor rule-based models are being estimated for each country to generate inference

based on p-values. Such a high volume of estimations could lead to p-values that are overstated. To

deal with this issue, Molodtsova and Papell (2009) implement the Hansen’s (2005) test of superior pre-

dictability to correct for data snooping. The authors explain that the Hansen test is designed to compare

the out-of-sample performance of a benchmark model to that of a set of alternatives. It tests the null that

the benchmark model has a higher predictive ability than any of the linear models against the alternative

that at least one of the linear models has superior predictive capacity. In Molodtsova and Papell’s case,

the benchmark model is the random walk and the set of alternatives are the Taylor-rule based models

plus the conventional interest rate, purchasing power parity, and monetary models.

Molodtsova and Papell find statistically significant evidence of short-term exchange rate predictability

at the 5% level for 11 out of the 12 OECD countries using models with the Taylor rule. Although the
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predictability results for Canada and Australia are similar to that of the other OECD countries, their US

inflation coefficient do not follow the same pattern as the other countries do (near zero from 1983 to

1990 and negative from 1991 to 2006). This means that for Australia and Canada, an increased in US

inflation does not lead to an appreciation of the dollar, as the model would predict. The authors argue

that this is because Canada and Australia have commodity currencies whose behavior is dominated

by factors not common to other industrialized nations. At longer horizons (greater than 3 months), an

endnote in the article indicates that there is no evidence of predictability for either the Taylor rule or any

of the other conventional models for any of the countries.

The authors find that symmetric models perform better than asymmetric ones. The same is true for

models with smoothing as compared to no smoothing. In general, the model specification that produced

most short-term predictability is a symmetric model with heterogeneous coefficients, smoothing and a

constant.

3.2 Chen and Rogoff (2003)

Finding out whether commodity prices can help predict exchange rates is the focus of Chen and Rogoff

(2003)’s article. The authors study the real exchange rate behavior of Canada, Australia, and New

Zealand, three small open economies that are “price takers” in world markets for the majority of their

commodity exports (that is, the volume of their exports do no have an impact on the world prices of

the commodity in question) and whose currencies are labelled “commodity currencies”. According to

the authors, in the past decade, commodity products have accounted for 60% of Australia’s exports and

more than a half of New Zealand’s. In the case of Canada, more than a quarter of its exports relies on

commodity products.

The authors find robust evidence that commodity prices have a significant impact on real exchange

rates. Each country real exchange rate is calculated based on three different reference currencies: the

US dollar, the British Pound, and a non-US-dollar currency basket.

The commodities chosen reflect major non-energy products produced in each country because the

authors argue that Australia, Canada, and New Zealand are not large net exporters of energy commodi-

ties. The commodity prices used are quarterly averaged world market prices in US dollars, deflated

by the American CPI. Commodity prices indices for each country are then constructed by geometri-

cally averaging the deflated commodity prices using the corresponding domestic production share as a

weight.
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Chen and Rogoff (2003) use commodity prices instead of standard measures of terms-of-trade (i.e

exports divided by imports) because they argue that commodity prices are exogenous whereas standard

measures of terms of trade are endogenous. Endogeneity can lead to spurrious relations that do not

allow causal interpretation. Indeed, the authors find that except for Canada, terms of trade are strongly

correlated with real exchange rates. They also find that standard measures of terms of trade do not react

much to movements in world commodity prices. They thus conclude that world commodity prices are

much better at capturing exogenous terms-of-trade shocks than standard measures of terms of trade.

3.3 Chen (2004)

In this paper, Chen (2004) uses the fndings from Chen and Rogoff (2003) that commodity prices fluc-

tuations can explain real exchange rate behavior and incorporates commodity prices into the classical

exchange rate models to improve their in-sample fit and out-of-sample forecasting performance. The

countries analyzed are still Australia, Canada and New Zealand. The author uses three different anchor

currencies to compute the quarterly nominal exchange rate: the US dollar, the British pound, and the

Japanese Yen. She performs out-of-sample forecasts for three horizons: 1, 4, and 8 quarters.

The models used in her paper are:

• Augmented relative Purchase Power Parity (PPP) model:

st = α+ βcppcomt + βp(p∗t − pt) + εt

• Augmented asset approach flexible price monetary model:

st = α+ βcppcomt + βm(m∗
t −mt)− βy(y∗t − yt) + εt

• Augmented flexible price monetary model:

st = α+ βcppcomt + βm(m∗
t −mt)− βy(y∗t − yt) + βi(i∗t − it) + εt

• Augmented sticky price monetary model:

st = α+ βcppcomt + βm(m∗
t −mt)− βy(y∗t − yt) + βi(i∗t − it) + βπ(π∗

t − πt) + εt

where pcomt represents the world price in US dollar of the exported non-energy commodity.

In terms of in-sample estimation, the author find that including commodity prices turns coefficients

that are insignificant into significant and positive ones. Including commodity prices thus improves the

in-sample fit of the standard models and, furthermore, offers evidence of a long term cointegration

relationship between exchange rates and fundamentals.
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With regards to exchange rate predictability, the author finds that the particular specification that

have superior forecast ability depend on the anchor currency, the sample period, and the forecast

horizon used. She uses rolling regressions to generate out-of-sample forecasts and test the models’

performance against that of random walk (without drift) based on Root Mean Squared Errors (RMSE)

comparisons. Including commodity prices can improve the performance of some of the classical models

and the performance improves as the forecast horizon increases. However, no single model provide

superior predictive performance at all forecast horizons and across all countries.

3.4 Amano and van Norden (1993)

The objective of Amano and van Norden (1993) is to discover whether or not fluctuations in the terms

of trade could explain variations in the real exchange rate between Canada and the United States. The

authors find that, indeed, there is a cointegration relationship between the real exchange rate and the

terms of trade. The authors further establish that causality runs from the terms of trade to the exchange

rate, and not vice-versa. Based on these findings, they develop an econometric forecasting equation that

outperforms the random walk at short horizons. The equation shows that terms-of-trade fluctuations, as

opposed to monetary factors, can explain much of the variation in the real exchange rate since 1973.

The real exchange rate is defined as $CA/$US (i.e. the price in US dollars of one unit of Canadian

dollar), deflated using CPIs from both countries. The argument for using the bilateral rate instead of the

effective rate is the predominant weight of the US in any effective index for Canada and as well, to be

consistent with the monetary models in the literature on exchange rate forecasting.

The terms of trade are defined as commodity exports prices divided by manufactured imports price.

The authors split the terms of trade into two components, energy commodities and non-energy com-

modities, due to early investigations that showed that energy commodities seems to play a qualitative

role different from that of non-energy commodities. Note that the study focuses on out-of-sample fore-

casting; the issue of endogeneity is thus not relevant since the authors are not trying to see whether or

not the model fits well in-sample (as was the case with Chen and Rogoff (2003)).

The authors point out that it is essential not to use an aggregate measure of the terms of trade

but to use commodity and energy terms of trade as distinct variables in the forecasting equation. The

relationship between the energy component of the terms-of-trade measure and the real exchange rate

could be explained by the fact that the measure of the energy component used also includes energy

prices. Amano and van Norden (1993) thus specifies a different measure of terms of trade by using the
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CPI excluding food and energy and find the same results.

Technically speaking, once the authors find that the real exchange rate and the two components

of the terms of trade are non-stationary using three different stationarity tests2, they establish that the

real exchange rate and the two terms-of-trade variables are cointegrated. They then construct an error

correction model as follows:

"RPFXt = α(RPFXt−1 − β0 − βCTOTCOMODt−1 − βETOTENRGYt−1) + γRDIFFt−1 (A)

where RPFX is the real exchange rate as defined in the second paragraph, TOTCOMOD and TOTEN-

RGY are the non-energy commodity component and the energy component, respectively, of the terms of

trade, and RDIFF is the Canada-US interest rate differential used to capture monetary policy’s influence

on exchange rates and defined as

RDIFF = (ishortcan − ilongcan )− (ishortus − ilongus ). (B)

Note that the authors also performed stationary tests on RDIFF and found it to be stationary, thus

providing some evidence that monetaty policy should have only a transitory effect on the real exchange

rate while terms-of-trade shocks should be permanent.

Eq. (A) is estimated up to January 1986 and forecasts for one, three, six and twelve month horizons

are generated. The authors then use recursive regressions until the last date (February 1992) is included

in the estimation sample. Forecasts are generated each time a new month is included in the sample

and Eq. (A) re-estimation is performed. Once all forecasts are computed, forecast errors are calculated

for all estimation periods and all horizons. Theil’s U is used to compare the Root Mean Squared Error

(RMSE) of the model to that of a random walk.

Amano and van Norden (1993) use different starting dates for their forecasts and find that, in general,

Eq. (A) outperforms the random walk at all horizons under consideration and that the model’s perfor-

mance improves as the forecast horizon increases. Furthermore, upon employing a variety of tests, the

authors conclude that the forecast results are robust and statistically significant and that they are not

due to Granger-causality running from the real exchange rate to the independent variables in Eq. (A).

That is, it is not shocks in real exchange rates that leads to variations in the terms of trade, but rather

the contrary.

Finally, Amano and van Norden (1993), by decomposing the real exchange rate movements, reach

three conclusions:

1. RDIFF accounts for only a small portion of real exchange rate variations as opposed to terms-of-
2The tests are: Augmented Dickey-Fuller, Philips and Perron, and Kwiatkowski, Phillips, Schmidt and Shin.
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trade shocks.

