
Université de Montréal

Combined Negotiations in E-Commerce:

Concepts, Architecture, and Implementation

Par

Morad Benyoucef

Département d'Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Thèse présentée à la Faculté des études supérieures en

vue de l'obtention du grade de Philosophise Doctor (Ph.D.)

en Informatique

u

Juillet, 2002

Morad Benyoucef, 2002
s^des

^ ^''os0^e" <^0d®& XptG^ °& <a
^3

^u
î0

u.

. :• /

ff.
^

^î-,

Sift
~I<0
USLI
^ oc? 3

V. 0 3-J

u

n Université de Montréal

Faculté des études supérieures

Cette thèse intitulée :

Combined Negotiations in E-Commerce : Concepts,

Architecture, and Implementation

Présentée par :

Morad Benyoucef

a été évaluée par un jury composé des personnes suivantes :

Rudolf K. Keller

Peter Kropf

Julie Vachon

Gregory Kersten

Gilbert Babin

Directeur de recherche

Président - rapporteur

Membre du Jury

Examinateur externe

Représentant du doyen de la FES

^^ ^^^L^^ ^^^-

u

IV

n

SOMMAIRE

L'importance des négociations dans les marchés traditionnels ainsi que dans les

marchés électroniques a longtemps été reconnue. Aussi, tout le monde reconnaît le

fait que les négociations humaines ont tendance à être complexes, et consomment du

temps et des ressources. Un support logiciel à ce genre de processus s'avère donc

nécessaire. De nos jours, cette nécessité est entrain de changer en défi, vu que de

nouveaux protocoles de négociation sont introduits dans les marchés électroniques.

Les Négociations Combinées sont un exemple de tels protocoles.

Dans une Négociation Combinée (CN), l'usager, qu'il soit un individu ou une

entreprise, est intéressé par un ensemble d'items (biens ou services), et par

conséquent, s'engage dans des négociations pour tous ces items en même temps. Les

négociations sont indépendantes les unes des autres, alors que les items sont

typiquement interdépendants. Utiliser les technologies de support aux négociations

électroniques revient, pour l'usager, à conduire chaque négociation séparément, et à

coordonner et réconcilier les différentes négociations.

Dans cette recherche doctorale nous introduisons et définissons les CNs, identifions

les questions de recherche qu elles engendrent, et proposons, concevons, implantons

et validons une solution logicielle pour les conduire. La solution prend la forme d un

système de support aux négociations combinées (CNSS) qu'un usager utilise pour :

(l) trouver les items et les fournisseurs de ces items; (2) construire un modèle de CN

qui reflète le cheminement des négociations individuelles et les dépendances entre

elles; (3) fournir les stratégies de négociation et les canevas de coordination; et (4)

exécuter le modèle en intervenant quand c'est nécessaire.

u

ww-

v

n Nous avons conçu un CNSS que nous appelons CONSENSUS, basé sur l'idée

suivante: (l) un workflow qui capte le cheminement de la CN; (2) des agents logiciels

qui conduisent les négociations individuelles; (3) des règles si-alors pour doter les

agents de stratégies de négociation; et (4) des règles si-alors pour gérer la

coordination entre agents. La technologie des workflows apporte une grande fiabilité,

les agents logiciels apportent l'automatisme, et les règles si-alors apportent la

modularité, l'uniformité, un niveau élevé d'abstraction, une versatilité et une facilité

d'utilisation, ainsi que la possibilité de changer les connaissances dynamiquement.

Un défi important était de répartir les fonctionnalités entre ces quatre composants

(workHow, agents, stratégies, et coordination) d'une façon propre et optimale.

Nous avons implanté CONSENSUS et nous l'avons utilisé pour modéliser et exécuter

plusieurs cas de CN simples et complexes. Pour cela, nous avons utilisé GNP, notre

serveur de négociation, pour implanter, déployer et exécuter plusieurs types de

négociations, et nous les avons utilisées comme nœuds dans des CNs. Les résultats

sont satisfaisants. Nous avons utilisé le même décor pour conduire des tournais de

mises dans le but de montrer qu'une représentation déclarative peut être utilisée pour

doter les agents de simples tactiques de mises et de coordination. Les résultats sont

encourageants, et le même décor d'expérimentât! on peut être utilisé dans une

recherche sur le mécanisme de représentation lui-même ou pour revaluation de

strategies de négociation connues ou nouvellement conçues.

Mots clés : négociation, enchère, commerce électronique, négociation électronique,

négociation combinée, workflow, agent logiciel, stratégie de négociation, moteur de

règle, coordination.

u

n

VI

ABSTRACT

The importance of negotiations in traditional and electronic markets has long been

recognized by the acadeinic and business communities. Also recognized is the fact

that human negotiations tend to be complex, and time and resource consuming.

Therefore, software support in conducting such processes is necessary. Nowadays,

this necessity is becoming a challenge, as new negotiation protocols are introduced

within electronic markets. One such protocol is Combined Negotiations.

In a Combined Negotiation (CN), the user, be it a consumer or a company, is

interested in a package of items (goods or services), and consequently engages in

negotiations for all the items at the same time. The negotiations are independent of

each other, whereas the items are typically interdependent. Using currently available

e-negotiation support technology, the user would have to conduct each negotiation

separately, and would have the burden of coordinating and reconciling thein.

In this doctoral research we introduce and define CNs; point to their challenges;

identify the research issues they raise; and suggest, design, implement, and validate a
software solution to conduct them. The solution takes the form of a Combined

Negotiation Support System (CNSS) that a human can use to: (1) find the items and

the providers of these items; (2) build a CN model that captures the sequencing of the

individual negotiations and the dependencies between them; (3) provide negotiation

strategies and coordination schemes; and (4) run the model, and possibly intervene in

it when necessary.

We designed an architecture for a CNSS we call CONSENSUS. The driving idea

behind it is: (1) a workflow that captures the sequencing and the control flow of the

u

vii

n CN; (2) software agents that carry out the individual negotiations; (3) if-then rules to
provide the agents with negotiation strategies; and (4) if-then rules to manage agent
coordination across several negotiations. Workflow technology brings a high level of
reliability; software agents bring automation; and if-then rules provide modularity,
uniformity, a high level of abstraction, versatility, ease of use, and the possibility to
modify the knowledge dynamically. An important challenge was to allocate
functionalities to the four components (workflow, agents, strategies, and
coordination) in a clean an optimal way.

We implemented CONSENSUS and used it to model and enact several simple and
complex CN cases. We used our negotiation server GNP to implement, deploy, and
run several negotiation types, and used them as CN nodes. The results were
satisfying. We used the same setting to conduct bidding tournaments to show that a
declarative representation can be used to provide software agents with simple bidding
tactics and coordination schemes. The results were encouraging, and the
experimentation setting can be used for further investigations regarding the
representation mechanism itself, or for the evaluation of known and newly designed

negotiation strategies.

Keywords: negotiation, auction, electronic commerce, electronic negotiation,
combined negotiation, workflow, software agent, negotiation strategy, rule engine,
coordination.

u

n

Vlll

TABLE OF CONTENTS

Sommaire iv

Abstract..vi

Table of Contents .. viii

List of Figures .. xii

List of Tables ... xiv

List of Abbreviations ... xv

Chapter 1: Introduction ... 18
l. l Background ... 18
1.2 Problem Statement... 22
l .3 Research Objectives ... 25
1.4 Publications Trail .. 27
1.5 Major Contributions ... 28
1.6 Thesis Overview ... 29

Chapter 2: Review of the Literature .. 31
Preface... 31
2. l E-Negotiations Related Issues ... 33

2.1.1 Definitions.. 33
2. l .2 Classifications ... 36

2.1.2.1 Justification .. 36
2. l .2.2 Review of Existing Classifications 37
2.1.2.3 The London Classification.............................. 39

2.1.3 Agent-Mediated E-Negotiations 45
2. l .4 Negotiation Strategies... 47

2.1.4.1 Definition and Issues.................................... 47
2.1.4.2 Related Projects.. 50

2.1.5 Negotiation Systems.................. 52
2.1.5.1 Introduction... 52

2. l.5.2 Negotiation Servers and Applications................. 53

u

w:

IX

n 2. l .5.3 Discussion.. ... 55
2.2 CONSENSUS Related Issues... 56

2.2.1 Negotiation Support Systems....................................... 56
2.2.2 Workflow Management... 58

2.2.2. l Introduction... 58
2.2.2.2 Workflows and E-commerce............................ 59
2.2.2.3 Modeling CNs as Workflows........................... 59
2.2.2.4 WfMS and Software Agents.............................61

2.2.3 Coordination in Multi-Agent Systems.. 61
2.2.3.11nti-oduction... 61
2.2.3.2 Related Projects.. 63

2.2.4 Rule-based Negotiation Strategies................................. 64

Chapter 3: Description of Negotiation Protocols............................ 67
Preface...67
3.1 Introduction..69
3.2 Negotiations..71
3.3 Requirements for Negotiation Formalism. 72

3.3.1 Formal Basis..72
3.3.2 Serialization... 73
3.3.3 Visualization..73
3.3.4 Executability..74
3.3.5 Other Criteria...74

3.4 Candidate Formalisms..:. 74
3.4.1 Natural Language... 74
3.4.2 Agent Coordination Language...................................... 75
3.4.3 Finite State Machines.. 76
3.4.4 Statecharts...77

3.4.4.1 The OMG Negotiation Facility........................-.77
3.4.4.2 Fine-grained Formalization.............................. 78

3.5 Comparison of Approaches.. 79
3.6 Conclusion.. 80

Chapter 4: Combined Negotiations.. 81
Preface.. 81
4. l Introduction ..84
4.2 Usage Scenario..88
4.3 Issues in Combined Negotiations. .. 90

4.3.1 Failure in Combined Negotiations. 90
4.3.2 AND-Negotiation and OR-Negotiation........................... 91
4.3.3 Negotiation Types covered by a Combined Negotiation........92
4.3.4 Constraints in a Combined Negotiation........................... 92
4.3.5 Commitment in Negotiation Protocols.. 93
4.3.6 Combined Negotiations versus Synchronized Auctions........ 94
4.3.7 Information Involved in a Combined Negotiation............... 94

u

x

n 4.4 Tool Support for Combined Negotiations....................................95
4.5 Architecture of CONSENSUS and Underlying Concepts................. 97

4.5.1 The Architecture... 97
4.5.2 Formal Description of Negotiation Rules......................... 99
4.5.3 Negotiating Software Agents....................................... 100
4.5.4 Workflow Management... 101
4.5.5 Negotiation Strategies and Rules Engines.. 102

4.6 An Example of a Combined Negotiation.................................... 104
4.7 Implementation of CONSENSUS...107
4.8 Related Work.. 109
4.9 Conclusion... 110

Chapter 5: Generic Negotiation Platform.................................... 112
Preface... 112
5. l Introduction ...115
5.2 Requirements for Experimentation Engine and Negotiation Platform. ..117
5.3 Implementation of GEE.. 120

5.3.1 User Interface...120
5.3.2 Dynamic Behavior of Games.. 121
5.3.3 Data Management and Scripting. 122
5.3.4 Architecture and Technology....................................... 123

5.4 Lessons Learned from GEE Development................................... 124
5.4.1 Platform Services... 125
5.4.2 Fine-grained Time Management................................... 125
5.4.3 Negotiation Toolkit.. 125
5.4.4 High-level Interface for Game Designers......................... 126

5.5 Description of Auction Rules. ... 127
5.5.1 Need for Fonnalization.. 127
5.5.2 Defining a Formalism for Auction Rules..........................128

5.6 GNP Vision... 130
5.7 Conclusion... 132

Chapter 6: Rule-Driven Negotiating Software Agents..................... 134
Preface...134
6.1. Introduction...136
6.2 Negotiation Strategies.. 138

6.2. l Agent-mediated E-negotiation...................................... 138
6.2.2 Challenges of Strategy-enabled Negotiation Systems........... 139
6.2.3 The CONSENSUS Approach...................................... 140

6.3 Coordination of Negotiating Agents. .. 142
6.3.1 Background and Related Work. 142
6.3.2 The CONSENSUS approach....................................... 144

6.4 Validation.. 145
6.4.1 English Auction.. 146
6.4.2 Dutch Auction.. 148

\

u

Xl

0 6.4.3 Coordination.
6.5 Conclusion.

Chapter 7: Conclusion.
7.1 Assessment.
7.2 Contributions.
7.3 Research Perspectives.

BIBLIOGRAPHY.

150
151

155
155
157
159

161

u

Xll

0

LIST OF FIGURES

Figure 1.1: The four-dimensional negotiation space

Figure 2.1: Simple Classification

Figure 3.1: Finite State Machine description of an English auction

Figure 3.2: The OMG Bilateral Negotiation Model

Figure 3.3: Statechart description of an English auction

Figure 4.1: The four-dimensional negotiation space

Figure 4.2: Architecture of CONSENSUS

Figure 4.3: Statechart diagram of an English auction

Figure 4.4: Workflow model 1 for the travel package

Figure 4.5: Workflow model 2 for the travel package

Figure 4.6: A sample strategy rule

Figure 4.7: Screenshot of CONSENSUS version 0.1

Figure 5.1: User interface of GEE: schema (left) and screenshot (right)

Figure 5.2: Statechart diagram of games supported by GEE

Figure 5.3: Activity diagram of GEE script for a given round

Figure 5.4: GEE architecture

Figure 5.5: Statechart diagram of an English auction

Figure 5.6: GNP architecture

Figure 6.1: Protocols, Strategies and Coordination in CONSENSUS

Figure 6.2: Proxy bidding in the JRules syntax

Figure 6.3: A coordination rule in the JRules syntax

Figure 6.4: Optimal bidding

Figure 6.5: Adjust update rate

u

xiii

n Figure 6.6: Adapt increment

Figure 6.7: Jump bid - detect and quit

Figure 6.8: Jump bid - detect and respond

Figure 6.9: Jump bid - detect and wait

Figure 6.10: Snipe and win

Figure 6.11: Sniping war

Figure 6.12: Shielding - detect and drop

Figure 6.13: Shielding - detect and snipe

Figure 6.14: Increase valuation

Figure 6.15: Jump bid - detect, wait & snipe

Figure 6.16: Multi-item Dutch - safe buying

Figure 6.17: Multi-item Dutch - panic buying

Figure 6.18: Multi-item Dutch - patient buying

Figure 6.19: Coordination - two English auctions

Figure 6.20: Coordination - English and Dutch auctions

Figure 6.21: Coordination - Agent3 quits, Agent 1 and Agent2 also quit

Figure 6.22: Coordination - Agentl and Agent2 loose, Agent3 quits

Figure 6.23: Coordination - Agent3 snipes and wins, Agents 1 and Agent2 keep going

Figure 6.24: Coordination - Agent3 snipes and looses, Agentl and Agents2 quit

u
l

mf

XIV

n
l

LIST OF TABLES

Table 3.1: Comparison of the five description approaches considered

u

n

XV

LIST OF ABBREVIATIONS

AI: Artificial Intelligence
ARCHON: Architecture for Cooperative Heterogeneous ON-line systems
B2B: Business to Business
B2C: Business to Consumer

CBB: Consumer Buying Behavior
CBR: Case Based Reasoning
C2C: Consumer to Consumer
CDA: Continuous Double Auction
CN: Combined Negotiation
CNSS: Combined Negotiation Support System
DOM: Document Object Model
DSS: Decision Support System
EJB: Enterprise JavaBeans
ETR: Event-Trigger-Rule
FCC: Federal Communication Commission
FSM: Finite State Machine

JSP: Java Server Pages
KIF: Knowledge Interchange Format
MAS: Multi Agent System
NSS: Negotiation Support System
GEE: Generic Experimentation Engine
GNP: Generic negotiation Platform
OMG: Object Management Group
PCS: Personal Communication Services
RDBMS: Relational Data Base Management System
RFP: Request For Proposal
SOAP: Simple Object Access Protocol
TEM: Towards Electronic Marketplaces
UDDI: Universal Description, Discovery and Integration
UML: Unified Modeling Language
WfMC: Workflow Management Coalition
WfMS: Workflow Management System
WSDL: Web Services Description Language
WWW: World Wide Web
XMI: XML Metadata Interchange
XML: extensible Markup Language

u

XVI

0

THANKS

I would like to thank my supervisor Rudolf "Ruedi" Keller, professor at the
University of Montreal, for giving me the chance to join his team, and for his trust
and generosity. His unique approach, sense of organization, and genuine optimism
were a determinant factor in the success of this work.

My thanks also go to Peter Kropf, professor at the University of Montreal, for
presiding my jury and for his constructive remarks. Julie Vachon, professor at the
University of Montreal and member of my jury, may also find here the expression of
my appreciation. Furthermore, I would like to thank Gilbert Babin, professor at HEC,
for representing the Faculty Dean at my thesis defense.

My appreciation also goes to Gregory Kersten, professor at Concordia University and
leader of the InterNeg Group for accepting to be the external examiner. His
contribution to e-negotiations and his leading role in Negotiation Support Systems
research were a reference and an inspiration to me throughout this thesis project.

I would also like to thank CIRANO and Bell Canada for supporting me financially,
and for making my PhD years an enjoyable experience. My special thanks go to
Jacques Robert, professor at HEC and scientific director of the TEM project, for his
leadership, and to Robert Gerin-Lajoie for his help and the valuable remarks he made
during our numerous discussions. Thanks to Alan Bernard!, Director of Bell's
University Laboratories for his help. All CIRANO's researchers and employees
should find here the expression of my sincere appreciation, particularly: Eveline
Dufort, Sophie Lamouroux, Kim Levy, Frédéric Loisier, Vincent Trussart, and
Mathieu Vezeau.

Thanks to my colleague and friend Sarita Bassil for her contribution to this project
and for assuring the further evolution of the CONSENSUS project.

Thanks to my colleague and friend Hakim Alj for his technical and moral support.

Thanks to my family for understanding my desire to go back to my studies, and for
their endless love and support. Thanks to Halima for her patience, and for sharing the
stress of this thesis with me.

Morad

Hawthorne, New York, June 2002

u

'•K^

n

xvn

To the memory of my mother

To the memory ofAhmed, my brother

u

"... always aiming high, always standing.ff

n

CHAPTER 1

INTRODUCTION

1.1 Background

What is commerce? According to the Object Management Group (OMG), coinmerce

is at its heart an exchange of information. To obtain something of value fi-om

someone else, you need to: (1) find a person who has what you want and

communicate your desire, (2) negotiate the ten-ns of a deal, and (3) carry out the deal.

Each one of these activities involves an exchange of information [ECD97].

Negotiation is defined as mechanisms that allow a recursive interaction between a

principal and a respondent in the resolution of a good deal [OMG99]. The principal

and the respondent are usually a consumer and a supplier. In general, they need to

negotiate the price, the delivery date, the conditions of the purchase, the tenus of the

guarantee, etc.

Nowadays, commerce is shifting to the Internet, and a dramatic increase in the

number of companies doing business on the Web has occurred. This has led to the

success of electronic commerce (e-commerce). E-commerce can be thought of as a

series of increasingly general scenarios for business exchange via, or supported by,

modem computers and conmiunication technology [Oli97]. A simple form of e-

commerce is the creation of a site on the World Wide Web (WWW) describing the

goods and services offered by a company, and a simple e-commerce transaction can

take the following form: the company receives purchase orders from consumers

(individuals or other companies), delivers the goods or services, and accepts the

payments. Major steps of the transaction, if not all, are carried out electronically. This

simple paradigm can be taken a step further by allowing the consumer to negotiate

u

.';.:

19

n the price, the delivery date, the conditions of the purchase, the terms of the guarantee,

etc. If the negotiation is carried out electronically, then we talk of an electronic

negotiation (e-negotiation).

Negotiation is considered a key component ofe-commerce [San99a]. The MIT Media

laboratory2 (through the AMEC3 project, conducted by Pattie Maes), for instance,
recognizes its importance by including it in its Consumer Buying Behavior (CBB)

model for e-commerce. The model identifies six steps in an e-commerce transaction

[MGM99]: (1) the need identification step in which the buyer is stimulated through

product information, (2) the product brokering step in which infonnation is retrieved

to help the consumer detennine what to buy, (3) the merchant brokering step in which

the consumer detennines who to buy from, (4) the negotiation step where the price

and possibly other aspects of the deal are settled, (5) the purchase and delivery step,

and finally (6) the product and service evaluation step where the product and service

are evaluated by the consumer.

The business community was also fast to recognize the importance that negotiation

should play in conducting business over the Internet . "Negotiated Trade: The Next
Frontier for B2B e-coinmerce", a June 2000 report by the Hurwitz Group5, claims
that 80% of commerce is perforaied through negotiated trade, and defines a typical

B2B transaction as a four-step process [HurOO]:

(1) Search: the buyer company publishes a Request For Proposal (RFP) to multiple

suppliers, and one or more suppliers respond to the RFP.

(2) Evaluation and negotiation: the buyer company reviews the proposals, and both

parties hash out the tenns of the proposals through negotiations. Negotiation

variables may include price, availability, payment, shipment terms, etc.

u

' http://www.omg.org
http://www.media.mit.edu/
3 Agent Mediated E-Commerce, one of the pioneering projects to address negotiations in e-commerce.
Although the business community tends to focus on B2B commerce, we will see that B2C and C2C
are fertile ground for negotiation research as well.
5 http://www.hurwitz.com

20

n (3) Contract generation: a successful negotiation leads to a contract that documents
the terms and conditions of the deal.

(4) Contract management: this is sometimes also called fulfillment or execution, and

it consists of carrying out the deal while monitoring every action closely to make

sure it conforms to the terms of the contract.

The following brief look at e-negotiations is necessary to set the stage for presenting

the problem statement.

The most basic form of e-negotiation, as described by Kumar et al. [KF98b], is no

negotiation at all (also called fixed-price sale) where the seller offers goods or

services through a catalogue at take-it-or-leave-it prices. This is the way most

electronic retailers (e-tailers) such as Amazon operate. Auctions are a bit more

complex, and they are at present the most visible type of e-negotiations on the

Internet as conducted by eBay , Yahoo and hundreds of other auction sites. Auctions

are preferred to fixed-price sales in domains such as fine arts, perishable goods, etc.

The reason for that is that these goods are of uncertain value, and dynamic price

adjustment will often maximize revenue for the seller [PUF99]. Moreover, on-line

auctions (i.e., e-auctions) can reach a large and physically distributed audience at

reduced cost, whereas off-line auctions tend to cost more, and require that the

participants gather in one physical location. E-negotiations can take an even more

complex form called bargaining (i.e., haggling). This involves making proposals and

counter-proposals until an agreement is reached [San99b]. Bargaining can be bilateral

or multi-lateral, depending on whether there are two parties (one-to-one bargaining)

or many parties (many-to-many bargaining) involved in the negotiation [OMG99]. If

the object of the negotiation has more than one negotiable attribute (e.g., the price,

the quality, and the delivery date), then we talk of multi-attribute negotiations. Multi-

attribute negotiations are already supported by e-commerce software solutions such

A contract is usually the result of a B2B negotiation, but even the simplest B2C online purchase
transaction involves an implicit contract.
http://www.amazon.com

http://www.ebay.com8

u

21

0 as the Negotiated Commerce Engine by MOAI10. Finally, combinatorial auctions
[San99b, SL95] involve making bids on combinations of items, and one of the main

challenges is for the auctioneer to determine the winning bid. Several solutions to this

problem have been proposed, one of which is iBundle by David Parkes [Par99].

This thesis is part of a considerable effort by the research community dedicated to the

subject of negotiations in general and e-negotiations in particular. An increase in the

number of conferences and workshops on this subject has occurred, attracting

competences from horizons as diverse as software engineering, economics, decision

science, management science, and operations research. One of the most recent

workshops on the subject is: "The Third International DEXA Workshop on
Negotiations in Electronic Markets - beyond price discovery, Aix en Provence,

France, September 2-6, 2002".

We would like to contribute to the rich and challenging e-negotiations field by

introducing a new negotiation type we call Combined Negotiations. Simply stated, a

Combined Negotiation takes place when a consumer is interested in a package of

interrelated items (goods or services), and in general engages in many independent

negotiations with the providers of the items. The negotiations can be of any type

(fixed-price sale, English auction, Dutch auction, bilateral bargaining, combinatorial

auction, etc.). The negotiation process being generally long and mostly manual,

software support for all or some of its aspects will provide tangible benefits [HurOO].

We would like to provide software support to the human negotiator in conducting

Combined Negotiations, and automate certain routine and tedious negotiation tasks.

This doctoral research was conducted as part of the TEM (Towards Electronic

Marketplaces) project, a joint industry-university project started in 1999 involving

researchers from economic science, software engineering, and operations research.

TEM addresses market design issues in respect to resource allocation and control and

reward mechanisms, investigates open protocols for electronic marketplaces, and

9http://www.yahoo.com
10http://www.moai.com

u

22

n explores concepts and tools for e-negotiations, based on the belief that e-negotiations

may be re-engineered from traditional negotiations, or designed expressly for

electronic marketplaces.

This research was supported by Bell12 Canada through its Bell University
Laboratories R&D program, by NSERC13 (Natural Sciences and Engineering
Research Council of Canada, CRD-224950-99), and by CIRANO14 (Centre

Interuniversitaire de Recherche en ANalyse des Organizations).

1.2 Problem Statement

We begin by giving an example of a Combined Negotiation (CN). Let us suppose that

a consumer is interested in a vacation package consisting of three items: a

transportation ticket, a hotel room, and a ski trip. The three items are obviously

interrelated since the consumer would have to travel to the location where the ski trip

journey initiates (or at least near it) on the date of the trip (or before it). In addition to

the places and dates, there can be other constraints and dependencies between the

three individual items, such as the total amount to be spent on the vacation, the

maximum price the consumer is willing to pay for the ski trip, the duration of the

vacation, the preferences the user has for certain vacation destinations, her schedule

constraints, etc. Let us also suppose that the three items are negotiable (keeping in

mind that a fixed-price sale is a special case of a negotiation), that they can be

negotiated on different negotiation servers (or on the same server, but run as separate

negotiations), and that the individual negotiations are independent of each other (from

the server's point of view, or the servers' point of view if more than one server is

involved). We suppose also that the individual negotiations can be of different types

("type" in this context means "the rules of the negotiation"; synonymously, the terms

"process", "protocol" and "style" are sometimes used).

u

http://www.dexa.org11

12 http://www.bell.ca
http://www.nserc.ca
14 http://www.cirano.qc.ca

23

0

u

Where does this new type of negotiation (i.e., the CN) fit in the already crowded

universe of negotiation types? To answer this question we rely on a three-dimensional

negotiation space (see Figure 1.1, solid lines) suggested by Jhingran [Jhi99]. The first

dimension of the 3D space is for the case where multiple copies of the same item are

available for negotiation, and the bids (i.e., offers, counteroffers) take the form of

pairs (quantity, price-per-unit). The second dimension addresses the case where

multiple items are subject to one negotiation. In this case, the participants make bids

on combinations of these items. The third dimension, finally, is for multiple attribute

negotiations. We have a CN when a consumer engages in many negotiations for

different items at the same time. The negotiations can be of any type (fixed-price sale,

Dutch auction, English auction, bilateral bargaining, combinatorial auction, etc.).

Each individual negotiation is for a separate bundle of copies, items, and attributes

and thus corresponds to one point in the 3D negotiation space (see Figure 1.1, solid

lines). The negotiations are in general totally independent of each other. The goods

and services of the CN, however, are typically interdependent.

Multiple negotiations

^.

Multiple attributes

Multiple items
-^^^

~^^,
^s
^s
'^J -^- Multiple copies

Figure 1.1: The four-dimensional negotiation space.

To capture this new type of negotiation, where we have multiple negotiations going

on at the same time, we introduced a fourth dimension in Jhingran's model (see

Figure 1.1, dashed line).

Using currently available negotiation technology, the consumer would have to

conduct each negotiation separately, and she would have the burden of coordinating

and reconciling the various negotiations. It can happen for instance that the consumer

makes a deal on a plane ticket and a hotel room, and then, while negotiating the ski

trip, finds out (through bargaining for example) that she is missing out on a very

0

24

interesting deal only because she arrives at the vacation site a few hours late. It can

also happen that she finalizes deals on the hotel room and the ski trip but cannot get a

good deal (or any deal at all) on the plane ticket. In most cases, the obvious thing to

do in this latter case would be to back off and break the commitments she has already

made. Unfortunately, this is not always permitted, and even if it is, it usually costs

money and leaves the consumer at the point where she started (i.e., with no vacation

package altogether).

We therefore see the need for a system to support the consumer in conducting all the

negotiations at the same time, i.e., in carrying out CNs, and we call such a system a

Combined Negotiation Support System (CNSS). A CNSS is a tool that enables the

user to track and monitor the progress of many negotiations efficiently and to respect

all the constraints, dependencies and preferences of the given context. Moreover, a

CNSS will support the user in taking decisions.

Using a CNSS bears some similarity with modeling a software system, in that a high-

level specification component will serve to specify the sequencing and the

dependencies between the individual negotiations, and a human-readable syntax will

be used to specify the negotiation tactics and strategies. Running the model (i.e., the

enactment part), and interacting with it (i.e., the tracking part) will also be supported

by appropriate software components.

The envisioned solution will take the form of a support tool, where the automation

provided by the run-time system should allow for user intervention in the important

aspects of the negotiation whenever a need should arise. A CNSS is not meant to

replace the user, but to provide her with a powerful tool. To meet that important goal,

we study and leverage Negotiation Support Systems (NSSs) [KNT02, KL01, KS98].

The envisioned support tool should also enable the user to discover the items and the

providers of the items she is interested in (i.e., Step 2 and Step 3 of the CBB model -
see Section 1.1), and the necessary information to help her decide which items to

negotiate and where to negotiate them. The user should know, for instance, the

negotiation type practiced by the corresponding servers, as such information is an

u

"^yi.-
%p:;;"
'.:'^1-.

0

25

important factor in choosing one provider over another. She might for example prefer

a bargaining type negotiation to an English auction if she is a good haggler.

Therefore, special attention will be devoted to capturing negotiation protocols. We

believe that these protocols are as important to the negotiating parties as the goods

themselves or the tactics being employed in the process.

The vacation package scenario is a case of Business to Consumer (B2C) e-commerce.

If some items in the package were offered by consumers (i.e., a rare ticket to a rock

concert offered on an auction site), we would face a Consumer to Consumer (C2C)

transaction. A CNSS can also be used at the Business to Business (B2B) level. A

travel agency, for instance, can use a CNSS to negotiate travel packages on behalf of

its clients. The more items there are to be negotiated and the more providers of such

items there are, the more there is a need for a support tool. We might imagine

different means of transportation (air, train, bus, etc.), different types of

accommodation (hotel, motel, pension, etc.), and different recreational activities

(skiing, camping, hiking, theater, etc.). We might also imagine that there are many

providers of such services and that each provider might practice a different type of

negotiation. As another example at the B2B level, consider a company that wants to

import some merchandise from a foreign country. The attributes and issues to be

negotiated include: the price as well as other attributes of the merchandise, the

transportation, the insurance, the customs, etc. These examples suggest that at the

B2B level, CNs may become highly complex, and that automated support by a CNSS

is even more important.

1.3 Research Objectives

According to Kersten et al., the explosive growth in e-commerce has not reduced the

complexity of negotiations conducted over the web, partly due to human factors, and

partly because the underlying economic models remain unchanged, despite the

increase in speed, reach, and computational efficiency [KL01]. The objectives of this

research are twofold. First, we aim to contribute to reducing the complexity of

negotiations by way of software support and automation. Second, we will define a

u

n

26

new negotiation model, identify the problems it generates, propose solutions to these
problems at both the conceptual and the tool level, and evaluate these solutions.
These objectives are developed further in the following points:

(1) Define precisely the Combined Negotiations model and show the need for a
software tool to conduct it.

(2) Define a set of functional and non-functional requirements for the envisioned tool.

(3) Determine how much automation the tool should provide and how much user
involvement will be necessary.

(4) Explore architectures for the envisioned tool and study their feasibility.

(5) Design a complete architecture for the envisioned tool with the following
objectives:

a. Pragmatic and realistic.

b. Based on reuse, and off-the-shelf components.

c. Modular, and resilient to evolving functionality.

d. Hexible enough to be used as a research infrastructure.

(6) Implement prototypes as a proof-of-concept of the proposed architecture.

(7) Use the prototypes to validate the architectural choices.

(8) Since this research is part of the TEM project, we are able to use the tools
developed in the context of the overall project. We rely, for instance, on our
negotiation server GNP [BKL+00]. Our first objective regarding GNP was to
contribute to its design by defining and refining some of the requirements such as its
generic aspect, the ease to implement new negotiation protocols, and the API for
connecting software agents.

u

27

0 1.4 Publications Trail

This research led to the publication of several papers.

The first one, written early on in the project, was dedicated to GNP. It was recognized

from the very beginning of our doctoral research and of the TEM project alike, that a

negotiation platform would be needed. The design of such a platform was therefore of

great importance, and special effort and attention were dedicated to it, which resulted

in GNP (Generic Negotiation Platform). The design process was documented in

[BKL+OOJ. We present a modified version of this paper in Chapter 5.

