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ABSTRACT 

Keywords: redundancy gain, coactivation, analysis of response time 

distributions 

Response times in a visual object recognition task decrease significantly if 

targets can be distinguished by two redundant attributes. Redundancy gain for two 

attributes is a common finding, but redundancy gain from three attributes has been 

found only for stimuli from three different modalities (tactile, auditory, and 

visual). This study extends those results by showing that redundancy gain from 

three attributes within the visual modality is possible. It also provides a more 

detailed investigation of the characteristics of redundancy gain. Apart from a 

decrease in response times for redundant targets, these include a decrease in 

minimal response times and an increase in symmetry of the response time 

distribution.  

This study further presents evidence that neither race models nor 

coactivation models can account for all characteristics of redundancy gain. In this 

context, we discuss the problem of calculating an upper limit for the performance 

of race models for triple redundant targets, and introduce a new method of 

evaluating triple redundancy gain based on performance for double redundant 

targets. In order to explain the results from this study, the cascade race model is 

introduced. The cascade race model consists of several input channels, which are 

triggered by a cascade of activations before satisfying a single decision criterion, 
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and is able to provide a unifying approach to previous research on the causes of 

redundancy gain.  

The analysis of the characteristics of response time distributions, including 

their mean, symmetry, onset, and scale, is an essential tool in this study. It was 

therefore important to find an adequate statistical test capable of reflecting 

differences in all these characteristics. We discuss the problem and importance of 

analysing response times without data loss, as well as the inadequacy of common 

methods of analysis such as the pooling of response times across participants (e.g. 

Vincentizing) in the present context.  

We present tests of distributions as an alternative method for comparing 

distributions, response time distributions in particular, the most common of these 

being the Kolmogorov-Smirnoff test. We also introduce a test yet unknown in 

psychology: the two-sample Anderson-Darling test of goodness of fit. We 

compare both tests, presenting conclusive evidence that the Anderson-Darling test 

is more accurate and powerful: when comparing two distributions that vary (1) in 

onset only, (2) in scale only, (3) in symmetry only, or (4) that have the same mean 

and standard deviation but differ on the tail ends only, the Anderson-Darling test 

proves to detect differences better than the Kolmogorov-Smirnoff test. Finally, the 

Anderson-Darling test has a type I error rate corresponding to alpha whereas the 

Kolmogorov-Smirnoff test is overly conservative. Consequently, the Anderson-

Darling test requires less data than the Kolmogorov-Smirnoff test to reach 

sufficient statistical power. 
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RÉSUMÉ 

Mots-clés: gain de redondance, coactivation, analyse des distributions de 

temps de réponse 

Les temps de réponse dans une tache de reconnaissance d’objets visuels 

diminuent de façon significative lorsque les cibles peuvent être distinguées à partir 

de deux attributs redondants. Le gain de redondance pour deux attributs est un 

résultat commun dans la littérature, mais un gain causé par trois attributs 

redondants n’a été observé que lorsque ces trois attributs venaient de trois 

modalités différentes (tactile, auditive et visuelle). La présente étude démontre que 

le gain de redondance pour trois attributs de la même modalité est effectivement 

possible. Elle inclut aussi une investigation plus détaillée des caractéristiques du 

gain de redondance. Celles-ci incluent, outre la diminution des temps de réponse, 

une diminution des temps de réponses minimaux particulièrement et une 

augmentation de la symétrie de la distribution des temps de réponse.  

Cette étude présente des indices que ni les modèles de course, ni les 

modèles de coactivation ne sont en mesure d’expliquer l’ensemble des 

caractéristiques du gain de redondance. Dans ce contexte, nous introduisons une 

nouvelle méthode pour évaluer le triple gain de redondance basée sur la 

performance des cibles doublement redondantes. Le modèle de cascade est 

présenté afin d’expliquer les résultats de cette étude. Ce modèle comporte 

plusieurs voies de traitement qui sont déclenchées par une cascade d’activations 
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avant de satisfaire un seul critère de décision. Il offre une approche homogène aux 

recherches antérieures sur le gain de redondance. 

L’analyse des caractéristiques des distributions de temps de réponse, soit 

leur moyenne, leur symétrie, leur décalage ou leur étendue, est un outil essentiel 

pour cette étude. Il était important de trouver un test statistique capable de refléter 

les différences au niveau de toutes ces caractéristiques. Nous abordons la 

problématique d’analyser les temps de réponse sans perte d’information, ainsi que 

l’insuffisance des méthodes d’analyse communes dans ce contexte, comme 

grouper les temps de réponses de plusieurs participants (e. g. Vincentizing).  

Les tests de distributions, le plus connu étant le test de Kolmogorov-

Smirnoff, constituent une meilleure alternative pour comparer des distributions, 

celles des temps de réponse en particulier. Un test encore inconnu en psychologie 

est introduit : le test d’Anderson-Darling à deux échantillons. Les deux tests sont 

comparés, et puis nous présentons des indices concluants démontrant la puissance 

du test d’Anderson-Darling : en comparant des distributions qui varient seulement 

au niveau de (1) leur décalage, (2) leur étendue, (3) leur symétrie, ou (4) leurs 

extrémités, nous pouvons affirmer que le test d’Anderson-Darling reconnait mieux 

les différences. De plus, le test d’Anderson-Darling a un taux d’erreur de type I qui 

correspond exactement à l’alpha tandis que le test de Kolmogorov-Smirnoff est 

trop conservateur. En conséquence, le test d’Anderson-Darling nécessite moins de 

données pour atteindre une puissance statistique suffisante. 
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CHAPTER 1 

INTRODUCTION 

Recognizing objects is a seemingly simple, even trivial task to ask of a 

human. However, when trying to disassemble the process of object recognition 

into its different components, or trying to simulate human performance on object 

recognition tasks, we quickly realize that it is far more complex, and that we are 

still far from understanding why humans perform so well, and far from achieving 

close to human performance in models of object recognition. 

Visual input is decomposed into its smallest parts (single neuron receptive 

fields) by the visual processing system. Visual processing is organised in a 

hierarchical manner, with a series of subsequent processing areas analysing more 

and more complex combinations of information (Goodale & Milner, 1992; Kandel, 

Schwarz & Jessell, 2000). Complex objects can either be processed holistically 

(such as faces; Desimone, 1991; Farah, 1990) or analytically, that is by analysing 

the constituent parts (Farah, 1990; Biederman, 1990). However, we do not know 

how complex objects are reconstituted from their individual components. How 

does the visual system know which features belong together? This problem is 

referred to as the binding problem (Treisman & Gelade, 1980, Treisman, 1996). 

Several possible solutions for the binding problem have been proposed including 

the ‘grandmother cell theory’, which postulates highly specialised cells that 

respond to a specific combination of attributes (Barlow, 1972), spatial proximity 
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(Wolfe, Cave & Franzel, 1989), and the theory of synchronized firing of cells 

responding to the same object (Milner, 1974; Singer & Gray, 1995). Although the 

debate is not resolved yet, a combination of combined selectivity, synchronized 

firing and spatial proximity seems most likely to account for binding of objects 

(Treisman, 1996).  

Spatial proximity, perceived continuity, or similarity of features can 

account for what is perceived as an object (Treisman, 1990; Palmer, 1981; Gestalt 

Psychology: Köhler, 1947, among others). This is generally known as an effect of 

grouping. Contrast also plays a major role in object recognition. It is the most 

important and most studied tool for defining what constitutes an object, where the 

edges of an object are (Marr, 1976), and what belongs to another object or 

background (Lamme, 1995). Our visual system is based upon an analysis of 

contrast (e.g. luminance contrast, colour, motion or orientation contrast; 

Livingstone & Hubel, 1988), and contrast plays an important role in the attraction 

of attention (Engmann et al., in press). Contrast is frequently high around the 

edges of objects (e.g. there is a difference in colour between an object and its 

background), and it has been shown that high contrast attracts fixation (Tatler, 

Baddeley & Gilchrist, 2005) and that the visual cortex responds selectively to 

objects that are separated from the background by elevated high contrast (Zipser, 

Lamme & Schiller, 1996; Lamme, 1995). 

Object recognition can be facilitated or inhibited by a number of factors, 

such as familiarity or complexity of the object (Logothetis & Sheinberg, 1996), 
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familiarity of viewing angle (Tarr & Pinker, 1989), or context (Torralba, Murphy, 

Freeman & Rubin, 2003). Another characteristic that can facilitate or inhibit object 

recognition involves the number of target attributes by which an object can be 

recognised. In certain situations, several distinct attributes that indicate the identity 

of an object can facilitate object recognition, in other situations, object recognition 

is inhibited by several target attributes. If a target object is defined by a single 

attribute that separates it from its surroundings, recognition is facilitated 

independently of the number of surrounding distracters (Pop-out effect; Treisman 

& Souther, 1985). If a combination of attributes is needed to unambiguously 

identify a target (i.e. if the target itself is unique, but shares at least one feature 

with all surrounding distracters) target recognition is inhibited and becomes 

dependent on the number of distracters (Treisman & Souther, 1985). However, if a 

target is defined by a combination of attributes, either of which is sufficient to 

identify the target, recognition is facilitated. This is known as the redundant target 

effect (RTE; Kinchla, 1974; Miller 1982). Chapter two contains a review of 

literature on the RTE, the main body of which studies objects defined by two 

target attributes. Stimuli defined by three target attributes have rarely been studied 

(Diederich, 1995), and never within a single modality. An investigation of triple 

redundancy gain in purely visual stimuli is a novel question. 

The initial motivation for the present study was to provide evidence for 

triple redundancy gain in the visual modality. The main goal was to show that 

within one modality, redundancy gain is not limited to two features, but that each 

new target feature added has a facilitatory effect on object recognition. We also 
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wanted to investigate for which feature combinations a triple redundancy gain is 

possible. A combination of three visual target features that produces a significant 

gain in reaction time speed over double redundant targets is therefore sought.  

The question of a possible generalisation from a “double” RTE to a “triple” 

RTE is a very important one. An in-depth investigation would shed much light on 

information processing within a single modality. It has been shown that the RTE is 

only possible when parallel processing is assumed (Van der Heijden, La Heij & 

Boer, 1983, Krummenacher, Müller & Heller, 2001). The absence of additional 

gain from a third target attribute would, for instance, demonstrate a limit of 

parallel processing in the visual system. Therefore, the first important question is 

whether enough resources can be made available for a single modality to process 

three features in parallel quickly enough to enable a redundancy gain from the 

third attribute. 

Another motivation for this study was to clarify the question of possible 

causes of redundancy gain (again, chapter two contains a more detailed review of 

different theories). Several types of models have been proposed to explain the 

RTE, namely the race model (Raab, 1962), the coactivation model (Smith, 1968; 

Miller 1982; Schwartz, 1989) and crosstalk (Mordkoff & Yantis, 1991). Race 

models assume independent channels separately accumulating evidence in favour 

of the specific signal or feature to which they are tuned. Object recognition occurs 

when one channel has accumulated enough evidence to overcome its decision 

threshold. Race models allow redundancy gain because more channels improve the 
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chances of evidence for one feature being accumulated particularly fast. This 

probability-based explanation of the RTE allows the calculation of an upper limit 

to performance of race models (Miller 1982). Coactivation models combine 

evidences from different channels to satisfy a single threshold criterion. If several 

channels exist, the pooling of activation from several still weakly activated 

channels will be sufficient to overcome the threshold, thereby causing redundancy 

gain. Crosstalk models are basically race models with connections between 

channels, allowing benefit from correlations between different features, and thus 

causing a redundancy gain.  

The goal of this study was to provide experimental data that is able to 

distinguish between three different theories explaining the RTE in the visual 

system, and thereby to exclude two out of three of these possible explanations, 

either a priori, through the experimental design, or a posteriori, by the use of a 

decision criterion definitely favouring or excluding one theory based on the 

experimental results. We hypothesized that coactivation is the rule in the visual 

system, but might not always be directly observable due to different noise levels, 

or different processing speeds as a function of the visual features involved. 
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Analysis 

The research goals formulated above posed two methodological problems 

for the analysis of response time data. First, we had to define a threshold of race 

model performance for triple redundancy. Second, we needed to find an 

appropriate statistical test for finding differences between response times from 

different conditions without losing information.  

Threshold of race model performance 

Miller Inequality 

To provide evidence in favour of or against race models as a cause for 

gain, most recent studies investigating redundancy gain and coactivation models 

used the Miller Inequality (Miller, 1978),  

 (1) 

where P(TR<t|Ti) is the probability of participants responding faster than time t 

given a target (Ti) is present on channel i.  

It is conceivable that two feature channels are not independent of each 

other. Since this dependency can stem from any number of possible causes, many 

of which could be biological and therefore not directly observable, one cannot 

estimate the degree of dependence between channels. All one knows is that it must 
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be equal to or greater than zero. If X equals the degree of dependency between two 

channels, 

 (2) 

then X needs to be subtracted from the sum of response time distributions of the 

separate channels to calculate race model performance for two redundant channels:  

 (3)  

Subtracting X, an unknown positive quantity, from both sides of the 

equation leaves us with the Miller Inequality (eq. 1), a definite upper limit to the 

performance of race models with two channels, and a very efficient criterion of 

exclusion for race models on any task with two redundant targets.  

When generalising equation (3) to three channels, we need to factor in 

dependencies between any two channels 

 (4) 

and all three channels, 

 (5) 

which results in the following equation: 
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 (6) 

The degree of dependency between all three channels, Y123, an unknown 

positive number, is a subset of each Xij, and therefore, having been subtracted 

thrice with each Xij, needs to be added twice to the equation again to make it valid. 

Both types of dependencies are of unknown positive size, so trying to factor them 

out of equation (6) makes it impossible to determine in which direction the 

extension of the Miller Inequality would tend.  

Diederich and Colonius, in their 2004 study, used an extension of the 

Miller Inequality to three channels to refute race models in a stimulus detection 

task with stimuli from three different modalities (auditory, visual, and/ or tactile). 

Their extension is not valid for this study, however, since it did not account for the 

unknown factor of dependency between all three channels, and we cannot assume 

three channels from a single modality to be completely independent of each other.  

Townsend Bound 

An alternative to the Miller Inequality was proposed by Townsend and 

Nozawa (1995; a similar bound was proposed by Mordkoff and Yantis, 1991, p. 

535). It is based upon survivor functions (one minus the cumulative distribution) 

of response times instead of cumulative distribution functions. The upper limit to 

race model performance with more than one channel is given by the survivor 

function of the product of the survivor functions of each channel: 
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 (7) 

where RT123 is a response time when target attributes from all three channels are 

present and i indexes the three channels. If the observed response time distribution 

in a redundant target task is significantly faster than predicted by this boundary, 

race models as the sole explanation of redundancy gain are rejected. The 

Townsend Bound can be calculated for any number of channels.  

For a pure race model, the Townsend Bound for three channels based on 

the three survivor functions of the single channels is perfectly valid. However, we 

need to consider the possibility of a mixed coactivation and race model being able 

to explain the results. What if a decision about object identity was made coactively 

by two channels, but the third channel contributes solely on a winner-take-all 

basis? So the question is: how do we distinguish between the possibility of a 

mixed model and a pure coactivation model (i.e. a model where responses from all 

three channels are pooled to satisfy a single decision criterion)? We calculated a 

Townsend Bound for mixed models (models where two channels interact by 

coactivation and the third channel contributes only within the range of statistical 

facilitation) based on the survivor functions of an RT distribution where target 

attributes are present on two channels plus the RT distribution of the target 

attribute on the respectively missing channel. This yields three Townsend Bounds 

(one for each combination of two plus one channels), which we combine into one 
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single threshold criterion for mixed models by taking the maximum value out of 

these three criteria at each time point:  

 (8) 

This yields the most liberal evaluation of performance if any of the three 

channels contributes only by statistical facilitation as a third redundant attribute. 

Hence, exceeding the limit can only be achieved if all three target attributes 

contribute significantly by coactivation to the amount of redundancy gain. 

Alternatively, the Townsend Bound for mixed models could have been calculated 

from the product of the survivor functions of response times in the three possible 

conditions when target attributes on any two channels were present, analogous to 

equation (7). However, in this case, the gain contributed by each attribute would 

be included twice (once in each of the two double redundant conditions it is part 

of), thereby obtaining an upper limit which would definitely exceed performance 

of a combination of coactivation for two and statistical facilitation for the third 

attribute. Equation (8) ensures that each attribute contributes only once, while still 

ensuring the best possible performance under the assumption that statistical 

facilitation is responsible for the gain attributed to the third target attribute. 

When testing for triple redundancy, we used the simple Townsend Bound 

(eq. 7) as a default. Should it be violated, we also tested violation of the mixed-

model Townsend Bound (eq. 8). 
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Differentiating between response time distributions 

We decided to analyse response time data on a participant by participant 

basis for various reasons, mainly because grouping of several participants’ 

response time data is invariably accompanied by some loss of information – 

information about variance and symmetry which is particular to individual 

participants. This leads to false representations of RT data, such as flattened or 

bimodal distributions, which tend towards normality, even if the underlying 

individual response time distributions are not normally distributed. Using a 

technique such as Vincentizing (Vincent 1912, Rouder & Speckman, 2004) for 

grouping avoids bias due to loss of variance information. Vincentizing involves 

grouping RT distributions by quantiles: response times in the first nth percentile of 

each RT distribution are averaged, and response times in the next nth percentile, 

and so on. Distributions are “averaged” by taking into account the relative position 

of each response time, thereby avoiding flattening or bimodality. However, 

Vincentized distributions still tend towards normality (Thomas & Ross, 1980), 

whereas normality cannot be assumed for response time distributions (Logan, 

1992; Rouder, Lu, Speckman, Sun & Jiang, 2005).  

Several authors used multiple t-tests on quantiles (Miller, 1982; Mordkoff 

& Yantis, 1991, 1993, among others). Quantiles (e. g. the 5th percent quantiles) are 

computed for each participant in the two conditions whose distributions are to be 

compared, and then tested for equality using a t-test. This procedure is replicated 

for all quantiles at given intervals (e. g. the 10th, the 15th, etc. percent). This 
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method allows an estimate of where RT distributions of all participants differ 

significantly. It keeps individual participants’ data separate, and analyses more 

than distribution means.  

However, we noticed a large between-participant variability in all our 

experiments (see next section), the difference between participants being at times 

larger than the actual effect of redundancy gain. In this case, multiple t-tests 

cannot detect redundancy gain. Additionally, sample size for each t-test is only as 

large as the number of participants in an experiment; therefore statistical power 

may not be sufficient, especially if the effect size is not very large to begin with. 

Finally, the data at one time point are highly correlated with the data at the 

previous and following time point, influencing the probability of a type I error. We 

therefore decided upon a participant by participant analysis. 

An analysis of redundancy gain on a participant by participant basis has the 

advantage of keeping all information particular to a participant, while making the 

effect of redundancy gain directly observable, without having to factor out 

between-participant variability. The most common methods of comparing 

response time distributions, a t-test or an ANOVA, were not an option for analysis, 

since both assume normality, and only analyse differences in mean and variance of 

samples. Therefore, the best choice for a participant by participant analysis of 

response times in the present experimental context is a test of distributions, the 

most well-known being the Kolmogorov-Smirnoff (KS) test (Kolmogorov, 1941; 

Smirnoff, 1939). The Anderson-Darling (AD) test (Anderson & Darling, 1952), an 
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alternative similar to the KS test, is mainly used in the field of engineering and not 

known in psychology at all.  

We implemented a two-sample version of the AD test in Matlab 

(MathWorks Inc., Natick, MA). After comparing the performance of the KS and 

the AD test on our experimental data, we noticed that the AD test was more 

sensitive to small differences between response time distributions. Also there is 

evidence that the one-sample version of the AD test is especially sensitive to the 

tail ends of distributions (Darling, 1957). If this holds true for the two-sample 

version as well, the AD test is even better suited to the current context: we 

hypothesize that minimal response times are more affected by redundancy than 

other characteristics of response time distributions. We suspect that the two-

sample AD test is a powerful tool for comparing response time distributions, and 

should be more frequently used in the field of cognitive psychology. After 

implementing the two-sample version, we therefore decided to test power and 

reliability of the AD test more rigorously. At the same time this gave us an 

opportunity to review other techniques for analysing response time distributions 

(see chapter three for details). 

In order to determine which test was more powerful and better suited to the 

present context, we calculated the probability of both the AD test and the KS test 

to detect differences in shape, symmetry, shift and behaviour at the extrema of 

samples drawn from theoretical distributions in a series of Monte Carlo 

simulations. These are four additional ways, apart from mean and variance, to 
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characterise response time distributions (especially if these aren’t normally 

distributed). We relied on all this additional information in order to differentiate 

between response time distributions, and needed the test most adapted to detecting 

differences in all these dimensions. Also, due to the participant by participant 

analysis, the amount of data per condition was not very large in most of the 

subsequently described experiments. We therefore also needed to determine which 

test would yield greater statistical power (Cohen, 1992) given the expected effect 

size. The Anderson-Darling test proved superior on the detection of differences 

between distributions as well as for statistical power. Please refer to chapter three 

for details of method and results of Monte Carlo simulations and the calculation of 

statistical power. 
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Empirical data 

The following section provides a description of the progression of this 

research, and the subsequent evolution of the research questions. A series of pilot 

experiments were necessary in order to develop the paradigm for the last, 

successful experiment described in chapter two. Each of these pilot experiments 

provides interesting results, such as empirical evidence that parallel processing is 

needed to observe a redundancy gain (2RedMST), or the effect of practice 

(3RedB) and masking (3RedC and 2RedM&M) on the redundancy gain. This 

section can be skipped without compromising the comprehension of the remaining 

chapters. 

