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Résumé

En employant des méthodes de la théorie de Chern-Weil, Reznikov produit une condition suf-

fisante qui assure la non-trivialité de la projectivisation P(E) d’un fibré vectoriel complexe en

tant que fibré Hamiltonien. Dans le contexte de la quantification géométrique, Savelyev et She-

lukhin introduisent un nouvel invariant des fibrés Hamiltoniens avec valeurs dans la K-théorie

et étendent le résultat de Reznikov. Cet invariant est donné par l’indice d’Atiyah-Singer d’une

famille d’opérateurs Spinc de Dirac. Dans ce mémoire, on s’intéresse à des fibrés Hamiltoniens

résultant d’un produit fibré et d’un produit cartésien d’une collection de fibrés projectifs complexes

P(E1), · · · ,P(Er). En usant des mêmes méthodes que Shelukhin et Savelyev, on définit une famille

d’opérateurs Spinc de Dirac qui agissent sur les sections d’un fibré de Dirac canonique à valeurs

dans un fibré pré-quantique. L’indice de famille produit un invariant de fibrés Hamiltoniens avec

fibres données par un produit d’espaces projectifs complexes et permet de construire des exemples

de fibrés Hamiltoniens non-triviaux.

Mots clés: Fibrés Hamiltoniens, K-théorie, indice de famille d’Atiyah-Singer, quantification géo-

métrique.
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Abstract

Using methods of Chern-Weil Theory, Reznikov provides a sufficient condition for the non-

triviality of the projectivization P(E) of a complex vector bundle E as a Hamiltonian fibration.

In the setting of geometric quantization, Savelyev and Shelukhin introduce a new invariant of

Hamiltonian fibrations and a K-theoretic lift of Reznikov’s result. This invariant is given by the

Atiyah-Singer index of a family of Spinc-Dirac operators. In this thesis, we consider Hamiltonian

fibrations given by the Cartesian product and the fiber product of a collection of complex projec-

tive bundles P(E1), · · · ,P(Er). Using the same methods as Savelyev and Shelukhin, we define a

family of Spinc-Dirac operators acting on sections of a canonical Dirac bundle with values in a

suitable prequantum fibration. The family index gives then an invariant of Hamiltonian fibrations

with fibers given by a product of complex projective spaces and allows to construct examples of

non-trivial Hamiltonian fibrations.

Keywords: Hamiltonian fibrations, K-theory, Atiyah-Singer family index, geometric quantization.

.
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Introduction

A symplectic fibration is a locally trivial fiber bundle with fiber a symplectic manifold (M,ω)

and structure group Symp(M,ω), the group of symplectomorphisms. A Hamiltonian fibration

is a special case of a symplectic fibration for which the structure group can be reduced to the

subgroup Ham(M,ω) of Hamiltonian symplectomorphisms. They are intresting objects of study

in symplectic topology. A characterization of Hamiltonian fibrations appears for instance in the

works of Guillemin-Lerman-Stenberg [9] and Lalonde-McDuff [19] building on previous works

[25] and [20] with Polterovich.

A trivial example is given by the trivial bundle B× (M,ω) over a topological space B. Another

well known example is the complex projective bundle

CPn−1 ↪→ P(E)→ B

given by the projectivization of a complex vector bundle E → B of rank n. Reznikov [26] (and later

on McDuff [23]) showed that this Hamiltonian fibration is not trivial provided for any line bundle

µ over B

Ch(E ⊗µ) ̸=Ch(Cn)

where Ch stands for the Chern character and Cn is the trivial vector bundle of rank n.

Inspired by geometric quantization, Savelyev and Shelukhin [28] define a homotopy canonical

family of elliptic operators between Hilbert bundles over B and introduce a new invariant of Hamil-

tonian fibrations given by the Atiyah-Singer family index. This invariant takes values in K(B), the

K-theory of the base and leads to an extension of Reznikov’s result.

Theorem A. (Theorem 1.2, [28]) Let E be a complex vector bundle of rank n over a topological

space B. Then P(E) is not trivial as a Hamiltonian fibration if E ⊗ µ is not stably trivial for any



line bundle µ over B. That is,

[E ⊗µ] ̸= [Cn] ∈ K(B) ∀µ ∈Vect(B).

In this thesis, given a collection of complex vector bundles E1, · · · ,Er over the topological

spaces B1, · · · ,Br, respectively, we consider Hamiltonian fibrations M given by Cartesian products

P(E1)×·· ·×P(Er)→ B1 ×·· ·×Br

and by fiber products

P(E1)×B · · ·×B P(Er)→ B

when there is a common base space B for the vector bundles E1, · · · ,Er.

For each symplectic manifold (M,ω), a prequantum space is a 4-tuple M̂ = (L,M,∇,ω) con-

sisting of a Hermitian line bundle L → (M,ω) equipped with a unitary connection ∇ with curvature

R(∇) =−2πiω.

Using the same methods as in [28], we can associate to a Hamiltonian fibration (M,ω) ↪→ M → B

a family of Spinc-Dirac operators D1
+(M̂,{Jb}b) and an index

[ker D1
+(M̂,{Jb}b)]− [coker D1

+(M̂,{Jb}b)] ∈ K(B).

Here {Jb}b is a family of ωMb-compatible almost complex structures parametrised by B and M̂ can

be viewed as line bundle over M or as a family of prequantum spaces parametrized by B.

In this setting, we formulate extensions of Theorem A to Hamiltonian fibrations with fiber a

product of complex projective spaces.

Results

We will assume that all topological spaces are paracompact Hausdorff and that the vector bun-

dles have constant rank.

Theorem B. Let E1, · · · ,Er be complex vector bundles over topological spaces B1, · · · ,Br, respec-

tively. If (E1 ⊠ · · ·⊠Er)⊗µ is not stably trivial for any line bundle µ on B := B1 ×·· ·×Br then,

the product bundle P(E1)×·· ·×P(Er) over B is not trivial as a Hamiltonian fibration.

Theorem C. Let E1, · · · ,Er be complex vector bundles over the same topological space B. If

(E1 ⊗·· ·⊗Er ⊗ µ) is not stably trivial for any line bundle µ on B, then the fiber product bundle

P(E1)×B · · ·×B P(Er) over B is not trivial as a Hamiltonian fibration.

14



Replacing by r = 1 in Theorem C yields Theorem A. Moreover, given complex vector bundles

E1 and E2 over topological spaces B1 and B2, respectively, we can deduce from Theorem B the

following.

Corollary D. Let B1 and B2 be connected finite CW-complexes and assume that K(B1) or K(B2)

is torsion free. If E1 ⊗µ is not stably trivial for any line bundle µ on B1 then, the product bundle

P(E1)×P(E2) over B1 ×B2 is not trivial as a Hamiltonian fibration.

Structure of the thesis

In Chapter 1, we recall basic definitions and elementary properties of vector bundles and prin-

cipal bundles. We also introduce the notions of connection and curvature on principal bundles.

Chapter 2 aims at defining Spinc-Dirac operators. We begin by introducing Clifford algebras

and natural group structures, namely the Pin, Spin and finally the Spinc groups. Then, we briefly

describe Spinc-structures and complex spinor bundles in order to define Dirac bundles and Dirac

operators. We end the chapter with important properties satisfied by these operators.

Chapter 3 is devoted to K-theory and introduces all the notation and machinery needed for this

thesis. We also discuss briefly the Atiyah-Singer family index.

In Chapter 4, we discuss the prequantization of symplectic manifolds and Hamiltonian fibra-

tions. Then, we introduce the index of a family of Spinc-Dirac operators associated to a Hamilton-

ian fibration together with its prequantum lift.

Finally, in Chapter 5 we prove our main results (Theorem B and Theorem C) and provide

examples as an application. At the end of the chapter, using Theorem B we prove Corollary D .

The appendix recalls important facts about the Dolbeault-Dirac operator.
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Chapter 1

Bundle theory

In this chapter we will discuss general constructions and basic results on bundles with a special

emphasis on vector bundles which will be important in defining the K-group. The reader can refer

to [13] for a thorough discussion on fiber bundles. Unless said otherwise, topological spaces are

always paracompact and Hausdorff and vector spaces will always be finite dimensional.

1.1. Fiber bundles
In the most general terms, a fiber bundle is a family of spaces (isomorphic to a model space F)

which are parametrized by a space B and "glued together" in a consistent way.

Definition 1.1.1. A fiber bundle ξ with fiber F is given by a triple (E,B,π) such that

(1) π : E → B is a continuous surjection.

(2) For any b ∈ B, π−1(b) is homeomorphic to F.

(3) Every b ∈ B admits an open neighbourhood U and a homeomorphism ϕU that makes the

following diagram commute

π−1(U) U ×F

U

ϕU

π projU
.

The topological spaces B and E are called, repectively, the base space and the total space. We

call U a trivialization neighbourhood (domain) and we refer to the set of pairs {(Uα ,ϕα)} as a

local trivialization. Smooth fiber bundles are defined similarly by requiring the trivialization maps

ϕU to be diffeomorphisms, the mapping π to be a smooth surjection and the topological spaces

E, B and F to be smooth.



A section of the fiber bundle π : E → B is a continuous map s : B → E that satisfies π ◦ s = IdB.

The space of (global) sections of E is denoted by Γ(E) or Γ(E,B) to emphasize the base space.

The space of sections of the tangent bundle of a smooth manifold M consists of vector fields and

is denoted by Γ(M) or X(M).

Concrete examples of fiber bundles will be discussed in the following sections. For now, we

will describe two important constructions.

Example 1.1.2. (Cartesian product)

Given two fiber bundles ξ1 = (E1,B1,π1) and ξ1 = (E2,B2,π2) the Cartesian product ξ1 × ξ2 is

the fiber bundle π1 × π2 : E1 ×E2 → B1 ×B2. For each (b1,b2) ∈ B1 ×B2, the fiber is given by

π
−1
1 (b1)×π

−1
2 (b2). We will usually refer to it as the product bundle.

Example 1.1.3. Consider again the product bundle π1 ×π2 : E1 ×E2 → B1 ×B2 in the previous

example and assume B1 = B2 = B. The fiber product of E1 and E2 denoted by E1 ×B E2 is the fiber

bundle defined by the following. The total space E1×B E2 is the set of pairs (e1,e2) ∈ E1×E2 such

that π1(e1) = π2(e2). The projection mapping π : E1 ×B E2 → B is given by π(e1,e2) := π1(e1),

and the fibers are given by products of the fibers over the same point
(

E1

)
b
×
(

E2

)
b
.

This construction extends to an arbitrary number of fiber bundles E1, · · · ,Er over a common

base space B and produces a fiber bundle E1 ×B · · ·×B Er → B.

For any open cover U = {Uα} of the base space B with local trivializations ϕα : E|Uα
→Uα ×F

we have the following homeomorphisms

ϕα ◦ϕ
−1
β

: Uα ∩Uβ ×F →Uα ∩Uβ ×F

which determine mappings to the group of homeomorphisms of F

gαβ : Uα ∩Uβ → Homeo(F)

called transition or clutching functions. Every fiber bundle is completely determined (up to iso-

morphism) by the open cover U and the transition functions {gαβ} and can be recovered by setting

E =
⋃
α

Uα ×F
/

∼

the equivalence relation ∼ is defined by (x, f ) ∼ (x,g−1
αβ

(x) f ) for all (x, f ) ∈ Uαβ ×F . With this

point of view, it becomes easier to impose further structure on bundles. For instance, smooth

transition functions lead to smooth bundles and holomorphic transition functions to holomorphic

bundles.
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1.2. Vector bundles
Vector bundles are a special case of fiber bundles where the fiber is given by a vector space.

Let K be a field (R or C) and B be a topological space.

Definition 1.2.1. A quasi-vector bundle ξ = (E,B,π) is given by

(1) a K-vector space Eb of finite dimension for all b in B.

(2) a topology on the disjoint union E =
⊔

b∈B Eb that induces a topology on each Eb and makes

the projection π : E → B a continuous map.

We will usually denote the quasi-vector bundle by its total space E and refer to the triple-

notation when necessary. Later on when we discuss families of operators, a quasi-vector bundle is

what we will mean by a family of vector spaces.

Consider the quasi-vector bundle ξ = (E,B,π) and assume A is a subset of B. Then, the triple

(π−1(A),π|π−1(A),A) defines a quasi-vector bundle called the restriction of ξ to A and denoted by

ξ |A or E|A. Its total space is a subspace of E and its fibers are simply the fibers of ξ over A. The

bundle E|A can also be defined more formally as an induced bundle.

Let f : A → B be a continuous map. We can define a quasi-vector bundle ( f ∗(E),A,πA) consisting

of pairs (a,e) in A×E such that the following diagram commutes

f ∗(E) E

A B

F

πA π

f

.

The projection mapping πA is given by the projection onto the first entry and F is given by the

projection onto the second entry. The fibers are then simply E f (a) for a in A. In other words, f ∗(E)

is the fiber product space A×B E.

We call f ∗(E) the pullback bundle of E by f or the bundle induced by f . If f is an inclusion

map, then f ∗(E) = E|A. One can define similarly f ∗(E) for a general fiber bundle.

Example 1.2.2. Let V be a vector space and B be a topological space. The quasi-vector bundle

defined by E = B×V with the natural projection πB onto B is called trivial quasi-vector bundle

or simply trivial vector bundle.

Example 1.2.3. Let B be the n-dimensional sphere Sn = {x∈Rn+1 :∥x∥= 1}. For each b∈B define

Eb to be the vector space orthogonal to b. The family of vector spaces E =
⊔

b Eb parametrized by

19



B is a subspace of Sn×Rn+1 and can be endowed with the induced topology which makes E into a

quasi-vector bundle.

Definition 1.2.4. A morphism (F , f ) of quasi-vector bundles µ = (E,B,π) and ν = (E
′
,B

′
,π

′
) is

a pair of continuous mappings F : E → E
′

and f : B → B
′

such that F restricts to a K-linear

morphism on each fiber and the following diagram commutes

E E
′

B B
′

F

π π
′

f

.

If the base spaces of µ and ν are equal, a morphism F between µ and ν will denote the pair

(F , IdB). An isomorphism F is then a bijective map such that the inverse F−1 is continuous.

Definition 1.2.5. A quasi-vector bundle ξ := (E,π,B) is called vector bundle if for every b ∈ B,

there exists a neighbourhood U of b such that ξ |U is a trivial bundle. In other words, there exists

a finite dimensional vector space V and a homeomorphism ϕU : π−1(U)→U ×V such that

(1) ϕy : π−1(y)→V is K-linear for all y in U.

(2) the following diagram commutes

ξ |U U ×V

U

ϕU

π pro jU .

Morphisms of vector bundles are given by Definition 1.2.4. A morphism F of vector bundles

over a common base space B is a morphism (F , IdB).

The rank of a vector bundle (E,B,π) is a locally constant function from B to Z≥0 defined by

b 7→ dim(Eb). A vector bundle is said to be of rank or of dimension n when the fibers have constant

dimension n as vector spaces (i.e. the rank is a constant function on B with value n). This happens

for instance when the base space B is connected.

Remark 1.2.6. A vector bundle of rank n is a fiber bundle with fiber a K-vector space isomorphic

to Kn.

Example 1.2.7. Let us return to Example 1.2.3. The quasi-vector bundle E is in fact the vector

bundle tangent to the sphere T Sn. To show this, it suffices to verifiy the local triviality condition.

Let b ∈ B and consider a neighbourhood of this point

Ub = {x ∈ Sn+1 : ⟨x,b⟩ ̸= 0}

20



where ⟨·, ·⟩ denotes the Euclidean inner product in Rn+1. Then, for all x ∈ Ub we can define the

orthogonal projection of x onto Eb by

y = x−⟨x,b⟩b.