Our study of the various negotiation protocols and the ways they are usually

represented led to a second paper [BKOOa]. This paper also introduced our own

representation scheme, which relies on UML statecharts to describe negotiation

protocols. A modified version of this paper is presented in Chapter 3.

The results of our initial efforts to tackle the issues surrounding Combined

Negotiations were reported in [BKOOb], a paper that was later developed into a more

complete publication [BAV+01], detailing Combined Negotiation issues, and

presenting a more mature architecture for the proposed support tool, as well as the

implementation details. Chapter 4 is a modified version of this latter paper.

Ways to represent and manage negotiation strategies and coordination schemes were

investigated as part of the global solution, resulting in two publications. The first one

[BAK01] introduced the rule-based approach we adopted for our negotiating agents.

The second paper [BAK02] was a refined version of the first one. It detailed and

justified the solution, and presented the results of its validation. Chapter 6 is a

modified version of this latter paper.

Workflow technology was also important in our proposed solution, thus two

publications were dedicated to this topic. The modeling of Combined Negotiations,

and the use of software agents as actors in workflows were described in [BBK01].

Dynamic workflow systems and their possible integration into our solution made the

subject of [BBK+02].

u

n

28

Finally, a comparison of e-negotiation systems in light of the e-negotiations Group

classification [NBB+02] has been submitted to publication in the Group Decision and

Negotiation Journal.

1.5 Major Contributions

The major contributions of this thesis can be stated as follows:

(1) Definition of a new negotiation type (i.e., Combined Negotiations), and

identification of the issues and difficulties it generates.

(2) Design of an architecture for a tool to support the user in tackling these issues and

coping with these difficulties.

(3) Knowledge management and functional allocation in the support tool. The tool

comprises four major parts: a workflow that captures the sequencing and the

control flow of the CN (CN know-how), software agents that carry out individual

negotiations (individual negotiation know-how), strategy rules to help the agents

decide what to do when there are many options to choose from (negotiation

strategy know-how), and coordination rules to manage the agents across several

negotiations (coordination know-how). An important challenge in this research

was to allocate functionalities to these four parts in an optimal way.

(4) Implementation and test of a proof-of-concept prototype of the proposed

architecture.

(5) Validation of our architectural choices using GNP as well as off-the-shelf

software tools such as commercial workflow systems and rule engines.

(6) Proposal of a UML based representation of negotiation protocols and application

to the generic aspect of GNP.

(7) Adoption of workflow technology to model and enact Combined Negotiations.

(8) Monitoring of software agents by workflows. Workflow management systems

traditionally have humans as participants in the workflow. We showed that

workflows are well suited for monitoring software agents.

u

29

n (9) Rule-based negotiation. We showed that negotiation strategies and coordination

information can be coded as rules, and that rule engine technology can be used to

capture and exploit these rules. The benefits of such an approach are evidently the

modularity of the rules and the possibility to edit them before and during the

negotiation process.

(10) General contributions to e-negotiations research and to the visibility of the

TEM project:

a. Active participation in three e-negotiations workshops , and in an e-
.16negotiations seminar'",

.17b. Membership in the e-negotiations group1'. As results, contributions to the

group classification for e-negotiations (work in progress), and

involvement in the group's publications in a special issue on e-

negotiations of the Group Decision and Negotiation journal (work in
progress).

1.6 Thesis Overview

The remainder of this document is organized as follows. Chapter 2 is dedicated to the

literature review and is divided into two parts. The first part covers negotiations and

auctions, e-negotiations, agent-mediated negotiations, negotiation strategies, and

negotiation systems. The second part tackles the underlying concepts and

technologies of CONSENSUS, namely, negotiation suppon systems, workflow

management, rule-based representation of coordination in Multi-Agent Systems, and

rule-based representation of negotiation strategies. In Chapter 3, we evaluate the

different mechanisms used to describe negotiation protocols, and we introduce and

justify our own representation. Chapter 4 details Combined Negotiations by covering

the issues surrounding them and the difficulties they generate, and then presents the
architecture of CONSENSUS, our Combined Negotiation Support System, along

15 DEXA e-negotiations workshops (2000, 2001, 2002). http://www.dexa.org
eNegotiations and eMarkets Seminar: http://johnmolson.concordia.ca/gkersten/enego2.htm
E-negotiations Group Web page: http://enegotiations.wu-wien.ac.at/

u

30

n with the details of its implementation. Chapter 5 details the design of our own

negotiation platform GNP, and shows how it was reengineered from its ancestor

GEE. In Chapter 6, our rule-driven approach for defining the behavior of negotiating

software agents is presented, and results of the validation work are given. Finally, in

Chapter 7, an assessment of our research and the major results we accomplished are

presented, along with a discussion of future points of interest.

18Group Decision and Negotiation Journal. http://www.kluweronline.com/issny0926-2644

u

n

syff^..'

CHAPTER 2

REVIEW OF THE LITERATURE

Preface

In this chapter, we review the state of the e-negotiation literature, with a focus on the

issues that are most related to our research. The chapter is organized as follows:

The first part is dedicated to e-negotiations, as we set the stage to understanding

combined negotiations and the issues surrounding them. The classification of e-

negotiations is one of the stated goals of the E-negotiations group [ENe02] in which

we actively participate. Our interest in classification is dictated by the need to

understand the negotiation process in general, to isolate similarities between different

negotiation protocols, and, among other things, by our involvement in building

TEM's generic negotiation platfonn. The classification by the E-negotiations group

will be presented in its current state, after we briefly introduce other classifications.

Agent-mediated negotiations and negotiation strategies will then be covered, as they

constitute a promising research area aiming to achieve automation by having software

agents negotiate on behalf of a human consumer, basing their behavior on user-

supplied strategies. Finally, our main concern, providing software support to the

negotiation process, happens to be a focus of interest of both the academic and the

business communities. Therefore, negotiation systems will be introduced, and a

distinction will be made between negotiation servers and negotiation applications, in

order to prepare the reader for Chapter 5, which presents our own negotiation server.

The second part introduces the concepts and technologies on which we rely in the

design of our solution. The complexity of Combined Negotiations calls for tools to

support the user in conducting them. Negotiation Support Systems (NSSs) have been

l

u

32

n investigated long before the emergence of e-negotiations, so, naturally, we strive to
leverage them. Our solution is built around a workflow management system used to
model and enact the Combined Negotiation, thus an introduction to this important
concept is necessary. Software agents will be in charge of negotiating on behalf of the
consumer, therefore, their behavior needs to be represented accordingly. A rule-based
approach is used to represent, manage, and study the agents' behavior, which we
divide into coordination and strategies. A discussion of this approach will therefore
be provided.

The reader will notice some redundancy in covering the literature throughout the
thesis. This is due to the fact that the publications were made separately, at different
phases of the project, and each one had to include a literature review of the concepts

it presented.

u

33

0 2.1 E-Negotiations Related Issues

2.1.1 Definitions

Negotiation

Negotiation takes place when, based on offers made in the information phase, an

agreement cannot be reached; or the agreement has potential for optimization, and the

parties intending to carry out the transaction want to discuss their offers [Str99J. The

information phase in this case is the one that precedes the negotiation, and during

which participants gather information about products, other participants, etc. This

phase is the equivalent of the first two steps of the CBB model introduced in Chapter

l. A negotiation mechanism is essentially a protocol within which agents interact to

detennine a contract, and most agree that auctions constitute a general class of such
protocols [WWW98aJ.

Auction

McAfee and McMillan [MM87] define an auction as "a market institution with an

explicit set of rules determining resource allocation and prices on the basis of bids

from the market participants." For negotiations and auctions, the benefit of

dynamically negotiating a price for a product instead of fixing it is that it relieves the

merchant from needing to determine the value of the good a priori. Rather, this

burden is pushed to the marketplace [MGM99].

Multi-dimensional Auction

There is more to auctions than just resolving the price. According to Reeves et al.

[RGW+99b], auctions are mechanisms for detennining price and other tenns of an
exchange. It is possible to define multi-dimensional generalizations and variants that

resolve multiple issues at once. This can range from the simple approach of running

independent one-dimensional auctions for all the parameters of interest, to more

complicated approaches that directly manage higher-order interactions among the

parameters. Even more complex in our opinion are combinatorial auctions, which

u

34

0 allow bidders to express offers for combinations of goods, and to determine an

allocation maximizing overall revenue [RGW+99b].

Fixed price, Negotiation and Auction

According to Mester [Mes88], there are three basic mechanisms for price

determination.

(1) A fixed price mechanism that is easy and inexpensive to manage, but lacks

flexibility and does not reflect subtle variations in quality among different units of the

same item.

(2) A negotiated price mechanism (i.e., bargaining or haggling) that is rather

expensive to manage and time consuming, where buyers and sellers influence the

price, and all aspects of the product and situation are taken into account.

(3) An auction mechanism that falls in between the first two. The seller sets the rules,

and the prices are determined by competition between potential buyers. Auctions are

more flexible than fixed price because they reflect current demand conditions, the

latest information, and the taste of the bidder. Auctions are less time-consuming than

negotiations because the seller compares offers simultaneously, and remains passive

while buyers determine the price. The rules of the auction can be seen as a

commitment on the part of the seller, and they restrict the kind of offers buyers can

make. Rules show how the price will be detenruned so that demand equals supply

(i.e., the market reaches equilibrium).

E-Marketplaces

Electronic marketplaces (e-marketplaces, also called exchanges or e-hubs) aggregate

buyers and sellers, creating marketplace liquidity and reducing transaction costs. E-

marketplaces can focus on specific industries or markets (vertical hubs) or on specific

functions or business processes (functional hubs) [KT01].

u

35

n Online Direct Sales

In this model, also called electronic retailing (e-tailing), companies sell their own

products through their own Web sites. Such sites are managed by the supplier, are

limited primarily to the supplier's products, and differentiate the supplier's products

from others. Multiple competing sites may sell similar products. Companies

following the direct sales model execute online various functions such as order

configuration, pricing, order placement, order tracking, and customer service [KT01].

E-Negotiation

E-negotiation (i.e., negotiation in electronic commerce) can be defined as the process

by which two or more parties multilaterally bargain resources for mutual intended

gain, using the tools and techniques of electronic commerce [BS97].

E-Auctions (Online Auctions)

The use of auctions for exchanging goods such as artwork, antiques, agricultural

produce, mineral rights, etc. has a long history [KT01]. With the advance of the

Internet, the use of auctions for exchanging goods between individuals and

companies has increased significantly. In addition to C2C online auctions such as

eBay.com, there are two types of B2B online auctions: (1) third-party auctions,

which allow companies to sell in e-marketplaces; and (2) private auctions, which

companies build on their own extranets to serve their dealers or customers.

The most used online auction formats include the English auction (with variations on

minimum bids, reserve prices, and buyout prices), first and second-price sealed-bid

auctions, Dutch auctions, and continuous double auctions (CDAs).

Online auctions have several benefits compared to traditional auctions, including

lower information, transaction, and participation costs; increased convenience;

asynchronous bidding; and access to larger markets [Luc99].

u

n

36

Business-to-Business Negotiations

According to Lo et al. [LK99], transactions conducted on the Internet include retail

with electronic shopping baskets and auctions, but negotiations that are typical of

business-to-business (B2B) commerce have not yet gained enough attention. There is

actually an interesting debate on whether auctions can replace negotiations on the

Internet. In their paper titled "Are all E-commerce Negotiations Auctions?" Kersten

et al. [KTOO] answer their question with "no" and conclude that: "auction-like

protocols will play a major role in contexts in which the determination of value is the

primary concern. However, in B2B commerce, the participants are often less

concerned with price and more with relationships. Negotiation-like protocols will

dominate in these circumstances". Commenting on the "hype" surrounding auctions

on the internet, the authors argue that [KTOO]: "once the excitement is over, the

reality that strikes is that business relationships and economic models are no simpler

today than they were before the Internet, and different business models will need

many different kinds of negotiation protocols, some of which will be very complex

and rich in human factors."

2.1.2 Classifications

2.1.2.1 Justification

In practice, and due to a lack of comprehensive guidance, the design of negotiation

systems has been evolving as a trial-and-error game [NBB+02]. It is therefore not

surprising that many scientists seek to provide practical methods and processes to

enrich the design process. One step towards that goal is the development of a

negotiation classification. In this section, we justify the need for such classification,

review some existing classifications, and present our own "London Classification'

proposal.

îî

There are two ways that the design process can be supported by the elaboration of a

negotiation classification [NBB+02]. First, the analysis of negotiation scenarios can

be improved. Different negotiation scenarios that belong to the same group share the

u

0

37

same characteristics, and are therefore expected to work in the same domain. Second,

the selection of the most adequate negotiation scenario out of the space of possible

negotiations (usually referred to as the negotiation space [LMJOO]) can be

significantly streamlined. Instead of investigating a rather large number of possible

negotiation scenarios, it is sufficient to observe a single class scenario.

Furthermore, based on a classification, standardized descriptions of the negotiation

process can be exchanged over the network for consultation by human and software

agents, before they engage in the negotiation [BKOOa]. In such a case, software

agents may be automatically instantiated using the negotiation description. This may

eventually allow for a meta-negotiation, i.e., the participants can dynamically agree

on a specific negotiation scenario.

2.1.2.2 Review of Existing Classifications

The 4D model presented in Subsection 1.2 constitutes a classification that deals with

only one aspect of e-negotiations, namely, the item being negotiated. There are

obviously more aspects to e-negotiations as we will see shortly.

Integrative

Distributive

Bargaining

BNdiijg^

Bilateral Multilateral

Figure 2.1: Simple Classification [Str99]

One of the many classifications we came across in our readings classifies negotiations

as either distributive or integrative, and either bilateral or multilateral [Str99],

[Str99b]. It defines bargaining as bilateral integrative negotiation, and bidding as

multilateral distributive negotiation [KTOO] (see Figure 2.1).

l

u

38

n Another classification, given by Oliver [01197], is a four dimensional framework for

e-commerce (clearly, the framework applies more to e-negotiations than to e-

commerce). The dimensions are:

o Negotiation versus posted-price: this dimension indicates whether there is a

possibility to negotiate or not. At one extreme, everything is negotiable (i.e., the

bazaar approach), and at the other extreme, the prices are fixed (i.e., the

department store approach).

o System autonomy: the system supporting the negotiation can have two extreme

levels of autonomy. It can go from a fully autonomous mode, where there is no

human intervention at all, to a helper/ad visor mode where the user initiates

actions and takes decisions.

o Number of parties: the minimum number of negotiating parties is two (bilateral

negotiation). The number can be greater than two, leading to multilateral

negotiation.

o Number of issues: the number of issues (i.e., negotiable attributes of the item)

ranges from one issue (e.g., the price) to many issues.

Wurman et al. [WWW98a] give yet another classification. They describe a

negotiation mechanism as "a protocol with which agents interact to determine a

contract," and define auctions as "a general class of such protocols." They categorize

an auction as:

o Single or double: in a single auction the bidders are either of type "buyers" or of

type "sellers". In a double auction we can have multiple "buyers" and multiple

"sellers" bidding in the same auction.

o Sealed-bid or out-cry: in the first category the bids submitted by the participants

are not known until the auction closes. In the second one the bids are made public

at the time they are made.

o Ascending or descending: in the ascending auction the bids begin low and keep

increasing until a deal is made. In the descending auction, the seller (or the

u

39

0 auctioneer) begins with a higher price and lowers it continuously until someone

bids on it.

Lomuscio et al. [LMJOO] propose a classification they call a "negotiation space". The

dimensions of such a space are:

o Cardinality of the negotiation: this dimension is further divided into negotiation

domain (single-issue or multiple-issue), and interactions (one-to-one, many-to-

one, and many-to-many).

o Agent characteristics: agents are the (human or computational) entities that

participate in the negotiation process. Agents are characterized by their role,

rationality, knowledge, commitment, social behavior, and bidding strategy.

o Environment and goods characteristics: the negotiation environment can be static

(i.e., variables such as prices do not change over time) and dynamic (variables do

change over time). The characteristics of the goods can be private if the good is

intended for private use (thus, its value is a personal matter), or public if its value

depends on how the other agents value it.

o Event Parameters: this dimension deals with the way the offers and other events

of the negotiation process are regulated. The model distinguishes the following:

bid validity, bid visibility, clearing schedule and timeouts, and quotes schedule.

o Information parameters: to distinguish between price quotes and transaction

history.

o Allocation Parameters: used to detennine the winner of a auction if many agents

have shown an interest in the good.

For more details on this classification, see [LWJOO].

2.1.2.3 The London Classification

In our meeting at the DEXA conference in Greenwich, London, in September 2000,

the e-negotiations group [ENe02] decided to come up with a more complete

classification framework for e-negotiations, and we took part in that effort. The

u

40

n classification had to satisfy the following three goals: (1) provide a common set of

terms describing e-negotiations with a well-defined set of classification criteria; (2)

help analyze and understand the dimensions of e-negotiations and their

interdependencies; and (3) assist the conceptual design of specific e-negotiations and

support the abstraction necessary for the development of generic e-negotiation

engines.

The resulting framework is commonly referred to as "The London Classification."

Four aspects of e-negotiations were identified: the "people" aspect which deals with

the participants in the negotiation, the "goods" aspect which is dedicated to the object

of the negotiation, the "process" aspect which is concerned with the negotiation

protocol to be followed by the participants, and finally the "evaluation criteria" aspect

which covers the ways to evaluate a negotiation process. Our major contribution to

this framework is the "process" aspect. Following is a description of that framework.

(I) The "People" Aspect

o Number of parties: There can be two or more parties participating in a

negotiation. We talk of bilateral or multilateral negotiation, respectively.

o Bidding activity: A negotiation can be single-sided meaning that only buyers or

only sellers are allowed to submit bids, or it can be double-sided meaning that

buyers and sellers are both allowed to submit bids.

o Admission: A negotiation can be seller-open (buyer-open) meaning that there is

no restriction on the admission of sellers (buyers) to participate in the negotiation.

It can be seller-closed (buyer-closed) meaning that there exist restrictions on the

admission of sellers (buyers) to participate in the negotiation.

o Collusion: A negotiation can be collusive or non-collusive. Collusion refers to

agreements between buyers and/or sellers in order to achieve mutual benefits.

o Anonymity: A negotiation can be anonymous or non-anonymous. It is said to be

anonymous if and only if any assignment of participants to their offers and the

u

4l

n identification of participants is impossible based on the information exchange

provided by the negotiation protocol, i.e., on the endogenous infonnation.

(II) The "Goods" Aspect

o Number of items: Items can be goods or services. We talk of a single-item

negotiation if only one item is subject to the negotiation. We talk of multi-item

negotiation if more than one item is subject to the negotiation.

o Number of attributes: One can negotiate on one attribute (e.g., the price), and thus

we talk of single-attribute negotiation, or on multiple attributes of a deal (e.g.,

price, quality, terms of delivery), and thus we talk of multi-attribute negotiation.

o Homogeneity: In the case of multi-item negotiations, all items can be

homogeneous (identical) or heterogeneous (non identical).

(Ill) The "Process" Aspect

o Reverse versus forward'. We talk of a reverse auction when a buyer posts a

request for an item, and sellers compete for the best conditions at which the buyer

will accept the item (the bids go down). In a forward auction the seller lists an

item for sale, and buyers post their bids (the bids go up). At any point the seller

can accept one (or more) of the existing bids in which case the negotiation ends.

o Single-phased versus multi-phased: In a single-phased negotiation the rules are

the same from the beginning to the end of the negotiation. If we allow for rules to

change, then, each time they do, a new phase in the negotiation is started. We

therefore talk of a multi-phased negotiation. As an example, a negotiation can

start as a descending auction, then, whenever one participant bids to take the item,

the rules change (a new phase begins), and the auction becomes an ascending

auction.

o Single-stage versus multi-stage: If all the attributes of the item are negotiated at

the same time, then we talk of a single-stage negotiation. In a multi-stage

negotiation the parameters of the negotiation (for instance the user preferences or

u

^

42

0 the information available) can be changed after a stage, thus enabling another

round of bidding.

o Synchronized versus sequential versus combinatorial: In a synchronized (also

called simultaneous or parallel) auction there are n items. A participant can make

m distinct bids on m distinct items (m not greater than n). The m bids are made

simultaneously. The auction usually mns multiple rounds of sealed bids,

announcing the bids after each round. The Federal Communication Commission

(FCC) uses such a format to auction licenses for Personal Communication

Services (PCS) [MM86]. If the n items are auctioned individually one after the

other, then we talk of a sequential auction. If the auction allows for a participant

to make a single bid for m items (m not greater than n), then we talk of a

combinatorial (also called bundled) auction.

o Open cry versus sealed bid: In an open cry auction the bid (bids) made by a

participant is (are) known by the other participants. Depending on the type of the

auction, the bids can either go up or down. In a sealed bid auction, the participants

make one secret bid (in some cases many secret bids). At the close of the auction,

the winning bid is determined and announced (possibly with the identity of the

winner). In a sealed bid auction, the bids can go up and down, and we say that the

movement of the bids is haphazard.

o Information revelation: This deals with the transparency of the market and the

amount of information available in the negotiation process (see open cry versus

sealed bid). This covers also information such as, for instance, the identity of the

other negotiating parties and the ranking or utility of a bid from the bid-takers

perspective (in the multi-attribute case).

o Agent-mediated versus manual bidding: Software agents can be given a

negotiation strategy and then be put in charge of a negotiation on behalf of the

human participant. We talk of agent-mediated negotiation. Depending on their

complexity, they can be totally autonomous, or they can just carry out simple

tasks like bidding until a certain amount is reached with a certain increment. In

u

'•'?SSï^''.

w
43

0 manual bidding, the participant makes all the decisions and submits the bids

manually. In both cases a Negotiation Support System (NSS) can be used to

enhance the chances of a good deal for the participant.

o Discriminative versus non-discriminative: Usually, once the bidding phase is

over, the bidder with the highest bid gets the item being auctioned, but the price

she pays could be equal to her bid or lower. In a Discriminative Auction (also

known as Yankee Auction), the winners pay what they bid. In a non-

discriminative auction, people with winning bids pay the amount of the lowest

winning bid (for the sale of multiple similar items). Finally, in a Vickrey Auction

(also referred to as second price sealed bid auction) the winner pays the price bid

of the second highest bidder (for the sale of a single item).

o Non-Repudiation: In a negotiation, the participants are allowed or not to break

their commitments. This means that bidders can or cannot repudiate (withdraw)

submitted bids.

(IV) The "Evaluation Criteria" Aspect

o Incentive compatibility: Each negotiating agent is motivated (it is a dominating

strategy for the agent) to reveal true preferences and to bid truthfully irrespective

of the behavior of other agents. No advantages can be gained by modeling other

agents or having additional infomiation.

o Computational complexity: This refers to the complexity of the algorithm used to

determine the winner(s) and/or the solution to a negotiation problem (price and

feature discovery, allocation of quantities etc.). The complexity can vary from

simple schemes such as "highest-bid-wins-at-second-price" to the NP-complete

resolution problem of combinatorial auctions.

o Convergence: When designing a negotiation mechanism, it is important to know,

if it converges towards equilibrium and if it produces a uniquely determined

allocation. Negotiation mechanisms can explicitly be designed to converge.

u

44

n o Speed of convergence: This is the time or number of stages needed until the

negotiation mechanism converges towards equilibrium, meaning that no agent,

given the current infonnation, desires to change the resulting solution.

o Stability: A solution of a negotiation mechanism is stable if there is no subset of

agents that could have done better by coming to an agreement outside the

mechanism.

o Integrative versus distributive: A negotiation process is distributive (of win-lose

nature) if a gain for one agent is necessarily a loss for the other agent

(negotiations with single as well as multiple attributes can be distributive). In

integrative (win-win) negotiations, joint gains are possible either through

simultaneous improvements (trade-offs) based on opposing preferences or

through the addition/invention of new attributes/options during the negotiation

process.

o Efficiency: This property refers to the solution of the negotiation problem. A

solution is efficient if, depending on the preferences and bids of the negotiating

agents, there is no other allocation that is better for some agent without being

worse for another agent.

o Fairness: A solution to the negotiation problem or the process involved to

identify that solution is fair if it is not more beneficial (advantageous) to either

selling or buying agents. Hence no agent envies any other agent. In a more narrow

definition, a fair solution can also comprise that all agents involved think they

received the same fraction of the total value (piece of the cake to divide) - which

is, of course, difficult to assess. Fairness combined with efficiency ensures that

the total value is distributed to everyone's satisfaction.

o Correctness: The following properties must be satisfied to achieve correctness:

Only eligible bidders can submit bids, no one can impersonate a bidder, valid bids

cannot be altered/eliminated by the auctioneer, bids are valid only for the

specified auction, and the winner of the auction is always the highest/best bidder.

l

u

45

0 2.1.3 Agent Mediated E-Negotiations

According to Kephart et al., over the course of the next decade, the global economy

and the Internet will merge into an information economy bustling with billions of

autonomous software agents that exchange information goods and services with

humans and other agents [KHGOO]. Software agents can be defined as entities that

execute functionalities in an autonomous, proactive, social, and adaptive fashion.

These functionalities include searching, comparing, negotiating, and collaborating

[Jon99], which make them particularly useful for the infonnation-rich and process-

rich environment of e-commerce [MGM98]. Thus, we talk of agent-mediated e-

commerce. Software agents are also capable of personalized evaluation, complex

coordination, and time-based interaction. They can be mobile, i.e., move between

different computers or reside on one computer, and may either have learning

capabilities or base their actions on pre-defined rules of behavior [LK99].

Agent-mediated e-commerce enables cheap negotiation between buyers and sellers on

the details of an individual transaction - product features, value-added services,

financing, and price. More specifically, agent-mediated negotiation may absorb many

of the costs and inconveniences of negotiation [PUF99], and it is becoming more and

more evident that agent-mediated negotiation stands on its own as an important field

of study, quite apart from its eventual importance in the information economy

[KHGOO]. According to Rodriguez et al. [RMN+98], agent-mediated auctions appear

as a convenient mechanism for automated ti-ading, due mainly to the simplicity of

their conventions for interaction, but also to the fact that online auctions may

successfully reduce storage, delivery or clearinghouse costs in many markets.

E-negotiation, sometimes referred to as automated negotiation, takes place when the

negotiating function is performed by (networked) computers. We talk of fully

automated e-negotiation when all parties involved are software agents, semi-

automated e-negotiation when a human negotiates with a software agent, and manual

e-negotiation when all parties are human [BSS96].

u

46

n Parkes et al. distinguish between autonomous and semi-autonomous agents. An

autonomous agent requires a complete set of preferences in order to represent the user

correctly in all situations. On the other hand, a semi-autonomous agent will bid on

behalf of the user when it has enough knowledge to proceed, and query the user when

its best action is ill-defined given the current information [PUF99]. A further

distinction is made between a resen'ation-price agent and a progressive-price agent.

The first type is an autonomous agent that places bids up to the value of a fixed

reservation price. This is appropriate for users who have precise valuations of the

auctioned goods. The second type is initialized with a lower bound and an optional

upper bound on the true reservation prices of the user [PUF99]. This type is

appropriate when a precise valuation of the good is not available. Note that a

reservation-price agent is also referred to as a proxy-bidder by some commercial

auction sites such as eBay [Eba02]. Finally, software agents can be involved in

competitive negotiations, meaning that they are adversaries with conflicting interests.

They can, on the other hand, be involved in cooperative negotiations, and in this case,

they all aim at satisfying the same interest [BS97].

Software agents may facilitate all facets of electronic commerce, including shopping,

advertising, negotiation, delivery, and marketing and sales analysis [KHGOO].

Pricebots, for instance, are software agents that employ price-setting algorithms in an

attempt to maximize profits, thus helping sellers to increase flexibility in their pricing

strategies. An example taken from [GK99] points to books.com which uses a pricebot

to monitor prices on competitor sites and offer the customer a lower price than what

the competitors ask for. This is called real-time dynamic pricing, and it is clear that it

can benefit enormously from automation. Shopbots, to cite another example, are

software agents that automatically gather information from multiple online vendors

about the price and quality of consumer goods and services [GK99]. Some successful

shopbots on the Web today are mysimon.com and bargainfinder.com.

In our research, we are interested in the negotiation phase of an e-commerce

transaction, and we intend to investigate, and eventually support many of the agent

u

47

n features described above. We are aware of the challenges of automated negotiations

and agree with Beam et al. that negotiation is difficult, and automated negotiation is

even more so [BS97].

2.1.4 Negotiation Strategies

In this section, we first define negotiation strategies and examine the issues

surrounding them. We then review some strategy-enabled infrastructures found in the

e-negotiation research literature.

2.1.4.1 Definition and Issues

Negotiation is a form of interaction defined in terms of protocols and strategies. The

protocols of the negotiation comprise the rules (i.e., the valid actions) of the game.

For a given protocol, a bidder uses a rational strategy (i.e., a plan of action) to

maximize her utility [GMM98J. Jennings et al. take this definition even further by

identifying the following topics in automated negotiation [JFL+01]:

o Negotiation protocols: they cover the permissible types of participants, the

negotiation states, the events that cause negotiation states to change, and the valid

actions of the participants in particular states. Negotiation protocols dictate the

types of operations that can be performed and influence the agents' strategies.

o Negotiation objects: they are the range of issues over which agreement must be

reached. The object may contain a single issue (i.e., the price) or many issues (i.e.,

the price, quality, terms and conditions, etc.). Also in this topic are the operations

that can be performed on the issues (i.e., accept or reject offers and counter offers,

dynamically alter the object by adding or removing issues, etc.).

o Decision making models: they are used by the agents to act in line with the

negotiation protocol in order to achieve their objectives. The relative success of

two agents is determined by the effectiveness of their model - the better the

model, the greater the agent's reward.

According to Wong et al. [WZKOO], most current e-commerce systems use

predefined and non-adaptive negotiation strategies (i.e., decision making models) in

u

48

0 the generation of offers and counter offers during the course of the negotiation.

Commercial auction sites such as eBay, for instance, still require that consumers

manage their own negotiation strategies over an extended period of time [MGM99].

There is however a possibility to relieve the user from managing the negotiation.

EBay, for instance, offers the possibility oî proxy-bidding which is actually a simple

agent that uses a straightforward strategy: bid until you reach a certain amount (the

reserve-price), by going up each time with a certain increment (called the bid-

increment). We should mention that this bidding technique has a disadvantage. To

use it, one must reveal to the auction site the highest price one is willing to pay,

giving the site information that could be used to cheat the bidder [PriOO]. As another

example, the buying (selling) agents in the well-known KASBAH system [CM96]

can choose between three negotiation strategies: anxious, cool-headed and frugal,

corresponding to linear, quadratic, and exponential functions, respectively, for

increasing (or decreasing) their bid (or ask price) for an item over time. Predefined

and non-adaptive strategies are evidently not sufficient in regard to the ambitions of

e-negotiations research.

Software agents participating in negotiations face tough decisions: whether or not to

accept an offer, whether or not to make a final offer, whether or not to bid, how much

to bid, etc. According to Gimenez-Fuentes et al. [GGR98], those decisions should

take advantage of whatever information may be available in the market: participating

traders, available goods and their expected re-sale value (in case the buyer intends to

re-sell the good), historical experience on prices and participant's behavior, etc. The

decisions are even harder to make due to the fact that this information is constantly

changing and highly uncertain - new goods become available, other buyers come and

leave, prices keep on changing, no one really knows for sure what utility functions

other agents have, etc. Furthermore, the decisions should take into consideration the

fact that the agents' goals, beliefs, and intentions change over time [NLJ96].

Some other information that is useful to the bidder is the valuation of the item at

stake. In an auction where the market price is a common valuation among bidders

u

49

n (e.g., an auction for personal computers), a bidder who wins the auction is the one

with the highest, yet possibly overrated valuation. This is called the winner's curse

[IFS+00]. Consequently, it is an advantage to know the real valuation of an item (i.e.,

its market price) in order to avoid the winner's curse. To do that, one might predict

the market price of an item by monitoring its prices in several online auction sites

[IFS+00].

Choosing a successful strategy by a negotiating software agent is not deterministic

and depends on many factors, in particular on the strategies of the other competing

agents [GGR98]. The reputation of the opponents can also be helpful in designing a

winning strategy [KHGOO].

Special care must be taken in the design of buying or selling artificial agents.

According to Guimenez-Fuentes et al. [GGR98], designing, building, and tuning

trading agents before letting them loose in widely competitive scenarios like

electronic auctions inhabited by (both human and software) expert traders happens to

be an arduous task. A buyer agent usually knows its owner preferences (i.e., her

willingness-to-pay for an item) [Var95]. If a seller (human or artificial) of the item

learns of the buyer's willingness-to-pay, it can make her a take-it-or-leave-it offer that

will extract her entire surplus. This is not to the advantage of the buyer. On the other

hand, artificial agents must guard against dynamic strategies that can extract private

information. As an example, taken from [Var95], a seller agent knows its owner's

reservation price and keeps it from the buyers. The seller (owner of the agent) would

accept any offer that is higher than the reservation price. Suppose that a buyer agent

(human or artificial) starts bidding at zero, and offers a sequence of incremental bids

until it gets the item for a price slightly more than the seller's reservation price. This

is not to the advantage of the seller.