Pilot experiment A (3RedA) 

Method 

Participants. Participants were 4 female undergraduate students from the 

Université de Montréal, between 19 and 25 years of age. All had normal or 

corrected-to-normal vision. Participants were compensated with 8$ per hour for 

their participation. 

Stimuli and apparatus. We used simple two-dimensional geometrical 

objects as stimuli. Stimuli were created in the RGB color space, using Matlab 

(MathWorks Inc., Natick, MA). Stimuli were presented using E-Prime 

(Psychology Software Tools, Inc., Pittsburgh, PA) on a SVGA monitor (refresh 

rate: 85 Hz) at a distance of 80 cm from the participants. The stimuli measured 1.5, 
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2 or 3 °VA (degrees of visual angle); they were either red, green, or blue; and 

lastly, their form was a circle, a triangle or a square (see Figure 1 for an example 

of the stimuli used). Stimuli were presented in front of an equiluminant gray 

background with stimulus luminance at 50% and stimulus saturation at 100% 

percent. Target stimuli possessed one or more of the following attributes: color 

red, form of a circle, and medium size (2 °VA). The presence of any single one of 

these attributes was sufficient to define a given stimulus as a target. Non-target 

stimuli did not possess any of the target attributes. They were either green or blue, 

a triangle or a square and large or small in size.  

Design. 50% of all stimuli presented to participants were targets. To avoid 

contingencies between attributes on different channels which would facilitate 

redundant target recognition, the stimulus distribution shown in Table I (top) is an 

extension of the distribution suggested by Mordkoff and Yantis (1991), following 

the three rules of contingency formulated by Mordkoff and Yantis (1991).  

Procedure. The experiment consisted of 17 blocks with 42 trials per block 

for a total of 714 trials. Stimulus distribution did not vary between blocks, but the 

order of trials was randomized. Participants had the possibility to take a break 

between blocks. The triple redundant target (target with all three target attributes 

present), the three double redundant targets (any two target attributes present, plus 

one of two possible distracters on the third channel), and the three stimuli with 

only one target attribute present, were presented 51 times per participant. Non-

target stimuli were presented 357 times per participant. Each trial started with the 
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presentation of a fixation point for 850 ms. The stimulus was then presented for 

1000 ms. Finally, a feedback slide appeared for 1200 ms, which was followed by a 

blank screen for 1000 ms in preparation for the next trial. 

We used a Go-NoGo experimental paradigm. Participants were required to 

press the SPACE key on a keyboard as soon as they recognized a target stimulus, 

and discouraged from doing so if they recognized a non-target. They were 

encouraged to respond as fast as possible while making as few errors as possible. 

Responses had to happen within a time frame of 0 to 1000 ms after stimulus onset.  

Participants received feedback on their performance on each trial. 

Feedback on false responses was accompanied by a 700 Hz sound. Fast and 

correct performance was further encouraged by a system of points: participants 

were encouraged to try for the best score. Participants received 30 points for hits 

and 15 for correct rejections, 50 for particularly fast hits (under 300 ms), and -350 

points for false alarms and misses. At the end of each block participants were 

given their cumulative score. 
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Figure 1. Examples of stimuli. First column shows stimuli with all three target 

attributes present, second and third columns with three non-target attributes. 

a) Stimuli for experiment 3RedA 

b) Stimuli for experiments 3RedB and 3RedC 

c) Stimuli for experiments 3RedD and 3RedDSat 

d) Stimuli for experiment 3RedE 
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Table I. Stimulus distribution for one block for three target attributes, for 

3redA (top) and all subsequent experiments (bottom). Panels, rows and columns 

show the different attribute values. White fields are non targets, light gray fields 

are stimuli with one target attribute, medium gray fields are stimuli with two target 

attributes, and the dark gray field represents a stimulus with all three target 

attributes present. 

Feature A 

Feature value A1 (target) A2 A3 

 Feature B  Feature B  Feature B 

Feature C B1 
(target) 

B2 B3 Feature C B1 
(target)

B2 B3 Feature C B1 
(target) 

B2 B3 

C1 (target) 3 3  C1 (target) 3 3  C1 (target)    

C2 3  3 C2   3 C2  3 3 

C3    C3  3 3 C3 3 3 3 

 
Feature A 

Feature value A1 (target) A2 A3 

 Feature B  Feature B  Feature B 

Feature C B1 
(target) 

B2 B3 Feature C B1 
(target)

B2 B3 Feature C B1 
(target) 

B2 B3 

C1 (target) 3 3 3 C1 (target) 3 3  C1 (target) 3   

C2 3 3  C2 3  3 C2  3 3 

C3 3   C3  3 3 C3  3 12 
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Results 

Participants performed very well on the task, with an average of 0.1 % of 

misses (1 miss per 357 Go-trials per participant) and 1.3 % of false alarms (9.25 

false alarms per 357 NoGo-trials per participant). They maintained a mean 

response time (RT) of 373 ms with a standard deviation (std) of 91 ms across 

conditions.  

Response times varied greatly across conditions and participants. 

Participants mean response times varied between 400 ms (std: 90 ms) and 314 ms 

(std: 85 ms). Mean response times in conditions where only one target attribute 

was presented (colour only: c, form only: f, or size only: s) were 392, 382, and 485 

ms respectively (std: 79, 78, and 107 ms respectively). In double-redundant 

conditions, i.e. conditions with two target attributes present (colour and form: cf, 

colour and size: cs, or form and size: fs), mean RTs were 319, 342, and 373 ms 

respectively (std: 46, 55, and 78 respectively). In the triple-redundant condition 

(all three target attributes present, cfs) the mean RT was 322 ms (std: 64 ms). Note 

that the variation between participant means is almost half as large as the 

difference in means of the slowest (s) and fastest (cfs) conditions. 

Figure 2 a) shows the cumulative response time distributions of one 

representative participant, for all three single-target conditions, as well as for all 

three conditions where two target attributes were presented simultaneously, and 

the triple redundant condition. The probability of responding at time t or faster is 

plotted as a function of time. All participants were significantly faster in the 



 21

double redundant conditions cf and cs than in their constituent single target 

conditions (mean value of the Anderson-Darling test: cf vs. c: AD = 20.08, cf vs. f: 

AD = 16.69, cs vs. c: AD = 10.44, cs vs. s: AD = 26.53; the critical value of the 

AD test being 2.49 for a type I error rate of .05). All participants also responded 

significantly faster to form and size (fs) than to size alone (mean AD = 18.27). 

However, only participant 2 was significantly faster in condition fs than when only 

form was present as a target attribute (AD = 3.02). In the triple redundant 

condition, all participants were significantly faster than in the double redundant 

condition fs (mean AD = 12.44), three of four participants were faster than in 

condition cs (mean AD = 6.02), and none of the participants was faster than in 

condition cf (mean AD = 1.11).  

Figure 2 b) shows the cumulative response time distributions for a 

representative participant of the three double redundant conditions as well as the 

triple redundant condition. Additionally it shows the Townsend Bound for each of 

these conditions. The Townsend Bound gives the upper limit of race model 

performance, based on the RT distributions of this participant in the single target 

conditions. All four participants respond significantly faster than the Townsend 

Bound in the triple redundant condition (mean AD = 6.73), as well as in the double 

redundant conditions cf (mean AD = 9.00) and cs (mean AD = 7.25). However, in 

the condition fs participants did not pass the Townsend Bound (mean AD = 1.17).  
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Figure 2. Experiment 3RedA: Performance of participant 3. 

a) RT distributions for single, double and triple redundant conditions. 

Dotted coloured lines are the cumulative distributions for single-target 

conditions, full coloured lines for double redundant conditions, black for 

the triple redundant condition.  

b) Townsend Bounds for triple and double redundant conditions. 

Coloured lines are double redundant RT distributions, the black line the 

triple redundant condition. Dotted lines of the same colour are the 

Townsend Bounds for the respective conditions.  
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As was to be expected from previous studies on redundancy gain, we 

managed to replicate findings of double redundancy gain that surpass the 

performance predicted by race models. However, we have not found evidence of a 

triple redundancy gain. 

There are several patterns to be observed in these results. First, the attribute 

size is significantly slower than either colour or form for all participants. Second, 

participants perform equally well when both target attributes form and size are 

present than when colour only or form only are present. Third, performance on 

triple redundant trials and performance on trials with colour and form present does 

not differ significantly for any participant.  

We therefore conclude that even though the Townsend Bound was violated 

for all participants in the triple redundant condition, these results cannot be 

evidence for a possible triple redundancy gain, nor for coactivation as an 

explanation of such a gain. Since the RT distributions for conditions cfs and cf do 

not differ in speed, all the gain in the triple redundant condition can be attributed 

to the presence of colour and form as target attributes. The presence of size does 

not seem to contribute to an additional gain.  

In order to be able to observe a triple redundancy gain, it might be 

important that all target attributes have the opportunity to contribute equally to 

such a gain. If the recognition of one attribute is already much slower than the 

other two, this attribute can only contribute minimally, if at all, since the 
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advantage of its presence is negligible compared to the presence of two easily 

recognisable attributes.  

This leads to the question why response times for size were slower than for 

colour or form. The most noticeable difference is that colour and form are absolute 

values, whereas size is a relative measure. The value of “large” or “small” only 

takes on meaning in relation to a reference, whereas “red” or “square” can be 

defined without a reference. In all further experiments we therefore chose only to 

investigate absolute target attributes. 

We hypothesized that single target response time distributions need to be 

as close as possible to the same speed to be able to observe maximal redundancy 

gain. If one target attribute is processed noticeably slower than the other two, this 

attribute cannot contribute sufficiently to triple redundancy gain. There are a 

number of underlying processes involved in the processing of a visual stimulus 

(e.g. detection, identification, decision, and motor response). The speed of each of 

these processes, depending on the speed of the attribute to be processed, cannot be 

estimated, nor can their mutual independence be established. Therefore it is not 

possible to estimate a priori the processing speed of any given visual attribute. The 

most practicable solution to this problem is to test empirically a large number of 

different attributes until finding a set of three attributes which are processed at 

approximately the same speed. In this case, we would predict that triple 

redundancy gain is larger than double redundancy gain.  
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Further research: General method 

The procedure and design of all further pilot experiments, designed to find 

an appropriate set of target attributes, stayed essentially the same as for the first 

experiment. Stimulus size was maintained at 3°VA (degree of visual angle). 

However, the stimulus attributes change for each experiment. Also, all further 

experiments use a different distribution of stimuli than the one used in 3RedA (and 

as a result of this, a different number of blocks per experiment and trials per 

block). Finally, presentation times of stimuli, as well as the time frame for 

participants to respond, were considerably shortened. 

For all further experiments we used the stimulus distribution illustrated in 

Table I (bottom). This was done for two reasons. First, we felt it was necessary to 

include all possible combinations of attributes. In the distribution proposed by 

Mordkoff and Yantis (1991), target attributes were only combined with other 

target attributes or one of the two possible non-target values. The other non-target 

value was automatically associated with a non-target. In the case of the stimulus 

distribution used in this experiment, this meant that certain target attributes (such 

as the colour red) were never combined with one of the two possible non-target 

values of one of the other two stimulus dimensions (i.e. form or size). In order to 

reduce the impact of the identity of the non-target attribute, we felt that it was 

important for the non-target attribute(s) on single and double redundant targets not 

to be predictable. Secondly, by combining all possible attributes, we had the 

means of evaluating the impact of certain contingencies mentioned by Mordkoff 
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and Yantis (1991, 1993), thereby calculating the contribution of crosstalk to 

redundancy gain. There are now two types of stimuli per double redundant 

condition, one with each type of non-target attribute, therefore we can compare 

RTs in the double redundant conditions depending on non-target type (see chapter 

two for details on this). 

However, this choice made finding a distribution of stimuli with three 

different attributes that satisfied the criteria formulated by Mordkoff and Yantis 

(1991) much harder. In the end, in order to keep 50% of targets, with more 

combinations of target and non-target attributes, and avoid facilitatory 

contingencies, we accepted certain inhibitory contingencies. But, as mentioned 

above, these contingencies would potentially slow down recognition of redundant 

targets, and also, we had the means to evaluate their impact. Therefore this choice 

of a stimulus distribution is conservative with respect to our goal of attributing 

redundancy gain to coactivation, and can be considered valid. 

As a result of the new distribution, subsequent experiments consisted of 16 

blocks per experimental session, with 60 trials per block, for a total of 960 trials. 

Presentation time of the fixation point preceding the stimulus was shortened to 494 

ms, stimulus presentation itself was shortened to approximately 750 ms (this 

varied slightly between experiments, depending on the stimulus). The time limit 

for participants to respond to a stimulus was set at 750 ms after stimulus onset, and 

the feedback slide was presented for 753 ms only. 
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Practice effects 

It is conceivable that practice effects (Newell & Rosenbloom, 1981) could 

have an effect on the observed redundancy gain. Either response times on single 

target trials might improve, thereby leaving less room for redundancy gain, or 

treatment on single target trials might stay the same while participants become 

experts on recognition of redundant trials, i.e. experts at recognising certain 

combinations of attributes. Since the task was fairly easy (low error rates in 

experiment 3RedA), we judged that practice effects if any would be visible after 

the completion of two sessions of approximately 45 minutes each. This hypothesis 

was tested in the following experiment.  

3RedB : Colour, form and letter 

Method. Three female undergrads from the Université de Montréal, with 

normal or corrected-to-normal vision, were compensated with 8$ for their 

participation. For the reasons mentioned above, the target attribute size was 

replaced by the attribute letter. Stimuli were 3°VA in size, and varied in colour 

(red, green, or blue) and form (circle, square, or triangle). Each shape contained a 

cut out letter (either an H, a U or a B) of 2.7 degrees of visual angle (see Figure 1 

b). Target attributes were red, circle, and the letter B. The letter B as a target was 

chosen because it shares attributes with both non-target letters. This experiment 

consisted of two experimental sessions, each with 960 trials, which were 

completed over two consecutive days by three subjects. This was done to test for 

potential effects of training that might influence the amount of redundancy gain 
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observed. All other design and procedure details remain the same as mentioned 

above. 

Results. Error rates were as low as expected, with 0.07 % of misses (0.33 

misses per 480 Go-trials) and 0.69 % of false alarms (3.33 per 480 NoGo-trials) in 

session one, and 0.07 % of misses (0.33 per 480 trials) and 1.11 % of false alarms 

(5.33 per 480 trials) in session two. Neither the number of misses (t(4) = 0, p = 1) 

nor the number of false alarms (t(4) = -0.59, p = 0.59) differed significantly 

between sessions. 

An analysis of variance of mean response times by condition and session 

reveals that all participants respond significantly faster in session two than in 

session one (F(1,28) = 12.22, p < 0.002), and faster in the triple redundant 

condition than in the double or non-redundant conditions (F(6,28) = 3.26, p < 

0.015). However, there is no interaction between condition and session (F(6,28) = 

0.2, p = 0.97). We conclude that although practice does have an effect on response 

times, performance increases equally independent of the degree of redundancy. 

Therefore there is no effect of practice on the amount of redundancy gain between 

conditions. All subsequent experiments will contain only one experimental session 

of the above-mentioned length. 

Analogous to other experiments, analysis of redundancy gains is done only 

on session one. As expected, participants mean response times varied a lot 

(participant 1: 393 ms (std 68); participant 2: 478 ms (std 155); participant 3: 362 

ms (std 69)), as did response times between conditions. Mean response times in 
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conditions where only one target attribute was presented (colour only: c, form 

only: f, or letter only: l) were 417, 482, and 459 ms respectively (std: 98, 132, and 

163 ms respectively. In double-redundant conditions, i.e. conditions with two 

target attributes present (colour and form: cf, colour and letter: cl, or form and 

letter: fl), mean RTs were 389, 383, and 423 ms respectively (std: 85, 93, and 122 

respectively). In the triple-redundant condition (all three target attributes present, 

cfl) the mean RT was 358 ms (std: 84 ms).  

Figure 3 a) shows the cumulative response time distributions of one 

representative participant, for all three single-target conditions, as well as for all 

three conditions where two target attributes were presented simultaneously, and 

the triple redundant condition. The probability of responding at time t or faster is 

plotted as a function of time. Only one participant showed a significant double 

redundancy gain for all three double redundant conditions over all single target 

conditions (value of the Anderson-Darling test between 28.42 and 6.96; the critical 

value of the AD test being 2.49 for a type I error rate of .05). For the other two 

participants, the combination of form and letter was not significantly faster than 

letter only, the faster of the two single target conditions (mean AD = 1.01). The 

combination of colour and letter was significantly faster than colour, the faster of 

the two single-target conditions, for one participant, but not for the other (AD = 

2.60 and AD = 0.66 respectively). In the triple redundant condition, all participants 

were significantly faster than in the double redundant condition fl (mean AD = 

14.74), and two out of three participants were faster than in condition cl (mean AD 

= 4.26) and in condition cf (mean AD = 8.16). 
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Figure 3. Experiment 3RedB: Performance of participant 3. 

a) RT distributions for single, double and triple redundant conditions. 

Dotted coloured lines are the cumulative distributions for single-target 

conditions, full coloured lines for double redundant conditions, black for 

the triple redundant condition.  

b) Townsend Bounds for triple and double redundant conditions. 

Coloured lines are double redundant RT distributions, the black line the 

triple redundant condition. Dotted lines of the same colour are the 

Townsend Bounds for the respective conditions.  
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Figure 3 b) shows the cumulative response time distributions for a 

representative participant of the three double redundant conditions as well as the 

triple redundant condition. Additionally it shows the Townsend Bound for each of 

these conditions. The Townsend Bound gives the upper limit of race model 

performance, based on the RT distributions of this participant in the single target 

conditions. All three participants responded significantly faster than the Townsend 

Bound in the triple redundant condition (mean AD = 3.02). However, in all three 

double redundant conditions, only one participant was significantly faster than the 

corresponding Townsend Bound (cf: AD = 4.90; cl: AD = 6.62; fl: AD = 3.48). 

Not all participants showed a significant redundancy gain in the double 

redundant conditions, let alone a gain large enough to overcome the Townsend 

Bound, and thus provide evidence against race models. Therefore we conclude that 

the gain observed in the triple redundant condition is again due to the interaction 

of two target attributes, without contribution of a third. This is supported by the 

fact that for all participants, the attribute form is processed slower than the other 

two attributes. Notably, when comparing the response time distributions of the 

double redundant conditions cf and fl to the distributions for single attributes, cf 

and c are practically overlapping (see Figure 3 a), as are fl and l, whereas form is 

visibly slower. Even at a double redundant level, one can conclude that form 

hardly contributes to an increase in performance. Since in experiment 3RedA form 

and colour were processed at approximately the same speed, we conclude that the 

relative decrease of performance for form is related to the addition of the attribute 

letter. This might be because letter and form are essentially two variations of the 
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same attribute, or because the attribute letter is more familiar (participants are 

exposed to letters innumerable times in everyday life), and might therefore be 

processed more easily (Wang, Cavanagh & Green, 1994). 

Effects of masking 

In an attempt to counteract the processing advantage the attribute letter has 

over form, stimuli were masked after a brief delay in the subsequent experiment. 

We hypothesised that since “reading” of a letter happens at a later stage in the 

processing pathway than identification of form (Kandel et al., 2000), a very brief 

exposure of the stimulus would force participants to process form and letter 

similarly, and thus equalise response time distributions of the two attributes. 

Another reason for masking was to avoid benefit from a visual imprint or 

afterimage left by the stimulus.  

3RedC: Masked 

Method. Six undergrads (3 male) from the Université de Montréal, with 

normal or corrected-to-normal vision, were compensated with 8$ for their 

participation. Stimuli remained the same as for 3RedB (Figure 1b), except that the 

target colour was switched to green because this colour is less salient than red, in 

an attempt to render colour recognition slightly more difficult. The target form was 

also switched from circle to square, because a square shares attributes of each of 

the other two attributes, analogous to the target letter B, which shares 

characteristics of both non-target letters. Masks were constituted of four quadrants 
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from four randomly selected stimuli. Stimuli were presented for 75 ms, followed 

by a mask for 925 ms. All other methodological details are the same as mentioned 

above. 

Results. Error rates were still low, although a little higher than in previous 

experiments, with 2.08 % of misses (10 misses per 480 Go-trials) and 4.03 % of 

false alarms (19.3 per 480 NoGo-trials). Mean response times varied between 364 

ms and 519 ms across participants.  

Mean response times over all participants in conditions where only one 

target attribute was presented (colour only: c, form only: f, or letter only: l) were 

458, 476, and 485 ms respectively (std: 134, 149, and 125 ms respectively). 

Compared to experiment 3RedB, the difference between the mean RT of the 

fastest and slowest single-target condition has more than halved (3RedB: 65 ms; 

3RedC: 27 ms). Processing speed of the three attributes seems to be more similar. 

The double-redundant conditions also had very similar mean RTs (cf: 409 ms (std 

119 ms); cl: 420 ms (std 105 ms); fl: 419 ms (std 114 ms)). In the triple-redundant 

condition the mean RT was 384 ms (std: 100 ms).  