The map ϕUb : π−1(Ub)⊂ T Sn →Ub ×Rn defined by (b,x) 7→ (b,y) is a homeomorphism.

Example 1.2.8. Consider the product bundle π : Grn
k(K)×Kn → Grn

k(K) over the Grassmanian

of k-dimensional subspaces of Kn. The tautological k-dimensional vector bundle Π : γn
k → Grn

k(K)

is the subbundle of Grn
k(K)×Kn which consists of pairs of the form {([x],x) : x ∈ [x]}.

The case K=C and k = 1 is a line bundle γ
n+1
1 →CPn. We will denote this bundle by OPn(−1)

and its dual bundle by OPn(1).

Example 1.2.9. (External Whitney sum and external product) Let E → B and F → C be vector

bundles and let proj1 : B×C → B and proj2 : B×C → C be the projection onto the first and the

second factor, respectively. The bundle defined by

E ⊞F := proj∗1(E)⊕proj∗2(F)→ B×C

is a vector bundle called the external Whitney sum of E and F. Analogously, we can define the

external tensor product of E and F by

E ⊠F := proj∗1(E)⊗proj∗2(F)→ B×C

Proposition 1.2.10. (Proposition 2.7, [14]) Let E and F be vector bundles over B and let G : E →F

be a morphism of vector bundles. If Gb : Eb →Fb is bijective for all b in B, then G is an isomorphism

of vector bundles.

Let F : ξ → η be a morphism of vector bundles with base space B. We say that F is of

constant rank or a strict homomorphism if Fb : π
−1
ξ

(b)→ π−1
η (b) is of constant rank for all b ∈ B.

In general, kerF and cokerF are not vector bundles as the local triviality condition may fail.

The following result provides a sufficient condition ensuring that they are vector bundles.

Theorem 1.2.11. [Theorem 8.2, [13]] For a morphism of vector bundles F : ξ → η , if F is of

constant rank, then kerF , cokerF and ImF are vector bundles.

1.3. Principal bundles, connection and curvature forms
We will discuss briefly some special cases of fiber bundles that we will encounter in this thesis.
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1.3.1. Principal bundles

Let G be a topological group. A continuous right action of G on a topological space M is a

continuous map

ψ : M×G → M

that satifies the following properties:

(1) ψ(x,e) = x ; e is the identity element of G.

(2) ψ(ψ(x,g),h) = ψ(x,ψ(g,h)).

We denote ψ(x,g) by xg or ψg(x) for all x ∈ M and all g ∈ G. A left action can be defined in a

similar way.

Recall that the stabilizer of a point x ∈ M is given by

Stab(x) = {g ∈ G : xg = x}

and the orbit of x ∈ M is the set

Orb(x) = {xg ∈ M : g ∈ G}.

The action of G on M is free if for any x ∈ M the stabilizer is trivial (i.e. Stab(x) = e). In other

words, the mapping G×M → M×M given by (g,x) 7→ (ψg(x),x) is injective. The action is called

transitive if there is only one orbit (i.e. for all x,y ∈ M there is an element g ∈ G for which x = yg).

A topological space with a G-action is called G-space. Let M and N be G-spaces. Then a

mapping f : M → N is said to be G-equivariant if f intertwines the action of G on M with the

action of G on N. Depending on the type of action (left or right) this condition can be phrased as

(1) f (xg) = f (x)g (right-right).

(2) f (gx) = g f (x) (left-left).

(3) f (xg) = g−1 f (x) (right-left).

(4) f (gx) = f (x)g−1 (left-right).

Definition 1.3.1. A fiber bundle π : P → M with a continuous right action of G on P is called

a principal G-bundle if the G-action preserves the fibers and acts freely and transitively on them

(simply transitive action). Moreover, the local trivializations

ϕU : π
−1(U)

∼=−→U ×G

are G-equivariant. The group G is called the structure group of P.
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For any local trivializing neighbourhood (U,ϕU), we can define a mapping

gU := projG ◦ϕU : π
−1(U)→ G.

The G-equivariance property of ϕU means that

ϕU(pg) = (π(p),gU(p)g)

for all p ∈ P and g ∈ G.

Every principal bundle π : P → M can be fully described by an open cover U = {Uα}α and

transition functions

gαβ := gα ◦g−1
β

: Uα ∩Uβ → G

satisfying the cocycle condition

gαβ gβγgγα = 1. (1.1)

Example 1.3.2. A trivial principal G-bundle is simply a product G-bundle

π : M×G → M.

Example 1.3.3. (Principal bundle of orthonormal frames)

Let E be a Riemannian vector bundle of dimension n over an oriented manifold M. Consider the

bundle of oriented orthonormal bases in E. That is, the bundle whose fiber at each point x ∈ M is

given by the set of oriented orthonormal bases of the vector space Ex. This is a principal SO(n)-

bundle denoted by PSO(E).

The action of SO(n) on an (oriented) orthonormal basis p = (v1, · · · ,vn) of Ex is defined by

pg =

(
∑
k

vkak j

)n

j=1

where g 7→ A = (a jk) is given by the matrix representation of SO(n).

1.3.2. Associated bundles

Let π : P −→ M be a principal G-bundle and F be a topological space with Homeo(F) the

group of its homeomorphisms. The group Homeo(F) endowed with the compact-open topology

is a topological group (that is, a group together with a topology that makes the group operations

continuous).
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Given a continuous homomorphism ρ : G → Homeo(F), we can define a new fiber bundle on

M with fiber F . Indeed, consider the free left action of G on P×F given by

ψg(p, f ) := (pg−1,ρ(g) f ) ; g ∈ G, (p, f ) ∈ P×F.

Define P×ρ F := P×F/ ∼ρ where (p1, f1) ∼ρ (p2, f2) if and only if (p1, f1) and (p2, f2) belong

to the same orbit.

The projection P×F → P π−→ M descends to a mapping

πρ : P×ρ F → M.

Definition 1.3.4. The fiber bundle F ↪→ P×ρ F
πρ−→ M is called the bundle associated to P by ρ .

Remark 1.3.5. The transition functions of P×ρ F are given by

ρ ◦gαβ : Uα ∩Uβ → Homeo(F).

Note that by imposing more structure on the fiber F and the homomorphism ρ we could define as-

sociated bundles with more structure. For instance, we could have a smooth bundle with transition

functions

gαβ : Uα ∩Uβ → Diff(F)

where Diff(F) denotes the group of diffeomorphisms of F. Associated bundles can also be defined

similarly with a more general left-action on F.

Example 1.3.6. Let E be an oriented Riemannian vector bundle over M and let P = PSO(n)(E)

be the SO(n)-bundle of positively oriented orthonormal frames. Denote by ρn : SO(n)→ SO(Rn)

the standard representation of the group SO(n). We write
⊗kRn for the k-fold tensor product and

ΛkRn for the k-fold exterior product of the vector space Rn. Then

i. E = P×ρn Rn.

ii. ΛkE = P×Λkρn
ΛkRn.

iii.
⊗k E = P×⊗k

ρn

⊗kRn.

1.3.3. Connections on Principal bundles

We will now see how the structure group of a principal bundle produces by its infinitesimal

action vector fields and a canonical distribution. A choice of "connection" on the principal bundle
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specifies then a complementary distribution in the tangent bundle of this principal bundle. The

reader can refer to Chapter 1 of [27] or Chapter 6 of [29].

Suppose G is a Lie group with Lie algebra g. Recall that the exponential of A ∈ g denoted by

eA is given by γ(1) where γ is the unique homomorphism R→ G (one-parameter subgroup of G)

that satisfies
d
dt
∣∣

t=0

γ(t) = A.

The mapping g→ G defined by A 7→ eA is called the exponential mapping (see [12], Chapter 2 §1).

We can associate to any element A ∈ g a vector field A on P defined at any point p ∈ P by

(A)p :=
d
dt
∣∣

t=0

petA ∈ TpP

The vector field A is called the fundamental (or Killing) vector field generated by A. Define for all

p ∈ P the map

jp : G → P ; g 7→ pg.

Then, differentiating along the curve γ(t) = etA, we have that

( jp)∗A =
d
dt
∣∣

t=0

petA = Ap.

The map g→ X(P) given by A 7−→ A is a Lie algebra homomorphism.

Denote by rg the right translation by g ∈ G and by Ad : G → Aut(G), the adjoint representation of

G given at each g ∈ G by Adg : h 7→ ghg−1.

Proposition 1.3.7. Let G be a Lie group acting on a smooth manifold M on the right. Then

(rg)∗A = Adg−1A. (1.2)

Remark 1.3.8.

(1) The fundamental vector field A vanishes at a point p ∈ P if and only if A is an element of

the Lie algebra Lie(Stab(p)).

(2) If the group G acts smoothly from the right on the manifold P, then

ker
(
( jp)∗

)
e
= Lie(Stab(p)).

Consider a principal G-bundle π : P → M. The differential map

π∗ : TpP → Tπ(p)M

is surjective for all p ∈ P.
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The vertical tangent space at p, denoted by Vp is the subspace ker(π∗)p ⊂ TpP.

Proposition 1.3.9. For all A ∈ g the Killing vector field A is vertical for all p ∈ P and the map

( jp)∗ : g→Vp is an isomorphism.

Definition 1.3.10. For a smooth principal G-bundle P → M, a subbundle H of T P is called a

horizontal distribution on P if T P =V
⊕

H as vector bundles.

In general H is not canonically defined unlike the vertical subbundle V . This motivates intro-

ducing a new structure to specify the horizontal distribution.

Definition 1.3.11. An Ehresmann connection on a principal bundle P is a smooth right G-invariant

horizontal distribution H, that is

(1) For all p ∈ P TpP =Vp
⊕

Hp.

(2) (rg)∗Hp = Hpg.

Suppose H is a horizontal distribution on the total space P of a principal G-bundle π : P → M.

From Proposition 1.3.9, the vertical tangent space Vp can be canonically identified with the Lie

algebra g.

Let σ : TpP →Vp be the projection onto the vertical tangent space Vp along a horizontal distri-

bution Hp. We can then define a g-valued 1-form α on P by

αp := ( jp)
−1
∗ ◦σ : TpP −→ g (1.3)

Theorem 1.3.12. Let H be a right-invariant horizontal distribution on P and let α be the g-valued

1-form defined in (1.3), then the following holds:

(1) For all A ∈ g and for all p ∈ P, αp(Ap) = A.

(2) (G-equivariance) For all g ∈ G, (rg)
∗α = (Adg−1)α .

(3) α is smooth.

Definition 1.3.13. A connection 1-form on a principal G-bundle P → M is a g-valued 1-form α on

P that satisfies conditions (1)-(3) in Theorem 1.3.12.

For a vector bundle endowed with an (affine) connection ∇, there is a natural way of defining a

horizontal distribution on the frame bundle. The following theorem describes the correspondence

between a metric connection ∇ on a vector bundle and a connection 1-form on its orthonormal

frame bundle.
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Theorem 1.3.14 (Proposition 4.4, [22]). A connection 1-form α on the orthonormal frame bundle

PSO(E) of a smooth Riemannian vector bundle E determines a unique connection ∇ by

∇ei =
n

∑
j=1

α̃ ji ⊗ e j (1.4)

for a local family of sections e = (e1, · · · ,en) in Γ(PSO(E)) and a matrix of 1-forms α̃ = e∗α . This

connection is compatible with the metric (metric connection). Conversly, any metric connection ∇

satisfying (1.4) determines a unique connection 1-form.

Definition 1.3.15. Let P be a principal G-bundle with connection 1-form α . The curvature 2-form

of α is a g-valued 2-form given by

Ω = dα +
1
2
[α,α]

where [α,α](v,w) = [α(v),α(w)] for all v,w ∈ Γ(T P).

The curvature 2-form Ω measures the failure of integrability of the horizontal distribution.
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Chapter 2

Dirac operators

2.1. Clifford algebras
Consider a finite dimensinal vector space V over a commutative field K endowed with a qua-

dratic form Q. We call (V,Q) a quadratic space over K.

Let

T (V ) =
∞⊕

k=0

k⊗
V

be the tensor algebra over V and denote by IQ(V ) the two-sided ideal generated by elements

v⊗ v+Q(v)1 for v ∈V .

Definition 2.1.1. The Clifford Algebra Cl(V,Q) associated to the quadratic space (V,Q) is an

associative algebra (with unit) over K defined by the quotient

Cl(V,Q) = T (V )/IQ(V ).

There is a natural embedding V
j

↪−→Cl(V,Q) given by the composition V ↪→ T (V ) ↪→Cl(V,Q)

which can be used to identify V with a linear space in Cl(V,Q). In fact, the Clifford algebra Cl(V,Q)

is generated by V ⊂Cl(V,Q) and the identity with the relation

v.v =−Q(v)1. (2.1)

Moreover, if the characteristic of K is different from 2, then for all v, w ∈V

v.w+w.v =−2Q(v,w)1. (2.2)

Here 2Q(v,w) = Q(v+w)−Q(v)−Q(w) is the polarization of the quadratic form. The relation

(2.1) gives a useful characterisation of Clifford algebras up to isomorphisms.



Proposition 2.1.2. (The universal property of Clifford Algebras)

Let f : V → A be a linear map into a unital associative K-Algebra A such that

f (v)2 =−Q(v)1 (2.3)

for all v ∈V . Then there exists a unique K-algebra homomorphism

f̂ : Cl(V,Q)→ A

that extends f and satisfies f = f̂ ◦ j.

PROOF. Every linear map f : V →A extends to a unique algebra homomorphism F : T (V )→A .

By property (2.3), F vanishes on the ideal IQ(V ). Hence, F descends to an algebra morphism

f̂ : Cl(V,Q)→ A

satisfying f = f̂ ◦ j. Uniqueness is a consequence of the fact that f̂ is uniquely determined on

V ⊂Cl(V,Q) which is a generating set for this Clifford algebra.

Assume B is a unital associative K-algebra such that there is an embedding V
ι
↪−→ B and

any linear mapping g : V → A satisfying property (2.3) extends to an algebra homomorphism

ĝ : B → A such that g = ĝ◦ ι .

Set A := Cl(V,Q) and f := j. Then, there exists a morphism ĵ : B → Cl(V,Q) such that

j = ĵ ◦ ι . A similar argument shows that ι = ι̂ ◦ j which implies the following

ι = ι̂ ◦ j = (ι̂ ◦ ĵ)◦ ι

j = ĵ ◦ ι = ( ĵ ◦ î)◦ j.

The mappings ι̂ ◦ ĵ and ĵ ◦ ι̂ correspond to the identity on V , hence, to the identity mappings IdB

and IdCl(V,Q) on B and Cl(V,Q), respectively. □

Proposition 2.1.2 shows that the Clifford algebras Cl(V,Q) are universal objects with respect to

maps f as defined above. It can be used as an axiomatic definition of Cl(V,Q).

As a consequence of Proposition 2.1.2, there exists a unique automorphism

α : Cl(V,Q)→Cl(V,Q)

called the parity automorphism which extends the map v 7→ −v on V . Since α2 = Id, there is a

decomposition of the Clifford Algebra

Cl(V,Q) =Cl0(V,Q)⊕Cl1(V,Q)
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where for i = 0,1, we denote the eigenspaces of α by

Cli(V,Q) = {φ ∈Cl(V,Q)|α(φ) = (−1)i
φ}; i = 0, 1}.

We note that

Cli(V,Q) . Cl j(V,Q)⊆Cli+ j(V,Q)

where the indices are taken modulo 2. This defines a Z2-grading on Cl(V,Q). We call Cl0(V,Q)

the even part of the Clifford algebra Cl(V,Q) and Cl1(V,Q) the odd part.

Recall that if A and B are Z2-graded algebras

A = A 0 ⊕A 1 and B = B0 ⊕B1,

then we can define a "Z2-graded" multiplication on elements of pure degree (even or odd) by

(a⊗b).(a
′
⊗b

′
) = (−1)deg(b)deg(a

′
)(aa

′
⊗bb

′
).

