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Résumé

Le contenu de cette thèse explore la question de l’attribution de crédits à long terme dans
l’apprentissage par renforcement du point de vue d’un biais inductif de parcimonie. Dans
ce contexte, un agent parcimonieux cherche à comprendre son environnement en utilisant le
moins de variables possible. Autrement dit, si l’agent est crédité ou blâmé pour un certain
comportement, la parcimonie l’oblige à attribuer ce crédit (ou blâme) à seulement quelques
variables latentes sélectionnées. Avant de proposer de nouvelles méthodes d’attribution parci-
monieuse de crédits, nous présentons les travaux antérieurs relatifs à l’attribution de crédits à
long terme en relation avec l’idée de sparsité. Ensuite, nous développons deux nouvelles idées
pour l’attribution de crédits dans l’apprentissage par renforcement qui sont motivées par un
raisonnement parcimonieux : une dans le cadre sans modèle et une pour l’apprentissage basé
sur un modèle. Pour ce faire, nous nous appuyons sur divers concepts liés à la parcimonie
issus de la causalité, de l’apprentissage supervisé et de la simulation, et nous les appliquons
dans un cadre pour la prise de décision séquentielle.

La première, appelée évaluation contrefactuelle de la politique, prend en compte les dévi-
ations mineures de ce qui aurait pu être compte tenu de ce qui a été. En restreignant
l’espace dans lequel l’agent peut raisonner sur les alternatives, l’évaluation contrefactuelle
de la politique présente des propriétés de variance favorables à l’évaluation des politiques.
L’évaluation contrefactuelle de la politique offre également une nouvelle perspective sur la
rétrospection, généralisant les travaux antérieurs sur l’attribution de crédits a posteriori. La
deuxième contribution de cette thèse est un algorithme augmenté d’attention latente pour
l’apprentissage par renforcement basé sur un modèle : Latent Sparse Attentive Value Gra-
dients (LSAVG). En intégrant pleinement l’attention dans la structure d’optimisation de la
politique, nous montrons que LSAVG est capable de résoudre des tâches de mémoire active
que son homologue sans modèle a été conçu pour traiter, sans recourir à des heuristiques ou
à un biais de l’estimateur original.

mots clés: attribution de crédits, apprentissage par renforcement, apprentissage basé
sur un modèle, attention, contrefactuelle, rétrospection, attribution de crédits à long terme,
parcimonie, troncation, Markov Decision Process, évaluation de la politique, apprentissage
automatique
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Abstract

The content of this thesis explores the question of long-term credit assignment in reinforce-
ment learning from the perspective of a parsimony inductive bias. In this context, a parsi-
monious agent looks to understand its environment through the least amount of variables
possible. Alternatively, given some credit or blame for some behavior, parsimony forces the
agent to assign this credit (or blame) to only a select few latent variables. Before propos-
ing novel methods for parsimonious credit assignment, previous work relating to long-term
credit assignment is introduced in relation to the idea of sparsity. Then, we develop two
new ideas for credit assignment in reinforcement learning that are motivated by parsimo-
nious reasoning: one in the model-free setting, and one for model-based learning. To do so,
we build upon various parsimony-related concepts from causality, supervised learning, and
simulation, and apply them to the Markov Decision Process framework.

The first of which, called counterfactual policy evaluation, considers minor deviations of
what could have been given what has been. By restricting the space in which the agent
can reason about alternatives, counterfactual policy evaluation is shown to have favorable
variance properties for policy evaluation. Counterfactual policy evaluation also offers a new
perspective to hindsight, generalizing previous work in hindsight credit assignment. The
second contribution of this thesis is a latent attention augmented algorithm for model-based
reinforcement learning: Latent Sparse Attentive Value Gradients (LSAVG). By fully inte-
grating attention into the structure for policy optimization, we show that LSAVG is able to
solve active memory tasks that its model-free counterpart was designed to tackle, without
resorting to heuristics or biasing the original estimator.

Keywords: credit assignment, reinforcement learning, model-free, model-based, atten-
tion, counterfactual, hindsight, long-term credit assignment, parsimony, sparse, discount,
truncation, Markov Decision Process, on-policy evaluation, off-policy evaluation, machine
learning.
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Chapter 1

Introduction

1.1. Artificial Intelligence and Machine Learning
Many of the recent advancements in the field of computer science share a common ambi-

tion towards artificial intelligence. While the words “artificial intelligence” can be intuitively
understood by most, it can become difficult to put into writing a clear definition of the
supposed holy grail of computer science. A large part of this difficulty may be attributed to
the vagueness of the term “intelligence”, the definition of which has been long debated by
psychologists and biologists alike. Perhaps a good place to start is in the Merriam-Webster
dictionary which defines intelligence: “the ability to learn or understand or to deal with
new or trying situations”.

