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Résumé

Les méthodes de vérification formelle consistent en l'utilisation des techniques

analytiques pour prouver que l'implantation d'un système se conforme bien à la

specification. Comme une représentation efficace de Machines à États Finis
Etendues, les Multiway Decision Graphs (MDG) sont appropriés pour la

verification formelle automatique du matériel pour la conception au niveau

transfert de registres (Register Transfer Level).

Pour réduire l'effet du problème d'explosion d'états dans un système basé sur un

MDG, nous présentons des algorithmes statiques et dynamiques de

l'ordonnancement automatique des variables. L'ordonnancement des variables sur

MDG est plus compliqué que celui sur ROBDDs à cause de la présence des ternies

du premier ordre dans MDG.

L'algorithme de l'ordonnancement des variables statiques génère un ordre des

variables avant qu'un MDGs soit constmit et le choix de l'ordre dépend de

l'information sur la topologie du circuit en considération. L'algorithme de re-

ordonnancement dynamique minimise la taille des MDGs au cours du processus de

verification et pennet de terminer en succès une tâche de vérification qui peut

échouer avec un ordre fixe. Nous discutons aussi du problème de

l'ordonnancement des ternies standards causé par l'ordre lexicographique que les

MDGs utilisent pour ordonnancer certains ternies. Une solution est présentée qui

est basée sur le re-étiquetage des fonctions et la reécriture des termes.

u

Le MDG devient plus efficace avec le développement de l'ordonnancement

automatique de variables. Mais, un système MDG n'accepte que le langage MDG-

HDL. Nous avons alors développé un traducteur qui accepte un modèle décrit en
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VHDL, au niveau RTL synthétisable, et qui produit la représentation requise pour

le système MDG.

Nous avons intégré les algorithmes de traduction et ceux de (re)ordonnancement

dans le système de vérification de conception basé sur MDG. L'ordonnancement

efficace des variables est essentielle pour le bon fonctionnement du système et la

traduction automatique du VHDL au MDG-HDL rend possible la vérification des

conceptions industrielles décrites en VHDL. Les résultats expérimentaux ont

démontre que ce système amélioré est capable de traiter une classe de modèles

plus large que celui sans l'introduction de ces améliorations. Donc notre système

étend la classe des circuits vérifiables.

Mot clés :

verification formelle

Graphes de Décision Multidirectionnels

integration de logiciels

ordonnancement des variables

traduction automatique de VHDL

verification de propriétés

u
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Abstract

Fonnal verification methods involve the use of analytical techniques to prove that

the implementation of a system conforms to the specification. As an efficient

representation of Extended Finite State Machines, Multiway Decision Graphs

(MDG) are suitable for automatic hardware fonnal verification of Register

Transfer Level (RTL) designs.

To reduce the effects of the state explosion problem in the MDG-based system, we

explore automatic static and dynamic variable ordering algorithms. Compared with

ROBDDs, the situation is complicated by the presence of first order terms in

MDGs.

The static variable ordering algorithm generates a variable order before an MDG is

built and the order is chosen using information about the circuit topology. The

dynamic reordering algorithm minimizes the size of the MDG during the

verification process and allows a verification task to finish when the task may not

complete with a fixed order due to insufficient memory or execution time. We also

identify a standard term ordering problem caused by the standard term order used

in MDG to order some specific terms. A solution based on function renaming and

term rewriting is presented.

The MDG system has become more efficient with the development of automatic

variable ordering. However, the system only accepts MDG-HDL and most of

designs in industry are described in VHDL or Verilog. We present a translator

which can accept a VHDL model given at the synthesizable RTL level and

produce the required representation by the MDG system.
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We integrated the translation and the (rc)ordering algorithms into the MDG design

verification system. Efficient variable ordering is essential for good functioning of

the verification system and automatic translation from VHDL to MDG-HDL

makes possible the verification of industrial designs. Experimental results proved

that this updated system can handle a larger class of designs than before, thus

alleviating the effects of the state exploration problem and increasing the range of

the circuits that can be verified.

Key words:

formal verification

Multiway Decision Graphs

software integration

variable ordering

automatic translation of VEIDL

property checking
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Chapter 1 Introduction

Technological advances in microelectronics have increased the complexity of

digital hardware designs. Their correctness thus becomes a major concern,

especially in critical applications where failure is unacceptable. Traditionally, the

task of design validation is carried out by means of simulation. In a simulation-

based approach, the designer needs to create a set of test vectors that represents the

possible inputs to the system. The output for each of these test vectors is compared

with the expected response. This method is very costly and incomplete because of

the large number of input sequences to consider. In almost all practical situations it

is infeasible to exhaustively simulate a design to guarantee its correctness.

Complement to simulation is the use of formal verification. Formal verification

methods intend to establish that an implementation satisfies a specification by

mathematical reasoning [33]. In this thesis, we refer to an implementation as the

hardware design to be verified, and a specification as the property with respect to

which the correctness of the implementation is to be detennined. Fonnal

verification conducts an exhaustive exploration of all possible behaviors. Thus,

when a design is pronounced correct by a formal verification method, it implies

that all behaviors relative to the property have been explored [14].

In this introduction, we first present the background for this thesis. The related

research is introduced next. We then summarize the scope of this thesis in Section

1.3, and give an outline of the thesis in Section 1.4.

u



0

2

1.1 Background

Formal verification methods can be classified in two main categories: interactive

verification with a theorem prover and automated Finite State Machine (FSM)

verification based on state enumeration [33].

Interactive verification with a theorem prover uses a powerful formalism such as

higher-order logic that allows the verification problem to be stated at many levels

of abstraction. This approach has achieved significant successes in verifying

microprocessor designs. However, interactive verification has the drawback that

the user is responsible for coming up with the proof of correctness and feeding it to

the theorem prover, which requires great expertise.

Automated FSM verification based on state enumeration techniques provides

automation for behavior comparison and model checking. Model checking works

on a finite-state model of the system to be verified, and the logical specification of

the desired behavior of the system model. Since model checking can be completely

automatic and has been used successfully to verify complex sequential circuit

designs and communication protocols, it is beginning to be used in industry.

A model checking approach to formal verification is based on exploring the

reachable state space of its model. Finite state models of concurrent systems grow

exponentially as the number of components of the system increases. This is known

as the state explosion problem in automatic verification. The main challenge in

model checking is dealing with this problem.

u

The most promising approach to the state explosion problem has been the

application of ROBDD (Reduced Ordered Binary Decision Diagrams) to the

representation of state graphs [7]. ROB DD can encode sets of states as well as

transition and output relations, and perform an implicit enumeration of the state
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space, thus making it possible to verify finite state machines with a larger number

of states. Since the size of an ROBDD is largely influenced by the choice of the

variable order, several approaches have been researched to find a good variable

order[9,21,28,29,45, 55, 57].

For automated hardware verification, ROBDDs have proved to be a powerful tool;

However, because they require a Boolean representation of the circuit, the size of

an ROBDD grows, sometimes exponentially, with the number of Boolean

variables. Therefore, ROBDD-based verification cannot be directly applied to

circuits with complex and large datapaths.

To overcome this limitation, the verification group at the University of Montreal

has proposed a new class of decision graphs called Multiway Decision Graphs

(MDG). MDGs efficiently represent a class of formulas of a many-sorted first-

order logic with a distinction of abstract and concrete sorts [16]. In an MDG, a

data signal is represented by a single variable of abstract sort rather than by a

vector of Boolean variables, and a data operation is represented by an

uninterpreted function symbol. MDGs compactly encode sets of (abstract) states

and transition/output relations for abstract description of state machines. The

implicit enumeration technique is lifted from the Boolean level to the abstract level

and referred to as implicit abstract enumeration. MDGs are thus much more

compact than ROBDDs for circuits having complex and large datapaths. This

greatly increases the range of circuits that can be verified.

u

However, both MDG-based and ROBDD-based verification systems still suffer

from the problem of state explosion when handling realistic systems. To reduce the

effects of this problem, one of the most important approaches is to select a good

variable order. Like ROBDD, the size of the MDG heavily depends on its variable

order. A good variable order can keep the size of MDG as small as possible and

reduce the memory requirement and processing time.
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The concept of ordering in MDG concerns two orders: the standard term order and

the custom symbol order. The standard term order is a total order of all the terms

of the logic. The custom symbol order is a total order of a set of symbols that

includes the concrete variables, abstract variables, and some but not necessarily all

of the operators. The custom symbol order does not need to be compatible with the

standard term order.

In this thesis, automatic static and dynamic variable ordering (custom symbol

ordering) algorithms for MDG are explored. They are much more complicated

than ROBDD because of the presence of first order terms in MDG. A standard

term ordering problem is also identified and a solution is proposed. These

algorithms and solutions are integrated into a VEiDL-MDG design verification

system.

1.2 Related Research

Many researchers have been working on the state explosion problem in automatic

fonnal verification. In this section we describe another approach called model

reduction. It has been implemented on MDG [34]. The research on variable

ordering on ROBDD will also be presented.

1.2.1 Model Reduction

u

A reduction method reduces the correctness problem to a similar problem with a

smaller state space. This is generally done by replacing processes in the model by

smaller processes that have similar or identical communication behaviors. The

common reduction methods on ROBDDs include homomorphic reduction in
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language containment tests [43, 65], structural symmetry exploration [23] and

partition refinement [18, 19].

Hou and Cemy have presented a model reduction algorithm for property checking

[34]. For the property to be verified, the algorithm first constructs a property

dependency graph that represents the function dependency of the property on the

state variables. Starting from the set of state variables appearing in the property,

the algorithm searches through the dependency graph and adds a non-correlated set
of state variables to the current set of state variables to constmct a more detailed

model at each reduction iteration step [35]. This reduction algorithm is completely

automatic and has been implemented on MDG. Experiments show that this method

can achieve efficient reduction on benchmark circuits and has significantly
increased the useful domain of MDG.

Model reductions and variable ordering both reduce the state space to alleviate
state explosion and increase the number of circuits that can be verified. However,

they each contribute in their own ways. Model reduction tries to build a smaller

model based on the property to be verified. Variable ordering reduces the size of a

decision graph by choosing a good variable order.

1.2.2 Variable Ordering on ROBDD

u

Bryant first presented the variable ordering problem in his landmark paper on

ROBDD in 1986 [7]. Since then, there have been many researchers working on

this problem. It is usually classified into three categories: static variable ordering

to find an appropriate order before generating an ROBDD by using the logic

circuit information that is the source of the Boolean function to be represented;

dynamic variable ordering to reduce the ROBDD size by permuting the variables

of a given ROBDD starting with the initial static order; and finally optimal

variable ordering to find the best order for the ROBDD. It has been proven that
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finding the optimal order is co-NP complete [3]. Many variable ordering

algorithms produce acceptable results, so it is not necessary to find the optimal

order. The most successful static ordering algorithm was proposed by Fujita in

1988 by minimizing the number of crosspoints of nets when the circuit graph is

drawn [28]. Rudel first introduced a dynamic algorithm based on variable

exchanges, called sifting [57]. Sifting allows many ROBDD operation sequences

to succeed, when they would have failed with a fixed variable order. However,

sifting is extremely expensive in both time and space.

1.3 Scope of the Thesis

This thesis explores static and dynamic variable ordering algorithms on MDG.

Compared to ROBDD, ordering on MDG has to deal with the constraints caused

by abstract variables and uninterpreted function symbols. In this thesis an efficient

static ordering method for combinational and sequential circuits and a dynamic

ordering method for choosing an order in the middle of the verification process are

proposed. Moreover, because some special decision nodes adopt standard term

ordering, this situation may cause state explosion for circuits which have certain

specific stmctures. This is called the standard term ordering problem. We propose

a solution using function renaming and rewriting mles. All these methods make

MDG work more efficiently.

u

Our MDG-based verification system only accepts a Prolog-style HDL, MDG-

HDL, which allows the use of abstract variables for representing data signals. We

developed a software to translate a VHDL model to MDG-HDL. The translator

accepts a VHDL model as input and produces the representation for the MDG

system. The VHDL model must be given at the synthesizable Register Transfer

Level (RTL). Each VHDL process is transfonned into a Directed Acyclic Graph

(DAG) [58]. Then, MDG-HDL is generated from this DAG. This translator and
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variable ordering make the MDG verification system more suitable for a large
class of problems than before the introduction of these improvements.

My contributions in this thesis are as follows:

1. The development and implementation of automatic static variable ordering
algorithms on MDG.

2. The development and implementation of dynamic variable ordering algorithms

onMDG.

3. The identification of and a solution to the standard tenn ordering problem.

4. Automatic translation from DAG to MDG-HDL.

5. Integration of automatic variable ordering with the MDG package.

6. Experiments on benchmark circuits.

1.4 Outline of the Thesis

This thesis discusses formal verification techniques, MDG-based verification
approaches, variable ordering algorithms on MDG and a translation between

VHDL and MDG-HDL. The thesis is organized as follows:

In Chapter 2, we review several fonnal hardware verification techniques.

In Chapter 3, we begin with describing the basic concepts of MDG. We then

present MDG-based verification approaches.

u

In Chapter 4, we discuss the static variable ordering algorithms on MDG and the

constraints on variable ordering that MDGs impose. It is difficult to derive a

method that always yields the best order to minimize MDGs, but with our static

algorithms, we can find a fairly good order in most cases.
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In Chapter 5, we present dynamic variable ordering algorithms on MDG. When

using a fixed static variable order, some MDG operations may run out of memory.

Dynamic variable ordering allows these operation sequences to succeed when a

new order is chosen mid-stream.

In Chapter 6, we start by explaining what the standard term ordering problem is.

We then propose a solution based on function renaming and rewriting.

In Chapter 7, a translation method from VHDL to MDG-HDL is presented.

Finally, conclusions and future directions of research are stated in Chapter 8.

u



')

Chapter 2 Formal Hardware Verification

Several approaches to formal verification have been proposed over the years. This

chapter concentrates on the method called model checking by which a desired

behavioral property of a reactive system is verified through exhaustive

enumeration (explicit or implicit) of all the states reachable by the system and the

behaviors that traverse though them [14]. We first review several modeling

languages of design systems. We then describe model checking property

specifications and systems. Finally, we discuss how to represent finite state

reactive systems symbolically using Reduced Ordered Binary Decision Diagrams

(ROBDDs) and review variable ordering on ROBDDs. This chapter introduces the

related research and provides the theoretical basis for the subsequent chapters.

2.1 Modeling Languages

At their most detailed level, digital systems may consist of millions of elements, as

would be the case if we view a system as a collection of logic gates or transistors.

From a more abstract viewpoint, these elements may be grouped into a handful of

functional components such as cache memories, floating-point units, signal

processors, or real-time controllers. Hardware description languages have evolved

to aid in the design of systems with this large number of elements with a wide

range of electronic and logical abstractions [63]. Different design and verification

systems may have different system description languages. Here we will review

some of them, including Verilog, VHDL, SMV input language. Synchronous

Verilog, and MDG-HDL.

u
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2.1.1 Verilog and VHDL

Verilog and VHDL are hardware description languages used to design and

document electronic systems. They allow a designer to describe designs at a high

level of abstraction such as at the architectural or behavioral level as well as the

lower implementation levels (gate and transistor switch) [12].

Verilog and VHDL describe a digital system as a set of modules. Each of these

modules has an interface to other modules as well as a description of its contents.

A module represents a logical unit that can be described either by specifying its

internal logical structure - for instance describing the interconnection of the actual

logic gates it is comprised of, or by describing its behavior in a program-like

manner - in this case focusing on what the module does rather than on its logical

implementation. These modules can be interconnected with signals, allowing them

to coinmunicate.

The notion of a process plays a central role in VHDL and Verilog. All time-

dependent behavior is defined in terms of process statements. A process can be

thought of as an independent thread of control, which may be quite simple,

involving only one repeated action, or very complex, resembling a software

program. It might be implemented as a sequential state machine, as a microcoded

controller, as an asynchronous clearing of a register, or as a combinational circuit.

2.1.2 SMV Input Language and Synchronous Verilog

u

The SMV system is a formal verification tool for checking finite state systems

against specifications in the temporal logic CTL [47]. The input language of SMV

is designed to allow the description of finite state systems that range from

completely synchronous to completely asynchronous, and from the detailed to the

abstract. One can readily specify a system as a synchronous Mealy machine, or as
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an asynchronous network of abstract, nondeterministic processes. The language

provides for modular hierarchical descriptions, and for the definition of reusable

components. Because it is intended to describe finite state machines, the only data

types in the language are finite ones: Booleans, scalars and fixed arrays. Static,

structured data types can also be constmcted. The primary purpose of the SMV

input language is to describe the transition relation of a finite Kripke stmcture.

Any expression in the propositional calculus can be used to describe this relation.

The logic CTL allows a rich class of temporal properties, including safety,

liveness, fairness constraints and absence of deadlock, to be specified using a

concise syntax.

Those who are familiar with the Verilog modeling language may find it easier to

write models for SMV in Synchronous Verilog (SV). This language is

syntactically only a slight variation of the Verilog language. However, its

semantics is not based on an event queue model, as in Verilog. Rather, SV is a

synchronous language, in the same family as SMV [49]. Because SV provides a

functional description of a design rather than an operational description of how to

simulate it, SV is better suited than Verilog to such applications as hardware

synthesis, cycle-based (functional) simulation and model checking [48].

2.1.3 MDG-HDL

u

Synchronous RT (Register-Transfer) level hardware designs can be suitably

represented by Multiway Decision Graphs (MDGs), a class of decision graphs that

subsumes the class of Reduced Ordered Binary Decision Graphs (ROBDDs) while

accommodating abstract sorts and uninteqîreted function symbols. The MDG tools

are a prototype implemented in Prolog for the verification of RTL designs. They

are intended for the verification of abstract descriptions of state machines rather

than Finite State Machines (FSM). An abstract description of a state machine,

called abstract state machine (ASM), is obtained by letting some data input, state



n

12

or output variables be of an abstract sort, and the operations on them be

uninterpreted function symbols.

The hardware description language that MDG tools accept is a Prolog-style HDL,

MDG-HDL, which allows the use of abstract variables for representing data

signals. The MDG-HDL description is then compiled into the ASM synchronous

model in internal MDG data stmctures. MDG-HDL supports structural

descriptions, behavioral ASM descriptions, or a mixture of stmctural and

behavioral descriptions. A stmctural description is usually a netlist of components

(predefined in MDG-HDL) connected by signals. A behavioral description is given

by a tabular representation of the transition/output relation or by a truth table [70].

2.2 Model Checking Property Speciïïcations and Systems

Model checking is an automatic technique for verifying finite-state reactive

systems, such as sequential circuit designs and communication protocols.

Specifications are expressed in a propositional temporal logic, and the reactive

system is modeled as a state-transition graph. An efficient search procedure is used

to detemiine whether or not the state-transition graph satisfies the specifications. A

model checking system is described in Figure 2.1. This technique was originally

developed by Clarke and Emerson in 1981 [14].

u

Model checking has several important advantages over mechanical theorem

pro vers for verification of circuits and protocols. The most important is that the

procedure is highly automatic. In general, a model checker builds or accepts a

finite-automaton model of the system and checks whether or not the specified

property holds on the model. If it does not, the model checker returns a failure

trace. Normally, the property is expressed in a temporal logic which we describe

next.
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Figure 2. l A model checking system

2.2.1 Temporal Logics

A temporal logic is a formalism for describing sequences of transitions between
states in a reactive system. It provides a formal system for qualitatively describing
and reasoning about how the tmth values of assertions change over time [33].

There are four basic operators in temporal logic:

DP is tme in state s, if P is true in all future states from s (including s).

OP is true in state s, if P is tme in some future states from s.

OP is tme in state s, if P is true in the next state from s.

PVQ is tme in state s, if either Q is tme in s itself, or it is tme in some future

state of s, and until then P is true at every intemiediate state.

The following three classes of properties can be easily expressed in temporal logic:

u
Safety properties - assert that nothing "bad" happens, typically represented as

)= D P, i.e., P holds at all times in all models;
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Liveness properties - assert that eventually something "good" happens,

typically represented as |= P => <>Q, i.e., in all models, if P is initially tme then

Q will eventually be tme;

Precedence properties - assert the precedence order of events, typically

represented as = PVQ, i.e., in all models, P will hold until Q becomes true.

Based on the difference in viewing the notion of time, temporal logics can be

classified into two kinds. In one case, time is characterized as a single linear

sequence of events, leading to Linear Time (Temporal) Logic. In the other case, a

branching view of time is taken, such that at any instant there is a branching set of

possibilities into the future. This view leads to Branching Time (Temporal) Logic.

2.2.2 Prepositional Linear Temporal Logic

In a linear temporal logic the underlying structure of time is assumed to be

isomorphic to the natural numbers with their usual order (N, <)[22]. Let AP be an

underlying set of atomic proposition symbols. A linear-time stmcture M=(S, x, L)

is defined such that

5 is a set of states,

x: N-> S is an infinite sequence of states, and

• L: S-> 2(AP) is a labeling of each state with the set of atoinic propositions in AP
that are true in the state.

Usually, the notation x = (so, S], s^,...) = (.x(O), x(1), x(2), ...) is employed to denote

the timeline x, which is also referred to as afiillpath, or computation sequence, or

computation.

u
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The basic temporal operators of a Propositional Linear Temporal Logic (PLTL)

are Fp ("sometimes p", also read as "eventually?"), Gp ("always p", also read as

"henceforth p"), Xp ("nexttime ^"), andp U q ("P until ç") [33].

