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Résumé 

Introduction: L'homéostasie du cholestérol est indispensable à la synthèse de la 

testostérone dans le tissu interstitiel et la production de gamètes mâles fertiles dans les 

tubules séminifères. Les facteurs enzymatiques contribuent au maintien de cet équilibre 

intracellulaire du cholestérol. L'absence d'un ou de plusieurs enzymes telles que la HMG-

CoA réductase, la HSL et l'ACAT-1 a été associée à l'infertilité masculine. Toutefois, les 

facteurs enzymatiques qui contribuent au maintien de l'équilibre intra-tissulaire du 

cholestérol n'ont pas été étudiés. Cette étude a pour but de tester l'hypothèse que le maintien 

des taux de cholestérol compatibles avec la spermatogenèse nécessite une coordination de 

la fonction intracellulaire des enzymes HMG-CoA réductase, ACAT1 et ACAT2 et la HSL. 

Méthodes: Nous avons analysé l'expression de l’ARNm et de la protéine de ces enzymes 

dans les fractions enrichies en tubules séminifères (STf) de vison durant le développement 

postnatal et le cycle reproductif annuel et dans les fractions enrichies en tissu interstitiel 

(ITf) et de STf durant le développement postnatal chez la souris. Nous avons développé 

deux nouvelles techniques pour la mesure de l’activité enzymatique de la HMG-CoA 

réductase et de celle de l'ACAT1 et ACAT2. En outre, l'immunohistochimie a été utilisée 

pour localiser les enzymes dans le testicule. Enfin, les souris génétiquement déficientes en 

HSL, en SR-BI et en CD36 ont été utilisées pour élucider la contribution de la HMG-CoA 

réductase, l'ACAT1 et l’ACAT2 et la HSL à l'homéostasie du cholestérol.  Résultats: 1) 

HMG-CoA réductase: (Vison) La variation du taux d’expression de l’ARNm de la HMG-

CoA réductase était corrélée à celle de l’isoforme de 90 kDa de la protéine HMG-CoA 

réductase durant le développement postnatal et chez l’adulte durant le cycle reproductif 

saisonnier. L’activité enzymatique de la HMG-CoA réductase augmentait de façon 

concomitante avec le taux protéinique pour atteindre son niveau le plus élevé à 240 jours 

(3.6411e-7 mol/min/µg de protéines) au cours du développement et en Février (1.2132e-6 

mol/min/µg de protéines) durant le cycle reproductif chez l’adulte. (Souris), Les niveaux 

d’expression de l’ARNm et l’activité enzymatique de la HMG-CoA réductase étaient 

maximales à 42 jours. A l’opposé, le taux protéinique diminuait au cours du 
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développement. 2) HSL: (Vison), l'expression de la protéine de 90 kDa de la HSL était 

élevée à 180- et 240 jours après la naissance, ainsi qu’en Janvier durant le cycle saisonnier 

chez l’adulte. L’activité enzymatique de la HSL augmentait durant le développement pour 

atteindre un pic à 270 jours (36,45 nM/min/µg). Chez l’adulte, l’activité enzymatique de la 

HSL était maximale en Février. (Souris) Le niveau d’expression de l'ARNm de la HSL 

augmentait significativement à 21-, 28- et 35 jours après la naissance concomitamment 

avec le taux d’expression protéinique. L’activité enzymatique de la HSL était maximale à 

42 jours suivie d’une baisse significative chez l'adulte. 3) ACAT-1 et ACAT-2: Le présent 

rapport est le premier à identifier l’expression de l'ACAT-1 et de l'ACAT-2 dans les STf de 

visons et de souris. (Vison) L’activité enzymatique de l'ACAT-2 était maximale à la 

complétion du développement à 270 jour (1190.00 CPMB/200 µg de protéines) et en 

janvier (2643 CPMB/200 µg de protéines) chez l’adulte. En revanche, l’activité 

enzymatique de l'ACAT-1 piquait à 90 jours et en août respectivement durant le 

développement et chez l’adulte. (Souris) Les niveaux d’expression de l’ARNm et la 

protéine de l'ACAT-1 diminuait au cours du développement. Le taux de l'ARNm de 

l'ACAT-2, à l’opposé du taux protéinique, augmentait au cours du développement. 

L’activité enzymatique de l’ACAT-1 diminuait au cours du développement tandis que celle 

de l'ACAT-2 augmentait pour atteindre son niveau maximal à 42 jours. 4) Souris HSL-/ -: 

Le taux d’expression de l’ARNm et l’activité enzymatique de la HMG-CoA réductase 

diminuaient significativement dans les STf de souris HSL-/- comparés aux souris HSL+/+. 

Par contre, les taux de l’ARNm et les  niveaux des activités enzymatiques de l'ACAT-1 et 

de l'ACAT-2 étaient significativement plus élevés dans les STf de souris HSL-/- comparés 

aux souris HSL+/+ 5) Souris SR-BI-/-: L'expression de l’ARNm et l'activité enzymatique 

de la HMG-CoA réductase et de l'ACAT-1 étaient plus basses dans les STf de souris SR-

BI-/- comparées aux souris SR-BI+/+. A l’opposé, le taux d'expression de l’ARNm et 

l'activité enzymatique de la HSL étaient augmentées chez les souris SR-BI-/- comparées 

aux souris SR-BI+/+. 6) Souris CD36-/-: L'expression de l’ARNm et l'activité enzymatique 

de la HMG-CoA réductase et de l'ACAT-2 étaient significativement plus faibles tandis que 

celles de la HSL et de l’ACAT-1 étaient inchangées dans les STf de souris CD36-/- 
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comparées aux souris CD36+/+. Conclusion: Nos résultats suggèrent que: 1) L'activité 

enzymatique de la HMG-CoA réductase et de la HSL sont associées à l’activité 

spermatogénétique et que ces activités ne seraient pas régulées au niveau transcriptionnel. 

2) L'ACAT-1 et de l'ACAT-2 sont exprimées dans des cellules différentes au sein des 

tubules séminifères, suggérant des fonctions distinctes pour ces deux isoformes: 

l'estérification du cholestérol libre dans les cellules germinales pour l’ACAT-1 et l’efflux 

du  cholestérol en excès dans les cellules de Sertoli au cours de la spermatogenèse pour 

l’ACAT-2. 3) La suppression génétique de la HSL diminuait la HMG-CoA réductase et 

augmentait les deux isoformes de l’ACAT, suggérant que ces enzymes jouent un rôle 

critique dans le métabolisme du cholestérol intratubulaire. 4) La suppression génétique des 

transporteurs sélectifs de cholestérol SR-BI et CD36 affecte l’expression (ARNm et 

protéine) et l’activité des enzymes HMG-CoA réductase, HSL, ACAT-1 et ACAT-2, 

suggérant l’existence d’un effet compensatoire entre facteurs enzymatiques et non-

enzymatiques du métabolisme du cholestérol dans les fractions tubulaires. Ensemble, les 

résultats de notre étude suggèrent que les enzymes impliquées dans la régulation du 

cholestérol intratubulaire agissent de concert avec les transporteurs sélectifs de cholestérol 

dans le but de maintenir l'homéostasie du cholestérol intra-tissulaire du testicule. 

 

Mots-clés: Homéostasie du cholestérol, HMG-CoA réductase, HSL, ACAT-1, ACAT-2, 

Spermatogenèse 
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Summary 

Introduction: Cholesterol homeostasis is essential for the synthesis of testosterone in 

interstitial tissue and the production of fertile gametes in the seminiferous tubules of the 

testis. Intracelluar cholesterol equilibrium in the testis is delicately maintained and regulated 

by enzymatic factors. The absence of one or more enzymes (HMG-CoA reductase, HSL and 

ACAT) has been implicated in the development of male infertility. However, the enzymatic 

factors that contribute to the maintenance of cholesterol equilibrium have not been 

investigated. This study is to test the hypothesis that the coordinated function of 

intracellular enzymes, HMG-CoA reductase, HSL and ACAT isoforms, are the basis of a 

system that helps to maintain cholesterol equilibrium during spermatogenesis. Methods: 

We characterized mRNA and protein expression levels of these enzymes in mink 

seminiferous tubules-enriched fraction (STf) during development and the annual 

reproductive cycle; or in mouse interstitial tissue-enriched fraction (ITf) and STf during 

postnatal development. Two novel techniques were developed to measure the HMG-CoA 

reductase, HSL and ACAT activities in mink and mouse STf. Additionally, 

immunohistochemistry was used to localize the enzymes in the testis. Finally, HSL 

knockout (KO) infertile male mice and selective cholesterol transporter (SR-BI, CD36) KO 

mice were used to elucidate the contribution of HMG-CoA reductase, HSL and ACAT 

isoforms in testicular cholesterol homeostasis when the enzyme or cholesterol transport 

system was genetically impeded. Results: 1) HMG-CoA reductase: (In mink STf), 

HMG-CoA reductase mRNA levels were relatively independent of 90kDa protein 

expression during development and the seasonal cycle. HMG-CoA reductase activity 

increased independently of its protein expression and reached maximal values by day 240 

(3.6411e-7 mol/min/µg protein) during development and peaked in February (1.2132e-6 

mol/min/µg protein) during the seasonal cycle. (In mouse STf), HMG-CoA reductase 

mRNA levels and enzymatic activity peaked by 42 days before decreasing while the protein 

levels tended to decrease steadily. 2) HSL: (In mink STf), an increase of 90kDa HSL 
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protein expression by day 180- and 240 after birth as well as in January in seasonal cycle, 

was not related to the enzyme mRNA expression. HSL activity increased progressively 

through development and peaked by 270 days (36.45 nM/min/µg); another high HSL 

activity was shown in February. (In mouse STf), three significant elevations in HSL mRNA 

levels by day 21, 28, and 35 corresponded to a steady elevation of HSL protein expression 

throughout development. HSL activity peaked by day 42 but decreased remarkably in the 

adult. 3) ACAT-1 and ACAT-2: This is the first report to establish the presence of both 

ACAT-1 and ACAT-2 in the mink and mouse testis. (In mink STf), ACAT-2 activity 

reached its maximal value at 1190.00 CPMB/200µg protein by day 270 and 2643 

CPMB/200µg protein in January. In contrast, ACAT-1 activity peaked by day 90 or in 

August during the seasonal cycle. (In mouse STf), ACAT-1 mRNA and protein levels were 

both decreased throughout development; ACAT-2 mRNA levels changes in the opposite 

direction of the protein levels, increasing throughout development. ACAT-1 activity in STf 

decreased throughout the development; while ACAT-2 activity increased significantly 

during development and peaked by day 42. 4) HSL-/- mice: KO HSL gene caused a 

decrease of HMG-CoA redutase mRNA expression and enzymatic activity in STf. 

However, ACAT-1 and ACAT-2 mRNA levels and enzymatic activities significantly 

increased in STf. 5) SR-BI-/- mice: The mRNA expression and activity of HMG-CoA 

reductase as well as ACAT-1 were statistically decreased in STf; whereas HSL mRNA level 

and activity were increased. 6) CD36-/- mice: The mRNA expression and activity of HMG-

CoA reductase as well as ACAT-2 were significantly decreased in STf; while HSL and 

ACAT-1 mRNA levels and activities remained constant. Conclusion: These results 

suggest that 1) Activation of HMG-CoA reductase and HSL is associated with 

spermatogenetic activity, while the enzymatic activities may not only be regulated 

transcriptionally. 2) ACAT-1 and ACAT-2 are expressed in different cells of the tubules, 

suggesting distinct functions for these two closely related enzyme isoforms, with ACAT-1 

being related to cholesterol esterification in germ cells and with ACAT-2 being associated 

with the removal of excessive cholesterol by Sertoli cells during spermatogenesis. 3) 

Genetically blocking HSL reduced the activity of HMG-CoA reductase while increasing 
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activity of ACAT isoforms, suggesting the turn-off the enzyme in the cholesterol ester cycle 

may be essential for the accumulation of cholesterol esters in the tubules. 4) The 

dysfunction of intracellular cholesterol transporters affects regulation of the enzymes 

(HMG-CoA reductase, HSL and ACAT-1 and ACAT-2), which is presumably in response 

to compensatory extracellular cholesterol uptake. This study suggests that the enzymes 

implicated in the regulation of intracellular cholesterol may act cooperatively to maintain 

cholesterol homeostasis in testis.  

 
Keywords: cholesterol homeostasis, HMG-CoA reductase, HSL, ACAT-1, ACAT-2, 
spermatogenesis 
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                              Introduction 

1. Testis 

1.1 General structure of the testis 

Within the mammalian testis are coiled thin tubes called seminiferous tubules bound 

together by interstitial tissue. The seminiferous tubules and interstitial tissue constitute two 

morphologically and functionally distinct compartments: namely the site of germ cell 

production i.e., spermatogenesis; and the site of the primary male sex hormone production, 

such as testosterone. Inside the tubules, the various germ cells are surrounded and 

supported by the somatic Sertoli cells. The walls of the tubules are formed by peritubular 

myoid cells. Next to the myoid cells is the interstitial tissue which includes comprised of 

blood vessels, lymphatic vessels and nerves, together with the steroid-producing Leydig 

cells, macrophages, and other cells (Diagram 1). 

Diagram 1. Schematic drawing of the testis [Taken from (Salasin, 2000)] 
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1.1.1 Interstitial tissue and testosterone secretion 

The connective tissue contains large, prominent Leydig cells which differentiate 

during puberty (Leydig, 1850); and it also includes a relatively important proportion of 

macrophage cells (Fawcett et al., 1973; Wing & Lin, 1977) which contacts closely with 

Leydig cells (Hutson, 1992). 25-hydroxylase in testicular macrophages converts 14C-

cholesterol to 14C-25-hydroxycholesterol (Lukyanenko et al., 2001) which is further 

synthesized to testosterone by Leydig cells (Nes et al., 2000). Leydig cells in most seasonal 

breeders undertake different appearances depending on breeding season. During breeding 

season, Leydig cells transform from an “undifferentiated” interstitial cells into active 

Leydig cells characterized by abundant smooth ER, mitochondria full of prominent tubular 

cristae, and a large number of medium sized lipid droplets. By the end of breeding season, 

Leydig cells gradually regress and losing their specific characteristics (Hochereau-de 

Reviers & Lincoln, 1978; Wing & Lin, 1977).    

 1.1.2 Seminiferous tubules and spermatogenesis  

The seminiferous epithelium is a complex stratified epithelium composed of two 

functions distinct cell types: Somatic Sertoli cells and germ cells (Diagram 1). In 1865, 

Enrico Sertoli described columnar cells extending from the basement membrane to the 

lumen of the seminiferous tubulers and enveloping the neighbouring germ cells while 

providing physical and “nursing” support (Sertoli, 1865). The Sertoli cells are a 

nonproliferating population (Clegg, 1963; Steinberger & Steinberger, 1971); and adjacent 

Sertoli cells are joined to one another by distinct types of junctions: hemidesmosomes, gap 
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and tight or occluding junctions (Pelletier & Byers, 1992; Pelletier & Friend, 1983). 

Physiological and morphological studies have established that the Sertoli- Sertoli tight 

junctions are the site of the blood-testis barrier (Pelletier & Byers, 1992). The blood-testis 

barrier divides the germinal epithelium into a basal cellular compartment adjacent to the 

basal lamina and in contact with the blood-borne substances and a luminal cellular 

compartment sequestered from the blood. Pelletier et al. (1986) demonstrated that the 

establishment of the blood-testis barrier is correlated with the development of the lumen 

and the establishment of gradients between the apical and the basolateral fluid 

compartments, and not necessarily with the presence of a particular generation of germ 

cells in the seminiferous epithelium.  

Spermatogenesis is the developmental process in seminiferous tubules whereby the 

germ cells are undergo the undifferentiated spermatogonia to spermatozoa (Clermont, 

1972). Spermatogenesis consists of three principal phases and each involving a distinct 

class of germ cells (Clermont, 1972). (1) Spermatogonial phase, the diploid spermatogonia 

proliferate by mitosis. The spermatogonia reside in the basal compartment of the 

seminiferous epithelium where they perpetuate their own numbers to give rise to 

spermatocytes (De Rooij et al., 1989; Leblond & Clermont, 1952). The germ cells located 

in the basal compartment migrate into the luminal compartment to complete meiosis and 

undergo cellular differentiation. This migration of the germ cells occurs at a precise 

moment, the early zygotene spermatocyte stage in most species (Cavicchia & Miranda, 

1988; Cavicchia & Sacerdote, 1991; Dym & Cavicchia, 1977; Dym & Cavicchia, 1978). 

(2) Meiosis: This phase is characterized by the reduction of the number of chromosomes 
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from diploid (2n) to haploid (n) (Diagram 1). (3) Spermiogenesis: Spermatids differentiate 

in this stage. The main features include formation of the acrosome, development of a 

flagellum, condensation of the chromatin and loss of residual cytoplasm containing lipids 

and organelles (Leblond & Clermont, 1952).  

1.2 Cholesterol in testis  

Previous observations showed that cholesterol is an important structural component 

of cellular membranes and myelin and the precursor of oxysterols, steroid hormones and 

bile acids (Goldstein & Brown, 1990). Cholesterol is composed of four hydrocarbon rings, 

a hydroxyl group and a hydrocarbon tail. The 4-ring region of cholesterol is the signature of 

all steroid hormones (such as testosterone in the testis) (Xu et al., 2005). The hydroxyl 

group in cholesterol converts the otherwise highly hydrophobic molecule into an 

amphiphile modecule, and orients its position in the membranes. In addition, it can mediate 

hydrogen bonding with water and possibly other membrane lipids (Bittman et al., 1994; 

Boggs, 1987). Both the hydrocarbon tail and the ring region are non-polar. These specific 

structures are critical for cholesterol solubility in fatty and oily substances while not mixing 

with water.  

In testis, cholesterol is mainly distributed in the microsomal fraction (Ichihara, 1969) 

and is involved in testosterone synthesis (Shikita & Tamaoki, 1965) and spermatogenesis 

(Armstrong, 1970). The concentration of cholesterol in testis exhibits considerable 

variations in prebubertal as well as adult animals (Aoki & Massa, 1975). Cyclic changes in 

testicular cholesterol distribution have also been detected in a seasonal mammal (Talpa 
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europaea) (Lofts & Boswell, 1960). The physiological fluctuations of testicular cholesterol 

concentration absolutely require efficient mechanisms to maintain cholesterol equilibrium 

that is crucial for normal testis functions and spermatogenesis. Recent studies on hyper- and 

hypocholesterolemia added new evidence showing the physiological significance of 

cholesterol homeostasis in the testis: hypercholesterolemia caused spermatogenesis 

inhibition (Bataineh & Nusier, 2005) and hypocholesterolmia impaired fertility (Wechsler 

et al., 2003). The regulation of intracellular cholesterol metabolism for the maintenance of 

spermatogenesis needs future investigation. 

Cholesterol participates in testosterone production and spermatogenesis 

(Armstrong, 1970). These important physiological events occur in two distinct 

compartments of testis: the interstitial tissue and seminiferous tubules.  

1.2.1 Cholesterol in the interstitial tissue 

Testosterone is synthesized and secreted in the interstitial tissue. The precursor of 

testosterone is cholesterol. The possible sources of cholesterol could be either plasma 

lipoprotein or de novo synthesized cholesterol (Fofana et al., 1996). For example, in rat 

interstitial tissue, 40% of cholesterol is derived from plasma and 60% from de novo 

synthesis (Morris & Chaikoff, 1959). Cholesterol synthesis is mediated by a series of 

enzymes located in the endoplasmic reticulum of the Leydig cells. Among these enzymes, 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is the rate-limiting 

enzyme which converts HMG-CoA to mevalonate, an intermediate associated with 

testosterone production (Hou et al., 1990). HMG-CoA reductase activity increased 

dramatically in agreement with the elevation of testosterone production after experimental 
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hormone treatment on cultured Leydig cells in vitro (Hou et al., 1990). HMG-CoA 

reductase activity reached highest levels at the onset of sexual maturation when testosterone 

levels reach their maximum in rat testis (Ness & Nazian, 1992). These findings suggest that 

de novo cholesterol synthesis might be the main source of testosterone production. 

On the other hand, plasma derived cholesterol for testosterone production must be 

hydrolysed by Hormone-sensitive lipase (HSL), one of the cholesteryl ester lipases that free 

esterified cholesterol (Holm et al., 2000). Observations from our lab showed that HSL 

protein levels and enzymatic activity are positively correlated with serum testosterone 

levels during development in the Guinea pig (Kabbaj et al., 2001). In addition, HSL-

enzymatic activity is high in the interstitial tissue during periods of high serum testosterone 

levels in mink testis (Kabbaj et al., 2003). Furthermore, the cholesterol ester hydrolase 

inhibition experiments showed increasing esterified cholesterol in mouse testis and 

decreasing testosterone levels in serum (Bartke et al., 1973). All these observations 

suggested HSL hydrolyses esterified cholesterol from plasma and provides free cholesterol 

for the production of testosterone.  

The process of providing free cholesterol is reversed at resting states. The excess of 

cholesterol is esterified and stored in lipid droplets by acyl-CoA: cholesterol acyltransferase 

(ACAT). The esterification activity of ACAT provides protection against excessive 

cholesterol. It has been reported that hypercholesterolemia-induced testicular damage is 

probably due to the compromised cholesterol esterification activity of ACAT (Fogari et al., 

2002). However, the role of individual isoforms of the enzyme (ACAT) in the maintenance 

of cholesterol homeostasis in the interstitial tissue has never been addressed. 
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1.2.2 Cholesterol in the seminiferous epithelium 

Cholesterol content in seminiferous tubules is indispensable for gamete 

development and fertility in most male animals (Hermo et al., 2008, Osuga et al., 2000; 

Vallet-Erdtmann et al., 2004; Wechsler et al., 2003). However, the origins of cholesterol in 

seminiferous tubules remain elusive.  

In contrast to the liver and other extrahepatic tissues which acquire cholesterol 

carried by lipoprotein in the circulation, the transport of lipoprotein cholesterol from the 

circulation to the testis is reduced because the blood-testis barrier effectively limits its 

uptake (Setchell, 1975). In fact, the basement membrane of the seminiferous tubules, which 

separates each tubule from capillaries, blocks the entry of low-density lipoprotein (LDL) 

(Fofana et al., 2000). It has been reported that Sertoli cells may possess the capacity to 

synthesize cholesterol from acetate in vitro (Wiebe & Tilbe, 1979). Thus, cholesterol 

synthesis may constitute one origin of cholesterol in the seminiferous tubules. Because of 

different metabolic demands imposed on Sertoli cells by cyclic production of germ cell, the 

ability of Sertoli cells to synthesize cholesterol must be precisely regulated. Additionally, 

close to 75% of the germ cells will die by apoptosis before reaching maturity in the normal 

testis, and most of them will be phagocytosed by Sertoli cells, leaving an accumulation of 

cellular debris including lipids and cholesterol (Pelletier & Vitale, 1994). Thus, the 

apoptotic germ cells or their cell membrane remnants become a crucial source of 

cholesterol in the seminiferous tubules. Because cholesterol is a component of all germ cell 

membranes, including spermatozoa (Pelletier & Friend, 1983a), the cyclical release of 
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spermatozoa offers a constant challenge to the homeostasis of cholesterol in the tubules that 

demands the action of regulatory mechanisms. 

An additional source of cholesterol for Sertoli cells may originate from the cyclical 

phagocytosis of esterified cholesterol-rich lipid droplets contained within the spermatids’ 

residual bodies (Pelletier & Vitale, 1994). The residual bodies are lobes of excess of 

cytoplasm that are detached from spermatozoa prior to their release from the seminiferous 

tubules (Smith & Lacy, 1959).  

 The source of cholesterol in the seminiferous tubules is different from the interstitial 

tissue. However, the observation that free cholesterol concentration in tubules equals that in 

interstitial tissue (Kabbaj et al., 2001; Kabbaj et al., 2003; Marshall, 1957) entails factors 

regulating cholesterol homeostasis to maintain this equilibrium. Enzymatic factors involved 

in cholesterol homeostasis include HMG-CoA reductase, HSL and ACAT.  

The in vitro studies on HMG-CoA reductase confirmed the high rate of acetate 

incorporation into cholesterol during spermatogenesis (Potter et al., 1981). The rate of 

acetate incorporation into cholesterol is high in pachytene spermatocytes, but returns to 

very low levels in mature spermatozoa (Potter et al., 1981). Other evidence showed that the 

rate of [14C] acetate incorporation into cholesterol increases 4- to 5-fold as spermatocytes 

mature to pachytene spermatocytes (Hou et al., 1990). These findings suggest that the 

cholesterol synthesis is closely associated with spermatocytes and meiosis. Thus, the 

function of HMG-CoA reductase in the regulation of tubular cholesterol metabolism for the 

maintenance of spermatogenesis is worth investigating. 



 

 9 

It has been suggested that Sertoli cell phagosomes contain lipases that could process 

lipids borne from residual bodies and liberate the subunits or “ building blocks” necessary 

for new lipid synthesis (Kerr et al., 1984). Kabbaj et al. (2001; 2003) demonstrated that 

hormone sensitive lipase (HSL) was present in Sertoli cell lysosomes; and that HSL may 

induce hydrolysis of esterified cholesterol in the tubules to maintain optimal cholesterol 

concentrations. The present study focuses on testicular HSL because of the manifest 

importance of the enzyme in male fertility. The HSL knockout mice results in male sterility, 

suggesting a key role of the enzyme in the testis (Osuga et al., 2000). A significant rise in 

cholesterol ester levels concomitantly with the absence of cholesterol esterase activity was 

reported in HSL knockout mice testes and a decrease in testosterone concentration of 

peripheral plasma (Bartke et al., 1973; Osuga et al., 2000; Vallet-Erdtmann et al., 2004). In 

contrast, expression of transgene HSLtes in HSL-null mice provoked the restoration in 

cholesteryl ester hydrolase activity and the rescue of infertility (Vallet-Erdtmann et al., 

2004). These studies attest to the utmost biological significance of the enzyme in the 

maintenance of adequate cholesterol content in testicular cells. 

Cholesterol is indispensable to all cells; however, the cholesterol concentration must 

be regulated to prevent excessive accumulation of the compound within the cell, which 

would compromise vital cellular functions and eventually be lethal. Cholesterol 

esterification serves both as a means to store cholesterol for later use and as a detoxification 

reaction to protect cells from excess free cholesterol (Simons & Ikonen, 2000). Yet, no 

reports describe the metabolism process of the esterification of excessive cholesterol in the 

Sertoli cells or germ cells. It has been reported that acyl-CoA: Cholesterol acyltransferase 1 
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(ACAT-1), the enzyme converting cholesterol into cholesteryl esters, is expressed in testis 

(Chang et al., 1997). Thus thesis investigates the behavior and the role of ACAT-mediated 

modulation of cholesterol metabolism in testis during different phases of spermatogenic 

activity. 

1.2.3 Cholesterol in spermatozoa 

The lipidic component in spermatozoa enables specialized activities in these cells. 

For example, lipid composition is a major determinant of the membrane rigidity and 

permeability (Stubbs & Smith, 1984). A loss of cholesterol allows for changes in the 

permeability of the cell membrane which are required for the characteristic flagellar 

movement of spermatozoa and also of the fusogenic properties of the cell membranes 

associated with the acrosome reaction and fertilization (Bearer & Friend, 1982). In 

addition, the removal of membrane cholesterol and the resulting decrease in the 

cholesterol/phospholipid (C/PL) ratio in the membrane constitutes an important step of 

capacitation in human spermatozoa (Hoshi et al., 1990). 

Changes in the proportion of various lipids in spermatozoa were reported 

throughout the reproductive period (24-72 wk of age) in male chickens (Cerolini et al., 

1997). Cholesterol esters and free fatty acids increased continuously with age while the 

relative free cholesterol and triacylglycerols content showed no change in spermatozoa or 

in relation to fertility (Cerolini et al., 1997).  

Several enzymatic factors potentially involved in cholesterol homeostasis in 

spermatozoa have been detected. HSL was reported in epididymal spermatozoa (Kabbaj et 

al., 2003). And HSLtes, one of the HSL isoforms, was expressed in early and elongated 
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spermatids. HSLtes transgene expression reversed the cholesteryl ester accumulation in 

HSL-null mice (Vallet-Erdtmann et al., 2004). Expression of HSLtes and cognate 

cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-

deficient male mice (Vallet-Erdtmann et al., 2004). On the other hand, male germ cells 

highly expressed the intermediates in the cholesterol biosynthetic pathway including HMG-

CoA reductase, while the role of the enzyme has not yet been evaluated (Tacer et al., 2002). 