The ability to learn, as put in the above definition, has been a focal point of artificial
intelligence in recent decades. So much so in fact, that since the term “machine learning”
was coined in 1952 by Arthur Samuel [62], it has not only become synonymous with artificial
intelligence, but in 2015, the keyword “machine learning" surpassed “artificial intelligence"
in terms of popularity in online searches [21].

Interestingly, the ability to learn arguably comprises only one aspect of artificial intelli-
gence. In 1961, an important article entitled “Steps Towards Artificial Intelligence” written
by Marvin Minsky separates artificial intelligence into five different aspects: Search, Pattern-
Recognition, Learning, Planning, and Induction. While these different aspects do not have
to be mutually exclusive, the idea of machines learning is seemingly an important part of
artificial intelligence whether you follow an official definition, popularity or Minsky’s anal-
ysis. What is the difficulty of designing autonomous learning then? The difficulty is in
distributing credit for success of a complex strategy among the many decisions that were
involved. -Minsky 1961



1.2. Credit Assignment
As one of the earliest mention of the credit assignment problem, and consequently

credit assignment (CA) in general, Minsky’s portrayal of credit assignment was tightly asso-
ciated with reinforcement learning (RL), and how credit is assigned through time. A more
recent and detailed take of credit assignment was then discussed in Sutton’s thesis [65]. The
complete definition was written as: When a learning system employs a complex decision
process, it must assign credit or blame for the outcomes to each of its decisions. Where it
is not possible to directly attribute an individual outcome to each decision, it is necessary to
apportion credit and blame between each of the combinations of decisions that contributed to
the outcome.

While most direct references of credit assignment revolves around reinforcement learning,
the discussion around credit assignment has recently become prevalent in many aspects of
machine learning. For example, in the popular article [63], credit assignment is discussed
around Schmidhuber’s definition: Which modifible components of a learning system are re-
sponsible for its success or failure? What changes to them improve performance? In this
definition, the credit assignment problem is a fundamental question of not only reinforce-
ment learning, but machine learning and deep learning as a whole. The above formulation
is concerned with understanding how changing a specific component (θ) of a system affects
the overall performance (L). In other words, accurately estimating ∆L

∆θ corresponds to credit
assignment. Formally, this magic term is called the gradient of a system. The question then
remains how to best obtain this gradient in increasingly complex learning systems. Today,
the most popular method for gradient estimation in deep learning, and consequently credit
assignment, is backpropagation [20, 6, 38]. However, as we will see, backpropagation is far
from a perfect solution to the credit assignment problem, especially in long-term scenarios.

Another popular source for understanding credit assignment is in Richard Sutton’s The-
sis [65], where in the context of reinforcement learning, it is separated into two categories:
temporal credit assignment and structural credit assignment. We will further examine the
details of reinforcement learning later, but for now, the ultimate question in reinforcement
learning is to properly assign credit to the internal decision making process of an agent based
on a given reward signal. The two categories mentioned by Sutton splits this process into
two steps: first credit needs to be assigned to the external decisions made by the agent (tem-
poral credit assignment), then given this richer signal attributed to each individual external
decision, credit can be assigned to the internal decisions of the agent that led to the external
ones (structural credit assignment). Concretely, learning a better critic is often associated
with temporal credit assignment, and structural credit assignment is relegated to gradient
estimation techniques such as the REINFORCE estimator [77] or backpropagation. Where
terminology starts to get confusing is when temporal information is embedded within the
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structure of a learning system, such as recurrent neural networks. For this reason, it is more
convenient for us to label these two credit assignment categories instead as secondary credit
assignment (Sutton’s temporal credit assignment) and primary credit assignment (Sutton’s
structural credit assignment), and reserve the term temporal credit assignment problem for
its intuitive definition regarding the problems that may arise when assigning credit through
time.

1.3. Reinforcement Learning
Until now, there has been mention of reinforcement learning a few times in the context of

credit assignment. In this section, we will provide some basic fundamentals of reinforcement
learning. Again let us begin our discussion with a definition: “[Reinforcement learning] is a
computational approach to learning whereby an agent tries to maximize the total amount of
reward it receives while interacting with an [...] environment” [67]. We can expand our
definition further by fleshing out some of the key words highlighted in the above citation.
In fact, Markov Decision Processes (MDP) provide us with a framework for reinforcement
learning that goes well beyond words.

1.3.1. Markov Decision Processes

The agent in this context is not unlike any function mapping familiar to the machine
learning literature. It takes as input some observation of the current state of the environment,
and outputs an action, or a probability of actions to take in the environment. Often also
called a policy, it is denoted as: π(s) → a, where s is the current state of the environment,
and a is the action chosen by the agent.

