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Résumé 
 

La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la 

prolifération cellulaire, ce qui en fait une cible de choix pour le traitement de différents 

cancers. À cet effet, plusieurs inhibiteurs spécifiques de la DHFRh, les antifolates, ont été 

mis au point : le méthotrexate (MTX) et le pemetrexed (PMTX) en sont de bons 

exemples. Malgré l’efficacité clinique certaine de ces antifolates, le développement de 

nouveaux traitements s’avère nécessaire afin de réduire les effets secondaires liés à leur 

utilisation. Enfin, dans l’optique d’orienter la synthèse de nouveaux composés inhibiteurs 

des DHFRh, une meilleure connaissance des interactions entre les antifolates et leur 

enzyme cible est primordiale. 

À l’aide de l’évolution dirigée, il a été possible d’identifier des mutants de la 

DHFRh pour lesquels l’affinité envers des antifolates cliniquement actifs se voyait 

modifiée. La mutagenèse dite de saturation a été utilisée afin de générer des banques de 

mutants présentant une diversité génétique au niveau des résidus du site actif de l’enzyme 

d’intérêt. De plus, une nouvelle méthode de criblage a été mise au point, laquelle s’est 

avérée efficace pour départager les mutations ayant entrainé une résistance aux 

antifolates et/ou un maintient de l’activité enzymatique envers son substrat natif, soient 

les phénotypes d’activité. La méthode de criblage consiste dans un premier temps en une 

sélection bactérienne à haut débit, puis dans un second temps en un criblage sur plaques 

permettant d’identifier les meilleurs candidats. Plusieurs mutants actifs de la DHFRh, 

résistants aux antifolates, ont ainsi pu être identifiés et caractérisés lors d’études de 

cinétique enzymatique (kcat et IC50). Sur la base de ces résultats cinétiques, de la 

modélisation moléculaire et des données structurales de la littérature, une étude structure-

activité a été effectuée. En regardant quelles mutations ont les effets les plus significatif 

sur la liaison, nous avons commencé à construire un carte moléculaire des contacts 

impliqués dans la liaison des ligands. Enfin, des connaissances supplémentaires sur les 

propriétés spécifiques de liaison ont put être acquises en variant l’inhibiteur testé, 

permettant ainsi une meilleure compréhension du phénomène de discrimination du 

ligand.  
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Abstract 

Human dihydrofolate reductase (hDHFR) is an essential enzyme for cellular 

proliferation and it has long been the target of antifolate drugs for the treatment of 

various types of cancer. Despite the clinical effectiveness of current antifolate treatments, 

new drugs are required to reduce the side-effects associated with their use. An essential 

requirement for design of new antifolates is a better understanding of how these drugs 

interact with their targets.  

We applied directed evolution to identify mutant hDHFR variants with modified 

binding to some clinically relevant antifolates. A saturation mutagenesis approach was 

used to create genetic diversity at active-site residues of hDHFR and a new, efficient 

screening strategy was developed to identify the amino acids that preserved native 

activity and/or conferred antifolate resistance. The screening method consists in a high-

throughput first-tier bacterial selection coupled with a second-tier in vitro assay that 

allows for rapid detection of the best variants among the leads, according to user-defined 

parameters. Many active, antifolate-resistant mutants of hDHFR were identified. 

Moreover, the approach has proven efficient in rapidly assessing kinetic (kcat) and 

inhibition parameters of the hDHFR variants (IC50). Structure-function relationship 

analysis based on kinetic investigation, available structural and functional data as well as 

modeling were performed. By monitoring which mutations have the greatest effect on 

binding, we have begun to build a molecular picture of the contacts involved in drug 

binding. By varying the drugs we test against, we gain a better understanding of the 

specific binding properties that determine ligand discrimination.  

 

Keywords : human dihydrofolate reductase, methotrexate, pemetrexed, drug-resistance, 

saturation and combinatorial mutagenesis, directed evolution, high-throughput screening, 

structure-function relationship, enzyme kinetics, molecular modeling. 
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Chapter 1 - Introduction 

 

Section 1.0 - Folate metabolism  

Folic acid derivatives are essential coenzymes required by all living organisms in 

the de novo synthesis of thymidylate and purines, the building blocks for nucleic acid 

synthesis (figure 1.1, 1.1a and 1.1b) [1]. Thus, these cofactors have a crucial role during 

cell proliferation. Folate derivatives, in the form of a series of tetrahydrofolate (THF) 

compounds, act as cofactors in a number of one-carbon-transfer reactions within these 

biosyntheses, and they are also involved in homocysteine methylation and glycine and 

serine interconversion (figure 1.1) [1]. THF is obligatorily produced from 7,8-

dihydrofolate (DHF) by the enzyme dihydrofolate reductase (DHFR) [2]. Enzymes 

depending on THF cofactors include thymidylate synthase (TS), glycinamide 

ribonucleotide formyl transferase (GARFT) and aminoimidazole carboxamide formyl 

transferase (AICARFT). TS uses the cofactor 5,10-methylene tetrahydrofolate to convert 

deoxyuridylate (dUMP) into thymidylate (dTMP)(figure 1.1a) [2]. GARFT and 

AICARFT add carbon 8 and 2, respectively to the ring structure of purine using N10-

formyl tetrahydrofolate as cofactor (figure 1.1b)[2]. 

Folates are mainly transported into cells by two energy-dependent carrier proteins: 

the reduced folate carrier (RFC) [3], which is bi-directional, and the folate binding 

protein (FBP) [4].  Intracellular concentration of folates is constantly maintained between 

1 and 10 μM, compared to a plasma concentration  of 10 to 30 nM [5]. This intracellular 

accumulation is mediated by polyglutamation. The enzyme folypolyglutamate synthase 

(FPGS) [1] adds 5 to 8 glutamate residues to the glutamate tail of folates via peptidic 

bonds. The enzyme γ-glutamyl hydrolase (GGH) [6], instead, removes terminal 

glutamate groups. Glutamation makes folates more polar and it can increase the affinity 

of folates for their target enzymes. The extent of polyglutamation of folates depends on 

their affinity for these two cytosolic enzymes. 
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Folate metabolism in cells is a dynamic process in which the levels of THF-

cofactors and DHF vary with the intracellular activities. In resting cells (not in S-phase), 

DHFR activity is much higher than TS activity. This maintains cellular DHF at very low 

levels, in the range of the low nM [1, 7]. As the KM
DHF

 for DHFR is  < 75 nM [8], only a 

fraction of DHFR activity (< 5%) is sufficient to sustain normal rates of THF synthesis 

[1].  Inhibition of folate-dependent enzymes in actively proliferating cells leads to arrest 

of the synthesis of DNA precursors. Thus, these enzymes are major drug targets for the 

treatment of cancer diseases [5], as well as fungal [9, 10], microbial [11] and parasitic 

[12] infections that are dependent on cellular proliferation. 

Section 1.1 - Dihyrofolate reductase   

Dihydrofolate reductase (tetrahydrofolate: NADP+ oxidoreductase; E.C.C. 

1.5.1.3) is a cytosolic enzyme that catalyzes the NADPH-dependent reduction of 7,8-

dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) in all living organisms (figure 

1.2A) [1]. Vertebrate DHFRs also catalyse the reduction of folate (FOL) to DHF, at about 

one tenth the rate of DHF reduction (figure 1.2A) [1].  

DHFR has attracted the attention of protein chemists and of molecular biologists 

as a model in many structural, kinetic and mutagenic studies due not only to its clinical 

relevance as a pharmacological target, but also to its small size (18-22 kDa), stability and 

relative ease of producing the recombinant enzyme. In fact, eukaryotic DHFRs are small 

monomeric proteins which does not require any post-translational modification and thus, 

can be easily expressed in heterologous bacterial hosts for ease of manipulation [13]. The 

human dhfr gene, for example, was cloned and expressed in E. coli in 1988 [14], and 

since then, extensive investigations of this enzyme have been performed.  

Section 1.1.1 - Reaction mechanism  

For the reduction of DHF to THF the hydride is transferred from the C4 of 

NADPH to the C6 of DHF, and this transfer is critically dependent on the distance 

between the two carbon atoms (optimal distance 2.6 Å) and the relative orientation of the 

NADPH nicotinamide ring and the DHF pteridine ring (figure 1.2B) [15]. Different 

studies [16-18] suggest that protonation of N5 in the transition state, which either 
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immediately precedes or is concerted with hydride transfer to the C6, promotes hydride 

transfer by delocalizing a positive charge to C6. Residue 30 is the catalytic active-site 

residue, which mediates, through intervening water molecules, the proton transfer 

component of the reduction [15, 19]. A similar mechanism has been proposed for the 

DHFR-dependent reduction of FOL to DHF, where protonation of N8 could be promoted 

by formation of a H-bond with the backbone carbonyl of Ile7, as observed in the crystal 

of the binary complex of human DHFR with 5-deazafolate, a tight-binding inhibitor of 

DHFR very similar to DHF [18]. 

Section 1.1.2 - Vertebrate and bacterial DHFRs: differences and 

similarities 

Vertebrate DHFRs are highly homologous (72-89% sequence identities for 

DHFRs from chicken, mouse, bovine and human), but only ~25% identity is observed 

between animal and bacterial sequences or between different species of bacteria (figure 

1.3) [20]. Despite the low sequence identity between bacterial and vertebrate DHFRs, 

structural analysis of DHFRs from different species has shown that the overall tertiary 

structures of these enzymes are very similar to one another (figure 1.3) [21, 22].  

Notwithstanding the great structural similarity observed, this group of enzymes 

exhibits considerable species-to-species variability in sensitivity to different inhibitors 

[21]. E. coli DHFR (ecDHFR), for example, is 12000-fold more sensitive to the antifolate 

trimethoprim (TMP) than the human variant (hDHFR). Although active site residues are 

generally conserved, some differences exist and could partly explain this variability. 

Leu28 in E. coli DHFR, for example, which was reported to establish a major contact 

with the trimethoxybenzyl moiety of TMP [23], corresponds to Phe31 in hDHFR. 

However, mutation of Phe31 to Leu in hDHFR, did not increase TMP binding 

significantly, indicating that this residue was not the sole determinant of species 

selectivity of TMP [24].  Differences in active-site cavity were also reported to contribute 

to the observed differences in specificity [22, 25]. Despite extensive investigation, the 

structural basis for the various modes of binding in DHFR from different species still 

remains to be fully understood and it represents a crucial point for the design of species-
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specific inhibitors [26]. Jordan Volpato, PhD student in the research group of Prof. Joelle 

Pelletier, has recently conducted a detailed review regarding this subject [27].  

Section 1.1.3 - Human dihydrofolate reductase 

Human DHFR (hDHFR) is a monomeric enzyme of 186 amino acids (21544 Da). 

The polypeptide backbone of hDHFR is folded into an eight-stranded twisted β-sheet, 

consisting of 7 parallel strands and one anti-parallel strand leading to the carboxyl 

terminus. Five α-helices and loops provide connectivity within the sheets (figure 1.4) 

[28]. Residues 21-26 (sequence DLPWPP) form two turns of a polyproline helix (left 

handed, typeII) (figure 1.4) [28].   

Section 1.1.3.1 – Folate binding site 

The structures of many complexes of hDHFR with cofactors, substrate or 

inhibitors have been determined both by X-ray diffraction methods [18, 22, 28, 29] and 

by NMR [30, 31].  Of the two substrates of hDHFR, only FOL has been crystallized in 

the binding cavity of the enzyme (in absence of the cofactor NADPH) (figure 1.5A) [18, 

28]. FOL is a relatively stable molecule while DHF is readily oxidized to FOL, and 

therefore not suitable for protein co-cristallization [18]. The folate binding site is 

composed by residues in strands βA and βE, residues 61-70 and residues belonging to the 

left-handed polyproline helix and helices αB, αC [18].  

The folate and folate-like molecules consist of polar pteridine and L-glutamate 

extremities, linked by a p-aminobenzoyl group (p-ABA) (figure 1.7). The active site of 

DHFR is a ~15 Å hydrophobic pocket in which the only polar side chain is the carbonyl 

of Glu30 [15]. The pteridine moiety of substrates and inhibitors binds nearly 

perpendicular to the benzoyl ring in the bottom of the hydrophobic pocket, with the 

benzoyl-glutamate side chain directed towards the surface of the protein. NADPH binds 

in an extended conformation with the reduced nicotinamide ring inserted into the active 

site pocket and the rest of the molecule along the surface of the protein. The nicotinamide 

ring is situated about 2.5 Å from the folate pteridine ring, with which it forms stacking 

interactions [18].  
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Table 1.1 lists the residues of hDHFR that directly interact with DHF. The 2-

amino group, N3 and O4 of the pteridine moiety of folate interact specifically with 

residues Glu30, Thr136 and Trp24 by direct or water mediated H-bonds. Phe34 is within 

the van der Waals distance of the pteridine moiety. No specific interactions involve 

nitrogens N1, N5, N8 and N10 of folate. In DHF, which has a hydrogen atom attached to 

N8, a hydrogen bond between N8 and the carbonyl oxygen of Ile7 is likely to form, 

whereas an equivalent hydrogen bond to N8 of folate is likely to be formed only in the 

transition state [18].  

The p-ABA moiety of folate is within van der Waals distance of the side chains of 

Phe31, Phe34, Ile60, Pro61 and Leu67. Moreover, the carbonyl oxygen of p-ABA forms 

a H-bond with the amide nitrogen of the Asn64 side chain [28]. 

 The α-carboxylate portion of the glutamate fragment forms a salt bridge with the 

guanidinium of the conserved Arg70. Gln35 is in proximity to both the α-carboxylate and 

γ-carboxylate portions of DHF. The γ-carboxylate can form a H-bond mediated by a 

water molecule with the carbonyl oxygen of R28. However, this portion has a high B 

factor and the bond with R28 is not observed in all resolved structures, probably 

indicating that it is weak [18].  

 

Section 1.2 – Antifolates  

Antifolates constitute a large family of compounds which compete with folate 

derivatives for the binding to folate-dependent enzymes involved in nucleotide 

biosynthesis. Due to the role of their target enzymes in cellular proliferation, antifolates 

are used for the treatment of a broad range of proliferative diseases. Treatment of 

bacterial and parasitic infection is based on species-selectivities of some of these 

compounds. Trimethoprim (TMP), for example, is selective towards bacterial DHFRs 

[26] while pyrimethamine (PYR) towards malaria parasite DHFRs [26]. 

The importance of DHFR in bacterial, parasitic and cancer chemotherapy arises 

from its function in maintaining the pool of THF. Inhibition of DHFR leads to arrest of 

DHF recycling, and thus causes inhibition of cell growth and eventually cell death. It 
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should be noted that THF is regenerated in most one-carbon transfer reactions, with the 

exception of TS-catalyzed dTMP synthesis (figure 1.1). Therefore, in cells not actively 

synthesizing thymidylate and DNA, inhibition of DHFR does not result in any particular 

effect.  

 In 1947, pteroylaspartic acid, an antagonist of pteroyl glutamic acid (folic acid), 

was proved to interfere with folic acid metabolism and the normal growth of cells in in 

vivo test with both chicken and rats [32], and suggested  that folic acid antagonists might 

be of value in patients with rapidly growing malignant disease. In 1948 the antifolate 

aminopterin (figure 1.7) was shown to be effective in children affected by acute leukemia 

at the terminal stage of the disease, marking the advent of cancer chemotherapy [33]. 

Soon after, aminopterin was replaced by the more effective and less toxic amethopterin 

(later named methotrexate (MTX), figure 1.7), which was approved by FDA in 1953. 

Since then, MTX has been the major antifolate used in cancer therapy [34].   

Both aminopterin and MTX are strong competitive inhibitors of DHFR (for 

hDHFR, Ki aminopterin = 2 pM [35] and Ki MTX = 3.4 pM [13]).  

Section 1.2.1 - Methotrexate 

Methotrexate (MTX; 8-amino,10-methyl-pteryolglutamic acid) is a slow, tight 

binding, reversible  inhibitor of the human enzyme dihydrofolate reductase (hDHFR) [13, 

36]. The inhibition constant of hDHFR for MTX is of 3.4 pM [13, 36, 37]. MTX also 

inhibits human GARFT and human AICARFT, but the Ki values for the pentaglutamate 

forms of these enzymes (potency of DHFR inhibition depends on the polyglutamation 

status of the molecules) are of 2500 nM and 56 nM, respectively [5]. These kinetic data 

suggest that the main intracellular target is DHFR [5]. 

MTX shows high affinity for a wide range of DHFRs from different species 

(bacterial, parasitic, vertebrate). Due to its lack of specificity, it is mostly applied for the 

treatment of human proliferative diseases, both malignant (carcinoma, metastatic breast 

cancer, bladder cancer, lymphoma)[5] and not-malignant (rheumatoid arthritis [38], 

psoriasis [39] and graft versus host disease [40]). Despite the continuous discovery of 
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newer drugs, MTX often remains a component of the newer combination treatments [5, 

34].  

The kinetics of MTX binding to hDHFR was described extensively by Appleman 

et al. [13]. MTX binds rapidly and tightly (kon = 1.0 x 10-8 M-1 s-1; koff  < 1 s-1; koff/kon = 

210 pM), independently of the presence or absence of  NADPH already bound to the 

enzyme [13]. The initial association of MTX to hDHFR is followed by some kind of 

conformational change of the complex, which increases the overall binding of 60-fold, 

leading to a Ki of 3.4 pM [13]. The authors also demonstrated that MTX polyglutamation, 

differently from what happens for TS, GARFT and AICARFT [5], does not affect 

binding to hDHFR.  Like folate, MTX is transported into cells by both RFC and FBP [5, 

41, 42]. 

Binding of MTX to hDHFR has been studied using X-ray crystallography [22, 43] 

(table 1.1 and figure 1.5B). Despite its chemical and steric similarity with 4-oxo-folates 

(FOL, DHF, THF; figure 1.7), MTX binds in the active site with its pteridine moiety 

flipped 180° around the C6-C9 bond, relative to folate (figure 1.6). The main cause for 

this flip is probably the presence of the 4-amino group instead of a 4-oxo group. 

Consequently, active-site residues form different contacts with the two molecules, and 

binding of the inhibitor MTX is 2000-fold stronger than binding of the substrate DHF.  

Table 1.1 lists the residues that directly interact with DHF and/or MTX in the 

hDHFR ternary complex. The hydrogen bonding network involving structural water, the 

conserved active site residues Thr136, Glu30, Trp24 and the pteridine moiety of the 

bound folate is maintained, but in the case of MTX it involves the N1 and N8 nitrogen 

and the 2-amino group [22]. The 4-amino group of MTX interacts with residues Ile7, 

Val115 and Tyr121 and with NADPH [22]. The backbone carbonyl groups of both 

residue 7 and 115 are within H-bonding distance with the 4-amino group of MTX [44]. 

Moreover, the side chains of these two residues are likely to form hydrophobic 

interactions with the inhibitor’s pteridine moiety [44]. Residue Phe34 is also within the 

van der Waals distance with the pteridine moiety.[45] 

As in the case of folate, the p-ABA moiety of MTX forms van der Waals and 

hydrophobic interactions with the side chains of Phe31, Phe34, Ile60, Pro61 and Leu67 
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[22]. The carbonyl oxygen of p-ABA also forms a H-bond with the amide nitrogen of the 

Asn64 side chain [22]. 

The α-carboxylate portion of the glutamate moiety makes close contacts with the 

side chains of Arg70 (charge interaction) and Gln35. When the inhibitor does not occupy 

the active site, a subdomain shift brings Arg70 into contact with Gln35 [46]. 

Section 1.2.1.1 - Mechanism of resistance to MTX 

Some type of neoplastic diseases are intrinsically resistant to MTX whereas those 

that are responsive can develop resistance following repeated treatments (acquired 

resistance) [42]. MTX was brought into clinical use and became an established 

component of many clinical regimens right after the demonstration of its effectiveness in 

the late 1940s [33, 47], when its mechanism of action was not clearly understood. 

Between the end of the 1970s and the beginning of the 1990s, a better understanding of 

metabolism, transport and kinetics of binding of MTX to DHFR helped to elucidate the 

basis of MTX resistance. Different mechanisms of acquired resistance that impair 

efficiency of MTX-treatment have been described [5, 41, 42]. Amplification of the dhfr 

gene [48] or DHFR over-expression [49] were frequently observed. Moreover, 

mammalian DHFR expression is regulated by binding of its own mRNA at the active site 

[50]. In fact, hDHFR binds specifically to its own mRNA and this interaction represents a 

mechanism of inhibition of hDHFR mRNA translation [50]. Binding of MTX dislodges 

the DHFR mRNA, rendering it available for translation and therefore increasing protein 

expression. The higher the level of DHFR, the higher is the level of free-drug necessary 

to suppress THF regeneration. The free drug level is a critical parameter in the 

interactions between MTX and both hDHFR and folylpolyglutamate synthetase (FPGS; 

see section 1.0 for a detailed description of the carrier proteins and enzymes involved in 

folate metabolism). Transport mechanisms regulate the influx and efflux of drugs across 

the cell membrane, and the net effect of these processes determines the level of free MTX 

achieved intracellularly. Alteration in the expression or mutations of the reduced folate 

carrier protein (RFC) [51] and of FPGS [52] determine reduction of cellular uptake or 

allow more rapid efflux of MTX [41], respectively. MTX polyglutamates accumulate at 

different rates in a variety of tumor cells and ultimately become the predominant species 
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and the form of antifolate bound to hDHFR, and this is an important determinant of the 

pharmacologic activity of this drug. Impaired polyglutamation can therefore be a 

determinant cause of resistance together with the other possible resistance mechanisms. 

The above-mentioned MTX resistance mechanisms have all been observed either 

in tumours isolated from patients that relapsed during or following MTX-treatment, and  

ex vivo (by exposing cells isolated from patients to MTX in vitro) [48, 53-55]. An 

additional resistance mechanism is the occurrence of mutations in the dhfr gene, resulting 

in expression of hDHFR variants with reduced affinity for MTX. This mechanism of 

resistance was first observed in ex vivo studies, but it has never been identified as a cause 

of resistance in tumours isolated from patients who relapsed following MTX treatment. 

Even if it has been long proposed that mutations that confer resistance to MTX could 

occur in tumural cell of patients receiving a MTX-based therapy, and therefore 

contributing to their clinical relapse, a study performed by Spencer et al. described why 

this is unlikely to happen [56]. Briefly, the authors demonstrated that different mutations 

that occurred spontaneously and conferred MTX-resistance in ex vivo experiments, 

conferred only modest protection to MTX when transduced into cells using a retroviral 

vector. Moreover, accumulation of mutations that increase total MTX resistance seems 

unlikely because other mechanisms of resistance, as discussed above, prevail. Because it 

does not occur clinically, hDHFR MTX-resistant mutants represent a promising tool for 

gene theraphy, as it will be discussed in paragraph 1.2.1.3. Moreover, a second possible 

application would involve the use of these hDHFR MTX-resistant variants as selection 

markers for gene transfer into eukaryotic cells [57, 58].   

Section 1.2.1.2 - Mutations of hDHFR that confer resistance to MTX  

MTX-resistant mutants of DHFR from mammalian sources have been identified 

either in vivo, ex vivo (by exposing mammalian cells to MTX in vitro) or in vitro (created 

by mutagenesis).  

The MTX-resistant DHFR G15W was the only variant isolated in vivo, from a 

MTX-resistant subline of murine leukemic cells implanted in mice. Subsequent in vitro 

characterization of both the mouse and the human G15W variants, demonstrated that 
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although effectively resistant (200-fold increase in Ki
MTX for mouse DHFR), the mutant 

was too unstable to be the primary cause of the observed resistance [59].  

