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ABSTRACT 
 
 

In rabbits, an acute inflammatory reaction induced by the injection of turpentine causes a 

decrease in cytochrome P450 (CYP) isoforms activity and expression. Chondroitin sulfate (CS) is a 

Symptomatic Slow Acting Drug for OsteoArthritis (SYSADOA) that elicits anti-inflammatory 

effects. Since patients take CS over long periods, it was of interest to assess whether CS modulates 

the activity of cytochrome P450 isoforms. In order to determine the effect of CS on the cytochrome 

P450, CS was administered in vivo to two animal models, e.g. chronic intake of CS in control rabbits, 

and chronic intake of CS in rabbits with a CYP down-regulated by an inflammatory reaction (IR).  

We used six groups of five rabbits: three to assess the effect of CS on cytochrome P450, one without 

CS and two receiving orally about 20 mg/kg/day CS for 20 and 30 days; and the remaining three 

groups of rabbits received turpentine s.c. to generate an aseptic IR (AIR) 48 h before their sacrifice, 

e.g. days -2, 18 and 28, while exposed to CS for 0, 20 or 30 days, respectively.  

In order to verify the presence of inflammation we measured the seromucoids in serum of 

rabbits with an AIR. Another marker of inflammation, e.g. nitric oxyde  (NO.) production, was 

assessed in control hepatocytes (Hcont) and in hepatocytes from rabbits with an AIR (Hinfla). In 

addition, the effect of CS on the nuclear translocation of NF-κB was studied by fluorescence in 

hepatocytes. Finally, in hepatocytes (both Hcont and Hinfla) the CYP3A6, CYP1A2 and NADPH 

P450 reductase (NADPH) activity, expression and mRNA were measured. In vitro, the effect of 

different concentrations of CS, 4S-, 6S- and 4,6S-sulfated disaccharides of CS on the cytochrome 

P450 was documented. 

Compared with control rabbits, 20 and 30 days CS did not affect the activity of CYP3A6 and 

CYP1A2. The AIR increased seromucoids from 8.4±1.6 mg/dl in controls to 95.1±5.7 (p<0.05), as 
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well as the nuclear translocation of NF-κB, and nitric oxide concentrations. The AIR reduced 

CYP3A6 activity by 62% and CYP1A2 activity by 54%, decrease associated to a reduction in protein 

expression and in mRNA, e.g. pre-transcriptional down-regulation.  

The nuclear translocation of NF-κB was prevented by the administration of CS to rabbits with an 

AIR, moreover CS impeded the increase of the concentrations of nitric oxide; however CS did not 

prevent the increase in seromucoids. CS did not prevent the down-regulation of CYP1A2 produced 

by the inflammatory reaction. 

CS prevented the time-dependent down-regulation of CYP3A6 in control rabbits and in rabbits 

with an inflammatory reaction. In this last group, CS restored the amounts of CYP3A6 protein to 

levels observed in control rabbits, however this increase was independent of the mRNA that 

remained very depressed. It is noteworthy that even if CS increased CYP3A6 protein, its activity was 

not recovered. CS did not affect NADPH activity or expression.  

Finally, in vitro, CS, 4S-, 6S and 4,6S-sulfated disaccharides of CS did not change the activity 

and expression of the two isoforms of CYP, and of NADPH. 

It is concluded that CS does not affect the activity or expression of CYP1A2, nor prevents 

CYP1A2 AIR-induced down-regulation. However, CS prevents the down-regulation of CYP3A6 

time dependently and following the AIR but does not prevent the decrease of catalytic activity. 

 

Keywords: cytochrome P450, NADPH-reductase, inflammation, chondroitin sulfate, osteoarthritis 
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RESUME  
 

Le CS fait partie de la famille des SYSADOA (SYmptomatic Slow Acting Drugs for 

OsteoArthritis) et est utilisé par les patients avec de l’ostéoarthrose de façon chronique pour ses 

propriétés anti-inflammatoires. Étant donné que ces patients reçoivent d’autres médicaments, il 

était intéressant de documenter les effets du CS sur le cytochrome P450 et la NADPH-

réductase (NADPH).  

Pour cette étude, deux modèles ont été utilisés: des lapins témoins (LT) et des lapins avec une 

réaction inflammatoire (LRI) afin de diminuer l’activité et l’expression du CYP. Six groupes 

contenant chacun cinq lapins ont été utilisés: un groupe sans CS et deux groupes qui ont pris 

oralement dans l’eau approximativement 20.5 mg/kg/jour de CS pendant 20 et 30 jours; les lapins des 

trois groupes restants ont pris du CS comme décrit plus haut, mais ont reçu 5 ml sous-cutanées de 

térébenthine afin de produire une réaction inflammatoire aseptique (RIA) deux jours avant leur 

sacrifice, c’est-à-dire aux jours -2, 18 et 28. Les hépatocytes ont été isolés pour évaluer l’activité et 

l’expression du CYP3A6, CYP1A2 et NADPH et aussi le ARNm de ces protéines.  In vitro, nous 

avons étudié l’effet de différentes concentrations de CS-disaccharides sulfatés, 4S, 6S, et 4,6S de CS, 

sur l’activité et l’expression du CYP1A2 et du CYP3A6. Pour documenter la présence de la réaction 

inflammatoire, nous avons mesure les mucoprotéines, dans le sérum des lapins avec une réaction 

inflammatoire. Aussi nous avons mesuré la présence de l’oxide nitrique (NO) chez les hépatocytes de 

lapins contrôles et chez les hépatocytes des lapins avec une réaction inflammatoire. La translocation 

nucléaire du NF-κB a été etudiée par fluorescence chez les hépatocytes. 

Par comparaison aux lapins témoins, l’administration du CS pendant 20 et 30 jours n’affecte pas 

l’activité du CYP3A6 et du CYP1A2.  La RIA a augmenté les mucoprotéines à 95,1±5,7 vs 8,4±1,6 

mg/dl dans les lapins témoins (p<0,05). La RIA a diminué l’activité du CYP3A6 de 62% et l’activité 
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du CYP 1A2 de 54%.   Le CS n’empêché pas la diminution du CYP1A2 produite par la RIA. Par 

ailleurs, le CS n’affecte pas l’activité ni l’expression de la NADPH.  

La translocation nucléaire de NF-κB a été empêche par l’administration chronique de CS aux 

lapins avec RIA; en plus, la concentration de l’oxide nitrique n’a pas démontré une augmentation en 

présence de CS; par contre, CS n’empêche pas l’augmentation des séromucoïdes.  

Au contraire, CS affecte la diminution du CYP3A6 en fonction de temps et secondaire à la RIA. 

Dans ce group, CS a rétabli le niveau des protéines du CYP3A6 observé dans le group de lapins 

témoins. Pourtant cette croissance été independante de mRNA qui garde un niveau trés bas. Le plus 

remarcable a été la manière dont CS a augmenté la protéine du CYP3A6, sans avoir rétabli l’activité 

de cet isoforme.  Finalement, in vitro, CS et ses trois disaccharides sulfatés (4S, 6S et 4,6S) 

n’affectent ni l’activité ni l’expression de CYP1A2, CYP3A6 et de la NADPH. 

En conclusion, l’administration chronique de CS n’affecte pas l’activité ni l’expression du 

CYP1A2, ou la diminution du CYP1A2 produite par la réaction inflammatoire. Le CS n’affecte pas 

l’activité ni l’expression du NADPH. Cependant, CS empêche la diminution du CYP3A6 en fonction 

de temps et secondaire à la RIA. 

 

Mots-clés : cytochrome P450, NADPH-réductase, inflammation, chondroitin sulfate, ostéoarthrite. 
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PART I: CYTOCHROME P450s 
 
 

The purpose of this chapter is to review the main enzymes of the human cytochrome P450 

(CYP) family and to understand its pivotal role in the metabolism of drugs.  

 

1.1 The metabolism 
 
 

The body is equipped with several mechanisms to ensure that the xenobiotics are effectively 

eliminated from the body. The small and non-polar molecules have a great affinity for membranes 

rendering them difficult to be eliminated. The role of metabolism is to promote excretion of these 

molecules by oxidizing a lipophilic and non-polar product in to a hydrophilic and polar one. 

Xenobiotic biotransformation is the principal mechanism for maintaining homeostasis during 

exposure of organisms to small foreign molecules and occurs predominantly in the liver, although 

biotransformation also occurs in the intestine, kidneys, lungs, placenta, nasal mucosa, and skin. 

Generally, the reactions catalyzed by drug-metabolizing enzymes are divided into two groups, 

phase I and phase II reactions. Phase I reactions introduce a functional group that increases 

hydrophilicity and they can lead to either activation or inactivation of the drug. Phase I reactions are 

mediated by the cytochrome P450, flavin-containing monooxygenase, xanthine oxidase, 

prostaglandin H synthase, amine oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, epoxide 

hydrolase, and esterase. Among of all these enzymes, the cytochrome P450s are by far the most 

common and the most important. Phase II reactions include glucuronidation, sulfation, methylation, 
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acetylation, glutathione conjugation, and amino acid conjugation. In general, these reactions, with the 

exception of methylation and acetylation, result in a large increase in xenobiotic hydrophilicity.  

It is generally recognized that the expression of drug-metabolizing enzymes may be altered in 

response to development, aging, gender, genetic factors, nutrition, pregnancy, and pathophysiological 

conditions such as diabetes, long-term alcohol consumption, inflammation, and protein-calorie 

malnutrition. 

 

1.2 Taxonomy of the cytochromes p450 
 

The cytochrome P450 superfamily of enzymes comprises over 7700 known members, or distinct 

CYP gene sequences, across all organisms (http://drnelson.utmem.edu/CytochromeP450.html for 

latest count). The human genome encodes 57 different forms of CYP proteins, called isoforms or 

isoenzymes (Lewis, 2004; Guengerich, 2005). Of these, 15 or more are associated with drug and 

other xenobiotic metabolism in humans, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, 

CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, 

CYP3A5, and CYP3A7 (Guengerich, 2003; Lewis, 2004). The nomenclature for CYP isoforms is 

derived from amino acid sequence similarity determined through gene sequencing. Usually, amino 

acid sequences with greater than 40% similarity are placed in the same family, designated by a 

number (e.g., CYP1), while those with greater than 55% similarity are grouped in the same 

subfamiliy, designated by a letter (e.g., CYP1A) (Danielson, 2002).  
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1.3. Structure and mechanism of action 
 

The overall global structure of CYP enzymes is globular, composed of alpha and beta 

substructures, with several of these secondary motifs roughly coplanar to the prosthetic heme group 

(Danielson, 2002) (see Protein Data Bank for structures of CYPs: http://www.rcsb.org) (Figure 1). In 

eukaryote, the vast majority of these proteins are bound to the endoplasmic reticulum membrane.  

 

 

                   

 

 

 

 

 

 

 

Figure 1  Secondary and tertiary structure of cytochrome P450. 

 Source: http://www.rcsb.org 

 

Substrate reactivity can be altered by as little as a single amino acid difference, resulting in 

significant changes in substrate affinity and reaction regioselectivity and velocity (Danielson, 2002). 

The effects of such alterations may be observed in individuals possessing heritable genetic point 

mutations, or single nucleotide polymorphisms (SNPs), in their CYP genes, which may lead to 

reduced activity of the relevant isozyme (Parkinson, 2001). Interindividual allelic variations of this 
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nature can have undesirable pharmacological consequences, such as low blood clearance of a drug 

and exacerbation of toxic effects in poor metabolizers (Parkinson, 2001).  

As a consequence, the CYP isoforms demonstrate differential affinity toward a myriad of 

potential substrates, as well as chemo- and region-selectivity toward reaction sites within these 

molecules. Active sites differences are found in substrate recognition sites (i.e., groups of amino 

acids in the active site that may determine reaction products by orienting the molecule via 

complementary chemical interactions) (Danielson, 2002). 

 

1.4. General Properties and Mechanism of Action 
 

The CYPs are moderately sized proteins having molecular weights that fall within the range of 

48 to 53 kDa. The catalytic component of CYP is a heme cofactor, and the enzyme utilizes the redox 

chemistry of the Fe3+/Fe2+ couple to activate molecular oxygen to oxidize and chemically modify 

drug molecules. The complete functional system also involves a second enzyme, cytochrome P450 

reductase. Cytochrome P450 reductase is a 190-kDa protein that has both flavin adenine dinucleotide 

(FAD) and flavin adenine mononucleotide (FMN) as cofactors that serve to sequentially transfer 

reducing equivalents from reduced nicotine adenine dinucleotide phosphate (NADPH) to cytochrome 

P450. NADPH cannot reduce cytochrome P450 directly; the heme Fe3+ of CYP can only accept 

electrons in discrete single electron steps, whereas reduction by a hydride (H–) ion from NADPH is a 

two-electron process. However, either the FMN or FAD cofactors of cytochrome P450 reductase can 

undergo a direct two-electron H– reduction by NADPH and then transfer the electrons to CYP in 

single one-electron steps. O2 is split into two oxygen atoms but only one atom is utilized in oxidizing 

the substrate (RH) while the second atom is reduced by two electrons to form water, in conformity 

with the following equation:  
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CYP + O2 + RH + 2e− + 2H+ → CYP + ROH + H2O 

 

The cytochrome P450 catalytic cycle (1) is shown in greater detail in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Catalytic cycle of cytochrome P450. 

Source: http://www.tcm.phy.cam.ac.uk/~mds21 
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Step 1.  

The substrate, RH, associates with the active site of the enzyme and perturbs the spin-state 

equilibrium. Water is ejected from the active site and the electronic configuration shifts to favor the 

high-spin form in which pentacoordinated heme Fe3+ becomes the dominant form-binding substrate. 

In this coordination state, Fe3+ is puckered out and above the plane in the direction of the sixth ligand 

site. The change in spin state alters the redox potential of the system so that the substrate-bound 

enzyme is now more easily reduced. 

 

Step 2.  

NADPH-dependent P450 reductase transfers an electron to heme Fe3+ to reduce it to heme Fe2+. 

 

Step 3.  

O2 binds to Fe2+, but can also dissociate. If it dissociates, the enzyme reverts to the heme Fe3+ resting 

state and generates superoxide radical anion in the process. 

 

Step 4.  

A second electron, via P450-reductase or in some instances cytochrome b5, is added to the system 

generating a heme-bound peroxide dianion formally equivalent to FeO2+. 

 

Step 5.  

H+ adds to the system generating a heme-bound hydroperoxide anion complex formally equivalent to 

heme FeO2H2
+. 
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Step 6.  

A second H+ is added. If H+ adds to the inner oxygen of heme, FeO2H2
+ decoupling occurs, H2O2 is 

released, and the enzyme reverts to the heme Fe3+ form. 

 

Step 7.  

If the second H+ adds to the outer oxygen of heme FeO2H2
+, water is formed and released. Residual 

heme FeO3+ bears an oxygen atom (oxene) complexed to heme Fe3+, a species considered to be 

analogous to compound 1, the reactive intermediate of the peroxidases. Decoupling can again occur 

via a two-electron reduction of FeO3+ plus the addition of two protons. This generates a molecule of 

water and the heme Fe3+ resting state of the enzyme. The degree to which this process occurs depends 

on the relative rates of heme FeO3+ reduction versus oxygen atom transfer to the substrate as outlined 

in the next step (2). 

 

Step 8.  

An oxygen atom is transferred from heme FeO3+ to the substrate forming the oxidized product, 

thereafter the product is released, and the enzyme reverts to its heme Fe3+ resting state. 
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1.5. Reactions catalyzed by cytochrome p450 

 
 

The cytochrome P450 enzyme superfamily, one of the most important drug-metabolizing 

enzyme systems in humans, is responsible for the oxidative metabolism of a large number of 

endogenous compounds and xenobiotics (Nebert, 2002). Few enzymes are more striking in both 

versatility and in sheer number of substrates than the cytochrome P450 enzyme system. CYP 

detoxify harmful xenobiotics or, in some instance, bioactivate them to reactive species, through 

biotransformation (Ortiz de Montellano, 2005; Parkinson, 2001). The ubiquitous presence of CYP 

enzymes, paired with their broad substrate selectivity, suggest that the biotransformations catalyzed 

by these enzymes were essential to an organism’s ability to adapt to its environment. CYP enzymes 

catalyze the majority (>80%) of drug-related metabolism in humans (Guengerich, 2005), as well as 

the biosynthesis or catabolism of numerous endogenous substrates such as steroid hormones, 

eicosanoids, vitamine D, etc (Lewis, 2001). Common CYP mediated reactions are: alkyl 

hydroxylation, oxidation, dealkylation, epoxidation, and dehydrogenation.  

 

 
1.6. Variability and Polymorphism  
 

The area of pharmacogenetics (now also known as — or expanded to —"pharmacogenomics") 

was facilitated by the identification of the CYP enzymes involved in the drug metabolism 

phenotypes, and particularly by the development of molecular biology, which allows the precise 

characterization of genetic differences between individuals. The majority of the allelic differences are 

single nucleotide polymorphisms (SNPs), or single base changes. As anticipated from previous 

knowledge of pharmacoethnicity, many of these SNPs and polymorphisms show racial linkage. A 
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polymorphism is generally defined as a 1% frequency of an allelic variant in a population; below this 

frequency, the terms "rare genetic trait" or "rare allele" are applied or, in the case of a very 

detrimental allele, a mutant or "inborn error of metabolism.” A nomenclature system has been set up 

for CYP alleles (using the suffixes *1, *2, *3... and is maintained by Oscarson at 

http://www.imm.ki.se/Cypalleles/  (Ortiz de Montellano, 2005). 

The first characterization of a monogenic variability in a human drug-metabolizing CYP was 

the work of Smith with debrisoquine (Mahgoub, 1997) to which was added the work of Dengler 

and Eichelbaum on sparteine (Eichelbaum et al., 1979). This polymorphism was first described in 

the context of extensive metabolizers (EMs) and poor metabolizers (PMs). The debrisoquine 

polymorphism is now understood in terms of CYP2D6 and has been a prototype for research in 

this area.  