Figure 4 a) shows the cumulative response time distributions of one 

representative participant, for all three single-target conditions, as well as for all 

three conditions where two target attributes were presented simultaneously, and 

the triple redundant condition. The probability of responding at time t or faster is 

plotted as a function of time. Five participants responded significantly faster in 

double redundant condition cf than in condition c (mean AD = 7.50; the critical 
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value of the AD test being 2.49 for a type I error rate of .05) and four participants 

faster than condition f (mean AD = 10.38). Two and four participants responded 

faster in condition cl than in conditions c (mean AD = 6.82) and l (mean AD = 

11.27). Five participants responded significantly faster in condition fl than in f 

(mean AD = 5.04) or l (mean AD = 11.52). In the triple redundant condition, three, 

five and four participants responded significantly faster than in the conditions cf 

(mean AD = 5.10), cl (mean AD = 7.27), or fl (mean AD = 9.05) respectively.  

Figure 4 b) shows the cumulative response time distributions for a 

representative participant of the three double redundant conditions as well as the 

triple redundant condition. Additionally it shows the Townsend Bound for each of 

these conditions. The Townsend Bound gives the upper limit of race model 

performance, based on the RT distributions of this participant in the single target 

conditions. Only one participant, in condition cf, performed significantly faster 

than the Townsend Bound for that condition (AD = 4.85). All other response time 

distributions in double or triple redundant conditions were not significantly 

different from their respective Townsend Bounds. 
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Figure 4. Experiment 3RedC: Performance of participant 3. 

a) RT distributions for single, double and triple redundant conditions. 

Dotted coloured lines are the cumulative distributions for single-target 

conditions, full coloured lines for double redundant conditions, black for 

the triple redundant condition.  

b) Townsend Bounds for triple and double redundant conditions. 

Coloured lines are double redundant RT distributions, the black line the 

triple redundant condition. Dotted lines of the same colour are the 

Townsend Bounds for the respective conditions.  
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The total absence of evidence in favour of coactivation models in this 

experiment is rather surprising, especially so since conditions for observing 

maximal redundancy gain were better here than in previous experiments (given 

our assumption is correct in that redundancy gain is maximal if single targets are 

processed as close as possible to the same speed). The variance between 

processing speed of single targets is smaller in this experiment than in previous 

ones, and processing speed for letter is similar to that of form – for some 

participants, form is even faster than letter. 

We hypothesize that the disappearance of evidence against race models 

might be related to the masking of stimuli. To test for a causal relation between 

masking and the amount of redundancy gain observed, an experiment which 

balances masked and non-masked trials is conceived. 

2RedM&M: Masked / Unmasked 

Method. To test the effect of a mask on redundancy gain, response times of 

four undergrads (1 female) from the Université de Montréal, with normal or 

corrected-to-normal vision, were measured in a Go-NoGo paradigm, with stimuli 

defined by two attributes, colour and form. Target stimuli were green and/ or 

square. Masks consisted of quadrants from four randomly selected stimuli. The 

experiment consisted of two experimental sessions, one in which stimuli were 

masked, the other in which they were unmasked, counterbalanced across 

participants. Sessions consisted of 576 trials each, half of which were non-target 

trials. Stimuli were presented for 1000 ms in the unmasked condition and for 75 
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ms, followed by a mask of 925 ms, in the masked condition. Analogous to the 

3Red experiments, stimuli were preceded by a fixation point and followed by a 

feedback slide. 

Results. An analysis of variance of mean response times by subject, 

stimulus type (redundant, colour only or form only) and session (masked or 

unmasked) reveals that although participants respond significantly faster to 

redundant than to non-redundant stimuli (F(2,8) = 10.43, p < 0.006), response 

times do not differ whether stimuli are unmasked or masked (F(1,8) = 0.65, p = 

0.44), and there is no interaction between stimulus type and session (F(2,8) = 1.84, 

p = 0.22) (see Figure 5 for a plot of mean response times by session and stimulus 

type). We conclude that masking does not have an effect on response times in 

general, or on the amount of redundancy gain between conditions. 
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Figure 5. 2RedM&M: effect of condition and masking on response times. 

Conditions are plotted on the x-axis. Mean response times when stimuli were 

masked are plotted in red, unmasked in blue. 
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In order to find an answer to two major problems in the previous 

experiments, we decided to look at the structure of the visual processing pathway 

in the brain. First, this might help us find an appropriate combination of three 

target attributes. Up to now, one attribute was always considerably slower than the 

other two, and therefore affected the triple redundancy gain. Second, we needed to 

explain the mixture of our results: for some combinations (pairs or set of three) of 

attributes we find redundancy gain significantly faster than the Townsend Bound, 

for others no redundancy gain, or gain but not above the Townsend Bound. This 

could also be related to the structure of visual processing areas.  

Note that we do not wish to establish a causal relation between the 

structure of the visual system and our results. We merely use it as an indication to 

point us in the right direction. The main foundation for the conception of further 

experiments remains empirical data.  

Early processing stages 

Visual processing is organised in a hierarchical fashion, going from the 

analysis of single neuron responses to more and more complex units of 

information (Maunsell & Newsome, 1987). The primary visual processing area V1 

is the first area of visual processing to receive input from both eyes, both from the 

Magnocellular and Parvocellular pathway (Hubel & Wiesel, 1979; Hubel, 1988). 

V1 is selective to orientation and spatial frequency information, which is used to 

define contours, one of the most basic features to be extracted from visual input 

(Hubel & Wiesel, 1962, 1979). Contours are what is essentially used in form 
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recognition, which means that form recognition can happen at a processing stage 

as early as V1. V1 is also selective to colour (Hubel, 1988; Livingstone & Hubel, 

1987).  

Colour and form seem to be the most reliable attributes across experiments 

(they are processed at roughly the same speed and produce redundancy gain fairly 

reliably faster than the Townsend Bound). If we break down form into its two 

components, spatial frequency and orientation, we get a set of three attributes 

which are all processed at a very early level in visual processing, and all in the 

same area, namely in V1. Since we know that colour and form are processed at 

roughly the same speed, we hypothesize that these three attributes will be as well.  

3RedD : colour, orientation, frequency 

Method. To test this hypothesis, four undergrads (1 male) from the 

Université de Montréal, with normal or corrected-to-normal vision, participated in 

an experiment similar to those described above, with stimuli being defined by 

three attributes: colour, spatial frequency of bars and orientation of bars. Stimuli 

consisted of squares (size: 3°VA) filled with a sinusoidal gratings alternating 

between colour and gray of different cycle length and orientation. Luminance of 

stimuli was reduced to 20%, and saturation to 50%. Stimuli were presented in 

front of a gray background with luminance reduced to 20%. This was done to slow 

down the recognition of target attributes, in particular colour, thereby leaving more 

room for improvement due to redundancy. Also, the attribute spatial frequency is 

again a relative instead of an absolute attribute. Therefore the disadvantage to 
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colour is also an effort to compensate roughly for the disadvantage of spatial 

frequency. The target colour was switched to blue because in low luminance and 

saturation, blue is less salient than red or green. Again, this is an effort to render 

colour recognition slightly more difficult. Target spatial frequency was a cycle of 

0.25°VA (non-targets: 0.5 and 0.75°VA), and target orientation was diagonal 

(non-targets: vertical and horizontal). See Figure 1 c) for an example of stimuli. 

Stimuli were presented for 750 ms. All other methodological details are the same 

as mentioned above. 

Results. Error rates were low, with 1.30 % of misses (6.25 misses per 480 

Go-trials) and 1.20 % of false alarms (5.75 per 480 NoGo-trials). Mean response 

times varied between 407 ms and 467 ms across participants. The reduced 

luminance and saturation do not seem to have affected performance relative to 

previous experiments.  

Mean response times in conditions where only one target attribute was 

presented (colour only: c, frequency only: f, or orientation only: o) were 432, 469, 

and 487 ms respectively (std: 82, 73, and 96 ms respectively, and did not differ 

significantly (F(2,6) = 2.85, p = 0.11). The double-redundant conditions also had 

very similar mean RTs (cf: 405 ms (std 54 ms); co: 409 ms (std 69 ms); fo: 434 ms 

(std 67 ms); F(2,6) = 1.37, p = 0.30). In the triple-redundant condition the mean 

RT was 394 ms (std: 52 ms).  

Figure 6 a) shows the cumulative response time distributions of one 

representative participant, for all three single-target conditions, as well as for all 
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three conditions where two target attributes were presented simultaneously, and 

the triple redundant condition. The probability of responding at time t or faster is 

plotted as a function of time. All participants showed a significant double 

redundancy gain for all three double redundant conditions, with the exception of 

two participants, who were not significantly faster than for colour alone in the 

corresponding redundant conditions cf and co. All participants were also 

significantly faster in the triple redundant condition than in the condition fo (mean 

AD = 10.02; the critical value of the AD test being 2.49 for a type I error rate of 

.05). However, cfo and cf did not differ for any participant (mean AD = 1.61), and 

cfo and co differed for only one participant (AD = 2.90)  

Figure 6 b) shows the cumulative response time distributions for a 

representative participant of the three double redundant conditions as well as the 

triple redundant condition. Additionally it shows the Townsend Bound for each of 

these conditions. Only in conditions cf and cd, one participant performed 

significantly faster than the Townsend Bound (AD = 2.75 and 2.52 respectively). 

All other response time distributions in double or triple redundant conditions were 

not significantly different from their respective Townsend Bounds.  

Although the three single target attributes are processed at roughly the 

same speed, and although we are able to refute race models as an explanation for 

double redundancy gain, there is still no evidence for triple redundancy gain in this 

experiment. We therefore decided to try and increase the task difficulty again by 

reducing saturation to a minimum. 
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Figure 6. Experiment 3RedD: Performance of participant 2. 

a) RT distributions for single, double and triple redundant conditions. 

Dotted coloured lines are the cumulative distributions for single-target 

conditions, full coloured lines for double redundant conditions, black for 

the triple redundant condition.  

b) Townsend Bounds for triple and double redundant conditions. 

Coloured lines are double redundant RT distributions, the black line the 

triple redundant condition. Dotted lines of the same colour are the 

Townsend Bounds for the respective conditions.  
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 3RedDSat: low saturation 

Method. Four female undergrads from the Université de Montréal, with 

normal or corrected-to-normal vision, participated. Luminance of stimuli and 

background remained at 20%, whereas saturation of stimuli was reduced to 10%. 

All other details remained the same as in 3RedD. 

Results. Although the percentage of misses stayed in the same range as for 

previous experiments (1.40 %; 6.75 misses per 480 Go-trials), the number of false 

alarms increased (3.70 %; 17.75 per 480 NoGo-trials). Apart from that, all result 

patterns from 3RedD were essentially reproduced. Mean response times between 

single target conditions did not differ (F(2,6) = 2.19, p = 0.19). With four 

exceptions, response times of all participants in double redundant conditions were 

significantly faster than in all single target conditions, and faster for cfo than for 

fo. Only one participant managed to respond faster to cfo than to both cf and co. 

Performance on double and triple redundant trials did not differ significantly from 

the Townsend Bound (AD < 2.42).  

In light of the results of the two previous experiments, we decided to revert 

back to colour and form as two target attributes. We decided to add direction of 

movement as a third attribute. Motion is another feature which is extracted very 

early on from visual input, also as early as in V1, and mainly in the medial 

temporal cortex MT (Maunsell & van Essen, 1983; Born & Bradley, 2005). Visual 

input is divided depending on type, and processed along two main processing 

pathways: Motion is processed in the dorsal “Where” pathway, whereas colour and 
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form are processed mainly in the ventral “What” pathway (Goodale & Milner, 

1992), and both are largely independent of each other (Livingstone & Hubel, 

1987).  

3RedE1: colour, form, and movement 

Method. Eight participants took part in this experiment. Stimuli are defined 

by three features: colour, form and direction of movement, target attributes being 

blue, square, and/ or movement to the right. Luminance of stimuli was reduced to 

20%, and saturation to 30%. Stimuli were presented in front of an equiluminant 

gray background. Stimuli started out at the center of the screen, and then moved 

outward for 4.5°VA, at an angle of 45° (target), 165° or 285°. Target stimuli were 

blue and/ or square and/ or moved to the right. See Figure 1 d) for an example of 

stimuli, and chapter two for further details on methods.  

Results. There is no significant difference between mean response times for 

targets defined by colour, form or direction of movement (F(2,14) = 0.54, p = 

0.59). The majority of subjects showed significant triple and double redundancy 

gain, often significantly faster than predicted by the respective Townsend Bound. 

In order to get more data, an additional 16 participants were measured in the same 

experimental setup. Since there were no significant differences between error rates 

and mean response times of all 24 participants (see chapter 2), they will be 

analysed together. For more details on method and results, refer to chapter two.  
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Do certain brain areas favour coactivation? 

Another hypothesis we pursued for a while was that coactivation is specific 

to certain brain regions, and therefore we found evidence of coactivation for some 

attributes, but not for others. There is evidence that the visual area V4 for instance 

responds selectively to combinations of colour and form, or that response to form 

is modulated by information on colour (Zeki, 1977; Motter, 1994). This could be a 

possible explanation why the combination of colour and form worked better than 

other attribute combinations to produce a redundancy gain. Other areas in the 

visual cortex where evidence exists that they respond selectively to combinations 

of features include the inferotemporal (IT) cortex (colour and shape; Lueschow, 

Miller & Desimone, 1994; Komatsu & Ideura, 1993), MT (speed and direction; 

Maunsell & van Essen, 1983), and the medial superior temporal cortex MST 

(perceived depth and direction of motion; Roy, Komatsu & Wurtz, 1992; 

Graziano, Anderson & Snowdon, 1994).  

It is not surprising that later areas on the visual processing pathway such as 

the IT or MST are selective to combinations of features. The further along an area 

is situated on the processing pathway, the more complex the features it is selective 

to become, i.e. they are constituted of several less complex features as their 

individual components. Area MST is selective to the optical flow of objects, i.e. 

the apparent motion of objects when the observer moves (Duffy & Wurtz, 1995). 

The apparent motion depends on the degree of binocular disparity or perceived 

depth and the perceived direction of movement.  
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In order to test whether coactivation could be correlated to combined 

selectivity of features, we conceived a target detection task with two target 

attributes other than colour and form to which a combined selectivity exists. 

Should we find evidence for such a correlation, we predict that triple redundancy 

gain is only possible for features that a specific brain area is selective to in 

combination.  

2RedMST : perceived depth and direction of movement 

Method. To study the redundancy gain due to perceived depth and direction 

of movement, response times of eight undergrads (5 male) from the Université de 

Montréal, with normal or corrected-to-normal vision, were measured in a Go-

NoGo paradigm, with stimuli defined by two attributes, perceived depth and 

direction of movement. Participants were selected due to their ability to perceive 

depth using red / cyan 3D glasses, and were required to wear these glasses 

throughout the experiment.  

Stimuli measured 3°VA, and consisted of two superposed images of two 

squares (one inside the other and connected at the corners), one in red and one in 

cyan. They were conceived such that while wearing red / cyan 3D glasses, the 

outer square appeared level with the computer screen and the inner square seemed 

to be either in front of, level with or behind the computer screen (see Figure 7 a) 

for examples of the different degrees of perceived depth of stimuli). Participants 

were told stimuli resembled either a pyramid (inner square in front) or a hallway 

(inner square behind screen) or were flat. Stimuli moved outwards from the center 
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of the screen for 6°VA during ten frames at an angle of 90°, 180°, or 270°. The 

relative position of the inner square with respect to the outer square changed 

progressively with the movement, in order to maintain the illusion of three-

dimensionality. See Figure 7 b) for an example of a pyramid moving to the right 

(first, middle, and last frame). Target stimuli were pyramids and/ or moving to the 

left.  

The experiment consisted of eleven blocks with 63 trials per block. 

Response times and performance for the first 15 trials per block (nine Go trials) 

was not measured, as these were considered training trials. 50% of the 48 test trials 

were Go trials, 8 of which were redundant target trials. For each trial, participants 

viewed a blank screen for 490 ms (followed by a text message for 644 ms in the 

training trials, telling participants if the next stimulus was a pyramid, a hallway, or 

neutral), a fixation point level with the screen for 490 ms, the stimulus at the 

screen center for 294 ms, followed by ten frames of outward movement, the first 

nine for a duration of 42 ms, and the last frame lasting 98 ms, and finally a 

feedback slide for 742 ms. Participants were required to respond to Go trials faster 

than 775 ms. All other details were similar to previous experiments.  
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Figure 7. Examples of stimuli for the experiment 2RedMST 

a) Three attributes of the feature depth, from left to right: in front of screen 

(target), behind screen, and on the same level as screen 

b) Example of optical flow for a stimulus in front of screen moving to the 

right. From left to right: initial frame, presented in screen center; middle 

frame, presented at 3°VA of screen center; last frame, presented at 6°VA 

from center of the screen. 
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Results. Error rates were very high, with 37.14 % of misses (140.38 misses 

per 396 Go-trials) and 15.18 % of false alarms (57.38 per 360 NoGo-trials). Mean 

response times varied between 437 ms and 614 ms across participants. Both high 

error rates and high between-participant variability in mean response times reflect 

the difficulty of the task. Figure 8 a) shows mean response times per subject and 

condition. Mean response times when only the target attribute depth was present 

(mean: 479 ms, std: 140) were significantly faster than when only movement was 

present (mean: 592 ms, std: 75 ms; t(14) = -2.69, p < 0.01). All participants 

showed this pattern, except one, for whom movement recognition was faster than 

depth recognition. In the redundant condition the mean RT was 482 ms (std: 114 

ms). Figure 8 b) shows the cumulative distributions of a representative participant 

in the single target and redundant conditions. All but one participant performed 

significantly faster in the redundant condition than for movement only (mean AD 

= 19.91), and only this participant performed significantly faster than for depth 

only (AD = 32.23), all others did not (mean AD = 1.35). None of the participants 

violated the Townsend Bound in the redundant condition.  

All participants seem to rely on one feature (depth for seven out of eight 

participants) to recognise target objects. Only when this has been identified as a 

non-target do they move on to the second feature. This explains why RT 

distributions for the “dominant” attribute and the redundant condition are virtually 

superimposed for all participants, and why no redundancy gain is observed. This 

pattern is possibly caused by the increased difficulty of the task, which seems to 

force a serial instead of parallel processing of attributes, thus making redundancy 
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gain impossible (Van der Heijden et al., 1983, Krummenacher, Müller & Heller, 

2001). In view of these results, we cannot confirm or reject the hypothesis of 

combined selectivity to explain coactivation. We therefore turn from trying to find 

a biological explanation of our results to modelisation. Additionally, in order to 

gain more information on which to build possible models of redundancy gain, we 

investigate the characteristics of redundancy gain more closely. 
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Figure 8. Experiment 2RedMST. 

a) Mean response times per subject and condition. Error bars represent std. 

Participants are plotted on the x-axis, the red line plots the mean RTs for 

depth recognition, the blue line for direction of movement, and the black 

line for redundant targets  

b) RT distributions and Townsend Bound for single and double 

redundant conditions (participant 2). The red line is the cumulative RT 

distribution for depth, blue for direction of movement, black for redundant 

targets. The black dotted line is the Townsend Bound.  
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Characteristics of redundancy gain 

The universally acknowledged effect of redundancy gain is a decrease of 

response times to a redundant target as opposed to non-redundant targets. 

However, there could well be other manifestations of redundancy on response 

times, which are not related to a decrease. We investigated this possibility using 

the data from experiment 3RedE, the main experiment of this thesis, with target 

attributes colour, form and direction of movement (see chapter 2 for details, and 

above for details on the corresponding pilot, 3RedE1). We fitted Weibull 

distributions to response time distributions for all participants and conditions, and 

analysed parameter changes between redundant and non-redundant conditions. 

Weibull distributions are characterised by three parameters: 1) shift, the onset, or 

minimum of the distribution; 2) scale, the range of the distribution; and 3) 

symmetry, the degree to which tail ends of a distribution are symmetrical. 

Redundancy gain could manifest itself in a change of any or all of these 

characteristics.  

When comparing parameters over conditions, we found that shift decreases 

for redundant targets, scale remains constant, and symmetry increases. Race 

models predict shift to remain constant. They are not compatible with minimal 

response times decreasing in redundant conditions, and therefore are not 

compatible with the parameter variations observed here. However, the predictions 

of coactivation models are less clear; therefore we tested them in a series of Monte 

Carlo simulations. These simulations showed that coactivation models predict a 
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decrease in shift. However, they cannot account for an increase in symmetry, and 

are therefore not compatible with the pattern of parameter change observed in the 

experimental data either. Further details on fitting and simulation methods and 

results can be found in chapter two. 