The resulting algebra denoted by A ⊗̂B is called the Z2-graded tensor product.

Proposition 2.1.3. The Clifford algebra of a direct sum (V1⊕V2,Q1⊕Q2) of two quadratic spaces

is isomorphic to the graded tensor product of their Clifford algebras

Cl(V1 ⊕V2,Q1 ⊕Q2) =Cl(V1,Q1)⊗̂Cl(V2,Q2)

The proof is a simple application of the universal property of Clifford algebras applied to the

mapping

f : V1 ⊕V2 →Cl(V1,Q1)⊗̂Cl(V2,Q2)

(v1,v2) 7→ j1(v1)⊗1+1⊗ j2(v2)

Proposition 2.1.3 implies that the dimension of Cl(V,Q) is 2n for a n-dimensional vector space V .

Note that any basis {ei}n
1 of V generates the Clifford algebra Cl(V,Q) multiplicatively and any pair

of elements ei,e j satisfies the relation

ei.e j + e j.ei =−2Q(ei,e j)1.

Hence, the 2n elements 1,ei1, · · · ,eik for 1 ≤ i1 < · · ·< ik ≤ n and 1 ≤ k ≤ n span Cl(V,Q).

The following example discusses a special type of Clifford algebras defined on real vector

spaces.
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Example 2.1.4. Consider the vector space V = Rr+s endowed with the pseudo-Euclidean qua-

dratic form

Q(x) = x2
1 + · · ·+ x2

r − x2
r+1 −·· ·− x2

r+s. (2.4)

In the sequel, we will denote this quadratic form by Qr,s and the corresponding Clifford algebra

Cl(V,Qr,s) will be denoted by Clr,s. From the discussion following Proposition 2.1.3, the Clifford

algebra Clr,s is generated by a Q-orthogonal basis of Rr+s ⊂Clr,s subject to the relations

ei.e j + e j.ei =

 −2δi j for i ≤ r

2δi j for i > r

It is easy to see from the discussion above that Cl1,0 = Cl1 ∼= C and Cl0,1 ∼= R⊕R. One can

for instance choose linear mappings

f : R1,0 → C

and

g : R0,1 → R⊕R

given by f (e1) = i and g(e1) = (1,−1) and apply Proposition 2.1.2 to conclude.

In fact, the Clifford algebras Clr,s can be explicitly described as matrix algebras over R, C

or H (quaternions). One can refer to Chapter 1 of [22] for more details on the classification of

such algebras. More examples can be constructed using the following proposition which is again

a direct consequence of the universal property of Clifford algebras.

Proposition 2.1.5. The complexification of the Clifford algebra Cl(V,Q) of a real quadratic space

(V,Q) is isomorphic to the Clifford algebra of the complexification of (V,Q)

Cl(VC,QC)∼=Cl(V,Q)⊗C.

Proposition 2.1.6. The Clifford algebra Cl(V,Q) is isomorphic as a vector space to the exterior

algebra ΛV .

PROOF. (Proposition 2.1.6)

Define the mapping

Φ : V →V ∗, v 7→ ιvQ(·, ·).

Here ι denotes the interior product and Q is defined by the relation (2.2)). The mapping

f : V → End(ΛV ), f (v)α = v∧α − ι(Φ(v))α (2.5)
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satisfies the relation

f (v)2
α =−Q(v,v)α, ∀v ∈V ∀α ∈ ΛV.

Proposition 2.1.2 implies the existence of an algebra homorphism

c : Cl(V,Q)→ End(ΛV ).

The composition of f̂ with the evaluation mapping at the identity yields a morphism of vector

spaces

σ = eval(1)◦ c : Cl(V,Q)→ ΛV.

Let e1, · · · ,en be a Q-orthogonal basis of V . For a sequence 1 ≤ i1 < · · · < ik ≤ n the mapping σ

coincides with the mapping

1 7→ 1 ; ei1. · · · .eik 7→ ei1 ∧·· ·∧ eik .

This shows that σ is an isomorphism. □

Remark 2.1.7. For an arbitrary sequence of vectors v1, · · · ,vk ∈V ,

σ(v1. · · · .vk) = v1 ∧·· ·∧ vk mod
⊕
l≥1

ΛV k−2l.

This means that the Clifford multiplication can be viewed as a "lower order perturbation" of the

exterior product.

We will introduce another important mapping. The Clifford Algebra Cl(V,Q) inherits an an-

tiautomorphism called the transpose from the tensor algebra T (V ) which is defined as follows.

Consider the involution v1 ⊗·· ·⊗ vk 7→ vk ⊗·· ·⊗ v1 on T (V ) obtained by reversing the order of

the elements v1, · · · ,vk. Since this map leaves the ideal IQ(V ) invariant, it descends to a morphism

( )t : Cl(V,Q)→Cl(V,Q)

which satisfies (ξ .φ)t = φ t .ξ t . Composing this map with α yields an antiautomorphism

( ) : Cl(V,Q)→Cl(V,Q) ; φ 7→ φ := α(φ t).
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2.1.1. The Pin and Spin groups

We will discuss natural group structures within Clifford algebras. In order to simplify the

notation, we will drop the Clifford multiplication sign (.) in this section. All vector spaces are

defined over R or C.

Consider the group of units of the Clifford algebra Cl(V,Q) defined by

Cl(V,Q)× = {φ ∈Cl(V,Q) : ∃ φ
−1 with φφ

−1 = φ
−1

φ = 1}.

This group is equipped with a natural representation

Ãd : Cl×(V,Q)→ Aut(Cl(V,Q)) , Ãd(φ)[x] = α(φ)xφ
−1 for any x ∈Cl(V,Q)

called the twisted adjoint representation.

Definition 2.1.8. The Clifford group Γ(V,Q) is a subgroup of Cl×(V,Q) defined by

Γ(V,Q) = {φ ∈Cl×(V,Q) : α(φ)xφ
−1 ∈V ∀x ∈V}

= {φ ∈Cl×(V,Q) : Ãd(φ)(V ) =V}.

Proposition 2.1.9. The twisted adjoint Ãd satisfies the following properties:

(1) For any φ ∈ Γ(V,Q), Ãd(α(φ)) = Ãd.

(2) For any v ∈V for which Q(v) ̸= 0 (anisotropic element)

Ãd(v)[w] = w−2
Q(v,w)
Q(v)

v.

That is, Ãd(v) is the reflection about the hyperplane in V orthogonal to v.

(3) If Q is non-degenerate, then the kernel of Ãd : Γ(V,Q)→ Aut(V ) is K∗.1, the multiplicative

group of non-zero multiples of the identity in Cl(V,Q).

PROOF.

(1) For all w ∈V we have that α(w) =−w. Applying α to Ãd(φ)[w] yields

−Ãd(φ)[w] = α(α(φ)wφ
−1)

=−φwα(φ)−1.

In other words,

Ãd(φ)[w] = Ãd(α(φ))[w].
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(2) Since Q(v) ̸= 0 and v.v =−Q(v)1, we have that

v−1 =
−1

Q(v)
v.

Then from this fact and the relation (2.2) we can compute the following

Q(v)Ãd(v)w = Q(v)(−vwv−1)w

= Q(v)(vw
v

Q(v)
)

= (−2Q(v,w)−wv)v

= w−2Q(v,w)v.

(3) If Q is non-degenerate then, we can choose a basis v1, · · · ,vn for V such that for all i, Q(vi) ̸= 0

and for all i ̸= j, Q(vi,v j) = 0. Assume φ ∈ ker(Ãd) then

α(φ)v = vφ , ∀v ∈V.

Writing φ = φ0 +φ1, the even-odd decomposition of φ , yields

φ0v = vφ0 ; −φ1v = vφ1 ∀v ∈V. (2.6)

Using (2.2), φ0 can be expressed as

φ0 = a0 + v1a1

where a0 and a1 are polynomial expressions of v2, · · · ,vn. Applying α shows that a0 is even and

a1 is odd.

Let v = v1 in (2.6) then,

v1a0 + v2
1a1 = a0v1 + v1a1v1

= v1a0 − v2
1a1.

This implies that Q(v1)a1 = 0 and a1 = 0 (since Q(v1) ̸= 0). Hence φ0 doesn’t contain v1.

By induction, one can show that φ0 doesn’t involve any of the generators v1, · · · ,vn. This means

that φ0 ∈K1. Similarly, one can show that φ1 doesn’t involve any of the terms v1, · · · ,vn and since

φ1 is odd, it must vanish. By assumption φ ̸= 0 hence, we may conclude that φ ∈K∗1. □

Consider the mapping

N : Cl(V,Q)→Cl(V,Q), N(φ) = φ .φ (2.7)
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called the norm mapping. Note that α(φ t) = α(φ)t .

From now on, we will assume that Q is a non-degenerate quadratic form.

Remark 2.1.10. Consider the positive definite quadratic form Q(k,0). For any v ∈V ,

N(v) =−v2 = Q(v)1.

Hence N(v) is the square of the Euclidean norm of v in Cl(k,0).

Proposition 2.1.11. For any φ in the Clifford group Γ(V,Q), N(φ) ∈K∗.

PROOF. For any φ ∈ Γ(V,Q), by definition we have that α(φ)vφ−1 ∈V for any v ∈V .

Since the transpose mapping acts as an identity on V , applying the transpose antiautomorphism

yields

(φ−1)tv(α(φ))t = (φ t)−1vα(φ t)

and

(φ t)−1vα(φ t) = α(φ)vφ
−1.

Hence,

v = φ
t
α(φ)vφ

−1(α(φ t))−1

= α(φφ)v(φφ)−1

= Ãd(φφ)[v].

This means that φφ ∈ ker Ãd and by Proposition 2.1.9, this corresponds to an element in K∗.1

(because φφ ∈ Γ(V,Q)). By applying the transpose antiautomorphism which preserves Γ(V,Q),

we deduce that α(φφ) = N(φ) ∈K∗.1. □

Proposition 2.1.12. The mapping N : Γ(V,Q)→K∗ is a homomorphism and

N(α(φ)) = N(φ) ∀φ ∈ Γ(V,Q).

PROOF. Consider elements ϕ and φ in Γ(V,Q). Then,

N(ϕφ) = (ϕφ)α(φ t
ϕ

t)

= ϕ(φα(φ t))α(ϕ t)

= ϕN(φ)α(ϕ t)

= N(ϕ)N(φ).
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This shows that N is a homomorphism. Moreover, for any φ ∈ Γ(V,Q)

N(α(φ)) = α(φφ)

= N(φ).

□

If we denote by O(V,Q) the group of isometries of V with respect to Q and by SO(V,Q) the

corresponding special group, we obtain the following.

Theorem 2.1.13. The twisted adjoint representation defines a short exact sequence

1 →K∗.1 → Γ(V,Q)
Ãd−→ O(V,Q)→ 1. (2.8)

Lemma 2.1.14. (Cartan-Dieudonné) Let Q be a non-degenerate quadratic form and V a finite

dimensional vector space. Then, any element g ∈ O(V,Q) can be expressed as a product of reflec-

tions,

g = ρ1 ◦ · · · ◦ρk

for k ≤ dim(V ).

PROOF. (Theorem 2.1.13)

We know from point (3) of Proposition 2.1.9 that ker Ãd corresponds to K∗1. It only remains to

show that Ãd(Γ(V,Q))⊂ O(V,Q).

For any v,w ∈V and any φ ∈ Γ(V,Q)

−2Q(Ãd(φ)v,Ãd(φ)w)1 =
(

Ãd(φ)v
)(

Ãd(φ)w
)
+
(

Ãd(φ)w
)(

Ãd(φ)v
)

=
(

Ãd(φ)v
)(

Ãd(α(φ))w
)
+
(

Ãd(φ)w
)(

Ãd(α(φ))v
)

= α(φ)(vw+wv)α(φ−1)

=−2Q(v,w)1.

The second equality above follows from point (1) of Proposition 2.1.9.

Surjectivity follows from the Cartan-Dieudonné Theorem. Indeed, for Q non-degenerate, any

element A ∈ O(V,Q) can be written as a product of k reflections

A = A1 · · ·Ak, k ≤ dim(V ).

Then, point (2) of Proposition 2.1.9 implies that any reflection in V through an anisotropic vector

(Q(v) ̸= 0) corresponds to an element in Ãd(Γ(V,Q)).
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Moreover, Ãd : Γ(V,Q)→ O(V,Q) is a homomorphism thus, any element A ∈ O(V,Q) can be ex-

pressed as Ãd(a) for some element a = v1 · · ·vk ∈ Γ(V,Q). In other words, Ãd is surjective and

finally

1 →K∗.1 → Γ(V,Q)
Ãd−→ O(V,Q)→ 1.

□

Note that the homomorphism Ãd when restricted to the subgroup of even elements in Γ(V,Q)

denoted by Γ0(V,Q) induces the short exact sequence

1 →K∗.1 → Γ
0(V,Q)

Ãd−→ SO(V,Q)→ 1. (2.9)

We are now ready to introduce two important groups.

Definition 2.1.15. The Pin and Spin groups are defined by

Pin(V,Q) = {φ ∈ Γ(V,Q) : N(φ) = 1}

Spin(V,Q) = Pin(V,Q)∩Γ
0(V,Q)

Remark 2.1.16.

(1) Since N : Γ(V,Q) → K∗.1 is a homomorphism, the groups Pin(V,Q) and Spin(V,Q) are

normal subgroups.

(2) Observe that from Remark 2.1.10 the groups Pin and Spin can be equivalently defined as

Pin(V,Q) = {v1 · · ·vk ∈ Γ(V,Q) : vi ∈V and Q(vi) =±1 ∀i}

Spin(V,Q) = {v1 · · ·vk ∈ Pin(V,Q) : k is even}

A natural question to ask is whether or not Pin(V,Q) and Spin(V,Q) are mapped onto O(V,Q)

and SO(V,Q) respectively by the homomorphism Ãd. This is not true for an arbitrary field K.

Fields where surjectivity holds are called spin fields, R and C are examples of such fields.

Denote Pin(Rr+s,Qr,s) and Spin(Rr+s,Qr,s) by Pin(r,s) and Spin(r,s), respectively.

Theorem 2.1.17. (Theorem 2.10, [22])

Assume K= R. Then, we have the short exact sequences

1 → Z2 → Pin(r,s)→ O(r,s)→ 1

1 → Z2 → Spin(r,s)→ SO(r,s)→ 1.
(2.10)

Remark 2.1.18. For all n ≥ 3 the mapping Ãd : Spin(n)→ SO(n) is the universal covering homo-

morphism of SO(n). Here Spin(n) := Spin(n,0).
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2.1.2. The Spinc-group

The last group we are introducing is of particular interest in this thesis.

Consider the complexification Clc
n =Cln⊗RC of the Clifford algebra Cln :=Cl(n,0). Then, one can

define an analogue for each group introduced previously and extend the results obtained.

The parity automorphism α and the the transpose antiautomorphism (.)t are defined on Clc
n by

α(x⊗ z) = α(x)⊗ z

(x⊗ z)t = (x)t ⊗ z

for generators x ∈Cln and z ∈ C. As before, for any φ ∈Clc
n the norm homomorphism is defined

by

N(φ) = φα(φ t)

and the Clifford group Γn = Γ(Rn,∥.∥2) becomes the subgroup Γc
n of invertible elements in Clc

n for

which α(x)yx−1 ∈ Rn for all y ∈ Rn.