2. Energy price shocks (i.e. increases or decreases in energy commodity prices) are responsible for

most of the exchange rate variation in three out of four sub-periods considered.

3. Large and persistent energy price shocks still have significant effects on the exchange rate fours

years later; large but short-lived shocks have negligible impact.

4 Empirical Results

4.1 Data Description

The exchange rate forecasting equation used in this study is the same one proposed by Molodtsova

and Papell (2009) but augmented by the country’s specific commodity price: oil prices for Canada and

South Korea, coal prices for Australia, lamb prices for New Zealand, and gold prices for South Africa. The

country-specific commodity is chosen based on the composition of the commodity price index as found in

Chen and Rogoff (2003, p. 158). Crude oil represented 62.3% of the Canadian energy price index from

1972Q1 to 2001Q2 whereas coal represented 73.2% for Australian from 1983Q1 to 2001Q2. For New

Zealand, the commodity chosen is lamb because lamb prices accounted for 12.5% of the non-energy

commodity index from 1986Q1 to 2001Q2, the highest among all non-energy commodities. I could

not find any ready to use commodity price index for South Africa and South Korea. In consequence, the

commodity chosen for South Africa is gold because, according to the South African Department of Trade

and Industry3, it accounted for 18.5% in mining exports in 2009. For South Korea, oil is used because

this country is a major energy importer.

The general exchange rate forecasting equation used is thus:

"st+1 = ω − ωππt + ω̃ππ̃t − ωyyt + ω̃yỹt − ωiit−1 + ω̃iĩt−1 + ω̃q q̃t + ω̃pp̃commt + ηt (9)

where ~ indicates variables and coefficients for countries other than the United States.

The variables’ definitions are:

• st: natural log of the nominal exchange rate, defined as the US dollar price of one unit of domestic

currency (i.e. e = $CA/$US), so that an increase in st is a depreciation of the US dollar.

• "st+1 = st+1 − st

3South African Trade Statistics: http://www.dti.gov.za/econdb/raportt/rapmenu1.html#5.
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• πt: inflation rate = ln(CPIt)− ln(CPIt−12)

• yt: output gap (percentage deviation from the trend, using a HP filter).

• it−1: interest rate from the previous period.

• qt: natural log of the real exchange rate defined by qt = st+pt−p∗t , where p∗t stands for the natural

log of the American CPI.

• pcommt : natural log of the country-specific real commodity price deflated by the American CPI

The data for all nominal exchange rates comes from the Federal Reserve Economic Data, collected by

the Economic Research Division of Federal Reserve Bank of St. Louis. Note that the nominal exchange

rate available at the database did not always follow the definition I use so that I divide 1 by the exchange

rates available for Canada, South Africa, and South Korea.

All the data for the remaining variables comes from the International Financial Statistics (IFS) database

of the IMF website, with the exception of the New Zealand seasonally adjusted GDP, which comes from

Statistic New Zealand.

As in Molodtsova and Papell (2009), I use the “quadratic-match average” option in Eviews 4.0 when-

ever I need to convert series that are available quarterly into monthly frequencies. This is the case for

the CPI for Australia and New Zealand, the seasonally-adjusted GDP for New Zealand and South Africa,

and the seasonally-adjusted industry production for Australia.

Before estimating the forecasting equation (9) given above, it is important to see whether or not the

variables are stationary. Non-stationary variables can lead to spurious regression since the asymptotic

proprieties of the estimators are no longer valid. The stationary results are discussed next.

4.2 Stationarity Results - variables

The test used to check for stationarity is the Augmented Dickey-Fuller (ADF) test. To implement the

test, the number of lags to use needs to be determined beforehand. The Bayes Information Criterion

(BIC) is used to identify which lag would be the best to use to test for stationarity. For each series, an

ADF regression is performed using multiple lags. The chosen lag is the one whose BIC has the lowest

value. Once the lag is chosen, there are three possible models that could represent the data generating

process. MODEL 1 is a series without a constant and without a trend, MODEL 2 is a series without a

trend but with a constant, and MODEL 3 represents a series with both a constant and a trend.
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In order to decide among these models, ADF regressions are run on the series with the lowest

BIC assuming MODEL 3 holds, and the critical values from the ADF table 2 (model 3 column) found in

Appendix B are used to test whether or not the trend of the series with the lowest BIC is statistically

significant. If the trend is significant this implies that the series can be represented by MODEL 3 since

the constant will automatically be significant as well. If the trend is not significant, a new ADF regression

without trend is performed to test for the statistically significance of the constant. If the constant is

significant (table 2, model 2 column), the series can be represented by MODEL 2; otherwise, MODEL 1 is

chosen.

Once the lag and the model are chosen, an ADF test is again performed to test for the unit root.

Based on the Dickey-Fuller critical values found in table 1 in appendix B, if the unit root is rejected, the

variable is stationary (or, integrated of order 0), otherwise, it is non-stationary. If the variable is found

to be non-stationary, the entire ADF procedure is repeated on the first difference of the non-stationary

series. If the null of unit root is rejected, the variable is then deemed to be integrated of order 1 or I(1).

The results for all variables can be found in appendix C. All variables are represented by the ADF

MODEL 1 except for the Australia’s inflation and real exchange rates, and South Korea’s real exchange

rate, which, depending on the significance level used, can also be represented by MODEL 2. Nonethe-

less, regardless of the ADF model chosen for these countries, the variables are stationary at either the

10 or 5% significance level. Once again, the Dickey-Fuller critical values used are those from table 1 in

appendix B.

A summary of the relevant results is presented in the table below:

Table A: Stationarity results for variables found in Eq. (9)

Canada Australia New Zealand South Africa South Korea US

∆st+1 I(0), 1% I(0), 1% I(0), 1% I(0), 1% I(0), 1% N.A.

πt I(0), 10% I(0), 10% I(0), 10% I(1), 1% I(0), 5% I(1), 1%

yt I(0), 1% I(0), 1% I(0), 1% I(0), 1% I(0), 1% I(0), 1%

qt I(1), 1% I(0), 10% I(1), 1% I(1), 1% I(0), 10% N.A

it−1 I(1), 1% I(1), 1% I(0), 5% I(1), 1% I(1), 1% I(1), 1%

pcommt I(1), 1% I(1), 1% I(0), 10% I(1), 1% I(1), 1% N.A.

π̃ − πt I(0), 1% I(0), 1% I(0), 1% I(1), 1% I(0), 1% N.A.

ỹt − yt I(0), 1% I(0), 1% I(0), 1% I(0), 1% I(0), 1% N.A.

ĩt−1 − it I(0), 1% I(0), 5% I(0), 1% I(0), 10% I(0), 5% N.A.
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As shown by the table above, the stationary results are country-specific, except for the dependent

variable ∆st+1 and the output gap yt, which are stationary for all countries. All contries but South Africa

and the US have the inflation rate πt stationary. The real exchange rate qt, the interest rate it−1, and

the commodity price pcommt are non-stationary for most contries. For all countries, all variables that are

found to be non-stationary taken at their level, are found to be stationary in their first difference, thus

integrated of order 1.

The last three rows of the table gives the stationary results for the cases where Eq. (9) have homo-

geneous coefficients. Homogeneous coefficients imply that the United States and the domestic country

have the same exchange rate elasticities: a shock on inflation rate, output gap, or interest rate will have

the same impact on the exchange rate regardless of the country where the shock originated. These

variables will be used when estimating the forecasting models in the next section. Note that this is not

a hypothesis likely to hold, but nonetheless, homogeneous coefficients are estimated because they are

part of the assumptions made in section 2.1.

4.3 Estimation and Forecasts

The general econometric forecasting model used for each country is given by Eq. (9) and reproduced

below for convenience:

"st+1 = ω − ωππt + ω̃ππ̃t − ωyyt + ω̃yỹt − ωiit−1 + ω̃iĩt−1 + ω̃q q̃t + ω̃pp̃commt + ηt

As noted by Molodtsova and Papell (2009), depending on the assumptions made about the coef-

ficients, there are sixteen models embedded within the above equation. As previously stated, these

assumption are:

• asymmetric (ω̃q #= 0) or symmetric (ω̃q = 0)

• smoothing (ω̃i #= 0, ωi #= 0) or no smoothing (ω̃i = ωi = 0)

• homogeneous coefficients (ω̃π = ωπ, ω̃y = ωy, ω̃i = ωi) or heterogeneous coefficients (ω̃π #= ωπ,

ω̃y #= ωy, ω̃i #= ωi)

• no constant (ω = 0) or with a constant (ω #= 0)

With regards to these assumptions, the possible 16 models are:
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Model 1: asymmetric, with no smoothing, homogeneous coefficients , with a constant

Model 2: asymmetric , with no smoothing , homogeneous coefficients , without a constant

Model 3: asymmetric with no smoothing, heterogeneous coefficients, with a constant

Model 4: asymmetric with no smoothing, heterogeneous coefficients, without a constant

Model 5: asymmetric with smoothing, homogeneous coefficients, with a constant

Model 6: asymmetric with smoothing, homogeneous coefficients, without a constant

Model 7: asymmetric with smoothing, heterogeneous coefficients, with a constant

Model 8: asymmetric with smoothing, heterogeneous coefficients, without a constant

Model 9: symmetric with no smoothing, homogeneous coefficients, with a constant

Model 10: symmetric with no smoothing, homogeneous coefficients, without a constant

Model 11: symmetric with no smoothing, heterogeneous coefficients, with a constant

Model 12: symmetric with no smoothing, heterogeneous coefficients, without a constant

Model 13: symmetric with smoothing, homogeneous coefficients, with a constant

Model 14: symmetric with smoothing, homogeneous coefficients, without a constant

Model 15: symmetric with smoothing, heterogeneous coefficients, with a constant

Model 16: symmetric with smoothing, heterogeneous coefficients, without a constant

4.3.1 Methodology

The methodology used for estimation and forecast is the same as in Molodtsova and Papell (2009).