In conclusion, redundancy gain is characterised by a decrease in mean 

response times, a decrease in minimal response times in particular, and an increase 

in symmetry of the distribution of response times. This pattern is not fully 

predicted by either race models or coactivation models. Therefore, the possibility 

of a model that does explain this pattern needs to be investigated. 
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Modelling 

Studying the structure of the visual processing pathways did not provide 

insights as to why we observed a violation of the Townsend Bound in some cases 

but not in others. We initially turned to modelling in order to find an alternative, 

unifying model, which fitted all our results. The experimental data from pilots (see 

above) and main experiment (see chapter two) does not point conclusively to a 

single causal explanation for redundancy gain, be it race models, crosstalk or 

coactivation. Rather, the results seem to favour one theory for one set of target 

features, and another for a different combination of features. We therefore decided 

to construct a single alternative model to account for all the data. A parsimonious, 

unified approach would be preferable to multiple explanations, as target features 

are presented unimodally. If a new model, in addition to already existing ones, is 

to make sense, we would expect it to predict absence of redundancy gain in some 

cases, and violation of the Townsend Bound in others, as well as the decrease in 

shift and increase in symmetry of response times in redundant conditions, thereby 

also providing a unified explanation for often contradictory literature on 

redundancy gain.  

First attempts at modelling our data were based on exemplar-based 

memory models (Estes, 1986; Nosofsky, Clark & Shin, 1989; Cohen & Nosofsky, 

2000). By modifying the level of noise with which different features of an 

exemplar stimulus are encoded, we tried to modulate the recognition rate, thus 
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simulating an RTE. These attempts were not successful, and we did not continue 

efforts in this direction.  

We developed the cascade race model, a model where channels are 

triggered by a cascade of activations before satisfying a single decision criterion 

(hence the name cascade), to explain our results. Indeed, the cascade race model is 

consistent with an absence of redundancy gain as well as a violation of the 

Townsend Bound; it predicts an increase in symmetry and a decrease in minimal 

response times for redundant conditions (further details on parameters and 

predications of the cascade race model in chapter two). We therefore propose the 

cascade race model as a unifying explanation of response time behaviour for 

redundant targets. 
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Final research questions 

During the series of pilot experiments described above, the following 

research questions emerged. These questions will be explored in the subsequent 

two chapters, and in their answer lies the main contribution of this thesis:  

(1) Is triple redundancy gain possible? If so, does it exceed the 

Townsend Bound (in particular the Townsend Bound for mixed 

models)? 

(2) Does redundancy gain manifest itself in other ways than a shift in 

mean of response time distributions (i.e. change in symmetry, scale, 

or at the tail ends of a distribution)?  

(3) Which statistical test is the most powerful and accurate for 

detecting changes in response time distributions? 

(4) Can coactivation models explain all observed differences in 

response time distributions?  

(5) If not, can we find a model which does explain the entirety of our 

results? 
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Coactivation results cannot be explained by pure coactivation models 
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Abstract 

Response times in a visual object recognition task decrease significantly if 

targets can be distinguished by two redundant attributes. Redundancy gain for two 

attributes has been commonly found, but redundancy gain from three attributes has 

been found only for stimuli from three different modalities (tactile, auditory, and 

visual). This study extends those results by showing that redundancy gain from 

three attributes within the same visual modality (color, form and direction of 

movement) is possible. It also presents evidence that neither race models nor 

coactivation models can account for such a gain, and introduces a novel method of 

detecting triple redundancy gain that surpasses race model predictions. Finally, the 

cascade race model is introduced. This new model can explain the results from this 

study as well as previous research on redundancy gain. It thus provides a unifying 

account of the redundant target effects. 
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Introduction 

The environment surrounding us can be subdivided into distinct sources of 

information that are used to make a decision about the identity of objects. Sources 

of information are from different modalities (e.g. auditory, visual) with different 

types of information within each modality (e.g. color, form, direction of motion 

within the visual modality). These features are processed and identified separately 

(although not necessarily independently) by the visual system through specialized 

processing channels before the object is perceived as a whole (Treisman & 

Souther, 1985; Kandel, Schwartz & Jessell, 2000; Ungerleider & Mishkin, 1982; 

Milner & Goodale, 1993). 

In some cases, a single feature (e.g., the color) is sufficient to recognize an 

object. Treisman & Souther (1985) have shown that if a target object differs from 

several distracters by one distinct feature alone (e.g., a red square among green 

squares) it can be detected rapidly, accurately and without conscious effort. The 

detection is also independent of the number of surrounding distracters. This is 

known as the pop-out effect (Treisman & Souther, 1985).  

In other cases, a combination of several features is needed for an 

unambiguous identification. If the joint identification of two or more features is 

necessary to distinguish a target object from several distracters (e.g., a red square 

among green squares and red circles), target recognition becomes slower and 

error-prone. Even if the target itself is unique among the distracters, it shares at 
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least one feature with any one of the distracters, which makes it less easily 

distinguishable. This task requires central attention and its difficulty increases 

proportionally with the number of distracters.  

In yet other cases, target detection or recognition is facilitated by the 

presence of multiple target attributes. If a target object is defined by several 

features and the presence of either one of them on its own – as opposed to a 

combination of all target features – is sufficient to unambiguously recognize the 

target, target recognition is faster when more than one target feature is present. For 

example, red squares (i.e. targets with both features) will be detected faster than 

red circles or green squares (i.e. targets with only one of the two features). This is 

known as the Redundant Signals Effect (Kinchla, 1974) or the Redundant Target 

Effect (RTE; Miller, 1982).  

The Redundant Target Effect (RTE) is a phenomenon that has proven to be 

consistent and stable whenever attention needs to be divided among several 

modalities, locations or feature dimensions and when several input channels 

separately provide the necessary information to perform a task (Miller, 1982; Van 

der Heijden, La Heij & Boer, 1983; Kinchla & Collyer, 1974; Van der Heijden, 

1975). Bimodal and even trimodal detection tasks show facilitation if a stimulus is 

presented on several different modalities more or less simultaneously (Bimodal: 

Wundt, 1880; Fidell, 1970; Mulligan & Shaw, 1980; Miller, 1982; Trimodal: Van 

der Heijden et al., 1983; Diederich & Colonius, 2004, Krummenacher, Müller & 

Heller, 2001, Miller, 1981, Marzi et al., 1996).  
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The Redundant Target Effect generalizes across target dimensions – form, 

color, orientation, etc. (Miller, 1982; Mordkoff & Yantis, 1993; Feintuch & 

Cohen, 2002), as well as letters and words (Morton, 1969) – and modalities 

(visual, auditory, and tactile; Diederich, 1995). The fact that reaction times profit 

from redundant signals, at least under most conditions and tasks, provides sound 

evidence that parallel rather than serial processing of input does happen. The RTE 

cannot be explained without assuming parallel processing at some stage of the 

processing pathway (Van der Heijden et al., 1983; Krummenacher et al., 2001). 

However, several factors influence the size or the appearance of the RTE. 

Some of these are linked to the experimental design – for example distracter 

presence or absence. If only one stimulus is present during single target trials, then 

the RTE is much smaller than if a distracter is present on the other channel on 

single target trials (Miller, 1982; van der Heijden, Schreuder, Maris & Neerincx, 

1984). It seems that attention focused on one channel – as opposed to divided 

attention in cases where two or more channels have to be monitored – is sufficient 

to reduce, or in some cases, to completely compensate for any redundancy gain 

(Miller, 1982). The type of task is also important: redundancy gain is typically 

observed in experimental paradigms of the type Go-NoGo, where a response is 

required of the participant if and only if any one of several redundant features is 

present (Miller, 1982; Mordkoff & Yantis, 1991, 1993; Diederich 1995). 

Redundancy gain has also been found in a two-alternative-forced-choice paradigm 

(2AFC; Fidell, 1970), but it is not as large as in Go-NoGo paradigms (Grice & 

Reed, 1992). Also, it is not entirely clear whether a gain in 2AFC paradigms is 
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really due to parallel processing of redundant target features (van der Heijden et 

al., 1983).  

The spatial location of two redundant visual targets affects RTE as well: 

the farther they are apart, the lesser is the redundancy gain (Feintuch & Cohen, 

2002; Colonius & Diederich, 2004). However, if targets in spatially different 

locations are bound together by grouping, the redundancy gain can be increased 

considerably, as they are then perceived as belonging to the same object (Feintuch 

& Cohen, 2002). 

Several types of models have been proposed to explain the redundant target 

effect: race models, coactivation models and various hybrids of these two. Both 

race and coactivation models are generally based on the assumption of 

independent channels that contribute to the accumulation of evidence. It is rather 

unlikely, however, that this assumption holds in reality. Mordkoff and Yantis 

(1991) showed that activity on one channel can be influenced by events on another 

channel, and several authors introduce lateral inhibition between channels to be 

able to explain their results on various reaction time tasks (Usher & McClelland, 

2001; Huber & Cousineau, 2004). 

The race model was one of the first models proposed to explain the RTE 

(Raab, 1962). It assumes independent channels separately accumulating evidence 

in favor of the specific signal or feature to which they are tuned. As soon as one of 

the channels has accumulated enough evidence to surpass the decision threshold, 

this channel – the fastest, hence the name of the model – determines the output of 
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the model. The RTE is explained by the notion of statistical facilitation first 

introduced by Raab (1962). The author showed that when sampling random 

reaction times across channels, the distribution of the minimal response time of 

each of these samples will always have a mean lower than any of the response 

time distributions of the different channels. However, the starting point of the 

minimal response time distribution cannot be lower than the minimal response 

time across channels, but the variance of the minimal RT distribution will be 

smaller than the variance of any of the individual channel distributions.  

Coactivation models were developed as an alternative to race models for 

explaining the RTE (Smith, 1968; Miller, 1982; Schwarz, 1989). Coactivation is 

defined as an activation build-up from different channels to satisfy a single 

threshold criterion. Coactivation models differ chiefly from race models in that the 

activation from the different channels is combined at some point in the processing 

of the input. Activation from all channels jointly determines what the response at 

the next processing level should be. In fact, it is the joint activation of a single 

threshold criterion from different channels which enables coactivation models to 

predict a redundancy gain: Even if activation on any one channel alone is 

insufficient to overcome the threshold and make a decision, the pooling of 

activation from several still weakly activated channels makes it possible to 

overcome the threshold faster than with any single channel alone.  

Various authors have compared separate activation and coactivation 

models (e.g., Mulligan & Shaw, 1980; Fidell, 1970; Kinchla & Collyer, 1974; 
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Eriksen & Schultz, 1979), but the conclusions are not homogeneous and are often 

contradictory (Mulligan and Shaw, 1980; Fidell, 1970; Eriksen & Schulz, 1979).  

Several attempts have been made to find a criterion that allows a 

conclusive distinction between race models and coactivation models. A possible 

way of excluding separate activation models irrefutably was proposed by Miller 

(1978). The performance of race models on redundant target trials is simply the 

minimum response time of the different channels that contribute to the redundant 

signal (Raab, 1962). This allows us to calculate the best possible performance of 

race models. Two of the most well-known methods to calculate the upper limit of 

race models are the Miller Inequality (Miller, 1978) and the Townsend Bound 

(Townsend and Nozawa, 1995). If response time distributions on a redundant 

target task exceed either of these criteria, race models can be refuted as an 

explanation for redundancy gain; they are not capable of accounting for the 

amount of gain induced in redundant target trials.  

The Miller Inequality has been used frequently to refute race models as the 

sole explanation for the redundancy gain in detection tasks with targets from 

different dimensions (Krummenacher, Müller & Heller, 2002), different modalities 

(Diederich & Colonius, 1987), and letter search tasks (Miller, 1982). Even in 

participants with lateral visual extinction, the RTE induced by a stimulus in the 

extinct hemisphere was strong enough to violate the Miller Inequality (Marzi et al., 

1996). In extending the Miller Inequality to include three redundant targets, 

Diederich and Colonius (2004) found evidence to refute race models in trimodal 
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detection tasks: the gain observed between double redundant and triple redundant 

targets alone was too large to be explained solely by separate activation models.  

Violation of the Miller Inequality, the Townsend Bound (see results) or any 

other criterion defining the upper limit of race model performance (e.g. Grice, 

Canham & Gwynn, 1984) is usually interpreted as evidence of coactivation 

somewhere along the processing pathway. However, Mordkoff and Yantis (1991) 

suggested an alternative explanation: crosstalk. With the Interactive Race Model, 

they proposed an extension of separate activation models, which integrates inter-

channel crosstalk (positive or negative contingencies between target and target, 

target and non-target, or two non-targets on two channels) and bias towards one 

response.  

Mordkoff and Yantis (1991) explain Miller’s (1982) and similar results in 

terms of existing contingencies between stimuli on different channels. In a series 

of experiments with a letter search task they then show that the Miller Inequality is 

not violated if all contingencies between channels are equated.  

In a rigorous test of the interactive race model (Schwarz, 1996), most of 

the results from Mordkoff and Yantis (1991) were replicated. However, under 

certain conditions (non-simultaneous signal presentation) violation of the Miller 

Inequality was consistently found even when inter-channel contingencies were 

equated. Miller (1981) also obtained violation of the Inequality in the absence of 

inter-channel correlations, as did Mordkoff and Yantis (1993). The latter 

concluded that although inter-channel crosstalk does influence response times, 
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coactivation is at least partly responsible for facilitation in cross-dimensional 

redundant targets, whereas within the same dimension, separate activation is 

sufficient to explain facilitation.  

In conclusion, the literature is less than clear or unanimous as to possible 

causes of redundancy gain. It is therefore important to find a unified approach to 

causes of redundancy gain, something we try to achieve with this study. 

The present study pursues two different goals. First, we wish to investigate 

if redundancy gain from three redundant target attributes inside a single modality 

is possible. To the best of our knowledge, triple redundancy within any single 

modality has never been addressed before. One reason for expanding the study of 

redundancy gain in that direction is that the ecological validity of the target 

paradigm increases. In a natural context, we rarely see targets which are defined 

by only two target attributes. Therefore, increasing the cognitive load and studying 

triple redundancy gain is likely to reveal interesting insights into the processing of 

visual stimuli. Another reason for choosing a triple redundant paradigm is that it 

will likely give valuable information about the dynamics of a redundancy gain. It 

might give us an idea about an upper limit to gain in RTs, limits with respect to the 

type of target attributes which can induce triple redundancy gain, and the factors 

that could hide or inhibit redundancy gain. 

The second goal of this study is to differentiate between possible causes of 

redundancy gain. As mentioned above, the literature is not at all unified in 

attributing redundancy gain to statistical facilitation, to crosstalk or to coactivation. 
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Based on our experimental data, we will exclude all three of these as an 

isolated explanation of the RTE. Since crosstalk is likely to exist, we exclude it by 

allowing no possible facilitatory contingencies between target attributes on 

different channels. In a second step, we will reject statistical facilitation by 

showing that performance of participants on redundant target recognition will be 

significantly above the Townsend Bound. In a final step, we will also refute 

coactivation models as an explanation for redundancy gain by comparing the 

minimal response time as well as standard deviation and skew of participants’ 

response time distribution with the coactivation model’s predictions for those 

response time distribution characteristics. . 

We will propose a cascade race model of statistical facilitation as an 

alternative explanation of redundancy gain. We will show that this model is able to 

explain all the characteristics of our experimental data, and further provides a 

unifying and unambiguous explanation for redundancy effects in literature. 
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Method 

Participants 

Participants were 24 undergraduate students (17 females) from the 

Université de Montréal, between 19 and 27 years of age. All had normal or 

corrected-to-normal vision. Participants were compensated with 8$ per hour for 

their participation. 

Stimuli and Apparatus 

We used simple two-dimensional geometrical objects as stimuli. Stimuli 

were created in the RGB color space, using MatLab (MathWorks Inc., Natick, 

MA). Stimuli were presented using E-Prime (Psychology Software Tools, Inc., 

Pittsburgh, PA) on a SVGA monitor (refresh rate: 85 Hz) at a distance of 80 cm 

from the participants. The stimuli measured 3 degrees of visual angle. They were 

either red, green, or blue; their form was a circle, a triangle or a square; and lastly 

they moved outward from the centre of the screen at an angle of 45 (right), 165 

(down) or 285 (left) degrees. Stimuli were presented in front of an equiluminant 

gray background with stimulus luminance at 20 percent and stimulus saturation at 

30 percent. Stimulus luminance and saturation was purposefully kept low to make 

color recognition more difficult. Previous experiments indicated that at full 

saturation, color is recognized much faster than form or direction of movement, 

and for the present purpose it was important to choose three attributes which are 

recognized within roughly the same time frame.  
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Target stimuli possessed one or more of the following attributes: color 

blue, form of a square, and moving to the right. The presence of any single one of 

these attributes was sufficient to define a given stimulus as a target. Non-target 

stimuli did not possess any of the target attributes. They were either green or red, a 

triangle or a circle and moving to the left or to the bottom of the screen. 

Design 

50% of all stimuli presented to participants were targets. To avoid 

contingencies between attributes on different channels which would facilitate 

redundant target recognition, the stimulus distribution shown in Table 1 was based 

on the three rules of contingency formulated by Mordkoff and Yantis (1991). 

However, this setup had three instead of two feature channels, thus exponentially 

more combinations of features needing to be balanced. We could not control 

perfectly the contingencies, but we did avoid positive contingencies within target 

attributes as well as between target and distracters attributes. This means that no 

facilitation of double and triple redundant targets due to existing contingencies 

could have occurred. However, inhibition of redundant stimulus recognition might 

be possible, since the non-target attributes on each channel do not occur as part of 

a target stimulus with the same frequency. The second non-target attribute, which 

will be referred to as ‘foil’, is associated with non-target stimuli more frequently 

than the first. This was done to avoid facilitatory contingencies. Comparing foil 

and non-foil target-present trials gives us the means of testing the impact of 
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negative contingencies (see results). Overall, none of the contingencies favored 

redundant target trials, reducing the chances of observing coactivation effects. 

---------------------- 

Insert Table 1 here 

--------------------- 

Procedure 

The experiment consisted of 16 blocks with 60 trials per block for a total of 

960 trials. Eight of the participants participated in two sessions of the same 

experiment, performing 32 instead of 16 blocks, with a total of 1920 trials. 

Stimulus distribution did not vary between blocks, but the order of trials was 

randomized. Participants had the possibility to take a break between blocks, and 

were encouraged to do so explicitly after eight blocks were completed. 

The triple redundant target (target with all three target attributes present) 

was presented 48 times per participant. The six stimuli in double redundant 

conditions (any two target attributes present, plus one of two possible distracters 

on the third channel) were presented 48 times each. The three stimuli with only 

one target attribute were also presented 48 times each per participant. The 

difference in frequency of presentation was necessary in order to have a balanced 

stimulus distribution that avoided facilitatory contingencies (see above). Non-

target stimuli were presented 480 times per participant  
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Each trial started with the presentation of a blank screen for 494 ms. The 

blank screen was followed by a fixation point for 694 ms. The stimulus was then 

presented for a total of 823 ms during 9 frames, the first positioned at the screen 

center for 47 ms. The subsequent 7 frames lasted 47 ms, and gradually displaced 

the stimulus in the required direction of movement. The last frame lasted 447 ms, 

showing the stimulus at its final destination 3.78 degrees of visual angle from the 

screen center. Finally, a feedback slide appeared for 753 ms. 

For the reasons mentioned in the introduction, we used a Go-NoGo 

experimental paradigm. Participants were required to press the SPACE key on a 

keyboard as soon as they recognized a target stimulus, and discouraged from doing 

so if they recognized a non-target. They were encouraged to respond as fast as 

possible while making as few errors as possible. Responses had to happen within a 

time frame of 0 to 750 ms after stimulus onset.  

Participants received feedback on their performance on each trial. 

Feedback on false responses was accompanied by a 700 Hz sound. Fast and 

correct performance was further encouraged by a system of points: participants 

were encouraged to try for the best score. Participants received 30 points for hits 

and correct rejections, 50 for particularly fast hits (under 300 ms), and -350 points 

for false alarms and misses. At the end of each block participants were given their 

cumulative score. 
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Results 

Participants mastered the task very well, with an average of less than 1.4 % 

misses (13.03 of 960 trials per participant on average) and 2.5 % false alarms (FA; 

23.78 of 960 trials per participant on average). There was no significant difference 

between error rates for participants which passed 16 or 32 blocks (Miss: t (22) = -

0.97, p = 0.34; FA: t (22) = -1.09, p = 0.29). Neither was there a significant 

difference between mean response times for the two groups and seven conditions 

(t (166) = 0.16, p = 0.87). Therefore, we may conclude that additional training had 

no significant effect. All further analysis will not take the different number of 

blocks into account. 

Trials where participants responded faster than 205 ms were excluded from 

analysis, as these were considered anticipatory responses (a total of four trials 

were eliminated). For all further analysis, only correct Go-trials will be used. 

While maintaining a very high performance rate, participants also responded very 

rapidly: valid response times to a target could be as fast as 221 ms. Participants 

maintained a mean response time of 398 ms across conditions, with a standard 

deviation (std) of 82 ms. Response times varied greatly, however, across 

conditions, and even more across participants. The mean response time for the 

triple redundant condition was 361 ms across participants, with a std of 56 ms. For 

double redundant conditions, the mean RT was slightly slower, at 389 ms, with a 

std of 74 ms. Finally, the mean response time for single-target conditions was 431 

ms (std: 93 ms). 
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Difference in negative contingencies 

It is possible that performance was influenced by negative crosstalk due to 

the stimulus distribution (see Table 1). To empirically test this influence on 

participant performance, we compared error rates and mean response times in the 

double redundant conditions, splitting them according to the type of non-target 

attribute (foil or non-foil) they possessed. These conditions contained only one 

non-target attribute, allowing for a direct comparison. The double redundant 

conditions were those where the target possessed two target attributes, either the 

correct color and the correct form (cf), the correct color and direction of movement 

(cd), or the correct form and direction of movement (fd). 