Researchers are exploring various AI based techniques to provide adaptive behavior

in the negotiation process. These techniques include logic, case-based reasoning

(CBR), constraint-directed search, etc. [NLJ96]. The use of CBR is justified by the

fact that good negotiation skills in humans seem to come from experience [WZKOO].

u

50

n Wang et al. use CBR as an approach to exploit past negotiation experience/strategies

as guides to suggest suitable strategies to the current negotiation situation [WZKOO].

Bayesian learning is used to make the agents leam negotiation strategies [ZS98].

According to Kephart et al., agents will have to learn, adapt, and anticipate, and in

order to do so, they will use a variety of machine learning and optimization

techniques [KHGOO].

In our research, we take a rather pragmatic approach to the issue of negotiation

strategies in automated negotiations. We see strategies as declarative (rule-based)

knowledge that is given to the agents before or during the negotiation process. The

benefits of this approach will be developed throughout this document.

2.1.4.2 Related Projects

Arguably, the most cited agent-mediated negotiation infrastructure is KASBAH

[GMM98, CM96], an on-line multi-agent classified ad system centered on the

negotiation phase of an e-commerce transaction. The user (seller or buyer) of this

system creates an agent, gives it insfa-uctions and sends it to a centralized agent

marketplace. The user has high-level control over the behavior of the agent. At the

time of its creation, the user (a seller in this case) sets the desired price, the desired

time to sell, the lowest acceptable price and the negotiation strategy. The negotiation

strategy for sellers is based on the following rule: Offer the item at the desired price.

If there is no buyer, lower the asking price to generate more interest. At the desired

date to sell, the asking price should be equal to the lowest acceptable price. Three

predefined strategies: anxious, cool-headed and frugal, corresponding to linear,

quadratic, and exponential functions, respectively, can be used to set the rate for

lowering (increasing in the case of buyers) the price.

Another well-known infrastructure, the AuctionBot [WWW98a], is a configurable

auction server that allows human agents to create auctions. The server supports many

auction types including the English, Dutch, and Vickrey auctions. Human agents can

submit bids via Web forms, whereas software agents can submit bids using a special

u

51

0 API. Hu et al. designed an agent server [HRW99] that works on the user's behalf by

submitting bids to the AuctionBot. The users specify the names of the auctions in

which they want to participate, the initial amounts of the goods, and the bidding

strategies they prefer. The agents then start bidding on the AuctionBot on behalf of

the users. The agents keep bidding until the auction closes, and then report the results

back to the users. The agent server runs three types of agents. Competitive agents that

always bid their true reservation prices. The other two are strategic learning agents: a

price-modeling agent that bases its next bid on the history data of clearing prices, and

a bidder-modeling agent that models the actions of other agents by looking at the

history data of those actions. The strategies are hardcoded into the agents.

The FM97.6 system, part of the Fishmarket project [RMN+98], is another pioneering

test-bed for electronic auctions meant to provide support to software agent developers

in defining, activating, and evaluating experimental scenarios (i.e., tournaments).

These tournaments define standardized conditions under which software agents

compete for maximizing their benefits [GGR98]. The tournaments are based on a

downward bidding protocol (a variation of a Dutch auction) found in Spanish fish

markets. Trading (buyer and seller) heterogeneous (human and software) agents of

arbitrary complexity participate in these tournaments and are evaluated according to

their market performance. Such competitive situations constitute convenient problem

domains in which to study issues related to agent architectures in general and to

agent-based trading strategies in particular [RMN+98]. The agents are provided with

negotiating strategies based on two different approaches. A pragmatic approach

provides buyer agents with heuristic guidelines. A more formal approach relies on

possibilistic-based decision theory for handling possibilistic uncertainty on the

consequences of actions due to the lack of knowledge about the competitors'

behavior [GGR98].

A system called Experience Based Negotiator is presented in [WZKOO]. It is made up

of four functional components: (1) the Case-Based Negotiator assists users in

negotiating with opponent agents by matching the current negotiating scenario with

u

52

0 previous successful negotiation cases and providing appropriate counter offers based

on the best matched negotiation case; (2) the Case Browser allows users to browse a

previous negotiation case repository; (3) the Statistics component supplies several

useful descriptive statistics; and (4) the Case Maintenance component allows

negotiation experts to moderate, maintain and update the case repository.

The approach taken by Su et al. [SHHOO] is based on the idea that a consumer

registers on a proxy negotiation server by giving a description of the goods or

services she wants, her preferences, and a negotiation strategy. Then, the server takes

over and looks for a supplier that matches the consumer. When it finds one, it starts a

bargaining type negotiation until eventually a deal is reached. The server uses the

negotiation strategy supplied by the consumer. A declarative approach is used to

represent the negotiation strategies (see Section 2.2.4). Notice that in this case, the

merchant brokering phase is the responsibility of the server, and that the user has no

control over the negotiations once they are started. The user can only see the progress

of the negotiations, but cannot intervene in them.

Other strategy-enabled test-beds do not focus on the negotiation phase of an e-

commerce transaction. Researchers at IBM T. J. Watson, for instance, study pricebot

dynamics by analyzing and simulating a series of price-setting strategies. For more on

this research, see [KHGOO].

2.1.5 Negotiation Systems

2.1.5.1 Introduction

The negotiation process is manually intensive; therefore, automating it, and capturing

key infonnation in a central repository that can be accessed by the negotiating parties,

can reduce costs associated with the negotiation [HurOO]. Negotiation systems (also

referred to as negotiation engines or platforms) are of great interest to both the

business and academic communities. This interest is focused on the design process

(among other aspects), with the aim of achieving higher efficiency and lower

u

53

n transaction costs [Mal87], hopefully leading to more mature and successful electronic

markets.

We dedicate this small section to introducing the reader to negotiation systems,

leaving out Negotiation Support Systems (NSSs), which we will cover in Section

2.2.1. GNP, the negotiation system developed in the TEM project, will be detailed in

Chapter 5 of this thesis.

2.1.5.2 Negotiation Servers and Applications

There are two types of negotiation systems: negotiation servers and negotiation

applications. Negotiation servers (i.e., engines or platforms) are typically systems that

can run multiple negotiations, while negotiation applications usually provide only a

single fonn of negotiation [Wri97]. Moreover, negotiation servers usually provide a

workbench that can be used to generate an executable negotiation application. In this

case, the special negotiation application constructed in order to fit within an existing

market is regarded as a negotiation application.

The Michigan Internet AuctionBot20 [WWW98a], implemented at the University of

Michigan exemplifies the class of negotiation servers. This server is mainly designed

to explore the possible auction design space. Consequently, it supports the generic

configuration of various negotiation (auction) scenarios, according to the

specifications of the negotiation initiator. The initiator can determine the concrete

negotiation scenario consisting of the auction type, the bidding rules, the matching

schedules, etc. For the other participants in the auction (i.e., the bidders), these

settings are fixed. They are what we call the negotiation protocol throughout this

document.

One system that is considered a "next generation" e-commerce server is the

eAuctionHouse [EAu02] from Washington University. It is a configurable "auction

Although we consider NSSs as negotiation systems as well, we chose to introduce them elsewhere to
stress the fundamental differences between negotiation engines and NSSs, and consequently, between
GNP and CONSENSUS.
The AuctionBot, while still being cited in e-negotiation related publications, is no more supported by
its creators.

u

54

0 house" that allows people across the Internet to buy and sell goods as well as to set up

their own auctions. It does so by offering an expert system for setting up the auction

by restricting the choice of auction types taking into account the auction settings (e.g.,

single or double auction, one or multiple items, one or multiple units of each item). It

also supports combinatorial auctions with algorithms for winner determination.

Furthermore, eAuctionHouse makes it possible to bid via price-quantity graphs so

bidders can express continuous preferences - when bidding, for instance, for a larger

quantity, one might only accept a lower unit price. Another feature is the software

agents that actively participate in an auction on behalf of the user while she is

disconnected. More details can be found in [EAu02]

An example of a negotiation application is provided by the first and one of the most

popular seller-driven online auctions, Egghead , formerly Onsale. Egghead operates
a B2C auction site that auctions various consumer items such as vacation packages

and sporting goods. The auctions use a single negotiation scenario, the Yankee format

(the highest bidders win the merchandise at their bid price) with one or more identical

items offered for sale at the same time. To place a bid one must: (1) enter the user

name and password, the bid price per unit, the quantity; (2) select the shipping

method; and (3) place the bid. Three bidding priorities apply when determining a

winner: (1) bids are first ranked by price; (2) if bids are placed for the same price,

bids of greater quantity take precedence over bids of lesser quantity; (3) if bids are

placed for the same price and quantity, earlier bids take precedence over later bids.

The scheduled closing time for each auction is listed on the product page. However, if

there is still bidding activity on a product during the final ten minutes, the auction

will be extended into a special "Going... Going... Gone" period. The auction will

close after ten consecutive minutes pass without further bid activity.

u
http://www.egghead.com was recently taken over by http://www.amazon.com

is- 55

0 Proxy bidding is available. The automatic bidding software enters the lowest possible

winning bid for the user. If another buyer bids, the software will automatically raise

the user's bid until she is winning or until she has reached her maximum bid.

Other popular negotiation applications are for example Ozro22, eBay23, and MOAI24
LiveExchange.

2.1.5.3 Discussion25

Traditionally, negotiation applications have dominated negotiation design, but lately,

the importance of negotiation servers has increased, and consequently, a need for

configurable and generic negotiation engines is being felt. First, the dynamics of the

market creates uncertainty concerning the market mechanism that fits the "real

market". Thus, market design should allow for a relatively quick and easy

configuration of negotiations reducing the overall setup costs. Second, the users'

preferences are typically extremely heterogeneous, dividing the whole market into

market segments. Moreover, there is no single negotiation design that fits all

problems. A multiple negotiation design may provide all - or at least some - of the

market segments with tailored trade mechanisms. An exhaustive guide to the choice

of the appropriate mechanism does not and probably will never exist, making market

design a challenging task. Third, from the software engineering perspective,

negotiation servers are usually systems that consist of components with well-defined

interfaces. Given the (short) limited lifecycle of these components, they should be

easily exchangeable. Instead of rewriting the entire application, only a single (or a

few) component must be replaced. If the core component - the negotiation engine - is

domain independent, it can then be optimized in tenns of scalability, security, and

processing time.

u

22

23
http://www.ozro.com
http://www.ebay.com

56

0 2.2 CONSENSUS Related Issues

In this section, we review the concepts and technologies on which we base our

solution. We discuss Negotiation Support Systems, workflow management issues

relevant to CONSENSUS, coordination in MAS, and finally rule-based

representation of negotiation strategies.

2.2.1 Negotiation Support Systems

Negotiation Support Systems research being rich and its literature abundant, we

choose to address only the issues that are relevant to the design of our envisioned

solution.

A Decision Support System (DSS) is a computer-based system used to assist and aid

decision-makers in their decision making process [Ker99]. Several other DSS

definitions can be found in [Ker99] along with some functional and performance

requirements a DSS must have. We retained the following three requirements that we

believe are applicable to our envisioned CNSS:

o A DSS is used to analyze a problem, determine alternative solutions, and select

one;

o A DSS often requires user involvement in the constmction of the problem

representation;

o A DSS must be user friendly.

A Negotiation Support System (NSS) on the other hand is a software system

consisting of two components [LK99]: (1) a Decision Support Component, and (2) a

Communication Component. The first component enhances the information

processing capabilities of the negotiators. It can, for instance, provide a quantitative

evaluation of offers, show a graphical representation of the negotiation, maintain a

history of the negotiation, etc. The second component facilitates the exchange of

u

http://www.moai.com
25 Taken from [NBB+02]

57

0 offers and arguments between the negotiating parties. The decision support and the

communication components are both important to our vision of a CNSS.

According to Beam et al. [BSS96], NSSs are specially geared towards helping human

negotiators making better decisions and negotiating more productively, and are a step

towards automated negotiation. The authors go on saying: while NSS are quite

powerful tools, they are far from able to support automated negotiations on their own.

NSS require near-constant human input, and both the initial problem setup and all

final decisions are left to the human negotiators. Our envisioned CNSS is not aimed

at replacing the user, but it is rather meant to support her while keeping her involved

in the negotiation process, regardless of the degree of automation it provides.

We agree that support should be the main functionality of a Negotiation Support

System, however, we see automation as an important additional functionality that

such systems should provide for the users.

The need for decision support for e-marketplaces can be extended to other phases of

an e-commerce transaction. According to Keskinocak and Tayur [KT01], companies

will need decision support in at least two areas: (1) identifying potential matches, and

(2) deciding on which subset of the potential matches to execute. In our case, in

addition to supporting the consumer in the negotiation process, the envisioned CNSS

is meant to support her in identifying the items that respond better to her needs, and

in identifying the providers of these items (i.e., the product and merchant brokering

phases in the CBB model - see Chapter 1).

Through our envisioned solution, we bring NSS, software agents and Internet

technologies to the negotiation process. The benefits, as reported by Kersten et al.

[KL01], can be summarized as follows:

o NSS are designed to help and advise negotiators; they are used to structure and

analyze the problem, elicit preferences and use them to constmct a utility.

function, determine feasible and efficient alternatives, visualize different aspects

of the problem and the process, and facilitate communication.

u

58

0 o Software agents automate mundane operations.

o Internet technologies reduce costs of both auctions and negotiations, and

introduce new tools to access, conduct and analyze these processes.

2.2.2 WorkHow Management26

2.2.2.1 Introduction

Complex tasks, oftentimes occurring in heterogeneous environments, require a certain

stmcture (modeling) in order to facilitate their management as well as the automation

of their execution. Because of its immense promise, workflow technology was

introduced to deal with this kind of tasks. The Workflow Management Coalition

(WfMC) proposes the following definition of workHows, which is widely used

within the literature: "a workflow is the automation of a business process - defined as

a set of one or more linked activities, which collectively realize a business objective,

in whole or in part, during which documents, infonnation or tasks are passed from

one participant to another for action, according to a set of procedural mles" [WfM99].

Simply put, workflow technology aims to provide as much computer support as

possible to the modeling, execution, supervision, and possibly reengineering of

business processes [CHR+98, JB96]. Some examples of such processes 3 are: the

processing of an insurance claim, the processing of a purchase order, the processing

of customer support, etc.

A Workflow Management System (WfMS), on the other hand, is a piece of software

that manages the workflow efficiently by tracking and controlling its execution. It

provides support in three broad functional areas: (1) workflow definition (capturing

the definition of the business process); (2) workflow execution (managing the

execution of the workflow processes in an operational environment, sequencing the

u

26Basedon[BBK01]
27 http://www.wfmc.org

59

0 various activities to be performed) and; (3) workflow monitoring (monitoring the

status of workflow processes).

2.2.2.2 Workflows and E-commerce

Workflow management is an active area of research, and its application to e-

negotiations is novel. Muth et al., for instance, argue that workflow management is

one of the enabling technologies in e-commerce, and that it should play a role in

providing a highly dependable infrastructure for e-commerce [MWW98]. The authors

see an e-commerce process as a three-phase scenario: the pre-sales phase, the sales

phase, and the post-sales phase. In the first phase, the consumer performs a set of

unstructured activities such as collecting information about the items she wants to

purchase. In the second phase, the consumer requests sales offers, makes a decision,

and places an order. In this phase, it is possible for the consumer to engage in a

negotiation with the provider, using a well-defined protocol to be followed by both

parties. Obviously, the execution of this protocol has to be highly dependable. The

third phase consists of auxiliary activities either related to the purchased product or to

the general relationship between the two parties. The whole three-phase e-commerce

process can benefit from workflow technology. Capturing (i.e., modeling) the whole

process or parts of it, for instance, will ensure more dependability.

2.2.2.3 Modeling CNs as Workflows

We aim to provide a CNSS to support the consumer in conducting the CN. The

system should provide the means for modeling the CN by specifying the sequencing

of the individual negotiations and the dependencies between them. Modeling the CN

is a first step towards tackling its complexity, and towards ensuring that it will be

conducted according to a well thought plan. We call this the modeling phase (or the

build-time phase). The support tool will then be used to run the CN by enacting the

model. We call this the enactment phase (or the run-time phase).

Reviewing the literature, we observe that special attention is dedicated to the

techniques for scheduling, managing, and interfacing workflows to applications. Few

u

60

0 works, however, address the conceptual modeling of workflows [CK092, BBOO,

LS97].

It is clear that, as workflow technology attempts to expand its applications, modeling

issues are becoming more and more important. So what are the benefits of modeling

in general, and modeling the CN in particular? A model is an abstract representation

of the reality that excludes much of the world's infinite detail. According to Curtis et

al., a model reduces the complexity of understanding or interacting with a

phenomenon by eliminating the detail that does not influence its relevant behavior

[CK092]. However, many essential forms of information discussed in [CK092],

must be kept to adequately describe a model. Among these forms are "what is going

to be done," "who is going to do it," "when and where will it be done," "how and

why will it be done," and "who is depending on its being done." Modeling languages

differ in the extent to which their constructs highlight the infonnation that answers

these questions. They usually present at least one perspective related to these

questions. Curtis et al. suggest four common perspectives for modeling [CK092]: (1)

functional (the "what" question); (2) behavioral (the "when and how" questions); (3)

organizational (the "where and by whom (which agents)" questions); and (4)

informational (the structure of entities, and the relationships among them) modeling.

Five main objectives for models, which range from comprehensibility to enactability,

were discussed in [CK092]: (1) facilitation of human understanding and

communication; (2) supporting process improvement; (3) supporting process

management; (4) automating process guidance; and (5) automating execution.

To the extent that automation is involved, process representation becomes a vital

issue in redesigning work and allocating responsibilities between humans and

computers. This requirement reflects the growing use of distributed, networked

systems to link the interacting agents responsible for executing a business process

[CK092].

A combined negotiation is indeed a complex process since it involves many agents,

each one conducting an individual negotiation on a distant server while cooperating

u

61

0 with other agents in solving a common problem: "the consumer wants the whole

package or nothing at the best price possible." Modeling a CN gives a visual

representation, which is easily understandable by humans, and identifies and

formalizes all the necessary items of the CN. This may be helpful in a prospective

evolution or modification of the current negotiation items, their sequencing and the

dependencies between them. Modeling the CN also incites to reason about its

variables and attributes (such as the prices, dates, etc.). It may for instance specify

some forecasting (such as "what will be the new reserve-price based on the outcome

of the negotiations that are already done"). Monitoring, managing, and coordinating

the CN are also objectives of the modeling process.

2.2.2.4 WfMS and Software Agents

Some applications are workflow-enabled and can be invoked indirectly by the

workflow engine [HH99]. However, other applications are not compatible with the

standardized workflow interface. Their integration into the business process is

possible via an actor agent. The later takes the role of an actor, which is defined in the

context of a WfMS, as being a resource that performs a task. It is invoked by a

workflow engine, and enables indirect interaction of this engine and the application in

question. At this prospect, the agents within CONSENSUS are first instantiated

before being invoked by the workflow engine. An indirect interaction between the

workflow engine and the negotiation servers is observed in that case.

2.2.3 Coordination in Multi-Agent Systems

2.2.3.1 Introduction

In this section, we examine the coordination problem in a Multi-Agent System

(MAS). We briefly describe the existing coordination techniques and review the

solutions implemented by some related projects.

When adopting an agent-oriented view of computation, it is readily apparent that

most problems require or involve multiple agents [JFL+01]. The interaction between

agents can vary from simple information interchanges, to requests for particular

u

62

0 actions to be performed, and on to cooperation (working together to achieve a

common objective) and coordination (arranging for related activities to be performed

in a coherent manner) [JFL+01]. Coordination is a central issue in software agent

systems and, more generally, in distributed artificial intelligence (DAI). Multiple

agents need to be coordinated for the following reasons [NGL96]: preventing anarchy

and chaos; meeting global constraints; distributing expertise, resources or

information; dealing with dependencies between agents; and ensuring efficiency

[NGL96]. Nwana et al. identify the following four coordination techniques:

o Organizational structuring: an agent's responsibilities, capabilities, connectivity

and control flow are defined by the organization. This technique can be

implemented in two ways: (1) a master/slave approach where a master agent

distributes work to the slave agents, (2) a blackboard approach where the agents

post and read from a general blackboard. This approach is suitable if the tasks

have already been assigned, a priori, to the agents. There may or may not be a

need for a master agent in this case. Coordination can occur between peer agents.

o Contracting: agents can assume two roles. A manager who breaks a problem into

sub-problems and searches for contractors to do them, as well as to monitor the

problem's overall solution, and a contractor who does the sub-work.

o Mulîi-agent planning: agents build a multi-agent plan that details all the future

actions and interactions required to achieve their goals. The solution can be

centralized, with a coordinating agent that analyzes the other agents' plans and

checks them for possible inconsistencies. The solution can also be distributed, and

in this case each agent is provided with a model of the other agents' plan. Agents

communicate in order to build and update their individual plans and their models

of others' until all conflicts are removed.

o Negotiation: coordination can be seen as a negotiation problem. It can be defined

as the communication process of a group of agents in order to reach a mutually

accepted agreement on some matter.

u

63

n 2.2.3.1 Related Projects

One system that addresses the coordination problem is the Biddingbot of Carnegie

Mellon University [IFS+00]. The Biddingbot is a multi-agent system that supports

users in attending, monitoring, and bidding in multiple auctions. To predict a market

price of an item, agents simultaneously monitor prices of the item in several auction

sites. The Biddingbot MAS consists of one leader agent and several bidder agents.

Each bidder agent is assigned to an auction site. Bidder agents cooperatively gather

information, monitor, and bid in the multiple sites simultaneously. The leader agent

facilitates cooperation among bidder agents as a matchmaker, sends user requests to

the bidder agents, and presents bidding infonnation to the user. A five-step

cooperation protocol is used between the agents. For details see [HÎS+00].

Another system, designed by Priest et al. at the HP Laboratory in Bristol, England,

takes a totally different approach. Instead of using a MAS, they simply use a single

agent [PriOOj. The agent aims to purchase one or more identical goods on behalf of its

user. For that, it participates in many auctions for that good, and coordinates bids

across them to hold the lowest bids. As auctions progress and it is outbid, it may bid

in the same auction or choose to place a bid in a different auction. The algorithm used

by the agent consists of two parts. First, it has a coordination component, which

ensures it has the lowest leading bids possible to purchase the appropriate number of

goods. Second, it has a belief-based learning and utility analysis component, to

determine if it should deliberately lose an auction in the hope of doing better in

another auction later.

Not directly related to e-negotiation research, but highly relevant in the way it deals

with coordination in MAS is the ARCHON (Architecture for Cooperative

Heterogeneous ON-line systems) project [BCL96]. ARCHON is a European DAI

project started in the early 1990's. It focused on a general-purpose architecture,

software framework, and methodology for supporting real world DAI. The agents in

ARCHON are divided into two layers: an ARCHON Layer and an application

program. The former encapsulates generic knowledge about cooperative interaction,

u

64

n which is domain independent and encoded in terms of production rules. The latter is a

special problem solving application, which performs the problem solving process.

Reusable, generic cooperation know-how is encoded in an ARCHON layer by

production rules of the form:

Rule-1
If an agent has generated a piece of information i

and it believes that i is of use to an acquaintance
then send i to that acquaintance

Rule-2
If an agent has a skill to perform and is not able to perform it
then locally seek assistance from another agent

ARCHON is important in making a separation between generic knowledge about

cooperative interaction and application knowledge. Thus, its approach enables

generic cooperation features to be reused for other applications.

In CONSENSUS, we adopt a similar approach for representing and managing the

coordination of our software agents.

2.2.4 Rule-based Negotiation Strategies

In this section, we discuss two related approaches that inspired us in choosing a

representation mechanism for negotiation storategies.

The first one is the work of Grosof et al. at the IBM laboratories [Gro97]. The

research is concerned with the negotiation phase of contracting, and more

specifically, with the representation of business mles in contracts. It relies on the fact

that many contract terms involve conditional relationships, and can conveniently be

expressed as rules, often called business rules. Some examples of such rules are

[GLC99]:

Rule A "If buyer returns the purchased good for any reason, within 30 days, then the
purchase amount, minus a 10% restocking fee, will be refunded."

Rule B "If buyer returns the purchased good because it is defective, within 1 year,
then the full purchase amount will be refunded."

Priority Rule "If both rules A and B apply, then Rule B wins."

The aim of the research is to design a shared language with which agents can reach a

common understanding of rules in contracts, such that the rules are relatively easily

modifiable, communicable, and executable by the agents [GLC99]. To that end,

u

65

0 several approaches for representing business rules are identified: (1) if-then code

constructs within an imperative language such as C++ or Java, (2) declarative

languages such as Prolog, (3) SQL views, (4) event-condition-action rules / "active

rules" / "triggers", (5) production rules, and (6) Knowledge Interchange Format

(KIF). A more detailed description and an evaluation of these approaches can be

found in [GLC99].None of the approaches cited above satisfies completely the

requirements stated by Grosof et al., and so, a new approach called Courteous Logic

was devised. It is an extension of ordinary logic achieved by adding the possibility to

express prioritized conflict handling as rules. For a complete description of Courteous

Logic, see [Gro97]. An example of a rule taken from [RGW+99a] gives an idea of the

syntax used: "A buyer can modify the departure time up until 14 days before

scheduled departure if the buyer is a preferred customer' is coded in Courteous

Logic as follows:

<leadTimeRule1>

modificationNotice(?Buyer, ?Seller, ?Flight, 14days) <-

PreferedCustomerOf(?Buyer, ?Seller).

The "<—" indicates "if and the "?" prefix indicates a logical variable.

The second approach is the work of Su et al. at the University of Florida. Contrary to

some existing approaches in which negotiation strategies are hardcoded in negotiation

agent programs, they use a high-level rule specification language and GUI tools to

allow human negotiation experts to dynamically add and change negotiation rules at

run-time [SHHOO]. Each strategy is expressed in tenus of an Event-Trigger-Rule

(ETR), which specifies the condition to be checked and the actions to be taken by the

negotiation server. Rules are activated upon the occurrence of specific events during

the negotiation process. Instead of a rule engine, they use an ETR server [LS98]. The

server manages events and triggers rules that are relevant to the posted event.

Consider the following example taken from [SHHOO].

The rule: "If deliver_day is out of range, check the lower bound of the constraint for

attribute deliver_day. If the lower bound is still greater than 10 (i.e., the bottom line),

u

66

0 shorten the delivery time by two days. Otherwise, the constraint is considered

unResolvable and human intervention is required" is coded as an ETR as follows:

TriggerEvent

SupplierComputer_Systemdelivery_day
SR1:

Condition: getLowBound("delivery_day") > 10
Action: downLowBound("delivery_day", 2);
Alternative: unResolvable("delivery_day cannot be satisfied");

Rules have two main advantages over other software specification approaches and

programming languages. First, they are at a relatively high level of abstraction, and

are closer to human understandability, especially by business domain experts who are

typically non-programmers. Second, rules are relatively easy to modify dynamically

[RGW+99a]. It is widely recognized in modem software design that a vital aspect of

modifiability is modularity and locality in revision. New behavior can be specified by

simply adding rules, without needing to modify the previous ones. Furthennore, rules

can be augmented with procedural attachments so that they have an effect beyond

pure-belief inferencing. Procedural attachments are the association of procedure calls

with belief expressions (e.g., the association of a Java method) [GLC99].

u

0

CHAPTER 3

DESCRIPTION OF NEGOTIATION PROTOCOLS

Preface

A basic finding of negotiation sciences is that there is not a single negotiation

protocol for all possible negotiation situations; therefore different negotiation

protocols are appropriate in different situations [BicOO]. The diversity of negotiation

protocols (i.e., types, styles) evidently calls for a clear description of the rules that

govern them. The participants in the negotiation process need to know the rules

before engaging in a negotiation, and to this end, in an automated environment a

mechanism is needed which allows for the rules to be serialized and visualized.

Furthermore, this formal description should be executable, in order for the negotiation

designer to simulate the negotiation process and to investigate its compliance with the

underlying requirements.

In this chapter, we first discuss a list of requirements for a formalism that is

appropriate for capturing negotiation processes. Second, we review five major

techniques and formalisms for describing such processes. Third, we evaluate these

formalisms according to our requirements and summarize our findings.

The evaluation led us to suggest UML statecharts as the best choice for representing

negotiation protocols. They have a good formal basis and can be serialized,

visualized, and executed. They are also well established, are easy to understand, are

complete, and can be converted into other formalisms. Therefore, they enable the

designer of negotiation protocols to understand, implement and test different

negotiation types more thoroughly before making them available for general use

(with or without software support).

u

68

0 The architecture of CONSENSUS (see Chapter 4) also relies on statechart

descriptions of negotiation protocols to automatically instantiate the software agents

that participate in the corresponding negotiations. Furthermore, the design of GNP

(see Chapter 5) calls for leveraging the formal descriptions of negotiation rules to

provide a repository of negotiation process descriptions. These negotiation processes

could be described using statecharts, and the actual scripts that implement the

negotiation (i.e., its economic rules) could be automatically generated from a

statechart description, thus making GNP even more generic.

This study helped us understand the different negotiation types, and identify their

common features. The UML statechart description enabled us to implement and test

various auction (auctions are special cases of negotiations) protocols on GNP before

using them as nodes in combined negotiations. In the context on CONSENSUS, we

call "node" a negotiation where one single item of the package is negotiated.

The remainder of this chapter is a modified version of the following publication:

An Evaluation of Fonnalisms for Negotiations in E-Commerce, by Morad Benyoucef

and Rudolf K. Keller. In Proceedings of the Workshop on Distributed Communities

on the Web, pages 45-54, Quebec City, QC, Canada, June 2000. Springer. LNCS

1830.

u

69

0 An Evaluation of Formalisms for Negotiations in E-

Commerce

Abstract. The diversity of negotiation types in e-coinmerce calls for a clear

description of the rules that govern them. The participant has to know the rules before

engaging in a negotiation, and to this end, a fomialism is needed which allows for the

serialization and visualization of the mles. Furthennore, this fomial description

should be executable, in order to simulate the negotiation process and investigate its

compliance with the underlying requirements. As a consequence of such

formalization, the negotiation process and the software supporting it may be

separated. This paper discusses the requirements for a formalism that is appropriate

for capturing negotiation processes. It then presents five major techniques and

formalisms for describing such processes and evaluates them according to the

requirements. The paper concludes that the Statechart fonnalism is most suitable for

the negotiation types considered.

3.1 Introduction

According to the Object Management Group (OMG) and CommerceNet whitepaper

on electronic commerce (e-commerce) [ECD97], commerce is at its heart an

exchange of infonnation. To obtain something of value from someone else you need

to: (1) find a person who has what you want and communicate your desire, (2)

negotiate the terms of a deal, and (3) carry out the deal. Each of these activities

involves an exchange of information. Negotiation can be defined as "mechanisms that

allow a recursive interaction between a principal and a respondent in the resolution of

a good deal" [OMG99]. The principal and the respondent are usually a consumer and

a supplier. In general, they need to negotiate the price, the delivery date, the

conditions of the purchase, the terms of the guarantee, etc. If the negotiation is carried

out automatically or semi-automatically, we talk of electronic negotiation (e-

negotiation).

u

70

0 The diversity of negotiation types calls for a clear description of the rules that govern

them. The participant has to know the rules before engaging in a negotiation, and to

this end, a formalism is needed which allows for the serialization and visualization of

the rules. Furthermore, this formal description should be executable, in order to

simulate the negotiation process and investigate its compliance with the underlying

requirements. Note that "negotiation rules" denote the rules governing the

negotiation, whereas "negotiation strategy" describes the rules used by an individual

participant during the negotiation in order to make the best out of her participation.

Our research focuses on combined negotiations, and we are currently studying

concepts and architectures to support them [BKOOc]. We will rely on formal

descriptions of negotiation rules to describe, understand, and test the different

negotiation types that make up a combined negotiation. We propose a tool called

Combined Negotiation Support System (CNSS). Its architecture is based on

workflow technology, negotiating software agents, and decision support systems. A

workflow that models a combined negotiation will be constructed to reflect the

constraints and dependencies that exist among the individual negotiations. Software

agents will be instantiated and assigned to the individual negotiations. They will be

actors in the workflow, and the user can monitor them via the administration tool of a

workflow management system. The CNSS will be similar to a decision support

system, by supporting the user in controlling and tracking the progress of the

combined negotiation [BKOOc].

This work is being conducted as part of the TEM (Towards Electronic Marketplaces)

project. The project addresses market design issues in respect to resource allocation

and control and reward mechanisms, investigates open protocols for electronic

marketplaces, and explores concepts and tools for e-negotiations. As a common

infrastructure of TEM, we are developing a generic negotiation platform (GNP)

[BKL+00]. GNP is meant to support various types of negotiations. The GNP

architecture assumes that the different negotiation types are described in a uniform

u

71

0 and formal way, and that the descriptions can be serialized for exchange in the e-

marketplace.

The contributions of this paper are threefold. First, we discuss a list of requirements

for a formalism that is appropriate for capturing negotiation processes. Second, we

review five major techniques and formalisms for describing such processes. Third, we

evaluate these formalisms according to our requirements and summarize our findings

in tabular form.