The first ex vivo studies reported in literature aimed to better understand the 

causes of emergence of MTX resistance. Mutation L22R [60] and F31W [61] were 

identified from MTX-resistant mouse cells, F31S from both hamster [62] and human [63] 

cells and F31W from both hamster [62] and murine [61] cells. In parallel, in vitro 

mutagenesis studies on E. coli, mouse and human DHFRs allowed characterization of the 

above-mentioned variants and identification of further mutations that confer resistance to 

MTX. All mutations characterized showed decreased affinity for MTX but also loss of 

catalytic activity, generally due to reduced DHF affinity. This result is readily 

rationalized by the fact that MTX and DHF make similar contacts with the enzyme, as 

illustrated in table 1.1 and figure 1.5.  

Mutations of hDHFR that confer resistance to MTX and their kinetics and 

inhibition parameters are listed in table 1.2. Leu22 is a highly-conserved active site 

residue that establishes van der Waals contacts with the pterin ring of bound MTX and 

NADPH [35]. Variants substituted with Phe, Arg, Trp or Tyr at position 22 are all MTX-

resistant and all exhibit a greater decrease in affinity for MTX than for DHF (table 1.2). 

Mutant L22F is the least resistant, presenting a moderate resistance and maintaining 

catalytic efficiency in the range of the native enzyme [43]. Decreased affinity for these 

mutants was associated with increased koff, and this may be due both to a decreased 

affinity between MTX and the active site or/and to an increased diffusion of MTX from 

the active site. When the crystal structures of hHDFR mutants L22R [43] and L22Y [43] 

in the ternary complexes with NADPH and MTX were compared with the wild-type 

hDHFR⋅NADPH⋅MTX ternary complex structure [64], a rational common explanation 

was difficult to postulate. In fact, while Arg22 appeared to have lost all close contacts 

with MTX by adopting a low probability conformation, Tyr22 showed the same contacts 

with MTX as the native Leu residue. Therefore, while in the case of L22R a loss of 

binding energy could partly explain the loss of affinity for MTX, such explanation was 

not valid in the case of the L22Y variant [43].  
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Phe31 and Phe34 belong to α-helix B and they both interact by van der Waals 

interactions with the pteridine extremity and the p-ABA moiety of MTX and DHF [22]. 

Replacements of residue Phe31 with the small amino acids Ala, Gly and Ser gave rise to 

moderately MTX-resistant mutants (70 to100-fold increase in Ki
MTX), with little loss of 

catalytic activity and DHF binding comparable to the native enzyme (table 1.2) [65]. The 

authors proposed that decreased MTX binding was due to the loss of interaction between 

the side chain of residue 31 and bound the MTX. Moreover, the absence of isomerisation 

of the initial complex, which increases the MTX binding of about 60-fold in the native 

enzyme, was proposed as further potential cause for the increase in Ki
MTX and for a little 

variation of KM
DHF. The authors proposed that isomerisation of the 

enzyme·MTX·NADPH complex could depend on the motion of residue 31 [65], which 

occupies two alternative conformations in one crystal structure of folate complexed with 

hDHFR [18]. When a small residue replaces the bulky Phe, this conformational change 

does not occur and further stabilization of the complex cannot take place. Mutations at 

position 31 with the more bulky and hydrophobic amino acids Leu, Val and Thr did not 

significantly affect either catalysis or inhibitor binding [65]. Finally, mutation F31R 

conferred the highest degree of MTX-resistance at this position, again with a small effect 

on DHF binding, but with a 10-fold decrease in reactivity [57].  

Residue Phe34 is strictly conserved in DHFRs from all species. Nakano et al. [45] 

mutated residue 34 to Ala, Ile, Ser, Thr and Val and observed an important increase of 

both the ternary KD
MTX and KD

DHF. Mutation at residue 34 mainly increased the KD
MTX by 

decreasing kon and largely increasing koff. In the case of F34T the effect on KD
DHF was 

even more significant than the effect on KD
MTX. The effect on reactivity was minimal in 

all cases. However, the effect of the described mutations on DHF binding indicates that 

position 34 in human DHFRs is likely essential for substrate binding, and therefore less 

tolerant to mutations. 

The backbone carbonyl of Ile7 is within H-bonding distance of the 4-amino group 

of the bound MTX and its side chain is likely to form hydrophobic interactions with the 

pteridine ring of the inhibitor [22]. Since the H-bonding interaction is not observed in the 

binary complex structure with bound FOL, mutations that disrupt this bond could 

potentially reduce the affinity to MTX while maintaining a native-like binding to the 
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substrate. However, the resolution of the structure of the binary wild-type hDHFR·5-

deazafolate complex indicates that it is possible that the N8 of DHF is protonated, 

contrary to folate, and that it can form an H-bond with the backbone carbonyl of Ile7. If 

this hypothesis is valid, mutation at residue 7 could also significantly affect the DHF 

binding. The only mutation described for hDHFR at this position is I7F. This mutation 

yielded a very unstable enzyme with a 7000-fold increase in Ki
MTX and a 370-fold drop in 

the DHF binding, suggesting that this highly conserved residue plays a role in both 

substrate and inhibitor recognition [57].  The Val115 backbone carbonyl also forms an H-

bond with bound MTX [22], and this interaction was never reported with either FOL [28] 

or 5-deazafolate [18].  Thillet et al. created mutant V115P of murine DHFR to disrupt the 

H-bonding between V115 and MTX. The mutation gave rise to a very unstable enzyme 

with no significant decrease in the MTX binding.[44] 

Arg70 is a highly conserved residue that forms a salt bridge with the α-

carboxylate portion of the glutamate of both DHF and MTX. Mutation R70K generated a 

stable enzyme with an increase of 4 orders of magnitude of the binary KD
MTX (with 

respect to WT Ki
MTX) [46], and a 100-fold decrease in catalytic efficiency, due to a 

combined effect on both kcat and KM
DHF. The authors proposed that the observed effect 

was due to the loss of protonation of Lys70. In fact, its pKa was lowered due to the 

hydrophobic environment in which the amino acid was buried. This result suggests that 

the loss of the salt-bridge with the glutamate moiety of MTX has an effect on both the 

ligand and the inhibitor binding. However, it is interesting to observe that the glutamate 

moiety does not appear to be essential to have inhibition. In fact, the antifolate 

trimetrexate (TMTX, figure 1.7), which does not possess the glutamate tail, also binds to 

hDHFR with a strong affinity (Ki = 13 pM) [35]. 

Finally, highly MTX-resistant hDHFRs were obtained by combining the L22 and 

F31 point mutants, which individually conferred a moderate MTX-resistance [66]. All  

double mutants tested had a higher Ki
MTX  (from 800 to 44000-fold) and only a slightly 

reduced (~5-fold) KM
DHF than the native enzyme [66]. Both double mutants L22F-F31G 

and L22F-F31S showed a synergistic effect on the MTX binding [66]. 
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1.2.1.3 - MTX cytotoxictiy and gene therapy 

The therapeutic utility of MTX is impaired not only by the emergence of 

resistance but also by its indiscriminate cytotoxicity towards normal proliferative tissues, 

such as the gastrointestinal tract and the bone marrow (myelosuppression). Despite its 

toxicity, the safety and cost-effectiveness of MTX guarantees that it will continue to be 

administered in cancer therapy world-wide for the foreseeable future [5]. 

Toxicity can be partially managed clinically by modification of dosage and 

scheduling [5]. However, a more effective and durable approach could be to render 

normal tissues MTX-resistant by introducing a drug-resistant DHFR gene [57, 58]. The 

principle of protection of cells by means of a transgene is also known under the name of 

gene therapy. To overcome MTX-induced myelosuppression, this would involve 

transplantation of bone marrow with haematopoietic stem cell (HSCs; progenitor cells) 

previously transduced with retro-viruses introducing a resistant DHFR variant [67].  

MTX-resistant mammalian DHFRs are potential candidates for gene therapy and 

in fact, they have already been tested for MTX-protection both in murine and human cells 

lines [68-72]. Despite the fact that different problems (e.g. low efficiency of gene 

transfer, low long term expression, engraftment failure of ex-vivo manipulated cells, 

silencing of the transgene) have to be addressed before this approach becomes effective 

in clinical trials, the potential of this application remain undoubted [67]. 

Section 1.2.2 - Other antifolates  

MTX is the principal antifolate in use, but resistance and toxicity are current 

important limitations of a treatment with this drug [5, 41]. Attempts to improve the 

effectiveness and to overcome the side-effects related to the MTX treatment have 

promoted a search for alternative antifolates for the last 60 years, highlighting the 

importance of this area of investigation [73-76]. This research has led to the synthesis of 

inhibitors of different folate-requiring enzymes, inhibitors with multiple intracellular 

targets and inhibitors with different chemical and pharmacological features [74]. 

Pemetrexed (LY231514; figure 1.7), for example, inhibits four different folate-depending 

enzymes [77, 78] while trimetrexate (figure 1.7), being lipophilic and lacking the 
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glutamate tail portion, can circumvent the resistance associated with mutations of FPGS 

and with mutations of the folate transporters RFC and FBP [5].  

This section will focus on antifolates, different from MTX, which will be 

discussed in this thesis. The structures of all the molecules discussed are illustrated in 

figure 1.7. 

Trimethoprim (TMP; figure 1.7), a 2,4-diamino-pyrimidine ring connected with a 

trimethoxybenzyl moiety, is clinically used as an antibacterial drug [11]. TMP behaves as 

a classical competitive inhibitor of both bacterial and human DHFR [13]. However, it 

binds very tightly to DHFR from bacterial sources (Ki for ecDHFR = 80 pM) [13], but 

weakly to hDHFR (KD ternary complex = 0.5 μM; Ki = 0.96 ± 0.3 μM) [13], which is the 

basis for its bacterial selectivity. Therefore, inhibition of hHDFR by TMP is 280000-fold 

weaker than the binding of MTX.  

Trimetrexate (TMTX; figure 1.7) is a potent inhibitor of hDHFR (Ki = 13 pM) 

[35]. TMTX has structural and pharmacological properties different from MTX. First, it 

is lipophilic, and thus enters cells via passive or facilitated diffusion, without any need for 

folate transporter such as RFC and FBP. Then, it does not possess a glutamate tail and 

therefore it is not a substrate for FPGS. Unfortunately, this very promising antifolate 

failed phase II clinical trials for the treatment of different types of cancers, because it did 

not confer any real advantage with respect to the established treatments [79, 80]. From a 

structural point of view, TMTX remains interesting because, despite missing the 

glutamate tail, it binds very tightly to hDHFR.  

Pemetrexed (PMTX or LY231514; figure 1.7) [77] is a multi-target antifolate 

which was approved by the FDA in 2004 and it is used for the treatment of lung cancer 

and of some other types of solid cancers (bladder, breast, gastric and pancreatic cancer) 

[78]. Its main target is TS (Ki = 1.3 nM), but it also inhibits DHFR (Ki = 7.2 nM), 

GARFT (Ki = 65 nM) and AICARFT (Ki = 265 nM) [81]. Targeting multiple enzymes 

involved in purine and thymidylate biosynthesis offers a lower risk of resistance 

development and a more limited toxicity profile than other approaches [5]. PMTX 

contains a 6-5 ring-fused pyrrolo[2,3-d]pyrimidine system. Using molecular modeling, 

Gangjee et al. [73] suggested that PMTX binds to DHFR in the same orientation of FOL. 
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This hypothesis is supported by the observation that 5-deazafolate (figure 1.7)[18], 

which is a 4-oxo pteridine system structurally similar to both FOL and PMTX, binds in 

the same orientation as FOL. The only difference with folate is the replacement of the 

pteridine ring’s N5 with a carbon, which leads to a decrease of the polarity of this 

portion.  

 

Section 1.3 – Drug discovery and structure-activity 

relationship analysis  

To effectively prevent substrate binding and turnover efficient enzyme inhibitors 

must bind their target with both high affinity and high selectivity. Drug design consists in 

the tailored-synthesis of potential inhibitors based on detailed structural and functional 

information on the biological target of interest. Dorzolamide, an inhibitor of carbonic 

anhydrase, was approved in 1995 and it is one of the first examples of a structure-based 

drug design leading to an approved drug [82]. Drug discovery by high-throughput 

compound synthesis and screening is very expensive [76, 83, 84]. Therefore, to reduce 

costs and to increase efficiency, complementary approaches such structure-based 

computer assisted techniques (homology modeling [85], docking [86] and molecular 

dynamics simulations [87]) have been developed. Homology modeling, for example, 

allows building model structures for proteins by extrapolation of structural data from 

related proteins with homologous or similar sequences. Docking procedures allow fast 

screening of large compound libraries by evaluating the binding affinity to the target in 

silico. Molecular dynamics simulations, instead, can be used to model conformational 

changes upon binding. All these methods rely on structure-function information, and this 

is why structure-activity relationship (SAR) study is crucial for efficient drug discovery. 

Despite the large amount of information about drug-target interactions and the 

continuously evolving informatics tools to support this approach, the design of new 

enzyme inhibitors with a high level of confidence is still a challenge. This is mainly due 

to the complexity of active sites, where small details can make a difference. However, the 

more we know about the ligand-binding cavity of a target enzyme, the further we can 
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improve structure-based approaches that currently drive the drug discovery process to 

identify new specific binders [88-91].  

  

Section 1.4 – Presentation of the research project 

Our principal goal is to better understand the molecular determinants of enzyme-

ligand binding. In fact, notwithstanding the continuous increase in the number of ligand-

bound enzyme structures being resolved, crystal structures provide limited information 

relative to the binding process. Even when high-resolution structures of a drug-bound 

target are available, it is challenging to predict effects of mutations on the binding, just as 

it is difficult to predict how the modification of the drug will alter binding. We generally 

possess limited information relative to the contribution of specific contacts to the overall 

binding efficiency and selectivity. Faced with an enormous number of potential drug and 

target modifications, we must continue to develop approaches to efficiently screen 

through potential interactions in order to focus on the most interesting ones.  

Mutants with altered drug-binding properties represent a rich source of 

information about binding. We specifically focused on drug-resistance in the enzyme 

hDHFR, as a system to investigate the relation between structural variations of the target 

protein (using mutants) and/or of the drug (using different compounds), and their effect 

on binding. We propose to study the role of individual and combinatorial mutations of 

hDHFR on substrate binding and on antifolate sensitivity using directed evolution 

combined with structural and kinetic analysis.  

Drug-resistant mutants of hDHFR from different species were previously 

characterized in order to elucidate the catalytic mechanism [19] and the role of some 

active site residues in structure maintenance [46] and in binding [65, 66, 92] (see also 

section 1.3.1.2). However, data available is limited and does not explore exhaustively the 

binding-site to systematically study the hDHFR structure-function relationship. We will 

consider different mutations at each targeted position (by saturation mutagenesis) and 

simultaneous mutations at different sites (by combinatorial mutagenesis). Binding 

properties are related to the specific environment and are not necessarily the sum of 
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single properties. In fact, upon simultaneous mutation, residues may behave either in an 

independent or in an interdependent fashion toward the protein function [93]. Moreover, 

the combination of mutations can yield additive or partially additive effects, 

multiplicative effects (synergy) or antagonist effects on the enzyme activity [66, 94, 95]. 

The elucidation of these combinatorial effects and the deconvolution of the single 

contributions to the total effect will give us information about the binding. The questions 

we want to answer are the following. How do mutations, individual and combinatorial, 

affect the energy of binding? Which residues are important for binding of all compounds 

and which ones are responsible for ligand discrimination? How important is a  

hydrophobic contact for the overall binding? How significant are distal effect on binding? 

Human DHFR has been chosen due to its clinical relevance and to the fact that it 

is an ideal model system to verify the advantages of the proposed strategy. The findings 

of this study will increase our understanding of enzyme-inhibitor interactions and will 

provide a useful tool for the discovery of new and more efficient folate-analog inhibitors 

of hDHFR. Moreover, hDHFRs with an elevated resistance phenotype are interesting 

candidates for protection of healthy cells from the toxic side effects of MTX treatment 

using gene therapy (see section 1.2.1.3). To this aim, PhD student Jordan Volpato has 

devised a strategy for evaluating the protection efficiency of MTX-resistant hDHFR 

mutants in mammalian cells; this topic will not be covered in this M.Sc. thesis.  

 

The first specific goal described in this M.Sc. thesis was to develop an efficient 

screening strategy to identify active and antifolate-resistant mutants of hDHFR from 

large libraries of mutants. Identification of the variants of interest from libraries of 

mutants represents the crucial step for success of the directed evolution approach and it is 

an obligatory step to identify relevant candidates for structure-activity relationship 

analysis.  

The second specific goal was to participate in the development of a combined 

structural and kinetic strategy to analyse in detail the effect of mutations on binding. 
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Section 1.5 – Presentation of the experimental approach 

1.5.1 - Directed evolution 

Directed evolution is an efficient way to engineer the properties of proteins and to 

identify novel enzymes with tailor-made properties [96]. The approach mimics the 

principles of Darwinian evolution, but on a ‘laboratory’ scale-time, and it consists of two 

main steps: generation of genetic diversity (library creation) and selection/screening for 

the desired property (specificity, activity, catalytic efficiency, sensitivity to a drug etc.). 

 Creation of up to 1010 protein variants at the DNA level is presently an easy task, 

due to the advances in the recombinant protein engineering and the power of PCR 

techniques. Genetic diversity can be introduced by random mutagenesis (error prone-

PCR) [97], or by recombination (DNA shuffling) [98]. These techniques do not require 

an in-depth understanding of structure/function relationships. However, in the cases 

where functional or structural information exists, it can be advantageous to apply a semi-

random approach like saturation mutagenesis at specific residues [99, 100]. In this 

approach, directed evolution and rational design are combined in order to concentrate  

mutations where they offer a higher probability to be effective [100]. Variation and 

combination of these mutagenesis techniques have been extensively described in 

literature [100-103]. 

Once DNA libraries encoding the enzyme variants have been created, the hard 

task is to identify the variant(s) presenting the desired new property among all the 

possibilities available. This means that the likelihood of obtaining a variant of interest is 

limited by the effectiveness and the power of the selection/screening method available to 

detect it. When the enzymatic property of interest is essential for cell survival, it is 

possible to establish a selection strategy based on this feature [104]. Selection for survival 

is an ideal choice when it is applicable, its limit of detection being only the 

transformation efficiency for the type of cell utilized in the study (∼108/μg DNA, 

maximum ∼1010 for certain E. coli strains). Alternatively, screening methods could be 

applied. While different high-throughput screening (HTS) methods which can detect up 

to 1015 variants are available to detect binding interactions (two-hybrid systems [105], 



 

 

34

phage-display [106], ribosome display [107], mRNA display [108], flow cytometry 

[109]), HTS for enzymatic activity is often harder to perform. The most commonly used 

screening methods are based on the assay of isolated bacterial cells on agar or in 

microtiter plates for the detection of coloured or fluorescent molecules, which are 

produced in a chemical reaction by means of the activity of interest, the major limit being 

the availability of robotic platforms to maximize screening capacity. 

1.5.1.1 – Mutagenesis of hDHFR 

First, active-site residues to be mutated were identified on the basis of 

crystallographic and/or functional data available for hDHFR. Since we are interested in 

binding at the folate–binding site, target amino acids were all chosen within or close to 

that area, were they were more likely to be effective [110]. Target residues were 

identified before my arrival in the laboratory by PhD student Jordan Volpato and they 

cover all the folate-binding site (figure 1.8). Among these, five residues have been the 

main target of the investigation presented in this thesis: Ile7, Gly15, Trp24, Arg70 and 

Val115 (figure 1.8, in yellow). Each of the 5 targeted residues was randomized by 

saturation mutagenesis using NNS codon degeneracy (N: 

adenine/cytosine/guanine/thymine; S: cytosine/guanine). This means that at each 

position, all 20 amino acids were allowed. 

1.5.1.2 - Screening for the properties of interest: activity and antifolate resistance 

Previously, PhD student Jordan Volpato developed an efficient bacterial 

complementation approach to select MTX-resistant clones (described in chapter 2). 

Bacterial selection has the advantage of being very high-throughput, but unfortunately 

bacterial survival under selective conditions is not a direct read-out of catalytic activity 

and selected variants are not necessarily amenable to detailed characterization (where 

‘amenable to’ refers to expression level, stability, solubility and/or activity) [111].  Since 

the subsequent steps of characterization are laborious and require the use of expensive 

compounds (NADPH and MTX), an improvement of the screening step was required. 

Therefore, a further step of screening using a plate reader-based activity assay in presence 
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of high concentrations of inhibitor was developed to identify only the best hits from 

bacterial selection, as it is described in chapter 3.  

Moreover, in order to investigate discrimination in ligand binding, the scope of 

the project was extended by developing a screening strategy for further phenotypes of 

interest: activity (efficient binding of DHF upon mutation) and resistance/sensitivity to 

other antifolates (TMP and PMTX).  

A protocol to quantify activity (kcat) and MTX resistance (IC50
MTX) directly from 

cell lysates in microtiter plates was also developed.  

1.5.2 – Structure-function relationship analysis 

1.5.2.1 – Kinetic characterization of the mutants: determination of kinetic inhibition 

constants 

Positive hits from second-tier screening were over-expressed and purified in order 

to determine more precisely the kinetic and inhibition parameters in vitro. The kinetic 

parameters KM and kcat describe productive binding of the mutants for the substrate DHF 

and the reaction rate of reduction of DHF to THF, respectively. The inhibition constant Ki 

describes productive binding of a competitive inhibitor to the mutants’ active-sites. The 

value obtained for these parameters were correlated to the different mutations for 

structure-activity relationship analysis. 

We have also begun SAR with MTX by investigating the binding of its 

constituent fragments: DAP (2,4-diamino-6-(hydroxymethyl)pteridine), DAMPA (4-[N-

(2,4-diamino-6-pteridinylmethyl)-N-methylamino]benzoic acid) and p-ABA-Glu (para-

aminobenzoic acid-L-glutamate) to relevant MTX-resistant variants identified in our 

laboratory (figure 1.7; chapter 4). 

1.5.2.2 – Structural characterization of the mutants by computer-based molecular 

modeling 

As it is impossible to envisage resolving the structure of all the resistant variants 

identified, computer-based molecular modeling approaches were considered as tools for 

structural characterization.  
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First, energy minimization was used to compare the predicted structure of one 

novel identified MTX-resistant mutant to the crystal structure of the native enzyme 

complexed with MTX (chapter 2).  