For each country, one-month-ahead forecasts for each of the 16 models are constructed based on

OLS rolling regressions beginning on 1980m14. Each model is initially estimated using the first 120 data

points and the one-month-ahead forecast is generated. The first data point is then dropped, an additional

data is added at the end of the sample and the model is re-estimated. A one-month-ahead forecast is

generated at each step. The last 120 data points estimated is for the period 1999m9 – 2009m8, which
4Due to data unavailability, the rolling regressions begin on 1989m3 for New Zealand and on 1981m4 for South Korea.
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generates the forecast for the last date (2009m9). The forecasting period is accordingly 1990m1 to

2009m95.

To evaluate the out-of-sample performance of the models, Mean Squared Prediction Error (MSPE)

is calculated once the forecasting exercise is finished. As is the standard in the literature since Meese

and Rogoff (1983), the MSPEm of each model is compared to the MSPErw of a martingale difference

process (random walk without drift). If the MSPE of the random walk is smaller than the model’s MSPE,

than the model forecasts worse than a random walk. Statistical tests are performed to test the null H0:

MSPEm = MSPErw against the alternative H1: MSPErw > MSPEm. Rejecting the null means that the

model performs better than a random walk.

According to Molodtsova and Papell (2009), the procedure proposed by Diebold and Mariano (1995)

or by West (1996) to construct t-type statistics based on the sample MSPE cannot be used in our case

because the model under the null (the random walk) is nested within the model under the alternative.

That is, if some (or all) coefficients of the alternative model are set equal to zero, then the alternative

model becomes the randon walk model. In this context, the resulting statistic would not have a standard

normal distribution. Instead, the authors and I use the MSPE-adjusted procedure proposed by Clark

and West (2006, 2007) to construct CW statistics that can be used to compare nested models. The CW

statistics is described in the following section.

4.3.2 Clark and West (CW) statistics

In order to test the null of equal predictability against the alternative of linear predictability, a statistic test

is performed as proposed by Clark and West (2006, 2007). The general specification of the test is given

by Clark and West (2007) while Clark and West (2006) is specific for testing against the random walk.

Below is a brief technical summary about the test as given by Clark and West (2007).

Let:

• MODEL 1 be the parsimonious model (i.e. models without commodity prices)

• MODEL 2 be the larger, nested model

• ŷ1t+1 be the period t forecast of t+1 of MODEL 1

• ŷ2t+1 be the period t forecast of t+1 of MODEL 2
5Due to data unavailability the forecasting period for New Zealand is 1999m3 to 2009m9 and for South Korea is 1991m4 to

2009m9.
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• yt+1: be the actual value at t+1 (in this paper, yt+1 = "st+1)

• P be the number of predictions made6

• T+1: be the number of observations in the sample

Then, the following variables are defined:

• MSPE1 = P−1 ∑T
t=T−P+1(yt+1 − ŷ1t+1)

2

• MSPE2 = P−1 ∑T
t=T−P+1(yt+1 − ŷ2t+1)

2

Clark and West (2006, 2007) demonstrate that under the null, MSPE1 is smaller than MSPE2 by con-

struction because MODEL 1 is a more parsimonious model. To overcome this disadvantage, they pro-

pose adjusting MSPE2 by an adjustment amount they calculate to be:

• Adj = P−1 ∑T
t=T−P+1(ŷ1t+1 − ŷ2t+1)

2

The test then becomes:

• H0: MSPE1 = (MSPE2 - Adj)

• H1: MSPE1 > (MSPE2 - Adj)

For one month ahead forecasts, Clark and West (2007) suggest the following procedure to implement

the test. Let:

• f̂t+1 = (yt+1−ŷ1t+1)
2−[(yt+1−ŷ2t+1)

2−(ŷ1t+1−ŷ2t+1)
2] , which after some simple algebra becomes:

• f̂t+1 = 2(yt+1)(ŷ2t+1 − ŷ1t+1) + 2(ŷ1t+1)(1− ŷ2t+1)

• f̄ = MSPE1 - (MSPE2 - Adj) = P−1 ∑T
t=T−P+1 f̂t+1

• The test then becomes: H0: f̄ = 0 vs H1: f̄ > 0

Testing for equal MSPEs boils down to “ regressing f̂t+1 on a constant and using the resulting t-statistic

for a zero coefficient. Reject if this statistic is greater than +1.282 (for a one sided 0.10 test) or +1.645

(for a one sided 0.05 test). For one step ahead forecast errors, the usual least squares standard error

can be used. For autocorrelated forecast errors, an autocorrelation consistent standard error should be

used ” (Clark and West 2007, 294).
6P = 237 for Canada, Australia, and South Africa; P = 222 for South Korea, and P = 127 for New Zealand.
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Note that the CW statistics is used in two instances in my paper. The first is to test the predicitive

ability of Eq. (9) against that of a random walk without drift. Here, the parsimonious MODEL 1 is the

random walk and MODEL 2 is the Taylor rule model augmented by the commodity prices (that is, any

of the 16 models embebbed in Eq. 9). The second instance is when I test whether or not including

commodity prices increase the forecasting performance of the models. In this case, MODEL 1 is the

Taylor rule-based model proposed by Molodtsova and Papell (2009) and MODEL 2 is the Taylor rule

model augmented by commodity prices (that is, Eq. 9).

In the case where the performance of Eq. (9) is being tested against that of the random walk, Clark

and West (2006) shows that the MSPE of the random walk is simply MSPE1 = P−1 ∑T
t=T−P+1(yt+1)2

because the one step ahead prediction for MODEL 1 (the random walk) is a constant value of zero (that

is, ŷ1t+1 = 0). Then, f̂t+1 becomes f̂t+1 = (yt+1)2 − [(yt+1 − ŷ2t+1)
2 − (ŷ2t+1)

2] , which after some simple

algebra becomes: f̂t+1 = 2(yt+1)(ŷ2t+1).

4.3.3 Stationarity, autocorrelation and heteroscedasticity of the models’ residuals

Stationary, autocorrelation and heteroscedastic tests were performed over the entire sample (1980m1

to 2009m9)7. Each of the 16 models were estimated over the entire sample and the residuals of each

model were saved in order to perform the tests. Although all 16 models for all countries have stationary

residuals, some models presented autocorrelation and heteroscedastic problems.

The augmented Dickey-Fuller (ADF) test is once again used to verify the stationarity of each

model’s residuals. Note that all models for all countries are identified as a Dickey-Fuller MODEL 1 (no

contant, no trend). The ADF test results for all models are presented in Table 1 in appendix D. For

Canada, the Z(t) values obtained lie within the range -14.427 (models 15 and 16) to -14.194 (model 5).

The null of unit root is thus rejected at the 1% significance level since Z(t) < -3.96, which is the critical

value associated with the 1% significance level (see the Engle-Granger ADF critical values in table 3

in appendix B). All Canadian models’ residuals are thus stationnary at the 1% significance level . The

same conclusion applies to all other countries. The Australian Z(t) values are found within the range

-13.627 (model 7) to -12.951 (model 10). South Africa’s Z(t) smallest value is -13.721 for model 15 and

the biggest is -13.128 for model 6. For New Zealand, the smallest Z(t) is -11.942 given by model 8

while the largest is -11.003 for model 10. Finally, South Korea’s Z(t) biggest value is -13.180 (model 2)

while the smallest is -13.547 (model 15). According to the ADF test, all countries have models’ residuals
7The sample for New Zealand runs from 1989m3 to 2009m9 and for South Korea from 1981m4 to 2009m9.
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stationary at the 1% significance level.

As was discussed in section 4.2, the independent variable "st+1 is also stationary for all countries.

Accordingly, there is no need to find an explicitly cointegration vector because the model is stationary,

even if some dependent variables are non-stationary (as was also discussed in the same section).

To check for autocorrelation in the residuals, the Breusch-Godfrey (BG) test , which detects serial

correlation up to a certain lag, is used. The BG tests for the null of no serial correlation. Following an

autocorrelogram visual analysis, 24 lags were chosen for the BG test. Furthermore, it is very likely that

the residuals are heteroscedastic. An AutoRegressive Conditional Heteroskedasticity (ARCH) test was

thus performed to check for heteroscedasticity in the residuals of each model. The ARCH tests the null

of no ARCH effects against the alternative of ARCH(p) disturbance. It is thus necessary to choose the

lag p in order to do the test. Lardic and Mignon (2002, p. 307) propose constructing partial-correlograms

to see from which lag p the autocorrelations are no longer statistically significant. This lag p should then

be the lag used in the ARCH test. Since there are 16 models for each of the 5 countries, it becomes

cumbersome to establish the exact lag p for each of these 80 models. Instead, after checking the partial-

correlograms for each country, I choose a lag p that eliminates autocorrelations for all models even if

this lag happens to be bigger than necessary for some of the models.

