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Abstract

Reentrant arrhythmias can be simulated in electrophysiological models of electrical impulse prop-

agation governed by a reaction-di�usion system. To facilitate the initiation of a large number of

independent episodes of simulated arrhythmias with controllable level of complexity, a new ap-

proach is proposed for thin-walled geometries in which depolarization wave dynamics is essentially

two-dimensional. Points representing phase singularities are �rst randomly distributed over the epi-

cardial surface and are assigned a topological charge (direction of rotation). A qualitatively-correct

phase map is then reconstructed on the whole surface by interpolation. The eikonal-di�usion equa-

tion is used to iteratively regularize the phase map based on a priori information on wavefront

propagation. An initial condition for the reaction-di�usion model is created from the resulting

phase map with multiple functional/anatomical reentries. Results in an atrial model demonstrate

the ability to generate statistical realizations of the same dynamics and to vary the level of com-

plexity measured by the number of phase singularities. A library of 100 simulations with an av-

erage number of phase singularities ranging from 1 to 10 is created. An extension to volumetric

patient-speci�c atrial models including �ber orientation and a fast conducting system is presented

to illustrate possible applications.

Lead paragraph

Atrial �brillation (AF) is the most frequent rhythm disorder in humans. It often leads

to severe complications such as heart failure and stroke. AF a�ects the electrical activity

of the upper chambers of the heart (the atria). Computer models of the atria have been

developed to describe the propagation of electrical excitation waves in the heart muscle using

nonlinear partial di�erential equations of the reaction-di�usion type. These models have

contributed to the understanding of AF by isolating and illustrating di�erent mechanisms

of AF and by investigating the arrhythmogenic processes in controlled setups. Reentry

(single or multiple self-sustained activation waves) was found to be a key element in these

mechanisms. In order to test a therapeutical intervention, a diagnosis technique or a signal

processing tool in an atrial model, many di�erent, independent episodes of simulated AF

have to be initiated. We propose a new approach for simulated AF initiation in which a

randomly-generated but plausible initial condition is generated using a priori knowledge

about wavefront propagation. The complexity of the dynamics measured as the number of
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phase singularities can be controlled. This allows the creation of a database of simulated

AF episodes with varying degrees of complexity.

I. INTRODUCTION

A key advantage of computer modeling is the ability to study the e�ect of changing only

one parameter, the remaining parameters being kept identical. In the context of reaction-

di�usion anatomical models of AF, this paper presents a new computational framework to

change and control the complexity of simulated AF dynamics without altering the underlying

tissue substrate, and to simulate a similar AF dynamics in a di�erent atrial geometry.

Most previous simulation studies used programmed stimulation protocols to initiate AF,

including S1�S2 stimulation [27, 30�33], cross-shock stimulation [17, 18], or train of ectopic

foci at di�erent locations [9, 10]. Narrow vulnerability windows often made the initiation

protocols time-consuming. Repeating the simulations in another atrial geometry (which is

increasingly common as patient-speci�c models are being developed [19]) usually required

restarting the initiation protocols from scratch.

These initiation protocols attempted to reproduce the physiological conditions and mech-

anisms leading to the onset of AF. When a biophysical modeling approach is applied to

evaluate a pharmacological [17] or electrophysiological therapy [6, 27], electrogram [15, 34]

or ECG signal processing tools [20, 21], however, the precise conditions giving rise to the �rst

AF episode are not necessarily needed, or, as often in clinical studies, not available. These

simulation studies require a larger number of independent AF episodes either to compute

electrical signals or as initial condition before an intervention is performed.

A method to generate a library of simulated AF episodes consists in extracting di�erent

states in the course of a long simulation (up to several minutes) [28], assuming a high

sensitivity to initial conditions. This approach becomes inappropriate for organized types

of AF (e.g. focal AF). An alternative technique, also designed for turbulent dynamics, is to

randomly perturb the membrane potential �eld of a �brillatory initial condition [26]. In the

case of initiation of anatomical macroreentry, the use of activation maps computed from the

eikonal-di�usion equation was proved to be a valuable tool [12, 13].

This paper extends the eikonal approach to handle cases with multiple reentries by ran-

domly distributing phase singularities on the atrial surface and constructing an initial con-
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dition with the same set of phase singularities. Test cases include a simpli�ed atrial model,

patient-speci�c models of the left atrium and a more sophisticated volumetric model of the

atria. The results demonstrate the ability to generate a database of simulated AF episodes

with a broad range of average number of wavelets and phase singularities.