Section 2 of the paper briefly introduces the concept of negotiation. Sections 3, 4, and

5 present the three main contributions of the paper. Finally, a short conclusion is

given in Section 6.

3.2 Negotiations

"Negotiating takes place when, based on offers made in the information phase, an

agreement cannot be reached or the agreement has potential for optimization and the

parties intending to carry out the transaction want to discuss their offers" [Str99]. The

information phase is the period that precedes the negotiation and during which the

participant gathers information about products, market participants, etc.

A considerable research effort is being dedicated to the subject of negotiations

[KF98a, KF98b, WWW98a, LG99, BS97, BSS96, MGM99, Tur97, WW98]. As

described by Kumar and Feldman [KF98a, KF98b], the simplest form of negotiation

is no negotiation at all (also called fixed-price sale) where the seller offers her goods

or services through a catalogue at take-it-or-leave-it non-negotiable prices. Auctions

are one simple form of negotiation and are at present the most visible type of e-

negotiations on the Internet. Negotiations can take a more complex form called

bargaining. It involves making proposals and counter-proposals until an agreement is

reached or until the negotiation is aborted [SHHOO]. The OMG considers bargaining

as a bilatéral or multi-lateral negotiation depending on whether there are two parties

(one-to-one bargaining) or many parties (many-to-many bargaining) involved in the

negotiation [OMG99]. Negotiations are further classified as distributive or integrative

u

72

n [Str99]. In distributive negotiations, only one attribute is negotiable (usually the

price). The parties have opposing interests, that is, one party tries to minimize (e.g.,

the buyer) and the other party tries to maximize (e.g., the seller) the price. In

integrative negotiations, multiple attributes of the item are negotiable. Furthermore,

combinatory negotiations [San99b] are a form of negotiation that involves making

bids on combinations of goods or services, and one of the main challenges is for the

auctioneer to determine the winning bid. In a combined negotiation, finally, the user

engages in many negotiations for different goods or services. The different

negotiations are independent from each other, whereas the goods and services are

typically interdependent. A more detailed and complete description of negotiation

types can be found in [BenOOj.

3.3 Requirements for Negotiation Formalism

Before we discuss formalisms and techniques for describing the variety of negotiation

types presented in the above section, we need to define the criteria we will use in

evaluating these approaches. We have come up with a non-exhaustive list of eight

interdependent criteria.

3.3.1 Formal Basis

If we are to make buying and selling decisions based on automated negotiations, then

it is important that we have high confidence in the software involved in this activity.

Cass et al. [CLL+99] suggest that an automated negotiation must have four necessary

properties. It must be: (1) Correct: an automated negotiation must not contain errors

such as deadlocks or incorrect handling of exceptions; (2) Reasonable: it must allow

adequate time for bids to be made; (3) Robust: it should continue to function properly

after an improper action by the user; and (4) Fast: it has to execute and respond

quickly. We believe that there should be a fifth property. An automated negotiation

must also be traceable. In order to be trusted, the software must be able to justify its

actions to the user if necessary. This may be done by tracing the execution and by

showing the decisions taken together with their rationale. In order to achieve these

five properties, we need to fonnally describe negotiation processes. We agree with

u

73

0 Cass et al. [CLL+99] that "a notation with well-defined, well-formed semantics can

facilitate verification of desirable properties". Formalization will enable us to separate

the process of negotiation from the other parts of the software. We believe that the

rules governing the negotiation should not be hardcoded. The software tool

supporting the negotiation should be able to pick one type (style) of negotiation from

a repository and use it. This will lead to efficient implementation and easy testing

and, last but not least, will encourage reuse. We can actually benefit from the fact that

negotiation processes contain parts that are common to all of them.

3.3.2 Serialization

Negotiation rules should be known to the participant (human, software agent, proxy

negotiation server, etc.) and to anyone who wants to consult them before engaging in

the negotiation. Their rendering should be intuitive and flexible in order to cope with

various audiences. We believe that the rules are as important as, or perhaps even

more, than the other infonnation describing the good or service that is the object of

the negotiation. We agree with Wurman et al. [WWW98a] that "implementing

auction mechanisms in a larger context will require tools to aid agents in finding

appropriate auctions, inform them about auction rules, and perform many other

market facilitation functions". It should therefore be possible to serialize the

negotiation rules and transfer them over the network.

3.3.3 Visualization

Visualization (graphical if possible) is important to the user of the negotiation tool

because humans are known to understand visual infonnation better than textual

information. Furthermore, animation possibilities can make the execution (if

supported) more attractive and easier to follow by the user. The developer of the

negotiation tool should also be able to visualize and eventually animate the

negotiation rules, for instance for prototyping and testing purposes.

u

74

0 3.3.4 Executability

If the fonnalism chosen to describe the negotiation rules is executable, the negotiation

process can be simulated. Simulation may support the verification of the formal

description in respect to correctness, consistency, completeness, absence of

deadlocks, and alike. Furthermore, it will help analyzing and validating the

description against the underlying requirements.

3.3.5 Other Criteria

A good description approach should be well established for at least two reasons: first,

it will already have passed the test of time, and, second, software tools supporting the

approach may be available. Moreover, it should be easy to understand. This criterion

is important for the person who consults the negotiation rules before engaging in it.

This consultation should be effortless and quick. If it is not, the user might dislike the

negotiation tool, or even worse, she might use it without really understanding it. The

description must also be complete. The formalism chosen to describe the negotiation

rules should allow for capturing all the details of the negotiation type at hand.

Otherwise, we would have to complement the description using natural language or

another fonnalism. Finally, we believe that it should be possible to automatically

convert the description to other existing fonnalisms. This criterion suggests the

smooth transfer of the description to platforms supporting other fonnalisms.

3.4 Candidate Formalisms

We have identified five major description techniques and formalisms for negotiations.

They are described below.

3.4.1 Natural Language

Bidding is a popular form of negotiation. Among the many definitions we found the

following one [SHHOO]: "bidding is when the consumer specifies what she wants and

the suppliers make their bids. Based on their bids, the consumer selects a supplier

from whom to order the good or service". This definition is correct, but it can be

confusing if we compare it to an alternative definition of the same temi. In fact, it is

u

75

n widely known that "bidding" means "proposing a price on an item, and committing to

take the item for that price if the seller agrees, or, in the case of an auction, if there

are no higher bids than the proposed price". We can see that the use of natural

language leaves the door open to dangerous ambiguities. It is this and other examples

that call for a fonnal description of negotiation processes.

3.4.2 Agent Coordination Language

Little-JIL is an agent co-ordination language realized at the University of

Massachusetts at Amherst. Programs written in Little-JIL describe the coordination

and communication among agents, which enables them to execute the process in

question [Wis98]. It is a graphical language in which processes are broken down into

steps. The steps are connected to each other by edges that represent control flow and

data flow. Each step is assigned to an agent to execute. A program in Little-JIL has a

root that represents the entire process, and the root itself is decomposed as necessary

into steps. Visually, a step is a rectangle with many tags associated to it (the name of

the step, the resources necessary to execute it, the parameters, the exceptions that the

step might raise, etc.).

Little-JIL was used to describe a set of negotiation processes [CLL+99]. The

resulting programs define the coordination and communication between agents

involved in the negotiation. An agent might be a seller or a buyer, and each agent is

assigned a number of steps to perform. Describing a negotiation process in terms of

steps and edges between them simplifies reasoning by following the flow of control

and the flow of data in the tree of steps. Since a negotiation typically involves

multiple participants, it is convenient to model it using Little-JIL by decomposing it

into steps to be carried out by the participants and by providing coordination and

communication between them.

A sealed-bid auction and an open-cry auction are described in [CLL+99] using this

mechanism. The authors claim the following benefits from using Little-JIL: ease of

understanding, the possibility to compare negotiation processes, to analyze them, to

separate the process of negotiation from the application, and to execute a negotiation

u

76

0 process. The ease of understanding is not as evident as the authors claim. The

notations are quite exotic and the bigger the process gets, the harder it is to

understand what it does. We do not know if a description using this formalism can be

serialized or converted to other formalisms, but we do know that it is complete.

3.4.3 Finite State Machines

Kumar and Feldman [KF98a] use Finite State Machines (FSMs) to model a

negotiation. The states of the FSM are the states of the negotiation, and its input

alphabet is the set of messages sent by the participants. A message is expressed as a

pair <p , m > where p is the sender of the message and m is the message sent out.

The output alphabet of the FSM is the set of messages sent to the participants. These

messages are expressed as pairs « p , m » where p is the subset of all the

participants that will receive the message and m is the message itself. The process

flow of the negotiation maps into the transitions of the FSM. The messages make the

negotiation go from one state to another. Figure 3.1 gives a description of an English

auction using this notation. The four states of Figure 3.1 can be found in the FSMs

describing most of the other types of negotiations. This suggests that a great deal of

coimnon features can be isolated using the FSM description.

<SeIler, Offer to sell>

Deal
Template

Offer) <Buyer,Bid>

<Seller, Auction close>

«Buyers, Best Bid»

Negotiation
Aborted Deal

Figure 3.1: Finite State Machine description of an English auction [KF98a].

A FSM description alone is not sufficient to fully capture a negotiation process. It has

to be complemented in order to answer the following questions: (1) what infonnation

u

77

n should be made available to the participants and what should be hidden, (2) what is

the minimum starting bid, (3) what are the rules for closing the auction, etc.

In another study, Su et al. [SHHOO] use a FSM to model bilatéral bargaining. Here

again, the states are the states of the negotiation and the transitions between states are

labeled with "send" and "receive" primitives (e.g., send a call for proposal, receive an

acceptance, etc.). The result looks similar to Kumar's and Feldman's FSMs, but the

diagram produced is more complex and uses numerous states. According to Cass et

al. [CLL+99], FSMs are used mainly to classify negotiations. They describe how the

state of the negotiation changes in response to events; yet fail to describe the order of

these events. This notation is purely a modeling notation and is not directly

executable.

3.4.4 Statecharts

The FSM formalism alone cannot evidently capture a complete negotiation process.

We propose to extend it by using Statechart diagrams [HG96] as adopted by the UML

[RJB99]. Statecharts are well-established, widely used, and are semantically rich

enough to fonnally describe and visualize various kinds of processes. As a further

important feature, Statechart diagrams can be serialized in XMI [XMI98]. Finally,

off-the-shelf simulation and analysis tools are available for Statecharts, such as

Stalemate [HLN+90], which will help to validate and render the descriptions being

investigated. Below, we first discuss the OMG Negotiation Facility, which relies on a

restricted form of Statecharts. Then, we present the fine-grained formalization which

makes full use of the expressive power of Statecharts and which we adopted for our

work.

3.4.4.1 The OMG Negotiation Facility

We present a proposal made by OSM [OMG99] in response to the RFP for a

Negotiation Facility issued by the OMG. The proposal contains three negotiation

models described using three Statechart diagrams, respectively. The three models aim

to cover all the negotiable aspects of an e-commerce transaction and introduce two

u

0

78

new concepts: (l) negotiation through the introduction of motions, looking for

consensus through voting, and (2) dealing with what comes after a deal is reached.

For our work, only the bilateral negotiation model is relevant. It is defined as a

collaborative process dealing with interactions between two participants (see Figure

3.2).

0
request

^

0 Q
offer!

propose

^U]iggest j \|/
Nk

^
offer

requested | propose
-^

offered

M/

~^: request

proposed

open

agree

reject
< agreed]
^. rejected]

timeout

< timeout]
negotiable

closed

Figure 3.2: The OMG Bilateral Negotiation Model [OMG99].

The proposal considers a negotiation as a "give-and-take" process where two (or

more) parties try to make concessions until they reach a deal. The OSM models are

not well suited for describing auctions as they are intended to be generic at the cost of

being precise. In a bidding situation, a bid can be thought of as an offer because it

represents an engagement by the bidder to be honored if her bid is a winner. The

OSM models, however, are based on the idea that a proposition is to be discussed

until it becomes an offer, and then it can be agreed upon or not. Finally, since the

OSM models are designed to capture all major negotiation types, the corresponding

diagrams are hard to understand. Note that the models do not make full use of the

Statechart formalism, in that, for instance, neither guard conditions nor actions appear

in the diagrams.

3.4.4.2 Fine-grained Formalization

We propose to use the full expressive power of Statecharts, in particular the Event-

Condition-Action strings provided for specifying transitions. We also suggest

u

79

n

u

ti-

describing each negotiation type separately. Figure 3.3 shows our Statechart

description of an English auction. The main states are "Taking bids" and "Auction

closed". When the auction is closed, it goes to the "Clearing" state where the

auctioneer has to determine if there is a deal or not. The two possible final states are

"Deal" and "No Deal". In the first case the seller and the buyer are notified. In the

second case only the seller is notified. The transitions are labeled with the string

event[guard-condition(s)]action(s). So far, we have used Statecharts to describe some

popular types of negotiations like the fixed-price sale, the Dutch auction, the bilateral

bargaining, etc. We feel that the formalism is powerful enough to capture entire

negotiation processes.

Offer_to_sell (sellerjd, product_description)
[Registered (seUerjd)]
/ message_to_all (product_description)

Taking bids

^s
Close_auction
[inactivity_period > Limit]
/ message_to_all("closing")

New_bid (bidder_id, amount)
[Registered (bidder_id) " amount > Highest_bid]
/ Highest_bid := amount
A winner := bidder_id
A message_to(bidder_id, acknowledge)
A message_to_all(Highest_bid)

Clearing

Noj

/ message_to (sellerjd, no_deal)

[number_of_bids > 0 A
Highest_bid >= Reserve_price]
/ message_to(seller_id, notification)
A message_to(winner, notification)

Deal

Figure 3.3: Statechart description of an English auction.

3.5 Comparison of Approaches

Table 1 summarizes our evaluation of description approaches. A + means that the

description approach verifies the corresponding criterion, a - means that it does not,

and a ? means that we could not confirm either case. The table shows that Natural

Language is the big looser and that Statecharts satisfy all of our requirements. OMG's

Negotiation Facility lacks clarity, mainly because the models try to capture all types

of negotiations in single diagrams. Furthermore, the OMG descriptions do not reach

the level of detail and completeness of the (full) Statechart approach. FSMs are

highly rated, but they do not permit a complete description of negotiation processes

n

80

and are less popular than Statecharts. Agent Coordination Languages are even less

popular and, to our knowledge, the descriptions cannot be serialized nor converted to

other formalisms. We therefore adopted Statecharts as the fonnalism for describing

negotiation rules.

Fomial

Basis

Serial-

ization

Visual-

ization
Execut-

ability
Popu-
larity

Clarity Complet
e-ness

Convert

-ibility
Natural language + +

Agent coordination language + ? + + + + ?

Finite state machines + + + + +

OMG negotiation facility + + + + + +

Statecharts + + + + + + + +

Table 3.1: Comparison of the five description approaches considered.

3.6 Conclusion

In this paper we demonstrated the need for a fonnal description of negotiation rules,

and to this end, we reviewed and evaluated five different description approaches. The

evaluation led us to suggest Statecharts as the best choice. They have a good formal

basis and can be serialized, visualized, and executed. They are also well-established, .

are easy to understand, are complete, and can be converted to other formalisms. Our

research relies on Statecharts to describe the individual negotiations that make up a

combined negotiation. This will enable us to understand, implement and test the

different negotiation types more thoroughly before using them in a combined

negotiation. So far, we have used Statecharts to describe several popular negotiation

types. Our future plans include modeling all the types described in [BenOO], and

leveraging available Statechart tools for setting up the envisioned combined

negotiation support system.

u

0

CHAPTER 4

COMBINED NEGOTIATIONS

Preface

In this chapter, we define Combined Negotiations (CNs) as a new negotiation type,

and discuss the issues and difficulties they raise. A CN involves negotiating many

interdependent items by engaging in different and independent negotiations.

We also detail the architecture of CONSENSUS, a support tool for conducting CNs.

The tool helps the user to control and monitor the progress of the negotiations,

making sure that the specified dependencies are respected, and applying user-defined

negotiation strategies. The architecture is built around the following idea: a workflow

that captures the sequencing and the control flow of the CN (CN know-how), software

agents that carry out individual negotiations (individual negotiation hzow-how),

strategy rules to help the agents decide what to do when there are many options to

choose from (negotiation strategy know how), and coordination rules to manage the

agents across several negotiations (coordination know how). An important challenge

in this research is to allocate functionalities to these four parts in an optimal way.

Finally, we describe an implementation of CONSENSUS as a proof-of-concept

prototype of the proposed architecture.

The relation of this chapter to the other chapters of the thesis is as follows: in Chapter

3, we evaluate mechanisms to describe the protocols of the negotiations that form a

CN (i.e., the CN nodes), in Chapter 5 we show how GNP implements these

negotiation protocols, and Chapter 6 complements this chapter by detailing the

handling of negotiation strategies and coordination in CONSENSUS.

It is crucial that CONSENSUS not be confused with a negotiation server. GNP is a

negotiation server but CONSENSUS is a Negotiation Support System (NSS). The

u

n

82

following NSS definition from [KL01] shall help making the distinction clear. "NSSs

are designed to help and advise negotiators; they are used to structure and analyze the

problem, elicit preferences and use them to conduct a utility function, determine

feasible and efficient alternatives, visualize different aspects of the problem and the

process, and facilitate coinmunication." Although the definition does not fully apply

to CONSENSUS, it applies partially as follows: CONSENSUS helps the user in

conducting the CN, it structures the CN problem and visualizes it as a workflow, and

it facilitates communication by automating it completely.

Our contribution to this chapter is as follows: we defined the CN model, identified

the issues it generates, recognized the need for a support tool to help the user conduct

it, designed the architecture for the support tool, prototyped and evaluated the

concepts and technologies that were part of the architecture, and supervised the

overall implementation and deployment process. The implementation of

CONSENSUS was a team effort, heavily involving Hakim Alj and Mathieu Vézeau

(co-authors of [BAV+00]) in all aspects of the prototyping, implementation,

integration, and deployment process.

In the remainder of this chapter we present a modified version of the following

publication:

Combined Negotiations in E-Commerce: Concepts and Architecture, by Morad

Benyoucef, Hakim Alj, Mathieu Vézeau, and Rudolf K. Keller. Electronic Commerce

Research Journal, 1(3):277-299, July 2001. Special issue on Theory and Application

of Electronic Market Design. Baltzer Science Publishers.

l

u

n

83

Combined Negotiations in E-Commerce: Concepts and
Architecture

Abstract. Combined Negotiations are a novel and general type of negotiation, in which the
user is interested in many goods or services and consequently engages in many negotiations
at the same time. The negotiations are independent of each other, whereas the goods or
ser/ices are typically interdependent. Using currently available technology for electronic
negotiations, the user conducts each negotiation separately, and has the burden of
coordinating and reconciling them. The inherent complexity of combined negotiations in
B2C as well as B2B e-commerce calls for software support.

In our research, we aim to devise a Combined Negotiation Support System (CNSS) to help
the user conduct all the negotiations at the same time. The CNSS enables the user to control
and monitor the progress of the negotiations, makes sure that the specified dependencies are
respected, and applies user-defined strategy mles. We have designed such a CNSS, which we
call CONSENSUS. The architecture of CONSENSUS relies on workflow technology,
negotiating software agents, and rule engine technology. The originality of this architecture
lies in the fact that the user of CONSENSUS models the combined negotiation at build time
using a workflow that captures the sequencing of the individual negotiations and the
dependencies between them. At mntime, software agents are assigned to individual
negotiations, and they participate in the combined negotiation as actors in the workflow. The
user can monitor the progress of the combined negotiation as a whole, and the progress of
individual negotiations via dedicated graphical user interfaces. We rely on mle engine
technology to enable the agents to use negotiation strategies.

The paper introduces combined negotiations with a usage scenario. Then, combined
negotiations are detailed, along with the approach taken to cope with their complexity.
Afterwards, we describe the functionality a CNSS should provide, and present the
architecture of CONSENSUS, together with a discussion of the underlying concepts and
technologies. Furthermore, we report on our prototype implementation of CONSENSUS and
illustrate it with an example. A discussion of related and future work concludes the paper.

Keywords: electronic commerce, electronic negotiation, combined negotiation, auction,
commitment, workflow, software agent, negotiation sfrategy, mle engine.

u

0

84

4.1 Introduction

Electronic negotiations (e-negotiations) are becoming an important research subject
in the area of electronic commerce (e-commerce). The AMEC laboratory of MIT
[AMEOO], for instance, puts e-negotiations at the center of its Consumer Buying
Behavior (CBB) model for e-commerce [MGM99]. The model identifies six steps in
an e-commerce transaction: (l) the need identification step in which the buyer is
stimulated through product information, (2) the product brokering step in which
information is retrieved to help the consumer determine what to buy, (3) the merchant
brokering step in which the consumer determines who to buy from, (4) the
negotiation step where the price and possibly other aspects of the deal are settled, (5)
the purchase and delivery step, and finally (6) the product and service evaluation step
where the product and service are evaluated by the consumer.

The most basic form of e-negotiation, as described by Kumar et al. [KF98b], is no
negotiation at all (also called fixed-price sale) where the seller offers her goods or
services through a catalogue at take-it-or-leave-it prices. This is the way most
electronic retailers (e-tailers) operate. Auctions are a bit more complex, and they are
at present the most visible type of e-negotiations on the Internet as conducted by
eBay [Eba02], OnSale [OnsOO], Yahoo [Yah02] and hundreds of other auction sites.
A comprehensive description of the different auction types can be found in [Ago02].
E-negotiations can take an even more complex form called bargaining. This involves
making proposals and counterproposals until an agreement is reached [San99b]. The
Object Management Group (OMG) sees bargaining as bilateral and multi-lateral
negotiation depending on whether there are two parties (one-to-one bargaining) or
many parties (many-to-many bargaining) involved in the negotiation [OMG99].
Bargaining can become challenging if the object of the negotiation has more than one
negotiable attribute (e.g., the price, the quality, the delivery date, etc.). In this case we
talk of multi-attribute negotiations. A negotiation is said to be distributive (of win-
lose nature) if a gain for one agent is necessarily a loss for the other agent [Ene02]. It
is said to be integrative (of win-win nature) if the parties do. not necessarily have

u

0

85

opposing interests, and they try to optimize different attributes. The buyer for
instance can hope to pay a small price if she can live with a poorer quality and/or can
stand a long delivery time. Combinatorial auctions [San99b] are another form of
negotiations that involve making bids on combinations of goods or services, and one
of the main challenges is for the auctioneer to detemiine the winning bid.

Jhingran [Jhi99] proposes a three-dimensional negotiation space (see Figure 4.1, solid
lines). The first dimension is for the case where multiple copies of the same item
(good or service) are available for negotiation, and the bids (i.e., offers) take the form
of pairs (quantity, price-per-unit). The second dimension addresses the case where
multiple items are subject to one negotiation. In this case, the participants make bids
on combinations of these items. The third dimension is for multiple attribute
negotiations. Jhingran's model obviously addresses only one aspect of a negotiation,
which is the item being negotiated. A more complete classification of e-negotiations
can be found in [Ene02]. The description identifies three more aspects of a
negotiation: the participants (the "people" aspect), the type of the negotiation (the
"process" aspect), and the criteria that can be used to evaluate the process (the
"evaluation criteria" aspect).

We talk of a Combined Negotiation (CN) when a consumer is interested in many
items, and consequently engages in many negotiations at the same time. The
negotiations can be of any type (fixed-price sale, Dutch auction, bilateral bargaining,
combinatorial auction, etc.). Each negotiation is for a separate bundle of copies,
items, and attributes and thus corresponds to one point in the 3D negotiation space
(see Figure 4.1, solid lines). The negotiations are in general totally independent of
each other. The goods and services of the CN, however, are typically interdependent.
To capture this new type of negotiation, where we have multiple negotiations going
on at the same time, we introduced a fourth dimension in Jhingran's model (see
Figure 4.1, dashed line).

As an example of a CN, let us take a vacation package consisting of three items: a
transportation ticket, a hotel room, and a ski trip. The three items are obviously

it.

u

86

n

u

interrelated since the consumer would have to travel to the location where the ski trip

journey initiates (or at least near it) on the date of the trip (or before it). In addition to

the places and dates, there can be other constraints and dependencies between the

three individual items, as we will see later on. Let us suppose that the three items are

negotiable (keeping in mind that a fixed-price sale is a special case of a negotiation)

and that they can be negotiated on different negotiation servers. Let us suppose also

that the negotiations practiced on each single server can be of different types. Clearly,

the individual negotiations are independent of each other. Using currently available

negotiation technology, the consumer would have to conduct each negotiation

separately, and she would have the burden of coordinating and reconciling the various

negotiations. It can happen for instance that the consumer makes a deal on a plane

ticket and a hotel room, and then, while negotiating the ski trip, finds out (through

bargaining for example) that she is missing out on a very interesting deal only

because she arrives a few hours late.

Multiple attributes

Multiple negotiations

^.
s^

SY
\

v^
•>J

Multiple items

-^- Multiple copies

Figure 4.1: The four-dimensional negotiation space.

We therefore see a pressing need for a software system that supports the user in

conducting all the negotiations at the same time, i.e., in carrying out CNs. We call

such a system a Combined Negotiation Support System (CNSS). A CNSS is a tool

that enables the user to track and monitor the progress of many negotiations

efficiently and to respect all the constraints, dependencies and preferences of the

given context. Moreover, a CNSS will support the user in taking decisions.

Before we go further, and to avoid any confusion, we shall first clarify the concept of

"negotiation server" which will be heavily used in this paper. It is possible that many

negotiations are created and conducted on one single server. These negotiations are

n

87

independent and therefore can run in parallel. An example of such a server is eBay

[Eba02]. It is also possible that a server conducts only one negotiation. This is the

case where a company makes a dedicated server available for its consumers to

negotiate a particular item. In both cases, we will use the term "negotiation server".

Another type of negotiation server accepts connections from users, takes a description

of their needs and preferences, and then negotiates on their behalf [SHHOO]. We will

call this type a "proxy negotiation server".

The work presented in this paper is part of the TEM (Towards Electronic

Marketplaces) project, a joint industty-university project started in 1999 involving

researchers from economic science, software engineering, and operations research.

The project addresses market design issues in respect to resource allocation and

control and reward mechanisms, investigates open protocols for electronic

marketplaces, and explores concepts and tools for e-negotiations. Two key tools

being investigated in TEM are the CNSS described in this paper, and a generic

negotiation server infrastructure, which we call GENESIS [BKL+00]. GENESIS is

already functional and we are using instances of it to implement the servers involved

in a CN. GENESIS is generic as it can support a great variety of negotiation types. It

also offers the possibility to the participants to negotiate via a web browser or via

software agents.

The contribution of this paper is twofold. First, we define the concept of CNs and

present the problems they generate along with the approach taken to solve them.

Second, we present an architecture for a CNSS we call CONSENSUS, which is based

on workflow technology, negotiating software agents and rule engine technology.

The originality of CONSENSUS stems from the fact that the user models her CN at

build time using a workflow. The workflow itself captures the sequencing of the

individual negotiations and the dependencies between them. At runtime, software

agents are assigned to individual negotiations and participate in the CN as actors in

the workflow. The user of CONSENSUS can brack and monitor the progress of the

CN via the Workflow Monitoring and Control Tool of a Workflow Management

l

u

88

n System (WfMS). She can also monitor the work of the agents via an Agent
Monitoring and Control Tool. The four-component model proposed by the Workflow
Management Coalition (WfMC) [Wfm02] serves as the core of our CNSS
architecture. We use Rule Engine technology to enable the agents to use negotiation
sû-ategy rules. These rules can be edited before the negotiations start and/or during
the process of the negotiations. The formal description of negotiation mles is also
investigated, as it is necessary for CONSENSUS to transfer the negotiation rules
from the corresponding negotiation servers to its Negotiation Rules Repository.

This paper is organized as follows. In Section 2, we briefly describe a CN usage
scenario. The concept of combined negotiation is detailed in Section 3, and in Section
4, we present our approach to solving the problems related to CNs. The architecture
of CONSENSUS as well as an overview of its underlying concepts are covered in
Section 5. Section 6 presents an example of a CN. Section 7 reports on the
implementation of CONSENSUS, and Section 8 discusses related work. Finally,
Section 9 concludes the paper.

4.2 Usage Scenario

Let us go back to our vacation package example. The consumer uses CONSENSUS
to register, say, in one negotiation for the hotel room, two different negotiations for
transportation, and one for the ski trip. CONSENSUS is then used to construct a
workflow that models the CN (we will see the details later on). The workflow reflects

the sequencing of the individual negotiations and the dependencies between them.
The consumer might want, for example, to run all the four negotiations in parallel, or
run all or some of them sequentially. The workflow also reflects the dependencies
between individual negotiations such as the amount of money already committed and
thus the remaining amount to be spent. After the consumer finishes modeling the CN,
four software agents are instantiated and assigned to the four different negotiations.
The agents are created according to the type of the negotiation practiced on the

(

28 Negotiation rules mean the rules (i.e., the valid actions) of the game. A participant in the negotiation
uses strategy rules to maximize her utility.

u

0

89

corresponding servers. The consumer can provide the agents with negotiation
strategies such as: "if your bid is always beaten by the same opponent then be less
aggressive in your bidding " or "if you have little chance of making a deal on the ski
trip then don't commit yourself on the other two items of the package". Note that the
first strategy applies to one individual negotiation whereas the second one applies to
the CN as a whole. The negotiation strategies can be communicated to the agents
before the negotiation starts or during the course of the negotiation. This scenario is
an example of B2C e-commerce. In case one or more items in the package are offered
by consumers (i.e., a rare ticket to a rock concert auctioned on an auction site), we
would face a C2C transaction.

CONSENSUS can also be used at the B2B level. A travel agency, for instance, can
use CONSENSUS to negotiate travel packages on behalf of its clients. The more
items there are to be negotiated and the more providers of such items there are, the
more there is a need for a support tool. We might imagine different means of
transportation (by air, by bus, etc.), different types of accommodations (hotel, motel,
pension, etc.), and different recreational activities (ski trip, camping, hiking, etc.). We
might also imagine that there are many providers of such services and that each
provider might practice a different type of negotiation. As another example at the
B2B level, consider a company that wants to import some merchandise from a
foreign country. The attributes and issues to be negotiated are: the price as well as
other attributes of the merchandise, the transportation, the insurance, the customs, etc.
These examples suggest that at the B2B level, CNs may become highly complex, and
that automated support by a CNSS is even more important.

CONSENSUS offers the possibility to find the products and their providers (steps 2
and 3 of the CBB model) along with complete information to help the user decide
which products to negotiate and where to negotiate them. The negotiation types
practiced by the corresponding servers should be known to the user as it is an
important factor in choosing one provider over another. She might for example prefer

29

u
This paper is a revised and extended version of [BKOOb].

90

n a bargaining type negotiation to an English auction if she is a good baggier. Once the
choice is made, the CN can be modeled. A high-level specification tool is provided
by CONSENSUS to specify the workflow and an English-like syntax is used to
specify the negotiation strategies. When the modeling phase is over, the CN is
launched by running an instance of the workflow, which in turn launches the software
agents. CONSENSUS provides the user with the possibility to track the individual
negotiations as well as the CN as a whole. The user can also edit negotiation
strategies at run time.

We see CONSENSUS as a support tool, where the automation provided by the
workflow engine (to run the CN) and the software agents (to run the individual
negotiations) should allow the user to intervene in the important aspects of the
negotiation whenever a need should arise. Our CNSS is not meant to replace the user,
but to provide her with a powerful tool.

4.3 Issues in Combined Negotiations

In this section, we address seven important issues related to CNs. We first define CN
failure, and then present the notions of AND-Negotiation and OR-Negotiation.
Thereafter, we discuss the negotiation types covered by a CN. Then, constraints in a
CN are explained. We then present the notion of commitment in negotiation protocols
followed by a comparison of the CN and the synchronized auction types. Finally, we
classify the infonnation involved in a CN.

4.3.1 Failure in Combined Negotiations

When we engage in a negotiation, there is no guarantee that we will end up as a
winner, and even if we do win, there is no guarantee that we will make a good deal by
paying the real value of the good (this last case is referred to as the winner's curse
meaning that the winner has possibly over-evaluated the item and ends up paying
more than the item is worth).

In a CN the risks for the user are even higher because she has to negotiate several
items that form a package. Whether the individual negotiations are conducted in

l

u

0

91

parallel or in sequence, there is always the risk that some individual negotiations will
be successful and some will not be. Since the user wants the whole package or

nothing, she might want to break (if allowed) the commitments she made in the
successful negotiations. Breaking a commitment evidently has a price. We talk of
failure (also referred to as exposure) in a CN, when we need two items A and B,

engage in negotiations on both items, and end up winning on A but loosing on B.

4.3.2 AND-Negotiation and OR-Negotiation

The package that is the object of the CN is in general made up of many items. If we

engage in many negotiations for the same item we call these OR-Negotiations. In the

case of a vacation package, for example, we can engage in more than one negotiation

for the plane ticket. Negotiations for different items that make up the package are
called AND-Negotiations. We might, for example, engage in one negotiation for the

plane ticket (possibly an OR-Negotiation), another one for the hotel room, etc.