To date, ACAT isoforms have not been detected in the spermatozoa. 
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2. Enzymatic factors regulating intracellular cholesterol to maintain 

cholesterol equilibrium in the testis 

 2.1. 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase  

  2.1.1 Composition, structure and orientation 

HMG-CoA reductase is an integral glycoprotein (Mr 90,000-97,000) of the 

endoplasmic reticulum (ER) with an extended, carboxy-terminal, and a cytosolic domain 

that harbors the catalytic site (Chin et al., 1984; Hardeman et al., 1983). HMG-CoA 

reductase is also synthesized inside the mitochondria of Leydig cells in rat (Pignataro et al., 

1983). Modeling studies (Liscum et al., 1985) on the primary structure of mammalian 

HMG CoA reductase localized the enzyme in ER membrane and suggested that NH2-

terminal of the reductase contains seven hydrophobic segments embedded in the membrane 

of ER and that the COOH-terminal of the protein, which contains a long relatively 

hydrophilic domain, extended into the cytoplasm (Liscum et al., 1985). The link region 

between NH2-terminal and COOH-terminal is composed of proteolytic sites. Hence, the 

action of endogenous and exogenous proteases can release a water-soluble 53-kDa 

fragment into the cytoplasm (Miller et al., 1989). The findings suggest that the hydrophilic 

COOH- terminal includes  the 53-kDa water-soluble enzymatically active site, while the 

NH2-terminal portion of the reductase would fix HMG-CoA reductase to the ER membrane 

(Gibson & Parker, 1986) (Diagram 2).  
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Diagram 2. Topological model of HMG-CoA reductase. This figure showed a model of the 

orientation of HMG-CoA reductse in the ER membrane. (A) HMG-CoA reductase includes two 

distinct domains: a hydrophobic N-terminal domain with eight membrane-spanning segments that 

anchor the protein to ER membranes, and a hydrophilic C-terminal domain that projects into the 

cytosol and exhibits all of the enzyme's catalytic activity. (B) Amino acid sequence and topology of 

the membrane domain of HMG-CoA reductase. The lysine residues implicated as sites of Insig-

dependent, sterol-regulated ubiquitination are highlighted in red and denoted by arrows. The YIYF 

sequence in the second membrane-spanning helix that mediates Insig binding is highlighted in 

yellow [Taken from (DeBose-Boyd, 2008)].  

 

2.1.2 Physiological roles of HMG-CoA reductase in tissue and in testis 

HMG-CoA reductase is present as a single enzyme irrespective of the species. 

HMG-CoA reductase is the rate-limiting enzyme, and catalyzes the main step in cholesterol 
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synthesis which is the conversion of HMG-CoA to mevalonate (Brown & Goldstein, 1980; 

Kennelly & Rodwell, 1985) (Diagram 3). 

                         

 

Diagram 3. The progress of biosynthesis of cholesterol. The rate-limiting step is 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) reductase activity. Intermediates are used as attachments to 

different proteins and enzymes. CoA, coenzyme A; PP, pyrophosphate. [Taken from (DeBose-Boyd, 

2008)]. 
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The physiological significance of HMG-CoA reductase was demonstrated by the 

observation that the loss of HMG-CoA reductase resulted in cell death and early embryonic 

lethality (Nwokoro et al., 2001; Porter, 2002). Therefore, no direct in-depth study is 

feasible on the cholesterol metabolism in HMG-CoA reductase deficient animals. Instead, 

another gene, Dhcr24, knockout mice was produced (Wechsler et al., 2003). Dhcr24 

encodes the cholesterol biosynthetic enzyme desmosterol reductase which catalyses the last 

step in the cholesterol synthesis. The study showed that Dhcr 24 knocking out mice was 

associated to a marked decrease (90%) in the intracellular and plasma membrane 

cholesterol levels (Wechsler et al., 2003). Both male and female Dhcr24-/- mice were 

reported infertile (Wechsler et al., 2003). Therefore, one could speculate that HMG-CoA 

reductase contributes to the endogenous cholesterol pool which is essential for the 

production of viable germ cells in the tubules and fertile male gametes.  

 It has been reported that the liver expresses the highest level of HMG-CoA 

reductase activity in the rat, but not in the hamster, rabbit or Guinea pig in which the 

adrenals, intestine, skin and carcasses exhibited still higher levels of cholesterol synthesis 

(Hamilton et al., 1994; Ness, 1994). For decades, HMG-CoA reductase inhibitors have 

been used in the treatment and prevention of cardiovascular diseases (Davignon, 2004; 

Martens & Guibert, 1994). It has also been demonstrated that HMG-CoA reductase is 

involved in mevalonation and proteins farnesylation and geranylgeranylation, which is 

essential for cellular proliferation and survival (Duncan et al., 2005). In addition, the 

enzyme could induce human breast cancer cells grown in culture and as in tumors grown in 



 

 16 

nude mice (Duncan et al., 2005; Graaf et al., 2004). Therefore, HMG-CoA reductase 

inhibitors may be used for the treatment of malignancies (Brown, 2007).  

Studies on the influence of HMG-CoA reductase inhibitors in testis demonstrated 

that inhibitors of hypercholesterolemia administrated to male rats improved their 

reproductive function by providing protection against the reduced fertility induced by 

hypercholesterolemia (Shalaby et al., 2004). This observation attests to the physiological 

significance of HMG-CoA reductase in the physiology of the testis. Yet, HMG-CoA 

reductase-mediated modulation of cholesterol metabolism in the testis has not been studied. 

HMG-CoA reductase activity was reported to be highest from 21-26 days after birth in rat 

testis then, tended to decline in adulthood, suggesting a major role of HMG-CoA reductase 

in de novo cholesterol synthesis in developing testis (Ness, 1994). However, since this 

enzymatic activity measurement was performed in whole testis extracts not on components 

of individual compartments of the testis, the results do not provide precise information on 

the enzyme involved in either spermatogenesis or the production of testosterone.  

In the liver and intestine, the highest specific activity of HMG-CoA reductase was 

recorded in the endoplasmic reticulum subsfraction (Field et al., 1982; Zammit et al., 1991). 

However, the highest activity of HMG-CoA reductase in rat Leydig cells was associated 

with highly enriched mitochondrial fractions and located on the inner mitochondrial 

membrane (Pignataro et al., 1983), suggesting that much of the cholesterol biosynthesis that 

takes place in Leydig cells is carried out within the mitochondria. No studies have yet 

localized HMG-CoA reductase in the seminiferous tubules. Previous reports showed that 

the rate of [14 C] acetate incorporation into cholesterol increased with the onset of meiosis 
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(Hou et al., 1990), suggesting HMG-CoA reductase may be involved in meiosis. However, 

within the tubules where spermatozoa are generated, there is no evidence that the 

biosynthesis pathway makes a physiologically significant contribution to cholesterol in the 

tubules. Instead, the previous observation revealed the rate of acetate incorporation into 

cholesterol significantly decreased within the tubules when spermatozoa are generated 

(Potter et al., 1981). Thus the physiological significance of HMG-CoA reductase in the 

testis remains unclear.  

Recent observations open a new view into the role of the cholesterol synthesis in the 

maturing germ cells. The cholesterol biosynthetic genes are expressed discontinuously in 

the testis (Tacer et al. 2002). The testis-specific expression of pre-testis meiosis-activating 

sterol (T-MAS) genes but not post-T-MAS genes is the primary regulatory checkpoint that 

caused the accumulation of the meiosis-signaling sterol T-MAS during maturation of male 

germ cells (Diagram 4). The discrepancy between pre-MAS and post-MAS genes 

expression suggested that the principal role of male germ cells may not be to synthesize 

cholesterol but rather to produce T-MAS (Tacer et al. 2002). Thus, the development of a 

tissue-specific transcriptional regulatory system to produce a cholesterol biosynthetic 

pathway intermediate in the male gonad suggested that HMG-CoA reductase may have a 

role besides or in addition to the biosynthesis cholesterol. This hypothesis remains to be 

confirmed, and the role of Sertoli cell in the biosynthesis of cholesterol will be one of the 

focuses of my study.  
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Diagram 4 . Postlanosterol part of the pathway of biosynthesis of cholesterol. T-MAS, testis 

meiosis-activating sterol; FF-MAS, follicular fluid meiosis-activating sterol [Taken from (Tacer et 

al., 2002)]. 

 

2.1.3 Regulation of HMG-CoA reductase activity 

The mechanism of the regulation of HMG-CoA reductase activity in the testis has 

received little attention. In most tissue, HMG-CoA reductase is regulated at various levels: 

transcription, phosphorylation/dephosphorylation, translation and protein degradation 

(Panda & Devi, 2004). 
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1) Transcription 

The mRNA level of reductase has been shown to vary in parallel with the enzyme 

activity in rat liver (Clarke et al., 1984). Feeding diets containing 2% cholesterol to Syrian 

hamsters was reported to reduce hepatic HMG-CoA reductase mRNA levels 6-fold (Gil et 

al., 1986). In addition, HMG-CoA reductase is transcribed at relatively high rate when cells 

are starved for cholesterol and other mevalonate-derived products (Luskey et al., 1983). 

Transcription is repressed by over 80% when cholesterol and other mevalonate-derived 

products are supplied (Osborne et al., 1985). However, few studies described the details of 

mRNA expression of HMG-CoA reductase gene in the testis besides the observation that 

expression of HMG-CoA reductase gene is upregulated during the maturation of the testis 

(Tacer et al., 2002).  

HMG-CoA reductase is generally regulated on the transcriptional level by 

membrane bound transcription factors of the sterol responsive element binding protein 

(SREBP). SREBPs are a family of proteins that regulate the transcription of a range of 

genes involved in the cellular uptake and metabolism of cholesterol and lipids (Brown & 

Goldstein, 1997). SREBP1 isoforms are responsible for the energy metabolism, including 

fatty acid synthesis and glucose/insulin metabolism, whereas the role of SREBP2 is in  the 

activation of genes (e.g. HMG-CoA reductase) involved in cholesterol biosynthesis 

(Shimano, 2001). 

Regulation of genes including HMG-CoA reductase in cholesterol synthesis and the 

mechanism by which cells sense the level of cholesterol have been extensively studied in 

liver. SREBP1 and 2 are synthesized as the precursor proteins residing in endoplasmic 
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reticulum (ER) membranes (Brown & Goldstein, 1997). SREBPs are bounded to SREBP 

cleavage-activating protein (SCAP), which is required for the movement of SREBPs from 

the ER to the Golgi apparatus (Goldstein et al., 2002; Horton et al., 2002). When 

cholesterol is scarce in the ER, the SREBP-SCAP complex migrates from ER to Golgi 

apparatus where SREBP is subjected to proteolysis. The cleavage of SREBP is carried out 

by 2 distinct enzymes (S1P and S2P). The result of the cleavage is the release of the N-

terminal transcriptionally active part of SREBP into the cytosol. Then the active portion of 

SREBP migrates to the nucleus where it will dimerize and form complexes with 

transcriptional coactivators leading to the activation of genes containing HMG-CoA 

reductase (Yang et al., 2002). In contrast, when cells contain sufficient levels of cholesterol, 

the SREBP-SCAP complex will be maintained in the ER. Thus, cholesterol biosynthesis 

will not be continued (Diagram 5). The cholesterol-level/SREBP-dependent transactivation 

of cholesterolgenic genes is believed to serve primarily to increase production of mRNAs 

encoding for HMG-CoA reductase and other cholesterolgenic enzymes, which causes the 

increase of cholesterol synthesis (Eberle et al., 2004; Shimano, 2002). In the testis, another 

type of regulation for HMG-CoA reductase mRNA expression was the cholesterol level-

independent/SREBP-independent regulation (Fon Tacer et al., 2003). The role of SREBP2 

in cholesterogenesis of germ cells and testis was recently investigated, when an unique 

isoform of male germ cell-enriched transcription factor SREBP2 was identified in rat and 

mouse spermatogenic cells (McPherson & Gauthier, 2004; Wang et al., 2002). The testis-

specific SREBP2 was reported to be expressed as SREBP2gc, in mouse or rat 

spermatogenic cells in a stage-dependent manner and insensitive to the levels of cholesterol 
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(Wang et al., 2002). SREBP2gc is translated as a soluble and mature form of SREBP2, 

missing the SCAP-SREBP binding domain (Wang et al., 2002) . The role of SREBP2gc is 

unclear. The physiological function of regulating HMG-CoA reductase by SREBP2gc 

remains to be elucidated. 

      

Diagram 5. Model for the cholesterol regulation of SREBP trafficking [Taken from 

(McPherson & Gauthier, 2004)]. 

 

 2) Phosphorylation/dephosphorylation  

Beg et al. suggested that the catalytic efficiency of HMG-CoA reductase might be 

regulated by phosphorylation/dephosphorylation in rat liver cytosol (Beg et al., 1973). It 

has been reported that phosphorylation of HMG-CoA reductase decreases its activity 

(Istvan et al., 2000). Phosphorylation of the enzyme is catalyzed by the reductase kinase 

(RK), which itself undergoes reversible phosphorylyation. RK is phosphorylated by a 
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cAMP-independent cytosolic kinase (RKK) or a cAMP-dependent RKK (Goldstein & 

Brown, 1990). Since cAMP is regulated by hormonal stimuli, regulation of cholesterol 

biosynthesis is hormonally controlled (Easom & Zammit, 1987). Insulin causes a decrease 

in cAMP, causing HMG-CoA reductase to be activated and cholesterol biosynthesis to be 

increased (Easom & Zammit, 1987). On the other hand, glucagon and epinephrine are 

hormones that increase the level of cAMP, which results in the HMG-CoA reductase being 

inactivated and in the cholesterol biosynthesis being decreased (Easom & Zammit, 1987). 

Alternatively, RKK is dephosphorylated by phosphoprotein phosphatase (Beg et al., 1973). 

Protein phosphatase is inhibited by phosphoprotein phosphates inhibitor 1 (PPI-1), which 

may be activated by a cAMP-dependent kinase (Beg et al., 1973). The elements required 

for modulation of HMG-CoA reductase by activation-inactivation cycles are illustrated in 

Diagram 6. However, this type of regulation for HMG-CoA reductase has not been 

confirmed in the testis.  

                  

Diagram 6. Regulation of HMG-CoA reductase by phosphorylation/dephosphorylation [Taken 

from (Michael King 2009)]. 
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 3) Translational rgulation 

One mode of post-transcriptional regulation of HMG-CoA reductase is translation. 

Interest in translation as a site for feedback regulation by dietary cholesterol emerged from 

studies showing a much greater decline in hepatic reductase immunoreactive protein than in 

mRNA levels (Ness et al., 1994). It was observed that feeding diets including 2% 

cholesterol to rats for 48h caused a 6-fold decrease in the rate of synthesis of HMG-CoA 

reductase protein (Chambers & Ness, 1998). Higgins et al. (1971) showed that the 

increasing of HMG-CoA reductase activity was accompanied by a rise in the synthesis of 

the reductase protein in rat liver and that synthesis completely stops several hours after the 

activity peaked (Higgins et al., 1971). A 200-fold increase in HMG-CoA reductase protein 

was reported within a few hours when the potent reductase inhibitors blocked the synthesis 

of mevalonate in the culture cells (Goldstein & Brown, 1990). Translational regulation of 

HMG-CoA reductase in the testis remains to be determined. 

 

  4) Protein degradation 

The level of HMG-CoA reductase protein could also be determined by changes in 

the rate of its degradation (Ness & Chambers, 2000). It was found that feeding diets 

supplemented with potential HMG-CoA reductase inhibitor, mevinolin, caused the 

increasing of the half-life of HMG-CoA reductase protein in mammalian liver (Goldstein & 

Brown, 1990). However, investigations into the molecular mechanism by which cholesterol 

exerts feedback regulation on rat testis HMG CoA reductase have led to the conclusion that 

no obvious decreases of protein levels are seen in the testes when rats are placed on diets 
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supplemented with cholesterol (Ness et al., 2001). The protein degradation of HMG-CoA 

reductase in the testis remains unclear. 

There are two mechanisms for protein degradation. The first one is the state 

transition, in which the intrinsic degradation motif is exposed to the degradation substrate 

when a stable state changes to a degraded state. In the second mechanism, the degradation 

motif is already exposed, but it is blocked by regulatory molecules and the degradation is 

inhibited. The mechanism of the degradation of HMG-CoA reductase is unclear. Hampton 

et al. (2002) presented the ubiquitin-mediated degradation of a number of ER-associated 

misfolded protein (Hampton, 2002). In 2003, Sever et al. (Sever et al., 2003) reported that 

the degradation of HMG-CoA reductase was mediated by the binding of Insig-1. As 

mentioned above, HMG-CoA reductase contains a sterol sensing domain and is negatively 

regulated by binding to Insig-1, which accelerates ubiquitination and proteasomal 

degradation of the enzyme (Song et al., 2005).  

 

  5) Nonsterol- mediated regulation of HMG-CoA reductase 

Oxysterols, such as 25-hydroxycholesterol, was shown to bind to a cytosolic protein 

in cultured cells and to act as a potent repressor at the levels of transcription (Gibbons et al 

1980). Oxylanosterols were also reported to act as potent repressors, but only at the level of 

translation (Gibbons et al., 1980; Panini et al., 1992; Taylor et al., 1984). 
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2.2 Hormone-sensitive lipase (HSL) 

Hormone-sensitive lipase (HSL) is an intracellular neutral lipase that is capable of 

catalyzing the hydrolysis of triglycerides, diglycerides, monoacylglycerols, and cholesterol 

esters and retinyl esters (Holm et al., 2000).  

2.2.1 Structure and biochemical properties 

The HSL gene is located on human chromosome 19q13.3 (Holm et al., 1988) and 

contains 9 exons (1-9) spanning approximately 11kb in humans and 10 kb in mice, 

respectively (Langin et al., 1993). These nine exons encode a mRNA of 2.8 kb (Grober et 

al., 1997) which is translated into a 775-amino acid-long protein (Langin et al., 1993) in 

human adipose tissue. Subsequently, two additional noncoding exons (A and B) spanning 

approximately 12.5 and 1.5kb were identified upstream exon 1, respectively (Grober et al., 

1997). The transcription starting site of HSL mRNA (2.8 kb) was mapped in the exon B, 

whereas exon A was represented in a minor fraction of adipocyte HSL transcripts (Grober 

et al., 1997). Two testicular forms of HSL have been characterized in human and rodent 

testes (Holst et al., 1996; Mairal et al., 2002). A testis-specific exon 15.5 kb upstream of 

exon 1 of human and rat adipocyte HSL produces a 3.9 kb testicular HSL mRNA (Holst et 

al., 1996). HSLtes mRNA is translated into 1068- and 1076-amino-acid proteins in human 

and rat (Blaise et al., 2001). Compared with rodents, where only HSLtes mRNA of 3.9 kb is 

expressed (Holst et al 1996), a second testicular mRNA, 3.3 kb mRNA was found in human 

(Mairal et al 2002) . This specific exon is located 12kb upstream of exon 1 and encodes a 

protein which is identified to the adipocyte HSL. The transcription of the HSL gene is 
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under the regulation of two promoters: the promoter upstream exon B which regulates HSL 

transcription in adipocytes and other tissues, the other promoter upstream exon T regulates 

HSL transcription specifically in the testis (Blaise et al., 2001) (Diagram 7).  

The purified human adipose HSL has a molecular weight of approximately 88 kDa 

on SDS-PAGE, corresponding to the 775-amino-acid protein with a molecular mass of 84 

kDa predicted (Langin et al., 1993). The adipose HSL in rat has an 84 kDa immunoreactive 

band seen on SDS-PAGE (Shen et al., 1999). In the testis, several protein species with 

apparent molecular weight ranging from 26 to 130 kDa are expressed (Holm et al., 1987; 

Kabbaj et al., 2001; Kraemer et al., 1993b).  These forms may come from the 3.9 kb HSL 

mRNA in rodents and form two mRNA species of 3.9 and 3.3 kb in human (Blaise et al 

2001; Holst et al 1996). The large form encodes the predicted protein of 120 kDa, HSLtes, 

whereas the 3.3 kb from encodes a small protein of 88 kDa, that is similar to the adipose 

HSL (Langin et al., 1993). 

HSL has been shown to be a muti-domain structural protein by limited proteolysis 

studies and spectroscopic analyses (Holm, 2003). HSL consists of two major structural 

domains: a C-terminal catalytic domain common to all HSL isoforms, and an N-terminal 

domain, different among all HSL isoforms. The C-terminal portion of the protein comprises 

two distinct domains, one containing the catalytic triad and a second that constitutes a 

regulatory “loop”. The regulatory loop, from residue 521 to residue 669, contains all of the 

known phosphorylation sites and is specific to HSL in rat (Holm, 2003). The function of N-

terminal domain is poorly understood but is has been implicated in protein-protein and 

protein-lipid interactions (Osterlund et al., 1996; Smith et al., 1996). It has been 
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demonstrated that the N-terminal portion of the adipocyte enzyme mediates interaction with 

adipocyte lipid binding protein (ALBP), an intercellular fatty acid carrier (Shen et al., 

1999). Compared to the normal adipose HSL protein structure, HSLtes protein is composed 

of an additional 300 or 301 amino acids N-terminal in rat and human respectively (Mulder 

et al., 1999) (Diagram 7). 

 

 

Diagram 7. The structure of the human HSL gene and the corresponding protein. (A) The 

organization of human HSL gene. Testis-specific exon T encodes additional 300 amino acids at the 

N-terminus. (B,C) The primary amino acids sequences of HSL are described accordingly in (A). 

Three functional regions are given: an N-terminal protein binding domain, a C-terminal catalytic 

domain and a regulatory module contaning multiple phosphorylation sites. [Taken from (Holm et 

al., 2003)]. 

 

 

2.2.2 Cholesteryl ester hydrolase (HSL) in tissue and in testis 

 HSL is an intracellular neutral enzyme which is expressed in adipose and 

steroidogenic tissues, cardiac and skeletal muscle, macrophages, and pancreatic islets 
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(Holm et al., 1988; Kraemer & Shen, 2002). In adipose tissue, the primary action attributed 

to HSL is hydrolysis of stored triglycerols, named lypolysis (Londos et al., 1999). HSL 

plays a crucial role in regulating the accumulation of triglyceride droplets and in energy 

utilization in cardiac and skeletal muscle (Kraemer et al., 1993a; Langfort et al., 1999). The 

neutral cholesterol ester hydrolase activity purified from the adrenal gland has been shown 

to be similar to that in adipose tissue (Cook et al., 1982). However, the role of HSL in 

macrophages remains to be investigated. It has been found that the neutral cholesterol ester 

hydrolase activity does not change in peritoneal macrophages in HSL knockout mice 

(Contreras, 2002; Osuga et al., 2000); the cholesterol ester stores in HSL-deficient 

macrophages are identical to wild type macrophages. These findings hint that one or several 

additional intracellular lipases could exist and this (these) lipase(s) could in part 

compensate for the lack of HSL.  

In rat testis, HSL mRNA and protein expression showed marked developmental 

changes, and HSL mRNA levels were low in the first week after birth and increased several 

fold in the adult between days 20 and 90 (Kraemer et al., 1991). Conflicting observations 

have been reported for HSL mRNA and protein expression in testis. HSL has been reported 

in human Leydig cells by immunohistochemistry (Mairal et al., 2002) while Holst et al. 

(Holst et al., 1996) said HSL was not expressed. Studies in our laboratory revealed that 

testicular macrophages contain active HSL in mink (Kabbaj et al., 2003), which challenges 

the hypothesis regarding the function of HSL in the production of testosterone in Leydig 

cells (Mairal et al., 2002) and entails an important contribution of the testicular 

macrophages in the modulation of the amounts of the cholesterol to be used for testosterone 
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production by the Leydig cells (Kabbaj et al., 2003). Moreover, HSL has been observed in 

Sertoli cells and spermatozoa in Guinea pig (Kabbaj et al., 2001) and mink (Kabbaj et al., 

2003) and human testes (Mairal et al., 2002). In situ hybridization showed strong labeling 

of germ cells in the seminiferous tubules at stage X-XIV in rat testis (Holst et al., 1994). 

Immunohistochemistry revealed HSL immunoreactivity in the germ cells at stages XIII-

VIII in rat testis (Holst et al., 1996). The data suggested that HSL mRNA and protein were 

expressed in haploid germ cells but with a delay between mRNA and protein expression as 

many other genes expressed during spermatogenesis (Blaise et al., 1999; Blaise et al., 

2001). 

The functions of HSL have been further identified by generating HSL-null mice. 

Basal lipolysis has been reported to be unchanged in these mice (Haemmerle et al 2002; 

Mulder et al 2003). The findings suggest the presence of one or more additional 

intracellular triglyceride lipases in the adipose tissue as well as in macrophages, which 

could partly compensate for the lack of HSL (Haemmerle et al., 2002; Mulder et al., 2003; 

Osuga et al., 2000; Wang et al., 2001).  

The most striking aspect of HSL-null mice was male sterility due to oligospermia 

(Osuga et al 2000), which evidences a crucial contribution of HSL in male fertility. The 

testis weight of HSL-null mice is 40 percent lower than that of the wild type mice (Vallet-

Erdtmann et al., 2004). Decreased numbers of early and late spermatids were reported in 

the seminiferous tubules, no spermatozoa were found in the epididymes (Vallet-Erdtmann 

et al., 2004). Additionally, neither immunoreactive HSL nor neutral cholesteryl ester 

hydrolase activity was detected in testis of HSL-deficient mice (Osuga et al., 2000). 
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Therefore, it appears that HSL is responsible for all of the neutral cholesteryl hydrolase 

activity and the defect in cholesterol metabolism may contribute to the abnormalities in late 

spermatids of the knockout mice. Consistent with the lack of HSL in Leydig cells, HSL-/- 

mice have normal plasma testosterone levels, follicle-stimulating hormone and luteinizing 

hormone (Osuga et al., 2000). One could speculate that the oligospermia does not result 

from hypogonadism, but rather, result from cholesterol inequilibrium by HSL-deficiency in 

seminiferous tubules. Thus, HSL may be directly involved in the cholesterol homeostasis in 

the testis and contributed to the male fertility. 

To further elucidate the physiological significance of HSL, especially HSLtes, in 

male sterility, a transgenic mice strain (HSLtes
+/+ or HSLtes

+/-) expressing the human HSLtes 

under the control of its own promoter was generated, through crossing transgene animals 

with HSL-null mice. The remodeling mice show a lack of HSL in all tissues except haploid 

germ cells (Osuga et al., 2000; Vallet-Erdtmann et al., 2004). Rescue of spermatogenesis in 

HSL-/- HSLtes+/+ mice demonstrated that the lack of the mature spermatids and 

spermatozoa was due to the absence of the correct HSLtes transcription (Vallet-Erdtmann et 

al., 2004). Interestingly, the presence of two alleles of HSLtes led to a rescue of infertility 

observed in HSL-null male mice (Vallet-Erdtmann et al., 2004). The findings point to the 

unique function of HSLtes in the testis and its quantitative demand for normal 

spermatogenesis. HSL has been shown in most tissues to be crucial for the cholesteryl ester 

hydrolase (CEH) activity (Arenas et al., 2004; Kraemer & Shen, 2002). In HSL-deficient 

testis, a relationship was established between CEH activities, cholesteryl ester level and 

fertility. HSL-/- testis showed very low levels of CEH activities and accumulation of 
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cholesterol esters in the tubules (Osuga et al., 2000). On the other hand, the finding in 

HSLtes transgenic mice showed that the increasing of CEH activity was necessary to restore 

spermatozoa and resume fertility. Thus, the HSLtes transgene experiments indicated that 

male infertility in HSL deficient mice was due to the lack of expression of HSLtes, the 

testicular form of HSL in the spermatids, and suggests that the absence of spermatozoa was 

mediated in part by repressing the CEH activity.  

The studies in our laboratory extended over previous studies by showing that HSL 

activity and protein levels increased in parallel in the tubules and in the interstitial tissue 

with development but that HSL activity was higher in interstitial tissue where testosterone 

is synthesized (Kabbaj et al., 2003). In addition, our laboratory showed that the modulation 

of cholesterol metabolism in individual testicular compartments may be regulated by HSL 

isoforms expressed in distinct cells. Interstitial macrophages may be part of a system 

involved in the synthesis of steroid hormones and in the recycling of sterols in interstitium 

whereas in the tubules, recycling could be ensured by Sertoli cells. Moreover, our 

laboratory suggested that HSL may be the only cholesterol esterase in the seminiferous 

tubules (Kabbaj et al., 2001; Kabbaj et al., 2003).  

Previous studies done in our laboratory had used enzymatic digestion to generate 

the different tissue fractions (Kabbaj et al., 2001; Kabbaj et al., 2003). This might have 

caused a possible destruction of various phosphorylated forms of HSL. Recently, a 

separation technique has been developed in our laboratory and this approach apparently 

allows to be better preserve the HSL enzymatic activity and the phosphorylated forms of 

proteins (Akpovi et al., 2006). Nevertheless, the interrelationship between HSL and other 
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enzymes that directly or indirectly contribute to the cholesterol metabolism in the testis 

remains to be elucidated. Moreover, there are no data on the activities of other enzymes 

when HSL activity is either decreased or rendered inefficient. 

HSL has broad substrates, which includes retinyl esters. The absence of the function 

of retinoic acid has been described in the dysfunction of spermatogenesis. Retinoic acid is 

the acid form of vitamin A (Djakoure et al., 1996). Vitamin A– deficient male rats 

developed sterility (Griswold et al., 1989) and male sterility was the major phenotype in 

retinoic acid nuclear receptor, RARą knockout mice (Lufkin et al., 1993). However, no 

studies focussed on the impairment of retinoic acid production and spermatogenesis. 

Further studies are needed to elucidate the mechanism by which HSL deficiency results in 

male sterility. 

 

2.2.3 Regulation of HSL activity 

2.2.3.1 Transcriptional regulation 

HSL activity is modulated at the transcriptional and post-transcriptional levels. HSL 

mRNA level is correlated with the maximal lipolysis rate in human fat cells (Large et al., 

1998). Changes in adipose HSL mRNA levels have also been reported in humans with 

familial combined hyperlipidemia (Reynisdottir et al., 1995).  