The p-values for both tests along with the lags used in each country can be found at table 1 of

appendix E. The residuals for Canada, Australia, and South Africa are both autocorrelated and het-

eroscedastic at either the 1, 5 or 10% significance level. For New Zealand, all residuals are serially

correlated but some are not heteroscedastic while those for South Korea are only serially correlated.

4.3.4 Forecasting

Although all residuals are autocorrelated and some are heteroscedastic, performing a Heteroscedas-

tic and AutoCorrelation (HAC) rolling regression, with, for example, a Newey-West variance estimator

(Newey and West, 1987), does not have an impact on the forecasted values since all what a HAC re-

gression does is get a convergent estimator for the variance; it has no effect on the values estimated for

the coefficients, which is what is used in the forecasting exercise. Furthermore, methods for dealing with

heteroscedastic residus such as General Least Square (GLS) or Feasible GLS (FGLS) are not applica-

ble because some of the independent variables are endogenous (Wooldridge 2009, p. 428). Moreover,

these methods are used in the context of in-sample estimation; they are irrelevant for out-of-sample

forecast, which is what this paper’s focus is on . Therefore, the rolling regressions described in section
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4.3.1 were performed using standard OLS8.

Once all the forecasts are obtained, two different approaches are used to judge the performance

of the models with commodity prices. The first one involves testing for equal MSPEs when the model

under the null is the random walk model. The second approach also tests for equal MSPEs but this

time, the model under the null is the model without commodity prices. Section 4.3.2 gives the details

about implementing each approach. Before beginning this double test, the forecasts from the Taylor rule

models from Molodtsova and Papell (2009) are needed. OLS regressions are thus performed for each

model excluding the commodity price from the forecasting equation.

The following table summarises the CW p-values (one-sided)9 obtained when the model under the

null is the random walk without drift. To obtain these p-values, OLS regression on the f̂t+1 of each of

the 16 models is performed as described in section 4.3.2. Small p-values mean that the null of no pre-

dictability is rejected in favor of the alternative that exchange rates are linearly predictable. Note that the

p-values from the models without commodity prices cannot be directly compared to the ones obtained

by Molodtsova and Papell (2009) because they use a longer forecasting period and only Canada and

Australia are included in their study.

Table 1: CW p-values based on standard OLS regressions

Canada Australia New Zealand South Africa South Korea

w/

prices

w/o

prices

w/

prices

w/o

prices

w/

prices

w/o

prices

w/

prices

w/o

prices

w/

prices

w/o

prices

1 0.008*** 0.005*** 0.097* 0.186 0.442 0.485 0.020** 0.009*** 0.451 0.459

2 0.003*** 0.001*** 0.065* 0.109 0.248 0.327 0.005*** 0.000*** 0.417 0.422

3 0.000*** 0.000*** 0.017** 0.015** 0.020** 0.013** 0.001*** 0.001*** 0.283 0.337

4 0.000*** 0.000*** 0.012** 0.007*** 0.012** 0.007*** 0.001*** 0.001*** 0.327 0.272

5 0.002*** 0.001*** 0.077* 0.120 0.056* 0.297 0.033** 0.010*** 0.379 0.435

6 0.002*** 0.002*** 0.048** 0.071* 0.026** 0.112 0.008*** 0.001*** 0.330 0.281

7 0.000*** 0.000*** 0.006*** 0.002*** 0.009*** 0.010*** 0.003*** 0.002*** 0.194 0.247

8 0.000*** 0.000*** 0.002*** 0.001*** 0.004*** 0.004*** 0.002*** 0.001*** 0.285 0.271

8Just to double check, Newey-West regressions with four lags were performed for Australia’s models, which present both
autocorrelation and heteroscedasticity problems. As it can be seen from Table 1, Appendix F, the HAC regressions have no
impact on the CW statistics used to evaluate the forecasting performance of the models.

9Note that Stata only gives p-values for bilateral tests. To obtain the one-sided p-values listed in Table 1, the following
formula is used: pone−sided = pbilateral / 2 if the cofficient is positive and pone−sided = 1 - pbilateral / 2 if the cofficient is negative.
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Canada Australia New Zealand South Africa South Korea

w/

prices

w/o

prices

w/

prices

w/o

prices

w/

prices

w/o

prices

w/

prices

w/o

prices

w/

prices

w/o

prices

9 0.002*** 0.006*** 0.193 0.118 0.335 0.319 0.008*** 0.001*** 0.338 0.420

10 0.001*** 0.155 0.120 0.106 0.214 0.265 0.002*** 0.013*** 0.397 0.428

11 0.000*** 0.001*** 0.013** 0.011** 0.005*** 0.004*** 0.001*** 0.002*** 0.251 0.368

12 0.000*** 0.043** 0.009*** 0.166 0.005*** 0.038** 0.002*** 0.031** 0.361 0.296

13 0.001*** 0.003*** 0.115 0.079* 0.013** 0.077* 0.011** 0.002*** 0.247 0.308

14 0.002*** 0.121 0.076* 0.083* 0.013** 0.276 0.002*** 0.010*** 0.287 0.264

15 0.001*** 0.000*** 0.004*** 0.002*** 0.002*** 0.003*** 0.001*** 0.001*** 0.194 0.266

16 0.000*** 0.024** 0.001*** 0.004*** 0.002*** 0.006*** 0.001*** 0.010*** 0.334 0.255

Note: ∗, ∗∗, and ∗∗∗ indicate that the alternative model significantly outperforms the random walk (without drift)

at 10, 5, and 1% significance level, respectively, based on standard normal critical values for a one-sided

t-test.

With commodity prices included in the regression, the results in Table 1 demonstrate that for Canada, all

models outperform the random walk (without drift) at the 1% significance level. For Australia, all models

outperform the random walk at either the 1, 5, and 10 % significance levels, except for models 9, 10,

and 13. New Zealand’s performance is similar to that of Australia: when the three significance levels

are combined, all models outperform the random walk except for models 1, 2, 9, and 10. South Africa’s

models performance are similar to that of Canada: all models have significant predictive power the 10%

significance level. For South Korea, none of the models forecasts better than a random walk without

drift.

When the model under the null is the random walk without drift, incorporating commodity prices in the

forecasting econometric equation can improve the performance of some countries’ models. Canada and

New Zealand offer the strongest evidence that including commodity prices can increase the predictive

power of some of the Taylor rule-based models. As we can see from table 1, Canada’s models 10 and 14

no longer outperform the random walk once oil prices are excluded from their regression. New Zealand’s

models 5, 6, and 14 in addition to models 1, 2, 9, and 10 do not outperform the random walk once lamb

prices are excluded from the regression. For Australia, models 1, 2, 5, and 12 does not survive the CW

test once coal prices are excluded (models 9 and 10 continue to perform poorly). The only performance
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that is improved once coal prices are excluded is that of model 13, which outperforms the random walk at

the 10% significance level once regressions are done without coal prices. In the case of South Africa, no

statistically significant differences are found once gold prices are excluded from the equations. Without

gold prices, all models continue to outperform the random walk at either the 1 or 5% significance levels.

South Korea’s models continue to perform worse than a random walk with overall higher p-values if oil

prices are excluded.

So far in this discussion, the performance of each of the 16 models is tested when the model in the

null is the random walk without drift. Now that we know which models outperform the random walk,

we can answer the question, what is the improvement brought about by including commodity prices in

the forecasting equation? Before I proceed to answer this question, however, it is necessary to check

for serial correlations in the residuals of the regression on f̂t+1 because residual serial correlations can

have an impact on the CW p-values obtained. In section 4.3.6, I return to the question of whether or

not incorporating commodity prices improve the performance of the model proposed by Molodtsova and

Papell (2009).

4.3.5 HAC Robust Inference

As mentioned in section 4.3.2, Clark and West (2007) advise using a robust standard error in the pres-

ence of serial correlations in the residuals of the regression on f̂t+1. The residuals resulting from the

regression on f̂t+1 with commodity prices are indeed strongly autocorrelated and heteroscedastic for

almost all models. Table 2 in appendix D gives the Breusch-Godfrey and ARCH test results for all coun-

tries. For Canada, all residuals are autocorrelated and all but the residuals for models 2, 6, 10 and 14,

are heteroscedastic. For Australia, all models’ residuals are both autocorrelated and heteroscedastic,

except for the residuals of models 9 and 13, which are only autocorrelated. All South African residuals

are serially correlated but, except for model 1, none are heteroscedastic. Finally, the residuals for South

Korea are all autocorrelated except for the residuals of model 7, and heteroscedastic except for the

residuals of models 3 and 7.

Since the residuals resulting from the OLS regression on f̂t+1are characterised by serial correlations

and ARCH disturbances, OLS regressions with a Newey-West robust variance estimator (Newey and

West, 1987) are performed. Theory dictates three options to calculate the Newey-West lag:

1. lnw = floor[4(P/100)2/9] proposed by Newey and West (1987)
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2. lg = floor[P 1/4] proposed by Greene (2003, p. 200)

3. lsw = floor[0.75P 1/3] proposed by Stock and Watson (2007, p. 607)

With P = 237, which is the number of forecasts performed for Canada, Australia, and South Africa, the

following results are obtained: lnw = floor[4.85], lg = floor[3.92], lsw = floor[4.64]. Two HAC-robust

regressions on f̂t+1 with commodity prices are thus performed using Newey-West lag values of 3 and 4.