2.2.3 Computation Tree Logic

Different kinds of Branching Time Temporal Logic (BTTL) have been proposed

depending on the exact set of operators allowed. The common feature is that they

are interpreted over branching tree-like time stmctures, where each moment may

have many successor moments. The structure of time corresponds to an infinite

tree. The usual temporal operators (F, G, X, U) are regarded as state quantifiers.

Additional quantifier called the path quantifier is provided to represent all path (A)

and some path (E) from a given state. Here we only describe the Computation Tree

Logic (CTL), a restricted form ofBTTL.

Clarke and Emerson first proposed CTL and presented efficient algorithms for
CTL model checking within a larger framework of automatic synthesis of

synchronization skeletons from CTL specifications [14].

CTL severely restricts the type of formulas that can appear after a path quantifier -

only single linear time operator F, G, X, or U can follow a path quantifier and time

operators cannot be combined directly with propositional connectives. The syntax
of CTL is:

Every atomic proposition is a CTL formula.

If / and g are CTL formulas, then so are -^f, (f A g~), AXf, EXf, A(jUg~),

E(/Ug)

u
The remaining operators are derived from these according to the following rules:

/Vg=^/A-g)
AFg = A(tme U ^)
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EF^=E(tmeU^)

AG/= -iE(tme U ^/)

EG/= -iA(tme U -f)

Because all the operators are prefixed by A or E, the tmth or falsehood of a

formula depends only on the given state s, and not on the particular branch.

Clarke, Emerson and Sistla demonstrated that CTL is an efficient means for

verifying finite-state systems. In their approach, a finite-state system is modeled as

a labeled transition graph which can be viewed as a finite Kripke structure

represented as a triple M=(S, R, P), where

5 is a finite set of states,

R is a total binary relation on states and represents possible transitions, and

P is a mapping that assigns to each state the set of atomic propositions that are

true in the state.

A path within this stmcture is naturally defined as an infinite sequence of states,

with each adjacent pair related by R.

As its name suggests, CTL interprets temporal fonnulas over structures that

resemble infinite computation trees. In the context defined above, given M and an

initial state so, it considers the infinite computation tree rooted at so, generated by

considering all possible nondeterministic transitions at every state. The truth of a

CTL fomiula is defined inductively as follows:

0

(M, so)\=p iff p f P(.SO ), where p is an atomic proposition

(M,so)\=^fiff(M,so)\^f

(M, so ) |=/A g iff (M, so) |=/and (M, so) |= ^

(M, so ) |= AX/iff for all states t such that (so, t) e R, (M, t) |=/
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(M, so ) |= EX/iff for some states t such that (so , t) eR, (M, t) |=/

(M, so ) |= A(/Ug) iff for all paths (so, sj, 52 ...), 3k >0 such that (M, Sk) |= g,

and Vi, 0<i<k, (M, si) \=f

(M, so) |= E(/'U g) iff for some paths (so, S], sz ...), 3k>0 such that (M, Sk) \= g,

and Vi, 0<i<k, (M, s,) \=f

Clarke, Emerson and Sistla showed that there is an algorithm for determining

whether a CTL formula / is true in state s of the Kripke stmcture M = (S, R, P)

which runs in time 0(length(/)x(|5|+|7?|)) [13].

An important consideration in the modeling of concurrency is the notion of

fairness. Each fairness condition specifies a'set of states in the machine, and

requires that in any acceptable behavior these states must be traversed infinitely

often. Fairness constraints are used to restrict the behavior of the design. Among

possible fairness constraints, the following are very common ones [22]:

• Unconditional fairness: an infinite sequence is impartial iff every process is

executed infinitely often during the computation.

Weak fairness: an infinite computation sequence is weakly fair iff every

process enabled almost everywhere is executed infinitely often.

Strong fairness: an infinite computation sequence is strongly fair iff every

process enabled infinitely often is executed infinitely often.

u

Since fairness cannot be expressed in CTL, dark et al. modified the semantics of

CTL to introduce the notion of fairness [13]. The new logic, called CTLF, has the
same syntax as CTL, but the stmcture is now a 4-tuple (5, R, P, F). S, R, P have

the same meaning as in CTL and F is a collection of predicates on S. Fair paths in

this context are defined as those along which states occurring infinitely often

satisfy each predicate that belongs to F.
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Because CTL still can not express strong fairness, Emerson and Lei defined Fair
CTL by extending the notion of fairness in CTL to consider fairness constraints

that are Boolean combinations of fp (infinitely often p, same as GFp) and Gp

(almost always p, same as fGp) operators [24]. Combinations of these operators

can express strong fairness as well as unconditional and weak fairness.

* *

Clarke and Emerson further extended CTL to CTL [14]. CTL is sometimes

referred to as full branching time logic. It combines both branching time and

linear time operators; a path quantifier, either A or E can prefix an assertion

composed of arbitrary combinations of the usual linear time operators G, F, X, and

U. For example, EFp is a basic modality of CTL; E(Fp/\Fq) is a basic modality of
CTL*.

LTL versus BTTL. In linear time logics, temporal operators are provided for
describing events along a single future time line, although when a linear formula is

used for program specification there is usually an implicit universal quantification

over all possible futures. In contrast, in branching time logics the operators usually

reïïect the branching nature of time by allowing explicit quantification over

possible futures. One argument presented by the supporters of branching time

logic is that it offers the ability to reason about existential properties in addition to

universal properties [33].

2.2.4 œ-automaton based Model Checking

u

Basically, (o-automata is the same as conventional automata that accept strings,

except that the final states of the latter (signaling the end of an accepted string) are

replaced by an acceptance condition on the set of states, visited infinitely often. It

is useful for modeling non-terminating processes [41].
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u-automaton based model checking considers containment rather than equivalence

between the languages representing the implementation and the specification

(L(Imp) and L(Spec), respectively). In other words, it determines whether L(Imp)

e L(Spec), thereby verifying that every behavior of the implementation satisfies

the property expressed by the specification. This allows easier handling of partial

specifications as well as abstractions, thereby facilitating hierarchical verification

across different levels of abstraction. Kurshan implemented this approach in

COSPAN which is the verification engine in the commercial tool FonnalCheck

[42].

In his work, Kurshan defined modified versions of finite-state automata and finite-

state machines that accept sequences, called L-automata and L-processes, to

represent specifications and implementations, respectively. A specification is

typically represented by a deterministic L-automaton T (called a "task" in

Kurshan's terminology) and an implementation by a nondeterministic L-process. A

verification is cast in term of testing for a language containment, i.e., testing if

L(A)cL(T).

u

One of the greatest strengths of Kurshan approach is its use of reductions both to

control the complexity of state-space analysis and to provide a basis for

hierarchical verification. Because most techniques based on state-space analysis

suffer form the problem of state-explosion, i.e., an exponential increase in the

number of states with an increasing number of components, complexity

management becomes a critical issue in practice. This is especially so since fonnal

verification is expected to work on large problems that are beyond the reach of

traditional simulation methods. Devoting effort to develop an underlying

semantics that supports reduction methods has potentially many advantages, as it

has been demonstrated by the work with COSPAN. Also, a method of hierarchical

verification that includes stepwise refinement of specifications allows much larger

systems to be handled in practice.
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Though the approach described above has a strong theoretical basis with due

regard to complexity issues, its application in practice is sometimes limited by the

fact that the burden of providing a reduction transformation lies with the user. In

order to realize the full potential of the system, some means of using its reduction

mechanism is required. It is not always obvious which transfomiation works best,

though the automated facility to check its validity does help in exploring different

options.

2.2.5 Symbolic Model Checking

One of the serious limitations of the model checking approach is its reliance on an

explicit state-transition graph representation of the hardware system to be verified.

Typically, the number of states in a global graph increases exponentially with the

number of gates/processes/elements (parallel components) in the system, resulting

in what is popularly called the state explosion problem. This restricts the

application of direct state enumeration approaches to small circuits only. Several

alternatives have been explored to alleviate this problem.

u

McMillan presented a method for model checking that reduces the state explosion

problem by representing the Kripke model implicitly with a Boolean formula

represented in computer memory using Bryant's ROBDDs [7]. This method is

called symbolic model checking because symbolic variables are used to represent

the components of the system state rather than numeric values. Using symbolic

model checking, it is possible to verify automatically some regularly structured

systems with literally astronomical numbers of states [47].

The symbolic model checking algorithm is implemented by a procedure Check that

takes the CTL formula to be checked as its argument and returns an ROBDD that

represents exactly those states of the system that satisfy the formula.
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0 McMillan et. al. developed the Symbolic Model Verifier (SMV) to check finite

state systems against specification in CTL [47, 48, 49]. McMillan and Schwalbe

successfully applied SMV to the verification of the Encore Gigamax cache

consistency protocol and found some critical design errors, thus demonstrating the

effectiveness of symbolic model checking techniques for industrial applications.

2.2.6 Existing Model Checkers

Several model checking tools have been developed over the last 10 years. The
well-known ones are as follows:

SMV (Symbolic Model Verifier): a symbolic model checking system

developed by McMillan at Camegie-Mellon University [48, 49]. This system

permits the automatic verification of programs written in a specialized

language for describing concurrent finite state systems and protocols.

VIS (Verification Interacting with Synthesis): an integrated tool for

verification, simulation and synthesis of finite state systems, developed at

University of California at Berkeley. It contains a Fair CTL Model Checker

and a behavioral equivalence checker for sequential circuits, language

emptiness check for Buchi automata and combinational verification [6].

CVE: an industrial verification environment developed at Siemens. It supports

model checking of designs described in VHDL or EDIF against specifications

given in a temporal logic called CIL [60].

u

FonnalCheck: an (ù-automata based model checker based on Cospan

developed at Bell Labs Design Automation, Lucent Technologies. The
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reduction algorithms and refinement methodologies embedded in FormalCheck

make the tool applicable to industrial-size designs [75].

The advantage of model checking techniques is that they can be made completely

automatic. The major obstacle for model checking to be widely used in an

industrial design flow is the state explosion problem. The most promising

approach to this problem is the application of Reduced Ordered Binary Decision

Diagrams (ROBDDs) to the representation of state graphs [7]. In the next section,

we introduce ROBDDs and variable ordering on them.

2.3 Reduced Ordered Binary Decision Graphs

Model checking verification systems have been considerably improved by the

application of BDDs to the representation of Boolean functions. In this approach,

the explicit construction of state graphs is avoided. Instead, the state graph is

implicitly represented by means of Boolean functions from sets of states to sets of

states (predicate transformers).

2.3.1 Binary Decision Diagrams

u

"BDD" stands for "Binary Decision Diagram". A BDD over a set of Xn = {xi, ...,

Xn} of Boolean variables is a directed acyclic graph with one source and at most

two sinks labeled by 0 and 1 [1]. Each non-sink (internal) node is labeled by a

variable in Xn and has two outgoing edges, corresponding to where the variable

evaluates to a 0 and to a 1, respectively. For a given assignment to the variables,

the function value is evaluated by tracing a path from the root to the terminal. For

a given input m = (mi, ..., m^), the evaluation starts at the root and at an internal

node with label x, the outgoing edge with label m, is chosen [7].
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Although BDDs have been researched for about four decades, their widespread use

occurred only after Bryant showed that under two restrictions such graphs are

canonical and can be easily manipulated. The first restriction is that a total

ordering of the variables is enforced in the graph. That is, if we consider variables

to be ordered asxi<X2< ...<Xn, then every path from the root to a sink encounters

the variables in that order. The second restriction is that the graph is reduced. A

graph can be reduced by the repeated application of the following two mles until

they are no longer applicable [7]. These mles are:

Merging Rule: Two isomorphic subgraphs should be merged.

• Deletion Rule: A vertex whose two branches point to the same vertex should

be deleted.

The resulting BDD is called a Reduced Ordered BDD (ROBDD). The important

symbolic manipulation procedures introduced by Bryant are apply and compose;

these techniques operate on two identically ordered ROBDDs. apply allows two

ROBDDs to be combined under some Boolean operations, and compose allows the

substitution of an ROBDD variable with a function.

2.3.2 Variable Ordering on ROBDD

The size of an ROBDD representing a Boolean function can be exponential in the

number of primary inputs in the worst case. This problem is commonly referred to

as the "memory explosion" problem. One solution is to find a good variable order

to reduce the size of an ROBDD because the size of an ROBDD is strongly

dependent on this order [37].

u
For example, suppose we wish to build a BDD for the function (xi @yi ) V (j2@

y2 ). Figure 2.2 shows two BDDs for this function using two different variable
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orders. In general, the choice of the variable order can make the difference

between a linear size BDD and an exponential one.
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Figure 2.2 ROBDDs for the same function under two different variable orders

Much of the prior research in ROBDD has focused on finding good variable orders

to reduce the size of an ROBDD representing a Boolean function. The methods for

finding a good variable order can be classified into three categories:

Static ordering: static methods based on infonnation derived from the analysis

of a multilevel logic implementation.

Dynamic ordering: gradual improvement based on variable exchanges.

Optimal ordering: exhaustive methods aimed at finding the best order.

0

The best published algorithms for the computation of an optimal variable order is a

dynamic programming approach proposed in 1987 by Fridman and Supowit with a

run time of 0(n 3") [26]. Bollig and Wegener have proved in 1994 that finding the

best order is co-NP complete [3].
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Since static and dynaimc heuristic ordering methods can find a suitable order for

most of realistic systems, it is not necessary to find the best order. Thus we only

discuss static and dynamic methods here.

2.3.3 Static Variable Ordering

Because the choice of a good variable order is essential for the use of ROBDDs',

many heuristics have been suggested. As any heuristic methods, they sometimes

lead to a good variable order and sometimes they fail to compute a suitable order.

The first and most successful static ordering algorithm was proposed by Fujita in

1988 [28]. His algorithm is based on two theorems:

Theorem 1 One of the best orders for a tree circuit (the number of fanouts of all

inputs and gates is one) composed of only AND, OR and NOT gates is acquired by

the following procedure: Traverse the gates from an output to the inputs in depth-

first order (selection of input nets of a gate is arbitrary), and when an input is

found, append that variable to the end of the current order.

Theorem 2 One of the best orders for a circuit which is composed of only AND,

OR and NOT gates where only one input or gate has fanout of more than one

(number of fanouts of all the other inputs and gates is one) is acquired by the

following procedure which is slightly modified from that in Theorem 1: Traverse

the gates from an output to the inputs in depth-first order, but a net which has

fannout of more than one is selected first. When we find an input, append that
variable to the end of the current order.

u

A heuristic ordering algorithm was developed from the two theorems. It gives a

natural order by a depth-first traversal of a circuit (according to Theorem 1) and

inputs which have fanout more than one are considered first (according to

Theorem 2). The algorithm gives a good order for most of examples.
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2.3.4 Dynamic Variable Ordering

Dynamic variable ordering was developed to allow ROBDD operation sequences

that fail when using a fixed variable order to succeed when a new order is chosen

mid-stream. This is done dynamically since ordering is performed by periodically

applying a minimization algorithm which reorders the variables of the ROBDD to

reduce its size. The sifting algorithm developed by Richard Rudel is one of the

best reordering algorithms [57].

In the sifting algorithm, given an ROBDD G, a variable v is successively moved to

each position in the order and the resulting graph size is examined. The variable is

finally assigned the position which results in the smallest graph size. This process

is known as sifting and is repeated for each variable in the graph.

The basic operation in reordering is the exchange of two adjacent variables (swap

operation), which can be done in linear time [8]. Variable swapping involves

moving all ROBDD nodes at level i to level i + 1 and nodes at level i + 1 to i.

Figure 2.3 illustrates the procedure for swapping variables Xf and XM in an

ROBDD. Suppose in the original order, function / is indicated by a pointer to a

node v in the ROBDD, where node v is labeled by variable Xi. After swapping,

function / is indicated by a pointer to a node labeled by x^; this node has

branches to nodes labeled by xi; these nodes in turn have branches to the subgraphs

foo, fïo, foï, and/ii). Function /is still indicated by a pointer to node v, and other

pointers to existing functions (shown as/o and/i) remain undisturbed.

u

The swapping operation is completely local since only nodes of level i and ; + 1

need to be traversed. Sifting n variables requires 0(n ) swaps of adjacent variables,

and each of these variable swaps has complexity proportional to the width of the

ROBDD. Experimental results show that the sifting algorithm can produce

ROBDDs 45% smaller than the original heuristic orders [57].
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Figure 2.3 Variable swapping: node distribution before and after swapping

Since the time needed for sifting algorithm grows very fast with the number of

variables, several improvements have been proposed. Panda presented in 1995 an

extension of sifting that may sift groups of symmetry variables simultaneously to

produce better results [55]. Meinel proposed in 1997 a block-restricted sifting to

reduce the number of swap operations by restricting their application on variables

within certain blocks [50].

Summary

u

In this chapter, we reviewed several modeling languages, including Verilog,

VHDL, the SMV input language, Synchronous Verilog, and MDG-HDL. We then

discussed model checking methods. The chapter concluded with the discussion of

Reduced Ordered Binary Decision Diagram and two well-known variable ordering

algorithms. In the next chapter, we introduce a new kind of decision graphs called

MDG and MDG-based verification approaches.
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Chapter 3 Multiway Decision Graphs

ROBDDs have proved to be a powerful tool for automated hardware verification.

However, they require a Boolean representation of the circuit. Each individual bit

of every data signal must be represented by a separate Boolean variable, while the

size of an ROBDD grows, sometimes exponentially, with the number of Boolean

variables. Therefore, ROBDD-based verification cannot be directly applied to

circuits with complex datapaths.

The verification group at the University of Montreal has proposed a new class of

decision graphs, called Multiway Decision Graphs (MDGs) that comprises, but is

much broader than, the class of ROBDDs [11, 15]. With MDGs, a data signal can

be represented by a single variable of abstract sort, rather than by a vector of

Boolean variables, and a data operation can be viewed as a black box and

represented by an uninterpreted function symbol. MDGs are thus more compact

than ROBDDs for designs containing a datapath, and this greatly increases the

range of circuits that can be verified.

u

This thesis explores two techniques to increase the scope of designs that can be

verified using MDGs: variable ordering and automatic translation from VHDL to

MDG-HDL. In this chapter, we review the MDG-related terminology that

constitutes the theoretical background for the thesis. In Section 3.1, we describe

the formal logic used by MDGs. In Section 3.2, we introduce the structure and

several basic algorithms of MDGs. In Section 3.3, the abstract description of state

machines is presented. This chapter is concluded with the introduction of MDG-

based verification methods.
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3.1 Formal Logic

3.1.1 Syntax

The fonnal logic underlying MDGs is a many-sorted first-order logic, augmented

with the distinction between abstract sorts and concrete sorts [16]. This distinction

is motivated by the natural division of datapath and control circuitry in RTL

designs.

Concrete sorts have enumerations that are sets of individual constants, while

abstract sorts do not. Variables of concrete sorts are used for representing control

signals, and variables of abstract sorts are used for representing datapath signals.

Data operations are represented by uninterpreted function symbols. An n-ary

function symbol has a type Oî x .. .x On—> (%+i, where a\... oin+\ are sorts.

The distinction between abstract and concrete sorts leads to a distinction between

three kinds of function symbols. Let / be a function symbol of type a^x ...x On—>

On+ï. If a^+i is an abstract sort then / is an abstract function symbol. If all the

ai.-.dn+ï are concrete, / is a concrete function symbol. If £c,+i is concrete while at

least one of ûî ... <% is abstract, then we refer to / as a cross-operator. While

abstract function symbols are used to denote data operations, cross-operators are

useful for modeling feedback signals from the datapath to the control circuitry.

Both abstract function symbols and cross-operators are uninterpreted, i.e., their

intended interpretation is not specified.

u

The terms and their types (sorts) are defined inductively as follows: a constant or a

variable of sort aïs a term of type a, and if/is a function symbol of type a\ x ...x

un -^ <%+i, n > l, and Ai ... An are terms of sorts a\ ... dn, then/(Ai, ...,An)is a

term of sort Otn+i. A tenn consisting of a single occurrence of an individual

constant has multiple sorts (the sorts of the constant) but every other term has a
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unique sort. The top symbol of a term is defined as follows: the top symbol of /

(Ai, ..., An) is/, and the top symbol of a temi consisting of a single occurrence of a

variable or a constant is that variable or constant.

We say that a term, variable or constant is concrete (resp. abstract) to indicate that

it is of concrete (resp. abstract) sort. A term is concretely reduced iff it contains no

concrete terms other than individual constants. Thus a concretely reduced term can

contain abstract function symbols, abstract variables, abstract generic constants

and individual constants, but it can contain no cross-operators, concrete function

symbols, concrete generic constants, or concrete variables; and a concretely
reduced tenn that is itself concrete must be an individual constant. A term of the

fonn "/(Ai, ..., An) " where / is a cross-operator and Ai, ..., An are concretely-

reduced terms is called a cross-term. For example, if / is an abstract function

symbol, c is an individual constant, x is a variable of concrete sort, and y is a

variable of abstract sort, then/fc, y) is a concretely-reduced term (assuming that it

is well typed) while/fjc, y) is not.