Participants’ error rates did not differ between types of non-target for any 

of the three double redundant conditions (cf: t(46) = -0.23, p = 0.41; cd: t(46) = -

0.91, p = 0.18; fd: t(46) = -0.56, p = 0.29). The same holds true for mean response 

times: they did not differ significantly between types of non-targets for any of the 

double redundant conditions (cf: t(46) = -0.65, p = 0.26; cd: t(46) = - 1.66, p = 

0.052 fd: t(46) = -0.26, p = 0.40). We can therefore conclude that negative 

contingencies do not affect response times, at least in the double redundant 

conditions. Hereafter, no distinction will be made between different non-target 

types in the double redundant conditions. 
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Redundancy gain 

Figure 1 presents the mean response times to a target in conditions where a 

single target attribute was presented (color only: c, form only: f, or direction of 

motion only: d), in conditions where two target attributes were presented 

(conditions cf, cd, or fd) and where all three target attributes were presented 

(condition cfd). As can be seen in Figure 1, there are benefits of redundant targets 

at the level of the mean RT, both for double redundant (2Red) over single-attribute 

conditions (1Red) and for triple redundant (3Red) over double redundant 

conditions. 

------------------------ 

Insert Figure 1 here 

------------------------ 

------------------------ 

Insert Figure 2 here 

------------------------ 

Figure 2 shows the cumulative response time distributions of one 

representative participant, for all three single-target conditions, as well as for all 

three conditions where two target attributes were presented simultaneously. The 

probability of responding at time t or faster is plotted as a function of time. 
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Due to the large inter-participant differences in overall response time 

distributions, systematic changes in response times depending on condition are 

hard to see if analysis is done over all participants. Therefore, to test for 

redundancy gain, we did not test for statistically significant differences between 

distributions with multiple t-tests, as did Miller (1982) and Mordkoff and Yantis 

(1991, 1993), among others. Instead, we assessed the difference between two 

cumulative distributions of response times for different conditions from one 

participant using a two-sample Anderson-Darling test of cumulative distributions 

(Anderson and Darling, 1952) at a level of significance of .05. This test was 

chosen as it is more sensitive to differences at the extreme ends of distributions 

than the more well-known Kolmogorov-Smirnoff test (Engmann & Cousineau, 

submitted).  

Response time distributions to double redundant stimuli with color and 

form present were significantly faster than RTs for color only for almost all 

participants (21 out of 24), and significantly faster than the RTs for form only 

(17/24 participants). The same holds for double redundant stimuli with color and 

direction of movement present (24/24 and 15/24 participants respectively) and for 

form and direction of movement (23/24 and 20/24 participants respectively). The 

upper part of Table 2 recapitulates the results. 

------------------------- 

Insert Table 2 here 
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-------------------------- 

Figure 3 shows the cumulative response time distributions for a 

representative participant of the three double redundant conditions as well as when 

all three target attributes are present. Since participants' reaction times were 

already fast for the double redundant conditions, an increase in RT becomes more 

difficult to observe for triple redundant targets. Even though a general trend was 

visible, and most participants responded faster for triple redundant stimuli than for 

any double redundant stimuli, the difference between fd and cfd conditions was 

significant for only 7 participants (fd: 7/24 participants). However, in the other two 

conditions (cd and cf), the proportion of participants that have a significantly faster 

distribution in the triple redundant condition is greater (cd: 18/24; cf: 24/24). Table 

2, bottom part, gives the details for all the double redundant target distributions 

relative to the triple redundant target condition. 

---------------------- 

Insert Figure 3 here  

----------------------- 

These results show that it is indeed possible to profit from three redundant 

attributes for object recognition, even though the benefit of a third attribute is not 

always significant across participants. 
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Excluding Race Models 

After having found that redundancy gain exists for three redundant 

attributes within the same modality, we now need to distinguish between the 

possible causes of this gain. Since facilitation by crosstalk was excluded a priori 

(see method), this leaves coactivation and statistical facilitation as possible 

explanations. Since statistical facilitation has an upper limit to the amount of gain 

it can explain (see introduction), we will use this upper limit to differentiate 

between these two causes of gain.  

The Miller Inequality is commonly used, as it gives a definite upper limit 

to the performance of race models with two channels, and is therefore a very 

efficient criterion of exclusion for race models on any task with two redundant 

targets. However, one cannot estimate the degree of dependence between 

channels, as it is not directly observable. Hence a generalization of the Miller 

Inequality to three or more channels poses a problem: The degree of dependence 

between any two channels needs to be subtracted from the sum of the response 

time distributions of the separate channels, but then the degree of dependence of 

the three channels would have to be added again. Both values are positive but of 

unknown size, making it impossible to determine in which direction the extension 

of the Miller Inequality would tend.  

An alternative to the Miller Inequality was proposed by Townsend and 

Nozawa (1995; a similar bound was proposed by Mordkoff and Yantis, 1991, p. 

535). It is based upon survivor functions (one minus the cumulative distribution) 
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of response times instead of cumulative distribution functions. The upper limit to 

race model performance with more than one channel is given by the survivor 

function of the product of the survivor functions of each channel: 

 (1) 

where RTcfd is a response time in the triple redundant condition and i indexes the 

three conditions with only one target attribute. If the observed response time 

distribution in a redundant target task is significantly faster than predicted by this 

boundary, race models as the sole explanation of redundancy gain are rejected. 

The Townsend Bound can be calculated for any number of channels. We again 

used the two-sample AD test to test for significant differences between the 

redundant target distribution and the Townsend Bound calculated from the 

corresponding single-target RT distributions. 

Figure 4 shows the single-target distributions of a representative 

participant, as well as the Townsend Bounds and the actual response time 

distributions for each of the three double redundant conditions. The AD test 

compares the dotted line to the full line in this figure. 

-------------------- 

Insert Figure 4 here 

----------------------- 
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For double redundant targets with color and form present, the RT 

distributions were significantly faster than the Townsend Bound calculated from 

the RT distributions of single-target color-only and form-only targets for two 

participants only (AD = 2.87; 4.23; critical value AD = 2.49 for α = .05). For color 

and direction of movement, four participants' RT distributions were significantly 

faster than the corresponding Townsend Bound (AD = 3.09; 3.43; 3.68; 5.09); and 

for form and direction of movement twelve participants' RT distributions were 

significantly faster than the corresponding Townsend Bound (AD = 7.18; 4.92; 

4.39; 5.52; 7.07; 10.03; 2.99; 12.43; 5.16; 37.25; 2.85; 8.44).  

To test for coactivation in the triple redundant target condition, the 

Townsend Bound was calculated from all three single-target RT distributions. 

Figure 5 shows the three single-target distributions of a representative participant, 

the Townsend Bound and the actual distribution for the triple redundant condition. 

Eleven out of 24 participants performed significantly faster than predicted by the 

Townsend Bound on triple redundant target trials (AD = 5.42; 4.64; 6.43; 4.23; 

3.81; 3.34; 8.56; 13.25; 2.50; 5.13; 6.89). 

------------------- 

Insert Figure 5 here 

----------------- 
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Excluding race models for gain from double to triple redundancy 

The Townsend Bound for triple redundant targets, as formulated above, is 

based on the RT distributions of single-target trials. It is able to assert that the 

interaction between three single target attributes is more than statistical 

facilitation. This opens the possibility that the third attribute contributes only 

within the range of statistical facilitation. In order to show that statistical 

facilitation cannot be responsible for specifically the amount of gain obtained from 

an additional third attribute, we need to adapt the Townsend Bound. We can 

calculate the Townsend Bound for triple redundancy for the RT distribution of any 

of the three double redundant conditions plus the RT distribution of the 

respectively missing single-target condition. We then obtain the final Townsend 

Bound by taking the maximum of the three above-mentioned values at each time 

point.  

 (2) 

This yields the most liberal evaluation of performance if any of the three 

target attributes contributes only by statistical facilitation as a third redundant 

attribute. Hence, exceeding this limit can only be achieved if all three target 

attributes contribute significantly to the amount of redundancy gain. 

The Townsend Bound for triple over double redundancy could have been 

calculated from the product of the survivor functions of the three double redundant 
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conditions, analogous to equation (1). However, in this case, the gain contributed 

by each attribute would be included twice (once in each of the two double 

redundant conditions it is part of), thereby obtaining an upper limit which would 

definitely exceed performance of a combination of coactivation for two and 

statistical facilitation for the third attribute. Equation (2) ensures that each attribute 

contributes only once, while still ensuring the best possible performance under the 

assumption that statistical facilitation is responsible for the gain attributed to the 

third target attribute. 

Two participants performed significantly faster on triple redundant trials 

than predicted by the triple over double redundancy Townsend Bound (AD = 2.9; 

2.5). Figure 6 shows the cumulative RT distributions for double redundant and 

triple redundant conditions for each of these participants respectively, as well as 

the Townsend Bound obtained from the non-redundant conditions and the 

Townsend Bound obtained from the double redundant conditions. This shows that 

gain solely from a third redundant attribute cannot be accounted for by statistical 

facilitation. We can therefore conclude that all three target attributes must interact 

in some other way than statistical facilitation to contribute to a triple redundancy 

gain. 

----------------------- 

Insert Figure 6 here 

----------------------- 
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In conclusion, we show that redundancy gain from a third attribute is 

indeed possible, even though all attributes come from the same modality and 

despite the fact that performance for double redundant targets is already very fast. 

The Townsend Bound is not violated for every participant and every 

condition. This can have several possible causes. First, since participants 

responded very rapidly, even to single-target conditions, room for improvement 

under redundant conditions is limited. This is supported by the fact that 18 of 24 

participants’ triple redundant distributions tended to be above the Townsend 

Bound, even if the AD test did not prove this trend to be significant in 13 of 24 

participants. Second, the potential for improvement under redundant conditions is 

maximal if single attributes are processed at approximately the same rate. If one 

attribute is visibly slower than another, the advantage of adding this target attribute 

is smaller than if attributes are processed at the same speed. As can be seen in 

Figure 1, the attribute color may be slightly slower than the attribute direction of 

movement. Lastly, gain from redundant target conditions can be outweighed by 

sources of noise or inhibition. Although there are several possible internal sources 

of noise, one should be mentioned specifically. We excluded crosstalk as an 

explanation of redundancy gain by avoiding contingencies that facilitate redundant 

object recognition. We could not however avoid inhibitory contingencies. If we 

assume that crosstalk between channels exists, it would work against a gain from 

redundancy under these experimental conditions. However, our analysis of the 

impact of foils versus non-targets (see above) seems to indicate that inhibitory 

contingencies had no or only a negligible impact on the data. 
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Nevertheless, the violations we did obtain are enough to refute statistical 

facilitation as an incomplete explanation of redundancy gain. Since we excluded 

crosstalk as a possible explanation by the specific experimental design we used, 

this leaves us with only coactivation as an option for explaining the size of the 

redundancy gain observed under these conditions. However, before accepting 

coactivation as a default explanation for redundancy gain, its limits and predictions 

need to be tested more vigorously. 

Characteristics of the RT distributions 

Before we test the coactivation model more rigorously in the next section, 

we examined the distributions of RTs more thoroughly in order to get estimates of 

the minimal response times and skew. To do so, we chose to model RT 

distributions using a Weibull distribution for several reasons. First, there is some 

evidence that it captures accurately the characteristics of an RT distribution 

(Logan, 1992; Rouder, Lu, Speckman, Sun & Jiang, 2005). Second, the Weibull 

distribution is the predicted distribution for many sampling models such as the 

race model (Cousineau, Goodman, & Shiffrin, 2002; Galambos, 1972). Lastly, the 

Weibull distribution is very flexible, as it can resemble an exponential or a normal 

distribution depending on its shape parameter (Heathcote, Brown and Cousineau, 

2004). Due to this flexibility, the Weibull distribution is often used to model 

response time distributions without theoretical commitment.  

Estimating the minimal response times by fitting a Weibull to the raw data 

instead of taking the fastest response times per participant and condition increases 
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the reliability of the estimation, as the estimated Weibull minimum is based upon a 

whole set of data points instead of just a single one. A single data point is much 

more subject to noise, such as anticipatory responses or moments of inattention 

(Hirose & Lai, 1997).  

The Weibull cumulative distribution function is given by: 

  (3) 

where α gives the starting point of the distribution, i.e. the minimal response time; 

β is the scale parameter, which indicates the range, or spread of the data 

(comparable to the σ parameter of normal distributions); and γ represents the 

degree of symmetry, i.e. the length of the tail and the degree to which the data lean 

to one side or the other. For γ = 1, the distribution is exponential; for γ = 3.6, the 

distribution is close to symmetrical. 

------------------------------- 

insert Figure 7 here 

----------------------------- 

Figure 7 presents the mean estimated α as well as the means for β and γ 

(error bars are computed after removing between-participant differences; Loftus & 

Masson, 1994; Cousineau, 2005, Morey, 2007). We have partitioned the 

participants to separate those that exceeded the Townsend Bound (left bars for 
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redundant conditions) from those that did not (right bars) to check if there is a 

qualitatively different pattern of results between them. 

As can be seen, the same trends are visible for the two partitions: 

decreasing α and β with increasing redundancy and increasing γ with increasing 

redundancy. The two partitions seem to differ only with respect to the parameter β 

in two of the double redundant conditions: participants that did not exceed the 

Townsend Bound apparently have more variable RTs (β is the spread parameter) 

which may explain at least in part why the Anderson-Darling test was not 

significant. In the following (and top of Figure 8), we no longer partition the 

participants. 

Regarding the minimal response times, all participants had fairly large αs 

in the non-redundant conditions (mean: 311 ms, std: 3 ms; after removing 

between-participant differences; Loftus & Masson, 1994; Cousineau, 2005), 

smaller in the double redundant conditions (mean: 283 ms, std: 3 ms), and even 

smaller in the triple redundant condition (mean: 274 ms, std: 4 ms). These 

differences were significant (One-way ANOVA: F(2,46) = 12.35, p < 0.001). This 

result alone gives us an additional argument for refuting statistical facilitation as a 

cause for redundancy gain, since minimal response times for redundant conditions 

would necessarily have to be drawn from the RT distributions of non-redundant 

conditions in the case of a race model, which is clearly not what is happening here. 

Regarding the parameter β, the decreasing trend with increasing redundancy is also 

significant (F(2,46) = 8.14, p < 0.001). Finally, the opposite trend is significant for 
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the parameter γ (F(2,46) = 28.82, p < 0.001). These last two trends seem to be 

remarkably linear. 

Predictions of the coactivation model 

Now that we have a better characterization of the results, we can examine 

the coactivation model more attentively. We have rejected the race models for two 

reasons, the RT distributions exceeded the Townsend Bound and the minimum 

response times were not constant. The argument often found is that if the RTE is 

not caused by a race model and cannot be due to crosstalk (owing to the Mordkoff 

and Yantis controls), then it ought to be a proof of coactivation. However, before 

we accept this as an argument, we need positive evidence favoring a coactivation 

model. In the following, we will show that such evidence is not present in the data. 

Coactivation models account nicely for the reduction in minimum response 

time with redundancy. For instance, suppose that the threshold size to trigger a 

response is k. In a double redundant condition, half of these might come from one 

channel, the other half from the other channel. Having to sample less evidence per 

channel, the minimum response time would be lowered. As a rough 

approximation, the reduction in α should mimic the reduction in the number of 

evidences per channel, that is, be inversely proportional to redundancy. This 

prediction is not incompatible with the results seen in Figure 7(a). 

However, coactivation model makes one critical prediction. The symmetry 

(measured using the Fisher skew or with the parameter γ) in the RT distribution 
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should remain stable between the triple redundant and non-redundant conditions, 

and decrease significantly for the double redundant condition: The model predicts 

almost symmetrical RT distributions, for all redundancy conditions except double 

redundancy and turns to perfect symmetry as redundancy increases beyond three. 

Expressed in terms of the parameter γ, after an initial decrease, γ rapidly tends 

towards 3.6. This argument was first established using Monte Carlo simulations 

(see below and appendix) and confirmed using numerical integration techniques 

(next section). 

The Monte Carlo simulations also confirmed that under conditions of 

coactivation, α, the parameter giving the starting point of the RTs was repeatedly 

and reliably lower for the triple redundant condition than for the non-redundant 

one. The scale-parameter β also decreased for triple redundant conditions, meaning 

that the RT distribution became narrower. Whereas the empirical α and β behave 

as predicted by a coactivation model, the symmetry parameter did not: first, γ was 

smaller in the triple redundant condition than in the non-redundant condition. 

Second, the distributions were far from symmetrical, although they tended towards 

symmetry.  

------------------------------ 

insert Figure 8 here 

----------------------------- 
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Figure 8 directly compares the best-fitting parameters for all participants 

(left side) and the parameter predictions of the model (right side). As can be seen, 

reality and prediction concord for parameters α and β, not so however for γ.  

As seen in Figure 7(c), all participants, whether they exceeded the 

Townsend Bound or not (using the AD test), showed the same pattern of change in 

γ. However, this pattern is not compatible with what the coactivation model 

predicts. Instead of decreasing and then increasing for redundant conditions, γ was 

larger for double redundant conditions than for non-redundant conditions, and 

even larger for triple redundant conditions. The response time distributions of 

participants become more and more symmetrical as the number of redundant target 

attributes increases. This is neither what the coactivation model predicts, nor what 

one would intuitively expect for a speeded response task. 
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The cascade race model 

In the following, it will be useful to define the operator  which 

returns the cumulative distribution function of the kth fastest signal out of R given 

that each signal has a distribution function F. If the decision threshold k = 1, the 

fastest of R channels is given by: 

  (4) 

because  where T(i) 

is the ith fastest time (for i = 1…R). This is precisely the Townsend Bound and 

therefore no race model with a threshold of k = 1 can predict performance above it. 

In addition, if the distribution of a single channel F is member of the class 

of power distributions (PD; Gumbel, 1958), that is, if its left tail follows a power 

curve such that  

  (5) 

is a constant, in which  is the lower bound of the distribution and γ is any 

exponent (Gnedenko, 1943; Galambos, 1978), then for large R, the distribution 

tends to a Weibull distribution 

  (6) 

where the shape parameter of the attractor distribution γ is the shape and the lower 

bound α is the lower bound of the individual channels (Cousineau, Goodman, & 

Shiffrin, 2002). The convergence to the attractor distribution is usually fast so that 
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even if there are only 2 or 3 channels, the resulting distribution should be very 

similar to a Weibull distribution. Hence, the race model with F  PD predicts that 

shape is constant irrespective of redundancy. 

If the distribution of the individual evidence is not a member of the PD 

class, the attractor distribution is not the Weibull distribution (it can be a double-

exponential distribution, a Gumbel distribution or it may not have an attractor 

distribution). 

In the following, we examine the scenario where the channels send 

activation following a cascade model (McClelland, 1979, Ashby, 1982). In this 

model, stronger signals (and presumably faster) will be reinforced more as they 

travel through a few layers so that initially strong signals will get stronger. This 

cascade model can be implemented in many different ways (e.g. as a succession of 

Kohonen self-organizing maps; Kohonen, 1984). Ulrich and Miller (1993) showed 

that the attractor distribution (under some general assumptions) is the lognormal 

distribution whose cumulative distribution function is given by 

  (7) 

in which Φ is the cumulative distribution function of the normal distribution and μ 

and σ are shift and spread parameters. 

Because the lognormal distribution has a long left tail, the shape of the 

distribution of the fastest among R channels will change: As R increases, the 
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probability of picking fast evidences from within the left tail increases and this 

increase changes the shape of the distribution, making it more symmetrical. 

Assuming we fit a Weibull distribution to this distribution, we could derive the 

estimated γ of this Weibull distribution by applying equation 4 and then finding 

the expected Fisher skew. For example, if μ = 2.5 and σ = 0.35, the estimated γ 

would be 1.5, 1.9 and 2.1 for single, double and triple redundancy conditions 

respectively. Likewise, the estimated  would be 6.3, 5.1 and 4.6 in the same 

conditions. These results fit nicely the mean estimated parameters from the 

experiment. However, as said earlier, this model does not predict coactivation. 

The basic version of the race model (illustrated in Figure 9, top) is 

extended by assuming that the decision threshold is a free parameter greater than 

one. In this case, it might be necessary to receive multiple evidences from each 

channel (e.g. when k > R). This can be done in the two possible ways to be 

reviewed next. Because evidences can fill the decision accumulator from any 

channel, this results in a coactivation model. 

The serial coactivation model 

This is the model generally known by the name of “coactivation model”. In 

this model, a channel can send multiple evidences separated in time by a delay t 

whose distribution function is labeled F in the following. This model is illustrated 

in Figure 9, bottom left. 

--------------------------- 
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Insert Figure 9 about here 

---------------------------- 

The time to sample k evidences, , is a mixture of all the ways k 

evidences can be sampled. For example, if k = 2, two evidences could be received 

from the first channel and none from all other channels, or 1 from one channel, 1 

from a second channel, and none from the others. In conditions of triple 

redundancy, the first scenario could occur in three different ways and the second, 

in six different ways. In the first scenario, the time to sample two evidence is given 

by a second-order convolution ( ; Luce, 1986, Cramér, 1946). 

