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RÉSUMÉ

Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irréso-

lues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artifi-

ciels (RNA), représentent une approche prometteuse permettant d’apprendre des carac-

téristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile.

Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récem-

ment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à

un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de

trois articles, des contributions à ce domaine de recherche.

Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs

locaux ainsi que le regroupement d’unités cachées en couches partageant les même pa-

ramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des

détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des

modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur

des segments d’images.

Le deuxième article est motivé par des découvertes récentes en neurosciences. Il

analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi

que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base

d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances

de généralisation.

Le dernière article quand à lui, offre une vision critique des algorithmes populaires

d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive

(CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’éner-

gie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids ra-

pides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci gé-

nère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est

une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.

Mots clés: réseau de neurone, apprentissage profond, apprentissage non-supervisé,
apprentissage supervisé, RBM, modèle à base d’énergie, tempered MCMC



ABSTRACT

High-level vision tasks such as generic object recognition remain out of reach for mod-

ern Artificial Intelligence systems. A promising approach involves learning algorithms,

such as the Arficial Neural Network (ANN), which automatically learn to extract useful

features for the task at hand. For ANNs, this represents a difficult optimization problem

however. Deep Belief Networks have thus been proposed as a way to guide the discov-

ery of intermediate representations, through a greedy unsupervised training of stacked

Restricted Boltzmann Machines (RBM). The articles presented here-in represent contri-

butions to this field of research.

The first article introduces the convolutional RBM. By mimicking local receptive

fields and tying the parameters of hidden units within the same feature map, we con-

siderably reduce the number of parameters to learn and enforce local, shift-equivariant

feature detectors. This translates to better likelihood scores, compared to RBMs trained

on small image patches.

In the second article, recent discoveries in neuroscience motivate an investigation

into the impact of higher-order units on visual classification, along with the evaluation of

a novel activation function. We show that ANNs with quadratic units using the softsign

activation function offer better generalization error across several tasks.

Finally, the third article gives a critical look at recently proposed RBM training al-

gorithms. We show that Contrastive Divergence (CD) and Persistent CD are brittle in

that they require the energy landscape to be smooth in order for their negative chain to

mix well. PCD with fast-weights addresses the issue by performing small model pertur-

bations, but may result in spurious samples. We propose using simulated tempering to

draw negative samples. This leads to better generative models and increased robustness

to various hyperparameters.

Keywords: neural network, deep learning, unsupervised learning, supervised
learning, RBM, energy-based model, tempered MCMC
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CHAPTER 1

INTRODUCTION

It is reported that Marvin Minsky, one of the founding fathers of Artificial Intelligence

(AI), once assigned as a summer project, the task of building an artificial vision system

capable of describing what it saw. Several decades later, visual object recognition still

remains a largely unsolved problem. At the time of this writing, state-of-the-art results

on Caltech 101 (a benchmark dataset containing objects of 101 categories to identify in

natural images) hover around 65% accuracy [31]. So what makes object recognition and

artificial perception so difficult ?

Real-world images are the result of complex interactions between lighting, scene

geometry, textures and an observer (i.e. the human eye or a camera). Small variations

at any stage of this image formation process can have profound effects on the resulting

2D image. For example, two identical pictures taken at different times of day may look

more dissimilar (in terms of average euclidean distance between pixels) than pictures

of different scenes taken in the same lighting conditions. Changes in viewpoint can

also contribute to making a single object unrecognizable once rotated, if using a simple

template matching approach1. The difficulty of generic object recognition is further

compounded by the fact that two objects belonging to the same object category, may be

more visually dissimilar, than objects of a competing class. Building a robust computer

vision system therefore involves building a system which is invariant to many (if not all)

of the afore-mentioned sources of variation.

Object recognition systems often use a two-stage pipeline to solve this problem. The

first stage involves extracting a set of features from the input data, which is then used

as input to a classification module. These features are often hand-crafted to be invariant

to certain forms of variations. For example, SIFT features [43] have been shown to be

robust to scale, lighting and small amounts of rotation. While these features are still
1Template matching consists in convolving the input with a prototypical image of the object of interest

(or its sub-parts). The output of the convolution should be maximal at the object’s location.
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competitive on Caltech-101, their development requires extensive engineering. Also, it

is not clear how one would engineer features to be robust across higher-level abstractions

("animal species" for example). It would be ideal if such features could be automatically

learnt from training data. This would allow features to be tuned automatically in order

to maximize the performance of the system, while also requiring the development of a

single algorithm which would work across many settings. To this end, we turn to the

field of Machine Learning, which has shown, since the inception of the Artificial Neural

Network, that this is indeed an achievable goal.

In this chapter, we start by giving a brief overview of Machine Learning and explain

the core principles behind the most common learning algorithms. In section 1.3, we

explain in detail the Artificial Neural Network (ANN) and show how it can automatically

perform feature extraction and classification. Sections 1.4 and 1.5 explore biologically

motivated variants of ANNs which will be the focus of later chapters. We then build

on this knowledge and explore in Chapter 2, recent developments in the field of neural

network research : the Deep Belief Network, which embodies the principles of Deep

Learning. Chapters 3-8 represent the core of this thesis and consist of three articles

pertaining to the field of deep networks and ANNs applied to vision.

1.1 Introduction to Machine Learning

1.1.1 What is Machine Learning

Machine Learning (ML) is a sub-field of AI, which focuses on the statistical nature

of learning. The goal of ML is to develop algorithms which learn directly from data

by exploiting the statistical regularities present in the signal. Intelligence or intelligent

behaviour, is thus regarded as the ability to apply this knowledge to novel situations.

This concept is known as generalization. A learning algorithm can thus be described as

any algorithm which takes as input a training set D and outputs a model or prediction

function f. The quality of this learnt model is then determined by the accuracy of the

prediction on a separate hold-out dataset known as the test set Dtest. A model which

performs well on the training data D but poorly on the test data is said to be overfitting.
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The exact nature of the datasets varies depending on the intended applications. In the

context of supervised learning, the goal is to learn a mapping between a series of observa-

tions and associated targets. The training set can be written as D = {(x(i),y(i)); i = 1..n}
where x(i) ∈ Rd is an input datum with target y(i). We will define z(i) as being the pair

(x(i),y(i)) and consider z(i) to be independent and identically distributed (IID) samples

from the true underlying distribution pT (z). The target y(i) may be discrete or contin-

uous. The discrete case corresponds to a classification task, where y(i) ∈ {1, ...,m} is

one of m possible categories or labels to assign to input x(i). In object recognition,

the x(i)’s would correspond to the input images and the y(i)’s to a numerical value indi-

cating the type of object present within the image. From a probabilistic point of view,

the general concept is to learn an estimate p(y|x) of pT (y|x) directly from the training

data {(x(i),y(i))}. p(y|x) is vector-valued and contains the class membership probabili-

ties p(y j|x), j ∈ {1, ...,m} for all possible classes of input x. The predicted class is then

given by f (x) = argmax j p(y j|x). The resulting module is called a classifier and is a

central building block of many object recognition systems. If the target y is continuous-

valued, the problem is one of regression. The goal is then to generate an output so as

to match a given statistic of pT (y|x), for example EpT (x,y)(Y |X). Predicting the posi-

tion of the object within the input images (as opposed to the nature of the object) would

constitute a regression task.

When no target y is given, learning is said to be unsupervised and z(i) = x(i). The

learner then simply tries to model the input distribution pT (x), or aspects thereof. Prob-

abilistic modeling of pT (y|x) is often referred to as density estimation, which strictly

speaking, assumes that x is continuous-valued. Unsupervised learning is often used for

exploratory data analysis, in order to gain a better understanding of the data. Algorithms

such as k-means or mixtures of Gaussians for example, can be used to extract the most

salient modes of a distribution and help to extract natural groupings within the data, a

task known as clustering. One can also augment the model p(x) by adding hidden or

latent variables h to the model. p(x) can then be rewritten as p(x) = ∑h p(x,h). The

state of the hidden units being unknown, they must therefore be inferred by finding the

most probable values for h. This task is known as inference and can be used to find "root
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causes" or "explanations" for the visible data. As we will see later on in section 2.3.1, the

Restricted Boltzmann Machine (RBM) works along this principle and is used to extract

useful features from the data. Unsupervised learning can also be used to build gener-
ative models, where the trained system can output samples x̃ ∼ p(x) which mimic the

training distribution. A hybrid method also consists in using unsupervised learning to

learn a model p(x,y) of the joint distribution, which in turn can be used for classification.

Other variants of ML include semi-supervised learning where D consists of both

labeled and unlabeled examples. Reinforcement learning deals with the problem of de-

layed reward, where the supervised signal (or reinforcement) is provided only after a

series of actions have been taken and depends on the actions taken along the way. We

are intentionally leaving out discussion of these sub-fields of ML as they are not directly

relevant to the contents of this thesis.

1.1.2 Empirical Risk Minimization

While we have given a general definition of what a learning algorithm should look

like, we still have not specified how the actual learning occurs. How do we actually

obtain this function f from D ? Most ML algorithms utilize the empirical risk mini-
mization strategy.

Given a loss function L and a dataset D , the empirical risk is defined as:

R( f ,D) = 1/n
n

∑
i=1

L (x(i),y(i); f ) (1.1)

Learning consists in finding the function or model f which minimizes the average

loss across the training set. Learning should therefore return the function f such that:

f ← argmin f ∗R( f ∗,D)

This recipe for learning is problematic however. Indeed, there is an easy and trivial

solution to this minimization process. The model can simply learn the training set by

heart (i.e. by making a copy of the data in memory) and for each x(i) output the associated
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y(i). Such a model would obtain the lowest value for R. It would be absurd however,

to claim that such a system has learnt anything useful about the data or to relate this

model to "intelligent behaviour" of any kind. As mentioned previously, what we are

ultimately interested in is the generalization capability of our model. To evaluate the

true performance of a model, we therefore use R( f ,Dtest), the average risk across test

set Dtest = {zi;zi �∈D}.

The choice of loss function will vary depending on the application. Generally speak-

ing however, the following loss functions are used:

• Classification: classification error. Lclassi f .(x(i),y(i); f ) = I f (x(i))!=y(i) , i.e. a unity

loss whenever the predicted class label is not the correct one. For reasons we

will explore in section 1.1.4, it can be advantageous for the loss function to be

continuous and differentiable. In that case, probabilistic classifiers may use the

conditional likelihood loss (section 1.2).

• Regression: mean-squared error loss. LMSE(x(i),y(i); f ) = ( f (x(i))− y(i))2. The

empirical risk will thus be the average squared error between predicted values and

the real targets.

• Density Estimation: negative-likelihood loss. LNLL(x(i); f ) =− log f (x(i)), where

f (x) is the estimate p(x) of the underlying distribution pT (x). In the case of para-

metric models indexed by parameters θ (section 1.1.3), this leads to the solution

which maximizes p(D |θ), an instance of the maximum likelihood solution.

1.1.3 Parametric vs. Non-Parametric

Machine learning algorithms can generally be split into two families: parametric and

non-parametric methods.

Parametric algorithms are those which model a particular probability distribution,

using a fixed set of parameters θ . The function or model is written as fθ . In this setting,

learning amounts to finding the optimal parameters θ so as to minimize R( fθ ,D). The

number of free parameters in θ , determines the modeling capacity of f and controls how
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well one can approximate the distribution of interest. A typical parametric method for

density estimation is the mixture of Gaussians model, which estimates p(x) as the sum of

multiple Gaussian probability distributions such that p(x) = ∑K
k=1 πkN (x|µk,Σk), where

N (x|µk,Σk) is a Gaussian distribution with mean µk and covariance matrix Σk. K is the

total number of Gaussians used by the model and πk is the weight associated to each

Gaussian (with the constraint ∑K
k=1 πk = 1). The optimal parameters θ = {(µk,Σk,πk),k =

1..K} can be determined through maximum likelihood by solving ∂R/∂θ = 0. The

main drawback of parametric methods is the constraints imposed by the choice of a fixed

model. Choosing an improper model (e.g. a single Gaussian to model a multi-modal dis-

tribution) can result in poor performance. Parametric models of relevance to this thesis

include logistic regression (section 1.2), artificial neural networks (section 1.3) and Deep

Belief Networks (DBN) (section 2.3).

Non-parametric methods are more flexible in that they make no inherent assump-

tions about the distributions to model. A large family of non-parametric algorithms use

the training data itself to model the distribution. The most basic non-parametric algo-

rithm is the well-known histogram method. For input data x(i) ∈Rd , the input data space

is divided into kd equally-sized bins. The probability density can then be estimated lo-

cally, within each bin as

pi =
ni

n∆i
,

where ni is the number of data points falling within bin-i, n the total number of points

in D and ∆i the width of the bin. Parzen Windows is another hallmark non-parametric

density estimation method which greatly improves on the histogram method. Instead

of partitioning the space into equally sized bins and assigning probability mass in a

discrete manner, each data point x(i) ∈ D contributes an amount 1/nK(x(i),x) to p(x),

where K(x(i),x) is a smooth kernel centered on x(i). The density estimate is therefore:

p(x) = 1/n∑n
i=1 K(x(i),x), A popular choice for K is the multi-variate Gaussian density

function with mean µ = x(i). The variance σ2 of this Gaussian kernel is referred to as a

hyperparameter (and not a parameter) since it cannot be learnt by maximum likelihood

on the training data. Indeed, learning the variance by minimizing R would result in a
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null variance, possibly leading to an infinite loss on the test set. In the future, we will

denote the set of hyperparameters required by a model f as θH . We will see later on in

Chapter 8, a real-world usage scenario of how Parzen Windows can be used to estimate

the density p(x) defined by a Restricted Boltzmann Machine.

Parametric algorithms may also contain hyperparameters. Typical examples include

learning rates (section 1.1.4), stopping criteria (sections 1.1.4, 1.1.5) and regulariza-

tion constants (section 1.1.5). In practice, the distinction between parametric and non-

parametric methods is also often blurry. For example, Artificial Neural Networks (ANN),

Deep Belief Networks (DBN) and mixture models can be considered non-parametric if

the number of hidden units or components in the mixture is parameterizable. A method

for choosing good hyperparameter values is covered in section 1.1.5.

Many non-parametric methods are said to be local methods. This is the case when

their prediction for test point x( j) depends on training data at a relatively short distance

from x( j) (whether for classification, regression or density estimation). Local methods

are thus much more prone to the curse of dimensionality, which states that the amount

of data (cardinality of D) required to span an input space Rd is exponential in the number

of dimensions d. As such, the performance of these algorithms degrades significantly

for higher values of d, unless compensated by an exponential increase in training data.

For vision applications, we are usually dealing with inputs of very large dimension-

ality. In the simplest case of hand-written digit recognition, such as the MNIST dataset

[39], input images are of size 28x28 pixels and can easily scale up to hundreds of thou-

sands of pixels for more complicated datasets. While the true dimensionality of the data

(i.e the dimension of the manifold on which the training distribution is concentrated) is

usually unknown and no doubt smaller than the raw number of pixels, the inherent com-

plexity of vision problems suggests that this phenomenon is definitely at play. For this

reason, this thesis will focus on global methods, which are not as prone to the curse of

dimensionality and are much better suited to the problem at hand.
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1.1.4 Gradient Descent: a Generic Learning Algorithm

Gradient Descent is a well-known first-order optimization technique for finding a

minimum of a given function. For any multivariate function f (x) (with x = [x1, ...,xd])

differentiable at point a, the direction of steepest ascent is given by the vector of partial

derivatives, [ ∂ f
∂x1

���
x=a

, ..., ∂ f
∂xd

���
x=a

] at point a. If we initialize x0 = a and ||∂ f (a)
∂x || > 0,

performing an infinitesimal step in the opposite direction of this gradient is guaranteed

to achieve a lower value for f (x). This suggests the iterative algorithm of Algorithm 1

for minimizing the empirical risk R.

Algorithm 1 BatchGradDescentLearning(L , fθ ,D ,ε)
L: loss function to minimize across training set D
fθ : prediction function parameterized by parameters θ
D : dataset of training examples
ε: learning rate or step-size for gradient descent

Initialize model parameters of fθ to θ̃
while stopping condition is not met do

Initialize ∂R
∂θ to 0

for all z(i) ∈D do
∂R
∂θ ←

∂R
∂θ + ∂L (z(i), fθ )

∂θ |θ=θ̃
end for
θ̃ ← θ̃ − ε ∂R

∂θ
Update model parameters of fθ to θ̃

end while
return fθ

The above procedure is known as a batch learning method, since it requires a com-

plete pass through the training set D before performing a parameter update. In practice,

this procedure is guaranteed to converge as long as certain conditions on the learning rate

are satisfied2. Furthermore, if the loss function is convex in θ , it will converge to the

global minimum. Gradient descent of non-convex functions may lead to local minima

however.

An alternative learning algorithm, known as stochastic gradient descent has proven
2To guarantee convergence, εt must actually have a decreasing profile as a function of t, such that

limt→∞ ∑t εt = ∞ and limt→∞ ∑t ε2
t < ∞.
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very efficient in practice [39]. The trick is to get rid of the inner-most loop and update the

parameters for each training example z(i). While this update does not follow the exact

gradient of R( f ,D), the redundancy in the training data (examples are IID) tends to

make this algorithm converge much faster. The randomness introduced by the stochastic

updates has also been shown to help with escaping from local minima. A hybrid method

also exists, named stochastic gradient with mini-batches, which consists in updating

the parameters every Lβ training examples, where Lβ is usually in the range 1 < Lβ <

100. This has several advantages, the first of which is to help reduce the variance of the

gradient updates.3

How to initialize the parameters and when to stop the gradient descent procedure

usually vary based on the application. In section 1.3, we will see how this is done in the

case of Artificial Neural Networks.

1.1.5 Overfitting, Regularization and Model Selection

With all ML algorithms, great care must be taken so as not to overfit the training data.

Non-parametric algorithms are especially prone to this problem. By simply memorizing

the training data, they can achieve perfect prediction during training. In the case of

Parzen Windows density estimation, we have already seen that this can lead to an infinite

error on the test set if σ = 0, i.e. the worst generalization scenario possible. To select

the optimal hyperparameters, one needs a separate hold-out set called the validation set
which objectively measures the effect of the hyperparameters. A grid search can be used

to measure R( f ,Dvalid) for various values of θH and the hyperparameters θ ∗H are chosen

in order to minimize this empirical risk. Generalization error is then estimated as usual

using hyperparameters θ ∗H for the model f .