Then, docking was evaluated as a tool to mimic DHF and inhibitor binding in the 

active-site pocket of the native enzyme. Advantages and limits of this technique for SAR 

analysis will be discussed in chapter 5.  
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Table 1.1. Active-site interactions between hDHFR and folate or methotrexate 

 

 Folate (1DHF.PDB)[28] Methotrexate (1U72.PDB)[22] 
Dihydrofolate or 

methotrexate 
component 

hDHFR 
residue Type of interaction hDHFR 

residue Type of interaction 

I7 

Backbone carbonyl: 
hypothesized H-bond with N8 
DHF (not observed with FOL 
in 1DHF.PDB structure). 
Side-chain: hydrophobic 

I7 

 V115 

Backbone carbonyl: H-bond 
with 4-amino group. 
Side-chain: hydrophobic 

 T121 Side chain: H-bond with  
4-amino group 

 

 

L22 
F31 F31 
F34 

Van der Waals/hydrophobic 
F34 

Van der Waals/hydrophobic 

W24 W24 
E30 E30 

Pteridine ring 

T136 

H-bonding network involving 
structural waters, N3, O4 and 
2-amino group T136 

H-bonding network involving 
structural water 216, N1, N8 
and 2-amino group 

F31 F31 
F34 F34 
I60 I60 
P61 P61 
L67 

Van der Waals/hydrophobic 

L67 

Van der Waals/hydrophobic 
N10-methyl-p-ABA 

N64 H-bond to p-ABA carbonyl 
oxygen N64 Side chain: H-bond to p-ABA 

carbonyl oxygen 

R28 
Carbonyl backbone:  

H-bonding network between 
H2O410 and γ-COOH FOL 

(rarely observed) 

H2O198 
H-bonding network between 

carbonyl backbone N64, 
backbone NH, K68, α-COOH 

MTX 

Q35 In proximity to both 
α− and γ−COOH FOL Q35 In proximity to both 

α− and γ−COOH MTX 

L-glutamate 

R70 Salt-bridge with α−COOH 
FOL R70 Salt-bridge with α−COOH 

MTX 
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Table 1.2. Mutations providing MTX-resistance in hDHFR 

 

 

 

a Ternary KD
DHF values. The KM

DHF could not been determined cause of substrate inhibition. Since 
the rate of the chemical reaction is much slower than the rate of subsequent dissociation of THF, 
Nakano et al. used  ternary KD

DHF values as an approximation of KM
DHF [45]. 

b Derived from plots of rate versus DHF concentration by least-square fit to the equation for 
substrate inhibition by Nakano et al.[45]. 
c Calculated from kcat/KM and KM

DHF, using the approximation described in a and b[45]. 
d Ternary KD

DHF values [45]. 
e Ki

MTX calculated from data in figure 5a of Thompson and Freisheim (1991) [46]. 

 

 

 

 

hDHFR variant KM
DHF 

(µM) 
Ratio   

KM mut/ 
KM WT 

kcat 

(s-1
) 

kcat/KM 
(μM-1s-1)  

Ki
MTX 

 (nM) 
Ratio   

Ki mut/ 
Ki WT 

Native  ≤0.075 1 10 92 0.034 1 
Position 7 I7F [57]  20.5  270 5 0.25 24.6 7200 
Position 15 G15W [59]  6.2  80 3.2 0.5 2.1 600 

L22F [43] 3.9  50 23.8 6.1 0.5 150 
L22R [43] 1.6  20 0.04

5 
0.03 4.6 1300 

L22W [43] 0.4  5 4.2 10 4.3 1300 

Position 22 
 

L22Y [43] 0.5  5 6.1 12 11 3200 
F31A [65]  0.5  5 13.9 30 0.27 80 
F31G [65]  0.4  5 11.3 26 0.35 100 
F31S [65] 0.4  5 7.0 16 0.24 70 

Position 31 

F31R [57]  0.6  10 0.9 1.5 7.2 2100 
F34A [45] 36 a  480 8.4 c 0.2 b 34d 10000 
F34I [45] 24 a   320 13.7 c 0.6 b 13d 3800 
F34S [45] 350 a  4600 6.0 c 0.02 b 210d 60000 
F34T [45] 300a  4000 3.3 c 0.1 b 9.6d 2800 

Position 34 
 

F34V [45] 63a  800 30.7 c 0.5 b 10 3000 
Position 70 R70K [46]  0.5  5 1.75 3.7 0.46e 13 

L22F/F31G [66]   0.4  5 1.3 3.3 29 850 
L22F/F31S [66] 0.4  5 1.6 3.6 26 7600 
L22Y/F31G [66] 0.3  5 0.5 1.4 150 44000 

Double 
mutants 
 

L22Y/F31S [66] 0.3  5 1.3 3.8 42 12000 
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Figure 1.1. Folate–dependent metabolic reactions. The abbreviation are: DHFR, 

dihydrofolate reductase; TS, thymidylate synthase; GARFT, glycinamide ribonucleotide 

formyl transferase; AICARFT, aminoimidazole carboxamide formyl transferase; DHF, 

dihydrofolate; THF, tetrahydrofolate; 5-CH3-THF, 5-methyl tetrahydrofolate; 5,10-CH2-

THF, 5,10-methylene tetrahydrofolate; 5,10-CH-THF, 5,10-methenyl tetrahydrofolate; 5-

CHO-THF and 10-CHO-THF, 5-formyl- and 10 formyl tetrahydrofolate, respectively. 

Image was adapted from Figure 1 in Zhao et al. 2003 [41]. 

 



 

 

39

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1a: Synthesis of thymidylate (dTMP) from deoxyuridine monophosphate 

(dUMP). The enzymes dihydrofolate reductase (DHFR) and Serine hydroxymethyl 

transferase are necessary for the recycling of the 5,5-CH2-THF. In dTMP, all the methylic 

hydrogens (in red and blue) derive from 5,5-CH2-THF. Figure adapted from reference 

[2]. 
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Figure 1.1b: Role of the folate cofactor 10-formyl tetrahydrofolate (10-CHO-THF) 

in the synthesis of the inosine nucleus. A) Conversion of tetrahydrofolate (THF) to 10-

formyl tetrahydrofolate (10-CHO-THF). B) Structure of inosine monophosphate (IMP), 

first intermediate to posses a complete purine nucleus. The carbons added by GARFT 

(glycinamide ribonucleotide formyl transferase) and AICARFT (aminoimidazole 

carboxamide formyl transferase), derived from formate and provided by 10-CHO-THF, 

are indicated in blue. Figure adapted from reference [2]. 

b 
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Figure 1.2. Reaction catalyzed by dihydrofolate reductase (DHFR). A) Reduction 

catalyzed by vertebrate DHFRs. B) Schematic representation of the hydride transfer in 

the transition state: optimal carbon-carbon bond distance and -C⋅⋅⋅H⋅⋅⋅C- bond angle are 

indicated. Image adapted from Benkovic et al. 1988 [15].  
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Figure 1.3. Sequence and structural comparison of human, murine and E. coli 

dihydrofolate reductases (DHFRs). A) Sequence comparison. Sequence differences 

from human DHFR are coloured in cyan for mouse DHFR and in red for E. coli DHFR. 

B) Comparison of the backbone of human (1U72.PDB; green) and E. coli (1RX3.PDB; 

magenta) and of human (1U72.PDB; green) and mouse (1U70.PDB; orange). Figure 

adapted from Cody et al. 2005 [22]. 
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Figure 1.4. Secondary structure of hDHFR. Eight-stranded twisted β-sheet (βA, 

residues 4-10; βB, 47-53; βC, 71-76; βD, 88-90; βE, 108-116; βF, 130-139; βG, which is 

interrupted by a tight turn is composed by βG1, 157-159 and βG2, 168-172; βH, 175-

185). Five α−helices (αB, 27-40; αC, 53-59; αΕ, 92−102 and αΕ’, 102-109; αF, 117-

127), a polyproline-like helix (Pro(II), residues 21-26) and eight tight turns (residues 11-

14, 18-21, 43-46, 61-64, 67-70, 83-86, 162-165, 172-175) connect the β-sheets among 

them. 
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Figure 1.5. Ligand binding at the active site of WT hDHFR. A) Bound folate (FOL; in 

green) from 1DHF.PDB. B) Bound methotrexate (MTX; in magenta) from 1U72.PDB. 

The active site is shown. Active-site residues that interact with the ligands are shown in 

sticks representation and coloured in orange, yellow or blue to indicate interaction or 

proximity to the ligand’s pteridine, p-ABA or glutamate moiety, respectively. The 4-

carbonyl and the 4-amino group of FOL (in A) and of MTX (in B) are circled to highlight 

the pteridine ring flip. 
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Figure 1.6. Binding of folate and methotrexate in the active site. Superimposition of 

1DHF.PDB (binary complex WT hDHFR⋅folate) and 1U72.PDB (ternary complex WT 

hDHFR⋅NADPH⋅MTX). FOL (in green; from 1DHF.PDB) and MTX (in magenta; from 

1U72.PDB) are visualized in the active site (from 1U72.PDB). The FOL 4-carbonyl 

group and the MTX amino group are indicated to show the pteridine ring flip between the 

two bound molecules.  
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Figure 1.7. Structural representation of the DHFR substrate dihydrofolate (DHF) 

and different antifolates relevant to this study. Atom numbering is indicated for both 

DHF and MTX. The substrate and the inhibitors PMTX and 5-deazafolate carry a 4-oxo 

functionality, while all the other inhibitor illustrated carry an amino group at position 4. 

MTX and its fragments are represented in the box. DAP (2,4-diamino-6-

(hydroxymethyl)pteridine), DAMPA (4-[N-(2,4-diamino-6-pteridinylmethyl)-N-

methylamino] benzoic acid) and p-ABA-Glu (para-aminobenzoic acid-L-glutamate).  
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Figure 1.8. Active-site residues of hDHFR targeted by mutagenesis. Bound folate 

(FOL; in green) from 1DHF.PDB and bound methotrexate (MTX; in magenta) from 

1U72.PDB are visualized in the active site (from 1U72.PDB). Active-site residues chosen 

as targets of this directed evolution study are shown in sticks and are coloured in yellow 

(principal targets discussed in this thesis) or orange. Residues Phe31, Phe34 and Gln35 

(in orange) are also discussed in this thesis, but they were mainly studied by Ph.D. 

student Jordan Volpato.  
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Chapter 2 (Article 1) – Increasing methotrexate 

resistance by combination of active-site mutations in 

human dihydrofolate reductase 

 

Section 2.0 – Preface 

Highly MTX-resistant mutants of hDHFR are potential candidates for protection 

of healthy haematopoietic stem cells from the cytotoxicity of MTX by means of gene 

therapy [67]. Mutations of active site residues of hDHFR can reduce affinity of the 

inhibitor, thereby conferring MTX-resistance, while maintaining sufficient substrate 

binding to allow catalysis [112]. Synergistic effects on MTX-resistance have been 

previously described by combining two active-site mutations that individually conferred 

moderate resistance to the drug [66]. Article 1 describes the use of a directed evolution 

approach in order to obtain highly MTX-resistant mutants for protection of a model 

mammalian cell system from the toxicity of this drug.  

Simultaneous mutagenesis to a variety of amino acids was performed at three 

specific active-site residues (Phe31, Phe34 and Gln35). Then, the development and 

application of an efficient selection strategy based on bacterial complementation allowed 

the identification of 10 highly MTX-resistant variants of hDHFR. While the residues 

targeted were all individually known to confer resistance to MTX upon mutation, 

characterization of the MTX inhibitory constant for the mutants identified showed that 

combinations of mutations can effectively lead to higher resistance, the most resistant 

mutant identified presenting three simultaneous mutations. This demonstrated the validity 

of the proposed approach for identification of mutants of interest. In silico energy 

minimization of the most MTX-resistant triple mutant and of the native enzyme was 

performed in order to postulate a structural explanation for the effects of mutation on 

inhibitor binding. Finally, mutants with the higher Ki
MTX were tested for their ability to 
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protect DHFR-knock-out Chinese hamster ovary cells from MTX-toxicity and showed 

100 to 400-fold higher degree of protection than the native enzyme. 

 My contribution to the article was limited to molecular modeling. PhD student 

Jordan Volpato was responsible of the totality of the experimental work, and together 

with Prof. Joelle Pelletier provided the design of the project and the edition of the article. 

Although my contribution to this paper was minor, molecular modeling associated to 

kinetic analysis offers a powerful tool for structure-activity relationship (SAR) studies, 

which ultimately is one of the major goals of the project. While crystal structure 

resolution is certainly the best approach to investigate structural consequences of 

mutations, it has proven challenging in the context of this project, such that molecular 

modeling has been deemed an essential alternative. Therefore, my contribution added 

value to the article by allowing to propose a reasonable structural explanation for the 

decreased binding, in absence of experimental structural evidence. This subject will be 

further discussed in chapter 5.  
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ABSTRACT 

Methotrexate-resistant forms of human dihydrofolate reductase have the potential 

to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis 

during cancer therapy. It has been shown that synergistic MTX-resistance can be 

obtained by combining two active-site mutations that independently confer weak MTX-

resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase 

(hDHFR) variants for this application, we used a semi-rational approach to obtain 

combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We 

created a combinatorial mutant library encoding various amino acids at residues Phe31, 

Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on media 

containing high concentrations of MTX. We characterized ten novel MTX-resistant 

mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and 

inhibition parameters of the purified mutants revealed that higher MTX-resistance 

roughly correlated with a greater number of mutations, the most highly-resistant mutants 

containing three active site mutations (Ki
MTX = 59 to 180 nM; wild-type Ki

MTX < 0.03 

nM). An inverse correlation was observed between resistance and catalytic efficiency, 

which decreased mostly as a result of increased KM toward the substrate dihydrofolate. 

We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX 

toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The 

transfected variants conferred survival at MTX concentrations between 100-fold and 

>4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering 

protection beyond the maximal concentration of MTX that could be included in the 

medium. These highly resistant variants of hDHFR offer potential for myeloprotection 

during administration of MTX in cancer treatment.  

 

Keywords 

Dihydrofolate reductase; mutagenesis; drug resistance; enzyme kinetics; in vivo selection. 



 

 

51

INTRODUCTION 

Human DHFR (EC 1.5.1.3) is a ubiquitous cytosolic enzyme that catalyzes the 

reduction of 5,6-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) in a nicotinamide 

adenine dinucleotide phosphate (reduced form) (NADPH)-dependent reaction. THF is an 

essential cofactor in several metabolic pathways, including purine and thymidylate 

biosynthesis. As a result of its importance in cellular proliferation, hDHFR has long been 

a key pharmacological target for the treatment of various types of cancer.1 Methotrexate 

is a folate analogue that acts as a slow, tight binding competitive inhibitor of hDHFR, 

thereby inhibiting cellular THF synthesis and cellular proliferation. MTX is widely used 

for the treatment of acute lymphoblastic leukemia, 2 osteosarcoma, 3 breast cancer,4 and 

head and neck cancer. 5  

Efficacy of MTX in cancer treatment is largely attributed to the high affinity of 

the drug for hDHFR (Ki = 3.4 pM).6 Crystal structures of the wild-type (WT) hDHFR 

complexed with MTX have shown that, despite its high structural similarity to folate, 

MTX and folate bind at the active site in a different orientation.7 Although the ρ-

aminobenzoic acid and glutamate (ρ-ABA-Glu) portions of both ligands bind at the active 

site in a similar orientation, the pteroyl moiety of MTX is flipped 180° around the C6-C9 

bond (figure 2.1(a)), such that its 4-amino group forms specific hydrogen bonds with the 

backbone carbonyls of residues Ile7 and Val115 (figure 2.1(b)), in contrast to bound 

folate, which does not form hydrogen bonds with these residues. The pteroyl moiety of 

MTX is also involved in hydrogen bonding with residue Trp24 via a conserved water 

molecule and with residue Glu30,8 while the side chain of residues Leu22 and Phe34 are 

within van der Waals distance of this portion of the inhibitor (figure 2.1(b)).9, 10 These 

interactions are also formed with the pteroyl moiety of folate, albeit with the opposite 

side of the pterin ring. The ρ-ABA moiety of MTX and DHF mainly interact via van der 

Waals interactions with residues Phe31 and Phe34 of α-helix 1 (residues 27-40), which 

also contains Gln35 that is proximal to the γ-glutamate moiety of the bound ligands. The 

glutamate moiety also forms a salt bridge with the guanidinium side chain of Arg70.  

Previous studies of hDHFR and murine DHFR have shown that certain mutations 

at residues Leu22, Phe31, Phe34, Gln35 and Arg70 (figure 2.1) can yield catalytically-
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active, MTX-resistant mutants.11-17 Identification of MTX-resistant hDHFR mutants has 

been performed either ex vivo in cultured cells exposed to MTX18-20 or by performing 

site-directed mutagenesis at the active site of hDHFR by rational design.9, 11-15, 21 These 

studies have mostly yielded point mutants that maintain good catalytic efficiency while 

displaying moderate MTX resistance (e.g. F31S, Ki = 0.240 nM; L22R : Ki = 4.6 nM).14, 

15 However, some point mutations confer high MTX resistance (e.g. F34S : ternary KD
MTX 

= 210 nM), albeit with considerably reduced catalytic efficiency.10 These studies led to a 

better understanding of ligand binding at the enzyme active site and contributed to 

structure-based design of new antifolate inhibitors.22 

Identifying more highly MTX-resistant hDHFR mutants offers important 

applications in the medical field. Because MTX-resistant hDHFRs have not been 

observed in clinical studies of acquired MTX-resistance in cancer patients,23 MTX-

resistant hDHFRs have the potential to protect healthy haematopoietic stem cells from 

MTX toxicity during chemotherapy,24 thus protecting patients from immunosuppression. 

Gene therapy strategies have been used to transfer MTX-resistant hDHFRs into mouse 

and human bone marrow progenitor cells, efficiently ensuring stem cell survival upon 

exposure to MTX.25, 26 Resistant cells transplanted in the bone marrow of mice ensured 

myeloprotection during treatment with MTX.27, 28 For this application, ideal candidate 

hDHFR mutants should have a very high Ki for MTX (in the high nanomolar range), 

while maintaining the catalytic properties, including DHF binding , required to ensure 

cell survival.  

Highly MTX-resistant hDHFR genes with good catalytic efficiencies have been 

obtained by the combination of the moderately MTX-resistant point mutants at active-site 

residues 22 and 31,29 which generated synergistically resistant hDHFRs (e.g. L22Y-

F31G, Ki = 150 nM versus L22Y, Ki = 11 nM and F31G, Ki = 0.35 nM) that conferred 

high MTX resistance in human and mouse stem cell lines. While those results are 

promising, variants that are yet more highly resistant and/or more active would hold 

greater potential for clinical application, by increasing the difference in cellular survival 

between cells harboring MTX-resistant hDHFR and those with native hDHFR (target of 

MTX).    
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On the basis of these considerations, we have devised a strategy based on directed 

evolution for the identification of novel hDHFR combinatorial mutants that are highly 

active and resistant to MTX. Directed evolution of ligand binding in an enzyme generally 

requires structure-based knowledge to pinpoint residues in the vicinity of the active site. 

These residues are mutated in combination and the resulting combinatorial mutant 

libraries are screened for a desired property. Application of such methods has provided 

new structural insight into ligand binding,30,31 engineered new substrate specificity,32 and 

resulted in the development of efficient biomarkers.33,34 Using a semi-rational approach, 

we created a combinatorial library encoding mutations at residues Phe31, Phe34 and 

Gln35 of the hDHFR gene. These residues belong to α-helix 1 and are individually 

known to confer MTX resistance upon mutation.10,14,17 We performed in vivo library 

selection in a bacterial system propagated on media containing a high concentration of 

MTX. Characterization of selected variants yielded novel MTX-resistant hDHFR 

mutants, including a variety of combinatorial mutants that displayed an important 

decrease in MTX binding, comparable to the weakest-binding hDHFR mutant reported to 

date, albeit with a greater residual specific activity. As a result, we obtained very efficient 

protection of a relevant mammalian cell model, dhfr - CHO DUKX B11 cells.  

 

RESULTS 

Creation of the hDHFR mutant library  

 A combinatorial library encoding 567 different mutants was created by mutating 

amino acids Phe31, Phe34 and Gln35 to a selection of amino acids, in order to identify 

novel MTX-resistant hDHFR mutants (table 2.1). The number of possibilities encoded 

was restricted in view of future recombination with other mutant hDHFR libraries. The 

three positions chosen for mutation belong to α-helix 1 (residues 27-40), which contains 

the catalytic residue Glu30, a highly-conserved residue that protonates N5 of DHF prior 

to hydride transfer,8 as well as residues Phe31, Phe34, Gln35, that have been shown to be 

important for substrate and/or inhibitor binding.10,14,17 The selection of amino acids to be 

encoded at positions 31, 34 and 35 was based either on known mutations that individually 
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confer resistance to MTX or on the basis of in silico observations of hDHFR with bound 

MTX. We encoded the desired mutations at the three positions using a single degenerate 

oligonucleotide primer. As a result of codon degeneracy, other amino acids were encoded 

in addition to the amino acid variety of interest (table 2.1). Site-directed mutagenesis 

studies at residues 31 and 34 have shown that MTX-resistant mutants generally contain 

small polar or non-polar amino acids at these positions. Consequently, these types of 

residues were encoded in addition to the phenylalanine present at these positions in WT 

hDHFR. As noted in previous reports,7,35-37 visualization of bound MTX or folate in the 

native enzyme (figure 2.1) suggests that these substitutions can reduce the contact 

surface with bound ligand, therefore reducing affinity for MTX and/or DHF. For residue 

35, earlier studies of the murine DHFR gene have shown that the mutation Q35P can 

confer moderate resistance to MTX.17 The location of the Q35P mutation in the middle of 

α-helix 1 suggests a change in α-helix geometry. Consequently, we mutated Gln 35 to 

amino acids with low α-helical propensity,38 without encoding proline due to low stability 

of the Q35P point mutant.17  

 

Selection and identification of MTX-resistant mutants  

 The hDHFR mutant library was transformed in Escherichia coli SK037, a MTX-

sensitive strain. This strain is a knock-out for tolC, which encodes a protein essential to 

the function of a multi-drug-resistance (MDR) efflux pump.39 The quality of the library 

was assessed by sequencing 70 clones that grew on non-selective media (LA-100). 

Nucleotide representation for each of the degenerate codons used at residues 31, 34 and 

35 followed the expected statistical distribution, and no non-specific mutation was 

observed. The library was then selected on M9 minimal medium containing 1 mM MTX 

(ATM-1000). As negative controls for MTX-resistance, E. coli SK037 transformed with 

pQE32 or WT hDHFR-pQE32 were also plated on the selective medium. The survival 

rate of the library was 0.2%, whereas no bacterial growth was observed for the negative 

controls. E. coli SK037 transformed with hDHFR L22Y-pQE32, which encodes a MTX-

resistant point mutant of hDHFR, were plated on the selective ATM-1000 medium as a 

positive control. This yielded a 100% survival rate relative to non-selective medium, 
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demonstrating that the selection stringency was appropriate for identification of MTX-

resistant hDHFR mutants. Seventy colonies were picked following selection to identify 

the mutations at positions 31, 34 and 35. As shown in figure 2.2, ten different mutants 

were identified post-selection. The mutants are designated by the one-letter code of the 

amino acid occurring at positions 31, 34 and 35. The selection yielded 1 point mutant, 

five double mutants and four triple mutants. Mutant PFE was the most frequently selected 

combination (30%), followed by SFE (27%), RFE (20%) and PFH (11%). These variants, 

which are all double mutants, represent 88% of the selected clones and all contain the 

native Phe residue at codon 34. The last double mutant identified, GFN, also conserves 

the native Phe at position 34, but was identified only once (1%). The most frequently 

observed triple mutant is AVH, identified 5 times (7%), followed by RTR (1%), RTS 

(1%) and RAN (1%). Finally, a point mutant, PFQ (F31P) was identified once (1%). This 

point mutant had not yet been characterized in MTX-resistance studies. Retransformation 

and plating in the presence (ATM-1000) or absence (LA-100) of MTX gave rise to a 

similar number of colonies for all selected variants, confirming that the observed 

resistance is solely due to the MTX-resistant hDHFRs. 