During spermatogenesis, specialized transcriptional mechanisms ensure a stage-

specific gene expression in the germ cells. Some germ cell-specific transcriptional factors 

have been described and shown to function on few target genes. CREMγ is a product of the 
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CREM gene that acts as a transcriptional activator associated to the cAMP signaling 

pathway (Foulkes et al., 1992). And protamin 1, a nucleoprotein that replaces histones and 

promotes nuclear condensation, has been identified to be the target gene for CREMγ –

mediated activiation of HSLtes promoter in post-meiotic germ cells (Delmas et al., 1993).  

 

2.2.3.2 Post-transcriptional regulation 

Lipolytic and anti-lipolytic hormones as well as neurotransmitters and other effector 

molecules regulate adipocyte lipolysis. Catecholamines, adrenaline and noradrenaline 

belong to this group of hormones that are crucial for lipolysis, whereas insulin and 

adenosine are the most important anti-lipolytic stimulators (Londos et al., 1999). A well-

known mechanism regulating lipolysis is the cAMP pathway (Carmen & Victor, 2006; 

Haemmerle et al., 2003; Holm, 2003). Catecholamine  agonists bind to the β-adrenergic 

receptors, coupled to adenylate cyclase via the stimulatory G-protein, then cause an 

increase in cAMP and an activation of a cAMP-dependent protein kinase (PKA) (Holm, 

2003). The two main substrates, HSL and perilipins, are phosphorylated by PKA 

(Osterlund, 2001). PKA phosphorylation of HSL causes translocation from the cytosol to 

the lipid droplet, whereas phosphorylation of perilipin by PKA alleviates the barrier 

function of this protein and prompts its active participation in the lipolytic process (Holm, 

2003) (Diagram 8). On the other hand, other signaling pathways were also reported to be 

involved in the lipolytic response. For instance, PKC can be stimulated and mediated by 

both independent and dependent mitogen-activated protein kinases (extracellular signal 

regulated kisnases, ERK-1/2) way (Haemmerle et al., 2003; Holm, 2003) (Diagram 9).   
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Diagram 8. The classified cAMP pathway for regulation of HSL activity. TG, triglycerides; DG, 

diglycerides; MG, monoglycerides; MGL, monoglyceride lipase. [Taken from (Holm et al., 2003)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 9. Schematic structure of phosphorylation sites of HSL. The N-terminal amino acids 

are described as a globular structure and the important serine residues can be phosphorylated by the 

different kinases are shown in the C-terminal portion. [Taken from (Kraemer & Shen, 2002)]. 
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PKA phosphorylates HSL at three serine residual sites: S563, S659 and S660 

(Anthonsen et al., 1998). Activation of ERK pathway appears to be able to regulate 

adipocyte lipolysis by phosphorylating HSL on the residue S600 (Greenberg et al., 2001). 

In contrast to the activated sites of HSL seen in PKA and ERK phosphorylation, one 

additional serine residual site in HSL, S565, has been shown to be phosphorylated by other 

kinases such as Ca++/calmodulin-dependent protein kinase II and AMP-activated protein 

kinase (Garton & Yeaman 1990). Phosphorylation HSL at S565 prevents the 

phosphorylation of S563 by PKA and inactive HSL (Diagram 9) (Garton et al., 1989; 

Garton & Yeaman, 1990). 

 

2.3 Acyl-CoA: cholesterol acyltransferase 1 (ACAT-1) and 2 (ACAT-2) 

Acyl-coenzyme A: cholesterol acyltransferase (ACAT) is an ER membrane bound 

enzyme that catalyzes the transfer of a long-chain fatty acyl residue from acyl-CoA to the 

β-hydroxyl group of cholesterol to form a cholesteryl ester (Diagram 10). Two isoforms of 

the enzyme, ACAT-1 and ACAT-2 have been described (Chang et al., 1993; Chang et al., 

1998).  
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Diagram 10 . The ACAT reaction of cholesterol esterification in cells. CoA, coenzyme 

A; ACAT, Acyl-coenzyme A: cholesterol acyltransferase  [Taken from (Brown & 

Goldstein, 1986)]. 

 

2.3.1 Comparison between ACAT-1 and ACAT-2  

  1) Historical perspective 

Cholesterol esterase was first reported in the blood in 1895 (Hürthle KZ 1895). It 

was defined as lecithin: cholesterol acyltransferase (LCAT). Around the 1950’s, another 

intracellular cholesterol esterase was found in rat liver cells and was identified as acyl-

coenzyme A: cholesterol acyltransferase (ACAT) (Goodman et al., 1964). By 1993, Chang 

et al. (1993) cloned the human ACAT gene using a combination of somatic cells and 

molecular genetic approaches and they named it ACAT-1. A second mammalian acyl-

coenzyme A: cholesterol acyltransferase, named ACAT-2 was identified on the basis of its 

protein sequence homology with ACAT-1 close to the C terminal (Cases et al., 1998a).  
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  2) Tissue distribution 

In human, rabbit and mouse, ACAT-1 protein has been localized in virtually all 

tissues examined including: hepatocytes, Kupffer cells, adrenal, skin cells, intestinal 

enterocytes, neurons, and macrophages (Chang et al., 1993; Pape et al., 1995; Uelmen et 

al., 1995). However, the localization of ACAT-2 was said to be restricted. In humans, 

ACAT-2 was localized in the intestinal mucosa and hepatocytes (Anderson et al., 1998; Lee 

et al., 1998), and under pathological conditions (Sakashita et al., 2003) in macrophages. 

ACAT-2 was said to be absent from testis (Fazio et al., 2001; Lee et al., 2000; Rudel et al., 

2001). The distribution of ACAT-1 and ACAT-2 was not identical in mouse and humans. 

ACAT-2 is the major isoenzyme in mouse hepatocytes, whereas in adult humans, 

hepatocyte ACAT-1 is the major isoenzyme. Additionally, ACAT-1 mRNA was reported to 

be relatively abundant in steroidogenic tissues, including the adrenal gland, testis, and 

ovary (Chang et al., 1993).  

 

  3) Structures of the gene and protein  

The human ACAT-1 gene is located on two different chromosomes (Li et al., 1999). 

The coding region and the proximal promoter are located on chromosome 1, whereas the 5’ 

noncoding region and distal promoter that control the expression of the noncoding region 

are located on chromosome 7 (Li et al., 1999). The mouse gene is located on chromosome 1 

(Uelmen et al., 1995). However, the human ACAT-2 gene is located on chromosome 12, 

and the mouse ACAT-2 gene is located on a homologous region of chromosome 15 (Cases 

et al., 1998a).  
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ACAT-1 and ACAT-2 may both contain multiple hydrophobic transmembrane 

regions consistent with their being integral membrane proteins (Joyce et al., 2000; Lin et 

al., 1999) (Diagram 11). Depending the method used, ACAT-1 was said to span the ER 

membrane 5 to 7 times (Chang et al., 1993), whereas ACAT-2 includes 5 to 10 (usually 6 

to 9) hydrophobic domains capable of serving as trans-membrane regions (Cases et al., 

1998a). 

The ACAT-1 cDNA encodes a protein of 550 amino acids in human and of 540 

amino acids in mouse (Chang et al 1993). ACAT-2 cDNAs encode proteins of 522 and 525 

amino acids, respectively (Anderson et al., 1998; Lee et al., 1998). The amino acid 

sequence of human ACAT-2 show more than 40% identity with human ACAT-1. The most 

highly conserved regions are in the carboxyl terminal. The predicted molecular weight of 

ACAT-1 is approximately 65kDa, while the molecular weight viewed in SDS-PAGE is 

roughly 50kDa (Chang et al., 1993). The predicted molecular weight of ACAT-2 is around 

50kDa, but the one viewed in SDS-PAGE is roughly 46kDa (Cases et al., 1998a). 

                                     

Diagram 11. The transmembrane topology model of ACAT-1 and ACAT-2. The histidine 

residues are depicted. [Taken from (An et al., 2006)]. 
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2.3.2 Physiological roles of ACAT-1 and ACAT-2 in tissue and in testis 

The function of ACAT is to convert cholesterol into cholesteryl esters by using a 

long chain fatty acyl conenzyme A, so as to eliminate free cholesterol in excess (Suckling 

& Stange, 1985). ACAT-1 produces cholesterol ester as cytoplasmic lipid droplets (Chang 

et al., 2001a). Cholesterol ester droplets serve as the major reservoir for free cholesterol, an 

essential component of cell membranes. In steroidogenic tissues, cholesterol ester provided 

by ACAT-1 is stored and will be used as a source of free cholesterol that will serve as the 

precursor for steroid hormones biosynthesis (Chang et al., 2001a). ACAT-2 is expressed in 

the liver and small intestine, where it esterifies newly synthesized or dietary cholesterol 

prior to incorporation into lipoproteins and thereby regulates plasma cholesterol levels 

(Cases et al., 1998a; Rudel et al., 2001).    

The functional analyses of ACAT-1 and ACAT-2 have been provided by individual 

gene-deficient mice. The phenotypes of ACAT-1 and ACAT-2 knockout mice show tissue-

specific decreases in cholesterol esterification (Meiner et al., 1996). In ACAT-1 deficient 

mice, phenotypic changes did not affect the intestine or liver. The cholesterol absorption, 

cholesterol ester formation and the incorporation of esters into nascent chylomicrons were 

normal in ACAT-1-/- mice fed a regular chow diet (Dove et al., 2006; Meiner et al., 1996). 

In addition, ACAT-1 deficient mice had normal plasma cholesterol level. The major 

findings in ACAT-1-/- mice was the lack of cholesterol ester droplets in adrenal glands and 

zona fasciculata cells of the cortex and in cultured peritoneal macrophages (Meiner et al., 

1996), suggesting functional redundancy of cholesterol esterification for steroidogenesis. 

ACAT-1-deficient macrophages promoted the formation of atherosclerosis in 
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hyperlipidemic mice (Fazio et al., 2001). ACAT-1 deficiency in macrophage had a variety 

of effects on cholesterol homeostasis including the paradoxical acceleration of foam cell 

lesions in the absence of cholesterol esterification (Meiner et al., 1996). These changes 

included decreased efflux of cellular cholesterol, increased uptake of modified lipoproteins, 

increased cholesterol biosynthesis, accumulation of membrane-bound vesicles, and 

increased turnover of lipoprotein-derived cholesterol (Dove et al., 2006).  

 On the other hand, in ACAT-2 deficient mice, cholesteryl ester formation was fully 

abolished in both the liver and small intestine with a regular chow diet feeding (Buhman et 

al., 2000), suggesting that the importance of ACAT-2 activity in regulating cholesterol 

absorption and hepatic cholesterol homeostasis might change depending on dietary 

cholesterol intake. Moreover, ACAT-2 deficiency prevented atherosclerosis in the 

apolipoprotein E null mice (Willner et al., 2003). Therefore, at present, ACAT-2 is 

considered the most potential target for treatment of coronary heart disease associated with 

hypercholesterolemia (Willner et al., 2003). 

ACAT has been studied mainly in the gut and liver. The role of individual isoforms 

of the enzyme in the maintenance of cholesterol homeostasis in the gonad has not yet been 

studied. ACAT-1 has been reported in Leydig cells where it was suggested to contribute to 

the testosterone-production (Sakashita et al., 2000). The role of ACAT-1 in the tubules has 

not been investigated. There is at present no study on whether ACAT-2 is or not expressed 

in the testis nor on its putative role in testicular cholesterol homeostasis. 
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2.3.3 Regulation of ACAT-1 and ACAT-2 activity 

 The mechanism of the regulation of ACAT1 and ACAT-2 enzymatic activity has 

not yet been studied in the testis. In other tissues, ACAT enzymatic activity was shown to 

be regulated at distinct levels: phosphorylation/dephosphorylation, transcription and post-

transcription. 

 

1) Phosphorylation/dephosphorylation 

ACAT activated by phosphorylation and inhibited by dephosphorylation in vitro as 

well as in vivo (Suckling et al., 1983b; Suckling et al., 1983a). In vitro, the ACAT 

phosphorylation by microsomal protein kinase is stimulated by ATP-Mg, whereas 

dephosphorylation may be obtained by cytosolic phosphatase. However, other studies have 

argued the role of dephosphorylation in the regulation of ACAT activity (Corton & Hardie, 

1992; Einarsson et al., 1989). Thus, the regulation of ACAT by protein phosphorylation 

cannot be completely ruled out yet. 

 

2) Transcriptional regulation 

The ACAT-1 gene is not transcriptionally regulated by cholesterol and the sterol 

regulatory element present within the promoters of many cholesterol-regulated genes, could 

not be found within the ACAT-1 gene promoters (Brown & Goldstein, 1997). Similarly to 

the ACAT-1 promoter, the sterol regulatory element also could not be found within human 

ACAT-2 promoter (Song et al., 2001). However, a recent study has identified an important 

liver-specific cis-acting element in the promoter region of ACAT2 that acts as a putative 
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binding site for the hepatic nuclear factor 1 (HNF1) (Song et al., 2006). This element serves 

as a positive regulator of ACAT-2 gene expression and is functionally active. Significantly, 

HNF1 beta expression was highest in the testis (Harries et al., 2004). Thus, one could 

speculate that HNF1 is likely involved in the regulation of ACAT-2 gene expression in the 

testis, but this remains to be confirmed.   

 

3) Post-transcriptional regulation 

Both ACAT-1 and ACAT-2 appear to be regulated by post-translational 

mechanisms (An et al., 2006; Chang et al., 1997; Chang et al., 2001b). In vitro studies on 

the regulation of ACAT-1 enzymatic activity have shown that cholesterol esterification was 

increased without showing changes in the mRNA or protein expression levels (Chang et al., 

1994; Yu et al., 1999). The mode of cholesterol-dependent regulation is by allosteric 

control of the sterol substrate (An et al., 2006; Chang et al., 1998; Chang et al., 1997; 

Chang et al., 2001b). It has been found that ACAT-1 has two distinct sterol-binding sites: a 

substrate-binding site and an allosteric-activator site (Chang et al., 1997). Combination of 

cholesterol with ACAT-1 allosteric-activator site caused a ligand-induced 

structural/configurational change in its protein, which converts the enzyme from inactive to 

active (Chang et al., 1997). ACAT-2 is also allosterically regulated by cholesterol, with 

cholesterol serving as an activator (Liu et al., 2005). The putative activator sites of ACAT 

isoforms may only recognize cholesterol (An et al., 2006; Chang et al., 1998; Chang et al., 

1997; Chang et al., 2001b; Liu et al., 2005). ACAT-2 was less likely than ACAT-1 to use 
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cholesterol as substrate because ACAT-2 is less responsive to cholesterol-dependent 

activation (Temel et al., 2003).  

The two ACAT isoforms have different substrate specificities and catalytic cores 

corresponding to their different physiological functions and specific tissue expression 

(Zhang et al., 2003). ACAT-1 was reported to esterify cholesterol and various oxysterols, 

such as 7-ketocholesterol and 7α-hydroxycholesterol, though at very low rates compared to 

cholesterol (Zhang et al., 2003). However, 25-hydroxycholesterol was esterified more 

efficiently by ACAT-2 than by ACAT-1; and ACAT-2 was more selective than ACAT-1 

relative to substrate (Liu et al., 2005).  

With regard to the ACAT active site, a conserved serine residue was reported in 

both ACAT-1 and ACAT-2 (Cases et al., 1998b). Replacing this conserved serine with 

leucine led to a loss of ACAT activity in mammalian cells, suggesting that the conserved 

serine residue may be part of the enzymatic active site (Joyce et al., 2000). Membrane 

topographical studies of ACAT-1 and ACAT-2 suggest that the putative active site ACAT-

1 serine (Ser269) is located on the cytoplasmic side of the ER, whereas the analogous 

serine residue of ACAT-2 (Ser 249) is located on the luminal side of the ER (Joyce et al., 

2000). Another conserved region in ACAT-1, ACAT-2, DGAT and 20 other enzymes have 

been identified (Hofmann, 2000). The conserved region was located on histidine 460 of 

ACAT-1 and histidine-434 of ACAT-2. H460 and H434 residues have both been located in 

the interior of the ER membrane (Guo et al., 2005). It has been confirmed that H460 is the 

key active site residue of ACAT-1 (Guo et al., 2005). The complete ACAT activity was 

completely lost when the histidine 460 gene was mutated (Guo et al., 2005; Lin et al., 
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2003). H360 and H399, cytoplasmic histidine residues, were shown to be essential for the 

catalysis of ACAT-2 (An et al., 2006) (Diagram 11). 

 

 

3. Justification of the animal models used in the study 

Two different animal models were used, mink (Mustela vison) and mouse (Mus 

musculus). The mink is a seasonal breeder, while the mouse is a continual breeder.  

3.1 Seasonal breeder animal model: mink (Mustela vison) 

Our laboratory has utilized mink (Mustela vison) as animal model since 1979 and 

has provided ample results on the cholesterol metabolism in the testis (Akpovi et al., 2006; 

Kabbaj et al., 2001; Kabbaj et al., 2003; Pelletier, 1986; Pelletier & Friend, 1986; Pelletier 

& Vitale, 1994). 

The mink has several advantages. It shows a seasonal initiation of spermatogenesis 

in addition to the initiation of spermatogenesis during post-natal development. 

Additionally, this model allows us to distinguish the dynamic expression of the enzymatic 

factors during different phases of spermatogenic activity. The mink is a seasonal breeder 

which includes an 8-month-long active spermatogenic phase that produces spermatozoa 

followed by an inactive spermatogenic phase that does not (Fig. 1). During the active 

spermatogenic phase, mitotic and meiotic activities are increased; spermatogenesis was 

completed. During the inactive phase, there is no spermatid differentiation, no meiotic 
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activity and reduced mitotic activity. The animal model allows distinguishing the 

mechanisms underlying the seasonal testicular regression from those involved during the 

natural seasonal initiation of spermatogenesis. Besides, in mink the neonatal period 

expands from birth (usually in May) to about Day 90 after birth. This is followed by 

puberty, which extends from Day 91 to Day 252 after birth; this period includes the 

completion of spermatogenesis by Day 240 after birth and the apprearance of spermatozoa 

in the epididymis some 12 days later in January. The use of the mink model provides the 

unique advantage of distinguishing factors that regulate testicular cholesterol metabolism 

during postnatal sexual maturation of the developing testis from those acting during the 

seasonal annual reproductive cycle in tehadult testis. Here, all measurements were 

performed during the neonatal period, puberty, and adulthood, thus allowing for correlation 

of a physiological event typical with a particular phase of testicular development. 

 

 3.2 Continual breeder animal model: mouse (Mus musculus) 

In most previous studies, the mouse was used because of its rapid maturation from 

birth to sexual maturity. In mouse, spermatogenesis was found to start by day 7 after birth.  

The neonatal period covers the first 7 days after birth, and it is followed by puberty, which 

lasts up until day 52 from day after birth. Spermatogenesis is completed by 35 days after 

birth (De Rooij et al., 1989). Since the 1970’s, studies already confirmed that a large 

amount of lipid droplets appeared in both seminiferous tubules and the interstitial tissue of 

the mouse, and that the lipid droplet content varied greatly with development (Bell et al., 

1971; Ohata, 1979). Being a continual breeder, the mouse shows similarities with the 



 

 46 

humans. Recent technological advances have dramatically increased our ability to create 

analyses for human diseases. For instance, previous observations showed that male sterility 

in HSL-deficient mice is due to the lack of expression in spermatids of the testicular form, 

HSLtes (Vallet-Erdtmann et al., 2004). The dramatic effect of the absence of HSLtes leads to 

the question of whether mutations in the HSL gene may be the reason for male infertility in 

humans. 
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Objectives 
Cholesterol homeostasis is essential for the synthesis of testosterone in the 

interstitial tissue and the production of fertile gametes in the seminiferous tubules of the 

testis. The expression of enzymatic factors (HMG-CoA reductase, HSL and ACAT) that 

regulated cholesterol equilibrium in the testis has been recently described. The absence of 

one or more of these enzymes has been implicated in the development of male infertility. 

However, the enzymatic factors that determine the fate of cholesterol in the testis, 

especially, the inter-relation between individual enzymatic factors that directly contribute to 

the maintenance of the cholesterol equilibrium has not been extensively investigated in the 

testis. The present work is directed towards this task and aims to: 1) to elucidate the 

behaviour and the contribution of HMG-CoA reductase, ACAT-1, ACAT-2 and HSL 

in the modulation of cholesterol metabolism in each of the two compartments of the 

testis and 2) to identify the inter-relationship in the action of these enzymes in the 

maintenance of cholesterol equilibrium in the testis. My project will test the hypotheses 

(Model 1) that 1) to preserve the integrity of functions typical of each compartment of the 

testis, the three main enzymes implicated in the regulation of intracellular cholesterol have 

to act in coordination with each other in order to maintain viable cholesterol concentrations 

locally; 2) each of the two ACAT isoforms are both expressed and active in the 

seminiferous tubules and the interstitial tissue; 3) genetic HSL perturbation in the mouse 

will result in changes in the function of remaining enzymes involved in the regulation of 

the cholesterol equilibrium in the tubules; 4) the disruption of the cholesterol transporters 
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genes (SR-BI and CD36) would cause compensatory effects on the remaining enzymes 

involved in the “cholesterol ester cycle”. The project will allow identifying enzyme-

induced changes that contribute to the maintenance of cholesterol metabolism for the 

maintenance of normal spermatogenic activity. These studies will hopefully lead to a better 

understanding in male infertility where aberrant cholesterol metabolism has been 

implicated. 

 

 

                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 1. Schematic drawing of HMG-CoA reductase, HSL and ACAT in intracellular 
cholesterol metabolism during normal spermatogenesis. 
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Materials and methods 

1. Reagents  
 

1.1 Chemicals and enzymes 

Chemical enzymes and supplies were obtained as following: 

acetonitrile, agarose, anhydrous petroleum ether, bromophenol blue (BPB), bovine 

serum albumin (BSA), cholesteryl oleate, diaminobenzidine (DAB), dimethylsulfoxide 

(DMSO), dithiothreitol (DTT), ethylenediaminetetraacetic acid (EDTA), ethylene glycol-

bis-(-aminoethyl ether)--- N,N,N’,N’-tetraacetic acid (EGTA), glucose-6-phosphate, 

glucose-6-phosphate dehydrogenase, KCl, K2HPO4, KH2PO4, β-mercaptoethanol, ß-

nicotinamide adenine dinucleotide phosphate (ß-NADP), NaF, Na3VO4, Na4P2O7, oigo-dT, 

triphenylphosphine (Tris), (Sigma-Aldrich, Oakville, ON, Canada); acrylamide, Bio-Rad 

protein assay, nitrocellulose membranes, sodium dodecyl sulfate (SDS), SDS-PAGE 

standards (high and low range) (Bio-Rad, Mississauga, ON, Canada); aprotinin, leupeptine 

(Boehringer-Mannheim, Laval, PQ, Canada); cholesterol (ICN Biomedicals Inc. Irvine CA 

USA); Diethyl ether, heptane, hexane, Na2HPO4, trichloroacetic acid (TCA), 

tetrahydrofuran (THF), xylene (Fisher Scientific, Montreal, QC, Canada); DNase I (Rnase-

free), ECoR II, lumi-light western blotting substrate, phenylmethylsulfonyl fluoride 

(PMSF), SYBR Premix Ex TaqTM (Roche, Laval, QC, Canada); ethanol (Commercial 

Alcohols, Brampton, ON, Canada); hydrogen peroxide (H2O2), NaCl  (J.T. Baker, 
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Phillipsburg, NJ, USA); [14C]-3-Hydroxy-3-methylgluatryl coenzyme A (HMG CoA), OCS 

(Organic counting scintillant) scintillation cocktail, [14C]-oleyl-coenzyme A (oleyl CoA) 

(GE Healthcare, Baie d’Urfe, QC, Canada); isopropanol, mehylene blue (BDH, Toronto, 

ON,Canada); Film-classic Blue (EBA 45) (Universal X-ray Company of Canada Ltd., 

Dorval, QC, Canada); RNase inhibitor (Amersham Biosciences, Baie d'Urfe, QC, Canada); 

silica gel solid-phase extraction (SPE) column (Waters Corporation, Toronto, ON, Canada); 

TLC plates (silica gel 60 F254) (EMD Chemicals Inc., Gibbstown, NJ, USA); RNeasy Mini 

kit, Omniscript RT kit, Taq PCR core kit (Qiagen, Mississauga, ON, Canada).  

 

1.2 Antibodies 

As following were the sources of antibodies: 

ACAT-1 polyclonal antibody (rabbit polyclonal IgG), ACAT-2 polyclonal antibody 

(rabbit polyclonal IgG) (Cayman Chemical, Ann Arbor, MI, USA); HMG-CoA reductase 

polyclonal antibody  (rabbit polyclonal IgG) (Upstate, Lake Placid, NY, USA); HSL 

polyclonal antibody (rabbit polyclonal IgG)  (Dr. Cecilia Holm from Lund University, 

Lund, Sweden); myosin (light chain) monoclonal antibody (IgM) (Sigma-Aldrich, 

Oakville, ON, Canada); anti-rabbit IgG horseradish peroxidase-conjugated,  anti-mouse 

IgM horseradish peroxidase-conjugated, biotin-SP-conjugated affinity puried F(ab’)2 

fragment anti-rabbit IgG (H+L) (goat), HRP-conjugated streptavidin (Jackson ImmunoRes 

Lab, West Grove, PA, USA). 
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2. Apparatus 

The following instruments were utilized:  

EPSON perfection 3200 photo scanner (Epson Ltd. Hemel Hempstead, Herts, UK); 

XL-70 Beckman ultracentrifuge, OptimaTM MAX ultracentrifuge, GS-6R Beckman 

centrifuge, Life science UV/Vis spectrophotometer (DU® 530) (Beckman CoulterTM, 

Fullerton, CA, USA); Precision 180 Series Water Bath ( Precision, Winchester, VA, USA); 

β–counter (Perkin Elmer, Tri-Carb 2800 TR), Thermal Cycler GeneAmp PCR System 2400 

(Perkin Elmer, Markham, ON, Canada); IEC micro-centrifuger (IEC International 

Equipment Company, Nepean, ON Canada); Light cycler II-real time PCR equipment 

(Roche, Laval, QC, Canada); Light microscopy (Axiophot II) (Carl Zeiss, Hawthorne, NY, 

USA); Perkin Elmer GeneAmp PCR System 2400 (Garner, North Carolina USA); pH 

meter, Vortex Genie 2TM (Fisher Scientific, Montreal, QC, Canada); 2011 UV 

transilluminator (UVP Inc., Upland, CA, USA); Ultraviolet spectrophotometer (UV 160) 

(Shimadzu Scientific Instruments, Columbia, MD, USA). 

3. Softwares 

The following computer programs were used: 

Primer Premier Probe Design Software 5.0 (Premier Biosoft International, Palo 

Alto, CA, USA); Scion Image Software (Scion Corporation, Frederick, MD, USA); Sigma 

plot 7.0 software (SPSS Inc., Chicago, IL, USA); The Light cycler Software 3.5 (Roche, 

Laval, QC, Canada); Relative quantification software, version 1.01 (Roche, Laval, QC, 
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Canada); Alphalmager 2200 (documentation & analysis system) (Alpha Innotech 

Corporation, San Leandro, CA, USA). 

4. Animals 

Mink (Mustela vison, a seasonal breeder) and mouse (Mus musculus, a continual 

breeder) were used in this study.  

 4.1 Mink (Mustela vison) 

All mink, purchased from Visonnière St. Damase (St. Damase, QC, Canada), were 

individually caged, kept under natural lighting conditions, and allowed food and water ad 

libitum. After anaesthesia by an intraperitoneal injection of sodium phenobarbital 

(Somnotol) (0.9 ml/kg of body weight) (MTC Pharmaceutical, Cambridge, ON, Canada) 

and of a solution of 0.3g/ml chloral hydrate (MTC Pharmaceutical, Cambridge, ON, 

Canada) in sterile saline (0.15 ml/kg body weight), mink were decapitated and tissues were 

collected. For studies on development, testes were harvested at each 30 day interval 1) 

during the neonatal period (90 days old), 2) puberty (120, 150, 180, 210, and 240 days old), 

and 3) by the onset of adulthood (270 days old). Adult mink testes were collected for each 

30 day interval during the last week of each month throughout the annual reproductive 

cycle from 1-2 year old mink. The dynamics of the germ cell population during 

development and the annual reproductive cycle were identified by the methods of Pelletier 

(Pelletier, 1986), and are depicted in figure 1. Six normal mink per age group were used 

except when testes were small during puberty, when 6-10 mink were used.  
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Fertility was tested as follows: the ejaculated semen recovered from vaginal smears 

was evaluated with a light microscope, and the morphology, motility, and number of 

spermatozoa was assessed by the farmer from Visonnière St. Damase (St. Damase, QC, 

Canada) for each male mink during the mating season in March. 

 4.2 Mice (Mus musculus) 

       4.2 .1 Normal mice 

BALB/c mice were obtained from Charles River Laboratories, St-Constant, QC, 

Canada. Animals were killed at 7 day intervals up to adulthood. The testes were harvested. 

Each age group consisted of no less than 20 animals. The testes of more than 20 mice at 

days 14, 21, 28, 35, 42, and adult were prepared to generate tissue fractions to be used to 

prepare microsomes. All the assays were carried out on enriched tissue fractions rather than 

on whole testis preparations. Therefore, a high number of mice were required in the mRNA, 

protein expression and enzymatic activity measurements.  