Parametric models can also overfit training data if they have too much modeling

capacity. For example, consider a dataset with N training examples and and a bijective

function φ(x) : Rd →Rn. Any linear classifier with N +1 degrees of freedom can achieve

zero classification error on the transformed dataset φ(D) (which will not necessarily
3For Lβ chosen appropriately, the use of mini-batches can also help to speed up computations, by

minimizing total memory accesses and maximizing cache usage within the CPU.



10

translate to better generalization). On the other hand, if modeling capacity is too small,

the model f will exhibit poor performance both during training and testing. A good

compromise is then to select a complex model and artificially control its capacity using

a technique known as regularization.

Regularization involves adding a penalty term to the loss function L in order to

discourage the parameters θ from reaching large values [6]. This modified loss function

can be written as:

L ( fθ ,D) = LD( fθ ,D)+λLθ (θ) (1.2)

The indices in the terms of LD and Lθ are meant to differentiate the data-dependent

loss from the regularization loss incurred by θ . The coefficient λ is a hyperparameter

which controls the amount of regularization. The exact choice for Lθ depends on the

application. However, popular choices are L2 and L1 regularization which penalize the

L2 and L1 norm of each parameter in θ .

From here on in, we will use L to refer to the loss with or without regularization,

depending on context. We shall also use the term cross-validation to refer to the use of

a validation set for optimizing hyperparameters and model selection for the full training

procedure (optimizing {θ ,θH}).

1.2 Logistic Regression: a Probabilistic Linear Classifier

Linear classifiers are the simplest form of parametric models for binary classification.

They split the input space into two subsets (corresponding to classes C1 and C2) using a

linear decision boundary with equation:

g(x) = w� · x+b = ∑
j

w jx j +b = 0 (1.3)

g(x) is referred to as the discriminant function. The weights w and input x are both

column vectors in Rd . The w j’s control the slope of the decision boundary, while the

offset b ∈ R determines the exact position of this separating hyperplane. For a given set
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of parameters θ = (w,b), the output of the classifier is determined by which side of the

decision boundary the test point falls in, as shown in Fig. 1.1. Formally, we define the

decision function f as f (x) =
�

C2 if g(x)≥0
C1 if g(x)<0 .

Figure 1.1: Linear classifier on the 2 first components of the Iris flower dataset [14].
Blue area corresponds to class C1 and red to class C2

Learning such a linear classifier amounts to finding the optimal parameters θ ∗, so as

to minimize the empirical risk using Lclassi f . as the loss function. Unfortunately, due

to the step-wise nature of the decision function, this cost function is not smooth with

respect to θ and as such, does not lend itself to gradient descent.

This problem can be easily overcome by using a smooth decision function. Geo-

metrically, the value g(x) represents the distance from point x to the decision boundary

g(x) = 0. It can therefore be interpreted as encoding a "degree of belief" about the clas-

sification. The further a point x is from the boundary, the more confident the classifier

is in its prediction. One possible solution, is therefore to modify the loss function to be

null when the prediction is correct and proportional to g(x) when not. This leads to the

famous perceptron update rule, with loss function:

Lperceptron(x(i),y(i); f ,g) =−y(i)g(x(i))I f (x(i))!=y(i) (1.4)

By using a squashing function s(g(x)), such that s : [−∞,+∞]→ [0,1], our "degree

of belief" can be interpreted as a probability. This leads to a probabilistic classifier called
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logistic regression, which learns to predict p(y = 1|x) and is defined by Eqs. 1.5-1.6.

g(x) = sigmoid(w�x+b) (1.5)

f (x) =





1 (class C2) if g(x) >= 0.5

0 (class C1) if g(x) < 0.5
(1.6)

The sigmoid function is defined as sigmoid(x) = 1/(1 + e−x). As shown in Fig-

ure 1.2(a), it is a monotonically increasing function, constrained to the unit interval.

Around x = 0, its behaviour is fairly linear, however its non-linearity becomes more

pronounced as |x| increases. By using the conditional entropy loss function of Eq. 1.7,

the loss incurred by each data point is made proportional to the log-probability mass

assigned to the incorrect class.

Llog.reg.(x(i),y(i);g) =−y(i) log(g(x(i)))− (1− y(i)) log(1−g(x(i))) (1.7)

Figure 1.2(b) shows the classification probability p(y = 1|x) for the Iris dataset. The

color gradient going from bright red to dark blue corresponds to the interval of p(y =

1|x) ∈ [0,1]. We can see that the classifier has maximal uncertainty around the decision

boundary.

To obtain the parameter update rules for logistic regression, we can simply perform

gradient descent on R, since Llog.reg. is differentiable and smooth with respect to θ . We

obtain the following gradients on w and b:

∂R
∂wk

=
1
n

n

∑
i=1

[g(x(i))− y(i)]xk (1.8)

∂R
∂b

=
1
n

n

∑
i=1

[g(x(i))− y(i)] (1.9)
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(a) (b)

Figure 1.2: (a) Sigmoid logistic function and its first derivative (b) Classification proba-
bility p(y=1|x) of the logistic regression classifier, using the first two components of the
Iris dataset as inputs.

1.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are a natural extension of logistic regression to

non-linearly separable data. For logistic regression to cope with the non-linear case, a

preprocessing stage must first transform D such that the resulting dataset, D �, becomes

linearly separable. A standard linear classifier can then be used to separate D �. The

equation for this generalized linear classifier is given by:

g(x) = sigmoid(∑
j

w jφ j(x)+b), (1.10)

where φ is a set of non-linear basis functions. The exact nature of φ obviously

depends on the dataset, as such it would preferable to also learn this transformation from

the data. We will see in the following sections that ANNs provide the mechanism for

doing exactly this, by parameterizing the non-linear functions φ as a composition of

logistic classifiers.

1.3.1 Architecture

ANNs are feed-forward probabilistic models which can be used both for regression

and classification. The simplest form of ANN, the Multi-Layer Perceptron is shown
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in Fig. 1.3(b) (for the simplest case of one hidden layer). Comparing this figure to the

graphical depiction of logistic regression (Fig. 1.3(a)), it is clear that an MLP is simply

a generalized linear classifier, where the pre-processing functions φ are themselves of

the form φ j(x) = sigmoid(W �
j·x + b j). We will refer to the outputs of the first-layer of

logistic regressors as the hidden units, which together form the hidden layer. The

output layer refers to the output of the last stage of logistic regression. In Figure 1.3(b),

we have simplified the notation by merging the summation and non-linearities into a

single entity, as well as omitting the contribution of the offsets b j. From looking at this

figure, it is also clear where the name "Artificial Neural Network" comes from. Much

like the basic unit of the ANN, the biological neuron pools together a large number of

inputs through its dendritic tree, performs a non-linear processing of its inputs (as in

early integrate-and-fire models) generating an output on its single axon (through action

potentials). In both cases, these units are organized into complex networks.

(a) (b)

Figure 1.3: (a) Graphical Representation of Logistic Regression. Directed connections
from x j to the summation node represent the weighted contributions w jx j. s represents
the sigmoid activation function. (b) Multi-Layer Perceptron. Each unit in the hidden
layer represents a logistic regression classifier. The hidden layer then forms the input to
another stage of logistic classifiers.

Formally, a one-hidden layer MLP constitutes a function f : Rd → Rm, such that:

f (x) = G(b+W (s(c+V x))), (1.11)

with vectors b and c, matrices W and V and activation functions G and s (typically fixed

non-linearities like the sigmoid).
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While the above formulation holds true for ANNs with only a single hidden layer,

extending it to the multi-layer case is fairly straightforward.

In terms of notation, the hidden units h are obtained as h(x) = s(c+V x). V ∈Rdhxd is

the weight matrix for connections going from the input to the hidden layer. Each row Vj·

of V contains the weights for the j-th hidden unit, with Vjk being the weight from hidden

unit h j to input xk with j ∈ [1,dh] and k ∈ [1,d]. Similarly, output units are obtained

as o(x) = G(b +Wh(x)). W is the weight matrix connecting the hidden layer to output

layer, with Wi j the weights connecting output oi to hidden unit h j with i ∈ [1,m]. c ∈Rdh

and b ∈ Rm are the offsets for the hidden and output layers respectively.

For convenience, we will define o(a) and h(a) to be the values of the output and hidden

layers before their respective activation functions (i.e. o = G(o(a)),h = s(h(a))).

The exact nature of G will depend on the application. For binary classification, a

single output unit suffices and G can be the sigmoid activation function. For multi-class

classification, G is the softmax activation function, defined as:

softmaxi(x) =
exi

∑ j ex j

The single-layer MLP is of particular interest because it has been shown to be a

universal approximator [27]. Given enough hidden units dh, an MLP can learn to

represent any continuous function to some fixed precision, hence capture classification

boundaries of arbitrary complexity.

1.3.2 The Backpropagation Algorithm

In this section, we will briefly review the learning algorithm of ANNs. The derivation

will be given for the MLP described by Eq. 1.11, with G being the identity function.

This same procedure can however be generalized to any number of hidden layers and

loss functions.

When the number of hidden units is fixed, MLPs are parametric models where θ =

[V,c,W,b]. As such, they can be trained to minimize the empirical risk using gradient

descent. The general principle is to iteratively compute the loss L for a subset of D ,
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calculate the gradients ∂L
∂θ using the backpropagation algorithm [54] and perform one

step of gradient descent in an attempt to minimize the empirical risk R for the subsequent

iteration.

Mathematically speaking, backpropagation exploits the chain-rule of derivation. We

first start by writing the derivative of the loss function L (x(i),y(i); f ) with respect to the

output units o(a)
i . Recall that o(a)

i is the activation of the units in the output layer, i.e.

before the activation function (or non-linearity) has been applied.

∂L (x(i),y(i))

∂o(a)
i

=
∂L
∂oi

∂oi

∂o(a)
i

=
∂L
∂oi

�
∂G(χ)

∂ χ

�����
χ=o(a)

i

≡ δi (1.12)

δi represents the "error signal" associated with unit oi, which is back-propagated through

the network and used to tune the parameters in the lower layers. Its use is inspired from

[20].

From Eq. 1.12, we can easily derive the gradients with respect to parameters [W,b] of

the output layer. To simplify notation, we drop the parameters of the function L (x(i),y(i))

and simply write L .

∂L
∂bi

=
∂L

∂o(a)
i

∂o(a)
i

∂bi
= δi (1.13)

∂L
∂Wi j

=
∂L

∂o(a)
i

∂o(a)
i

∂Wi j
= δih j (1.14)

To derive the gradients on [V,c], we must first backpropagate the error ∂L
∂oi

, from the

output units to the hidden units h j. From the chain-rule of derivation we can write:

∂L
∂h j

= ∑
i

∂L

∂o(a)
i

∂o(a)
i

∂h j
= ∑

i
δiWi j (1.15)

∂L

∂h(a)
j

=
∂L
∂h j

∂h j

∂h(a)
j

= ∑
i
[δiWi j]

�
∂ s(χ)

∂ χ

�����
χ=h(a)

j

≡ δ j (1.16)

Again, we set δ j to represent the error signal fed back from each hidden unit h j.
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Finally, from Eq. 1.16 we can now determine the gradients for the parameters [V,c]

of the hidden layer:

∂L
∂c j

=
∂L

∂h(a)
j

∂h(a)
j

∂c j
= δ j (1.17)

∂R
∂Vjk

=
∂L

∂h(a)
j

∂h(a)
j

∂Vjk
= δ jxk (1.18)

1.3.3 Implementation Details

Combining the above equations with the gradient descent algorithm of Algorithm 1

constitutes the batch gradient descent algorithm for one-hidden layer MLPs. Algorithm 2

shows the backpropagation algorithm with stochastic updates. For each training exam-

ple, we perform a forward pass to compute the predicted network output and associated

loss (fprop in Algorithm 2). This loss is then used as input to the downward pass
(bprop in Algorithm 2) which computes gradients for all parameters of the network. We

then perform one step of stochastic gradient descent. An entire pass through the training

set is referred to as an epoch. The algorithm can run for a fixed number of epochs or use

a number of heuristics to decide when to stop (see section 1.3.4.2).

[37] outlines many useful tricks for making the backpropagation algorithm work bet-

ter. Training patterns x should be normalized 4 and weights initialized to small random

values, as a function of the neuron’s fan-in. This ensures that units operate in the linear

region of the sigmoid at the start of training and are thus provided with a strong learning

signal. Targets y should also be chosen according to the type of non-linearity: {0,1} for

the sigmoid and {−1,1} for the hyperbolic tangent tanh (an alternative to the sigmoid

which is preferable according to [38]). Finally, choosing the appropriate learning rate

ε is paramount to the success of this training procedure. In this thesis, we rely on first

order gradient descent methods, combined with cross-validation for selecting optimal

learning rates.
4Decorrelating the inputs x so that all component x j of x are independent also helps to speedup con-

vergence [37]. However it is not clear this is advisable when working with images, since we may actually
want to preserve local correlations.
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Algorithm 2 TrainMLPStochastic(D,ε)
Dn training set, containing pairs (x(i),y(i))
ε learning rate
∆θmin threshold value used to detect convergence of optimization
fprop: function which computes output o(x) = f (x), according to Eq. 1.11
bprop: function which computes gradients on parameters b, W , c and V according to
Eqs. 1.13-1.14 and Eqs. 1.17-1.18 respectively

Initialize c, b to zero vectors
Initialize V randomly from uniform distribution w/ range [−1/

√
d,+1/

√
d]

Initialize W randomly from uniform distribution w/ range [−1/
√

dh,+1/
√

dh]
continue← true
θ t−1 ← (W,b,V,c)
while continue do

Initialize dc,db,dV,dW to zeros
for all (x(i),y(i)) in Dn do

Get next input x(i) and target y(i) from Dn
o(i) ← fprop(x(i))
dW,db,dV,dc← bprop(o(i), y(i))
(W,b,V,c)← (W,b,V,c)− ε · (dW,db,dV,dc)

end for
θ t ← (W,b,V,c)
if |θ t−θ t−1| < ∆θmin then

continue← f alse
end if
θ t−1 ← θ t

end while

1.3.4 Challenges

1.3.4.1 Local Minima

The representational power of ANNs does come at a price. Because of composing

several layers of non-linearities, the optimization problem becomes non-convex. There

are therefore no guarantees that the resulting solution is a global minimum. As such,

when optimizing ANNs, it is customary to run several iterations of the training algorithm

from different random initial weights. The performance of the network as a whole can

then be reported as the mean and standard deviation of R( f ,Dtest). This allows for a fair

evaluation of ANN performance and a comparison to other convex learning algorithms
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such as Support Vector Machines (SVM) [10]. Alternatively, one can also choose the

seed used for random initialization by cross-validation.

As mentioned in section 1.1.4, stochastic gradient descent has been shown to help

escape local minima. The idea is akin to Simulated Annealing [32]. By adding random-

ness or noise to the gradient, we are perturbing the system in such a way as to encourage

further exploration of the space. In some cases, this small perturbation will be enough

to escape a shallow local minimum.

While the use of gradient descent in a non-convex setting may be objectionable to

some, it is worth reminding the reader that finding the global minima is not the ultimate

goal of learning. Indeed, the ultimate goal is to achieve good generalization. As such,

finding a good local optimum may be sufficient.

1.3.4.2 Overfitting

ANNs being universal approximators, they are very prone to overfitting. The model

selection procedure described in section 1.1.5 must therefore be used to carefully select

the number of layers and number of units nh per layer. To control model capacity, ANNs

can use an early-stopping procedure. By tracking the generalization performance during

the training phase (using a validation set), it is possible to greatly reduce the sensitivity

of the generalization error to the choice of network size [45]. Networks which have

many more parameters than training examples can thus be used if learning is stopped

before those networks are fully trained.

By tracking both training and validation errors during learning, it is possible to de-

termine the optimal number of training epochs e∗. During the first e∗ epochs, training

and validation errors are minimized concurrently. After e∗ epochs however, validation

error starts to increase (while training error is still being minimized).

Early stopping can be understood from the point of view of regularization (sec-

tion 1.1.5). Since we initialize the weights to small random values, they will tend to

increase throughout training. Stopping "early" (before R( fθ ,D) is fully minimized)

therefore prevents the parameters θ from reaching overly large values. This corresponds

to an L2 regularization on the parameters [61].
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1.4 Convolutional Networks

From Hubel and Wiesel’s early work on the cat’s visual cortex [29], we know there

exists a complex arrangement of cells within the visual cortex. Cells are tiled in such

a way as to cover the entire visual field, with each cell being only sensitive to a small

sub-region called a receptive field. Two basic cell types were identified, with these very

unique properties:

• simple cells (S) respond maximally to specific edge-like stimulus patterns within

their receptive field. Their receptive field contains both excitatory and inhibitory

regions.

• complex cells (C) respond maximally to the same set of stimulus as corresponding

S cells, yet are locally invariant to their exact position.

This work is at the source of many neurally inspired models of computational vi-

sion: the NeoCognitron [16], HMAX [59] and LeNet-5 [40]. While they may differ in

the details of their implementation, all these models share the same basic architecture,

an example of which is shown in Fig. 1.4. They alternate layers of simple and complex

units 5, arranged in 2D grids to mimic the visual field. Each unit at layer l is connected to

a local subset of units at layer l−1, much like the receptive fields of Hubel and Wiesel.

With the exception of this local connectivity, (S) units perform the same task as the ar-

tificial neurons of a standard neural network. The output of an (S) neuron can therefore

be modeled with h(S)
i (x) = sigmoid(∑ j∈rec field of hi wi jx j +b), where i (as well as j) rep-

resents the 2D coordinates of a neuron in the hidden and visible layers respectively. The

weights of an (S) neuron therefore represent a visual feature or template to which it re-

sponds maximally if present in its receptive field. (C) neurons receive the output from

(S) units in their receptive fields and perform some kind of pooling function, such as

computing the mean or max of their inputs. In doing so, they also act as a sub-sampling

layer (i.e. fewer cells per retina area are necessary). This pooling is meant to replicate

the invariance to position which was observed in (C) cells.
5For clarity, we use the word "unit" or "neuron" to refer to the artificial neuron and "cell" to refer to

the biological neuron.
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LeNet-5 additionally adds the constraint that all (S) neurons at a given layer are

"replicated" across the entire visual field. These form feature maps which are shown

in Fig. 1.4 as stacks of overlapping rectangles. (S) neurons within the same feature map

share the same parameters W and each feature map contains a unique offset b. The result

is a Convolutional Neural Network (CNN). CNNs get their name from the fact that the

activations of neurons within feature map i can be written as hi(x) = sigmoid(Wi ∗x+b),

where ∗ is the convolutional operator.