Binding and kinetic characterization of MTX-resistant hDHFR mutants  

 For determination of kinetic and binding parameters, the retransformed MTX-

resistant hDHFR variants were purified in one step to 90-95% purity, with yields ranging 

between 1-30 mg/L of culture (data not shown). Solubility and relative expression level 

of all variants upon over-expression was verified by loading volume-equivalent amounts 

of total cell extracts, cell pellet and supernatant for resolution by SDS-PAGE. All His6-

hDHFR variants were approximately 50% soluble, as reported for the native recombinant 

hDHFR,40 ruling out solubility differences in explaining the observed variations in yield 

of purified variants. In addition, all mutants (soluble + insoluble) were expressed at 

similar levels. The mock-purified supernatant of E. coli SK037 transformed with the 

vector pQE32 served as a negative control in all kinetic and binding experiments.  

Michaelis constants for the substrate DHF (KM
DHF) and reactivity (kcat) were 

determined for the ten selected mutants and for WT His6-hDHFR. KM
DHF of WT His6-

hDHFR was determined to be <75 nM. At this concentration of DHF, the enzyme was 
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already saturated. It was not possible to obtain a more precise value due to the weak 

signal observed at such a low concentration of substrate. Previously reported KM
DHF 

values for recombinant, native (non-His-tagged) WT hDHFR are in the range of 33 to 

120 nM,6,15,20 suggesting that the His6-tag has little effect on DHF affinity. KM
DHF was 

increased at least ninefold to 57-fold for the selected mutants relative to WT His6-hDHFR 

as a result of the mutations introduced at positions 31, 34 and/or 35. This was not 

unexpected, as the residues chosen for mutagenesis are known to be involved in DHF 

binding. As shown in table 2.2, kcat values were reduced by at most a factor of 10, except 

for mutant RAN (20-fold decrease); mutants PFQ, GFN and SFE displayed kcat values 

similar to that of native enzyme. The lowest reactivities were generally displayed by 

mutants containing a F31R substitution, which is consistent with previous reports of this 

point mutant (kcat = 0.93 s-1).
41 As a result of the kcat and KM

DHFvariations, the catalytic 

efficiencies (kcat/KM
DHF) for all selected mutants were reduced, ranging from a 30-fold 

decrease for point mutant PFQ to a 700-fold decrease for triple mutant RAN (table 2.2). 

 The inhibition constants for MTX (Ki
MTX; table 2.2) reveal that all selected 

mutants were resistant to MTX, the most highly resistant being the AVH triple mutant 

(Ki
MTX = 180 nM), with Ki

MTX almost 4 orders of magnitude greater than WT. The mutant 

with the lowest Ki is the point mutant PFQ (Ki
MTX = 1.7 nM), which was inhibited 50-fold 

less efficiently by MTX than the WT enzyme, while the other combinatorial double and 

triple mutants showed Ki increases of at least 2 orders of magnitude (table 2.2, figure 

2.3). Ternary binding constants for MTX were also determined, to verify that the 

observed loss of inhibition correlated with reduced binding. The ternary KD
MTX values 

obtained were similar to the Ki
MTX values for all mutants (table 2.2), indicating a direct 

relation between binding and inhibition in all cases. The greatest difference between Ki 

and KD was for mutant RTR (eightfold). It was not possible to determine the KD values 

precisely for WT His6-hDHFR, PFQ and RAN mutants by this method, the fluorescence 

quenching detection limit being ~2 nM MTX in our system. Binary KD
MTX values were 

also obtained in absence of NADPH for the MTX-resistant mutants (results not shown). 

In all cases, the value for the binary KD
MTX was greater than the ternary KD

MTX (fourfold to 

19-fold difference for tested mutants RTR, RTS, RFE and AVH). This is consistent with 
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bound NADPH promoting tighter binding of MTX to the selected hDHFR variants, as 

demonstrated for the native enzyme.6 

Protection of mammalian cells with mutant hDHFRs  

 We verified the efficacy of eukaryotic cell protection with four of the selected 

mutants (table 2.3). CHO DUKX B11 cells (dhfr-) were transfected with mutant RFE, 

SFE, RTS or AVH. These variants were chosen because they displayed the highest Ki
MTX 

values while maintaining catalytic efficiency comparable to MTX-resistant hDHFRs used 

in similar studies.42-44 WT hDHFR and the MTX-resistant point-mutant L22Y served as 

negative and positive controls, respectively. A mock experiment consisted in transfecting 

pcDNA 3.1 vector (null). Transfection efficiency was evaluated at approximately 50% 

for all constructs. Transfected cells were exposed to various concentrations of MTX for 

48 hrs in α-MEM medium containing no nucleotides, ensuring that cell survival was 

based solely on activity of the transfected hDHFRs. Figure 2.4 presents cell survival 

data; EC50
MTX values are given in table 2.3. All mutants tested conferred MTX-resistance 

to CHO DUKX B11 cells. The point mutant L22Y (EC50
MTX = 12 μM) provided a 220-

fold increase in EC50
MTX relative to the WT hDHFR (EC50

MTX = 0.054 μM). The double 

mutants RFE (EC50
MTX = 31 μM) and SFE (EC50

MTX = 32 μM) provided a 570-fold 

increase, while the triple mutant RTS (EC50
MTX = 56 μM) provided a 1030-fold increase 

relative to WT. The EC50
MTX for the triple mutant AVH (>4000-fold increase) could not 

be determined because dissolution of higher concentrations of MTX in the medium 

perturbed the pH. Mutant AVH allowed survival of 73% of the cell population at 200 µM 

MTX. Enzyme expression under these conditions was confirmed by Western blot 

analysis (data not shown). The null control showed no cell survival, confirming that 

survival was due solely to the presence of MTX-resistant hDHFRs, and that no secondary 

resistance mechanism had been acquired upon exposure to MTX. Cells expressing WT 

hDHFR were sensitive to low concentrations of MTX, ruling out gene amplification.  
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DISCUSSION 

Of 567 possibilities encoded in the hDHFR mutant library, ten MTX-resistant 

mutants were identified following selection on solid media containing 1 mM MTX. The 

chosen selection strategy yielded one novel single mutant and nine novel combinatorial 

MTX-resistant mutants, providing new insight into the role of residues at positions 31, 34 

and 35 in ligand binding and selectivity, while generating novel hDHFR mutants that 

efficiently protect CHO (dhfr-) eukaryotic cell line from MTX-cytotoxicity.  All of the 

resistant mutants displayed reduced catalytic efficiencies compared to WT His6-hDHFR 

(30 to 700-fold decrease), mainly as a result of decreased productive binding of DHF 

(tenfold to 60-fold KM
DHF increase). The reduction in MTX affinity was much greater, 

with Ki
MTX increased 54 to 5800-fold. Thus, we identified a variety of patterns of 

mutations at active-site residues 31, 34 and/or 35 that greatly reduce the binding of MTX 

while maintaining sufficient affinity for DHF to provide the level of catalytic activity 

required for bacterial propagation. The various sequence patterns obtained are indicative 

of significant plasticity and robustness in these active-site residues: a low number of 

mutations were sufficient to induce a new phenotype (high MTX resistance resulting 

from plasticity) while the native function, THF synthesis, endured the effect of the 

mutations to an important degree as a result of robustness.45 

Consistent with previous reports of hDHFR point mutants of Phe31,14 we 

observed the bulky, positively-charged Arg and small residues, whether polar or non-

polar (Gly, Ala and Ser) at position 31 (table 2.4). The variety of amino acids identified 

at position 31 (five of the nine encoded) confirms that this position can tolerate a variety 

of side-chain volumes and functional groups. Arg31 was encoded in four of the resistant 

mutants, consistent with F31R being the most resistant Phe31 point mutant reported 

(Ki
MTX = 7.2 nM).41 In addition, we observed the structurally-constraining proline at 

position 31 (point mutant F31P, or PFQ). Never previously reported, this MTX-resistant 

point mutant exhibits resistance and catalytic efficiency intermediate between the 

previously-reported F31R and F31S point mutants.14,41  

Phe34 was the most strongly conserved native residue, consistent with previous 

studies qualifying the importance of Phe34 in binding either MTX or DHF at the active 
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site.10 Three of the four amino acids encoded were observed in the four triple mutants we 

identified (Ala, Thr or Val). Previously-characterized point mutants were not identified 

by our screening strategy, likely because the in vivo MTX-resistance trait that we selected 

for is complex, requiring low MTX binding combined with sufficiently high specific 

activity as well as good expression and stability. The F34S mutant is an important 

example: despite having the highest ternary KD
MTX reported for any hDHFR mutant (210 

nM), its very poor catalytic efficiency (0.017 µM-1s-1)10 apparently decreases enzyme 

function to a level too low for cellular propagation.  

A diversity of mutations was also observed at position 35 (five out of nine amino 

acids encoded); no resistant point mutants were identified. The Gln35Glu substitution 

occurred in the three most frequently observed selected mutants (figure 2.2), that all 

conserved Phe34. The introduction of a negative charge at this location may introduce 

electrostatic repulsion of the γ-glutamate tail (figure 2.1(b)).While this effect is also 

expected to reduce DHF binding, we note that MTX binding is more importantly reduced 

than productive DHF binding (KM
DHF), by a factor of at least 10 (mutant PFE) to more 

than 70 (mutant RFE). The differing binding and kinetic properties of mutants PFE, RFE 

and SFE highlight the impact of combining mutations at position 31 (Pro, Arg or Ser) 

with the Gln35Glu substitution. A positively charged residue at position 35 also supports 

MTX-resistance, as evidenced by the Gln35Arg (mutant RTR) and the Gln35His 

substitutions (mutants AVH and PFH). The side chain of Gln35 has been proposed to 

hydrogen bond with the guanidinium group of Arg70 in the apoenzyme or when the 

ligand does not contain a p-aminobenzoyl function,7,46,47 while in the presence of ligands 

Arg70 forms a conserved salt bridge with the α-carboxylate of the glutamate moiety.12 

The mutations selected at position 35 may render the active site less propitious to ligand 

binding, by forming a Glu35-Arg70 salt-bridge in the apoenzyme or as a result of 

electrostatic repulsion with Arg70 in the case of an Arg35 or His35 mutation. Structural 

data are required to confirm these hypotheses. 

In addition to the correlation of the conserved Phe34 with Q35E, other 

correlations were observed. Mutants PFQ, PFE and PFH equally conserve Phe34 while 

displaying a Phe31 to Pro substitution. Mutants RTR and RTS, two triple mutants, also 
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displayed correlation at positions 31 and 34. In no case was a strict co-variation observed. 

Considering the restricted subset of amino acids encoded at each of the three positions, it 

is likely that greater sequence diversity at positions 31, 34 and 35 can promote resistance.  

How effective is the accumulation of mutations in providing increased MTX 

resistance? Combining the F31P substitution with mutations at position 35 (mutants PFE 

and PFH) resulted in a six-to seven-fold increase in Ki
MTX  accompanied by a five-to 

seven-fold decrease in catalytic efficiency (table 2.4). Double mutant GFN displayed a 

nearly 40-fold increase in Ki
MTX and a tenfold decrease in catalytic efficiency relative to 

the point mutant F31G, contributed mainly by a sixfold increase in KM
DHF.14 The point 

mutant F31S14 provides only modest MTX-resistance; the addition of mutation Q35E 

(mutant SFE) resulted in a 125-fold increase in Ki
MTX. In counterpart, the catalytic 

efficiency was reduced sixfold relative to F31S, due solely to decreased DHF affinity. 

The same Q35E mutation had a smaller effect when combined with mutation F31R 

(mutant RFE; table 2.4). Comparison of these double mutants highlights the complexity 

of cumulating active-site mutations: the effect of mutation Q35E differs according to its 

environment (i.e. the amino acid at position 31).  

The selected triple mutants provided further evidence of the impact of multiple 

mutations on resistance: the most highly MTX-resistant hDHFR variants were all triple 

mutants (table 2.2; figure 2.3). While the F31R point mutant alone provides good MTX 

resistance (Ki
MTX = 7.2 nM)41, additional mutations increased resistance, as evidenced by 

triple mutants RTS (Ki
MTX = 59 nM) and RTR (Ki

MTX = 86 nM). The frequently observed 

F31R appears to provide a good basis for further mutations to increase resistance.  

The current data set is consistent with synergistic effects of many of the mutations 

toward MTX binding, as opposed to additive effects.48 A striking example is triple 

mutant AVH, which displayed the weakest MTX binding out of the selected mutants 

(Ki
MTX = 180 nM), an almost 6000-fold increase in Ki

MTX relative to the WT. This 

combinatorial mutant nearly matches the best-reported KD
MTX (F34S = 210 nM).10 

However, it boasts a catalytic efficiency that is almost 20-fold superior to the F34S point 

mutant. The point mutant Q35H was not selected, suggesting that it does not confer a 

high level of resistance. Nonetheless, Q35H increased the Ki
MTX of the point mutant F31P 
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in mutant PFH; combined with F31A (Ki
MTX = 0.27 nM)14 and F34V (Ki

MTX = 10 nM)10, it 

contributed to the highest resistance in mutant AVH. In a similar fashion, the Q35R 

mutation (the murine Q35R mutant displays only a tenfold increase in Ki
MTX),17 combined 

with F31R (Ki
MTX = 7.2 nM)41 and F34T (Ki

MTX = 9.6 nM),10 contributed to resistance in 

mutant RTR (Ki
MTX = 86 nM). No resistant triple mutant was identified that was only one 

mutation away from a characterized double mutant, precluding a direct assessment of the 

effect of one additional mutation in these cases. It is not currently possible to predict 

synergistic effects of mutations on specific protein functions; our success in identifying 

multiple active-site environments providing the desired properties resulted from 

searching an area of sequence space that was likely, according to prior knowledge, to 

harbour positive solutions. Despite the fact that F34 was highly conserved during 

selection, likely as a result of its role in DHF binding, mutations at this position in the 

context of neighbouring mutations provided the highest level of resistance. We are 

currently combining this triply-mutated library with further libraries mutated at active-

site residues previously shown to specifically interact with MTX, to attempt to further 

increase MTX resistance while maintaining catalytic efficiency. Rather than restricting 

the identity of mutations to specific point mutants known to confer resistance, each 

position encodes a variety of amino acids, allowing for the possibility of unpredicted 

combinatorial effects. 

As made evident above, the trade-off to decreased MTX binding with the greater 

number of mutations was a general correlation with decreased catalytic efficiency. The 

most important contributor to decreased catalytic efficiency was decreased productive 

binding of DHF: the variation in KM
DHF was 1.5 to 44-fold greater than the change in kcat. 

Surprisingly, while the impact of point mutations at positions 31 and 34 on KM
DHF was 

great, there was no significant further increase of KM
DHF upon accumulating mutations. 

The additional mutations did, however, greatly increase Ki
MTX. These differences in the 

effect of the mutations toward either ligand may result from the different binding modes 

for the pteroyl moiety of DHF and MTX at the active site of hDHFR (figure 2.1), despite 

the fact that residues 31 and 35 do not directly interact with the pteroyl moiety. We are 

currently testing further ligands of DHFR to verify whether there is a relation between the 

decreased MTX and DHF affinity, and affinity for other ligands. Trimethoprim (TMP), 
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an antibiotic that targets bacterial DHFR with a high degree of specificity (Ki
TMP E. coli 

DHFR: 80 pM) binds hDHFR 12,000-fold more weakly,49 justifying its use in our 

selection strategy to knock out background E. coli DHFR activity. While most of the 

mutants selected for MTX resistance showed no change of in vitro resistance to TMP 

relative to the WT hDHFR, double mutant RFE and triple mutants RTR and RTS showed 

significant resistance (data not shown). Our results are consistent with the observation 

that the Leu28Arg substitution in E. coli, homologous to hDHFR mutation Phe31Arg, 

contributes to TMP-resistance in addition to MTX resistance. 

The AVH mutant bound to MTX was created in silico to gain insight into the 

effects of the mutations on MTX binding (figure 2.5). While this simple molecular 

visualization does not provide structural evidence, it is clear that the combinatorial 

F31A/F34V mutations enlarge the volume of the active-site cavity proximal to MTX, 

simply as a consequence of the smaller volumes of the substituted amino acids.50 The 

F31A mutation is likely to reduce van der Waals interactions with the p-ABA moiety of 

MTX relative to the WT. The F34V mutation likely has a similar effect in addition to 

reducing van der Waals interactions with the pterin moiety. The effect of the Q35H 

mutation is not as apparent in this visualization. We are presently obtaining structural 

information for mutant AVH by X-ray crystallography.    

We have shown that CHO dhfr- cells containing double mutants RFE or SFE and 

triple mutants RTS or AVH were all protected, to some extent, from the toxic effects of 

MTX (table 2.3; figure 2.4). The positive control, point mutant L22Y, confers good 

MTX-resistance in mammalian cells as a result of its good catalytic efficiency (12 s-1µM-

1) and high Ki
MTX (10.9 nM).15 Previously reported transfections of hDHFR point mutants 

(F31S, F34S, G15W and L22R) in CHO dhfr- cells43,44 yielded between 2 to 7% cell 

survival in presence of 1 μM MTX. In our similar system, the resistance conferred by our 

double mutants was greater than that for any of the point mutants. In turn, the triple 

mutants offered a better protection than the double mutants. The triple mutant AVH, 

exhibiting the highest Ki
MTX, conferred the best protection with 70% cell survival at 200 

μM MTX, despite the fact that it displayed the lowest catalytic efficiency among our 

sample. This suggests that weak MTX binding is a more important feature than catalytic 
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efficiency in protecting the CHO cells. This result provides an interesting tool for further 

increasing MTX resistance, given that most MTX-resistant mutants previously used to 

protect mammalian cells had catalytic efficiencies at least tenfold higher than the AVH 

mutant.51   

Combining active-site mutations in hDHFR yielded novel insights concerning 

increased MTX resistance. Ideally, one would like to predict the capacity of a mutant to 

confer MTX resistance to mammalian cells from assessment of a specific in vitro 

parameter, be it Ki
MTX, IC50

MTX or KD
MTX, or yet a combination such as Ki

MTX × catalytic 

efficiency.10,14,16 While each of these provided a rough estimate of resistance, we did not 

succeed in ranking the in vivo effect of the MTX resistant mutants according to in vitro 

parameters. We believe factors such as expression level, folding, stability and cell type all 

contribute to the in vivo effect. Given the correlation between the efficiency of MTX-

protection in CHO dhfr- and in haematopoietic stem cells for a given MTX-resistant 

mutant,43,52 we are currently investigating the potential for the most highly MTX-resistant 

combinatorial mutants to protect haematopoietic stem cells, via retroviral infections. 

Preliminary results in haematopoietic stem cells (J.P.V. et al., unpublished results) 

suggest that, despite the fact that mutant AVH confers a high level of MTX-resistance, it 

is not our most effective mutant at conferring resistance in that specific in vivo context. 

This underscores the difficulty of identifying an in vitro indicator for ranking in vivo 

effects, and supports further identification of a variety of MTX-resistant hDHFR variants 

for application in different contexts.    

 

MATERIALS AND METHODS 

Reagents 

Restriction and DNA modifying enzymes were purchased from MBI Fermentas 

(Burlington, ON). Folic acid, methotrexate, β-NADPH, adenine, deoxyadenine and 

thymidine were purchased from Sigma-Aldrich (Oakville, ON). Dihydrofolic acid (DHF) 

was synthesized from folic acid as described.53 Ni-NTA was purchased from Qiagen 

(Mississauga, ON). Cell culture media and reagents were purchased from Invitrogen 
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(Burlington, ON), with the exception of dialyzed fetal bovine serum (FBS), which was 

obtained from HyClone (Logan, UT), and 5-bromo-4-chloro-3-indoyl-β-D-

galactopyranoside (X-Gal), which was purchased from US biological (Swampscott, MA). 

CHO DUKX B11 (dhfr-) cells were a generous gift from Ingrid Remy and Stephen W. 

Michnick (Université de Montréal, Montréal, QC).   

Bacterial strains and plasmids  

 E. coli strain SS320 was used for propagation of the DNA library.54 E. coli strain 

SK037,39 which was used for selection and over-expression of MTX-resistant mutants, 

was a generous gift from Gwen S. Snapp and James C. Hu (Texas A&M University, 

College Station, TX). The pQE32 expression vector was purchased from Qiagen. The 

WT hDHFR (MRA-91) and hDHFR L22Y (MRA-90) genes contained in pBluescript 

vector55 were obtained from the Malaria Research and Reference Reagent Resource 

center (Manassas, VA). 

Oligonucleotides and DNA constructions  

 Standard oligonucleotide primers used for mutagenesis were purchased from 

Alpha DNA (Montréal, QC). Primers containing degenerate codons were purchased from 

Integrated DNA Technologies (Coralville, IA). Dye-labelled oligonucleotide primers for 

DNA sequencing were purchased from Li-Cor Biotechnology (Lincoln, NB).  The 

external primer set 1 (primer 1A: fwd 5' 

ACACACGGATCCAAATGGTTGGTTCGCTAAACTGCATC (BamHI restriction site 

in italics) and primer 1B: rev 5' CAATTTCACACAGGAAACAGCT) was designed for 

PCR amplification of the entire coding region of the WT hDHFR and hDHFR L22Y 

genes and subcloning into pQE32 vector between the BamHI and HindIII restriction 

sites. An AflII restriction site (in italics) was introduced for ulterior recombination work 

via silent mutations between codons 26 and 28 of WT hDHFR by mega-primer PCR,56 

using primer 2: rev 5' 

TGGAAATATCTAAATTCGTTCCTTAAGGGTGGCCACGGCAGGT and the external 

primer set 1. The resulting construct, WT hDHFR-pQE32, expressed WT His6-hDHFR 



 

 

65

(N-terminally His6-tagged) and served as a template for the creation of the hDHFR 

mutant library as well as for the creation of eukaryotic transfection DNA constructs.  

Creation of the hDHFR mutant library at positions Phe31, Phe34 and Gln35  

 The hDHFR mutant library was created by megaprimer PCR,56 using degenerate 

primers encoding a variety of amino acids at positions Phe31, Phe34 and Gln35 (see 

table 2.1) using primer 3: rev 5' 

AGAGGTTGTGGTCATTCTSYBKRHATATCTGVVTTCGTTCCTTAAGGGTGG 

(degenerate codons in italics) as well as primer 1A and primer 4B: rev 5' 

GTTCTGAGGTCATTACTGG as external primers (external primer set 2). The resulting 

library was cloned into pQE32 using the BamHI and HindIII restriction sites and 

transformed in E. coli SS320, yielding approximately 1 × 104 colonies. The quality of the 

library was evaluated by sequencing the entire hDHFR gene from 70 colonies picked on 

Luria-Bertani (LB) medium containing 100 µg/mL ampicillin (LA-100; non-selective 

conditions). Sequencing was performed by the dideoxy-chain termination method using a 

Thermo Sequenase Cycle Sequencing kit (GE Healthcare, Piscataway, NJ) and a dye-

labelled primer with a Li-Cor 4200 automated sequencer (Lincoln, NB). 

Selection and identification of highly MTX-resistant mutants  

Plasmid DNA from the pooled hDHFR mutant library was isolated and 

transformed into electrocompetent E. coli SK037 cells for selection. The cells were plated 

in equal dilutions on LA-100 (non-selective) or on M9 minimal medium containing 

0.08% (w/v) casamino acids, 100 µg/mL ampicillin, 1 µg/mL trimethoprim (TMP) and 1 

mM MTX (dissolved in 0.05M KOH) (ATM-1000 medium; selective conditions). 

Colony formation took place at 37°C for 16 hrs on the non-selective medium and for 36 

hrs on the selective medium. The survival rate of the library was calculated from the ratio 

of colonies formed on selective ATM-1000 relative to non-selective LA-100 medium. 