A well-typed equation is an expression "Ai = Â2" where the left-hand side (LHS)

Ai and the right-hand side (RHS) A-i are terms of same type a. The atomic formulas

are the equations, plus T (tmth) and F (falsity). The formulas are defined

inductively as follows: an atomic formula is a formula; if P and Q. are fonnulas,

then -iP, P A <2 and P v 0 are fonnulas; if P is a formula and .c is a variable, then

(3jc)P is a formula (with x bound in P). We use the abbreviation P <=> <2 for (P =>

<3)A(Q ^P).

3.1.2 Semantics

u
An interpretation is a .mapping y that assigns a denotation to each sort, constant

and function symbol, and satisfies the following conditions:
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1. The denotation y(a) of an abstract sort a is a non-empty set.

2. If cris a concrete sort with enumeration {a^..., a^} then t/^a) = {v(a^), ...,

(<<aJ) and y(a,)^ l/^a^for i-<i<j <n.

3. If c is a generic constant of sort Ct; then îf/(c) e y^a). If / is a function symbol

of type oi x ...x ocn—> Qn+i, then yAf) is a function from the cartesian product

^ori) x.-.x ïi/{0n) into the set (<<<%+i).

V being a set of variables, a variable assignment with domain V compatible with

an interpretation y is a. function ^ that maps every variable v e V of sort a to an

element ^(v) of ^(o). We write <P^ for the set of cy-compatible assignments to the

variables in V.

The denotation of a term under an interpretation ^ and a ^-compatible variable

assignment <f> whose domain contains all the variables that occur in the term is

defined by induction as follows: a constant c denotes (<<c); a variable x denotes

<t(x); and if Ai ...An denote vi ... Vn, then/(Ai, ...,An) denotes ((Z>(/))(vi, ..., Vn).

The truth of a formula P under an interpretation y and a (^-compatible variable

assignment (f> whose domain contains the variable that occur free in P, written y, <f>

1= P, is also defined by induction: y/, <]>\= A\ = Az , iff Ai and A^ have same
denotation; iff, <f> |= -iP iff it is not the case that \f/, ^ \= P; y/, <1)\= P /\ Q. iff y, ^ |=
Pand ^, <j)\= Q; y, (Z>|=Pv<2iff y, </>\=Por y, ^\= Q; and y, (Z)|= (3^)Piff y, (f)'

1= P for some ^' that assigns an arbitrary value to x and otherwise coincides with

u

We write y\=P when y, ^ \= P for every (^-compatible assignment (^ to the

variables that occur free in P, and = P when y\= P for all y. Two formulas P and
<2 are logically equivalent iff |=P <=> Q. A formula P logically implies a formula Q
iff \=P^>Q.
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3.1.3 Directed Formulas

Given two disjoint sets of variables U and Y, a directed formula of type U—> V is a

formula in disjunctive normal fonn (DNF) such that

l. Each disjunct is a conjunction of equations of the fonn

A = a, where A is a tenn of concrete sort a of the form "f(B\, ..., 5n)" that

contains no variables other than elements of U, and a is an individual

constant in the enumeration of OL, or

M = a, where M e £/ is a variable of concrete sort a and a is an individual

constant in the enumeration of OL, or

v = a, where v e V is a. variable of concrete sort a and a is an individual

constant in the enumeration of a, or

v = A, where v e V is a variable of abstract sort a and A is a term of type a

containing no variables other than elements of U\

2. In each disjunct, the LHSs of the equations are pairwise distinct; and

3. Every abstract variable v e. V appears as the LHS of an equation v = A in each

of the disjuncts. (Note that there need not be an equation v = a for every

concrete variable v e V).

Intuitively, in a DP of type U—> V, the U variables play the role of independent

variables, the V variables play the role of dependent variables, and the disjuncts

enumerate possible cases. In each disjunct, the equations of the form u= a and A

= a specify a case in tenns of the U variables, while the other equations specify

the values of (some of the) V variables.

u

A DF is said to be concretely reduced iff every A in an equation A= a is a cross-

term, and every A in an equation v =A is a concretely reduced term. It is easy to

see that every DP is logically equivalent to a concretely reduced DF, given

complete specifications of the concrete function symbols and concrete generic

constants; the reduction can be accomplished by case splitting.
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In the next section, we introduce the graphical representation of a Directed

Fonnula - the Multiway Decision Graph (MDG). We first review the structure of

MDGs, then discuss several basic MDG algorithms

3.2 Multiway Decision Graphs

3.2.1 Structure

Definition 3.1 A multiway decision graph (MDG) is a finite directed acyclic graph

G where the leaf nodes are labeled by formulas, the internal nodes are labeled by

terms, and the edges issuing from an internal node N are labeled by terms of the

same sort as the label of N. Such a graph represents a formula defined inductively

as follows: (i) if G consists of a single leaf node labeled by a fonnula P, then G

represents P; (ii) if G has a root node labeled A with edges labeled Bi...Bn leading

to subgraphs Gi'.-.Gn', and if each G;' represents a formula ?„ then G represents

the formula Vi<, <„(( A = 5;) A P,).

Six well-formedness conditions are provided to turn MDG into a canonical

representation that can be manipulated by efficient algorithms [16]:

u

1. Kinds of nodes. An internal node must be labeled by a variable of abstract sort,

with edges issuing from the node labeled by concretely-reduced terms of that

same sort; or by a variable of concrete sort, with edges labeled by individual

constants in the enumeration of that sort; or by a cross-tenn, with edges labeled

by individual constants in the enumeration of the sort of the cross-term. A leaf

node must be labeled by T (for True), except in the case where the graph has

only one node labeled F (for False).
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Note that the conditions about concretely-reduced terms and cross-terms are only

syntactical restrictions, since it is possible to meet these restrictions using case

splitting.

We refer to an occurrence of a variable in a term that labels an edge or in a cross-

term that labels a node as a secondary occurrence, while an occurrence of a

variable as the label of a node is a primary occurrence. Neither the edge labels,

which are concretely-reduced, nor the cross-terms, contain concrete variables.

Hence only abstract variables can have secondary occurrences. The primary

variables (resp. secondary variables) of a graph G are those that have primary

(resp. secondary) occurrences in G.

2. Ordering. The labels of the edges issuing from a given node must appear in a

standard term order, without repetitions. Along each path, the variables and

the cross-operators of the cross-terms that label the nodes must appear in a

custom symbol order, and cross-terms with the same cross-operator must

appear in the standard tenn order; there must be no repeated labels.

The custom symbol order is a generalization (to include cross-operators) of the

variable ordering used for ROBDDS, and plays the same role. It need only involve

the cross-operators and those variables that may appear as node labels. It is chosen

carefully for each particular application so as to keep the MDGs of manageable

size if possible. The standard term ordering, on the other hand, is chosen arbitrarily

once and for all; it need not be compatible with the custom symbol order. From

these two orderings we define the node-label ordering among the variables and

cross-terms as follows: A cornes before B iff the top symbol of A comes before the

top symbol of B in the custom order, or A and B are cross-terms with the same

cross-operator and A comes before B in standard tenn order. Condition 2 states

that node labels must appear in node-label order along each path.

u
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3. Minimality. There must be no distinct isomorphic subgraphs, and no redundant
nodes.

In an MDG, a redundant node is a node labeled by a concrete variable or a cross-

term of sort ur, with edges labeled by all the individual constants in the

enumeration of or, all leading to the same subgraph.

4. No variables should have both primary and secondary occurrences in the same

graph.

5. The set of abstract variables having primary occurrences along a path is the

same for all paths in a given graph.

6. If a node A^ is labeled by an abstract variable x, and an abstract variable y

participating in the custom symbol order occurs in a term A that labels one of

the edges that issue from N, then y must come before x in the custom symbol

order. Similarly, if N is labeled by a cross-term A with cross-operator /, and y

is an abstract variable that occurs in A, then y must come before / in the custom

symbol order.

An MDG is said to be well-formed if and only if it satisfies conditions 1 through 6
above. From now on, MDG will mean well-formed MDG unless stated otherwise.

u

Given an MDG G, if U is the set of variables having secondary occurrences in G,

and V is the set of variables having primary occurrences, then G is of type U ^ V.

When we say that an MDG is of type U —>V, it will always be understood that U

and V are disjoint sets of variables, and that all the abstract variables in V

participate in the custom symbol order.
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An MDG is a graphical representation of a Directed Fonnula as defined above.

Given a concretely reduced DF P of type (7 —> V, a standard term order, and a

custom symbol order comprising all the variables in V and all the cross-operators

in P, it is easy to construct an MDG representing a DP that coincides with P.

3.2.2 Basic Algorithms

The following basic MDG algorithms were implemented in the past [11]. To

simplify the description of the algorithms we identify an MDG with the directed

formula (DF) that it represents.

Disjunction: The disjunction algorithm is n-ary. It takes as inputs a set of DFs P;,

l < i<:n, of types (7; —> V, and produces a DF /? = Z)ïs/"({Pi}i<i<n ) of type

( u t/, )-> V such that
ISiSn

|=7?<^( v P.).
Ki<n

Note that this algorithm requires that all the P,, ï < i <n, have the same set of

abstract primary variables. If two DFs Pi, P^ do not have the same set of abstract

primary variables, then there is no DP R such that |=7? <^> ( Pi vPz).

u

Conjunction: The conjunction algorithm takes as inputs a set of DFs P;, l <:i<:n,

of types Ui—>Vi and produces a DP /? = Conj({Pi}i<,<n^) of type

((.u É/,)\(.u v,))^(.u y;)
lâSn Ki<n KiSn

such that |=7? <=> ( A P, ). Note that for 1< i<j< n, V; and Vj must not have any
l<Kn

abstract primary variables in common, otherwise the conjunction cannot be

computed.
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Relational product: The algorithm takes as inputs a set of DFs Pi, 1 < i'<n, of

types Ui—^Vf, a set of variables E to be existentially quantified, and a renaming

substitution 77, and produces a DP T? = ReIP({/î,}i<;<n, E, T]) such that

|=7?^(((3£)(,A P.))-t}).
Ki<n

The algorithm computes the conjunction of the P,, existentially quantifies the

variables in E, and applies the renaming substitution 77. For l <:i <j <n, V, and Vj

must not have any primary abstract variables in common. The type of the result R

IS

«,^t/')u,^y'))^«<^v'n£)"')-

Pruning by subsumption: The algorithm takes as inputs two DFs P and Q. of types

U—)'V] and U—^Vz respectively, and produces a DF 7? = PbyS(P,<2) of type U-^Vi

derivable from P ^pruning (i.e., by removing some of the disjuncts) such that

^v(3LO<2<^Pv(3^<2 (3.1)

The disjuncts that are removed from P are subsumed by Q, hence the name of the

algorithm.

Since R is derivable from P by pruning, after the formulas represented by R and P

have been converted to DF, the disjuncts in the DP of R are a subset of those in the

DF of P. Hence \=R=>P. And, from (3.1), it follows tautologically that

|=P A -i(3t/)<2 ==i> R. Thus we have

|=(PA-,(3LQ0=>7?)A(7?^P).

u

We can then view R as approximating the logical difference of P and (3U)Q. In

general, there is no DP logically equivalent to P A -i(3[/)<2. If R is F, then it

follows tautologically from (3.1) that |= P ^> (3U)Q.
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Those basic algorithms are the building blocks of the procedures for MDG-based

verification. In MDG-based verification, abstract descriptions of state machines

(ASM) are used to model the systems. In the next section, we introduce abstract

state machines and the related state explosion.

3.3 Abstract State Machines

An Abstract State Machine (ASM) is a model used for describing hardware

designs at the Register Transfer Level [11]. It is a state machine given by an

abstract description in terms ofMDGs (or equivalent Directed Formulas).

3.3.1 Representing Sets using MDGs

Let P be an MDG of type U—>V. Then, for a given interpretation y, P can be used

to represent the set of vectors

5<(P)={^e^|^^|=(3^)P}

In the next section, MDGs will thus be used in this fashion to represent sets of

states and sets of output vectors. We shall also see how MDGs can be used to

represent relations.

(J

3.3.2 Describing State Machines with MDGs

An abstract description of a state machine M is a tuple D = (x,y,Z,F/,Fj.,Fo),

where

X, y, Z are disjoint sets of variables, viz. the input, state, and output variables,

respectively. Let 7; be a one-to-one function that maps each variable y to a

distinct variable rj{y) obtained, for example, by adorning y with a prime. The
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u

variables in Y' = ^(v) are used as the next-state variables. X, 7 and Z must be
disjoint from V/.

Given an interpretation (y, an input vector of the state machine M represented by

D is a (^-compatible assignment to the set of input variables X; thus the set of

input vectors, or inputs alphabet, is 0^ . Similarly, <E>^is the output alphabet.

A state is a (^-compatible assignment to the set of state variables Y; hence the

state space is Q^. A state <f) can also described by an assignment

^ =<f)orf~ ç. 0^, to the next state variables.

Fj is an MDG representing the set of initial states, of type U -^Y , where U is a

set of abstract variables disjoint from XuYuY'uZ. Typically, F, is a one-

path MDG where each internal node N is labeled by a variable y e Y , and the

edge that issues from N is labeled by the symbolic initial value of y, which can

be an individual constant, an abstract generic constant, or an abstract variable

MG [7 . Itis possible to specify that two data registers have the same value, but

that this common value is arbitrary, by using the same u as symbolic initial

value of the abstract state vanables representing the two registers.

Given an interpretation ïff, a state (Z)e <î>^is an initial state iff \if,^ |= (3t/)F/.

Thus the set of initial states of the state machine M represented by D is

S,= { ^e ^\ y, ^=(3U)Fi}= 5<(F/)

FT is an MDG of type (X u Y) ^ V/representing the transition relation. Given an

interpretation \|/, an input vector ^e ^^ and a state (Z)/G $^, a state (Z^'e 0^ is

a possible next state iff (y,(Z) u ^/U(Z) o ri |= F . Thus the transition relation

of the state machine M represented by D is

7?r={(^^^)e^x^x^|^,^u^u(^°77-l)l=^}

FO is an MDG of type (x u Y )-^ Z representing the output relation. Given an

interpretation \|/, the output relation of the state machine M represented by D is

/?o={(^^^)e<D^x^x^|^,^u^u^|=Fo}
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To recapitulate, for every interpretation \y of the sorts, constants and function

symbols of the logic, the abstract description D = (X,y,Z,F/,F.r,Fo) represents

the state machine M =[^,^,^,S,,RT,RO) with the input alphabet 0^, the

state space 0^, the output alphabet ^, the set of initial state Si, the transition

relation RT, and the output relation Ro.

3.3.3 State Exploration

Given an abstract state machine description D = (X, Y, Z, Fj, FT, Fo), we can

compute the set of the reachable states of a state machine

M =[^^'Ç,^,S,,RT,RO) represented by D, for any interpretation y, using

the MDG algorithms mentioned above. At the same time we can check that a given

condition on the outputs of the machine, the invariant, holds in all the reachable

states. The invariant is represented by an MDG C of type W -» Z, where W is a set

of abstract variables disjoint from X, Y, Y', Z and U. For a given interpretation y,

an output vector is deemed to satisfy the invariant iff y, ^ |= (3W)C; therefore,

Set^(C) is the set output vectors that satisfy the invariant.

u

The invariant checking algorithm based on Reachability Analysis, can be

described by the following pseudo-code:

l. ReAn(D,C)

2. R:=Fr,Q:=Fr,K:=Q;
3. loop

4. /s::=JI<:+l;

5. I := Fresh(X, K);

6. 0 := RelP({ 7, à Pô },XuY, 0);

7. P := PbyS( 0, C );
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0
8.

9.

10.

11.

12.

13.

14.

if P ^ F then return failure;

N:=ReïP({I,Q,Fr},XuY, rj);

Q := PbyS(M R);

if <2 = F then return success;

R := PbyS(R, Q);

R:=Dis](R,Q);

end loop;

15. end ReAn;

Variables I, N, P, Q represent sets of states, and 0 represents a set of output

vectors. Before each iteration, R contains the states reached so far, while Q is the

frontier set, i.e., a subset of 5er^ (^?) containing at least all those states that

entered Set^ (R) for the first time in the previous iteration.

In line 5, Fresh(X, K) constructs a one-path MDG representing a conjunction of

equations x = u, one for each abstract input variable x e X, where u is a fresh

variable from the set of auxiliary abstract variables U. The value of the loop

counter K is used to generate the fresh variables. This one-path MDG is assigned

to 7, which represents the set of input vectors.

In line 6, the relational product operation is used to compute the MDG

representing the set of output vectors produced by the states in the frontier set. The

resulting MDG is assigned to 0. Then, in line 7, the pmning-by-subsumption

operation is used to remove from 0 paths representing output vectors that satisfy

the invariant C. The resulting MDG is assigned to P. In line 8, if P is not F, then

the procedure stops and reports failure. If P is F, then Set^{0~) c Set^(C), i.e.,

every output vector produced by a state in the frontier set satisfies the invariant,

and the verification procedure continues.

u
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In line 9, the relational product operation is used again, this time to compute the

MDG representing the set of states that can be reached in one step from the

frontier set.

Lines 10 and 11 check whether Set^(N) c Set^(R), by the same method as in

lines 7 and 8 to check whether Set^ (0) c Set^ (C). If this is indeed the case, then

every state reachable from the frontier set was already in Set^ (R). The fixpoint

has been reached and R represents all the reachable states. Therefore, the

procedure terminates and reports success. Otherwise the MDG assigned to Q in

line 10 represents the new frontier set.

Line 12 simplifies R by removing from it any paths that are subsumed by Q, using

PbyS. There may be such paths because Q was not computed earlier as an exact

difference. Then line 13 computes the new value of R by taking the disjunction of

R and Q, which represents the set of states Set^(R) uSet^(Q), and assigns it to

R.

3.4 MDG-based Verification Applications

The MDG-based method makes it possible to verify circuits automatically at the

RT level, using abstract types and uninterpreted function symbols. The MDG

package contains the following verification applications [66, 69]:

u

Combinational equivalence checking: Given two combinational circuits, we

compute for each of them an MDG representing its input-output relation by

combining the MDGs of the components of the circuit using the relational product

operation. Because of the canonicity of MDGs, comparing the functionality of two

combinational circuits reduces to computing the MDGs representing their

input/output relations. If the two circuits have the same functionality, the two
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MDGs must represent logically equivalent formulas, and hence they must be

isomorphic.

Safety property checking: The safety property checking is based on the

reachability analysis procedure. Given a state machine M and an invariant

condition C, we check if C holds in all the reachable states of M. An invariant

condition is specified by a combinational circuit whose output signals are named

by the variables that occur in the condition. Pruning-by-subsumption is used to

check that the invariant is satisfied for the states in each frontier set.

Sequential equivalence checking: One application of the safety property

checking is the behavioral equivalence checking of two sequential circuits. To

verify that two machines produce the same sequence of outputs for every sequence

of inputs, we feed the same inputs to the two circuits, i.e., we form the product

state machine. Then, reachability analysis is performed on this parallel

composition using an invariant that asserts the equality of the corresponding

outputs in all the reachable states. For machines at different time scales, it is

possible to synchronize them first if they have cyclic behavior. Then we can

perform reachability analysis on the product machine as usual.

Model checking: A model checking algorithm for a subset of Abstract-CTL*

called LMDG was developed by Xu [68]. It can verify safety and liveness properties

with or without fairness constraints. To check a property p in LMOG on an ASM At,

we first build additional ASMs Mj for basic sub-formulas of p in which only the

temporal operator X is allowed (called NextJetJ'ormulas), and then we compose

these additional ASMs with M. Finally, we apply the appropriate algorithm

developed by Xu to verify a simplified property on the composite machine.

u
In all the above applications, MDGs require an initial variable order before any

MDG manipulation. The variable order decides not only the size of the MDGs but

also the memory requirement and the execution time needed for a verification
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application. For sequential verifications (safety property checking, sequential

equivalence checking and model checking), a dynamic reordering method may be

needed to minimize the size of MDGs during the verification process.

Summary

MDG is a new type of a decision graph which incorporates abstract sorts and

uninterpreted function symbols. MDGs can represent RTL designs at an abstract

level that is independent of the datapath width. A new verification approach based

on MDG was summarized. In this approach, abstract state machines are used to

model systems.

MDG-based verification alleviates the state explosion at the Boolean level and

thus greatly increases the scope of designs that can be verified. However, the

presence of abstract variables and cross-operators in the stmcture of MDGs makes

the variable ordering problem more difficult than in the ROBDD case.

In the following chapters, we concentrate on developing two techniques that

improve the efficiency of the MDG system: automatic variable ordering methods

on MDG in Chapter 4, 5 and 6, and automatic translation from VHDL to MDG-

HDL in Chapter 7.

u
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Chapter 4 Static Variable Ordering on MDG

MDGs are a canonical representation of circuits at a higher abstraction level
provided that the order of variables is fixed like in ROBDD. The MDG for a given

circuit can have many different fomis depending on the variable order, and the size

of MDGs may greatly vary with the order. The size of an MDG detennines not

only the memory requirements but also the amount of execution time for its

manipulation. The variable ordering algorithm is thus one of the most important

issues in the application of MDGs.

This chapter presents static variable ordering algorithms that give an initial order

to generate MDGs. This order is static, in the sense that it is chosen a priori

(before any MDG manipulation) and uses information about the circuit topology.
We first define 3 constraints on variable ordering in Section 4.1. We then discuss

several heuristic rules for variable ordering in Section 4.2. In Section 4.3, we
present static variable ordering algorithms for combinational and sequential

circuits. The proof of convergence of the algorithms is given in Section 4.4.