Figure 1.4: An example of a convolutional neural network, similar to LeNet-5. The CNN
alternates convolutional and sub-sampling layers. Above, the input image is convolved
with 4 filters generating 4 feature maps at layer (S1). Layer (C1) is then formed by down-
sampling each feature map in (S1). Layer (S2) is similar to (S1), but uses 6 filters. Note
that the receptive fields of units in (S2) span all 4 feature maps of (C1). The top-layers
are fully-connected and form a standard MLP.

LeNet is of particular interest to this thesis, as it is the only model, of the 3 mentioned,

which is trained through backpropagation. Since its inception, it has also achieved im-

pressive results on a wide-array of visual recognition tasks which remain competitive to

this day (0.95% classification error on MNIST [40]). The backpropagation algorithm of

Eqs. 1.12-1.18. need only be modified slightly to account for the parameter sharing, by

summing all parameter gradients originating from within the same feature map.

CNNs are very attractive models for vision. Features of interest (to which (S) cells

are tuned) are detected regardless of the exact position of the stimulus. CNNs are thus

naturally position equivariant, a property which would have had to be learnt in a tradi-

tional ANN. Also, the local structure of the receptive fields exploits the local correlation

present in 2D images and after training, leads to local feature detectors such as edges
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or corners in the first layer. The pyramidal nature of CNNs also means that higher-level

units learn features which are more global, i.e. which span a larger field than the first

layer. The pooling operation of complex cells may also provide some level of transla-

tion invariance, as well as invariance to small degrees of rotation [59]. This may help in

making CNNs more robust.

Finally, CNNs massively cut-down on the amount of parameters which need to be

learnt. Since we know that learning more parameters requires more training data [2], this

helps the learning process. By controlling model capacity, CNNs also tend to achieve

better generalization on vision problems.

1.5 Alternative Models of Computation

ANNs achieve non-linear behaviour by stacking multiple layers of simple units of

the form y(x) = s(Wx + b). Multiple layers are required because these simple units

can only capture first-order correlations. Another solution is to use higher-order units
which capture higher-order correlations such as the covariance between all pairs of input

components (xi,x j). These were first introduced in [44] under the name of HOTLU (or

high-order threshold logic unit). They showed that a simple second-order unit can learn

the XOR logic function 6 in a single-pass of the training set. Formally, [17] defines

higher order units as,

yi(x) = s(T0(x)+T1(x)+T2(x)+ ...) (1.19)

= s(b+∑
j

Wi jx j +∑
j
∑
k

Wi jkx jxk + ...) (1.20)

where the maximum index of T defines the order of the unit. While Minsky and Pa-

pert [44] claimed that the added complexity made them impractical to learn, Giles and

Maxwell [17] showed that using prior information, higher-order units can be made in-

variant to certain transformations at a relatively small price. For example, shift invari-

ance can be implemented very cheaply by a second-order unit, under the conditions that

6XOR(i, j) =
�

+1 if sign(i)=sign( j),
−1 if sign(i)�=sign( j). .



23

{Wi jk = Wi( j−m)(k−m);m ∈ N,∀ j,k}. Having these built-in invariances is very advanta-

geous. Since the network does not have to learn them from data, higher-order units can

achieve better generalization with smaller training sets.

Computational neuroscience also provides additional arguments for higher order

units. While the basic artificial neural unit introduced in section 1.3 vaguely resembles

the architecture and behaviour of a biological neuron, there is no doubt that the real be-

haviour of a biological neuron is much more complex. Recently, Rust et al. [56] studied

the behaviour of simple and complex cells in the early visual cortex of macaque mon-

keys, known as V1. They showed that the behaviour of simple (S) cells accounted for

several linear filters, some of which were excitatory while others were inhibitory. Their

model also showed a better fit to the cell’s firing rate by taking into account pairs of filter

responses. Their complete model, given in Eq. 6.1 of page 52, models cell behaviour

as a weighted sum of squares of filter responses. This model will serve as inspiration to

Chapter 6.



CHAPTER 2

DEEP LEARNING

From the discovery of the Perceptron, to the first AI winter and the discovery of the back-

propagation algorithm, the history of connectionist methods has been a very tumultuous

one. The latest chapter in neural network research involves moving past the standard

Multi-Layer Perceptron (MLP) and into the field of Deep Networks: networks which

are composed of many layers of non-linear transformations.

We have seen in Chapter 1 that the single-layer MLP is a universal approximator.

Given enough hidden units and the ability to modify the parameters of the hidden and

output layers, such MLPs can approximate any continuous function. While this revela-

tion has been a strong argument in favor of neural networks, it fails to account for the

complexity of the required networks. Taking inspiration from circuit theory, Håstad [19]

states that a function which can be "compactly represented by a depth k architecture

might require an exponential number of computational elements to be represented by a

depth k− 1 architecture". To become a true universal approximator, a shallow network

such as the MLP, might thus require an exponential number of hidden units. From [2],

we know the amount of training data required for good generalization is proportional to

the number of parameters in the network. Training shallow networks might thus require

an exponential amount of training data, a seemingly prohibitive task.

To make things worse, standard training of MLPs is purely supervised. This is prob-

lematic on two levels. Manual annotation of datasets is a very time-consuming and

expensive task. One would thus benefit greatly from being able to use unlabeled data

during the learning process. Second, it could be argued that to capture the real essence

of a dataset D , one would need to model the underlying joint-probability pT (x,y). The

only learning signal used in supervised learning however, stems from the conditional-

class probability p(y = m|x). Since p(x,y) = p(y|x)p(x), the use of the prior p(x) in

learning thus seems attractive.

In 2006, Hinton et al. [26] introduced the Deep Belief Network (DBN), a break-
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through in the field of deep neural networks. They introduced a greedy layer-wise train-

ing procedure based on the Restricted Boltzmann Machine (RBM), which opened the

door to learning deep hierarchical representations in an efficient manner. DBNs can

also be used to initialize the weights of a deep feed-forward neural network. After a

supervised fine-tuning stage1, this unsupervised learning procedure leads to better gen-

eralization performance compared to traditional random initialization [5, 24].

The research presented in Chapters 4 and 8 was largely conducted to expand on this

work. As such, this present chapter will focus on providing the reader with the necessary

background material. Section 2.1 starts with an overview of Boltzmann Machines and

their basic learning rule. We then proceed in section 2.2 with a short primer on Markov

Chains and a particular form of Markov-Chain Monte Carlo (MCMC) sampling tech-

nique known as Gibbs sampling. From there, we will be able to cover the details of the

DBN.

2.1 Boltzmann Machine

Boltzmann Machines (BM) [25] are probabilistic generative models which learn

to model a distribution pT (x), by attempting to capture the underlying structure in the

input. BMs contain a network of binary probabilistic units, which interact through

weighted undirected connections. The probability of a unit si being "on" given its con-

nected neighbours, is stochastically determined by the state of these neighbours, the

strength of the weighted connections and the internal offset bi. Positive weights wi j

indicate a tendency for units si and s j to be "on" together, while wi j < 0 indicates

some form of inhibition. The entire network defines an energy function, defined as

EE(s) =−∑i ∑ j>i wi jsis j−∑i bixi. The stochastic update equation is then given by:

p(si = 1|{s j : ∀ j �= i}) = sigmoid(∑
j

wi js j +bi), (2.1)

1The supervised fine-tuning stage consists in using the traditional supervised gradient descent algo-
rithm of section 1.3.3, using the weights learnt during the layer-wise pre-training as initial starting condi-
tions.
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a stochastic version of the neuronal activation function found in ANNs. Under these

conditions and at a stochastic equilibrium, it can also be shown that the probability of a

given global configuration is given as

p(s) =
1
Z

e−EE(s). (2.2)

High probability configurations therefore correspond to low-energy states.

Useful learning is made possible by splitting the units into visible and hidden units,

as shown in Fig. 2.1(a), i.e. s = (v,h). During training, visible units are driven by training

samples x(i) and the hidden units are left free to converge to the equilibrium distribution.

The goal of learning is then to modify the network parameters θ in such a way that

p(v) = ∑h p(v,h) is approximately the same during training (with visible units clamped)

and when the entire network is free-running. This amounts to maximizing the empirical

log-likelihood

1
N

n

∑
i=1

log p(v = x(i)). (2.3)

From Eq. 2.3, we can derive a stochastic gradient over the parameters θ for training

example x(i):

∂ log p(v)
∂θ

����
v=x(i)

=−∑
h

p(h|v = x(i))
∂EE(x(i),h)

∂θ
+∑

v,h
p(v,h)

∂EE(v,h)
∂θ

(2.4)

The above gradient is the sum of two terms, corresponding to the so-called positive
and negative phases. The first term is an average over p(h|v = x(i)) (i.e. probability

over the hidden units given that the visible units are clamped to training data). It will act

to decrease the energy of the training examples, referred to as positive examples. The

second term, an average over p(v,h), is of opposite sign and will thus act to increase

the energy of configurations sampled from the model. These configurations are referred

to as negative examples, as they are training examples which the network needs to

unlearn. Together, this push-pull mechanism attempts to mold an energy landscape
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where configurations with visible units corresponding to training examples have low-

energy and all other configurations have high-energy.

To apply Eq. 2.4, we must first have a mechanism for obtaining samples from p(h|v)
and p(v,h). The following section covers the basic principles of Markov Chains along

with the Gibbs sampling algorithm, which will prove useful for this task.

2.2 Markov Chains and Gibbs Sampling

2.2.1 Markov Chains

A Markov Chain is defined as a stochastic process {X (n) : n ∈ T,X (n) ∈ χ} where the

distribution of the random variable X (n) depends entirely on X (n−1). This can be written

as:

p(X (n)|X (0), ...,X (n−1)) = p(X (n)|X (n−1))

The dynamics of the chain are thus entirely determined by the transition probability

matrix P, whose elements pi j determine the probability of making a transition from

state i to state j. Given an initial state µ0, the distribution at step n, is thus given by

µ0Pn. Chains of interest are those which are said to be irreducible and ergodic2. Under

these conditions, a Markov chain will have a unique stationary distribution π such that

πP = π and the stationary distribution is the limiting distribution [67]. Mathematically,

this translates to:

lim
n→∞

Pn
i j = π j, ∀i. (2.5)

An ergodic, irreducible Markov chain should therefore converge to its stationary distri-

bution π if it is run for a sufficient number of steps. This is known as the burn-in period.

This leads to an important result at the foundation of most MCMC sampling methods

and which will prove useful for training Boltzmann Machines.
2Simply put, irreducibility implies that all states are accessible from each other with non-null proba-

bility. Chains are said to be ergodic if they are aperiodic and have states which revisit themselves in finite
time and with probability 1. For further details, we refer the reader to [67].
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An important property of Markov chains, is that, for any bounded function g [67]:

lim
N→∞

1
N

N

∑
n=1

g(X (n)) = Eπ(g) = ∑
j

g( j)π j (2.6)

While this only holds true in the limit of N → ∞, in practice this means that samples

obtained after a sufficient burn-in period can be treated as samples from π . The quality

of the estimate Êπ(g) is then determined by the mixing rate of the chain. The mixing

rate relates to the amount of correlation between consecutive samples, with good mixing

corresponding to zero or low correlation. In Chapter 8, we will see that good mixing is

key to the successful training of RBMs.

2.2.2 The Gibbs Sampler

For the above to be useful for training Boltzmann Machines, we still require a mech-

anism for building a Markov chain with stationary distributions p(h|v) and p(v,h). This

can be achieved by a process called Gibbs sampling [53]. Given a multivariate distri-

bution p(X = X1, ...,Xp), the trick is to build a Markov chain with samples X (i), i ∈ N
which, given the previous value X (n) of the chain state variable, has the transition prob-

abilities as defined in Eqs. 2.7-2.10. For clarification, the superscript refers to the chain

index within the Markov chain while the subscript is used to index a particular random

variable (e.g. random variable formed by unit si in a Boltzmann machine)

X (n+1)
1 ∼ p(x1|x

(n)
2 ,x(n)

3 , ...,x(n)
p ) (2.7)

X (n+1)
2 ∼ p(x2|x

(n+1)
1 ,x(n)

3 , ...,x(n)
p ) (2.8)

... (2.9)

X (n+1)
p ∼ p(xp|x(n+1)

1 ,x(n+1)
2 , ...,x(n+1)

p−1 ) (2.10)

Each variable is thus sampled independently, whilst keeping the other variables fixed.

As an example, to sample from p(h|v) for the BM of Fig. 2.1(a), we would build a chain

as stated above with X = (h0,h1,h2) and inputs v clamped. To sample from p(v,h), we
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simply set X = ({vi∀i},{h j∀ j}). From Eq. 2.6, repeating the above procedure many

times results in values X(n) which can be treated as samples of p(h|v) and p(v,h).

Using Gibbs sampling to learn a BM is very expensive however. For each parameter

update, one must run two full Markov chains to convergence, with each transition rep-

resenting a full step of Gibbs sampling. For this reason, we now turn to the Restricted

Boltzmann Machine, for which efficient approximations were devised.

2.3 Deep Belief Networks

This section covers the core aspects of the Deep Belief Network [26]. We start with

a description of the Restricted Boltzmann Machine and show how it improves upon the

generic learning algorithm of a BM. We then tackle the Contrastive Divergence algo-

rithm, a trick for speeding up the learning process even further, and finally show how

RBMs can be stacked to learn deep representations of data.

2.3.1 Restricted Boltzmann Machine

Restricted Boltzmann Machines are variants of BMs, where visible-visible and hidden-

hidden connections are prohibited. The energy function EE(v,h) is thus defined by

Eq. 2.11, where W represents the weights connecting hidden and visible units and b,

c are the offsets of the visible and hidden layers respectively.

EE(v,h) = −b�v− c�h−h�Wv (2.11)

The biggest advantage of such an architecture is that the hidden units become condi-

tionally independent, given the visible layer (and vice-versa). This is self-evident from

looking at the graphical model of Fig. 2.1(b) and may also be derived from Eqs. 2.11
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(a) (b)

Figure 2.1: Example of (a) Boltzmann Machine (b) Restricted Boltzmann Machine.
Visible units are shown in white and hidden units in gray. For clarity, we omit the
weights on each undirected connection along with the offset.

and 2.2. We can therefore write,

p(h|v) = ∏
i

p(hi|v) (2.12)

p(v|h) = ∏
j

p(v j|h). (2.13)

This greatly simplifies the learning rule of Eq. 2.4, as inference now becomes trivial and

exact. As an example, we derive the gradient on Wi j. Gradients on the offsets can be

obtained in a similar manner.

∂ log p(v)
∂θ

����
v=x(i)

=−∑
h

∏
i

p(hi|v = x(i))
∂EE(v,h)

∂Wi j

����
v=x(i)

+∑
v,h

∏
i

p(hi|v)p(v)
∂EE(v,h)

∂Wi j

(2.14)

=−∑
h

p(hi|x(i))hi · x(i)
j +∑

v,h
p(hi|v)p(v)hi · v j (2.15)

=−p(hi = 1|x(i)) · x(i)
j +∑

v
p(hi = 1|v)p(v) · v j (2.16)

=−x(i)
j · sigmoid(Wi · x(i) + ci)+Ev[p(hi|v) · v j] (2.17)

As we can see from Eq. 2.17, the positive phase gradient is straightforward to com-

pute. Computing the negative phase gradient still requires samples from p(v) however.
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How to get these negative samples is what sets most of the RBM training algorithms

apart (see Chapter 8). Regardless of their peculiarities, they all exploit the fact that

Gibbs sampling is very efficient in an RBM. Because units in one layer are conditionally

independent given the other layer, getting x(n+1) from x(n) can be achieved in two steps:

h(n+1) ∼ sigmoid(W �x(n) + c) (2.18)

x(n+1) ∼ sigmoid(Wh(n+1) +b) (2.19)

For a more detailed derivation of all the above formulas, we refer the reader to [3].

2.3.2 Contrastive Divergence

The Contrastive Divergence learning algorithm [26] relies on the following two ob-

servations to speed-up learning:

1. since the Gibbs chain takes a long time to converge, initializing the chain with

a training example x(i) (a sample of the distribution we wish to approximate)

"should" help accelerate the burn-in process. Note in particular that when p≈ pT ,

burn-in is immediate.

2. instead of letting the Markov chain converge to its equilibrium distribution before

extracting a sample, run the chain for k-steps only. The resulting algorithm is

referred to as "CD-k". Bengio and Delalleau [4] later showed that this approxi-

mation was warranted since the gradient of CD-k can be viewed as a series which

converges to the true gradient and whose terms tend to 0 as k→ ∞.

While Chapter 8 will provide counter-arguments to the above statements, CD-1 has

been found to work well in practice [26, 33]. CD-1 updates are illustrated in Fig. 4.1.

For a given input v(1) = x(i), they are given as follows:
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∂Wi j =−h(1)
i · v(1)

j + p(hi = 1|v(2)) · v(2)
j (2.20)

∂ci =−h(1)
i + p(hi = 1|v(2)) (2.21)

∂b j =−v(1)
j + v(2)

j (2.22)

The parameter updates therefore encourage the visible-hidden correlations in the

negative phase to match those in the positive phase.

2.3.3 Greedy Layer-Wise Training

Hinton showed in [26], that RBMs can be stacked and trained in a greedy manner to

form so-called Deep Belief Networks. DBNs are graphical models which learn to extract

a deep hierarchical representation of the training data.

Figure 2.2: Example of a two-layer DBN. The posteriors Q(h(l)|v) are used to generate
the representation at layer l. The top-two layers form an RBM which, together with
p(v|h(l)) form a generative model.

The principle is the following. Start by training a single RBM on the training distri-

bution pT (x). Once the RBM is fully trained, freeze its weights and use its conditional

distribution p(h|v) (referred to as Q(h|v) from now on) to generate a new distribution

p(x(1)), such that x(1) ∼ ∑x Q(h|v = x)pT (v). This new distribution forms the training

examples for the second layer RBM and the process is repeated until we reach an archi-

tecture with sufficient depth L. The resulting DBN is thus a graphical model as shown
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in Fig. 2.2, which defines the following joint distribution [33]:

p(v,h(1), ...,h(L)) = p(v|h(1))p(h(1)|h(2))...p(h(L−2)|h(L−1))p(h(L−1),h(L)) (2.23)

The arcs in bold define a generative model which can be used to sample from the model.