Seventy colonies were picked on ATM-1000 media, and the plasmid DNA was 

sequenced to identify mutations at positions 31, 34 and 35. In all cases, the entire coding 

sequence was verified.  
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Expression and purification of selected hDHFR variants  

For expression of both WT His6-hDHFR and MTX-resistant mutants identified by 

selection, the plasmids of interest were isolated and retransformed into E. coli SK037 

cells. Overnight cultures were used to inoculate 50 mL of LB media and were propagated 

at 37°C until A600 nm ≈ 0.7. Protein expression was induced with the addition of 1 mM 

isopropyl 1-thio-β-D-galactopyranoside (IPTG), after which cells were further 

propagated for 3 hrs at 37°C. Induced cells were harvested by centrifugation (4000g for 

30 min at 4°C). The cell pellet was resuspended in 0.1M potassium phosphate buffer (pH 

8.0), 5 mM imidazole. The cells were lysed on ice using a Branson sonicator (three pulses 

at 200 W for 30 s with a tapered micro-tip). Cellular debris were pelleted by 

centrifugation (4000g for 30 min at 4 °C) and 1 mL of pre-equilibrated Ni-NTA resin 

(Qiagen) was added to the supernatant. The slurry was mixed by inversion at 4°C for 1 h, 

after which it was transferred to a column (Bio-Rad Polyprep Chromatography columns, 

0.8 x 4 cm) for gravity-flow purification. The column was washed with 5 mL each of 

0.1M phosphate buffers (pH 8.0) containing increasing concentrations of imidazole (5, 

10, 15 and 20 mM). Elution of bound protein was achieved using 2 mL of 0.1M 

phosphate buffer (pH 7.5), 50 mM imidazole. Eluted protein was dialyzed overnight 

against 0.1M phosphate buffer (pH 7.5) at 4°C for 16 hrs. Expression pattern and purity 

of enzymes were evaluated using the public domain image analysis software Scion Image 

(NIH, rsb.info.nih.gov/nih-image) following separation by  SDS-PAGE (15% (w/v) 

polyacylamide gel) stained by the zinc-imidazole method.57 Protein concentration was 

determined using the Bradford assay (Bio-Rad, Hercules, CA).  

Determination of kinetic and inhibition parameters 

All kinetic and inhibition assays were conducted in MATS buffer (25 mM Mes, 

25 mM acetate, 50 mM Tris, 100 mM sodium acetate and 0.02% (w/v) sodium azide) (pH 

7.6) at 23°C. Substrates were dissolved in MATS buffer and quantified by 

spectrophotometry (ε340 nm = 6200 M-1cm-1 for NADPH and ε282 nm = 28,400 M-1cm-1 for 

DHF). MTX was dissolved in 0.05M KOH and quantified by spectrophotometry in 0.1M 

NaOH using ε258 nm = 22 100 M-1cm-1 and ε302 nm = 23 300 M-1cm-1. Kinetic parameters for 

the hDHFR mutants were determined with a Cary 100 Bio UV/Vis spectrophotometer 
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(Varian Canada Inc., Montréal, QC) by monitoring the NADPH and DHF depletion 

(Δε340 nm = 12 800 M-1cm-1)58 in 1-cm cells with 10 nM enzyme, unless otherwise stated. 

All assays were performed in at least 4 independent experiments and the average values 

are reported. The initial rates during the first 15% of substrate conversion were recorded 

for all assays. Kinetic and inhibition parameters were obtained from a non-linear 

regression fit to the Michaelis-Menten equation using Graphpad Prism (Graphpad 

Software, San Diego, CA). The kcat values were determined in presence of saturating 

substrate concentrations (100 µM each of DHF and NADPH) in 1-cm cells according to 

kcat = Vmax/[E]. KM values for DHF (KM
DHF) for the MTX-resistant mutants were 

determined in presence of 20 µM NADPH by varying the concentration of DHF (0.5 µM 

to 20 µM). For WT His6-hDHFR, KM
DHF was obtained by spectrophotometric 

determination in 10-cm cells containing 1 nM enzyme, 10 µM NADPH and a range of 

DHF concentrations (0.05 µM to 10 µM). The kinetic parameters of two mutants 

determined in 1-cm cells were also confirmed in 10-cm cells. IC50
MTX for WT His6-

hDHFR and mutants were determined in presence of saturating concentrations of 

substrates (100 µM each of DHF and NADPH) and increasing concentrations of MTX 

(0.025 µM to 100 µM). Inhibition constants for MTX (Ki
MTX) were calculated from the 

determined IC50
MTX according to the equation for competitive inhibitor binding.59 

Determination of equilibrium dissociation constants  

Ternary equilibrium dissociation constants for MTX (KD
MTX) were determined in a 

1-cm path-lenght quartz cell using a Cary Eclipse Bio fluorometer (Varian Canada Inc., 

Montréal, QC), by titrating the fluorescence quenching resulting from formation of the 

enzyme-ligand complex with increasing concentrations of MTX. For each variant tested, 

enzyme and NADPH were mixed at final concentrations of 200 nM and 5 μM (saturating 

concentration), respectively, and serial additions of MTX were added (0 to 1600 nM) in a 

final volume of 3 mL. The total volume of added MTX represented approximately 10% 

of the entire sample volume. After each addition of MTX, the solution was mixed with a 

magnetic stirrer for 2 minutes. Fluorescence quenching was monitored at λex = 280 nm 

and λem = 435 nm. All assays were performed in at least 3 independent experiments, and 
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the average values are reported. The KD
MTX values for each variant were obtained by 

fitting relative fluorescence (ΔF ) to the following equation:60 
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Molecular modelling  

Molecular modelling was performed using the InsightII package (version 2000, 

Accelerys), with 1U72.pdb (WT hDHFR with bound MTX and NADPH)7 as starting 

coordinates. Following removal of the crystallographic water molecules, the 

BIOPOLYMER module was used to mutate residues 31, 34 and 35 and to add hydrogen 

atoms at the normal ionization state of amino acids at pH 7. Energy minimization of the 

enzyme-ligand complex was performed using 1000 steps of steepest descents 

minimization, followed by a conjugate gradient minimization until convergence of 0.001 

kcal/mol/Å. Minimizations were performed with no constraints, using a dielectric 

constant of 80 and a cut-off value of 100 Å.  

Protection of eukaryotic cells with MTX-resistant hDHFRs  

Genes encoding the MTX-resistant mutants with the highest Ki
MTX values were 

amplified by PCR with primer 5A: fwd 5' 

ACACACGAATTCATCCACCATGGTTGGTTCGCTAAACTGCAT and primer 5B: rev 
5' ACACACCTCGAGAGCTTAATCATTCTTCTC and sub-cloned into pcDNA3.1 (+)-

Zeo (Invitrogen) using the EcoRI and XhoI restriction sites (in italics). The WT and 

L22Y hDHFR genes were also amplified and cloned as described above, to serve as 

negative and positive controls for MTX resistance, respectively. The resulting constructs 

do not encode a His6 tag. A mock transfection with pcDNA3.1 (+)-Zeo also served as a 

negative control. Cells were stained using trypan blue and counted using a Bright-Line 

hemacytometer (American Optical Corporation, Buffalo, NY). CHO DUKX B11 cells 

were propagated at 37°C, 5% CO2 (v/v) in 10-cm plates and passaged every 48 h at 1.5 × 

106 cells per plate in α-MEM containing 10% (v/v) dialyzed FBS, 4 mM glutamine, 10 

µg/mL each of adenine, deoxyadenosine and thymidine, 100 units/mL penicillin and 100 

µg/mL streptomycin (complete α-MEM medium). For passages, cells were washed twice 
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with 1 × PBS and trypsinized for 5 min at 37 °C. Before transfection, 5 × 105 cells at 

passage 10 or less were propagated for 18 h on 10-cm plates (70% confluence). A 3µg 

sample of plasmid DNA was mixed with 20 µL of Lipofectamine 2000 (Invitrogen) and 

incubated at room temperature for 45 min in 800 µL Opti-MEM. The mixture was added 

to the cells, which were further incubated at 37 °C with 5% CO2 for 4 h. The transfection 

media was replaced by α-MEM media for 36 h. The transfected cells were split into 6 cm 

plates containing approximately 1 × 105 cells. The cells were exposed to different 

concentrations of MTX (0 - 200 µM) in α-MEM media in the absence of adenine, 

deoxyadenine and thymidine. As a reference, the same number of cells was plated in 

complete α-MEM medium. The stock solution (2 mM MTX) was prepared in 0.05M 

KOH to ensure dissolution; MTX could not be added at a higher concentration than 200 

µM as this marked the limit of the buffering capacity of the medium. The cells were 

counted after 48 h. Transfection efficiency was evaluated first by transfecting the lacZ 

reporter gene (pBabe-LacZ)61 and by counting the number of blue cells in the presence of 

X-Gal; and secondly by comparing the number of cells in absence and in presence of 

nucleotides in the media. The percentage of cell survival is given as the ratio of cells 

counted in the presence or in the absence of MTX (in absence of nucleotides). EC50
MTX 

were generated with a non-linear sigmoidal fit using Graphpad Prism software. All MTX-

resistance studies were performed in at least 3 independent experiments and the average 

EC50
MTX values are reported. Expression of hDHFR variants was verified by Western 

blotting, following resolution of supernatant from transfected CHO DUKX B11 cells by 

SDS-PAGE (15% (w/v) polyacrylamide gel) and semi-dry transfer on PVDC membrane. 

The membranes were blocked with 5% (w/v) powdered milk before overnight incubation 

at 4 ºC with primary polyclonal anti-mDHFR antibody from rabbit. Membranes were 

washed twice with PBS, 0.5% (v/v) Tween before incubation for 1 h at 4 °C with the 

secondary monoclonal anti-rabbit-alkaline phosphatase coupled antibody (Sigma-

Aldrich). Protein bands were revealed with BCIP/NBT (Sigma-Aldrich) for 10 min at 

room temperature.    
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Table 2.1. Amino acids encoded at residues 31, 34 and 35 of the hDHFR mutant 

library 
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Table 2.2. Kinetic and inhibition constants for the selected MTX-resistant hDHFR 

mutants 
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Table 2.3. EC50 MTX for CHO DUKX B11 cells transfected with MTX-resistant 

hDHFR mutants 
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Table 2.4. Comparison of MTX-resistant hDHFR mutated at positions F31 and F34 
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Figure 2.1. Ligand binding at the active-site of WT hDHFR. A: Superimposition of 

hDHFR with bound folate (yellow; 1DRF.pdb62) and its competitive inhibitor 

methotrexate (red; 1U72.pdb7). The active site is shown, highlighting the flip of the 

bicyclic pteroyl ring. Stick representations of side-chains from Ile7, Leu22, Trp24, 

Glu30, Arg70 and Val115 are shown in white. The residues targeted for mutation, Phe31, 

Phe34 and Gln35, are in green. A conserved active-site water molecule is depicted as a 

red sphere. B: Hydrogen bonding network of bound MTX at the active site of hDHFR. 

Side-chains and MTX are in sticks representation, coloured by atom (nitrogen (blue), 

oxygen (red) and carbon (white for side chains and green for MTX)). A conserved active-

site water molecule is depicted as a red sphere. For clarity, only the coordinates of 

1U72.pdb are represented.  
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Figure 2.2. Frequency of occurrence of the novel MTX-resistant mutants. Seventy 

mutants were isolated following selection of the hDHFR mutant library on ATM-1000 

medium. Mutants are designated by the one-letter code of the amino acid occurring at 

positions 31, 34 and 35, respectively. Mutant PFQ corresponds to point mutant F31P. 
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Figure 2.3. Relation between the number of hDHFR mutations and kcat/KM
DHF or 

Ki
MTX relative to WT His6-hDHFR. Mutants are designated by the one-letter code of the 

amino acid occurring at positions 31, 34 and 35, respectively. Numbers in parentheses 

correspond to the number of mutations in the variant. Log kcat/KM
DHF relative to WT is 

shown in grey while log Ki
MTX relative to WT is in black. 
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Figure 2.4. Survival of CHO DUKX B11 cells transfected with selected mutants in 

presence of MTX. Data is presented for two representative mutants: double mutant SFE 

(         ) and triple mutant AVH (         ). The positive control L22Y (          ) and the 

negative control WT hDHFR ( .     ) are given as references. SFE and AVH are 

designated by the one-letter code of the amino acid occurring at positions 31, 34 and 35, 

respectively. Percentage of cell survival represents the ratio of cells counted in presence 

and absence of MTX after 48hrs at 37ºC, 5% CO2. 
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Figure 2.5. In silico comparison of MTX binding between (A) WT hDHFR (1U72) 

and (B) mutant AVH. Protein structures are shown in surface representation with 

residues 31, 34 and 35 coloured yellow, and MTX coloured by atom (nitrogen, blue; 

oxygen, red; and carbon, green), in sticks representation. AVH coordinates were obtained 

by mutating residues 31, 34, 35 using PDB file 1U72 as starting coordinates, followed by 

minimization in presence of bound MTX and NADPH. NADPH is not shown. 
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Chapter 3 (Article 2) – Two-tier bacterial and in vitro 

selection of active and methotrexate-resistant variants 

of human dihydrofolate reductase 

 

Section 3.0 – Preface 

Article 2 describes the development of an efficient and rapid screening strategy to 

identify active and antifolate resistant mutants of hDHFR. Moreover, the article provides 

new information regarding the specific role of key active-site residues in binding. 

Five little characterized active-site positions (Ile7, Gly15, Trp24, Arg70 and 

Val115) were individually mutated by saturation mutagenesis, creating small libraries (20 

mutants/library) suitable for further methodological development.  

The selection strategy described in chapter 2 (article 1) was sufficiently efficient 

to identify highly MTX-resistant mutants. However, bacterial survival under selective 

conditions (high concentration of MTX in this specific case) is not a direct read-out of 

catalytic activity in vitro. In fact, factors like expression level, solubility and stability can 

be compatible with minimal activity in an in vivo context (and therefore with bacterial 

propagation), but inadeguate for in vitro characterization. As a result, it may not be 

possible to discriminate among the variety of good and mediocre positive hits from the 

selection. In order to optimize the screening process for larger-scale application (analysis 

of large-size libraries of mutants) a lower throughput but more informative second-tier in 

vitro assay was added to screen all positive hits from bacterial selection. The assay 

consisted in measuring residual enzymatic activity in the presence of a concentration of 

inhibitor which is user-defined, where a higher concentration provides more stringent 

screening. The in vitro assay was performed directly from cell lysates (with no need for 

purification) using a plate reader, and also allowed determination of a quantitative 

descriptor for MTX-resistance (IC50
MTX).  
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Moreover, we extended the flexibility of our directed evolution approach by 

developing a two-tier selection strategy for detection of activity (which requires DHF 

binding) and resistance to the antifolate pemetrexed (which requires reduced binding of 

the inhibitor), demonstrating the broad applicability of the strategy for studying binding 

of different compounds at the active-site of hDHFR. 

I was responsible of the majority of the experimental work. Joelle Pelletier and I 

were responsible of the design of the experimental approach and the edition of the paper. 

Jordan Volpato was responsible of the choice of the active-site residues to be mutated, 

the creation of 2 of the 5 libraries of mutants created, the creation of figure 1 and of 

critical discussion both related to the experimental work and to the edition of the paper. 

Lucie Poulin performed half of DNA sequencing. David-Antoine Dugas created library 

115 under my supervision. Vanessa Guerrero performed part of the screening (screening 

for activity and MTX-resistance of libraries 15 and 24 and part of the screening for 

pemetrexed resistance) under my supervision.  

 

An erratum corrigendum about the kinetic and inhibition parameters of one of the 

hDHFR mutants characterized was added to the chapter, right after the references section. 
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ABSTRACT 

We report a rapid and reliable 2-tier selection and screen for detection of activity 

as well as drug-resistance in mutated variants of a clinically-relevant drug-target enzyme. 

Human dihydrofolate reductase point-mutant libraries were subjected to a 1st-tier 

bacterial complementation assay, such that bacterial propagation served as an indicator of 

enzyme activity. Alternatively, when selection was performed in the presence of the 

inhibitor methotrexate (MTX), propagation indicated MTX resistance. The selected 

variants were then subjected to a 2nd-tier in vitro screen in 96-well plate format using 

crude bacterial lysate. Conditions were defined to establish a threshold for activity or for 

MTX resistance. The 2nd-tier assay allowed rapid detection of the best variants among 

the leads and provided reliable estimates of relative reactivity, (kcat) and IC50
MTX. 

Screening saturation libraries of active-site positions 7, 15, 24, 70 and 115 revealed a 

variety of novel mutations compatible with reactivity as well as 2 novel MTX-resistant 

variants: V115A and V115C. Both variants displayed Ki
MTX = 20 nM, a 600-fold increase 

relative to the wild-type. We also present preliminary results from screening against 

further antifolates following simple modifications of the protocol. The flexibility and 

robustness of this method will provide new insights into interactions between ligands and 

active-site residues of this clinically relevant human enzyme.  

Key words: Human dihydrofolate reductase, methotrexate, drug resistance, saturation 

mutagenesis, high-throughput screening 

 

INTRODUCTION 

Dihydrofolate reductase (DHFR, EC 1.5.1.3) catalyzes the NADPH-dependent 

reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF), an essential 

metabolite involved in the biosynthesis of purines and thymidylate.1 Due to its crucial 

role in cell proliferation, human DHFR (hDHFR) has long been a target in the treatment 

of psoriasis,2 rheumatoid arthritis2,3 and neoplastic diseases.4 A specific competitive 

inhibitor of hDHFR, the antifolate methotrexate (MTX), has been extensively used to 
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treat various cancers.4 Limitations to cancer treatment with MTX include lack of 

specificity for cancerous cells1  and development of drug resistance.5 

 Among the recognized MTX-resistance mechanisms,5 we are specifically 

interested in mutations that weaken MTX binding. Despite their structural similarity, the 

substrate DHF and the inhibitor MTX bind to the active site in different orientations, 

making different contacts with the enzyme.6,7 Active-site mutations may thus reduce 

MTX binding while maintaining sufficient DHF affinity for catalysis.8-10 Gaining a better 

understanding of substrate and inhibitor binding at the hDHFR active site by 

characterizing ligand binding in active-site variants will offer insight toward the synthesis 

of alternative antifolates.4,10 In a clinical context, MTX-resistant hDHFR variants can 

offer protection of haematopoietic stem cells from the cytotoxicity of MTX via gene 

therapy.11 Furthermore, MTX-resistant hDHFR variants show excellent potential as 

selectable markers for gene transfer in stem cells, improving the outcome of gene 

therapy.11 For these applications, ideal hDHFR variants should possess a high Ki for 

MTX (weak binding) and efficient catalytic properties (low KM
DHF and high kcat) in 

addition to good stability, solubility and high expression levels. 

 We previously performed directed evolution to identify highly MTX-resistant 

variants of hDHFR from a combinatorial library of mutants using a rapid bacterial 

selection strategy.8 The strategy relies on the capacity for variants of human DHFR to 

allow bacterial propagation in the presence of high MTX concentrations. While 

characterization of the selected variants confirmed successful identification of active and 

highly MTX-resistant hDHFR variants with no significant background from false-

positive hits, there remain issues to be addressed to allow its broader application. First, 

we need to assess if the bacterial-based selection strategy is robust; that is, what is the 

incidence of false-negatives? While bacterial selection offers the undeniable advantage of 

speed, it is challenging to tune the sensitivity to specific enzyme properties. Differences 

in mutant enzyme stability, expression levels and limitations set by bacterial metabolic 

requirements (upper or lower threshold for requirement of a specific metabolite) 

contribute to phenotypic responses that do not reflect kinetic properties of the enzyme 

variants. Second, classic methods for characterizing the kinetic parameters defining 

activity and MTX-resistance of the selected variants were lengthy and labour-intensive, 
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precluding application at a larger scale. Finally, the selection assay had been designed 

exclusively for the purpose of identifying the phenotype of MTX-resistance. However, a 

further phenotype of interest is that of conservation of native-like activity upon mutation.  

 Herein, we present a streamlined, 2-tier selection and screening protocol to 

rapidly identify hDHFR variants that are active and/or MTX-resistant and that possess 

properties justifying further, more detailed kinetic characterization. As a 1st step, the 

bacterial selection strategy was expanded to select either for native-like activity or for a 

combination of activity and MTX-resistance. Then, an in vitro activity assay was 

conveniently performed directly on cell lysates in 96-well plate format to rapidly provide 

a reliable estimate of catalytic activity and/or MTX-resistance. Toward this goal, active-

site residues 7, 15, 24, 70 and 115 of hDHFR, each known or suspected to affect ligand 

binding, were subjected to saturation mutagenesis. The 5 libraries were selected for 

conservation of native-like activity and for MTX resistance. A variety of mutations 

compatible with activity were identified and 2 novel MTX-resistant variants were 

identified and characterized. Preliminary results from screening against further antifolates 

are also reported, demonstrating the adaptability of the approach. 

 

MATERIALS AND METHODS 

Reagents 

Restriction and DNA modifying enzymes and dNTPs were purchased from MBI 

Fermentas (Burlington, ON). Folic acid, methotrexate (MTX), β-NADPH, trimethoprim 

(TMP), buffers and CelLyticTM B Cell Lysis Reagent were from Sigma-Aldrich 

(Oakville, ON). Pemetrexed (ALIMTA) was from Eli Lilly (Toronto, ON). Alimta was 

supplied as 1:1 mixture of pemetrexed and D-mannitol. Dihydrofolate (DHF) was 

synthesized from folic acid.12 Standard mutagenic oligonucleotide primers were from 

Alpha DNA (Montréal, QC), while primers containing degenerate codons were from 

Integrated DNA Technologies (Coralville, IA). The QIAquick® Gel extraction kit, 

QIAprep® Spin plasmid purification kits, and Ni-NTA agarose were from Qiagen 
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(Mississauga, ON). Isopropyl 1-thio-β-D-galactopyranoside (IPTG) was from BioShop 

Canada (Burlington, ON). DNA sequencing was performed by dideoxy-chain termination 

using a Thermo Sequenase Cycle Sequencing Kit (GE healthcare) and dye-labelled 

primers (fwd 5'CGGATAACAATTTCACACAG3’ or rev 
5’GTTCTGAGGTCATTACTGG3’) (Li-Cor Biotechnology, Lincoln, NB) with a Li-Cor 

4200 automated sequencer. Escherichia coli strain SK03713 was a generous gift from 

Gwen Snapp and James Hu (Texas A&M). 

Creation of the hDHFR saturation mutant libraries 

 The construct WT hDHFR-pQE32 encoding WT human DHFR cloned into 

pQE32 (Qiagen) between the BamHI and HindIII sites was previously described.8 It 

expresses WT His6-hDHFR (N-terminally 6-histidine tagged) and was the template in 

creation of the mutated libraries. The external primer set 1 (primer 1A: fwd 5' 

ACACACGGATCCAAATGGTTGGTTCGCTAAACTGCATC3’ [BamHI restriction site 

underlined]; primer 1B: rev 5’GTTCTGAGGTCATTACTGG3’) allowed for PCR 

amplification of the entire coding region. Libraries 7 and 15, named according to the 

numbering of the mutated residue, were constructed in a single-step PCR using primers 

fwd7 

(5’ACCATGGGATCCAAATGGTTGGTTCGCTTAACTGCNNSGTCGCTGTGTC 

CCAGA3’; a silent mutation [bold] was introduced as a tracer) or fwd15 

(5’ACCATGGGATCCAAATGGTTGGTTCGCTAAACTGCATCGTCGCTGTGTCCC

AGAACATGNNSATCGGCAAGAACGG3’), respectively, with primer 1B. Library 24 

was constructed by 2-step megaprimer PCR14 using primer 24 (rev 
5’TCCTTAAGGGTGGSNNCGGCAGGTCCCCGT3’) and external primer set 1. 