For New Zealand and South Korea, whose P = 127 and 222 respectively, the lags obtained are also 3

and 4. Note that regressions for South Korea were not performed because the models for South Korea

have poor predictive performance even with standard inference.

Table 2: CW p-values based on Newey-West standard errors - models

with commodity prices

Canada Australia New Zealand South Africa

lag(3) lag(4) lag(3) lag(4) lag(3) lag(4) lag(3) lag(4)

1 0.022** 0.025** 0.145 0.150 0.448 0.447 0.043** 0.046**

2 0.014** 0.015** 0.123 0.127 0.266 0.258 0.021*** 0.023**

3 0.003*** 0.004*** 0.066* 0.075* 0.065* 0.071* 0.004*** 0.004***

4 0.004*** 0.005*** 0.058* 0.067* 0.048** 0.054* 0.005*** 0.005***

5 0.009*** 0.010*** 0.114 0.118 0.109 0.113 0.064* 0.068*

6 0.011** 0.013** 0.088* 0.090* 0.061* 0.063* 0.028** 0.031**

7 0.004*** 0.005*** 0.037** 0.044** 0.033** 0.037** 0.007*** 0.007***

8 0.002*** 0.002*** 0.020** 0.025** 0.019** 0.021** 0.006*** 0.006***

9 0.008*** 0.009*** 0.233 0.235 0.369 0.369 0.022** 0.023**

10 0.006*** 0.007*** 0.175 0.175 0.276 0.280 0.009*** 0.011**

11 0.002*** 0.003*** 0.055* 0.064* 0.037** 0.043** 0.004*** 0.004***

12 0.003*** 0.004*** 0.050** 0.057* 0.035** 0.040** 0.006*** 0.006***

13 0.007*** 0.008*** 0.152 0.153 0.046** 0.050** 0.028** 0.030**

14 0.008*** 0.009*** 0.115 0.114 0.053* 0.058* 0.011** 0.013**

15 0.004*** 0.006*** 0.028** 0.035** 0.021** 0.025** 0.003*** 0.003***

16 0.001*** 0.002*** 0.015** 0.019** 0.019*** 0.023** 0.003*** 0.003***
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Note: ∗, ∗∗, and ∗∗∗ indicate that the alternative model significantly outperforms the random walk (without drift)

at 10, 5, and 1% significance level, respectively, based on Newey-West (1987) robust inference for a one-

sided t-test.

As one can see from the table above, most models with commodity prices are non-sensitive to HAC

robust-inference, specially, models for Canada and South Africa. Moreover, all countries’ models are

non-sensitive to the number of lags used in the Newey-West robust-inference. In the case of Canada,

all models significantly outperform the random walk model at the 1% level, with non-robust inference.

Once HAC robust-inference is used, all models still outperforms the random walk model regardless of

the number of lags used, although for some models the significance level is increased to 5%. Similar

to Canada, South Africa’s models are insensitive to robust inference: all models continue to outperfom

the random walk model at either 1, 5 or 10% significance level even with four Newey-West lags. For

Australia, when non-robust inference is used, thirteen models outperform the random walk model. For

significance levels of either 5 or 10%, this number reduces to nine once robust inference with either three

or four Newey-West lags is used. New Zealand has twelve models with significant non-robust predictive

power and eleven models with robust inference with either three or four lags.

The table below summarizes which models survive the robust inference exercice for each contry, all

significance levels combined.

Table 3: Models with commodity prices, robust vs. non robust inference

Non-robust Robust: lag(3) Robust: lag(4)

Canada all all all

Australia 1-8,11,12,14,15,16 3,4,6,7,8,11,12,15,16 3,4,6,7,8,11,12,15,16

New Zealand 3-8, 11-16 4,6,7,8,11-16 4,6,7,8,11-16

South Africa all all all

South Korea none N.A. N.A.

4.3.6 Forecasting with Commodity Prices

Now that we know which models with commodity prices robustly outperform the random walk, we can

see if these same models forecast better than the models without commodity prices. The table below

presents the test results when the model under the null is the one without commodity prices. Models for

South Korea are not considered since they all failed the test against the random walk. The CW p-values
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(one-sided) are obtained by regressing f̂t+1 on a constant, as explained in section 4.3.2. Small p-values

mean that the null of equal predictability is rejected in favor of the alternative that models with commodity

prices forecast better than models without.

Table 4: CW p-values when the null is the model without commodity

prices

Canada Australia New Zealand South Africa

non-rob lag(3) lag(4) non-rob lag(3) lag(4) non-rob lag(3) lag(4) non-rob lag(3) lag(4)

1 0.006*** 0.080* 0.098* 0.000*** 0.002*** 0.003*** 0.080* 0.201 0.212 0.000*** 0.000*** 0.000***

2 0.000*** 0.012** 0.018** 0.000*** 0.000*** 0.000*** 0.000*** 0.002*** 0.003*** 0.000*** 0.000*** 0.000***

3 0.082* 0.219 0.236 0.001*** 0.032** 0.043** 0.206 0.316 0.325 0.000*** 0.000*** 0.001***

4 0.000*** 0.010*** 0.016** 0.001*** 0.041** 0.053* 0.034** 0.142 0.155 0.000*** 0.000*** 0.000***

5 0.000*** 0.031** 0.042** 0.374 0.431 0.436 0.001*** 0.041** 0.050** 0.000*** 0.000*** 0.000***

6 0.007*** 0.090* 0.109 0.245 0.353 0.365 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

7 0.022** 0.130 0.148 0.456 0.476 0.478 0.000*** 0.028** 0.038** 0.000*** 0.001*** 0.001***

8 0.073* 0.213 0.231 0.415 0.453 0.456 0.000*** 0.006*** 0.009*** 0.000*** 0.000*** 0.001***

9 0.000*** 0.002*** 0.004*** 0.000*** 0.000*** 0.000*** 0.000*** 0.005*** 0.007*** 0.000*** 0.000*** 0.000***

10 0.000*** 0.000*** 0.000*** 0.249 0.344 0.353 0.423 0.456 0.459 0.000*** 0.000*** 0.000***

11 0.000*** 0.008*** 0.012** 0.000*** 0.016** 0.023** 0.059* 0.181 0.194 0.000*** 0.000*** 0.000***

12 0.000*** 0.004*** 0.007*** 0.000*** 0.000*** 0.001*** 0.451 0.472 0.474 0.000*** 0.000*** 0.000***

13 0.002*** 0.062* 0.080* 0.210 0.331 0.344 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

14 0.000*** 0.021** 0.031** 0.000*** 0.008*** 0.012** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

15 0.032** 0.156 0.175 0.447 0.471 0.473 0.000*** 0.014** 0.022** 0.000*** 0.000*** 0.000***

16 0.100* 0.247 0.265 0.482 0.490 0.491 0.000*** 0.020** 0.028** 0.000*** 0.008*** 0.013**

Note: ∗, ∗∗, and ∗∗∗ indicate that models with commodity price significantly outperforms the ones without at the

10, 5, and 1% significance level, respectively, based on critical values (robust in the case of columns LAG(3)

and LAG(4)) for a one-sided t-test.

As it can been seen from tables 3 and 4, South Africa and Canada present the best evidence that

models with commodity prices outperforms both the random walk and models without commodity prices.

In the case of South Africa all models pass the double test even when four Newey-West lags are used.

For Canada, ten models outperform both the random walk and the forecast without commodity prices.
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Australia and New Zealand present less evidence that commodity prices improve the performance of

the Taylor rule-based forecasting equation. Only four Australian models and seven New Zealand models

pass the double test. The models for each country that pass the double test are:

• Canada: 1, 2, 4, 5, 9, 10, 11, 12, 13 ,14

• Australia: 3, 4, 11, 12

• New Zealand: 6, 7, 8, 13, 14, 15, 16

• South Africa: all

4.3.7 Model choice

Two criterias can be used in order to choose among the surviving models listed in the previous section.

The first criteria is to choose those models that outperforms models without commodity prices with the

lowest p-values. Using this criteria, and choosing robust inference with four lags, the best models for

Canada would be models 9, 10, and 12, whose results are all significant at the 1% level. For Australia,

the chosen models would be models 3, 11, and 12, which have results significant at either the 5 or 1%.

In the case of New Zealand, at the 1% significance level, the models would be 6, 8, 13, and 14. Note

that for Australia and New Zealand, the chosen models outperform the random walk only at the 5 or

10% significance level. Finally, this criteria does not apply so well for South Africa because all South

African models outperform both the random walk and the models without commodity prices at the 1%

significance level.

A second criteria is thus necessary for South Africa. Such a criteria could be choosing the models

that are most parsimonious. Models 9 and 10 would then be the best, with Model 10 being the most

parsimonious because it is symmetric with no smoothing, have homogeneous coefficients, and is without

a constant. Model 9 is similar except that it includes a constant. One could also use the R-squared

values to see which models fit the data the best. Referring to the R-squared values provided in table 2

in appendix F, the highest R-squared values are for models 16 and 8: 0.0762 and 0.0812, respectively.