II. METHODS

A. Cardiac propagation model

The propagation of the cardiac impulse in the myocardium can be described by the

evolution of the membrane potential �eld Vm(x, t). According to the monodomain theory,

this evolution is governed by a reaction-di�usion equation [25]:

Cm
∂Vm

∂t
= β−1 ∇ · σ∇Vm − Iion , (1)

where Cm is the membrane capacitance per unit area of membrane, β is the area of membrane

per unit volume, and σ is the (e�ective) conductivity tensor. The ionic current Iion depends

on Vm and on internal variables s (intracellular ionic concentrations and channel gate states)

that satisfy a system of ordinary di�erential equations ds/dt = Fs(Vm, s). No-�ux boundary

condition is assumed, i.e. n ·σ∇Vm = 0 where n is the unit vector normal to the boundary.

An initial condition Vm(x, 0) = V0(x) and s(x, 0) = s0(x) has to be speci�ed.

In this paper, the ionic current Iion is described by the Courtemanche et al. model [4].

To reproduce ion channel remodeling induced by chronic atrial �brillation [22], channel

maximum conductances are modi�ed. Similarly to Kharche et al. [16], the L-type Ca2+

current (ICaL) is reduced by 63% and the transient outward K+ current (Ito) by 65% (data

from human chronic AF atrial cells measured by whole cell patch clamp [35]). The inward

recti�er K+ current (IK1) is increased by 73% (measurement near the resting potential in

chronic AF patients [8]). As a result of these modi�cations, the action potential is triangular-

shaped and the e�ective refractory period at 60 bpm is about 160 ms.

Equation (1) is solved numerically on three-dimensional cubic grids using �nite di�erence

discretization [1] (∆x = 330 µm) and explicit time integration (∆t = 20 µs). During the

simulations, membrane potentials at each node of a triangulated surface mesh representing

the epicardium are stored for subsequent analysis (Subsect. IIG). This triangular mesh will

also be used for the construction of the initial conditions (Subsect. II F).
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B. Identi�cation of phase singularities

Phase singularity (PS) analysis provides a tool to quantify the complex spatio-temporal

behavior observed in computer models or animal models of cardiac arrhythmia [2, 11]. It

enables to count the number of simultaneous wavelets and identify the location of arrhyth-

mogenic regions associated with reentries or wavebreaks. During a reentrant activation, a

PS is typically located at the center of the rotating wave or at the pivot point of a U-turn.

When the membrane potential �eld Vm(x, t) is known, the phase �eld θ can be de�ned as:

θ(x, t) = atan2
(
Vm(x, t+ τdelay)− V ∗, Vm(x, t)− V ∗) , (2)

where atan2 is the four-quadrant inverse tangent, τdelay is the time delay for phase space

reconstruction and (V ∗, V ∗) is the chosen origin of the phase space [11]. For the membrane

model used here, we chose τdelay = 5 ms and V ∗ = −55 mV based on previous works [11].

Since only thin-walled three-dimensional atrial models are considered here, the electrical

activity will be analyzed through its manifestation on the epicardial surface (outer surface

of the atria), like in most experimental optical mapping setups. This assumes that the

membrane potential �eld is approximately uniform in the thickness direction. In these two-

dimensional cases, the topological charge q of a domain delimited by a closed curve Γ is

de�ned as the contour integral [7]

q(Γ) =
1

2π

∮
Γ

∇θ · dℓ , (3)

which gives an integer. The gradient takes into account the angular nature of θ (θ is de�ned

modulo 2π). When Γ encircles a discontinuity point, a nonzero value for q may be obtained

(typically ±1). This situation corresponds to a PS. The sign is associated with the direction

of rotation of the reentrant activity (chirality). When Γ encircles an anatomical obstacle

(or hole), a nonzero value corresponds to a reentry anchored around the obstacle [7]. This

case will however not be counted as a PS.