As soon as k > 1, it is easy to see why the coactivation model predicts a 

massive violation of the Townsend Bound. With one cue, the decision time 

requires k evidences, which are received serially. Mean response time will be k 

times the mean response time of a single evidence; with two cues, each channel 

only needs to send half as many evidences to reach the decision threshold, so that 

the mean response time is half the above (this is not the only way that the response 

threshold can be reached, but it is certainly the most frequent). The violation of the 

Townsend Bound predicted by this model is so large that the predicted distribution 

for the double-redundant conditions exceeds the triple-redundant Townsend 

Bound. 

We also examined the changes in symmetry of the predicted response time 

distributions as a function of redundancy. The changes were very small: If the 
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evidence distribution F is exponential (large positive symmetry), the degree of 

symmetry is a constant whereas if F is symmetrical, the degree of symmetry 

diminishes a little for the double redundant condition and increases afterwards, 

conforming the Monte Carlo of the previous section. 

For these two reasons (too large of a coactivation effect and nearly no 

changes in symmetry with increasing redundancy), the serial coactivation model is 

rejected. 

The parallel coactivation model 

This version of the model assumes that the internal channels are redundant. 

Each input can convey evidence through ρ redundant channels working in parallel. 

In this situation, the response time distribution is the kth fastest evidence from a 

pool of ρ × R channels. It is given by 

  (8) 

(David, 1970). In the case where k = 1, it is easy to show that  

  (9) 

so that this version of the model simplifies to the basic race model seen above. 

Further, either F  PD in which case  is also  PD or F  PD in which case 

 is not as well. 
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For k larger than one, the same dichotomy is valid: either F  PD so that 

 (but convergence is slower) or F is not a member of 

the PD class, in which case  is also  PD. 

It is possible to show that 

  (10) 

that is, that pooling the activations of ρ × R channels is better than examining 

separately the kth fastest of the attributes for each channel independently, and then 

taking the fastest of the R winners. Hence, the parallel model predicts a violation 

of the Townsend Bound. This violation is much smaller though, with the predicted 

response time distribution for two redundant cues at about the level of the triple-

cue Townsend Bound. 

When the distribution F is a member of the PD class, the symmetry is very 

close to constant across the redundancy conditions, the small deviations (at third 

decimal place for ρ = 5 and k = 2) reflecting the fact that convergence to the 

asymptotic shape is slower when k > 1. 

Among the possible distributions which are not members of the PD class, 

we chose the lognormal distribution for the same reason as above: a channel is 

assumed to be a cascade of activations reaching the decision node. This model 

predicts that the symmetry increases with increasing number of attributes on the 

target, as observed in the experiment. In this model, the parameter μ is a scaling 
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parameter and does not change the symmetry as internal (ρ) or external (R) 

redundancy in increased. 

Table 3 summarizes the findings for the three models explored, according 

to whether F is member of the PD class or not. 

------------------------------ 

Insert Table 3 here 

---------------------------- 

----------------------------- 

Insert Figure 10 here 

------------------------ 

Figure 10 shows the estimated symmetry as R, ρ and k are increased. There 

is a trade-off between k and ρ so that if both are increased, the observed symmetry 

stays roughly constant (middle panel). 

To assess the capability of the model to capture the results, we found the 

best-fitting parameters by maximizing the log likelihood. For simplicity’s sake, the 

cues are assumed to elicit the same response time distributions. We added a shift 

parameter to the model, T0. In all, it has five free parameters: μ and σ, the 

characteristics of one channel, k and ρ, the decision threshold and the internal 
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redundancy and finally, T0. The index of fit is shown for each subject individually 

in Table 4. 

------------------------------ 

Insert Table 4 here 

---------------------------- 

To validate the quality of the fits, we compared them to two descriptive 

models: one fitting three Weibull distributions, one per redundancy condition to 

extract the parameters α, β, and γ, for a total of nine parameters. The other 

descriptive model fitted three lognormal distributions with parameters μ, σ, and a 

shift parameter ξ in each of the three redundancy conditions, for a total of nine 

parameters as well. 

------------------------------ 

Insert Table 5 here 

---------------------------- 

The mean best-fitting parameters across participants are given in Table 5. 

As seen, the 5-parameter cascade race model fits the data less well than the 9-

parameter 3lognormal model but 21 times out of 24 better than the 3Weibull 

model. Using the Bayesian Information Criterion penalty term log(n) × Δp / 2 

where n is the number of data, p is the number of parameters, and Δp the 
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difference between the number of parameters in the two models, the penalty term 

is equal to 12.3 (Hélie, 2006), we find that the 11 out of 24 participants have a fit 

significantly worse than with the 3lognormal model. However, this penalty term is 

approximate. In comparison, the 3Weibull model is significantly worse than the 

3logNormal model for 19 of the 24 data sets. When the average fit is examined, 

the 3Weibull model is rejected but not the cascade race model. Hence, we cannot 

reject the cascade race model based on best-fitting results.  

In addition, the estimated shift parameter is more plausible for the cascade 

race model than it is for the 3lognormal model (an estimate of 249.6 ms, nearly 

comparable to the estimated shift of the 3Weibull model, 278.8 ms, much different 

from the 3lognormal model estimate of 185.2 ms). 

Some conclusions related to model fitting 

The fact that the 3Weibull model has reasonable best-fitting parameters but 

nevertheless offers the poorest fit of the data suggests that there is something 

inherently wrong with this model. The major characteristic that differentiates a 

Weibull distribution from a lognormal distribution when the data are positively 

skewed is the left tail: the Weibull distribution has a very short left tail. Hence, 

even thought the Weibull model is convenient (Rouder et al, 2005, Cousineau and 

Shiffrin, 2004), has nice asymptotic properties in connection with the PD class 

(Cousineau, Goodman and Shiffrin, 2002, Galambos, 1978) and can be fitted 

efficiently and without bias (Cousineau, 2009 (a); Cousineau, 2009 (b)), its 
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relevancy to response time analyses, at least for the redundancy paradigm, must be 

questioned seriously. 

If we accept the assumption that redundant cues are used simultaneously to 

make a decision about the presence of a target, then we have shown that the 

decision threshold has to be larger than one (violation of the Townsend Bound) 

and that multiple cues must be sent in parallel (the serial race model predicts too 

important a violation of the Townsend Bound). Finally, we have shown that the 

parallel model cannot be fed by inputs whose distributions are in the PD class (or 

else the symmetry is a constant). The failure of the serial coactivation model is as 

informative as the success of the parallel version of the model as it constrains 

considerably the development of alternative models. 

We have suggested that a channel could be caused by a cascade of 

activation in which case the lognormal occurs as the asymptotic model (the 

attractor distribution). However, we have not tested this suggestion with other 

distributions that are not members of the PD class. 

The joint findings of violation of the Townsend Bound and of a continuous 

increase in symmetry turn out to compose a major challenge as very few models 

are able to produce these results simultaneously. 
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Discussion 

This study is the first to find a triple redundancy gain from attributes within 

a single modality. Not all participants showed a triple redundancy gain, and for 

those that did, not all overcame the threshold given by the Townsend Bound. This, 

as well as the lack of other studies with similar findings, is due to the difficulty of 

creating the right conditions under which such a gain might be observed. There are 

several factors to be considered.  

First, the choice of attributes is important. Attributes need to be processed 

at approximately the same speed, since an attribute that is processed much slower 

than another will not be able to contribute substantially to an RTE. It is not 

possible to know a priori which attributes are processed at the same speed, and 

also, different attributes are processed at different speeds at different stages of the 

processing pathway. For example, detection of movement is very fast, whereas 

recognition of color is faster than recognition of form (Kandel et al., 2000). Due to 

the difficulty of measuring, or of trying to equalize processing speed at different 

levels of the processing pathway, the choice of attributes for this study was made 

based on pilot experiments testing the overall reaction times to a series of 

attributes. From among orientation, spatial frequency, size, letters, direction of 

movement, color, and form - with varying degrees of saturation and luminosity to 

modify processing speed of certain attributes – the latter three proved to elicit 

approximately the same reaction times for most participants, under conditions of 

low luminosity and saturation. The argument that attributes need to be processed at 



 103

approximately the same speed to be able to observe maximal triple redundancy 

gain is supported by the results of the present study: Redundancy gain was found 

for those participants that did indeed process all three single attributes at the same 

speed, and more specifically also processed double redundant targets at roughly 

the same speed.  

Second, participants had different patterns of responses. Some reacted 

slower to certain attributes than to others, thus making a triple redundancy gain 

more difficult to observe. Others had very narrow RT distributions, i.e. very steep 

cumulative RT distributions, thus making the distance between two distributions 

very hard to detect. Others again were simply extremely fast, even in the non-

redundant condition, thus leaving very little room for an improvement in 

performance under redundant conditions.  

Third, noise from external as well as internal factors can mask any 

redundancy gain. The participant might be concentrating mainly on one attribute, 

or show slight hesitation in their motor response, or there might be some noise 

added to the transmission of the signal at any stage of the processing pathway. 

Since there is already very little room for improvement from double to triple 

redundancy, it would not take much to mask a triple RTE.  

Finally, when excluding crosstalk as a facilitating influence on the RTE, 

contingencies between attributes that would inhibit an RTE were permitted. Since 

the possibility that crosstalk exists cannot be excluded, this inhibition could well 
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have masked an RTE, even though we checked that this effect is not important 

(comparing non-target and foil stimuli).  

Despite these difficulties, the current results allow an important conclusion. 

Finding a triple redundancy gain that violates the Townsend Bound is possible, 

and it cannot be explained by one-level race models. 

This study proposes the cascade race model as a novel explanation of the 

RTE. The cascade race model is basically an extension of the already existing race 

model. It shows that coactivation can explain the present results if and only if there 

is internal redundancy (channels sending information multiple times in parallel). In 

addition, the internal channels must have a distribution which is not part of the 

Power distribution class. Those negative findings constrain possible future 

modeling efforts of the RTE.  

Miller (1982) found that when a single-letter condition (no distracter on the 

second channel) was added to the letter search task, the Miller Inequality is not 

violated. Grice and colleagues (1984) and Van der Heijden and colleagues (1984) 

both confirmed the importance of distracter presence for the violation of the 

Inequality. One possible explanation is that due to resource competition, single-

target trials with distracter presence are much slower than single-target trials 

without any distracters. This gain from attentional focus might be sufficient to 

balance the advantage on redundant signal trials. The cascade race model 

simulates this effect of attentional focus by increasing the rate of information 

transmission in the internal channels. If the attributes are processed by Kohonen 
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Self-Organizing Maps (Kohonen, 1984), fewer information leads to faster 

stabilization of the Map.  

The cascade race model is not the first model that reconciles race models 

with a violation of the Miller or Townsend Bound. Earlier attempts to reconcile 

race models with violations of the Miller Inequality are the Parallel Grains Model 

(PGM; Miller & Ulrich, 2003) and the Parallel Race Model (PRM; Cousineau, 

2004). They are separate activation models representing stimuli by a certain 

number of activation grains (redundant evidence), which travel towards a decision 

center with varying speed. Once a sufficient number of grains have arrived, the 

decision threshold is reached and a response can be initiated. This enables them to 

modelize time, which other race models cannot. The PGM can be extended to 

belong to the class of coactivation models by assuming a separate pool of grains 

for each input channel, which then feed into a unique decision center. It is able to 

modelize response time violation of the Miller Inequality as well as the temporal 

dependency of the RTE on stimulus onset asynchrony and its dependency on 

signal intensity. However, RTE dependence on spatial factors such as distance 

between two visual target and effects of grouping was not tested, and one would 

not expect the PGM to explain these easily. The cascade race model is at an 

advantage over the PGM and PRM due to its greater simplicity: It is able to 

explain the results on redundancy gain found in literature employing less 

parameters. 
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There has been an extensive discussion concerning the stage along the 

processing pathway which is responsible for violating the Miller Inequality. Since 

this violation was mainly taken as evidence for coactivation, various types of 

coactivation models have been proposed, with coactivation happening at different 

stages of the processing pathway. Fidell (1970) and Miller (1982) both assume 

coactivation takes place at a very early stage of processing, the detection level 

(activation from both channels is pooled in order to detect a signal in either 

modality). However, other variants of coactivation models have been proposed. 

The Logogen model (Morton, 1969) predicts performance on bimodal word 

recognition tasks, and postulates coactivation during the recognition process 

(activation from all channels which have signaled the detection of a signal is 

pooled to enable identification). Keele (1973) extended the Logogen model to 

include coactivation at the decision level (signals on different channels are 

recognized separately but feed into a common pool to decide the appropriate 

response). A model proposed by Logan (1980) predicts performance during 

response competition (e.g., the Stroop task), also with coactivation at the decision 

level. A model of visual search with coactivation at the decision level has also 

been proposed (Eriksen & Schulz, 1979). But even if all processing up to the 

decision level is based upon separate activation, response times can still profit 

from coactivation at the response initiation level or even at the motor stage. Input 

even from unmonitored modalities increases the general state of arousal, thereby 

facilitating response initiation (Nickerson, 1973). Differences in reaction times 

between responses with the right or left hand (only right hand responses showed 
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enough redundancy gain for coactivation) indicate that at least part of the 

facilitation for redundant targets arises at a motor level (Diederich & Colonius, 

1987). 

The cascade race model may suggest a way to explain these results. First, 

the channels in the cascade race model are not simply conducting activation. 

Indeed, normal spiking is believed to follow a Poisson distribution, which is a 

member of the Power distribution class (Tsodyks & Markram, 1997). If channels 

were only transmitting activations, they would also be a member of that class, as 

would the decision from a parallel race model (Cousineau, Goodman & Shiffrin, 

2002). Hence, the channels must be transducers that actively manipulate the 

information. Second, the response times produced by the cascade race model 

resemble a lognormal distribution (and the 3LogNormal descriptive model fitted 

the data as well as the cascade race model). Hence, one possibility is that the 

channel times are not lognormal (as used in the previous section) but rather 

themselves the output of other coactivation stages occurring at earlier stages. 

Although it is not possible with fitting techniques to identify them, it would nicely 

account for the above-cited literature.  

In conclusion, the results of this study show that redundancy gain from a 

third attribute within one modality is possible, that this redundancy gain is not 

compatible with simple race models, with crosstalk models, or with coactivation 

models. All the results of this study can however be explained by a cascade race 

model. The cascade race model is a novel and unifying approach to previous 
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research on redundancy gain and its predictions at the level of the RT distributions 

were confirmed. 
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Appendix A: Simulating the coactivation model 

The coactivation model simulated here accumulated evidence until a 

common threshold is exceeded. We arbitrarily set the threshold K at 10, i.e. as 

soon as 10 evidences for a target have entered, the target is recognized. Times to 

register an evidence were drawn from a Weibull distribution with parameters α = 

0; β = 10; γ = 2. To get a response time for an object with one target attribute, K 

evidence times were drawn from the evidence distribution, and summed up – the 

result was the simulated response time for this specific target. This process was 

repeated a hundred times for that condition to simulate 100 trials.  

For targets with redundant attributes, evidences were drawn from the 

evidence distribution for each channel and summed up as they were drawn (so that 

the time to register the nth evidence on channel i is the time to register all the 

previous evidences plus the time drawn from the evidence distribution). Then the 

Kth-smallest time, irrespective of the channel, was selected as the RT to a triple 

redundant target. Again this process was repeated a hundred time. Hence, 

coactivation happens because the Kth evidence to be accumulated, no matter what 

channel it arrives from, is sufficient to overcome the threshold for object 

recognition. The simulated RTs were fitted using a Weibull distribution (using the 

same procedure as for the empirical data). 

The exact parameters we chose for the model are not relevant, since we 

wanted to investigate trend and not absolute parameter values (e.g. does γ tends to 

increase, decrease, or stay the same from non-redundant to redundant target 
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conditions). Further, α and β being scaling parameters, they have no influence on 

the trends observed. Regarding γ, we repeated the simulations with different 

values (very skewed evidence time, γ = 1.2, to near symmetrical evidence time, γ = 

3). There was no qualitative difference in the predicted RT asymmetry as a 

function of redundancy. We also varied the threshold size K from very small (K = 

3) to very large (K = 20) with no changes in the trends. 
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Tables 

Table 1. Stimulus distribution for one block of 60 trials. Panels, rows and 

columns show the different attribute values. White fields are non targets, light gray 

fields are stimuli with one target attribute, medium gray fields are stimuli with two 

target attributes, and the dark gray field represents a stimulus with all three target 

attributes present. 

Direction of motion 

Right motion Left motion Down motion 

 Form  Form  Form 

Color square circle triangle Color square circle triangle Color square circle triangle

blue 3 3 3 blue 3 3  blue 3   

red 3 3  red 3  3 red  3 3 

green 3   green  3 3 green  3 12 
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Table 2. Proportion of participants for whom the distribution in a condition 

was significantly different from the distribution in a condition with less 

redundancy. Between parentheses, the mean Anderson-Darling statistics (AD) for 

the participants with a significant difference as well as for participants with a non-

significant difference. 

Non-redundant conditions Double 
Redundant Conditions c  f  d 

cf 21/24 
(11.29/ 1.56) * 

 17/24 
(7.52/ 0.99) * 

 - 

cd 24/24 
(19.92/ n.a.) ** 

 -  15/24 
(6.36/ 1.41) * 

fd -  23/24 
(23.28/ 1.85) * 

 20/24 
(11.36./ 1.33) * 

 
 

Double redundant conditions Triple 
Redundant Condition 

cf  cd  fd 

cfd 24/24 
(22.06/ n.a.)* 

 18/24 
(10.17/ 1.24)* 

 7/24 
(5.90/ 1.20)* 

*  The critical AD for a decision criterion of .05 is 2.49. 
**  For one participant, there was a significant difference between the RT 

distributions for c and cd, but in the opposite direction; i.e. the RT for c was 
actually faster than for cd. However, this was the only case where such a 
reversal was observed. 
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Table 3. Summary of the various predictions made by race models according 

to their architecture and whether the distribution for a single channel F, is a 

member of the Power Distribution class or not. 

Independent channel model Prediction 
 
Architecture 

Distribution F  
for one evidence 

Estimated γ  
across cond. 

Estimated α 
across cond. 

 
Coactivation 

k = 1 F  PD constant constant no 
 F  PD * increasing decreasing no 
Serial F = exponential constant decreasing huge 
 F = normal increasing 

slowly 
decreasing huge 

Parallel F  PD almost constant decreasing yes 
 F  PD * increasing decreasing yes 

* F is the lognormal distribution. 
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Table 4. Fit of the models to the response time distributions of the correct 

response for each participant across the three redundancy conditions. 

Participant 3Lognormal 3Weibull 
Cascade race 

model 
11 2559.6 2610.5  * 2575.8  * 
12 2475.7 2492.3  * 2481.0 
13 2629.6 2638.5 2633.1 
14 2589.6 2587.0 2598.2 
15 2522.8 2531.3 2535.6  * 
16 2532.8 2544.9 2546.3  * 
17 2492.4 2520.5  * 2505.8  * 
18 2352.9 2378.4  * 2376.0  * 
21 2450.8 2478.0  * 2456.9 
22 2525.1 2548.4  * 2532.0 
23 2480.6 2514.1  * 2506.9  * 
24 2487.1 2514.6  * 2492.1 
25 2518.3 2545.1  * 2527.5 
26 2630.4 2642.6  * 2641.2 
27 2487.3 2515.5  * 2505.9  * 
28 2509.8 2549.7 2520.1 
31 2532.5 2559.0 2543.4 
32 2606.7 2620.3  * 2619.4  * 
33 2501.0 2533.5  * 2526.0  * 
34 2683.0 2690.2 2692.0 
35 2518.3 2529.2 2530.7 
37 2604.3 2620.3 2616.5 
38 2669.0 2675.1 2673.4 
39 2407.3 2428.0  * 2415.5  * 

* A significantly worse fit than the 3lognormal model using a BIC penalty term  
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Table 5. Mean fit and mean parameter values for the models tested. 

 Mean fit mean T0 mean β /μ mean γ /σ mean k mean ρ 
3Lognormal 2512.3 185.2 5.115 0.350   

3Weibull 2534.9 278.8 129.0 2.072   
Cascade race model 2523.8 249.6 5.879 0.779 1.298 7.685 



 127

Figure Legends 

Figure 1. Mean response time per condition over all participants. Error bars 

show standard deviation. 
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Figure 2. RT distributions of participant 13 for single- and double redundant 

conditions. Gray lines are the cumulative distributions for single-target conditions, 

black lines for double redundant conditions. All double redundant conditions for 

this participant are significantly faster than the non-redundant conditions.  
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Figure 3. RT distributions of participant 13 for double and triple redundant 

conditions. Gray lines are the cumulative distributions for double redundant 

conditions, the black line for the triple redundant condition. This participant is 

significantly faster in the triple redundant condition than in any of the double 

redundant conditions. 
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Figure 4. Townsend Bound and 

RT distributions of participant 13 

for double redundant conditions. 