5 Conclusion

The objective of this research project is to verify whether including commodity prices improves the fore-

casting performance of the econometric model proposed by Molodtsova and Papell (2009) for Canada,
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Australia, New Zealand, South Africa and South Korea. The answer is affirmative for Canada, Australia,

New Zealand and South Africa, although there are differences in performance according to the model

specification. The best evidence is given by Canada and South Africa and the worst is by South Korea

because South Korean’s models do not outperform the random walk, regardless of the specification. The

reason for the poor perfomance of the South Korean models could be either because South Korea do

not have a de-facto flexible exchange rate regime or because South Korea’s central bank do not follow

the Taylor rule when setting its monetary policy.
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APPENDIX A: nominal exchange rates vs. real commodity prices 
 
 

  
 
 

  
 
 

 



APPENDIX B : Dickey-Fuller critical values 
 
Table 1 : Dickey-Fuller critical values ( ) 

T 1% 5% 10% 
Model (1) 

100 -.260 -1.95 -1.61 
250 -2.58 -1.95 -1.62 
500 -2.58 -1.95 -1.62 
∞ -2.58 -1.95 -1.62 

Model (2) 
100 -3.51 -2.89 -2.58 
250 -3.46 -2.88 -2.57 
500 -3.44 -2.87 -2.57 
∞ -3.43 -2.86 -2.57 

Model (3) 
100 -4.04 -3.45 -3.15 
250 -3.99 -3.43 -3.13 
500 -3.98 -3.42 -3.13 
∞ -3.96 -3.41 -3.12 

 
 

Table 2 : Dickey-Fuller test, critical values for the constant and the trend  
Model (2) Model (3) 
Constant Constant Trend 

T 1% 5% 10% 1% 5% 10% 1% 5% 10% 
100 3.22 2.54 2.17 3.78 3.11 2.73 3.53 2.79 2.38 
250 3.19 2.53 2.16 3.74 3.09 2.73 3.49 2.79 2.38 
500 3.18 2.52 2.16 3.72 3.08 2.72 3.48 2.78 2.38 
∞ 3.18 2.52 2.16 3.71 3.08 2.72 3.46 2.78 2.38 

 
 
Table 3 : Critical values for the Engle-Granger ADF statistic 

Number of regressors 1% 5% 10% 
1 -3.96 -3.45 -3.12 
2 -4.36 -3.80 -3.52 
3 -4.73 -4.16 -3.84 
4 -5.07 -4.49 -4.20 

 

 

 

Tables 1 and 2 are extracted from Lardic and Mignon (2002) : Tables 5.1 et 5.2 (p. 137) 
Table 3 comes from Stock and Watson (2007) : Table 16.2 (p. 660) 
 
 



APPENDIX C: ADF (stationarity) test results for the variables 
 

Table 1: ADF test results for the dependent variable Δst+1 
Delta exc lag bic t-trenda t-constanta Z(t)b Model 
Canada 0 -2151.8194 1.523 0.159 -14.852*** 1 
Australia 0 -1731.9006 1.234 -0.320 -13.405*** 1 
New Zealand 0 -1695.1984 1.334 -0.461 -13.366*** 1 
South Africa 0 -1476.1518 0.828 -2.086 -13.445*** 1 
South Korea 1 -1542.8969 0.157 -0.808 -10.957*** 1 

Note: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. *** indicates that the null of “unit root” is rejected at the 1% significance level since Z(t) < -2.58, the 
critical value for Model 1 from the Dickey-Fuller table 1 in Appendix B. 

      
Table 2: ADF test results for the independent variable inflation rate 

Inflation Rate lag bic t-trenda t-constanta Z(t)b Model 
US 1 -3216.6830 -1.835 1.824 -1.506 1 
Canada 0 -3085.3372 -1.368 0.737 -1.756* 1 
Australia 7 -3571.7119 -3.800 2.610** -1.904* 1 or 2c 
New Zealand 7 -3230.1834 -3.154 1.933 -1.931* 1 
South Africa 1 -2655.6822 -2.459 1.578 -1.044 1 
South Korea 1 -2622.0514 -0.950 1.397 -2.064** 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 
c. Z(t) = -3.231** for Australia w/ constant (Model 2) 

      
Table 3: ADF test results for the independent variable output gap    

Output Gap lag bic t-trenda t-constanta Z(t)b Model 
US 4 -2603.6428 -1.483 -0.483 -5.562*** 1 
Canada 0 -2307.7801 -0.251 -0.157 -3.624*** 1 
Australia 7 -2823.6660 -0.913 -0.579 -4.967*** 1 
New Zealand 7 -2183.8418 -1.353 0.102 -3.618*** 1 
South Africa 3 -2519.6106 0.564 0.094 -3.889*** 1 
South Korea 0 -1688.6087 -0.686 0.613 -5.299*** 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 

 
Table 4: ADF test results for the independent variable real exchange rate 

Real exc rate lag bic t-trenda t-constanta Z(t)b Model 
Canada 1 -2257.5644 0.731 1.704 -0.185 1 
Australia 1 -1977.8746 0.336 2.538** -0.354 1 or 2c 
New Zealand 1 -2092.4485 1.085 2.099 -0.045 1 
South Africa 1 -2889.1811 -1.900 1.882 -0.914 1 
South Korea 1 -6429.7186 -0.471 2.629** -0.639 1 or 2d 



Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 
c. Z(t) = -2.563* for Australia w/ constant (Model 2)      
d. Z(t) = -2.693* for South Korea w/ constant (Model 2) 

      
Table 5: ADF test results for the independent variable interest rate 

Interest rate lag bic t-trenda t-constanta Z(t)b Model 
US 2 -2836.4616 -3.363 1.120 -1.200 1 
Canada 0 -2341.6949 -4.475 1.902 -1.462 1 
Australia 0 -2758.2528 -2.077 1.060 -0.943 1 
New Zealand 4 -1864.4067 -1.755 1.761 -2.381** 1 
South Africa 0 -2505.9928 -1.276 1.713 -0.736 1 
South Korea 0 -2415.9846 -2.296 1.072 -1.476 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 

 
Table 6: ADF test results for the independent variable commodity price 

Commodity price lag bic t-trenda t-constanta Z(t)b Model 
Canada 1 -869.1614 0.250 2.185* -0.106 1 or 2c 
Australia 1 -1141.9501 0.495 1.844 -0.315 1 
New Zealand 1 -1320.7723 -1.834 2.134 -1.630* 1 
South Africa 1 -1212.1535 0.408 1.137  0.476 1 
South Korea 1 -802.5160 0.237 2.142 -0.085 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 
c. Z(t) = -2.181 for Canada w/ constant (Model 2)      

 
Table 7: ADF test results for the independent variable differential in inflation rate (vs. US) 

Diff. in Inf. (vs. US) lag bic t-trenda t-constanta Z(t)b Model 
Canada 0 -3071.3317 -0.541 -0.547 -2.753*** 1 
Australia 1 -3038.4928 -0.179 0.972 -2.747*** 1 
New Zealand 1 -2928.3398 -1.185 1.106 -2.889*** 1 
South Africa 1 -2619.0765 -1.140 1.720 -1.379 1 
South Korea 1 -2598.3303 -1.242 1.531 -3.048*** 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 

 



 Table 8: ADF test results for the independent variable differential in output gap (vs. US)  
Diff. in ygap (vs. US) lag bic t-trenda t-constanta Z(t)b Model 
Canada 0 -2285.8168 0.968 0.208 -5.531*** 1 
Australia 1 -2427.4454 0.260 -0.052 -5.086*** 1 
New Zealand 0 -1742.2633 0.472 0.488 -3.114*** 1 
South Africa 1 -2334.5368 1.927 -0.247 -5.802*** 1 
South Korea 0 -1686.6906 -0.218 0.920 -5.761*** 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 

 
Table 9: ADF test results for the independent variable differential in interest rate (vs. US)  

Diff. in int. (vs. US) lag bic t-trenda t-constanta Z(t)b Model 
Canada 0 -2378.8701 -1.751 2.682** -5.615*** 1 or 2c 
Australia 0 -2488.1419 0.446 1.544 -2.211** 1 
New Zealand 4 -1862.6391 -0.879 1.910 -2.758*** 1 
South Africa 0 -2377.7483 0.560 1.615 -1.174* 1 
South Korea 1 -2302.6558 -1.067 2.281* -2.572** 1 or 2d 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 
c. Z(t) = -6.264*** for Canada w/ constant (Model 2)      
d. Z(t) = -3.438** for South Korea w/ constant (Model 2) 
 

Table 10: ADF test results for the first difference of the non-stationary variables  
1st Differences lag bic t-trenda t-constanta Z(t)b Model 
D1.inf_sa 0 -3213.6983 0.191 -0.191 -11.796*** 1 
D1.inf_us 0 -2652.1270 -0.283 -0.279 -16.122*** 1 
D1.q_ca 0 -2261.4290 1.184 -0.001 -15.708*** 1 
D1.q_nz 0 -2093.2733 0.641 0.281 -13.623*** 1 
D1.q_sa 0 -2887.4041 0.301 -0.458 -13.513*** 1 
D1.r_ca 0 -2329.6999 -0.643 -0.366 -23.433*** 1 
D1.r_aus 2 -2751.0729 -0.674 -0.304 -11.328*** 1 
D1.r_sa 0 -2503.1288 -0.826 -0.091 -18.311*** 1 
D1.r_sk 0 -2409.3775 -0.222 -0.626 -17.021*** 1 
D1.r_us 1 -2837.5647 -0.673 -0.460 -13.834*** 1 
D1.pcomm_ca 0 -870.6010 0.566 0.169 -14.169*** 1 
D1.pcomm_aus 0 -1145.6923 1.251 -0.133 -14.324*** 1 
D1.pcomm_sa 0 -1217.5525 0.922 0.540 -16.397*** 1 
D1.pcomm_sk 0 -804.1859 0.575 0.226 -13.912*** 1 
D1.diff_inf_sa 0 -2618.9346 -0.314 -0.062 -15.566*** 1 

Notes: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and 10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 
b. ***, **, *, indicates that the null of “unit root” is rejected at the 1, 5, and 10% significance level, 
respectively, based on the critical values from the Dickey-Fuller table 1 in Appendix B. 