Section 4.5 reports experimental results on IFIP benchmark circuits, an Island

Tunnel Controller and the Fairisle 4x4 ATM switch fabric.

4.1 Constraints on Variable Ordering on MDG

u

For an MDG, a total order "<" over the set of variables is imposed: on any path

from a root to a terminal node the variables occur in the given order. In this thesis,

we use a <b to denote that a comes before b in the order and we also say a has a

higher position than b in an MDG. An ordering list of variables is denoted as XQ <

x\ ... < Xn. XQ is at the beginning of the list and is the variable labeling the root
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node in most of cases. For example, in Figure 4.1, the order is x^<xz< y. The head

of the order is xi. It is the concrete variable labeling the root node and has a higher

position than xi. and y.

0 lXl

ft

0 l

y y

0

T

l

Figure 4.1 An example of MDG

Compared to ROBDD, variable ordering on MDG is complicated by the presence

of first order terms. To keep MDG well formed, the following constraints on the

order of abstract variables and cross-operators must be respected [70]:

1. If an abstract variable a appears as a secondary variable in an edge label of
node b, then a<b.

2. If a variable a appears as a secondary variable in a cross-term having cross-

operator/, then a <f.

3. The present and next state variables must be in a corresponding order. If the

present state variables are in the order a <b < c, then the corresponding next
state variables should be in the order a' <b' <c'.

u

Figure 4.2 shows an MDG representing a circuit which is assigned the smaller

value of the two inputs x\, x-i (an abstract sort). The inputs are compared using an
uninterpreted cross-operator leq such that for any two values a and b of sort s,

leq(a, b)= ï if and only if a is less than or equal to b.
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Figure 4.2 An MDG representation of the circuit that selects a smaller value

xi and X2 are secondary variables and they label the edge of y. According to

Constraint 1, xi and xi must come before y. Since they also appear in the cross-

term leq(xi, x^), they must come before the cross-operator leq according to

Constraint 2. Thus there are 4 constraints in this MDG: xi < y, JC2 < y, .ci < leq and

X2 < leq.

In the process of ordering, all these constraints have to be observed. In Section 4.3,

we present a constraint checking/adjusting procedure in the static ordering

algorithm. Before discussing the algorithm, we introduce next several heuristic

rules for variable ordering on MDG.

4.2 Heuristic Rules for Variable Ordering

Since MDGs subsume ROBDDs, there are two variable ordering rules of

ROBDDs that can be imported for MDGs that have concrete variables [29, 30].

1. The variables whose connections are topologically close to each other in the

circuit should be near each other in the variable order.
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Variables appearing in the same sub-circuit are close. Consider, for example, the

circuit shown in Figure 4.3(a). .ci and xz are close because they appear in an AND

operation and directly decide the value of yi. x^ and x^ are less close than x\ and xz

since they only decide the value of y indirectly. The circuit's MDG has 6 nodes

under the ordering xi <X2<X3<x^<y (Figure 4.3(b)), but has 8 nodes under the

ordering xi<X4<xz<X3<y (Figure 4.3(c)).

For a circuit of the form (^i A ^2) V ...V (xzn-i A x^n), an MDG requires 2n + 2

nodes under the order .ci< x^< ...< xin.i < x^n, while it requires 1 nodes under the
order xi< Xn+i< . ..<Xn< x^n.
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0 l
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X,
OX l

X3 Xj
0^^ l

l
x x

0 l

l
X40 l
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l

(a) circuit (b) xi<x^<X3<X4<y (c) xi<X4.<X2<x-}<y

Figure 4.3 MDGs for a 2-level AND-OR circuit

2. The control variables of a circuit should be located at higher positions in the
order than other related data variables.

u
Consider a two-way multiplexer as shown in Figure 4.4(a). ^i, xz and y are of a

concrete sort with enumeration {0, 1, 2}. y is the control variable. The MDGs
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0 under the order .co < xi<X2<y and x\<X2<xo<y are shown in Figure 4.4(b) and

(c). If A-i, X2 and y are of a concrete sort with enumeration {c;} i <, <m, it would take
m+3 nodes under the first order, but take m2 + m +1 nodes under the second order.

However, in this example, if .ci, ^2 and y were of an abstract sort and XQ of a

concrete sort, the MDGs would be the same under both orders since jci and X2 only

label edges and must precede y in the order (Figure 4.4(d)).
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(c)xi<X2<XQ<y

Figure 4.4 MDGs for 3-sort multiplexer

(d)A:i,.C2andyare
abstract variables

u
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An extreme example of this mle is to represent an n-bit data selector with Boolean

variables. When the control inputs are high in the order, the MDG size is linear,

whereas it becomes exponential using the reverse order.

Based on our experience with MDGs, we derived several additional rules for

variable ordering in MDGs.

3. For any component, the output should be located after all the inputs.

Consider a simple 3-input AND gate (y =^i Ax2 A ^3) and its MDG representation

for two different orders of the variables in Figure 4.5(a). We can get the best order

by ordering the variables in the order xi <x^< x^ < y (Figure 4.5(b)). We can

have a better understanding of how this arises when we compare the two graphs in

Figure 4.5 (b) and (c). In (b), whenever x; = 0 and y is 0, we do not need to

consider the inputs after Xi. However, in the gray part of (c), we have to have more

nodes to hold the values when x-i is 1 and x-i+ï is 0. For an n-bit AND gate or any

other Boolean gate, putting the output after all inputs yields a better order. The

resulting graph has n-1 nodes less than the other possible graphs.

u
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Figure 4.5 MDGs for 3-input AND gate
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4. It is usually more efficient to put a concrete variable whose sort has a large

enumeration before other variables.

This is because the graphs can be restricted dramatically as early as possible when

doing a conjunction. In the abstract implicit state enumeration, conjunction is an

important part for the relational product operation. Conjunction is recursively

computed from two MDGs. If the MDGs contain some common concrete variables

whose sorts have a large enumeration, conjoining them early in the recursive

process saves both memory and time.

5. An abstract variable may have a large number of distinct terms that can be

assigned to itself. For example, an output of a data operation may have many

different results according to different conditions. If such variables could be

identified, it is usually better to put them at the beginning of the order list.

This mle can be demonstrated by a simple example shown in Figure 4.6. The

circuit and its output tables are shown in (a) and (b), respectively. The input
variables Xi, A;2, x^, x^ and the outputs yi, ^2 are of an abstract sort, while the control

variable XQ is of a concrete sort with the enumeration {0, 1, 2, 3}. Depending on

the value of XQ, the ALU can add, subtract, increment, or produce zero. The
operations are represented by symbols add, sub and inc. The symbol zero is a

generic constant. The output of the multiplexer is x^ or x^ depending on whether XQ

is 0. The abstract variable yi has 4 distinct tenns that can be assigned to itself

while y2 only has 2. When we put yi before ^2, the corresponding MDG shown in

(c) is more compact than the MDG using the reverse order as shown in (d).

(J
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Figure 4.6 MDGs for an ALU and a multiplexer

If we could find a variable order that satisfies all those mles, the MDGs would be

rather compact. However, a practical circuit consists of many functions, which

may require different and conflicting orders. It is difficult to find a point of

compromise to satisfy all the rules. From our experience with MDGs, we have

found that rules 4 and 5 are more important for sequential circuits than for

combinational circuits. Rules 1, 2 and 3 are important for both kinds of circuits

and their priorities can be ordered as "mle 1 < mle 2 < mie 3". Our static

algorithm was developed under this metamle.

u
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4.3 A Static Variable Ordering Algorithm for MDG

It is hard to find the best order for practical circuits due to complex signal relations

inside the circuit. This section presents a static variable ordering algorithm based

on circuit topology and the heuristic rules discussed in Section 4.2. Before

presenting the algorithms, we give two definitions needed to introduce the

algorithm.

Let Z = (zi, ... Zn) be the output variables and X=(xi, ... Xn) be the primary input

variables. Let fi be the output function, then z, =fi (X).

Definition 4.1. Let ddvCzi) be the set of direct detennining variables of z;. It

includes all variables v e Z(j X such that fî \ v=a ^ fi \ v=b for some a^b, where

fi l v=x is the cofactor of fi for v=^. Let rfv(zi) denote the set of determining
variables of Zi, which is defined recursively as follows: dv(zi) = ddv(zi) u{

zjE ddv(zi)\zj}.

DeHnition 4.2. The depth of an output is the longest path (measured in the

number of components) from this output to the primary inputs.

For example, in Figure 4.7, the depth of ol is 5 and the depth of o2 is 3. We

extend Definition 4.2 to any kind of variables. The depth of an intermediate

variable is the longest path from this variable to the primary inputs. In sequential

circuits, a present state variable is taken as a primary input. Thus, the depth of a

present variable is 0 and the depth of a next state variable is the longest path from

this variable to the primary inputs and present state variables.

u
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Figure 4.7 A combinational circuit

In the following subsections, we introduce an algorithm for combinational circuits

first, then we adapt it for sequential circuits.

4.3.1 Static Variable Ordering Algorithms for Combinational Circuits

The basic idea of our static variable ordering algorithm for combinational circuits

(svoc) is to calculate a weight for each variable. The weight of a variable reflects

the contribution of this variable to the circuit, thus the variables with large weights

should be put in the front of the list.

Motivated by rule 3 and Fujita's theorems [28], the algorithm is based on a depth-

first search. During the search, a variable will experience three states: initial,

visited and ordered. To visit as many variables as possible in one search, the

algorithm starts from the output with the largest depth. During the search, the

weights of inputs are always assigned by a value larger than outputs. Thus the

weights of a variable's determining variables are always larger than a variable

itself.

u
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In a sub-circuit with control variables, since a control signal should come before

its closely related data input variables and their determining variables, the weight

of the control signal is larger than the data inputs and their determining variables'

weights.

The calculation of the weight for each variable starts from the outputs. First, each

output is assigned 0. Then from the output with the largest depth, the weight

calculation is propagated toward the primary inputs. At each component y =f(x^,

..., Xn) except a multiplexer, the weight of xi, l < i<n, is given as

weight(Xf ) =
l weight(y) +1 x, not visited

[ma\(weight(x,),weight(y)+ï) . otherwise
(4.1)

If x, has been visited and weight(y) + 1 is larger than weight^,), the components

reached starting from Xj will have to be visited again and the weights will have to

be re-calculated for the determining variables of Xi. However, if weight(y) + 1 is

smaller than or equal to weight^;), the algorithm stops searching the x, branch.

If the component is a multiplexer y = f (sel, x\,..., Xn), the algorithm calculates the

weights for the variables xi, ...,Xn using the same way until it reaches the primary

inputs, but it memorizes the largest weight assigned to the determining variables of

y. The weight of sel is then this largest weight plus 1.

u

The weight of a cross-operator is the weight of its output plus 0.5. According to

Constraint 2, the abstract inputs of a cross-operator should come before the cross-

operator. The value of 0.5 makes the weight of the cross-operator smaller than its

inputs and does not violate the constraint in the order. If a cross-operator is used

more than once in the circuit and has different weights depending on its outputs,

the'final weight of the cross-operator is the smallest one. By assigned the smallest
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weight, the cross-operator will come after all its abstract inputs in the final order

and satisfy Constraint 2.

After the algorithm visited all variables contributing to this output, it sorts the

variables in a decreasing order of the weights in two parts: first it sorts all primary

inputs, and second it sorts the other variables that include internal variables, cross-

operators and outputs.

The algorithm marks all the visited variables as ordered and removes them from
the circuit file. It then repeats the same procedure for the still unordered outputs. If
all determining variables for an output have already been ordered, the algorithm
would mark this output ordered and append it to the ordered variable list directly.

The algorithm svoc(Ç, L) is shown in Figure 4.8, where C is a given circuit file, L
is the order generated by the algorithm. After initialization, the algorithm uses the
sub-procedure weight-calculation to compute weights for the determining
variables of an output. X and 0 are lists that contain all inputs and other variables
visited in this sub-procedure. They are sorted in the main procedure and are
appended to L respectively. Procedure weight-assigning is assigning a weight to a
variable using Equation 4.1. Procedure constraint-adjusting is used at the end of
the algorithm to check if all constraints have been observed. If there are two
variables a<b violating a constraint, just simply move a right after b. This move
may result in another constraint violation, so all constraints have to be checked

again until they are all satisfied.

u

An example of this algorithm applied to the circuit in Figure 4.7 is shown in
Figure 4.9. x\, xz, ^3, x^andxs are primary inputs. The algorithm searches the circuit
starting from oi that has larger depth than 02. The variable y\ has two fan-out

branches and its new weight is larger than the old one, therefore the NOT
component has to be visited twice in this propagation. The select signal sel is the
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u

Procedure SVOC (C, L)
begin

initialization
for all outputs i in decreasing order of depth

if the output i is not ordered
weight-calculation ( i, X, 0)
L = append-to-tail (L, X, 0)
mark X and 0 as ordered and clear them

constraint-adjusting (L)
end

Procedure initialization

begin
L=0;X=0; 0=0;
mark all the variables as unordered
for all variables i

weight[i] = 0
end

Procedure weight-calculation (i, X, 0)
begin

from t propagate to the primary inputs
for each component/ y =/(xi, ..., ^n) in this propagation process

if xi is not a select signal in a multiplexer
weight-assigning (-ïi,.. x^, y)

else
weight(select) = max (the weights of all signals starting from f) + 1

if/is a cross-function
weight(/) = weight(y) + 0.5

X = sort-in-decreasing-order (all primary inputs visited in this sub-procedure)
0 = sort-in-decreasing-order (all other variables visited in this sub-procedure)

End

Procedure weight-assigning (xi,.. Xs, y)
begin

for each je;, 1 < i <n,
ifx,=0

weighty) = weight(y) + 1
else if x, > 0 and not ordered

weighty) = max (weight(xi), weight(y) + 1)
end

Procedure constraint-adjusting (L)
begin

repeat check constraints for all secondary variables and cross-operators
if two secondary variables or cross-operators a and b are in the order b<a,

and this violates one of the constraints, reverse the order so that a<b.
until all constraints are satisfied
end . . .. . .

Figure 4.8 A static variable ordering algorithm for combinational circuits
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largest weight from all variables starting from the multiplexer plus 1. The final

order for this example is sel <Xï<X4<x'z<xs<X3<yi<y2<y3<02<y^< oi. It

is one of the best orders for this example. The resulting MDGs for oi and 02 are

shown in Figure 4.9(b) and (c) respectively. They are 55% smaller than using the
reverse order.
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Figure 4.9 An example of application of the svoc algorithm
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If a circuit component is described by a table, a slightly different strategy is used
in the weight calculation. First, we define disv(xi) as the number of distinct values
xi can take. For example, a circuit component described by a table is shown in
Table 4.1, where m' is the output, r, c, x, m are the inputs, and leq is a cross-

operator.

r e leq(x, m) m'

0 * * max

l l * x

2 0 0 m

3 0 l x

Table 4. l An example of a circuit component in tabular form

The number of distinct values that c, x and m can take in the table is 2. The number

of distinct values that r can take is 4.

When a table is encountered in the propagation of the weight calculation, we add
the number of distinct values (disv) a variable can take instead of adding l in

Equation (4.1). The new equation is as follows:

weighty)
weight(y) + disv(x, ) x; not visited

inax(weight(x, ), weight(y') + disv(x, )) otherwise
(4.2)

u

This modification is motivated by heuristics 4 and 5. Since a cross-operator should

be located after its secondary variables, we subtract 0.5 from its disv. If all (or part
of) outputs are described by tables, the ordering algorithm starts from the output
having the largest number of determining variables instead of the largest depth.
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4.3.2 Static Variable Ordering Algorithms for Sequential Circuits

We extend this algorithm for sequential circuits, where the variable order

influences not only the size of the MDG representation of the transition function

but also the size of the MDG representation of the set of reachable states.

In the transition system of a model M, let 7= (yi,... yn) be the state variables, Y'=

(yï', • • • Yn) the corresponding next state variables. We first determine a good order

of the next state variables (yi', ... yn) based on two factors: their depth to the

primary inputs, and the size of the sorts of concrete variables or the number of

distinct terms of abstract variables. If all (or part of) the next state variables are

given using tables, we use the number of determining variables instead of the

depth to the primary inputs. For some abstract variables, we may not know the

number of terms from a circuit. In this case, we assume that they have 3 terms.

This is based on our experience that most of abstract state variables have at least 3

terms. After ordering the next state variables using the above factors, we use the

procedure constraint-adjusting to modify the order list if there is a next state

variable violating the constraints.

We order the determining variables dv of a next state variable y, using the same

algorithm as for combinational circuits. If there are some state variables dependent

on other state variables, we ignore those dependent state variables in the process of

propagation. Finally, we order the variables as follows: yi, dv(y^'), yi', y2,

dv(yz)\dv(y^, y2, ..., yn, dv(yn)\Çdv(y^)u ....U rfv^.i')), y»'.

The static variable ordering algorithm for sequential circuits (svos) is shown in

Figure4.IO.

u
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Procedure SVOS(C,L)

begin
initialization
S is the set of the next state variables
S'= order-next-state-variables(5)
for each state variable i and i" in 5'

weight-calculation( i', X, 0)
LI = append-to-tail(L, [i], X, 0, [i'] )

for all outputs ;" in decreasing order of depth
if the output i is not ordered

weight-calculation ( i, X, 0 )
L = append-to-tail (Ll, X, 0)
mark X and 0 as ordered and clear them

constraint-adjusting (L)
end

Function order-next-state-variables(5)
begin

for each next state variables ;
if i is a concrete variable

weight[;'] = depth(i) + size(sorts)
else weight[(] = depth(i) + number(terms)

S' = sort-in-decreasing-order (5)
5" = constraint-adjusting (S')
return 5'

end

Figure 4.10 A static variable ordering algorithm for sequential circuits

In the next section, we prove the convergence of our variable ordering algorithm.

4.4 Proof of Convergence of the Algorithms

u

In the procedure constraint-adjusting, if two variables or cross-operators a and b

are in the order b <a and this violates one of the constraints, we reverse the order

so that a < b. This may cause a new violation, so constraints are checked

repeatedly until all of them have been satisfied. However, if such reversals always

causes new violations to other constraints, the procedure constraint-adjusting

would not terminate. For instance, suppose that there are three constraints xi < x-z,

X2 < X3, X3 < xi, forming a circular chain. The procedure cannot terminate since it is
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not able to find an order satisfying all the constraints. In other words, non-

termination of the procedure constraint-adjusting occurs if there exist two or more

constraints forming a circular chain: x^ < x^., x^<X3,..., Xn-ï < Xn, Xn<xin>2.

In the following, we prove that non-termination does not happen in the case of

MDG graphs modeling any RTL circuit without combinational loops (we do not

allow false loops either, i.e., loops that exist topologically, but not logically due to

dependencies between logical variables). We do that by inspecting the sources of

the constraints (Constraints 1, 2 and 3 mentioned in Section 4.1). Note that each x;

in the chain must appear on the left-hand side of a constraint and the right-hand

side of another constraint. X[ cannot be a cross-operator since a cross-operator does

not appear on the left-hand side of a constraint, thus Constraint 2 need not be

considered. All constraints in the circular chain can only be caused by Constraint 1

and 3.

Before proving this statement, however, we discuss how Constraint 1 can be

introduced by a circuit component. As we explained in Section 4.1, Constraint 1 is

caused by an abstract variable appearing as a secondary variable in an edge label

of a node. This situation can be produced by a combinational module such as a

multiplexer or a function. For example, in Figure 4.2, constraints xi<y and x; < y

are introduced by a multiplexer. Note that in MDG a register such as shown in

Figure 4.11 does not cause constraint y'< y since the next state variable is

determined by the MDG as function of the present state variables and inputs.

Therefore, y' is a primary variable and depends on y, and y as a secondary

variable must come before y' in the order.

u
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Figure 4.11 An example of a register

Theorem 1: Procedure constraint-adjusting tenninates for any circuit.

First, assume that xi < X2, x-i<x-s, ..., Xn<xi are all caused by Constraint 1, which

means Xi.i labels an edge of a node labeled by Xf. Suppose xi < x-^, x'î<X3, ...,Xn<

x\ are caused by some combinational modules m; ,i = 1, ..., n. The circuit that

introduces all the constraints in the chain is shown in Figure 4.12.

Xl
-> my

X2
-> OT2

X3 Xn-
m,'•n

Xn

->

Figure 4.12 A circuit causing non-termination of procedure constraint-adjusting

However, as mentioned earlier, we do not allow combinational loops in RTL

circuits. Thus, the constraints x^ < x^, x^<xy, ..., Xn<x\ can not be all caused by

Constraint 1.

u

Second, suppose xi < xz, x^<x^, ..., Xn<xi arc all caused by Constraint 3. Since

we first fix the order of the next state variables, say xi'< ... <Xn, the present state

variables must be in a corresponding order such as .ci< ... < Xn. The constraints

xi< ... <Xn are thus imposed. Since no circular chain of constraints over the next-
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state variables ^i'< ... < Xn< x\' would be fixed by our algorithm, xi<x^ ,x^< x^,

..., and Xn< xi thus cannot be all caused by Constraint 3.