Panels represent the three different 

combinations of two target 

attributes. Gray lines are the 

cumulative distributions for single-

target conditions, the continued 

black line the respective double 

redundant condition and the dotted 

black line shows the corresponding 

Townsend Bound. This participant 

responds significantly faster than the 

corresponding Townsend Bound 

only for the condition fd (see panel 

C). In the other two conditions 

(Panels A and B) there is no 

significant difference between the 

Townsend Bound and actual RT 

distribution. 
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Figure 5. Townsend Bound and RT distributions of participant 13 for triple 

redundant conditions. Gray lines are the cumulative distributions for single-

target conditions, the continued black line the triple redundant condition and the 

dotted black line shows the corresponding Townsend Bound. The participant is 

significantly faster in the triple redundant condition than predicted by the 

corresponding Townsend Bound. 
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Figure 6. Townsend Bound calculated from double redundant distributions 

for participants 25 (panel A) and 39 (Panel B). Gray lines are the cumulative 

distributions for double redundant conditions; the continued black line the triple 

redundant condition, the dotted black line shows the corresponding Townsend 

Bound, and the dashed black line the corresponding Townsend Bound calculated 

from double redundant conditions (TB3over2). Both participants’ RTs are 

significantly faster in the triple redundant condition than predicted by both 

Townsend Bounds. 
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Figure 7. Parameters of RT 

distributions. Panel A shows the 

mean over participants of α as a 

function of redundancy (error bars 

represent the between-participants 

standard error; see Loftus & 

Masson, 1994; Cousineau, 2005), 

panel B the mean of β, and panel C 

the mean of γ. For redundant 

conditions, the darker bar shows 

participants that were significantly 

faster than predicted by the 

Townsend Bound, the lighter bars 

represent participants that were not. 
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Figure 8. Parameters of RT distributions – real and simulated. Panels A-C 

show the mean parameter value fitted to participants’ RT distributions (error bars 

represent the between-participants standard error; see Loftus & Masson, 1994; 

Cousineau, 2005); panels D-F show the mean parameter values of the RT 

distributions simulated by the coactivation model (error bars represent the standard 

deviation across simulations). The first column shows the change in α with 

increasing redundancy, the second column the change in β, and the third column, 

the change in γ. 

 (see next page for figure) 
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Figure 8. (see previous page for legend) 
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Figure 9. Different versions of a race model with three possible inputs. Top: a 

single evidence threshold. Bottom: Race models based on a decision threshold 

larger than 1. Bottom left: evidences from a cue are received serially, in which 

case the distribution F characterizes the inter-evidence times; Bottom right: 

evidences from a cue are received in parallel, in which case the distribution F 

characterizes a single channel. 
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Figure 10. Influence of the parameters ρ (internal redundancy), R (external 

redundancy) and k (decision threshold) on the observed symmetry as 

measured by fitting a Weibull to the predicted distribution. 
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Abstract 

This paper introduces the two-sample Anderson-Darling (AD) test of 

goodness of fit as a tool for comparing distributions, response time distributions in 

particular. We discuss the problematic of pooling response times across 

participants, and alternative tests of distributions, the most common being the 

Kolmogorov-Smirnoff (KS) test. We compare the KS test and the AD test, 

presenting conclusive evidence that the AD test is more powerful: when 

comparing two distributions that vary (1) in shift only, (2) in scale only, (3) in 

symmetry only, or (4) that have the same mean and standard deviation but differ 

on the tail ends only, the AD test proves to detect differences better than the KS 

test. In addition, the AD test has a type I error rate corresponding to alpha whereas 

the KS test is overly conservative. Finally, the AD test requires less data than the 

KS test to reach sufficient statistical power.  
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Introduction 

The motivation for this article lies in the authors’ own research on 

redundancy gain (Miller, 1982): we investigate response time (RT) distributions in 

an object recognition task, varying the number of redundant attributes identifying 

an object as a target (Engmann & Cousineau, submitted). We analyze each 

participant's RTs individually, and therefore need a test that would allow analysis 

of a whole distribution, not just the mean and variance. We wanted a test that is 

sensitive to changes in shape and asymmetry. After trying different goodness-of fit 

tests, we finally settled on the Anderson-Darling test, a powerful tool for 

comparing data distributions. In this paper we wish to introduce the two-sample 

version of the Anderson-Darling (AD) test and compare its power to the 

Kolmogorov-Smirnoff (KS) test.  

The AD test is commonly used in engineering, but little known in 

Cognitive Psychology, despite its advantages for this field. This test is especially 

useful if there is not a lot of data available in the samples to be compared, and 

when the analysis should extend beyond distributions’ means, taking into account 

differences in shape and variability as well as the mean of the given distributions. 

The AD test is non-parametric and can be applied to Normal, Weibull, and other 

types of distributions. It is especially useful to analyze response time distributions, 

as it allows a participant-by-participant analysis. 
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Why combining response time distributions across participants is problematic 

When comparing response time (RT) distributions for different 

experimental conditions, it can be quite difficult to obtain a sufficient amount of 

data in each condition for a reliable analysis. There is a trade-off between the time 

participants take for a given experiment and the amount of data per condition. 

Combining the response times of several participants seems to be, at first glance, 

an elegant solution to avoid this trade-off. However, on closer inspection, 

combining RT distributions presents several difficulties. 

The most intuitive solution, simply pooling all RTs from all participants 

together per condition, would produce uninterpretable distributions due to inter-

participant variability: such RT distributions would not only be influenced by the 

characteristics of the experimental condition under which they are produced, but 

also by individual differences. Participants can have faster or slower motor 

reactions, or object recognition speed – the possibilities to produce variance in RT 

distributions are endless – such that variance between participants will be larger 

than variance due to experimental manipulation. Therefore, simple pooling of 

different RT distributions will flatten the shape of the final distribution, or, if there 

are not many participants, lead to a bi- or multimodal distribution.  

A technique to avoid some of these problems was proposed by Vincent 

(1912; see also Rouder & Speckman 2004). The so-called Vincentizing is the most 

popular technique to combine response time distributions. It involves dividing 

each distribution into a certain number of quantiles, and then averaging the nth 
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quantiles of each distribution. The advantage of using this technique is that the 

resulting “average” RT distribution takes into consideration the relative position of 

each response time in relation to the other RTs of a specific participant, i.e. 

minimal RTs are averaged with other minimal RTs; RTs at the peak of each 

participant’s distribution are averaged with other peaks; etc. This avoids a 

flattening or multi-modality of the Vincentized distribution. 

However, Vincentizing distorts the shape and symmetry of individual 

distributions (Thomas & Ross, 1980). If an RT distribution reflects one or more 

underlying processes that contribute to the RT, then this information is essential 

for analysis. A Vincentized distribution tends towards normality, whereas 

asymmetry is a universal finding in RT empirical data (Logan, 1992; Rouder, Lu, 

Speckman, Sun & Jiang, 2005). Possibly relevant information about a RT 

distribution, such as its degree of symmetry, gets lost when Vincentizing.  

Vincentizing is the best technique of combining RT distributions available 

right now. However, even Vincentizing does not render an unbiased and exact 

analysis of RT distributions, and research for a better method is in progress, but 

has not been conclusive so far (Lacouture & Cousineau, in press). Therefore, we 

need to consider methods available for participant-by-participant analysis. 

Different methods of comparing distributions participant-by-participant 

The most common methods of comparing two or several distributions, the 

t-test or the ANOVA, render a judgment of goodness of fit based on the mean and 



 145

variance of distributions under comparison. They do not take shape and symmetry 

into account, which is not specific enough in a lot of cases, for reasons mentioned 

in the previous section. Also, both tests are parametric, expecting a normal 

distribution, whereas RTs have a shape close to the Weibull or the Lognormal 

distribution. 

When investigating redundant target recognition RTs, several authors used 

multiple t-tests on quantiles (Miller, 1982; Mordkoff & Yantis, 1991, 1993, among 

others). Quantiles (e. g. the 5th percent quantiles) are computed for each participant 

in the two conditions whose distributions are to be compared. These quantiles are 

then tested for equality using a t-test. This procedure is replicated for all quantiles 

at given intervals (e. g. the 10th, the 15th, etc. percent). This method allows an 

estimate of where RT distributions of all participants differ significantly. It keeps 

individual participants’ data separate, and analyses more than distribution means.  

However, sample size for each t-test is only as large as the number of 

participants in an experiment; therefore statistical power may not be sufficient, 

especially if the effect size is not very large to begin with. Additionally, between-

participant variability might be larger than between-condition differences. Finally, 

the data at one time point are highly correlated with the data at the previous and 

following time point, influencing the probability of a type I error rate.  

There are several types of non-parametric or distribution-free (they neither 

depend on the specific form, nor on the value of certain parameters in the 

population distribution; Massey, 1951) goodness of fit tests that either test if a 
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sample comes from a given theoretical distribution, or if two samples come from 

the same underlying distribution. The most well-known in psychology, although 

used more frequently as a test of independence than goodness of fit, is the 

Pearson’s Chi square (χ2) test (Chernoff & Lehmann, 1954). The χ2 test operates 

on binned frequency distributions, not on probability distributions, and does not 

give precise results when bin size is too narrow. It is therefore less adapted and 

less powerful than other tests for comparison of distributions, such as the 

Kolmogorov-Smirnoff, Cramer-von Mises, Kuiper, Watson or Anderson-Darling 

test (Stephens, 1974). All of the above tests have more or less the same underlying 

structure, or are adaptations of one another for different sample sizes or situations, 

some being more powerful for detecting changes in mean, others in variance 

(Stephens, 1974).  

The Kolmogorov-Smirnoff (KS) test is the most well-known of these tests, 

and the most commonly used in psychology. The KS test's statistical power is 

greater than that of the χ2-test, it requires less computation, and unlike the latter, it 

does not lose information by binning, as it treats individual data separately 

(Massey, 1951; Lilliefors, 1967). However, it is applicable neither for discrete 

distributions, nor in cases where not all parameters of a theoretical distribution are 

known and therefore, they have to be estimated from the sample itself. 

In this article, we will concentrate on a comparison of the Kolmogorov-

Smirnoff (KS) and the Anderson-Darling (AD) test. The former test is already 

commonly used in the field of psychology, and both are non-parametric, 
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distribution-free, do not require normality, and are best adapted to the context of 

RT distribution analysis.  
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Comparison of Kolmogorov-Smirnoff and Anderson-Darling tests 

Both the KS and the AD tests are based on the cumulative probability 

distribution of data. They are both based on calculating the distance between 

distributions at each unit of the scale (i.e. time points for RT distributions).  

Kolmogorov-Smirnoff Test 

The Kolmogorov-Smirnoff (KS) test was first introduced by Kolmogorov 

(1933, 1941) and Smirnoff (1939) as a test of the distance or deviation of 

empirical distributions from a postulated theoretical distribution. The KS statistic 

for a given theoretical cumulative distribution F(x) is 

 (1) 

where F(x) is the theoretical cumulative distribution value at x, and Fn(x) is the 

empirical cumulative distribution value for a sample size of n. The null hypothesis 

that Fn(x) comes from the underlying distribution F(x) is rejected if KSn is larger 

than the critical value KSα at a given α (for a table of critical values for different 

sample sizes see Massey, 1951; less conservative critical values exist if the test 

distribution is the normal distribution, Lilliefors, 1967, or the exponential 

distribution, Lilliefors, 1969). This means that a band with a height of KSα is 

drawn on both sides of the theoretical distribution, and if the empirical distribution 

falls outside that band at any given point, the null hypothesis is rejected. The KS-
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statistic is sometimes abbreviated as D-statistic. For reasons of clarity we will use 

the former term throughout this article. 

The two-sample version of the KS test generalizes to 

 (2) 

where Fn(x) and Fn'(x) are two empirical cumulative distribution values at time 

point x, based on data sets of size n and n' respectively. The null hypothesis that 

Fn(x) and Fn'(x) come from the same underlying distribution is rejected if KSn n' is 

larger than the critical value KSα at a given α (for a table of critical values for the 

two-sample KS test, see Massey, 1951).  

The main advantage of the KS test is its sensitivity to the shape of a 

distribution because it can detect differences everywhere along the scale (Darling, 

1957). Also, it is applicable and dependable even for small sample sizes 

(Lilliefors, 1967). Therefore, a KS test is advised in the following experimental 

situations: (1) when distribution means or medians are similar but differences in 

variance or symmetry are suspected; (2) when sample sizes are small; (3) when 

differences between distributions are suspected to affect only the upper or lower 

end of distributions; (4) when the shift between two distributions is hypothesized 

to be small but systematic; or (5) when two samples are of unequal size. 

The KS test is fairly well known in the field of psychology, and has been 

used for a number of different experimental contexts other than a comparison of 
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response times, such as a comparison of circadian rhythm (Pandit, 2004), an 

evaluation of exam performance (Rodriguez, Campos-Sepulveda, Vidrio, 

Contreras & Valenzuela, 2002), or a comparison of economic decision-making 

(Eckel & Grossman, 1998). 

Initially, the authors also used the KS test to compare the response times of 

participants in an object recognition task where objects could be defined by one, 

two or three target attributes (Engmann & Cousineau, submitted). However, we 

began looking for an alternative for the following reasons. First, participants were 

faster at recognizing objects defined by several target attributes, but the effect was 

very small. Second, we wanted to compare our data to a model which made certain 

assumptions about minimal response times, as well as scale and symmetry of 

response time distributions. We therefore needed a test that would detect small 

differences at any time point along the distribution, although sample size was not 

large (48 to 144 per condition). Since we assumed that a substantial part of the 

effect would show itself in the minimal response times, we needed a test that was 

especially sensitive to the extrema of a distribution. We finally settled on the AD 

test as it fulfilled these criteria better than the KS test. 

Anderson-Darling Test 

The Anderson-Darling test was developed in 1952 by T.W. Anderson and 

D.A. Darling (Anderson & Darling, 1952) as an alternative to other statistical tests 

for detecting sample distributions’ departure from normality. Just like the KS test, 

it was originally intended and used mainly for engineering purposes.  
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The one-sample AD test statistic is non-directional, and is calculated from 

the following formula: 

 (3) 

where {x(1) < ... < x(n)} is the ordered (from smallest to largest element) sample of 

size n, and F(x) is the underlying theoretical cumulative distribution to which the 

sample is compared. The null-hypothesis that {x(1) < ... < x(n)} comes from the 

underlying distribution F(x) is rejected if AD is larger than the critical value ADα 

at a given α (for a table of critical values for different sample sizes, see D'Agostino 

& Stephens, 1986). 

The two-sample AD test, introduced by Darling (1957) and Pettitt (1976), 

generalizes to the following formula:  

 (4) 

where Z(n+m) represents the combined and ordered samples X(n) and Y(m), of size n 

and m respectively, and Ni represents the number of observations in X(n) that are 

equal to or smaller than the ith observation in Z(n+m). See Pettitt (1976) for critical 

values depending on α and sample size. The null hypothesis that samples X(n) and 

Y(m) come from the same continuous distribution is rejected if AD is larger than 

the correspondent critical value.  
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The AD test has been further generalized to a k-sample version (Scholz & 

Stephens, 1987), which is especially useful to test for the homogeneity of several 

samples. However, this version will not be discussed in this article. 

Several comparisons between the one-sample AD test and other similar 

tests have been made. Anderson and Darling (1954) found that for one set of 

observations, the KS and AD test produced the same result. Stephens (1974) 

compared several one-sample goodness of fit tests, and concluded that while all 

tests surpassed the χ2 test in power, the KS, AD, and Cramer-von Mises tests 

detected changes in mean better. 

The AD test has the same advantages mentioned for the KS test in the 

previous section, namely its sensitivity to shape and scale of a distribution 

(Anderson & Darling, 1954) and its applicability to small samples (Pettitt, 1976). 

Specifically, the critical values for the AD test rise asymptotically and converge 

very quickly towards the asymptote (Anderson & Darling, 1954; Pettitt, 1976; 

Stephens, 1974). 

In addition, the AD test has two extra advantages over the KS test. First, it 

is especially sensitive towards differences at the tails of distributions (as we will 

show next). Second, there is evidence that the AD test is better capable of 

detecting very small differences, even between large sample sizes. This is one of 

its main advantages in the field of engineering. The goal of the following Monte 

Carlo simulations is to investigate more rigorously the differences in performance 
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between the KS test and the AD test, especially concerning small differences 

between samples and sensitivity to tail differences. 

The AD test can be used in the same experimental context as the KS test, 

but it is not known in the field of psychology, the two-sample version even less 

than the one-sample version. Rare examples of use of the one-sample AD test in 

psychology include a test of normality for the distribution of judgments of 

verticality (Keshner, Dokka & Kenyon, 2006), and a test of normality of platelet 

serotonin level distributions (Mulder et al., 2004). Apart from our own studies 

(Engmann & Cousineau, submitted), we are not aware of any further examples of 

use of the two-sample version.  

Comparison of the two tests when shift, scale and symmetry are varied 

independently 

To compare the performance of KS versus AD test, we propose to test if 

the difference between two sets of data sampled from two minimally different 

distributions is statistically significant, according to the KS test and according to 

the AD test. By using theoretical distributions with known parameters, we are able 

to control the actual size of the difference between the two distributions. This 

allows us to compare the performance of both tests when distributions are very 

similar as well as when they are dissimilar. Also, this gives us a tool to observe the 

effect of change in specific parameters on the performance of both tests. 

Specifically, we can compare performance when distributions differ only at the 

extreme ends, but not around the mode, as will be done in the subsequent section.  
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Method 

In a given simulation, we used two populations following Weibull 

distributions with three parameters, 

D1 (α, β, γ) (5a)  

D2 (α + Δ1, β + Δ2, γ + Δ3), (5b) 

where α = 200, β = 80, and γ = 2.0. These parameters are typical of speeded 

response time distributions (Heathcote, Brown & Cousineau, 2004). Δ1 varied 

between –60 and 60, in steps of 4, Δ2 varied between –30 and 30, in steps of 2, and 

Δ3 varied between –1.2 and 1.2, in steps of 0.08. In the first simulations, only one 

parameter varied, whereas the other two remained the same (Δ = 0). For each 

value of Δ1, while maintaining Δ2 and Δ3 at 0, a sample was drawn from D1 as well 

as from D2. A test of significant difference (with α = 0.05) between D1 and D2 was 

then performed, using the KS test and then the AD test. This was repeated 10,000 

times for each value of Δ1 and subsequently for each value of Δ2 and Δ3 as well. 

For each value of Δ1, Δ2 and Δ3 we were then able to calculate the probability of 

finding a significant difference between D1 and D2 for the KS test and for the AD 

test. This procedure was used for sample sizes of 16, 32 and 64, typical in 

experimental psychology. 

------------------------- 

Insert Figure 1 here  
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------------------------- 

Results 

Figure 1 shows the probability for both AD test and KS test of finding a 

significant difference between D1 and D2 when Δ1 changes, plotted along the 

abscissa. The three panels represent the different sample sizes. The probability of 

finding a significant difference is plotted as a function of Δ1. If D1 and D2 are 

equal (Δ1 = 0), the AD test finds a significant difference (type I error) in 4.7% of 

the cases for sample size n = 16, 5.0% for n = 32, and 5.2% for n = 64. This is 

approximately the type I error usually allowed for (α). The KS test finds a 

significant difference in only 1.2% (n = 16), 2.2% (n = 32), and 3.3% (n = 64) of 

the cases. Hence, the KS test is slightly more conservative, allowing for a smaller 

proportion of type I errors. On the other hand, when Δ1 differs from zero, the 

proportion of type II errors is larger for the KS test, finding no significant 

difference when distributions are actually different.  

------------------------- 

Insert Figure 2 here  

------------------------- 

To illustrate the amount of gain of the AD test over the KS test more 

clearly, we calculated the difference in probability between the two tests. This was 

done by subtracting the KS-probability from the AD-probability of finding a 
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significant difference for each value of Δ1. Figure 2 plots the difference as a 

function of change in Δ1, the panels representing sample sizes 16, 32 and 64 

respectively. Figure 2 clearly shows that performance of the KS test approaches 

the performance of the AD test (i.e. the difference approaches zero) only for very 

large differences between distributions, or when the two distributions are equal 

(i.e. when Δ1 = 0). As values of Δ1 approach intermediate values (near ± 25), there 

is a systematic and constant gain, sometimes as large as 36% for the AD test over 

the KS test. The AD test detects as much as a quarter of all differences for certain 

effect sizes which the KS test could not detect. 

Differences in performance between KS test and AD test are more 

pronounced for small sample sizes. This holds for changes in Δ1 as well as in Δ2 

and Δ3, as will be shown next.  

------------------ 

insert Figure 3 here 

------------------ 

Figure 3a shows the probability for both AD test and KS test of finding a 

significant difference between D1 and D2 when Δ2 changes, at a sample size of 64. 

When D1 and D2 were equal (Δ2 = 0), the proportion of type I errors for the AD 

test was 0.9% (n = 16), 2.0% (n = 32), and 3.3% (n = 64) respectively. Figure 3b 

represents the advantage of the AD test over the KS test, again at a sample size of 
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64. For all sample sizes, the AD test performed as good as or better than the KS 

test, with a maximal advantage of 4.2% (n = 16), 4.9% (n = 32) or 4.7% (n = 64) 

respectively. 

------------------ 

insert Figure 4 here 

------------------ 

Figure 4a shows the probability for both AD test and KS test of finding a 

significant difference between D1 and D2 when Δ3 changes, at a sample size of 64. 