Though CYP2D6 and CYP2C19 are often mentioned as displaying polymorphism, allelic 

mutants have been described in most human CYP isozymes involved in exogenous biotransformation 

(Smith et al., 1998). The study of CYP polymorphisms has been instrumental in discovering the 

substrate affinities of several isozymes; for example, the metabolism of S-mephenytoin was 

originally thought to be catalyzed exclusively by CYP2C9. However, kinetic studies of several 

variants of CYP2C9, derived from SNPs, showed that its relative contribution to S-mephenytoin 

biotransformation is negligible, being predominantly metabolized by CYP2C19 (Smith et al., 1998). 

It should be pointed out that several of the CYPs can be down-regulated by cytokines, and the 

result has practical significance in the impairment of drug metabolism in individuals with colds or 

flu, or who have received vaccinations (Renton and Knickle, 1990). 
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1.7. Human CYP Enzymes 
 
 

The following section briefly outlines important aspects of each family of human CYP. Members 

of three families of cytochrome P450, CYP1, CYP2, and CYP3 dominate human drug metabolism, 

and the primary property that distinguishes one CYP from another is the difference in the spectrum of 

activity displayed by each individual isoform in their ability to discriminate between substrates.  

Further details, on each of the 57 human CYPs, can be found elsewhere (Crivori and Poggesi, 2006; 

Danielson, 2002; Ekins et al., 2001; Lewis, 2001; Ortiz de Montellano, 2005; Parkinson, 2001). 

 

1.7.1. CYP1 family 
 

The CYP1A subfamily contains the two members, CYP1A1 and CYP1A2, which are involved in 

drug metabolism and have sparked considerable interest because they also seem to be associated with 

the metabolic activation of pro-carcinogens to mutagenic species. 

 

• CYP1A1 

In humans, of the two members, CYP1A2 is the major player while CYP1A1 is a relatively 

minor extrahepatic isoform associated with the oxidation of polycyclic aromatic hydrocarbons like 

benzo[a]pyrene. Similarly, in test rodent species CYP1A1 is responsible for the generation of toxic 

intermediates and carcinogenic metabolites (Miners and Mckinnon, 2000).  
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• CYP1A2 

CYP1A2 has been implicated in the activation of procarcinogenic species such as aflatoxin B1, 

2-acetylaminofluorene, and other arylamines. It tends to favour aromatic substrates, both heterocyclic 

aromatic substrates like caffeine and aromatic substrates like phenacetin (Miners and McKinnon, 

2000). In the case of caffeine, CYP1A2 is the major isoform catalyzing the N-demethylation at the 

three N-methyl sites. In this regard, the 3-N-demethylation of caffeine to generate paraxanthine can 

serve as a particularly good in vivo indicator of the presence and activity of CYP1A2. Differences in 

CYP1A2 activity have clinical relevance. For instance, low CYP1A2 activity toward phenacetin 

favours a potentially toxic secondary pathway, deacetylation followed by quinoneimine formation 

and methemoglobinemia (Fischback and Lenk, 1985). High levels of CYP1A2 activity have also 

been associated with ineffectiveness of theophylline therapy (for asthma) (Kappas et al., 1978). 

Another concern is the co-carcinogenic effect. In this regard, there is some epidemiological evidence 

that high CYP1A2 activity (measured as in vivo caffeine metabolism) is associated with enhanced 

risk of colon cancer, although the effect was not seen in the absence of high N-acetyltransferase 

activity and high consumption of charbroiled meat (Lang et al., 1994). Some drug interactions at the 

CYP1A2 level have been reported. 

 



27 
 

1.7.2. CYP2 family 
 
 

The CYP2 family contains isoforms from at least five subfamilies, 2A, 2B, 2C, 2D, and 2E, 

which contribute significantly to drug metabolism.  

 

• CYP2A6 

The 7-hydroxylation of coumarin (Pelkonen et al., 2000) and the initial carbon hydroxylation of 

the α-carbon to the pyrrolidine nitrogen of nicotine, which upon further oxidation by aldehyde 

oxidase (AO) yields cotinine, are the defining metabolic activities associated with CYP2A6. 

CYP2A6 is also responsible for the stereospecific 3’-hydroxylation of cotinine to form trans-3’-

hydroxycotinine (Nakajima et al., 1996), a major metabolite of nicotine in the human. CYP2A6 is 

polymorphic and its activity has a significant effect on smoking behaviour. People with reduced or 

deficient CYP2A6 levels demonstrate a significantly reduced dependency upon nicotine (Tyndale 

and Sellers, 2002). While CYP2A6 is the primary CYP responsible for nicotine metabolism, only a 

few other substrates have thus far been identified where CYP2A6 serves a similar role (Le Gal, 

2003). The few that have been identified suggest that the active site of CYP2A6 favours small 

aromatic or heteroaromatic substrates, alkoxy ethers, and N-nitrosoalkylamines that are neutral or 

basic in character.     

CYP2A6 expression has been reported to be induced during infection by (carcinogenic) liver 

flukes (Satarug et al., 1996) and down-regulated during infection by hepatitis A virus (Pasanen et 

al., 1997).     
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• CYP2B6     

While generally accounting for significantly less than 1% of the total CYP present in human 

liver, CYP2B6 is also found in extrahepatic tissue, including brain, and it has been established as a 

major catalyst for the oxidation of several important drugs in current clinical use. For example, 

CYP2B6 catalyzes the 4-hydroxylation and the N-decholorethylation of the anticancer agents’ 

cyclophosphamide and ifosfamide (Chang et al., 1993), respectively, the 4-hydroxylation of the 

anaesthetic agent propofol (Oda et al., 2001), and the methyl group hydroxylation of the 

antidepressant and antismoking agent bupropion (Hesse et al., 2000). The O-deethylation of 7-

ethoxy-4-trifluoromethylcoumarin has been the favoured substrate to probe for CYP2B6 activity 

(Yuan et al., 2002), but recent evidence indicates that it is not as selective for CYP2B6 as one would 

hope because both CYP1A2 and CYP2E1 also catalyze this reaction. A much better indicator of 

CYP2B6 activity appears to be the N-demethylation of (S)-mephenytoin, particularly at higher 

concentrations of (S)-mephenytoin. 

 

• CYP2C9 

CYP2C9 is the most abundant isoform of the CYP2C subfamily (CYP2C8, CYP2C9, CYP2C18, 

and CYP2C19) and one of the most extensively characterized of all the human CYPs. The active site 

has been explored with a variety of substrates, and computer-derived homology models that predict 

substrate affinity have been developed. The enzyme displays a distinct preference for acidic 

substrates with the defining substrates being warfarin, tolbutamide, and the nonsteroidal anti-

inflammatory drugs (NSAIDS). Typical examples of the latter are flurbiprofen and diclofenac. In the 

case of warfarin, CYP2C9 stereoselectively catalyzes the 7-hydroxylation and 6-hydroxylation of 

(S)-warfarin to generate both (S)-7-hydroxywarfarin and (S)-6-hydroxywarfarin in a ratio of 3:1. 
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Together the two biologically inactive metabolites account for more than 80% of the clearance of (S)-

warfarin from the body (Black et al., 1996). Since (S)-warfarin is responsible for most of the drugs 

anticoagulant activity [(S)-warfarin is five to eight times more potent an anticoagulant than (R)-

warfarin], CYP2C9 effectively controls the level of anticoagulation by controlling the in vivo 

concentration of (S)-warfarin, a drug with a narrow therapeutic index. As a consequence, interference 

with CYP2C9 activity could be expected to have a major impact on anticoagulant response. Thus, if a 

second drug, in addition to warfarin, were present in vivo, and if the second drug were either a 

substrate and/or inhibitor of CYP2C9, a serious drug interaction could result. This indeed seems to be 

the case as a number of warfarin drug interactions have been shown to be caused by a second drug 

inhibiting CYP2C9 (Rettie et al., 1992), and the metabolic inactivation of (S)-warfarin as a direct 

consequence. In this regard, it is informative to note that while (R)-warfarin is not a substrate of 

CYP2C9, it is a reasonably potent inhibitor (Ki = 8 µM) of the enzyme, and does affect the 

elimination rate of (S)-warfarin (Km = 4 µM) when the drug is administered as a racemate, its normal 

mode of administration (Kunze et al., 1991). Therefore, while the two enantiomers of the drug have 

comparable affinities for the enzyme, one enantiomer is a substrate while the other is an inhibitor.  

Hydroxylation of the benzylic methyl group of tolbutamide, the preferred site of oxidative attack 

by CYP2C9 (Veronese et al., 1991), generates hydroxytolbutamide. Hydroxytolbutamide is rapidly 

oxidized by other enzymes, presumably aldehyde oxidase and/or alcohol dehydrogenase (ALD), to 

form the major isolated metabolite, the benzoic acid analog. 

The major CYP2C9-catalyzed transformation of (S)-flurbiprofen is formation of (S)-4`-

hydroxyflurbiprofen (Tracy et al., 1995) and that of diclofenac is formation of 4`-hydroxydiclofenac 

(Leemann et al., 1993). A recently determined crystal structure of flurbiprofen-bound CYP2C9 

indicates that the interaction of the carboxylate anion of flurbiprofen with a complex of hydrogen-
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bonded residues, Arg-108, Asp-293, and Asn-289, orients the substrate for regioselective 

hydroxylation (Wester et al., 2004). Moreover, the identification of this anionic-binding site helps 

explain how CYP2C9, an enzyme that has a relatively large active site, is able to catalyze the 

regioselective hydroxylation of small molecules such as the NSAIDS with high catalytic efficiency. 

 

• CYP2C19 

While CYP2C19 is not a major human CYP, it does illustrate two features of this enzyme family 

that are worth highlighting. First, it is 91% structurally homologous with CYP2C9 and yet the two 

enzymes have distinct substrate selectivity (Rettie et al., 2000). It is not particularly active in 

metabolizing the substrates that characterize CYP2C9 nor does it favour anionic substrates. Defining 

substrates include the anticonvulsant, mephenytoin, and the proton-pump inhibitor, omeprazole, 

neither of which is a substrate for CYP2C9. This suggests that relatively limited structural changes 

can have profound effects on substrate selectivity despite the fact that all the CYPs utilize the same 

activated oxygen species. Indeed, a change as limited as a single amino acid in an enzyme that is 

comprised of as many as 500 amino acids can have a major effect. For example, the I359L allelic 

variant of wild-type CYP2C9 is much less effective in metabolizing (S)-warfarin, the 

pharmacologically active enantiomer of racemic warfarin. In vitro, kinetic analysis of CYP2C9 

I359L indicated that the mutant metabolized (S)-warfarin with a fivefold lower Vmax and a fivefold 

higher Km than the wild-type CYP2C9 (Haining et al., 1996), suggesting that individuals who carried 

this mutant would be much more sensitive to the effects of the anticoagulant and require a much 

lower dose. This indeed has been found to be the case (Steward et al., 1997).  

The second important feature of CYP2C19 is that it is the first isoform to illustrate the potential 

importance of mutant forms of the enzyme to therapeutic outcome using standard dosing. The 4-
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hydroxylation of (S)-mephenytoin is the major metabolic pathway leading to the elimination and 

termination of the anticonvulsant activity of (S)-mephenytoin. CYP2C19 is the cytochrome CYP that 

catalyzes this metabolic transformation. However, in early studies the ability to metabolize 

mephenytoin seemed to vary within the population such that two distinct groups could be identified: 

extensive metabolizers and poor metabolizers. It turns out that a defective mutant form of CYP2C19 is 

carried by 4% of Caucasians but a full 20% of Asians. Thus, it is clear that if effective therapeutics is to 

be achieved, particularly with drugs with a narrow therapeutic index, knowledge of the metabolism of 

the drug and the enzymes and possible enzyme variants that control its metabolism is critical. 

 

• CYP2D6 

CYP2D6 can be considered a major contributor to the metabolism of a significant number of 

potent drugs used in human therapy, even though the amount of CYP2D6 present in human liver is 

generally less than 10% (Shimada et al., 1994) of the total amount of the cytochrome CYP present in 

human liver. From the perspective of substrate preference, CYP2D6 prefers basic substrates. Since 

most active central nervous system drugs are bases, it is hardly surprising that CYP2D6 plays an 

important role in the metabolic processing of these agents. A recent compilation listed 56 drugs 

where CYP2D6 is the primary or one of the major cytochrome CYP responsible for their metabolism 

(Zanger and Eichelbaum, 2000). Typical examples include the benzylic hydroxylation of the 

antidepressive agent, amitriptyline, the O-demethylation of the analgesic, codeine, the N-dealkylation 

of the antipsychotic, haloperidol, and the 4-hydroxylation of the antihypertensive, propranolol. In 

contrast, the antiarrhythmic agent, quinidine (also a base), is a potent (sub-µM) inhibitor of the 

enzyme. This fact illustrates that while the basic properties of quinidine insure that it has affinity for 

CYP2D6, affinity does not guarantee that the substrate will properly orient in the active site of the 
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enzyme with respect to the active oxidant, FeO3+, for efficient metabolic transformation. Thus 

quinidine could be considered as a “silent substrate” of CYP2D6, i.e., a compound that is a highly 

effective inhibitor by virtue of its affinity for the enzyme but one that is a poor substrate by its failure 

to achieve an efficient catalytically susceptible orientation. Silent substrates are potentially important 

causes of drug interactions because if they are present in vivo with another drug whose metabolism is 

governed by an enzyme that they potently inhibit, an exaggerated pharmacological response would 

result (Uetrecht and Trager, 2007). 

Like CYP2C19, CYP2D6 exhibits a common genetic polymorphism. In fact it was the first 

cytochrome P450 for which a genetic polymorphism was clearly established (Meyer and Zanger, 

1997). Historically, the two drugs that defined the polymorphism and indicated that individuals 

within the European population could be categorized as either extensive metabolizers or poor 

metabolizers were the antihypertensive agent, debrisoquine, and the labor-inducing agent, sparteine. 

About 5–10% of this population was found to be poor metabolizers and has little capacity to convert 

either of these two drugs to their major metabolites, 4-hydroxydebrisoquine and 5-dehydrosparteine. 

While the clinical usefulness of both the drugs has been superseded by the development of better 

agents, they can still be effectively used as analytical tools to evaluate the catalytic activity of 

CYP2D6 in vivo in an individual or in vitro in a liver sample (Uetrecht and Trager, 2007). 

 

• CYP2E1 

Chronic exposure of rats to ethanol leads to enhanced cytochrome P450 activity. After discovery 

of the phenomenon, the enhanced activity was soon characterized as being primarily due to the 

induction of a single CYP. This enzyme was subsequently identified as CYP2E1 (Raucy and 

Carpenter, 2000). Later studies with the selective CYP2E1 substrate, chlorzoxazone, confirmed that 
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chronic ethanol ingestion also led to the selective induction of CYP2E1 in humans. Ethanol is both an 

inducer and substrate of CYP2E1. Indeed, CYP2E1 seems to be structurally geared to favour small 

volatile molecules such as ketones, aldehydes, alcohols, halogenated alkenes, and alkanes as 

substrates (Koop, 1992). Moreover, many of these same compounds, like ethanol, are inducers of the 

enzyme. A major mechanism by which this diverse group of compounds appears to initiate induction 

is by inhibiting normal enzyme degradation.  

The apparent preference for small molecules suggests that CYP2E1 has a restricted active site. 

This simple observation is supported by the formation of aryl–iron complexes (Fe–Ar) in the 

reactions of human CYP2E1 with phenyldiazene, 2-naphthylhydrazine and p-biphenylhydrazine 

(Mackman et al., 1996).  

Since a number of CYP2E1 substrates are industrial chemicals to which large numbers of people 

are exposed, induction has significant toxicological implications. It turns out that the structural 

properties of many CYP2E1 substrates can lead to the formation of chemically reactive metabolites 

upon enzyme-catalyzed oxidation. There is evidence that a number of these reactive metabolites are 

either carcinogenic or generate the expression of other toxicities. For example, chloroform is 

converted to phosgene, other halohydrocarbons can similarly be metabolized to acid chlorides or 

reductively transformed to reactive radicals, e.g., CCl4 to •CCl3, ethanol is converted to acetaldehyde, 

and alkenes are converted to epoxides, e.g., butadiene to butadiene monoepoxide. In addition, 

CYP2E1 generates methyl carbonium ion, a reactive methylating species capable of methylating 

DNA, subsequent to the N-demethylation of tobacco-generated nitrosoamines, e.g., N, N-

dimethylnitrosoamine, to N-methylnitrosoamine, methyl carbonium ion, water, and nitrogen 

(Uetrecht and Trager, 2007). 
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1.7.3. CYP3 family 
 
 

The CYP3 family is often considered the most important of the drug-metabolizing enzymes in 

humans, particularly CYP3A4, which metabolizes the majority of exogenous compounds that 

potentially enter the human body, in addition to a few endogenous substrates such as steroids (Lewis, 

2001; Parkinson, 2001). 

 

• CYP3A4 

Out of all the cytochrome P450s involved in human drug metabolism, CYP3A4 could be 

considered to be the most important by virtue of the fact that at least 50% of marketed drugs that are 

metabolized by CYPs are metabolized by the CYP3A4 (Shimada et al., 1994). Generally, it is the 

most abundant CYP present in human liver, averaging 29% in a study that determined CYP content 

in 60 human liver samples. Like all CYPs, percent content of any specific CYP can vary between 

individuals. The variability of CYP3A4 between individuals can be as high as 20-fold (Wrighton and 

Thummel, 2000). 