Phase singularity location can be identi�ed and tracked by successive application of this

formula (for example on every triangle of a triangulated surface) [11]. The state at a given

time can therefore be qualitatively described by the number n of PS, by their location xi

and their topological charge qi. The question arises whether it is possible to construct a

tissue state with n PS with given locations and topological charges. The next subsections

address this problem and its application to the initiation of �brillatory activity.
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C. Random distribution of phase singularities

The objective is to distribute n points on a coarse triangulated surface (N = 800�2,000

nodes) and assign their topological charge ±1. We aim at generating PS con�gurations in

which PS are not too close to each other and two neighboring PS have preferably opposite

charge. For each con�guration {xi, qi}, the minimum distance d and the energy E are de�ned

as:

d({xi}) = min
i ̸=j

dist(xi,xj) (4)

E({xi, qi}) =
∑
i ̸=j

qi qj
dist(xi,xj)

. (5)

The idea is to maximize d while minimizing E. The distance dist(x,y) is the length of the

shortest path between x and y on the surface [5]. The distance matrix (all-pairs shortest

path) is computed using Johnson's algorithm [3] as implemented by David Gleich in the

toolbox MatlabBGL (available at Matlab Central �le exchange).

First, a point x1 is randomly selected. The optimum minimum distance dopt(x1, n) is

estimated by taking the maximum of d({xi}) with x1 �xed over 1,000 random selections of

the n− 1 remaining points. For small values of n, dopt(x1, n) depends on x1. Then, sets of

n − 1 points are randomly selected until d({xi}) > (1 − ϵd) dopt(x1, n) where ϵd lies in the

range 0.1 to 0.2. This ensures that the points are well spread over the surface.

The topological charges are obtained by minimizing the energy, the positions {xi} being

�xed. The �rst value q1 is randomly set to ±1. The energy is computed for all con�gurations

of the remaining n− 1 points satisfying the constraint
∑

i qi = 0 if n is even and |
∑

i qi| = 1

if n is odd. The con�guration with minimal energy is selected. Typically, the two nearest

PS will have opposite topological charge.

D. Phase �eld reconstruction

Interpolation of the phase �eld θ(x) from phase singularity con�guration {xi, qi} is per-

formed on an oriented triangular mesh of intermediate resolution (N = 11,000 to 17,000

nodes; ∆x ≈ 1 mm). The small circuit formed by the triangles surrounding the point xi

is denoted by Γi. Its orientation follows that of the surrounding triangles and its length Li

is of the order of 6 mm. To avoid a phase unwrapping problem, the complex phase �eld
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ϕ = exp(iθ) is used [12] (the non-italic i denotes the imaginary unit). Its value is set to

ϕ = exp(iqiℓ/Li) on Γi, where ℓ is the curvilinear coordinate along the oriented curve Γi (the

origin of curvilinear coordinate is chosen arbitrarily). Interpolation in the entire domain is

obtained by solving the Laplace equation ∆ϕ = 0 with no-�ux boundary condition where

no value is assigned to ϕ (e.g. veins or valves) [23]. Then ϕ0 = ϕ/|ϕ| provides an estimate

of the desired complex phase �eld. Indeed, by construction, θ0 = arg ϕ0 has a PS at xi with

topological charge qi for each i. However, ϕ may have one or more zeros. This results in the

creation of additional PS at these points.

The local wavelength of a phase �eld can be de�ned as:

λ(x) = 2π ∥∇θ∥−1 = 2π ∥∇ϕ∥−1 . (6)

For a reentry with period T , this local wavelength is related to the conduction velocity (CV

in cm/s) by the formula λ = CV · T [12]. The local wavelength for ϕ0 is typically very

non-uniform, especially when n is small. As a result, the phase �eld provides an inaccurate

representation of a reentrant activation pattern. In order to iteratively regularize the phase

�eld using a priori information about wavefront propagation, the eikonal-di�usion equation

will be applied as a �lter. The complex form of this equation reads F [ϕ] = 0, where the

functional F is de�ned as [12]

F [ϕ] = c ∥∇ϕ∥ −D Im ∇ · (ϕ∗∇ϕ)− 1 . (7)

The parameter c is the scaled conduction velocity (in cm/rad) and D is a di�usion coe�cient

(in cm2). When D tends to zero, the equation F [ϕ] = 0 becomes λ(x) = 2πc = const.