The curve is less symmetrical as Δ3 represents a change in symmetry, and the 

effect of a negative Δ3 is not the same as the effect of a positive Δ3. When D1 and 

D2 were equal (Δ3 = 0), the proportion of type I errors for the AD test was 0.7% (n 

= 16), 1.8% (n = 32), and 2.9% (n = 64) respectively. Figure 4b represents the 

advantage of the AD test over the KS test, again at a sample size of 64. For all 

sample sizes, the AD test performed as good as or better than the KS test, with a 

maximal advantage of 4.6% (n = 16), 4.9% (n = 32) or 4.6% (n = 64) respectively. 

When D1 and D2 are equal, the KS test has a slightly lower type I error rate, 

but as soon as samples differ even slightly, the AD test outperforms the KS test for 

the detection of differences in shift (Δ1), scale (Δ2), or symmetry (Δ3).  



 158

Comparison of the two tests when D1 and D2 differ in the tails only 

As mentioned earlier, one of the strengths of the AD test is its sensitivity to 

the extreme ends of distributions – the minima and maxima. In order to test its 

performance specifically at the extrema, we decided to compare distributions that 

differed only at the extreme ends. The degree of difference between such 

distributions is extremely difficult to compute, and much less to control. Therefore 

we selected six instances of two distributions that differ at the extrema, and 

compared each with a KS and an AD test. One of these distributions was a 

Weibull, the other a Normal with approximately the same mean and variance as 

the Weibull. See Table 1 for the exact parameters of each of the six sets of 

distributions used. Figure 5 shows two such pairs of distributions. Weibulls can be 

asymmetrical, whereas Normals are symmetrical, which means that an overlap can 

be obtained for large parts of the distributions, while maintaining a difference at 

one or both of the extrema. 

------------------------- 

Insert Figure 5 here 

------------------------- 

Method 

We selected a sample of size 16 from the Weibull and the Normal in each 

set, tested them for significant difference using the KS and then the AD test. We 
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repeated this procedure 10 000 times, and then calculated the probability of the 

AD and the KS test of finding a significant difference. In all other aspects, the 

procedure is the same as in the previous section. 

------------------------- 

Insert Table 1 here 

------------------------- 

Results 

The results are shown in Table 1, the last column representing the gain of 

the AD over the KS test. The AD test is able to detect differences in distributions 

better than the KS test, even if they are located only at the tail(s) of a distribution. 

Sample size needed to reach sufficient statistical power when shift, scale and 

symmetry are varied independently 

Another method to assess the advantage of one statistical method over 

another is based on statistical power (Cohen, 1992). We will compare the required 

number of data per cell to reach a target power. Following Cohen (1992), we will 

use 80% as the target power. The method which requires less data to reach a 

statistical power of 80% is to be preferred. 

We defined the effect size for a shift relative to the standard deviation of 

the parent distribution. In the following, a small effect size is defined as a change 
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in the shift (α) of the second distribution by a quantity of 0.25 σ and by a quantity 

of 0.75 σ for a large effect size. Table 2 lists the definitions of effect size for the 

three parameters. Hence, for a Weibull distribution with parameters γ = 2.0 and β 

= 80, the standard deviation is 37 ms and the small effect size is a shift by 9.3 ms 

(α ± 9.3 ms). 

 --------------------- 

 insert  Table 2 here 

 --------------------- 

 Regarding the scale parameter, there is no convention as to what constitutes 

a small, medium or large effect size. Hence, we adopted the same effect sizes for 

changes in scale as for changes in shift. Finally, for the changes in symmetry, a 

large effect size was defined as a change in the symmetry that would be clearly 

visible on a plot of the two distributions and a small effect as a change in the 

symmetry that would be difficult to see. As we saw in the first simulations, power 

is not symmetrical when the parameter γ is near 2.0. We chose to compare 

distributions with symmetry parameters of 1.25 and 2.75 (γ ± 0.75) for a large 

difference, 1.50 and 2.50 (γ ± 0.5) for a medium difference and finally 1.75 and 

2.25 (γ ± 0.25) for a small difference. Figure 6 shows the resulting distributions for 

the two extreme conditions. 

 ----------------- 
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 insert Figure 6 here 

 ------------------- 

Method 

Simulations were run in a fashion similar to the previous ones. We varied 

the sample size until a power of 80% was reached for each of the two tests, the AD 

test and the KS test. For most cases, the results are based on 10,000 simulations 

except when sample size is larger than 100, where the results are based on 25000 

simulations so that the results are accurate to the third digit. 

Results 

The results are presented in Table 3. When the change is in the shift 

parameter, the net effect is to change the mean of the distribution. Hence, a 

powerful test should have about the same power as a standard test of means on two 

groups (e.g. a two-sample t-test). As seen, the number of data needed when the AD 

test is used (29, 61 and 233 for large, medium and small effect sizes respectively) 

is the same or slightly smaller than the number of data required by a t-test (29, 64 

and 252 for large, medium and small differences in means; Cohen, 1992, 

Cousineau, 2007). The AD test is more powerful than a t-test when comparing two 

Weibull distributions; this can be explained by the fact that the left tail of a 

Weibull distribution is characterized by an abrupt onset. For a small effect size, 

there is an area of 9.3 ms where there are data in the first sample but none in the 

second sample. Since the AD test is sensible to differences in tails, it detects this 
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difference in the left tail efficiently. When the two populations are normal, there is 

no advantage of the AD test over the t-test. The number of required data is 31, 69 

and 272 for large, medium and small effect sizes respectively (based on Monte 

Carlo simulations with normal distributions). 

 Table 3 also shows the required number of data when the scale parameter 

and the symmetry parameter are varied. For changes in shift and scale, the 

required sample size by a KS test to obtain a statistical power of 80% is close to 

50% larger than the sample size when using an AD test. Worst, the KS test is 

poorest at detecting changes in asymmetry, requiring almost twice as many data 

than the AD test. 

 ---------------- 

 insert  Table 3 here 

 ---------------- 

 In many psychology experiments, it is not known whether results from two 

groups produce distributions that differ with respect to their shape, scale, or 

symmetry, or a combination of the above. Hence, the following could be a 

reasonable rule of thumb for deciding the sample size to ensure sufficient 

statistical power: For a given expected effect size, choose the sample size 

associated with the parameter that requires the largest number of data. For 

example, if a medium difference is expected between two conditions, not knowing 

which parameter(s) will reflect the change, a safe approach would be to have 116 
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data per condition (a change in the scale parameter requires the highest number of 

data to ensure sufficient power). However, this ideal rule of thumb is limited by 

practical considerations: Considering that an experimental session generally has no 

more than 600 trials, that there may be a few erroneous responses that must be 

removed from the samples, and that there usually are more than two or three 

different conditions in an experiment, a sample size of 116 per condition might not 

be practical. If a KS test is used, this number reaches 190, a figure nearly 

impossible to obtain in any practical experimental design. Note that pooling data 

between sessions to increase sample size per condition is not recommended unless 

there are no significant practice effects.  
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Discussion 

In conclusion, we have shown that the AD test is more powerful than the 

KS test in detecting any kind of difference between samples from two different 

distributions, all the while maintaining an exact type I error rate of .05. The KS 

test is overly conservative in comparison. This paper provides three different types 

of evidence that the performance of the AD test is superior. First, the AD test 

detects small variations of any one parameter between two distributions more 

reliably than the KS test. This holds for shift, scale, and symmetry parameters, and 

for all sample sizes examined. Second, the AD test detects differences at the 

extreme ends of distributions more reliably than the KS test. Again, this holds 

even for small sample sizes and when the two distributions largely overlap. 

Finally, the AD test requires much less data per condition than the KS test in order 

to obtain sufficient statistical power. Since the AD test further possesses the same 

advantages as the KS test, and can be applied in the same experimental context, 

the evidence of its superior performance presented here shows that it should be 

preferred to the KS test as a tool for comparing distributions. 

The AD test is recommended in any experimental context which requires a 

comparison of samples of continuous distributions, such as response time data, 

which requires more than a comparison of sample means.  

The MatLab (MathWorks, Inc., Natick, MA) version of the two-sample 

Anderson-Darling test, “adtest2.m” for sample sizes larger than eight for both 

samples is provided in the Appendix. It requires as input two separate arrays of 
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data, which do not need to be the same length. Samples are not required to be 

ordered before serving as input. Optionally, the type I error rate (α) can also be 

given as the third input. If omitted, the default value is α = .05. The output of 

“adtest2.m” confirms or rejects the null hypothesis that both samples come from 

the same underlying distribution, supplying the value of the AD statistic and the 

critical value for the specified α. Please note that the AD test is non-directional, 

that is it will only give evidence of a significant difference between samples, but 

not which one of the two is greater or smaller. For details on how to use the one-

sample AD test, please refer to Stephens (1974).  
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Appendix 

Implementation of the two-sample Anderson-Darling test in MatLab 

(MathWorks, Inc., Natick, MA). This implementation assumes sample sizes to 

be larger than eight. Please refer to D'Agostino and Stephens (1986) for an 

approximate adjustment of the calculation of the AD statistic for smaller sample 

sizes, or to Pettitt (1976) for a table of critical values of the AD statistic for smaller 

sample sizes. 

function [H, adstat, critvalue] = adtest2(sample1, sample2, alpha) 

% ADTEST2: Two-sample Anderson-Darling test of significant difference.  

% This test is implemented for sample sizes larger than 8. For smaller   

% sample sizes please refer to A.N.Pettitt, 1976 (A two-sample  

% Anderson-Darling rank statistic) for the critical values. 

% 

% CALL:                        adtest2 (sample1, sample2); 

%       [H,adstat,critvalue] = adtest2 (sample1, sample2, alpha);  

%       Sample1 and sample2 are the samples to be compared. They must  

%       be vectors of a size greater than 8. Alpha specifies the   

%       allowed error. If alpha is not specified, a default value of   

%       0.05 for alpha is used. Alpha must be either 0.01, 0.05 or 0.1. 

% 

% RETURN: H gives the statistical decision. H = 0: samples are not 

%           significantly different. H = 1: sample1 and sample2 are 

%           significantly different (i.e. do not arise from the same 

%           underlying distribution). 

%         adstat returns the ADstatistic of the comparison of the two 
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%           samples. If adstat is greater than the critical value, 

%           the two samples are significantly different. 

%         critvalue returns the critical value for the alpha used 

% 

% (c) Sonja Engmann 2007 

  

if nargin < 2, error('Call adtest2 with at least two input arguments'); end 

if nargin < 3, alpha = 0.05; end 

  

% Assignment of critical value depending on alpha 

if alpha == 0.01, critvalue = 3.857; 

elseif alpha == 0.05, critvalue = 2.492; 

elseif alpha == 0.1, critvalue = 1.933; 

else error('Alpha must be either 0.01, 0.05 or 0.1.'); 

end 

  

samplecomb = sort([sample1 sample2]); 

ad = 0; 

for i = 1:length(samplecomb)-1 

    m = length(find(sample1(:)<=samplecomb(i))); 

    ad = ad + (((m*length(samplecomb) - length(sample1)*i)^2)/(i*(length(samplecomb)-i))); 

end 

     

adstat = ad/(length(sample1)*length(sample2)); 

  

if adstat > critvalue, H = 1; else H = 0; end 
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Tables 

Table 1. Parameters of the Weibull and Normal distributions from which 

samples are drawn for comparison. The last three columns show the probability 

(over 10 000 instances) of finding a significant difference between samples, either 

by the AD test or the KS test. The last column represents the advantage of the AD 

over the KS test. 

  

Weibull parameters 

 

Normal parameters 

Probability of finding a 

significant difference 

 α β γ μ σ AD test KS test AD - KS 

1 0 10 1.5 6 5.4 .200 .032 .168 

2 0 10 2.5 8.5 4 .051 .005 .046 

3 0 20 1.3 7.5 11.25 .561 .165 .396 

4 0 20 4.0 17.5 6.75 .072 .013 .059 

5 0 30 1.6 17.5 15.73 .252 .054 .198 

6 0 30 2 22.5 14 .087 .018 .069 
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Table 2. Definition of large, medium and small effect size for the three 

parameters of the Weibull distribution.  

  Definition  

 Large Medium Small 

α 0.75 σ 0.5 σ 0.25 σ 

β 0.75 σ 0.5 σ 0.25 σ 

γ ± 0.75 ± 0.50 ± 0.25 
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Table 3. Number of data required to reach a power of 80% as a function of the 

effect size and the test used. 

 The Anderson-Darling test The Kolmogorov-Smirnoff test 

 Large Medium Small Large Medium Small 

α 29 61 233 42 92 360 

β 58 116 412 81 161 564 

γ 48 100 377 83 190 768 
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Figure Legends 

Figure 1. The proportion of significant differences between the two 

distributions for the AD and KS test as a function of Δ1 (changes in shift). The 

horizontal gray line is the boundary of an acceptable type I error rate for a decision 

criterion of 5%. Panels represent sample sizes 16, 32 and 64 respectively. 

AD____
KS   - - - -

AD____
KS   - - - -

AD____
KS   - - - -
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Figure 2. Absolute advantage of AD over KS test as a function of Δ1 (changes 

in shift). Panels represent sample sizes 16, 32 and 64 respectively. 
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Figure 3. The proportion of significant differences between the two 

distributions for the AD and KS test as a function of Δ2 (changes in scale). 

The horizontal gray line is the boundary of an acceptable type I error rate for a 

decision criterion of 5%. The second panel shows the absolute advantage of the 

AD over the KS test. 

AD____
KS   - - - -
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Figure 4: The proportion of significant differences between the two 

distributions for the AD and KS test as a function of Δ3 (changes in 

asymmetry). The horizontal gray line is the boundary of an acceptable type I error 

rate for a decision criterion of 5%. The second panel shows the absolute advantage 

of the AD over the KS test. 

AD____
KS   - - - -
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Figure 5. Weibull and Normal distributions used for evaluation of 

performance when distributions differ at tails. The full line represents the 

Weibull, the dotted line the corresponding Normal distribution. Panel A shows the 

pair of distributions for which it was least likely to detect a difference (parameters: 

Weibull α=0, β=10, γ=2.5; Normal μ=8.5, σ=4), panel B the pair for which it was 

most likely (parameters: Weibull α=0, β=20, γ=1.3; Normal μ=7.5, σ=11.5. 
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Figure 6. The two distributions compared when the effect size of change in 

symmetry is large (left) and small (right). 
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CHAPTER 4 

CONCLUSION 

The focus of this thesis is a profound comprehension of the characteristics 

and possible causes of redundancy gain in an object recognition task. In this 

context, we address several novel issues. First, we found evidence for redundancy 

gain from three attributes inside a single modality. Second, by extending the 

Townsend Bound to be based on double-redundant performance, we managed to 

show that it is possible for the third attribute specifically to contribute more gain 

than can be predicted by race models. Third, we discovered additional 

characteristics of the RTE (redundant target effect): redundancy modulates not 

only mean response times, but also minimal response times and symmetry of 

response time distributions. We were able to use these additional characteristics in 

order to exclude pure coactivation models as possible causes of redundancy gain: 

they do not predict a modulation of symmetry. Fourth, we propose a new model of 

redundancy gain, the cascade race model, a model that is capable of explaining our 

results as well as other research on redundancy gain. And finally, we introduce the 

Anderson-Darling test, and show that it is the most accurate and powerful tool for 

detecting changes in response time distributions, and therefore most adapted as a 

statistical test in the present context. At the same time we provide an innovative 

and very complete way of comparing statistical tests.  
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This study raises some interesting questions for further research, especially 

concerning the choice of attributes. We formulated the hypothesis earlier that the 

combination of colour, form and direction of movement was successful in 

producing a triple redundancy gain because the three attributes are processed on 

separate pathways. Verifying this hypothesis is beyond the scope of this study, but 

could be an interesting direction for future research. A more rigorous and in-depth 

investigation of the processing of visual features might also be able to establish a 

rule for success in producing a redundancy gain.  

Another important step is to replicate previous research findings on 

redundancy gain and analyse the modulation of symmetry and onset of response 

time distributions. A generalisation of the modulation observed here to other 

feature combinations, and tasks (such as a 2AFC (two alternative forced choice) 

paradigm), would confirm the validity of an increase in symmetry or a decrease in 

onset of response time distributions as manifestations of redundancy gain. 

Additionally, these replications would serve to test the predictions of the cascade 

race model against larger data sets.  

An exploration of the amount of gain added with each new redundant 

attribute, either with empirical or modelling data, might provide interesting results. 

Increase in redundancy gain could be linear (each new attribute contributes an 

equal amount of gain) or asymptotical (redundancy gain reaches a threshold after 

which no improvement is possible). In light of the present results, the former 

seems rather unlikely, since performance on single target trials already did not 
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leave much room for improvement. If the latter is true, the question of where to 

situate the threshold of redundancy gain remains – are three, four, five or more 

attributes the limit of information the brain can use to its advantage?  

Finally, studying the effects of redundancy on various stages of the 

processing pathway could find out where redundancy gain is (partially) caused, 

and help unify research concerning the locus of redundancy gain (see chapter two 

for a brief review of existing research). This type of research question is however 

most likely beyond the scope of psychophysics, and more suited for the field of 

neuroscience. Even though the effects of redundancy on response times are very 

well documented, we still know almost nothing about the underlying neural 

structures that cause it.  
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APPENDIX 

Instructions for participants 

These instructions were received by participants of the experiment 3RedE 

prior to the experimental session. Participants received similar instructions prior to 

all other experiments mentioned in this thesis. Variations included the description 

of the stimuli and the duration of the experiment. 

INSTRUCTIONS AUX PARTICIPANTS 
Bienvenu à cette expérience. Elle se tient dans le cadre d’une recherche 

pour un projet de maîtrise. La recherche est conduite par Sonja Engmann et Marie-
Frédérique Beaupré, et elle est supervisée par Dr Denis Cousineau, professeur au 
département de psychologie de l’Université de Montréal. Ces expérimentateurs 
seront à votre disposition tout au long de l’expérience en cas de besoin.  

Cette expérience est constituée d’une session d’environ 1 heure. 
Cette expérience a pour but de mieux comprendre le phénomène de la 

reconnaissance d’objets. Pour l’accomplissement de cette dernière, on vous 
demande de suivre quelques règles : 

• S’abstenir de l’utilisation de votre cellulaire, etc.  
• Garder votre cellulaire, télé-avertisseurs, etc. éteints 
• Bouger le moins possible. Ne faire rien d’autre que l’expérience. Il 

est donc interdit de boire ou de manger. 
• Si votre acuité visuelle nécessite le port de lunettes ou de lentilles, 

il serait préférable de les porter. 
• Ne pas vous déplacer avec la chaise puisqu’il est important de vous 

tenir à peu près à la même distance tout au long de l’expérience. 
• Répondre seulement avec la main droite 

Pendant l’expérience, des objets animés différents vous seront présentés. 
Ils sont précédés par un point de fixation, qui est dans la même place où apparaîtra 
l’objet.  

Votre tâche consiste à identifier des objets avec des caractéristiques 
spécifiques : une certaine couleur ainsi qu’une certaine forme et une certaine 
direction de mouvement. Vous devrez répondre en appuyant sur la barre 
d’espacement lorsque l’objet présenté est constitué de un ou plus des traits 
suivantes : que ce soit de couleur bleu et/ou de forme carré et/ou bouge à droit. Si 
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aucun de ces trois traits n’est présent, vous devrez vous abstenir d’appuyer sur la 
barre d’espacement. Votre pointage sera indiqué à la suite de chaque essai dans le 
simple but de garder votre motivation et votre attention élevées. Votre score final 
sera dévoilé à la fin de l’expérience. Les points sont distribués de la manière 
suivante :  

• 15 points : vous n’avez pas appuyé sur la barre d’espacement et il 
ne fallait pas appuyer  

• 30 points : vous avez appuyé sur la barre d’espacement et il fallait 
appuyer 

• 50 points : vous avez appuyé sur la barre d’espacement en moins de 
300 ms et il fallait appuyer 

• -350 points : mauvaise réponse! vous avez appuyé sur la barre 
d’espacement, mais il ne fallait pas appuyer ou vous n’avez pas 
appuyé, mais il fallait appuyer  

On donne un prix pour le meilleur score à la fin de l’expérience !! 
 À la fin de l’expérience, vous recevrez une rémunération de 8 $. Si vous le 

désirez, à la fin de l’expérience, ce sera un plaisir de répondre à vos questions et de 
vous donner de plus amples informations sur le sujet. Nous tenons à vous rassurer 
en vous avisant que vous ne serez pas enregistrés de quelques façons que ce soit 
durant votre participation. Nos salles ne contiennent aucun microphone, ni aucune 
caméra. De plus, nous n’évaluerons pas votre quotient intellectuel, nous 
n’établirons pas votre portrait psychologique et nous ne dresserons pas votre profil 
de personnalité.  

Juste avant de commencer l’expérience, nous vous demandons de bien 
vouloir signer le formulaire de consentement éclairé, en conformité avec la 
déontologie sur les recherches en psychologie, si vous accepter d’être volontaire 
pour cette expérience. Par contre, même avec votre consentement écrit, vous avez 
l’opportunité en tout temps de cesser l’expérience. De plus, nous vous 
demanderons quelques renseignements personnels qui resteront confidentiels. 
Chaque participant sera identifiable que par un numéro attribué à chacun au tout 
début de l’expérience. Seul ce numéro sera utilisé pour les résultats, donc votre 
nom ne figurera dans aucune publication de cette recherche. 

Sonja Engmann 
Denis Cousineau 

Université de Montréal 
Département de psychologie 

Pavillon Marie-Victorin, local E-404-13 