In addition to being the most abundant CYP in human liver, it is also the most abundant CYP in 

human intestinal mucosa averaging about 40% of what is found in liver. The high intestinal content 

of CYP3A4 can have a major effect on the bioavailability of orally administered drugs, because any 

orally administered drug must first pass through the intestinal mucosa before reaching the systemic 

circulation. Thus, a significant fraction of a first-pass metabolism effect might be due to the passage 

through the intestine and exposure to CYP3A4 before the drug reaches the liver via the portal vein, 

where it is again exposed to metabolism in the liver before it enters the systemic circulation (Uetrecht 

and Trager, 2007). 
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A number of substrates of CYP3A4 have been used as in vivo and/or in vitro markers of the 

enzyme activity to determine CYP3A4 content in human subjects or in liver or intestinal 

preparations. Examples include the N-demethylation of erythromycin, the ring oxidation of 

nifedipine, the 6β-hydroxylation of testosterone, and the 1-hydroxylation of midazolam. Out of these 

examples, the 1-hydroxylation of midazolam has properties that make it the method of choice, 

particularly as an in vivo probe. Midazolam is completely adsorbed, has a half-life of 60 to 90 

minutes, the 1-hydroxylation process is specific to CYP3A4 at the concentrations used, and it appears 

not to be a substrate for p-glycoprotein, the efflux pump present in the intestinal mucosa. This means 

that, if desired, it would be possible to independently assess the CYP3A4 content in liver and 

intestine within a subject by simultaneously administering oral and intravenous doses (one dose being 

labelled with a stable or radioactive isotope to distinguish it from the other dose) of midazolam. 

The implication of the effectiveness of CYP3A4 in catalyzing the biotransformation of so many 

drugs in current use implies that at least potentially clinically significant drug interactions might be 

associated with the use of these drugs. Clearly, one might expect to observe a drug interaction when a 

drug primarily metabolized by CYP3A4 is co-administered with another medication that is also either 

a substrate or inhibitor of this enzyme. In clinical practice, however, this turns out not to be the major 

problem that might have been expected. In order for a significant interaction to occur, the enzyme 

must be substantially inhibited and this generally requires a concentration of the inhibitor at the 

active site of the enzyme well in excess of its Ki. For many inhibitors, the in vivo concentration 

achieved at the active site of the enzyme is less than its binding constant, i.e., Ki. Thus, significant 

interactions generally arise from very potent competitive inhibitors, i.e., ones with a Ki in the low 

micromolar or sub-micromolar region, or time-dependent inhibitors, i.e., ones that covalently modify 

the enzyme (Uetrecht and Trager, 2007). Also, variations in levels of CYP3A4 can cause clinical 
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problems when the therapeutic window is narrow. For instance, low cyclosporine levels will not 

prevent organ rejection during transplant but high levels can cause renal toxicity, so adjustment of the 

dose must be done very carefully (Yee et al., 1984).  

The effect of disease on CYP3A4 has been considered. CYP3A4 expression appears to be 

decreased as a result of liver cirrhosis or cancer (El Mouelhi, 1984). CYP3A4 levels were also 

decreased in celiac disease and reversed by a change in diet (Lang et al., 1996).   

The influence of herbal medicines on CYP3A4 represents an important issue in herb-drug 

interacions (Zhou et al., 2003). One of the most studied issues is St. John’s wort, which induces 

CYP3A4 by virtue of being an agonist of PXR receptor (Moore et al., 2000). The induction of 

CYP3A4 by St. John’s wort has been responsible for the loss of the effectiveness of oral 

contraceptives (Henderson et al., 2002).  

Another issue is the inhibition of CYP3A4 by grapefruit juice and other fruit juices, first reported 

by Bailey (Bailey et al, 1990). The effect was rather specific for grapefruit and a few other citrus 

fruits (not orange), and warning labels now include this contraindication for many drugs (Greenblatt 

et al., 2001). 
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1.7.4. CYP4 family 

 
The CYP4 family of isozymes is important in metabolizing endogenous fatty acids. Thus, this 

family typically binds substrates with a carboxylic acid moiety at the terminus of aliphatic chains and 

facilitates the ω-hydroxylation (and ω – 1 hydroxylation) of long chain fatty acids (Lewis, 2001). 

These enzymes do not play a major role in xenobiotic metabolism (Parkinson, 2001).  

 

 

1.8. NADPH-cytochrome P450 reductase 
 
 

It is well known that NADPH P450 reductase is a necessary component in the monooxygenase 

cycle and that high levels of the reductase promotes the catalytic activity of CYP-enzymes by 

supplying electrons to the CYP-cycle (Nakajima et al., 2002; Schenkman and Jansson, 2003; Wu et 

al., 2005). 

Cytochrome P450-mediated microsomal electron transport is responsible for oxidative 

metabolism of both endogenous compounds, including fatty acids, steroids, and prostaglandins, and 

exogenous compounds ranging from therapeutic drugs and environmental toxicants to carcinogens. It 

is mediated by a multicomponent monooxygenase system, in which reducing equivalents from 

NADPH ultimately are transferred to molecular oxygen  

(Shen & Kasper, 1993).  

In its simplest form, the monooxygenase sytem consists of NADPH-cytochrome P450 reductase 

(CPR; NADPH-ferrihemoprotein reductase) and one of many cytochrome P450 isenzymes (Williams 

& Kamin, 1962; Phillips & Langdon, 1962). Both CPR and microsomal cytochromes P450 are 

integral membrane proteins, and CPR is one of only two known mammalian enzymes containing both 
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FMN and FAD as prosthetic groups. Other physiological electron acceptors of CPR include 

microsomal heme oxygenase (Schacter et al., 1972), and cytochrome b5 (Enoch & Strittmatter, 1979) 

and, although non-physiological, CPR is capable of transferring reducing equivalents to cytochrome 

c (Horecker, 1950).  

CPR accepts a pair of electrons from NADPH as a hydride ion, with FAD and FMN being the 

port of entry and exit, respectively, and transfers these electrons one at a time to cytochromes P450. 

Cytochromes P450, in turn, use these reducing equivalents for the hydroxylation of a variety of 

substrates. The redox potentials of each flavin half-reaction in the native enzyme have been 

determined by potentiometric titrations (Iyanagi et al., 1974; Vermilion & Coon, 1978). The enzyme 

cycles between 1e- and 3e- reduced levels (or 2e- and 4e-), with the one-electron-reduced semiquinone 

of the FMN being the highest oxidation state during catalytic turnover (Masters et al., 1965; Backes 

& Reker-Backes, 1988).  

The enzyme has two functional domains, a hydrophobic N-terminal membrane-binding domain 

and a hydrophilic C-terminal catalytic domain that is comprised of several structural domains. The 

hydrophobic N-terminal domain (6 kD) serves to anchor the protein molecule to the endoplasmic 

reticulum and nuclear envelope (Figure 3) (Kasper, 1971), thus ensuring proper spatial interaction for 

electron transfer between the reductase and cytochromes P450. 
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Figure 3. Electron transfer to cytochrome P450. 

Source : http://www.uky.edu/Pharmacy/ps/porter/CPR_enzymology.htm 

 
 

Chemical cross-linking and modification studies have shown that CPR contains multiple 

carboxylate groups, presumably contributed by the acidic amino acids aspartate and glutamate 

(Nisimoto, 1986). These charge groups pair with basic amino acids (lysines, arginines) on the various 

electron acceptor proteins.  In addition, cytochrome P450 forms a dipole across the molecule, with 

the positive charge at the proximal face of the protein where the heme makes its closest approach to 

the surface (Hasemann et al., 1995). This is thought to be the surface most suitable for electron 

transfer from CPR.  While electrostatic forces may serve to connect and orient the pair, hydrophobic 

forces contributed by nonpolar amino acids (leucine, tryptophan, valine, and others) may be 

responsible for bringing the two proteins close enough together for electron transfer (Inano and 

Tamaoki, 1985). 

Site-directed mutagenesis studies have identified two clusters of acidic amino acids in the FMN 

domain of CPR (consistent with its role as the electron donor flavin) that, upon mutation to nonacidic 
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amino acids, disrupt the interaction with cytochrome P450 and cytochrome c (Shen and Kasper, 

1995). The 3-dimensional structure of the reductase FMN domain-P450 BM3 complex (shown below 

in figure 4) supports the above model for interaction of these proteins (Servrioukova et al., 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4. Three-dimensional structure of FMN domain of CPR 
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PART II: INFLAMMATION AND CYTOCHROME P450 
 

 

Inflammation (Latin, inflammatio, to set on fire) is the complex biological response of vascular 

tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective attempt 

by the organism to remove the injurious stimuli as well as initiate the healing process for the tissue.  

Inflammatory responses are complex, and occur in response to a number of pathological 

disorders, including infection, tissue damage, burns, trauma, tumors, and autoimmune disease. The 

entire process usually is initiated by the activation of inflammatory cells, such as macrophages or 

neutrophils, and is characterized by the release of cytokines, mediators, acute phase proteins, and 

hormones. The release of these agents results in the acute phase response, which includes the 

formation of a number of proteins. Because inflammation is a key component of many disease states, 

the alteration of drug biotransformation during any inflammatory process has to be taken into account 

in clinical therapeutics (Renton, 2001). 

Samaras and Deitz have first documented that CYP was altered during activation of host defence 

mechanisms, in an abstract published in 1953 (Samaras and Deitz, 1953). They noted that the actions 

of pentobarbital were greatly exaggerated in rats that had been treated with a Tryptan blue particulate 

that had activated the immune system.  

The concept that infections and inflammatory compounds could alter drug disposition originated 

23 years later in the late Gil Mannering’s laboratory at the University of Minnesota (Renton and 

Mannering, 1976). Agents such as tryptan blue dye, symosan, dextran sulphate, and latex beads have 

been assumed to lower CYP by activating an inflammatory response within the liver macrophages 

(Morgan, 1997). Inflammation in sites outside the liver, such as the administration of irritants, 
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adjuvants, or vaccines, has similar effects. In a classic model of inflammation, the subcutaneous 

administration of turpentine causes a significant decrease in a number of CYP-dependent reactions 

(Chindavijak et al., 1987; Morgan, 1989; Barakat & du Souich, 1996; El-Kadi et al., 1997; El-Kadi & 

du Souich, 1998; Bleau et al., 2000).  

The first report of altered drug disposition in humans with an infection showed that the clearance 

of theophylline was diminished during upper respiratory tract infections caused by influenza or 

adenovirus (Chang et al., 1978). Several reports followed indicating that the use of theophylline in 

children with infections resulted in the accumulation of the drug in plasma to dangerous levels 

(Fleetham et al., 1978; Clarke & Boyd, 1978; Walker & Middlekamp, 1982; Greenwald & Koren, 

1990). The accumulation of theophylline to levels in brain causing convulsions in several asthmatic 

children occurred during influenza A epidemic in Seattle (Woo et al., 1980; Kraemer et al., 1982). 

This effect of influenza on theophylline disposition has been reported by others. For instance Koren 

and Greenwald reported that routinely monitored theophylline levels tended towards the toxic range 

during influenza epidemics (Koren and Greenwald, 1985).  

Changes in drug clearance have also been observed in disease states that involve an 

inflammatory response. Inflammation following surgical procedures reduced CYP3A4 activity as 

measured by the erythromycin breath test (Haas et al., 2003). The enzyme activity gradually 

diminished over a period of three days to produce a significant decrease at that time. The reduction in 

CYP3A4 activity at all times after surgery correlated with the concentrations of IL-6 present in 

blood. This study suggests that the presence of acute inflammation after elective surgery may impact 

on the metabolism and clearance of a large group of commonly used drugs.  
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2.1. Mechanisms of cytochrome P450 down-regulation  
 
 

The down-regulation of CYP concentrations during infection and inflammation is almost 

certainly a complex and multifaceted process that involves a number of possible factors and the 

formation of a chain of mediators, leading to an eventual effect at the level of enzyme expression or 

function. Many of the conditions and immune modulators that alter CYP expression elicit a large 

number of effects that are mediated by a variety of mediators and intermediates. Although some have 

suggested that a common mediator may be involved, the diversity of agents down-regulating a 

variety of CYP isoforms would make this unlikely. There is much evidence to support the idea that 

the enzyme form and the “immune” activator determine the spectrum of response and its time course 

(Morgan, 1997).  

 

2.1.1. Pro-inflammatory cytokines (Il-1, Il-6, IFN, TNF) 
 
 

Since first suggested in 1976 that interferons could trigger a down-regulation of cytochrome 

P450 enzymes (Renton & Mannering; Leeson & Biedenback), it has been a common finding that the 

production and release of cytokines play a key role in the intermediate pathways and signal 

transduction that leads to the loss in cytochrome P450 (Morgan, 2001; Renton, 2001; Morgan, 1997; 

Renton and Knickle, 1990). Recombinant interferons of the three major classes have been shown to 

depress most isoforms of the cytochrome P450 in rodents (Parkinson, et al., 1982; Singh, Renton and 

Stebbing 1982; Calleja et al. 1998; Carelli et al. 1996).  

Other cytokines including IL-1α, IL-1β, IL-2β, IL-6, TNF-α, and TGF-β have also been shown 

to mimic infection and inflammation by depressing several cytochrome P450 isoforms in rodents and 

in hepatocyte cultures (Fukuda et al. 1992; Clark et al., 1995; Sanne & Krueger, 1995; Barker et al, 
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1992; Wright & Morgan, 1991; Nadin et al, 1995). A recent review and tabular data collection 

indicates that many of the cytochrome P450 isoforms that are involved in steroid synthesis pathways 

in different mammalian species are modulated by cytokines (Herrmann et al., 2002). IL-6 appears to 

have a widely differentiated response on cytochrome P450 isoforms and has a dose dependent 

sensitivity often absent with other cytokines (Chen et al, 1992; Chen et al, 1994). 

  

2.1.2. Nitric Oxide 
 
 

Another mediator that has received much attention is nitric oxide (NO) that is produced by 

NOS2 in response to inflammation. There is no doubt that considerable amounts of NO is produced 

in mammalian species in response to inflammatory stimuli that could reduce cytochrome P450 

activity by decreasing mRNA and protein levels, by altering the protein or by binding to the heme 

moiety (Liaudet et al., 2000). Although a number of studies have demonstrated that inflammation-

mediated reduction of cytochrome P450 correlate with NO production, and that this decrease can be 

blocked by NOS inhibitors, other studies have shown that inhibition of NOS has no effect in 

modulating the effect of inflammation on cytochrome P450 isoforms (Hodgson & Renton, 1995; 

Monshouwer et al, 1996; Sewer & Morgan, 1997).  
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2.1.3. Oxidative Stress 
 
 

Several other mechanisms underlying the down-regulation and/or the decrease in activity of 

cytochrome P450 enzymes have been suggested, including oxidative stress and the production of 

reactive oxygen mediators (Renton, 2001; Morgan, 1997). However, these mechanisms may play a 

role only for some specific cases and at specific levels of signal transductions pathways and appears 

to have a minor role in the widely reported down-regulation. 

 

2.1.4. Decrease in Gene Expression 
 
 

At the level of cytochrome P450 isoform expression itself, it is fairly well accepted that for most 

of the enzyme forms there is a decrease in the specific mRNA and subsequent protein synthesis 

during inflammation, infection or following the administration of cytokines (Renton, 2001; Morgan, 

2001). For most cytochrome P450s the reduction in mRNA precedes the decrease in enzyme and its 

activity, and the entire process is following other pattern as that of enzyme induction processes 

(Renton, 2004). The down-regulation of cytochrome P450 isoforms involves an intracellular protein 

intermediate, assumed to be a transcription factor (Moochhala & Renton, 1991).  

 

2.1.5. Intra-cellular Signalling Pathways 
 
 

The response to cytokines is closely associated to the activation of transcription factors such as 

NF-κB or C/EBP (CCAAT-enhancer binding protein) (Morel & Barouki, 1998; Iber et al, 2000).  In 

addition, the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor 

(PXR) play a role in the inflammation mediated decrease in CYP2B and CYP3A (Van Ess et al, 

2002; Sachdeva et al, 2003; Beigneux et al, 2002). From all evidence to date, it is clear that the 
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decrease of most cytochrome P450 isoforms during inflammatory responses involves a decrease in 

transcription following changes of the expression and regulation of a variety of transcription factors. 

Changes in specific transcription factors are targeted to specific cytochrome P450 isoforms. The 

apparent lack of evidence for the involvement of a single common transcription factor for all 

cytochrome P450 forms is likely a good explanation to account for the differential responses of the 

various enzyme families to diverse inflammatory stimuli (Renton, 2004). 

 
2.1.6. Post Transcriptional Mechanisms 
 
 

A few studies have suggested that for some cytochrome P450 isoforms inflammation mediated 

depression is partly due to post transcriptional mechanisms (Morgan, 1989; Delaporte and Renton, 

1997). While it is clear that the decrease in cytochrome P450 isoforms can occur at post 

transcriptional stages, this mechanism only accounts for a small proportion of the reduction that 

occur during inflammatory responses and it appears to involve more frequently the CYP3A family. 

The vast majority of reports indicate that the down-regulation of most enzymes occurs at the level of 

transcription (Renton, 2004).  

 

At the practical level more evidence continues to emerge indicating that drug clearance can be 

significantly changed in humans during disease states that involve an inflammatory component. With 

the recognition that most isoforms of cytochrome P450 are modified during periods of inflammation 

or infection, there may be a need to alter drug therapy during these periods and to be particularly 

vigilant at monitoring for untoward drug responses (Renton, 2004). 
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PART III: OSTEOARTHRITIS 
 

The definition of osteoarthritis (OA) has evolved over the past two decades and now recognizes 

OA as a syndrome with a complex aetiology rather than as a single disease entity. Osteoarthritis can 

be defined as a gradual loss of articular cartilage, combined with thickening of the subchondral bone, 

bony outgrowths (osteophytes) at joint margins, and mild, chronic nonspecific synovial 

inflammation. The difference between physiologic aging of the cartilage and OA cartilage is not 

sharp. However, three cartilage stages can be identified: stage I, normal cartilage; stage II, aging 

cartilage; and stage III, OA. 

 

3.1. Normal Cartilage 
 
 

Normal cartilage has two main components. One is the extracellular matrix, which is rich in 

collagens (mainly types II, IX, and XI) and proteoglycans (mainly aggrecan). Aggrecan is a central 

core protein bearing numerous glycosaminoglycan chains of chondroitin sulfate and keratan sulfate, 

all capable of retaining molecules of water. The second component consists of isolated chondrocytes, 

which lie in the matrix. The matrix represents 95% of the cartilage and the chondrocytes only 5%. 