Libraries 70 and 115 were created by 3-step overlap extension PCR15 using primers 70A 

(fwd 5’CGACCTTTAAAGGGTNNSATTAATTTAGTTAG3’) and 70B (rev 
5’CTGAGAACTAAATTAATSNNACCCTTTAAAGGTCG3’) or primers 115A (fwd 
5’GACATGGTCTGGATANNSGGTGGCAGTTCTGTTTATAAGG3’) and 115B (rev 
5’CCTTATAAACAGAACTGCCACCSNNTATCCAGACCATGTC3’), and the external 

primer set 1. Degenerate codons are underlined. The resulting libraries were cloned into 

pQE32 between BamHI and HindIII and transformed into electrocompetent E. coli 
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SK037, yielding approximately 1 × 104 colonies per library. The quality of each library 

was verified by sequencing DNA from clones propagated on LB agar containing 100 

µg/ml ampicillin.  

Selection for activity and MTX resistance 

Library-transformed E. coli SK037 was selected first for hDHFR activity, then for 

MTX resistance. E. coli SK037 transformed with pQE2 (Qiagen) was the negative 

control. Cells were plated in equal dilutions on M9 minimal agar containing 0.08% w/v 

casamino acids and 100 µg/ml ampicillin (MM_A; non-selective conditions), on MM_A 

containing 0.1 µg/ml trimethoprim (TMP) (MM_AT; selective conditions for hDHFR 

activity) and MM_AT containing 1 mM MTX (ATM_1000;8 selective conditions for 

MTX resistance). Colony formation took place at 37 °C over 18 h on both MM_A and 

MM_AT and over 22 h on ATM_1000. The survival rate for each library was the ratio of 

colonies observed on selective MM_AT or ATM_1000 relative to non-selective MM_A 

medium. Following selection, plasmid DNA was sequenced to identify the mutations at 

the targeted positions. In all cases, the entire coding sequence was verified, and in certain 

cases, both strands were verified.  

Protein expression and cell lysis 

For expression, transformed E. coli SK037 were propagated in LB (100  µg/ml 

ampicillin) at 37 °C, 225 rpm in 96-well assay blocks with 2 ml wells (Costar, 

Cambridge, MA). Fresh LB medium (1 ml) was inoculated with overnight cultures (25 

μl) and propagated until OD600 ≈ 0.6. Protein expression was induced by addition of 

IPTG to a final concentration of 1 mM and further propagation for 3 hrs. The assay 

blocks were centrifuged (30 min, 2700 × g, 4 °C), the supernatant was removed and the 

pellets were resuspended in 150 μl of lysis reagent (15 min, 225 rpm, room temperature). 

The lysates were clarified by centrifuging as above and were preserved on ice until 

required. 
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Determination of activity and antifolate resistance from crude cell lysates in 96-well 

plates 

All rate measurements were in MATS buffer (25 mM MES, 25 mM acetic acid, 

50 mM Tris, 100 mM sodium acetate and 0.02% w/v sodium azide) pH 7.6, 23 °C. 

Substrates were dissolved in buffer and quantified by spectrophotometry (ε340 nm = 6 200 

M-1cm-1 for NADPH; ε282 nm = 28 400 M-1cm-1 for DHF). MTX was dissolved in 0.05 M 

KOH and quantified in 0.1 M NaOH (ε258 nm = 22 100 M-1cm-1 and ε302 nm = 23 300 M-

1cm-1). Pemetrexed (ALIMTA) was dissolved and quantified in 0.9 % w/v NaCl (ε226 nm = 

31200 M-1cm-1). Catalytic activity of mutants was determined in 96-well flat-bottom 

plates (Costar #3595, Cambridge, MA) with a FLUOstar OPTIMA UV-Vis plate reader 

(BMG Laboratories, Offenburg) by monitoring concurrent NADPH and DHF depletion 

(Δε340 nm = 12 800 M-1 cm-1).16 Reaction rates were determined in a final volume of 300 

µl using crude cell lysate and 100 µM each DHF and NADPH. To evaluate the 

background due to bacterial DHFR, reactions were conducted in presence or absence of  

1 μg/ml TMP. 

To ensure high signal to background while keeping the reaction sufficiently slow 

to allow measurement of initial rates, an initial estimate of reaction rate was obtained 

using various dilutions of the lysates. The dilutions were then adjusted for rate 

measurement of each variant. These dilutions were also used for determination of kcat 

according to kcat = Vmax / [hDHFR], where the concentration of soluble hDHFR variant in 

each lysate was estimated following migration on 15 % SDS-PAGE and Coomassie blue 

staining. Protein quantification was performed using the image analysis software Scion 

Image (NIH, rsb.info.nih.gov/nih-image) from digitalized images of the stained gels.  

For assessment of MTX resistance, residual activities were determined as the ratio 

of activity in presence of 200 or 1000 nM MTX versus activity in absence of MTX. The 

concentration of hDHFR variant in each lysate was verified to ensure that saturating 

concentrations of MTX were used. For library 115, the approximate  IC50
MTX values of 

active mutants were determined from cell lysates by monitoring initial reaction rates in 

presence of 100 µM each DHF and NADPH and increasing concentrations of MTX: 0, 

50, 500, 1000, 5000 and 10000 nM. IC50
MTX values were obtained from a non-linear 
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regression fit to the hyperbolic model for one-site binding using Graphpad Prism 

(Graphpad Software, San Diego, CA) and the data from three independent experiments. 

For assessment of PMTX resistance, residual activities were determined as the 

ratio of activity in presence of 5 μM or 20 μM PMTX versus activity in absence of 

PMTX. For assessment of TMP sensitivity, reactions were conducted in presence or 

absence of 0.1 μg/ml (0.34 µM) and 1 μg/ml (3.4 µM) TMP. 

Purification and characterization of individual selected variants 

The MTX-resistant and the PMTX-resistant mutants identified by screening as 

well as mutant I7F were expressed and purified by Ni-NTA affinity chromatography as 

previously described8 from 50 ml of culture medium. Solubility and relative expression 

level were verified by loading volume-equivalent amounts of total cell extracts, cell pellet 

and lysis supernatant for resolution by 15 % SDS-PAGE. Purity was evaluated using the 

Scion Image software following separation by 15 % SDS-PAGE and Coomassie blue 

staining. Protein concentration was determined using the Bradford assay (Bio-Rad, 

Hercules, CA). Kinetic and inhibition constants were determined in presence DHF and 

NADPH (100 µM each) in 1-cm cells with a Cary 100 Bio UV/Vis spectrophotometer 

(Varian Canada, Montréal, QC).8 For determination of KM
DHF, the concentration of DHF 

was varied (0.5 µM to 20 µM).  For determination of IC50
MTX, the following MTX 

concentrations were used: 0, 0.025, 0.050, 0.1, 0.5, 1, 10 μM. For determination of 

IC50
PMTX, the following PMTX concentrations were used: 0, 0.1, 0.5, 1, 5, 10, 100 μM. 

Ki
MTX and Ki

PMTX were calculated from IC50
MTX and IC50

PMTX, respectively, according to 

the equation for competitive inhibitor binding.17 DHF was held constant at 100 µM for all 

IC50 determinations. The mock-purified E. coli SK037 expressing no hDHFR served as a 

negative control. 
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RESULTS AND DISCUSSION 

Selection of target residues for mutagenesis 

In silico visualization of active-site hDHFR residues known to interact with DHF 

and/or MTX was performed to identify residues for mutation. The crystal structure 

coordinates of the ternary complex of hDHFR with MTX and NADPH (1U72.pdb)7 and 

the binary complex of hDHFR with folic acid (1DHF.pdb)6 were visualized. Folate and 

MTX are constituted of a pteridine ring moiety, a p-aminobenzoyl group (p-ABA) and a 

L-glutamyl γ-carboxylate tail. The molecules are chemically and sterically similar. 

However, because of their differences, MTX binds to DHFR with its pteroyl moiety 

flipped 180° about the C6-C9 bond relative to folate (figure 3.1A and 3.1B). As a result, 

active-site residues form different contacts with the two molecules and binding of the 

inhibitor MTX is 2000-fold stronger than binding of the substrate DHF. 

MTX-resistant point mutants of DHFR from human or other mammalian sources 

have been identified either in vitro, in vivo or ex-vivo. Point mutations at residues 

Ile7,18,19 Gly15,20 Leu22,21,22 Trp24,19 Phe31,8,23  Phe34,24 Gln35,19 Arg7025 and Val11519 

have yielded DHFR variants with decreased MTX-affinity. In particular, saturation 

mutagenesis26 and in vitro characterization of mutants at residues 2221,22 and 318,23 have 

identified the specific mutations at these positions that confer MTX-resistance in vitro.  

Herein, we investigated five non-contiguous positions where no saturation 

mutagenesis had been performed previously: Ile7, Gly15, Trp24, Arg70 and Val115 

(figure 3.1C).  The backbone carbonyl groups of Ile7 and Val115 form hydrogen bonds 

with the 4-amino pteroyl group of bound MTX; these bonds are not formed with folate.7 

Trp24 and Arg70 are strictly invariant residues in all vertebrate and bacterial DHFRs. 

The indole nitrogen of Trp24 is hydrogen-bonded to the C4-oxygen of folate (N8 of 

MTX) via a conserved water molecule. Arg70 makes ionic interactions with the α-

carboxylate of the L-glutamate moiety of both folate and MTX. The mutation R70K 

weakens binding to both ligands.25 Gly15, also selected for mutagenesis, is a highly 

conserved residue located on a loop outside the active site (figure 3.1C). It has no known 

interaction, direct or indirect, with NADPH, DHF or MTX. Nonetheless, mutant G15W 
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was isolated in vivo from a MTX-resistant subline of murine leukemic cells implanted in 

mice,27 justifying further investigation.  

Mutagenesis and expression 

Saturation mutagenesis was performed to obtain individual libraries encoding the 

20 amino acids at positions 7, 15, 24, 70 and 115 of hDHFR (libraries 7, 15, 24, 70 and 

115, respectively). The libraries were subcloned into pQE32 to provide His6-tagged 

variants for ease of purification. The His6-tag causes no detectable variation in WT 

hDHFR kinetic parameters.8 The libraries were transformed into E. coli SK037, a MTX-

sensitive strain that is a knock-out of the tolC component of a multi-drug-resistance 

(MDR) efflux pump.13 Approximately 1 × 104 colonies were obtained per library. DNA 

sequencing of randomly chosen clones propagated on non-selective medium revealed 

little or no sequence biases and no non-specific mutations. For library 115, DNA 

sequencing of 42 clones selected for activity and 46 nonselected clones allowed 

identification of 18 out of the 20 possible variants (mutants V115D and V115E were not 

identified). 

Selection and screening for catalytically active mutants 

The 2-tier selection strategy to identify catalytically active mutants is depicted in 

figure 3.2A. To verify whether the 2-tier strategy could reliably select active variants, we 

validated it against library 115. This library had shown a range of activity levels upon 

preliminary screening and was judged a good candidate to assess sensitivity and 

prevalence of false positives or false negatives. The 1st-tier assay is a bacterial 

complementation assay allowing high-throughput selection of active variants. For this 

assay, the library was plated on selective MM_AT medium containing trimethoprim 

(TMP). TMP inhibits the endogenous bacterial DHFR, making bacterial propagation on 

minimal medium obligatorily dependent on the activity of the expressed variant of 

hDHFR. E. coli SK037 transformed with pQE2 or with WT hDHFR-pQE32 was used as 

negative and positive controls, respectively. No bacterial growth was observed for the 

negative control whereas a survival rate varying between 88% and 100% was observed 

for the positive control. DNA sequencing of 42 selected colonies yielded 8 unique 
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hDHFR variants (7 mutants and the WT) (figure 3.3A). The WT (Val115) was the most 

frequently selected variant (48%), followed by V115I (32%), V115M (10%) and V115C, 

V115L, V115F, V115Y and V115A (2% each) (figure 3.4A).  We observed no bias 

resulting from the distribution of the 32 codons of the ‘NNS’ approach to saturation 

mutagenesis. Thus, the NNS codon encodes the WT Val at a frequency of 2/32, the 

V115I, M, C, F and Y at a frequency of 1/32 and the V115L at a frequency of 3/32; 

nonselected mutations are also encoded at frequencies varying between 1/32 and 3/32. 

Not all variants identified as active by bacterial complementation were necessarily 

suitable for in vitro characterization. If the threshold for significant activity is higher in 

vitro than in vivo, some variants that allow cellular propagation may appear to be inactive 

in vitro and would thus constitute false positive hits from bacterial selection. Factors such 

as expression level, solubility and stability may have differing effects in vivo and in vitro. 

Moreover, if a greater number of selected colonies had been sequenced, further active 

variants at position 115 may have been identified. Failure to identify these would result in 

false negatives from bacterial selection.  

To evaluate prevalence of false negatives, both the active, selected variants as 

well as the active but non-selected variants (14 variants in total, see figure 3.4) were 

individually plated under the bacterial selective conditions. All variants identified in the 

1st-tier selection step conferred high survival rates while all others resulted in negligible 

or no survival (figure 3.4A). Thus, bacterial selection of library 115 gave no false 

negatives. 

To evaluate prevalence of false-positive hits in the 1st-tier selection, the 2nd-tier 

96-well plate-based screening assay was applied to library 115 variants. Despite having 

lower throughput than the selection step, it has the advantage of rapidly providing an 

estimate of the kinetic constant kcat. To assess activity independently of bacterial 

selection, the selected variants as well as the nonselected variants were subjected to the in 

vitro activity assay (18 variants). DHFR activity was assayed directly from cell lysates in 

96-well plate-based assays. When available, at least 2 clones were assayed per mutant. 

No significant differences in reaction rates were observed in absence or presence of TMP. 

This indicates that there is no significant background due to endogenous bacterial DHFR. 
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E. coli SK037 transformed with pQE2 also served as a negative control. Again, the 

bacterial DHFR gave a negligible signal relative to the overexpressed hDHFR variants. 

The WT was always identified as being active both in bacterial selection and in vitro, 

which was an essential validation of the reliability of the method. 

 Clones with > 2-fold the in vitro activity of the negative control pQE2/SK037 

were considered active. This threshold was established on the basis of the reproducibly 

weak signal obtained for the negative controls (at least 2 negative controls were included 

on each 96-well plate) as well as the sensitivity of plate-reader. Because the assay was 

performed with crude lysate rather than purified enzyme, any active but poorly expressed, 

poorly soluble or unstable mutant would be classified as inactive if the overall activity 

were < 2-fold pQE2/SK037. All library 115 variants that were identified in the first-tier 

bacterial selection were also active in vitro, confirming that the selection yielded no false 

positive hits (figure 3.3A and 3.4B). The kcat for all active variants from library 115 

roughly correlated with the frequency of occurrence of the mutants during bacterial 

selection (figure 3.4B and table 3.1). When more than 1 clone was assayed for a given 

mutation, the data were generally in agreement. However, mutants V115T, V115Q, 

V115N, V115S, V115K and V115G, which had not been selected in vivo and which 

yielded no significant cellular propagation when individually plated (figure 3.4A), were 

also identified as active in vitro. The most active mutant, V115T, exhibited a native-like 

kcat. While these mutants possessed readily assayed activity, their overall properties 

(potentially including KM changes) did not provide sufficient turnover to support bacterial 

growth. These variants were not false negatives according to the criteria required for 

bacterial propagation, which is the ultimate goal of our work. Nonetheless, they illustrate 

that there can be a loss of underlying structure-activity information if only the bacterial-

selected variants are subjected to the 2nd-tier assay for in vitro activity, as this assay can 

reveal individual properties of specific interest.  

Having validated the reliability of the 2-tier selection procedure, it was applied to 

the remaining libraries. Following 1st-tier selection for activity, 16 selected clones per 

library were subjected to DNA sequencing analysis, allowing identification of mutations 

compatible with cell survival (figure 3.3A). Survival rates for the different libraries 

varied between 3% and 7% and a variety of mutations were tolerated at each targeted 
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position. The mutants conferring survival were then tested in vitro in the 2nd-tier assay, 

allowing for identification of stable, soluble and active mutants (figure 3.3A). For 

libraries 7 and 24, most of the bacterial-selected mutants were active in vitro, with 

elimination of at most 1 false positive hit per library. Five false-positive mutants were 

eliminated from each of library 15 and 70. In library 70 only the native Arg showed 

detectable activity in vitro. Contrary to the results of library 115, where no false-positives 

were identified, not all mutants obtained in the 1st-tier selection showed significant in 

vitro activity. The correlation between in vivo and in vitro activity appears to depend on 

the particular library and on the threshold chosen to define activity, where mutations at 

the different positions have differing effects on the overall properties of the enzyme. 

Mutations that support catalytic activity 

Position 115 tolerated the greatest number of mutations. The active variant V115P 

was previously reported in the highly homologous mouse DHFR (mDHFR) but was 

unstable,27 and its hDHFR counterpart was incompatible with bacterial propagation in 

this study. Positions 7 and 15 tolerated only a restricted subset of conservative mutations. 

Gly15, located farther from the active site than the other targeted residues, tolerated the 

conservative mutation G15A. The only reported mutation of hDHFR at position 15, 

G15W, was described as active but unstable.20 This is consistent with it having been 

identified in the 1st-tier bacterial selection but eliminated in the 2nd-tier in vitro assay.  

Position 7 tolerated only the conservative mutations I7L and I7V. As in the case of 

Val115, the main-chain carbonyl of Ile7 is hydrogen-bonded to MTX but not to DHF.7 

The only active hDHFR mutation previously described at position 7 was I7F.18 This 

mutant was identified in the 1st-tier bacterial selection but was rejected in the in vitro 

assay, its activity being slightly inferior to the chosen threshold. Considering that its 

expression level and solubility were comparable to the WT (data not shown), its low in 

vitro activity is likely a result of its reported instability and its high KM
DHF.18 Because its 

activity in vitro was not negligible, we determined its kinetic parameters using purified 

enzyme (kcat = 2.1 ± 0.1 s-1, KM
DHF = 14.9 ± 3.6 μM; kcat/KM

DHF = 0.16 μM-1s-1), 

confirming the reported data (kcat = 5.0 ± 0.2 s-1, KM
DHF = 20 ± 2.1 μM; kcat/KM

DHF = 0.25 

μM-1s-1).18  The exclusion of this variant following the in vitro assay does not point to 
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disagreement with previous studies but highlights the advantage of comparing all variants 

on the basis of a user-defined threshold for a specific parameter, where only variants 

surpassing that value are considered to be sufficiently fit for a given application.   

Residues Trp24 and Arg70 are highly conserved in various species and are known 

to be important for DHF binding.25,28 Moreover, Arg70 appears to be involved in 

maintaining the structure of the binding site.25 Position 70 tolerated no substitution that 

allowed significant in vitro catalytic activity. The conservative hDHFR mutation R70K 

has been previously described (kcat = 1.75 s-1, KM
DHF = 0.47 μM; kcat/KM

DHF = 3.7 μM-1s-1 

at pH 7.5).25 Its stability was comparable to the WT.25 The mutation R70K was identified 

in the 1st-tier bacterial selection, but was then eliminated in the following step (figure 

3.3A; 2 independent clones tested). Factors such as lower expression level or solubility 

may have contributed to reduce its in vitro fitness below the established threshold. 

Position 24 tolerated the conservative substitutions W24F and W24Y (figure 3.3A). The 

hDHFR mutation W24F was previously described as being compatible with activity 

(KM
DHF increased 25-fold and a 3-fold increase in kcat relative to WT) but its stability was 

3-fold lower than the WT.  NADPH binding was also weakened and the rate of hydride 

transfer was markedly decreased, illustrating its importance for substrate binding and 

catalysis;28 nonetheless, its resulting activity was above the threshold. Mutation W24R in 

mDHFR was reported to be very poorly active,19 and was not tolerated by hDHFR in this 

study (figure 3.3A). 

Overall, the parallel comparison of a large number of mutations of a human gene 

by the rapid means of bacterial propagation was shown to provide a reliable indicator of 

global activity. Further sorting by the 2nd-tier in vitro assay allowed efficient retention of 

the variants that best met the user-specified parameters. The selected variants were 

overwhelmingly in agreement with published data and readily allowed identification of 

novel, active point mutants of hDHFR.  

Selection and screening for MTX resistance 

In parallel with the activity assay, a 2-tier selection strategy was developed to 

identify MTX-resistant hDHFR mutants (figure 3.2B). In the 1st-tier bacterial selection 

step, the 5 libraries were selected on medium containing 1 mM MTX (ATM-1000). MTX 
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inhibits the hDHFR variants that are not resistant, making the survival of bacteria on 

minimal medium dependent on the activity of the hDHFR variants that are active as well 

as MTX-resistant. It should be noted that, despite the increased MTX sensitivity of E. 

coli SK037, it exhibited relatively high intrinsic MTX resistance such that > 200 μM 

MTX was required for efficient bacterial selection. No bacterial growth was observed for 

the negative control expressing only endogenous bacterial DHFR. When the WT hDHFR 

was expressed, very low survival was observed (0.002%), consistent with its sensitivity 

to MTX. Survival of all libraries was low (≤ 0.03%), suggesting that few MTX-resistant 

variants were present and highlighting the importance of verifying the occurrence of 

false-positives. DNA sequencing following selection allowed identification of 2 to 6 

mutations at each targeted position (figure 3.3B).  

The 2nd-tier screening step using the 96-well plate screening assay was used to 

eliminate false positives. The clones identified as being MTX-resistant by bacterial 

selection were assayed for residual activity in the presence of 200 nM MTX (table 3.1) or 

1000 nM MTX (not shown), relative to activity in the absence of MTX. These 2 

concentrations were selected based on IC50
MTX (estimated at 100 μM DHF) for 

previously-characterized, MTX-resistant point mutants: L22Y (IC50
MTX ≅ 2000 nM, 

where KM
DHF = 0.53 µM and Ki

MTX = 10.9 nM);22 L22W (IC50
MTX ≅ 1000 nM, where 

KM
DHF = 0.42 μM and Ki

MTX = 4.31 nM);22 L22R (IC50
MTX ≅ 290 nM, where KM

DHF = 1.6 

and Ki
MTX = 4.57)22 as well as I7F (IC50

MTX ≅ 272 ± 72 nM, this study). The assays were 

conducted using the same cell-lysate dilutions as for the activity test. Cell lysate from 

SK037 expressing no hDHFR or expressing WT hDHFR-pQE32 were used as negative 

controls for MTX-resistance. Previously characterized hDHFR mutants displaying a 

broad range of MTX-resistance levels were used as positive controls: mutant 

F31A/F34V/Q35H (AVH; Ki
MTX= 180 nM), mutant F31R/F34T/Q35R (RTR; Ki

MTX= 86 

nM) and point-mutant F31P (Ki
MTX= 1.7 nM).8 Mutants AVH and RTR showed residual 

activity higher than 40% at both concentrations of MTX tested, consistent with their high 

IC50
MTX under these conditions (4400 nM and 3500 nM, respectively). F31P showed a 

residual activity > 40% at 200 nM MTX but not at 1000 nM, consistent with its IC50
MTX 

under these conditions (110 nM). On the basis of these observations, a threshold of 
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residual activity > 40% at 200 nM MTX was established as being minimally required to 

consider a mutant as MTX-resistant.  