Propositions 2.1.11 and 2.1.12 hold with K = C and the short exact sequence in Theorem

2.1.13 becomes

1 → C∗ → Γ
c
n → O(n)→ 1. (2.11)

By defining Pinc as the kernel of N : Γc
n → C∗, n ≥ 1 we obtain the short exact sequence

1 →U(1)→ Pinc(n)→ O(n)→ 1. (2.12)

The Spinc(n) group can then be defined as the subgroup of Pinc(n) that maps onto SO(n)

1 →U(1)→ Spinc(n)→ SO(n)→ 1. (2.13)

In fact, U(1) denotes the subgroup 1⊗S1 of Clc
n. A possibly more concrete way to view Spinc(n)

is as the subgroup of Clc
n generated by Spin(n) and U(1), that is

Spinc(n)≡ Spin(n)×Z2 U(1) (2.14)

which is simply the set of equivalence classes of pairs (x,z) in Spin(n)×U(1) subject to the equiv-

alence relation (x,z)∼ (−x,− z).

Indeed, we have the inclusion

Pin(n)×Z2 U(1) ↪→Clc
n (2.15)
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induced from the inclusion of Pin(n) in Cln and U(1) in C. This factors then through a homomor-

phism

f : Pin(n)×Z2 U(1)→ Pinc(n). (2.16)

Furthermore, from the short exact sequences

1 →U(1)→ Pin(n)×Z2 U(1)→ Pin(n)/Z2 → 1 (2.17)

and (2.12) we obtain the commuting diagram

1 U(1) Pinc(n) O(n) 1

1 U(1) Pin(n)×Z2 U(1) Pin(n)/Z2 1

.

The third vertical homomorphism follows from the double covering of O(n) by Pin(n). The five-

lemma implies then the isomorphism

Pinc(n)∼= Pin(n)×Z2 U(1)

which induces when restricted to Spinc(n) the isomorphism

Spinc(n)∼= Spin(n)×Z2 U(1).

Remark 2.1.19. The covering map Spin(n)→ SO(n) induces a homomorphism

Spinc(n)→ SO(n)×U(1), (x,z) 7→ (Ãd(x),z2). (2.18)

Similarly, there is an embedding U(k) ↪→ SO(2k)×U(1) given by g 7→ (g,det(g)). For n = 2k, it

would be natural to ask if such a morphism lifts to Spinc(n). It turns out (Proposition 5.2.14, [27])

that such a lift exists and the following diagram commutes

Spinc(2k) SO(2k)×U(1)

U(k)

g
G (2.19)

for some homomorphism G : U(k)→ Spinc(2k).

This will be useful later on in defining connections on complex spinor bundles.
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2.2. Spinc-structures
Let V be a vector space over a field K and Q a quadratic form on V . Consider a field K ⊃K,

then a K -representation of the Clifford algebra Cl(V,Q) is a K-algebra homomorphism

ρ : Cl(V,Q)→ HomK (W,W )

where W is a finite dimensional vector space over K called a Cl(V,Q)-module over K . To avoid

a heavy notation, we will write ρ(φ)(w) as φ .w for φ ∈Cl(V,Q) and w ∈W and call this operation

Clifford multiplication.

Example 2.2.1. The algebra homomorphism

c : Cl(V,Q)→ End(ΛV )

constructed in the proof of Proposition 2.1.6 is a K-representation of the Clifford algebra Cl(V,Q)

and End(ΛV ) is a Clifford module.

Definition 2.2.2. A Spinc-structure on a principal SO(n)-bundle PSO(n) → M with n > 2 consists of

a principal U(1)-bundle PU(1) → M and a pair (PSpinc(n),ξ ) where PSpinc(n) is a principal Spinc(n)-

bundle and ξ is a Spinc(n)-equivariant bundle morphism

ξ : PSpinc(n) → PSO(n)×M PU(1).

This is actually a two-fold covering.

An oriented Riemannian manifold M with a Spinc-structure on its tangent frame bundle PSO(M)

is called a Spinc-manifold.

We would like to mention that there are obstructions to the existence of Spinc-structures. An

orientable manifold M carries a Spinc-structure if and only if the second Stiefel-Whitney class

w2(M) is the mod 2 reduction of an integral class u ∈ H2(M,Z) (Theorem D.2 [22]). In this

thesis, we are mainly interested in Spinc-structures on Kähler manifolds which are always Spinc-

manifolds.

Remark 2.2.3. Any complex (or almost-complex) manifold is a Spinc-manifold because there is a

canonical Spinc-structure on any complex vector bundle E → M.

Indeed, recall from (2.19) the following commutative diagram
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Spinc(2k) SO(2k)×U(1)

U(k)

g
G .

Then, a principal Spinc-bundle can be obtained as the bundle associated to the unitary frame

bundle PU(k)(E) by the map G

PSpinc(E) = PU(k)(E)×G Spinc(2k)

In this case, PU(1)(E) =PU(k)(E)×detU(1) which is the principal bundle of the complex line bundle

ΛnE (unit circle bundle of ΛnE).

Suppose the vector bundle E → M carries a Spinc-structure

ξ : PSpinc(E)→ PSO(E)×M PU(1)(E).

Then, any connection forms on PSO(E) and PU(1)(E) induce a connection form on the fiber product

PSO(E)×M PU(1)(E) which can be lifted via the covering map ξ to a (unique) connection form on

PSpinc(E).

2.3. The Dirac Bundle
Consider the action of SO(n) on (Rn,Q). One of the consequences of the universal property

of Clifford algebras is that any g ∈ SO(n) induces an automorphism in Aut(Cln) which preserves

Clifford multiplication. Hence, we obtain a representation of SO(n) on Cln by algebra homomor-

phisms

µn : SO(n)→ Aut(Cln). (2.20)

Definition 2.3.1. Let E be an oriented Riemannian n-dimensional vector bundle on M. The asso-

ciated bundle

Cl(E) = PSO(E)×µn Cln

is called the Clifford bundle of E.

The Clifford bundle Cl(E) is in fact a bundle of Clifford algebras parametrized by M. An

important example is given by the bundle Cl(T M) whose fibers are given by the Clifford algebras

Cl(TxM) for x ∈ M. It will be denoted by Cl(M) for simplicity.

One can similarly define

Clc(E) = PSO(E)×µn Clc
n
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for a Hermitian vector bundle E by extending the representation µn to Clc
n. As one might suspect,

the intrinsic properties of Clifford algebras carry over to Clifford bundles. For instance Cl(E) has

an even-odd decomposition

Cl(E) =Cl0(E)⊕Cl1(E)

and Cl(E)∼= Λ∗E as vector bundles. This is in fact an isometry (Proposition 3.5, [22]).

We will now consider bundles of modules over a Clifford bundle.

Definition 2.3.2. Let M be a Spinc-manifold. A complex spinor bundle for M is an associated

bundle

S (M) = PSpinc(M)×µ W

for a complex Cln-module W and a representation

µ : Spinc(n)→ GL(W )

given by restriction of the Cln-representation to Spinc(n)⊂Cln ⊗C.

Definition 2.3.3. Let S be a Clifford module bundle over a Riemannian (or Hermitian) manifold

(M,g) equipped with a (fiberwise) Riemannian (or Hermitian) structure h. Assume that Clifford

multiplication by unit vectors is an isometry. That is, for all e ∈ TxM satisfying g(e,e) = 1,

h(c(e)φ1,c(e)φ2) = h(φ1,φ2)

for all φ1,φ2 ∈ Γ(Sx). Then, an h-compatible connection ∇ is called Clifford connection if it is a

module connection

∇(A.φ) = ∇
g(A).φ +A.∇(φ) (2.21)

For all A ∈ Γ(Cl(M)) and φ ∈ Γ(S ). We call (S ,h,∇) over (M,g) a Dirac bundle.

Definition 2.3.4. Let (S ,h,∇) be a Dirac bundle over (M,g). Then, we can define a first order

differential operator D : Γ(S )→ Γ(S ) as the composition of the following mappings

Γ(S )
∇−→ Γ(T ∗M⊗S )

g−1

−−→ Γ(T M⊗S )
c−→ Γ(S )

called the Dirac operator.

In a local orthonormal frame e1, · · ·en on TxM

Dϕ =
n

∑
j=1

e j.∇e jϕ (2.22)
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Since every complex vector space can be viewed as a real vector space together with an almost

complex structure J ( endomorphism fulfilling J2 =−Id), in the complex case, the Dirac operator

(2.22) can be described locally by:

Dϕ =
n

∑
j=1

{e j.∇e jϕ + Je j.∇Je jϕ}

for a local orthonormal frame e1,Je1, · · · ,en,Jen of T M⊗C.

Consider a symplectic manifold (M,ω) (a manifold M together with a closed non-degenerate

2-form ω) endowed with an almost complex structure J which is ω-compatible (i.e. ω(u,Ju) is

positive definite for all u ∈ T M and ω(Jv,Jw) = ω(v,w) for all v,w ∈ TxM). In this case, the vector

bundle (T M,J) has a natural Hermitian structure determined by (ω,J) and given by

hJ(·,·) = ω(·,J·)

The cotangent bundle inherits an almost complex structure which induces a decomposition of the

complexification of T ∗M given by

T ∗M⊗C= T ∗M(1,0)⊕T ∗M(0,1)

where T ∗M(1,0) denotes the bundle of holomorphic forms and T ∗M(0,1) denotes the bundle of

antiholomorphic forms. Define the vector bundle

E = Λ(T ∗M(0,1)) =
⊕

0≤q≤n

Eq , Eq = Λ
(0,q)T ∗M.

We will write

E+ :=
⊕

q even
Eq

and

E− :=
⊕
q odd

Eq.

For any ξ ∈ T (1,0)M and ξ ∈ T (0,1)M, we can define the Clifford multiplication by

c(ξ ) =
√

2 ξ
∗∧ .

c(ξ ) =−
√

2ι
ξ
.

(2.23)

where ξ
∗ ∈ T ∗M(0,1) is the metric dual of ξ . The mapping

c : T M⊗C→ End(E)
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extends to an algebra morphism

c : Clc(M)→ End(E)

and makes E into a Clc(M)-module bundle. In fact, (Lemma 5.4, [7]), any choice of U(1)-invariant

connection in K∗ the unit circle bundle of the dual canonical line bundle defines with the Levi-

Civita connection in PSO(M) a Clifford connection ∇ wich makes E a Dirac bundle. In our case,

we choose the canonical connection ∇ch,n on K = T ∗M(n,0) induced from the Chern connection

∇ch on T ∗M(1,0) which is uniquely characterized (Theorem 2.1, [17]) by

∇
ch

ω = 0,∇chJ = 0,T (1,1)
∇ch = 0.

This connection together with the Levi-Civita connection of hJ defines a Clifford connection on E

and a Dirac operator

D : Γ(E)→ Γ(E).

We are actually interested in a twisted version of the module bundle E given by taking the ten-

sor product of E by a Hermitian line bundle (L,∇L) equipped with a Hermitian connection ∇L

(compatible with the Hermitian structure hL).

This defines a Clifford connection ∇Cl by setting

∇
Cl(σ ⊗λ ) = ∇σ ⊗λ +σ ⊗∇

L
λ

for any local section σ ∈ Γ(E) and λ ∈ Γ(L), and a Spinc Dirac operator

D1(L,J) : Γ(E ⊗L)→ Γ(E ⊗L)

given locally by

D1(L,J)(ϕ) =
2n

∑
j=1

e j.∇
Cl
e j
(ϕ)x (2.24)

for x ∈ M and an orthonormal local frame e1, · · · ,e2n in TxM.

The splitting E = E+⊕E− induces a splitting of the Dirac operator D1(L,J) which takes the form

D1(L,J) =

 0 D1
+(L,J)

D1
−(L,J) 0


for D1

±(L,J) = D1(L,J)|Γ(E±⊗L) : Γ(E±⊗L)→ Γ(E∓⊗L).

Remark 2.3.5. The Hermitian line bundle L will be chosen later on to be the prequantization space

of (M,ω).
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2.4. Properties of the Spinc- Dirac operator
A smooth differential operator of order m on a manifold M is a local linear map P : Γ(E)→

Γ(F) for smooth complex vector bundles E and F over M. Locality means that for any neighbour-

hood U ⊂ M with local coordinates (x1, · · · ,xn) and local trivializations

E|U
∼=−→U ×Cp ; F |U

∼=−→U ×Cq

the operator P can be expressed as

P = ∑
|α|≤m

aα(x)
∂ |α|

∂xα
(2.25)

where α = (α1, · · · ,αn) is an n-tuple of non-negative integers, |α| = ∑
n
i=1 αi and aα(x) is a q× p

matrix of smooth complex-valued functions. Furthermore, there is an index α satisfying |α| = m

for which the function aα is not identically zero. the set of differential operators of order m acting

between sections of E → M and F → M will be denoted by Pm(E,F ;M) or Pm(E,F).

Assume M is closed (i.e. compact manifold without boundary) and has a volume form dρ . Let

hE and hF be Hermitian forms on E and F , respectively. Then, the formal adjoint of a differential

operator P ∈ Pm(E,F) is a differential operator P∗ ∈ Pm(F∗,E∗) defined by

(Pµ,ν) = (µ,P∗
ν), ∀µ ∈ Γ(E) ∀ν ∈ Γ(F).

Here (.,.) denotes the inner product on sections induced from the pointwise inner product. That is∫
M

hE
x (Pµ(x),ν(x))dρ(x) =

∫
M

hF
x (µ(x),P

∗
ν(x))dρ(x).

Note that we could drop the compactness condition on the manifold M if we only consider com-

pactly supported smooth sections.

The coefficients aα(x) with |α|= m transform as a tensor field

M →
m⊙

T M⊗Hom(E,F)

where
⊙m T M denotes the symmetric tensor product.

Definition 2.4.1. The section σ ∈ Γ

(⊙m T M⊗Hom(E,F)
)

is called the principal symbol of P .

By identifying
⊙m T M with the space of homogenous polynomials of order m on T ∗

x M π−→ M,

we have that for any ξ ∈ T ∗M, the principal symbol assigns an element

σξ : Eπ(ξ ) → Fπ(ξ ).
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This can be expressed in local coordinates for ξ = ξkdxk as

σξ (P) = im ∑
|α|=m

aα(x)ξ α .

In other words, σ ∈ Γ(T ∗M,Hom(π∗E,π∗F)).

Definition 2.4.2. A differential operator P of order m on a manifold M is called elliptic if for any

non-vanishing ξ ∈ T ∗
x M

σξ (P) : Ex → Fx

is a vector space isomorphism.

The Riemannian metric induces an isomorphism of vector bundles T M and T ∗M. In the sequel,

we will identify the tangent and cotangent bundle.

Proposition 2.4.3. The Spinc-Dirac operator defined in (2.24) is a selfadjoint operator (i.e.

(D1µ,ν) = (µ,D1ν)) with principal symbol given by

σξ (D
1) = ic(ξ ) (2.26)

and corresponds to the principal symbol of the Dolbeault operator
√

2(∂ +∂
∗
).

PROOF. Let µ and ν be sections of E ⊗ L and assume (without loss of generality) that µ has

compact support contained in an open framed neighbourhood with local frame {e j} j. Then

(D1
µ,ν) = ∑

j

∫
M

h(e j.∇e j µ,ν)dx

=−∑
j

∫
M

h(∇e j µ,e j.ν)dx

=−∑
j

∫
M

e jh(µ,e j.ν)−h(µ,∇e j(e j.ν))dx

=−∑
j

∫
M

e jh(µ,e j.ν)+h(µ,∇e je j)+h(µ,e j.∇e jν)dx

The divergence of any vector field χ can be defined in terms of the Lie derivative by

div(χ)dx = Lχdx

for a volume form dx. Using this, for any j we have that∫
M

e jh(µ,e j.ν)dx =−
∫

M
h(µ,e j.ν)div( f j)dx
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and the formal adjoint operator of D is given by

(D1)∗ = D1 +∑
j

div(e j)c(e j)+ c(∇e je j) (2.27)

where c is again the Clifford multiplication. For any x ∈ M one can choose the frame {e j} j to be a

horizontal orthonormal frame field. This makes the second and the third terms of (D1)∗ vanish.