The matrix components are responsible for the tensile strength and resistance to mechanical loading 

of the articular cartilage (Klippel, 2008).  
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3.2. Osteoarthritic Joints 
 
 

Osteoarthritic joints have abnormal cartilage and bone, with synovial and capsular lesions 

(Kenneth et al., 2003). Macroscopically, the most characteristic elements are reduced joint space, 

formation of osteophytes (protrusions of bone and cartilage) mostly at the margins of joints, and 

sclerosis of the subchondral bone (Figure 5). 

 

 

 

 

. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Standing anteroposterior (A) and standing flexed postero-anterior (B) views of the right knee.a  

 
aIn (A), no significant narrowing of the joint is identified although osteophytes and subchondral sclerosis, 
indicative of osteoarthritis, are evident. In (B), however, the standing flexed view demonstrates complete 
articular cartilage loss in the lateral compartment. 

 

 

B
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3.3. Enzymes Involved in Cartilage Degradation 
 
 

The main proteinases involved in the destruction of the cartilage in OA are the matrix 

metalloproteinases (MMPs) (Cawston, 1998). There are at least 18 members of this gene family of 

neutral Zn2+ metalloproteinases. Because they are active at neutral pH, the MMPs can act on the 

cartilaginous matrix at some distance from the chondrocytes. They can be synthesized by 

chondrocytes and synoviocytes under the influence of cytokines. 

The activities of MMPs are strictly controlled by stoichiometric inhibition with specific 

inhibitors, the tissue inhibitors of metalloproteinases (TIMP1-4). Therefore, the balance between the 

amounts of MMPs and TIMPs in cartilage determines if cartilage is degraded (Dean et al., 1989). 

MMPs produced by the chondrocytes and released into the extracellular matrix are activated by an 

enzyme cascade involving serine proteinases (plasminogen activator, plasminogen, plasmin), free 

radicals, cathepsins, and some membrane-type MMPs. This enzymatic cascade is regulated by natural 

inhibitors, including the TIMPs and the inhibitors of the plasminogen activator. MMP-13 is elevated 

in OA joint tissues, particularly in articular cartilage, and colocalizes with type II collagen cleavage 

epitopes in regions of matrix depletion in OA cartilage (Dean et al., 1989).  

The other enzymes that can degrade type II collagen and proteoglycans are the cathepsins. 

They are active only at low pH and include the aspartate proteinases (cathepsin D) and cysteine 

proteinases (cathepsins B, H, K, L, and S) that are stored in chondrocyte lysosomes and released into 

the pericellular microenvironment. Glycosidases also may be important, because proteoglycans are 

very rich in carbohydrate chains. Although hyaluronidases are not present in cartilage, other 

glycosidases may contribute to the degradation of proteoglycans (Cawston et al., 1998).  
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3.4. Cytokines 

 
Although OA has often classified as a non-inflammatory disease, numerous studies have shown 

that inflammatory cytokines provide essential biomechanical signals that stimulate chondrocytes to 

release cartilage-degrading enzymes. Pro-inflammatory cytokines synthesized by chondrocytes and 

synoviocytes bind to specific receptors on chondrocytes. These bound cytokines trigger the 

transcription of the MMP genes, and the genes’ products are exported from the cell in an inactive 

form.  It is generally accepted that IL-1 is the pivotal cytokine released during inflammation of the 

osteoarthritic joint (Jacques et al., 2006).  Other cytokines are released, including chemokines (IL-8), 

growth-regulated oncogene (GRO) alpha, macrophage inflammatory proteins (MIP-1 alpha and MIP-

1 beta). Some of these cytokines and chemokines may be regulatory [e.g., IL-6, IL-8, lymphocyte 

inhibitory factor (LIF)], or inhibitory (e.g., IL-4, IL-10, IL-13, IFN-γ). IL-1 receptor antagonist, IL-4, 

IL10, and IL-13 prevent the secretion of some MMPs, and may increase the synthesis of TIMPs. In a 

more general way, IL-4 and IL-13 counteract the catabolic effects of IL-1. Finally, IL-1 alters the 

quality of the cartilage matrix by decreasing the synthesis of type II and IX collagens, while 

increasing the synthesis of type I and type III collagens.  
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3.5. Lipid Mediators 
 
 

The eicosanoids also can take part in chondrocyte activation (Goldring and Berenbaum, 2004). 

Prostaglandins, produced after activation of phospholipases A2, cyclooxygenases (mainly the 

cyclooxygenase-2 isoform) and prostaglandin synthases (mainly the microsomal prostaglandin E 

synthase-1) by proinflammatory cytokines, can favour  the synthesis of MMPs by activating the cell 

via specific cellular or/and nuclear prostaglandin receptors (Goldring and Berenbaum, 2004). Among 

the eicosanoids, prostaglandin E2 seems to be the main lipid mediator produced by synovial cells, 

chondrocytes, and subchondral osteoblasts and involved in cartilage degradation in OA. 

 

3.6. Reactive Oxygen Species 
 
 

Reactive oxygen species (ROS) play a crucial role in the regulation of a number of basic 

chondrocyte activities, such as cell activation, proliferation, and matrix remodelling. However, 

when ROS production exceeds the antioxidant capacities of the cell, an oxidative stress occurs, 

leading to structural and functional cartilage damages like cell death and matrix degradation 

(Henrotin et al., 2005). 

Nitric oxide (NO) is a gas synthesized by way of the oxidation of L-arginine by the NO 

synthases (NOS). Chondrocytes produce large amounts of NO after up-regulation of the inducible 

NOS gene (iNOS or NOS2) by cytokines. Most in vitro studies indicate that NO is partly responsible 

for the blockade of glycosaminoglycan and collagen synthesis by IL-1, and may contribute to the 

activation of the latent forms of MMPs. NO may also mediate the IL-1–stimulated synthesis of MMP 

mRNA and protein, and may contribute to chondrocyte cell death by interfering with survival signals 

from the extracellular matrix. However, NO may have anabolic and anticatabolic effects in cartilage 
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under certain conditions. Therefore, the actual role of NO in the degradative process of OA is not 

clear (Abramson et al., 2001).              

                                          

3.7. Matrix Degradation Products 
 
 

The products of matrix degradation, such as fibronectin fragments, can activate chondrocytes 

through integrin-type receptors that will increase the synthesis of MMPs. These products can 

stimulate or activate other factors, such as catabolic cytokines, that amplify the damage. The damage, 

in turn, enhances the concentrations of the degradation products themselves, as in a positive feedback 

loop (Peters et al., 2005). 

 

3.8. Mechanical Stress 
 
 

Along with chemical mediators, biophysical mediators could also be directly involved in 

chondrocyte activation in OA. Compressive, but also shear and stretch, stresses occur on cartilage. 

Interestingly, there is considerable evidence that interactions between biomechanical factors and pro-

inflammatory mediators are involved in the initiation and the progression of OA (Guilak et al., 2004). 

In vivo studies have shown increased concentrations of inflammatory cytokines and mediators in the 

joint in mechanically induced models of osteoarthritis. In vitro explant studies confirm that 

mechanical load is a potent regulator of matrix metabolism, cell viability, and the production of pro-

inflammatory mediators such as NO and prostaglandin E2. Chondrocytes have receptors for 

responding to mechanical stress and can respond to direct biomechanical perturbation by up-

regulating synthetic activity or inflammatory cytokines, which are also produced by other joint 

tissues. Chondrocytes express several members of the integrin family, and these can serve as 
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receptors for fibronectin (alpha 5 beta 1), types II and VI of collagen (alpha 1 beta 1, alpha 5 beta 1, 

alpha 10 beta 1), laminin (alpha 6 beta 1), and vitronectin and osteopontin (alpha V beta 3). Some of 

these receptors are sensitive to prolonged changes in pressure (mechanoreceptors). Injurious static or 

dynamic compression stimulates depletion of proteoglycans and damage the collagen network and 

decreases the synthesis of cartilage matrix proteins, whereas low intensity dynamic compression 

increases matrix synthetic activity. Certain types of mechanical stress and cartilage matrix 

degradation products are capable of stimulating the same signalling pathways as those induced by IL-

1 and tumor necrosis factor alpha (TNF-α). These signalling pathways involve cascades of kinases, 

including the stress-activated protein kinases (SAPKs), including the c-Jun N-terminal kinases 

(JNKs) and p38 MAP kinase, phosphatidylinositol- 3′-kinase (PI-3K), and IκB kinases,  leading to 

the nuclear translocation of NF-κB. Because these signalling pathways may also induce the 

expression of the genes encoding these cytokines, it remains controversial whether inflammatory 

cytokines are primary or secondary regulators of the progressive cartilage destruction in OA (Yasuda 

et al, 2002; Loeser et al, 2005). 

 

3.9. Chondroitin sulfate 
 
 

Chondroitin sulfate (CS) is a linear heteropolysaccharide chain of repeating disaccharide units of 

d-glucuronic acid and d-galactosamine sulfated at the C-4 and/or C-6 positions, covalently linked to 

proteins forming proteoglycans; the proteoglycan aggrecan contains hyaluronic acid instead of CS 

(Guilak et al., 2004). Joint cartilage consists of chondrocytes (5% of the volume) embedded in a 

matrix of fibrous collagen within a concentrated water proteoglycan gel. Damage of the structure 

collagen/proteoglycans and synovitis are the basis of osteoarthritis (Bhosale and Richardson, 2008).  
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While it is a prescription or over-the-counter drug in 22 countries, chondroitin is regulated in the 

U.S. as a dietary supplement by the Food and Drug administration. As a result, in chondroitin sulfate 

supplements, there are no mandatory standards for formulation, and no guarantee that the product is 

correctly labelled. This is not the case of Europe where there is a chondroitin sulfate formulation 

approved as a drug and considered as the reference product, with evidenced efficacy and safety 

demonstrated by clinical trials in osteoarthritic patients (Vergés and Castañeda-Hernández, 2004). 

 

3.10. Chondroitin sulfate in osteoarthritis 
 
 

Randomized clinical trials in patients with OA have shown that CS reduces pain and improves 

articular function (Uebelhart et al., 2004), reduces joint swelling and effusion, and prevents joint 

space narrowing of the knee (Uebelhart et al., 1998) and fingers (Rovetta et al., 2002) more 

effectively than placebo. According to these effects, CS has been classified as a symptomatic slow 

acting drug in osteoarthritis (SYSADOA). Because CS appears to slow down cartilage damage, CS 

has also been classified as a structure/disease modifying anti-osteoarthritis drug (S/DMOAD) 

(Uebelhart et al., 2004).  

 

3.11. Effect of CS on articular cartilage 
 
 

The complex clinical response to CS may tentatively be explained by the numerous effects that 

have been attributed to this drug. On the one hand, the decrease in pain and swelling may be 

explained by an anti-inflammatory effect of CS, probably through diverse mechanisms such as 

diminishing the expression of phospholipase A2 (PLA2) (Ronca et al., 1998), of cyclooxygenase-2 

(COX-2), and the concentrations of prostaglandin E2 (PGE2) (Chan, 2005; Orth, 2002; Bassleer, 
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2002). Moreover, CS reduces in joints the concentrations of pro-inflammatory cytokines, such as 

TNF-α (Campo 2003) and IL-1β (Chou, 2005), as well as systemic and joint concentrations of NO 

(Orth, 2002; Chan, 2005) and of reactive oxygen species (ROS) (Campo, 2003).  

There is evidence that in chondrocytes, CS diminishes IL-1β-mediated increase in MMP-2, 

MMP-3, MMP-9, MMP-13, and MMP-14 (Orth, 2002; Chan, 2005). On the other hand, it has been 

documented that hyaluronan and mixtures of low concentrations of CS and glucosamine were able to 

prevent the release of MMP-3 and MMP-13 triggered by fibronectin fragments (FN-f) (Homandberg 

et al., 2004; 2006). In subchondral bone, CS increases osteoprotegerin (OPG) and reduces the 

expression of receptor activator of nuclear factor-kappa B ligand (RANKL), effects that may result in 

the reduction of the resorptive activity (Tat et al., 2007). 

In chondrocytes, CS diminishes ERK1/2 phosphorylation and abrogates the phosphorylation 

of p38MAPK induced by IL-1β; as a consequence, CS reduces IL-1β-induced NF-κB nuclear 

translocation. However, CS does not reduce IL-1β-induced AP-1 nuclear translocation. On the 

other hand, CS decreases nitroprusside-induced apoptosis of the chondrocytes which is 

associated to p38MAPK activation (Jomphe et al., 2008). In chondrocytes, chondroitin 

disaccharides sulphated at positions 4 and/or 6, (1-4)-O-(D-glucopyranosyluronic acid)–(1-3)-O-

(2-N-acetamido-2-deoxy-D-galactopyranosyl-4/6-sulfate) (∆di-4S, ∆di-6S and ∆di-4,6S) reduce 

IL-1β-induced NF-κB nuclear translocation to a similar extent as CS, e.g. ∆di-4S, ∆di-6S and 

∆di-4,6S reduce NF-κB translocation (Figure 6). 
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Figure 6.  Effect of CS disaccharides sulphated in position 4 and/or 6 (∆di-4S, ∆di-6S, ∆di-4,6S) on Il-1β-
induced NF-κB nuclear translocation 

 
 
 

It has been widely documented that IL-1β-induced increase in expression of MMP-3 (Liacini et 

al., 2002; Schulze-Tanzil, 2004; Sylvester et al., 2001), MMP-9 (Lianxu, 2006), MMP-13 (Liacini et 

al., 2002; Mengshol, 2000; Wada et al., 2006), COX-2 (Wada et al., 2006; Berenbaum et al. 2003), 

NOS2, IL-1β and TNF-α (Wen et al., 2006; Hanada et al. 2002) is mediated by the activation and 

nuclear translocation of NF-κB and AP-1. Moreover, there is evidence that the activation of 

phospholipase A2 requires the activation of p38MAPK and ERK1/2 (Berenbaum et al., 2003), and 

that the induction of RANKL expression requires the activation of ERK1/2 and PI-3K/Akt pathways 

(Tsubaki et al., 2007). Since the above mentioned effects of IL-1β and of NF-f are mediated by the 

activation of p38MAPK and of ERK1/2, and the nuclear translocation of NF-κB, it has been 
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proposed that the pleiotropic effects of CS are dependent, at least in part, by its ability to inhibit 

p38MAPK and ERK1/2 phosphorylation and NF-κB nuclear translocation (Iovu et al., 2008). 

 

3.12. Effect of CS on the synovial membrane 
 
 

Synovial tissue from patients with early osteoarthritis show activated fibroblast-like 

synoviocytes (FLS), macrophages, T lymphocytes, and mast cells infiltration (Benito et al., 2005). 

FLS release IL-1β, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-13, MMP-14, MMP-16, TIMP-1, 

RANKL, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and 

fibroblast growth factor (FGF).  

The role of NF-κB in the development of synovitis appears essential. In FLS, the production of 

IL-1β, IL-6, IL-8, MMP-1, and MMP-3, requires the activation and nuclear translocation of NF-κB 

(Xu, 2007; Lauder, 2007). Moreover, the activation of NF-κB increases FLS proliferation and 

transforms the phenotype of these cells to highly invasive cells with great motility and ability to 

secrete cytokines and MMP-13 (Li et al., 2006). Inhibition of the IκB kinase (IKK) complex impedes 

the phosphorylation of inhibitor of κB (IκBα) and as a consequence, prevents NF-κB activation. In 

synovial macrophages, inhibition of IKK diminishes IL-1β-induced production of IL-6; moreover, in 

rats with adjuvant-induced arthritis, intraarticular injection of a specific IKK-β inhibitor reduces 

arthritis activity and bone destruction; synovial inflammation is also decreased as documented by the 

reduction in synovial cellularity, TNF-α, IL-1-β concentrations, and reduction of the volume of the 

paw (Tas et al., 2006). These results were confirmed by administering in the articulation a dominant-

negative form of IKK-β that reduced synovial cellularity by 50%, and diminished synovial 

concentrations of IL-1β, TNF-α and MMP-3 (Tas et al. 2006). These results provide evidence that 

activation and nuclear translocation of NF-κB is an important step in the development of synovitis. 
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There is little information about the effect of osteoarthritis treatment on synovitis manifestations, 

e.g. joint swelling and effusion. The multicenter, double-blind, placebo- and celecoxib-controlled 

Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) assessed the effect of CS and 

glucosamine alone or in combination on joint swelling and/or effusion in 1583 patients with mild to 

severe knee osteoarthritis (Clegg et al. 2006). The patients received 1200 mg of CS, or 1500 mg of 

glucosamine or both CS and glucosamine, or 200 mg of celecoxib or placebo, daily for 24 weeks. 

The study demonstrates that CS diminished the percentage of patients with signs of synovitis (joint 

swelling and effusion) from 28.3% at baseline to 12.4% at the end of 24 weeks of treatment. It is of 

interest that the beneficial effect of CS was observed in the patients with mild pain (WOMAC pain 

scores 125 - 300). In patients with moderate to severe pain (WOMAC pain scores 301 – 400) 

receiving CS, the percent of patients with swelling and/or effusion tended to decrease from 30.0% at 

baseline to 14.9% (p = 0.3) at the end of follow-up.  

Further supporting that CS reduces the signs and symptoms of synovitis, a study showed that 

intra-articular injection of hyaluronate, a glycosaminoglycan with a mw of 8.4x105, to patients with 

rheumatoid arthritis improves local clinical symptoms, decreases synovial fluid, reduces 

prostaglandin E2 concentrations and diminishes pain (Goto et al. 2001).   

Several animal studies demonstrate that CS reduces the signs and symptoms of synovitis. In 

DBA/1J mice with a type II collagen-induced arthritis, treated for 9 weeks with various dosages of 

CS, the infiltration of inflammatory cells, granulated tissue formation, proliferation of synovial lining 

cells, paw edema and destruction of articular cartilage were partially prevented by treatment with 

1000 mg/kg/day of CS for 63 days (Omata et al. 2000). In dogs with unilateral carpal synovitis 

induced by injecting into the right radiocarpal joint chymopapain, prior treatment with CS reduces 

the extent of synovitis (Canapp et al., 1999). In rabbits with experimental OA, intra-articular 
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administration of N-acetylglucosamine elicited an anti-inflammatory effect and suppressed the 

synovitis (Shikhman et al. 2005).  