OR-Negotiations. OR-Negotiations will usually run in parallel. This means that, in

order to save time and also to maximize the chances of a good deal, the negotiations

for one item are started at the same time. This will enable the user to see the progress

of the negotiations and choose to bid (make offers, counteroffers) in the most

promising one. We may have to ensure that no more than one commitment (bid, offer,
etc.) is made at the same time, that is, commitments must be mutually exclusive. If

we do not take this precaution, we might end up making more than one successful

deal on the same item. An alternative scenario would be to run OR-Negotiations

sequentially. Whenever one fails (the bids are too high, the negotiation ended, etc.),
we start another one for the same item.

AND-Negotiations. Here again the user has the choice of running her individual

negotiations in parallel or sequentially. Running them (or some of them) in parallel

will be more interesting for the user. She can make decisions in one negotiation based
on what is happening in the other ones. The type of the negotiation can also make it

appealing to run the AND-Negotiations in parallel, as we will see in the next
subsection.

u

0

92

4.3.3 Negotiation Types covered by a Combined Negotiation

The individual negotiations for the different items in the package can be of any type.

The consumer might engage in a bargaining type negotiation for the ski trip, an

English auction for the plane ticket, and a Dutch auction for the hotel room. Each

negotiation type evidently will require different rules and strategies. Therefore, the

CN depends on the types of the individual negotiations. If the consumer is interested
in an item that is offered in a sealed-bid auction that ends in 10 hours, she might for

example try to finalize deals on the other items in the package and use the remaining

amount of money to make a bid in the sealed-bid auction.

The fact that more than one attribute of an item is negotiable in general complicates

the dependencies among the individual negotiations. Let us go back to the vacation

package and suppose that it is made up of three items: a plane ticket (price, date,

week-day/week-end, first-class/second-class, destination, etc.), a hotel room (price,

date, type, location, etc.), and a ski trip (price, date, location, etc.). The outcome of

one negotiation will be crucial in the other ones (the date of the flight from the first

negotiation will be a necessary input to the other two negotiations).

These examples suggest that multi-attribute negotiations, possibly of different types,

make CNs flexible. Yet, such negotiations may incur complex dependencies among

the items that form the CN package and thus warrant software support.

4.3.4 Constraints in a Combined Negotiation

Let us consider a CN for three different items il, i2 and i3. The individual

negotiations are N1, N2 and N3. Suppose that the attributes for each item are the

price, the date, and the place. We classify CN constraints as intiinsic or procedural.

Intrinsic constraints: These constraints concern the dependencies between the items,

copies, and attributes of the CN. They may involve just one single individual

negotiation, such as:

price l * number-of-copies <= threshold.

u

n

93

date l in RANGE.

placel in (X, Y, Z).

Other constraints may involve more than one of the individual negotiations forming

the CN. Examples of such constraints include:

price to pay for the package <= threshold.

• date3 = function(datel, date2).

Procedural constraints: These constraints indicate the sequencing in time of the

individual negotiations and the control flow between them. Examples of such

constraints include:

Sequential: N2 is launched after N1 is finished.

Parallel: N1 and N2 are launched at the same time.

Choice: depending on a condition, either N1 is launched or N2 is launched.

Wait for: N3 waits for N1 and N2 to finish or waits for either one to finish

(we suppose that N1 and N2 both start before N3 and that N3 is aware of the

status of N 1 and N2).

Repeat: repeat N1 until a condition is met.

4.3.5 Commitment in Negotiation Protocols

A further issue of importance in CNs are commitments in negotiation protocols. It is

obvious that, given the possibility of breaking a commitment (even at a certain cost to

the user), the CN will be more flexible and the role of the CNSS even more

important. According to Sandholm and Lesser [SL95], commitment means that one

agent (human or software agent) binds itself to a potential contract while waiting for

the other agent to either accept or reject its offer. If the other party accepts, both

parties are bound to the commitment. When accepting, the second party is sure that

the contract will be made, but the first party has to commit before it is sure. As an

example, let us consider an English auction with the possibility to break a

u

0

94

commitment. If your bid is the winner (a commitment from you) and you decide to
leave the auction (break the commitment), then you will have to pay at least the
difference between your bid and the second highest bid (or be subject to another
penalty agreed upon in advance).

4.3.6 Combined Negotiations versus Synchronized Auctions

A CN bears some resemblance to a well-known auction type called the synchronized
auction, and for that reason, we would like to point out the differences and
similarities between the two. The following definition is taken from [Ene02]. In a
synchronized (also called simultaneous or parallel) auction there are n items. A
participant can make m distinct bids on m distinct items (m not greater than n). The m
bids are made simultaneously. The auction usually runs multiple rounds of sealed
bids, announcing the bids after each round. The Federal Communication Commission
(FCC) of the U.S. uses such a format to auction licenses for Personal Communication
Services (PCS). Note that a variation of the synchronized auction is the so-called
combinatorial (or bundled) auction [San99b], which allows the participant to make a
single bid for m possibly distinct items (m not greater than n).

The similarity between a CN and a synchronized auction is the fact that the user can
make many distinct bids (offers or counteroffers) on many distinct items, and that the
items might be interrelated. However, a CN may involve many different individual
auctions and/or negotiations, whereas the synchronized auction is one single auction
with a set of known rules. Moreover, a CN is not synchronized. A CN should not be
confused with a combinatorial auction either. In a CN, the user cannot make a single
bid on all the items of the package.

4.3.7 Information Involved in a Combined Negotiation

The negotiation process is an exchange of information between the participants and
the negotiation server. It "consists of a number of decision-making episodes, each of
which is characterized by evaluating an offer, determining strategies and generating a
counteroffer" [WZKOO]. In order to evaluate an offer, the participant needs all the

u

0

95

information she can get from the negotiation server. Based on that infomiation, she
can choose a negotiation strategy that helps her shape a counteroffer in response to
the offer made by the server. We define a negotiation strategy as the way in which a
human negotiator would react in her best interest in a given situation and given the
information that is available to her. Two examples of negotiation strategies in an
English auction are: "when the highest bid reaches 1000 dollars, then make a bid by
doubling your bid increment" and "if the frequency of bids is low, then be less
aggressive in your bidding." Here "the highest bid" is equivalent to the "offer"
coming from the server, and "make a bid" is equivalent to the counteroffer to be
made by the participant. How much the participant bids is decided by applying
negotiation strategies that rely on information that we classify as follows:

Internal versus external: the infonnation can be internal to the CN (the total
amount the user is willing to pay, her reserve price, etc.) or external (the
current quote or highest bid, the identity of the other participants (if
available), the profile of the other participants (if available), etc.).

Individual versus combined: it can be related to an individual negotiation (the
actual quote, the time remaining, etc.) or to the CN at large (the number of
negotiations where the consumer is leading, the total amount of money
already committed, etc.).

Static versus dynamic: it can be static (the total amount the user is willing to
pay, etc.) or dynamic (the frequency of bids, the average bid increment, etc.).

4.4 Tool Support for Combined Negotiations

We are aiming at a tool (CONSENSUS) that helps manage and possibly minimize the
risks that the consumer faces in a CN. We see the tool as a support system for the
consumer and not as a system that can replace her. Furthermore, note that
CONSENSUS is quite different in scope from Negotiation Support Systems (NSS)
[LK99]. The main idea behind these latter systems is to help the user evaluate offers
made by her opponents, and evaluate her counteroffers before she submits them to

u

n

96

her opponents. All this happens in a bargaining type negotiation. This does not
preclude, of course, the use of NSSs on top of CONSENSUS, in order to assist the
agents in their evaluation of offers and counteroffers.

The functionality of CONSENSUS can be summarized in the following four points:

• Model the CN using a workflow definition formalism to specify its intrinsic
and procedural constraints. We realize that in general there may be a need to
change both the intrinsic and the procedural CN constraints dynamically, that
is, during execution of CONSENSUS. Accordingly, CONSENSUS should
support such dynamism.

Use software agents for automation. Software agents are assigned to

individual negotiations.

Use a WfMS to coordinate, track, and monitor the work of the negotiating

software agents.

Use negotiation strategy rules to make the agents more autonomous. The user

should have the possibility to enter strategy rules and edit them at runtime.

As seen earlier, there is a CN failure when we need two items A and B, we engage in
negotiations on both items, and end up winning on A but loosing on B. We propose

the following three solutions to address CN failure:

F'rovide negotiation rules that allow the user to break a commitment. In this

case the user backs off and breaks her conimitment on item A and (eventually)
pays a price for that. This is a CN failure resolution solution.

Engage in many OR-Negotiations so that whenever we loose on item B we
engage (or resume) a negotiation on item B on another server. This, of course,
is not a guarantee against exposure. This is a CN failure prevention solution.

Use strategies to minimize the risk of exposure. An example would be: if you
notice that the competition is high on item B (and that you have little chance
of winning), then do not make a commitment on item A. Here, once more, we

l

u

0

97

see the need for coordination between individual negotiations. This is again a

CN failure prevention solution.

Finally, a commitment can be different from one negotiation type to another. In an
English auction, to bid means that you make a commitment to buy in case you stay
leader until the closure of the auction. In a Dutch auction, however, by bidding you
make a coinmitment that is binding and final. In a "bilateral bargaining" type
negotiation, offers and counteroffers are exchanged between the user and the
negotiation server until an agreement is reached or until the negotiation is aborted.

Offers become "binding" only when they are "final" (i.e., if accepted they must be
honored). CONSENSUS will take into account the different types of commitments. If
the rules of the negotiation allow for commitments to be broken, then this fact should
be reflected in the rules describing the negotiation and in the workflow that models

the CN.

4.5 Architecture of CONSENSUS and Underlying Concepts

In this section, we first describe the architecture of CONSENSUS. Then, we give a
brief overview of the concepts and technologies it is based upon, that is, the
formalism for describing negotiation rules, software agents, workflow management,
as well as negotiation strategies and rule engines.

4.5.1 The Architecture

Figure 4.2 shows the architecture of CONSENSUS. The Product/Merchant
Brokering System (responsible for phases 2 and 3 of the CBB model) is used by the
consumer to select the products and the providers she is willing to negotiate with. The
system will return a list of candidate negotiations, and the user selects the ones she is
interested in. This list is passed on to the Agent Factory. The Negotiation Rules (NR)
are then downloaded from the corresponding negotiation servers. We are using XMI

[XMI98] as a vehicle for such a transfer. The rules are stored in the NR Repository
and are used by the Agent Factory to instantiate the Agents that will be responsible

for the individual negotiations. Each agent will be instantiated according to the

u

98

0 negotiation type practiced by the negotiation server assigned to it. After they are
instantiated, the agents connect to and register on the corresponding servers. The
consumer uses the CN Specification Tool (a GUI tool) to specify the CN. A constraint
language will be used to represent, manipulate and store the constraints of the CN.
The constraints are stored in the CN Repository. Another part of the specification
deals with negotiation Strategy Rules (SR). These go into the SR Repository. When
the CN specification task is completed, the workflow modeling the CN is generated
and stored in the Workflow Repository. The consumer can use the Workflow
Definition Tool to see and debug the resulting workflow. This ends the modeling part.
At runtime, an instance of the workflow is started.

NR

Repository

w

Agent Faetory

I Negotiation 1

A A

"'l 1
Negotiation n

A

v

—-.„-> 'Agent I:

0^^

SK
Engine

SR
Repository j ^Repository

SR Processing

Pwduct/Merchant
Brokeririg System

CN SpecificaMfi
Tool

v v

Ageffl;ï Agent n <-

Workflow
Generator

WorWcyw
Engine^.

Workflow
Repository

Workfiow Processing

\1/ ^

CT

Workflow Definition
Tool

Workflow
Monitoring and
Control Tool

:Agènf Monitoring
and Control Tool

4\
-5?

Oser of f
CONSENSUS

CN Monitoring and Control

Figure 4.2: Architecture of CONSENSUS.

u

The workflow can be monitored via the Workflow Monitoring and Control Tool. The
Workflow Engine executes the workflow by dispatching work to the agents (which

0

99

are actors in the workflow) and enforces the sequencing of the activities in the
workflow. The user can monitor the work of the agents (what is specific to individual
negotiations) using the Agent Monitoring and Control Tool. Strategy rules can be
entered and/or edited at run-time. Each agent instantiates an SR Engine to make
inferences based on the rules found in the SR Repository. Note that Negotiation 1,
Negotiation 2, ... Negotiation n are the negotiations in which the agents participate.
They can be conducted on one single negotiation server or on different ones as long
as they are independent of each other.

4.5.2 Formal Description of Negotiation Rules

The transfer of the negotiation rules from the servers into the NR Repository of
CONSENSUS as well as the instantiation of the agents by the Agent Factory calls for
a formal description of these rules. We strongly believe that the rules describing the
negotiation are as important as, or perhaps even more, than the other infonnation
describing the good or service that is the object of the negotiation. For that, they
should be known to the participants (human or software) before they engage in the
negotiation. We agree with Wurman et al. [WWW98] that "implementing auction
mechanisms in a larger context will require tools to aid agents in finding appropriate
auctions, inform them about auction rules, and perform many other market facilitation
functions". Therefore there is a need for a mechanism to formally describe the rules
governing a negotiation, visualize the description when necessary, and serialize it in
order to transfer it over the network. This mechanism should also make it possible to
separate the description of the negotiation process from the other parts of the
negotiation software, for the purpose of efficiency, reuse, and ease of testing. A
review and an evaluation of the methods used to describe negotiations can be found
in [CLL+99, BKOOa].

Inspired by Kumar and Feldman's Finite State Machine approach [KF98b], we have
adopted the UML's statechart diagrams [RJB99] to describe the negotiation
processes. An important feature of statechart diagrams is the possibility to be
serialized in XML [XML98] and XMI [XMI98]. Moreover, simulation and analysis

u

0

100

tools are available for statecharts, such as Stalemate [HLN+90], which help validate
and render the descriptions being investigated. Figure 4.3 shows our statechart
description of an English auction. The main states of the English auction are "Taking
bids" and "Auction closed". When the auction is closed, it goes to the "Clearing"
state where the auctioneer has to determine if there is a deal or not. The two possible
final states are "Deal" and "No Deal." In the first case the seller and the buyer are
notified. In the second case only the seller is notified. The transitions are labeled with
the string event[guard-condition(s)]/action(s).

Offer_to_sell (sellerjd, product_description)
[Registered (sellerjd)]
/ message_to_all (product_description)

Taking bids Close_auction
[inactivity_period > Limit]
/ message_to_all("closing")'

New_bid (bidderjd, amount)
[Registered (bidderjd) " amount > Highest_bid]
/ Highest_bid := amount
A winner := bidder_id

message_to(bidder_id, acknowledge)
A message_to_all(Highest_bid)
A

-> Clearing

/ message_to (sellerjd, no_deal)

No Deal

[number_of_bids > 0 "
Highest_bid >= Reserve_priçe]

/ message_to(seller_id, notification)
A message_to(winner, notification)

Deal

Auction closed

t

Figure 4.3: Statechart diagram of an English auction.

u

4.5.3 Negotiating Software Agents
The agents in CONSENSUS are instantiated by the Agent Factory and will act as
participants in the workflow. Intelligent agents can be defined as software entities that
execute functionalities in an autonomous, proactive, social, and adaptive fashion.
These functionalities include searching, comparing, learning, negotiating, and
collaborating [Jon99]. This makes software agents particularly useful for the
information-rich and process-rich environment of e-commerce [MGM98]. They are
well suited for information filtering and retrieval, personalized evaluation, complex

0

101

coordination, and time-based interaction. This last feature is vital to e-negotiations.

The agents in CONSENSUS are autonomous and proactive, that is, they do not
require the intervention of the user as long as they are provided with strategy rules.
Furthennore, they are intelligent by making inferences using the SR Engine. Recall
that the SR Engine processes strategy rules, in order to decide, for instance, whether
or not to make an offer and on the amount of the offer. Our agents reside on the
machine that runs CONSENSUS. In contrast, the agents of the AMEC laboratory, for

instance, can be mobile, which enables them to go from site to site to negotiate deals
on behalf of their creator [CM96]. Our agents as well as those of the AMEC

laboratory are used in the negotiation step (Step 4 of the CBB model), whereas
several commercial products use agents in the preceding steps, such as Amazon
[Ama02] in the need identification step (Step l), PersonaLogic [PerOO] in the product
brokering step (Step 2), and Bargain Finder [BarOO] in the merchant brokering step
(Step 3).

Parkes et al. distinguish autonomous and semi-autonomous agents: "a fully
autonomous agent requires a complete set of preferences in order to represent the user
correctly in all situations that it might encounter," and "a semi autonomous agent will
bid on behalf of the user when it has enough knowledge to proceed, and query the
user when its best action is ill-defined given the current information" [PUF99]. A

further distinction is being made between a reservation-price agent and a progressive-
price agent. The first type is an autonomous agent that places bids up to the value of a
fixed reservation price. The second type, on the other hand, is initialized with a lower
bound and an optional upper bound on the true reservation prices of the user
[PUF99]. We intend to support in CONSENSUS semi-autonomous and fully
autonomous agents, as well as the two facets of price agents.

4.5.4 Workflow Management

The architecture of CONSENSUS is based on three WfMS modules: the Workflow
Definition Tool, the Workflow Engine, and the Wor1<flow Monitoring and Control
Tool. These modules correspond to three of the four components suggested by the

u

0

u

102

WfMC [Wfm02]: (l) The Process Definition Tool which is used to enter the

workflow into the computer, (2) theWorkflow Engine which executes and tracks the

workflow, (3) the Administration and Monitoring Tool used to administer and track

the status of the workflow, and (4) the Workflow Client Application through which

the participants interact with the workflow. We do not introduce a Client Application

component, since in our solution the participants are software agents.

We rely on workflow technology because it provides support in three broad

functional areas [Wor98]: (1) workflow definition: capturing the definition of the

business process; (2) workflow execution: managing the execution of the workflow

processes in an operational environment, sequencing the various activities to be

performed and; (3) workflow monitoring: monitoring the status of workflow

processes and dynamically configuring the runtime controller. Note that these

functional areas are reflected in the WfMC components and the CONSENSUS

modules mentioned above.

In the architecture of CONSENSUS, the workflow captures the logic of the CN (i.e.,

its intrinsic and procedural constraints), whereas the agents capture the logic of the

individual negotiations. The agents, by participating in the workflow, can share

information and cooperate in conducting the CN. Using a workflow also makes it

easier for the user to track and monitor the progress of the CN at runtime.

Furthermore, the user can adjust certain intrinsic and procedural constraints at

runtime. Examples include adjusting the total price she is willing to pay at runtime, or

changing the range of acceptable dates for her flight. We are also investigating the

possibility to generate a workflow from a higher-level specification so that the user

need not learn how to model a workflow in order to use CONSENSUS.

4.5.5 Negotiation Strategies and Rules Engines

According to Wong at al. [WZKOO], most current e-commerce systems use

predefined and non-adaptive negotiation strategies in the generation of offers and

counteroffers during the course of the negotiation. Commercial auction sites such as

eBay, for instance, still require that consumers manage their own negotiation

n

103

strategies over an extended period of time [MGM99]. There is however a possibility

to relieve the user from managing the negotiation. EBay, for instance, offers the

possibility of "proxy-bidding" which is actually a simple agent-negotiation that uses a

straightforward strategy: bid until you reach a certain amount, by going up each time

with a certain increment (called the bid-increment). As another example, the buying

agents in the well-known KASBAH system [CM96] can chose between three

negotiation strategies: anxious, cool-headed and frugal, corresponding to linear,

quadratic, and exponential functions, respectively, for increasing their bid for an item

over time.

In the architecture of CONSENSUS, we use rule engine technology to represent and

exploit negotiation strategy rules. A rule such as: "if the bidding gets too high, then

abandon the negotiation" can be nicely coded as a declarative statement. According to

McClintock et al. [MBOO], "rules are declarative statements that drive activity in a

software application by describing the action or actions to take when a specified set

of conditions is met". The rules can be coded as stand-alone atomic units, separate

from and independent of the rest of the application logic. This makes the rules easier

to develop and maintain. Moreover, rule engines have special languages for writing

rules.

A rule engine is a software component designed to evaluate and execute rules

[MBOO]. Rule engines are already been used in consumer profiling (also referred to as

e-commerce personalization). The idea is to use collected information about

consumers visiting a web site in order to trigger rules that tailor the content of a

provider's site to the profiles of the consumers. The infonnation can be collected

during all steps of the CBB model (see Section 1) and, in the above example, it is

used in Step 1 of the model.

A similar declarative approach is taken by Su et al. [SHHOO]: "Each strategy is

expressed in tenns of an Event-Trigger-Rule (ETR); which specifies the condition to

be checked and the actions to be taken by the negotiation server. Rules are activated

upon the occurrence of specific events during the negotiation." Instead of a rule

u

0

104

engine, they use an ETR server [LS98]. The server manages events and triggers rules
that are relevant to the posted event.

4.6 An Example of a Combined Negotiation

In this section, we illustrate how a CN is modeled using a workflow and strategy
rules. Going back to the vacation package example, we start with a simple CN with
no parallel negotiations. The CN is for a vacation package consisting of two items: a

hotel room and a transportation ticket. Depending on the price the consumer will pay
for the hotel, she either negotiates a plane ticket or a boat ticket (we suppose that it is
cheaper to travel by boat). We use IBM'S MQSeries WfMS [IBM02] build-time
client for modeling.

s
.^.

\ •&-•

\ State = 'WINNING" AND SpentS^Fa^J PLANE

\ State = 'WINNING" OR St^.tK= "L&^MG"
^

^

\i»^r^HOTEI^
3 taie =• V/i NN1 NG " ÎSR S'feitis-<L-0 SING"

\^
, State = "'A/l ^NG"^|D SpentSoFar >= 100

tateV.'WINNING

m»

-^î
State="^AitW'JING"

*a^

State = "LOSING"

1*4^1"BOAT"
State = 'WINNING" OR State = "LOOSING>

State="LO

State="LO I?^1
*-^i3

UCCESS

FAILURE

Figure 4.4: Workflow model 1 for the travel package.

Figure 4.4 presents the resulting workflow. There are 5 nodes that represent activities.
Three activities represent three negotiations: the hotel room, the plane ticket, and the

u

0

105

boat ticket. These activities will be carried out by software agents (note that in other
domains, workflow activities are typically assigned to human agents). The two other
activities deal with the success and failure of the CN, and specific programs written
for that purpose will carry them out. The five activities are connected by control
connectors (solid arrows) and data connectors (dashed arrows). Transition conditions
are associated to control connectors. Exit conditions are associated to the three

negotiation activities, which means that the activities are to be repeated until these
conditions are verified. The workflow shown in the figure states the following: "Start
negotiating the hotel room. Keep negotiating until you win or you lose. If you win by
paying less than 100 units then start negotiating a plane ticket. If you win by more
than 100 units then negotiate a boat ticket. If you lose, stop the CN."

TRANSPORTATION

u
\
\
\

SUCCESS

State='-vV'INI' OR'State = "LOSING"

\ Stâ(e-=^WtyHING"
^State='VdMNIN

mHOTEL
^

.State='WINNIN'R~-

State = 'WINNING" OR State = "C&SJNG"

SKI TRIPÂ^-^^State = 'WINNING

T—m

StateT^à.'.'INNING" OR State = "LÏISIN
PLAN E 1

State-"LOSING"

a^e= "LOSING'

SYNCHRO ^^^ Stat\=\LOSING"

©——ûCI
PLAN E 2

^
FAILURE

Figure 4.5: Workflow model 2 for the travel package.

Let us add a third item to the vacation package (a ski trip). Let us also choose to
travel only by plane and introduce parallel negotiations. In Figure 4.5, the modeling is
the same as before except for the node "TRANSPORTATION" which, in this case, is

u

0

106

not an activity but a block of activities. A block represents a sub-process (sub-
workflow). The block "TRANSPORTATION" in the figure is equivalent to the sub-
workflow on the lower left comer of the figure. The main workflow states: "start
negotiating a hotel room and if you win, then start the negotiations for the

transportation and the ski trip at the same time. The sub-workflow

"TRANSPORTATION" and the activity "SKI TRIP" will be started at the same time.
That gives three negotiations going on at the same time (the sub-workflow will

launch two parallel negotiations for plane tickets). Obviously, we have to be careful

not to win two plane tickets. To solve this problem, we intend to use strategy rules.

An obvious rule would be: "never make more than one commitment for a plane ticket

at the same time." Another rule could be: "only bid in the negotiation with the smaller

bid." Since the hotel room is already booked, the place and date attributes are also

fixed for the other negotiations. The total amount of money to spend for the package
will have to be respected. The sum of the bids in the parallel negotiations should not

exceed that amount. The activity "SYNCHRO" in the sub-workflow is used to

synchronize the two negotiations for the plane ticket, taking control after the two

agents make a pulse.

The workflow by itself in not sufficient to model the CN. To complete it, we need

strategy rules such as the one in Figure 4.6. The notation used is that of ILOG JRules

[IL002] which is based on an English-like syntax. Rules have a "WHEN part" which

specifies the conditions that must be met in order for the "THEN part" to be executed.

The rule in Figure 4.6 applies to an English auction, and it states: if the participant is

not leading (i.e., her bid is not the highest bid) and her reserve-price is about to be

reached (i.e., the difference between the reserve-price and the highest bid is less than

a certain limit) and she can reduce her increment while still respecting the minimum

permitted, then she should reduce the increment by half.

u

107

0

u

igss: iJRules Builder - agentRules'
•l

|JWUe||Êd]t|^Vl|v||||g%^

IK^I&â»8SSâStS2glBfe;ï£^^iE^_ill

li
l
IS
B

e

§1
l
l
il
1111

iff-sllttSStSSSS^
CNSS

ç ^ agentRules
@ ru l e l

@ rule2

@ rule3

©111111

Rùlësets
|saK;,€tassewgga

Ill

aagkffS;,
nvSSSWW

^^ :, M -^.i. ^^•/^^ "^^ ^^^^^vff'i^.,^:;îî^i^^^^ ^^—^—^.

SSe

"Si
if

WHEN
there is a TheElement called ?x

such that iLead = false
and myReservePrice - highBid < limit
and mylncrement / 2 >= minlncrement

THEN
modify ?x

so that mylncrement /= 2

^^a;sa^^ï^^^^^s.fî;.y'ï^^^^^^^i^;iM-.fc^£!^^^<i.ï^^^^-
smmMMiesieisMe'i.SsiMSsfaasHsvssS^

am not leading, and my resewe-price is about to be reached,
Jand l can reduce my iricrement
jthen l reduce it by half.

:BiuB4a

\}\
;3Iîl

l
laiiiigiiii "-a s

a

Figure 4.6: A sample strategy rule.

4.7 Implementation of CONSENSUS

Part of the presented CONSENSUS architecture has already been implemented as

CONSENSUS version 0.1. This version includes a WfMS, software agents and an

Agent Monitoring Tool. Instances of our negotiation server GENESIS are used by

CONSENSUS to conduct individual negotiations. Only one negotiation type is

supported in this version (the English auction). It is easy to implement new

negotiation types on GENESIS since all there is to do is to write a new script

describing the new negotiation type (called the auctioneer in GENESIS terminology).

The agents function in pulses (also called episodes). A pulse is an atomic action by

the agents, which includes getting the infonnation from the server, deciding what to

do, and finally taking action. The concept of pulse adds transparency to the

negotiation process. The WfMS gets the control back after each pulse by the agents.

0

108

The exchange of information between the agents and the servers is done via XML

documents (the order, the quote, the adjudication, etc.). We use the IBM MQSeries

WfMS for this version and rely on its build time client for modeling and on its run

time client for executing instances of the workflow model and for monitoring. There

is no use of negotiation strategies in this version, and consequently, the second action

of the pulse (deciding) will be performed by the user.

gCle;t'àelivi^':^e»|^ndwî:t^;|;ig|
Sil

^

:îM^É^^;.:'.-:^';'::.y:-:::^n^^

lRunning Progfam HOTEL CN 1 CN1_progiam1

gg giîî^-^Wï iïï'BtïS^Ï'.i";; Sifcil. >iÏ'"':,B;/ï Cïï^^ SSSM^M^WMa^&uMiSûSSBM^

: N^'A»l:°»^«»ia®WWï»«wN-K^
telo«i

OT~~

a woikflow modeli... CNSS Examples CN 1

°'I;g?:"i^;g

CN 1 01/09/003:34:34... Rurt

:$aDI

CNSS Agent Moniloiing

^ Negotiatisn Indit'natiou

•H 13 IB^;M!!»<N®<BËfi8iEK0|g<Wm|i8K ^iSS-ï

Ei

NB9B,ePK Naa» atatBti Î:KI •t..aet'qtiotB QSK .1 Last askBiiBB >w
1-65524 !330.0

s^.s.s.iï^.sK^Sï^ia^—^.-™--^-™.^

lA^tïttn^oFrRat|@ ï
KKsaÉÈI^Ê—l.Sas&Bîs t.BStfiW ÎS-ËÎSS

j LEADING lâS° lo.o1e00:0.

|<a)nthue^!aSi3S^,:aï||^l.fl,,;gsgB|g«,|am
îit'ii'BK^S; ^SSS^SSSSSS

..m i

Figure 4.7: Screenshot of CONSENSUS version 0.1.

In a standalone fashion, we have incepted integrating rule engine technology into our

negotiating agents. As a rule engine, we are using ILOG's JRules. The integration

with CONSENSUS will come later, once we are satisfied with the results of using

negotiation strategies in individual negotiations. Since strategies for whole CNs are

much more complex than those for individual negotiations, we will deal with them in

later versions.

u

n

109

In Figure 4.7, we present a screenshot of CONSENSUS version 0.1. The main
window is that of the IBM: MQSeries WfMS runtime client. The window at the top
shows the work items (In case of manual processing, the human will have to consult
this window to know what to do. In our case, the agents are activated automatically).
The second window shows the instance of the workflow that is running. The third
window (bottom left) shows the Agent Monitoring and Control Tool displaying
information about one of the individual negotiations that is going on. The last
window (bottom right) is the monitoring window of the IBM MQSeries WfMS.

CONSENSUS is designed such that the currently used WfMS may be substituted for
another WfMS. To validate this design, we are currently working on a new version
that uses BEA's WLPI system [BEA02].

4.8 Related Work

In this section, we present the two approaches that we think are most closely related
to the CONSENSUS approach.

The approach by Su et al. [SHHOO] is based on the idea that a consumer registers on a
proxy negotiation server by giving a description of the goods or services she wants,
her preferences, and a negotiation strategy. Then the server takes over and looks for a
supplier that matches the consumer. When it finds one, it starts a bargaining type
negotiation until eventually a deal is reached. The server uses the negotiation strategy
supplied by the consumer. Notice that in this case, the merchant brokering phase is
the responsibility of the server, and that the user has no control over the negotiation.
Many negotiations can be started on the same proxy server, and they will be stored as
persistent objects in a database.

With this solution, the user will have no control over the negotiations once they are
started. She can only see their progress, but cannot intervene in them. We prefer the
user to be in control and inter/ene whenever she wants in the CN. The workflow

representing the CN would have to be constructed, stored, and executed at the
negotiation ser/er (a feature that is not supported by the proxy server as it is

u

0

110

described in [SHHOO]). We prefer the workflow representing the CN to be
constructed, stored, and executed on the client side rather than on the negotiation
server side. In contrast to our solution, the proxy negotiation server approach does not
explicitly support CNs. Furthermore, our solution is decentralized and supports any
type of negotiation, whereas the server solution supports only bilateral bargaining.

When we compare the services expected from CONSENSUS to those offered by the
KASBAH system [CM96], we see some similarities. The agents can be monitored by
their creator via GUI tools. They also can have a negotiation strategy. For KASBAH,
the strategy is rather simple and is chosen from a set of predefined strategies. In
CONSENSUS, however, the strategy is entered rule by rule. Consequently, it can be
more sophisticated and may not be guessed easily by the server or the other
participants. In the KASBAH system, for instance, it is possible to guess the
negotiation strategy of an agent just by observing it for a while. An agent for which
the strategy is known by its opponents is at a disadvantage [BS97]. The agents in
KASBAH are mobile, whereas ours are not. The agents in KASBAH conduct only
one style of negotiation, which is bargaining, whereas ours will practice any kind of
negotiation.

4.9 Conclusion

In this paper, we stated the problem of a CN and showed the need for a CNSS to
solve it. A CN involves negotiating many interdependent items by engaging in
different and independent negotiations. CONSENSUS is a CNSS, which helps the
user model, track and monitor a CN. Its architecture is based on agent technology, as
well as workflow management and rule engine technology. CONSENSUS can be
used by a consumer from her home computer to negotiate, for instance, a vacation
package (B2C), or it can be used in B2B, for example, by a travel agency to negotiate
travel packages for its customers.

We claim that a CN can be specified using a workflow. We are certain that a
workflow can capture the sequencing of the negotiations and some dependencies
between them (we call this the CN know-how), and currently, we are experimenting

j

u

0

Ill

with more complex examples to further substantiate our claim. The software agents

know the rules of the individual negotiations in which they are involved (we call this

individual negotiation know-how). But knowing the rules of the negotiation does not

make you a good negotiator. What is needed are negotiation strategies to be used by

the agents in order to make them better negotiators (we call this negotiation strategy

know-how).