Let {e j} j be a local orthonormal frame of T M and set

ε j =
e j − iJe j

2
, ε j =

e j + iJe j

2
.

This gives a local frame for T M⊗C with respect to which D1 can be expressed as

D1
ϕ = ∑

j
{c(ε j)∇ε j + c(ε j)∇ε j}.

Then, by definition of the principal symbol we obtain

σξ (D
1) = ic(ξ )

= i
√

2{e(ξ 0,1)− ι(g−1(ξ )0,1)}

=
√

2{σξ (∂ )+σξ (∂
∗
)} (see Chapter 2 of [7] or Appendix A)

= σξ (
√

2(∂ +∂
∗
))

□

A consequence of Proposition 2.4.3 is that D1 is an elliptic operator. For a compact manifold M

this ensures that ker(D1
+) and ker(D1

−) are finite dimensional.
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Chapter 3

K-theory

3.1. The K-group
For a topological space X , the set (Vect(X),⊕) of isomorphism classes of vector bunles on X

endowed with the direct sum operation has the structure of an abelian semigroup. If M is any

abelian semigroup, we can associate to it an abelian group K(M ) and a homomorphism α : M ↪→

K(M ) with the following universal property: for any group G and any semigroup homomorphism

f : M →G there exists a unique group homomorphism f̃ : K(M )→G such the following diagram

commutes
M K(M )

G

α

f
f̃

.

There are several ways of defining the group K(M ):

(1) Consider the free abelian group F(M ) generated by the elements of M and the subgroup

E(M ) generated by elements of the form [a]+ [b]− ([a]⊕ [b]), where the first addition is

in F(M ) and the second in M .

The K-group can then be defined as the quotient

K(M ) := F(M )
/

E(M ). (3.1)

(2) Let M be an abelian monoid and ∆ : M → M ×M be the diagonal map. The K-group

K(M ) can now be defined as the set of left cosets of ∆(M ) in M ×M .



Since the interchange of factors in M ×M induces an inverse, this quotient is in fact a

group. The homomorphism α : M ↪→ K(M ) is defined by the composition

M ↪→ M ×{0}→ M ×M /∆(M ).

For any topological space X , the set (Vect(X),⊕) of isomorphism classes of vector bundles on

X endowed with the direct sum operation is in fact an abelian monoid.

Proposition 3.1.1. Let M be an abelian monoid. Then, the K-groups in definitions (1) and (2) are

isomorphic.

PROOF. Denote the group M ×M /∆(M ) defined in (2) by K (M ).

Any semi-group homomorphism f : M → N induces a map

K ( f ) : M → K (N )

such that the following diagram commutes

M N

K (M ) K (N )

f

αM αN

K ( f )

.

If N is an abelian group then, the homomorphism αN is an isomorphism. Moreover, there exists

a group homomorphism K (X)→ N that makes the following diagram commute

M K (X)

N

αX

f
α
−1
N ◦K ( f )

.

This means in particular that K (X) is universal with respect to semigroup homomorphisms from

M to abelian groups. □

Example 3.1.2. Consider the monoid M := N, then K(M ) = Z. Similarily, for the multiplicative

monoid N := Z−{0} we have that K(N ) =Q−{0}.

If M is a semi-ring then K(M ) is a ring. The abelian monoid Vect(X) equipped with the

tensor product has the structure of a semi-ring. From now on, we will only be interested in the

K-group corresponding to Vect(X) for a paracompact Hausdorff topological space X and will be

denoted by K(X). Elements of this group are called virtual bundles. Moreover, We will not make

a distinction between a vector bundle E π−→ X and its isomorphism class in Vect(X).

Example 3.1.3. Any vector bundle over a point is trivial. Hence, Vect(pt)∼= N and K(pt)∼= Z.
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For any continuous map f : X →Y , the pullback map of vector bundles f ∗ : Vect(Y )→Vect(X)

induces a ring morphism

f ∗ : K(Y )→ K(X).

An interior tensor product in K(X) is given for E and F in Vect(X) by

[E][F ] := [E ⊗F ] ∈ K(X). (3.2)

The projection mappings pX : X ×Y → X and pY : X ×Y → Y define an exterior product

K(X)⊗K(Y )→ K(X ×Y )

µ ⊗ν 7→ (p∗X µ)(p∗Y ν).
(3.3)

We will denote both the exterior and interior product of E and F by [E][F ]. This should be under-

stood from the context and we will always mention the target space.

The following is a consequence of Proposition 3.1.1 and Definition (2) of the K-group.

Corollary 3.1.4. Every element of K(X) can be expressed as a difference [E]− [F ] for some vector

bundles E and F on X.

Lemma 3.1.5. (Theorem I.6.5, [14]) For any vector bundle E over a compact space X there exists

a vector bundle F such that E ⊕F is trivial.

Proposition 3.1.6. Suppose X is a compact space. Every element of K(X) is of the form [H]− [n]

for some vector bundle H and some trivial vector bundle n of rank n.

PROOF. From corollary 3.1.4 every element x ∈ K (X) can be written as [E]− [F ] for two vector

bundles E,F . Denote by Fc the vector bundle in Lemma 3.1.5 that completes F into a trivial vector

bundle n. If we set H := E ⊕Fc, we get that

[E]− [F ] = [E]+ [Fc]− ([F ]+ [Fc])

= [H]− [n]

□

Consider the vector bundles Ei,Fi for i ∈ {1,2} over X . Corollary 3.1.4 implies that(
[E1]− [F1] = [E2]− [F2]

)
⇔

(
E1 ⊕F2 ⊕G ∼= E2 ⊕F1 ⊕G

)
for some vector bundle G over X . Write n for the class of the trivial vector bundle [n]. Then

[E]−n = [F ]−m is equivalent to

E ⊕m⊕G ∼= F ⊕n⊕G
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for some vector bundle G. By completing G to a trivial bundle p, we obtain that(
[E]−n = [F ]−m

)
⇔

(
E ⊕ (m⊕ p)∼= F ⊕ (n⊕ p)

)
Hence, for two vector bundles E and F , [E] = [F ] if and only if for some trivial vector bundle n

E ⊕n ∼= F ⊕n.

This motivates the following definition.

Definition 3.1.7. Two vector bundles E and F are called stably equivalent if for some n ∈ Z≥0

E ⊕n ∼= F ⊕n

This means that [E] = [F ] in the K-theory of a topological space X if and only if E and F are

stably equivalent.

Remark 3.1.8. Consider two elements of K(X) given by [E1]− [F1] and [E2]− [F2]. Then, their

product in K(X) can be defined by

([E1]− [F1])([E2]− [F2]) = [E1][E2]− [E1][F2]− [F1][E2]+ [F1][F2].

The product of pairs Ei, Fj is given by (3.2). One can show that this makes K(X) into a commutative

ring with identity 1, the trivial line bundle of rank 1.

Proposition 3.1.9. If X is the disjoint union of open subspaces
⊔m

i=1 Xi then,

K(X)∼= K(X1)⊕·· ·⊕K(Xm).

PROOF. Every vector bundle π : E → X can be completely described by its restrictions E|Xi for

i ∈ {1, · · · ,m}. In particular, this means that Vect(X) ∼=Vect(X1)×·· ·×Vect(Xm) and that

K(X)∼= K(X1)⊕·· ·⊕K(Xm).

□

Definition 3.1.10. The inclusion map of a basepoint x0 ↪→ X induces a homomorphism K(X)→Z.

The kernel of this morphism denoted by K̃(X) is called the reduced K-theory of X.

Similarly, the projection of a given point x0 in X induces a homomorphism

K(x0)∼= Z p∗−→ K(X)
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and a spliting of the short exact sequence

0 → K̃(X)→ K(X)→ Z→ 0.

This gives us in turn that

K(X)∼= Z⊕ K̃(X).

Another possibly more intuitive way of thinking about the reduced K-theory is given by:

Proposition 3.1.11. (Theorem 3.8, [13]) Let E and F be vector bundles on a compact space X.

Then [E] = [F ] in K̃(X) if and only if

E ⊕n ∼= F ⊕m (3.4)

for some n,m ∈ Z≥0.

Remark 3.1.12. Recall that for any vector bundle E over a connected topological space X,

the rank of E is a constant function X → N. This defines a monoid morphism Vect(X) → Z.

The universal property of the K-group ensures the existence of a unique (up to isomorphisms)

morphism of abelian groups rk : K(X)→ Z that makes the following diagram commute

Vect(X) K(X)

Z

rk
rk

.

We call rk the rank mapping. For complex vector bundles, this is in fact a ring morphism and

it induces the following split short exact sequence

0 → ker(rk)→ K(X)
rk−→ Z→ 0

A right inverse of rk is obtained for instance by the following composition

Z→ Vect(X)→ K(X)

k 7→ Ck 7→ [Ck]

Note that K̃(X)∼= ker
(

rk : K(X)→ Z
)

.

3.2. K as a cohomology theory
We want to use the K-groups to define a cohomology theory and discuss some cohomological

properties of the functor K.
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A pair (X ,Y ) where Y is a closed subset of a compact topological space X is called a compact

pair. We define the relative K-group K(X ,Y ) for a compact pair (X ,Y ) by

K(X ,Y ) = K̃(X/Y ).

This defines a contravariant functor from the category of compact pairs to the category of compact

basepointed spaces. The space Y is considered to be the basepoint of X/Y .

If Y is the empty set then, X/ /0 is defined as the disjoint union of X with a distinguished point

and denoted by X+,

X+ = X ⊔{x0}.

Observe that for any (non-basepointed) compact space X

K(X)∼= K̃(X+) = K(X , /0).

For two basepointed compact spaces (X ,x0) and (Y,y0), we define the wedge product X ∨Y by

X ∨Y = X × y0 ∪ x0 ×Y

and the smash product X ∧Y by

X ∧Y = X ×Y
/

X ∨Y.

We denote by SX the (reduced) suspension of X defined by

SX = S1 ∧X

There is a homeomorphism Sn ∼= S1∧·· ·∧S1 so that the nth-iterated suspension SnX is homeomor-

phic to Sn ∧X .

Lemma 3.2.1 (Lemma 2.4.2, [2]). If (X ,Y ) is a compact pair, the inclusion mappings i : Y ↪→ X

and j : (X , /0) ↪→ (X ,Y ) induce an exact sequence

K(X ,Y )
j∗−→ K(X)

i∗−→ K(Y ) (3.5)

Recall that K(X) ∼= K̃(X)⊕Z and K(Y ) ∼= K̃(Y )⊕Z. Then if Y is a basepointed space, (3.5)

yields an exact sequence

K(X ,Y )→ K̃(X)→ K̃(Y ). (3.6)

A natural question to ask now is whether the sequence (3.5) extends to a long exact sequence. It

actually does.
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Proposition 3.2.2 (Proposition 2.4.4, [2]). If (X ,Y ) is a compact pair of basepointed spaces then

(3.5) extends to the left to an infinite long exact sequence

· · · i∗−→ K̃(S2Y ) δ−→ K̃(S1(X/Y ))
j∗−→ K̃(S1X)

i∗−→ K̃(S1Y ) δ−→ K(X ,Y )
j∗−→ K(X)

i∗−→ K(Y ).

Definition 3.2.3. For a compact topological space X with basepoint or a compact pair (X ,Y ), we

define for any n ≥ 0

K̃−n(X) = K̃(SnX)

K−n(X ,Y ) = K̃−n(X/Y ) = K̃(Sn(X/Y )).

For a compact topological space X, we define for any n ≥ 0

K−n(X) = K−n(X , /0) = K̃(SnX+).

Using the notation above, the sequence 3.2.2 can be expressed as

· · · i∗−→ K̃−2(Y ) δ−→ K̃−1(X ,Y )
j∗−→ K̃−1(X)

i∗−→ K̃−1(Y ) δ−→ K0(X ,Y )
j∗−→ K0(X)

i∗−→ K0(Y ). (3.7)

Remark 3.2.4.

(1) If Y is a retract of X then, for any n ≥ 0 we have a split short exact sequence

0 → K−n(X ,Y )→ K−n(X)→ K−n(Y )→ 0,

hence an isomorphism

K−n(X)∼= K−n(X ,Y )⊕K−n(Y ).

(2) Consider the following projection mappings onto compact basepointed spaces

pX : X ×Y → X ; pY : X ×Y → Y.

Since X is a retract of (X ,Y ) and Y is a retract of X ×Y/X, the argument in (1) applied

twice yields the isomorphism

K̃−n(X ×Y )∼= K̃−n(X)⊕ K̃−n(y)⊕ K̃−n(X ∧Y ). (3.8)

The exact sequence (3.7) extends to an infinite exact sequence in both the left and the right

direction by using a fundamental periodicity property of K-theory. Before discussing this, we need

to define a pairing for arbitrary Kn(X) groups which is analogous to the exterior product (3.3)

m : K(X)⊗K(Y )→ K(X ×Y ).
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Consider the isomorphism

K(X ×Y )∼= K(X)⊕K(X ×Y,X) (Remark 3.2.4).

If x ∈ ker(K(X) → K(x0)) then, p∗X(x) restricts to zero in K(X). Similarly, if y ∈ ker(K(Y ) →

K(y0)) then, p∗Y (y) restricts to zero in K(Y ). Hence, m(x⊗ y) restricts to zero in K(X ∨Y ) and the

pairing

m : K0(X)⊗K0(Y )→ K0(X ×Y )

induces a pairing

K̃0(X)⊗ K̃0(Y )→ K̃0(X ∧Y ).

By replacing X and Y by SnX and SnY , and by noting that Sn(X)∧SmY = Sn+mX ∧Y , we obtain a

pairing

K̃−n(X)⊗ K̃−m(Y )→ K̃−n−m(X ∧Y ).

If we replace X and Y by X+ and Y+, we get

K−n(X)⊗K−m(Y )→ K−m(X ×Y ).

More generally, if (X ,Y ),(Y,B) are pairs then, we have a pairing

K̃(X/Y )⊗ K̃(Y/B)→ K̃((X/A)∧ (Y/B)).

In other words,

K0(X ,A)⊗K0(Y,B)→ K0((X ×B)∪ (A×Y )). (3.9)

If we define (X ,A)× (Y,B) := (X ×B)∪ (A×Y ) then, we have products

K−n(X ,A)⊗K−m(Y,B)→ K−n−m((X ,A)× (Y,B)) ; n,m ≥ 0.

This defines a ring structure on K∗. In fact, this product is Z2-graded.

The simplest form of the Bott Periodicity Theorem states that for any topological space X there

is an isomorphism of rings

β : K(X)⊗K(S2)→ K(X ×S2). (3.10)

In fact, K(S2) = K−2(pt) is isomorphic as a ring to Z[H]/(H −1)2 where H is the class of the dual

tautological line bundle over S2 ∼= CP1 and the exterior product is an isomorphism

m : K(X)⊗K(S2)→ K(X ×S2).
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We will state a slightly more general version of the Bott Periodicity Theorem. The reader is refered

to §2.2 of [2].

Theorem 3.2.5. (Bott Periodicity) For any compact topological space there is an isomorphism

β : K−n(X)→ K−n−2(X) ∀n ≥ 0

given by module multiplication by H −1 ∈ K−2(pt).

The periodicity isomorphism β commutes with the maps in the long exact sequence (3.7). This

yields the following result.

Theorem 3.2.6. (Theorem 2.4.9 [2]) For any compact topological space X, there is an isomorphism

K−n(X)→ K−n−2(X) ∀n ≤ 0

given by module multiplication by H −1 ∈ K−2(pt).

The periodicity isomorphism β turns the exact sequence (3.7) into an exact sequence

K0(X ,Y ) K0(X) K0(Y )

K1(Y ) K1(X) K1(X ,Y )

.