 



APPENDIX D: ADF (stationarity) test results for the models’ residuals 
 

Table 1: ADF test results for the residuals of Canada’s models 
Canada lag Bic (min) t-trenda t-constanta Z(t) b 
Model 1 0 -2003.4483 1.920 -0.035 -14.197*** 
Model 2 0 -2001.7012 2.102 0.069 -14.236*** 
Model 3 0 -2004.5468 0.718 -0.061 -14.329*** 
Model 4 0 -2004.1145 0.688 -0.035 -14.348*** 
Model 5 0 -2006.3073 2.104 -0.032 -14.194*** 
Model 6 0 -2003.7352 2.269 0.085 -14.236*** 
Model 7 0 -2005.2242 0.692 -0.061 -14.349*** 
Model 8 0 -2004.676 0.674 -0.026 -14.367*** 
Model 9 0 -2002.0755 2.114 -0.037 -14.264*** 
Model 10 0 -2001.5186 2.144 0.043 -14.256*** 
Model 11 0 -2002.929 0.845 -0.063 -14.394*** 
Model 12 0 -2003.0197 0.903 -0.089 -14.391*** 
Model 13 0 -2003.0024 2.233 -0.037 -14.260*** 
Model 14 0 -2002.6956 2.283 0.033 -14.254*** 
Model 15 0 -2002.7224 0.735 -0.063 -14.427*** 
Model 16 0 -2002.7252 0.741 -0.072 -14.427*** 

Note: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 

  b. *** indicates that the null of “unit root” is rejected at the 1% significance level since Z(t) < -2.58, the 
critical value for Model 1 from the Dickey-Fuller table 1 in Appendix B. 

 
 

Table 2: ADF test results for the residuals of Australia’s models 
Australia lag bic t-trenda t-constanta Z(t) b 
Model 1 0 -1591.6668 0.746 0.006 -13.394*** 
Model 2 0 -1589.2783 1.504 0.208 -13.181*** 
Model 3 0 -1591.1937 0.618 0.006 -13.450*** 
Model 4 0 -1588.8961 0.745 0.139 -13.252*** 
Model 5 0 -1591.7126 0.795 0.008 -13.414*** 
Model 6 0 -1589.2711 1.496 0.207 -13.180*** 
Model 7 0 -1591.6930 0.068 0.013 -13.627*** 
Model 8 0 -1589.1013 0.221 0.149 -13.411*** 
Model 9 0 -1594.5985 0.893 0.014 -13.084*** 
Model 10 0 -1591.9658 1.569 0.200 -12.951*** 
Model 11 0 -1594.3282 0.769 0.013 -13.106*** 
Model 12 0 -1591.6423 0.849 0.129 -13.008*** 
Model 13 0 -1594.7141 0.915 0.015 -13.082*** 
Model 14 0 -1591.8027 1.525 0.195 -12.956*** 
Model 15 0 -1594.6973 0.280 0.019 -13.234*** 
Model 16 0 -1591.8554 0.369 0.138 -13.132*** 

Note: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 

  b. *** indicates that the null of “unit root” is rejected at the 1% significance level since Z(t) < -2.58, the 
critical value for Model 1 from the Dickey-Fuller table 1 in Appendix B. 

 
 



Table 3: ADF test results for the residuals of South Africa’s models 
South Africa lag bic t-trenda t-constanta Z(t) b 
Model 1 0 -1354.2865 0.794 -0.025 -13.132*** 
Model 2 0 -1353.2509 0.652 -0.056 -13.132*** 
Model 3 0 -1353.9245 0.684 -0.018 -13.173*** 
Model 4 0 -1353.2402 0.650 -0.056 -13.133*** 
Model 5 0 -1355.0147 0.879 -0.013 -13.130*** 
Model 6 0 -1354.9026 0.863 -0.025 -13.128*** 
Model 7 0 -1359.4412 0.003 -0.017 -13.586*** 
Model 8 0 -1359.3494 -0.009 -0.027 -13.586*** 
Model 9 0 -1349.4255 1.621 -0.003 -13.169*** 
Model 10 0 -1349.4435 1.630 -0.001 -13.169*** 
Model 11 0 -1349.0924 0.924 -0.025 -13.320*** 
Model 12 0 -1348.8864 0.876 -0.056 -13.276*** 
Model 13 0 -1349.7609 1.685 -0.002 -13.169*** 
Model 14 0 -1349.7454 1.721 0.008 -13.169*** 
Model 15 0 -1355.4909 0.190 -0.022 -13.721*** 
Model 16 0 -1355.5068 0.185 -0.025 -13.719*** 

Note: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 

  b. *** indicates that the null of “unit root” is rejected at the 1% significance level since Z(t) < -2.58, the 
critical value for Model 1 from the Dickey-Fuller table 1 in Appendix B. 

 
 

Table 4: ADF test results for the residuals of New Zealand’s models 
New Zealand retard bic t-trenda t-constanta Z(t) b 
Model 1 0 -1107.8111 0.647 0.039 -11.031*** 
Model 2 0 -1105.5712 0.624 0.138 -11.112*** 
Model 3 0 -1117.1194 0.069 0.001 -11.860*** 
Model 4 0 -1115.2018 0.050 0.104 -11.940*** 
Model 5 0 -1107.3929 0.614 0.037 -11.190*** 
Model 6 0 -1105.9385 0.595 0.101 -11.260*** 
Model 7 0 -1117.2889 0.015 0.000 -11.852*** 
Model 8 0 -1115.1925 0.024 0.103 -11.942*** 
Model 9 0 -1103.8444 0.392 0.042 -11.079*** 
Model 10 0 -1104.2838 0.255 -0.091 -11.003*** 
Model 11 0 -1116.3496 -0.025 0.001 -11.902*** 
Model 12 0 -1115.0972 0.162 0.164 -11.933*** 
Model 13 0 -1104.4423 0.417 0.038 -11.264*** 
Model 14 0 -1104.8809 0.270 -0.103 -11.178*** 
Model 15 0 -1116.4763 -0.122 -0.001 -11.899*** 
Model 16 0 -1115.1240 0.196 0.159 -11.933*** 

Note: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 

  b. *** indicates that the null of “unit root” is rejected at the 1% significance level since Z(t) < -2.58, the 
critical value for Model 1 from the Dickey-Fuller table 1 in Appendix B. 

 
 



Table 5: ADF test results for the residuals of South Korea’s models 
South Korea lag bic t-trenda t-constanta Z(t) b 
Model 1 1 -1536.9630 0.055 0.031 -13.195*** 
Model 2 1 -1532.3702 0.258 0.250 -13.180*** 
Model 3 1 -1538.1135 -0.149 0.029 -13.203*** 
Model 4 1 -1534.7709 -0.370 0.166 -13.214*** 
Model 5 1 -1537.3629 -0.179 0.048 -13.330*** 
Model 6 1 -1531.9797 0.144 0.294 -13.212*** 
Model 7 1 -1540.7470 -0.440 0.039 -13.441*** 
Model 8 1 -1536.2986 -0.447 0.186 -13.393*** 
Model 9 1 -1532.7195 0.370 0.028 -13.264*** 
Model 10 1 -1531.6997 0.332 0.208 -13.206*** 
Model 11 1 -1534.3878 -0.255 0.020 -13.273*** 
Model 12 1 -1534.0469 -0.354 0.123 -13.241*** 
Model 13 1 -1535.0678 -0.050 0.050 -13.464*** 
Model 14 1 -1532.3172 0.127 0.306 -13.248*** 
Model 15 1 -1539.2520 -0.523 0.036 -13.547*** 
Model 16 1 -1536.3580 -0.425 0.198 -13.361*** 

Note: a. ***, **, *, indicates that the nulls of “no trend” and of “no constant” are rejected at the 1, 5, and10% 
significance level, respectively, based on the critical values from the Dickey-Fuller table 2 in Appendix 
B. 

  b. *** indicates that the null of “unit root” is rejected at the 1% significance level since Z(t) < -2.58, the 
critical value for Model 1 from the Dickey-Fuller table 1 in Appendix B. 