Third, without loss of generality, suppose x^ < x^ is caused by Constraint 1, and Xn

< xi is caused by Constraint 3. Our algorithm modifies the order of the next state

variables if some of them violate Constraint 1. The present state variables are

arranged according to the order of the next state variables. Thus, Xn and x\ must be

present state variables. However, a present state variable can be a primary variable

(labeling a node) only in an MDG that assigns the initial state value. It is used in

the first step of reachability analysis and depends on some fresh variables or

constants that can be freely moved in the order as their constraint is only relative to

the prcsent-state variable. In all other instances, present-state variables are

secondary variables. In other words, a present state variable cannot be the output

of a combinational module that may cause the present state variable to appear on

the right-hand side of a constraint. Thus the constraint ^n-i < Xn cannot be caused

by Consti-aint 1 and can only be caused by Constraint 3 too. Similarly, we can

show that Xn-î < Xn-\-, Xn-3 < Xn.2, ..., X\ < JC2 must also be caused by Constraint 3.

This contradicts the assumption that xi < X2 is caused by Constraint 1.

Therefore, the procedure constraint-adjusting always tenninates.

D

4.5 Experimental Results

u

The algorithms have been implemented in Prolog and integrated in the MDG

package. We conducted experiments to evaluate the efficiency of the ordering

methods. In this section, we present experimental results on a number of IFIP

benchmark circuits, an Island Tunnel Controller and an ATM Switch Fabric
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model. In this thesis, all the experimental results were carried out on a Sun Ultra

10 workstation with 333MHz and 1GB of memory.

4.5.1 Experiments on the IFIP Benchmark Circuits

Table 4.2 shows the experimental results on some IFIP benchmark circuits [40] for

<'l'seq_traverse" operation, "seqjtraverse'1'1 is an application provided by MDG

package for reachability analysis for an ASM with an invariant which is always

tme [70]. Designers who have experience with MDGs provided the original

orders. '-' means that the verification did not terminate in 20 hours.

The algorithm gave a better order than the manually generated ones in most cases,

especially in circuits with a large number of variables when manual ordering

becomes difficult. In particular, in the case of the benchmark "queue", the

improvement was quite dramatic, and in the case of "buffer" our order allowed the

reachability analysis to complete.

u

circuit

No. of state

|var.& functions

minmax

tie

gcd

tama

filter

queue

buffer

our algorithm original order

nodes time(sec) nodes time(sec)

3 & 14 166 0.12 175

2&18 245 1.22 240

3 & 34 375 0.26 386

9 & 49 2211 1.44 2260

12 & 21 2957 4.08 3402

8 & 26 6551 3.58 18695

256 & 257 2307 2.21

0.16

1.17

0.26

1.46

4.19

22.16

Table 4.2 Experimental results for IFIP benchmark circuits
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4.5.2 Invariant Checking on the Island Tunnel Controller

In this subsection we apply our static ordering algorithm to the Island Tunnel

Controller (FTC) example. FTC was originally introduced by Fisler and Johnson

[25]. The TTC controls the traffic lights at both ends of a tunnel based on

information collected by sensors installed at both ends of the tunnel, a single lane

tunnel connecting the mainland to an island, as shown in Figure 4.13. At each end

of the tunnel, there is a traffic light. There are four sensors for detecting the

presence of vehicles: one at the tunnel entrance (ie) and one at the tunnel exit on

the island side (ix), and one at the tunnel entrance (me) and one at the tunnel exit

on the mainland side (mx).

In [25], the following constraint is imposed: "at most sixteen cars may be on the

island at any time". The number "sixteen" can be taken as a parameter and it can

be any natural number. The constraint can thus be read as follows: "at most n(n>

0) cars may be on the island at any time".

'W^SWWySS^ii9ff*^;SSS&

llr
s

y IX

ie —
â<€
4@
m irl
^{•Ï Igl

Tunnel

K'fs!ÊS2Îr'd
l"''.v5i«%>l«i1»CTiS'l%B»A
îSSSS!'iiy3W}'sSSWsfSW,lï^'i'i^0 ^S&WSSà

Mainland

mx

me

mrl

mgl.

u
Figure 4. 13 The Island Tunnel Controller
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We verified three safety properties Pl, P2, P3 on FTC. The detailed description of

the FTC example and the properties verified are presented in Appendix A. Table
4.3 shows the results of checking the conjunction of Pl, P2 and P3 with various

counter widths. Here we suppose the number of cars allowed on the island and in

the tunnel equals 2 where n is the counter width. We verified the properties with

the counter width ranging from 4 to 8 bits. Because MDGs can model an abstract

data path, we also use an abstract variable to describe the counter.

counter

width

our algorithm

nodes time(sec)

original order

nodes time(sec)

abstract 3244 2.36 3826 2.89

4 bits 7687 8.33 65815 186.27

5 bits 8945 10.44 69827 216.11

6 bits 12275 17.76 82468 333.38

7 bits 18931 36.62 107748 667.83

8 bits 32243 89.51 158308 1684.62

Table 4.3 Experimental results for invariant checking on TTC

The experimental results in Table 4.4 show that the MDGs based on the orders

from our algorithm are 69.8% on the average smaller than the MDGs built from
manual orders. This example further shows that our algorithm can generate a good

order for the MDG applications.

4.5.3 Property Checking on the Fairisle ATM Switch Fabric

u Another circuit we conducted the experiments on is the Fairisle 4x4 ATM

(Asynchronous Transfer Mode) switch fabric. The device was in use in the
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Cambridge Fairisle network [17], designed at the Computer Laboratory of the

University of Cambridge.

The 4x4 Fairisle switch consists of three types of components: the input port

controllers, the output port controllers and the switch fabric, as shown in Figure

4.14. An (Fairisle) ATM cell consists of a header (one-byte tag containing routing

information as shown in Figure 4.15) and a fixed number of octets. Cells are

switched from input ports to output ports according to the header.

The behavior of the switch is cyclical. In each cycle or frame, the input port

controllers synchronize incoming data cells, prepend control information in the
front of the cells, and send them to the fabric. The fabric waits for cells to arrive,

strips off the header, arbitrates between cells destined to the same port, sends

successful cells to the appropriate output port controllers, and passes

acknowledgments from the output port controllers to the input port controllers.

fs

>
^

>
l ^

)2 ^

13 >
^

DinO
AoutO

Dinl

-^

ATM

DoutO
AinO

Doutl
Aoutl Switch Ainl
Din2 Dout2
Aout2 Fabric Ain2

Din3 Dout3
Aout3 . Ain3

^- -^
l
[7}-^

SQ—>
>l2

»3

u
Figure 4.14 The Fairisle ATM Switch
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l l ^
Unused

J_l_L

T
Route

1^
Priority Active

Figure 4.15 The header (routing tag) of a Fairisle ATM cell

We verified properties Pl to P4 on this switch. The hardware description of the
switch and properties are presented in Appendix B. The model contains 34 state

variables and 111 functions. The experimental results in Table 4.4 show that the

MDGs based on the orders from our algorithm are 30.6% smaller than the MDGs

built from manual orders. This example demonstrates that our algorithm can also

generate a good order for the MDG-based property checker.

Property

our algorithm original order

nodes time(sec) nodes time(sec)

Pl 19572 42.39 28077 361.01

P2 19633 40.69 28147 376.85

P3 22249 52.05 32139 331.50

P4 19601 38.08 28394 366.43

Table 4.4 Experimental results of property checking of the ATM model

u

Summary

This chapter presented a method for automatically generating a static variable
order based on information about the circuit. Variable ordering on MDGs is more
difficult than ROBD.Ds because of the first order terms that appear in MDGs. Our

method can generate a good order for most benchmarks we experimented with.
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The MDG package became more efficient with our static variable ordering

algorithm. In the next chapter, we present a dynamic variable ordering algorithm

to change an order during the verification process.

u



n

Chapter 5 Dynamic Variable Ordering on MDG

MDGs become more efficient with the development of heuristic methods for

automatically generating a variable order based on infonnation about the design

under verification. A static method yields an order for a verification application

from start to finish. However, in practice, the ideal order may change as the

verification algorithm moves through different phases. The application may need a

new order in each such phase.

Dynamic variable ordering reorders the variables of an MDG to reduce its size. It

differs from the static order where the variables are ordered before the MDG is

created. Variable reordering is still being studied intensively, and one note-worthy

method is the sifting algorithm developed by Rudell in 1993 [57]. Some significant

improvements have been made on sifting by Panda and Meinel separately in 1995

and 1997 [55, 50].

In this chapter, we present a dynamic variable ordering algorithm on MDG. In

Section 5.1, we introduce variable swapping that is a basic operation for variable

reordering. The implementation of the basic sifting algorithm of Rudell on MDG is

discussed in Section 5.2. In Section 5.3, we present a dynamic variable ordering

algorithm which integrates symmetry and group sifting. Experimental results are
discussed in Section 5.4.

u

5.1 Variable Swapping in Multiway Decision Graphs

Dynamic reordering improves the variable order by a series of swaps of adjacent

variables. The basic operation in reordering is thus that of variable swapping. We
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begin with an introduction of the implementation of the swap operation in MDG,

then continue with a discussion of the effects of the swap operation on the variable

order and the constraints imposed on variable swapping.

5.1.1 Implementation of a Variable Swapping Operation

Variable swapping involves moving all MDG nodes at level i to level i+l and
nodes at level i+l to level i. Level 0 is the root node of an MDG. All nodes at a

level are labeled by the same variable. The level itself is also labeled by the same

variable. The variables that label the levels must appear in a custom order. The

level that a variable labels does not reïïect its exact position in the order since

secondary variables do not label the levels in the particular graph, but may in other

MDGs that describe the design. All of them follow the same global order.

Labeling
Level variable

xo

0 l 2 3

«l (y, "2 "3yi Vi yi

Xl)s XQ

add(xo ^l) mc(xo)zero

y? V2
"6

X3 X4

T

n4 ———.

—> 0

l

"5
————^ 2

XQ

yi

Y2

Figure 5. l A3-levelMDG

0

Figure 5.1 shows an example of the MDG with three levels. A swap of variables y\

and Y2 means moving node ns and HO to level 1 and moving n\, n^, 713 and «4 to level

2. The MDG after this swap can be found in Figure 4.6(d) on page 52.
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Because an MDG node can be labeled by an abstract variable, a concrete variable

or a cross-term, a variable swapping operation is of 3 kinds: a swap between two

abstract variables, a swap between two concrete variables (or cross-terms) and a

swap between a concrete variable (or cross-term) and an abstract variable.

We first present swap between two abstract variables. Suppose we wish to swap

abstract variables x, and ^;+i in an MDG shown in Figure 5.2(a). The depicted

MDG represents the following Direct Formulas (DFs) fi and f^.

/1 =((^, =01 ) A( ((^+1 =&i ) A Gl)v ( (^i =&2)A G2) )) V

( (^ =ÛE2) A ( (JC,+1 =&3)A Gs) ) V

((^•=a3)A((.C,+i=&4)AG4)) (5.1)

/2 = ((^+1 =&1 ) A Gi)v ( (.C,41 =&2) A G2) )

/1l

f l

f-.2
/1

X, Xi+l -ï,+;
f.2

ai "2 Û3 &1 &2 b bi2 4
swap

xi+l X,+l Xj+1 Xi Xi Xi X,

b3 &46l/ \&2
ûl ai Û2 03

G4 G4GI Gî GS Gi G2 G3

(a) Before swapping (b) After swapping

Figure 5.2 Variable swap between two abstract variables

In first order logic, for any two formulas P and Q., there are the following axioms:

PA<2 <^<2AP,

PA(Q AR) ^> (PA 0) A^,

and PA(QvR)<^(PA0v(PA0.

Thus, we can deduce the following formulas from (5.1) :
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/1 0 (((X, =fli )A ((XM =&i )AGi) ) V ((X, =01 )A ((X,+i =&2)A ^2) ) )V
((^•+1 =&3 ) A ((X, =02 ) A G3 ) ) V

( ( X,+i = &4)A ((.C, =03) A €4) )

<^> ((^i=&i)A((^,=ai)AGi))v

( ( XM = &2 ) A ( (A;, =fli ) A G2))V

( ( XM =&3 ) A ( (X, =Û!2)A G3 ) ) V

( (^+1 =&4)A ((JC, =03 ) A G4) ) (5.2)

Figure 5.2(b) shows the MDG after swapping variables Xi and ^,+1. This MDG

represents formula (5.2), which is equivalent to (5.1). DF/2 remains undisturbed.

Note that in Figure 5.2, each edge issuing from nodes in level i must reach a node

labeled by xi+i before swapping and must reach a node labeled by Xi after

swapping. According to MDG well-formed condition 5: the set of abstract

variables having primary occurrences along a path is the same for all paths in a

given graph. Thus, no edge issuing from nodes in level i reaches subgraphs in level

i+2 directly. However, when swapping an abstract variable and a concrete variable

(or cross-term) or two concrete variables (or cross-terms), there may exist an edge

or edges issuing from the nodes in level i to the subgraphs in level i+2 directly.

u

Figure 5.3 shows variable swapping between an abstract variable and a concrete
variable, xi is of an abstract sort. Xi+i is of a concrete sort of enumeration {ci, 02,

es, 04}. Edge 03 is issued from u (a node in level î) to subgraph G^ directly without

passing through level (+1. The MDG in Figure 5.3(a) represents the fonnula:

/1 <^> ( (X, =ûi )A( ( (X,+l =Ci )A Gi) V ( (^,+1 =C2)AG2) ) ) V

( (JC, =û!2 ) A ( (X,+i =€3) AGs) ) V

((x,=a3)AG4) (5.3)
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u

//

u

Xi

ai â2 ût3

Xi+1Xi^l

C2 C3Cl

Gi

f.l

u

X,

ai 03

w

Xi+1Xi+1

Cl C2 C3 Cl C4

3

GÎ GZ G4

(a) Before swapping

GÏ GÎ Gs G^

(b) Adding a pseudo-node
/il

Xi+l

Cl C4

C2 C3

Xi Xi Xi X,

a3 ai 1 \azazf \a^ai •7 \' l"
G'i G^ G'z G^ G^ G^ G^

(c) After swapping

Figure 5.3 Variable swapping between an abstract variable and a concrete variable

Because ( ( x,+i =ci ) v ( XM = 02) v ( Xi+i =03 ) v ( ^,+1 =04) ) = T,we can

deduce the following equivalent formulas from (5.3) :

/1 ^ ((X; =0i )A( ( (^+1 =Ci )A Gi) V ( (X<+l =C2) A G2)) )V
( (X, =02 ) A ((X,+i =C3 ) AGs))V

( (-C, =Û3 )A ( ( (^+1 =Ci )AG4)V (( X,+i =€2) A ^4) V

((Xi+ï =C3 ) AG4) V ( (.C,-+i =€4) A ^4) ) ) (5.4)

^>(( ^i=Ci)A((.C,=â!i)AGi ))V

( ( XM =02) A( (x, =ai) A G2 ) ) v

( ( ^,+i =C3 ) A((^, =Û2 )AGs ) )V
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0 ((X,+i =Ci)A((.ï;=a3)AG4))V

((^•+1 =Ci)A ((X;=Û3)AG4))V

((.C;+l =Ci)A ((^;=a3)AG4))v

((.ï,+l=Ci)A ((^i=a3)AG4))

0 ( (x,+i =ci )A ( ((.e, = a, ) A Gi)v ((.e, =a3 ) AG4)))v

( (^;+1 =€2) A(( (^; =ûi ) A G2)V ( (^, =03 )AG4) ))V

( (X;+i =€3) A ( ((.C, =02) A Gi) V ((JC, =03 ) A G4)))V

((X,+i = C4) A ( ( (.C, =ât3) A Gi)v ( (^, =Û3)AG4) ) ) (5.5)

A pseudo node w is added in Figure 5.3 (b), which represents (5.4). Formula

(5.4) can be further reduced to (5.5) where variables xi and Xi+i are swapped. The

MDG for (5.5) is shown in Figure 5.2(c).

Variable swaps between concrete variables (cross-tenns) or a concrete variable

(cross-tenn) and an abstract variable can be implemented in a similar way.

The variable swapping operation provides the basis for the sifting algorithm. It is
easily seen that the swapping operation is completely local since only the nodes at
level i and level i+l need to be traversed.

5.1.2 The Effects of the Swapping Operation on Variable Order

u

In an MDG, swapping two adjacent variables does not imply that they just
exchange the positions in the ordering list. For example, suppose we apply two
swap operations to the abstract variable ^3 in the MDG shown in Figure 5.4. The
MDG is under the order xi< a<b< x^< xz. x\ is a Boolean variable and xz, ^3 are

abstract variables, a and b are secondary variables. There are four constraints in

the MDG: a<xï,a<x^,b< xz, and b<X3.
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X3 Xj Xl Xl

b 0 la

X2 X22 2
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T T
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(a) Before sifting (b) Swap x^ and X2 (c) Swap ^3 and x\

Figure 5.4 Effects of swap operation on the order

First, swapping x^ and ^3 results in a new order x\< a <b < x^< x^. Second, after

swapping xy and x\, we can not just swap their positions because of the constraints
imposed between a, b and ^3. A new order a < Z? <X3<^i <A;2 is obtained by
moving a, b with ^3 before .ci.

5.1.3 Constraints on a Variable Swap

Constraints sometimes not only affect the variable order after a swap, but also

decide whether two variables can be swapped.

u

In Section 4.1, we discussed that the present and next state variables must be in a

corresponding order, i.e., if the present state variables are in the order yi <yz< y^,
then the next state variables should be in the order y\' < y2' < y-s'- So if two
present/next state variables have been exchanged, the corresponding next/present

state variables should be exchanged as well. For instance, suppose that an initial
order generated by our static variable ordering algorithm for sequential circuits
(svos) is as follows:

yi<xi< X2<yi'<y2<X3<x^<y2 < y^< X5<y3.
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xi, X2, A;3,jc4, ^5 are the determining variables of the next state variables yi', y^'

and y-s'.

If we apply swap operations repeatedly to yi until it reaches y^ the resulting order

is

Xi<X2<yï' < Vï< Y2 <X3<X4<Y2 < Y3 < Xs<y3.

After swapping yi and y^, their next state variables are not in the corresponding
order. In this case, we have to take a series of swaps to move yi' after yi. The

resulting order is then

Xi<X2<y2< Yï <X3<X4<y2 <yi' <y3< xs<y3.

However, such additional swaps take a lot of computation time, and may not

decrease the size of MDGs very much. We will introduce a dynamic reordering

algorithm to avoid these useless swaps in Section 5.3.

In the next section, we present a basic sifting algorithm using the swapping

operation.

5.2 A Basic Sifting Algorithm on MDG

We have implemented a basic sifting algorithm following Rudell' sifting algorithm
[57]. This algorithm is triggered by the growth of the number of nodes in the
MDG. Every time the MDGs grow to a specific size, a sifting process is invoked
automatically, just as garbage collection.

u

During a sifting process, each primary variable in an MDG is examined in turn and

is moved up and down in the order so as to take all positions successively. The

variable is then returned to the position where the minimum size of the MDG was

obtained. The process then continues with another variable.
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For instance, suppose we want to sift variable x-^ in Figure 4.7(b). sel, xi, ^2, ^3, ^4,

JC5, and oi are primary variables. Figure 5.5 shows the variable permutations that

are explored when applying the sifting algorithm to x^. It is exchanged with its

successor variable until it reaches the end of the order (bottom of the MDG), then

it is exchanged with predecessor variable until it reaches the head of order (top of

the MDG). This sifting up<-^down process finds the optimum position for variable

Xî assuming all other variables remain fixed. In this example, the initial order and
the fourth order are the best ones.

variables swap size of MDG (nodes)

Sel,Xi,S,X3,X4,X5, Oi

Sel,Xi,X^,M,X4,X5, Oï

Sel, Xl, X^, X4,^, X5, Oï
Sel,Xï,X3,X4,X5,^,Oï
Set, Xl, X3, X4, Xs, 0l,

initial

SWap(X2, X3)

swapfe, x^)

swap(A:2, xs)

swap(^2, oi)

9

11

12

9

12

S€l,Xi,^,X3,X4,X5,Oi

Sel,^,Xi,X3,X4,X5,Oi

i Sel, Xl, X3, X4, X5, 0l

initial 9

swap(xi,X2~) 11

s-wap(sel, x'z) 18

Figure 5.5 Sifting algorithm example

It is possible that some variables are already in their best positions in the order,

such as variable sel in the example above, or find their best positions in the first

several swaps. Continued moves of these variables only increase the size of the

MDG. To avoid this situation, we set a limit for the growth of the MDG. The

sifting of a variable stops in this direction when the MDG grows twice the

optimum size found so far.

u
The sifting process .searches for the best position for each variable. This method is

very effective in reducing the MDG size, although it sometimes takes a long
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.2>computation time. Sifting n variables usually requires O(n^) swaps. In the next

section, we present an algorithm that improves and speeds up sifting.

5.3 Sifting-based Variable Reordering Algorithm on MDG

Sifting is based on the idea of searching for the best position for each variable.

Individual variables are moved through the whole order, one at a time. However,

the total time for sifting grows very fast with the number of variables. In

applications with thousands of variables, the time to sift one variable over the

whole order takes too long.

Several attempts have been made to improve the performance of the original

sifting on ROBDD. One improvement is to keep information about symmetry
variables that can be swapped without any change in the size of the ROBDD. This

is called symmetry sifting. As observed in [55] by Panda, knowing some variables

are symmetrical in a function can help produce better variable orders for

ROBDDs. He proposed an extension of sifting that may sift groups of symmetry
variables simultaneously to produce better results. However, his definition and

detection of symmetry variables cannot be used directly in MDGs which contain

abstract variables and uninterpreted function symbols.