 4.2 .2 SR-BI and CD36 and HSL knockout mice 

SRBI and CD36 knockout mice were used as animal models in which a selective 

transporter was blocked. Both, SRBI and CD36, knockout mice were generously supplied 

by Dr. Louise Brissette from Université du Québec a Montréal (UQÀM). For SR-BI 

knockout mice, the SR-BI gene had been inactivated in embryonic stem cells by standard 

homologous recombination methods (Rigotti et al., 1997). A portion of exon 1 and the 

additional sown stream intron was mutated. The mutated locus is expected to encode a 
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transcript that would not translate or would be translated into nonfunctional, 

nonmembranous and presumably unstable, protein. CD36 knockout mice were also 

generated by targeted homologous recombination (Febbraio et al., 1999). 

HSL knockout mice were generously supplied by Dr.Cecilia Klint from Lund 

University in Sweden. In brief, the gene encoding HSL was disrupted in embryonic stem 

cells by homologous recombination. A portion of exon 5, and the entire exon 6, which 

encodes the catalytic domain, was replaced by the cDNA encoding the Aequorea victoria 

green fluorescent protein and a neomycin resistance gene (Grober et al., 2003; Lipsett et al., 

1966; Mulder et al., 2003). 

5. Preparation of seminiferous tubule (STf) and interstitial tissue enriched fractions (ITf)  

The seminiferous tubule-enriched fractions (STf) and the interstitial tissue enriched 

fractions (ITf) were generated according to the method of Akpovi et al., (Akpovi et al., 

2006). Briefly, freshly decapsulated testes were placed in cold PBS (137mM NaCl, 3mM 

KCl, 8mM NA2HPO4, pH 7.4) or in PBS containing protease and phosphatase inhibitors 

(4mM Na3VO4, 80mM NaF, 20mM Na4P2O7 (pH 8.5), 2 mM ethylene glycol-bis-(-

aminoethyl ether)--- N,N,N’, N-tetraacetic acid (EGTA), 5mM leupeptine, 5 mM aprotinin 

and 2 mM phenylmethylsulfonyl (PMSF)). The tissue fractions were generated by 

mechanical techniques. Further separation was achieved by centrifugation at 600 rpm for 

20 min in a GS-6R Beckman centrifuge equipped with a GH 3.8 rotor. The resulting STf, in 

the pellet, and ITf, in the supernatant, were washed three times in the corresponding buffer 

(PBS or PBS containing protease and phosphatase inhibitors). Purity of the enriched 

fractions was evaluated by light microscopy. This represents a modification of a previously 
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published isolation method in which mild enzymatic digestion with collagenase D and 

soybean trysin inhibitor was used to separate tubules from the interstitial tissue (Kabbaj et 

al., 2001). 

6. Epididymal spermatozoa 

Epididymal spermatozoa were obtained by dicing adult mink caudae epididymides 

in cold PBS. The resulting cell suspension was filtered through a 74-mm mesh and 

centrifuged at 2000 rpm for 15 min in a GS-6R Beckman centrifuge to recover 

spermatozoa. The gametes were suspended in Tris buffer (10 mM Tris-HCl, pH 8.0 , 1 mM 

EDTA) for 5 min to lyse contaminating epithelial and blood cells (Herrada & Wolgemuth, 

1997; Kabbaj et al., 2003). 

7. Real time polymerase chain reaction (real time PCR) 

    7.1 Isolation of ribonucleic acid (RNA) 

  Total tissue RNA was isolated using RNeasy Mini kit (Qiagen, Mississauga, OH, 

Canada) according to the manufacturer’s instructions. Briefly, the tissues were 

homogenized in 600 µl RLT buffer (Qiagen, Mississauga, OH, Canada). The homogenates 

were transferred into the RNeasy mini column placed in a 2 ml collection tube with 

addition of 600µl of 70% ethanol. The homogenate was centrifuged 15 sec at 10,000g in a 

micro-centrifuge. The RNeasy columns binding ribonucleic acid (RNA) were washed with 

buffer RW1 and RPE and transferred into a new 1.5 ml collection tube. The RNA was 

dissolved with 40µl RNase-free water and detached from the columns by centrifugation. 
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RNase-free DNase I (10U/µl) at a final volume of 4µl  was added and heated at 75°C for 30 

min. The quality and quantity of isolated RNA were measured using a spectrophotometer. 

The RNA solution was checked for presence of residual amounts of DNA by performing 

PCR amplification.  

    7.2 Preparation of complementary DNA (cDNA) 

Complementary DNA (cDNA) was obtained by reverse transcription in the presence 

of random polydT using Omniscript RT kit. The reaction mixture consisted of a reverse 

transcriptase (RT) buffer (10X), 10 mM oligo-dT, 5mM deoxyribonucleotide triphosphate 

(dNTP) mixture, RNase inhibitor (32,600 U/ml), Omniscript RT enzyme (4 U/ml) and 

RNA samples. The total amount of 5 µg RNA was reverse transcribed into cDNA at 37°C 

for 1h in a 50 µl final volume. 

    7.3 Quantification of gene expression 

 The mRNA expression of HMG-CoA reductase, HSL, ACAT-1 and ACAT-2 were 

measured using primers designed for mouse and mink genes (Table 1). All primers 

sequences were generated using Primer Premier Probe Design Software 5.0 and checked 

for specificity using BLAST analysis on NCBI webiste. All these primers were purchased 

from Invitrogen company. For expression screening, PCR reactions were performed in the 

presence of 0.2 µM dNTP, 0.5 µM of each primer and 2.5 U Taq DNA polymerase (Taq 

PCR core kit) at a final volume of 25 µl. Products of reaction were visualized by 

electrophoresis in a 1.5-3% agarose gel, stained with ethidium bromide and photographed 

under a UV transilluminator.  
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Table1. Specific primers designed for mink and mouse HMG CoA reductase, ACAT-1, 

ACAT-2 and HSL 

Primers 
Gene 

GeneBank 

accession 

numbers 
sense Anti-sense 

Product 

size 

(bp) 

HMG CoA red. (mouse) NM_008255 5’CAGGATGCAGCACAGAATG3’ 5’AGGCAGGCTTGCTGAGGTA3’ 175 

HMG CoA red. (mink) NM_000859 5’CTTCCTCGTGCTTGTGACTC3’ 5’GACGTGCAAATCTGCTCG3’ 105 

ACAT-1 (mouse) NM_009230 5’CTGTAAGATGGGGTTATGTCGC3’ 5’CACTGAAGGGCTCCTGTTTG3’ 126 

ACAT-1 (mink) NM_003101 5’TTGGAATGGCTTTCAACT3’ 5’AAACACGTAACGACAAGTCC3’ 185 

ACAT-2 (mouse) AF078751 5’TGGGAGTGTTCCTGGTGTCT3’ 5’CCCGAAAACAAGGAATAGCA3’ 101 

ACAT-2 (mink) AF059203 5’GCAAGTCCCTGCTTGATGAGC3’ 5’CCAGCGATGAACATGTGGTAGAT3’ 70 

HSL (mouse) NM_010719 5’TTCGCCATAGACCCAGAGTT3’ 5’GACGACAGCACCTCAATCTCA3’ 113 

HSL (mink) NM_0053572 5’GGAGCACTACAAACGCAACG3’ 5’TCTCAAAGGCTTCGGGTG3’ 250 

HPRT-1 NM_013556 5’TGACACTGGCAAAACAATGCA3’ 5’GGTCCTTTTCACCAGCAAGCT3’ 93 

 

 

The real time PCR reactions were performed in the presence of 0.5 µM of each 

primer according to the manufacturer’s instructions (SYBR Premix Ex TaqTM). In all PCR 

reactions, a negative control corresponding to RT reaction without the reverse transcriptase 

enzyme and a blank sample were carried out. Amplification of the housekeeper gene 

hypoxanthine phosphoribosyl transferase 1 (HPRT-1) cDNA was used as internal control to 

quantify the expression of a given gene in real time PCRs. For quantification studies, 

melting curves were performed at the end of the real time PCRs to ensure amplification of a 

single product with the appropriate melting temperature. Quantification was done with the 
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Relative quantification software, version 1.01. The specificity of real time PCR products 

was evaluated through enzymes restriction according to manufacturer’s instructions. 

     7.4 Restriction digestion of PCR and real time PCR products  

To identify the PCR or real time PCR product, the amplified DNA fragments were 

digested with restriction enzymes. Alu I and EcoR II were used to cleave ACAT-2 

amplified fragments in mink STf or mouse STf respectively. The reactions were performed 

in presence of 1U Alu I or ECoR II restriction enzyme, digestion buffer (10 X) and DNA 

fragments at the final volume of 10 µl. The mixture was digested at 37°C overnight. 

Digestion and PCR products were analyzed by electrophoresis in a 3% agarose gel, stained 

with ethidium bromide and photographed under UV transilluminator. 

8. Western Blot Analyses 

    8.1 Protein measurements 

Protein in the tissue enriched fractions were measured according to the method of 

Bradford (1976) by using a dye-binding assay, and BSA as a standard. Samples were 

prepared for electrophoresis by boiling them in the corresponding volume of sample buffer 

2X (8 M urea, 70 mM Tris-HCl pH 6.8, 3% SDS, 0.005% BPB, and 5% β-

mercaptoethanol) for 5 min.   

    8.2 Electrophoresis and transfer 

Proteins (20-40 µg) were resolved on a 10% sodium dodecylsulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) at 70 V to 120V. After migration, the proteins in the gel 
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were electro-transferred at 300 mA for 1.5 h or at 27 V overnight at 4°C onto nitrocellulose 

membranes using a transfer buffer (25mM Tris-HCl pH 8.3, 150mM glycine and 20% (v/v) 

methanol). The nitrocellulose membranes were colored with Ponceau red (0.2% Ponceau 

red and 3% TCA in distilled water) for 10 seconds at room temperature (RT) until the 

bands were visualized and then rinsed with distilled water. The molecular mass of the 

bands corresponding to the proteins of interest was determined by comparison with the 

migration of molecular mass standards (SDS-PAGE Standards, High and Low Range). 

Thereafter, the membranes were washed with PBS at RT for 10-15 minutes under agitation 

to remove the Ponceau red.   

    8.3 Immunoblotting 

 To block nonspecific binding, the membranes were incubated in PBS-containing 

3% skim milk at 37°C for 1 hour. Next, the membranes were incubated with one of the 

following primary antibodies: anti-HMG CoA reductase (1:500), anti- ACAT-1 (1:50), 

anti-ACAT-2 (1:200), anti-HSL (1:500) overnight at 4°C under agitation. After the 

incubation, the membranes were washed with 0.05% Tween20- PBS 15 min each for 4 

times at 37 °C and incubated with the corresponding (anti-rabbit IgG, or anti-mouse IgM) 

secondary horseradish peroxidase-conjugated antibody (1:2000) for 1 h at RT with 

agitation. All antibodies were prepared in 1% skim milk-PBS. The membranes were rinsed 

three times in 0.05% Tween 20-PBS for 15 min and one time in TBS buffer (137 mM 

NaCl, 2.7 mM KCl, 24.8 mM Tris-base, pH 7.4) for 15 min at RT with agitation. 
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Immunoreactive bands were revealed by chemiluminescence and the membrane were exposed 

to film-classic Blue (EBA 45). 

9. Preparation of the microsomal fraction and enzyme activity measurement  

    9.1 Microsome preparation and protein determination 

  Microsomes from mink or mouse seminiferous tubule enriched fractions were 

prepared by differential centrifugation as described by Stalhberg et al. (Stahlberg et al., 

1997). The STf were homogenized with the homogenization solution (15mM Tris-HCl pH 

7.4, 300mM sucrose, 10mM mercaptoethaol, 1mM PMSF, 10mM aprotinin and 10mM 

leupeptin) in a Glass-Col homogenizer on ice. The homogenate was centrifuged at 19,600 g 

for 15 min at 4°C with OptimaTM MAX ultracentrifuge. The upper supernatant layer was 

carefully removed. The pellet was discarded and the microsomes sedimented by 

ultracentrifugation (XL-70 Beckman ultracentrifuge) at 100,000 g for 60 min at 4°C. The 

pellet was resuspended in phosphate buffer (1M K2HPO4, 1M KH2PO4(pH 7.4), 30mM 

EDTA, 5mM dithiothreitol (DTT) and 250 mM NaCl, 1mM PMSF, 10mM aprotinin and 

10mM leupeptin). The microsome protein content was evaluated according to the method 

of Bradford, using BSA as a standard (Bradford, 1976).  

    9.2 Determination of HMG-CoA reductase activity 

Microsomes (200 µg) were added to 150 µl phosphate buffer [50 mM K2HPO4 (pH 

7.4), 30 mM EDTA and 70 mM KCl] and pre-incubated for 5 min at 37°C (Shapiro et al., 

1974). Microsomes pre-heated for 5min at 95°C were used as control. The reaction was 
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triggered by the addition of nicotinamide hypoxanthine dinucleotide phosphate (NADPH) 

generator system (25.3mM glucose-6-phosphate, 1U glucose-6-phosphate dehydrogenase 

and 29 mM NADP and the radioactive substrate [200 µM 3-Hydroxy-3-methylgluatryl 

coenzyme A (HMG-CoA) containing 19 nCi (1.11%) of [14C]-HMG-CoA]. The mixture 

was incubated at 37°C for 15 min, to produce [14C]-mevalonic acid, and stopped by the 

addition of 20 µl of 5 N HCl. The reaction mixture was then incubated for 30 min at 37°C 

to allow lactonization of [14C]-mevalonic acid into [14C]- mevalonolactone (MVL). The 

reaction mixture (100 µl) was evaporated to dryness at RT and then suspended in 150 µl of 

acetonitrile by sonication and centrifuged for 5 min at 13,000g. The suspensions (100 µl) 

were seeded into a silica gel solid-phase extraction (SPE) column (previously conditioned 

with 3 X 1ml of anhydrous petroleum ether). Thereafter, 1ml anhydrous petroleum ether 

was added onto the SPE column, followed by 2X-1ml of THF. All the solutions were 

collected and evaporated to dryness at RT. The scintillation cocktail was added and the 

radioactivity was measured using a β–scintillation counter. The [14C]-HMG-CoA, a polar 

molecule, binds to the silica gel, whereas the [14C]-MVL, a non-polar molecule, is easily 

eluted by petroleum ether and tetrahydrofuran (THF) (Nguyen et al., 1990).  

9.3 Determination of ACAT activity 

9.3.1 Total ACAT enzymatic activity measurement 

Total ACAT enzymatic activity was determined by assessing the production of 

cholesteryl[14C] oleate (Chang et al., 1998; Erickson et al., 1980). The microsome 

preparation (200 µg) was added to 100 µl assay buffer [0.2 mM KH2PO4 (pH 7.4), 2mM 
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DTT] containing 0.4 mg/ml of cholesterol and 6mg/ml of BSA. After a preincubation at 

37°C for 20 min, the reaction was triggered by the addition of 10 µM [14C]-oleyl-CoA 

(specific activity of 56.0 nCi/nmol). Then, the mixture was incubated at 37°C for 25 min 

and the reaction was stopped by addition of 1ml isopropanol-heptane (4:1, v/v). The final 

reaction mixture was vortexed and 0.6 ml heptane and 0.4 ml assay buffer were added. The 

upper heptane phase (100 µl) was transferred into a vial containing liquid scintillation 

cocktail and the radioactivity was measured in a β–scintillation counter. Separation of 

cholesteryl [14C] oleate from residual substrate, [14C] oleoyl-CoA, and side-products was 

performed by solvent partitioning between an upper heptane phase and a lower 

isopropanol-water phase (Jeong et al., 1995). 

  Since some of the radioactivity recovered in the upper phase was due to the 

enzymatic incorporation of radioactive fatty acid into products other than cholesteryl oleate, 

to specifically measure ACAT activity, the partitioned heptane phase was separated by thin 

layer chromatography (TLC) (Silica gel 60 F254) using a solvent mixture made up of n-

hexane-diethyl ether-acetic acid (90:10:1). Cholesteryl ester standard (choleseryl oleate) 

was used on several lanes across each plate in order to identify the region of cholesteryl 

ester. The separated free and esterified cholesterol were visualized by staining with iodine 

vapour and the radioactive content of the excised bands of free and esterified cholesterol 

was determined by scintillation counting.  
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9.3.2 Individual ACAT-2 enzymatic activity measurement and ACAT-1 enzymatic activity 

assay 

 We provide a novel technical approach for the measurement of individual ACAT-2 

enzymatic activity and individually determine the activity of ACAT-1 in seminiferous 

tubules and interstitial tissue during postnatal development and adulthood something which 

had never been reported before. The technique is based on the use of a selective ACAT-1 

inhibitor, K-604. 

The assay buffer (100µl) was the same as in the total ACAT enzymatic activity 

measurement except for the addition of the ACAT-1 inhibitor (K-604) (100 µM diluted in 

5ml of dimethylsulfoxide (DMSO)). The steps to measure the ACAT-2 enzymatic activity 

were the same as in the total ACAT enzymatic activity measurements. The concentration of 

K-604 used in the assay was determined according to a dose-dependent inhibition curve. 

Various concentrations (0-1000µΜ) of inhibitor were added to the assay buffer. A 

concentration-enzymatic activity inhibition curve was established and the inhibitor 

concentration that inhibits all ACAT-1 activity but not ACAT-2 activity was selected for 

the study. 

 Thereafter, ACAT-1 enzymatic activity was calculated by subtracting ACAT-2 

enzymatic activity from total ACAT enzymatic activity. 

 9.4 Determination of HSL activity by spectrophotometric esterase assay 

     To assess the HSL activity, a spectrophotometric esterase assay based on the 

hydrolysis of PNPB was used (Holm & Osterlund, 1999). Kabbaj et al, applied this method 
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to the seminiferous tubules and interstitial tissue during postnatal development and 

adulthood (Kabbaj et al., 2001; Kabbaj et al., 2003). STf were homogenized on ice in 0.25 

M sucrose, 1 mM EDTA, pH 7.0, 1 mM dithioerythreitol, 20 µg/ml leupeptin, 2 µg/ml 

antipain, and 1 µg/ml pepstatin. Aliquots of 10–20 µg of protein of each sample were 

incubated with PNPB (diluted in acetonitrile) and buffer (0.1 M NaH2PO4, pH 7.25, 0.9% 

NaCl, 1 mM dithioerythreitol) at 37°C for 10 min. The reaction was stopped by addition of 

3.25 ml of methanol: chloroform: heptane (10:9:7). After centrifugation at 800×g for 20 

min, solutions were incubated for 3 min at 42°C and the absorbance of the supernatant was 

measured at 400 nm in a light spectrophotometer. The enzymatic activity was expressed in 

units, one unit being equivalent to the release of 1 µmol of p-nitrophenol/min. All samples 

were analyzed in triplicate and the HSL activity was related to the total protein 

concentration of each sample.  

To determine the best protein concentration for the assay, various concentrations (0-

400µg) of protein in the samples were incubated with PNPB. After the reaction was 

completed, a protein concentration enzymatic activity curve was made and the proper 

protein concentration was chosen for the study. 

10. Immunohistochemical analyses 

   10.1 Tissue preparation for immunohistochemistry  

Testes were perfused-fixed through the testicular artery, first with PBS and then 

with Bouin’s fixative, and were immersed for 48 hours in the same fixative at RT as 

described by Pelletier (Pelletier et al., 1995; Pelletier, 1995; Pelletier et al., 1997). Tissues 
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were dehydrated with series of ethanol (70%, 95% and 100%) and xylene. Next, the tissues 

were embedded with paraffin and sectioned to 5 µm thick. The sections were mounted on 

glass slides and dried at 40°C overnight.  

   10.2 Immunolocalization of the enzymes 

The mounted sections were deparaffinized with xylene and rehydrated with series of 

ethanol (100%, 95%, 70%, 50%) followed by water (Pelletier, 1995; Pelletier et al., 1997). 

Then, the sections were boiled in citrate buffer (10mM citric acid, 0.05% Tween 20, pH 

6.0) for 8 min at 95°C and exposed to 0.6% H2O2 in TBS for 10 min to inhibit endogenous 

peroxidase activity and rinsed with TBS containing 0.1% Tween-20 (0.1% TBST). Next, 

the sections were incubated with 0.5% skim milk in TBST for 30 min at RT to block non-

specific binding followed by incubation with anti-HMG-CoA reductase (1:50) or anti-

ACAT1 (1:100) or anti-ACAT2 (1:50) overnight at RT. Subsequently, the sections were 

rinsed and incubated with biotinylated anti-rabbit IgG Fab (1:10,000) for 1 h at RT. All 

antibodies were prepared in 1% skim milk-PBS. After washing, the sections were incubated 

with horseradish peroxidase (HRP)-conjugated streptavidin (1:200 1% milk-PBS) for 1h at 

RT and rinsed. The reaction was detected by 0.05% diaminobenzidine tetrachloride (DAB) 

containing 0.03% H2O2 and counterstained with 0.05% methylene blue. The sections were 

dehydrated with series of ethanol (70%, 95% and 100%) and xylene.  

11. Analysis of data and statistical analysis 

The immunoreactive bands of enzymes in Western blots obtained for each time 

interval studied were scanned with a laser scanner. The values were normalized to the 90 
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day values for developmental studies or to August values for the studies on mink adults; the 

values were also normalized to the 14 day values for the studies of development or the 

wild-type for the mice studies. The data are expressed as the mean ± standard error of the 

mean (SEM). Student’s t-test was used for comparisons between two groups. Differences 

were considered statistically significant as P<0.05.  

Data were expressed as the mean ± SEM for real time PCR and enzymatic activity 

analyses followed by Student’s t-test at a P<0.05 level of significance. All analyses were 

carried out with Sigma plot 7.0 software. 



 

Results 
 

1. HMG-CoA reductase 

1.1 Mink 

Measurements in mink were performed in seminiferous tubule-enriched fractions 

(STf) obtained each 30 day- (d) interval throughout postnatal development (from 90d to 

270d after birth), and throughout the twelve-month seasonal reproductive cycle in the 

adult (Fig. 1). The histological changes during postnatal development are similar to 

those of the active spermatogenic phase in mink testis (Pelletier et al., 2009). The 

neonatal period expands from birth to about day 90 days after birth, the puberty from 

day 90 to day 252 after birth; this period includes the completion of spermatogenesis by 

Day 240 after birth and the appearance of spermatozoa in the epididymis some 12 days 

in January (252 days after birth). 

   Here, it must be stressed that the enzymatic activity measurements were carried out 

on microsomes that were obtained from seminiferous tubule-enriched fractions. This 

procedure necessarily requires using much greater numbers of animals or big amount of 

tissues than if the procedure used whole testis extract as is done in most studies. Thus, 

the experiments were not carried out in the interstitial tissue fractions since not enough 

interstitial tissue could be gained.  
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1.1.1 Real time quantitative PCR, Western blot and enzymatic activity measurements in 

STf 

1.1.1.1 mRNA  

 

The mRNA expression profile of HMG-CoA reductase was evaluated by real time 

PCR using total RNA isolated from mink STf during development and the annual 

reproductive cycle.  HPRT-1, a house-keeper gene, was used as internal control since it is 

expressed constitutively and constantly in all samples. It corresponded to a 93bp single 

band (Fig. 2A). HMG-CoA reductase primers (Table 1) amplified a single product with 

an expected size of 105bp by real time PCR (Fig. 2A). The 105bp HMG-CoA reductase 

and the 93bp HPRT-1 product were detected throughout development and the annual 

reproductive cycle (data not shown). A negative control corresponding to RT reaction 

without the reverse transcriptase enzyme was carried out and showed no PCR product 

amplification (data not shown). Figure 2B shows that HMG-CoA reductase mRNA levels 

varied distinctly during development and the annual cycle. The HMG-CoA reductase 

mRNA levels significantly increased toward the end of development. The levels 

increased significantly from 180 to 210 days and then decreased significantly from 240 

to 270 days (Fig. 2B). The levels increased significantly by the end of testicular 

regression in the seasonal cycle. The mRNA levels peaked from April to May, and then 

significantly decreased from June to July (Fig. 2B).  
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1.1.1.2 Protein  

 

Western blot analyses performed with anti-HMG-CoA reductase antibody revealed 

several bands in mink STf during development and the annual reproductive cycle (Fig. 

3A). Adsorption of anti-HMG-CoA reductase with an HMG-CoA reductase peptide 

caused the disappearance of the 90kDa immunoreactive band and a decrease of the 53kDa 

band (Fig. 3A). Because the 53kDa band did not completely disappear with the pre-

adsorption, the 90kDa was considered the HMG-CoA reductase immunoreactive band 

and will be analyzed in our study. Representative Western blots of HMG-CoA reductase 

are shown in Figure 3B. The 90 kDa HMG-CoA reductase expression showed different 

tendencies between development and the reproductive cycle. In addition, the protein level 

profiles (Fig. 3) did not parallel the mRNA level profiles (Fig. 2B). The 90kDa HMG-

CoA reductase significantly increased with the initiation of meiosis particularly from 150 

to 180 days. In the adult, the 90kDa band tended to decrease during testicular regression 

but not significantly. Myosin light chain (MLC) was used as an internal loading control. 

MLC has a molecular mass of 20 kDa, and the intensity of the band did not change in the 

different experimental conditions (data not shown). 

1.1.1.3 Enzymatic activity 

 

The  HMG-CoA reductase enzymatic activity was measured by quantifying its 

reaction product mevalolactone (MVL) using an alternative chromatographic technique 

developed in Dr. Julie Lafond’s lab (Montoudis et al., 2004). HMG-CoA reductase 
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activity tended to increase throughout development (Fig. 4) and this increase does not 

parallel the profile in the levels of the 90 kDa immunoreactive band during development 

and the annual cycle (Fig. 3). The enzymatic activity at 120 days averaged 6.4071e-8 ± 

5.5729e-8 (mean ±SEM) mol/min/µg protein in three group experiments. The enzymatic 

activity was significantly increased from 210 to 240 days, and reached the maximal value 

at 3.6411e-7 ± 3.3718e-9 mol/min/µg protein (mean ±SEM) at 240 days, but significantly 

decreased afterwards (Fig. 4). During the annual reproductive cycle, HMG-CoA 

reductase activity firstly and significantly increased by December and again increased 

significantly from December to January and from January to February. The maximal 

value was at 1.2132e-6 ± 2.9000e-7 mol/min/µg protein (mean ±SEM) by February. 

HMG-CoA reductase enzymatic activity decreased from June to July but not significantly 

(Fig. 4).  

1.1.2 Immunohistochemical localization in the testis 

HMG-CoA reductase positive labeling was found throughout development and the 

annual reproductive cycle within the seminiferous tubules. HMG-CoA reductase–positive 

dots were detected in Sertoli cells, and spermatids. Endothelial cells of capillaries and 

other interstitial tissue cells are also positive (Fig. 5). 

 

  1.2 Mouse 

1.2.1 Real time quantitative PCR, Western blot analyses in ITf 

1.2.1.1 mRNA  
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A single product was amplified by real time PCR using HMG-CoA reductase 

primers to mouse (Table 1). The product had the expected size of 175bp (Fig. 6). During 

development, mRNA expression levels were sharply and significantly increased from 21 

to 28 days after birth, and then significantly decreased from 28 to 35 days and from 35 to 

42 days after birth (Fig. 6A).  

1.2.1.2 Protein 

Pre-adsorption of anti-HMG-CoA reductase with the HMG-CoA reductase peptide 

caused the disappearance of the 90 kDa immunoreactive band (Fig. 6B-1). Thus the 90 kDa 

band was considered the HMG-CoA reductase immunoreactive band in our study. The 

90kDa immunoreactive band remained more or less constant throughout development (Fig. 

6B-2) contrary to the mRNA levels (Fig. 6A) which did not.  

 

1.2.2 Real time quantitative PCR, Western blot and enzymatic activity measurements 

in mouse STf 

1.2.2.1 mRNA  

 

In the mouse STf, the size (175bp) of HMG-CoA reductase amplicons was the same 

as the one produced in mouse ITf (Fig. 7A).  The mRNA expression levels significantly 

increased from 14 to 21 days, from 21 to 28 days and again from 35 to 42 days, but 

decreased with adulthood (Fig. 7A).  
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1.2.2.2 Protein  

 

In pre-adsorption experiments, the 90 kDa band almost disappeared, indicating 

that this is the HMG-CoA reductase immunoreactive band (Fig. 7B-1). The 90kDa 

immunoreactive band was detected in the STf (Fig. 7B-2). The 90kDa HMG-CoA 

reductase protein levels in STf increased early during development and the intensity of 

the 90kDa immunoreactive band was the strongest at 28 days, and then tended to decrease 

afterwards (Fig. 7B-2). In epididymal Spz however the 90kDa protein band was detected 

together with a 37kDa band. The 37kDa immunoreactive band has never been reported in 

Spz before. Both the 90kDa and 37kDa immunoreactive bands were absent following pre-

adsorption (Fig. 7B-3).  

 

 1.2.2.3 Enzymatic activity  

 

 The HMG-CoA reductase activity tended to increase from 14 days to 42 days after 

birth and to slightly decrease with adulthood (Fig. 7C). The enzymatic activity ranged 

from 1.73e-7 ± 1.16e-8 (mean ±SEM) mol/min/µg protein (14 days) to 5.19e-7 ± 9.53e-8 

mol/min/µg protein (42 days) (mean ±SEM). The largest increase in the enzymatic 

activity was observed in the 28 day-old mice (Fig. 7C). This time point corresponded to 

the time when the intensity of the 90kDa HMG-CoA reductase immunoreactive band was 

strongest and the mRNA levels were significantly increased. 
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1.2.3 Immunohistochemical localization in the testis 

In the mouse, HMG-CoA reductase was detected in Sertoli cells in all age group 

studied (Fig. 8). HMG-CoA reductase was also found in elongating spermatids. HMG-

CoA reductase was also detected in the interstitial tissue cells (Fig. 8).  