We can also extend the sequence (3.7) to the right by identifying K−n(X) and K−n−2(X) for all

n ≤ 0. Finally, we define

K∗(X) = K0(X)⊕K1(X).

3.3. The Atiyah-Singer family index
Let E and F be smooth vector bundles on a compact smooth manifold X . A family of elliptic

operators Pt : Γ(E)→ Γ(F) , 0 ≤ t ≤ 1 is said to be continuous if the coefficients of the local rep-

resentations Pt = ∑|α|≤m aα(x,t)∂ |α|

∂xα are continuous functions of both variables x and t. This can

be extended to a continuous family of elliptic operators on a family of vector bundles parametrized

by a topological space.

Let A be a Hausdorff topological space and let Diff(E;X) be the group of diffeomorphisms of

the vector bundle E (endowed with the uniform convergence topology). There exists a homomor-

phism

h : Diff(E;X)→ Diff(X)
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which is a mapping onto the diffeomorphism group of the manifold X . Note that its kernel is given

by Aut(E) the automorphism group of E.

Definition 3.3.1. Let X ↪→ Z π−→ A be a fiber bundle. A smooth vector bundle E
p−→ Z is a vector

bundle over Z such that the composition

E −→
p

Z −→
π

A

defines a fiber bundle over A with fiber a smooth vector bundle E over X and structure group

Diff(E;X).

Remark 3.3.2. In [22] the fiber bundle E −−→
π◦p

A is called a continuous family of smooth vector

bundles parametrized by A. Provided with this data, one can define the fibre bundle Z as the

associated bundle E ×h X induced by the homomorphism h.

Let Pm(E,F ;X) be the space of order m differential operators from E to F . It is a Fréchet

space given by the natural norms induced from the C∞ topology on the bundles of smooth sections

Γ(E;X) and Γ(F ;X). Let P
m
(E,F ;X) be the completion of Pm(E,F ;X) with respect to the

family of norms∥ ∥s defined as the norms of the bounded operators

Ps : Hs(E;X)→ Hs−m(F ;X)

induced on Sobolev spaces. We denote by D the closed subgroup of Diff(E;X)×Diff(F ;X) given

by pairs (Ψ,Φ) such that

h(Ψ) = h(Φ).

The group D acts on Pm(E,F ;X) by

T 7→ Ψ
−1T Φ

and extends to an action on P
m
(E,F ;X). This action induces a bundle

Pm(E,F ;X) ↪→ Pm(E ,F ;Z)→ A

associated to the principal D-bundle E ⊕F → A.

Definition 3.3.3. A (continuous) family of differential operators parametrized by A is a continuous

section of Pm(E ,F ;Z). It is called an elliptic family if at each point a in A the section evaluates

to an elliptic operator.

Remark 3.3.4. When Z = X ×A, E = E ×A and F = F ×A a family is simply a continuous map

A → Pm(E,F ;X) and is called a product family.

58



Theorem 3.3.5. Let P be an elliptic family in Pm(E ,F ;Z). Then there exists a finite set of

smooth sections (s1, . . . ,sN) of F over Z such that the following map is surjective for all a in A

Qa : Γ(E ;Z)⊕CN −→ Γ(F ;Z)

(χ;λ1, . . . ,λN) 7−→ Pa(χ)+
N

∑
i=1

λisi(ξ ).

Moreover, the vector spaces ker Qa form a vector bundle over A and define an element in K(A)

given by

[ker Q]− [CN ] (3.11)

that depends only on P .

We are now ready to define the index of the family P as described by Atiyah and Singer [4].

Definition 3.3.6. The element [ker Q]− [CN ] in Theorem 3.3.5 is called the (analytic) index of the

family of elliptic operators P and is denoted by ind(P).

Remark 3.3.7. If the vector spaces kerPa have constant dimension independently of a in A, then

kerP and cokerP are vector bundles and

ind(P) = [kerP]− [cokerP] ∈ K(A). (3.12)

Note that the index of a family of elliptic operators is homotopy invariant as a consequence of the

homotopy invariance of K(A).

We denote by F the space of Fredholm operators on an infinite-dimensional separable Hilbert

space H .

Theorem 3.3.8. For any compact Hausdorff space A, the space of Fredholm operators F is a

classifying space for the K-theory of A. In otherwords, there exists a natural isomorphism

ind : [A,F]→ K(A) (3.13)

such that for all continuous maps f : A → B between compact Hausdorff spaces.

f ∗ ◦ ind = ind ◦ f ∗.
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Chapter 4

Symplectic topology and geometric quantization

4.1. The group Ham and Hamiltonian fibrations
Consider a compact symplectic manifold (M,ω). The non-degeneracy of the symplectic form

induces a non-degenerate pairing between the space of vector fields X(M) and the space of 1-forms

Ω1(M) given by

♭ : X(M)
≃−−→ Ω

1(M)

ξ 7→ ιξ ω

with inverse

♯ : Ω
1(M)→ X(M)

µ → µ
♯.

The group of symplectomorphisms Symp(M,ω) consists in the subset of diffeomorphisms f ∈

Diff(M,ω) of (M,ω) that preserve the symplectic form, that is:

f ∗ω = ω

A vector field ξ is called a symplectic vector field if it generates a flow that preserves the symplectic

structure

Lξ ω = 0.

Here L denotes the Lie derivative. By the Cartan formula, this is equivalent to ιξ ω being a closed

form. A symplectic vector field is called Hamiltonian vector field if ιξ ω is exact, which means



that there exists a function H ∈C∞(M) called a Hamiltonian function such that

ιξ ω =−dH.

Definition 4.1.1. A symplectic isotopy of a symplectic manifold without boundary (M,ω) is a

smooth map [0,1]×M → M given by (t,x) 7→ ft(x) such that for any t ∈ [0,1], ft is a symplecto-

morphism in Symp(M,ω) and f0 = Id.

Any symplectic isotopy { ft}t∈[0,1] is generated by a smooth family of symplectic vector fields

{ξt}t∈[0,1], that is:
d
dt

ft = ξt ◦ ft and f0 = Id.

A symplectic isotopy { ft}t∈[0,1] is called Hamiltonian isotopy if it is generated by Hamiltonian

vector fields {ξt}t∈[0,1] (i.e. the 1-forms ξ ♭
t are exact).

For every map f in the connected component of the symplectomorphism group denoted by

Symp0(M,ω) there exists a smooth family of symplectomorphisms ft ∈ Symp(M,ω) such that

f0 = Id and f1 = f (Theorem 10.1.1, [24]). (4.1)

There exists a unique family of vector fields that generates this isotopy. The Hamiltonian group

Ham(M) is a subgroup of Symp(M) consisting of symplectomorphisms f which admit a Hamil-

tonian isotopy ft that satisfies (4.1).

Definition 4.1.2. A Hamiltonian fibration is a fiber bundle (M,ω) ↪→ P π−→ B whose structure group

reduces to the Hamiltonian group Ham(M).

We will now introduce an important group for the prequantization of a Hamiltonian fibration.

The reader may find more details in Chapter 2 of [6].

Consider a complex line bundle with connection π : (L,∇)→ N over a connected manifold N.

Let K be the curvature of the connection ∇ and σ := K
2π

√
−1

. The group of diffeomorphisms of N

which preserve σ denoted by Diff(N,σ) is a Lie group which acts smoothly on (N,σ) (Proposition

2.4.1,[6]). Given a smooth σ -preserving action of a Lie group G on N, we would like to lift this

action to a connection preserving action on L+ = L−{0} the complement of the zero section of L.

Although the action of G

ψ : G×N → N
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preserves the curvature K, in the sense that for any g in G we have that ψ∗
g K = K, the pullback

bundle ψ∗
g (L,∇) does not need to be isomorphic to (L,∇). This means that we need to impose

an additional condition. If we denote by H the subgroup of G which preserves the isomorphism

class of (L,∇) the following proposition shows that up to a C∗-valued function, H can be lifted to

a group of bundle diffeomorphisms of L+.

Proposition 4.1.3 (Proposition 2.4.5, [6]). Assume N is connected. The group Q(L+) of connec-

tion preserving diffeomorphisms of L+ is a Lie group. Moreover, there is a short exact sequence

1 → C∗ → Q(L+)
p−→ H → 1 (4.2)

where p(ĥ) = h for ĥ ∈ Q(L+) and h ∈ H if ĥ is a lift of h.

We are intersted in Hermitian line bundles (L,∇) over symplectic manifolds (M,ω) for which

the symplectic form ω pulls back to −K
2π

√
−1

(see [10], §2). In this case, the short exact sequence

(4.2) becomes

1 → S1 → Q(P)→ Ham(M,ω)→ 1. (4.3)

The group Q(P) is the automorphism group of a principal S1-bundle P that will be defined

shortly.

4.2. Prequantization
Proposition 4.2.1 (Proposition 15.1, [7]). For a symplectic manifold (M,ω), the integrality condi-

tion of the closed 2-form ω is equivalent to the existence of a smooth Hermitian line bundle L −→
p

M

with a unitary connection whose curvature K satisfies:

K = (−2π
√
−1) p∗ω (4.4)

Definition 4.2.2. A prequantization (or prequantum space) of a symplectic manifold (M,ω) is

given by:

(1) A Hermitian line bundle (L,∇) over (M,ω) with a unitary connection.

(2) A curvature form that satisfies the relation

R(∇) =−2π
√
−1ω (4.5)

We denote a given prequatization of (M,ω) by M̂.

63



Proposition 4.2.1 implies that the relation 4.5 is equivalent to the vanishing of the class of the

symplectic form ω in H2(M,R)
/

H2(M,Z). Symplectic manifolds with this property are called

quantizable. From now on if not mentionned otherwise all symplectic manifolds will be of this

type.

Definition 4.2.3. The quantomorphism group Q(M̂) is defined as the identity component of the

group Diff(L,∇) of diffeomorphisms of the total space of L → M that are bundle maps, connection

preserving and unitary on the fibers.

A prequantum space of a symplectic manifold (M,ω) can be described alternatively as a prin-

cipal S1-bundle p : P → M with connection form α such that

dα =−p∗ω.

In this setting, the quantomorphism group Q(P,α) is defined as the identity component of

those diffeomorphisms of P that preserve the connection form α . In other words, Q(P,α) =

Cont0(P,α) the identity component of the group of strict contactomorphisms of (P,α).

This group enters the central S1-extension of Ham(M,ω) (4.3) mentioned in the previous sec-

tion.

We aim now at defining prequantization for a Hamiltonian fibration.

Definition 4.2.4. A prequantum fibration consists in a Hamiltonian fibration (M,ω) ↪→ M π−→ B

together with a prequantum lift, which is given by the following:

(1) A Hermitian line bundle L → M with a continuous family of unitary connections ∇b on the

fibers over B.

(2) On each fiber Lb → Mb the curvature satisfies the relation

R(∇b) =−2π
√
−1ωb

where {ωb}b∈B denotes the fiberwise symplectic forms.

Moreover, we require the structure group Q(M̂) of L → M to be compatible with the Hamiltonian

group Ham(M,ω).

4.3. Quantization
We will discuss in this section quantization of prequantum fibrations as defined in [28].

As seen in Chapter 2.3, given a symplectic manifold (M,ω) with prequantum space (L,∇L), a

choice of ω-compatible almost complex structure J on M determines canonically a Dirac bundle
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E := L⊗E, with E = Λ(T ∗M)(0,1) and a Spinc-Dirac operator D1(L,J). A quantization of (M,ω)

due to Bott [5] is given by the index

ind D1
+(L,J) = [ker D1

+(L,J)]− [coker D1
+(L,J)] ∈ Z. (4.6)

Using the Atiyah-Singer family index, we can extend this definition of quantization to a family

of symplectic manifolds.

Consider a Hamiltonian fibration M → B with a prequantum lift

M̂ := (M,L,∇,{ωb}b∈B).

The associated bundle JM with structure group Ham(M) and fibers given for all b in B by the

space of ωb-compatible almost complex structures has contractible fibers. Therefore JM has a

global section. Choose such a section { jb}b∈B, then by the previous discussion this determines

canonically a family of Dirac operators on the fibers. Consider the dual bundle (T ∗)vertM of the

vertical tangent bundle to the fibration M → B, then define the following Clifford module bundle

fibrations

E+ := Λ
even(T ∗)vertM(0,1) ; E− := Λ

odd(T ∗)vertM(0,1)

and finally the Atiyah-Singer family Dk
+(M̂,{ jb}b∈B) of operators

Dk
+(M̂b, jb) : Γ(E +

b )→ Γ(E −
b )

where E ±
b := E±⊗Lk. As seen in Chapter 3.3, we can associate an index in K(B) to this family of

operators. Moreover, if H is a separable (infinite-dimensional) Hilbert space, just as in Theorem

3.3.8 there is an element in [B,F(H )] corresponding to this index which we shall define explicitly

following Savelyev and Shelukhin [28].

Let H0 and H1 be the fiberwise completion of the bundles of smooth sections Γ(E +) and

Γ(E −) with respect to a suitable Sobolev norm. For any fixed integer k the family of Dirac opera-

tors D := Dk
+(M̂,{ jb}b∈B) induces a Fredholm map between Hilbert-bundles over B

[D ] : H0 → H1. (4.7)
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The structure groups of the bundles H0 and H1 are contractible by Kuiper’s theorem [18],

hence they admit a trivialization. Any choice of trivialization being unique up to homotopy (ho-

motopy canonical), the trivializations φ0 : H0 → H ×B and φ1 : H1 → H ×B define a map

f
φ1◦[D ]◦φ

−1
0

: B → F(H )

b 7→
(
(φ1 ◦ [D ]◦φ

−1
0 )b : H → H

)
.

Denote the homotopy class of this map by

Hk(M̂) := [ f
φ1◦[D ]◦φ

−1
0
] ∈ [B,F(H )]. (4.8)

The family index defined by Hk(M̂) does not depend on the choice of trivializations φ0 and φ1.

Proposition 4.3.1. (Proposition 3.2, [28])

The family analytic index Hk(M̂) of the Atiyah-Singer family Dk
+(M̂,{ jb}b∈B) is invariant under

isomorphisms of prequantum fibrations and is independent of the choice of the family of almost

complex structures { jb}b∈B.
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Chapter 5

Hamiltonian K-theoretic invariants

5.1. Proof of Theorem B and Theorem C
Recall that the Dirac operator D1(L,J) coincides with the Dolbeault operator

√
2
(

∂ L⊗E + ∂
∗
L⊗E

)
for Kähler manifolds. Then, from the Dolbeault theorem, ker D1(L,J)

corresponds to H∗(M,O(L)), the cohomology of the sheaf of holomorphic sections of L (Appen-

dix A).

Given Hermitian complex vector spaces V1, · · · ,Vr endowed with the standard Kähler

structure, we can form the exterior product of the corresponding dual tautological line bundles

L=OP(V1)(1)⊠ · · ·⊠OP(Vr)(1) over P(V1)×·· ·×P(Vr) together with the induced connection ∇ch,r.

Lemma 5.1.1. Let (L,∇ch,r) be the prequantum lift of P(V1)×·· ·×P(Vr). For J := jstd ×·· ·× jstd ,

we have that

ker(D1
−(L,J))∼= coker(D1

+(L,J)) = 0.

and

ker(D1
+(L,J)) =V ∗

1 ⊗·· ·⊗V ∗
r .

PROOF. For r = 1, L = OP(V1)(1) defined over the complex projective space P(V1) and

ker D1(L,J) = H∗(M,O(L)).

As a consequence of the Kodaira-Nakano Vanishing Theorem (Chapter 1, [8]),

Hq(Pn,O(1)) = 0 ∀ 1 ≤ q ≤ n−1.