All these studies strongly support that in animal models and in humans, glycosaminoglycans 

reduce the synovitis. The mechanism of action underlying the reduction of synovitis signs by CS and 

other glycosaminoglycans remains incompletely characterized. It has been reported that chondroitin 

sulfate disaccharide ∆di-6S reduces IL-1β-induced nuclear translocation of NF-κB by 67% in 

synoviocytes (Alvarez-Soria et al., 2005). This observation is in agreement with the effect of CS and 

its ∆di-4S and ∆di-6S disaccharides in chondrocytes, e.g. they reduce NF-κB nuclear translocation 

(Iovu et al., 2008). Since oral CS increases plasma concentrations of ∆di-4S and ∆di-6S (Volpi, 

2002), it is conceivable that in humans, the decrease in synovitis signs produced by CS may be 

explained, at least in part, by the reduction in NF-κB nuclear translocation in synoviocytes and 

macrophages, with the subsequent diminution of activation of these cells and decrease in synovitis. 

In summary, CS and/or the sulfated disaccharides appear to elicit an anti-inflammatory effect at 

the synovial membrane and chondrocytes levels. Possibly, CS and/or disaccharides reduce the 

inflammatory reaction by diminishing NF-κB nuclear translocation (Figure 7). In the chondrocytes, 

this effect is mediated by the inhibition of p38MAPK phosphorylation and to a minor degree ERK1/2 

phosphorylation. Indeed, further studies are required to better characterize the precise mechanism of 

action underlying CS-induced improvement of synovitis.  
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Figure 7. Diagram depicting the potential sites of effect of CS and/or its disaccharidesa 

Source: Iovu et al., 2008 
 
aLocal microtraumas produce EMFs and FN-f that activate chondrocytes by increasing the nuclear 
translocation of NF-κB in the chondrocytes, synovial macrophages and synoviocytes. NF-κB has a key role in 
the pro-inflammatory activation of chondrocytes, and synovial macrophages, mast cells, T-cells and 
synoviocytes and in the release of cytokines and MMPs that will sustain cartilage and subchondral bone 
destruction. 
 
 
 
 
Conclusion 
 
 

Patients with osteoarthritis are usually multi-medicated for the disease itself and other 

accompanying diseases, e.g. hypertension, diabetes, hyperlipidemia, etc. The lack of safe alternatives 

and the results of clinical studies that have not identified any significant side effects or overdoses of 

CS (Hathcock and Shao, 2007), makes this drug a one of the safest drugs for osteoarthritis. 

 The benefit of chondroitin sulfate in patients with osteoarthritis is likely the result of a number 

of effects including its anti-inflammatory activity, the stimulation of the synthesis of proteoglycans 
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and hyaluronic acid, and the decrease in catabolic activity of chondrocytes inhibiting the synthesis 

of proteolytic enzymes, nitric oxide and other substances that contribute to damage cartilage matrix 

and cause death of articular chondrocytes. A recent review summarizes data from relevant reports 

describing the biochemical basis of the effect of chondroitin sulfate on osteoarthritis articular 

tissues (Monfort et al., 2007). The rationale behind the use of chondroitin sulfate is based on the 

belief that osteoarthritis is associated with a local deficiency in some natural substances, including 

chondroitin sulfate. 

Recently, new mechanisms of action have been described for chondroitin sulfate. In an in vitro 

study, chondroitin sulfate reduced the IL-1β-induced nuclear factor-kB (Nf-kB) translocation in 

chondrocytes (Jomphe et al., 2007). In addition, chondroitin sulfate has recently shown a positive 

effect on osteoarthritic structural changes occurred in the subchondral bone (Tat et al., 2007). 

Since CS is taken by the patients for long periods of time, the questions are what does CS do on 

baseline CYP isoforms and, by the nature of its anti-inflammatory effect, does CS prevents the down-

regulation of CYP isoforms during an inflammatory reaction? 
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II. HYPOTHESIS AND 
STUDY OBJECTIVE 
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Patients with infectious and/or inflammatory diseases may present transient decreases in the 

activity of the mixed function oxidase system (Chang et al., 1978; Sonne et al., 1985). In animals, a 

turpentine-induced inflammatory reaction reduces the activity of selected isoforms of the cytochrome 

P450 (Letarte & du Souich, 1984; Wright & Morgan, 1990; Parent et al., 1992). There is limited 

information about the mechanism of action underlying the changes in CYP activity and expression 

provoked by an inflammatory reaction secondary to the injection of turpentine (Barakat et al., 2001); 

although it is known that cytokines like IL-6 and IL-1β are the primary serum mediators and that the 

mechanism of action implies a pretranscriptional phenomena (Bleau et al., 2003). It is also known 

that IL-1β activates the nuclear translocation of NF-κB which binds to negative regulatory elements 

of cytochrome P450 genes impeding the transcription of the gene (Iber et al., 2000). On the other 

hand, chondroitin sulfate (CS) elicits an anti-inflammatory effect by a mechanism not fully 

understood. CS prevents IL-1β-induced p38MAPK and Erk1/2 phosphorylation and diminishes NF-

κB nuclear translocation (Jomphe et al., 2008). 

These observations led us to hypothesize that chronic intake of CS could prevent the effects of 

turpentine-induced inflammatory reaction on cytochrome P450 expression and activity. 

The project’s objective was to assess the effect of CS on the activity and expression of hepatic 

CYP in rabbits in vivo with and without a turpentine-induced inflammatory reaction, and secondly to 

assess the effect of CS on the activity and expression of hepatic CYP in vitro, along with the three 

sulphated disaccharides of CS (4S, 6S and 4,6S). The primary objective of this study is an 

exploratory one. 
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III. MATERIALS AND 
METHODS 
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EXPERIMENTAL PROTOCOL 
 

The dose of chondroitin sulfate used in humans for the treatment of osteoarthritis is 800-1,200 mg 

orally per day or 11 to 17 mg/kg. The dose of CS administered to the rabbits was approximately 20 

mg/kg/day (± 5 mg/kg/day) dissolved in the water to be drunk along the day.  The effect of chronic 

intake of CS on the cytochrome P450 was tested with two models, control rabbits and in rabbits with an 

inflammatory reaction.  Seven groups of five rabbits were used: one group was kept for 30 days in the 

animal facilities and used as control; three groups of normal rabbits were used to assess the effect of CS 

on cytochrome P450, one without CS and two receiving orally 20 mg/kg/day CS for 20 and 30 days. 

The remaining three groups received turpentine s.c. generating an aseptic inflammatory reaction (AIR) 

48 h before their sacrifice, e.g. at days -2, 18 and 28, and were exposed to CS for 0, 20 or 30 days, 

respectively. Rabbits of all groups were sacrificed and the liver was removed to assess the activity, 

protein content and mRNA of CYP1A2, 3A6 and NADPH-reductase (Figure 8). 

Before the sacrifice of the rabbits, blood was withdrawn (15 ml). Serum was obtained by leaving 

the blood at room temperature for at least 2 h, followed by centrifugation at 2500 rpm for 5 minutes. 

The serum was employed to assess the seromucoids according to the method described elsewhere 

(Parent et al., 1992).     
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Figure 8. Protocol representation 

 

 
 In vivo studies 

 

Male New Zeeland rabbits (2-2.3 kg) (Charles River, St-Constant, Qc, Canada) were housed in 

separate cages and fed water and chow ad libitum for at least seven days before experiments started. 

Seven groups of five rabbits each were used, of which three groups were controls and the remaining 

four received dissolved in the drinking water 20 mg/kg/day of CS orally for 20 or 30 days. Two of 

the control groups were used to assess the effect of the inflammatory reaction on the cytochrome 

P450; to this purpose, the rabbits of one control group had an aseptic inflammatory reaction caused 

by the subcutaneous (s.c.) injection of turpentine (volume injected 5 ml distributed at four sites of the 

back), and were sacrificed 48 h later; the rabbits of the second control group received saline s.c. and 

were sacrificed 48 h later (Figure 8.). Finally, the rabbits of the third control group were simply kept 
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in the animal facilities for 30 days to assess the effect of age and environment on the cytochrome 

P450. Of the four groups of rabbits receiving CS, two were exposed to CS for 20 days and two for 30 

days. The rabbits of one group receiving CS for 20 days and one group receiving CS for 30 days received 

turpentine s.c. at day 18 and at day 28, respectively, while the rabbits of the remaining two groups exposed 

to CS received saline s.c., and all rabbits were sacrificed  two days later, e.g. at days 20 or 30. 

Forty-eight hours after the injection of turpentine or saline, a blood sample (15 ml) was 

withdrawn from the rabbit with a sterile Vacutainer Brand SST (Becton Dickinson, Mississauga, 

Ont., Canada). The severity of the inflammatory reaction was assessed by taking the rectal 

temperature and by measuring the concentration of seromucoids (Parent et al., 1992). All 

experiments were conducted according to the Canadian Council on Animal Care guidelines for use of 

laboratory animals and protocols approved by the Comité de déontologie de l’expérimentation 

animale of Université de Montréal. 

 

Hepatocyte isolation and culture conditions 
 
 

Male rabbits were housed in separate cages and fed water and chow ad libitum for at least 7 days 

before experiments started. The inflammatory reaction was provoked by local subcutaneous 

injections of turpentine distributed at four sites of the back of the rabbits (total volume injected 5 ml). 

The severity of the inflammatory reaction was assessed by taking the rectal temperature and by 

measuring the concentration of seromucoids (Parent et all., 1992).  

Isolation and culture of primary rabbit hepatocytes was conducted according to the two-step liver 

perfusion method described by Seglen (1976), with minor modifications (El-Kadi et al., 1997). 

The rabbits were anesthetised with 30 mg/kg of sodium pentobarbital. After a laparotomy, the 

cava and portal veins were cannulated; through the portal vein, the liver was perfused with 800 ml of 
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a solution containing 115 mM NaCl, 5 mM KCl, 1 mM KH2PO4, 25 mM HEPES, 0.5 mM EGTA, 

5.5 mM glucose and 0.067 mg/ml heparin, to clear blood from the liver. Thereafter, the liver was 

perfused with a solution containing 0.013% collagenase, 1 mM CaCl2 and 0.25 mM trypsin inhibitor, 

until the digestion of liver was completed (the time will vary with the size of the liver). Complete 

digestion was indicated by softening and enlargement of the tissue.  

When the perfusion was completed, the liver was removed and placed in a dish; using tissue 

scissors the capsule was gently thorn and the cells were separated in 100 ml medium containing 

0.013% collagenase, 1 mM CaCl2 and 0.25 mM trypsin inhibitor, 1 ml William medium E (WME) to 

which was added 10 % calf serum, 1% streptomycin/penicillin and 1.2 µM MgSO4 at 37o C. The 

digested material was then filtered through a nylon membrane of 230 µm, followed by a second 

filtration through a nylon membrane of 80 µm.  

The resulting cell suspension was then divided equally into four sterile centrifuge tubes of 50 ml 

on the ice, adding WME up to 50 ml. The cell suspension was washed by low-speed centrifugation 

(100 g for 5 min). The supernatant was discarded and cells were gently resuspended in approximately 

20 – 30 ml WME. This stage was repeated three times.  

Harvested cells were centrifuged on isodensity Percoll to isolate viable liver cells (over 95% 

viability as assessed by tryptan blue exclusion). Hepatocytes (3 x 106 in 3 ml of William’s medium E 

supplemented with 10% calf serum) were plated in 12-well plastic culture plates (Corning; Fisher, 

Mississauga, Canada) coated with type I rat tail collagen. Cell culture was conducted under sterile 

conditions and maintained at 37o C in a humidified atmosphere containing 95% air and 5% CO2. The 

medium was changed 2h after plating, and thereafter the hepatocytes were incubated for an additional 

4 hours before onset of the experiments.  



69 
 

In vitro studies 
 
 
 The objective of this series of experiments was to explore whether incubation of various 

concentrations of CS and its disaccharides with hepatocytes for 48 hours affected the activity and 

expression of CYP1A2, CYP3A6 and NADPH cytochrome P450 reductase (CPR). 

 Plated hepatocytes were kept for one hour at 37ºC in a humidified atmosphere of 5% CO2 and 

95% air before their culture medium was changed and four different concentration of CS and its three 

disaccharides were added as follows: 

 CS: 50, 100, 200, 450 µg/ml 

 4S-disaccharide: 10, 20, 40, 80 µg/ml  

 6S-disaccharide: 10, 20, 40, 80 µg/ml  

 4,6S-disaccharide: 10, 20, 40, 80 µg/ml  

The hepatocytes were allowed up to 48 hours of incubation before assessing the activity and the 

amount of CYP1A2, CYP3A6 and NADPH-reductase. Proteins were assessed by Western blot 

analysis.  

The chondroitin sulfate used in the present study is purified chondroitin 4&6 sulfate of bovine 

origin (Volpi and Maccari, 2005), the same was used in clinical studies (Uebelhart and col., 2004; 

Clegg and col., 2006). The chondroitin sulfate used may contain disulfated disaccharides that are not 

detectable or present in a minor concentrations (<0.1%). 
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 Measure of Oxide Nitric (NO˙) from hepatocyte culture supernatant 
 
 

Nitric oxide was determined by measuring nitrite and nitrate in the culture media using a 

colorimetric method based on the Griess reaction (Nims et all., 1996).  

To reduce nitrate to nitrite, samples were incubated at 37o C in the presence of 0.1 U/ml nitrate 

reductase, 50 µM NADPH and 5 µM FAD. Following nitrate reduction, to avoid any interference 

with the determination of nitrite, NADPH was oxidized by incubating the samples with 10 U/ml 

lactate dehydrogenase and 10 mM sodium pyruvate for 5 min at 37o C. The concentration of nitrite 

was assumed to reflect that of nitric oxide and the results are expressed as concentration of NO˙ 

relative to total mg proteins.  

 

Quantification of CYP3A6 activity 
 

The activity of CYP3A6 was determined by measuring the ability of the hepatocytes to convert 

3,4-difluorobenxyloxy-5,5-dimethyl-4-(4-methylsulfonyl phenyl)-(5H)-furan-2-one (DFB), a CYP3A 

probe, to 3-hydroxy-4-(4-methylsulfonyl phenyl)-(5H)-furan-2-one (DFH), its fluorescent metabolite 

(Chauret et all., 1992). After 4 hours of incubation, the growth media was removed and the cellular 

layer was rinsed twice with 300 µl of Krebs solution (9.6 g/L Krebs, 2.5 mM CaCl2·2H2O, 25 mM 

sodium bicarbonate, 12.5 mM HEPES of pH 7.4). Briefly, 60 µM of DFB were incubated for 20 min 

with the hepatocytes, and then 100 µl of the supernatant was transferred to a microtiter plate and 

quenched with an equal volume of acetonitrile containing 40% Tris buffer (0.05 M). The 

fluorescence metabolite DFH was measured at excitation and emission wavelengths of 360 and 440 

nm, respectively, using a fluorescent plate reader (Victor2, 1420 Multilabel Counter, PerkinElmer 

Wallac, Gaithersburg, Maryland, USA). 
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Quantification of CYP1A2 activity 
 
 

The activity of CYP1A2 was determined by measuring the methoxyresorufin O-demethylation 

(MROD) to resorufin in intact cells, as described by Van Vleet et al. (2002). Growth media was 

removed and cells washed twice with 300 µl of WME. After removal of WME, 3.3 µM 

methoxyresorufin in 300 µl of WME was added to the wells containing the hepatocytes and 

incubated for 10 min at 37o C. Thereafter, 100 µl of supernatant was added to 100 µl of a solution of 

perchloric acid/glycine and 5.4% K2CO3 (2:1, v/v). Resorufin production was measured 

fluorimetrically at excitation and emission wavelengths of 530 and 584 nm respectively, with a 

fluorescent plate reader (Victor2, 1420 Multilabel Counter, PerkinElmer Wallac, Gaithersburg, 

Maryland, USA). 

 

NADPH-Reductase Assay 
 
 

This assay measures the reduction of cytochrome c by NADPH-cytochrome c reductase in the 

presence of NADPH. The absorption spectrum of cytochrome c changes with its oxidation/reduction 

state. Upon reduction, a sharp absorption peak is observed at 550 nm. The reduction of cytochrome c 

is monitored by the increase of cytochrome c absorbance at 550 nm. The activity is measured with a 

spectrophotometer, using Soresen’s phosphate buffer at room temperature; 1-4 milliunits of enzyme 

are added per assay. Samples from rabbit hepatocytes are assayed in the presence of potassium 

cyanide. The activity of the samples assayed is calculated using the following unit definition: one 

unit will reduce 1.0 µmole of oxidized cytochrome c in the presence of 100 µM NADPH per minute 

at pH 7.8 at 25ºC (Masters et Kamin, 1967). 
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∆A550/min = ∆Asample - ∆Ablank 

dil = the dilution factor of the original enzyme sample 

Enzvol = volume of the enzyme sample (ml) 

21.1 = extinction coefficient (εmM) for reduced cytochrome c 

1.1 = reaction volume (ml) 

 

BCA Protein Assay 
 
 

Hepatocyte monolayers were frozen under liquid N2, and then stored at -80oC, for a latter 

utilisation. FOZ- buffer (with 1:1000 leupeptine, 1:100 sodium ortho-vandate and 1:1000 

phenylmethanesulphonylfluoride) is added to six-well plates containing the hepatocytes. After 30 

minutes incubation, the cells are scraped off and transferred in tubes for centrifugation (10 min at 

13,000 rpm). The supernatant is stored at -80oC or it is used further for protein measurement, which 

is done by BCA Protein Assay as it follows: 

1. Supernatant is diluted 1/70 

2. Serial dilution for standard curve was performed using bovine serum albumin (BSA) 

3. 25 µl of each standard and each sample was added to a 96-well microplate. Samples were 

assessed in triplicata. 