This suggests that reducing the values of |F| would regularize the spatial distribution of

wavelength and conduction velocity. A Newton-based iterative scheme has been proposed

to solve this equation [12, 13]. Brie�y, an approximate solution ϕ to F [ϕ] = 0 can be

improved by applying a phase correction ϕ 7→ ϕ exp(iΨ). The correction Ψ is the solution

to the Newton's method update equation generalized to functionals [12]:

F [ϕ] +
d

dϵ
F [ϕ exp(iϵΨ)]

∣∣∣∣
ϵ=0

= 0 . (8)

After substituting Eq. (7) into Eq. (8), this relation becomes a steady-state convection-

di�usion equation in Ψ:

c
Im ϕ∇ϕ∗

∥∇ϕ∥
∇Ψ+D∆Ψ = c ∥∇ϕ∥ − 1−D Im ∇ · (ϕ∗∇ϕ) , (9)
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with Dirichlet boundary condition on each of the circuits Γi and no-�ux boundary condition

everywhere else. Spatial discretization of this equation is performed through a dedicated

�nite element method published previously [13]. Practically, the iterations start with ϕ0

obtained from Laplacian interpolation (see beginning of Subsect. IID). At step k, a phase

correction ϕk+1 = ϕk exp(iΨ) is applied (so |ϕk| = 1 always holds), where Ψ is the solution

to Eq. (9) with ϕ = ϕk.

The update equation (9) can be interpreted the following way in the low-di�usion limit.

With ϕ = exp(iθk) and D = 0, Eq. (9) can be written as:

nk · ∇Ψ =
1

c
− ∥∇θk∥ , (10)

where nk = ∇θk/∥∇θk∥ is the forward-oriented unit vector normal to the isochrone θk =

const. If the local propagation velocity is too fast (i.e., the right hand side is positive),

a correction θk+1 = θk + Ψ is applied so that the normal component of the gradient nk ·

∇θk+1 = ∥∇θk∥+nk ·∇Ψ is increased, leading to a slower local propagation velocity and thus

regularizing the propagation pattern. The di�usion is needed to obtain a unique, smooth

solution and the use of complex numbers facilitates the evaluation of the gradient in the

presence of 2π jumps.

The parameters c and D need to be speci�ed. On Γi, the local wavelength λ = 2πc

should be equal to the length Li ≈ 6 mm of the circuit, so c is set to 1 mm/rad. The

di�usion coe�cient D enforces the stability of the equation. Its value should be of the order

of the squared spatial resolution ∆x2 and is set to 1 mm2. The results are not very sensitive

to this choice. With such a small target conduction velocity (CV = 2πc/T = 4 cm/s

for T = 160 ms), the local wavelength decreases at each iteration while becoming more

uniform. Iterations are stopped when the median of the local wavelength λ reaches a target

value obtained from physiological considerations (CV in the tissue × period of reentry).

E. Mapping from a geometry to another

The problem of transposing the results from a geometry to another is addressed in this

subsection. Our method is applied to six patient-speci�c models of the left atrium. The

objective is to create a mapping between two di�erent triangulated surfaces representing

the left atrium. This mapping will serve to generate an equivalent phase map in another
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geometry.

First, 13 landmark points are selected manually in each left atrial geometry using a

graphic user interface. These points (seed points L1 to L13 de�ned in Krueger et al. [19])

indicate the location of veins, valve and appendage. The holes representing the pulmonary

veins and the mitral valve are �lled with triangles so that the surface becomes homeomorphic

to a sphere. Each geometry is then mapped onto a sphere (without folding) using the

CALD algorithm [29] implemented in the SPHARM-MAT Matlab toolbox (Li Shen, Indiana

University School of Medicine).

The sphere meshes of two geometries are aligned through rigid registration of the 13

landmark points performed by the `procrustes' matlab function. Non-rigid registration is

carried out in spherical coordinates: the di�erences in latitude and longitude (mesh defor-

mation) are computed for the 13 points and interpolated in the whole mesh by Laplacian

interpolation. As a result, the 13 points of the transformed sphere mesh match those of

the reference sphere mesh. Nearest neighbor interpolation between these two sphere meshes

(transformed and reference mesh) creates a correspondence between the nodes of the two

original left atrial meshes, and thus allows to adapt a phase map to another geometry.