The other improvement is a method of block-restricted sifting proposed by Meinel

[50]. This method reduces the number of swap operations by restricting their

application on variables within certain blocks. Determination of the variables

blocks follows from computing an ROBDD characteristic called subfunction

profile.

u
In this section, we first investigate symmetry sifting on MDG. We then propose a

group sifting to speed up sifting. Like block-restricted sifting, our group sifting
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method restricts sifting within blocks. However, our way of dividing variables into

groups is an extension of our static variable ordering method.

5.3.1 Symmetry Sifting

Definition 5.1 An MDG representing the direct formula/is symmetrical in Xi and

Xj if the interchange of x, and Xj leaves the MDG function unchanged. A:, and Xj are
called symmetry variables in / (or MDG).

In other words, after the interchange of x, and xj, all the nodes in the MDG labeled
by Xi are now labeled by xj and all the nodes labeled by xj are now labeled by X{.

For example, consider an OR gate (y = xi v ^2 ). Exchanging variables xi and Xî

leaves the MDG function unchanged. The MDGs before and after exchanging are

shown in Figure 5.6.

Xl
0 l

Xl
l

0

y y

0 l

T

0

l
x

0

^
l

0

y y

l

T

Figure 5.6 An example of symmetry variables

u
It is easy to see that interchanging symmetric variables in the order does not

change the size of an MDG. Furthermore, it has been empirically observed that
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symmetry variables should stay together in the order. A simple example is an

AND gate (y = xi /\ x-^). xi, X2 are symmetry variables in the MDG shown in

Figure 5.7 (a). Once we separate x-i and xz, the MDG representation shown in (b)
has one more node than (a).

Xl

0 l

X2

0 l

y y

0 l

T

Xl

y y

0 l

0 .Ï22

0 l

T

(a) under order xi<X2<y (b) under order xi<y<X2

Figure 5.7 MDGs for an AND gate

An extreme example for the fact that symmetry variables should stay together is a

circuit of the form (^i A ^2) v ... v (xzn-i A x-in), where xi and x^, ..., JC2n-i and ^2n

are symmetry variables. The MDG size is linear when we position the syinmetry
variables together. It becomes exponential when we separate them.

In the sifting algorithm, every variable that is moved up and down is at some point
adjacent to other variables. Hence, if we combine the checking for symmetry of

variables with sifting, we can find all the symmetry variables pairs. After

swapping two adjacent variables, we test if the new MDG is identical to the old
one. If yes, then x, and x,+i are symmetry variables. They will move together in the

rest of the sifting process.

u
Suppose Xl, -X2, X3, X4, JC5, and x^ are the primary variables in an MDG. We wish to
sift variable ^2 as shown in Figure 5.8. After the first 3 swaps, we identify x^ and
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.C5 as symmetry variables and group them together. Sifting one variable then turns

into sifting a group of variables (with two variable instances). One swap between

the group and the next adjacent variable includes two swaps — each variable in

the group has to swap with the next variable. The group of variables continues to

check symmetry with other variables and may collect more variables along the

way. In one sifting process, every two variables only need to check symmetry

once. Thus, when the group is moved back, there is no need to check symmetry for

variables which have been swapped before.

variables swap identify symmetry variables

Xl, ji, X3, X4, ^5, X6

Xl, X3, B, X4, JC5, X6

Xï,X3,X4,M,X5,X6

Xi,X3,X4,X5,^,X6

Xi,X3,X^3C^X6,Xg

Xi,X3,X^,X6,^^

Xi,X3,X4,^S,X6

Xi,X3,a,X4,m,X6

Xï,X3,^Q,X4,X6
N „ Bl

Xi,tj,X3,^,X4,X6
?ïs

Xi,X3,yCs,X3,X4,X6

xl^ Ui X3, X^, X6

^^,Xi,X3,X^,X6

initial

SWap(X2, X3)

swapfe, ^4)

swapfe, xs)

SV/ap(X2, X6)

SWap(X5, Xî)

initial

SWap(^4, X2)

swap(^4, xs)

SWap(.C3, Xî)

swapfe, Xî)

swap^i,^)

swap(xi,^5)

no

no

yes bind xs and x^

no

no

no

Figure 5.8 An example of symmetry sifting

u

We have explored several properties from the observation of symmetry variables

to help identifying symmetry variables. If x, and xj are symmetry variables, the

following necessary conditions must hold:
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l. xi and x, must be of the same sort.

2. All the nodes labeled by variable Xi have the same number of distinct edges as

the nodes labeled by variable xj.

3. All edges into nodes labeled by xj are from nodes labeled by x,.

Only when a pair of variables satisfies the above properties, we check if it is a
symmetry pair. This checking is completely local since we only need to compare
the nodes at the two adjacent levels.

Symmetry sifting for a group of m variables (every two variables in this group are
symmetry variables) from one end of the order to the other end requires m(n-m)
swaps, where n is the total number of variables. This is roughly equivalent to

sifting the m variables one at a time.

In the next subsection, we introduce group sifting that can speed up the sifting

operation.

5.3.2 Group Sifting

Basic sifting and symmetry sifting tend to be time consuming. To speed up sifting,
we propose a method called group sifting. The main idea is to divide the variables
into groups in which the variables are close to each other and each variable only
sifts within its group. This is motivated by the observation that topologically close

variables should stay together in the order (heuristic rule 1 in Section 4.2).

u

Suppose a group of variables are close to each other (such as being the
determining variables of an output) and another variable is not related to this group
(such that this variable and any variable of this group do not contribute to any

common output). Sifting this variable among the group only increases the size of
the MDG because this variable is not related to any of its adjacent variables and it
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has to pass all information flow received from the nodes above itself to the nodes
below. No information reduction can be achieved with this variable. Thus, if we

can divide the variables into several groups so that the variables in a group are

close to each other, we then only apply sifting in each group, i.e., a variable sifts

up and down only in the scope of its own group.

The difficulty in group sifting is how to identify the groups. An intuitive idea is to

divide the variables into groups according to the next state variables. Our

reordering algorithm starts with the order generated from the static variable

ordering algorithm for sequential circuits discussed in the last chapter. The static

algorithm arranges the present state variables and the next state variables and their

determining variables as follows: yi, dv(yi'), yi', y2, dv(y2')\dv(yi'), yz, ..., yn,

dv(y,)\(dv(y^ v .... v dv(y^)), y^.

Thus, the present state variables, the next state variables and their determining

variables can be divided into groups like: (yi, rfv(yi'), yi'), (yz, dv(y2')\dv(yï'), yz'),

..., (yn, dv(yn')\(dv(yi') v ....v rfv(yn-i'))> yn'). However, since some of the

determining variables of the next state variables may be included in other groups,

we add a close-detection procedure between two adjacent next state variables. For

example, if rfv(yi') = dv(yz), then yi' and ^2' are very close. So the groups (y\,

^v(yi'), yi') (y2, 0, .Y2') are merged into one group. In our algorithm, if dv(y-^) and

^vCVi+i') have more than half of the determining variable in common, we combine

them into one group. For combined groups, we do not swap between nexVpresent

state variables. Because once two next/present variables are swapped, their

present/next state variables are not in the corresponding order and this violates

Constraint 3.

u

An actual circuit may be very complex, hence our division of the state groups may

put two close variables into different groups. This results in an increase in the size
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of the MDG compared with the basic sifting, although group sifting can speed up

reordenng greatly.

We integrated group sifting and symmetry sifting into one dynamic reordering
algorithm. The algorithm includes two kinds of groups: one is formed by

symmetry variables called the symmetry group; the other one is formed between

present and next state variables called the state group. State groups are decided

before the sifting process starts and a variable only sifts inside its group.
Symmetry groups are created by the reordering algorithm, when the symmetry
variables are identified. The variables in the symmetry group sift up and down

together within a state group.

We have implemented our sifting-based dynamic reordering on MDG. In the next

section, we present experimental results.

5.4 Experimental Results

We applied the dynamic reordering algorithm to the benchmarks we used in the

last chapter. We started our dynamic reordering algorithm from the order

generated by the static ordering algorithm presented in the last chapter. We

compare the results from our algorithm with those from the basic sifting algorithm

and also with those only from the static order. Table 5.1 shows the experimental

results for the IFIP benchmarks. Experimental results on the ATM switch fabric
are shown in Table 5.2. Table 5.3 shows the results for the Island Tunnel

Controller.

u
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u

circuit

basic sifting our algorithm static order

nodes time(sec) | nodes time(sec) nodes time(sec)

minmax 164 1.22 164 0.78 166 0.16

tie 245 10.95 228 10.41 245 1.22

gcd 369 4.26 369 4.24 375 0.26

tama 2136 17.28 2150 9.97 2211 1.44

filter 2483 30.44 2485 16.98 2957 4.08

queue 6432 24.71 6438 22.65 6551 3.58

buffer 2307 33.15 2307 4.43 2307 2.21

Table 5.1 Experimental results for IFIP benchmark circuits

property

basic sifting our algorithm static order

nodes time(sec) nodes time(sec) nodes time(sec)

Pl 12135 640.09 12713 311.72 19572 42.39

P2 11582 646.97 12084 329.95 19633 40.69

P3 9649 833.39 10035 458.36 22249 52.05

P4 11828 583.77 13166 279.53 19601 38.08

Table 5.2 Experimental results of property checking on the ATM model
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basic sifting our algorithm static order

nodes time(sec) nodes time(sec) nodes time(sec)

2150 39.60 2316 25.96 3244 2.36

2489 112.32 2765 60.44 7687 8.33

4326 143.74 4452 92.47 8945 10.44

6132 189.67 6326 114.52 12275 17.76

6885 446.33 7224 272.25 18931 36.62

10265 1422.87 11342 672.32 32243 89.51

18287 2458.43 19103 1321.55

29926 5327.44 30634 3237.29

Table 5.3 Experimental results for invariant checking on FTC

u

The experimental results in Table 5.1 show that the basic sifting and our

reordering algorithm can reduce the size of MDGs for most of benchmarks we

experimented with. Table 5.2 and 5.3 show that the basic sifting can reduce the

size of MDGs (obtained from the static order) from 33% to 68% with the increase

of computing time up to 16.8 times. Our reordering algorithm can reduce the size

of MDGs (obtained from the static order) from 28% to 65% with the increase of

computing time up to 11.0 times. Compared to the basic sifting algorithm, our

reordering algorithm results in about 44.1% time improvement and costs less than

5.4% size increase on the average. In the ITC example, both the basic sifting and

our algorithm can verify the counter width until 10 bits whereas the static method

can only verify it up to 8 bits. Although reordering increases the computing time of

verification compared with static ordering methods, it can greatly reduce the size

of MDGs. It is particularly useful for verification of circuits where insufficient

memory size is the bottleneck.
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Summary

In this chapter a dynamic variable ordering algorithm on MDG was presented.

Some MDG applications may fail with a fixed order. However, the size of MDGs

can be minimized with a new order chosen in the middle of verification. The

experiments show that dynamic reordering reduces the size of MDGs effectively

and increase the range of circuits that can be verified by MDGs. In the next

chapter, we will present a problem caused by standard tenn ordering and a solution

based on function renaming and rewriting.

u
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Chapter 6 Standard Term Ordering Problem

Although selecting a good static variable order and changing it dynamically as the
application proceeds can minimize the size of the MDG, there are still cases where
under any order the size of the MDG is exponential with the number of function
instances. These cases may be caused by the standard order adopted in MDG to
order cross-terms with the same cross-operator. We call this kind of state

explosion the standard term ordering problem.

In Section 6.1, we introduce a kind of circuit structure that leads to the standard

term ordering problem in MDG-based verification. We propose a solution based

on function renaming and unconditional cross-term rewriting in Section 6.2. In
Section 6.3, we present a case study on an ATM congestion controller using our
solution. This chapter is concluded with discussions of the limitation of our

solution and future research.

6.1 Introduction to the Standard Term Ordering Problem

0

According to one of MDG's well-fonnedness conditions, the variables and the
cross-operators of the cross-tenns that label the nodes must appear in a custom

symbol order along each path of an MDG. For different cross-terms with the same
cross-operator, they must appear in the standard term order. In the MDG system,
the standard term order is the lexicographical order. This does not mean that the
standard tenn order has no influence on the size of the MDG. In fact, it may result
in the state explosion for certain kinds of circuits. Before introducing the standard

term ordering problem, we first describe the internal representation of terms and
cross-tenns, which form the decision factors for the standard term order.
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6.1.1 Internal Representation of Terms and TermID Assignment

A term in an MDG is defined as follows [70]:

A (individual or generic) constant is a term.

A (concrete or abstract) variable is a term.

If ai, ..., an are terms and /is a function symbol, then f^ai,..., an) is a term,

which is also referred to as a compound tenn.

In an MDG, there may be many very large compound terms. Thus, it is important

to have compound terms share some common components. In order to achieve

term sharing, MDG system assigns a unique identifier (TermID) to each term. The
TermID for a constant or a variable is the constant or the variable itself. The

TermID for a compound tenn is a number obtained by hashing the function

symbol using a Quintus Prolog built-in hash function. It is assigned to a compound

term when the term is first generated in the verification process.

u

For example, in Figure 6.1, root node «i and its labeling term eq(xi, xz) is
generated first. The TermID of eq(xi, x'z) is computed by hashing the function
symbol eq. Suppose hash(eg) = k, the TermID of eq(x\, x-i) would be k. Since the
MDG is built in a depth-first order, the left-hand branch is constmcted first. Thus,
nodes «2 and its labeling term eq(yi, yz) are generated next. To compute the
TennID for eq(yi, y2~), we hash again the function symbol eq. In Quintus Prolog,
hashing collision is resolved by linear probing, i.e., search the hash table
sequentially, starting from the original hash location [77]. Suppose k+ l,k+2 ...
are all available, hashing eq again would get A: + 1 and thus the TennID of eq(y\,
y2) would be A: + 1. Nodes ns and N4 are generated next in the depth-first order.
Similarly, the TemïïDs of their labeling compound terms eqty^, y^) and ec(zi, ^2)
are A: + 2 and k+3 if there are no other new cross-terms in the branches of nodes

m and ?t3. From this example, it is easy to see that the TennIDs of cross-terms
with the same operator are assigned sequentially according to the order of the
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terms constructed in the MDG. The first generated one has the smallest TermID

(original hash location). The rest has TermIDs sequentially starting from the
original location.

ni

eq(xi,xi)

0 l

ni ^g(yhy^> <s^(z^z^> n^,

0 l 0

eq(y3,V4
"3

0 l

Figure 6.1 TermID assignment for cross-terms with the same function symbol

The internal representation of a compound term is term(Function_symbol, TermID,

Subterms). For instance, / (a,, y(a/)) is represented as fcrm( f, Idl, [term( f, Id2,
[])]). Standard order of the cross-terms with the same cross-operators is the

lexicographical order of their internal representation. Since those cross-tenns have

the same function symbol (no matter if they have Subterms), their order is thus

decided by the value of their TermIDs. In other words, standard order of the cross-

tenns with the same function symbol is the same order as when the terms are first

generated during the construction of the MDG.

6.1.2 Identification of the Standard Term Ordering Problem

u
Consider the circuit shown in Figure 6.2. Function / is a cross-function with two

arguments c, and a;, where c, is a Boolean variable and a, is an abstract variable.
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ao

co

l
-» /

ai

Cl
l

->| /

Cî

Û2

_i C3

/ -^ register ->!

Figure 6.2 A circuit with standard term ordering problem

The MDG representation of the new states in the first transition step of reachability

analysis is shown in Figure 6.3. fîb, a,) 0 < t'<2is a cross-term where b is either 0

or l. f^b, a,) is a compound term. The leftmost branch is built first and the order

of cross-terms is thus as follows: flO, ao) <fl0, ai) <f(0, 02) </[!' a2)- When the

system starts to build the next left-hand branch (in gray), y(0, 02) and/(l, 02) have

been built before and thus have smaller TermDD than /(1, ai), which is newly
generated. The left-hand branch is thus constmcted under the order/(0, ao) <fl0^

ai) <f(^, 02) <f(\, a\). Note that no node sharing is possible for this branch under
this order. The number of paths that the MDG has is thus exponential with the
number of the function instances as it decodes all possible combinations of the

values of the first argument of /.

(J

The exponential number of paths in the MDG increases the execution time of

reachability analysis. In the reachability analysis procedure, the Pruning-by-
Subsumption (PbyS) operation is used to simplify the set of reachable states found
so far by removing from it any paths that are subsumed by the frontier set [69].

The large number of paths in the MDG representing the set of reachable states
raises the time and space needed by the PbyS operation. In this example, with the
increasing number of function instances, PbyS operations could not terminate

because of insufficient memory when it reached 4 instances.



94

0

s

•3mu

^^
•30»
u

-s
'3 tM

0 0

.2
co
>>

0 ^3
e
es

Fsl ^
3
s
ciri £

s ui CT3
•<- 2s CT

00l*~
0e
&<
s
M

E^ e
0

^ Is •^
<3 •53

t^»< !=:
g FS

ù
E;s 00

Q sm ee
ua 0
-s11

0 m"^
^

VI

B'->

3
Ul

ï.'3 00
u
e

t4-l•^
0

d 0
° r\ 0

c7
<u0 e ES"->

^ m
^0

^
30
£P
s

(J



95

0
6.1.3 A Chain Circuit Structure with the Standard Term Ordering Problem

In Figure 6.1, the output of each function instance is the input to the next function

instance, but the standard term ordering decides that the cross-terms cannot be in

the order leading to a linear size MDG. However, there is no standard term

ordering problem in the circuits containing the cross-function instances in the

parallel stmcture shown in Figure 6.4. Cross-functions 2, 3 and 4 do not depend on

each other, thus the cross-terms of those instances are quite independent and their

positions in the order do not have su-ong effect on each other. The MDG of this

circuit can be of linear size regardless the order the cross-function instances 2, 3,

and 4 take.

ai

ao

co

->

A. l Cl

/

->

A. 2 C2

/

"2

->

A. 3 C3

/ ->

aj ± 4 c4

->

A.
/

-^

Figure 6.4 Parallel structure of cross-functions

We can thus say that the standard term ordering problem only happens to a circuit

containing a chain of the same cross-functions as shown in Figure 6.5. The output

of a function instance is the dircct/indirect input of the next function instance. The

circuit can have pipeline registers (or multiplexers) between function instances.

Experiments show that the verification of the circuits with this kind of a chain

structure would require rapidly increasing amounts of memory with an increasing

number of function instances.
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Figure 6.5 A common circuit structure resulting standard tenn ordering problem

Since the standard term ordering problem is caused by one of MDG well-

fonnedness conditions, we arc not able to solve this problem using the usual

ordering strategies. In the custom order, we only consider the order of cross-

functions. The cross-terms are created dynamically in the verification process and

no static ordering or reordering procedure is possible at this stage. In the next

section, we present a solution to this problem by integrating function renaming and

cross-term rewriting.

u

6.2 A Solution to the Standard Term Ordering Problem

A solution to the standard term ordering problem is to order the cross-terms with

the same cross-operators to make the corresponding MDG linear in size. The order

of those cross-terms is decided by the lexicographical order of their MDG internal

representations, hence we can only change the order by renaming the function

instances, thereby allowing them to be freely placed within the custom order.

Rewriting rules have to be used to map the renamed functions back to their

original functions during the PbyS operation. We will describe next our solution in

detail.
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6.2.1 Function Renaming

After identifying the chain stmcture (Figure 6.5) in a circuit, we can rename all the

cross-functions instances in the chain to different names. For instance, for the

circuit shown in Figure 6.2, we rename the three instances of / tofl, f2, f! and

impose the order/1 <f2<fi. The circuit and the MDG of new states in the first

transition step are shown in Figure 6.6. The MDG becomes linear in size because

of the sharing of subgraphs from the second level.

As explained in Chapter 4, the order of an output should come after all its inputs.

Thus, after renaming all the functions in the chain stmcture, a static order for the

renamed functions is chosen according to the positions of the functions appearing

in the chain structure, i.e., from inputs to outputs. In this example (Figure 6.6), the

order/1 <f2 <f3 is imposed. The resulting MDG is 26% smaller than using the
reverse order.

For the circuit which contains more than one chain, we first choose the longest

chain and rename all the functions in the chain. Since renaming may break some

other chains, the remaining chains have to be re-inspected and the chains that still

exist have to be renamed.

Function renaming solves the standard tenn ordering problem. However, it brings

out a new problem: the actual function of the circuit has changed and the circuit is

thus more general than needed. To solve this new problem, we introduce cross-

terni rewriting. With cross-term rewriting, the MDG system can rewrite the

renamed functions back to the original function when an actual comparison is

being done and the verification result is not changed because of function renaming.

u
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(b) The MDG of new states in the first transition step

Figure 6.6 The MDG after function renaming

u

6.2.2 An Unconditional Cross-term Rewriting System

A rewriting system was first used in MDG to partially interpret an uninterpreted
function symbol [69]. A data operation is represented by an uninterpreted function

symbol. However, function symbols need to be partially interpreted in many
designs where optimization is used. For example, a multiplier can be bypassed
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when one of the operands is 1. To verify the designs including such bypassing

logic, we need to use the fact that 1 is the unit element of multiplication. One

effective way to reason about the partially interpreted function symbols is term

rewriting. For this multiplication example, the algebraic equations l*x=x and x *
l = x could be used as rewrite mles. Rewrite mles for cross-terms can be used to

shrink the MDG size on the fly. For example, if there is a path in an MDG which
has a cross-term eq(x, x)=Q where eq stands for equality, we could use the rewrite

rule eq(x, x)-^ Ito eliminate this path. The scope of MDG-based verification can
thus be extended.