 

2. HSL 

2.1 Mink 

2.1.1 Real time quantitative PCR, Western blot and enzymatic activity measurements in 

STf 

2.1.1.1 mRNA  

 

The mRNA expression of HSL was evaluated by real time quantitative PCR using 

the same cDNA as in HMG-CoA reductase measurements. A single 250bp product was 

amplified (Fig. 9). Quantification of the band during development and the annual 

reproductive cycle showed that the HSL mRNA levels significantly increased from 90 to 

120 days after birth, then the levels slowly went down until 240 days, but HSL mRNA 

levels sharply and significantly increased by 270 days. During the seasonal cycle, the 

HSL mRNA levels showed a tendency to increase from September to October, but the 

changes were not statistically difference (Fig. 9).  
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2.1.1.2 Protein  

Adsorption of anti-hHSL with human adipose tissue caused a major decrease in the 

intensity of the 90kDa immunoreactive bands in mink tissues (Kabbaj et al., 2003), 

demonstrating that the anti-hHSL antibody recognizes the enzyme in mink tissue. It has 

been reported that HSL gene in the testis encodes a protein which is identical to the 

adipocyte HSL (Mairal et al., 2002). We proposed that the 90kDa immunoreactive band 

detected in the testis is HSL. Considering the Western blot experiment in HSL knockout 

mice, only the 90kDa band was not detected, demonstrating that the 90kDa immunoreactive 

band corresponds to HSL. Representative Western blots are shown in Figure 10. The levels 

of the 90kDa HSL immunoreactive band were significantly increased from 150 to 180 days 

and again from 210 to 240 days after birth. The levels decreased slightly afterwards. During 

the annual reproductive cycle, the protein levels significantly increased from December to 

January, and then decreased from March to April and remained low in the following 

months (Fig. 10). HSL protein expression (Fig. 10) was not coincident with its mRNA 

expression (Fig. 9).  

2.1.1.3 Enzymatic activity 

At 90 days, HSL enzymatic activity was 30.56 nM/min/µg protein. HSL activity 

was increased by 8% in 120 days in mink STf compared to 90 days and again from days 

180 to 210 when the spermatocytes differentiate from the preleptotene to prepuberal 

pachytene stages. In 210 days the HSL activity reached 35.61 nM/min/µg protein. During 

the annual reproductive cycle, HSL enzymatic activity increased by November on the onset 

of meiosis but the increase was not significantly different. However, activity levels peaked 
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in February and significantly decreased from February to March, from 40.88 ± 0.08 

nM/min/µg protein to 34.59 ± 0.16 nM/min/µg protein. The increase of HSL activity is 

accompanied with the completion of spermatogenesis during development and in the adult 

during the active phase of the annual reproductive cycle. The enzymatic activity decreased 

more rapidly than the protein levels during the annual reproductive cycle (Fig. 11).  

    2.1.2 Immunohistochemical localization in the testis 

In our lab, Kabbaj et al have reported that HSL immunoreactivity was detected in all 

ages of the seminiferous epithelium (Kabbaj et al., 2003). This enzyme was localized to 

Sertoli cell cytoplasmic processes surrounding germ cells throughout puberty and also was 

detected in elongating spermatids. HSL was also expressed in the epididymal spermatozoa 

(Kabbaj et al., 2003). 

 

2.2 Mouse 

2.2.1 Real time quantitative PCR, Western blot analyses in ITf 

2.2.1.1 mRNA  
 

The mRNA expression of HSL in mouse ITf was evaluated by real time quantitative 

PCR using the same cDNA as in HMG CoA reductase measurements. A single 113bp 

product was amplified (Fig. 12A). Quantification of this band showed that HSL mRNA 

levels significantly increased from 21 to 28 days after birth, they significantly decreased 

from 35 days onwards.  
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2.2.1.2 Protein 
 

Identification of the 90kDa band as being the HSL immunoreactive band was 

performed using HSL knockout mice ITf (see figure 20B). A representative Western blot 

of the 90kDa HSL immunoreactive band is shown in Figure 12B. HSL protein levels 

tended to slightly increase from 28 to 35 days after birth, and then the protein content 

leveled high from 35 to adulthood and this was associated with the significant decrease of 

HSL mRNA levels (Fig. 12B).  

 

2.2.2 Real time quantitative PCR, Western blot and enzymatic activity measurements in 

STf 

2.2.2.1 mRNA  

 

A single 113bp product was amplified by real time PCR with mouse HSL gene (Fig. 

13A). Quantification of this band showed that HSL mRNA levels were significantly 

increased from 14 to 21 days, from 21 to 28 days and from 28 to 35 days after birth, then 

the levels remained high (Fig. 13A).  

2.2.2.2 Protein 

 

A representative Western blot of the 90kDa HSL immunoreactive band is shown in 

Figure 13B. The 90 kDa HSL protein levels were increased steadily with spermatogenic 

activity reaching maximal values with adulthood (Fig. 13B). The 90kDa protein level 

profiles paralleled the HSL mRNA levels.  
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2.2.2.3 Enzymatic activity 
 

HSL enzymatic activity was significantly increased with the onset of puberty from 

14 to 21days after birth, from 10.90 ± 0.38 nM/min/µg protein to 14.61 ± 0.84 

nM/min/µg protein. The activity levels increased until days 42, but significantly 

decreased in the adult, where the averaged value was 9.61 ± 1.73 nM/min/µg protein (Fig. 

13C). The decrease of HSL activity in the adult was coincident with an increase  in both 

HSL mRNA (Fig. 13A) and protein expression (Fig. 13B).  

 

3. ACAT-1 and ACAT-2 

3.1 Mink 

3.1.1 Real time quantitative PCR, Western blot and enzymatic activity measurements in 

STf 

3.1.1.1 mRNA  

 

Up to now, ACAT has been studied mainly in the gut and liver (Chang et al., 1993) 

but never in the testis. Moreover, the role of individual ACAT isoforms of the enzyme in 

the maintenance of cholesterol homeostasis in the gonads has never been addressed. 

The presence of transcripts for ACAT-1 and ACAT-2 genes was evaluated by PCR 

using specific primers respectively. The amplified sequences between ACAT-1 and ACAT-

2 showed no homology in BLAST analyses. One single 185bp sized product of ACAT-1 

and one 70bp ACAT-2 product were amplified (Fig. 14A). The specificity of real time PCR 
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product of ACAT-2 was evaluated by restriction enzymes. Alu I, cleaves the recognition 

site (AG^CT). This sequence was only present in the ACAT-2. Two small DNA fragments 

of 20bp and 50bp respectively were obtained in a 3.5% agarose gel (Fig. 14B).  

ACAT-1 mRNA expression differed greatly from ACAT-2 mRNA expression in mink 

STf during development and the annual reproductive cycle. During mink development, 

ACAT-1 mRNA levels significantly increased from 90 to 120 days and from 240 to 270 

days (Fig. 14C). During the annual reproductive cycle, ACAT-1 mRNA levels significantly 

increased from September to October then significantly decreased from November to 

December before significantly increasing again from April to May and significantly 

decreasing in July (Fig. 14C). On the other hand, ACAT-2 mRNA levels significantly rose 

from 180 to 210 days but decreased significantly from 210 to 240 days during development 

(Fig. 14C). The mRNA levels were significantly elevated from December to January and 

from April to May but they significantly decreased from June to July during the annual 

reproductive cycle (Fig.14C). 

3.1.1.2 Protein  

Western blots performed with anti-ACAT-1 and ACAT-2 antibodies revealed a 

50kDa and a 46kDa band respectively (Fig. 15).  

Although ACAT-1 and ACAT-2 mRNA expression varied differently during 

development (Fig. 15), both ACAT-1 and ACAT-2 protein levels tended to increase and 

reached the highest levels with adulthood (270 days) (Fig. 15). Similarly, during the annual 

reproductive cycle ACAT-1 protein levels increased steadily during the period when 

spermatogenesis was completed in January, February and March and decreased gradually 
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during the periods when spermatogenesis was arrested. In contrast, ACAT-2 levels 

significantly rose from December to January and were maintained high from January to 

March before significantly dropping from March to April (Fig. 15). 

3.1.1.3 Enzymatic activity 

 

Here, we are the first to apply the novel selective ACAT-1 inhibitor, K-604, to the 

measurement of individual ACAT-1 and ACAT-2 enzymatic activity (Chen L., 2008). K-

604 potently and selectively inhibited ACAT1 much more than ACAT2 with IC50 values of 

100 and 1000 µM respectively (Fig. 16A), and the proper inhibitor concentration (100µM) 

that inhibits the activity of ACAT-1 but not the activity of ACAT-2 was selected (Fig. 16A).  

ACAT-1 and ACAT-2 activity was evaluated by the quantification of the reaction 

product (cholesteryl oleate), which is separated from other unspecific products by TLC. 

The weak enzymatic activity or extremely different values between groups obtained could 

be due to an important loss of products during the necessary TLC manipulation (spotting 

and recovery) since the samples used and the method of quantification (evaluation of 

radioactive reaction product) were the same. Therefore, only a representative enzymatic 

activity measurement of ACAT-1 and ACAT-2 is shown in Figure 16 although the 

enzymatic activities were measured in three independent experiments. All experiments 

showed a similar trend. 

Figure 16B shows representative histograms of ACAT-1 and ACAT-2 enzymatic 

activities in mink STf during development and the annual reproductive cycle. ACAT-1 

enzymatic activity showed a steady decrease with development (range from 3140.00 
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CPMB/200µg protein to 43.00 CPMB/200µg protein) (CPMB = scintillated radioactivity), 

reaching minimal values by 270 days after birth. During the reproductive cycle, the levels 

of ACAT-1 enzymatic activity were reduced by 94% during the period when 

spermatogenesis was completed in January (January versus to August) and were increase to  

265% during the regression of spermatogenesis in May ( May to January) (Fig. 16B). In 

contrast, ACAT-2 enzymatic activity remained relatively constant during early 

development and was increased 2.4-fold of the value after day 240 (161.00 CPMB/200µg 

protein to 388.00 CPMB/200µg protein), and was maintained at this elevated level for up to 

day 270 (388.00 CPMB/200µg protein to 1190.00 CPMB/200µg protein). During the 

seasonal cycle, ACAT-2 enzymatic activity sharply increased from December to January 

remaining high from January to March but decreasing afterwards (Fig. 16B). Compared to 

the protein expression of each ACAT isoform, ACAT-1 enzymatic activities was opposite 

to its protein expression, whereas ACAT-2 enzymatic activity paralleled tois coincident 

with its protein levels.  

3.1.2 Immunohistochemical localization in the testis 

We are the first to immunolabel ACAT-1 and ACAT-2 in mink testis (Fig. 17). The 

ACAT-1 was detected only in germ cells of the tubules; it was localized in spermatocytes, 

elongating spermatids and in the acrosome of mature spermatids. ACAT-1 was also labeled 

the interstitial cells. In contrast, the ACAT-2 was only localized to Sertoli cell in the 

seminiferous tubules, and widely distributed in the interstitial cells; ACAT-2 labeled the 

endothelial cells lining blood vessels within the interstitial tissue (Fig. 17). 
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3.2 Mouse 

3.2.1 Real time quantitative PCR, Western blot analyses in ITf 

3.2.1.1 mRNA  

 

We designed the pertinent primers to ACAT-1 and ACAT-2 genes respectively. 

No homologous sequences were found between ACAT-1 and ACAT-2 using BLAST 

analyses. mRNA expression of ACAT isoforms were measured separately by real time 

quantitative PCR. One single 126bp sized product of ACAT-1 and one 101bp sized product 

of ACAT-2 were amplified (Fig. 18A). In order to examine the amplified product of 

ACAT-2, the amplified PCR fragments were digested by restriction enzymes, EcoR II, 

which cut the two recognition sites (^CCWGG) in the ACAT-2 sequence (Fig. 18B). Three 

small DNA fragments of 49bp, 42bp and 10bp sized products were detected in a 3.5% 

agarose gel (Fig. 18B).  

The amplified products of ACAT-1 and ACAT-2 are shown in Figure 18A. ACAT-

1 mRNA level profiles differ from those of ACAT-2 during development. ACAT-1 mRNA 

levels significantly increased from 21 to 28 days after birth and from 35 to 42 days and 

tended to decrease from 42 days to adulthood. On the other hand, ACAT-2 mRNA levels 

showed no significant changes (Fig. 18A).  

3.2.1.2 Protein  
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Western blot analyses revealed a 50kDa ACAT-1 immunoreactive band and a 

46kDa ACAT-2 immunoreactive band (Fig. 18C). The changes in ACAT-1 protein levels 

were opposite to its mRNA levels. ACAT-1 protein levels were reduced with development 

and significantly from 42 to >60 days after birth. However, ACAT-2 protein levels 

remained virtually constant throughout development (Fig. 18C). 

 

3.2.2 Real time quantitative PCR, Western blot and enzymatic activity measurements in 

STf 

3.2.2.1 mRNA  

 

Amplified product of ACAT-1 and ACAT-2 are shown in Figure 19A. One single 

126bp sized product of ACAT-1 and one 101bp sized product of ACAT-2 were amplified. 

In contrast to what we found in the ITf, in the STf, ACAT-1 mRNA levels tended to 

decrease during development whereas ACAT-2 mRNA levels were increased significantly 

from 35 to 42 days after birth (Fig. 19A).  

3.2.2.2 Protein  

50kDa ACAT-1 and 46 kDa ACAT-2 immunoreactive bands were detected in STf 

(Fig. 19B). Moreover, the ACAT-1 immunoreactive band was also detected in epididymal 

Spz; however, no ACAT-2 immunoreactive band was detected even in overexposed 

membranes (Fig. 19B).  
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ACAT-1 protein expression (Fig. 19B) was similar as its mRNA profiles (Fig. 19A); 

the protein levels were markedly reduced with development. In contrast, ACAT-2 protein 

levels were sharply and significantly increased from 21to 28 days after birth, and then 

decreased from 42 to >60 days after birth (Fig. 19B). ACAT-2 protein expression is not 

coincident with its mRNA level changes (Fig. 19A).  

3.2.2.3 Enzymatic activity 

The same technique we have developed and used for mink was used for measuring 

individual ACAT isoform activities in mouse STf. The inhibitor concentration of K-604 

was determined by the dose-dependent inhibition curve (Fig. 19C). One hundred µM of K-

604 was the concentration selected (Fig. 19C). ACAT-1 enzymatic activity and protein 

levels profiles were similar; both decreased with development. The activity values ranged 

from 2776.00 CPMB/200µg protein to 713.00 CPMB/200µg protein. However, ACAT-2 

enzymatic activity increased up to 42 days after birth (ranged from 620.00 CPMB/200µg 

protein to 2173.00 CPMB/200µg protein), and then substantially decreased with adulthood. 

ACAT-1 and ACAT-2 enzymatic activities showed complementary profiles in mouse STf 

during development and reached similar levels by adulthood (Fig. 19D). 

3.2.3 Immunohistochemical localization in the testis 

Immunohistochemistry studies revealed that ACAT-1 and ACAT-2 were both 

present in mouse testis (Fig. 20). In the seminiferous tubules, ACAT-1 only labeled germ 

cells including spermatogonia, spermatocytes and the acrosome of spermatids. In addition, 

ACAT-1 labeled the interstitial cells. Instead, ACAT-2 was only localized to Sertoli cell in 
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the tubules but showed no labeling in the interstitial tissue (Fig. 20). Considering detectable 

but low amount of ACAT-2 protein in interstitial tissue demonstrated by Western blot, we 

think immnunohistochemistry is not a sensitive enough to localize ACAT-2.  

 

 

4. HMG-CoA reductase, ACAT-1, ACAT-2 in HSL knockout mice 

4.1 Validation of HSL knockout mice  

Firstly, real time PCR experiments revealed that STf and ITf from HSL -/- mice 

lack a wild type (wt) transcript with HSL mRNA which codes all forms of the protein (Fig. 

21A). Secondly, Western blot analyses were performed to determine the expression of 

mouse HSL in the testis of wt and HSL-/- mice (Fig. 21B). Epididymal fat was used as 

control. An antibody directed against all forms of HSL recognized multiple protein bands 

between 25 to 150 kDa in fat, STf and ITf of wt mice (Fig. 21B). The 90kDa band, which 

corresponds to the 88 kDa band in human and to the 84 kDa band in rat (Langin et al., 

1993), was detected in the testicular fat pad, STf and ITf in the wt mice but not in the HSL-

/- mice, indicating that the 90kDa band is the HSL immunoreactive band. Although the 

120kDa band was detected in the wt ITf and STf and not in the fat pad, this decreased band 

in the HSL-/- mice was still detectable. Thus, the 120kDa band was not considered as HSL 

immunoreactive band. In addition, the 120kDa protein, named HSLtes (Blaise et al., 2001), 

is encoded by the 3.9kb HSL mRNA in rodent (Holst et al., 1996) and was reported to 

mainly be expressed in haploid germ cells (Osuga et al., 2000).  Therefore, our studies on 
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HSL protein expression in STf and ITf will not focus on the 120kDa protein, while the 

90kDa band has been considered in the Western blot analyses. 

 

4.2 HMG-CoA reductase, ACAT-1 and ACAT-2 in HSL knockout mice 

4.2.1 HMG-CoA reductase mRNA levels and enzymatic activity 

4.2.1.1 ITf 

 

To determine whether HSL deficiency changes the expression of HMG-CoA 

reductase, the essential enzyme in the cholesterol biosynthesis pathway, mRNA levels of 

the enzyme were measured in ITf of the wilde type (wt) and HSL deficient mice. HMG-

CoA reductase mRNA levels mice significantly decreased by 30% in HSL-/- compared to 

wt mice ITf (Fig. 22A).  

4.2.1.2 STf 

 

The down-regulation of HMG-CoA reductase mRNA expression in HSL-/- mice 

was also detected in STf (Fig. 22B). HMG-CoA reductase mRNA levels decreased 

significantly by 57% in HSL-/- compared to wt mice. Furthermore, [14C]- mevalonolactone 

product was measured in both wt and -/- mice STf microsomes to evaluate the enzymatic 

activity of HMG-CoA reducase. HMG-CoA reductase activity in the HSL-/- mice was 

dramatically reduced with respect to wt mice (Fig. 22C).  
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4.2.2  ACAT-1 and ACAT-2 mRNA levels and the enzymatic activity 

 

In order to elucidate whether knocking out the HSL gene cause the changes of 

cholesterol esterification, two isoenzymes involved in this process were analyzed; 

specifically ACAT-1 and ACAT-2 mRNA expression and enzymatic activities were 

measured in wt and HSL-/- mouse ITf and STf. 

4.2.2.1 ITf 

 

HSL deficient mice down regulated ACAT-1 and ACAT-2 mRNA expression (Fig. 

23A) and the decrease was statistically significant. 

4.2.2.2 STf 

 

Contrary to the mRNA expression of ACAT isoforms in ITf, ACAT-1 and ACAT-2 

mRNA levels significantly increased in HSL-/- mice by 1.5-fold and 5.2-fold compared to 

wt mice, respectively (Fig. 23B). The enzymatic activities of ACAT-1 and ACAT-2 

increased by 25% and by 200% respectively when the HSL gene was knockout. The 

enzymatic activity of ACAT-1 averaged 1150.00 CPMB/200 µg protein and that of ACAT-

2 averaged 1276.00 CPMB/200 µg protein in HSL-/- mice STf (Fig. 23C). 
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5. HMG-CoA reductase, HSL, ACAT-1 and ACAT-2 in SR-BI and CD36 knockout 

mice 

 

SR-BI and CD36 are selective cholesterol transporter genes. SR-BI and CD36 

knockout mice were used as animal models in which SR-BI- or CD36-mediated cholesterol 

influx or efflux was blocked. Real time PCR experiments revealed that STf and ITf from 

SR-BI -/- mice or CD36-/- mice lack the wild type (wt) transcript with SR-BI or CD36 

mRNA expression (data not shown). 

5.1 HMG-CoA reductase mRNA levels and enzymatic activity in SR-BI knockout mice and 

in CD36 knockout mice. 

5.1.1 SR-BI knockout mice 

 5.1.1.1 ITf 

 

To determine the changes of HMG-CoA reductase if disrupting SR-BI-mediated 

flux of free cholesterol and HDL, the mRNA expression of the enzyme was measured in 

SR-BI wt and -/- mice ITf. HMG-CoA reductase mRNA levels were decreased by 44% in 

SR-BI-/- mice compared with wt mice (Fig. 24A).  

5.1.1.2 STf 

 

HMG-CoA reductase mRNA levels were 45% lower in SR-BI-/- compared to wt 

mice (Fig. 24B). The enzymatic activity of HMG-CoA reductase was also decreased in the 

SR-BI -/- mice STf (Fig. 24C). The enzymatic activity of HMG-CoA reductase averaged 
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3.19×10-7 mol/min/µg protein for SR-BI-/- mice and 6.94×10-7 mol/min/µg protein for wt 

mice. However, the decrease of HMG-CoA reductase activity was not significant.  

 

5.1.2 CD36 knockout mice 

  To determine whether genetically blocking CD36, another scavenger receptor 

responsible for the uptake of oxidized LDL (oxLDL), causes changes in HMG-CoA 

reductase, the mRNA expression and the activity of the enzyme were measured in CD36 wt 

and knockout mouse testicular fractions. 

5.1.2.1 ITf 

 

In CD36-/- mice ITf, HMG CoA reductase mRNA levels were significantly 

decreased (Fig. 24D), and the down-regulation was decreased by 64% compared to wt mice 

ITf.  

5.1.2.2 STf 

 

HMG-CoA reductase mRNA levels were significantly decreased by 84% in CD36-

/- mice STf compared to wt mice (Fig. 24E). HMG-CoA reductase enzymatic activity also 

tended to decrease in the CD36-/- mice STf, the decrease was not statistically significant 

(Fig. 24 F). The enzymatic activity averaged from 3.5550e-7 ± 1.5750e-7 mol/min/µg 

protein for wt mice to 1.3550e-7 ± 5.9500e-8 mol/min/µg protein for CD36-/- mice.  
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5.2 HSL mRNA levels and enzymatic activity in SR-BI knockout and in CD36 knockout 

mice 

5.2.1 SR-BI knockout mice  

To determine the changes of HSL if knocking out the SR-BI gene, the major 

enzyme for hydrolyzing cholesteryl esters, the mRNA expression and enzymatic activity of 

the enzyme were measured in wt and SR-BI wt and knockout mouse ITf.   

5.2.1.1 ITf 

 

After knocking out the SR-BI gene, the mRNA levels of HSL were significantly 

increased compared to those mRNA levels in the wt mice (Fig. 25A).  

5.2.1.2 STf 

 

Similarly to what we found in ITf, the mRNA levels of the enzyme were 

significantly increased in SR-BI-/- mouse STf, reaching 2.4-fold the value recorded in wt 

mouse STf (Fig. 25B). Coincidently with the increase in the mRNA expression, HSL 

activity was 18.14 nM/min/µg protein for SR-BI -/- mice which represents a 70% increase 

when compared to the activity in SR-BI wt mice (10.69 nM/min/µg protein). However, the 

increase was not statiscally significant. 
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5.2.2 CD36 knockout mice  

To determine the changes of HSL if genetically blocking CD36, the mRNA 

expression and enzymatic activity of the enzyme were measured in CD36 wt and -/-mouse 

ITf.   

5.2.2.1 ITf 

 

In CD36 deficient mouse ITf, HSL mRNA levels were significantly increased 

compared to wt mice ITf (Fig. 25D).  

5.2.2.2 STf 

 

However, HSL mRNA levels in STf were decreased by 30% in CD36-/- mice 

compared to wt mice (Fig. 25E). The discrepancy of transcriptional regulation of HSL 

between ITf and STf show a distinct feedback mechanism in each compartment following 

genetically induced CD36 deficiency. Consistent with the slight reduction of mRNA levels 

in STf, the HSL activity was reduced to 13.23 nM/min/µg protein in CD36-/- mice, which 

is 73% of the value recorded in wt mice (Fig. 25F).  
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5.3 ACAT-1 and ACAT-2 mRNA levels and enzymatic activity in SR-BI knockout mice 

and in CD36 knockout mice 

5.3.1 SR-BI knockout mice 

To  evaluate the impact of the disruption of SR-BI gene on ACAT-1 and ACAT-2, 

the important enzymes in the esterification of free cholesterol, the mRNA expression and 

enzymatic activity of the two isoforms were measured individually in SR-BI wt and -/- 

mice.   

5.3.1.1 ITf 

 

SR-BI deficient mice significantly down regulated ACAT-1 and ACAT-2 (Fig. 

26A). The mRNA levels of ACAT-1 averaged 0.62 in SR-BI-/- mice compared to wt (1 

fold).  On the other hand, ACAT-2 mRNA levels were 0.65 in SR-BI-/- mice compared to 

wt (1 fold). 

5.3.1.2 STf 

 

SR-BI deficient mice significantly down regulated ACAT-1 and ACAT-2 mRNA 

expression. The mRNA levels of ACAT-1 and ACAT-2 decreased by 41% and 51% in SR-

BI-/- compared to wt mice, respectively. ACAT-1 activity is correlated with its mRNA 

expression and decreased from 807.00 CPMB/200 µg protein for SR-BI-/- mice to 341.00 

CPMB/200 µg protein for wt mice (Fig. 26C). However, ACAT-2 activity showed no 
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significant differences in SR-BI-/- compared to wt mice (Fig. 26C), suggesting that ACAT-

2 enzymatic activity may not be regulated at the transcriptional levels.   

 

5.3.2 CD36 knockout mice 

To evaluate the effect on ACAT-1 and ACAT-2 if disrupting of CD36 gene, the 

mRNA expression and enzymatic activity of the isoforms of the enzyme were measured 

individually in CD36 wt and -/- mice.   

 

5.3.2.1 ITf 

 

Both ACAT-1 and ACAT-2 mRNA levels in CD36 knockout mice were 

significantly reduced, reaching half of the value recorded in wild type STf (Fig. 26D).  

5.3.2.2 STf 

 

In CD36 knockout mice STf however, there were no significant differences in 

ACAT-1 mRNA levels and enzymatic activity, indicating that ACAT-1 may not be affected 

by knocking out the CD36 gene (Fig. 26E and F). On the other hand, ACAT-2 mRNA 

levels were significantly decreased by 2.5-fold in CD36-/- mice. The proportional decrease 

of ACAT-2 activity is coincident with the diminution of mRNA expression in CD36-/- 

mice and reached to 257 CPMB/200 µg protein (Fig. 26E and F).  



 

 93 

Figure 1.  Calendar of the germ cell population in mink testis. 

The variation of cellular composition of the seminiferous epithelium during the annual 

reproductive cycle of adult mink is shown in this figure. The figure depicts the oldest 

generations of germ cells found in the seminiferous epithelium during the last week of 

every month throughout the twelve months of the year. The 12-month reproductive cycle of 

adult mink is divided into two spermatogenic phases: active and inactive. The active phase 

is characterized by an increase in the mitotic and meiotic activities leading to the 

production of more germ cells at various degrees of development. The inactive phase is 

characterized by a decrease in the mitotic and meiotic activities, spermatogenic arrest and 

fewer germ cells. A=type A spermatogonia; B=type B spermatogonia; PL=pre-leptotene 

spermatocyte; P=pachytene spermatocyte; 7=step 7 spermatid; 19=step 19 spermatid (taken 

from Pelletier 1986).  
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Figure 2. HMG-CoA reductase mRNA expression in mink STf during development  

and the annual reproductive cycle. 

A. Total RNA was extracted from mink STf. After the reverse transcription, amplification was 

carried out with 0.5mM of mink HMG-CoA reductase primers (Table 1). Representative 

figures show the expression of HMG-CoA reductase mRNA and HPRT-1 mRNA in mink 

STf. A 105bp single product of HMG-CoA reductase and 93bp HPRT-1 product were 

detected.   

B. All data were normalized to the internal reference HPRT-1 amounts and expressed as an n-

fold increase relative to normalized calibrator value in each region. The results are 

representative of experiments done on three different STf sample preparations from three 

different animals. Data (mean ± SEM) are expressed relative to HMG-CoA reductase 

mRNA expression at 90 days (1 fold) during development or at August (1 fold) during 

annual reproductive cycle. The increase from 180 to 210 days (+ P<0.05) and from April to 

May (** P<0.005) and the decrease from 240 to 270 days (+ P<0.05) and June to July (+ 

P<0.05) were significant. d: days old. Neonatal period: day 90; puberty: 120d, 150d, 180d, 

210d and 240d; adulthood 270d; the seasonal cycle: from August to July.  
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Figure 3. HMG-CoA reductase protein expression in mink STf during development 

and the annual reproductive cycle. 

Thirty µg of protein from STf were subjected to 10% of SDS PAGE and Western blot 

analyses were performed using anti-human HMG-CoA reductase antibody. HMG-CoA 

reductase peptide was used for the pre-adsorption. Ponseau S staining was performed 

before blocking to verify equal loading. The immunoreactive bands were scanned and 

their intensities were quantified using the Scion Image program. Data presented were 

obtained by quantifying the immunoreactive bands in at least three independent 

experiments.  