It is also known from general results in algebraic geometry that the higher order cohomology

groups vanish and that the sheaf cohomology of global holomorphic sections of L can be identified

with the dual of V1

H0(Pn,O(1))∼=V ∗
1 .

The general case follows from the Künneth formula (Proposition 9.2.4, [16]). Indeed, for

M = Pn1 ×·· ·×Pnr and for all k ≥ 0

Hk(M,O(L)) =
⊕

i1+···+ir=k

H i1(Pn1,O(1))⊗·· ·⊗H ir(Pnr ,O(1)).

Then by using the same arguments as before, the only non-vanishing term corresponds to

H0(M,O(L)) =V ∗
1 ⊗·· ·⊗V ∗

r .

□

Lemma 5.1.2. Let (M,ω) ↪→ M π−→ B be a Hamiltonian fibration. Then, for any two prequantum

lifts L1 and L2 over M, there exists a line bundle L → B such that

L1 = L1 ⊗π
∗L. (5.1)

PROOF. Any Hamiltonian fibration is completely determined by an open cover {Uα}α and a family

of transition functions

gαβ : Uα ∩Uβ → Ham(M,ω)

satisfying the cocycle condition.

Let G(i)
αβ

(x) be the lift of gαβ (x) to an automorphism of Li for i = 1,2.

The short exact sequence

1 → S1 → Q(M̂)→ Ham(M,ω)→ 1

implies that in appropriate coordinate neighbourhoods {Uα}α , the mappings G(1)
αβ

◦ (G(2)
αβ

)−1(y)

defined on π−1(Uα ∩Uβ ) are smooth S1-valued invertible functions satisfying the cocycle condi-

tion. This defines a Hermitian line bundle on M (Theorem 2.1.8, [6]) and since these transition

functions are constant on the fibers of M, this bundle is induced from a line bundle L on B. Then

L1 = L2 ⊗π
∗(L).

□
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Given vector bundles E1 → B1, · · · ,Er → Br of finite dimensions n1, · · · ,nr (respectively), the

Cartesian product M := P(E1)× ·· · ×P(Er) is a Hamiltonian fibration over B := B1 × ·· · ×Br.

Consider the prequantum lift

M̂ = OP(E1)(1)⊠ · · ·⊠OP(Er)(1)→ P(E1)×·· ·×P(Er).

This is a vector bundle over M and a family of dual tautological line bundles parametrized by

B when viewed as a fiber bundle. For any b = (b1, · · · ,br) in B

M̂b = OP(E1)b1
(1)⊠ · · ·⊠OP(Er)br

(1)→ P(E1)b1 ×·· ·×P(Er)br .

is isomorphic to

M̂b = proj∗1OPn1 (1)⊗·· ·⊗proj∗r OPnr (1)→ Pn1 ×·· ·×Pnr .

We equip each tautological line bundle with the Chern connection and each fiber M̂b with the

corresponding induced connection. As discussed in the previous section, we can associate to this

prequantum fibration a family of Dirac operators D1(M̂,J = { jb}b∈B).

PROOF. (Theorem B)

To avoid cumbersome notation, we will prove the theorem for r = 2. The proof for an arbitrary

r ∈ N follows exactly the same steps.

The operator D1
b (M̂,J) is an elliptic operator in P1

(
P(E1,b1) × P(E2,b2),OP(E1,b1)

(1) ⊠

OP(E2,b2)
(1)⊗Λ(T ∗)vert

(
P(E1,b1)×P(E2,b2)

)(0,1))
. For all b in B, Lemma 5.1.1 shows that

ker D1
+,b(M̂,J)∼= E∗

1,b1
⊗E∗

2,b2
.

Since for all b ∈ B, ker D1
+,b(M̂,J) is a vector space and ker D1

−,b(M̂,J) vanishes, ind D1
+(M̂,J) is

the isomorphism class of a vector bundle. The kernel of D1
+(M̂,J) defines a sub-bundle of the space

of sections of the vector bundle E + := OP(E1)(1)⊠OP(E2)(1)⊗Λ(T ∗)vert
(
P(E1)×P(E2)

)(0,1)
.

There is a morphism of vector bundles E∗
1 ⊠E∗

2 → Γ(E +) which reduces to an isomorphism on the

fibers of ker D1
+(M̂,J). Hence,

E∗
1 ⊠E∗

2
∼= ker D1

+(M̂,J) (Proposition 1.2.10).

We conclude that

ind D1
+(M̂,J) = [E∗

1 ⊠E∗
2 ] = [E∗

1 ][E
∗
2 ] ∈ K(B1 ×B2).

Here, the term after the second equality stands for the exterior product in K-theory.
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Observe that a vector bundle is stably trivial if and only if its dual bundle is stably trivial.

The condition [E1 ⊠E2] ̸= [Cn1n2] implies then that the fibration M̂ is not trivial as a prequantum

fibration.

We will now prove that the condition [E1 ⊠E2][µ] ̸= [Cn1n2] for all line bundles µ on B1 ×B2

implies that P(E1)×P(E2) is not trivial as a Hamiltonian fibration.

From Lemma 5.1.2, the central extension of the Hamiltonian group

1 → S1 → Q(OP(E1)(1)⊠OP(E2)(1))→ Ham(P(E1)×P(E2))→ 1

implies that the prequantum lift of M is unique up to a twist by a line bundle.

Over each point b∈B, an arbitrary prequantum fibration L over P(E1)×P(E2) takes the following

form (
OP(E1,b1)

(1)⊠OP(E2,b2)
(1)

)
⊗Lb → P(E1,b1)×P(E2,b2)→ b = (b1,b2)

Here L → B is a line bundle. Therefore, Lb is isomorphic to the trivial line bundle C1 over

P(E1,b1)×P(E2,b2). The kernel of the operator D1
+,b(L ,JL ) becomes

ker(D1
+,b(L ,JL ))∼= O

((
OP(E1,b1)

(1)⊠OP(E2,b2)
(1)

)
⊗Lb

)
∼= E∗

b1
⊗E∗

b2
⊗Lb (5.2)

The family of vector spaces E∗
b1
⊗E∗

b2
⊗Lb parametrized by B defines a subbundle of the space

of sections of the Dirac bundle OP(E1)(1)⊠OP(E2)(1)⊗E + isomorphic to
(

E∗
1 ⊠E∗

2

)
⊗L → B.

Assume for a contradiction that [E1⊠E2][µ] ̸= [Cn1n2] for all line bundles µ on B = B1×B2 (or

equivalently that [E∗
1 ⊠E∗

2 ][µ] ̸= [Cn1n2] for any µ ∈ Vect(B)) and that P(E1)×P(E2) is a trivial

Hamiltonian fibration. This means that any prequantum lift L can be realized as a trivial fibration

over B twisted by a line bundle L → B and that ind D1
+(L ,JL) corresponds to the class of a trivial

vector bundle in K(B). Then from the isomorphism (5.2) and the discussion above, we have that

[E∗
1 ⊠E∗

2 ][L] = [Cn1n2] ∈ K(B1 ×B2).

This implies that
(

E1 ⊠E2

)
⊗L∗ is stably trivial and contradicts the assumptions. □

PROOF. (Theorem C)

Given vector bundles E1, · · · ,Er of finite dimensions n1, · · · ,nr (respectively) over B, the fiber

70



product M := P(E1)×B · · ·×B P(Er) is a Hamiltonian fibration over B. Consider the prequantum

lift defined by

M̂ = OP(E1)(1)⊗·· ·⊗OP(Er)(1)→ P(E1)×B · · ·×B P(Er).

We can associate to this prequantum fibration a family of Dirac operators D1
+(M̂,J = { jb}b∈B). The

proof follows exactly the same steps as for Theorem 1 but now for r = 2, we have the isomorphism

of vector bundles

ker D1
+(M̂,J)∼= E∗

1 ⊗E∗
2

and

ind D1
+(M̂,J) = [E∗

1 ⊗E∗
2 ] = [E∗

1 ][E
∗
2 ] ∈ K(B).

Here the exterior product is replaced by the interior product in K-theory.

Then the condition

[E1 ⊗E2] ̸= [Cn1n2] ∈ K(B)

implies that the fiber product P(E1)×BP(E2) is not trivial as a prequantum fibration. To prove that

P(E1)×BP(E2) is not a trivial Hamiltonian fibration we can argue again by contradiction. Assume

[E1 ⊗E2][µ] ̸= [Cn1n2] for all line bundles µ over B and that M is a trivial Hamiltonian fibration.

Then Lemma 5.1.2 implies that any prequantum lift of M can be expressed as a trivial fibration up

to a line bundle L and that

[E1 ⊗E2][L] = Cn1n2 ∈ K(B),

which contradicts the assumptions. □

5.2. Examples
Example 5.2.1. [28] Let B =RPn−1 for n = 7 or 8 and L = τ1

RPn−1 ⊗RC, where τ1
RPn−1 denotes the

tautological line bundle on B. Proposition 2.7.7 [4] or Corollary 6.47 in Chapter 6 of [14] implies

that K̃(B) ∼= Z/8Z with generator H = [L]− 1 ∈ K(B). Consider the vector bundle F = L⊗Cm

for m ∈ N.

[F ] = [L⊗Cm] = m[L⊗C1] = m[L] ∈ K(B).

Case m=4

If [F ] = 4[L] is stably trivial then we have the following

[F ] = 4 ∈ K(B)⇔ 4(H +1) = 4 ∈ K(B).
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Projecting onto reduced K-theory, we get that

[F ] = 4 ∈ K(B)⇒ 4H = 0 ∈ K̃(B).

This is a contradiction because since H is a generator of Z/8Z, it has order 8 in K̃(B). Hence

F is not stably trivial which means by Theorem C that P̂(F) is not trivial as a prequantum fibration.

The same result holds for m /∈ 8N however, the projectivization of F is a trivial fibration for all m

because

P(F) = P(L⊗Cm)∼= P(Cm).

Example 5.2.2. Let B = B1 × B2 for B1 = B2 = RPn−1, n = 7 or 8 and let L = τ1
RPn−1 ⊗R C.

Consider the vector bundles F1 := proj∗1F and F2 := proj∗2F. Here F = L⊗Cm for m ∈ N and

the maps proj1 and proj2 denote the projection mappings onto B1 and B2, respectively. Define the

2m-dimensional vector bundle E = F1 ⊕F2. Note that the Picard group Pic(B) is isomorphic to

Z2 ×Z2 and is generated by the line bundles Li = proj∗i L for i = 1 or 2. Moreover, from Remark

3.2.4 we have that

K̃(B)∼= K̃(B1)⊕ K̃(B2)⊕ K̃(B1 ∧B2)∼= Z/8Z⊕Z/8Z⊕ K̃(B1 ∧B2).

We denote by Hi the virtual bundles proj∗i H in K(B) or K̃(B) for i = 1 or 2 and H = [L]−1.

[E] = [F1]+ [F2] ∈ K(B)

= m
(
[L1]+ [L2]

)
= m

(
H1 +H2 +2

)
.

By projecting to reduced K-theory, we get that

[E] = m
(

H1 +H2

)
∈ K̃(B)

where [E], H1 and H2 denote classes in K̃(B) (by abuse of notation). Since H1 and H2 generate

Z/8Z×Z/8Z, [E] ̸= 0 in K̃(B) for any non-zero element m in Z/8Z. This gives examples of non-

trivial prequantum fibrations. To find examples of non-trivial Hamiltonian fibrations, we compute

the class of E ⊗Li in K-theory:

[E ⊗L1] = m
((

[L1]+ [L2]
))

[L1] ∈ K(B)

= m
(

1+[L1][L2]

)
.

(5.3)
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Assume for a contradiction that E ⊗L1 is stably trivial, then

[E ⊗L1] = 2m ⇔ m[L1][L2] = m ∈ K(B)

⇔ m
(
[L1]− [L2]

)
= 0.

The second line is obtained by multiplying both sides of the equality by [L2]. Now, passing to the

reduced K-theory we get that

m
(

H1 −H2

)
= 0 ∈ K̃(B)

which is a contradiction for all m ̸= 0 ∈ Z/8Z by the same argument as before. This means that

[E ⊗ L1] is not stably trivial for all m ̸= 0 ∈ Z/8Z. The same result holds if we replace L1 by

L2. By multiplying both sides of the equality (5.3) by [L2] in K(B) and by projecting onto reduced

K-theory, we obtain that if E1 ⊗L1 ⊗L2 is stably trivial then,

m
(

H1 +H2

)
= 0 ∈ K̃(B)

which implies that m = 0 ∈ Z/8Z.

Hence, for any line bunle µ over B and m /∈ 8N, [E ⊗ µ] is not stably trivial and by Theorem

A, the projectivization of E is not trivial as a Hamiltonian fibration.

Example 5.2.3. Using the same setting as in Example 5.2.2, we want to find examples of non-trivial

Hamiltonian fibrations with fibers given by products of complex projective spaces.

We compute:

[E2] =

(
m
(
[L1]+ [L2]

))2

∈ K(B)

= m2
(
[L1]

2 +[L2]
2 +2[L1][L2]

)
= 2m2

(
1+[L1][L2]

)
.

Then for i=1 or 2,

[E2 ⊗Li] = 2m2
(
[L1]+ [L2]

)
∈ K(B) (5.4)

and

[E2 ⊗L1 ⊗L2] = 2m2
(

1+[L1][L2]
)

∈ K(B)

= [E2].
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Assume m = 3 or 5. Projecting onto the reduced K-theory, (5.4) yields

[E2 ⊗Li] = 2
(

H1 +H2

)
∈ K̃(B).

As shown in Example 5.2.2 since H1 and H2 are generators of Z/8Z×Z/8Z, [E2 ⊗Li] and [E2 ⊗

L1 ⊗L2] are non-vanishing in K̃(B) . This means that for any line bundle ν over B, E2 ⊗ν is not

stably trivial and by Theorem C, this gives examples of non-trivial Hamiltonian fibrations. For

instance, the following fiber bundle is a non-trivial Hamiltonian fibration

CP9 ×CP9 ↪→ P(G)×B P(G)→ RPn−1 ×RPn−1, n=7 or 8

for G := (L⊗C5)⊞ (L⊗C5) and L = τ1
RPn−1 ⊗RC.

Example 5.2.4. We will now use Theorem B to find other examples of non-trivial Hamiltonian

fibrations. Let B1 = B2 be a projective space RPn−1 for n = 7,8.

Consider again the vector bundles F(mi) = L⊗Cmi of rank mi and set

F1 = proj∗1F(m1), F2 = proj∗2
(

F(m2)⊕C1
)
.

Then

[F1 ⊗F2] = m1[L1]
(

m2[L2]+1
)

∈ K(B1 ×B2)

= m1m2[L1][L2]+m1[L1].

Let F := F1 ⊗F2 then,

[F1 ⊗F2][L1] = m1m2[L2]+m1 ∈ K(B1 ⊗B2)

and

[F1 ⊗F2][L2] = m1m2[L1]+m1[L1][L2] ∈ K(B1 ⊗B2).

Assume m1 = 1 = m2 in Z/8Z. By projecting onto K̃(B1 ×B2) we obtain

[F1 ⊗F2][L1] = H2 ∈ K̃(B1 ×B2) (5.5)

and

[F1 ⊗F2][L1][L2] = H2 ∈ K̃(B1 ×B2). (5.6)

Moreover, note that

m1[L1](m2 +[L2]) = m1(m2 +1)⇔ (m1[L2]−m1(m2 +1)[L1])+m1m2 = 0 ∈ K(B1 ×B2). (5.7)
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Finally, if F1⊗F2⊗L2 is stably trivial, then projecting to reduced K-theory yields a contradiction:

H2 −2H1 = 0 ∈ K̃(B1 ×B2). (5.8)

From (5.5), (5.6) and (5.8), we deduce that for any line bundle ν over B1 ×B2,

[F1 ⊗F2][ν ] ̸= 0 ∈ K̃(B1 ×B2).