 



APPENDIX E: Autocorrelation and Heteroscedasticity results 
 
Table 1: Breusch-Godfrey (correlation) and ARCH (heteroscedasticity) test results for the models’ residuals 
 

 Canada Australia South Africa New Zealand South Korea 
 b-g(24) arch(38) b-g(24) arch(39) b-g(24) arch(18) b-g(24) arch(34) b-g(24) arch(39) 

Model 1 0.0001*** 0.0000*** 0.0001*** 0.0387** 0.0000*** 0.0012*** 0.0029*** 0.0018*** 0.0000*** 0.9999 
Model 2 0.0001*** 0.0000*** 0.0000*** 0.0374** 0.0000*** 0.0011*** 0.0044*** 0.0018*** 0.0000*** 0.9999 
Model 3 0.0001*** 0.0000*** 0.0001*** 0.0568* 0.0000*** 0.0010*** 0.0473** 0.1452 0.0000*** 0.9998 
Model 4 0.0002*** 0.0000*** 0.0001*** 0.0648* 0.0000*** 0.0011*** 0.0521* 0.1332 0.0000*** 0.9999 
Model 5 0.0001*** 0.0000*** 0.0001*** 0.0469** 0.0000*** 0.0015*** 0.0050*** 0.0113*** 0.0000*** 0.9998 
Model 6 0.0001*** 0.0000*** 0.0000*** 0.0367** 0.0000*** 0.0019*** 0.0091*** 0.0135** 0.0000*** 0.9999 
Model 7 0.0001*** 0.0000*** 0.0002*** 0.0613* 0.0000*** 0.0079*** 0.0248** 0.1331 0.0000*** 0.9997 
Model 8 0.0001*** 0.0000*** 0.0001*** 0.0556* 0.0000*** 0.0090*** 0.0313** 0.1323 0.0000*** 0.9998 
Model 9 0.0001*** 0.0000*** 0.0001*** 0.0314** 0.0000*** 0.0001*** 0.0038*** 0.0013*** 0.0000*** 0.9999 
Model 10 0.0001*** 0.0000*** 0.0000*** 0.0292** 0.0000*** 0.0001*** 0.0033*** 0.0013*** 0.0000*** 0.9999 
Model 11 0.0002*** 0.0000*** 0.0001*** 0.0434** 0.0000*** 0.0005*** 0.0524* 0.1509 0.0000*** 0.9999 
Model 12 0.0002*** 0.0000*** 0.0000*** 0.0519* 0.0000*** 0.0005*** 0.0488** 0.0488** 0.0000*** 0.9999 
Model 13 0.0001*** 0.0000*** 0.0000*** 0.0339** 0.0000*** 0.0001*** 0.0081*** 0.0146** 0.0000*** 0.9999 
Model 14 0.0001*** 0.0000*** 0.0000*** 0.0264** 0.0000*** 0.0001*** 0.0071*** 0.0147** 0.0000*** 0.9999 
Model 15 0.0002*** 0.0000*** 0.0001*** 0.0376** 0.0000*** 0.0067*** 0.0267** 0.1403 0.0000*** 0.9998 
Model 16 0.0002*** 0.0000*** 0.0000*** 0.0381** 0.0000*** 0.0069*** 0.0317** 0.1283 0.0000*** 0.9998 
Note: *, **, and *** indicate that both the null of “no serial autocorrelation” is rejected (Breusch-Godfrey test) and the null of 
“no ARCH effects” is rejected at 10, 5, and 1% significance level, respectively, based on chi2 critical values with 24 
degrees of freedom for the Breusch-Godfrey test and x degrees of freedom for the ARCH test, where x is the country 
specific lag number used in the ARCH test.  
 
 
Table 2: Breusch-Godfrey (autocorrelation) and ARCH (heteroscedasticity) test results for the residuals of the OLS 
regression on fhat_t+1 (the null is the random walk model) 
 

 Canada Australia South Africa New Zealand South Korea 
 b-g(28) arch(40) b-g(28) arch(40) b-g(28) arch(37) b-g(28) arch(40) b-g(12) arch(12) 

Model 1 0.0000*** 0.0000*** 0.0000*** 0.0950* 0.0016** 0.0955* 0.0090*** 0.0606* 0.0012*** 0.0341** 
Model 2 0.0000*** 0.9312 0.0000*** 0.0000*** 0.0007*** 1.0000 0.0043*** 0.0123** 0.0008*** 0.0000*** 
Model 3 0.0000*** 0.0000*** 0.0000*** 0.0147** 0.0126** 1.0000 0.0000*** 0.0026*** 0.0963* 0.6275 
Model 4 0.0000*** 0.0268** 0.0000*** 0.0000*** 0.0988* 1.0000 0.0000*** 0.0013*** 0.0001*** 0.0001*** 
Model 5 0.0000*** 0.0000*** 0.0000*** 0.0017** 0.0006*** 0.9587 0.0000*** 0.0094* 0.0124** 0.0102** 
Model 6 0.0000*** 1.0000 0.0000*** 0.0000*** 0.0007*** 1.0000 0.0001*** 0.0132** 0.0010*** 0.0000*** 
Model 7 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0001*** 0.8949 0.0004*** 0.0352** 0.1968 0.5279 
Model 8 0.0011*** 0.0000*** 0.0000*** 0.0000*** 0.0002*** 0.9987 0.0005*** 0.0373** 0.0012*** 0.0007*** 
Model 9 0.0000*** 0.0000*** 0.0000*** 0.5246 0.0123** 1.0000 0.0332** 0.0031*** 0.0000*** 0.0000*** 
Model 10 0.0000*** 0.2648 0.0000*** 0.0001*** 0.0162** 1.0000 0.0112** 0.0004*** 0.0000*** 0.0000*** 
Model 11 0.0000*** 0.0000*** 0.0000*** 0.0876* 0.0043*** 1.0000 0.0000*** 0.0021*** 0.0000*** 0.0000*** 
Model 12 0.0000*** 0.0485** 0.0000*** 0.0000*** 0.0615* 1.0000 0.0000*** 0.0102** 0.0000*** 0.0000*** 
Model 13 0.0000*** 0.0000*** 0.0000*** 0.1196 0.0051*** 1.0000 0.0000*** 0.0110** 0.0000*** 0.0000*** 
Model 14 0.0000*** 1.0000 0.0000*** 0.0002*** 0.0125** 1.0000 0.0000*** 0.0005*** 0.0000*** 0.0000*** 
Model 15 0.0001*** 0.0000*** 0.0000*** 0.0000*** 0.0018*** 0.9999 0.0000*** 0.0588* 0.0000*** 0.0000*** 
Model 16 0.0002*** 0.0000*** 0.0000*** 0.0000*** 0.0066*** 1.0000 0.0000*** 0.0177** 0.0000*** 0.0000*** 
Note: *, **, and *** indicate that both the null of “no serial autocorrelation” is rejected (Breusch-Godfrey test) and the null of 
“no ARCH effects” is rejected at 10, 5, and 1% significance level, respectively, based on chi2 critical values with 28 
degrees of freedom for the Breusch-Godfrey test and x degrees of freedom for the ARCH test, where x is the country 
specific lag number used in the ARCH test.  
 



Table 3: Breusch-Godfrey (autocorrelation) and ARCH (heteroscedasticity) test results for the residuals of the OLS 
regression on fhat_t+1 (the null is the model without commodity prices) 
 

 Canada Australia South Africa New Zealand 
 b-g(40) arch(40) b-g(40) arch(40) b-g(40) Arch(40) b-g(40) arch(40) 

Model 1 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0002*** 
Model 2 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0003*** 
Model 3 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0001*** 
Model 4 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0001*** 
Model 5 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0001*** 
Model 6 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0003*** 
Model 7 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0004*** 
Model 8 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0006*** 
Model 9 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0002*** 
Model 10 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0005*** 
Model 11 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0001*** 
Model 12 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0003*** 
Model 13 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0001*** 
Model 14 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0006*** 
Model 15 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0004*** 
Model 16 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0006*** 
Note: *, **, and *** indicate that both the null of “no serial autocorrelation” is rejected (Breusch-Godfrey test) and the null of 
“no ARCH effects” is rejected at 10, 5, and 1% significance level, respectively, based on chi2 critical values with 40 
degrees of freedom for both the Breusch-Godfrey and the ARCH tests.  
 
 
 



APPENDIX F: Miscellaneous Results 
 
 

Table 1: CW p-values (one-sided) for Australia – robust vs. non-robust regression 
HAC regression 

(4 N-W lags) 
Non robust 
regression 

0.097* 0.097*  
0.065* 0.065*  
0.017** 0.017**  
0.012** 0.012**  
0.077* 0.077*  
0.048** 0.048**  
0.006*** 0.006***  
0.002*** 0.002*** 
0.193 0.193 
0.120 0.120 
0.013** 0.013** 
0.009*** 0.009*** 
0.115 0.115 
0.076* 0.076* 
0.004*** 0.004*** 
0.001*** 0.001***  

Note: *,**,*** indicate that the alternative model significantly outperforms the random walk (without 
drift) at 10, 5, and 1% significance level, respectively, based on standard normal critical values for a 
one-sided t-test. 
 
 

Table 2: R-squared values for South Africa 
 

Model R-squared 
9 0.0044 
13 0.0044 
11 0.0128 
1 0.0198 
5 0.0201 
3 0.0208 
10 0.0307 
14 0.0307 
12 0.0365 
2 0.0430 
4 0.0430 
6 0.0451 
15 0.0511 
7 0.0565 
16 0.0762 
8 0.0812 

 