The dashed arc illustrates the posteriors Q(l)(h|v) of the RBM used to generate the rep-

resentation at layer l.

Why does such an algorithm work ? Taking as example a 2-layer DBN with hidden

layers h(1) and h(2), Bengio [3] established that log p(v) can be rewritten as,

log p(v) =KL(Q(h(1)|v)||p(h(1)|v))+HQ(h(1)|v)+ (2.24)

∑
h

Q(h(1)|v)(log p(h(1))+ log p(v|h(1)))

KL(Q(h(1)|v)||p(h(1)|v)) represents the KL divergence between the posterior Q(h(1)|v)
of the first RBM if it were standalone, and the probability p(h(1)|v) for the same layer

but defined by the entire DBN (i.e. taking into account the prior p(h(1),h(2)) defined by

the top-level RBM). H is the entropy function. It can be shown that if we initialize both

hidden layers such that W (2) = W (1)T
, Q(h(1)|v) = p(h(1)|v) and the KL divergence is

null. First learning the first level RBM, then keeping W1 fixed and optimizing Eq. 2.24

with respect to W (2) can thus only increase the likelihood p(v). Also, notice that if we

isolate the terms which depend only on W (2), we get: ∑h Q(h(1)|v)p(h(1)). Optimizing

this with respect to W (2) amounts to training a second-stage RBM, using the output of

Q(h(1)|v) as the training distribution.



CHAPTER 3

OVERVIEW OF THE FIRST PAPER

Empirical Evaluation of Convolutional RBMs for Vision.
Desjardins, G. and Bengio, Y.

Technical Report 1327, Université de Montréal. Oct, 2008

3.1 Context

Deep Belief Networks, published in 2006 by Hinton et al. [26], introduced the idea of

using unsupervised learning as a way to pretrain deep neural networks. Within that same

year, several other research groups [5, 50] published similar findings. These ground-

breaking papers generated a lot of excitement in the field of connectionism leading to a

workshop on Deep Learning at the 2007 Neural Information Processing Systems (NIPS)

conference. At the time this technical report was published, most applications of deep

networks had focused on learning from small MNIST-like images [26, 33, 39]. Ranzato

et al. [51] also explored performing unsupervised learning from small image patches

and using the resulting filters to initialize the features of a larger convolutional architec-

ture. Motivated by previous work on convolutional neural networks (see section 1.4),

the goal of this work was to show that DBNs could benefit from having a convolutional

architecture and eventually scale DBNs to larger images.

3.2 Contributions

This technical report lays the groundwork for convolutional DBNs. It starts by intro-

ducing the convolutional RBM (CRBM), which is a modification of the traditional RBM

explored in section 2.3.1. Much like in the bottom layers of LeNet-5, hidden units have

local receptive fields which span only a subset of the visible layer. They are also grouped

into feature maps, which share the same parameters (weights and offsets). This allows

hidden units to model local regions of input space, which share the same parametriza-
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tion across the entire visual field. This work also explores various training algorithms for

CRBMs. We start by showing that Contrastive Divergence can be easily adapted to ac-

count for the parameter sharing. We then show empirically that training CRBMs directly

(i.e. on the full input image) is more efficient than training a fully-connected architecture

on image patches, and then using this to initialize a convolutional network. To the best

of our knowledge, this was the first reported implementation of such an architecture.

In terms of the authors’ contributions, all of the underlying technical work was done

by this author. It is however the result of joint-work with Yoshua Bengio, who guided

the project to fruition through constructive feedback and thoughtful discussions. The

technical writing was also entirely done by myself.

3.3 Comments

Since the writing of this report, most of the issues outlined as future work have

been addressed and implemented. CRBMs have been successfully integrated as part of

deep networks, the code optimized for larger datasets and max-pooling implemented

as an additional step in the greedy layer-wise training procedure. The resulting archi-

tecture, dubbed LeDeepNet, has also been modified to support the use of Denoising

Auto-Encoders as the basic building block [66].

Unfortunately, this work was never published. Implementation details, which have

only recently been addressed, made LeDeepNet unsuitable for large-scale images such

as Caltech 101 [13]. An unfortunate bug was also introduced during the rewrite, with

serious consequences for the pre-training procedure.

Since then, Lee et al. [42] have published an award-winning paper, which integrates

CRBMs in a full multi-layered probabilistic model, with very impressive results. They

also introduce a probabilistic version of max-pooling, which not only allows for top-

down interactions, but also naturally enforces local sparsity constraints. This work

makes LeDeepNet somewhat obsolete. As such, future research directions must be re-

evaluated. We take comfort in the fact that the technical report presented in the following

chapter, was cited by [42, 49] as contemporary work in the development of CRBMs.



CHAPTER 4

EMPIRICAL EVALUATION OF CONVOLUTIONAL RBMS FOR VISION

4.1 Abstract

Convolutional Neural Networks have had great success in machine learning tasks

involving vision and represent one of the early successes of deep networks. Local recep-

tive fields and weight sharing make their architecture ideally suited for vision tasks by

helping to enforce a prior based on our knowledge of natural images. This same prior

could also be applied to recent developments in the field of deep networks, in order to

tailor these new architectures for artificial vision. In this context, we show how the Re-

stricted Boltzmann Machine (RBM), the building block of Deep Belief Networks, can be

adapted to operate in a convolutional manner. We compare their performance to standard

fully-connected RBMs on a simple visual learning task and show that the convolutional

RBMs (CRBMs) converge to smaller values of the negative likelihood function. Our

experiments also indicate that CRBMs are more efficient than standard RBMs trained

on small image patches, with the CRBMs having faster convergence.

4.2 Introduction

Convolutional architectures have a long history in vision applications. They are

largely inspired by models of the visual cortex and employ feature detectors which are

sensitive to small regions of input space, called receptive fields. These detectors are

replicated throughout the image and form so-called feature maps. In Artificial Neural

Networks (ANN), this is achieved by forcing neurons within a feature map to have the

same weights and offsets. This allows for the same feature to be detected at every point

in the image. Feature maps are further grouped into layers and stacked, so that the out-

put of one layer forms the input of the next. This pyramidal structure allows the initial

layers to detect low-level features which are highly local in nature, such as edges or cor-

ners, which are then combined by the upper layers to generate more global and abstract
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features.

The success of Convolutional Neural Networks (CNN), such as LeNet-5 [40] in arti-

ficial vision tasks like hand-written digit classification or object recognition, stems from

their architecture and inherent constraints. The weight sharing within a feature map

greatly reduces the number of free parameters which makes them less prone to over-

fitting. We can think of the locality constraints and position invariance as enforcing a

prior based on our knowledge of natural images [3]. This acts as a regularization process

which greatly facilitates their training. Historically, deep ANNs have been notoriously

difficult to optimize. As we move towards deep architectures in machine learning, we

should therefore try to leverage these concepts as CNNs represent one of the early suc-

cesses of deep networks. In this report, we will therefore show how the same principles

can be applied to the Restricted Boltzmann Machine (RBM), the building block of Deep

Belief Networks (DBN). We will start by introducing the RBM and its training algorithm

and then show how they can be adapted to operate in a convolutional manner. We will

then showcase the experiments which were done, which seem to indicate that CRBMs

are more efficient than traditional RBMs at learning to model images.

4.3 Restricted Boltzmann Machines

Boltzmann Machines are a probabilistic model, which define a joint energy between

units in a visible layer v and a hidden layer h. In a Restricted Boltzmann Machine,

connections are prohibited between units of the same layer. The energy EE(v,h) is given

by Eq. 4.1 and can be converted to a probability through the partition function Z defined

below.

EE(v,h) = −b�v− c�h−h�Wv (4.1)

P(v,h) =
e−EE(v,h)

Z
, with Z = ∑

v,h
e−EE(v,h) (4.2)

Here, (b,c,W ) are the offset and weight parameters θ of the model and have a def-

inition similar to those of traditional neural networks. Learning in an RBM consists in
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modifying θ in order to minimize the energy of observed configurations while increas-

ing the energy of the other configurations. Since probability and energy have an inverse

relationship, this increases the probability of observed data. The probability of observed

v is obtained by marginalizing over the hidden layer, such that P(v) = ∑h P(v,h). To

train the RBM, we need to estimate the gradient of the log-likelihood function logP(v):

∂ logP(v)
∂θ

= −∑
h

P(h|v)∂EE(v,h)
∂θ

+∑
v,h

P(v,h)
∂EE(v,h)

∂θ
. (4.3)

We refer the reader to [23, 26] for the presentation of RBMs and to [4] for deriva-

tions and further analysis of the log-likelihood gradient. Since the partition function is

intractable, so is the computation of the above gradient. Contrastive Divergence (CD)

approximates this gradient through a truncated Gibbs Markov chain. Starting from a

valid training sample x(1) in the visible layer, CD-k generates samples (x(t), y(t)) of the

distribution according to yt ∼ p(h|v = xt) and xt ∼ p(v|h = yt−1) with t ∈ [1 . . .k + 1].

Updates for weights W and offsets b and c are then performed in the direction given by

∆W , ∆b and ∆c respectively:

∆b = −x(1) + x(k+1) (4.4)

∆c = −y(1) + p(h = 1|v = x(k+1)) (4.5)

∆W = −y(1)� · x(1) + p(h = 1|v = x(k))� · x(k+1). (4.6)

where (abusing a bit notation), p(h = 1|v = xk) represents the vector whose elements

are p(hi = 1|v = xk). Pseudocode for CD is shown in the appendix (see CRBM_CD).

Finally, it is important to note that sampling in an RBM is very efficient since the units

in one layer are conditionally independent given the state of the other layer. For binary

stochastic units, the activation probability of each unit hi (or conversely vi) is given by:

p(hi = 1|v) = sigmoid(ci +∑
j

Wi jvi), (4.7)

where sigmoid is the function defined as sigmoid(x) = 1/(1+ exp(−x)).
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4.4 Convolutional RBMs

4.4.1 Architecture of CRBMs

In this section, we show how RBMs and CD can be adapted to work in a convo-

lutional manner. There are two ways one can think of convolutional RBMs. From a

theoretical point of view, they are simply very large fully-connected RBMs where each

unit represents a particular feature at a certain position within the image. The weights

W thus form a high-dimensional tensor where Wi j,mn,uv refers to the weight connecting

the i-th feature at pixel (m,n) of the hidden layer (with offset ci,mn) to the j-th feature

at pixel (u,v) of the visible layer (with offset b j,uv). Their convolutional nature imposes

specific constraints on the weights such that:

Wi j,mn,uv = Wi j,m�n�,(u+(m�−m))(v+(n�−n)) ∀ hidden layer pixels (m,n),(m�,n�) (4.8)

Wi j,mn,uv = 0 ∀(u,v) such that |u−m| > α or |v−n| > β (4.9)

ci,mn = ci ∀ pixels (m,n) in hidden layer (4.10)

b j,uv = b j ∀ pixels (u,v) in visible layer (4.11)

where α and β determine the size of the receptive fields.

Alternatively, it can be easier to visualize CRBMs as simply performing a convolu-

tion using a standard RBM as the kernel. Using Fig. 4.1 as an example, the advantages

offered by CRBMs become apparent. On vision tasks, the number of parameters re-

quired in a standard RBM grows with the dimension of the input image. In contrast, the

complexity of a CRBM is solely determined by the size of the receptive field and the

number of features we wish to extract, and does not depend on the input image. In this

mindset, the hidden layer shown in Fig. 4.1 can be considered as having only 3 features

(instead of 12) which together, form a multi-dimensional pixel within the hidden layer’s

feature map. At each pixel, hidden units are connected to a subset of the visible units,

located within their receptive field (area shown in gray). Conceptually, these units once

vectorized, act as the visible layer of a standard RBM. The CRBM shown therefore per-
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forms an operation which is similar (but not equivalent) to that of a 3-(4x1) RBM, where

the digits indicate the number of hidden and visible units respectively. The difference

is only in the down-pass, when considering P(v|h): the hidden units at nearby locations

have overlapping receptive fields, and interact through them. When referring to the pa-

rameters of CRBMs, we will sometimes use an abridged notation where we drop the

hidden layer pixel indices from the weight matrix W , since these weights are replicated

throughout the feature map. Such weights will have the notation Wi j,uv. Similarly, b j

will refer to the offset of the j-th feature replicated at every pixel of the visible layer, and

ci the replicated hidden layer offset of the i-th feature.

At each step of the convolution, the state of a single pixel p(hi,mn = 1|v),∀i, can

be inferred using Eq. 4.7. Repeating this operation for every pixel in the hidden layer

constitutes the upward pass and generates a set of feature maps, which are local feature

detectors operating at every position in the image. It is clear that such an implementation

follows the constraints outlined in Eqs. 4.8-4.11.

Conceptually, inferring p(v|h) works in a similar manner. However, this approach

does not make for the most straight-forward nor the most efficient implementation.

While upwards propagation can easily be implemented as a tensor-product of the visible

units and the weight matrix W , determining p(v j,uv|h),∀ j, one pixel at a time requires

complex indexing of W . This can be side-stepped by again iterating over the pixels of

the hidden layer. At each time step, hidden units hi at pixel (m,n) contribute an amount

δvi,mn,uv = ∑ j p(hi,mn|v)Wi j,m,n,uv to the net input of units in their receptive field. The net

input refers to the activation probability p(v j,uv = 1|h) before applying the non-linearity.

The downward pass therefore consists in iterating over all pixels in the hidden layer and

summing their contributions for each pixel in the visible layer. Once this is completed,

the offset is added and we apply the sigmoid function, thus generating p(v j,uv = 1|h).

The pseudocode for both the upward and downward pass is presented in the appendix

(see PropUp and PropDown)

For purposes of notation (and following [39]), we will refer to the CRBM of Fig. 4.1

as being of type 3@2x2 - 1@3x3. This indicates that the CRBM contains one feature in
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the visible layer (the gray-level pixel value) arranged in a 3x3 feature map, and 3 features

in the hidden layer arranged in a 2x2 map. Note that this implicitly defines a receptive

field of size 2x2.

Figure 4.1: Contrastive Divergence in a convolutional RBM. In the above, the visible
layer contains one feature which is arranged in a 3x3 feature map, representing the in-
put image. The hidden layer contains 3 feature detectors. Since the units have a 2x2
receptive field, this generates a 2x2 feature map in the hidden layer. The CD algorithm
remains unchanged propagating from the visible to the hidden layer during the positive
phase, and down and back up again during the negative phase. In the above, the shaded
areas represent a single time-step in the convolution, when propagating from the visible
to the hidden layer. The state of the 3 hidden features shown in gray is inferred from
the state of the visible units in their receptive field (also in gray). The grey outline and
arrows represent the location of the next convolutional window. When inferring the state
of the visible layer given the hidden layer, p(v j,uv|h) is inferred from all the hidden units
which have pixel (u,v) in their receptive field.

,

4.4.2 Contrastive Divergence for CRBMs

The mechanisms for inferring the state of one layer given the other affords us the

necessary tools for performing CD in a CRBM. As shown in Fig. 4.1, in its simplest

form, CD-1 consists of the following steps:

1. Initialize the visible layer with a real image x(1) from the training distribution.

2. Perform an upward pass to infer pixel states in the hidden layer. Generate sample

y(1) ∼ p(hi,mn = 1|v = x(1)), a multi-dimensional "image" containing the binary

states of the feature maps.
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3. Using sample y(1), perform a downward pass to infer pixel states in the visible

layer. Generate sample image x(2) ∼ p(v j,uv = 1|h = y(1)).

4. Repeat upward pass using x(2) as data for the visible layer, to determine p(hi,mn =

1|v = x(2))

Before applying Eq. 4.4-4.6, we need to modify the learning procedure slightly to ac-

count for the parameter sharing. As in [40], this is done by computing the parame-

ter gradients as if they were independent and then summing their individual contribu-

tions. As an example, the offset gradient of units in the visible layer is computed as

∆b j = ∑uv−x(1)
j,uv + x(2)

j,uv. The same procedure can be applied to the offset in the hidden

layer. Calculating the gradient for the weights is not as straightforward however. At each

step of the convolution, we compute the tensor product of the hidden units at pixel (m,n)

with the visible units within their receptive field. This value is either subtracted or added

to ∆W depending on whether we are in the positive (upwards) or negative (downward)

phase of CD.

4.5 Experiments

The goal of this experiment is to compare the performance of RBMs and CRBMs

on visual learning tasks. Since measuring the likelihood of the data over the parameters

of the model is intractable for RBMs, we rely on a generative procedure to estimate the

negative-likelihood (NLL) throughout the training phase. This generative procedure is

similar to the one described in [26] and involves the following steps: (1) we start by

initializing the visible layer of the RBM with valid training data, (2) perform m steps of

Gibbs sampling in the last RBM. The sampled vector in the visible layer is the result.

Using this procedure, the quality of the model can be estimated by the proportion of valid

generated images versus the total number of images generated. Let nx be the number of

examples generated by the RBM that are equal to input pattern x. To avoid assigning a

probability 0 to any vector x, we consider the probability assigned to any x to be ∝ 1+nx.

More formally, let Dtrain be the training set containing N different training examples, x
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a particular image configuration, nx the number of images of type x generated and S the

total number of images generated. The negative log-likelihood is estimated as follows:

NLL =
−1

|Dtrain| ∑
x∈Dtrain

log
1+nx

S +N
(4.12)

Unfortunately, this method of estimating the NLL is rather costly in terms of memory

since it requires us to build a histogram of all possible configurations of black or white

pixels in an nxn image. So far, our experiments have thus been limited to small input

images. The training data, shown below in Fig. 4.2, consists of small 4x4 binary images

containing 21 different 2x2 or 3x3 shapes, which can be placed anywhere in the image.

This gives a total of 123 different configurations and hopefully enough entropy in the

source distribution to make reliable comparisons between the two models. Given N =

123 and generating S = 10000 samples, setting nx = S/N and nx = 0 in Eq. 4.12 gives us

the lower and upper bounds (respectively) of the NLL. The NLL estimator is thus bound

to the following interval: 4.81 < NLL < 9.22.

Figure 4.2: Subset of training data, which consists of small 4x4 images, containing sim-
ple 2x2 or 3x3 geometric figures (shown above) which can be positioned at 16 different
positions.