Two mutants from library 115 (V115A and V115C) were effectively resistant to 

MTX on the basis of the threshold (figure 3.3B and table 3.1). These had never been 

previously reported. Other mutants had residual activities higher than WT hDHFR but 

were rejected because these values were below the established threshold. Previously 

reported MTX-resistant mutants of hDHFR I7F18 and R70K25 were identified at the 1st-

tier level but rejected at the 2nd-tier screening as their overall activity in vitro did not 

meet the required criteria, as discussed above. Despite the fact that the purified I7F 

mutant was effectively MTX-resistant, with a Ki
MTX = 31.9 ± 8.5 nM ( > 1000-fold 

increase relative to WT), the > 200-fold increase in KM
DHF 18 and/or further modified 

properties contributed to decrease in vitro activity below the established threshold. G15W 

has also been reported as being MTX-resistant but unstable;20 its fitness was too low even 

to allow 1st-tier selection for resistance. 

As a further control for robustness of the strategy, the mutants encoded in library 

115 (18 variants) were all individually tested for residual activity at 200 and 1000 nM 

MTX. The only mutants with a residual activity > 40% in presence of 200 nM MTX were 

V115A and V115C. Thus, the bacterial selection for MTX-resistance yielded no false 

negatives in library 115.  

The IC50
MTX values for all library 115 mutants that showed non-negligible in vitro 

activity were measured in 96-well plates directly from cell lysates (table 3.1 and figure 

3.5A). This assay was less rapid but more precise than the simple assay of residual 

activity. Only mutants V115A and V115C presented an IC50
MTX higher than 200 nM. 

Other mutants (e.g V115L, V115K, V115T and V115G) had an IC50
MTX higher than the 

WT hDHFR but lower than the established threshold of resistance (200 nM MTX). These 

results confirm the validity of relying on the simple indicator of residual activity to 

reliably identify MTX resistance. Thus, the rapid 2-step protocol consisting of bacterial 

selection followed by in vitro measurement of residual activity provided sufficient 

information to identify hDHFR variants satisfying our specific requirements for 

resistance. 
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Screening for modified binding to additional antifolate compounds 

To verify the flexibility of the method, it was applied to testing against the 

antifolate TMP. Because human DHFR is intrinsically resistant to TMP (Ki
TMP WT 

hDHFR = 960 ± 30 nM relative to Ki
TMP WT E. coli DHFR = 0.08 nM)29, we screened for 

increased sensitivity rather than resistance. The 1st-tier bacterial selection step cannot be 

applied to this compound because the endogenous bacterial DHFR will confer bacterial 

growth in absence of TMP. We performed the 2nd-tier in vitro reaction rate 

measurements for library 115 in absence or presence of 0.34 µM and 3.4 µM TMP. As 

mentioned previously, there was no significant background in vitro due to endogenous 

bacterial DHFR. In no case was a significant difference in reaction rates observed, 

indicating that no library 115 variants tested were rendered TMP-sensitive as a result of 

mutation. This confirmed that TMP sensitivity was not the cause of reduced cellular 

propagation in the bacterial selection presented above.  

Preliminary tests were performed to assess resistance to the clinically relevant 

antifolate pemetrexed (PMTX). Pemetrexed inhibits multiple folate-utilizing enzymes, 

including thymidylate synthase and hDHFR4. Because bacterial selection using 

pemetrexed could not be interpreted solely on the basis of hDHFR resistance, only the 

2nd-tier in vitro screen was performed. Active clones from the 5 libraries considered in 

this study were assayed in crude lysate for residual activity in the presence of 5 µM 

PMTX (table 3.1) or 20 µM (not shown) PMTX, relative to activity in the absence of 

PMTX. These concentrations were selected based on the value of IC50
PMTX ≅ 0.75 ± 

0.3μM determined for the purified WT hDHFR. Using the same negative controls as for 

MTX-resistance, mutants with residual activity significantly greater than the WT residual 

activity at 5 µM PMTX were considered PMTX-resistant (table 3.1). Screening results 

suggest that, as for MTX, variants V115A and V115C may be PMTX-resistant. Variants 

V115L and V115I also showed potential PMTX resistance according to residual activity.   

Kinetic and inhibition parameters of the novel antifolate-resistant mutants 

The WT and the novel MTX and/or PMTX-resistant mutants (V115A and V115C, 

V115I, V115L) identified in the 2nd-tier screen were expressed, purified to 90-95% 

purity and characterized according to their kinetic and inhibition parameters (table 3.2). 
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Their expression levels were comparable, and as for WT hDHFR, mutants were 

approximately 50% soluble (data not shown). Catalytic efficiencies (kcat/KM
DHF) for 

variants V115A and V115C were reduced by approximately 700 and 1400-fold, 

respectively, relative to WT. KM
DHF for V115A and V115C was increased at least 100-

fold relative to WT while turnover (kcat) was reduced only 4 and 15-fold, respectively, 

relative to WT. The inhibition constants confirmed that both variants were effectively 

MTX-resistant, having Ki
MTX = 20 nM, which is > 600-fold higher than the WT and 

compares favorably to the well-characterized resistant point mutant L22Y (Ki
MTX = 10.9 

nM).22 It should be noted that IC50
MTX for V115A and V115C from crude lysate or in 

purified form were comparable (table 3.1 and table 3.2; figure 3.5). This demonstrates 

the accuracy of the rapid determination of IC50
MTX directly from cell lysate in the 96-well 

plate format. Variants V115A and V115C were also shown to be PMTX-resistant as their 

Ki
PMTX values were > 250-fold greater than the WT hDHFR.  

Variant V115L showed ~ 5-fold increase in IC50
MTX relative to WT (table 3.1; 

table 3.2), which was below our user-defined threshold for resistance. Nonetheless, 

determination of its Ki
MTX confirmed that it confers MTX-resistance, albeit at a lower 

level than variants V115A and V115C (table 3.2). This variant showed the greatest 

increase in Ki
PMTX, with a > 700-fold increase relative to WT. Taken with the results for 

variant V115A, which shows high MTX resistance and moderate PMTX resistance, our 

results suggest that variants at position 115 may confer a differential degree of resistance 

to the specific antifolates tested, despite the structural similarity of the compounds. We 

are pursuing more detailed studies relative to this question. 

Variant V115I was not MTX resistant but was identified as being potentially 

PMTX resistant according to residual activity (table 3.1). However, further analysis 

demonstrated that it is not PMTX resistant and thus constitutes a false-positive hit from 

the second-tier residual activity screen. 
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CONCLUSIONS 

An efficient 2-tier selection strategy was applied to the selection of active and 

MTX-resistant hDHFR variants from 5 hDHFR libraries created by saturation 

mutagenesis of active-site residues. This allowed, for the 1st time, exhaustive screening 

and identification of mutations compatible with hDHFR activity at these positions. The 2 

tiers showed reliability and complementarity with respect to identification of active 

hDHFR variants. The 1st-tier bacterial selection results of library 115 confirmed that the 

most frequently selected variants conferred better survival rates. All selected mutants 

from library 115 were also active in the 2nd tier, in vitro assay. Because the 2nd-tier 

assay has user-defined parameters, varying the threshold for activity or the assay 

conditions (substrate and cofactor concentrations) will yield additional information 

relative to the effect of mutations on catalytic activity. In general, where active, stable 

and soluble variants have been reported, they were selected in the 2nd-tier activity assay, 

further validating the selection strategy. Thus, the bacterial selection for activity was 

shown to be robust and the in vitro screening allowed rapid preliminary kinetic 

characterization of novel active hDHFR variants. 

The addition of MTX to the 2-tier procedure allowed identification of MTX-

resistant point mutants at these positions, among which 2 are novel variants. There was 

no evidence of false-negatives upon bacterial selection. False-positives were readily 

eliminated upon in vitro screening, for which the IC50
MTX values obtained from crude 

lysate were comparable to those obtained with purified enzyme. The concentrations of 

MTX for tests of residual growth were set by the operator and determined the extent of 

resistance that was sought. In this work, the concentrations of MTX were selected 

according to properties of previously-characterized point mutants, since our aim was to 

match or surpass that level of resistance. By increasing the threshold, only the most 

highly resistant mutants would be identified.  

The method described is ideal for screening large libraries, the 1st-tier bacterial 

selection being high-throughput and the 2nd-tier assay allowing rapid detection of the 

best variants among the leads, according to user-defined parameters. The approach has 

proven efficient in rapidly assessing key kinetic parameters in enzyme variants. Simple 
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modification of the protocol readily allowed screening against further compounds; 

preliminary screening has allowed identification of three novel pemetrexed-resistant 

variants by this approach. The 2-tier strategy should also prove adaptable to screening 

other metabolically-essential enzymes that can complement a bacterial strain rendered 

metabolically deficient via chemical or genetic methods, and where a colorimetric or 

fluorogenic assay can reliably report activity in crude bacterial lysate.  
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Table 3.1. Reactivity (kcat) and MTX or PMTX resistance determined in 96-well 

plates using crude lysates of active hDHFR variants from library 115. 

Library 115 

variants a 

kcat relative to 

WT 

Residual activity (%) 

at 200 nM MTX b 

IC50
MTX 

(nM) c 

Residual activity (%) 

at 5 μM PMTX d 

V (WT) 1 11 20 ± 12 30 

I 5.0 8 0.4 ± 0.3 49 

M 0.68 12 19 ± 4 11 

C  0.27 67 400 ± 69 51 

L 0.45 30 130 ± 25 80 

A 0.27 49 220 ± 17 50 

F 0.23 –  e 47 ± 41 –   

Y 0.29 18 38 ± 8 16 

T 0.94 35 76 ± 13 30 

S 0.35 24 76 ± 7 22 

K 0.33 34 96 ± 18 28 

G 0.21 30 67 ± 5 30 

Q 0.024 –   27 ± 7 –   

N 0.020 –   51 ±18 –   

 

Variants are grouped according to frequency of bacterial selection for activity (figure 3.4). 
a IC50

MTX could be calculated only where a non-negligible kcat was recorded. 
b Variants in bold-type were considered MTX-resistant according to the user-defined threshold of 
residual activity at 200 nM MTX being greater than 40%, as defined under Results. 
c Mean ± SD; n = 3. Variants in bold-type were considered MTX-resistant according to the user-
defined threshold of IC50

MTX ≥ 200 nM, as defined under Results. 
d Variants in bold-type were considered PMTX-resistant according to the user-defined threshold 
of residual activity at 5 µM PMTX being significantly greater than the WT residual activity. 
e ‘-’ indicates that activity was not detectable. 
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Table 3.2. Kinetic and inhibition constants a of purified MTX or PMTX-resistant hDHFR mutants.  

hDHFR 

variant  
kcat (s

-1) 
 KM

DHF(μM) 
kcat/KM

DHF 

 (μM-1 s-1) 

IC50
MTX (nM) Ki

MTX 
 (nM) 

IC50
PMTX 

(μM) 

Ki
PMTX 

 

(nM) 

Wild-type  10 ± 2.0 < 0.075 > 138 41 ± 14 < 0.031 0.75 ± 0.3 < 0.5 

V115C 0.65 ± 0.02 7 ± 1 0.1 330 ± 29 20 ± 4 4.3 ± 1.6 283 ± 44 

V115A 2.8 ± 0.2 15 ± 2 0.2 150 ± 18 20 ± 5 1 ± 0.3 131 ± 87 

V115L ND b 4 ± 0.5 ND 190 ± 60 7.3 ± 2.7 9 ± 4 378 ± 118 

V115I 1.3 ± 0.05 < 1 > 1.3 20 ± 8 < 0.2 0.2 ± 0.03 < 2 

 
a Mean ± SD; n = 3 except for mutant V115L where n = 2. 
b ND: not determined 
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Figure 3.1. (A) Structures of folate (1DRF.pdb) and MTX (1U72.pdb) bound to hDHFR 

active site, with atom numbering. (B) The active-site area of hDHFR with bound MTX 

(1U72.pdb), illustrating the residues targeted for saturation mutagenesis (yellow sticks) as 

well as residues mutated in a previous study8 (white sticks). 
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Figure 3.2. Flow-chart of the two-tier strategy to select mutated hDHFR library 

variants for A) catalytic activity or B) methotrexate (MTX) resistance. The first-tier 

selection relies on bacterial propagation in the presence of trimethoprim (TMP). Colonies 

are picked into 96-well plates for second-tier screening using crude bacterial lysate. 

 



 

 

113

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Comparison of hDHFR mutations that allow for conservation of activity 

(A) or MTX resistance (B) on the basis of the two-tier selection strategy. Residues 

subjected to mutagenesis are depicted relative to the WT hDHFR primary sequence. Above 

the sequence are the mutants identified in the first-tier bacterial selection. The size of the 

font is related to the frequency of occurrence in the selection: small (< 10 %), medium (10 

to 30%), large ( > 30%). Below the sequence are the mutations identified in the second-tier 

in vitro assay. Clones with (A) > 2-fold the in vitro activity of the negative control were 

considered active and clones with (B) residual activity > 40% at 200 nM MTX were 

considered MTX-resistant.  Mutations at each targeted position are grouped as follows: 

small, hydrophobic (first column); aromatic (second column); polar and charged (third 

column). The WT residue at each targeted position is shown in grey.  
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Figure 3.4. The two-tier selection results for library 115. (A) Comparison of the 

frequency of occurrence of mutations following bacterial library selection (black bars) and 

bacterial survival rates from plating individual variants (grey bars). Variants T, S, K, G, Q 

and N showed negligible selection rates (between 0.02 % and 0.002 %) while variants W, 

H, R and P were not selected (= 0). All variants showing in vitro activity (see Panel B) 

were individually plated. (B) Frequency of occurrence of mutations following bacterial 

library selection (black bars) and kcat relative to WT (Val115) for individual variants (grey 

bars). Variants D and E were not individually tested. 
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Figure 3.5. IC50
MTX concentration-response curves (mean ± SD; n = 3) of WT hDHFR (■), 

V115A (●) and V115 C (▲) using (A) crude lysate or (B) purified enzyme. 
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Section 3.2 - Erratum corrigendum  

Kinetic investigation with a new inhibitor allowed identification of a mistake 

occurred during previous characterization of mutant hDHFR V115L. Corrected values for 

V115L are  

KM
DHF < 0.1 μM,  

KiMTX < 0.048 nM 

KiPMTX < 2.3 nM 

The mistake was due to erroneous interpretation of the kinetic data due to a very low 

signal. The mutant was repurified from two different clones and characterized in 

triplicate. For the characterization of KM
DHF 10-cm quartz cells were used to amplify the 

signal. 

As a consequence of the correction, V115L, like V115I, was found to be a false 

positive for MTX resistance. Substitution of Val115 with both the conservative residues 

Leu and Ile resulted in mutated variants with kinetic and inhibitory parameters 

comparable to those of the native enzyme. The kinetic and inhibition values for all the 

other mutants were confirmed. 

A corrigendum note to JBS is being prepared.  
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Chapter 4 – Binding of fragments of MTX to hDHFR 

 

4.0 - Preface 

In order to better elucidate the determinants of ligand binding in the active site of 

hDHFR, we proposed to correlate the kinetic and inhibitory parameters of hDHFR 

mutants of interest to their structural properties. The kinetic and inhibitory 

characterization of the mutants indentified in this study was described in details in 

chapter 2 and 3. Here, a more detailed structure-function investigation of binding of MTX 

to hDHFR will be described. Productive binding (Ki) of MTX fragments to the native 

enzyme and to four highly MTX-resistant hDHFR mutants will be used as a parameter to 

evaluate how different parts of the inhibitor and different active-site residues contribute 

to the overall binding MTX to hDHFR. 

 

4.1 - Introduction  

Multiple interactions are generated within the enzyme around the ligand’s 

functional groups. These interactions determine selectivity, strength of binding and ligand 

orientation. Do fragments of a ligand bind in the same orientation as the entire molecule? 

If this is the case, a quantification of the relative contributions of individual portions of 

the ligand in binding may offer considerable insight into the principles of drug 

recognition [103, 113, 114]. 

We investigated the relative importance of different parts of the inhibitor MTX in binding 

to the human DHFR by determining their inhibition constants (Ki) for the WT enzyme. 

Moreover, we have begun investigating the relative importance of residues located in 

different areas of the active-site by performing binding studies with these fragments 

towards mutant hDHFRs. The three different MTX fragments considered are illustrated 

in figure 1.7. DAP (2,4-diamino-6-(hydroxymethyl)pteridine) represents the pteridine 

moiety of MTX; DAMPA (4-[N-(2,4-diamino-6-pteridinylmethyl)-N-methylamino] 
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benzoic acid) the N10-methyl p-ABA pteroyl portion; p-ABA-Glu (N-(4-aminobenzoyl)-

L-glutamic acid) the p-ABA-Glu portion.  

Binding studies with MTX fragments DAP and p-ABA-Glu were previously 

reported for the DHFR from Lactobacillus casei [115-117]. On the basis of NMR 

evidence [115] supporting the hypothesis that both DAP and p-ABA-L-Glu bind to the 

enzyme similarly to MTX, Birdsall et al. determined the KD for both DAP (1.28 mM) and 

p-ABA-L-Glu (0.83 mM) and for N-methyl-p-ABA-L-glutamate, which is a fragment 

more similar to MTX than p-ABA-L-Glu (1.05 mM) [117]. Thus, binding of all 

fragments was much weaker than binding of MTX (KD
MTX = 2 pM) [117, 118].  

Preliminary results with DAP and p-ABA-Glu were performed in our group by 

summer student Vanessa Guerrero and PhD student Mirja Krause, respectively (data not 

shown). Their results confirmed that DAP is a weak inhibitor also of hDHFR (IC50
DAMPA 

for WT hDHFR was 16000-fold lower than IC50
MTX, both measured using 100 μM DHF 

in the assay) while p-ABA-Glu does not inhibit hDHFR. Therefore, both DAP and p-

ABA-Glu were not suitable for our purposes and were abandoned.  

Preliminary results for binding of DAMPA to native hDHFR and mutants 

F31R/Q35E (RFE), F31R, Q35E and V115A will be presented and discussed in the 

following paragraphs. 

 

4.2 - Materials and methods 

4.2.1 Reagents and enzymes 

DAMPA was purchased from Sigma. All other reagents were purchased or 

prepared as described in chapters 2 and 3. F31R/Q35E hDHFR and V115A were 

identified as highly MTX-resistant mutants and are described in chapters 2 and 3, 

respectively. Mutants F31R and Q35E were created by site-directed mutagenesis by PhD 

student Jordan Volpato. 



 

 

122

4.2.2 Determination of binding parameters 

Enzyme expression and purification, DHF and NADPH quantification and rate 

measurements were performed as previously described in both chapters 2 and 3. DAMPA 

was dissolved in 0.1 N NaOH and quantified by spectrophotometry (ε370nm = 6568 M-1cm-

1).   IC50
DAMPA were determined in 1-cm cells in the presence of 100 μM of both DHF and 

NADPH and different concentrations of DAMPA: 0, 0.1, 0.5, 1, 5, 10, 50, 200 μM for 

WT and Q35E; 0, 1, 5, 10, 50, 100, 200, 500, 1000 μM for RFE and F31R. Ki
DAMPA was 

calculated from IC50
DAMPA assuming the mode of binding was competitive. IC50

MTX for 

both F31R and Q35E was determined by summer student Vanessa Guerrero using  100, 

350, 800, 1600, 3200, 6400 and 15000  μM and 0, 0.025, 0.05, 0.1,0.5, 1 and 10 μM of 

MTX, respectively. Ki
MTX  for mutants F31R and Q35E were calculated according to the 

equation for competitive inhibitor binding. ΔΔG (kcal mol-1) values were calculated from 

experimental Ki values using the following equation: 

ΔΔG = -RT ln (Ki
mut/Ki

WT)           
R is the molar gas constant and T is the temperature in Kelvin. 

 

4.3 Results and discussion 

Mutants F31R/Q35E (RFE) and V115A were chosen as candidates for this 

preliminary study because they are located in different areas of the active site (therefore 

interact with different parts of the inhibitor) and they both confer high resistance to MTX. 

Mutants F31R and Q35E were created and characterized to evaluate the effect of the two 

individual mutations of RFE on binding of both MTX and DAMPA.  

Results are presented in table 4.1. MTX and its fragment DAMPA differ in that DAMPA 

has no glutamate tail (figure 1.7). The ratio Ki
DAMPA/Ki

MTX was used to describe the effect 

on binding of the glutamate tail, assuming that DAMPA binds similarly to MTX. The 

thermodynamic contribution to inhibition (ΔΔG) is used as quantitative parameter of 

binding. Kinetic characterization of KM
DHF and Vmax in presence of different 

concentrations of DAMPA remains to be performed to determine if this compound is 
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effectively a competitive inhibitor of hDHFR. However, only structural data will confirm 

the precise orientation of the inhibitor in the enzyme’s binding site.  

DAMPA binds very tightly to WT hDHFR (Ki < 2 nM). This result suggests that 

the binding is highly specific and likely to be structurally very similar to MTX binding. 

Ki
DAMPA/Ki

MTX for the native enzyme shows that the lack of the glutamate tail accounts for 

a 60-fold decrease in binding.  

Mutation of residue 115 to Ala decreased binding of MTX and its fragments but, 

surprisingly, the effect on DAMPA was stronger than the effect on MTX. Ki
DAMPA/Ki

MTX  

V115A was 3-fold higher than for the WT. Since residue 115 is located far away from the 

glutamate portion of bound MTX (figure 1.5B), this suggests that distal effects are 

involved in binding the glutamate tail. Since distal effects cannot be detected from 

structural visualization, this result highlights the advantages of the presented approach to 

gain detailed information about binding. 

To evaluate both the contribution of a given mutation taken alone and its contribution in a 

combinatorial context, we built a double mutant cycle for the F31R/Q35E hDHFR 

variant. Table 4.1 and figure 4.1A illustrate that combination of point mutations F31R 

and Q35E in the double mutant F31R/Q35E enhances MTX- and DAMPA-resistance in a 

synergistic fashion, the major contribution resulting from point mutant F31R. Mutation 

Q35E slightly decreases the MTX binding and slightly increases the DAMPA binding. It 

is known that when the inhibitor does not occupy the active site, a sub-domain shift 

brings R70 into contact with Q35 [46]. When DAMPA is bound, it is possible that the 

insertion of a negative charge at position 35 (E35) favours its interaction with R70. In the 

case of MTX, putative repulsive forces between the glutamate tail of the inhibitor and 

E35 may be responsible for the slight increase in Ki
MTX.  

The ratio Ki
DAMPA/Ki

MTX is similar for the WT and for mutant F31R/Q35E. 

However, Ki
DAMPA/Ki

MTX ratios are very different for the point mutants and reflect an 

unpredictable synergistic contribution to the binding in the double mutant (table 4.1 and 

figure 4.1B).  

In conclusion, these preliminary results represent a proof of principle for the 

validity of using the MTX fragment DAMPA to gain further insights on the MTX 
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binding. Kinetic characterization of further mutants of interest, determination of the mode 

of binding by a kinetic approach and structural characterization by X-ray crystallography 

with DAMPA will be performed.  
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Table 4.1. Inhibition constantsa of MTX and DAMPA for WT and selected MTX-resistant hDHFR mutants.  