F. Initial condition for a monodomain model

From the phase �eld θ = arg ϕk (whenever ϕk = 0, θ is set to 0), k being the last iteration,

an initial condition for the monodomain propagation model is constructed [12]. First, the pe-

riod of reentry T is estimated based on the e�ective refractory period of the membrane model

used in the monodomain simulation. The phase �eld θ(x) is then converted into an activa-

tion map tact(x) by the formula tact(x) = (1− θ(x)/2π)T . By construction, this activation

map is only de�ned on the epicardial surface. Nearest-neighbor interpolation is performed

to extend the activation map tact(x) to the entire three-dimensional domain. As a result, PS

(two-dimensional) will be transformed into short transmural �laments (three-dimensional).

The initial membrane potential is given by V0(x) = Vpaced(tact(x)) and the initial membrane

state by s0(x) = spaced(tact(x)), where Vpaced(t) and spaced(t) are the (steady-state) time

courses of the membrane potential and state of the midcell in a strand of cells paced at cycle

length T at one of its extremity. A monodomain simulation is �nally run from this initial

condition and the evolution of the number and location of PS is analyzed.
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G. Test cases

Our approach was tested in a simpli�ed geometry representing the atrial epicardium by

a triangular surface mesh. Two versions, a coarse (≈ 13,800 nodes; for the eikonal-di�usion

solver) and a very coarse (≈ 900 nodes; for creating PS distribution), were designed. These

surface meshes were generated and processed using Matlab (The MathWorks, Natick, MA)

and VRMesh (VirtualGrid, Seattle City, WA). In order to run monodomain simulations in

a three-dimensional volumetric model, a cubic mesh (≈ 750,000 nodes, ∆x = 0.33 mm,

uniform thickness ≈ 1.6 mm) was created from the surface mesh by identifying grid points

within a given distance (one half of the thickness) from the triangular mesh [7, 14]. The

coarse atrial surface model lied within the bulk of the 3D model to enable data extrapolation

from the surface mesh to the full 3D mesh. Similarly, six triangulated surfaces representing

patient-speci�c left atrial geometries and their corresponding three-dimensional volumetric

models were constructed. In addition, a more sophisticated volumetric atrial model was

developed. This model includes a fast conduction system (pectinate muscles, terminal crest

and Bachmann's bundle) as well as rule-based speci�cation of �ber orientation [19, 30, 31].

III. RESULTS

A. Generation of phase maps

One thousand phase maps were generated on the simpli�ed atrial epicardial surface based

on n = 1 to 10 PS randomly distributed over the surface (method of Subsect. II C; 100

realizations for each n). An example with n = 4 is displayed in Fig. 1. The initial estimate

(Fig. 1A) is qualitatively correct, but the isochrones are not regularly spaced. The eikonal-

di�usion solver iteratively improves the spacing between isochrones, creates spiral-like curved

wavefronts near PS and handles wavefront collision patterns (Fig. 1F).

The regularization e�ect of the eikonal-di�usion iterations is quanti�ed in Fig. 2. The

median λ̄ = median(λ) and the coe�cient of variation (median(|λ − λ̄|/λ̄)) of the local

wavelength λ (Eq. 6)) is shown for all 1000 phase maps. In the course of the iterations,

the median wavelength (and thus the propagation velocity) and the coe�cient of variation

decrease monotonically. When n is smaller, more iterations are needed to reach a target

wavelength. The evolution of the coe�cient of variation is not signi�cantly a�ected by the
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number of PS.

As mentioned above, the actual number of PS in the interpolated phase map (ϕ0) may

be larger than the desired number (n) of PS. An example of such case is shown in Fig. 3.

These additional PS result from the process of Laplacian interpolation. They may be re-

quired to guarantee the existence of a smooth solution with bounded gradient. Then, the

eikonal-di�usion solver preserves the number of PS. The average number of additional PS is

documented in Table I for di�erent values of n. A proper choice of the topological charges

(based on energy minimization) reduces the number of additional PS as compared to a purely

random choice (±1 with probability 1/2). Con�gurations exist (even with n = 2), however,

for which no choice of topological charges prevents the creation of additional PS. Although

the desired and actual number of PS may di�er, they are well correlated (correlation coe�-

cient: 0.94) and the distribution of actual number of PS is su�ciently uniform (see Fig. 4)

to allow the generation of a large number of initial conditions (for a monodomain model)

with various numbers of functional reentries.