We compared the performance of RBMs and CRBMs for the configurations shown

in Table 4.1. The experiments were meant to encompass three separate test cases. In

the first experiment, we start by comparing the learning dynamics of standard, fully-

connected RBMs with 112 hidden and 16 visible units, to CRBMs having a limited

receptive field of size 2x2. To provide a fair comparison, we increased the number of

hidden units of the CRBM to 450 to keep the number of free parameters equal in both

cases. The second phase of the experiment was meant to highlight the advantage of
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learning in a convolutional manner, as opposed to simply using a standard RBM trained

on a series of image patches. To this effect, we used an RBM with 450 hidden units

and 4 visible units, in order to mimic a 2x2 receptive field. The RBM was then trained

on consecutive image patches of size 2x2, thus mimicking a convolution operation. CD

was applied at each image patch and thus generated 9 parameter updates per training

image (i.e. the number of 2x2 patches which can be extracted from a 4x4 image). The

resulting parameters were then used to initialize a compatible CRBM from which we

could measure the NLL. In the last phase, we repeat the above experiments using 3x3

receptive fields. We experimented with several learning rates ε but found that in all cases,

optimal performance was achieved with ε = 0.1. Those results are shown in section 6.5.

Furthermore, we also compared a variation of the CD learning algorithm discussed

in section 4.4.2. Let us recall that parameter sharing in convolutional networks results

in each pixel contributing in an additive manner to the parameter gradients. The variant

consisted in averaging the parameter gradients of the offsets over the feature maps1.

Updates to offset b j for example, were thus computed as ∆b j = (1/Nv)∑u,v ∆b j,uv, where

Nv is the number of pixels in the visible layer. We will refer to these experiments as

CRBM-sum or CRBM-mean.

4.6 Results and Discussion

The result of these experiments are shown in Fig. 4.3. When using 2x2 receptive

fields, we can clearly see that CRBMs and RBMs trained patch-wise offer the best per-

formance, almost converging to the entropy of the source distribution. Fully-connected

RBMs on the other hand, fail to reach this minimum value regardless of the number of

hidden units. One could argue that given more training time, they might achieve the same

results, as their curves seem to retain a small negative slope at 50000 epochs. However,

the point remains that their convergence is significantly slower and thus sub-optimal.

Among the local methods, CRBM-mean offers the best performance. It converges to the

minimum faster than RBMs trained patch wise, where taking the mean or the sum of off-
1The same concept could also have been applied to the weights Wi j,uv. However this was shown,

experimentally, to be very detrimental to the performance of CRBMs.
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Table 4.1: Description of architectures used in our experiments. In order to perform
a fair comparison between the above models, we adjusted the number of hidden and
visible units to give approximately the same Degrees of Freedom (DoF) or number of
free parameters. The RBM was also tested with an increased number of hidden units
however, to determine if their poor performance was due to having too few hidden units
for CD to work properly.

Type Layers DoF Description
RBM 112 - 16 1792 RBM with 16 visible units and 112 hidden units.

200 - 16 3200 RBM with 16 visible units and 200 hidden units.
450 - 16 7200 RBM with 16 visible units and 450 hidden units.

RBM Patch 450 - 4 1800 RBM with 4 visible units and 450 hidden units.
This RBM is trained on flattened 2x2 image patches,
mimicking the effect of a convolution.

200 - 9 1800 RBM with 9 visible units and 200 hidden units. This
RBM is trained on flattened 3x3 image patches.

CRBM 450@3x3 - 1@4x4 1800 CRBM whose visible layer is a 4x4 image with uni-
dimensional pixels. This CRBM contains 450 hid-
den units arranged in a 3x3 feature map (with recep-
tive field of size 2x2).

200@2x2 - 1@4x4 1800 This CRBM contains 200 hidden units arranged in a
2x2 feature map (with receptive field of size 3x3).

sets seems to have little or no effect. CRBM-mean offers surprisingly faster convergence

than CRBM-sum, and thus seems to be the best method for the given training set. It is

not quite understood why this is case, but it seems to imply that offsets might require a

smaller learning rate than the weights.

These results are interesting for several reasons. First, this represents, to the au-

thors’ best knowledge, the first reported implementation of convolutional RBMs (by

opposition to RBMs applied to image patches). Second, it is exciting to note that the

advantages offered by CNNs, which have had tremendous success over the years, could

also be of benefit to RBMs. Learning to model images using local methods does seem

to offer a definite advantage, especially when learning is done in a convolutional man-

ner. Although these results might appear counter-intuitive at first (since fully-connected

architectures have more data at their disposal to learn a model of the distribution), we
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believe this might be another example where "less is more" [11]. Having a limited re-

ceptive field could simplify the optimization process by making the learning criterion

more smooth.

Also of interest is that these advantages seem to disappear as the size of the receptive

field is increased to a value close to the size of the input image. In Fig. 4.3(b), CRBMs

converge to about the same value and with the speed of regular RBMs. Only the RBM

Patch (mean) seems to escape this local minimum. At this point, it is not clear why this

is the case and warrants further investigation.

4.7 Future work

Much work is left to be done to evaluate the real-world performance of CRBMs in

vision tasks. In the short term, these claims will need to be validated on larger-scale data

sets, by increasing the factors of variation as well as the size the input images. To do this

will require modifying the way we estimate the NLL during training, possibly using the

method described in [58]. We also plan on training deep networks composed of stacks of

CRBMs, complete with a supervised classification stage. This will enable us to estimate

their performance on real-world vision tasks on datasets such as MNIST and NORB.

4.8 Conclusion

Convolutional architectures have proven to be very effective in machine learning

applied to vision. By reducing the number of free parameters, the networks are more

computationally efficient and less prone to overfitting. With the recent shift towards

deep architectures in machine learning, in which the RBMs play a key role, it becomes

interesting to see if RBMs can be modified in order to leverage these same basic prin-

ciples. In this report, we have shown to the best of our knowledge, the first reported

implementation of convolutional RBMs. Although this represents preliminary work,

CRBMs show promise for use in vision applications. In this particular experiment,

CRBMs (with proper receptive fields) offered the best performance, converging faster

than RBMs trained on separate image patches. Fully-connected RBMs on the other
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(a) Negative Likelihood of fully-connected RBMs, RBMs trained patch-wise and
CRBMs, using 2x2 receptive fields. CRBMs and RBMs trained in patch mode
almost converge to the entropy of the distribution. The RBMs do not reach this
minimum, regardless of the number of hidden units. Of note, the CRBM in mean-
mode seems to have the fastest convergence.

(b) Negative Likelihood of RBMs trained on 3x3 patches and CRBMs having
3x3 receptive fields. CRBMs and RBMs converge to approximately the same
suboptimal value. RBM Patch in mean mode however, still offers a very good
performance, again almost reaching the distribution entropy.

Figure 4.3: Comparing the performance of RBMs, CRBMs and RBMs trained on image
patches.
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hand, did not reach this minimum value. This confirms that convolutional architectures

are better suited for vision and suggests that RBMs can be adapted to take advantage

of this. Further work will focus on training CRBMs as part of deep architectures and

applying them to complex discriminative tasks.



CHAPTER 5

OVERVIEW OF THE SECOND PAPER

Quadratic Polynomials Learn Better Image Features.
Bergstra, J., Desjardins, G., Lamblin, P. and Bengio, Y.

Submitted to the International Conference on Machine Learning (ICML), 2009 (re-

jected)

5.1 Context

Research into deep networks is mostly focused on developing new training algo-

rithms for artificial neural networks comprising many layers of non-linearity. As ex-

plained in [3], depth is however a subjective measure which depends on the set of al-

lowed computations. Currently, most architectures or models have been based on a

linear projection followed by a sigmoidal non-linearity (section 1.2). As we have seen in

section 1.5 however, there may be certain advantages to using higher-order units capable

of learning higher-order statistics (such as pair-wise correlations between input units).

For a given level of computational complexity, a network composed of higher-order units

may require fewer layers than one with only first-order units. This is a promising avenue

of research as recent results have shown that performance starts decreasing in networks

with more than 4 hidden layers, using current learning algorithms [12].

5.2 Contributions

Recent research in computational neuroscience also seems to justify the use of higher-

order units in vision. Rust et al. [56] show that simple and complex cells in the visual

cortex of macaque monkeys, exhibit much more complex behaviour than previously

thought: behaviour which is very reminiscent of higher-order units.

The work presented in Chapter 6 uses this model as inspiration for experiments in

object classification. The contributions are three-fold. First, we show that using the
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model of [56] as a building block of ANNs can be done efficiently and translates to better

performance on visual classification tasks. Second, we show that the non-linearity used

in this model results in better generalization, compared to the traditional tanh activation

function. We also investigate the issue of translation invariance in higher-order networks,

which we discussed briefly in section 1.5.

With regards to the contributions of the authors, James Bergstra was the main driving

force behind this work. He had previously studied other variants of the model presented

in Chapter 6 and therefore had a very good insight into higher-order networks and some

of the software was already in place. On the technical side, my main contribution was

in adding support in Theano1 for the various architectures tested in this paper (convolu-

tional networks, with and without weight-sharing) and modifying the code to support all

3 architectures. Pascal Lamblin and I were in charge of the actual experiments, includ-

ing the model selection procedure. This was not a trivial task given that these models

have a large number of hyperparameters. It actually motivated the development of a "job

management" tool2 to streamline the process of launching experiments with many hyper-

parameters and storing the results in a format which facilitates their analysis. All authors

contributed to analyzing these results. The writing was done by James Bergstra with in-

put from Yoshua Bengio, who also helped direct the course of this research throughout.

5.3 Comments

The following article is a follow-up to a prior submission to the Nature Neuroscience

journal by authors James Bergstra, Yoshua Bengio and Jerome Louradour. It was sub-

mitted to the 26-th International Conference on Machine Learning but unfortunately

was not accepted for the conference. A revised version of the paper is currently un-

der consideration for the 23-rd annual conference of the Neural Information Processing

Society.

1Theano is an optimizing compiler developed by Olivier Breuleux and James Bergstra at the LISA
laboratory (www.iro.umontreal.ca/~lisa/). More information on the project can be found at
http://lgcm.iro.umontreal.ca/.

2JobMan, documentation to be made available soon on http://lgcm.iro.umontreal.ca/



CHAPTER 6

QUADRATIC POLYNOMIALS LEARN BETTER IMAGE FEATURES

6.1 Abstract

The affine-sigmoidal hidden unit (of the form s(ax+b)) is a crude predictor of neuron

response in visual area V1. More descriptive models of V1 have been advanced that

are no more computationally expensive, yet artificial neural network research continues

to focus on networks of affine-sigmoidal models. This paper identifies two qualitative

differences between the affine-sigmoidal hidden unit and a particular recent model of V1

response: a) the presence of a low-rank quadratic term in the argument to s, and b) the

use of a gentler non-linearity than the tanh or logistic sigmoid. We evaluate these model

ingredients by training single-layer neural networks to solve three image classification

tasks. We experimented with fully-connected hidden units, as well as locally-connected

units and convolutional units that more closely mimic the function and connectivity of

the visual system. On all three tasks, both the quadratic interactions and the gentler non-

linearity lead to significantly better generalization. The advantage of quadratic units was

strongest in conjunction with sparse and convolutional hidden units.

6.2 Introduction

Artificial neural networks are among the earliest machine learning algorithms, and

most are inspired by a particular simplification of the biological neuron: that each neuron

applies a sigmoidal non-linearity (such as the logistic sigmoid, sigmoid) to an affine

transform (parameter vector w, scalar b) of its input vector x:

response = sigmoid(w · x+b) =
1

1+ exp(−w · x−b)
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Whereas the exploration of different kinds of models was active in the 1980’s, artificial

neural network researchers since then have settled on the affine-sigmoid model and the

radial basis function (RBF) model [47, 48], which gave rise to Gaussian SVMs [7].

However, the affine-sigmoid model is a crude approximation of real neuron response.

Recently, Rust et al. [56] described experiments in which they tested for linear and non-

linear neuron responses among the simple and complex cells in the early vision system

of the macaque monkey. They found that only the simplest cells responded to an input

pattern x according to a formula like sigmoid(wx + b). Their model (Eq. 6.1) fit spike-

rate data better by incorporating separate non-linear terms for the excitation (E) and

shunting inhibition (S) experienced by each cell.

response = α +
βEζ −δSζ

1+ γEζ + εSζ (6.1)

E =
�

max(0,w�x)2 + x�V �V x (6.2)

S =
√

x�U �Ux (6.3)

Equation 6.1 looks sigmoidal as a function of E, but the sharpness of the non-linearity

is modulated by S. The constant scalar exponent ζ modulates the sensitivity of the func-

tion to both E and S. The constant scalars α,β ,δ ,γ, and ε control the dynamic range

of the function. As in the affine-sigmoid function, a vector of weights w parametrizes a

linear axis of increasing cell excitation. Most importantly, the low-rank matrices V and

U capture second-order interactions between the neuron inputs by parametrizing sub-

spaces where either positive or negative deviation from a particular value is equivalently

significant. Affine-sigmoidal models can only approximate this sort of flexibility with

increased depth and many more neurons in intermediate layers.

The use of quadratic functions, or even higher-order polynomials, is not new in neu-

ral network research. Minsky and Papert [44] used this idea to define the notion of

problem order. For example, a first-order unit cannot implement the infamous XOR

function, whereas a second-order unit can implement it. Later, Sigma-Pi networks were

advanced in PDP-1 [55] as a way to model high-order polynomial computation within a
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neuron dendritic tree. Giles and Maxwell [17] explained the utility of second-order and

third-order polynomials in terms of their potential for group invariance. Their result is

relevant to image processing (in raw raster format): there exist non-trivial second-order

polynomials that are invariant to the translation of a subject across a background of ze-

ros. The principle they draw on is that of spatial auto-correlation. Some second-order

polynomials can be written as linear functions of the spatial auto-correlation of an image,

and those polynomials are invariant to translation across a zero background. In contrast,

the only first-order polynomials that are invariant to this sort of translation are zero-order

polynomials, i.e., constants.

The difficulty with higher-order units, at least as they have traditionally been imple-

mented, is that their use requires a great deal of space and time. The number of degrees

of freedom in a higher-order unit (and amount of CPU time to evaluate the unit) is po-

tentially O(nk) where n is the number of input dimensions and k the degree. In practice

this has been prohibitive [17, 44]. For problems with many input dimensions (such as

image classification), even a second-order model is too large. There have been methods

for reducing the storage and CPU requirements: for example, by factoring the polyno-

mial [60] or by manually selecting which second-order terms to parametrize [17, 63].

But these approaches suffer from other practical problems: the model in [60] appears

difficult to train by gradient descent, and the approach in [63] requires knowledge of

which terms to keep.

The formulation of [56] is interesting from a modeling perspective because it is flexi-

ble enough to implement the invariances described in [17], and at the same time, it can be

made nearly as computationally cheap as the affine-sigmoidal model by choosing very

low-rank U and V .

Another interesting aspect of the [56] formulation is the nature of sigmoidal non-

linearity, as a function of E. Under a recombination of scalars α,β ,δ ,γ,ε, and S (con-

sidered constant) into a,b,c, the non-linearity has the form:

response(E) = a+
Eζ

b+ cEζ (6.4)
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Considering the case of a = 0 and ζ = b = c = 1 for simplicity, we can see that this

non-linearity approaches its maximal value (a + 1/c = 1.0) more slowly than the tanh

function (which is a symmetric equivalent of the logistic sigmoid) approaches its max-

imum (of 1.0). It approaches more slowly in the sense that the asymptotic limit of the

ratio of their derivatives is 0.

lim
E→∞

d
dE

tanh(E)

d
dE

�
E

1+E

� = lim
E→∞

d
dE

�
2

1+ exp(−E)

�

d
dE

�
E

1+E

�

= lim
x→∞

exp(−x)x2 = 0.

In order to have this sort of asymptotic behaviour from a feature activation function, we

experimented with the following alternative to the tanh function, which we will refer to

as the softsign function,

softsign(x) =
x

1+ |x| (6.5)

illustrated in Figure 6.1.
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Figure 6.1: Standard sigmoidal activation function (tanh) versus the softsign, which
converges polynomially instead of exponentially towards its asymptotes.

Finally, while not explicit in Eq. 6.1, it is well known that the receptive field of

simple and complex cells in the V1 area of visual cortex are predominantly local [28].

They respond mainly to regions spanning from about 1
4 of a degree up to a few degrees.

This structure inspired the successful multilayer convolutional architecture of LeCun
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et al. [39]. Inspired by their findings, we experimented with local receptive fields and

convolutional hidden units.

This paper is patterned after early neural network research: we start from a descrip-

tive (not mechanical) model of neural activation, simplify it, advance a few variations

on it, and use it as a feature extractor feeding a linear classifier. With experiments on

both artificial and real data, we show that quadratic activation functions, especially with

softsign sigmoid functions, and in sparse and convolutional configurations, have interest-

ing capacity that is not present in standard classification models such as neural networks

or support vector machines with standard kernels.

6.3 Model and Variations

The basic model we investigate is a neural network based on hidden units (learned

features) h(x) in the form of

h(x) = s

�
K

∑
k=0

(Ak · x)2 +b · x+ c

�
. (6.6)

Here x is an input (such as an image in raster greyscale format), A is a matrix of rank

K (row vector k denoted Ak), b is a vector of weights, and c is a threshold constant. We

compare the tanh and softsign functions as candidates for s. This equation is simpler than

the model of [56], but includes the technique of incorporating second-order interactions

via a low-rank matrix A.

The positive semi-definite quadratic interaction matrix ∑k A�kAk can implement the

sort of translation-invariant polynomial described by Giles and Maxwell [17] and Reid

et al. [52]. The low-rank restriction limits the size and complexity of the pattern which

can be recognized independently of its position, but with even a rank-2 A, a direction- and

position-invariant edge detector is possible. The detector can be illustrated in 1-D with

the matrix A such that A0 = (1,−1,1,−1,1,−1, . . .) and A1 = (−1,1,−1,1,−1, . . .). As

an edge between a black (value 0) and white region (value 1) moves across the 1-D visual

field, the response A0 · x will oscillate between 0 and 1, and the response A1 · x between



56

−1 and 0. The pair (A0 · x,A1 · x) oscillates along an arc, tracing out a quarter-circle

(though the exact curvature will depend on how the edge is rendered when it does not

line up with a pixel boundary) with [constant] radius ∑1
k=0(Ak · x)2. With higher-rank

matrices, larger and more complex shapes can be detected in multiple positions. We do

not claim that the supervised learning algorithm described below will learn an exactly

invariant function, but these invariant functions are part of the family of functions that

the model could learn.