4. Working reagent is prepared using a ratio of 1:20 (Reagent A: Reagent B) 

5. 200 µl of working reagent was added to each well. 

6. The microplate was placed in an incubator for 30 minutes at 37 oC.  
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7. Absorbance of each well was read with a microplate reader. 

8. Amount of protein in each well was calculated by plotting a standard curve using Excel 

software. 

 

Measure of the expression of CYP1A2, CYP3A6 proteins, and NADPH-

reductase 
 
 

The amount of CYP1A2 and CYP3A6 proteins in hepatocytes incubated for 4 hours was 

assessed by Western blot analysis. Proteins (60 µg) were separated by sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (7.5% polyacrylamide) at 120 V. Proteins were 

electrophoretically transferred to a nitro-cellulose membrane using a semidry transfer process (Bio-

Rad, Hercules, CA, USA).  

CYP1A2 was detected with a polyclonal anti-rabbit CYP1A1/2 antibody (1:100) incubated for 

16 hours, and then visualized with an alkaline phosphatase conjugated secondary goat antibody 

(1:16666) using blue tetrazolium as the substrate.  

CYP3A6 protein was detected with a monoclonal anti-rat CYP3A1 antibody (1:2000), with a 

cross-reactivity to rabbit CYP3A6, incubated for 16 hours; thereafter, an incubation of 1 hour 

follows with a horse-radish peroxidase-conjugated secondary antibody (HRP) diluted at 1:8000. 

Chemiluminescence was visualized by autoradiography with the kit ECL advance (GE 

Healthcare, Canada).  

NADPH-reductase was detected with a monoclonal anti-mouse NADPH-reductase antibody 

(1:5000) incubated for 16 hours; thereafter, an incubation of 1 hour follows with a horse-radish 

peroxidase-conjugated secondary antibody (HRP) diluted 1:2000. Chemiluminescence was visualized 

by autoradiography with the kit ECL advance (GE Healthcare, Canada). 
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In each gel, 50 µg of proteins extracted from the same batch of HCONT, with constant amounts 

of CYP1A2, CYP3A6 and NADPH-reductase were used as reference proteins. The assay was 

linear in the range of protein amounts assessed under the present experimental conditions. The 

intensities of the bands were measured with the software Un-Scan-It-Gel (Silk Scientific Inc., 

Orem, UT, USA), and the results are presented as the ratio of the experimental samples to the 

respective reference protein. 

  

NF-κB nuclear translocation   
 
 

The effect of CS on the nuclear translocation of NF-κB was assessed with hepatocytes cultured 

for 48 hr in 12-well plates containing 12 glass coverslips. Hepatocytes were incubated overnight with 

250 µl of rabbit anti-p65 NF-κB antibody diluted 1:250. Secondary antibodies included the Alexa 

488 goat anti-rabbit IgG (H + L) antibody 1:250 to visualize NF-κB. To visualize the nuclei, the glass 

coverslips were incubated with the blue fluorescent probe 4',6-diamidino-2-phenylindole (DAPI), 

1 µl/ml, for 15 min., after which they were washed with water and mounted on slides in Vectashield 

for subsequent observation by epifluorescence microscopy, on a Nikon Eclipse TE-200 inverted 

microscope. Images of immunofluorescent labelling were acquired using a Hamamatsu Orca-II 

digital cooled CCD camera and an Inovision workstation using the Isee software (Inovision 

Corporation, Raleigh, NC, USA). 

Nuclear translocation of NF-κB, determined by immunofluorescence, was expressed as the ratio 

between the numbers of nuclei stained with secondary goat anti-rabbit IgG anti p65 NF-κB 

antibodies over the total number of nuclei marked with the DAPI probe. In each experiment, a 

minimum of five fields were examined and assessed, and the average value recorded. 
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Purification of total RNA from hepatocytes 
 
 

The protocol for purification of total RNA was done according to RNeasy Mini Kit Qiagen bench 

protocol. Hepatocytes were plated in 6-well plastic culture plates (Corning; Fisher, Mississauga, 

Canada) coated with type I rat tail collagen. Cell culture was conducted under sterile conditions at 37o C 

in a humidified atmosphere containing 95% air and 5% CO2 for 4h. After incubation, the plates were 

washed with 500 µl of PBS 1X, then trypsin-EDTA 0,25% was added to detach the cells from plate, 

and medium (containing serum to inactivate the trypsin) was added. A centrifugation was performed 

for 5 min at 300 x g to recover the cells in the pellet, and the supernatant was carefully removed by 

aspiration. The pellet was kept at -80 ºC, for a later use or was used directly in the procedure. Β-

mercaptoethanol (β-ME) was added to Buffer RLT before use, to produce the lysis. The lysate was 

homogenized by passing it at least 5 times through a blunt 20-gauge needle (0.9 mm diameter) fitted to 

an RNase-free syringe; 1 volume of 70% ethanol was added to the homogenized lysate and mixed well 

by pipetting. At this time DNase digestion was performed, for eliminating genomic DNA 

contamination. The whole volume was transferred to an RNeasy spin column and centrifuged for 30 s 

at 13,000 rpm; the flow-through was discarded. Next, RW1 buffer was added to the RNeasy spin 

column followed by a centrifugation at 13,000 rpm for 30s to wash the spin column membrane. Five 

hundred µl Buffer RPE was added to the RNeasy spin column and centrifuged for 30 s at 13,000 rpm to 

wash the spin column membrane; the flow-through was discarded. This procedure was repeated twice. 

To elute the RNA, the RNeasy spin column was placed in a new 1.5 ml collection tube, and 20-25 

µl RNase-free water was added directly to the spin column membrane. The quality of the RNA 

samples was determined by electrophoresis through agarose gels and staining with ethidium 

bromide to visualize RNA under ultraviolet light. The samples were kept to -80ºC until the next 
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utilisation. Real-time RT-PCR was performed by the Genomic platform of the IRIC to quantify 

mRNA expression in hepatocytes. 

Briefly, total RNA was isolated using Trizol according to manufacturer’s protocol (RNeasy Mini 

Kit Qiagen bench protocol). RNA was treated with DneaseI (Invitrogen) before cDNA synthesis. 

Reverse transcription of total RNA was performed using the MMLV-RT and random hexamers 

according to manufacturer’s protocol (Invitrogen).  

Gene expression levels (CYP3A6 and NADPH P450 reductase) were measured by custom primers 

and TaqMan probes using the online version of PrimerQuest software 

(http://scitools.idtdna.com/Primerquest/). Default parameters for real-time PCR were used to select the 

best primers and probes. In order to amplify only the cDNA, primers were located in different exons or 

in the splicing junction between two exons. PCR reactions were performed using 2 µL of cDNA 

samples (10-40 ng), 5 µL of the TaqMan PCR Master Mix (Applied Biosystems), 10 pmol of each 

primer, and 5 pmol of the TaqMan probe in a total volume of 10 µL.  

The ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) was used to detect 

the amplification level and was programmed to an initial step of 10 minutes of 95ºC, followed by 50 

cycles of 15 seconds at 95ºC and 1 minute at 60ºC. All reactions were run in triplicate and the average 

values were used for quantification. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as 

endogenous control. The relative quantification of target genes was determined by using the ∆∆CT 

method. Briefly, the Ct (threshold cycle) values of target genes were normalized to the endogenous 

control gene (GAPDH) (∆CT = Cttarget - CtGAPDH) and compared with a calibrator (control Sca+Lin-

cells): ∆∆CT = ∆CtSample – ∆CtCalibrator. Relative expression (RQ) was calculated using the Sequence 

Detection System (SDS) 2.2.2 software (Applied Biosystems) and the formula RQ = 2-∆∆CT. 
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Oligos Sequence 
 

NADPH-Cyt P-450 reductase 

Primer a = ACAAGACCTACGAGCACTTCAACG 

Primer b = AAGTCCTCCTCCAGGTTTGCATCA 

Probe = AGCGCATCTTCGAGCTGGGCAT 

CYP3A6 

Primer A = AGCACTGGACTGAGCCTGATGAAT 

Primer B = AACCTCATGCCAAGGCAATTTCGG 

Probe = CCGCCCTGAAAGGTTCAGTAAGAAGA 

GAPDH 

Primer A = GGCATTGCCCTCAATGACCACTTT 

Primer B = GTGGTTTGAGGGCTCTTACTCCTT 

Probe = ACGAATTTGGCTACAGCAACAGGGTGGT 
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Statistical analysis 
 
 

All results are reported as means ± S.E. The comparison of the results from the various 

experimental groups and their corresponding controls was carried out using a two-way analysis of 

variance (ANOVA) followed by “Holm-Sidak Method”. The differences were considered significant 

when P < 0.05. The analysis was done by the means of SigmaStat software 3.11.  

 

Materials 
 
 

Percoll gradient, William’s medium E, calf serum, type I rat tail collagen, trypsin inhibitor, 

NaCl, KCl, KH2PO4, EDTA, EGTA, glucose, heparin, N-2-hydroxyethylpiperazine-n '-2-

ethanesulfonic acid, pH 7.2 (HEPES), trypsin inhibitor, glycine, T 

RIS tampon, sulphanilamide, N-NEDA, methoxyresorufine, blue tetrazolium, sodium orthovanadate, 

Krebs-Henseleit, and Temed were purchased from Sigma (Oakville, Ontario, Canada). NaCl, KCl, 

KH2PO4, CaCl2, sodium pyruvate, acetonitrile, methanol, DMSO and 6, 24 and 96 well-plates were 

purchased from Fisher Scientific Canada (Ottawa, ON, Canada). The foetal calf serum (FCS) and 

penicillin/streptomycin were purchased from Gibco (Invitrogen cell culture, Burlington, ON, 

Canada). The type IV collagenase was purchased from Worthington Biochemicals (Lakewood, NJ, 

USA). The turpentine was purchased from Recochem (Montréal, QC, Canada).  The DFB and DFH 

were generously donated by Merck Frost Canada (Kirkland, QC, Canada). Monoclonal anti-rat CYP 

3A1 antibody and polyclonal anti-rabbit CYP 1A1/2 antibody was purchased from Oxford 

Biochemical Research (Oxford, MI, USA). Monoclonal anti-mouse NADPH-reductase antibody and 

the horse-radish peroxidase-conjugated secondary antibody (HRP) were obtained from Santa Cruz 

Biotechnologies (Santa Cruz, CA, USA). Nitrate reductase and lactate dehydrogenase were 
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purchased from Roche Diagnostics (Mannheim, Germany). Rabbit anti-p65 NF-κB antibody was 

acquired from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Chondroitin sulfate and its 

derived disaccharides were provided by Bioibérica (Barcelona, Spain).  
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IV. RESULTS 
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CYTOCHROME P450 AND NADPH-REDUCTASE ACTIVITY  
 

 

1 - Effect of an inflammatory reaction on CYP1A2, CYP3A6 and NADPH-

reductase activity 
 

The first step of this study was to determine if the inflammatory reaction would cause the down-

regulation of the cytochrome P450 isoforms CYP1A2 and CYP3A6, and would the effect NADPH-

reductase activity. The activity of CYP1A2, CYP3A6 and NADPH-reductase in hepatocytes obtained 

from the rabbits with an aseptic inflammatory reaction was compared with those activities from 

control rabbits. Results are reported as arbitrary units of activity divided by the amount of proteins 

(mg). As indicated in table 1, the activity of CYP1A2 decreased by 56% (p<0.05), and the activity of 

CYP3A6 was reduced by 63% (p<0.05); the inflammatory reaction did not change the activity of 

NADPH-reductase. 

 

Activity 

(Arbitrary units/mg protein) 

Hcont Hinfla 

NADPH-reductase  33 ± 3 
(n=5) 

29 ± 7 
(n=5) 

CYP1A2  633 ±131 
(n=5) 

276 ± 77* 
(n=5) 

CYP3A6  1565 ± 263  
(n=5) 

570 ± 174* 
(n=5) 

 

 
Table 1.  NADPH-reductase, CYP1A2, CYP3A6 activity assessed in hepatocytes from control rabbits (Hcont) 

and in hepatocytes from rabbits with an inflammatory reaction (Hinfla). *p <0,05 compared with Hcont 
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2 - Effect of the administration of CS for 20 days on the activity of CYP1A2, 

CYP3A6 and NADPH-reductase 
 

In the control rabbits receiving CS for 20 days, the activity of hepatic CYP1A2 tended to 

increase. On the other hand, following 20 days of intake of CS, the activities of CYP3A6 and 

NADPH-reductase tended to decrease (p>0.05). 

Treatment of rabbits with chondroitin sulfate for 20 days did not prevent the reduction in activity 

of CYP1A2 and CYP3A6 produced by the inflammatory reaction.  

As indicated in table 2, the inflammatory reaction diminished the activity of CYP1A2 by 73% 

(p<0.05), and that of CYP3A6 by 67% (p<0.05). In rabbits with the inflammatory reaction, intake of 

CS for 20 days did not affect the activity of NADPH-reductase.  

 

Activity 

(Arbitrary units/mg protein) 

HcontCS20days HinflaCS20days 

NADPH-reductase  23 ± 3 
(n=5) 

20 ± 2 
(n=5) 

CYP1A2  920 ±171 
(n=5) 

246 ± 90* 
(n=5) 

CYP3A6  1030 ± 270  
(n=5) 

340 ± 65* 
(n=5) 

 

 
Table 2. NADPH-reductase, CYP1A2, CYP3A6 activity assessed in the hepatocytes from control rabbits 

(Hcont) and in the hepatocytes from rabbits with an inflammatory reaction (Hinfla) following the 
administration of CS for 20 days. *p <0,05 compared with Hcont 
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3- Effect of the administration of CS for 30 days on the activity of CYP1A2, 

CYP3A6 and NADPH-reductase 
 

Since the intake of CS for 20 days did not affect the activity of the isoforms of the CYP, it was 

of interest to document whether a prolonged intake of CS, eg. for 30 days, would modify the effect of 

the inflammatory reaction.  

In control rabbits, after the intake of CS for 30 days, the activity of CYP1A2 was not modified 

although the activity of CYP3A6 tended to decrease (p>0.05). In rabbits with the inflammatory 

reaction, the intake of CS for 30 days did not prevent the decrease of the activity of CYP1A2 and 

CYP3A6. The activity of NADPH-reductase was not affected by the experimental conditions. As 

indicated in table 3, in rabbits administered CS for 30 days, the inflammatory reaction decreased the 

activity of CYP1A2 by 48% (p<0.05) and that of CYP3A6 80% (p<0.05).  

 

Activity 

(Arbitrary units/mg protein) 

HcontCS30days HinflaCS30days 

NADPH-reductase  18 ± 1 
(n=5) 

15 ± 2 
(n=5) 

CYP1A2  410 ±37 
(n=5) 

213 ± 43* 
(n=5) 

CYP3A6  827 ± 112  
(n=5) 

159 ± 30* 
(n=5) 

 

 
Table 3. NADPH-reductase, CYP1A2, CYP3A6 activity assessed in hepatocytes from control rabbits (Hcont) 

and in hepatocytes from rabbits with an inflammatory reaction (Hinfla) following the administration of CS for 
30 days. *p <0,05 compared with Hcont 
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There is no significant change in activity of NADPH-reductase due to inflammation, when 

compared with control rabbits after 30 days of CS intake. Contrary there is a significant decrease of 

this activity when compared with control rabbits with no CS intake. It is important to observe that 

there is a tendency to decrease as a function of time, for the activity of NADPH-reductase and 

CYP3A6, and CS does not exibit a protective role. 

 

4A - Effect of 30 days stay in the animal facilities on CYP1A2, CYP3A6 and 

NADPH-reductase activities 
 

Since in the the previous two study groups, the rabbits were kept for 30 days in the animal 

facilities, a control group of rabbits kept for 30 days in the animal facilities without any other 

intervention was necessary. Therefore, the effect of 30 days in the animal facilities on the activities of 

CYP1A2, CYP3A6 and NADPH-reductase was assessed.  

The activity of CYP1A2 for the group of rabbits without CS intake, kept 30 days in the animal 

facilities is not significantly decreased when compare with control 0 days CS. The only difference 

observed is the significant increase in the activity of CYP1A2 for control group with 20 days intake 

of CS, but overall the activity of CYP1A2 does not seams to be influenced by the time the rabbits 

spent in the animal facilities (figure 9-A). 

The activity of CYP3A6 remains depressed as a function of time. The group of rabbits kept in 

animal facilities for 30 days register the lowest activity of CYP3A6, but comparable with that of 

control group with 30 days of CS intake (figure 9-B). 

The activity of NADPH-reductase shows a significant decrease for group of rabbits kept for 30 

days in animal facilities, when compared with control group 0 days, but is still comparable with that 

of control group 30 days CS (figure 9-C). 
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Figure 9. (A) CYP1A2 activity in hepatocytes from rabbits pre-treated with CS for 
20 and 30 days, with or without an inflammatory reaction. 
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(B) CYP3A6 activity in hepatocytes from rabbits pre-treated with CS for 20 

and 30 days, with or without an inflammatory reaction. 
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(C) NADPH-reductase activity in hepatocytes from rabbits pre-treated with 
CS for 0, 20 and 30 days, with or without an inflammatory reaction. 



87 
 

 

CYTOCHROME P450 AND NADPH-REDUCTASE EXPRESSION 
 
 
 
1- Effect of the inflammatory reaction on the expression of CYP1A2, 

CYP3A6 and NADPH-reductase 
 

Proteins from group of rabbits without CS administration, with and without an AIR, were 

subjected to Western blotting analyses, to confirm the differential expression of CYPs and 

NADPH-reductase (Figure 10). Compared with control rabbits at Day 0, CYP1A2 protein 

expression decreased by 0.69 ± 0.150 (p<0.05) and CYP3A6 protein expression decreased 

significantly by 0.78 ± 0.07 (p<0.05) 48 hours after the production of turpentine-induced 

inflammatory reaction. There was no change in the protein expression of NADPH-reductase 

following an aseptic inflammatory reaction.  