Hence, by Theorem B the product bundle P(F(m1))×P
(

F(m2)⊕C1
)

is a non-trivial Hamiltonian

fibration.

5.3. Proof of Corollary D
We will discuss here an application of Theorem B which provides more examples of non-trivial

Hamiltonian fibrations.

Let E1 → B1 and E2 → B2 be complex vector bundles of rank n1 and n2, respectively.

Suppose that for all line bundles µ over B1, the vector bundle E1 satisfies

[E1 ⊗µ] ̸= n1 ∈ K(B1) .

We want to know if there is a condition that we could impose to ensure that

[E1 ⊠E2][ν ] ̸= n1n2 ∈ K(B1 ×B2)

for any line bundle ν over B1 ×B2.

Theorem 5.3.1. (Theorem 2.7.15, [2]) Let A be a space such that K∗(A) is torsion free and let B

be a finite cell complex. For a subcomplex B
′ ⊂ B, we have the following isomorphism

K∗(A)⊗K∗(B,B
′
)→ K∗(A×B,A×B

′
). (5.9)

Atiyah shows in [2] that K∗(Grs
k(V )) is torsion free for any s-dimensional vector space V and

similarily for products of Grassmianns. Using this result and Theorem 5.3.1 we deduce for instance

that

K∗(Pn)⊗K∗(Pm)
∼=−−→ K∗(Pn ×Pm) (5.10)
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is an isomorphism. Consider the exterior product bundle E = E1 ⊠E2. Furthermore, assume that

K∗(B1) or K∗(B2) is torsion free and that B1 and B2 are a finite CW-complexes. Then the morphism

m : ∑
j+l=k

K j(B1)⊗Kl(B2)→ Kk(B1 ×B2)

∑
j+l=k

x( j)⊗ y(l) 7→ ∑
j+l=k

pro j∗1[x
( j)]pro j∗2[y

(l)]
(5.11)

induced by the product in K-theory is an isomorphism.

PROOF. (Corollary D)

Let E1 → B1 and E2 → B2 be complex vector bundles of rank n1 and n2, respectively.

Assume that for any line bundle µ ∈ Vect1(B1)

[E1 ⊗µ] ̸= n1 ∈ K0(B1). (5.12)

Consider the inclusion mappings ι1 : B1 → B1 ×B2 and ι2 : B2 → B1 ×B2 defined by x 7→ (x,x2)

and x 7→ (x1,x) (respectively) for x1 ∈ B1 and x2 ∈ B2 arbitrary points. The maps ι1 and ι2 induce

ring morphisms

ι
∗
1 : K∗(B1 ×B2)→ K∗(B1) ; ι

∗
2 : K∗(B1 ×B2)→ K∗(B2).

Define the mapping

ι
∗
1 ⊗ ι

∗
2 : K0(B1 ×B2)→ K0(B1)⊗K0(B2)

x 7→ ι
∗
1 (x)⊗ ι

∗
2 (x).

(5.13)

This is a morphism of abelian monoids if we consider only the multiplicative operations •K∗(B1×B2)

and •K∗(B1)⊗K∗(B2) on K∗(B1 ×B2) and K∗(B1)⊗K∗(B2), respectively.

Let x⊗ y ∈ K0(B1)⊗K0(B2). Then, we have that

(ι∗1 ⊗ ι
∗
2 )◦m(x⊗ y) = (ι∗1 ⊗ ι

∗
2 )
(

pro j∗1x•K0(B1×B2)
pro j∗2y

)
∈ K0(B1)⊗K0(B2)

= (ι∗1 ⊗ ι
∗
2 )(pro j∗1x)•K0(B1)⊗K0(B2)

(ι∗1 ⊗ ι
∗
2 )(pro j∗2y)

= x⊗ (ι∗2 ◦ pro j∗1)x•K0(B1)⊗K0(B2)
(ι∗1 ◦ pro j∗2)y⊗ y.

(5.14)

We used in the above the fact that ι∗1 ⊗ ι∗2 is a morphism of commutative monoids(
K(B1 ×B2),•K(B1×B2)

)
and

(
K(B1)⊗K(B2),•K(B1)⊗K(B2)

)
.
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In fact, ι∗2 ◦ pro j∗1 and ι∗1 ◦ pro j∗2 in (5.14) correspond to the mappings rk : K0(B1) → Z and

rk : K0(B2)→ Z, respectively.

For j ∈ {1,2}, recall that rk is the rank ring morphism making the following diagram commute:

Vect(B j) Z

K0(B j)

rk

rk .

This implies that

(ι∗1 ⊗ ι
∗
2 )◦m(x⊗ y) = rk(y)x⊗ rk(x)y. (5.15)

Since m : K∗(B1)⊗K∗(B2)→ K∗(B1×B2) given by (5.11) is an isomorphism of rings, there exists

a mapping

ψ : K∗(B1 ×B2)→ K∗(B1)⊗K∗(B2)

such that

ψ ◦m = IdK∗(B1)⊗K∗(B2) and m◦ψ = IdK∗(B1×B2). (5.16)

From (5.16) we get that

(ι∗1 ⊗ ι
∗
2 )◦m(x⊗ y) = ψ ◦m(x⊗ y) ∈ K0(B1)⊗K0(B2)

for x⊗ y ∈ K0(B1)⊗K0(B2) such that rk(x) = rk(y) = 1.

Restricting the isomorphism ψ to K0(B1 ×B2) yields

K0(B1)⊗K0(B2)+K1(B1)⊗K0(B2) K0(B1 ×B2)
m

ψ
.

Denote by θ j(k) the trivial complex vector bundle of rank k over B j for j ∈ {1,2} and by θ(k) the

trivial complex vector bundle of rank k over B1×B2. Then, for any line bundle ν ∈Vect1(B1×B2),

[E1 ⊠E2][ν ] = [θ(n1n2)] is equivalent to

ψ([E1 ⊠E2][ν ]) = [θ1(n1)]⊗ [θ2(n2)] ∈ K0(B1)⊗K0(B2). (5.17)

Indeed, we know that

m([θ1(n1)]⊗ [θ2(n2)]) = [θ(n1n2)] ∈ K0(B1 ×B2)

and by injectivity of m or by applying ψ on the left, we get that

ψ([θ(n1n2)]) = [θ1(n1)]⊗ [θ2(n2)] ∈ K0(B1)⊗K0(B2).
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Using the fact that ψ is a ring morphism, we observe that

ψ([E1 ⊠E2][ν ]) = ψ([E1 ⊠E2])•K∗(B1)⊗K∗(B2) ψ([ν ])

= ([E1]⊗ [E2])•K∗(B1)⊗K∗(B2) (ν
0
1 ⊗ν

0
2 +ν

1
1 ⊗ν

1
2 )

where νk
j ∈ Kk(B j) for j ∈ {1,2} and k ∈ {0,1}. Hence,

ψ([E1 ⊠E2][ν ]) =
(
[E1]ν

0
1 ⊗ [E2]ν

0
2

)
+
(
[E1]ν

1
1 ⊗ [E2]ν

1
2

)
. (5.18)

Equation (5.17) implies that the second summand after the equality sign must vanish,

[E1]ν
1
1 ⊗ [E2]ν

1
2 = 0 ∈ K1(B1)⊗K1(B2)

and the following must hold

[E1]ν
0
1 = [θ1(n1)] ∈ K0(B1), [E2]ν

0
2 = [θ2(n2)] ∈ K0(B2). (5.19)

Since rk is a ring morphism, Equation (5.19) implies that

rk(ν0
1 ) = rk(ν0

2 ) = 1. (5.20)

Moreover,

rk(ν1
1 ) = rk(ν1

2 ) = 0. (5.21)

In other words, if [E1 ⊠E2][ν ] ∈ K0(B1 ×B2) is stably trivial then,

ψ([E1 ⊠E2][ν ]) = [E1]ν
0
1 ⊗ [E2]ν

0
2 .

Using the relations in (5.20) and (5.21), we compute the following

(ι∗1 ⊗ ι
∗
2 )◦m◦ψ[ν ] = (ι∗1 ⊗ ι

∗
2 )◦m(ν0

1 ⊗ν
0
2 )+(ι∗1 ⊗ ι

∗
2 )◦m(ν1

1 ⊗ν
1
2 )

= ν
0
1 ⊗ν

0
2 +0.

This means that

(ι∗1 ⊗ ι
∗
2 )[ν ] = ν

0
1 ⊗ν

0
2 . (5.22)

For ξ := ψ([E1 ⊠E2][ν ]), if [E1 ⊠E2][ν ] = n1n2 ∈ K0(B1 ×B2) then,

ξ = [E1]ν
0
1 ⊗ [E2]ν

0
2

= ([E1]⊗ [E2])•K0(B1)⊗K0(B2)
(ι∗1 ⊗ ι

∗
2 )[ν ]

= [E1 ⊗ ι
∗
1 ν ]⊗ [E2 ⊗ ι

∗
2 ν ].
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As a consequence of this, we have that for any line bundle ν ∈ Vect1(B1 ×B2),

[E1 ⊠E2][ν ] = n1n2 ⇔ m◦ψ

(
[E1 ⊠E2][ν ]

)
= n1n2

⇒ m
(
[E1 ⊗ν |B1]⊗ [E2 ⊗ν |B2]

)
= n1n2.

Injectivity of m implies that

[E1 ⊗ν |B1 ] = n1 ∈ K0(B1),

which contradicts our assumption (5.12). This means that for any ν ∈ Vect1(B1 ×B2)

[E1 ⊠E2][ν ] ̸= n1n2 ∈ K0(B1 ×B2).

We conclude from Theorem B that P(E1)×P(E2) is not trivial as a Hamiltonian fibration.

□

We will now give another example of non-trivial Hamiltonian fibrations as an application of

Corollary D.

Example 5.3.2. Let E1 := L⊗C3 ⊞L⊗C3 → RPn−1 ×RPn−1, where L is again the tautological

line bundle τ1
RPn−1 and n = 7 or 8. Let E2 be the tautological k-dimensional vector bundle over the

Grassmannian of k-hyperplanes in Cn.

Since [E1⊗µ] ̸= 6 for all line bundles µ over RPn−1×RPn−1 (see Example 5.2.3), the fiber bundle

CP5 ×CPk−1 ↪→ P(E1)×P(E2)→ RPn−1 ×RPn−1 ×Grn
k(C)

is not a trivial Hamiltonian fibration.
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Appendix A

Here we will recall the Dolbeault complex and define a natural elliptic operator on Kähler

manifolds. The reader is refered to [30] or [8] for more details.

Let E be a holomorphic vector bundle of rank n over a complex manifold M. Denote by

Ω(0,q)(E) the space of smooth sections in Γ(T ∗M(0,q)⊗C E). Every section α in Ω(0,q)(E) can

be expressed in a local holomorphic trivialization (U,ϕ) as an n-tuple (α1, · · · ,αn) of local (0,q)-

forms. We can define the operator

∂ E : Ω
(0,q)(E)→ Ω

(0,q+1)(E) (A.1)

as the operator which satisfies on a trivialization neighbourhood U the following

∂ E |U α = (∂α1, · · · ,∂αn) (A.2)

Definition A.0.1. The operator ∂ E defines a complex

· · · → Ω
(0,q−1)(E)

∂ E−→ Ω
(0,q)(E)

∂ E−→ Ω
(0,q+1) ∂ E−→ ·· · (A.3)

called the Dolbeault complex of E.

The following theorem which is an analogue of the De Rham Theorem shows a correspon-

dence between the cohomology of this complex and the sheaf cohomology of M (see for instance

Corollary 4.38, [30]).

Theorem A.0.2. (Dolbeault) Let E be a holomorphic vector bundle over a complex manifold

M. Then, the ith cohomology group of M with values in the sheaf of holomorphic sections of E

corresponds to the ith cohomology group of the Dolbeault complex (A.3) given by

H i
Dolb(M,E) =

ker (∂ : Ω(0,i)(E)→ Ω(0,i+1)(E))

im (∂ : Ω(0,i−1)(E)→ Ω(0,i)(E))
.



Assume M is endowed with a Hermitian structure h. Denote by J the canonical almost complex

structure on T M. For all x ∈ M, hx is a complex-valued positive definite sesquilinear form on TxM

satisfying the following:

hx(Jx(v),w) = ih(v,w) =−h(v,Jx(w)) ∀ v,w ∈ TxM.

Morover, the real part g := Re h defines a Riemannian structure in M and the imaginary part ω :=

Im h defines a non-degenerate two-form such that

g(v,w) = ω(Jv,w).

The two-form ω corresponds to a symplectic form for a Kähler manifold. Assume M is a Kähler

manifold. Observe that the mapping

TxM → T ∗
x M(0,1), v 7→ hx(v,.)

is a complex linear isomorphism. We can use this map to define a Hermitian structure h(0,1) on

T ∗
x M(0,1) which induces then a Hermitian structure hE on E = Λ(T ∗

x M(0,1)).

Let L be a holomorphic line bundle with Hermitian structure hL. The tensor product hE ⊗ hL

defines a Hermitian structure in E ⊗L.

Consider the mapping that assigns to any α ∈ T ∗
x M(0,1) the following exterior product operation

e(α) : Eq
x ⊗L → Eq+1 ⊗Lx, ν 7→ α ∧ν .

One way of computing the principal symbol of a differential operator D ∈ Pm(E,F ;M) for com-

plex vector bundles E and F over M is given by the following. Let ξ ∈ T ∗
x M for any point x in M

and let f be any smooth function on M that satisfies

d f (x) = ξ and f (x) = 0. (A.4)

Then for any section α ∈ Γ(M,E)

σD(x,ξ )α(x) =
im

m!
D( f m

α)(x), i =
√
−1. (A.5)
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Using (A.5) we will compute σ
∂

. Let α ∈ T ∗M(0,q) and ξ ∈ T ∗
x M. Then for any f ∈ C∞(M)

satisfying (A.4),

σ
∂
(x,ξ )α(x) = i∂ ( f α)(x)

= i(∂ f )α(x)

= i(π(0,1) ◦d)( f )α(x)

= ie(ξ (0,1))α(x).

If e1, · · · ,en is a unitary local frame in T M with respect to h then, ε j = h(e j,.) defines a unitary

frame in T ∗M(0,1) such that we have the following pairing

⟨e j,εk⟩= δ jk.

The adjoint of e(ε j) is given by the interior product operator ι(e j). Write

ξ
(0,1) =

1
2

n

∑
j=1

(
⟨e j,ξ ⟩+ i⟨Je j,ξ ⟩

)
ε j

then

σ
∂
∗(ξ ) =

−i
2

n

∑
j=1

(
⟨e j,ξ ⟩− i⟨Je j,ξ ⟩

)
ι(e j)

=
−i
2

ι(g−1
ξ ).

One can show that the principal symbol of the square of D :=
√

2(∂ +∂
∗
) is given by

σD2(ξ ) =
1
2
⟨g−1

ξ ,ξ ⟩= 1
2

∥∥ξ
∥∥ . (A.6)

An operator satisfying A.6 is called a generalized Dirac operator. We’ll refer to D as the

Dolbeault-Dirac operator. The relation A.6 implies that D2 and D are elliptic. For a com-

pact manifold M this implies that ker D is finite dimensional and that im D = ker(D∗)⊥. Since

∂
2
= (∂

∗
)2 = 0, we have that

1
2

D2 = ∂ ∂
∗
+∂

∗
∂

or
1
2
(Du,Du) = (∂u,∂u)+(∂

∗
u,∂

∗
u).

Hence Du = 0 is equivalent to ∂ = 0 and ∂
∗
= 0. In other words, u is in the orthogonal complement

of the range of ∂ . By the Dolbeault Theorem, we have that

ker D|Γ(M,Eq⊗L)
∼= Hq(M,O(L)).
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