6.3.1 Learning

Despite involving high-order non-linearities, the models presented here can be under-

stood as single hidden-layer neural networks. In each model, the input images (x ∈ Rd)

are mapped to a feature vector by some trainable feature extractor (h(x) ∈ Rn) and then

classified by logistic regression, such that y(x) = by +Wyh(x).

The prediction y(x) ∈RC can be interpreted as a vector of discriminant functions for

C different classes. It is transformed into a probability distribution over classes by the

softmax function given by

p(class i |x) =
eyi

∑C
j ey j

. (6.7)

The fitting (learning) of by, Wy, and the parameters of h is accomplished by mini-

mizing the average cross-entropy between the target distribution over labels targ and the

distribution predicted by the softmax of y(x):

loss(x, targ) =−targ� logy(x). (6.8)

Note that in ordinary classification problems such as those considered here targ is a one-

of-C vector with a 1 at the position corresponding to the target class for pattern x.

We minimized this loss function using stochastic gradient descent on the feature

parameters A,b,c and the logistic regression parameters by,Wy as in LeCun et al. [37].

In our experiments, we initialized the filter weights (A,b) from a zero-mean normal
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distribution, and other weights (c,by,Wy) were initialized to zero. The variance of the

Normal used for sampling affine parameters b was different from the variance of the

Normal used for sampling quadratic parameters A. Both these variances were treated as

hyperparameters.

The early-stopping criterion was based on a best-epoch heuristic. The validation

set was consulted after each epoch to estimate the generalization error of the current

classification model. If the generalization error of the current epoch is less than 0.96 of

the generalization error at the best epoch, then the current epoch becomes the best epoch.

This heuristic was used to reduce computational complexity, by reducing the frequency

with which best models needed to be saved. The training procedure was stopped when

the current epoch reached 1.75 times the best epoch, or a hard threshold of 800 epochs.

While somewhat arbitrary, these heuristics were chosen such that the total training time

remained practical (2-3 days at most), while also given enough time for models to escape

from local minima. To give the search procedure enough time to get started, a minimum

training time of 10 epochs was enforced. The model returned by this procedure is the

one with the lowest observed validation-set classification error. Note that on account

of the improvement threshold of .96, the returned model is not necessarily one of the

best-epoch models.

The structural parameters of the models (number of hidden units, rank of A, step size

during learning, initialization) were chosen by grid search and cross-validation. For each

data set, and each kind of activation function, we searched for the best values. We tested

learning rates in the range of 10−5 to 10−1. We tested numbers of hidden units in the

range of 100 to tens of thousands. We tested initial scale ranges from 0.01 to 0.1. We

tested A of rank 0 (which is to say, no A matrix at all), 2, and 8. Due to the sheer number

of experiments which were run, we only used a single random seed in our experiments.

6.3.2 Sparse Structure and Convolutional Structure

To further reduce the number of free parameters in Eq. 6.6 we introduced sparse

structure to the image filters (Ak,b), exploiting the 2-D topological structure of image

inputs. We know that neighboring pixels have greater dependency and that pixel loca-
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tions can even be recovered from the patterns of correlation between pixels [35]. We also

know that neurons in the human visual system are sparsely connected, with connections

mainly involving neurons associated with spatially neighboring areas of the retina. The

best-performing learning algorithms on some vision tasks such as digit classification are

convolutional networks [36, 39], in which filters are both spatially sparse and shared

across all the different filter locations. This motivated two variants explored here. In the

first variant, the filters (both in the quadratic term A and in the linear term b) are spatially

sparse. We restrict the rows of A and the linear component b to have non-zero values

only in some m × m pixel image patch (we always chose the same patch for b and every

row of A). We did not admit patches that overlapped the image boundary. For an image

of N×N pixels, there are (N−m+1)2 such patches. We thus added network capacity in

logical blocks of (N−m+1)2 hidden units called feature maps (Figure 6.2). This is un-

like a fully-connected neural network, which may have any number of hidden units. The

second variant is a convolutional model, i.e., a further restriction of the sparse model,

wherein all of the filters in each feature map are constrained to be identical. For all

datasets, we chose a value of m = 5. Hidden units for sparse and convolutional models

therefore operated on 5×5 image patches.

Figure 6.2: In the sparse and convolutional architectures, the hidden layer was arranged
logically into feature maps. Each feature map corresponded to either the convolution of
a single filter with the input image (convolutional), or the application of a 5×5 filter at
every input position (sparse). Model capacity was adjusted via the number of feature
maps. Classification was done by logistic regression on the concatenation of all feature
maps.
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6.3.3 Support Vector Machines

We compared our models with Support Vector Machines (SVMs). SVMs were used

as multi-class classifiers using the one-against-all and the one-against-one approaches

implemented in libSVM. [9]. Several popular kernels were tried–the linear, polynomial

and Gaussian kernels– but the Gaussian kernel was consistently best. The validation data

set was used to choose the kernel, the kernel’s parameters, and the margin parameter C.

Inputs to the SVM were scaled to have mean zero and unit variance. To find the best

parameters C and γ for the Gaussian kernel k(x,y) = e−γ||x−y||2 we used a multi-level

grid search.

6.4 Data Sets

6.4.1 Shape Classification

The SHAPESET data set contains greyscale images of size 32×32 showing a single

flat-shaded shape on a uniform background (Figure 6.4.1, left). The examples contain

regular shapes: circles, squares, and equilateral triangles. Images were generated by

varying the type of shape, the position, size, orientation, and greyscale levels of the fore-

ground and background. Each shape is constrained to fit entirely within the image, and

to be large enough that its class can be distinguished at 32×32 resolution. Although we

have not measured it formally, we estimate that the Bayes error rate of this classification

task is less than 1%. For our experiments, we generated 10,000 training examples, 5,000

validation examples, and 5,000 test examples.

While some of these variabilities could be removed through trivial front-end pro-

cessing, we preferred not to remove them. This data set represents a stepping stone

towards real-world clutter and irregularity. Clutter, irregularity in object surfaces, light-

ing effects, and all the other subtleties whose omission make SHAPESET images look

artificial are factors of variation that would only make classification harder than it already

is in SHAPESET. Despite its visual simplicity, SHAPESET images include a number of

relevant factors of variation that interact to make a difficult classification problem.
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Figure 6.3: Sample inputs from SHAPESET (left) and FLICKR (center) and MNIST
(right). SHAPESET contains circles, squares, equilateral triangles (image size 32×32).
FLICKR contains 10 types of subject such as “animal”, “bird”, “beach”, and “city”
(image size 75×75). MNIST contains handwritten digits 0-9 (image size 28×28).

6.4.2 Flickr

The images in the FLICKR data set (Figure 6.4.1, center) were collected from Flickr�1

using the public API. Ten of the tags identified as most popular by Flickr were used as

query terms and one thousand 75×75 images were downloaded for each tag and trans-

formed to greyscale. The tags used were concrete nouns: “animals”, “baby”, “balloon”,

“band”, “beach”, “bird”, “car”, “cat”, “church”, and “city”. The returned images corre-

spond to the most relevant thousand (for a given tag) as decided by Flickr. We divided

the image set into three: the training set contains 7,500 images, the validation set 1,000

and the test set 1,500.

To estimate the inherent difficulty of this classification problem, a small-scale experi-

ment was conducted using Amazon’s Mechanical Turk service, in which human subjects

were asked to classify 50 images into one correct category. These guesses were marked

correct when they matched the query term used to download the image. Three subjects

classified each image and a majority vote was used. The human error rate was about

20%. Most errors are the result of the ambiguous nature of some images (e.g., cat vs.

animal or church vs. city). While this may render the dataset ill-suited for purposes of

benchmarking, these ambiguities should not adversely affect the relative performance of

each model tested.
1http://www.flickr.com
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6.4.3 Digit Classification

We used MNIST (Figure 6.4.1, right) as a digit classification task. We used the

full database, of 50,000 training images, 10,000 validation examples, and 10,000 test

examples. The digits were left in their original format of 28×28 greyscale pixels [39].

6.5 Results

The first series of experiments was directed at evaluating the usefulness of the quadratic

terms (the A matrix in Eq. 6.6). To that end, each architectural variant (dense, sparse,

convolutional) was paired with a tanh sigmoid function and optimized for each data set

for three amounts of quadratic capacity (affine, rank-2 A, and rank-8 A). The generaliza-

tion error of the best model for each combination is listed in Table 6.1. In MNIST the

rank-2 model outperformed the rank-8 model for all three architectures. In SHAPESET,

the rank-8 model was best for dense and convolutional architectures, but rank-2 was best

for the sparse architecture. In FLICKR, the rank-2 model was best for the dense archi-

tecture, but the rank-8 model was best for the sparse and convolutional variants. The

affine model was not the best for any filter type or any data set. The rank-2 model in

particular was always better than the affine one.

With regards to the different filter structures (also Table 6.1) there was not a consis-

tent ranking across K = 0, K = 2, and K = 8. In the affine case (K = 0), the dense filters

were consistently competitive, and clearly the best for SHAPESET. In the rank-2 case,

the convolutional filters were best for MNIST and SHAPESET, but slightly worse than

the dense filters on FLICKR. In the rank-8 case, the convolutional filters were clearly

the best for all the image data sets. Sparse filters were consistently poorer than dense

filters and convolutional ones, even though they shared the same sparsity pattern as the

convolutional filters. This finding suggests that statistical efficiency is increased in these

image-processing problems by sharing filters across the visual field.

To put these error rates into perspective, we compared them with an SVM model

trained with the same inputs and outputs. A Gaussian SVM achieved an error rate of

1.4% on MNIST, which is better than the affine neural network, but slightly worse than
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Table 6.1: The generalization error of models based on a tanh sigmoidal non-linearity.
The codes used for the filter types are dense (D), sparse (S), and convolutional (C). The
three columns of error rates are for affine models (K = 0), models whose A matrix has
rank 2 (K = 2), and models with A of rank 8 (K = 8). The affine model is always worse
than the best quadratic model, this is statistically significant (p-value under .05) in all
cases except for the sparse models on FLICKR. SVM results are included for reference.

Data set Filter Generalization Error (%)
type K = 0 K = 2 K = 8 SVM
D 1.9 1.6 1.7

MNIST S 2.0 1.6 1.8 1.4
C 1.6 1.3 1.4
D 19.9 15.1 11.8

SHAPESET S 40.4 18.2 19.6 29.4
C 57.0 12.1 10.3
D 83.9 79.9 80.6

FLICKR S 81.9 81.5 80.7 76.6
C 87.8 80.9 78.7

the single-layered quadratic network with convolutional features. 2

A Gaussian SVM achieved an error rate of 29.6% on the SHAPESET task, which

is worse than an affine neural network (19.9%), and much worse than a convolutional

quadratic network (10.3%). On the FLICKR task, a Gaussian SVM achieved an error

rate of 76.6%, which compares favorably to the best network that we tried (78.4%).

6.5.1 Translation Invariance

To investigate the hypothesis introduced above (following Adelson and Bergen [1],

Giles and Maxwell [17]) that the advantage of quadratic units is related to their capacity

for translation invariance, the following experiment was performed. The best models

with and without quadratic units were identified for each of the three data sets. The

best MNIST model with quadratic units had a rank-2 A matrix. The best SHAPESET

and FLICKR models with quadratic units had rank-8 A matrices. Each of these models

was re-evaluated on artificially translated training and validation sets, in which each of

the examples was shifted by one pixel sideways, either horizontally, vertically, or both.
2Result from http://yann.lecun.com/exdb/mnist/.
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When shifting, edge pixels opposite the direction of the shift were left unchanged.

Table 6.2: Artificially translating the data sets by one pixel in each direction illustrates
the sensitivity of each model’s error rate to object positioning. In each 3×3 grid, the
center corresponds to the original data. For example, each upper left score corresponds
to translation by 1 pixel to the left and 1 pixel upward. (Classification error in %)

Training data Validation data
Quadratic Affine Quadratic Affine
8 3 4 10 4 6 8 3 4 9 4 5

MNIST 3 0 3 3 0 4 3 1 3 4 2 4
5 3 8 6 5 9 4 3 6 5 4 8
9 7 9 15 12 14 12 11 13 17 17 19

SHAPESET 7 3 7 13 3 12 11 10 12 17 17 18
9 8 10 18 14 18 12 11 12 18 17 18

74 72 76 83 83 83 81 81 81 83 83 84
FLICKR 76 75 77 83 82 82 81 79 81 83 83 84

76 77 77 83 82 82 80 80 80 83 83 84

The classification accuracies of these best models on the artificially translated data

are enumerated in Table 6.2. Generally, the performance of all models deteriorated sub-

stantially when objects were translated by just one pixel. The deterioration was more

prominent in models which were achieving some success (those trained on MNIST and

SHAPESET). In SHAPESET’s training data, the quadratic model was more robust to

translation; the worst quadratic model deterioration was from 3% to 10%, whereas the

worst affine model deterioration was from 3% to 18%. In MNIST’s training data, the

quadratic model was slightly more robust to translation; the worst quadratic model de-

terioration was from 0% to 8%, whereas the worst affine model deterioration was from

0% to 10%. In FLICKR’s training data and in all the validation data sets, the quadratic

model was not more robust to translation than the affine one.

6.5.2 Tanh vs. Softsign

To compare the tanh and softsign sigmoid functions as transfer functions in neural

networks, we restricted our family of models to those with dense filters. We varied again

the number of quadratic terms K, and evaluated both tanh and softsign as the activation
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Table 6.3: Generalization obtained when using tanh vs. softsign sigmoid functions for
different ranks of quadratic interaction (K = 0, K = 2, K = 8). In every case but one
(FLICKR, K = 0), the softsign error rate is lower than the tanh with p-value of .05.

Data set Sigmoid Generalization Error (%)
type K = 0 K = 2 K = 8

MNIST tanh 1.9 1.6 1.7
softsign 1.8 1.5 1.5

SHAPESET tanh 19.9 15.1 11.8
softsign 16.6 12.9 9.5

FLICKR tanh 83.9 79.9 80.6
softsign 85.5 78.8 78.4

function s in Eq. 6.6. The generalization errors that were the result of optimizing these

models for each data set are listed in Table 6.3. For the affine model, softsign was bet-

ter on the MNIST and SHAPESET data sets but worse on FLICKR. For both quadratic

models (K = 2, K = 8), softsign always resulted in better generalization. In every com-

parison between softsign and tanh their ordering is statistically significant at a p-value

of .05.

6.6 Discussion

While much current research on learning in artificial neural networks deals with

affine sigmoidal models, efforts to model neuron responses to stimuli have resulted in

newer and qualitatively different models. Rust et al. [56] have put forward a more ac-

curate biological model of visual area V1 that involves quadratic interactions between

inputs as well as a different form of non-linearity. Our experiments evaluated the utility

of these two elements of the Rust et al. [56] V1 response model:

1. the presence of a low-rank quadratic term: it was found to improve generalization

on all three tested data sets;

2. the presence of a gentler, less saturating non-linearity (that converges polynomi-

ally rather than exponentially to its asymptotes): it was found to improve general-

ization on most of the settings tested.
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We evaluated these elements in the context of fully-connected (dense), sparse, and con-

volutional single hidden-layer networks.

We found that the low-rank quadratic term was helpful in all three of our learn-

ing tasks. On MNIST the rank-2 quadratic models were best, and for SHAPESET and

FLICKR the rank-8 quadratic models were best. For all data sets the affine models per-

formed poorer than the quadratic models. When using quadratic units in sparse and con-

volutional filter configurations, the advantage of quadratic interactions was even greater

than in the case of fully-connected units. Our best results were realized with quadratic

interactions and convolutional filters. We conclude that the quadratic term is a useful

ingredient to a neural network for classifying images.

The work of Adelson and Bergen [1], Giles and Maxwell [17] and Reid et al. [52]

suggests that the value of the quadratic terms in our hidden units is that they facilitate

the learning of translation-invariant functions. We tested this hypothesis by artificially

translating the training and test sets and evaluating the most successful models for each

data set. Contrary to the prediction of the translation-invariance hypothesis, we found

that both quadratic and affine models were quite sensitive to our artificial single-pixel

translations. Heeger [21] has argued that a model similar to the ones presented here

implements contrast and luminance normalization, but an investigation of that hypothesis

remains future work.

The gentler sigmoidal non-linearity (softsign) was helpful on all data sets, on both

affine and quadratic models. The only case when it did not outperform the tanh sigmoid

was in the case of the affine model on FLICKR (when both kinds of sigmoid achieved

dismal performance). We conjecture that the advantage of the softsign is related to its

gradient, which is larger than tanh’s for almost all the real domain. A larger gradient

would reduce the severity of plateaus in the loss function, and yield a clearer learning

signal for stochastic gradient descent.

Finally, the results obtained on FLICKR stand out as being very poor when compared

to MNIST and SHAPESET. No doubt, this is due in part to the increased complexity of

the task. Natural images are infinitely more complex than the images found in MNIST

and SHAPESET. Solving such a classification task may thus require a deeper architec-



66

ture to deal with the many factors of variation. That being said, the 80% error rate on

FLICKR is still much greater than the 66% error reported on Caltech-256 [18], a natural

image dataset containing an even greater number of categories. This suggests other fac-

tors may be at play. First, the collection procedure for FLICKR was entirely automated

and was thus much more fragile compared to that used for Caltech-256. Objects may

thus be sub-optimal in describing their visual category and may also appear in signifi-

cant clutter. Also, the mean number of images per category varies greatly between both

datasets: 1000 for FLICKR versus 119 for Caltech-256. As such, the Caltech dataset

may be more prone to the statistical biases reported in [46].
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7.1 Context

In the following article, we depart slightly from the realm of convolutional neural

networks to focus on the training algorithm of RBMs.

Since the publication of [26], Contrastive Divergence has become the learning al-

gorithm of choice for RBMs. When training them as part of Deep Belief Networks,

CD achieves state of the art performance on various classification tasks [26, 33, 42] and

also leads to good generative models [26]. However, a standalone RBM does not make

for a good generative model when trained with CD. This issue was first reported in [64]

and resulted in an alternative training algorithm called Persistent Contrastive Divergence

(PCD), which samples negative particles from a chain whose state is persistent (i.e the

chain is not longer initialized with a training example at every weight update). While

the technical details are reserved for Chapter 8, Tieleman [64] showed that this resulted

in models with higher likelihood when compared to CD-1 and CD-10, at the price of a

slower convergence. The issue of convergence speed was later addressed by Tieleman

and Hinton [65] who proposed a variant called PCD with fast-weights.