In the original rewriting system, a cross-term cannot be rewritten into another

cross-term having a different cross-operator [69]. This is to avoid the necessity of
node reordering after rewriting. We thus introduce an unconditional cross-term

rewriting system, as follows:

Deïïnition 6.1: An unconditional cross-term rewriting system (CTRS) H is a finite
set of fonnulas, called rewrite mles, having the following fonn:

LHS -^ RHS

where LHS and RHS are cross-terms. (LHS/RHS stands for the left/right-hand

side.)

u

When a cross-term is matched with the LHS of a mle, LHS will be substituted by
RHS unconditionally. For instance, in Figure 6.6, a set of rewrite rules can be
defined as follows:

fl(x,y) -^f(x,y)
f2(x,y) -^f(x,y~)

ft(x,y) -^f(x,y)

So the cross-terms in Figure 6.6(b) are substituted under the following mles:

/1(0, ao) ^/(0, ao) /1(1, ao) ^/(1, ao)
f2(Q, ai) -^ f (fi, ai) ^(1, ai) ^/(1, ûi)
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y3(0, 02) -^/(0, ^2) y3(l, 02) ^/(1, ^2)

The rewriting system rewrites the cross-terms in an MDG when a comparison is

needed in the PbyS operation. We show how the rewriting system works in PbyS

by computing the frontier set in the second transition step for the circuit in Figure
6.6(a).

In Figure 6.7, N2 represents the set of states that can be reached in the second step

from the last frontier set and 2?i represents all the states reached in the first

transition step. The new frontier set Qz is computed using PbyS by removing from

A^zthe paths representing states that are already in R^.

When the PbyS operation starts pmning the leftmost path ïl of N2 (shown in gray),

it compares each node and edge along this path with those of the path TI' of Ri

(also shown in gray). When matching each node, the rewriting system changes the

renamed operators yi,y2,/3 to the original operator /. It is easy to see that the path

71 of N2 can be subsumed by the path JT' of R} after substituting a^l for aft2 , 1< i

<3.

Since every path in N2 can be subsumed by Ri, the new frontier set 02 is empty. It

means that the fixpoint has been reached, and the reachability analysis procedure

terminates and reports success.

u

We use function renaming to build an MDG with a good order generated by our

variable ordering algorithm, then use rewriting to restore the original function of

circuits without changing the size of the MDG. We have implemented our solution

in the MDG package. Our method can automatically detect a chain stmcture in the
circuit. When the chain contains more than 3 functions, those functions are

renamed and rewriting rules are used later during PbyS comparisons to rewrite

them back to the original function symbol.
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Figure 6.7 An example of the PbyS operation to compute the new frontier set
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We extend our renaming and rewriting method to the parallel stmcture as shown in

Figure 6.4 and further to all the circuits containing cross-operators which have

more than two instances placed irregularly. Although the standard tenn ordering

problem may not happen in these two kinds of circuits, the instances of the same

cross-operator have different positions in the circuit and thus renaming of the

instances allows them to have different positions in the custom order. Our method

provides more flexibility in variable ordering. As different function symbol, each

instance can now be freely placed in the custom order. The MDG can thus achieve

better sub-graphs sharing and reduce its size and execution time.

6.3 A Case Study

We introduce in this section an ATM congestion controller [44] which leads to the

standard term ordering problem in MDG-based verification. In an ATM switch,

during the periods of heavy traffic within the network, an outgoing link may

become temporarily overloaded and data packets (cells) begin to build up in the

outgoing queue. This is known as congestion.

A congestion controller is used to solve congestion by comparing the priorities of

two packets. The packets with higher priority will be passed, the other ones will be

discarded. This does not mean that the discarded messages would be lost. The

packets can be resent by the senders when they do not receive acknowledgement

from the receivers, using higher-level protocols.

u

The controller is shown in Figure 6.8. ao, bo are abstract variables representing

infomiation packets to be sent. The cross-function compare is used to compare the

priorities of two packets. Multiplexers are used to transfer the packets with high

priority. When a circuit contains more than four cross-functions, the standard

ordering problem occurs.
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Figure 6.8 An ATM congestion controller

We implemented our algorithm in the reachability analysis procedure and the

result of applying it to the circuit in Figure 6.7 is shown in Table 6.1. The

experiments were carried out on a 333MHz Sun Ultra 10 workstation with 1GB of

memory. The table shows that without our standard tenn ordering problem, the

controller is only limited to four blocks. With our solution, the reachability

analysis can be done up to more than 320 blocks.

No. of

Functions

Without the solution

Nodes Time(sec)

With the solution

Nodes Time(sec)

2 129 0.40 163 0.68

3 273 1.56 329 0.79

4 541 378.02 507 0.98

5 697 1.20

6 910 1.36

7 1113 1.72

10 1402 2.12

100 25880 93.21

200 81330 883.68

300 166780 4236.64

320 187470 6226.46

u Table 6.1 Experimental results for an ATM congestion controller
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Summary

In this chapter, we introduced a special problem caused by the standard term

ordering that MDGs use to order cross-tenns with the same function symbols.

Since this problem is the result of the MDG well-formedness conditions, it cannot

be solved by ordering/reordering variables. We presented a solution integrating

function renaming and cross-term rewriting. Experimental results on a congestion

controller show that our solution can considerably improve the perfonnance and

increase the type and size of circuits that can be verified.

.In the preceding chapters, we discussed the static variable ordering, the dynamic

variable ordering, and the standard term ordering problems in MDG, and we

proposed solutions. We integrated the variable ordering algorithms with the MDG

design verification system for circuits described in MDG-HDL. However, in

industry, most of designs are described in VEIDL or Verilog. The MDG-based

verification system needs a standard HDL entry to be easier to use. In the next

chapter, we concentrate on the other part of our work - automatic translation
between VHDL and MDG-HDL.

u
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Chapter 7 Translation from VHDL to MDG-HDL

Variable ordering methods increased the range of circuits that can be verified

using MDGs. However, the MDG-based verification system only accepts a Prolog-

style HDL, MDG-HDL. In this chapter, we present another technique that

improves the ability of MDG to deal with the realistic systems: an automatic

translator from VHDL to MDG-HDL. The translator accepts a VHDL model given

at the synthesizable Register Transfer Level and translates it to a Directed Acyclic

Graph (DAG) which describes the control and data flow in one clock period.

MDG-HDL is then generated from the DAG.

In Section 7.1, we introduce the constmction of the Directed Acyclic Graph from a

VHDL model given at the synthesizable RTL level using only one clock and clock
edge. The constmction was developed by Boubezari [4]. Translation from DAG to

MDG-HDL is presented in Section 7.2. We conclude this chapter with two

examples.

7.1 Transformation from VHDL to a DAG

VHDL is a hardware description language used to describe both the stmcture of a

circuit (what parts constitute it and how they are connected) and its behavior (how

it reacts to given inputs). It is an international interoperability standard for design

automation - in other words, a formal mechanism to "converse" with design
automation tools.

u
A Directed Acyclic Graph (DAG) to be translated into is a representation of the

flow of control and data dependencies in one clock cycle [4]. Each internal node of
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relational, data transfer and logical operations. The source (sink) nodes of the

DAG represent the present (next) state and primary inputs (outputs). The present

and the next state variables are given by the registers that are identified in the

VHDL model. Edges represent interconnection signals/variables in the VHDL

model and intermediate signals/variables as defined in Definition 7.1. Note that no

hardware sharing is perfomied during the VHDL translation in the DAG. That

means, each VHDL operation corresponds to a new node in the DAG.

Definition 7.1: An intermediate signaVvariable is an unnamed signal/variable

formed by an expression which is not a simple signal/variable name. For example,
in the VHDL model shown in Figure 7.1 (a), two intermediate signals (s_intl and

s_int2) and two intermediate variables (v_intl and v_int2) are implied as shown in

Figure 7. l(b).

signal a, b, c, d, e, s:

integer;

process(a, b, e, d, e)
variable v : integer;
begin

v := (a+b) + e;
s <= (v +d)+ e;

end process;

s_intl: (v+d)
s_int2: s_intl + e

Intermediate signals

v_intl: (a+b)
v_int2: v_intl + e

Intermediate variable

(a) (b)

Figure 7.1 An example of definition of intermediate signals/variables

u

In the rest of this thesis, whenever a signal/variable is mentioned, it refers to an

interconnection signal/variable declared by the designer in the VHDL model or to
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an intermediate signal/variable as stated in Definition 7.1. Below, we summarize

the main steps in constructing a DAG of a VHDL model:

1. Generating Control and Data Flow Graph (CDFG) for each process of the
VHDL model.

2. Unrolling all for...loops and expanding procedures/functions by adding new
nodes to the CDFG.

3. Identifying multiplexers

4. Identifying registers

5. Translating the resulting CDFG into a DAG.

6. Connecting DAG graphs of individual processes to produce the overall DAG.

Each step is described.in detail next.

7.1.1 Generation of CDFG

Each VHDL process can be transformed into a Control Flow Graph (CFG) and a

Data Flow Graph by the LEDA Graph Generator tool to represent the control flow

of operations [74].

u

Control flow graphs are used to represent the different possible sequences of

execution for each set of statements in a VHDL process. A CFG is a directed

graph defined as follows:

CFG ={V,E\ where

V is a set of nodes corresponding to the different VHDL sequential statements:

V=VwUVbUViU Ve, where

Vw is the set of synchronization nodes (wait statements),

Vb is the set of conditional statement nodes (if, case),

V; is the set of for.. .loop statement nodes,

Ve is the set of other nodes (signal/variable assignments, procedure calls,...).

and E is the set of edges representing the flow of control.
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0 Each node of a CFG is associated with a Data Flow Graph (DFG). Each node of

DFG represents one operation in the VHDL model, and a DFG edge represents

signals and variables connecting the nodes. There is an edge from operation o, to

operation Oj if the result of operation o, is input to operation oj. A CFG in which
each node is a DFG is called a Control and Data Flow Graph (CDFG) [74].

entity example is
port(a, b, e : in integer;

elk : in bit;
k : out integer);

end;
architecture behavior of example is
signal s : integer;
begin
process
variable var : integer;
begin

wait until elk = '1;
if (a=l) then

var := a + b;
s <= var;

else
var := a - b;
s <= var;

end if;
k<= s + e;

end process;
end;

— SI
—S2

—S3
—S4

-S5
—S6

—S7

SI

S3

S4

S2

S7

A
^

S5

^\

S6

,/
\,'~

a b

var'\.

Data Row Graph

Figure 7.2 An example of a CDFG

u

Figure 7.2 shows a VHDL model and its corresponding CDFG generated by

LEDA [73]. Node Sl represents the "wait" statement and node S2 corresponds to

the conditional "if statement. SignaVvariable assignments are represented by

nodes S4, S6 and S7 (S3 and S5). Each node of CDFG is associated with a Data

Flow Graph describing the data dependencies in the statement. An example of a

DFG is given for node S 5.
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7.1.2 Loop Unrolling and Expansion of Procedures/Functions

In VHDL, a for... loop statement is used to repeat a sequence of operations for a

constant number of times. Since there is no hardware sharing in a DAG, a

for... loop statement would be unrolled into the statements inside the loop, one for

each iteration. Each procedure call is expanded in-line. The contents of the

procedure are first copied into the process in place of the call. Then, the actual

parameters are substituted for the formal parameters of the procedure. Functions

are expanded in a similar way except that a function is expanded immediately

before the expression that calls it. As a result of loop unrolling and expansion of

procedures/functions, the CDFG is augmented by new nodes.

7.1.3 Identification of Multiplexers

We give a translation for the VHDL conditional statements ("if and "case"). A

new node type is added to the DAG representing the multiplexer operation. Each

conditional statement ("if or "case") is translated into a set of mulitplexers with

one output for each signal/variable assigned within the conditional statement. The

condition expression is translated into a set of nodes which feed the control inputs

of each multiplexer. The data inputs to each multiplexer are fed from the nodes of

the corresponding expression being assigned. Thus, to translate each conditional

statement to a multiplexer operations, we have to find its scope, i.e., its

corresponding end-statement.

7.1.4 Identification of Synthesized Registers

u
Registers in a. synthesized RTL VHDL model are inferred on some

signals/variables used in clocked processes. We thus have to first identify clocked
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processes in the VHDL model. In the following, we give some rules that determine

when registers are inferred on signals and variables.

1. All signals that are assigned new values within a clocked process are

synthesized as outputs of registers.

2. Between two synchronization statements (wait on clock), if a variable is

always the target of an assignment before being read, this variable does not

infer any register.

3. Between two synchronization statements, if a variable is read at least once

before appearing as the target of an assignment, this variable implies storage of

data and thus a register is synthesized.

Figure 7.3 shows an example of rule 1 and 2. q is assigned a new value within a

clocked process and thus is synthesized as a register. The variable var is always

the target of an assignment before being read. Therefore, no register is required to

memorized its value from one clock cycle to the next. var is thus synthesized as a

wire.

process
variable var : bit;
begin
wait until clk= '1';
var := a and b;
q <= var and c;

end process.

a

b=ri >'u
var — —q

Figure 7.3 Hlustration of rule 1 and 2

u

An example in which a variable in a clocked process is synthesized as a register, is

shown in Figure 7.4. Between two synchronization statements, the variable var in

the VHDL model is read at least once before appearing as the target of an

assignment. Therefore, a register is needed to store the value of var. Note that in
^
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this example, reading a variable does not necessarily mean having it in the right

hand side of an assignment. A "case" expression, an "if condition or an "in"

parameter of a procedure or a function are other ways of reading.

process
variable var : bit;
begin
wait until clk= '1';
q <= var and c;
var := a and b;

end process.
^

e

~^
A.

y^\ A.

q

var

Figure 7.4 Illustration of rule 3

(J

7.1.5 Translation of a CDFG into a DAG

The next step is to translate the resulting CDPG into a DAG. Synchronous

registers are inferred on signals and some variables assigned in a clocked process.

Once we separate the present and the next states of registers into separate nodes,

we obtain a DAG. The source nodes are the primary inputs and present state values

of registers and the sink nodes are the primary outputs and the next-state values.

Pseudo-primary inputs (outputs) correspond to synthesized outputs (inputs). The

algorithm to identify the synthesized registers in the VHDL model is the same as

used by most synthesis tools.

7.1.6 Connecting Processes and Component Instances

A VHDL model consists of a set of interacting processes (clocked and unclocked).

Entity ports and internal signals (declared in the VHDL architecture) are used to
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communicate between the processes. The connection between processes is

represented as a Directed Graph. However, we have seen that each VHDL process

can be transformed into a CDFG which is represented as a DAG. Hence, the global

VHDL model is also represented as a DAG.

In VHDL, component statements are virtual design entities and are instantiated in

DAG constmction like functions. First, the signals listed in the component

instantiations substitute the ports listed in the component declarations. Then, the

DAGs for the components are inserted right before the statements that call it.

We illustrate the overall construction of a DAG by presenting two examples in

Section 7.3. The generation of MDG-HDL from DAG is discussed next.

7.2 Translation from a DAG to a MDG-HDL Model

Hardware modeling can be broadly divided into two styles: stmctural and

behavioral. Structural modeling implicitly defines the input/output function by

describing components and their interconnections; the input/output function can be

derived from the structural implementation. Conversely, behavior modeling

explicitly defines the input/output function by describing signal transformations.

MDG-HDL supports both structural and behavioral descriptions. In MDG-HDL, a

structural description is usually a netlist of components (predefined in MDG-HDL)

connected by signals. A behavioral description is given by a tabular representation

of the transit! on/output relation or by a truth table [70].

u

When we translate a DAG of a VHDL stmctural model, each internal node of the

DAG is translated into a predefined component module in MDG-HDL. All

Boolean operations are predefined in MDG-HDL. For uninterpreted functions,
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MDG-HDL provides a predefined component "transform" to define them. A

multiplexer node of the DAG corresponds to the predefined component

"multiplexer" in MDG-HDL.

When we translate the DAG of a VHDL behavioral RTL model, a predefined

component table is used; The first row of a table is a list containing variables and

cross-terms. Starting from the second row, each row is a list of values that the

corresponding variables or cross-terms can take. To translate a DAG to the tabular

representation, the select signals of multiplexer nodes are taken as the inputs of the

table (the first row) and the inputs of multiplexer nodes are taken as the list of

values used by the table (starting from the second row). We will explain it in more

detail by an example in the next section.

One of the important issues in the translation is to decide which variables/signals

should be represented by a single variable of abstract type, rather than by concrete

variables. We abstract variables/signals using the following two mles:

1. The signals/variables of integer or floating point number type are taken as

abstract variables and all arithmetic operations are taken as uninterpreted

function symbols.

For instance, suppose an expression c<=a+b, where a, b, c are integers and the

addition operation is an uninterpreted function symbol. The MDG-HDL

representation is

component(al, transform( inputs([a, &]), fynction(ûtrfû0, outpyt(c))),

where al is the name of the instance of predefined component "transform".

u

2. A constrained array can be abstracted only when no single element of the array

is used separately in the VHDL.model or the properties to be verified, i.e., the

array is only used as a whole. Otherwise, each element of the array is

represented by a separate (concrete/abstract) variable.
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Figure 7.5 shows an example of array abstraction. Arrays a, b and ol will be
abstracted in MDG-HDL because no individual element of these arrays is

manipulated by the VHDL model. Arrays c and o2 can not be abstracted because

their elements have been used separately. Each element of c and o2 will be

represented as a Boolean variable. Thus, the loop statement turns into

o2(0) <= c(0) and d(0)

o2(1) <= c(1) and rf(1)

entity example is
port (a, b, c, d : in BrT_VECTOR(l downto 0);

e, elk : in bit;
o3 : out bit;
ol, o2 : out BIT_VECTOR(1 downto 0));

end example;
architecture behavior of example is
begin
process
begin

wait until CLK='1';
ol = a and b;
for i in Oto 1 loop

o2(i) <= c(i) and d(i)
o3 <= c(0) or e;

end process;
end behavior;

Figure 7.5 An example of array abstraction

In the next section, we give two examples of translation from VHDL to DAG and
then to MDG-HDL.

u
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7.3 Examples of Translation from VHDL to MDG-HDL

7.3.1 Island Tunnel Control Counter

Consider the TTC counter example we discussed in Chapter 6. The VHDL

stmctural model is as shown in Figure 7.6. The model has only one clocked

process. Signal ic counts the number of cars and increments/decrements depending

on the signal ic_plus or ic_minus. Its DAG is shown in Figure 7.7(a), where the

pseudo-primary inputs/outputs represent the present/next state values of registers.

The signal ic is synthesized as a register. Its MDG-HDL representation is shown

in Figure 7.7(b). Note that signal ic is abstracted as sort wordn and the operations

increment and decrement of 1 are represented by predefined unintepreted function

symbols inc and dec. wordn is a predefined abstract type. The multiplexer nodes

are represented by the predefined component multiplexer.

u

entity itc_counter is
port ( ic_plus,ic_minus, elk : in stdjogic;

ic : out integer);
end itc_counter;
architecture itc_counter_asm of itc_counter is
begin

process
variable x : integer;

begin
wait until ( clk'event and elk ='!');
if(ic_plus='l')then

ic<=x + l ;
else

if(ic_minus='l')then
ic<=x -1 ;

else ic <= x;
end if;

end if;
end process;

end itc_counter_fsm;

Figure 7.6 The VHDL model for ITC counter
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(a) Directed Acyclic Graph

% -——— Signals ————
signal(x,wordn).
signal(icl,wordn).
signal(ic2,wordn).
signal(ic_minus,bool).
signal(icml ,wordn).
signal(ic_plus,bool).
signal(icm2,wordn).
signal(ic,wordn).
% -——— Components ————
component(c l ,reg(input(icm2), output(ic))) .
component(c2,mux(sel(ic_plus),inputs([(l,icl),(0,icml)]),output(icm2))).
component(c3,mux(sel(ic_minus),inputs([(l,ic2),(0,x)]),output(icml))).
component(c4,transform(inputs([x]), function(dec), output(ic2))).
component(c5,transform(inputs([x]),function(inc),output(icl))).
% -——— State variable, next state variable mapping ————
st_nxst(ic,icm2).
% ..——— initial state ————
init_val(ic,0).
% -——— Outputs ————
outputs([ic]).

u

(b) MDG-HDL

Figure 7.7 The DAG and the MDG-HDL model for the ITC counter
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7.3.2 A Moore Finite State Machine

Consider the VHDL model shown in Figure 7.8. It represents a Moore finite state
machine with 4 states (sO, sl, s2, s3) and one output z. The model consists of two
processes (a clocked one and a combinational one). Its DAG is shown in Figure
7.9. The signal current_state is synthesized as a register (a state variable). Each
conditional statement corresponds to a multiplexer operation.

entity moore is
port(x, clock: in BIT;

z: out BIT);
end;
architecture behav of moore is

type state_type is (s0, si, s2, s3);
signal current_state, next_state: state_type;

begin
combin: process(current_state, x)
begin
case CURRENT_STATE is

when s0 =>
z <= '0';
ifx='0'then

next_state <= s0;
else
next_state <= s2;

end if;
when si =>

z <= 'r;
ifx='0'then

next_state <= s0;
else

next_state <= s2;
end if;

when s2 =>
z<='r;
ifx='0'then

next_state <= s2;
else
next_state <= s3;

end if;
when s3 =>
z <= '0';
ifx='0'then

next_state <= s3;
else
next_state<=sl;

end if;
end case;

end process combin;
- Process to hold synchronous elements
(flip-flops)
synch: process
begin
wait until clock ='l';
current_state <= next_state;

end process synch;
end behav;

Figure 7.8 The VHDL model of a Moore machine

u



118

0

SO S2 SO S2 S2 S3 S3 Sl

o p5ï| [DÏ| |DT| |DT|
^

-1@
(»'

%—\^
\^

i^ 0110

^T T

^T

^^^ MUX
MUX

\
MUX^

z

MUX 4

nextstate.vâlueiôfSfi

»«gistaT,eùxTent_?tate

Fanout stem

Data transfer operation

Primary input/output

Pseudo primary input/output

Figure 7.9 Directed Acyclic Graph for the Moore machine

The MDG-HDL representation of the Moore machine is shown in Figure 7.10.

current_state and next_state are defined as signals of concrete sort state_type.

state-type is not a predefined concrete type, it thus needs to be defined as follows:

conc_so!t(state_type, [s0, si, s2, s3]).