B. Monodomain simulations

Among the 1000 generated phase maps, 100 were selected with an actual number of PS

ranging from 1 to 10 (10 phase maps in each case). The corresponding initial conditions for

the monodomain equation were constructed (Subsect. II F). Simulations were run for 5 s

starting from these initial conditions with parameters β = 2000 cm−1, Cm = 1 µF/cm2, and

σ = 1.5 mS/cm (isotropic). No signi�cant di�erence between epicardial and endocardial

activations was found by visual inspection. The analysis of PS in epicardial maps is therefore

expected to reliably describe the three-dimensional dynamics in this thin-walled model.

Figure 5 shows the phase map and the membrane potential map at initial time and after 2 s

for di�erent examples with increasing number of PS. In 7 cases with one or two single PS, the

reentry self-terminated within 500 ms. In the other cases with a few PS, the evolution was

qualitatively consistent with the activation map predicted by the eikonal-di�usion equation

(Fig. 5A�C). When more PS were present, the interaction between wavelets eventually led

to a more disorganized dynamics (Fig. 5D). With the given conductivity selected to enable

the coexistence of up to 10 PS, the wavelength was slightly shorter than in the phase maps.

For the membrane model used, the evolution approximately preserved the number of PS
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observed on the epicardial surface. Figure 6 illustrates the correlation between the average

number of PS during simulated AF and in the initial condition (correlation coe�cient: 0.82).

This demonstrates that the 100 simulations widely di�er in terms of spatial complexity (from

1 to more than 10 simultaneous reentries). In the time domain, however, the cycle length

was found to be similar in all cases (141±1 ms with a spatial dispersion of 7.6±1.5 ms).

C. Patient-speci�c geometries

To demonstrate how similar dynamics can be simulated on di�erent atrial geometries,

six patient-speci�c models of the left atrium were created. These models di�er by their size

(left atrial dilation), number of pulmonary veins (4 or 5) and by the possible presence of

a common ostium for two veins (Fig. 7B). These geometries (with holes being �lled) were

projected on a sphere using the method of Subsect. II E. Non-rigid registration provided

a mapping to transform a scalar �eld on a surface into a scalar �eld on another surface

while preserving macro-scale anatomical pathways as identi�ed by the landmark points.

This process is illustrated in Fig. 7A. After further regularization using the eikonal-di�usion

equation, similar phase maps representing two spirals (one on each side) were obtained on

each left atrial geometry (Fig. 7B).

Monodomain simulations were run in corresponding volumetric models of the left atrium,

starting from initial conditions generated from these phase maps. Both spirals present in

the initial condition were preserved through the evolution. In two cases, two additional PS

were created by front-tail interactions.

D. Simulations in more realistic models

Recent atrial models incorporate some form of anisotropy and a fast conducting system

[19, 30, 32]. Although the eikonal-di�usion equation can be adapted to take into account

anisotropy [12], a phase map computed with the homogeneity and isotropy assumption can

also be used to generate an initial condition in a more sophisticated model. As example, the

eikonal approach was applied to a patient-speci�c volumetric model of the atria including

�ber orientation and main fast conducting �ber bundles. A phase map with 4 PS was

generated on the left atrium using the method of Subsects. II C and IID. The initial condition
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was speci�ed in the left atrium using the computed phased map and extended to the entire

atria by attributing resting conditions to all the remaining nodes. Conduction properties

were set to: σl = 4 mS/cm (longitudinal) and σt = 1 mS/cm (transverse) in the working

myocardium, and σl = 10 mS/cm and σt = 2 mS/cm in the fast conducting system.

Figure 8 shows membrane potential maps during the resulting monodomain simulation.

While a reentry maintains a disorganized activity in the left atrium (another one is present

on the left atrial anterior wall), the right atrium simply follows the pace determined by the

left atrium (Fig. 8C). This illustrates how our method can be applied to initiate a �brillatory

activity with di�erent complexity in the right and the left atrium.

IV. DISCUSSION AND CONCLUSIONS

We have developed a tool for automatically creating random �brillatory initial conditions

in thin-walled three-dimensional cardiac propagation model. The complexity of the dynamics

can be controlled in terms of number and location of PS. This enables the construction of

a library of episodes of simulated �brillation with varying levels of complexity (Fig. 6).

Our approach also facilitates the initiation of a large number of independent simulations

in di�erent patient-speci�c geometries (Fig. 7). Applications of such library include the

design and evaluation of ECG or electrogram processing techniques, and the investigation of

the success of a therapeutic intervention (e.g. pharmacological) as a function of dynamical

complexity.