The article presented in the following chapter follows in these footsteps. This work

emerged from an initial evaluation of PCD and FPCD for training Convolutional DBNs.

The limitations of these algorithms motivated the development of this novel training
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method for RBMs.

7.2 Contributions

The following article compares recently proposed training algorithms for RBMs:

mainly CD, PCD and FPCD. As in [64, 65], we investigate the relationship between the

learning process and the mixing of the Markov chain in the negative phase. By focusing

on this dynamic and how each algorithm molds the energy landscape, we show that

using CD in the unsupervised learning phase can lead to a degeneracy where the energy

is lowered for training data, but raised in its immediate vicinity. We also show that while

PCD fixes this issue by exploring the energy surface globally, the Markov chain used in

the negative phase still has the potential to get trapped in regions of high-probability, at

which point the parameter updates will deviate from the true gradient. FPCD provides

a mechanism for escaping from these regions, however the negative samples used to

determine the gradient are not true samples of the model.

In the following paper, we introduce a novel training algorithm for RBMs, based

on the tempered Markov Chain Monte Carlo (MCMC) sampling algorithm. By running

multiple Markov chains at different temperatures, tempered MCMC affords us with a

robust mechanism for exploring the energy landscape which in turn, leads to significantly

better generative models. This is shown both through visualization and estimations of

the log-likelihood.

In terms of the authors’ contributions, the original idea of using tempered MCMC

in the negative phase of PCD was that of Aaron Courville. The technical work (i.e re-

implementing CD, PCD and FPCD, along with developing the tempered MCMC based

approach) was done by myself, in strong collaboration with A. Courville and Yoshua

Bengio. These authors were also heavily involved in the analysis of each algorithm’s

behaviour and in drawing out the main conclusions of the paper. In the original submis-

sion (see comments section), section 8.5.5 was mostly the work of Pascal Vincent (both

technical and writing) and similarly, section 8.5.4 the work of Olivier Delalleau. The

rest of the article was a collaboration between Yoshua Bengio (sections 8.1-8.3), Aaron



69

Courville (section 8.4) and myself (sections 8.5-8.5.3).

7.3 Comments

Since the original NIPS submission, the following article has gone through several

changes. A few sections were reworked in order to address the feedback from the re-

viewers and sections 8.5-8.5.3 rewritten to help clarify our findings. The experiments

of section 8.5.5 were also redone to stream-line the model selection procedure to ac-

count for the choice of sampling procedure. This resulted in new estimates of the log-

likelihood of each model but did not change the main conclusions of the paper. A more

in-depth discussion of these results was also added to this section.



CHAPTER 8

TEMPERED MARKOV CHAIN MONTE CARLO FOR TRAINING OF
RESTRICTED BOLTZMANN MACHINES

8.1 Abstract

Alternating Gibbs sampling is the most common scheme used for sampling from Re-

stricted Boltzmann Machines (RBM), a crucial component in deep architectures such as

Deep Belief Networks. However, we find that it often does a very poor job of rendering

the diversity of modes captured by the trained model. We suspect that this hinders the

advantage that could in principle be brought by training algorithms relying on Gibbs

sampling for uncovering spurious modes, such as the Persistent Contrastive Divergence

algorithm. To alleviate this problem, we explore the use of tempered Markov Chain

Monte-Carlo for sampling in RBMs. We find both through visualization of samples and

measures of likelihood that it helps both sampling and learning.

8.2 Introduction and Motivation

Restricted Boltzmann Machines [15, 23, 62, 68] have attracted much attention in re-

cent years because of their power of expression [34], because inference (of hidden vari-

ables h given visible variables x) is tractable and easy, and because they have been used

very successfully as components in deep architectures [3] such as the Deep Belief Net-

work [26]. Both generating samples and learning in most of the literature on Restricted

Boltzmann Machines (RBMs) rely on variations on alternating Gibbs sampling, which

exploits the bipartite structure of the graphical model (there are links only between vis-

ible and hidden variables, but not between visible or between hidden variables). RBMs

and other Markov Random Fields and Boltzmann machines are energy-based models in

which we can write p(x) ∝ e−EE(x). The log-likelihood gradient of such models contains

two main terms: the so-called positive phase contribution tells the model to decrease the

energy of training example x and the so-called negative phase contribution tells the model
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to increase the energy of all other points, in proportion to their probability according to

the model. The negative phase term can be estimated by Monte-Carlo if one can sample

from the model, but exact unbiased sampling is intractable, so different algorithms use

different approximations.

The first and most common learning algorithm for RBMs is the Contrastive Diver-

gence (CD) algorithm [22, 23]. It relies on a short alternating Gibbs Markov chain

starting from the observed training example. This short chain yields a biased but low

variance sample from the model, used to push up the energy of the most likely values

(under the current model) near the current training example. It carves the energy land-

scape so as to have low values at the training points and higher values around them, but

does not attempt to increase the energy (decrease the probability) of far-away probability

modes, thereby possibly losing probability mass (and likelihood) there. After training

an RBM with CD, in order to obtain good-looking samples, it is customary to start the

Gibbs chain at a training example. As we find here, a single chain often does not mix

well, visiting some probability modes often and others very rarely, so another common

practice is to consider in parallel many chains all started from a different training exam-

ple. However, this only sidesteps the problem of poor mixing.

The Persistent Contrastive Divergence (PCD) algorithm [64] was proposed to im-

prove upon’s CD limitation (pushing up only the energy of points near training exam-

ples). The idea is to keep a Markov chain (in practice several chains in parallel, for the

reasons outlined above) to obtain the negative samples from an alternating Gibbs chain.

Although the model is changing while we learn, we do not wait for these chains to con-

verge after each update, with the reasoning that the parameter change is minor and the

states which had high probability previously are still likely to have high probability after

the parameter update.

Fast PCD [65] was later proposed to improve upon PCD’s ability to visit spurious

modes. Two sets of weights are maintained. The “slow weights” wm represent the stan-

dard generative model. They are used in the positive phase of learning and to draw

samples of the model using a regular alternating Gibbs chain. The negative phase how-

ever, uses an additional set of ”fast weights”. Negative particles are samples from a
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persistent Markov chain with weights wm + vm, which creates a dynamic overlay on the

energy surface defined by the model. Mixing is facilitated by using a large learning

rate for parameters vm, which is independent from that used for wm (slow weights can

therefore be fine-tuned using a decreasing learning rate with no impact on mixing). The

fast weights vm are pushed strongly towards zero with an L2 penalty (0.05||v||2 in the

pseudo-code provided in Tieleman and Hinton [65]), ensuring that their effect is only

temporary. Both wm and vm are updated according to the sampling approximation of the

log-likelihood gradient. Tieleman and Hinton [65] report substantial improvements in

log-likelihood with FPCD in comparison to PCD and CD.

8.3 RBM Log-Likelihood Gradient and Contrastive Divergence

We formalize here the notation for some of the above discussion regarding RBMs and

negative phase samples. Consider an energy-based model p(s) ∝ e−EE(s), with s = (x,h),

and marginal likelihood p(x) = ∑h e−EE(x,h)/∑x,h e−EE(x,h). The marginal log-likelihood

gradient with respect to some model parameter wm has two terms

∂ log p(x)
∂wm

=−∑
h

P(h|x)∂EE(s)
∂wm

+∑
s

P(s)
∂EE(s)
∂wm

(8.1)

which are respectively called the positive phase and negative phase contributions1. Con-

sider a Markov random field defined by statistics gm, i.e.

p(s) ∝ e−∑m wmgm(s).

Then the gradients in Eq. 8.1 are easily computed by

∂EE(s)
∂wm

= gm(s).

In the following we consider RBMs with binary units x j and hi, and energy function

E(s) = −h�Wx− h�b− x�c. Here, the statistics of interest are hix j, hi and x j, and we

1One should be careful that the signs of these terms in Eq. 8.1 do not match their name.
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associate them with the parameters Wi j, bi, and c j respectively.

The Contrastive Divergence (CD) algorithm [22, 23] consists in approximating the

sums in Eq. 8.1 by stochastic samples, i.e. in updating parameter wm by

wm ← wm− ε
�

∂EE(x, h̃1)
∂wm

− ∂EE(x̃k, h̃k+1)
∂wm

�

where h̃t+1 is sampled from the model conditional distribution P(h|x̃t) (denoting by x̃0

the training sample x used to initialize the Gibbs chain), x̃t is sampled from P(x|h̃t−1),

and ε is the learning rate of the update. Here, k is the number of alternating steps

performed in the Gibbs chain: typically one uses k = 1 for efficiency reasons. This works

well in practice, even though it may not be a good approximation of the log-likelihood

gradient [4, 8].

8.4 Tempered MCMC

Markov Chain Monte Carlo methods provide a way of sampling from otherwise un-

manageable distributions by means of sampling from a sequence of simpler local distri-

butions. Despite the correlations induced between neighboring samples in the sequence,

provided some very general conditions of the resulting Markov chain (such as ergodic-

ity) are satisfied, samples are assured to converge to the target distribution.

However, they suffer from one very important drawback. Because these methods are

based on local steps over the sample space, they are subject to becoming “stuck” in lo-

cal maximum of probability density, over-representing certain modes of the distribution

while under-representing others.

Parallel Tempering MCMC is one of a collection of methods (collectively referred

to as Extended Ensemble Monte Carlo methods [30]) designed to overcome this short-

coming of standard MCMC methods. The strategy is simple: promote mixing between

multiple modes of the distribution by drawing samples from smoothed versions of the

target distribution. Provided the topology of the distribution is sufficiently smoothed, the

local steps of standard MCMC methods are then able to leave the local regions of high
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probability density to more fully explore the sampling space.

Consider the target distribution from which we wish to draw well mixing samples,

given by:

p(x) =
exp(−EE(x))

Z
. (8.2)

We create an extended system by augmenting the target distribution with an indexed

temperature parameter:

pti(x) =
exp(−EE(x)/ti)

Z(ti)
(8.3)

At high temperatures (ti >> 1), the effect of the temperature parameter is to smooth the

distribution, as the effective energies become more uniform (uniformly zero) over the

sampling space.

In the case of Parallel tempering, the strategy is to simulate from multiple MCMC

chains, each at one of an ordered sequence of temperatures ti from temperature t0 = 1 that

samples from the distribution of interest (the target distribution) to a high temperature

tT = τ , ie.

t0 = 1 < t1 < · · · < ti < · · · < tT−1 < tT = τ.

At the high temperatures the chain mixes well but is not the distribution in which

we are interested, so the following question remains: how do we make use of the well

mixing chains running at high temperatures to improve sampling efficiency from our

target distribution at t0 = 1? In parallel tempering this question is addressed via the

introduction of cross temperature state swaps. At each time-step, two neighbouring

chains running at temperature tk and tk+1 may exchange their particles xk and xk+1 with

an exchange probability given by:

r =
pk(xk+1)pk+1(xk)
pk(xk)pk+1(xk+1)

(8.4)

For the family of Gibbs distribution (in which we are particularly interested in), this

boils down to:

r = exp((βk−βk+1) · (E(xk)−E(xk+1))), (8.5)
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where βk is the inverse temperature parameter.

It is straightforward to see how this algorithm can be applied to the training of RBMs.

Instead of running a single persistent Markov Chain as in PCD, multiple chains are

run in parallel, each at their own temperature ti. For each gradient update, all chains

perform one step of Gibbs sampling after which state swaps are proposed between all

neighbouring chains in a sequential manner. In this paper, swaps were proposed from

high to low temperatures (between temperatures ti and ti−1), as a way to encourage the

discovery of new modes. Empirical evidence seems to suggest that this ordering is not

crucial to performance however. The negative particle used in the gradient update rule

of Eq. 2.17 is then the particle at temperature t0.

8.5 Experimental Observations

In [65], Tieleman and Hinton [65] highlight the importance of good sampling during

the negative phase of RBM training. Without good mixing, negative particles can ad-

versely affect the energy landscape by getting trapped in regions of high-probability and

raising the energy level at that mode. In the extreme setting of a distribution containing

few but well defined modes, combined with a high-learning rate, negative particles have

the potential to pool together and cohesively undo the learning process. In this section,

we will investigate the relation between mixing and learning for the most popular RBM

training algorithms. The conclusions drawn from this analysis will serve as justification

for the tempered MCMC method we propose.

8.5.1 CD-k: local learning ?

Because CD only runs the Markov Chain for a small number of steps, it is very

susceptible to the mixing rate of the chain. Early in training, mixing is good since

weights are initialized to small random values. As training progresses however, weights

become larger and the energy landscape more peaked. For a fixed value of k, mixing

thus degrades over time and leads to negative samples being increasingly correlated with

training data. This can lead to a degeneracy where the energy of training examples
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is lowered but increased in the immediate proximity, in effect forming an energy barrier

around the wells formed by the data. When sampling from the resulting model, a Markov

Chain initialized with a random state will thus fail to find the high-probability modes

as the energy barrier defines a boundary of low-probability. This can be observed in

Fig. 8.1(a). In this figure, each row represent samples from separate chains, with samples

shown every 50 steps of Gibbs sampling. The top two chains are initialized randomly

while the bottom two chains were initialized with data from the test set. The top chains

never converge to a digit while the bottom chains exhibit fairly poor mixing.

(a) (b)

Figure 8.1: (a) Gibbs sampling from an RBM trained with CD, starting with a random
initialization (2 top chains) vs. initializing with test images (b) Cross-temperature state
swaps during MCMC sampling of an RBM trained with CD. Each color represents a
particle originating at temperature tk at time t = 0, as it jumps from one temperature to
another. Temperatures in the range [t0, tT ] are shown from left to right. A bottleneck is
clearly visible in the lower-temperature range.

This phenomenon can also be confirmed by using the tempered MCMC procedure

to sample from an RBM trained with CD. Fig.8.1(b) shows a mixing plot of tempered

MCMC sampling using 50 chains and a maximum temperature of 10. The first line of the

image shows the state of the chains at the start of training, with each color representing

a single particle xi native to temperature ti. Low temperatures are shown on the left

and high temperatures on the right. Each subsequent line tracks the movement of the

original particle through time. High acceptance ratios would cause the colors to become

entangled after a certain number of iterations. For an RBM trained with CD however,

there is a clear bottleneck in the lower temperature ranges, through which high energy

particles do not go through. This gives more credibility to our theory of how CD-1
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learning modifies the energy landscape. Positive training data pushes down hard on the

energy landscape but only locally, while sharp ridges are formed around the wells by the

negative phase. With enough time and tempered MCMC chains, one should theoretically

converge on these wells. Our experience suggests that this does not happen in practice,

which speaks to the sharpness of the energy landscape formed by CD.

8.5.2 Limitations of PCD

[64] introduced persistent CD and recently PCD with fast-weights as ways to address

the issue of bad mixing during the negative phase of learning. Maintaining a persistent

chain has the benefit that particles explore the energy landscape more globally, pulling

up the energy as they go along.

In Figure 8.2(a), we confirm that samples drawn during learning mix fairly well

early on in training. The samples shown were collected midway through the learning

procedure (epoch 5 of 10), from an RBM with 500 units trained with persistent CD.

Fig. 8.2(b) tells a different story however. These samples were obtained after epoch 10,

at which point learning was effectively stopped (learning rate of 0). We can see that

mixing has degraded significantly.

We believe two factors are responsible for this. As mentioned previously, early on in

training the energy landscape is smooth and mixing is good. With each weight update

however, the positive phase creates wells which become progressively deeper. Eventu-

ally, negative samples become trapped in low-probability states and are unable to explore

the energy landscape. This results in parameter updates which deviate from the true-

likelihood gradient. This is very problematic since there is no early-stopping heuristics

which can be used to stop learning in time to avoid this bad mixing.

The other factor to take into account is the effect of "fast weights" explored in [65].

The sampling procedure used during learning encourages the particles to mix, since

each update renders the state of the negative particles less probable. Negative particles

are therefore "encouraged" to move around in input space. The fast-weights algorithm

(FPCD) exploits this idea by perturbing the model, but in a way which only affects the

negative phase. Unfortunately, FPCD generates spurious samples as shown in Figure 8.3.
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(a) epoch 5 of 10 (b) after epoch 10

Figure 8.2: Negative samples drawn from an RBM trained with PCD, at (a) epoch 5 of
10 (b) after learning is stopped. Notice that once the learning procedure is stopped, the
mixing rate of the chains drops dramatically and samples become trapped in a minima of
the energy landscape. Each row shows samples drawn from a single Gibbs chain, with
50 steps of Gibbs sampling between consecutive images.

These in effect, represent the paths which a negative particle must take to jump from one

mode to the next. Not being true samples of the model however, they undoubtedly hurt

the learning process since the parameter updates will not follow the true gradient.

Figure 8.3: Samples obtained using the fast-weight sampling procedure.

8.5.3 Tempered MCMC for training and sampling RBMs

We now use the same experimental protocol to show that our RBM trained with

tempered MCMC addresses the above problems in a straight-forward and principled

manner. Figure 8.4 clearly shows that samples obtained from the fully trained model

(once learning is stopped) mix extremely well.

The maximum temperature tT and number of parallel chains to use were chosen

somewhat arbitrarily. The maximum temperature was chosen by visualizing the sam-

ples from the top-most chain and making sure that the chain exhibited good mixing.
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(a) epoch 5 of 10 (b) after epoch 10

Figure 8.4: Negative samples drawn from an RBM with 500 hidden units, trained with
tempered MCMC, (a) at epoch 5 of 10 (b) after learning is stopped. It is clear that the
resulting model exhibits much better mixing than in Fig. 8.2(b). Again, each row shows
samples drawn from a single Gibbs chain, with 50 steps of Gibbs sampling between
consecutive images.

The number of chains was chosen to be large enough such that the mixing plot of Fig-

ure 8.1(b) showed (i) a large number of cross-temperature state swaps and (ii) that a

single particle xi, on average, visited temperatures in the range [t0, tT ] with equal propor-

tions.

With regards to the learning rate, we found that a decreasing learning rate sched-

ule was necessary for the model to learn a good generative model. This should not be

surprising, as it seems to echo the theoretical findings of Younes [69], which outlines a

proof of convergence for profiles of the type a/t with small enough a. Empirically, we

found that decreasing the learning rate linearly towards zero also worked well.