As future work, we aim to further investigate several research issues that are central

to our solution. One such issue is how to instantiate software agents based on a

description of the negotiation rules. Another issue is the high-level specification

language we would like to define and implement in order to free the user from the

task of modeling a workflow. The question of breaking commitments in a negotiation

will also be investigated along with its effect on CNs. Negotiation strategies are an

important research area for us. We will have to come up with strategies that apply to

individual negotiations and strategies that apply to a CN. We will also have to see to

what extent the negotiation strategies depend on the negotiation type. Our conceptual

work will be completed by proof-of-concept prototypes, as incepted with
CONSENSUS version 0.1.

In conclusion, we believe that a CNSS such as CONSENSUS is a much-needed tool

for coping with the ever-increasing scope and complexity of e-negotiations.

u

0

CHAPTER 5

GENERIC NEGOTIATION PLATFORM

Preface

There are two types of negotiation systems, namely negotiation servers and

negotiation applications. Negotiation servers (also referred to as negotiation engines)

are typically systems that can run multiple negotiations, while negotiation

applications usually provide only a single form of negotiation [Wri97J. In this chapter

we present GNP (Generic Negotiation Platfomi), our negotiation server.

Some of the many objectives of the TEM project are to investigate open protocols for

electronic marketplaces, explore concepts and tools for e-negotiations, and design

new negotiation protocols. At the time we joined the project, there was already a tool

called GEE (Generic Experimentation Engine) that supported game-oriented

experimentation and allowed for the study of human behavior under various game

situations. Yet, there was a need for a complete negotiation server. We also needed a

platform to test CONSENSUS, with our two main requirements being (1) support of

several negotiation protocols, and (2) an API so that our software agents could

connect to it and participate in the negotiations.

GNP was built as a reengineered extension of its ancestor GEE. Typically, a session

in GEE (i.e., a game) is made of rounds. Each round consists of receiving the players

responses, deciding upon the outcomes of the round and finally communicating

resulting information to the players while preparing for the next round. As an

extension of GEE, GNP supports various kinds of economic games. New services are

provided to allow for the customization of negotiation rules and error recovery. New

persistency management features allow for negotiation execution to be traced and

analyzed. A new fine-grained time management to deal with precise and flexible

delay evaluation was also provided in GNP.

u

0

113

GNP is designed to mn any kind of negotiation. It simply requires the negotiation to
be described as a script and a set of data files, which together provide the parameters
and the rules of the game. Scripts are written in JPython. In this context, a negotiation
designer should ideally have both programming skills and economic market design
knowledge [NBB+02]. To facilitate the description of negotiation rules, GNP
provides a tool to gather the required information and enter the various negotiation
parameters. This tool greatly alleviates the design task by querying the designer for
typical negotiation infonnation such as: the attributes and defaults values of the
fonnalized concepts; the condition for ending the rounds, phases and the entire
negotiation; and the information to be displayed or hidden from the players. This
infonnation is gathered into XML files, and a JPython script is edited to describe the
appropriate negotiation rules. GNP uses the JPython script and the XML file to carry
out the rounds of the negotiation.

The design of GNP also calls for leveraging the formal descriptions of negotiation
mles (see Chapter 3) to provide a repository of negotiation process descriptions,
which could be described using UML statecharts. The actual scripts that implement
the negotiation (i.e., its economic rules) could be automatically generated from the
statecharts, thus making GNP even more generic.

We contributed to the design of GNP by exploring the state of the art in negotiation
protocols and negotiation servers, and by participating in defining and refining its
requirements. These requirements include an API for software agents to connect to
the platform and exchange offers and counter-offers, as well as genericity in a sense
that various negotiation types can be implemented with minimum effort using GNP.
We also participated in the validation of GNP by using it extensively, by
implementing several negotiation protocols and adopting them in the nodes of
Combined Negotiations, and by conducting agent tournaments using CONSENSUS.

The remainder of this chapter is a modified version of the following paper:

Towards a Generic E-Negotiation Platfonn, by Morad Benyoucef, Rudolf K. Keller,
Sophie Lamouroux, Jacques Robert, and Vincent Trussart. In Proceedings of the

u

0

114

Sixth International Conference on Re-Technologies for Information Systems, pages
95-109, Zurich, Switzerland, February 2000. Austrian Computer Society.

u

0

115

Towards a Generic E-Negotiation Platform

Abstract. To investigate the various research questions concerning e-negotiations, an
appropriate software infrastructure is needed. As part of our project on electronic
marketplaces, we have developed the Generic Experimentation Engine (GEE). GEE
supports game-oriented experimentation and allows for the study of human behavior
under various game situations. The more recent Generic Negotiation Platform (GNP)
is a more focused version of GEE that will support experimentation with alternative
market designs and with various types of negotiations. GNP is being re-engineered
from GEE in that important concepts and technologies developed for GEE are carried
over into GNP. The paper provides a detailed overview of GEE. The re-engineering
of GEE into GNP is addressed by presenting a list of lessons learned from the GEE
development and by providing a vision for GNP. Furthermore, the paper addresses
the formalization of auction rules, one of the prerequisites for making GNP truly
generic.

5.1 Introduction

The rapid and significant progress of information technologies is profoundly
changing the structure of the economy, in particular the way economic negotiations
are undertaken and exchanges of goods and services are organized. Electronic
marketplaces as nexus of services for the largest possible network of businesses will
be at the core of future e-commerce. Negotiations will be supported by open
negotiation servers where deals are struck and prices determined, and where
evaluation, matching, and advising services are being offered. The creation and
efficient operation of electronic marketplaces raises many challenges. E-commerce
should do more than just replicate what is being done today, and gains may only be
obtained through re-engineering the way decisions are made and markets operate. In
the TEM (Towards Electronic Marketplaces) project, a joint industry-university
project started in early 1999, we aim to make the above vision possible. Thus, we

l

u

n

116

address market design issues in respect to resource allocation and control and reward

mechanisms, investigate open protocols for electronic marketplaces, and explore

concepts and tools for e-negotiations. E-negotiations may be re-engineered from

traditional negotiations, or designed expressly for electronic marketplaces.

As part of the initial phase of the TEM project, we have built GEE (Generic

Experimentation Engine), a software prototype for game-oriented experimentation. In

its current version, GEE supports continuous double auctions [WWW98b], and is fit

for the study of human behavior under various game situations. In the recently

incepted phase II of the project, we are developing GNP (Generic Negotiation

Platform). Whereas GEE is a game-oriented engine, GNP is an auction-oriented

platform, that is, GNP will be larger in scope and will support many different types of

negotiations (auctions are considered a special case of negotiations). The different

types of negotiations are described in a uniform and formal way, and the descriptions

can be serialized for exchange in the e-marketplace. From an engineering point of

view, GEE is being re-engineered into GNP, which will exhibit a layered architecture

based on objects, statechart diagrams [UML98], and scripts. Our development

process is incremental and follows the feature development approach described in

[CLD99]. It is the re-engineering at the infrastructure level, which is the subject of

this paper.

The contributions of this paper are threefold. First, the paper provides a detailed

overview of GEE. Second, the re-engineering of GEE into GNP is addressed. This

has been done by factoring out and parameterizing the application-independent

components of GEE so that new applications can be developed easily and quickly.

Our approach is similar to that taken by expert system shells and by high-level

programming environments such as 4GL and SQL, yet it has not, to our knowledge,

been applied to the e-negotiation domain. Third, the formalization of auction rules is

discussed, and the approach adopted in TEM is explained.

In Section 5.2 of this paper, the requirements for TEM's experimentation engine and

negotiation platform are discussed. Section 5.3 gives an overview of the

u

0

117

implementation of GEE. In Section 5.4, the lessons learned from the GEE

development are explained. Then, in Section 5.5, the need for formalizing auction

rules is discussed, and the TEM approach is presented. Section 5.6 provides our

vision of the GNP functionality and architecture. Finally, we wrap up the paper with

some concluding remarks.

5.2 Requirements for Experimentation Engine and Negotiation Platform

The level of abstraction required by a generic e-negotiation platform is quite high.

The negotiation engine should be able to support a wide variety of disparate

negotiation rules and algorithms. The common ground shared by these algorithms is

that they can be viewed as an economic game according to game theory.

Game theory, an important branch of microeconomics, provides a mathematical

stmcture to study social interactions among rational agents (forward-looking,

Bayesian and optimizing). An extensive-form game is an exhaustive description of

the social interaction under consideration. In order to be well defined, a game must

specify:

1. the set of players;

2. a sequence of decisions;

3. the precise structure of the information flow;

4. a representation of the players' preferences over the set of all possible

outcomes of the game.

Hence, it must specify what each player knows at the beginning of the game, in

particular what infonnation is public and what is private; by whom and when each

decision is made and what information the decision-makers have when making their

decisions; and finally, what are the gains (monetary or otherwise) accruing to the

players as a result of the history of the game.

The precise definition of the extensive representation of a game can be found in

graduate micro-economic textbooks (see, for instance, [MWG95]-Chapter 7, or

;i

u

n

118

[KW82]-Section 5.2). In order to implement a game, we can proceed through a finite

number of rounds. In each round, one or many participants are provided with some

information (in the fomi of a table or a small text) and are invited to select an action.

This generic structure is sufficiently general to implement any finite game. We can

implement simultaneous-move games in which players are asked to select their

actions simultaneously, or sequential games in which players are informed of past

plays and are asked to choose moves one at the time. The key is that we are able to

control both the information that participants receive and the set of actions, which

they are allowed to select.

Our objective was to build a generic experimentation engine that is flexible, so it can

implement any conceivable game. In order to do so, GEE'S unique responsibility is to

orchestrate a sequence of rounds. In each round, including the initial one, each player

receives sets of public and private infonnation and of selectable actions. Depending

on the specific design of the game, a new round is initiated either when a predefined

number of players have submitted their choices or when a specific delay has expired.

At the beginning of every round, the sets of public and private infonnation and of

selectable actions are updated according to the rules of the game. Finally, at the end

of the game, each player receives a score that can eventually be translated into a

monetary gain. To help players keep track of how well they are doing, points are

added to or subtracted from their score after each round. The flexibility of GEE

comes from the fact that it imposes no specific restrictions. How the private and

public information, the selectable actions and the gains are initially generated and

updated after each round is not part of the GEE design. It is handled as configuration

information for the specific instance of the experimentation engine.

Market negotiation games fonn a special class of economic games. The major

characteristic of market negotiation games is that their outcome mainly specifies two

things: (1) a final allocation, which determines who gets the item or items on trade;

and (2) prices or monetary transfers specifying who pays or receives what. The

negotiation process includes, depending on the specific design, rounds of offers and

u

0

119

counter offers (quotes, bids, asks, etc.) and a closure rule, which ultimately leads to
an "allocation and prices" outcome. GEE was developed in order to have an open
electronic environment that could reproduce any mechanism involving several
players interacting with each other. It was done with two objectives in mind: (1) to be
a functional and flexible tool to validate economic theory by making electronic
experimentations on small groups of individuals; and (2) as we focus on negotiations,
to include some kinds of negotiation rules in GEE to help extract the common
concepts found in negotiation processes.

The objective of GNP is to offer a more focused version of GEE that will enable us to
experiment with various market designs. Using GNP, it should be easy to create and
deploy various types of negotiations. For such easy deployment to be possible, as is
already the case with GEE, no client software installation should be required (except
for a web browser).

The development of GNP as a platform supporting multiple negotiation algorithms
will lead us to formalize and validate common concepts and similarities and to
develop a clear and consistent terminology for negotiations. Such hiowledge will
help us create an open protocol for negotiation information exchange and a
formalized representation of negotiation rules. Eventually, GNP should be powerful
and flexible enough to allow further research and development in a wide range of
fields, including operations research and decision support systems.

To reach these goals, we adopted an iterative approach based on feature development
[CLD99]. The choice of this software engineering process is guided by the fact that
our requirements are evolving continuously. Our first prototype, GEE, is an
implementation focusing on the creation of games according to game theory
principles and on flexibility. GNP is meant to be larger in scope and to address the
specifics of negotiations. Finally, concepts and base technologies developed for GEE
should be reusable when building GNP.

u

0

120

5.3 Implementation of GEE

In this section, we present our first prototype of GEE. The section is organized into
the subsections user inter-face, dynamic behavior of games, data management and
scripting, and architecture and technology.

5.3.1 User Interface

GEE is an application accessible via the Internet. If GEE is activated and some games
are already on, a player newly logged on can choose and participate in these games. A
game process is divided into rounds. Arriving at any time, a player will get an HTML
page that will not change during the current round. The page is composed of four
sections (see Figure 5.1, left). Section 1 contains information about the current round
(time, round number, etc.). Section 2 shows information in read-only mode. This can
be public information about the state of the game given to all players and/or private
information given only to individual players. The information in Section 2 is an
HTML fragment generated by a script and inlined at the beginning of a round.
Section 3 displays questions in the form of a questionnaire. By completing and
sending out the questionnaire, a player participates in the current round. The
responses of the players will only be treated at the end of the current round, and
feedback will be given at the beginning of the next round, by displaying updated
information and new questions in the HTML page. A game is over when no more
questions are generated and instead a "final message" is issued to all players. Section
4, finally, is an icon bar that provides access to other useful functions, such as help
files and transactions history.

Figure 5.1, right, shows a screenshot taken during one of the rounds of a game. The
game in this example is a continuous double auction. The player can submit a bid
(buy order) or an ask (sell order). Section 3 lets the player choose to add or delete an
order, and to buy or sell, and enter the quantity and the price. Section 2 displays the
orders submitted by all the players (orders submitted by the player interacting through
the HTML page are tagged with an asterisk *) and the current price (last trade).
Furthennore, Section 2 shows the wallet of the player, that is, the number of units and

u

121

n the amount of money of the player. Finally, it also depicts the wallet when the
engagements made by the player are taken into consideration, and it displays the
details of the last transaction. Sections 1 and 4 are not shown in the figure.

l Tootai-(Section^

Ganera!
tRfonnaticm

(swvw state.
remaining
Bros...)
(Section 1)

Per playgr g:ania informaSon
(HTML frtigmani SnAtdW at Fun-tlme)
(SeçtlortS)

Par playy input section
(ttynsmieally buîH HTML fonn)
(Section 3)

Cc^flfJEifea. dQdhS&.^iccon pïiî&^s

ïid <bî-",' arrijiy's'J A.fc (ssfll ars-iw LasirTs-A.!

O-BTSf

"

Wallet

Wa.ltetiatefensiNCl'îrlii
tAJj.-RrdterçMît i iT

fl-Sï<.tR5

^^on Cil» Qy^tiî

Mate Edl

îter!.,..»,

lillllig®
wS"-

!;tëSsWK
jejaj |su.i|iit|

9SSSV3U

Figure 5.1: User interface of GEE: schema (left) and screenshot (right)

5.3.2 Dynamic Behavior of Games

The statechart diagram shown in Figure 5.2 captures the behavior of the games
supported by GEE. Games are based on an iterative pattern that we call a round.
During a round, the responses sent by the different players are queued. A round ends
on a particular event, which can be either the number of responses sent, a timeout, or
both. When such an event occurs, a file containing a script program is called which
processes the queued responses and generates the messages (information, questions)
sent to the players for starting the next round.

Rounds, information, questions, and responses are the basic concepts built into GEE.
The game designer can use these concepts in a flexible way, having full control over

u

0

122

the way data is computed from one round to the other. We define a game designer as

the person who sets up the rules of the game and implements them in a script.

5.3.3 Data Management and Scripting

The data of GEE are managed in files and directories. Specifically, GEE is in charge

of the output files (information and questions) to be displayed on the player's screen

and of the input files (responses) to be written in the directory assigned to the current

round. Once an end condition is met, an executable file, that is, a script file written in

JPython [Jpy02], is called to complete the current round. The script processes the

input files produced during the ending round and generates output files into the

directory assigned to the next round.

A round's end condition may vary from round to round. End conditions are stored in

dedicated files that can be manipulated by the scripts. The activity diagram [UML98]

shown in Figure 5.3 summarizes the life cycle of a script for a given round.

[M quiesttans avaitofatel

î

End of game

Messages dispfayed an
each layer's -screen

Cquestiods avaiîaUe] Kn<'N) and (t < n]

WaaSJng

.-—"
l. .---'l

Response rBceivsd

E{n>=N) ra- (l >= T)]

Script exeeuSion

Rwind

Legend;
n : Responses iraceivett
N : &pBcti3'd raspOnsBs
t: dap»tltime

T : dffl'e delay

Figure 5.2: Statechart diagram of games supported by GEE

u

123

0
Identify and read responses

In cia-rent round aif'eclory

T
CompL-ts data accoriiing to

responsw given

I:
Crsate the next round directory

[Reset founei Is the last!

F-»] Wrlie a ISte per player tor Infarmaiton

l {twxt romif is not th» last)

l Write a (Se per player tw questions |

I:
Write a fit® to specify the next

round's end condition

l

Figure 5.3: Activity diagram of GEE script for a given round

As building a directory hierarchy and scripting are under the control of the game

designer, anyone with knowledge ofJPython should be able to set up a game with her

own rules. During scripting, the game designer has to decide on which round will be

the last. In the second but last round, the script should not write any questions to the

players, nor specify a round s end condition. The absence of questions will be

interpreted by GEE as the end of the game.

5.3.4 Architecture and Technology

To ensure easy deployment, the negotiation engine is built as a web application using

server-side Java technologies that is accessible in three ways (see Figure 5.4):

Pull mode: the information is sent to the player's web browser only upon request.

In order to keep the displayed information up-to-date, this mode relies on polling

a dynamically generated web page. The pull mode is lightweight; however, it is

little responsive and imposes the task of browser reloads onto the player.

Push mode: in this mode, the information is sent from the server to the client

when needed. This allows for a responsive and full-featured user interface at the

expense of a heavy download (Java applet) and uncertain reliability (Java 1.1 is

currently not well supported in the major web browsers).

Hybrid mode: this mode sits in between the two previous ones. It relies on a very

small Java applet to perform on demand web page polling by listening for events

u

0

124

on the server (through a TCP/IP socket) and performing a browser reload only

when needed.

J Python script

©EE core

l

pusftffiocfe

Event ûîspatçhef

I:
Full biûwn Java

applet pr
application

l

hybrfdmode

Small Java applet Sjstening far
state changes and fwcing

browser retoad

pull mode

! JSP CompHer

! semtet ©ngine

v/eb server

HTVL iJSP/CSS1 pages

Player
(web browser)

J

Player
(web browser)

\

Figure 5.4: GEE architecture

The selection of the access mode is a task performed at deployment time by the

operator of GEE. The preferred access mode is the hybrid mode because of its

lightness, responsiveness, easy development and customizability.

The web pages for the players are generated dynamically (cf. Figure 5.1). Since these

pages are coded using the Java Server Pages (JSP) specification [JSPOO], multiple

deployment alternatives are provided.

5.4 Lessons Learned from GEE Development

The GEE prototype is currently being used for experimentation of economic games.

Our development experience and the ongoing field tests have shed light onto the

strengths and weaknesses of the design and implementation of GEE.

u

0

125

In this section, we present some of the shortcomings of GEE and how we intend to
overcome them in GNP. We introduce the platform services that will be provided, a
new approach to time management, a negotiation toolkit that will be made available,
and a high level interface for easing the task of the game designers.

5.4.1 Platform Services

GEE only provides basic error handling. In GNP, we envision pervasive error
handling in respect to the players, the game designer, and the person operating GNP.
Furthermore, a registration tool to regulate and manage access to GNP and to
customize negotiation rules according to the profiles of players will be provided.
Finally, persistence management in GEE is done manually by the game designer. In
GNP it will be a built-in feature supported by appropriate technology. This will allow
recovery after game failures and for tracing for recording and analysis purposes.

5.4.2 Fine-grained Time Management

Time in GEE is managed merely at the round level, limiting every round with a time
delay. As time is a decisive factor in negotiation processes, it should be dealt with in
a more flexible way. First, a delay should limit the overall duration of a negotiation.
Second, this overall delay should be divided into several limited time periods. Those
periods would represent different phases of a negotiation process, e.g., a number of
consecutive rounds, in which the same rules could be applied. Such fine-grained time
management would allow for the more precise definition of negotiation processes.
Moreover, relative time delays as well as absolute dates should be supported.

5.4.3 Negotiation Toolkit

The architecture of GEE is independent of any specific negotiation type, with data
files and scripts being the only entities describing the rules of the games. In complex
games and negotiation processes, the size of the files and scripts may become rather
large. Especially, scripts may become difficult to write and maintain. Since the scripts
are written in JPython, we were naturally inclined to build many generic reusable

u

n

126

classes, persistent objects, and files for use in different negotiation processes. A
sample of these is:

initial data of a negotiation: announce;

information sent to all players: market quote;

information sent to some players: private message;

choices that the players make in each round: bid;

matching of bids and asks according to negotiation rules: toransaction.

Whereas in GEE this collection of classes was built in an ad hoc manner, GNP will

provide them from the outset organized as a toolkit.

5.4.4 High-level Interface for Game Designers

In GEE, a game designer who wants to implement a game has to manage all the data
and is responsible for writing the scripts. In the case of negotiations, she would need
substantial knowledge of both programming and economic market design. Even if a
powerful, simple and easy to leam language such as JPython is used, programming
may become a burden. A good knowledge of market design should be the only
prerequisite for effectively using GNP.

We have identified a number of operations that are common to different negotiation

processes. Some of these operations are:

define attributes and default values for the formalized concepts;

setup the end conditions for rounds, phases and the whole negotiation;

define the information to be displayed to or hidden from the players.

Such operations may be provided to the game designer as a high-level interface. In
the medium-mn, however, we want to free the game designer from directly dealing
with this high-level interface and any negotiation toolkit. To this end, we envision to

leverage the formal descriptions of auction mles, as described in the section below.

l

u

0

127

5.5 Description of Auction Rules

5.5.1 Need for Formalization

If we are to make buying and selling decisions based on automated auctions, then it is

important that we have high confidence in the software involved in this activity. Cass

[CLL+99] suggests that an automated negotiation must have four necessary

properties. It must be:

Correct: an automated negotiation must not contain errors such as deadlocks or

incorrect handling of exceptions;

Reasonable: it must allow adequate time for bids to be made (or for decisions to

be made in general);

Robust: it should continue to function properly after an improper action by the

user;

Fast: it has to execute and respond quickly.

We believe that there should be a fifth property. An automated negotiation must also

be traceable. In order to be tmsted, the software must be able to justify its actions to

the user if necessary. This could be done by tracing the execution and by showing the

decisions taken together with their rationale [GMM98].

In order to achieve these properties, we need to formally describe negotiation

processes. To our knowledge, this issue has not been explored yet in any depth. In the

literature, we found few papers addressing such fomialization. Typically, natural

language is used to describe the negotiation and auction types under consideration.

Some papers try to classify them while others try to find similarities so that common

parts can be isolated [BK99]. We agree with Cass [CLL+99] that "a notation with

well-defined, well-fonned semantics can facilitate verification of desirable

properties".

Another issue is the need to separate the process of negotiation from the other parts of

the software. We believe that the rules governing the negotiation should not be

u

0

128

hardcoded. The software tool supporting the negotiation should be able to pick one
type (style) of negotiation from a repository and use it. Separation permits efficient
implementation, easy testing and, last but not least, encourages reuse. We can
actually benefit from the fact that negotiation processes contain parts that are
common to all of them.

Another reason we need a fomial way to describe the auctions is that the auction rules
should be known to the user (human or software). They should be available to anyone
who wants to consult them before engaging in the auction. We think that the rules are
as important as, or perhaps even more, than the other information describing the good
or service that is the object of the auction. We agree with Wurman [WWW98a] that
"implementing auction mechanisms in a larger context will require tools to aid agents
in finding appropriate auctions, inform them about auction rules, and perform many
other market facilitation functions".

5.5.2 DeHning a Formalism for Auction Rules

We need a mechanism that enables us to formally describe the rules governing an
auction, visualize this description when necessary and serialize it in order to transfer
it over the network. A review of the fonnal methods used to describe auctions can be

found in [BK99].

Wunnan et al. [WWW98a, WWW98b, WW98, AucOO] categorize auctions as either
single or double, sealed-bid or open-cry, and ascending or descending. They use
messages and activities to describe an auction. The three main activities are: receive-
bid, clear, and supply-information. Parameters are used to complete this description.
These parameters indicate for example if a new bid should be greater than the
previous one, what are the closing conditions, etc. Natural language is used to
describe the auctions.

Kumar and Feldman [KF98a, KF98b] use a Finite State Machine (FSM) to model an

auction. The states of the FSM are the states of the auction. Its input alphabet is the
set of messages that can be sent by the participants. A message is expressed as a pair

u

129

0

u

<p , m > where p is the sender of the message and m is the message sent out. The

output alphabet is the set of messages sent to the participants. These messages are
expressed as pairs «p , m » where p is the subset of all the participants that will
receive the message and m is the message itself. The process flow of the auction

maps into the transitions of the FSM. The messages make the auction go from one
state to another.

The FSM alone is not sufficient to describe an auction process. Therefore, the
description is fine-tuned according to the following policy decisions: anonymity,
restriction, mles for closing the auction, and services provided to the participants.

OffeE,,to., soB(»31ar..,ki, pt'oduGt_dascriptïon)
ER«^sfered(sgilar,,}d)]
f masMgQ,to,,,aï(flrod!.jci,.Besc<'lpttofi}

TaMngiîidg Cki»a.,ayc(ioïi
ImactiïHy,,period > Uffllçl

Cïeamg
^

message,. to(s8iter,,,y,

No Dad

[Rumlbar.X.Ays > O*
H^heajbW >= Rsson-'eijwiOB]
/ mass^tijoisailer.jd, notfcation)
* iTîessa3%.®e')nsr! notlCcNton)

-®Dwl

Auction ctosBd

N'ïs*Gfc»t^bld£38i.X a»ou'ntji
|]Rggis TOtJ(blctd8r,,y)A

a*nourt > Hlgtieisrt,..bfd3
/ H'yheg{,,.bld ::= amoijnt
" winmr := IxUer.ld

A m8SSBSfi»to(î)idder^jd, acknowtedga)
A mBssa8â,,;(i)ijall(Highes!t,j3id)

Figure 5.5: Statechart diagram of an English auction

Little-JIL [Wis98] is a graphical agent coordination language realized at the
University of Massachusetts at Amherst. A program in Little-JIL has a root that

represents the entire process. The root itself is decomposed into steps that describe
the process. Visually a step is a rectangle with many tags associated to it (the name of
the step, the resources necessary to execute it, etc.). The execution of a step and its
sub-steps is controlled by the step's sequencing (sequential, parallel, conditional, etc).

Little-JIL was used to describe a set of auction processes [CLL+99]. This way of

visualizing an auction process simplifies reasoning by following the flow of control

n

130

and the flow of data in the tree of steps. Since an auction involves multiple
participants, Little-JIL may be used to decompose the auction into steps to be carried
out by the participants and by providing coordination and communication between
them. This notation is unfortunately quite exotic, and the programs are hard to
understand.

The only formalism that satisfies most of our requirements is Kumar's and Feldman's
FSM. However, the FSM alone cannot capture the complete auction process. We
propose to extend it by using UML's statechart diagrams. They are well established
and widely used, and they are semantically rich enough to formally describe and
visualize processes. An important feature statechart diagrams have and that we will
be relying on is the possibility to be serialized in XMI [XMI98]. Various types of
auctions can indeed be described using statecharts, including the Continuous Double
Auction (CDA), which is implemented in GEE, and the English auction which is
described in Figure 5.5. The main states of the English auction are "Taking bids" and
"Auction closed". When the auction is closed it goes to the "Clearing" state where the
auctioneer has to detennine if there is a deal or not. The two possible final states are
"Deal" and "No Deal". In the first case the seller and the buyer are notified. In the
second case only the seller is notified. The transitions are labeled with the string
event[guard-condition(s)]action(s).

5.6 GNP Vision

GNP builds upon the lessons learned from GEE and shifts focus from games towards
electronic negotiations. As GNP will be designed especially for negotiations,
implementing a negotiation through scripting will be even simpler than creating a
game with GEE.

t(

if

u

131

0

u

\

A(>p)jeation Logic

Cusiomizabie JPythcm script

Negototon Todftit Level 2 (high tovBl)

Negotiation Tâolklt L®ïd 1 (low levei)

Statechart daacrioSoft of
neaoiiaSion atgoralhm

Appltcatton Sstvw

Entatprtse
JavaBeans

Ssner

±

RDBMS

Sennet

Engine
JSP

Compiter

RMI/CORBA

^/ '<

Client

HTML Wet) Brawsw

XMLfCSS W^) Broswer

Java sppi&t ÛT ap^icatton

/ Y

Figure 5.6: GNP architecture

Two new services will be provided to the game designer: a negotiation rule
description analyzer that can process a formalized description of negotiation
processes and a toolkit (a collection of classes) implementing frequently needed
concepts (wallet, information storage, etc.). For example, a game designer could
create (or reuse) a formalized description of a Dutch auction using a statechart

diagram serialized using the XMI fonnat and script a negotiation using this

description (see Figure 5.6).

To further improve the openness of the negotiation platform, an information

exchange protocol based on XML [XML98] will be developed. Such a protocol will
allow for the creation of software agents that can be used as smart advisors, and for

setting up a simulation environment to investigate optimal strategies for complex
negotiation algorithms.

The architecture of GNP will reuse several concepts and technologies that were
already adopted in GEE: it will be a multi-tier web application using servlets, JSP

pages and JPython scripts. However, GNP will need to support large scale
deployments and features required by an enterprise level electronic negotiation

platfonn, such as security, scalability, reliability, persistence, and transactional
behavior. To meet these requirements, GNP will be a reusable server component

executing in an Enterprise JavaBeans (EJB) [EJBOO] application server using a
Relational Data Base Management System (RDBIs/tS) for infonnation storage.

0

132

GNP will be document oriented, that is, a negotiation is treated as a document, and

every interaction is a manipulation of that document. This approach eases the

scripting task since the internals of the system are open and accessible. To help

manipulate these internal documents, a two level API will be provided which we call

the Negotiation Toolkit. The first part of the toolkit (referred to as NTK-1) consists of

storage management functions, such as loading, searching, and saving information

about the negotiation. The second part (NTK-2) will provide functions and objects
that are frequently needed by the game designer, according to our experience with
GEE. For example, the following objects will be provided by NTK-2: Bid,
Negotiation, Round, Player, Wallet, etc. Another benefit of the document-oriented

approach is that obtaining an XML formatted document containing infonnation about

a negotiation is trivial; this will allow us to easily create an open protocol based on
XML.

Since the most recent generation of web browsers can process and fonnat XML

documents combined with CSS style sheets, the XML protocol for negotiation

information exchange will lead to more responsive user interfaces, without affecting

their low cost of development and deployment. For example, a small Java applet

loaded in the player's browser could listen for events on the EJB server (using RMI

or CORBA [Sur98]) and update only portions of the DOM tree [DOMOO] contained

in the browser without requiring a complete web page reload.

5.7 Conclusion

In this paper, we detailed GEE, a game-oriented experimentation engine, and
described how GEE will be evolved and adapted to become GNP, a generic

negotiation platform. We have shown that in this endeavor several important concepts

and technologies of GEE will be reused, allowing us to come up with a GNP

prototype within just a few months.

There is already some evidence from experimentation with 10 students that indeed

GEE constitutes a flexible, powerful, and useful infrastructure for studying the

u

0

133

behavior of players under game conditions. After several iterations, the design of

GNP is now stable enough to start implementation.

Once GNP is available, various research questions can be investigated. A sample

problem from operations research that will be addressed using GNP is determining

the winner in a combinatory auction. In combinatory auctions, the user may bid on a

combination of items, and the problem for the auctioneer is to determine a winner,

that is, the bid that maximizes the auctioneer's gains. Another class of negotiations,

combined negotiations, will be refined using GNP. Combined negotiations allow an

agent (human or software) to engage in and manage many negotiations at the same

time. This latter type of negotiation will lead us to explore the role of decision

support systems and workflow management systems [LW99] at the infrastructure

level. For instance, in the case of business-to-business e-commerce, such systems

may carry out after-the-deal activities.

The wide range of the above research questions underlines the value of providing

GNP. The dynamic nature of this research suggests a feature development approach,

and an ongoing re-engineering of GNP. Given the positive experience of evolving

GEE and designing the first GNP prototype, we are confident that GNP will prove

flexible and useful throughout the project.

u

0

CHAPTER 6

RULE-DRIVEN NEGOTIATING SOFTWARE AGENTS

Preface

In this chapter, we detail an important facet of CONSENSUS, which was inti-oduced

in Chapter 4, but without much detail, namely the representation and management of

the knowledge that defines the behavior of the software agents.

CONSENSUS is built around a Workflow Management System (WfMS) that is

responsible for dispatching work to the agents according to the sequencing

information supplied by the user. Once the agents are started, (i.e., they are given

control by the workflow engine), how would they behave? We divided the behavior

of the agents into three components: protocols, strategies, and coordination.