Since the Moore machine is given as a behavior model, its MDG-HDL

representation is presented in a tabular form. current_state and x are taken as the

inputs of table c2, where next_state is the output. The combination of values of

currentjstate and .c decides the output of next_state.

0
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% % .-...—„- Signals ————
signal(current_state, state_type).
signal(z, bool).
signal(x, bool).
signal(next_state, state_type).
% -——— Components ————
component(cl, reg(input(next_state), output(current_state))).
component(c2, table([[current_state, x, next_state],

[sO, 0, s0],
[sO, l, s2],
[sl,0,s0],
[si, l, s2],
[s2,0, s2],
[s2, l, s3],
[s3,0, s3],
[s3, l, si]])).

component(c3, table([[current_state, z],
[sO, O],
[si, l],
[s2, l],
[s3,0]])).

% -——— State variable, next state variable mapping -—
st_nxst(current_state, next_state).
% ——-— Initial state ————
init_val(current_state, s0).
% ———- Outputs ————
outputs([z]).

Figure 7.10 MDG-HDL model of the Moore machine

Summary

u

In this chapter, we presented a translator from VHDL to MDG-HDL. We first

transform each VEIDL process into the Control/Data Flow Graphs (CDFGs) using

the LEDA Graph Generator tool. A Directed Acyclic Graph (DAG) is then

constmcted from CDFGs. We generate MDG-HDL from the resulting DAG by

translating each node into a predefined component of MDG-HDL. We illustrated

the translation in two examples: the FTC counter and a Moore machine. The

automatic translation from VHDL to MDG-HDL enables the verification of
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designs described in the synchronous RTL subset of the VHDL hardware

description language.

(J
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Chapter 8 Conclusions and Future Work

8.1 Conclusions

ROBDDs have proved to be a powerful tool for automated hardware verification.

However, they are not adequate in general for verifying circuits with large and

complex datapaths, because of the Boolean representation of circuits. Our group

has proposed a new class of decision graphs, called Multiway Decision Graphs.

With MDGs, we can integrate two verification techniques that have been very

successful: implicit state enumeration and the use of abstract sorts and

uninterpreted function symbols. MDGs can represent relations as well as sets of

states, and incorporate variables of abstract sorts to denote data values and

uninterpreted function symbols to denote data operations.

In this thesis, we explored two techniques to increase the scope of designs that can

be verified using MDG: variable ordering to decrease the size of MDGs and

automatic translation from VEIDL to MDG-HDL.

Like ROBDDs, MDGs require a total order over all the decision variables in the

graph and the size of MDGs greatly varies with the order. Since memory

requirements and processing time increase with MDG size, it is important to keep

MDGs as small as possible. Compared to ROBDDs, variable ordering on MDG is

more complicated due to the presence of constraints caused by first order terms in

the stmcture.

u

We first presented static and dynamic variable ordering algorithms on MDG. Our

static variable ordering algorithm generates a variable order before an MDG is

built. It is based on several heuristic rules that we explored for MDG. Our dynamic
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0 reordering algorithm minimizes the size of the MDGs during the verification
process. It combines the merits of symmetry and group sifting.

We then identified the standard term ordering problem, caused by the

lexicographical order adopted by MDG system to order cross-terms having the
same cross-operator. Our solution is based on function renaming and cross-term
rewriting. Function renaming is used to build an MDG with a good order
generated by the static variable ordering algorithm. Cross-term rewriting is used to
restore the original behavior of the circuits without changing the size of the MDG.

Finally, we presented an automatic translation from VHDL to MDG-HDL. This
translator can accept a VHDL model given at the synthesizable RTL level and
generate a MDG-HDL description for the MDG system.

We integrated the translation and the (re)ordering algorithms into the MDG design
verification system. Experimental results proved that this updated system can
handle larger designs than before by alleviating the effects of state explosion, thus
increasing the range of the circuits that can be verified.

My original contributions in this thesis can be summarized as follows:

1. The Development and implementation of automatic variable ordering
algorithms on MDG.

a) Static variable ordering:

Exploration of 5 heuristic rules for ordering.

•. Development and implementation of a static variable ordering

algorithm for combinational circuits.

Development and implementation of a static variable ordering

algorithm for sequential circuits.

Experiments, on benchmark circuits.

(J
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b) Dynamic variable ordering:

Implementation of a variable swap operation in Multiway Decision

Graphs.

Implementation of the basic sifting algorithm.

Development and implementation of a dynamic reordering algorithm

integrating symmetry and group sifting.

Experiments on benchmark circuits.

e) Standard term ordering:

Identification of the standard term ordering problem.

Development of a solution based on function renaming and rewriting.

A case study on an ATM congestion controller.

2. Automatic translation from DAG - MDG-HDL:

Identification of abstract variables and uninterpreted functions.

Translation from DAG- MDG-HDL.

Two examples: the Island Tunnel Control Counter and a Moore

machine.

8.2 Future Work

Although much work has been accomplished on the MDG-based verification
system, there are several areas in which the system could be extended.

Developing an (û-automaton based model checker on MDG:

u

It is possible to represent (o-automaton with MDG and develop an co-

automaton based model checker for the MDG system. (0-automaton based

model checking considers containment between the languages representing the

implementation and the specification. It is a powerful approach in which the

property ("task") and the model are represented by an (0-automaton. It was
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defined and used by R. P. Kurshan in COSPAN and included as the

verification engine in FormalCheck [42]. While this verification can be

referred to as linear-time based, the class of œ-automaton is strictly more

expressive than linear-temporal logic, and is well adapted to the specification

of fairness constraints and liveness properties, as well as sequential properties
such as counting. Besides that advantage, various refinement and abstraction

techniques as well as heuristics for decomposition and algorithms for

localization have been developed specifically to control the complexity of

state-space analysis and to provide a basis for hierarchical verification.

Link to theorem pro vers:

It is possible to explore the links between theorem proving systems and the

MDG tool. There are two possible approaches: (1) The model checker can be

embedded as a specialized decision procedure in a theorem proving system,

and could be used to handle appropriate sub-problems automatically. Namely,
some sub-goals could be treated by the model checker. This makes the theorem

proving system more efficient. (2) The MDG-based model checking can

succeed when output checking and state set inclusion can be decided by

rewriting and syntactic matching. When this is not possible (in general, the

equivalence of two first order formulas is semi-decidable), we could prove the

specific sub-goal using a theorem proving system. For systems with complex

structures, such as loops, we have to combine model checking and inductive

proofs to accomplish the verification task effectively. Both approaches need a

translator to realize the transformation between a sub-goal (a theorem) in

theorem proving and a logic fonnula in the MDG-based model checking.

u

Experimental verification of the method using industrial and academic
benchmarks:
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The MDG-based verification system used variables of abstract type to

represent data and uninterpreted functions to describe data operation. The data

width is no longer the bottleneck to cause the state explosion. This is ideal for

verification of designs with large data path (most telecommunication circuits

happen to fall into this category) and academic benchmarks using the MDG

system, in order to evaluate and to improve its performance.

Solving the non-termination problem:

In some cases, MDGs may suffer from the non-termination of the state

enumeration procedure. Some early research has shown that two approaches

could solve the non-termination problem in some situations. The first one is

based on the use of p-tenns which can finitely represent infinite sets of state

[54]. An extension of the syntax of MDGs and MDG-based algorithms could

incorporate p-terms to solve the non-termination problem when the generated

set of states exhibit certain repetitive patterns. The second approach is to

modify the original ASM structural description according to certain rules to

avoid the non-tennination problem [53]. It would be valuable to explore a
more general method that could automatically analyze the ASM description,

modify the design description and infer p-terms. Implementing these ideas in

the MDG package would extend the applicability of the MDG-based
verification tool.

Abstraction of subarrays:

u

In our automatic translation from VHDL to MDG-HDL, an array can be

abstracted only when no single element of the array or a subarray is used

separately in the VHDL model or the properties to be verified. This even

precludes the situation in which only one element in the array is used.

separately. To increase the scope of array abstraction, we can further abstract
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subarrays and corresponding functions. An arrary can be spliced into several

parts or even single elements, i.e., the subarray(s) can be abstracted and the

single element(s) of the array can be taken as concrete variables. Abstract

and/or cross functions have to be used to splice and if needed merge any

spliced parts. User guidance may be needed to control excessive abstraction

that could increase the pessimism of the verification.

u
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Appendix A. Verification of an Island Tunnel Controller

In this appendix we introduce the Island Tunnel Controller (FTC) example we

conducted our experiments on in Chapter 4 and 5. We describe the behavioral

description of Island Tunnel Controller in Section A.l. In Section A.2, we explain

the verification of the TTC model.

u

A.l The Island Tunnel Controller

The TTC controls the traffic lights at both ends of a tunnel based on information

collected by sensors installed at both ends of the tunnel, a single lane tunnel

connecting the mainland to an island, as shown in Figure 4.13. At each end of the

tunnel, there is a traffic light. There are four sensors for detecting the presence of

vehicles: one at the tunnel entrance (ie) and one at the tunnel exit on the island side

(ijc), and one at the tunnel entrance (me) and one at the tunnel exit on the mainland

side (mx).

In [25], the following constraint is imposed: "at most sixteen cars may be on the

island at any time". The number "sixteen" can be taken as a parameter and it can be

any natural number. The constraint can thus be read as follows: "at most n(n>0)

cars may be on the island at any time".

The specification of TTC using three communicating controllers and two counters

proposed in [25] is shown in Figure A.l. The state transition diagrams are shown

in Figure A.2. The island light controller (ILC) (Figure A.2(a)) has four states:

green, entering, red and exiting. The outputs igl and irl control the green and red

lights on the island side, respectively; iu indicates that the cars from the island side

are currently using the tunnel, and ir indicates that the island is requesting the
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tunnel. The input iy requests the island to yield control of the tunnel, and ig grants
control of the tunnel. A similar set of signals is defined for the mainland light
controller (MLC). The tunnel controller (TC) processes the requests for access
issued by the ILC and MLC. The island counter and the tunnel counter keep track
of the numbers of cars currently on the island and in the tunnel, respectively. At

each clock cycle, the count tc of the tunnel counter is increased by 1 depending on

signals itc+ and mtc+, or decremented by 1 depending on itc- and mtc-, unless it is
already 0. The island counter operators in a similar way, except that the increment

and decrement signals are ic+ and ic-, respectively.
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->
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Light
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Figure A.l The Island Tunnel ControUer

irl
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ix

0

Both the island and the tunnel counters have each only one control state, ready,
hence no control state variable is needed. We can use a concrete variable to

represent the current counter number. The count ic (tc) is now assigned a concrete
sort according to the counter width which is determined by the maximum number

of cars that are allowed on the island. We suppose the number if cars that allowed
on the island and in the tunnel equals 2" where n is the counter width.
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Figure A.2 The state transition diagrams of the Island Tunnel Controller



0

141

We can also use an abstract state variable ic (tc) to represent the current counter

number. At each clock, the count is updated according to the control signals. In

this abstract description, the count ic (tc) is of abstract sort wordn for n-bit words.

The control signals (ic+, ic-, etc.) are of sort bool with the enumeration {0,1}. The

uninterpreted function inc of type wordn —> wordn denotes the operation of

increment by 1, and dec of the same type denotes Decrement 1. The cross-term

equz (te) represents the condition "tc =0" and models the feedback from counter

to the control circuitry; equz is a cross-function symbol of type wordn —> bool.

Each of the controllers can have a single control state variable which takes all the

possible states as its values. Thus, the enumeration of those states constitutes the

(concrete) sort of the variables.

Let is, ms, and ts be the control state variables of the three controllers ILC, MLC

and TC, respectively, and let is', ms' and ts' be the corresponding next state

variables. We define a concrete sort mi_sort having the finite enumeration {green,

red, entering, exiting}. The variables is and ms (and also their next state variables

is' and ms') are then assigned to be of this sort mi_sort. Similarly, we let variables

ts and ts' to be of sort ts_sort which has the enumeration {dispatch, i_use; m_use;

i_clear, m_clear}. All other control signals (ie, ix, me, mx, etc) are of sort bool.

The condition "ic < n" is represented by the cross- term lessN(ic), where the

uninterpreted cross-function lessN of type wordn —> bool represents the operation

"< n".

A.2 Verification

u

Property checking is useful for verifying that a specification satisfies certain

requirements. We list below three properties (invariants) that we verified and also

provide their CTL (Computational Tree Logic) formulas:
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Pl: The lights on the island side and the mainland side cannot be green at the same

time.

AG(!((igl=l)&(mgl=l))).

P2: The tunnel counter is never signaled to increment simultaneously by ILC and
MLC.

AG ( !((itc+ =l)&(mtc+ = l)) ).

P3: The island counter is never signaled to increment and decrement

simultaneously.

AG (!((ic- = l) & (ic += l).

We verified Pl, P2, P3 on FTC with various counter widths ranging from 4 to 10
bits. We also use an abstract vanable to describe the counter. We applied our static
and dynamic ordering algorithms on this example. The experiments results can be

found in pages 67 and 88.

u
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Appendix B Verification of an ATM Switch Fabric

In this appendix we present the Fairisle 4x4 ATM (Asynchronous Transfer Mode)

switch fabric we conducted our experiments on in Chapter 4 and 5. The device was

in use for real applications in the Cambridge Fairisle network [17], designed at the

Computer Laboratory of the University of Cambridge. In Section B.l, we

introduce the Fairisle ATM Switch fabric model. In Section B.2, we give its

hardware description. In Section B.3, we explain the property checking of ATM

model.

u

B.l The Fairisle ATM Switch Fabric

The 4x4 Fairisle switch consists of three types of components: the input port

controllers, the output port controllers and the switch fabric, as shown in Figure

4.14. An (Fairisle) ATM cell consists of a header (one-byte tag containing routing

information as shown in Figure 4.15) and a fixed number of octets. Cells are

switched from input ports to output ports according to the header.

The behavior of the switch is cyclical. In each cycle or frame, the input port

controllers synchronize incoming data cells, append control information in the

front of the cells, and send them to the fabric. The fabric waits for cells to arrive,

strips off the header, arbitrates between cells destined to the same port, sends

successful cells to the appropriate output port controllers, and passes

acknowledgments from the output port controllers to the input port controllers.

If different port controllers inject cells destined for the same output port controller

(as indicated by the route bits in the header) into the fabric at the same time, then

only one will succeed. The others must retry later. The routing tag also includes
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priority information (priority bit) that is used by the fabric for arbitration which

takes place in two stages. High priority cells are given precedence before the

remaining cells. The choice between cells of the same priority is made on a round-

robin basis. The input controllers are infonned of whether their cells were

successful using acknowledgment signals. The fabric sends a negative

acknowledgment to the unsuccessful input ports, but passes the acknowledgment

from the requested output port to the successful input port. The port controllers

and the switch fabric all use the same clock, hence bytes are received

synchronously on all links. They also use a higher-level cell frame clock - the

frame start signal fs. It ensures that the port controllers inject data cells into the

fabric synchronously so that the routing tags arrive at the same time. If no input

port raises the active bit throughout the frame then the frame is inactive - no cells

are processed. Otherwise it is active.

Figure B.l shows a block diagram of a 4x4 switch fabric. The inputs to the fabric

consist of the cell data lines, the acknowledgments that pass in the reverse

direction, and the frame start signal^ which is the only external control signal. The

outputs consist of the switched data, and the switched and modified

acknowledgment signals. The switch fabric is composed of an arbitration unit, an

acknowledgment unit and a dataswitch unit. The arbitration unit reads the headers,

makes arbitration decisions when two or more cells are destined for the same

output port, passes the result to the other modules using grant signals and controls

the timing of the other units using output disable signals. The dataswitch performs

the actual switching of data from an input port to an output port according to the

most recent arbitration decision. The acknowledgment unit passes appropriate

acknowledgment signals to the input ports. Negative acknowledgments are sent

until arbitration is completed.

u
All the design units were repeatedly subdivided until eventually the logic gate

level was reached, providing a hierarchy of components. The design had a total of
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441 logic gates with two or more inputs and flip-flops. The switch fabric was built

on a 4200 gate equivalent Xilinx FPGA.
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Figure B.l The block diagram of the Fairisle ATM switch fabric

B.2 Hardware Description

B.2.1 Gate and RT Implementation

u

Figure B.2 described the RTL implementation of the fabric based on the gate-level

description by describing the dataswitch using multiplexors instead of logic gates.

The data signals Dm; / Douti (i =0, 1, 2, 3) are modeled as n-bit words and

assigned an abstract sort wordn. The control fields contained in the cell headers,

i.e. active, priority and route bits, are extracted from the abstract data signals using

cross-operators (functions) act, pri of type wordh —> bool and rou of type wordn -^
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0 word2 (word2 = {0, 1,2, 3}) respectively. The MDG-ASM model is thus obtained

by compiling the abstract description of the RTL implementation.

AoutO
Aoutl
Aout2.
Aoutî

fi-ame start

DinO
Dinl
Din2
Din3

i Ack

4

4 Arbitration\ '4,
\a.

\'
\

\
\

/S3 utO
s s

•n,^ utlDataswitch .22.2•n ut2\s' bu &h ut3u
« AJ rt

\

\
/

act(DinO) s\/.'' Hact •*t

f \DinO pri(DinO) ,,
ri

/

\ /
rou(DinO) /'

rou

l

-v^

AinO
Ainl
Ain2
Ain3

Figure B.2 Model abstraction of the switch fabric

B.2.2 Behavioral Specification

This specification was developed independently of the actual hardware design and

includes no restrictions on the frame and cell lengths and the word width. It

reflects the complete behavior of the fabric under the assumption that the

environment maintains certain timing constraints on the arrival of the frame start

signal and the cell headers.

u
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Figure B.3 The Timing of the Fairisle switch fabric

The state machine as shown in Figure B.3 defines the exact timing relationship in
clock cycles between inputs and output responses. The symbols s and h denote the
arrival of the frame start signal^ and of the headers, respectively, and the symbol
'-' denotes negation. There are 14 states. States 0, 1 and 2 along the time axis to
describe the initial behavior of the switch fabric. States 3, 4 and 5 along the time
axis ts describe the processing when the/, signal arrives. States 6 to 13 along the
time axis th represent the behavior after the arrival of headers. In the loops on
states 2 and 5, the fabric awaits the/, signal and the hearders, and the loop on state
10 represents the data transfer cycles. The positive integers i, j and k are used to
expand the three time axes to, ts and th, respectively. The symbols r, a and d inside
the circles indicate the operation taking place in the states: round-robin arbitration,
the output of acknowledgments and the output of data. The absence of those
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0 symbols means that there is no operation taking place and that the default value is

output. The operations are defined by separate state machines. The data signals

Din, and Dout, {i = [0:3]) are of an abstract sort wordn , and the acknowledgement

signals Aw, and Aouti (i=[0..3J) are of sort bool. The state variable c is of a

concrete sort having the enumeration [0.. 13]. The same function symbols (act, pri

and rou) as those in the RTL implementation are used to extract the control

information in the headers.

B.3 Property Checking of ATM model

We use the time points ts, th and te to denote the start of a frame, the start of an

active cell, and the end of a frame (which is the start of the next frame),

respectively. Using these time points, we can state several properties which reflect

the behavior of the switch fabric. The properties we verified on the switch fabric

are :

Pl: Prom ts+3toth+ 4, the default value is put on the data output port 0.

P2: From ts +1 to th +2, the default value is put on the acknowledgment output port

0.

P3: Prom r/, + 3 to te, if input port 0 chooses output port 0 with the priority bit set in

the routing tag, and no other input ports have their priority bits set, the value on

AOMÏO will be the input ofAino.

P4: From th +5 to te +2, if input port 0 chooses output port 0 with the priority bit

set in the header and no other input ports have their priority bits set, the value on

Douto will be Din'o which is the input of Dino of 4 clock cycles earlier.
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We verified Pl to P4 on the ATM model using our static and dynamic reordering

algorithms. The experiment results can be found in pages 69 and 87.

u