 

 
2- Effect of the administration of CS for 20 days, on the expression of 

CYP1A2, CYP3A6 and NADPH-reductase 
 

Proteins from gruop of rabbits with CS intake for 20 days, with and without and AIR were 

subjected to Western blotting analyses, to confirm the differential expression of CYPs and NADPH-

reductase (Figure 10). CS administered for 20 days to the control group of rabbits prevents the time-

dependent decrease of CYP3A6 protein expression, when compared with control group without CS 

intake (figure 11-A). Contrary, it does not exhibit the same effect on the CYP1A2 protein expression, 

since it is significantly decreased when compare with control group 0 days CS. NADPH-protein 

expression shows no significant diference for group of rabbits with 20 days of CS intake. 



88 
 

The administration of CS for 20 days before producing the turpentine-induced inflammatory 

reaction did not prevent the decrease in protein expression of CYP1A2 (0.33± 0.06). On the other 

hand, after 20 days of CS intake, decrease in CYP3A6 protein expression produced by the aseptic 

inflammation was less apparent, but still lower (p<0.05) than that observed in control rabbits at 

Day 0 (0.55 ± 0.06). The protein expression of NADPH-reductase showed no change after 20 days 

of CS intake. 

 

3- Effect of the administration of CS for 30 days, on the expression of 

CYP1A2, CYP3A6 and NADPH-reductase 
 

Proteins from group of rabbits with CS intake for 30 days, with and without and AIR were also, 

subjected to Western blotting analyses, to confirm the differential expression (Figure 10). CYP1A2 

protein expression is significantly decreased in group of rabbits with 30 days of CS intake, when 

compared with control group without CS intake (figure 11-B). Contrary, the administration of CS 

seems to stabilize CYP3A6 protein expression at levels comparable with control group without CS 

intake (figure 11-A). There is no decrease of NADPH-reductase protein expression in the group of 

rabbits with 30 days of CS intake, when compared with control group without CS intake (figure 11-

C). The administration of CS for 28 days before producing the turpentine-induced inflammatory 

reaction and for the next 48 hours did not prevent the decrease in protein expression of CYP1A2 

(figure 11-B). Interestingly, after 30 days of CS intake, CYP3A6 protein expression in rabbits with a 

turpentine-induced inflammatory reaction was similar to the values estimated in control rabbits 

receiving CS for 30 days, e.g. 0.85 ± 0.18 vs 0.88 ± 0.10, respectively. In other words, after 30 days 

of CS, the inflammatory reaction did not diminish CYP3A6 expression (figure 11-A). NADPH-

reductase protein expression showed a step-wise diminution time-dependent that could not be 

prevented by the administration of CS (figure 11-C). 
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Figure 10. Protein expression at O Days, 20 Days and 30 Days for (A) CYP1A2, (B) CYP3A6, (C) NADPH-reductase. 
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4- Effect of 30 days stay in the animal facilities on protein expression  
 

Compared with control rabbits at 0 Days, e.g. after only seven days of acclimatization, the 

protein expression of CYP1A2 in rabbits kept for 30 days in the animal facilities was significantly 

decreased, but similar with that observed at rabbit group with 30 CS intake (figure 11-B). The protein 

expression of CYP3A6 in group of rabbits kept in animal facilities for 30 days is decreased 

significantly when compared with control group without CS or rabbits group with 30 days CS intake 

(figure 11-A).  

The expression of NADPH-reductase did not change as a result of keeping rabbits for 30 days in 

the animal facilities (there is no statistically significant change) (figure 11-C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 

 
Figure 11. Effect of the administration of CS for 20 and 30 days on 

(A) CYP3A6 expression in hepatocytes from rabbits with or without an inflammatory reaction
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(B) CYP1A2 expression in hepatocytes from rabbits with or without an inflammatory reaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(C) NADPH-reductase expression in hepatocytes from rabbits with or without an inflammatory reaction. 
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5 - Effect of CS on mRNA of CYP3A6  
 

Contrary with the effect observed on the activity of CYP3A6, but similar with the CYP3A6 

protein expression, the mRNA of CYP3A6 remains stable as result of time (figure 12-A), in group of 

rabbits with 20 days and 30 days of CS without inflammation .  The intake of CS for 20 and 30 days 

does not prevent the decrease of CYP3A6 mRNA in rabbits with aseptic inflammation, though not 

statistically significant because of variability. Data on mRNA of CYP1A2 in not available, due to 

laboratory technical problems. 

In group of rabbits with 20 and 30 days of CS intake the mRNA of NADPH-reductase remains 

similar with that of control rabbits without CS intake (Day 0). In rabbits with turpentine-induce 

inflammatory reaction, the mRNA expression of NADPH-reductase was similar to that estimated in 

control rabbits at Day 0; however, after 20 days of CS intake in rabbits with aseptic inflammation 

mRNA of NADPH-reductase tends to decrease (figure 12-B). In group of rabbits with AIR and 30 

days of CS intake, mRNA of NADPH-reductase tends to further decreased although not statistically 

significant because of variability. 
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Figure 12. (A) CYP3A6 mRNA (expressed as percentage of controls). 

 

 

 

 

 

 

 
 
 
 
 

 

 
 

(B) NADPH-reductase mRNA (expressed as percentage of controls). 
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MARKERS OF INFLAMMATION 
 
 

The estimates of seromucoid concentrations in vivo, as well as nitric oxide (NO•) concentrations in 

the supernatant of the 4 hours incubation of rabbit hepatocytes, and NF-κB nuclear translocation in the 

hepatocytes were used as biomarkers of systemic and cellular inflammation and also to evaluate the 

effect of CS on the inflammatory reaction. 

 

1- Seromucoid concentration 
 

At day 0, in control rabbits (n = 5), the concentration of seromucoid was 8.35 ± 1.55 mg/dl, and in 

rabbits with a turpentine-induced inflammatory reaction (n = 5), 48 hours after the injection of 

turpentine, the concentration of seromucoid was tenfold greater (p<0.05 compared with values in 

control rabbits) (Table 4), strongly supporting that the injection of turpentine did produce an 

inflammatory reaction. The administration of CS to control rabbits for 20 (n = 5) or 30 days (n = 5) did 

not influence seromucoid concentrations. Similarly, in rabbits with a turpentine-induced inflammatory 

reaction, after 20 (n = 5) or 30 days (n = 5) of CS intake, seromucoid concentrations remained 

increased and similar to the values determined in rabbits not exposed to CS at day 0.  

Table 4 Seromucoid concentrations in serum from control rabbits and rabbits with a turpentine-induced 
inflammatory reaction (TIIR) at Day 0 and following the intake of approximately 20 mg/kg of chondroitin 

sulfate (CS) for 20 and 30 days. 

  

Seromucoids 
(mg/dl) 

   Day 0 Day 20 + CS Day 30 + CS 

 
Control rabbits 

  
 8.4 ± 1.6 

 
15.1 ± 2.0 

  
 9.5 ± 1.1 

    
Rabbits with TIIR 95.1 ± 5.7* 93.5 ± 2.8* 92.2 ± 9.8* 
    

 
* p<0.05 compared with values of control rabbits 
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2- Nitric oxide concentrations 
 

In the supernatant of hepatocytes harvested from control rabbits, the concentrations of NO• 

tended to increase in groups taking CS for 20 and 30 days (Table 5). Compared with hepatocytes 

from control rabbits at Day 0, the turpentine-induced inflammatory reaction in vivo, increased the 

release of NO• from the hepatocytes in vitro (p<0.05). However, compared with control rabbits 

exposed to CS, in the rabbits with an inflammatory reaction and receiving CS for 20 and 30 days, the 

concentrations of NO• were not increased by the inflammatory reaction. 

 

Table 5 Nitric oxide (NO•) concentrations in hepatocyte’s culture media from control rabbits and rabbits with 
a turpentine-induced inflammatory reaction (TIIR) at Day 0 and following the intake of approximately 20 

mg/kg of chondroitin sulfate (CS) for 20 and 30 days. 

 
 
  
NO• (µM)      Day 0 Day 20 + CS Day 30 + CS 

 
    
    
Control rabbits 1.26 ± 0.18 3.02 ± 0.90 1.68 ± 0.38 
    
Rabbits with TIIR 2.10 ± 0.29* 2.69 ± 1.13 1.48 ± 0.35 

 
 
* p<0.05 compared with values of control rabbits 
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3- Nuclear translocation of NF-κB in hepatocytes 

 
At day 0, around 15% of hepatocytes harvested from control rabbits showed nuclear 

fluorescence, indicating a relatively small NF-κB nuclear translocation (Figure 13).  

 

 

 

 

 

 

 

 
 

 
 

 
 
 
 
 
 
 
 

Figure 13. Fluorescent micrographs representing p65–NF-κB immunopositive nuclei in hepatocytes.  

 (A) in control hepatocytes, nuclei do not show immunofluorescence that is concentrated in the cytoplasma.  

(B) NF-κB immunopositive nuclei activated by inflammation. 

 (C) hepatocytes exposed to chondroitin sulfate for 20 days and inflammation, showing a reduction in nuclei 
immunofluorescence by reference to panel B.  

(D) hepatocytes exposed to chondroitin sulfate for 30 days and inflammation, showing a reduction in nuclei 
immunofluorescence by reference to panel B.  Scales bar in panel A (20 µm). 

 
 

Control Inflammation

Inflammation + CS 30 daysInflammation + CS 20 days
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In hepatocytes from control rabbits kept for 30 days in the animal facilities, NF-κB nuclear 

translocation was very similar to that observed at Day 0. In the hepatocytes from rabbits with a 

turpentine-induced inflammatory reaction at Day 0, NF-κB nuclear translocation was increased 

fivefold (p<0.05) compared with hepatocytes from control rabbits. In control rabbits, the intake of CS 

for 20 or 30 days did not influence NF-κB nuclear translocation. It is noteworthy that in hepatocytes 

from rabbits with a turpentine-induced inflammatory reaction, CS prevented the increase in NF-κB 

nuclear translocation triggered by the turpentine-induced inflammatory reaction (Figure 14). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 14.  Effect of chondroitin sulphate (CS) on NF-κB nuclear translocation in rabbits hepatocytes, in vivo.
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4- Effect of CS and the ∆di-4S, ∆di-6S and ∆di-4,6S disaccharides on 

CYP1A2, CYP3A6 and NADPH-reductase activity and expression in vitro 
 
 

Incubation of 10, 20, 40, 80 µg/ml of ∆di-4S, ∆di-6S and ∆di-4,6S and 50, 100, 200, 450 µg/ml 

of CS with hepatocytes harvested from control rabbits (n = 3) for 48 hours did not affect the activity 

or the expression of CYP1A2, CYP3A6 and CPR (Figure 15). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Activity and expression of CYP1A2, 3A6, and NADPH-reductase in the presence of different 
concentrations of CS and its disaccharides (∆di-4S, ∆di-6S and ∆di-4,6S), in vitro. 
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V. DISCUSSION 
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Patients with osteoarthritis may receive CS for long periods of time (Zhang et al., 2008). 

Osteoarthritis is frequently associated with other diseases such as obesity, diabetes, hypertension, 

hyperlipidemia and cardiovascular diseases and consequently, the patients with osteoarthritis may be 

poly-medicated (Caterson et al., 2004; Bray and Bellanger, 2006). Therefore, the question whether 

CS may be responsible of drug-drug interactions may be raised. More specifically, since CS is an 

anti-inflammatory agent, two questions can be raised: a) does CS modify the biotransformation of 

drugs under control conditions, and b) does CS modulate the down-regulation of CYP enzymes 

produced by an inflammatory reaction and so may regulate the biotransformation of drugs. 

 

Turpentine-induced inflammatory reaction and markers of inflammation in 

this model 
 

Turpentine oil-induced local irritation is a model of inflammation, which results in the 

recruitment of inflammatory cells and the up-regulation of IL-6 (Sheikh et al., 2006). In the model of 

turpentine-induced inflammatory reaction, IL-6 and in smaller amounts IL-1β are produced locally, at 

the site of turpentine oil injection, released into the blood and responsible forthe acute phase reaction 

triggered in the liver; the acute phase reaction as well as cytokines modulate the activity and 

expression of CYP (Sheikh et al., 2007). Apparently, IL-6 plays an important role in the down-

regulation of several CYP isoforms as demonstrated by a study conducted with IL-6 transgenically 

deficient mice, e.g. the turpentine-induced inflammatory reaction did not depress CYP3A1 in mice 

IL-6-/- (Siewert et al., 2000). In a study done by Bleau et al. (2000) it was reported that IL-6 and IL-

1β are the serum mediators that down-regulate CYP3A6 which are released in vivo by the turpentine-

induced inflammatory reaction in rabbit.  
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Kourylko et al. (2006) showed that the serum of rabbits with a turpentine-induced inflammatory 

reaction, containing IL-6 and IL-1β as serum mediators, down-regulate CYP3A6 through the JAK-

Erk1/2-NF-κB pathway. In aseptic as well as septic inflammatory reacion, NF-κB is a central 

mediator of inflammation, responsible for signals leading to a variety of cellular responses, including 

the induction of pro-inflammatory genes that would finally lead to the release of pro- and anti-

inflammatory cytokines and of diverse enzymes (Figure 16). 

Sterile tissue damage will release heat-shock proteins 60 and 70, and also breakdown products of 

tissue matrix, which will activate pattern recognition receptors (PRRs) and other receptors in immune 

and other tissue cells, as well α5β1-integrin, toll-like receptor (TLR), CD36 and CD44. The activation 

of these receptors will trigger the activation and nuclear translocation of the nuclear factor κB (NF-

κB) in immune cells, epithelial cells of the liver, endothelial cells or locally in the tissue. Nuclear 

translocation of NF-κB will induce the expression of pro- and anti-inflammatory cytokines and of 

enzymes, such as inducible nitric oxide synthase-2 (NOS-2), cyclooxygenase-2 (COX-2) and matrix 

metalloproteinases (MMPs) that will perpetrate the inflammatory reaction (Dumais et al., 2008). 

Because several of these conditions are similar to the inflammatory conditions of osteoarthritis 

(detailed in the Introduction of this thesis), we selected the turpentine-induced inflammatory model to 

study the impact of long term CS administration, focusing on major drug metabolizing enzyme. 
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Figure 16.  Production of an inflammatory reaction.  Infections by means of pathogen-associated molecular 
patterns (PAMPs) activate the pattern recognition receptors (PRRs), including toll-like receptor (TLR), in 

polymorphonuclear cells (PMNs) and other immune cells. 

 
 
 

 
The present study demonstrates that in vivo, in rabbits with a turpentine-induced inflammatory 

reaction, CS prevents the increase in NF-κB nuclear translocation in hepatocytes of rabbits with an 

AIR taking CS for 20 and 30 days. A possible explanation for this finding could be the partial 

inhibition of p38MAPK and to a minor extent Erk1/2 that could finally reduce NF-κB nuclear 

translocation. This explanation is supported by the fact that in vitro, CS diminishes NF-κB nuclear 

translocation in chondrocytes activated by IL-1β (Jomphe et al., 2008). Since NF-κB is activated by 

IL-1β and not by IL-6 (Leeman et al., 2008), we may postulate that even if IL-1β is produced in 

smaller amounts, these low concentrations are enough to trigger the activation of NF-κB in our in 

vivo model of inflammation. 
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Nitric oxide (NO) is induced by an inflammatory stimulation, secondary to the induction of 

inducible nitric oxide synthase (NOS2) in hepatocytes (Liaudet et al., 2000). In our study, NO was 

significantly increased in hepatocytes from the group of rabbits with a turpentine-induced 

inflammatory reaction. NO can bind to the heme of CYP enzymes and inhibit them by reversible or 

irreversible mechanisms (Wink et al., 1993; Vuppugalla and Mehvar, 2004) and therefore, NO may 

be one cause of enzyme inhibition observed in inflammatory states (Veihelmann et al., 1997; 

Kourylko et al., 2006). However, a large number of studies have shown that the down-regulation of 

the majority of hepatic, drug-metabolizing CYP proteins and mRNAs are not affected by deletion of 

the NOS2 gene or by inhibitors of NOS enzymes (Aitken et al., 2006), supporting the notion that NO 

may not be responsible for the down-regulation of CYP enzymes. In other words, there is a NO-

independent pathway responsible for the down-regulation of CYP enzymes. In the present study, the 

production of NO is used as evidence of the presence of a systemic inflammatory reaction, since the 

production of NO could not be entirely accounted for the changes seen in the regulation of CYPs, 

observed in the present study.  

In rabbits with a turpentine-induced inflammatory reaction, the increase of NO is prevented by 

the intake of CS for 20 and 30 days. Moreover, CS prevented NF-κB activation and therefore, we 

might speculate that the expression of NOS-2 should also be reduced (Iovu et al., 2008; Jomphe et 

al., 2008), and consequently the production of NO might be prevented.  

The concentration of seromucoids represents another marker of inflammation used in our study. 

Seromucoids are a crude precipitation fraction of glycosilated proteins such as α1-acid glycoprotein, 

α1-cysteine proteinase inhibitor and hemopexin (Price et al., 1961). Interleukin-6 by regulating the 

synthesis of acute phase proteins in human hepatocytes increases α1-acid glycoprotein levels (Castell 

et al., 1988; Lyoumi et al., 1998; Ling et al., 2004). In the present study, seromucoids concentrations 
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were constantly increased in the presence of turpentine-induced inflammatory reaction and that 

despite the administration of CS for 20 or 30 days. This is in agreement with the belief that the anti-

inflammatory effects of CS are associated to the IL-1β mediated effects (Chan et al., 2005; Jomphe et 

al. 2008; Legendre et al., 2008). We may postulate that CS did not interfere with the regulation of 

seromucoids which are IL-6-dependent and these markers were used only as an evidence of a strong 

systemic inflammation. 