A. Following adsorption of anti-HMG-CoA reductase with a HMG-CoA reductase peptide, 

the 90kDa immunoreactive band was no longer detected, whereas the 53kDa band 

decreased. 

B. Representative Western blots of the 90kDa immunoreactive bands HMG-CoA reductase 

are shown. The bands were scanned. Data shown are the mean ± SEM and are expressed 

relative to HMG-CoA reductase protein levels at 90 days during development or at 

August during the annual reproductive cycle. The increase from 150 to 180 days after 

birth was significant (+ P<0.05) and the levels slightly decrease afterwards. The protein 

levels tended to decrease after February in the reproductive cycle.  
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Figure 4.  HMG-CoA reductase enzymatic activity in mink STf during development 

and the annual reproductive cycle. 

Two hundred µg of microsomes from STf were used for the enzymatic activity 

measurements. The final reaction mixture was filtered by silica gel SPE column to separate 

the polar (14C-HMG-CoA) from non polar (14C-MVL). The radioactivity in the fractions 

containing the radioactive reaction product (14C-MVL) was evaluated with a β counter. All 

assays were evaluated in triplicates for three distinct microsome preparations obtained from 

three different mink for each age group. Data are expressed as mean ± SEM. The activity 

increased steadily with development except the decrease from 240 to 270 days. The 

increase from 150 to 180 days was significant (+ P<0.05), and from 210 to 240 days was 

significant (** P<0.005) and the decrease from 240 to 270 days was also significant (** 

P<0.005). During the annual reproductive cycle, the HMG-CoA reductase activity 

significantly increased from November to December (+ P<0.05), December to January (+ 

P<0.05) and again from January to February (+ P<0.05). The enzymatic activity of HMG-

CoA reductase reached the maximal value at 1.21× 10-6 mol/min/µg protein by February. 

The activity tended to decrease afterwards. 
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Figure 5.  HMG-CoA reductase immunohistochemical localization in mink testis 

The macrographs show the distribution of HMG-CoA reductase in mink testes taken from 

200 days old and in the adult in March. HMG-CoA reductase localizes to Sertoli cells (thin 

arrows) and germ cells (wide arrow). HMG-CoA reductase also localized to interstitial cells 

(white arrow head). The scale bar equals to 50 µm. 
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Figure 6.  HMG-CoA reductase mRNA and protein expression in mouse ITf during 

development. 

A. Total RNA was extracted from mouse ITf. After the reverse transcription, amplification 

was carried out with 0.5mM of mouse HMG-CoA reductase primers (Table 1). mRNA 

HMG-CoA reductase and HPRT-1 expression in mouse ITf during development is 

shown in the inset. A 175bp single product of HMG-CoA reductase and a 93bp HPRT-

1 product were detected. The relative fold induction was quantified in three independent 

experiments. Data shown are the mean ± SEM and are expressed relative to mRNA 

HMG-CoA reductase expression at 14 days (1 fold). A sharp and significant increase 

occurs from 21 to 28 days after birth (*** P<0.001); this is followed by a significant 

decrease from 28 to 35 days (+ P<0.05) and from 35 to 42 days (* P<0.01).  

B-1. Pre-adsorption of anti-HMG-CoA reductase with a HMG-CoA reductase peptide, the 

90kDa immunoreactive band in ITf disappeared.  

B-2. Representative Western blots of the 90kDa HMG-CoA reductase and the histogram of 

the 90kDa HMG-CoA reductase protein expression are shown. Data shown are the 

mean ± SEM and are expressed relative to HMG-CoA reductase protein expression at 

14 days (1 fold). The intensity of the 90kDa band showed no significant changes.  
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Figure 7.  HMG-CoA reductase mRNA, protein expression and enzymatic activity in 

mouse STf during development. 

A. A two-step real time PCR performed on total RNA of mouse STf using specific 

primers for mouse HMG-CoA reductase gene shows the expression of HMG-CoA 

reductase and of the house keeper gene, HPRT-1. A 175bp single product of HMG-

CoA reductase and a 93bp HPRT-1 product were detected. Experiments were done on 

three different STf sample preparations from testes of three different animals. Data 

shown are the mean ± SEM and are expressed relative to the mRNA HMG-CoA 

reductase levels at 14 days (1 fold). HMG-CoA reductase mRNA levels increased 

from 14 to 42 days. The increases from 14 to 21 days (*** P<0.001), from 21 to 28 

days (*** P<0.001) and from 35 to 42 days (* P<0.01) were significant. The decrease 

from 42 to >60 days (** P<0.005) was also significant. 

 B-1. The 90kDa immunoreactive band in STf disappeared. Other immnunoreactive bands 

did not show noticeably decrease with the pre-adsorption experiments. Thus, the 

90kDa immunoreactive band was the only band to be considered. 

 B-2. A representative Western blot of the 90kDa immunoreactive band of HMG-CoA 

reductase in STf is shown. The intensities of the bands from these independent 

experiments were scanned. Data shown are the mean ± SEM and are expressed 

relative to HMG-CoA reductase protein expression at 14 days (1 fold). HMG-CoA 

reductase protein levels increased from 14 to 35 days. The increases from 14 to 21 

days (+ P<0.05), from 21 to 28 days (+ P<0.05) and the decrease from 35 to 42 days 
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were significant, and then the protein levels dropped to the levels similar to those in 

the 14 days old mice.  

B-3. A representative Western blot showing the 90- and 37kDa immunoreactive bands in 

Spz. Pre-adsorption of anti-HMG-CoA reductase with a HMG-CoA reductase peptide 

shows that the 90- and 37kDa immunoreactive bands completely disappeared.  

 C. Two hundred microgram of microsomes from STf were used to perform HMG-CoA 

reductase enzymatic activity measurements. The enzymatic activity assay in this 

figure is representative of three independent experiments. Data are shown as mean ± 

SEM. The enzymatic activity of HMG-CoA reductase tended to increase from 14 to 

42 days but not significantly. The increase from 21 to 28 days was significant (+ 

P<0.05). The activity levels decreased from 42 to >60days but not significantly.  
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Figure 8. HMG-CoA reductase immunohistochemical localization in mouse testis. 

Micrograph in A and B show the distribution of HMG-CoA reductase in the testes taken 

from adult mice. HMG-CoA reductase localizes to Sertoli cells (thin arrows) and germ cells 

(wide arrow). HMG-CoA reductase also localized to interstitial cells (white arrow head). 

The scale bar equals to 50 µm. 
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Figure 9.  HSL mRNA expression in mink STf during development and the annual 

reproductive cycle. 

Real time PCR was performed on the same total RNA of mink STf using specific primers 

for HSL gene. A representative expression of HSL and house-keeper gene HPRT-1 is 

shown. A 250bp and a 93bp sized single product respectively were detected. Data shown 

are the mean ± SEM and are expressed relative to the mRNA HSL expression at 90 days (1 

fold) or at August (1 fold). The results were obtained from three independent experiments. 

The increase from 90 to 120 days (** P<0.005) and from 240 to 270 days (*** P<0.001) 

were significant.  
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Figure 10.  HSL protein expression in mink STf during development and the annual 

reproductive cycle. 

Twenty µg of proteins from mink STf were subjected to 10% of SDS PAGE and Western 

blot analyses were performed using human HSL antibody. Two representative Western blot 

of the 90kDa immunoreactive band HSL are shown. Data shown are the mean ± SEM and 

are expressed relative to HSL protein expression at 90 days (1 fold) or at August (1 fold). 

The data present in this figure are representative of three independent experiments. The 

increase from 150 to 180 days (** P<0.005) and from 210 to 240 days (+ P<0.05) were 

significant. During the annual reproductive cycle, the increase from December to January 

(+ P<0.05) and the decrease from March to April (+ P<0.05) were significant. 
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Figure 11.  HSL enzymatic activity in mink STf during development and the annual 

reproductive cycle. 

Twenty µg of total proteins from STf were subjected to the HSL enzymatic activity 

measurement. The enzymatic activity is expressed in units; one unit being equivalent to the 

release of 1µmol of p-nitrophenol per minute. All assays were evaluated in triplicates for 

three distinct protein preparations from three different animals and HSL activity was related 

to the total protein concentration of the sample. Data are expressed as mean ± SEM. The 

activity averaged from 30.56 ± 0.52 nM/min/µg protein to 36.20 ± 1.12 nM/min/µg protein 

during development and from 29.51 ± 3.36 nM/min/µg protein to 40.88 ± 0.08 nM/min/µg 

protein in the adult. The increase from the 90 to 120 days (+ P<0.05) was significant. The 

noticeable increases occurred from 180 to 210 days during development but it was not 

significantly different. During the annual reproductive cycle, HSL enzymatic activity 

increased noticeably from October to November but showed no significance. The 

enzymatic activity of HSL peaked in February (*** P<0.001), and then it decreased 

significantly from February to March (*** P<0.001). 
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Figure 12.  HSL mRNA, protein expression in mouse ITf during development. 

A. Real time PCR was performed using specific primers for mouse HSL gene. A 

representative HSL expression in mouse ITf during development is shown. An 113bp 

sized product was amplified. Quantitative analyses present the data as relative HSL 

expression ± SEM compared to 14 days (1 fold). The HSL mRNA levels increased 

significantly from 21 to 28 days (+ P<0.05), and then the mRNA levels dropped 

significantly from days 35 to 42 after birth (+ P<0.05).  

B. Western blot analyses were performed using anti-mouse HSL antibody. A representative 

Western blot of 90kDa immunoreactive band is shown. Due to the limited numbers of the 

tissues, the assay was evaluated in one group of protein preparations. Data shown are 

expressed relative to HSL protein expression at 14 days (1 fold). The 90kDa HSL protein 

expression showed a slight increase from 28 to 35 days after birth and levels remained 

high afterwards. 
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Figure 13.  HSL mRNA, protein expression and enzymatic activity in mouse STf 

during development. 

A.  Real time PCR was performed using the specific primers for mouse HSL gene. A 113bp 

(HSL) and a 93bp (HPRT-1) sized products were amplified. Data shown are the mean ± 

SEM and are expressed relative to the mRNA HSL expression at 14 days (1 fold). The 

experiments were done on three different STf sample preparations from the testes of three 

different mice for each age group. The increase from 14 to 21 days (*** P<0.001) and 

from 21 to 28 days (* P<0.01) and from 28 to 35 days (+ P<0.05) were statistically 

significant.  

   B. Western blot analyses were performed using an anti-mouse HSL antibody. A 

representative Western blot of 90kDa immunoreactive band is shown. Data shown are the 

mean ± SEM and are expressed relative to HSL protein expression at 14 days (1 fold). 

Data were obtained from three independent experiments. The 90kDa HSL protein 

expression gradually increased throughout development. 

   C. The enzymatic activity was expressed in units where one unit is equivalent to the release 

of 1 µmol of p-nitrophenol/min.  Data are expressed as mean ± SEM. The data are the 

results of three independent experiments. The increase from 14 to 21 days (+ P<0.05) and 

the decrease from 42 to adulthood (+ P<0.05) were statistically significant. 
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Figure 14.  ACAT-1 and ACAT-2 mRNA expression in mink STf during development 

and the annual reproductive cycle. 

   A. Two-step real time PCR was performed in mink STf using primers for ACAT-1 and ACAT-

2 gene respectively. A representative expression of ACAT-1, ACAT-2 mRNA during 

development and the annual reproductive cycle is shown in the Figure. A 185bp sized 

single product of ACAT-1, a 70bp sized ACAT-2 product and a 93bp HPRT-1 product 

were detected.  

B. The specificity of ACAT-2 amplicons amplified in real time PCR were evaluated by 

restriction enzymes, Alu I. Alu I cleaved the recognition site (AG^CT) which was only 

present in mink ACAT-2 PCR product and released a 20bp and a 50 bp DNA fragments. 

Amplicons with or without restriction enzymes digestion were visualized by electrophoresis 

in a 3.5% agarose gel, stained with ethidium bromide and photographed under a UV 

transilluminator.  

C. All data were normalized to the internal reference HPRT-1 amounts and expressed as an n-

fold increase relative to normalized calibrator value in each region. Data shown are the 

mean ± SEM and are expressed relative to mRNA ACAT-1 or ACAT-2 at 90 days (1 fold) 

or at August (1 fold). Results were obtained from experiments done on three different STf 

samples prepared from three distinct animals per age group. ACAT-1 and ACAT-2 mRNA 

expression differed during development and the annual reproductive cycle. The increase of 

ACAT-1 from 90 to 120 days (*** P<0.001), from 240 to 270 days (** P<0.005), from 

September to October (+ P<0.05) and from April to May (+ P<0.05) as well as the decrease 

from November to December and June to July (+ P<0.05) were significant. The increase of 
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ACAT-2 from 180 to 210 days (+ P<0.05) and December to January (+ P<0.05) were 

significant; the decrease of ACAT-2 from 210 to 240 days (+ P<0.05) and from June to 

July (+ P<0.05) were also significant. 
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Figure 15. ACAT-1 and ACAT-2 protein expression in mink STf during development 

and the annual reproductive cycle. 

 Representative Western blots of ACAT-1 and ACAT-2 are shown. A 50kDa ACAT-1 and 

a 46kDa ACAT-2 immunoreactive band were detected. The intensity of the 

immunoreactive bands was quantified. Data shown are the mean ± SEM and are expressed 

relative to ACAT-1 or ACAT-2 protein expression at 90 days (1 fold) or at August (1 fold). 

Results were obtained from experiments done on three different STf sample preparations 

from three different animals per age group. ACAT-1 and ACAT-2 protein expressionh 

increased steadily with development. During the reproductive cycle, ACAT-1 tended to 

increase and to reach maximal values until January, and then to decrease gradually 

afterwards. However, the variations were not significant. The increase of ACAT-2 from 

December to January (+ P<0.05) and the decrease from March to April (+ P<0.05) were 

significant.   
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Figure 16. ACAT-1 and ACAT-2 enzymatic activity in mink STf during development 

and the annual reproductive cycle. 

 A. Dose-dependent inhibition curve (0-1000µM). A sharp decrease of total ACAT enzymatic 

activity was detected with the addition of 100µM inhibitor, and then total ACAT enzymatic 

activity decreased again with 200µM or more inhibitor. Thus the100µM inhibitor 

concentration was found to inhibit the activity of ACAT-1 but not the activity of ACAT-2 

and this concentration was used to perform the enzymatic measurements. 

 B. All assays for ACAT-1 and ACAT-2 enzymatic activities were evaluated in triplicates 

using three distinct microsome preparations obtained from three distinct animals for each 

age group. Representative histograms of the enzymatic activities are shown. The enzymatic 

activities in different group have the same tendency. The enzymatic activity is expressed as 

CPMB per 200µg protein. The activity of ACAT-1 ranged from 5436.00 CPMB/200µg 

protein to 958.00 CPMB/200µg protein in the adult.  ACAT-1 activity decreased from 180 

to 210 days and from December to January but increased from April to May. ACAT-1 

activity almost disappeared by 270 days compared to 90 days. On the other hand, the 

activity of ACAT-2 ranged from 280.00 CPMB/200µg protein to 2643.00 CPMB/200µg 

protein in the adult.  The increase of ACAT-2 from 210 to 240 days and 240 to 270 days 

and from December to January were noticeable as well as the decrease from March to April.  
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Figure 17.  ACAT-1 and ACAT-2 immunohistochemical localization in mink testis. 

Micrographs show the distribution of ACAT-1 and ACAT-2 in mink testes taken from 150 

day-old, 210 day-old mink and from adult mink killed in January and March.  ACAT-1 was 

detected only in germ cell (wide arrow) and some interstitial cells (thin arrows), whereas 

ACAT-2 was found only in Sertoli cell (white arrowhead) and the endothelial cells of 

capillaries and interstitial cells (thin arrows). The bar is equal to 50 µm. 
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Figure 18. ACAT-1 and ACAT-2 mRNA, protein expression in mouse ITf during 

development. 

A. Real time PCR was performed using specific ACAT-1 and ACAT-2 primers for mouse 

ACAT-1 and ACAT-2 gene respectively. ACAT-1 and ACAT-2 and HPRT-1 showed a 

126bp, a 101bp and a 93bp sized single product. All data were normalized to the internal 

reference HPRT-1 amounts and expressed as an n-fold increase relative to normalized 

calibrator value in each region. Data shown are the mean ± SEM and are expressed 

relative to ACAT-1 and ACAT-2 mRNA expression at 14 days (1 fold). The experiments 

were done on three different ITf sample preparations from three different animals for 

each age group. The increase of ACAT-1 from 21 to 28 days (+ P<0.05) was significant 

but not that of ACAT-2 mRNA.  

B. The specificity of ACAT-2 amplicons amplified in real time PCR were evaluated by 

restriction enzymes, EcoR II for mouse. EcoR II cut the recognition site (^CCWGG) 

which was only expressed in mouse ACAT-2 PCR product and released a 49bp, a 42bp 

and a 10bp DNA fragments. Amplicons with or without restriction enzymes digestion 

were visualized by electrophoresis in a 3.5% agarose gel, stained with ethidium bromide 

and photographed under a UV transilluminator.  

C. Representative Western blots of the 50kDa ACAT-1 and the 46kDa ACAT-2 

immunoreactive bands are shown. The immunoreactive bands were scanned and their 

intensities were quantified. Data shown are the mean ± SEM and are expressed relative to 

ACAT-1 or ACAT-2 protein levels at 14 days (1 fold). Experiments were done on three 

different ITf sample preparations from three different animals for each age group. ACAT-
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1 protein levels decreased steadily with development and significantly from 42 to >60 

days (+ P<0.05). ACAT-2 protein levels were constant.  
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 Figure 19. ACAT-1 and ACAT-2 mRNA, protein expression and enzymatic activity 

in mouse STf during development. 

A. Real time PCR was performed for mouse ACAT-1 and ACAT-2 genes. A 126bp sized 

single product of ACAT-1 and a 101bp sized ACAT-2 product were detected in the STf. 

All data were normalized to the internal reference HPRT-1 amounts and expressed as 

an n-fold increase relative to normalized calibrator value in each region. Data shown are 

the mean ± SEM and are expressed relative to ACAT-1 or ACAT-2 mRNA levels at 14 

days (1 fold). The data were obtained from three independent experiments for each age 

group. ACAT-1 mRNA levels tended to decrease with development but not 

significantly, whereas ACAT-2 levels significantly increase from 35 to 42 days (+ 

P<0.05) and were kept high in the adult. 

B. Representative Western blots results showing that 50kDa ACAT-1 immunoreactive band 

was present in both the STf and Spz, and that the 46kDa ACAT-2 band was only 

detected in the STf. The bands were scanned and their intensities quantified. Data 

shown are the mean ± SEM and are expressed relative to ACAT-1 or ACAT-2 protein 

levels at 14 days (1 fold). Experiments were done on three different STf sample 

preparations from three different animals per age group. The ACAT-1 protein 

expression decreased with the development but not significantly. ACAT-2 protein 

levels increased significantly from 21 to 28 days (+ P<0.05), and the levels remained 

high until 42 days and then decreased from 42 to >60 days but not significantly.  

 C. The figure shows the concentration-enzymatic activity inhibition curve established from 

0-1000µM K-604. A sharp decrease of total ACAT enzymatic activity was detected 
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with the addition of 100µM inhibitor (ACAT-1 activity is inhibited), and then total 

ACAT enzymatic activity decreased again with 200µM or more inhibitor. ACAT-1 and 

ACAT-2 enzymatic activities were blocked. Thus a 100µM inhibitor concentration was 

selected.  

D. A representative histogram of the ACAT-1 and ACAT-2 enzymatic activities of the 

three experiments is shown. ACAT-1 activity gradually decreased from 14 to 42 days 

but increased from 42 to >60 days in contrast to ACAT-2 enzymatic activity which 

increased steady from 14 to 42days and decreased from 42 to >60 days. ACAT-1 and 

ACAT-2 activities varied complementarily.   
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Figure 20.  ACAT-1 and ACAT-2 immunohistochemical localization in mice testis. 

 The micrographs show the distribution of ACAT-1 and ACAT-2 in mouse testes taken 

from 42 day-old and >60 day-old mice. ACAT-1 was detected only in germ cells within the 

seminiferous tubules (wide arrow), and ACAT-1 was plentiful in the interstitial cells (thin 

arrows), whereas ACAT-2 was found only in Sertoli cell (white arrowhead) in the tubule. 

The interstitial cells were not labeled. The bar is equal to 50 µm. 
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    Figure 21. Validation of HSL-/-mice. 

A. A two-step real time PCR was performed on total RNA of HSL knockout mouse ITf 

and STf using specific primers targeted on HSL exons that existed in both testis and 

adipose tissue. HSL mRNA expression in fold induction is shown. Data shown are the 

mean ± SEM in HSL-/- mice and are expressed relative to HSL mRNA expression in 

wild type (wt) mice. The results were obtained from three independent experiments. 

The decrease in HSL-/- ITf compared to wt mice ITf (** P<0.005) and the one in HSL-

/- STf compared to wt mice STf (*** P<0.001) were significant. HSL knockout mice 

lacked a wild type transcript.  

B. Western blot analyses were performed in both HSL -/- and wt mice using anti-HSL 

antibody that recognized all forms of HSL. The testicular fat pad was used as control. 

The 90kDa band was intense in wt fat pad, less intense in ITf and STf, but was not 

detected in HSL-/- mice samples. The 120kDa band was only observed in the mice ITf 

and STf. The intensities were sharply decreased in HSL-/- mice but still detectable. 
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Figure 22.  HMG-CoA reductase mRNA expression and enzymatic activity in HSL-/-  

mice. 

A and B.  mRNA expression: 

Real time PCR was performed on total RNA of HSL-/- mice ITf (A) and STf (B) using 

primers on HMG CoA reductase gene. HMG CoA reductase mRNA expression in fold 

induction is shown and the data are expressed as relative HMG- CoA reductase 

expression ± SEM. The data were obtained from three independent experiments. The 

decrease of HMG CoA reductase mRNA levels in HSL-/- ITf (** P<0.005) (A) and STf 

(** P<0.005) (B) compared to wt mice were significant.  

C. Enzymatic activity: 

Two hundred micrograms of total proteins from wt and HSL-/- mice STf were 

subjected to enzymatic activity measurements. A representative histogram of the HMG 

CoA reductase activity is shown. The HSL activity in the knockout animal was 

significantly reduced. 
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Figure 23. ACAT-1 and ACAT-2 mRNA expression and enzymatic activity in 

HSL-/- mice. 

A and B. mRNA expression: 

Real time PCR was performed on HSL-/- mice ITf (A) and STf (B) using primers on 

ACAT-1 and ACAT-2 genes. ACAT-1 and ACAT-2 mRNA expression in fold 

induction are shown, respectively. Data shown are the mean ± SEM in HSL-/- mice and 

are expressed relative to ACAT-1 and ACAT-2 mRNA expression in wt mice. All 

assays were evaluated in three independent experiments. ACAT-1 and ACAT-2 mRNA 

levels decreased in HSL-/- mice ITf (+ P<0.05) (A). In contrast, the increase of ACAT-

1 in HSL-/- mice STf (+ P<0.05) (B) compared to wt mice STf and the increase of 

ACAT-2 in HSL-/- STf (*** P<0.001) (B) compared to wt mice STf were significant.  

 C. Enzymatic activity:  

A representative histogram of ACAT-1 and ACAT-2 enzymatic activities in HSL-/- 

mice STf is shown. ACAT-1 and ACAT-2 enzymatic activities were both increased in 

HSL-/- mice STf. The increasing of ACAT-2 activity was higher than ACAT-1 in HSL-

/- mice STf. 
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Figure 24. HMG-CoA reductase mRNA expression and enzymatic activity in SR-

BI and CD36 knockout mice. 

A and B. mRNA expression: 

Real time PCR was performed on total RNA of SR-BI knockout mice ITf (A) and STf 

(B) using primers on HMG CoA reductase gene. HMG CoA reductase mRNA 

expression in fold induction is shown. Data are expressed as relative HMG-CoA 

reductase expression ± S.E.M. in SRBI-/- compared to wt mice (1 fold). The fold 

induction of three independent experiments is shown. The decrease of HMG-CoA 

reductase in SR-BI-/- mice ITf (*** P<0.001) (A) and STf (* P<0.01) was significant 

(B). 

C. Enzymatic activity:  

Two hundred micrograms of total proteins from mice STf were subjected to enzymatic 

activity measurements. Data are expressed as relative HMG-CoA reductase activity ± 

S.E.M. in SR-BI-/- compared to wt mice. HMG-CoA reductase enzymatic activity was 

reduced but not significantly in SR-BI knockout mice STf.  

D and E. mRNA expression: 

Real time PCR was performed on total RNA of CD36 knockout mice ITf (D) and STf 

(E) using primers on HMG-CoA reductase gene. HMG-CoA reductase mRNA 

expression in fold induction is shown. Data are expressed as relative HMG-CoA 

reductase expression ± SEM in CD36-/- compared to wt mice (1 fold). The fold 

induction of three independent experiments is present. The diminution of HMG-CoA 

reductase in CD36-/- ITf (*** P<0.001) (D) and STf (*** P<0.001) was significant (E). 



 

 144 

F. Enzymatic activity:  

Two hundred micrograms of total proteins from mice STf were subjected to enzymatic 

activity measurements. Data are expressed as relative HMG-CoA reductase activity ± 

S.E.M. in CD36-/- compared to wt mice. HMG-CoA reductase enzymatic activity was 

reduced in CD36 knockout mice STf. The decrease showed no significance. 
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Figure 25. HSL mRNA expression and enzymatic activity in SR-BI and CD36 

knockout mice. 

  A and B. mRNA expression: 

Real time PCR was performed on total RNA of SR-BI-/- mouse ITf (A) and STf (B) 

using primers on HSL gene. HSL mRNA is expressed in fold induction. Data are 

expressed as relative HSL expression ± SEM in SR-BI-/- compared to wt mice (1 fold). 

The data are representative of three independent experiments. The increase of HSL in 

SR-BI-/- (*** P<0.001) compared to wt mice ITf (A) and the increase in the enzyme in 

SR-BI-/- (** P<0.005) compared to wt mice STf (B) are significant.  

C. Enzymatic activity:  

Twenty micrograms of total proteins from SRBI knockout mice STf were subjected to 

the enzymatic activity measurements. Data are expressed as relative HSL expression ± 

S.E.M. The HSL enzymatic activity increased in SR-BI-/- mice STf but the increase 

was not significant. 

D and E. mRNA expression: 

Real time PCR was performed on total RNA of CD36-/- mice ITf (D) and STf (E) 

using primers on HSL gene. HSL mRNA is expressed in fold induction. Data are 

expressed as relative HSL expression ± SEM in CD36-/- compared to wt mice (1 fold). 

The data were obtained from three independent experiments. The increase of HSL in 

CD36-/- (** P<0.005) compared to wt mice ITf (D) is significant, whereas HSL mRNA 

levels decreased in CD36-/- compared to wt mice STf (E) but not significantly.  
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F. Enzymatic activity:  

Twenty micrograms of total proteins from CD36 knockout mice STf were subjected to 

the enzymatic activity measurements. Data are expressed as relative HSL expression ± 

SEM. The HSL enzymatic activity decreased in CD36-/- mice STf but showed no 

significance. 
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Figure 26. ACAT-1 and ACAT-2 mRNA expression and enzymatic activity in SR-BI 

and CD36 knockout mice. 

A and B. mRNA expression: 

Real time PCR was performed on total RNA of SR-BI-/- mice ITf (A) and STf (B) 

using primers on ACAT-1 or ACAT-2 gene. ACAT-1 or ACAT-2 mRNA is expressed 

in fold induction. Data shown are the mean ± SEM in SR-BI-/- mice and are expressed 

relative to ACAT-1 or ACAT-2 expression in wt mice (1 fold). The data are 

representative of three independent experiments. ACAT-1 mRNA levels (*** P<0.001) 

and ACAT-2 mRNA levels decreased (* P<0.01) significantly in SR-BI-/- mice ITf (A). 

Similarly, ACAT-1 (* P<0.01) and ACAT-2 (*** P<0.001) decreased significantly in 

SR-BI-/- mice STf (B).  

C. Enzymatic activity:  

Two hundred micrograms of total microsome proteins from SR-BI-/- mice STf were 

subjected to the enzymatic activity measurements. Two representative histograms of 

ACAT-1 and ACAT-2 activity in SR-BI-/- mice are shown. ACAT-1 activity decreased 

in SR-BI-/- mice STf, whereas ACAT-2 activity showed no change between wt and SR-

BI-/- mice.  

D and E. mRNA expression: 

Real time PCR was performed on total RNA of CD36-/- mice ITf (D) and STf (E) 

using primers on ACAT-1 or ACAT-2 gene. ACAT-1 or ACAT-2 mRNA is expressed 

in fold induction. Data are expressed as relative ACAT-1 or ACAT-2 expression ± 

SEM in CD36-/- compared to wt mice (1 fold). The data were obtained from three 
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independent experiments. ACAT-1 mRNA levels decreased (** P<0.005) and ACAT-2 

mRNA levels decreased (*** P<0.001) significantly in CD36-/- mice ITf (D). In 

contrast, ACAT-1 mRNA levels showed no significance compared to wt mice STf. The 

decrease in ACAT-2 in CD36-/- mice STf (** P<0.005) compared to wt mice STf was 

significant (E).  