Although the approach based on PS is conceptually two-dimensional, the method can

be applied to three-dimensional models as long as extrapolation through the thickness is

relevant, as is the case in the atria. In thicker preparations or in the ventricles, the approach

would be limited to the simulation of scroll waves with transmural �laments. In the presence

of anisotropy, anatomical structure (e.g. fast conducting bundles), conduction heterogeneity

and microstructure, the method is still valuable even though the eikonal model does not

take into account these electrophysiological details and thus provide a less accurate initial

representation of activation maps (Fig. 8).

Due to the Laplacian interpolation step (Subsect. IID), additional PS were often gener-

ated. Over a large number of realizations of random generation of initial conditions, however,

the distribution of the number of PS remained relatively uniform (Fig. 4). The range of num-
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ber of PS was broader than desired, suggesting to set the number of PS distributed over

the surface (n) to a smaller value than the desired maximal number of PS, according to

Table I. An appropriate choice of the topological charges based on the distance between the

PS reduced the observed discrepancy (Table I).

Davidsen et al. demonstrated that in an oriented, compact, possibly punctured two-

dimensional di�erentiable manifold, the sum of the topological charges of all phase singular-

ities and holes is always zero [7]. If necessary, Laplacian interpolation automatically creates

additional topological charges to satisfy this conservation law. For instance, when n is odd,

either a new PS is created or an additional topological charge is placed in a hole. When

n is even, additional PS may also be created due to geometrical constraints or distribution

of charge, as illustrated by Fig. 3. In this case, Laplacian interpolation creates two PS of

opposite charges (or one PS and a topological charge in a hole) to satisfy the conservation

law.

The eikonal-based regularization of the phase map (Subsect. IID) requires three param-

eters: c, D and λ. In previous works, the velocity c and the di�usion parameter D were

selected to reproduce activation maps computed using a monodomain model [12]. Here,

the eikonal-di�usion equation serves solely to regularize the phase map and reduce spatial

variations in propagation velocity. Generated phase maps are not expected to match those

obtained during multiple-reentry dynamics since the eikonal-di�usion equation lacks any

information about repolarization [24]. Its purpose is only to provide a su�ciently relevant

approximation for the phase map so that the simulated evolution may preserve the complex-

ity of the dynamics (Fig. 6). In this context, c is set to a small value to allow high-curvature

fronts and D is set to a mesh-related value to guarantee the stability of the algorithm [13]. A

larger c would be incompatible with the presence of the PS (uniform conduction properties

are assumed). With these parameters, the target wavelength is very short in such a way that

the solution exists close to the PS. Iterations are stopped when the wavelength is uniform

enough and has a realistic mean value λ (Fig. 2). An alternative approach would be to reduce

propagation velocity (in the eikonal equation) in the vicinity of each PS in order to mimic

conduction velocity restitution and ensure convergence of the iterations. This would require

more parameter adjustment without necessarily generating more realistic phase maps.

Once an initial condition is created, its evolution and spiral dynamics strongly depend on

membrane properties, for instance action potential duration restitution [36]. We chose mem-
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brane properties to allow the coexistence of multiple PS with limited meandering, leading

to a relatively stable number of PS. Faster conduction velocity or longer action potentials

would have resulted in the disappearance of most of the PS. Ionic heterogeneities would

have created a substrate for increased wavebreak occurrence. Our eikonal approach is not

intended to incorporate these e�ects. Instead, it provides a tool for investigating these phe-

nomena under a wider range of controlled (initial) conditions and a larger number of its

statistical realizations.
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Table I. Number of additional phase singularities (PS) for di�erent values of the desired number (n)

of PS using the energy-based (minimizing Eq. (5)) or purely random choice of topological charges.

Mean and standard deviation over 100 phase maps are reported.