 MTX DAMPA 
 hDHFR variant 

Ki MTX  (nM) 
ΔΔG 
 MTX 

(kcal mol-1) 

Ki DAMPA  
(nM) 

ΔΔG 
DAMPA 

(kcal mol-1) 

Ki
DAMPA/ Ki MTX   

 WT < 0.031 - < 2  - > 65 

 V115A 20 ± 5 3.8 3500 ± 1200  4.38 175 (3×)b 

 F31R 1.12 ± 0.6 2.1 241 ± 50 2.81 215 (3×) 

 Q35E 0.048 0.26 0.45± 0.26 -0.87 10 (-6×) 

 F31R/Q35E (RFE) 21 ± 11 3.82 921 ± 164 3.59 45 (1×) 
a Mean ± SD; n=3 
b Values in parenthesis indicate the fold of difference relative to the value for the WT enzyme. Thus, they represent the combined effect of 
mutation in the enzyme and lack of the glutamate tail portion in the ligand. 
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Figure 4.1. Comparison of binding of MTX and its fragment DAMPA in the 

double mutant F31R/Q35E (RFE) and the corresponding single mutants F31R and 

Q35E. A) Inhibition constants (Ki) for MTX and DAMPA of hDHFR mutants F31R, 

Q35E and F31R/Q35E hDHFRs relative to WT. B) SAR (structure-activity relationship) 

presented as a double mutant cycle for ligand binding to F31R/Q35E. Each enzyme 

variant is in bold. Values in square brackets indicate the ratio Ki
DAMPA/Ki

MTX for each 

variant. DAMPA and MTX differ by the lack of the glutamate tail in DAMPA (figure 

1.7); thus the difference in binding of DAMPA and MTX reflects the contribution of the 

glutamate tail to binding. Values along the arrows represent the gain or loss in binding 

resulting both from mutation and from absence of the glutamate tail, determined from 

the ratio  Ki
DAMPA/Ki

MTX  for each mutant. Thus, the contribution of each mutation to the 

binding of each compound is revealed. 
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Chapter 5 – Docking for structure-function 

relationship analysis 

 

5.0 Preface 

Structural data are certainly a crucial element for structure-function relationship 

analysis, which is, ultimately, the main goal of this project. Our laboratory has an 

ongoing collaboration with the crystallography group of Prof. A. Berghuis at McGill 

University. The 1.7 Å-resolution structure of mutant F31R/Q35E complexed with MTX 

was recently obtained [119] and collaborative efforts to crystallize the variants 

presenting the greatest resistance in the presence of different relevant ligands are 

currently pursued. However, it is unrealistic to think of crystallizing and resolving the 

structure of many mutant-ligand complexes, because our experience has demonstrated 

that the mutated variants in the presence of various ligands do not readily yield high 

quality crystals. Therefore, it was necessary to identify an alternative, more efficient 

method to consider structural implication of mutations in ligand binding. Molecular 

modeling represents a solution to this problem. Among the modeling approaches 

available to us, we identified the method that best answered to our needs. While energy 

minimization (see chapter 2) is fast and can be informative when the orientation of the 

inhibitor in the binding site is known from structural data, it is not applicable to newer 

ligands for which this information is not available. In this section, the application of 

automated docking to predict ligand binding to the WT hDHFR will be described.  

 

5.1 Introduction  

Automated docking with Autodock 4 is a modeling approach to predict if and how 

small ligands bind to a target protein of known structure [120-122].  While simple 

energy minimization of mutant AVH complexed with MTX suggested reasonable 

insight into the structural causes of a reduced MTX binding (chapter 2) and proved to 
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be an informative approach for that study, we chose to test automated docking as a 

possible tool to predict binding of ligands for which no crystal structures in complex 

with hDHFR exists, such as DHF, PMTX and DAMPA. First, we validated the method 

by performing the docking with ligands for which DHFR-bound structure was available 

(FOL and MTX). Then, we used the same protocol to perform the docking of DHF and 

PMTX. The results of the PMTX binding were unexpected and highlighted the weak 

points of this methodology to perform structure-function analysis. 

 

5.2 Materials and Methods 

5.2.1 In silico automated docking of FOL, DHF, MTX and PMTX 

The starting coordinates were taken from the PDB file 1U72 of WT hDHFR 

complexed with the cofactor NADPH and the inhibitor MTX [22]. The crystallographic 

water molecules and the MTX coordinates were removed directly from the PDB file 

text. All substrates (FOL, DHF, MTX and PMTX) were prepared as PDB files using 

ChemDraw 8.0 and Chem3D 8.0 (CambridgeSoft Corporation). Energy minimization 

of ligands conformations was performed using the integrated MM2 energy 

minimization script of Chem3D.  

Automated docking runs were performed using the AutoDock 4 free software 

package (Scripps). Both the macromolecule (WT hDHFR complexed with NADPH) 

and the ligand were prepared as recommended by the Autodock protocol. AutoGrid was 

used to generate grid maps centered on the Cα of residue Phe34 and including the 

region that contained the entire folate-binding site and more than half of the NADPH-

binding site (grid point spacing of 0.375 Å). For each ligand tested, 50 docking runs 

were performed using the Lamarckian genetic algorithm [123] and using a starting 

population of 150 random ligand conformations. All other parameters were kept as 

suggested in the Autodock docking protocol. Seven torsions were allowed for each 

ligand (C6-C9, C9-C10, and the five torsions in the glutamate tail assigned by 

AutoTors) in order to allow rotable bonds to rotate. Following docking, clusters were 

evaluated according to the total binding energies calculated by AutoDock 4, and the 
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minimal energy conformation coming from the cluster at the lowest energy was 

retained for analysis. Ligand conformations in each cluster were also analyzed.  

5.3 Results and Discussion 

Docking of MTX and FOL were used to validate the approach, expecting the 

ligand orientation and the critical contacts with the hDHFR active-site residues to be 

similar to existing structural information. MTX binds in the active site with its pteridine 

moiety flipped 180° relative to folate (figure 1.6). Main interactions between the 

ligands (FOL and MTX) and hDHFR were described in chapter 1 and they are listed in 

table 1.1. The crystal structures used as a reference for comparison were 1U72.PDB 

(ternary WT hDHFR⋅NADPH⋅MTX complex)[22] and 1DHF.PDB (binary WT 

hDHFR⋅FOL complex)[18]. 

Autodock analysis is based on positional root mean square deviation (rmsd) of the 

corresponding atoms. The docked conformations are ranked in clusters in order of 

increasing energy. The autoDock’s analysis tool compares all docked conformations 

with one-another, and if two conformations have an rmsd between 0.5 Å and 2.0 Å 

(value set by the operator), they are both stored in the same cluster. Clusters are then 

ranked in order of increasing energy from the most negative to the most positive. The 

clustering results are indicated in table 5.1. In addition, conformations in table 5.1 are 

classified on the basis of the orientation of their pteroyl moiety.  

5.3.1 Docking of MTX 

The docking result with MTX showed the correct orientation of the ligand in the 

folate binding site and a good prediction of the interactions of MTX with the 

macromolecule (figure 5.1). The docked MTX (conformation of lowest binding 

energy) superimposed well with MTX from 1U72.PDB, the main difference being a 

significant shift of the glutamate γ-COOH towards N64, possibly driven by H-bonding 

interaction with the N64 side chain (figure 5.1). Despite this difference, the docking 

result was considered consistent with the interactions observed in the crystal structure. 

The cluster of lowest energy was constituted by 9 different conformations, 8 of 

which found the pterin 4-amino group oriented towards V115 (4-amino orientation), as 
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observed in the 1U72.PDB crystal structure, and 1 with its 4-amino group flipped (4-

oxo orientation), such as the pterin 4-carbonyl of FOL (1DHF.PDB)( table 5.1). Thus, 

the pteroyl orientation of the majority of docked conformations in the cluster of lowest 

energy correlated well with the structural data. 

5.3.2 Docking of FOL 

The FOL ligand was docked into 1U72.PDB, and not into 1DHF.PDB, because we 

wanted to evaluate the effects of the docking of a ligand to a structure other than the 

one from which it had been stripped out.   

Superimposition of the docked FOL (conformation of lowest binding energy), 

1U72.PDB and 1DHF.PDB (figure 5.2) showed that the orientation of the molecule 

was, as expected, similar to the one observed in 1DHF.PDB, with the 4-oxo group 

pointing in the opposite direction compared to the 4-amino group of MTX. A rotation 

and an upwards shift of the FOL pteridine ring relative to both FOL from 1DHF.PDB 

and MTX from 1U72.PDB was observed. This was possibly due to ring stacking 

interactions with the nicotinamide ring of NADPH, which is missing in the 1DHF.PDB 

crystal structure. Following the docking, interactions with residues F31 (not shown in 

figure 5.2), N64 and R70 of the enzyme were all maintained. Again, the result of the 

modeling was consistent with the observed structural data. 

Although the conformation of lowest energy was well oriented in the active site, 

the clustering results were poor. In fact, the cluster of the lowest energy was constituted 

by only 3 different conformations, 2 of which found the pterin 4-oxo group oriented 

towards W24 and E30 (4-oxo orientation), as observed in the crystal structure 

1DHF.PDB, and 1 with its 4-oxo group oriented towards V115 (4-amino orientation), 

like the pterin 4-amino group of MTX (table 5.1).  

5.3.3 Docking of DHF 

The instability of this compound, which is readily oxidized to folate, makes 

impossible to crystallize it within the folate-binding site, making the docking an 

interesting alternative to better understand the DHF binding. 

Following the docking, the orientation of the 4-carbonyl group of the conformation 

at lower energy was, as expected, the same as the FOL 4-oxo group. Most of the 
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docked conformations which entered the active site were in the expected 4-oxo 

orientation (table 5.1). However, the interactions with N64 and R70 were not 

preserved, due to a rotation of the p-ABA-Glu carbonyl and an inversion of α-COOH 

and γ-COOH of the glutamate tail (figure 5.3). The pteridine ring was positioned 

similarly to the pteridine ring of the docked FOL (result not shown in figure 5.3). 

Although it is likely that the p-ABA-Glu portion of bound FOL and DHF are oriented 

in the same way, important differences were observed following the docking, especially 

if we reason in the context of a SAR study.  

5.3.4 Docking of PMTX 

PMTX (figure 1.7) is a novel antifolate that inhibits the activity of human DHFR, 

as well as human thymidylate synthase (hTS) and to a lesser extent the purine 

biosynthesis enzymes GARFT and AICARFT [81]. PMTX contains a pyrrolo-

pyrimidine ring instead of the classical pterin ring and N10 is replaced by a carbon 

covalently bound to a non-polar methyl group. Like FOL, the double-ring moiety of 

PMTX contains a 2-amino and a 4-oxo group, in contrast to MTX, which contains 2,4-

diamino groups. Because of this difference, it has been suggested that PMTX binds the 

active site of hDHFR as FOL does, with the 4-oxo moiety pointing towards residues 

Glu30 and Trp24 [73]. This hypothesis is supported by the observation that 5-

deazafolate (figure 1.7), which is also a 4-oxo pteridine system and is structurally 

similar to both FOL and PMTX, binds in the same orientation as FOL [18]. Moreover, 

using molecular modeling, Gangjee A. et al. [73] suggested that PMTX binds to DHFR 

in the same orientation as FOL.  

Unexpectedly, the lowest energy conformation from the docking showed an 

orientation of the 6-5 ring-fused pyrrolo[2,3-d]pyrimidine moiety  similar to that of 

MTX, with the PMTX 4-carbonyl group and the MTX 4 –amino group pointing in the 

same direction (figure 5.4). Out of the 11 docked conformations in the cluster at lowest 

energy, 7 were in the 4-amino orientation and 4 in the 4-oxo orientation. Of the other 11 

conformations that docked into the FOL binding site, all bound in the 4-oxo mode 

(table 5.1). Unfortunately, due to the statistical representation of both orientations, it 

was impossible to make conlcusions on the binding mode of PMTX. The PMTX 
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modeling study from Gangjee A. et al.[73] was performed using Sybyl 6.3, but the 

modeling approach they used and the results were not described, so we could not 

compare our results with theirs. 

  

5.4 Conclusion 

All ligands tested efficiently entered the folate binding-site and overall results for 

MTX and FOL docking were relatively accurate. The results with PMTX were in 

disagreement with the previous modeling results from Gangjee A. et al.[73], the 

conformation at lowest energy being in the 4-amino orientation. In the absence of a 

strong modeling evidence, structural data will be required to elucidate the binding 

orientation of PMTX. Our lab is currently working to obtain this information in 

collaboration with the group of Prof. A. Berghuis (McGill University). 

While automated docking is certainly a valuable tool to identify the inhibition 

potential of new molecules [124], it is also true that small differences can lead to 

erroneous interpretations when SAR (Structure-Activity Relationship) is the ultimate 

goal of the docking.  AutoDock 4 ranks ligand conformations in clusters by calculating 

binding energies on the basis of its scoring function [123]. Depending on the size of the 

ligand and the number of torsion angles allowed, it is possible to obtain a high number 

of clusters containing a small number of significantly different conformations. Docking 

can certainly be a useful tool for SAR when little structural information is available, but 

a careful analysis of clustering number, energies, and ligand conformations should be 

taken into account. Although we do not exclude the possibility of using AutoDock in 

the future for similar SAR applications, in the case of PMTX we prefer obtaining 

structural evidence before speculating on PMTX binding properties and effects of 

hDHFR mutations on binding. 
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Table 5.1. Docking clustering: orientation of the pteroyl ring in the active site 

 

Docked 
substrate 

Known or 
expected 

orientation 

Number 
of 

clustersa

Conformations 
in 4-oxo 

orientation 

Conformations 
in 4-amino 
orientation 

Conformations 
outside the active 

sited 

MTX 
 

 

 

 

4-amino 
orientation[22] 30 

1_6b; 2_1; 2_2; 
6_1; 6_2; 7_1; 

8_1; 9_1; 10_1; 
10_2 

1_1c-1_5; 
1_7-1_9; 

24_1 
 

3_1; 4_1-4_3; 5_1; 
11_1; 12_1; 13_1; 
14_1; 14_2; 15_1; 

15_2; 16_1; 
17_1-17_4; 

18_1; 19_1; 20_1; 
21_1; 21_2; 22_1; 
23_1; 25_1; 26_1; 
26_2; 27_1; 28_1; 

29_1; 30_1 
 

FOL 4-oxo 
orientation[18] 23 1_1; 1_3; 4_1; 

12_1; 14_1 1_2; 2_1; 2_2 

3_1-3_4; 5_1-5_5; 
6_1; 6_2; 7_1; 

8_1-8_5; 9_1; 9_2; 
10_1; 11_1-11_4; 
13_1; 13_2; 14_2; 
15_1; 16_1; 16_2; 
17_1; 18_1-18_4; 
19_1; 19_2; 20_1; 
20_2; 21_1; 22_1; 

23_1 

DHF 4-oxo 
orientation 25 

1_1-1_7; 
2_1-2_4; 7_1; 

18_1 
19_1 

3_1-3_4; 4_1-4_6; 
5_1; 5_2; 6_1; 

8_1-8_3; 9_1-9_3; 
10_1; 11_1-11_4; 
12_1; 13_1; 14_1; 
15_1; 16_1; 17_1; 
20_1; 21_1; 22_1; 
23_1; 24_1; 25_1 

PMTX 4-oxo 
orientation 12 

1_5; 1_8-1_10; 
3_1; 3_2; 
4_1-4_6; 
5_1-5_3 

1_1-1_7; 
1_11 

 

2_1-2_6; 6_1; 
7_1-7_7; 8_1-8_6; 

9_1-9_4; 10_1; 11_1; 
11_2; 12_1 

a  Cluster: group of docked conformations with rmsd between 0.5 Å and 2.0 Å.   
b 1_6: docked conformations are indicated on the base of the cluster they belong (number in bold) 
and their ranking energy within the cluster (number in normal style). 
c docked conformation of lowest energy is underlined.   
d docked conformations that docked outside the folate binding pocket. 
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Figure 5.1. Docking of MTX into WT hDHFR⋅NADPH. Superimposition of 

docking result (MTX conformation of lowest binding energy) and 1U72.PDB (ternary 

complex WT hDHFR⋅NADPH⋅MTX). Docked MTX is in yellow. MTX from 

1U72.PDB is in magenta. Active-site residues I7, V115, Y121, R70 and N64 from 

1U72.PDB are highlighted as reference points. The 4-amino of docked MTX is circled 

in red. The γ-COOH of the glutamate tail of MTX is circled in black.  
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Figure 5.2. Docking of FOL into WT hDHFR⋅NADPH. Superimposition of docking 

result (FOL conformation of lowest binding energy), 1U72.PDB (ternary complex WT 

hDHFR⋅NADPH⋅MTX) and 1DHF.PDB (binary complex WT hDHFR⋅FOL). Active-

site residues I7, V115, Y121, R70 and N64 and the NADPH nicotinamide ring from 

1U72.PDB are highlighted.  The 4-oxo group of docked FOL is circled in red. A) 

Docked FOL is in yellow and FOL from 1DHF.PDB is in green. B) Docked FOL is in 

yellow and MTX from 1U72.PDB in magenta.  
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Figure 5.3. Docking of DHF into WT hDHFR⋅NADPH. Superimposition of docked 

DHF (conformation of lowest binding energy), 1U72.PDB (ternary complex WT 

hDHFR⋅NADPH⋅MTX) and 1DHF.PDB (binary complex WT hDHFR⋅FOL). Active-

site residues V115, R70 and N64 and the NADPH nicotinamide ring from 1U72.PDB 

are shown as reference points. Docked DHF is in yellow. FOL from 1DHF.PDB is in 

green. The 4-oxo group of docked DHF is circled in red. 
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Figure 5.4. Docking of PMTX into WT hDHFR⋅NADPH. Superimposition of 

docked PMTX (conformation of lowest binding energy) and 1U72.PDB (ternary 

complex WT hDHFR⋅NADPH⋅MTX). Active-site residues I7, V115, Y121, R70 and 

N64 and the NADPH nicotinamide ring from 1U72.PDB are shown. Docked PMTX is 

in yellow. MTX from 1U72.PDB is in magenta. The 4-carbonyl group of docked 

PMTX is circled in red. 
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Chapter 6 – Conclusions and perspectives 

 

In order to better understand the determinants of ligand binding, we applied 

directed evolution to the human DHFR, a well-characterized and clinically relevant 

enzyme which is an important target for the treatment of human proliferative diseases. A 

combined approach based on kinetic analysis, structural visualization and molecular 

modeling was used to begin a structure-activity relationship study.  

 

First, we targeted different active-site residues (PhD student Jordan Volpato) and 

we mutated them, generally by saturation mutagenesis. Different combinatorial libraries 

(mutagenesis at multiple sites) were also created in the laboratory, of which only library 

31/34/35 created by Jordan Volpato was described in chapter 2.  

Then, we developed an efficient two-tier bacterial and in vitro selection strategy 

to identify mutants presenting the phenotypes of interest: activity (DHF binding) and 

antifolate resistance (reduced enzyme inhibition). Following the screening, we obtained 

new functional information regarding the targeted residues, which was the goal of the 

proposed work. Position 115 is relatively permissive to mutations that conserve activity. 

All substitutions were hydrophobic (Ile, Leu, Ala, Tyr, Phe, Met) or had no H-bonding 

capacity (Cys). This feature appears to be required to preserve the activity. Novel MTX-

resistant mutants V115A and V115C were identified. The reduced hydrophobic contact 

surface of Ala and Cys appears to a have a greater impact on the MTX binding (= 

resistance) than on the DHF binding (= maintenance of activity), and therefore confers 

ligand discrimination. Due to its permissivity (many mutations are accepted), residue 115 

is surely an interesting candidate for further studies in a combinatorial context.  In the 

case of Ile7, only highly conservative mutations I7L and I7V preserved activity, 

highlighting the importance of hydrophobicity at this position. No substitutions were 

compatible with activity at position 70. Mutants may have been inactive, poorly 

expressed or unstable. Arg70 is highly conserved across species and was not permissive 
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to mutations; thus, it is likely required for the substrate binding, the structure or both. For 

this reason, it will not be mutated in complex libraries. 

We extended the utility of the screening method to identify further phenotypes of 

interest, like the resistance of mutant hDHFR to other antifolates. To be detected as 

inhibitor-resistant, a hDHFR mutant has to preserve a certain degree of catalytic activity. 

Therefore, in principle, every new antifolate can be tested in vitro towards any identified 

active mutant, as long as the molecule is soluble in the assay conditions. The results for 

PMTX resistance correlated with the ones for MTX-resistance, the only two PMTX-

resistant mutants identified being V115A and V115C. However, while mutation V115A 

reduced Ki
MTX 600-fold and affected productive binding of both PMTX and DHF in a 

similar fashion (200-fold decrease effect on Ki
PMTX and KM

DHF, respectively), mutation 

V115C reduced KM
DHF only 100-fold but Ki

MTX and Ki
PMTX of about 600-fold. Therefore, 

independently of the orientation of the PMTX pterin ring, for which structural data is not 

available, it appears that residue 115 can effectively offer some degree of ligand 

discrimination. Variants that are mutated at other active site positions will be screened 

against PMTX to verify the occurrence of ligand discrimination at specific areas. 

We have begun to build a SAR (Structure-Activity Relationship) with MTX, by 

investigating the binding of its constituent fragments DAP, p-ABA-Glu and DAMPA. 

Preliminary tests confirmed that, of the three tested fragments, only DAMPA efficiently 

inhibits WT hDHFR.  The lack of the L-glutamate portion of MTX accounted for a 65-

fold reduced inhibition (Ki
DAMPA/Ki

MTX for WT hDHFR). Mutation of residue 115 

(V115A), which is located far from the glutamate tail of the bound MTX, unexpectedly 

affected the binding of DAMPA, showing the importance of distal effects that cannot be 

visualized from the structure. Characterization of the double mutant F31R/Q35E (RFE) 

and of its constituent point mutants showed unpredictable synergistic contribution to the 

binding in the double mutant  

Finally, we performed in silico mutagenesis coupled with energy minimization to 

compare the predicted structure of the highly MTX-resistant triple mutant 

F31A/F34V/Q35H (AVH) to the native enzyme. Modeling suggested that an increased 

cavity volume lies at the root of the weakened ligand binding. The method is simple and 

allows postulating of reasonable structural hypothesis by correlating structural 
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visualization and kinetic/inhibitory parameters. We also used an automated docking 

approach to predict the binding of DHF and PMTX, for which structural data are not 

available. Although this remains a possible tool to test the inhibitory potential of a 

molecule, it is probably not precise enough for SAR studies.  

Currently, we are attempting to obtain a crystal structure of WT hDHFR 

complexed with PMTX (Jordan Volpato and Mirja Krause) to observe the orientation of 

its pyrrolo-pyrimidine moiety in the active site, information for which the current 

modeling results are contradictory.     

In conclusion, we developed an efficient approach to identify active and 

antifolate- resistant mutants of hDHFR and we have begun collecting structure-function 

information that will contribute to the development of highly specific drugs for this 

enzyme. Combinatorial libraries which target different areas of the active site and 

different antifolates will be screened and characterized in order to build a molecular map 

of the determinants of the ligand binding in the hDHFR active site. A BioMek bench-top 

robotic liquid-handler will be installed in the laboratory, allowing a larger number of 

variants to be characterized and a larger number of variables (substrate and inhibitor 

concentrations) to be examined. Kinetic characterization for inhibitor fragments and 

structural characterization both by X-ray crystallography and by modeling will be used as 

principal tools to reach the ultimate goal of a better understanding of the ligand binding. 

As complementary approach, STD-NMR (saturation transfer difference NMR)[125, 126], 

a NMR technique that allows the identification of the proximity of ligand atoms to the 

protein surface,  should also be considered as a tool for SAR studies.  
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