F. Enzymatic activity:  

Two hundred micrograms of total microsome proteins from CD36-/- mice STf were 

subjected to the enzymatic activity measurements. Two representative histograms of 

ACAT-1 and ACAT-2 activity in SR-BI-/- mice are shown. ACAT-2 activity decreased 

in CD36-/- mice STf. Conversely, ACAT-1 activity in CD36-/- mice STf showed no 

significant changes. 
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Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic drawing of HMG-CoA reductase, HSL and ACAT in intracellular 
cholesterol metabolism during normal spermatogenesis. 
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Outline of Discussion 
1. HMG-CoA reductase 
  1.1 Mink 
    1.1.1 HMG-CoA reductase mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development and annual reproductive cycle  
  1.2 Mouse 
    1.2.1 HMG-CoA reductase mRNA, protein expression in the interstitial tissue during 

development 
    1.2.2 HMG-CoA reductase mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development  
 
2. HSL 
  2.1 Mink 
    2.1.1 HSL mRNA, protein expression and enzymatic activity in the seminiferous tubules 

during development and annual reproductive cycle  
  2.2 Mouse 
    2.2.1 HSL mRNA, protein expression in the interstitial tissue during development 
    2.2.2 HSL mRNA, protein expression and enzymatic activity in the seminiferous tubules 

during development  
 
3. ACAT-1 and ACAT-2 
  3.1 Mink 
    3.1.1 ACAT-1 and ACAT-2 mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development and annual reproductive cycle  
  3.2 Mouse 
    3.2.1 ACAT-1 and ACAT-2 mRNA, protein expression in the interstitial tissue during 

development 
    3.2.2 ACAT-1 and ACAT-2 mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development  
 

4. The mRNA expression and activities of HMG-CoA reductase, ACAT-1 and ACAT-
2 in  HSL-/- male mouse 

4.1 ITf 
4.2 STf 
 

5. The mRNA expression and activities of HMG-CoA reductase, HSL, ACAT-1 and 
ACAT-2 in  SRBI-/- and CD36-/- male mouse 

5.1 SR-BI-/- mice 
5.1.1 ITf 

  5.1.2 STf 
 
5.2 CD36-/- mice 
5.1.1 ITf 
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  5.1.2 STf 
 

6. Intracellular cholesterol homeostasis by the coordination of three key enzymes 
(HMG-CoA reductase, HSL and ACAT-1,2) 
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1. HMG-CoA reductase 

Sertoli cells reportedly have the capacity to synthesize cholesterol from acetate in 

vitro (Wiebe & Tilbe, 1979). If this cholesterol synthesis capacity exists in vivo, then 

HMG-CoA reductase showed contribute to regulate the cholesterol biosynthesis pathway in 

respondse to the metabolic demands of the cyclic production of germ cells. HMG-CoA 

reductase activity was reported to undergo significant changes during testicular 

development in rats (Potter et al., 1981). The enzymatic activity was especially high at the 

prepubertal pachytene stage of spermatogenesis but the regulation of enzyme has not been 

studied. The present study addresses, to our knowledge for the first time, the physiological 

significance of HMG-CoA reductase in the seminiferous tubules. In addition, this is the 

first study of the testicular HMG-CoA reductase that is carried out in seasonal breeders. 

Moreover, this study provides a comprehensive and accurate account of the impact of 

HMG-CoA reductase on testicular cholesterol metabolism by taking measurements every 

30 days, rather than only sporadically as done in most studies that used seasonal breeders as 

their animal model. Furthermore, this study provides new and more precise insights into the 

role and the dynamics of the enzyme in individual cellular compartments of the testis by 

performing measurements in individual seminiferous tubule-enriched fractions and 

interstitial tissue-enriched fractions rather than whole-testis extracts as it is widely done. 
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1.1 mink 

1.1.1 HMG-CoA reductase mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development and the annual reproductive cycle 

 

Contrary to earlier observations that HMG-CoA reductase mRNA levels in rat testes 

remained constant during development (Ness & Nazian, 1992), we demonstrated that 

HMG-CoA reductase mRNA levels in mink STf during development significantly but 

transiently increased by day 210-240 before decreasing by 270 day in the adult. The mRNA 

levels at 270 day were not significantly different from those were orded in the 90-180 day 

old mink. Moreover, HMG-CoA reductase mRNA levels remained relatively constant 

during the annual reproductive cycle, except in May-June where the mRNA levels nearly  

tripled before significantly decreasing 3-fold in July. The increase in HMG-CoA 

reductase mRNA expression during mink development suggests that transcription may be a 

significant mean of enzyme regulation at the completion of spermatogenesis. However, the 

transcpritionally regulatory mechanism cannot alone explain the observation of the 

transient increase in the mRNA levels in May. Additional regulatory mechanism may be 

involved.  

Western blot analyses performed with anti-HMG-CoA reductase antibody revealed 

several bands in mink STf during development and the annual reproductive cycle. 

Adsorption of anti-HMG-CoA reductase with an HMG-CoA reductase peptide caused the 

disappearance of the 90kDa immunoreactive band and a decrease in the 53kDa band. 

Because the 53kDa band did not completely disappear with the pre-adsorption, the 90kDa 
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was considered the HMG-CoA reductase immunoreactive band. The 90kDa HMG-CoA 

reductase immunoreactive band corresponds to the native monomeric form of the enzyme 

reported as a 97 kDa protein in the rat liver (Istvan et al., 2000). We demonstrated that the 

90kDa HMG-CoA reductase protein levels significantly increased by 180 days after birth. 

The increase in the 90kDa protein levels occured one month prior that in the mRNA levels. 

We speculate that HMG-CoA reductase may have unique regulatory pathway to 

accumulate protein. Previous study in the yeast confirmed that the cell can immediately 

start with proteins translation concerning the proteins that are quickly required in response 

to a stimulus (Beyer et al., 2004). In such situations the usual order of events, with 

transcription and subsequent translation, may be too slow for an appropriate hysiological 

reaction. Instead, the cell might keep a constant level of reservoir mRNA but quick protein 

accumulation. Thus, a remarkably increasing HMG-CoA reductase protein expression by 

180 days after birth may be due to the necessity for relatively fast responses to the demand 

on cholesterol. Moreover, an earlier study in rats reported that the liver, which may have 

sudden demands for large amounts of cholesterol, may use phosphorylation-

dephosphorylation to maintain a reservoir of inactive HMG-CoA reductase that can be 

quickly activated (Ness & Chambers, 2000). Whether phosphorylation-dephosphorylation 

mechanism occurs during the spermatogenic activity in the testis remains to be elucidated.  

In addition, the protein levels of 90kDa HMG-CoA reductase tended to decrease 

from 240-270 days after birth; the 90kDa protein levels decreased from April-July in the 

adult during the seasonal cycle, while in May-June HMG-CoA reductase mRNA expression 

peaked, suggesting that the post-transcriptional regulation is crucial for HMG-CoA 
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reductase expression. It is well documented that post-transcriptional regulation determines 

the fate of the RNAs, including their subcellular localization, stability, and translation 

efficiency (Ross,1995). Thus, post-transcriptional regulation of the enzyme may provide a 

more elaborate regulation of the activity. It has been reported that the monomeric form of 

HMG-CoA reductase protein could be cleaved by proteolysis and the two-third of the 

enzyme COOH- terminal be released into the cytosol while the enzymatic activity increases 

(Jingami et al., 1987). Therefore, it is possible that cleaved HMG-CoA reductase isoform 

may be expressed in STf. A precise measurement of multiple forms of HMG-CoA 

reductase is necessary in followup studies.  

Our enzymatic activity measuements show that the increase in enzymatic activity 

recorded at 180 days was coincident with an increase in the protein levels of the 90kDa 

band. Previous findings reported that the rate of [14 C] acetate incorporation into cholesterol 

was increased 4- to 5-folds as spermatocytes went from preleptotene to pachytene (Hou et 

al., 1990). We show a relationship between the activity of this enzyme and the initiation of 

meiosis as if cholesterol would be required during this phase.  

We found that HMG-CoA reductase activity significantly increased again from 180 

to 240 days, and peaked from December to February. Other studies showed that the rate of 

acetate incorporation into cholesterol decreased and remained low at the end of meiosis, 

and was low in mature spermatozoa (Potter et al., 1981). Our laboratory reported that free 

cholesterol levels in STf were lowered from December to March (Akpovi et al., 2006). It 

would seem unlikely that the high HMG-CoA reductase activity would be responsible for 

the production of the relatively large amounts of mevalonate used for cholesterol synthesis. 
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We speculate that the elevated activity of HMG-CoA reductase may have a yet unknown 

physiological role in these special periods. A recent study has indicated that HMG-CoA 

reductase may contribute in the production of high concentration of cholesterol 

intermediates in mature spermatozoa (Tacer et al., 2002). Their observations showed that 

rat male germ cells lack a coordinate transcriptional control over the cholesterol 

biosynthetic pathway (Tacer et al., 2002). These authors reported that high expression of 

HMG-CoA reductase gene was correlated to the low expression of post meiosis-activating 

sterol (MAS) genes in the cholesterol biosynthesis pathway, causing the accumulation of 

the meiosis signaling sterol testis-MAS (T-MAS) during the maturation of male germ cells 

(Tacer et al., 2002). The high concentration of T-MAS in spermatozoa may contribute to 

completion of the second meiotic division of the oocyte (Byskov et al., 1999). Accordingly, 

we suggest that the role of HMG-CoA reductase may be not only to synthesize cholesterol 

but in addition, to produce the intermediate molecule, T-MAS, in the cholesterol 

biosynthetic pathway.  

 

1.2 Mouse 

1.2.1 HMG-CoA reductase mRNA, protein expression in the interstitial tissues during 

development 

Our observations demonstrated that HMG-CoA reductase mRNA levels were 

significantly increased by 28 days after birth but decreased steadily after until adulthood in 

the ITf. Between days 28 and 35, a major increase in the number of Leydig cells per testis 
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has been reported (Vergouwen et al.,1993). Since Leydig cells are the major cells being 

involved in the biosynthesis of cholesterol and testosterone (Ewing et al.,1981), one would 

expect that the more Leydig cells, the more cholesterol and testosterone. This would lead to 

the conclusion that HMG-CoA reductase may contribute in the modulation of the 

biosynthesis of the cholesterol to be used for testosterone production by the Leydig cells. 

Earlier immunocytochemical studies located HMG-CoA reductase protein not only 

in Leydig cells (Hegardt, 1999; Royo et al., 1993) but also in macrophages (Chen et al., 

2002). It has been documented that testicular macrophages can convert cholesterol into 25-

hydroxycholesterol which strongly stimulates Leydig cell testosterone production (Chen et 

al., 2002). Moreover, the number of macrophages in the testicular interstitium has been 

shown to increase significantly throughout puberty (Hutson,1990; Vergouwen et al.,1991). 

Therefore, our finding of an increase of HMG-CoA reductase mRNA level during puberty 

is compatible with the contribution of the enzyme to testosterone production. However, the 

enzyme protein expression remained more or less constant throughout development, 

contrary to the mRNA levels that decreased, the precise mechanism of HMG-CoA 

reductase is participated in testosterone synthesis will require additional investigation, such 

as to elucidate whether the phosphorylation-dephosphorylation mechanism occurs during 

the spermatogenic activity.  
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 1.2.2 HMG-CoA reductase mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development 

Contrary to HMG-CoA reductase expression pattern in the interstitial tissue, we 

show that HMG-CoA reductase mRNA and 90 kDa protein expression profiles increased 

simultaneously from 14 to 28 days in the seminiferous tubules. However, HMG-CoA 

reductase mRNA levels peaked by 42 days before decreasing while the protein levels 

tended to decrease steadily. Here, we show that the increase in HMG-CoA reductase 

mRNA and protein levels and activity in mouse STf was coincided with the apprearance of 

round spermatids in the tubules, suggesting a role of HMG-CoA reductase in the meiosis. 

However, previous studies showed that the rate of acetate incorporation into cholesterol 

decreased and remained low at the end of meiosis, and was low in mature spermatozoa 

(Potter et al., 1981). It is possible that HMG-CoA reductase have an unique physiological 

function besides synthesizing cholesterol. In addition, the 90kDa HMG-CoA reductase 

protein levels decreased significantly by 42 days after birth, which is in contrast to the 

enzyme mRNA expression. Since the enzymatic activity levels reached maximal values by 

42 days, coincidentally with a peak in the mRNA levels, we speculate that post-

transcriptional regulatory mechanism of the enzyme may exist during this period. The 

spermatozoa were present in the tubules by 42 days, and significantly we found that a 

37kDa HMG-CoA reductase immunoreactive band was expressed in spermatozoa in 

addition to the 90kDa immunoreactive band. Whether the 37kDa band is the product of 

post-transcriptional modulation and whether it would be involved in the regulation of 

HMG-CoA reductase activity requires additional investigation.  
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2. HSL 

 An earlier report showed that seminiferours tubules could not contribute the 

majority of the cholesterol required for spermatogenesis through the biosynthesis pathway 

in vitro (Wiebe & Tilbe, 1979). Thus, other enzymes besides HMG-CoA reductase should 

regulate cholesterol to levels that are consistent with the production of viable and fertile 

male germ cells in the tubules. Previous reports showed that HSL activity was positively 

correlated with free cholesterol to esterified cholesterol ratios in the seminiferous tubules 

(Kabbaj et al., 2003). Furthermore, the physiological significance of HSL in testis is 

highlighted by the report that HSL knockout male mice are sterile due to the toxicity effect 

caused by the over-accumulation of esterified cholesterol (Osuga et al., 2000). The present 

study addresses the physiological significance of HSL in each compartment of mink and 

mouse testis. Our studies confirm previous findings by showing that HSL protein levels and 

HSL activity increased in parallel in STf until 240 days. We are the first to detect that HSL 

activity in STf was modulated at the transcriptional levels during mouse development. In 

addition, we demonstrated that 90 kDa HSL protein levels tended to increase from 35 days 

to adulthood, while HSL mRNA expression significantly decreased in mouse interstitial 

tissue. Because HSL is assumed to hydrolyze esterified cholesterol and to provide available 

free cholesterol to fullfil the needs of cells (Holm et al., 2000), HSL high expression and 

activity in the developemental tubules and interstitum is likely responsible for regulating 

cholesterol concentration. 
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2.1 Mink 

2.1.1 HSL mRNA, protein expression and enzymatic activity in the seminiferous 

tubules during development and annual reproductive cycle 

This study demonstrated that HSL mRNA levels in mink STf during development 

significantly increased once by day 120 and again by 270, but not during the annual 

reproductive cycle. The increase of HSL mRNA expression during mink development 

suggests that transcription may be a significant means of enzyme regulation at the initiation 

of spermatogenesis. However, the transcriptionally regulatory mechanism can not alone 

explain the observation of low HSL protein level at 120 day or decreased HSL protein 

expression by 270 days after birth.  Earlier study showed that post-transcriptional 

regulation determines the fate of the RNAs and modulates the translation efficiency 

(Ross,1995). Therefore, post-transcriptional regulation of HSL may provide a more 

elaborate regulation of the enzymatic activity. However, this remains to be determined. 

 Adsorption of anti-hHSL with human adipose tissue caused a major decrease in the 

intensity of the 90kDa immunoreactive bands in mink tissues (Kabbaj et al., 2003), 

demonstrating that the anti-hHSL antibodies recongnizes the enzyme in mink tissue. In the 

present study, the detection of a mink tubular HSL with larger molecular mass (120 kDa) 

and another smaller form of HSL (90kDa), is in agreement with the results of studies in 

other species (Kabbaj et al., 2001; Mairal et al., 2002; Vallet-Erdtmann et al., 2004). Except 

the “well recognized” testicular HSL isoform (120 kDa) which is only expressed in 

postmeiotic germ cells, the 90 kDa HSL isoform was studied in our study. This specific 
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HSL isoform was reported in interstitial and tubular Sertoli cells as well as premeiotic germ 

cells, but not in postmeiotic germ cells (Mairal et al., 2002). Thus, the measurement of 

90kDa HSL protein expression in STf provides new insights into the study of HSL in the 

particular phases of testicular development. The present study recorded one increase of 

90kDa HSL protein expression by day 180- and a second increase by 240 days as well as in 

January, which is independent of the enzyme mRNA expression. Therefore, HSL may have 

regulatory pathway to accumulate protein rather than transcriptional regulation. Earlier 

studies showed that the yeast cells could immediately started with protein translation if the 

corresponding protein is rapidly needed (Beyer et al., 2004). In such situation the mRNA 

abundance may not need to change much more drastically to achieve a significant change 

of protein concentrations. Therefore, the 90kDa HSL protein increases which are anterior to 

the mRNA level increase may be due to the necessity for relatively fast responses to the 

cholesterol demand. In addition, it has been documented that lipolytic and anti-lipolytic 

hormones regulate HSL activity in adipose tissue via reversible HSL protein 

phosphorylation mediated by protein kinase A (PKA) (Yeaman, 1990). HSL activity in STf 

may be influenced via reversible HSL phosphorylation of serine residues mediated by PKA. 

It would be interesting to identify changes in phosphorylation sites of the HSL protein that 

could account for putative changes in HSL activity in STf.  

The enzymatic activity in this study using PNPB as the substrate reflects the activity 

of HSL in STf. The results showed that HSL activities gradually increased duing 

development and the period from August to February. HSL activity peaked in the adult and 

in February but it significantly decreasd from March-May. The current study substantiates 
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previous reports that HSL activity varied in STf and reached maximal values in the adult 

during the period of maximal spermatogenic activity (Kabbaj et al., 2003). Combining the 

earlier finding of a strong correlation of the free cholesterol/esterified cholesterol ratios 

with HSL activity in the tubules, we support the notion that HSL may be the cholesterol 

esterase, which maintains the cholesterol homeostasis in the tubules. To be noted, the 

increase of HSL activity followed the 90kDa HSL protein accumulation by180-, 240- days 

after birth as well as January in the seasonal cycle, suggesting that 90 kDa HSL protein 

accumulations could be the crucial mechanism in the regulation of HSL activity. 

Additionally, the present study recorded the elevation in HSL activity in STf, which is 

independent of the enzyme mRNA and protein expression. The finding entails distinct 

cholesterol regulatory mechanism in the seminiferous tubules.  

 

2.2 Mouse 

2.2.1 HSL in the interstitial tissue (ITf) 

The present study recorded a sharp increase of HSL mRNA expression by 28 days 

after birth followed by a significant decrease by 42 days in mouse ITf. The observation 

agrees with the earlier report that HSL mRNA level is 25-fold increased in rat testis during 

puberty (Kraemer et al.,1991). It has been documented that 90kDa HSL is expressed in 

interstitial tissue (Mairal et al., 2002); and the enzyme is localized in the macrophages of 

interstitial tissue (Kabbaj et al.,2003). Since the number of macrophages/units area 

increased significantly during puberty (Hutson,1990; Vergouwen et al.,1991), we put 
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forward the view that macrophage HSL may free cholesterol from esterified cholesterol to 

be converted into 25-hydrocholesterol taken up by Leydig cells to synthesize testosterone 

during spermatogenesis. The present study further suggests that the modulation of HSL 

activity in ITf is at the transcriptional level.  

The current study first reported the variation of 90kDa HSL protein expression in 

mouse ITf during development. The results showed that the 90kDa HSL protein level 

tended to increase from 35 days onwards. The observation is in agreement with other 

reports that a delay between mRNA and protein appearance is characteristic of many genes 

expression in the testis (Blaise et al.,1999; Blaise et al.,2001). The finding of an increased 

HSL mRNA level and 90kDa HSL protein expression is compatible with the contribution 

of testosterone production. Combining the fact that the increase of HSL expression 

corresponded to a decrease in esterified cholesterol levels in ITf (Akpovi et al, unpublished 

data), we suggest that HSL is involved in the cholesterol metabolism while contributing to 

testosterone production in the interstitial tissue. Remarkably, HSL mRNA levels decreased 

in adulthood, while its protein levels increased. The results suggest a regulation of HSL 

protein expression in ITf during adulthood different from that during development.  

 

2.2.2. HSL mRNA, protein expression and enzymatic activity in the seminiferous 

tubules during development 

Our observations showed three successive significant increases in HSL mRNA 

levels in STf one by 21, then by 28, and again by 35 days. The HSL mRNA expression 
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pattern was accompanied by a steady elevation of HSL protein expression throughout 

development. The finding of a different HSL mRNA and protein expression in the 

seminiferous tubules and interstitial tissue entails distinct cholesterol regulatory 

mechanisms in individual compartment of the testis. Such elevation seems to be testis-

specific and species-specific since this change was not observed in the adipose tissue and 

HSL mRNA levels remained constant in rat testis during development (Kraemer et al., 

1991).  

The present study demonstrated that HSL activity as well as the enzyme expression 

was increased in parallel in STf throughout development, except in the STf of the adult, in 

which a significant decrease of HSL activity is associated with an increase of HSL mRNA 

and protein level. The results suggest HSL activity is regulated on the transcriptional level 

during development. They also suggest a regulation of HSL activity during adulthood was 

different from that during development. In addition, the current finding recorded a 

significant increase in HSL activity in STf that coincided with period (i.e., the 21-day-old) 

characterized by numerous pachytene spermatocytes in the tubules, reflecting intense 

meiotic activity. Moreover, the present study showed an increased HSL activity during the 

period when the spermatognesis was completed during development. Combining with the 

previous finding in Guinea pig that HSL accumulated near the base of Sertoli cells in stages 

following the release of spermatids (Kabbaj et al., 2003), we suggest a role of HSL in the 

processing of lipids borne by residual bodies. 
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3. ACAT-1 and ACAT-2 

ACAT reduces cholesterol solubility in the cell membrane and promotes storage of 

cholesterol ester in the lipid droplets within the cytoplasm by esterifying cholesterol 

(Suckling & Stange,1985). Thus, normal ACAT activity prevents potential accumulation of 

excess free cholesterol which might jeopardize vital cellular functions (Warner et al.,1995). 

Two distinct isoforms of ACAT have been documented: ACAT-1 and ACAT-2. ACAT-1 

converts cholesterol into cholesteryl ester in response to cholesterol abundance inside the 

cells (Chang et al., 1993); and ACAT-2 appears to provide cholesteryl esters for transport 

in lipoproteins (Buhman et al., 2000; Cases et al., 1998a). The contribution of individual 

ACAT isoforms to cholesterol homeostasis in the male gonads has never been reported. 

The current study, for the first time, demonstrated that ACAT-1 and ACAT-2 are both 

expressed in the interstitial tissue and seminiferous tubules, and showed that the ACAT-1 

enzymatic activity is complementary to ACAT-2 in the seminiferous tubules. 

3.1 mink 

3.1.1 ACAT-1 and ACAT-2 mRNA, protein expression and enzymatic activity in the 

seminiferous tubules (STf) during development 

ACAT-1 has been well documented in the steroid hormone-producing Leydig cells 

and macrophages of testis, while ACAT-2 was claimed to be absent from testis (Dove et al., 

2006; Dove et al., 2005; Lee et al., 2000; Rudel et al., 2001). Our observation argued with 

this report by showing that not only ACAT-1 but also ACAT-2 was present in mink testis. 

The present immunohistochemistry studies showed for the first time that ACAT-1 and 

ACAT-2 both localized in the mink seminiferous tubules: ACAT-1 to the germ cells, 
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ACAT-2 to the Sertoli cells. These differences in the cellular localization of ACAT-1 and 

ACAT-2 suggest different functions of the two isoforms. Previous studies demonstrated 

that ACAT-1 maintains free cholesterol equilibrium in by storing excess of cholesterol as 

cholesterol esters (Chang et al., 1997). ACAT-2 is thought to provide cholesterol esters for 

very low density lipoprotein (VLDL) assembly in specific tissues (Cases et al., 1998a; 

Joyce et al., 1999). Thus, we attempted to address the hypothesis that, ACAT-1 may be 

associated with the cholesterol esterification and store the lipid droplet content in the 

seminiferous tubules, whereas ACAT-2 may participate in the removal of excessive 

cholesterol from the tubules. Our data provided the besis in support of this view.  

Our results showed the presence of transcripts and protein expression of ACAT-1 and 

ACAT-2 in mink seminiferous tubules, and confirmed the specificity of the PCR products 

by the restriction enzyme, Alu I. We found that ACAT-1 mRNA expression levels followed 

a profile similar to that of its protein levels during development but not during the seasonal 

reproductive cycle. Conversely, ACAT-2 mRNA expression levels followed protein levels 

during the annual reproductive cycle but not the end of development. ACAT-2 mRNA 

expression was high while its protein levels were low in the 240 and 270 days samples. 

This indicates that different regulatory mechanisms are involved in these two ACAT 

isoforms despite their structural and functional similarities. Evidence shows that post-

transcriptional regulation is crucial for gene expression in all organisms (Ross,1995). The 

post-transcriptional regulation determines the fate of the RNAs, including their subcellular 

localization, stability, and translation efficiency (Ross,1995). Thus, ACAT isoforms during 

distinct period of spermatogenesis could be regulated at post-transcriptional level, which 
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might provide a more elaborate regulation of ACAT-1 or ACAT-2 activity for cellular 

cholesterol homeostasis.  

Our results showed that ACAT-1 mRNA levels were significantly increased during 

early development when numerous type A0 spermatogonia were seen arising apparently 

from divisions of spermatogonia stem cells (by 120 days after birth) or in October; and (by 

270 days) with the appearance of the mature spermatids, suggesting an active participation 

of ACAT-1 in germ cells during mitosis and spermiogenesis. We recorded another increase 

in ACAT-1 mRNA expression in May when meiosis was arrested and elongated spermatids 

have left and great amount of lipid droplets were present in the tubules (Pelletier & Vitale, 

1994). This association of ACAT-1 mRNA expression with the lipid content in the tubules 

suggests that ACAT-1 participates in the cholesterol esterification and in the increase in 

cholesterol ester contents in the tubules. On the other hand, the increased ACAT-2 mRNA 

levels by 210 days and in January following the release of mature spermatids and the 

accumulation of residual bodies, suggest a contribution of ACAT-2 in Sertoli cells and an 

active participation of Sertoli cells in the removal of residual body-borne lipids.  

The enzymatic activities of both ACAT-1 and ACAT-2 in the testis were never 

reported and the physiological significance of having two ACAT isoforms in different cells 

of seminiferous tubules remains elusive. The experimental inhibition of individual ACAT 

enzymes was believed to be a useful strategy to identify ACAT-1 and ACAT-2 respective 

activity. However, most ACAT inhibitors inhibit both ACAT-1 and ACAT-2. After the 

ACAT genes were identified, investigators began to develop ACAT isotype-selective 

inhibitors (Cho et al., 2003; Ikenoya et al., 2007; Lee et al., 2004). Manassantin B, which 
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has been isolated from the methanol extracts of Saururus chinensis root, exhibited 

significant human ACAT (hACAT) inhibitory activity (Lee et al., 2004). However, 

Manassantin B mainly inhibited hACAT-1 but not hACAT-2 (Lee et al., 2004). 

Pyripyropene A is another ACAT inhibitor that selectively inhibits ACAT-2 in insect cells 

transfected with either ACAT-1 or ACAT-2, while pyripyropene A inhibited only the 

hACAT-2 but not hACAT-1(Cho et al., 2003). K-604, a novel ACAT inhibitor highly 

selective for ACAT-1 (Ikenoya et al., 2007), was reported to inhibit cholesterol 

esterification in human macrophages and to suppress the formation of macrophage-enriched 

fatty streak in fat-fed hamsters (Ikenoya et al., 2007). The present study provides a novel 

technical approach for individual ACAT-1 and ACAT-2 enzymatic activity measurements 

in the STf based on the use of K-604. K-604 potently and selectively inhibited ACAT1 

activity with IC50 values of 100µM. With the increase of IC50 to 1000 µM, both ACAT 1 

and 2 activities were inhibited. Thus, we used 100µM K-604 selectively inhibit ACAT-1 

activity and measure ACAT-2 enzymatic activity directly. Thereafter, we calculate ACAT-

1 activity by substracting ACAT-2 activity from total ACAT activity. We have detected 

dramatic alterations of ACAT-1 and ACAT-2 activities during mink development and the 

annual reproductive cycle. The present studies showed high ACAT-1 activity while ACAT-

2 activity was low. Conversely, at times when mature spermatids were present and the 

residual bodies released and phagocytosed by Sertoli cells, ACAT-2 activity increased, 

while ACAT-1 activity decreased. Considering the distinct individual localization of 

ACAT-1 and ACAT-2 in the seminiferous epithelium, we speculate that ACAT-1 may be 

involved in modulation of cholesterol delicate equilibrium in the tubules. On the other hand, 
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ACAT-2 was related to cholesterol metabolized by the Sertoli cells following phagocytosis 

of residual bodies and apoptotic cells. 

This study showed that ACAT-1 activity in mink was not coincident with its mRNA 

and protein expression. The phenomenon was reported previously in other tissues. In 

Nagase hypoalbuminemic rat liver-ACAT-1 mRNA and protein contents did not change 

but the enzymatic activity was mildly elevated (Roberts et al., 2004). Lee also demonstrated 

that rat hepatic ACAT-1 activity was increased with a high diet in fat, which was not 

paralleled by the alterations seen in ACAT-1 mRNA and protein (Lee & Carr, 2004). 