#additional PS

n energy-based random sign

1 0.4± 0.5 0.4± 0.5

2 1.0± 0.7 1.0± 0.7

3 1.2± 0.7 1.4± 0.7

4 1.7± 0.9 1.8± 0.8

5 2.0± 1.0 2.4± 1.0

6 2.1± 1.1 2.7± 1.1

7 2.5± 1.2 3.3± 1.1

8 3.1± 1.2 4.0± 1.2

9 3.2± 1.4 4.7± 1.4

10 3.6± 1.4 5.1± 1.5
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Figure 1. Phase maps generated from four phase singularities (PS). PS with positive/negative

topological charge are shown as a white/black circle. White arrows illustrate the direction of

propagation. Solid lines represent ten isochrones regularly distributed between 0 and 2π. (A)

initial phase map ϕ0 obtained by Laplacian interpolation; (B)�(E) phase map after 10, 20, 30,

50 iterations of the eikonal-di�usion solver; (F) �nal phase map (after 68 iterations, the target

wavelength of 6 cm is reached). LA: left atrium; RA: right atrium; SVC: superior vena cava; IVC:

inferior vena cava.
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Figure 2. Regularization of phase maps using eikonal-di�usion iterations. (A) Median wavelength λ

(spatial average of Eq. (6)) throughout the iterations for n = 2, 3, 6 and 10 initial phase singularities.

Mean and standard deviation over 100 phase maps are displayed. The horizontal line indicates the

target wavelength λ = 6 cm. (B) Coe�cient of variation of the wavelength λ throughout the

iterations (pooled data for n = 1 to 10). Mean and standard deviation over 1000 phase maps are

displayed.
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Figure 3. Example of phase map generated from two phase singularities (PS) with the same positive

topological charge (white circle). An additional PS with opposite topological charge (black circle)

is created by the Laplacian interpolation procedure between the two original ones. White arrows

illustrate the direction of propagation. Solid lines represent ten isochrones regularly distributed

between 0 and 2π.
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Figure 4. Histogram of desired (n) and actual number of phase singularities (as measured in the

phase maps resulting from the eikonal-di�usion solver). The total number of phase maps generated

is 1000.
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Phase map Initial condition After 2 sec

Figure 5. Examples of phase maps reconstructed using the eikonal-di�usion equation (�rst column)

and membrane potential maps at initial time (second column) and after 2 s of simulation (third

column). Phase singularities with positive/negative topological charge are shown as a white/black

circle. White arrows illustrate the direction of propagation. Solid lines represent twelve isochrones

regularly distributed between 0 and 2π. Membrane potential maps are color-coded from blue

(−80 mV) to yellow (20 mV).
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Figure 6. Time-averaged number of phase singularities (PS) during simulated AF (mean from

t = 1 s to t = 5 s for each simulation; standard deviation over the same time interval shown as

error bars) as a function of the number of PS in the initial condition. Note that several data points

may be superimposed. Linear regression curve is displayed.
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3D geometry projection registration
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Figure 7. Transfer from a geometry to another. (A) Two geometries of the left atrium and their

projection on the sphere are displayed. Coarse versions of the meshes are used for visualization

in this �gure. The top-right sphere is obtained after non-rigid registration. The dots represent

the location of the 13 landmark points on each surface. Valve and veins are shown as thick black

lines. LPV: left pulmonary veins; RPV: right pulmonary veins; MV: mitral valve. (B) Six examples

of phase maps transferred from the third one on the �rst row (after eikonal-based regularization).

Solid lines represent ten isochrones regularly distributed between 0 and 2π.
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Figure 8. Initiation of reentries in a three-dimensional model with �ber orientation and fast con-

ducting bundles. (A) Phase map generated using the eikonal-di�usion approach in the left atrium

(posterior view); ten isochrones regularly distributed between 0 and 2π are shown as solid lines.

(B) Membrane potential map representing the initial condition in the monodomain model (posterior

view); membrane potential maps are color-coded from blue (−80 mV) to yellow (20 mV). (C) Mem-

brane potential map at time t = 600 ms. PV: pulmonary veins; LAA: left atrium appendage; MV:

mitral valve; RAA: right atrium appendage; CS: coronary sinus.

25


	Eikonal-based initiation of fibrillatory activity in thin-walled cardiac propagation models
	Abstract
	Lead paragraph
	Introduction
	Methods
	Cardiac propagation model
	Identification of phase singularities
	Random distribution of phase singularities
	Phase field reconstruction
	Mapping from a geometry to another
	Initial condition for a monodomain model
	Test cases

	Results
	Generation of phase maps
	Monodomain simulations
	Patient-specific geometries
	Simulations in more realistic models

	Discussion and conclusions
	Acknowledgments
	References