The protocols are the negotiation rules that every agent should follow when

interacting with the negotiation server (i.e., when to submit an offer, how and when to

respond to a counter-offer, when the negotiation ends, etc.). CONSENSUS

instantiates the agents according to the protocol supported by the negotiation server

(English, Dutch, etc.). We showed in Chapter 5 how GNP implements various

negotiation protocols.

An agent's negotiation strategy is the specification of the sequence of actions (usually

offers and responses) that the agent plans to make during the negotiation [LMJOO].

An agent's coordination, on the other hand, is the knowledge required in order to

coordinate its actions with those of the other agents participating in the Combined

Negotiation.

An important part of our research was to come up with a mechanism to represent

negotiation strategies and coordination. Being aware of the fact that most existing

agent-mediated e-negotiation systems rely on hardcoded schemes to represent

u

n

135

sù-ategies, we chose a rule-driven approach to represent, manage, and explore
strategies. The advantages of this choice are the high level of abstraction of the rules,
their closeness to human understanding, their versatility, and their ability to be
modified at run time. We also chose to represent coordination knowledge as if-then-
rules for the same reasons we stated above. In addition to these advantages, our
representation was also in response to the first two architectural objectives set out in
Chapter l (Section 1.3, (5)a. and (5)b.). The solution is indeed realistic, and is
implemented using off-the-shelf rule engines.

Plenty of time was spent on validating this architectural choice. To this end, several
negotiation protocols were implemented on GNP, with a focus on the English
auction, the Dutch auction, and the multi-item Dutch auction.

We devised bidding strategies, coded them as rules, supplied them to the software
agents, used CONSENSUS to conduct agent tournaments, and watched and
documented their behavior. Similarly, we devised and tested coordination schemes
between agents.

Using this approach, we demonstrated that we could capture a wide range of bidding
strategies and bid coordination schemes, using a rule-based approach, while
supporting a wide spectrum of negotiation types. This was tested in agent
tournaments within simulated markets, and the results are encouraging.
This work led to two publications [BAK01] and [BAL+02]. Hakim Alj participated in
the implementation of the system as part of his Master's thesis, and Kim Levy helped
with the agent tournaments.

In the remainder of this chapter, we present a modified version of the following
paper:

A Rule-driven Approach for Defining the Behavior of Negotiating Software Agents,
by Morad Benyoucef, Hakim Alj, Kim Levy, and Rudolf K. Keller. In Proceedings of
the Fourth International Conference on Distributed Communities on the Web,
Sydney, Australia, April 2002. Springer. LNCS. To appear.

u

0

136

A Rule-driven Approach for Defining the Behavior of

Negotiating Software Agents

Abstract. One problem with existing agent-mediated negotiation systems is that they

rely on ad hoc, static, non-adaptive, and hardcoded schemes to represent the behavior

of agents. This limitation is probably due to the complexity of the negotiation task

itself. Indeed, while negotiating, software (human) agents face tough decisions. These

decisions are based not only on the information made available by the negotiation

server, but on the behavior of the other participants in the negotiation process as well.

The infonnation and the behavior in question are constantly changing and highly

uncertain. In this paper, we propose a rule-driven approach to represent, manage and

explore negotiation strategies and coordination information. Among the many

advantages of this solution, we can cite the high level of abstraction, the closeness to

human understanding, the versatility, and the possibility to modify the agents'

behavior during the negotiation. To validate our approach, we ran several agent

tournaments, and used a rule-driven mechanism to implement bidding strategies that

are common in the English and Dutch auctions. We also implemented simple

coordination schemes across several auctions. The ongoing validation work is

detailed and discussed in the second part of the paper.

6.1 Introduction

According to Kephart et al., over the course of the next decade, the global economy

and the Internet will merge into an information economy bustling with billions of

autonomous software agents that exchange infonnation goods and services with

humans and other agents [KHGOO]. In addition to exchanging information, software

agents can be programmed to search, compare, leam, negotiate, and collaborate

[Jon99], making them particularly useful for the information-rich and process-rich

environment of electronic commerce (e-commerce) [MGM98]. As e-commerce

usually involves information filtering and retrieval, personalized evaluation, complex

u

n

137

coordination, and time-based interaction (among other things), it can greatly benefit

from the introduction of software agents. Therefore, we talk of agent-mediated e-

commerce. A simple e-commerce tt-ansaction can be seen as a three-phase scenario:

(1) finding a partner for the transaction; (2) negotiating the temis of the transaction

using a recursive process; (3) and carrying out the transaction. We are interested in

the negotiation phase, and particularly in its automation by way of software agents

capable of mimicking some of the behavior of human negotiators. We believe that

agent-mediated negotiation absorbs many of the costs and inconveniences of manual

negotiation [PUF99].

The negotiation process itself is a form of interaction made of protocols and

strategies. The protocols comprise the rules (i.e., the valid actions) of the game, and,

for a given protocol, a participant (human or software) uses a strategy (i.e., a plan of

action) to maximize her utility [GMM98]. Based on this, many strategy-enabled

agent-mediated negotiation systems have been described in the literature.

Unfortunately, most of them use hardcoded, predefined, and non-adaptive negotiation

strategies, which is evidently insufficient in regard to the ambitions and growing

importance of automated negotiations research. The well-known KASBAH agent

marketplace [CM96] is a good example of such systems. To overcome this

shortcoming, we believe that negotiation strategies should be treated as declarative

knowledge, and could, for instance, be represented as if-then rules, and exploited

using inference engines.

The focus of our research is on combined negotiations [BAV+01], a case where the

consumer combines negotiations for different complementary items that are not

negotiated on the same server. For instance, a consumer may want to simultaneously

purchase an item and its delivery by engaging in separate negotiations. If software

agents are assigned to these negotiations, this poses a coordination problem between

them. Many multi-agent negotiation systems found in the literature still rely on ad

hoc schemes to solve this problem [IFS+00, PriOO]. Again, we believe that a

u

0

138

declarative approach can be used to describe and manage agent coordination across

several negotiations.

To validate our approach, we designed and implemented an automated negotiation

system called CONSENSUS [BAV+01] that enables a human user to instantiate one

or more software agents, provide them with negotiation strategies and coordination

know-how, register them on corresponding negotiation servers, and launch them. The

agents use the strategies to negotiate according to the protocol dictated by the server,

and the coordination know-how to coordinate their actions. An example of a strategy,

applicable to an English auction (one of many existing negotiation protocols) is: "i/

you notice any form of jump bidding, then quit . Jump bidding means making a bid

that is far greater than necessary in order to signal one's interest in the auctioned item

(see Section 6.4). An example of coordination know-how, applicable to two agents

bidding as partners in two separate auctions for two complementary items is: "if your

partner looses in its auction, then stop bidding and wait for further instructions (see

Section 6.4). We are currently testing various strategies and coordination schemes by

way of agent tournaments. A large part of the paper is dedicated to this ongoing work.

Section 6.2 of the paper gives some background on strategy-enabled agent-mediated

e-negotiations, and then presents our approach. Section 6.3 details our view of agent

coordination after reviewing some related work. Section 6.4 is dedicated to the

validation tests we are currently conducting. We wrap up the paper with a conclusion

in Section 6.5.

6.2 Negotiation Strategies

6.2.1 Agent-mediated E-negotiation

Electronic negotiation (e-negotiation) takes place when the negotiating function is

performed by (networked) computers. Fully automated e-negotiation requires that all

parties involved be software agents, semi-automated e-negotiation involves a human

negotiating with a software agent, and manual e-negotiation refers to processes in

which all parties are human [BSS96]. Within fully automated e-negotiation, Parkes et

u

0

139

al. identify autonomous and semi-autonomous agents. The fonner require complete

preferences in order to represent the user, the latter only bid when they have enough

knowledge, and query the user when their best action is ill-defined given the current

information [PUF99]. Agents can be involved in competitive negotiations when they

have conflicting interests. They can be involved in cooperative negotiations when

they all aim at satisfying the same interest [BS97J.

In addition to their use in e-negotiations, agents are actually used in other phases of e-

commerce transactions, including shopping, advertising, delivery, marketing and

sales analysis [KHGOO]. Pricebots, for instance, are software agents that employ

price-setting algorithms in an attempt to maximize profits, thus helping sellers to

increase flexibility in their pricing strategies. An example taken from [GK99] points

to books.com, which implements real-time dynamic pricing by using pricebots to

monitor prices on competitor sites and offer the customer a lower price. Shopbots, to

cite another example, are agents that gather information from multiple on-line

vendors about the price and quality of goods and services [GK99]. One such system

is mysimon.com.

6.2.2 Challenges of Strategy-enabled Negotiation Systems

Designing, building, and tuning software agents before letting them loose in widely

competitive scenarios like e-negotiations, inhabited by (human and software) expert

negotiators, happens to be an arduous task [GGR98]. This is why most strategy-

enabled agent-based systems use predefined and non-adaptive negotiation strategies

in the generation of offers and counteroffers [WZKOO]. Some commercial online

auction sites such as eBay.com, offer the possibility of proxy bidding - i.e., an agent

with a simple strategy: bid until you reach your reserve price, by going up each time

with a certain increment." On the academic front, the buying (selling) agents of the

KASBAH marketplace can choose between three negotiation strategies: anxious,

cool-headed and frugal, corresponding to linear, quadratic, and exponential

functions, respectively, for increasing (or decreasing) their bid (or ask price) over

time [CM96].

u

140

0 Negotiating agents face tough decisions such as whether or not to accept a bid,
whether or not to bid, how much to bid, etc. Those decisions must profit from all the
information available in the marketplace: description of the good, its expected resale
value, price history, participants' identities and behavior, etc. [GGR98]. This
information is constantly changing and highly uncertain - new goods become
available, buyers come and leave, prices change, etc. To complicate things further,
the participants' goals, beliefs, intentions are expected to change over time [NLJ96].

A successful strategy must take into account the strategies of the opponents [GGR98]
as well as their reputation [KHGOO]. It must also protect against the opponents uying
to extract the agent's private infonnation. In a bargaining situation for instance, the
buyer agent usually knows its owner's willingness-to-pay for an item [Var95]. If the
seller agent (human or software) discovers this information, it can make a take-it-or-
leave-it offer that will extract the buyer's entire surplus. Finally, we should mention
that, with eBay.com's proxy bidding, one must reveal the highest price one is willing
to pay, thus giving the site information that could be used to cheat the bidder [PriOO].

Server I Serrer 2

u

Protocol
Rsposilory

^>
Negotiatioft l Negotiation 2

..........A......

Server m

-3

Negotiation n

-—t—

Protocols

Coordination

at

Stratèges

Coordmation

Repository
Strategy
Pepository

Figure 6.1; Protocols, Strategies and Coordination in CONSENSUS

6.2.3 The CONSENSUS Approach

As mentioned in Section 6.1, the basic components of automated negotiation systems
are the protocol and strategies [LWJ01]. The protocol defines the interaction between
the agents. The strategies specify the sequence of actions the agent plans to make

il%:;'

0

141

during the negotiation. In CONSENSUS, the protocol (i.e., the negotiation rules) is

communicated to the participants before they engage in the negotiation. A human

negotiator would consult the protocol; a software agent would download it in a usable

format (XML for instance). However, the strategies are the responsibility of the

negotiator. A human negotiator would use her strategies to make offers or to respond

to her opponents' offers; a software agent would do the same, based on the

instructions provided by its creator. In addition to protocols and strategies, we

introduce a third component: coordination. This is the information that the agents

need in order to coordinate their actions while they participate in a combined

negotiation (see Section 6.1). Figure 6.1 presents our view of the three components.

Two approaches inspired our representation for the strategies. Su et al. use a high-

level rule specification language and GUI tools to allow human negotiation experts to

add and change negotiation strategies at run-time [SHHOO]. Each strategy is

expressed as an Event-Trigger Rule, which specifies the condition to be checked and

the actions to be taken by the negotiation server. Rules are activated upon the

occurrence of specific events during the negotiation process. Although not directly

related to e-negotiations, the work of Grosof et al. on contract representation takes a

similar approach [Gro97]: since contract terms usually involve conditional

relationships, they are expressed as rules. Similarly, we see strategies as rules that can

be fed to the agents before and/or during the negotiation. Strategies such as "if the

bidding gets too intense, then abandon the negotiation", and "if you notice any jump-

bidding, shielding, or sniping, then wait for further instructions" can indeed be nicely

coded as rules (see Section 6.4).

Rules drive the activity in the agents by describing the action(s) to take when

specified conditions are met [MBOO]. They are at a relatively high level of

abstraction, and are closer to human understanding, especially by domain experts who

are typically non-programmers. They are relatively easy to modify dynamically

[RGW99], and new behavior can be specified by adding rules, without modifying the

previous ones. Furthermore, mles can be augmented with procedural attachments so

u

142

0 that they have an effect beyond pure-belief inferring [GLC99]. Finally, off-the-shelf

rule engines can be used to implement nile-based systems. Figure 6.2 shows two

rules in the ILOG JRules syntax [IL002], which implement proxy bidding. Rule 1 is

triggered when the agent is trailing while its reserve price is not met. In this case it

places a bid equal to the actual bid plus the increment. Rule2 enables it to quit

whenever its reserve price is met.

// If you are not leading and you have not
// reached your reserve price, then bid.
Rule Rule1

{
When {?x: TheElement(iLead == false;

(highestBid+mylncrement) <=
myReservePrice);}

Then {modify? x
{action = "BID";}

}
};

// If you are not leading and your bid is
// greater than the reserve price, then quit.
Rule Rule2

{
When {?x: TheElementfiLead == false;

(highestBid + mylncrement) >
myReservePrice);}

Then {modify ?x
{action = "DROP";}

}
};

Figure 6.2: Proxy bidding in the JRules syntax

6.3 Coordination of Negotiating Agents

6.3.1 Background and Related Work

The interaction between agents can vary from simple information interchanges, to

requests for particular actions to be performed and on to cooperation (working

together to achieve a common objective) and coordination (arranging for related

activities to be performed in a coherent manner) [JFL+01]. Multiple agents need to be

coordinated to prevent anarchy; meet global constraints; distribute expertise,

resources or information; deal with dependencies between agents; and ensure

efficiency [NLJ96]. In CONSENSUS, there is clearly a need to coordinate the

software agents (see Section 6.1). First, in a situation where many agents participate

in separate negotiations with the goal of purchasing one item (e.g., they engage in

many concert ticket auctions with the goal of purchasing one ticket), we need to make

sure that only one agent finalizes its deal, and that only the agent in the cheapest

auction (i.e., the one with the smallest asking price) is the one to bid. It is common in

online auctions to forbid bidders from breaking their commitments. Thus, if more

u

0

143

than one agent end up winning their auctions, they would not be able to retract, or at

best they would be, but they would pay a penalty. Second, in a situation where

multiple agents negotiate a package of complementary items (i.e., there is no use for

one item without the others), we need to make sure that all the items or none are

purchased in order to avoid exposure. Exposure occurs when we need many items,

enter negotiations for all items, and end up making a deal on some but failing to make

a deal on others. Coordination in CONSENSUS will be discussed further, but first,

we review some related work.

The Biddingbot [IFS+00] is a Multi-Agent System (MAS) that supports users in

monitoring multiple auctions. It consists of one leader agent and several bidder

agents, each one being assigned to an auction. Bidder agents gather information,

monitor, and bid in the multiple sites simultaneously. The leader agent manages

cooperation among them, sends user requests to them, and presents bidding

information to the user.

Another system, designed at the HP Labs in Bristol, UK, takes a different approach.

Instead of a MAS, it uses one single agent [PriOO]. The agent participates in many

auctions for one item, and coordinates bids across them using a two-part algorithm:

(l) a coordination component, which ensures it has the lowest leading bids; and (2) a

belief-based learning and utility analysis component to determine if it should

deliberately lose an auction in the hope of doing better in another one later.

Not directly related to e-negotiation research, but highly relevant in the way it deals

with coordination in MAS is the ARCHON project [BCL96]. Software agents are

divided into two layers: an ARCHON layer and an application program. The fonner

encapsulates knowledge about cooperation, which is domain independent and

encoded in terms of production mles. The latter performs the problem solving

process. The separation of cooperation knowledge from application knowledge

enables generic cooperation features to be reused for other applications.

u

n

144

6.3.2 The CONSENSUS approach

Inspired by the ARCHON approach, we treat coordination information as declarative
knowledge, and represent it as if-then rules which the agents exploit using an
inference engine. Since our agents are already coupled with rule engines (for their
strategy component), it is convenient to use the same rule engine to execute the
coordination. We distinguish between strategy rules (described in Section 6.2), used
to determine the action to take based on the information about a particular
negotiation, and coordination rules, which are used to determine the action to take
based on infonnation about other negotiations (possibly combined with information
about the negotiation itself). Coordination rules, as well as strategy rules have
conditions that are built on the state of the agent, the amount (spent, to spend,
committed, remaining, etc.), the remaining time in the negotiation, the frequency of
bids,etc.

Suppose we have two agents participating in separate negotiations with the goal of
purchasing just one item. The following rule ensures that Agentl does not commit
itself if Agent2 is already coinmitted: "if Agent2 is leading or is in the process of
bidding, then Agent! should wait." Figure 6.3 shows the rule in the JRules syntax.
Note that this rule is too restrictive since an agent cannot make a bid if the other one
is leading. Evidently, this should not always be the case. If breaking commitments is
allowed (perhaps at a certain cost) the rule in question can be relaxed, and we may
have the two agents leading at the same time while making sure that one of them
drops out of the auction before it is too late.

Suppose now that we have two agents participating in separate negotiations with the
goal of purchasing two complementary items. The following rule minimizes the risk
of exposure (see Section 3.1): "ifAgent2 is trailing, and its chances of making a deal
are slim, then Agentl should wait for further instructions."

s
Ï

u

145

0 // lfAgent2 is leading, or is in the process of bidding, then Agentl waits.
Rule coordinatd

Priority = high;
When {

?y: TheElement(iLead == false);
Blackboard(?b1: get("u2","iLead"); ?b2:
get("u2","iBid")) from getBlackboardO; evaluate(?b11| ?b2);

Then {modify ?y
{action = "DO NOTHING";}
assert logical BidBloc() {ref = new Integer (0);}

};

Figure 6.3: A coordination rule in the JRules syntax

Finally, for practical reasons, we adopted a coordination approach where the agents
post and read from a general blackboard. Coordination rules are therefore triggered
by information that the agents make available in the blackboard (see Figure 6.3). This
approach is suitable only if the tasks are assigned, a priori, to the agents, if the
number of agents is small, and if the agents share a common domain understanding.
Evidently, all requirements are satisfied in our case, otherwise, the blackboard
scheme would result in a severe bottleneck.

6.4 Validation

In order to validate our choice of representation for strategies and coordination, we
used our agent-mediated negotiation system (i.e., CONSENSUS) to conduct bidding
tournaments. The agents function in repeated cycles we call pulses. A pulse is made
of four steps as described by the following piece of code:

repeat
sleep (p);

getlnformation ();
think ();
act ();

until (state = "winning" or state = "loosing" or state = "dropping")

The pulse's steps are:

u

n

146

(1) sleep (p): the agent goes to sleep for a period p that can be fixed or detennined

dynamically;

(2) getlnformation (): the agent queries the server and updates its private

infomiation;

(3) think (): the agent applies the rules to determine the action to take; and

(4) act (): the agent takes the appropriate action.

The possible actions are:

(1) do nothing: take no action for the time being;

(2) bid (v): bid the amount v; and

(3) drop: quit permanently. Finally, the agent's states are: trailing, bidding,

leading, winning, loosing, and dropping.

Each agent instantiates a rule engine, enabling it to exploit the rules. There are three

categories of rules:

(1) basic rules, which determine the agent's behaviour within the negotiation

protocol at hand;

(2) sti-ategy rules; and

(3) coordination rules.

Using this setting, we conducted bidding tournaments within a simulated market, and

we present here the results involving the English and Dutch auctions, and some

coordination schemes across them.

6.4.1 English Auction

In an English auction, the participant has to decide whether or not to bid, how much

to bid, and whether or not to abandon the auction (see the actions above). Observing

the opponents (as in real life auction houses) is essential in taking such decisions, and

by doing so, the participant gains two types of infonnation: (1) how many bidders

have dropped out of the auction (since they have lower valuations than the current

u

n

u

147

bid); and (2) at what prices they dropped out [Mes88]. The participant may also try to

predict its opponents' behavior, and sometimes that means guessing their private

information. Finally, it might be helpful to know if the opponents are symmetric (i.e.,

they use the same measurements to estimate their valuations), and if they have secret

information about the item [Ago02].

Optimal bidding in an English auction means bidding a small amount more than the

current bid until you reach your valuation and then stop. This strategy, described by

the rules in Figure 6.2, has the effect shown in Figure 6.4. Notice that the time is in

seconds, but a real online auction might take a week or more. The winner (Agent in

this case) is the one with the highest valuation (i.e., reserve price).

Since online auctions take place over a long period of time, it is hard to monitor them.

The reasons are: (1) there is an Internet connectivity cost every time you enter a bid;

and (2) there is an opportunity cost associated with logging on and entering the bid.

An agent should optimize connections by connecting only when it is relevant to do

so, and should be able to determine rapidly whether or not the auction suits its needs.

Dropping out early means it can enter another auction early. Figure 6.5 shows Agent

adjust its update rate to the average bidding rate. At the start of the auction, it makes

few interventions, and as the activity increases, it participates more often (monitors

the auction closely). Note that in this case, the agent makes bids every time it updates

its information, but this is not an obligation.

In auctions where no minimum increment is enforced, we talk of spontaneous

bidding. In this case, it might be useful to observe the bidding process and adapt

one's increment to that of the opponents. Figure 6.6 shows Agent doing exactly that.

Jump bidding means entering a bid larger than necessary to send a signal to the

opponents. The sender and the recipient of the signal may be better off in a jump

bidding equilibrium: the sender saves bidding costs by deterring potential

competition; and the recipient saves the costs of bidding against a strong opponent

[ET99]. Figure 6.7 shows Agent detecting a jump bid made by Player and deciding to

quit. Some opponents continue to bid but Player finally wins. In Figure 6.8, Agent

n

148

responds with jump bids until Player (and everyone else) quits. In Figure 6.9, Agent

detects a jump bid, and waits until the bidding goes back to normal before bidding

again.

Sniping means waiting until the last minute of the auction, and trying to submit a bid,

which barely beats the high bid and gives the opponents no time to respond.

Obviously, if all bidders follow a sniping strategy, the game would become

equivalent to a first-price sealed-bid auction, with all the bids submitted at the end. In

Figure 6.10, Agent snipes and wins, and in Figure 6.11, three agents engage in a

sniping war.

Bid shielding happens when a bidder puts in an early low bid (say $10) on an item,

and then gets a friend (or a false identity) to put in an extremely high bid (say $500)

on the same item. The high bid acts as a shield for the low bid, keeping anyone else

from bidding. Just before the end of the auction, the bidder retracts the $500 bid,

leaving the $10 bid as the winning bid on an item that should have gone for a higher

price. Figure 6.12 shows Playerl and Player2 perform a shielding. Agent quits

because the shield exceeded its valuation, and Playerl wins after Player2 retracts its

bid. In Figure 6.13, Agent detects the shield and waits for it to be removed to snipe

and win.

It can happen that a bidder reconsiders an item's valuation by observing how the

opponents behave. Figure 6.14 shows Agent increase its valuation when its reserve

price is met, the auction is about to close, and few participants remain. It changes the

reserve price from 600$ to 900$ and stays in the game to win.

Finally, Figure 6.15 shows a combination of a several tactics. Agent avoids jump

bidding by entering a waiting state, and at the end, it snipes and wins. This could be a

way to hide your real intentions from your opponents.

6.4.2 Dutch Auction

When the market price of the auctioned item is a common valuation among bidders

(e.g., an auction for personal computers), a bidder who wins the auction is the one

u

0

u

149

with the highest yet possibly overrated valuation. This is called the winner's curse. In

Dutch auctions, where a bidder selects a cut-off price at which to claim the item so

long as no one else daims it, all participants try to avoid the winner's curse by

shading down their bids slightly below their valuations (i.e., bidding less than what

they think the object is worth) [Mes88].

In Dutch auctions, no relevant infonnation is disclosed in the course of the auction,

only at the end when it is too late, which makes designing strategies a futile task. This

is not the case with multi-item Dutch auctions where bidders watch the transaction

prices, the number of remaining items (if available), the remaining time (if available),

and decide whether to bid, wait for the price to drop, or quit. We designed a multi-

item Dutch auction as follows: (1) identical items are put on sale and the unit price is

made public, (2) as time passes, the seller decreases the unit price to generate interest,

and (3) a buyer's bid is the quantity to purchase at the current price. The basic

behavior of our agents is not different from that of the English auction. Instead of

bidding a price, the agents bid a quantity. When created, an agent is given the

quantity to buy, the minimum acceptable quantity, and the user's valuation.

We define a "safe buying" tactic as: "as the price decreases, when it reaches your

valuation, buy the minimum quantity. Keep watching the auction, and before it closes,

buy the remaining items (possibly at a smaller price that your valuation)." The effect

of this tactic is shown in Figure 6.16, where Agent (right) buys 4 items (minimum),

and later, buys 3 more items to reach its maximum quantity of 7.

We define "panic buying" tactic as: ltas the price decreases, if you see that a large

number of items are sold, and your valuation is not met, then it might mean that your

valuation is too low. Adjusting your valuation up will permit you to buy at least the

minimum quantity." In Figure 6.17, Agent (right) increases its valuation and buys the

minimum 4 items needed. Notice that the risk of missing the minimum quantity is

small, but the risk of the winner's curse is high.

Finally, Figure 6.18 shows the effect of a the following "patient buying" tactic: "if the

price drops fast, the buying rate is low, and you reach your valuation, then lower

0

150

your valuation". This tactic might save the buyer from the winner's curse as it helps

get the items at a lower price. There is however a risk that someone else buys all the

items before the agent makes its move.

6.4.3 Coordination

Using the same setting as before, we made several agents participate in separate

auctions at the same time, and used the mle-based approach to manage their

coordination. Here are some results.

Suppose we want two complementary items A and B, and we engage Agent l in an

English auction for A, and Agent2 in another English auction for B. The two agents

negotiate separately, but they coordinate their actions using rules. Figure 6.19

highlights the following coordination scheme: "if Agent 1 (left) detects a jump bid

(i.e., the opponent is serious about winning, therefore Agent 1 may loose its auction)

then Agentl must quit. In this case, Agent2 (right) must also quit to avoid exposure.

Now, suppose we want item A or item B, and we launch Agent l in an English

auction for A, and Agent2 in a Dutch auction for B. Figure 6.20 shows the effect of

the following two coordination rules: "if the going price in the Dutch auction (right)

is less than the current bid in the English auction (left), and our valuation is higher

than the going price, we buy in the Dutch auction", "if the going price in the Dutch

auction is less than the current bid in the English Auction, we quit the English

auction."?î

For the following tests, three agents Agentl, Agent2, and Agent3 participate at the

same time in separate (and independent) English auctions for items B, C and A

respectively. The goal is to win "(B or C) and A", that is "B and A" or "C and A".

Figure 6.21 shows Agentl and Agent2 (left) bidding in parallel, and only one is

leading at the same time while bids are always made in the cheapest auction. The

figure also shows Agent3 (right) quitting (its reserve price is met), causing Agentl

and Agent2 (left) to quit. In Figure 6.22, both Agentl and Agent2 (left) loose (their

reserve price is met). At the same time, Agent3 (right) quits. Figure 6.23 shows

u

n

151

Agent3 (right) snipe and win, and Agentl and Agent2 (left) continue until Agent2

wins. In Figure 6.24, Agent3 (right) engages in a sniping war and looses to another

sniper. Agentl and Agent2 (left) have no choice but to quit.

6.5 Conclusion

The aim of the paper was to demonstrate that we could capture a wide range of

bidding strategies and bid coordination schemes, using a rule-based approach, while

supporting a wide spectrum of negotiation types. The well-known advantages of rule-

based systems are the modularity and the uniformity (knowledge is represented using

the same fonnat). The possible inefficiency of rules and their eventual slow

processing can be overcome by compiling the rules. Graphical tools can also be used

to browse the rule base in order to verify its coherence. Bid strategies usually involve

fairly complex optimization algorithms and forecasting that could not be expressed

directly as mles. We propose to make use of optimization algorithms and forecasting

as procedural attachments in the action part of the rules.

Basic behavior of agents, various bidding tactics and coordination schemes across

multiple auctions were implemented using our representation. They were tested in

agent tournaments within simulated markets. So far, the results are encouraging and

other possibilities are yet to be explored. As further points of interest we see the

following. (1) The flexibility of this representation should be tested, and the limits of

its expressiveness should be sought. (2) It is no secret that rules are a bit restricted in

their ability to be adapted automatically, as agents are usually expected to adapt over

time to improve their perfonnance. It should therefore be investigated whether our

approach can lend itself to machine learning techniques [WZKOO, ZS98]. (3) We

have been considering negotiations where the only negotiable attribute is the price,

but in the case of a plane ticket, for instance, the attributes could be the price, the date

of the flight, the airports (departure and destination), etc. Coordination across several

multi-attribute negotiations should therefore be studied since it generates more

complexity.

u

0
1200

1000

g
600

400

0

^_
^.- ŝ_ -o0-

-s'̂

lOAgent

o Opponents

10 20 30 40 50

tim» (••e)

800

d»
rf"600

f OAsenl
s

^ •Playr400

^
9. 0 Opponent

200 o»
0

20 40 60 80100

me (ace)

Figure 6.4: Optimal bidding figure 6.5: Adjust update rate

152

1000

800

w 800

l «°°
200

0

~~^T
3\s>pdl°°

»f

0»g«nl

• Player

0 Opponents

0 20 40 80 SO 1CÛ

lima («•c)

Figure 6.6: Adapt increment

s
l

1200

1000

800

600
400

200

0
ID 0

^
t

0 Agent

•Playar

o Opponents

0 20 40 60 80100

tim» (aoc)

s

800

600

400

200

0

•»

^f&

^̂_
Ofwm

)K Player

0 Opponents

0 20 40 60 80

tlm.C.c)

Figure 6.7: Jump bid - detect and
quit

g

800

600

400

200

0

^-y
^d^°

f
^

OAgent

• Play «•
0 Opponents

Q 20 40 60 80100

time (anc)

Figure 6.8: Jump bid - detect and
respond

s

600

500

400

300

200

100

#,tp^
zy

^
^

0 Agent

0 Opponents

0 20 40 60 80100

11 mu (anc)

Figure 6.10: Snipe and win

Figure 6.9: Jump bid - detect and
wait

800
700
600

g 500
400
300
200
100
0

^^"00^
3 OAgentl

AAgent2

•Agenl3

o Opponents

0 50

tlm. (>.c)
100

Figure 6.11: Sniping war

u

s
l

2000

1500

1000

500

0
ggSOOCOA

A Play erl

B Player2

0 Agent

0 Opponents

0 10 20 30 40

time (aec)

Figure 6.12: Shielding - detect
and drop

g
§

2000

1500

1000

500

0 _o<L

0 Agent

APIayeri
•PlayeiS

o Opponents

0 20 40 60 80100

lima (SBC)

Figure 6.13: Shielding - detect
and snipe

n

s
l.

800

600

400

200

0

^
o'o

OAgml

& Opponents

0 2040 60 80

time (»c)

1DOO

aoo

g 800

l 4°°
200

- ^̂»_<t•o
0/lgenl

K Player

0 Opponents

0 20 40 SO

time(••C)

100

Figure 6.14: Increase valuation Figure 6.15: Jump bid - detect,
wait & snipe

7

I;
ï-'
il ^>^^.

A: 3î
y .

20 40 60

tim»(»«c)

s N°
S ma

200

0 ^

-°-oT
U o

0 Age nt

;0 Opponent»

0 20 40 SO

tlm«(a«c)

Figure 6.16: Multi-item Dutch - safe buying

7
B

l
3

2

0
-•

JS:
.7 \ ^

0 20 40 60 80 100 120

tlm* (aw:)

1000

s
î «O

A& ~Cë~
Agant

î Opponenlits

20 40 60 BO 100 120

tlm« (••e)

Figure 6.17: Multi-item Dutch - panic buying

î

7

5
4

3
2
1

0

-r^ î
y x y x -^T

0 20 40 60 80 1C»

lime (aec)

1000

800

g GOO
3 400

200

0

"^-
OAgml

0 Opponents

0 20 40 60

time (aec)

100

Figure 6.18: Multi-item Dutch - patient buying

1000

800

g 600

l 400
200

0

•°'
^-

-T
_^1

0-
-^XT

0 Agent

•Player

o Opponents

0 20 40 60 80

tlm.(..e)

1000

800

g 600

l 400
200

0

-Q^
-r

<?