Together, these results support the concept that ACAT-1 activity may not be regulated on 

transcriptional or translational levels. In fact, a recent study showed that unlike other 

enzymes or proteins involved in the cellular cholesterol metabolism, ACAT-1 expression is 

not regulated by the transcription factor sterol regulatory element binding protein (SREBP) 

(Chang et al., 2000; Liu et al., 2005). The authors concluded this after the sterol-regulatory 

element could not be identified within the ACAT-1 promoter (Li et al., 1999). Instead, the 

enzyme is regulated by cholesterol via an allosteric activation mechanism (Chang et al., 

2000). The activation of the enzyme is not due to an increase in ACAT-1 protein content, 

but in part to an increase in cholesterol content in the endoplasmic reticulum of human 

macrophages where ACAT-1 resides (Liu et al., 2005). Therefore, the down-regulation of 

ACAT-1 activity in the STf reflects the decreased cholesterol concentration in the germ 

cells with the degree of spermatogenic activity.   

Our findings showed that ACAT-2 enzymatic activity as well as its protein level 

were high when large numbers of mature spermatids were present in the seminiferous 
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tubules. During this period, spermatozoa are released into the lumen and residual bodies are 

phagocytosed by the Sertoli cells. Our observations are suggestive that ACAT-2 may be 

involved in storing excessive cholesterol and in recycling of the cholesterol contained in the 

residual bodies. Previous studies revealed that ACAT-2 may not only participate in forming 

cholesteryl ester lipid droplet, but be mainly involved in supplying the cholesteyl ester for 

lipoprotein (i.e. VLDL) assembly in human hepatocytes and intestinal enterocytes (Chang 

et al., 2001b). If ACAT-2 has similar capacity in the testis then, Sertoli cells could express 

lipoprotein receptors such as VLDL receptor that could uptake the lipoproteins assembled 

in the lumen of endoplasmic reticulum of Sertoli cells. Evidence shows that a novel 

lipoprotein receptor designated apolipoprotein E receptor 2 (apoE-2), consists of five 

functional domains resembling the VLDL receptor, and is highly expressed in rabbit Sertoli 

cells (Kim et al., 1996). Other receptors could also be expressed in the testis that could 

favor removal of cholesteryl ester from the Sertoli cells. The report of a significant decrease 

in the esterified cholesterol levels from December to March in adult tubules (Akpovi et al., 

2006) reinforces the notion that ACAT-2 is activated to protect against toxicity resulting 

from excessive cholesterol levels. The most striking finding in the current study was that 

the increase of ACAT-2 enzymatic activity was correlated with the decrease of ACAT-1 

enzymatic activity during mink development. In this regard, we suggest that ACAT-1 and 

ACAT-2 isoforms are functioning complementarily so as to complete the translocation of 

cholesterol in excess from mature germ cells to Sertoli cells. This could be tested by 

elucidating the contribution of ACAT isoforms in testicular cholesterol homeostasis in 

mouse where individual ACAT-1 or ACAT-2 would be genetically impeded. 
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3.2 Mouse 
 

Before this study, identification of ACAT-2 as one of the principal ACAT enzymes 

in mouse testis had not been reported. Additionally, the expression of both ACAT-1 and 

ACAT-2 in the seminiferous tubules or interstitial tissue had not been addressed. We 

showed for the first time that the presence of ACAT isoforms transcripts and protein 

expression in mouse seminiferous tubules and interstitium, and the specificity of ACAT-2 

transcripts were confirmed by restriction enzymes-ECoR II. Different ACAT-1 and ACAT-

2 mRNA and protein expression pattern were detected in the seminiferous tubules and 

interstitial tissue. The immunohistochemistry studies demonstrated that ACAT-2 was 

located in Sertoli cells and ACAT-1 in germ cells.  

3.2.1 ACAT-1 and ACAT-2 mRNA, protein expression in the interstitial tissue during 

development 

Our observation showed that not only ACAT-1 but also ACAT-2 was present in 

mouse ITf. The differences in mRNA expression and protein levels of ACAT-2 were not 

significant during development in ITf. The existence of ACAT-2 and its enzymatic activity 

in ITf needs further investigation. Our results further demonstrated that ACAT-1 mRNA 

levels had a profile opposite that of the protein levels, increasing throughout development 

and peaking by 42 days. The mRNA expression pattern of ACAT-1 suggested that the post-

transcriptional regulation is crucial for ACAT-1 expression. As already noted, post-

transcriptional regulation determines the fate of the RNAs, including their subcellular 

localization, stability, and translation efficiency (Ross,1995). Thus, post-transcriptional 
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regulation of ACAT-1 might provide a more elaborate regulation of the enzymatic activity. 

The regulatory mechanism requires further investigation.  

ACAT-1 was reportedly present in Leydig cells as well as macrophages (Sakashita 

et al.,2000). Our immunohistochemisty study confirmed that ACAT-1 was plentiful in the 

interstitial cells, suggesting a possible involvement of ACAT-1 in converting cholesterol 

into cholesteryl ester in response to cholesterol abundance inside the cells. It has been 

reported that the testicular macrophages contain HSL (Kabbaj et al.,2003), which 

contributes a 25-hydroxycholesterol for testosterone production in Leydig cells. Thus, the 

presence of both ACAT-1 and HSL in the interstitial cells suggests that ACAT-1 and HSL 

may regulate cholesterol homeostasis in complementary manners. Macrophage HSL frees 

cholesterol from the esterified form before converting it into 25- hydroxycholesterol which 

is then used by Leydig cells to synthesize testosterone. On the other hand, ACAT-1 

esterifies excess cholesterol in macrophages or Leydig cells to maintain cholesterol 

homeostasis for testosterone production. Based on this information, a future area of interest 

is to identify whether ACAT-1 is present or active in the interstitial macrophages, and 

whether it participate to the removal of excessive cholesterol in these cells.   

 

3.2.1 ACAT-1 and ACAT-2 mRNA, protein expression and enzymatic activity in the 

seminiferous tubules during development 

ACAT-1 and ACAT-2 were also expressed in the seminiferous tubules. However, 

ACAT-1 mRNA expression pattern in mouse STf differed from that in the ITf. In fact, our 
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findings show that unlike the constant expression of ACAT-2 mRNA and protein in ITf, 

ACAT-2 mRNA levels were increasing throughout development in STf, which had an 

opposite profile that of the protein levels, suggesting another regulatory mechanism of the 

enzyme in STf. The significance of ACAT-2 expression pattern in STf remains to be 

determined. On the other hand, ACAT-1 mRNA and protein levels were both decreased 

throughout development. These results suggest ACAT-1 is regulated on the transcriptional 

levels in the tubules. Previous studies demonstrated that ACAT-1 and ACAT-2 genes are 

located on distinct chromosomes (Cases et al., 1998a; Li et al., 1999; Uelmen et al., 1995). 

Thus, the differences in the transcriptional regulation of ACAT-1 and ACAT-2 in STf may 

be caused by independent regulatory mechanism. 

Previous reports found that sterol regulatory elements, present in the promoters of 

many cholesterol-regulated genes. However, the sterol regulatory elements have not been 

identified within the ACAT-1 or ACAT-2 (Chang et al., 2001b; Li et al., 1999). Thus, the 

main mode of sterol-dependent regulation of ACAT activity may not be at transcriptional 

but at translational levels. Change et al. (1997) reported that ACAT-1 and ACAT-2 are 

allosteric enzymes with two types of sterol-binding sites. One substrate site is able to 

accommodate a wide variety of sterols, while another activator site may only recognize 

cholesterol (Chang et al., 1997). 

The present study also applied the novel selective ACAT-1 inhibitor, K-604, to the 

measurements of individual ACAT-1 and ACAT-2 enzymatic activity in mouse 

seminiferous tubules. K-604 potently and selectively inhibited adult mouse ACAT1 much 

more than ACAT2 with IC50 values of 100 and 1000 µM respectively. The proper inhibitor 
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concentration (100µM) that inhibits the activity of ACAT-1 but not the activity of ACAT-2 

was selected, and applied to the measurement of ACAT-1 and ACAT-2 enzymatic 

activities in mouse seminiferous tubules. Dramatic alterations of ACAT-1 and ACAT-2 

activities during mouse development were detected. Our observations showed that ACAT-1 

enzymatic activity was high in new borns and decreased in adults, and that ACAT-2 

activity was low in newborns but high in adults. Yet, the enzymatic activity of ACAT-1 and 

ACAT-2 reached comparable levels in the adult. Considering the distinct individual 

localization of ACAT-1 and ACAT-2 in the seminiferous tubules, we speculated that 

ACAT-1 may be involved in modulation of cholesterol delicate equilibrium in the 

developing germ cells. On the other hand, ACAT-2 was related with the removal of 

accumulated cholesterol in the Sertoli cells by phagocytosis of residual bodies and 

apoptotic cells. 

 

Summary for HMG-CoA redcutase, HSL, ACAT-1 and ACAT-2: 1) HMG-CoA 

redcutase, HSL and ACAT-2 showed similar enzymatic activity profiles. They increased 

during development but decreased in adulthood, and their activities varied in parellel with 

development and germ cells development. These results suggest that all three enzymes 

work in synchrony and they may get involved in the spermatogenetic activity. 2) On the 

other hand, ACAT-1 activity showed an opposite tendency to the other enzymes. It is high 

in newborn, but decreased afterwards. ACAT-1 acitivity is complementary to ACAT-2. 
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4. The mRNA expression and activities of HMG-CoA reductase, ACAT-1 and ACAT-

2 in HSL-/- male mouse  

The most striking phenotype of HSL knockout mice is male sterility caused by 

oligospermia (Osuga et al., 2000). It has been demonstrated that the absence of HSL in the 

testis resulted in a 2.3-fold increase in testicular cholesterol ester (Osuga et al., 2000). 

Therefore, we questioned whether the disruption of HSL geen could effect on other 

enzymes (HMG-CoA redcutase, ACAT-1 and ACAT-2) mRNA and protein expression and 

enzymatic activity, and thus causing cholesteryl esters over-accumulated in the testis.  

Real-time quantitative PCR analysis revealed that STf and ITf from HSL -/- testis 

lack a wild type (wt) transcript with HSL mRNA which codes all forms of the protein. 

Western blot analyses showed no 90kDa immunoreactive HSL protein in testis from HSL-

/- mice. The 90kDa band, which corresponds to the 88 kDa band in human adipocyte and to 

the 84 kDa band in rat fat (Langin et al., 1993), is reported to be expressed in interstitial 

and tubular somatic cells as well as premeiotic germ cells (Blaise et al., 2001; Mairal et al., 

2002). To test the hypothesis of a differential HSL-meidated modulation of cholesterol 

metabolism in Sertoli cells, germ cells and testicular macrophages, changes in protein 

expression of 90kDa HSL were measured in STf and ITf. 

4.1 ITf 

  Previous study in testis supported the notion that interstitial macrophage HSL 

could free cholesterol from esterified cholesterol to be converted into 25-hydrocholesterol 
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taken up by Leydig cells to synthesize testosterone (Kabbaj et al., 2003). It is also reported 

that HSL overexpression in macropahges stimulates cholesterol ester hydrolase activities 

(Escary et al., 1998). Therefore, it appears HSL is responsible for cholesterol ester 

hydrolase activities in macropahges, and play crucial role in supporting steroidogenesis. 

Our findings in HSL knockout mice ITf demonstrated that HMG-CoA reductase mRNA 

levels were decreased in HSL knockout mice ITf as well as ACAT-1 and ACAT-2 mRNA 

levels, indicating that the disruption of the HSL gene in mice caused changes in the mRNA 

expression of several enzymes in ITf. However, these changes did not seem to affect the 

physiological function of the interstitial tissue due to the fact that HSL knockout mice have 

normal plasma levels of testosterone, follicle-stimulating hormone and luteinizing hormone 

(Osuga et al., 2000). The observations suggest that other lipases might be involved in the 

physiological events of the interstitial tissue, and could at least in part compensate for the 

lack of HSL. It is also possible that other sources of cholesterol come from the blood 

circulation. In this concern, the possible source of cholesterol from de novo cholesterol 

synthesis was reduced due to the suppression of HMG-CoA reductase mRNA expression. 

Since HMG-CoA reductase is an integral membrane proteins present in the endoplasmic 

reticulum (ER) (Ness & Nazian, 1992), Down-regulation of HMG-CoA reductase 

expression could cause the decrease of cholesterol pool in ER. It has been documented that 

cholesterol is the activator for ACAT isoforms in ER. Upon stimulation by low 

concentration of cholesterol, ACAT isoforms expression could be decreased.  
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4.2 STf 

Because HSL knockout mice have normal plasma levels of testosterone, follicle-

stimulating hormone, and luteinizing hormone (Osuga et al., 2000), thus oligospermia does 

not result from hypogonadism. Instead, the testes completely lost neutral cholesterol ester 

activities and included increased amounts of cholesterol ester (Osuga et al., 2000). Osuga et 

al. (2000) reported extensive vacuolation within the seminiferous epithelium of HSL 

knockout mice; and Oli Red O staining of tissue sections suggested that these vacules are 

actually filled with lipids (Haemmerle et al., 2003). The remarkable accumulation of 

cholesterol esters in the tubules leads to the question of whether mutations in the HSL gene 

may cause tubular cholesterol inquilibrium due to the interruption of the enzyme expression 

and activity. Our results in HSL-/- mice STf showed that HMG-CoA reductase mRNA 

levels as well as the enzymatic activity were decreased in HSL-/- mice STf. Conversely, 

ACAT-1 and ACAT-2 mRNA levels and their respective enzymatic activities were 

significantly increased. Thus, HSL deficiency caused a change in other enzymes (HMG-

CoA redcutase, ACAT-1 and ACAT-2) expressions and activities in STf.  Since numerous 

immature germ cells were present in the epididymis of the HSL knockout mice (Vallet-

Erdtmann et al., 2004); Sertoli cells are involved in the phagocytosis of these apoptptic 

germ cells and accumulate stacks of cholesterol-rich cellular debris in lysosomes (Pelletier 

& Vitale, 1994), we believe that the increased ACAT-1 and ACAT-2 activities could 

contribute to the removal of accumulated cholesterol in cell debris-borne cholesterol. The 

excess cholesterol that comes from the cell debris-born-lipids could suppress the 

biosynthesis pathway and activity of the rate-limiting HMG-CoA reductase expression. Our 
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finding demonstrates that the variation of HMG-CoA reductase, ACAT-1 and ACAT-2 

expression and activity are the consequence of the absence of corrected HSL transcription 

in testis. Further studies are needed to clarify the mechanism by which HSL deficiency 

causes abnormal spermatids development. 

 

Summary of HSL-/- mice: HSL gene deletion caused a cascade of physiological responses 

on HMG-CoA reductase and ACAT isoforms, which could be the pivotal response that 

modifies cholesterol homeostasis in testis.  
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5. The mRNA expression and activities of HMG-CoA reductase, HSL, ACAT-1 and 

ACAT-2 in SR-BI and CD36 knockout mice  

 

5.1 SR-BI-/- mice: 

Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL 

cholesterol (Kozarsky et al., 1997; Temel et al., 1997). In addition, SR-BI selectively 

removes cholesteryl esters from the HDL to which it binds (Kozarsky et al., 1997; Temel et 

al., 1997) and contributes to the HDL-mediated cellular cholesterol efflux (Ji et al., 1997). 

Experimetnal deficiency of SR-BI is accompanied by abnormal structure, composition, and 

abundance of lipoproteins because of defective cholesterol efflux from cells to lipoprotein 

particles (Miettinen et al., 2001). The SR-BI deficient male mice exhibit a reduction in their 

number of homozygous offspring relative to wild-type offspring from F1 heterozygous 

intercrosses although the mice were fertile (Rigotti et al., 1997). Therefore, abnormalities in 

cholesterol metabolism in SR-BI knockout male mice might cause the reduction of male 

offspring numbers. To assess how the enzymatic system in the regulation of cholesterol 

metabolism is affected by shutting SR-BI-dependent cellular flux, the mRNA expression 

and the activity of HMG-CoA reductase, HSL, ACAT-1 and ACAT-2 in individual 

compartments of SR-BI knockout mouse testis were measured.  

SR-BI gene deficit caused a significant decrease in HMG-CoA reductase, ACAT-1 

and ACAT-2 mRNA expression, while causing a remarkable increase of HSL mRNA level 
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in ITf and STf. Similarly, HMG-CoA reductase and ACAT-1 enzymatic activities were 

significantly reduced, while HSL activity was significantly elevated in SR-BI KO 

seminiferours tubules.  These observations suggest at the absence of SR-BI receptor leads 

to the consequent functional changes of the major enzymes regulating cholesterol 

metabolism in testis, which is regulatd at the level of transcription. Given that SR-BI 

deficiency impaired the cholesterol efflux from the cells in the interstitial tissue or 

seminiferous tubules, this could cause an increased cholesterol level inside of cells. 

Excessive cholesterol may directly inhibit the transcription of one or more of the enzyzmes 

in the cholesterol biosynthetic pathway (i.e. HMG-CoA reductase) and decrease the 

enzymatic activity(s) in testis. Since HMG-CoA reductase is an integral membrane proteins 

present in the endoplasmic reticulum (ER) of the cells (Ness & Nazian, 1992), down-

regulation of HMG-CoA reductase expression and activity will cause the decrease of the 

cholesterol pool in ER. It has been documented that cholesterol pool in ER is the activator 

for ACAT isoforms (Liu et al., 2005). Thus, low level of cholesterol could inhibit ACAT 

isoforms expression and activities. However, ACAT-2 activity was not decresed although 

its mRNA expression significantly reduced. These results suggest that ACAT-2 may have 

other regulatory mechanism in modulating the cholesterol esterification, and ACAT-2 may 

be the only esterase that converts of cholesterol to cholesterol ester in SR-BI KO male testis.  

In addition, since the origin of cholesterol from the biosynthesis pathway was reduced due 

to the decreased HMG-CoA reductase activity, the increasing HSL expression and activity 

could contribute cholesterol to ensure normal spermatogenesis.     

.   
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5.2 CD36-/- mice: 

CD36 belongs to the class B scavenger receptor family, which is responsible for the 

selective uptake of cholesterol esters (Febbraio et al., 2001). CD36, expressed in Sertoli 

cells, was claimed to be involved in the phagocytosis process of the residual bodies shed 

from spermatozoa lipid (Gillot et al., 2005). A null mutation in CD36 was not reported to 

affect the fertility of mutant animals but reveals crucial roles of CD36 in fatty acid and 

cholesterol metabolism (Febbraio et al., 1999; Febbraio et al., 2002). To assess how the 

enzymatic system in the regulation of intracellular cholesterol metabolism is affected by 

shutting CD36-dependent cholesterol uptake, the mRNA expression and the activity of 

HMG-CoA reductase, HSL, ACAT-1 and ACAT-2 in individual compartments of CD36 

knockout mouse testis were measured.  

This study showed, for the first time, a significant decrease of HMG-CoA reductase, 

ACAT-2 mRNA in the interstitial tissue and seminiferous tubules together with a decrease 

in HMG-CoA reductase and ACAT-2 activity but not in ACAT-1 in CD36 deficient mice 

testis in comparison to wild type. Conversely, CD36 gene deficit caused a significant 

increase of HSL mRNA expression, while causing a decrease of ACAT-1 mRNA 

expression in the interstitial tissue.  

The results show that blocking the gene expression of CD36 leads to the consequent 

mRNA expression variation of the major enzymes regulating cholesterol metabolism in the 

interstitial tissue. It is hypothesized that this modification reflects in part the effect of CD36 

on the transport of cholesterol to the Leydig cells. In the seminiferous tubules, it has been 

claimed that CD36 is expressed in Sertoli cells and that the protein localized in the residual 
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bodies shed from mature spermatids (Gillot et al., 2005). Thus, it is possible that CD36-

mediated phagocytosis of residual bodies could be one of the processes involved in the 

cholesterol exchange between Sertoli cells and germ cells. Our results in CD36 deficient 

mice showed ACAT-2 mRNA expression and enzymatic activity significantly decreased in 

the CD36 null mice, suggesting that ACAT-2 may be closely related to the expression of 

CD36 in the tubules. Gillot et al. (2005) suggested that CD36 may be involved in lipid 

recycling from the residual bodies. Thus, ACAT-2 may participate in the removal of 

cholesterol stored in the residual bodies. Sertoli cells may function as a recycling centre, 

where lipid content in the residual bodies would be reused and thus providing the 

cholesterol required for normal spermatogenesis. However, ACAT-1 mRNA expression 

and enzymatic activity showed no significant changes in tubules of CD36 null mice. 

Considering the fact that ACAT-1 is localized in germ cells, while CD36 was said to be 

expressed in Sertoli cells (Gillot et al., 2005), it is possible that ACAT-1 may be not closely 

associated to the expression of CD36 in the tubules, thus may not be inflenced by blocking 

out CD36 gene. Given that CD36 deficiency impaired the removal of the residual bodies in 

Sertoli cells, this could cause the accumulation of cholesterol-rich, germ cell-born 

membranes, which might directly inhibit the transcription of one or more of the enzyzmes 

in the cholesterol biosynthetic pathway (i.e. HMG-CoA reductase) and decrease the 

enzymatic activity(s) in the tubules. On the other hand, HSL could play an important role in 

the regulation of CD36 expression (Chung et al., 2001). However, our results in CD36-

deficient mice demonstrated that no significant changes of the HSL mRNA expression and 

enzymatic activity in the seminiferous tubules. It is possible that the remaining scavenger 
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receptors could account for CD36 deficiency, for instance, SR-BI may replace CD36 thus, 

preserving the function of HSL. It would be interesting to identify the changes of the 

enzymes in SR-BI and CD36 double knockout mice testes. 

 

 

Summary of SR-BI-/- or CD36-/- mice: Genetically blocking SR-BI or CD36 affects the 

regulation of the enzymes (HMG-CoA reductase, HSL and ACAT-1 and ACAT-2) 

expression and activities. 
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6. Relationship of intracellular enzymes in the cholesterol metabolism in each 

compartment of testis 

Cellular cholesterol homeostasis is a tightly regulated system in which the amount 

of unesterified cholesterol within the cells is controlled by the rate of cholesterol uptake, 

synthesis, esterification, and hydrolysis of cholesterol esters. Thus, a series of 

enzymatic factors are required in cholesterol metabolism to maintain the concentration 

of unesterified cholesterol within narrow physiological limits. Recent advances have 

mainly focused on the intracellular enzyme, HSL. These observations noted that HSL 

knockout mice were sterile (Hermo et al., 2008; Osuga et al., 2000; Vallet-Erdtmann et 

al., 2004). Alterations in the testis of HSL-deficient mice are associated with decreased 

sperm counts, motility, and fertility (Hermo et al., 2008). In this present study we build 

on the previous work, by discussing more detailed mechanisms of additional enzymes 

HMG-CoA reductase, ACAT-1 and ACAT-2 as well as HSL in cholesterol ester cycle; 

furthermore, we particularly emphasize the cooperation of these enzymes in achieving 

and maintaining cholesterol homeostasis in the individual compartments of the testis.  

Under physiological conditions, the completion of spermatogenesis in seasonal 

breeders was associated with elevated HMG-CoA reductase mRNA levels and 

enzymatic activity, increased HSL protein expression and activity, up-regulated ACAT-

2 mRNA levels and activity, but decreased ACAT-1 activity. These findings point to 

increased cholesterol biosynthesis and hydrolysis of cholesterol esters and recycling of 

lipids as well as impaired cholesterol esterification. This suggests that the main 
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enzymes act cooperatively in the regulation of intracellular cholesterol during the 

completion of spermatogenesis to maintain adequate cholesterol concentration. As 

demonstrated using a mouse model, the spermatogenetic activity is accompanied with 

increased HMG-CoA reductase, elevated HSL, and up-regulated ACAT-2 but impaired 

ACAT-1. These observations may reflect an increased hydrolysis and deesterification 

of intracellular cholesteryl esters and an elevated cholesterol biosynthesis. Thus, 

unesterified cholesterol would be produced when spermatogenesis is active. During the 

testicular regression period, all three enzyme’s (HMG-CoA reductase, HSL and ACAT-

2) activities were down-regulated, while ACAT-1 activity was increased. The findings 

may reflect the response to a decrease in free cholesterol. The results suggest that the 

three main enzymes control the cholesterol ester cycle and thereby, decrease the supply 

of cholesterol to tubules and remove excess cholesterol in lipid droplets.  

Under pathological condition, interruption of the cholesteryl ester cycle by 

knocking out HSL, which causes a decrease in HMG-CoA reductase but an increase in 

ACAT-1 and ACAT-2, may result in the decrease of unesterified cholesterol and the 

accumulation of cholesterol ester-rich lipid droplets. In agreement with our findings, 

previous studies have shown a 2-fold elevation in the ratio of esterified to free 

cholesterol in testis (Wang et al., 2004). In addition, cholesteryl ester hydrolase activity 

was almost completely blocked in HSL-deficient testis (Vallet-Erdtmann et al., 2004). 

Moreover, the finding that HSL null male mice were spermatozoa-deficient (Osuga et 

al., 2000) demonstrates one level at which the HSL can affect the cascade of 

physiological responses. This finding, that the enzymes function in coordination in the 
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cholesterol ester cycle, may be the pivotal pathological response that destroys the 

cholesterol homeostasis in the tubules. On the other hand, in the absence of SR-BI or 

CD36, the increased HSL was accompanied by decreased ACAT isoforms and HMG-

CoA reductase. Since SR-BI or CD36 deficient mice did not display interrupted fertility 

compared with wild-type male mice (Febbraio et al., 1999; Rigotti et al., 1997), and 

SR-BI or CD36 null mice did not affect the rate of cholesterol in testis (Akpovi et al., 

data not shown), we assume that either SR-BI or CD36 deficiencies respond to an up-

regulation of extratubular cholesterol uptake by certain compensatory pathways. These 

results indicate that the main enzymes in cholesterol ester cycle not only function in 

coordination in the intratubular cholesterol metabolism and control the proper 

cholesterol distribution, but also response to the variation from extratubular cholesterol 

pool. The enzymes interconnect with the transporters, contributing to the preservation 

of the intratesticular cholesterol homeostasis. 
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Conclusion 
Our results suggest: 

   1. This study showed that the three enzymes participate together in the regulation of 

cholesterol metabolism in testis.  

  2.  Our results suggest that dysfunction in the action of individual enzymes or transporters 

affect the activities of remaining enzymes and their contribution to cholesterol 

homeostasis in tubules.  

Our results suggest that this coordination in the action of enzymes may represent the basis 

of a system that helps to maintain constant cholesterol levels in the testis.  
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Appendix 

Table 2. Reaction mixture for reverse transcription PCR 

Component Volume (25µ l) 
RT buffer (10×) 2.5 µl 

dNTP (5mM) 2.5 µl 

Oligo dT (10µM) 2.5 µl 

Enzyme RT 1.25µl 

RNase inhibitor 0.4µl 

RNA 2.5 µg 

H2O  

 

 

Table 3. Reaction mixture for PCR 

Component Volume (25µ l) 

10× QIAGEN PCR buffer 2.5 µl 

5×Q-solution    5 µl 

dNTP mix (10mM each) 0.5 µl 

Primer sense 1.25µl 

Primer anti-sense 1.25µl 

Taq DNA polymerase                           0.125 µl 

Distilled water                          12.375 µl 

Template DNA 2.5 µl 
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Table 4. PCR standard protocol 

Stages Condition 

Stage I: initial denaturation ( Reps:1) 95°C 5min 

 

Stage II: PCR (Reps:40) 

95°C 1min 

60°C 45sec. 

72°C 1min 

Stage III: Extension 72°C 7min 

Stage IV: Cooling 4°C ∞ 

 

 

Table 5. Reaction mixture for real time PCR (SYBR Premix Ex TaqTM) 

Component Volume (20µ l) 

SYBR Premix Ex TaqTM (2×) 10 µl 

PCR forward primer (10µM) 0.4 µl 

PCR reverse primer (10µM) 0.4 µl 

Template (<100ng)     2µl 

H2O  7.2µl 

 

Table 6. Shuttle PCR standard protocol 

Stages Condition 

Stage I: initial denaturation ( Reps:1)   95°C 30sec. 20°C/sec. 

Stage II: PCR (Reps:40) 95°C 5sec. 20°C/sec. 

 60°C 30sec. 20°C/sec. 

 

Stage III: Melting curve analysis 

95°C 0sec. 20°C/sec. 

 65°C 15sec. 20°C/sec. 

95°C 0sec. 20°C/sec. 
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III 

Table 7. Three-step PCR standard protocol 

Stages Condition 

Stage I: initial denaturation ( Reps:1)   95°C 30sec. 20°C/sec. 

Stage II: PCR (Reps:40) 95°C 5sec. 20°C/sec. 

 58°C 20sec. 20°C/sec. 

72°C 15sec. 20°C/sec. 

 

Stage III: Melting curve analysis 

95°C 0sec. 20°C/sec. 

 65°C 1min. 20°C/sec. 

95°C 0sec. 20°C/sec. 

 

Table 8. Gel for separation (10%) 

Component Volume (8ml) 

H2O   1.6ml 

1M Tris-0.5M Glycine (0.2M-0.1M)   1.6ml 

10% SDS 0.32ml 

50% Glycerol   0.8ml 

25% Acrylamide/0.25% Bis   3.2ml 

4% Persulphate of ammonium   0.4ml 

10% TEMED 0.08ml 
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IV 

Table 9. Gel for concentration (4%) 

Component Volume (8ml) 
H2O 1.68ml 

0.5M Tris-HCl pH 6.7 0.56ml 

50mM EDTA pH 6.7 0.32ml 

50% Glycerol   0.4ml 

25% Acrylamide/0.25% Bis 0.64ml 

4% Persulphate of ammonium   0.2ml 

10% TEMED 0.04ml 

 

 