8.5.4 Tempered MCMC vs. CD and PCD

Here we consider a more quantitative assessment of the improvements offered by

using tempered MCMC, compared to regular CD and PCD. In order to compute the

exact log-likelihood of our models, we use a toy dataset of 4x4 binary pixel images.

Half of the training examples are images which represent two black lines over a white

background, such that pixels of each line are not adjacent to the other line’s pixels. The

lines are made of two pixels and the image is assumed to have a torus structure. The

second half of the training examples are the same samples where black and white have

been swapped. In total, this yields 320 valid images (out of the 216 possible images)
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which are all used as training data.

For all three algorithms, we performed 400,000 weight updates using mini-batches of

size 8. This means that each training example is presented 10,000 times to each model.

Learning rates were either held constant throughout learning or decreased linearly to-

wards zero. No weight decay was used in any of the models. The other hyperparameters

were varied as follows:

• number of hidden units in {10,20,30,40,50,100,200,300}

• initial learning rates in {0.1,0.05,0.01,0.005,0.001}

• for CD-k, a number k of steps in {1,3,5,10,25}

• for tempered MCMC, 50 chains spaced uniformly between t0 = 1 and tT = 2.

(a) (b)

Figure 8.5: Evolution of the exact log-likelihood of the training data as a function of
epochs. (a)100 hidden units and a learning rate of 0.005 (b)100 hidden units and a
learning rate of 0.01. The CD-k and PCD algorithms become unstable after a while,
whereas the tempered MCMC method exhibits a much more reliable behaviour.

Figure 8.5 shows typical examples of the behaviour of the three algorithms. What

usually happens is that after some time, the poor mixing of the chains used in CD-k and

PCD leads to updates which actually hurt the modeling ability of the RBM. We observed

that this phenomenon became worse as the learning rate increased. In contrast, the tem-

pered MCMC version is much more stable and typically increases the log-likelihood in

a pseudo-monotonic manner.
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8.5.5 Estimating Likelihood on MNIST

Next we wanted to obtain a similar quantitative measure, that would provide for a

more objective comparison of the algorithms considered, on a real-world problem.

An important characteristic of RBMs is that, while computing the exact likelihood

under the learnt model is intractable, it is however relatively easy to generate samples

from it. We thus set to compute a quantitative measure that could reflect the “quality” of

the sample generation that the various trained models were capable of. More specifically,

we want a numerical measure of how close the sample generation by a particular trained

RBM is to the “true” but unknown distribution which produced the training samples D .

This will allow us to evaluate more objectively to what degree the considered training

procedures are able to capture the distribution they were presented.

Notice that by formulating the question in this manner we link a trained model and a

sampling procedure. What we evaluate is a (model + sampling-procedure) combination,

i.e. the resulting measure depends not only on the model’s parameters but also on the

particular sampling procedure used after training to generate new samples. While it

is natural here to use the same sampling procedure during post-training generation as

was used during training, it is also possible to use after training a different procedure

than what was used during training, e.g. train using simple CD but then generate using

tempered MCMC.

The measure we consider is the average log probability of the samples in a held out

test set Dtest under a non-parametric Parzen Windows density estimation p̂σ ,Ds based on

the samples Ds generated by a given model that was trained on a train set D . The test

set Dtest has n samples x(1), . . . ,x(n) that originate from the same unknown distribution as

the data D used for training. Similarly Ds has n� samples s(0), . . . ,s(n�) generated using a

given (model + sampling-procedure).

Formally our sample generation quality measure is:

�(Dtest,Ds) =
1
n

n

∑
k=1

log p̂σ ,Ds(x
(k)) (8.6)
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where p̂σ ,Ds(x
(k)) is the density evaluated at point x(k) obtained with a non-parametric

kernel density estimator based on Ds with hyperparameter σ . i.e. p̂σ ,Ds(x)= 1
n� ∑

n�
k=1 K(x;s( j)).

We will use, as customary, a simple isotropic Gaussian kernel with standard deviation

σ , i.e. K = Ns( j),σ .

In practice we proceeded as follows:

• Search for a good value of the kernel bandwidth σ . We perform a grid search

trying to maximize the log probability of test samples Dtest under p̂σ ,Ds i.e. σ �
argmaxσ � �(Dtest,D). We then keep this bandwidth hyperparameter fixed.

• Generate Ds made of n� samples from the considered RBM with the desired sam-

pling procedure. For convenience2 we choose n� = 2n which is 20,000 for the

standard MNIST test set.

• Compute generation quality �(Dtest,Ds) as defined in Eq. 8.6.

• Repeat these last two steps for all models and sampling procedures under consid-

eration.

Table 8.1 reports the generation quality measure obtained for different combinations

of training procedure (yielding a trained model) and post-training sample generation

procedure. Model selection was performed by selecting, for each combination of (train-

ing procedure, sampling algorithm), the hyperparameters leading to the best likelihood.

Including the sampling procedure in the model selection process allows for a fair com-

parison of training algorithms. Hyperparameters are thus selected such that the trained

model is compatible with the sampling procedure.

As we can see, the tempered models have a significantly higher likelihood than all the

other training algorithms, regardless of sampling procedure. It is interesting to note that

in this case, sampling with tempered MCMC did not result in a higher likelihood. This

may indicate that the parameter σ should be optimized independently for each model
2using the same sizes n� = n allows us to compute the reverse �(Ds,Dtest) without needing to search

for a different hyperparameter σ .



83

Table 8.1: Log probability of test set samples under a non-parametric Parzen window
estimator based on generated samples from models obtained with different training pro-
cedures. For reference the measure obtained on the training set is 239.88 ± 2.30 (±
indicated standard error). As can be seen the TMCMC trained model largely dominates.

Sample generation procedure
Training procedure TMCMC Gibbs (random start) Gibbs (test start)

TMCMC 208.26 210.72 209.83
FPCD 180.41 174.87 175.92
PCD 80.06 127.95 139.36
CD -1978.67 -854.08 37.18

p̂σ ,Ds(x). We leave this as future work. Also interesting to note: sampling CD or PCD-

trained models with tempered MCMC results in a worse performance than with standard

Gibbs sampling. This is definitely more pronounced in the case of CD and highlights

the issues raised in section 8.5.1. As for PCD, this again confirms that mixing eventually

breaks down during learning, after which negative particles fail to explore the energy

landscape properly. Using tempered MCMC during training seems to avoid all these

pitfalls.

8.6 Conclusion

We presented a new learning algorithm to train Restricted Boltzmann Machines, re-

lying on the strengths of a more advanced sampling scheme than the ones typically used

until now. The tempered MCMC sampling technique allows for a better mixing of the

underlying chain used to generate samples from the model. We have shown that this re-

sults in better generative models, from qualitative and quantitative observations on real

and simulated datasets. We have also shown that the use of tempering affords a higher

reliability and increased robustness to learning rates and number of unsupervised train-

ing epochs. More experiments are still required however to assess the impact of this

method on classification, especially in the context of deep architectures, where one typ-

ically stacks trained RBMs before using a global supervised criterion. Amongst other



84

questions, we would like to determine if and under which conditions a better generative

model translates to an increase in classification performance.



CHAPTER 9

CONCLUSION

The work presented herein was motivated by the problem of artificial vision and object

recognition which to date, remains largely unsolved. Failure of the "feature engineering"

approach to yield robust object detectors seemed to justify the approach used in this

thesis, based on the automatic learning of feature hierarchies using both supervised and

unsupervised learning. To this end, the first two chapters focused on giving the reader the

necessary background in Machine Learning in order to introduce the Artificial Neural

Network and the Deep Belief Network which both form the backbone of this thesis.

The core of the work relies on three articles which present separate, yet complementary

contributions to the field. In this last chapter, we start by giving a brief summary of

these contributions in light of recent developments. We then conclude by highlighting

interesting areas for future research.

9.1 Article Summaries and Discussion

9.1.1 Empirical Evaluation of Convolutional Architectures for Vision

Motivated by previous work on CNNs [39], we introduced in Chapter 4 the Con-

volutional RBM, which mimics the architectural properties of hidden layers in CNNs.

Hidden units are grouped into feature maps which share the same parametrization and

are only connected to visible units within their receptive field. By reducing the number

of parameters to learn and enforcing local, shift-equivariant feature detectors, the goal

was to show that CRBMs could achieve better generalization when used as the build-

ing block of Convolutional DBNs. This work also represented an effort to move deep

networks away from toy-problems (i.e small MNIST-sized images) and apply them to

real-world images. By measuring the exact log-likelihood on small training images, we

showed that CRBMs could learn to model the training distribution more efficiently than

fully-connected RBMs.
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This work represented a milestone on the road to building large Convolutional DBNs

and motivated similar work on other deep architectures, such as the stacked Denoising

Auto-Encoder (SdA). While this work remains unpublished to date, the advantage of

convolutional architectures to vision is clear. In both cases, they result in better general-

ization on a wide variety of tasks.

Their true potential (and that of DBNs as a whole) is however best described by

the recent work of Lee et al. [42]. In it, they show how Convolutional DBNs can be

used to efficiently extract a hierarchical representation of data. Once trained on natural

images, the first hidden layer learns to detect local edge-like features which are combined

at the second layer to form object-part detectors and eventually form features specific

to entire objects. The learnt features thus become increasingly correlated with object

class as depth is increased. By learning such a hierarchical representation of data in an

unsupervised manner, this work captures the essence of Deep Learning [3] and serves as

inspiration to further pursue this line of research.

9.1.2 Quadratic Polynomials Learn Better Image Features

In section 1.5, we touched on the theoretical justifications of higher-order units. In-

spired by the discovery that simple cells in the visual cortex exhibit similar behaviour

[56], we set out in Chapter 6 to study their impact on visual learning tasks in both

ANNs and CNNs. Using a low-rank approximation to the quadratic matrix, we reported

across all architectures an increase in classification accuracy for several visual recogni-

tion tasks. The computational model of [56] also seemed to justify a novel activation

function called so f tsign, characterized by a gentler slope than the traditional sigmoidal

functions. The best results were obtained with architectures using both quadratic units

and the so f tsign activation function. Further work is still required to fully understand

the above results, as the translation invariance hypothesis proved inconclusive.
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9.1.3 Tempered Markov Chain Monte Carlo for Training of Restricted Boltzmann
Machines

In the last part of this thesis, we turned our attention to the basic training algorithm of

RBMs. Starting with the observation that RBMs trained with CD lead to poor generative

models, we studied the recently proposed PCD and FPCD algorithms. While both offer

notable improvements in performance, the PCD algorithm is still rather brittle. It relies

on the energy surface being smooth in order for the negative chain to mix well. Exces-

sive learning rates or training epochs can however lead to a peaked energy landscape

which prevents proper mixing and consequently, learning. FPCD encourages mixing by

performing small model perturbations. Unfortunately, this has the potential to generate

spurious samples, meaning that the parameter updates will not follow the true gradient.

In Chapter 8, we showed that using tempered MCMC in the negative phase of PCD

addresses these issues. This was confirmed both by visualization of samples, as well as

estimation of the log-likelihood. By using a robust sampling technique, RBMs trained

with tempered MCMC are also much less sensitive to the choice of learning rate and the

number of unsupervised training epochs.

9.1.4 Discussion

In order to improve performance of artificial vision systems (and in the process gain

a better understanding of what is required for learning complex tasks), we have ap-

proached the subject from several angles. From a high-level view, Chapter 4 dealt mostly

with the issue of tailoring the network architecture to the task at hand, hence with the

more general topic of using prior information to facilitate learning. As we have already

mentioned, hard-coding prior information can be advantageous as it saves the machine

from having to learn this prior. Given computational constraints (e.g. upper-bound on

computation time), this may open the door to learning an even richer set of functions.

While DBNs already rely on the unsupervised learning phase to learn a good prior of the

data, they may still benefit from this strategy.

In section 1.5, we saw that quadratic units have the potential to learn certain invari-
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ances, which we tried to exploit in Chapter 6. In the same manner, these invariances

could be hard-coded within each unit by imposing certain constraints on the quadratic

matrix. This may also help with the issue of computational complexity and make learn-

ing of Higher-Order Threshold Logic Units more practical.

Chapters 4 and 6 also show that biology can be a good source of inspiration for

getting this prior information and more generally, that ML can benefit from advances

in neuroscience. After all, the biological brain is the only known system capable of

handling the complex tasks in which we are interested.

Finally, Chapter 8 focused on the unsupervised learning algorithm of RBMs. We

showed that despite recent breakthroughs, much work still remains to understand learn-

ing in these energy-based models. Of particular importance is the realization that the

learning procedure should not be constrained by the quality of the sampling method.

This is a simple but powerful result. In addition to creating better generative models,

section 8.5.4 shows that this has the potential to make the pre-training phase of DBNs

much more robust. The number of unsupervised training epochs is usually fixed or de-

termined by cross-validation. Too large a number would lead to heavily biased models

while cross-validation would choose an overly conservative estimate (so as not to break

mixing). Some previously published results may therefore be sub-optimal and may need

revisiting.

9.2 Future Directions

In terms of future work, a first step will definitely be to replicate the findings of Lee

et al. [41]. Of particular interest, is the use in [41, 42] of a sparsity criterion in the

unsupervised training phase of the RBM. Sparsity ensures that only a subset of hidden

units "explain" the visible layer and may be responsible for the quality of the learnt rep-

resentation in [42]. Without sparsity, Convolutional RBMs have the potential to learn

the identity function since the hidden representation is over-complete. From experience,

they also seldom learn edge-like features in the first layer. Sparsity may be required for



89

this1. Their probabilistic max-pooling layer is also very attractive compared to the cur-

rent feed-forward implementation, as it allows its inclusion in full probabilistic models

like the Deep Boltzmann Machine [57].

With regards to the work on quadratic units, it would be interesting to integrate

these units into deep architectures complete with a pre-training phase. Work has already

started in this direction using the stacked Denoising Auto-Encoder. As mentioned pre-

viously, we would also like to hard-code prior knowledge of specific invariances (such

as translation) into the quadratic term. This may give us the full benefit of higher-order

units without the computational burden of having to learn these invariances.

Finally, there are many exciting avenues of research to pursue with regards to the

unsupervised training of RBMs using the tempered MCMC approach. The first step will

definitely involve learning to model the joint distribution pT (x,y) directly to measure

its impact on classification performance, as in [64, 65]. This would be compared to the

typical classification setting of DBNs (which combines pre-training and supervised fine-

tuning) with tempered MCMC being used in the pre-training phase. This comparison

and the added robustness of the unsupervised training may give new insights into the

pre-training strategy of DBNs.

While this issue was not discussed in Chapter 8, we will also be investigating ways

in which the number of chains, the maximum temperature and the temperature gaps

between chains can be determined automatically. This would not only reduce the number

of hyperparameters, but also increase robustness of the sampling method. By selecting

these values dynamically, good mixing would be guaranteed regardless of the state of

the energy landscape (i.e the state of the learner). It would also reduce computational

complexity by using fewer chains early on in training and only adding extra chains when

required. Finally, we would also like to apply this novel training algorithm to a wider

array of architectures, including the general Boltzmann Machine.

1Personal communications with Honglak Lee.
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Appendix I

Algorithms for Learning CRBMs

Algorithm 3 PropUp(v,W,c,r f dim) This function allows us to infer the state of the
hidden layer h, given the state of the visible layer v. For performance reasons, an op-
tional parameter allows us to directly compute the partial gradient update ∂W, calcu-
lated at each step of the convolution.
v state of units in the visible layer of the CRBM
W is the CRBM weight matrix, of dimension (number of hidden features, width of re-
ceptive field, height of receptive field, number of visible feature)
c is the CRBM offset vector for the hidden units
r f dim size of the hidden unit’s receptive field

• Initialize tensor ∆W , of same dimensions as W , to 0
for all pixels (m,n) in hidden layer do

• R
• set receptive field RF = {(u,v) : m≤ u < m+ r f dim,n≤ v < n+ r f dim}
for all features i of pixel (m,n) do

• compute hi,mn = sigmoid(ci +∑ j,(u,v)∈RF Wi j,mn,uvv j,uv);
for all pixels (u,v) in hidden layer do

for all features j of pixel (u,v) do
• ∆Wi j,mn,uv = hi,mnv j,uv

end for
end for

end for
end for
• return ∆W
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Algorithm 4 PropDown(h,W,b,r f dim) This function allows us to infer the state of the
visible layer v, given the state of the hidden layer h.
h state of units in the hidden layer of the CRBM
W is the CRBM weight matrix, of dimension (number of hidden features, width of re-
ceptive field, height of receptive field, number of visible feature)
b is the CRBM offset vector for the visible units
r f dim dimensions of the hidden unit’s receptive field

for all pixels (u,v) in visible layer do
• set v j,uv = b j

end for
for all pixels (m,n) in hidden layer do

• set receptive field RF = {(u,v) : m≤ u < m+ r f dim,n≤ v < n+ r f dim}
for all pixels (u,v) of visible layer in RF do

for all features j of pixel (u,v) do
• compute v j,uv = v j,uv +hi,mnWi j,mn,uv

end for
end for

end for
• set v = sigmoid(v).
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Algorithm 5 CRBM_CD(v,h,W,b,c,r f dims) Description
v state of units in the visible layer of the CRBM
h state of units in the hidden layer of the CRBM
W is the CRBM weight matrix, of dimension (number of hidden features, width of re-
ceptive field, height of receptive field, number of visible feature)
b is the CRBM offset vector for the visible units
c is the CRBM offset vector for the hidden units
r f dims dimensions of the hidden unit’s receptive field, of dimension (width of receptive
field, height of receptive field)

•x(0) = v
•∆Wu = PropUp(v,W,c,r f dims)
for all pixels (m,n) in hidden layer do

for all features i of pixel (m,n) do
• sample y(0)

i,mn from p(hi,mn = 1|v)
end for

end for
•h = y(0)

• PropDown(h,W,b,r f dims)
for all pixels (u,v) in visible layer do

for all features j of pixel (u,v) do
• sample x(1)

j,uv from p(v j,uv = 1|h)
end for

end for
•v = x(1)

•∆Wd = PropUp(v,W,c,r f dims)
for all hidden features i do

• compute ∆ci = ∑mn−y(0)
i,mn + y(1)

i,mn
end for
for all visible features j do

• compute ∆b j = ∑uv−x(0)
j,uv + x(1)

j,uv
end for
•∆W =−∆Wu +∆Wd
• Apply gradient estimates ∆c, ∆b and ∆W to parameters c,b,W