-^
0 °

0 Agent

o Opponents

J

0 20 40 60 80.

tin» (••c)

Figure 6.19: Coordination - two English auctions

153

u

n
1000

800

g 600^
«m

2004

0
0

~F
I:

^_
-s-

OAgenl

0 Opponenis

0 20 40 60

tlma («e)

100

sm

700
600 ^

g 500
g 400.
'g. 300

200
100
0

ï

ïfc-

0 20 40 60

tlmn (sec)

100

|0 Agent

• Opponent 1

lAOpponentS

^Opponents

|XOppon«nt4

i •Opponents

l + Opponents

Figure 6.20: Coordination - English and Dutch auctions

e

l

900

an
700
600
SU)
<00
300
200
ÎOO

0

1*^

.sî_ J

/
•-^-

50 100

time (sec)

150

1000

800

g 800

l <°°
200

0

^
ï^

<p

A<«enS

o Opponents

0 50 100

ttm» (••e)

150

Figure 6.21: Coordination - Agent3 quits, Agentl and Agent2 also quit
1000

800

g BOO

l <°°
200

0

^
•^gentl

•Opponenlsl

•»gent2

ni0pponents2

0 50 100

«m. (re)

1000

800

S emî —

l 4°°^
200

0
t
ï̂^
^^_ »Ag<nt3

«Opponents

0 50 100

time (SBC)

150

Figure 6.22: Coordination - Agent l and Agent2 loose, Agent3 quits
1000

800

g 5004.

l «'°
200

0

1^

»Ag»nl1
•Opponents

||Agent2

•Opponents

0 50 100

lime (aec)

150

500
450
400
350

sm
250
200
150
iœ
50
0

A

AAgenl3
-Opponents

o 20 <o en sa 100120
tiine fs» (^

Figure 6.23; Coordination - Agent3 snipes and wins. Agents 1 and
Agent2 keep going

800

600

s
40)

200

0

50 100

m. (aie)

^Agentl

aQpponents

11 Agent2

•Opponents

0 150

s

600

500

400

300

200

100

0

^ AAgentS

•Sniper

—Opponents

0 50 100

ttm< (see)

150

Figure 6.24: Coordination - Agent3 snipes and looses, Agentl and
Agents2 quit

154

u

n

CHAPTER?

CONCLUSION

In this chapter, we present an assessment of our work, we review the major

contributions, and detail the points that need to be addressed as future work.

7.1 Assessment

A combined negotiation (CN) involves negotiating several interdependent goods in

separate and independent negotiations. We introduced and defined this new

negotiation type, pointed out its challenges, identified the research issues it raises,

and suggested a software solution to conduct it. The solution is a combined

negotiation support system (CNSS) that a human consumer can use according to the

following e-commerce negotiated transaction scenario: (1) a discovery phase where

the consumer uses the system to find the goods and the providers of the goods; (2) a

modeling phase where she uses the system to specify the sequencing of the

negotiations and the dependencies between them, as well as to enter the negotiation

strategies and coordination information; and (3) an enactment phase where the

consumer runs the model, and possibly intervenes in it whenever necessary.

With that in mind, we designed a complete architecture for a CNSS we call

CONSENSUS. The architecture had to be: (1) realistic so that we could implement it;

(2) based on reuse and off-the-shelf components so that we would finish its

implementation in time to evaluate it, (3) modular and resilient to evolving

functionality so that several people could participate in implementing it, and

prototypes could be used immediately to validate various functionalities individually;

and finally (4) flexible enough to be used as a research infrastructure. The experience

u

0

156

reported in Chapter 4 [BAV+01] makes us believe we succeeded in achieving these
goals.

The driving idea behind our solution is: (1) a workflow that captures the sequencing
and the control flow of the CN, i.e., the CN know-how; (2) software agents that carry
out the individual negotiations, i.e., individual negotiation know-how; (3) sû-ategy
rules to help the agents decide what to do when there are many options to choose
from, i.e., negotiation strategy know-how; and (4) coordination rules to manage the
agents across several negotiations, i.e., coordination know how. Workflow
technology brings a high level of reliability; software agents bring automation; and if-
then rules provide modularity, unifonnity, a high level of abstraction, versatility, ease
of use, and the possibility to modify the knowledge dynamically.

An important challenge was to allocate functionalities to the four components
(workflow, agents, strategies, and coordination) in a clean an optimal way. Again, we
believe we succeeded in doing so [BAV+01].

The implementation of the architecture was incremental, and four people participated
in it, leading to CONSENSUS version 1.0 . It is clear that our architectural choices
and characteristics played an important role in making the implementation work
efficient and smooth.

Our experience with GNP proved to be positive. The generic qualities of GNP made
it possible for a non-programmer (i.e., an economist designing a new negotiation
protocol) to script a new negotiation within a reasonable time frame, and without an
excessive effort. Several auction types such as the English, Dutch, and multi-item
Dutch were implemented and used within CONSENSUS.

We used CONSENSUS and GNP to model and enact several simple and complex CN
cases. We were encouraged by the results, although many improvements are still
needed to make the solution easier to deploy and use by a non-initiated consumer.

u
Work is in progress to produce the next version.

0

u

157

We used the same settings as before to conduct bidding agent tournaments. The goal
was to show that we could rely on a declarative representation to provide software
agents with simple bidding tactics and simple coordination schemes. The tournaments
were not meant to evaluate tactics or to show that one tactic is more efficient than

another one. The goal was rather to show that tactics could be implemented as rules.

The results were encouraging (see Chapter 6 [BAK02]), and the experimentation
settings can be used for further investigations regarding the representation mechanism
itself, or for the evaluation of known and newly designed negotiation strategies.

7.2 Contributions

We divided our major contributions into three categories: conceptual, architectural,
and general.

Conceptual contributions

In this thesis, we set the basis for a new negotiation type: CNs. We also identified the
issues CNs generate, and their level of complexity. We demonstrated the need for a
CNSS to conduct them both at the B2C and the B2B level, and defined the

requu-ements for such a tool. We then devised a complete conceptual architecture for
a CNSS we call CONSENSUS.

We demonstrated that we could capture a wide range of bidding strategies and bid
coordination schemes, using a rule-based approach, while supporting a wide spectrum
of negotiation types.

We demonstrated the need for a formal description of negotiation rules, and
suggested UML statecharts as a mechanism to respond to this need. This enabled us
to understand, implement and test different negotiation protocols more thoroughly
before using them as nodes in a CN.

We participated in the drafting of a "negotiation taxonomy," as part of our
involvement and collaboration with the E-negotiations Group.

We showed the need for dynamism in CNs and pointed to the lack of flexibility in
static WfMS [BBK+02].

n

158

Finally, a CN eventually leads to a set of contracts between the consumer and the

different providers of the items (goods and services) that make the package. These

contracts are possibly interrelated, the same way the negotiations that lead to them

are. Electronic contracting (e-contracting) aims at providing IT support for all the

phases of a contract lifecycle. Two important phases are the drafting of the confract

and its fulfillment. Multiple interrelated contracts certainly bring another level of

complexity to e-contracting research. This research work is being pursued at the

moment as part of an internship at IBM T J Watson Laboratory in Hawthorne, New

York.

Architectural contributions

We experimented with a novel way of using workflows to model CNs at build time,

and to enact and monitor them at runtime, and used software agents as actors in the

workflow. We experimented with a declarative, rule-based representation of

strategies and coordination schemes. The basic behavior of software agents, various

bidding tactics, and coordination schemes across multiple auctions were implemented

using our representation. They were tested in agent tournaments within simulated

markets.

We contributed to the design and later to the validation of GNP by using instances of

it as negotiation servers in order to run the negotiations that made up the nodes of a

CN.

The proposed architecture was incrementally validated by proof-of-concept

implementations. A stable implementation of the architecture of CONSENSUS (i.e.,

version 1.0) is available.

General contributions

TEM is a large an ambitious project, and Combined Negotiations are just one facet of

it. Other directions are being taken, mostly in auction design, economic experiments

of new auction models, operations research applied to transportation, etc. This

research brought modest visibility to TEM in the e-negotiations community through

l

u

0

159

active participation in e-negotiations workshops, and e-commerce conferences.
CONSENSUS was also a winner at the 2000 IAC31 contest for best thesis proposal in
e-commerce.

7.3 Research Perspectives

The possibility to instantiate software agents from a formalized description of the

negotiation rules should be investigated. The same description could be used to

generate automatically the script that implements the negotiation on GNP, thus

making GNP an even more generic negotiation platform.

A High-level CN Specification Tool is yet to be implemented. It should enable the

user to visually specify the CN, and a workflow generator should be used to

transfonn the specification into a workflow. As the user of CONSENSUS might or

might not be a domain specialist, a library of domain-specific workflows should be

deployed.

The question of breaking commitments that a participant makes during the

negotiation process should be investigated along with its effect on CNs. This calls for

designing and implementing protocols that allow for commitments to be broken. GNP

is well suited for supporting such protocols, and when included as nodes in CNs,

these protocols may be studied using CONSENSUS.

The study of the cooperative behavior of software agents in conducting a CN looks

promising, and we could rely on GNP and CONSENSUS to pursue it. Taking a

similar approach, the agents' competitive behavior could be studied.

Integrating a dynamic WfMS into the current prototype of CONSENSUS will enable

user intervention through the Workflow Monitoring and Control Tool of the current

CONSENSUS architecture. A wish list of dynamic modifications required for CNs

should be produced. We need to be aware of the shortcomings and limitations of

current dynamic WfMSs in respect to the modeling and running of CNs. These

u
Institute for Advanced Commerce. IBM TJ Watson research Lab. http://www.research.ibm.com/iac/

0

160

limitations should give us a valuable input for future versions of current dynamic

workflow systems.

Regarding the rule-based representation of strategies and coordination, the following

points should be investigated:

o The representation's flexibility should be further tested, and the limits of its

expressiveness should be explored.

o It is no secret that rules are somewhat restricted in their ability to be adapted

automatically. However, agents are usually expected to adapt over time to

improve their performance. It should therefore be investigated whether our

approach can lend itself to machine learning techniques.

o We have been considering negotiations where the only negotiable attiibute is the

price, but in the case of a plane ticket, for instance, the attributes could be the

price, the date of the flight, the airports (departure and destination), etc.

Coordination across several multi-attribute negotiations should therefore be

studied and complexity should be addressed.

Finally, we should leverage web services and adapt the CONSENSUS architecture.

To this end, we suggest the following:

o Replacing the "Product/Merchant Brokering System" with a "Discovery

Component" based on UDDI [UDDOOJ. This component will discover the

products and the providers of the items making the package that is the object of

the CN.

o Binding to the negotiations using WSDL [WSD01] and SOAP [SOAOO].

o The sequencing of the individual negotiations that make up the CN could be

realized using WSFL [WSFOlj.

u

n

BIBLIOGRAPHY

[Ago02] Agorics. http://www.agorics.com/new.html.

[Ama02] Amazon Website. http://www.amazon.com.

[AMEOO] AMEC Laboratory. http://econimerce.media.irut.edu/.

[AucOO] The Michigan Internet Auctionbot. http://auction.eecs.umich.edu/.

[BAK01] Morad Benyoucef, Hakim Alj, and Rudolf K. Keller. An Infrastructure
for Rule-Driven Negotiating Software Agents. In Proceedings of the
Twelfth International Workshop on Database and Expert Systems
Applications (DEXA 2001), pages 737-741, Munich, Germany,
September 2001. IEEE. Presented in 2nd e-Negotiations Workshop.

[BAK02] Morad Benyoucef, Hakim Alj, Kirn Levy, and Rudolf K. Keller. A
Rule-driven Approach for Defining the Behavior of Negotiating
Software Agents. In Proceedings of the Fourth International
Conference on Distributed Communities on the Web, Sydney,
Australia, April 2002. Springer. LNCS. To appear.

[B arOO] B argainfinder Website . http://www.bargainfmder.com.

[BAV+01] Morad Benyoucef, Hakim Alj, Mathieu Vézeau, and Rudolf K. Keller.
Combined Negotiations in E-Commerce: Concepts and Architecture.
Electronic Commerce Research Journal, 1(3):277-299, July 2001.
Special issue on Theory and Application of Electronic Market Design.
Baltzer Science Publishers.

[BBOO] A. Amit Basa and R.W. Blanning. A Formal Approach to Worknow
Analysis. Information Systems Research, 11(1), pages 17-36, March
2000.

[BBK01] Morad Benyoucef, Sarita Bassil and Rudolf K. Keller. Workflow
Modeling of Combined Negotiations in E-Commerce. In Proceedings
of The Fourth International Conference on Electronic Commerce
Research (ICECR-4), pages 348-359, Dallas, TX, USA, November
2001.

u

162

0 [BBK+02]

[BCL96]

[BEA02]

[BenOO]

[BicOO]

[BKOOa]

[BKOOb]

[BKOOc]

[BK99]

[BKL+00]

Santa Bassil, Morad Benyoucef, Rudolf K. Keller, and Peter G. Kropf.
Addressing Dynamism in E-Negotiations by Workflow Management
Systems. In Proceedings of the Thirteenth International Workshop on
Database and Expert Systems Applications (DEXA 2002), Aix-en-
Provence, France, September 2002. IEEE. Presented in 3rd e-
Negotiations Workshop. To appear.

M Bemdtsson, S. Chakravarthy, and B. Lings. Coordination among
agents using reactive rules. Technical Report HS-IDA-TR-96-011,
Skovde University, Sweden, October 1996.

BEA WebLogic Process Integrator.
http://www.beasvs.corn/p_rpduçts/weblofflc/integrator/.

Morad Benyoucef. Support for combined E-negotiations: Concepts,
architecture, and evaluation. Technical Report GELO-122, Université
de Montréal, Montréal, Québec, Canada, May 2000. Thesis proposal.

Martin Bichler. A Roadmap to Auction-based Negotiation Protocols
for Electronic Commerce. In proceedings of the
International Conference on Systems Sciences. 2000.

3rd Hawaii

Morad Benyoucef and Rudolf K. Keller. An Evaluation of Formalisms
for Negotiations in E-Commerce. In Proceedings of the Workshop on
Distributed Communities on the Web, pages 45-54, Quebec City, QC,
Canada, June 2000. Springer. LNCS 1830.

Morad Benyoucef and Rudolf K. Keller. A Conceptual Architecture
for a Combined Negotiation Support System. In Proceedings of the
Eleventh International Workshop on Database and Expert Systems
Applications (DEXA 2000), pages 1015-1019, Greenwich, London,
Britain, September 2000. IEEE. Presented in W17: Workshop on
Negotiations in Electronic Markets - Beyond Price Discovery - E-
Negotiations.

Morad Benyoucef and Rudolf K. Keller. A conceptual architecture for
a combined negotiation support system. Technical Report GELO-118,
Montreal, Canada, February 2000.

Morad Benyoucef and Rudolf K. Keller. A survey on description
techniques for auction rules in e-commerce. Technical Report GELO-
101, Montreal, Quebec, Canada, August 1999.

Morad Benyoucef, Rudolf K. Keller, Sophie Lamouroux, Jacques
Robert, and Vincent Trussart. Towards a Generic E-Negotiation
Platfonn. In Proceedings of the Sixth International Conference on Re-
Technologies for Information Systems, pages 95-109, Zurich,
Switzerland, February 2000. Austrian Computer Society.

u

163

n [BS97] Carrie Beamand Arie Segev. Automated negotiations: A survey of the
state of the art. Technical Report 97-WO-1022, Haas School of
Business, UC Berkeley, 1997.

[BSS96] Carrie Beam, Arie Segev, and J. George Shanthikumar. Electronic
negotiation through intemet-based auctions. Tech. Rep. 96-WP1019,
Haas School of Business, UC Berkeley, December 1996.

[CHR+98] A. Cichocki, A. Helal, M. Rusinkiewicz, and D. Woelk. Workflow and
Process Automation: Concepts and Technology, Kluwer 1998.

[CK092] B. Curtis, M. I. Kellner and J. Oliver. Process Modeling.
Communications of the ACM. Vol. 35, No. 9, pages 75-90, September
1992.

[CLD99] Peter Coad, Eric Lefebvre, and Jeff De Lucas. Java Modeling in Color
with UML. Prentice-Hall, 1999.

[CLL+99] Aaron G. Cass, Hyungwon Lee, Barbara Staudt-Lemer, and Léon J.
Osterweil. Formally defining coordination processes to support
contract negotiation. Technical Report UM-CS-1999-039, University
of Massachusetts, Amherst, MA, June 1999.

[CM96] Anthony Chavez and Pattie Maes. Kasbah: An agent marketplace for
buying and selling goods. In The First International Conference on the
Practical Application of Intelligent Agents and Multi-agent
Technology, pages 75-90, London, UK, April 1996.

[DOMOO] Document Object Model (DOM) level 1 specification, version 1.0.
http://www.w3.ore/TR/REC-DOM-Level-l/.

[EAu02] The eAuctionHouse Site.
http://ecommerce.cs.wustl.edu/eAuctionHouse/. 2002.

[Eba02] EBay Auctions. http://www.ebaY.com.

[ECD97] ECDTF Reference Model. Technical report. Object Management
Group (OMG), 1997. Consulted athttp://www.oms.net/ecdtf.html.

[EJBOO] Enterprise JavaBeans Specifications.
http://1ava.sun.com/products/ei b/docs 10 .html .

[ENe02] The ENegotiations Group Web Page.
http ://enegotiations.wu-wien.ac.at/.

[ET99] Robert F. Easley and Rafaël Tenorio. Bidding Strategies in Internet
Yankee Auctions. Working paper, University of Notre Dame, 1999.

[GGR98] Eduard Giménez-Funes, Lluis Godo, Juan A. Rodrîguez-Aguilar and
Père Garcia-Calvés. Designing bidding strategies for trading agents in
electronic commerce. In Third Intl Conference on Multi-Agents
Systems (ICMAS-98), pages 136-143, Paris, France, July 1998.

u

164

0 [GK99] Amy R. Greenwald and Jeffrey 0. Kephart. Shopbots and pricebots.
Inlôth Intl. Joint Conference on AI, volume l, pages 506-511,
Stockholm, Sweden, August 1999.

[GLC99] Benjamin N. Grosof, Yannis Labrou, and Hoy Y. Chan. A declarative
approach to business rules in contracts: Courteous logic programs in
XML. In 1st Conference on Electronic Coinmerce, Denver, Colorado,
November 1999.

[GMM98] Robert H. Guttman, Alexandras G. Moukas, and Pattie Maes. Agent-
mediated electronic commerce: A survey. Knowledge Engineering
Review, 13(3), June 1998.

[Gro97] Benjamin N. Grosof. Courteous logic programs: Prioritized conflict
handling for rules. Technical Report RC 20836, IBM Research, T.J.
Watson Research Center, May 1997.

[HH99] Daniela Handl and Hans-Juergen Hoffmann. Workflow Agents in the
Document-centered communication in MALL2000 systems. In
Proceedings of the International Workshop on Agent-Oriented
Infomiation Systems (AOIS™99). Seattle, WA, May 1999.

[HRW99] Junling Hu, Daniel Reeves, and Hock-Shan Wong. Agent service for
online auctions. In Workshop on Artificial Intelligence in Electronic
Commerce, Menlo Park, CA, 1999.

[HG96] D. Harel and E. Gery. Executable object modeling with statecharts. In
Proc. of 18th Intl. Conference on Software Engineering, pages 246-
257, Berlin, Germany, March 1996.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Shennan,
A. ShtullTrauring, and M. Trakhtenbrot. STATEMATE: A working
environment for the development of complex reactive systems. IEEE
Transactions on Software Engineering, 16(4):403-414, 1990.

[HurOO] Hurwitz Report. Negotiated Trade: the Next Frontier for B2B e-
commerce. Technical Report. 2000.

[IBM02] IBM MQSeries Workflow.
http://www-4.ibm.com/software/ts/mqseries/workflow/.

[IFS+00] Takayuki Ito, Naoki Fukuta, Toramatsu Shintani and Katia Sycara.
Biddingbot: A multi-agent support system for cooperative bidding in
multiple auctions. In 4th Intl Conference on Multi-agent Systems
(ICMAS-2000), Boston. MA, July 2000.

[IL002] ILOG JRules. httD://www.ilog.com/products/imles/.

[JB96] Stefan Jablonski and Christoph Bussler. Workflow Management,
Modeling Concepts, Architecture, and Implementation. International
Thomson Computer Press, 1996.

l

u

165

0 [jra.+01] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and
M. Wooldridge. Automated negotiation: Prospects, methods and
challenges. International Journal of Group Decision and Negotiation,
10(2), 2001. To appear.

[Jhi99] Anant Jhingran. The Emergence of Electronic Market Places, and
other E-Commerce Directions. Handout at Workshop on Electronic
Marketplaces held at Cascon99, Toronto, ON, Canada, November
1999.

[Jon99] Kees Jonkheer. Intelligent Agents, Markets and Competition:
consumers' interests and functionality of destination sites. Electronic
publication. http://www.firstmondaY.com. 1999.

[Jpy02] The JPython Language. http://www.jpython.org.

[JSPOO] Java Server Pages Specifications.
http://java.sun.com/products/jsp/techinfo.html.

[Ker99] Gregory E. Kersten. Decision Making and Decision Support. In
Decision Support Systems for Sustainable Development in Developing
Countries, pages 29-51, Kluwer Academic, 1999.

[KF98a] Manoj Kumar and Stuart I. Feldman. Business negotiations on the
Internet. In INET98 Conference of the Internet Society, Geneva,
Switzerland, July 1998.

[KF98b] Manoj Kumar and Stuart I. Feldman. Internet auctions. Technical
report, IBM Institute for Advanced Commerce, Yorktown Heights,
NY, November 1998.

[KHGOO] Jeffrey 0. Kephart, James E. Hanson and Amy R. Greenwald.
Dynamic pricing by software agents. Computer Networks, vol.32,
no.6, Elsevier, pages 731-752, May 2000.

[KL01] Gregory E. Kersten and Gordon Lo. Negotiation Support Systems and
Software Agents in E-business Negotiations. Technical Report
INR05/01. The InterNeg Group. Concordia and Carleton Universities,
Canada. 2001.

[KNT02] Gregory E. Kersten, Sunil J. Noronha, and Jeffrey Teich. Control
architecture for a flexible Internet auction server. In Fourth
International Conference on the Design of Cooperative Systems,
Sophia-Antipolis, France, May 2000. To appear.

[KS98] Gregory E. Kersten and S. Szpakowicz. 7th Workshop on Intelligent
Information Systems. Collocated with Fourth International Conference
on the Design of Cooperative Systems, Warsaw, Poland, 1998.

u

166

0 [KTOO]

[KT01]

[KW82]

[LG99]

[LK99]

[LS97]

[LS98]

[Luc99]

[LW99]

[LWJ01]

[Mal87]

[MBOO]

Gregory E. Kersten and Jeffrey Teich. Are all E-Commerce
Negotiations Auctions? In Fourth International Conference on the
Design of Cooperative Systems, Sophia-Antipolis, France, May 2000.

Pinar Keskinocak and Sridhar Tayur. Quantitative Analysis for
Intemet-Enabled Supply Chains. INTERFACES 31:2 pages 70-89.
March-April2001.

David M. Kreps and Robert Wilson. Sequential equilibria.
Econometrica, 50(4):863-894, July 1982.

Sophie Lamouroux and Robert Gerin-Lajoie. Le serveur de
négociation électronique GAMME. Technical report, CIRANO,
Montreal, Canada, 1999.

Gordon Lo and Gregory E. Kersten. Negotiation in Electronic
Commerce: Integrating Negotiation Support and Software Agent
Technology. In Proceedings (CD-ROM) of the 29th Atlantic Schools
of Business Conference, Halifax, NS, 1999.

Yu Lei and Munindar P. Singh. A Comparison of Workflow
Metamodels. In Proceedings of the ER-97 Workshop on Behavioral
Modeling and Design Transformations: Issues and Opportunities in
Conceptual Modeling, Los Angeles. November 1997.

Herman Lam and Stanley Su. Component Interoperability in a Virtual
Enterprise Using Events/Triggers/Rules. In Proceedings of OOPSLA
'98 Workshop on Objects, Components, and Virtual Enterprise,
October 18-22, 1998, Vancouver, BC, Canada.

David Lucking-Reiley. Auctions on the Internet: What's being
auctioned and how? Journal of Industrial Economics. Vol. 48, No. 3,
pages 227-252.

Heiko Ludwig and Keith Whittingham. Virtual enterprise coordinator
- agreement-driven gateways for cross-organizational workflow
management, pages 29-38, San Francisco, ÇA, 1999.

Alessio Lomuscio, Michael Wooldridge and Nicholas Jennings. A
classification Scheme for negotiation in electronic commerce. In
Agent-mediated e-commerce: a European AgentLink Perspective,
pages 19-33, Springer-Verlag, 2001.

Malone, T.W., et al., Electronic Markets and Electronic Hierarchies.
Communications of the ACM, 1987, 30(6): p.483-494.

Colleen McClintock and Carole Ann Berlioz. Implementing Business
Rules in Java. In Java Developers Journal, pages 8-6, May 2000.

u

167

n
[Mes88] Loretta J. Mester. Going, Going, Gone: Setting Prices with Auctions.

Federal Reserve Bank of Philadelphia Business Review
(March/April):3-13 1988

[MGM98] Alexander Moukas, Robert Guttman, and Pattie Maes. Agent-mediated
Electronic Commerce: An MIT media laboratory perspective. In
International Conference On Electronic Commerce, ICEC'98, Seoul,
Korea, April 1998.

[MGM99] Partie Maes, Robert H. Guttman, and Alexandras G. Moukas. Agents
that buy and sell: Transforming Commerce as we know it.
Communications of the ACM, 42(3):81-91, March 1999.

[MM86] Preston McAfee and John McMillan. Analyzing the Airwaves
Auction. In Journal of Economic Perspectives, 10(1), pages 159-175,
1996.

[MM87] Preston McAfee and John McMillan. Auctions and Bidding. Journal of
Economic Literature, 25:699-738, 1987.

[MWG95] Andreu Mas-Collel, Michael Whinston, and Jerry Green.
Microeconomic Theory. Oxford University Press, 1995.

[MWW98] Peter Math, Jeanine Weissenfels and Gerhard Weikum. What
workflow technology can do for electronic coimnerce? In EURO-
MED NET Conference, Nicosia, Cyprus, March 1998.

[NBB+02] Dirk Neumann, Morad Benyoucef, Sarita Bassil and Julie Vachon. A
Comparison of Electronic negotiation Systems. Submitted to Group
Decision and Negotiation, Special issue on e-negotiations. 2002.

[NLJ96] H. S. Nwana, L. Lee, and N. R. Jennings. Co-ordination in software
agent systems. BT Technology Journal, 14(4):79-89, October 1996.

[Oli97] Jim R. Oliver. Artificial agents leam policies for multi-issue
negotiation. International Journal of Electronic Commerce, 1(4):49-88,
1997

[OMG99] Object Management Group (OMG) Negotiation Facility final revised
submission. Technical report. March 1999.

[OnsOO] Onsale Auctions. http://www.onsale.com.

[Par99] David Parkes. iBundle: an efficient ascending price bundle auction. In
proceedings of the first ACM EC conference. Denver Colorado, USA.
1999.

[PerOO] Personalogic Website. http://www.personalogic.com.

[PriOO] Chris Priest. Algorithm design for agents which participate in multiple
simultaneous auctions. Tech. Report HLP-2000-88, Hewlett-packard,
Bristol, England, July 2000.

u

168

0 [PUF99] D. C. Parkes, L. H. Ungar, and D. P. Forster. Agent Mediated
Electronic Commerce, chapter Accounting for Cognitive Costs in On-
line Auction Design. In Agent Mediated Electronic Commerce, (LNAI
1571), pages 25-40. Springer, 1999.

[RGW+99a] Daniel M. Reeves, Benjamin N. Grosof, Michael P. Wellman and Hoi
Y. Chan. Toward a declarative language for negotiating executable
contracts. In Workshop on AI in Electronic Commerce, Menlo Park,
ÇA, 1999.

[RGW+99b] Daniel M. Reeves, Benjamim N. Grosof, Michael P. Wellman, and
Hoi Y. Chan. Automated negotiations from formal contract
descriptions. In IBM/IAC Workshop on Intemet-based Negotiation
Technologies, March 1999.

[RJB99] Jim Rumbaugh, Ivar Jacobson, and Grady Booch. The UML
Reference Manual. Addison-Wesley, 1999.

[RMN+98] Juan A. Rodriguez-Aguilar, Francisco J. Martin, Pablo Noriega, Père
Garcia and Caries Sierra. Towards a test-bed for trading agents in
electronic auction markets. AI Communications, 11(1):5-19, 1998.

[RS97] A. Rangaswamy and G. R. Shell, Using Computers to Realize Joint
Gains in Negotiations: Toward an Electronic Bargaining Table.
Management Science, vol. 43, pages 1147-1163, 1997.

[San99a] Tuomas Sandholm. Automated negotiation. Communications of the
ACM, 42(3):84-85, March 1999.

[San99b] Tuomas Sandholm. An Algorithm for Optimal Winner Determination
in Combinatorial Auctions. In International Joint Conference on
Artificial Intelligence, pages 542-547, Stockholm, Sweden, 1999.

[SHHOO] Stanley Y. W. Su, Chunbo Huang and Joachim Hainmer. A replicable
web-based negotiation server for e-commerce. In Proc. (CD-ROM) of
33rd Intl. Conf. on System Sciences, Hawaii, 2000.

[SL95] Tuomas Sandholm and Victor Lesser. Issues in Automated
Negotiation and Electronic Commerce: Extending the Contract Net
Framework. In International Conference on Multi-Agent Systems,
pages 328-335, San Francisco, ÇA, 1995.

[SOAOO] Simple Object Access Protocol (SOAP) 1.1. May 2000. Available at:
httD://www.w3.org/TR/SOAP

[Str99] Michael Strobel. Effects of electronic markets on negotiation
processes - evaluating protocol suitability. Technical Report 93237,
IBM, Zurich Research Laboratory, Switzerland, 1999.

u

169

n [Str99b]

[Sur98]

[Tur97]

[UDDOO]

[UML98]

[Var95]

[Wfm02]

[WfM99]

[Wis98]

[Wri97]

[Wor98]

[WSD01]

[WSF01]

[WW98]

[WWW98a]

Michael Strobel. On auctions as the negotiation paradigm of electronic
markets. Technical Report 93212, IBM, Zurich Research Laboratory,
Switzerland, 1999.

Gopalan Suresh Raj. A detailed comparison of CORBA, DCOM and
Java/RMI, September 1998. Available at:
http://www.execpc.com/gopalan/misc/compare.html.

Efraim Turban. Auctions and bidding on the Internet: an assessment.
International Journal of Electronic Markets, 7(4), December 1997.

Universal Description, Discovery and Integration (UDDI). Technical
white paper. September 2000. Available at: http://www.uddi.org.

Rational Software Corporation. UML Documentation Set Version 1.1,
Santa Clara, CA, 1998. Available at: httD://www.rational.com/uml/.

Hal R. Varian. Economic mechanism design for computerized agents.
In USENIX Workshop on Electronic Commerce, pages 13-21, New
York, NY, July 1995.

WfMC: Workflow Management Coalition. http://www.wfmc.org.

Workflow Management Coalition, Terminology and Glossary.
WFMC-TC-1011, February 1999, 3.0. Available at:
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Alexander Wise. Little-JD-. 1.0 language report. Technical Report 024,
Department of Computer Science, University of Massachusetts at
Amherst, 1998.

Clive D. Wrigley, Design Criteria for electronic Markets Servers.
Electronic Markets, 7(4): 12-16, 1997.

The Workflow Automation Corporation. New Opportunities
Dramatic IT Results, a white paper. 1998. Available at:
http ://www. workflow.ca.

for

Web Services Description Language (WSDL) 1.1. March 2001.
Available at: http://www.w3.org/TR/wsdl

Web Services Flow Language (WSFL) 1.0 by Frank Leymann. IBM
Software Group. May 2001.

Michael P. Wellman and Peter R. Wurman. Real time issues for
Internet auctions. In IEEE Workshop on Dependable and Real-Time
E-Commerce Systems, Denver, Co, June 1998.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The
Michigan Internet AuctionBot: A configurable auction server for
human and software agents. In 2nd International Conference on
Autonomous Agents, pages 301-308, Minneapolis, MN, May 1998.

u

170

0 [WWW98b] Peter R. Wunnan, William E. Walsh, and Michael P. Wellman.
Rexible double auctions for electronic commerce: Theory and
implementation. Decision Support Systems, 24(1): 17-27, 1998.

[WWW+99] Peter R. Wurman, Michael P. Wellman, William E. Walsh, and Kevin
A. O'Malley. Control architecture for a flexible Internet auction server.
In IBM/IAC Workshop on Intemet-Based Negotiation Technologies,
Yorktown Heights, NY, March 1999.

[WZKOO] Wai Yat Wang, Dong Mei Zhang, Mustapha Kara-Ali. Negotiating
with Experience. In Proceedings of KBEM'OO. Austin, Texas. July
2000.

[XMI98] XMI Metadata Interchange Specification.
ftD://ftD.ome.orE/Dub/docs/ad/98-l 0-05 .pdf.

[XML98] Extensible Markup Language (XML) 1.0 specification.
htto://www.w3.org/TR/1998/REC-xml-19980210.

[Yah02] Yahoo Auctions. http://www.auctions.yahoo.com.

[ZS98] Dajung Zeng and Katia Sycara. Bayesian learning in negotiation.
International Journal of Human-Computer Studies, (48):125-141,
1998.

u

o^'"''-'^ «'"j't' •^c:î- *^ .'"^ •>"^ n