 

Down-regulation of CYP enzymes by TIIR 
 

The aseptic inflammatory reaction reduced CYP3A6 activity by 62% and CYP1A2 activity by 

54%, consequence of a decrease of protein expression of CYP3A6 by 78% and that of CYP1A2 by 

69%. This outcome confirms the results already reported by numerous studies (Chindavijak et al., 

1987; Morgan, 1989; Barakat & du Souich, 1996; El- Kadi et al., 1997; El-Kadi & du Souich, 1998; 

Bleau et al., 2000) showing that in a classic model of inflammation, the administration of turpentine 

causes a significant decrease of several CYP isoforms. 

The CYP isoforms CYP3A6 and CYP1A2 are both down-regulated by the turpentine-induced 

inflammatory reaction even though their regulation is mediated by different signalling pathways. The 

decrease of the expression of CYP enzymes by an inflammatory reaction involves transcriptional and 

post-transcriptional mechanisms. Transcriptional regulation of the expression of CYP enzymes 

depends upon the expression of nuclear receptors, the binding of the nuclear receptors to the DNA-

binding domain, the availability of coactivators/enhancers, and the presence of repressors (Dumais et 

al., 2008). Differences in nuclear receptors, coactivators/enhancers and repressors may thus explain 

the different results observed for the two CYP isoforms characterized in the present study. In 

addition, the cytokine released and activated have a preferential effect on the nuclear receptors 
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modulating each of the two CYP isoforms. For example, IL-1β down-regulates CAR (Assenat et al., 

2004), RXR-α, PPAR-α, PPAR-γ, LXR-α, and the coactivators SRC-1, PGC-1α and PGC-1β (Kim et 

al., 2007), HNF-4 (Krajewski et al., 2007), GR (Liu, 2002), TR (Kwakkel et al., 2007) and, to a 

minor extent, PXR and FXR (Geier et al., 2005). Moreover, IL-1β down-regulates AhR and Arnt 

(Wu et al., 2006). In human hepatocytes, IL-6 rapidly decreases the expression of PXR and CAR 

mRNAs (Teng and Piquette-Miller, 2005), whereas, it does not affect the expression of FXR mRNA 

(Kim et al., 2003). 

 
 
NADPH-reductase in rabbits with a turpentine-induced inflammatory 

reaction in absence and in presence of CS intake 
 

The present study shows that in vivo NADPH-reductase activity decreases as a function of time, 

since the activity of NADPH-reductase of rabbits kept in animal facilities for 30 days is reduced 

significantly when compared with rabbits at 0 day. The addition of CS does not modulate this time-

dependent decrease in activity of NADPH-reductase.  

The protein expression of NADPH-reductase does not share the same tendency as observed with 

the activity, since the protein from the group of rabbits kept for 30 days in animal facilities is not 

decreased. Protein expression of NADPH-reductase is in concordance with mRNA expression that is 

stable over time and is not affected by the administration of CS or by the inflammatory reaction. The 

mechanism underlying the time-dependent decrease in NADPH-reductase activity remains unknown. 

The effect of an inflammatory reaction on the expression and activity of NADPH-reductase, a 

rate-limiting step enzyme of CYP catalytic cycle, remains poorly characterized. The administration 

of lipopolysaccharides (LPS) diminishes NADPH-reductase activity, but in agreement with the 



107 
 

present results, turpentine-induced inflammatory reaction does not diminish NADPH-reductase 

activity (Morgan, 1998). 

 
 
 Effect of CS on CYP1A2 and CYP3A6 
 
 The administration of CS for 20 and 30 days elicits a slightly different effect on the two isoforms 

targeted in our study.  

 The expression of CYP1A2 in the group of rabbits kept in the animal facilities for 30 days are 

decreased when compared with control rabbits at Day 0. Moreover, there is a significant decrease in 

the expression of CYP1A2 in the groups of rabbits with a turpentine-induced inflammatory reaction, 

when compared with control groups. The administration of CS for 20 and 30 days did not prevent the 

time-dependent or the inflammatory reaction-induced down-regulation of CYP1A2.  

 Compared with control rabbits at Day 0, the activity of CYP3A6 in control rabbits decreases as a 

function of time when the rabbits are kept for 30 days in the animal facilities. The intake of CS 

partially impeded the time-dependent decrease in activity of CYP3A6 in control rabbits yet 

completely prevented the time-dependent decrease in CYP3A6 expression. 

 The administration of CS for 20 or 30 days before producing the turpentine-induced inflammatory 

reaction did not modulate the inflammatory reaction-dependent decrease in CYP3A6 activity. 

However, after 20 days of CS intake, the turpentine-induced inflammatory reaction-induced decrease 

in CYP3A6 protein expression was less apparent, but still lower (p<0.05) than that observed in 

control rabbits at Day 0. Interestingly, after 30 days of CS intake, in rabbits with a turpentine-induced 

inflammatory reaction CYP3A6 protein expression was similar to the expression estimated in control 

rabbits at Day 0 and control rabbits receiving CS for 30 days. 
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In control rabbits kept for 30 days in the animal facilities, the decrease in CYP3A6 activity might 

be explained in first place, by the decrease in protein expression and secondarily, by the decrease in 

NADPH-reductase activity, that is an obligatory redox partner for it as role of electron transfer and 

conformational changes of CYP3A6 (Yamaguchi et al., 2004; Zhang et al., 2007). 

 

 Effect of CS on CYP3A6 mRNA 
 

Compared with control rabbits at Day 0, in rabbits with the turpentine-induced inflammatory 

reaction, CYP3A6 mRNA decreased by 23%, contrasting with the expression of CYP3A6 that 

decreased by 81%. It is noteworthy that in the group of rabbits with a turpentine-induced 

inflammatory reaction receiving CS for 20 or 30 days CYP3A6 mRNA remained decreased whereas 

CYP3A6 protein expression increased progressively to reach values similar to those observed in 

control rabbits. The mechanisms underlying the increase in protein expression without changes in 

the mRNA might be explained at least in part by a post-transcriptional down-regulation. Several 

mechanisms might be implicated. The first one might be a change in CYP3A6 protein by reactive 

oxygen species or by hydroperoxy free fatty acids and subsequent degradation via the proteasome. 

The second mechanism might be the presence of microRNA that may block the translation of 

CYP3A6 mRNA. Finally, protein O-glycosylation at serine or threonine-residues may reduce 

protein expression. 

A major mechanism for CYP3A6 protein degradation is protein ubiquitination and subsequent 

proteolytic degradation by S26-proteasome (Correia et al., 2005). The ubiquitin proteasome pathway 

involves two discrete and successive processes: the first is tagging of substrates by covalent 

attachment of multiple ubiquitin molecules, and the second is degradation of ubiquitinated proteins 

by the 26S proteasome complex (Jiang and Beaudet, 2004; Karin et al, 2000). Polyubiquitin 
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modification is responsible for targeting proteins for degradation by the proteasome, or to eliminate 

misfolded proteins or to terminate protein function. In addition of that, the attachment of ubiquitin in 

the form of multiple monomers or polymers of different topologies, leads to differences in the 

function of the modified protein through these topological variants (Lang et al., 2008). The tagging 

action of ubiquitin consists of concerted action of several enzymes: E1 (ubiquitin-activating enzyme), 

E2 (ubiquitin carrier or conjugating enzyme) and E3 (ubiquitin-protein ligase) leading to recognition 

by the 26S proteasome, a holoenzyme complex composed of a core 20S catalytic particle and a 19S 

regulatory particle (Jiang et al, 2004; Ravid and Hochstrasser, 2008).  

Ubiquitination and successive protein degradation is modulated by deubiquitination enzymes 

(Amerik and Hochstrasser, 2004) and also, by NF-κB that up-regulates the expression of ubiquitin 

conjugating enzyme, ubiquitin-protein ligase and of the 26S proteasome (Wyke nad Tisdale, 2005; 

Tisdale, 2007). There is evidence that overactivity of ubiquitin-proteasomal system comes in 

response to diverse inflammatory reactions as well as pro-inflammatory cytokines (IFN-γ, IL-1β, IL-

6 and TNF-α) (Dehoux et al., 2003; Li et al., 2003; Maelstrom et al., 2007; Al-Majid and Waters, 

2008). In contrast, deubiquitinating enzymes are decreased by inflammatory reactions and pro-

inflammatory cytokines (Haimerl et al., 2008).    

Zangar and col. (2002) have suggested that the CYP3A4 ubiquitination could occur in the 

absence of CYP3A4 substrates to modulate the amount of protein required. Indeed, CYP3A 

substrates are known to stabilize CYP3A protein in vivo, and in vitro in primary culture rat 

hepatocytes (Watkins et al., 1986; Eliasson et al., 1994; Zangar et al., 2002). On the other hand, 

CYP3A4 ubiquitination occurs in presence of cellular stress, when enzymes generate reactive oxygen 

species and/or reactive metabolic products that attack the CYP heme and/or the protein moiety that 

damage the enzyme structurally and functionally (Correia et al., 2005). 
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In the present study, both conditions are present in rabbits with a turpentine-induced 

inflammatory reaction: the absence of any known substrates for CYP3A6, along with an 

increased hepatic oxidative stress (Proulx and du Souich, 1995; El-Kadi et al., 2000). The 

ubiquitination of CYP3A6 with subsequent degradation by proteasome is a very attractive 

explanation to the present results. 

The mechanism underlying the up-regulation of CYP3A6 by CS might be explained by the fact 

that CS has an antioxidant effect (Canas et al., 2007); however this hypothesis is not supported by the 

fact that even in presence of CYP3A6 up-regulation, the enzyme’s activity did not increase, 

suggesting that the protein remained changed. Alternatively, CS could affect the ubiquitin-

proteasome system through several mechanisms. As was mentioned earlier in this section, NF-κB can 

modulate the ubiquitin-proteasome pathway. In the present study, the nuclear translocation of NF-κB 

is prevented by CS, and as a consequence, CS might have down-regulated intracellular 

concentrations of ubiquitin conjugating enzyme, ubiquitin ligase, and of the 26S proteasome. 

Secondly, CS and other glycosaminoglycans may modulate the ubiquitin-proteasome system 

affecting directly the ubiquitination process. Preliminary evidences are brought by Shin and col., 

(2006) showing that glycosaminoglycans may be able to regulate the expression of deubiquitination 

enzymes, since the ubiquitin specific protease (USP17) contains the putative hyaluronan/RNA 

binding motifs, suggesting that glycosaminoglycans modulate its expression. Moreover, the 

glycosaminglycan heparin inhibits casein kinase 2, an enzyme involved in phosphorylation of 

ubiquitin-conjugating enzyme, needed for its activation (Block et al., 2001). This indirect evidence 

supports the presumption that CS could have increased the expression CYP3A6 by diminishing the 

26S-proteasome. Indeed, this hypothesis is very attractive and further studies are required. 
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 On the other hand, there is compelling evidence that CS inhibits multiple proteases (Monfort et 

al., 2008). Matrix metalloproteinases (MMPs) are effectively down-regulated by CS in cultured 

chondrocytes in various studies (Wang et al., 2002; Monfort et al., 2005). Further studies are needed 

to demonstrate the effect of CS on other proteases of the ubiquitin proteasome pathway, which could 

have a role in the CYP3A6 protein stability. 

There is recent evidence that protein ubiquitination is modulated by O-GlcNAc glycosylation, 

reaction that could be a protective signal against proteasomal degradation both by modifying target 

substrates and/or by inhibiting the proteasome itself (Guinez et al., 2008; Vosseller et al., 2001). In a 

study performed by Guinez et al. (2008), glucosamine was used to increase glycosylation of proteins, 

leading to the stability of proteins against proteasomal degradation. Glucosamine (besides other 

substrates) is a source for N-acetylglucosamine (Ju et al., 2008; Kuo et al., 2008), responsible for O-

glycosylation (Medzihradszky, 2008). On the other hand, N-acetylgalactosamine is one of the 

monomers of chondroitin sulfate disaccharides (Lamari et al., 2006; Medzihradszky, 2008), 

suggesting that CS could enhance protein glycosylation; actually, N-acetylgalactosamine 

glycosylates ubiquitin ligase, reduces its activity and therefore reduces proteasome degradation (West 

et al., 2004). It is noteworthy that multiple CYP enzymes can undergo glycosylation with loss of 

activity but protection against proteolysis (Lee et al., 1998; Aguiar et al., 2005). This last mechanism 

could also be proposed to explain the post-transcriptional increase in CYP3A6 by CS.  

There is an additional recently described mechanism for the regulation of gene expression at the 

post-transcriptional level – microRNAs or miRNAs, a family of short noncoding RNA, that block 

mRNA translation or reducing mRNA stability, thus affecting protein expression (Ambros, 2004). 

In a study done by Takagi et al. (2008) it was demonstrated that miR-148a negatively regulated 

human PXR post-transcriptionally, through a recognition element 3`-UTR. Interestingly, this 
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recognition element is also present in the CYP3A4 mRNA. The expression of several CYP enzymes 

is more likely to be regulated by miRNA, such as CYP1A2, CYP1B1, CYP2B6, and CYP2S1 

(Ingelman-Sundberg et al., 2007). 

Despite growing knowledge on miRNA biology, little is known about the transcriptional 

regulation of miRNA, also on the mechanism of regulation of miRNA gene expression itself. It is 

known that miRNA are deregulated during certain conditions like cancer (Kanellopoulou et al, 2008). 

There are some data showing that the expression of miR-146 and miR-155 is associated to the 

activation and nuclear translocation of NF-κB (Taganov et al., 2006; Rai et al., 2008). Two studies 

highlighted the importance of miRNA-mediated regulation of translation in neuronal synapses 

(Ashraf et al., 2006; Schratt et al., 2006). In such context, miRNAs provide an ideal way to regulate 

rapidly and specifically protein synthesis. It has been suggested that miRNAs enhance rapid protein 

degradation (Kanellopoulou et al., 2008). There is evidence suggesting that miRNAs play an 

important role in the regulation of immune functions and inflammation (Sonkoly et al., 2008). 

Indeed, endotoxin increases the expression of numerous miRNAs as do IL-1β and IL-6 (Tili et al., 

2007; Meng et al., 2008; Perry et al., 2008).  

An alternative explanation to the post-transcriptional effect of CS on CYP3A6 expression might 

be that CS, by preventing NF-κB activation and nuclear translocation produced by turpentine-induced 

inflammatory reaction, may reduce miRNA posttranscriptional down-regulation of CYP3A6. Indeed 

further studies are needed to confirm this hypothesis. 

The observed effect of CS on the stability of CYP3A6 protein expression as a function of time 

comes to support the hypothesis that glycosylation of protein leds to its stability accordingly to 

Guinez and coll. (2008), Zhang and coll. (2003). 
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Effect of CS and the ∆di-4S, ∆di-6S and ∆di-4,6S disaccharides on CYP1A2, 

CYP3A6 and NADPH-reductase in vitro 
 

To support the results obtained with the study conducted in vivo, e.g. that CS does not affect 

activity and expression of CYP1A2 and CYP3A6 in control rabbits, several concentrations of CS and 

its disaccharides were incubated for 48 hours with hepatocytes harvested from control rabbits. The 

data obtained imply that CS or its disaccharides do not elicit a direct effect on the activity and 

expression of CYP1A2, CYP3A6 and NADPH-reductase, accordingly with the data obtained form in 

vivo studies. These results are in concordance also, with the data obtained from surveys on patients 

using dietary supplements and concurrent use of medication, since no significant drug-drug 

interactions have been reported in patients taking CS and other drugs (Wold et al, 2005).   

  

 



114 
 

 
 

VI. CONCLUSION 
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This study is the first one that shows in vivo that NF-κB nuclear translocation was prevented by 

the administration of CS, in the presence of an aseptic inflammatory reaction. Moreover CS impedes 

the increase of the concentration of nitric oxide. Seromucoids does not share a similar pattern, since 

CS does not prevent the increase in their level. 

The present study shows that CS elicits a different effect on CYP1A2 and CYP3A6, in the sense 

that CS does not affect CYP1A2 in control and in rabbits with a turpentine-induced inflammatory 

reaction. On the other hand, CS appears to reduces post-transcriptional degradation of CYP3A6, 

although the increase in protein is not accompanied by enhanced activity, suggesting that CS prevents 

the degradation of the inactive enzyme. Finally, the administration of CS did not affect the stability 

of NADPH-reductase activity and protein expression. 

In vitro studies added to this project were undertaken in the effort to answer the question whether 

chondroitin sulphate and its degradation products contribute to the effects observed in vivo. The strait 

result was that CS, 4S-, 6S and 4,6S-sulfated disaccharides of CS did not change the activity and 

expression of the two isoforms of CYP, and of NADPH. 

CYP3A4 is a very important enzyme, since in the organism more than 50% of drugs 

biotransformed are metabolized by this enzyme. The extrapolation of the effect of CS on CYP3A6 to 

human CYP3A4 suggests that the administration of CS to humans would potentially prevent the 

down-regulation of inactivated CYP3A4 under certain conditions like the presence of an 

inflammatory reaction, the presence/absence of CYP3A4 substrates, oxidative damage etc, but that 

would not affect the biotransformation of other drugs taken by polymedicated patients.  

There are other models of inflammation (like the administration of LPS) where there is a slightly 

different interplay of the circulating cytokines and where the results of this study could not be 

extrapolated entirely.  
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One observation that needs to be further explored is that the levels of CYP3A6 mRNA at 0 Days 

and 30 Days do not necessarily reflect protein expression. Additional studies are needed to determine 

which, if any, of the potential mechanisms described here, are responsible for the changes in 

CYP3A6 protein stability suggested by this study. However, mRNA measurements are generally 

good indicators for proteins that are induced rather than constitutively expressed, since the former 

ones are not likely subjected to proteasomal degradation (Robert B, 1996) 

Further studies should be done to elucidate the exacte role played by CS in the post-

transcriptional degradation of CYP3A6, and its effect on the ubiquitin-proteasome system. Also, it 

shoud be of great interest to further explore the dynamics of different proteasome subunits on 

CYP3A4, alone and in combination with selective proteasome inhibitors. 

The interesting effects of CS observed in this study does call for further exploration, while 

supporting its use in the clinic, since there are numerous clinical studies showing no severe adverse 

effects to patients who are taking this natural health product. 
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