A large part of what makes reinforcement learning separate from other fields of machine
learning, such as supervised or unsupervised learning, is in the environment. So far, we have
used terms like environment, state, action, and interact without properly defining them.
Markov Decision Processes [57] provide a template to ground these terms formally. An
MDP is characterized by the following tuple: (A, S, T , r, γ, T), where A is the set of
possible actions, S the set of possible states, T ∈ R|S|×|A|×|S| the transition probabilities,
r : S ×A → R the reward function, γ ∈ [0,1] the discount factor and T ∈ N the time
horizon. Consequently, any reference to the environment can be identified by an MDP
and its parameters. In the case when actions and or states are continuous, the transition
dynamics can instead be written as a probability distribution p(st+1|st, at).
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Given the behavior of an agent specified by the stationary policy π(at|st), the
environment-agent interactions described with this MDP induces a distribution over
trajectories (called episodes) as follows:

The initial state is drawn: s0 ∼ µ

for t = 0 to T :
An action is chosen by the agent: at ∼ π(at|st)
The agent interacts with the environment to observe the next state and reward:

rt ← r(st, at), st+1 ∼ p(st+1|st, at)

Importantly, environments are said to be Markovian if st encompasses all past information
needed for future predictions. If this is not the case, we typically enter the world of Partially
Observable Markov Decision Processes (POMDP) [83, 34], where states emitted by the
environment are instead called observations ot. When this is the case, a naive way to preserve
the Markovian property is to simply consider the entire history of observation-action pairs
as the current state, st = (o0a0, . . . , at−1ot). Alternatively, it is possible to maintain a belief
state p(st|o0a0, . . . , at−1ot) that equally encompasses all the information needed [44].

Under the framework of MDPs, reinforcement learning seeks to learn a policy that max-
imizes the cumulative reward over an episode. Value iteration and policy iteration [67] are
clear ways to do just this, but may lack efficiency in more complex environments.

1.4. Thesis Statement
In this work, we will investigate the credit assignment problem in the context of reinforce-

ment learning. Specifically, we investigate the effects of using parsimony as an inductive bias
for better temporal credit assignment. Parsimonious, or sparse, reasoning relates to state
abstraction or the options framework [2, 69]. As the saying goes “less is more!”, the parsi-
mony bias is one that argues that agents should be able to reason just as well, if not better,
using only a select few variables in its latent space. The inspiration for parsimonious reason-
ing comes from humans, and is in line with Bengio’s Consciousness Prior [7] and the Global
Workspace Theory of conscious processing [3].
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Chapter 2

Background and Related Work

2.1. Learning Across Time
Machine learning is built around the notion of a loss or performance objective being

optimized. In the supervised learning setting, the metric, called a loss function L(x,y, θ),
measures the performance of a model with respect to the model parameters θ, inputs x, and
true values y. How can we know how to change the parameters in order to minimize the
loss? Luckily, that is exactly what gradients tell us. According to he first-order optimality
condition for unconstrained optimization, if θ is a minimizer f L at x,y, then dL(x,y,θ)

dθ
=

0. Using this fundamental result, gradient descent (or ascent) is an iterative procedure
which takes steps in the direction of the gradient until a local minimum (or maximum) is
attained. Attaining the derivative dL(x,y,θ)

dθ
tells us in what direction to modify θ in order

to maximize or minimize L(x, y,θ). Fortunately, there are many tools to our disposal for
calculating derivatives, however with the advent of more complicated systems like artificial
neural networks, more efficient means for gradient computation were necessary. Reverse
mode automatic differentiation (AD) [43, 24], or backpropagation, serves just this purpose,
and is the backbone of most modern machine learning for efficient gradient computation in
said complex function approximators.

2.1.1. Backpropagation

The origins of backpropagation is somewhat disputed [23], but the methodology is clear.
Without loss of generality, let us consider the function f(x,θ) composed of however many
individual differentiable functions. For example, if the function can be written as f(x, θ) =
fn ◦ fn−1 ◦ . . . ◦ f2 ◦ f1(x, θ1), where each fi is parameterized by θi, the derivative df

dθi
can be

obtained with the chain rule:
df

dθi
= dfn
dfn−1

dfn−1

dfn−2
. . .

dfi+1

dfi

dfi
dθi

(2.1.1)



Notice the recursive nature of the above formulation, which can also be written as:

δi := dfn
dfn−1

dfn−1

dfn−2
. . .

dfi+1

dfi

δi−1 = δi
dfi
dfi−1

df

dθi
= δi

dfi
dθi

Let us quickly examine the computational cost of the above operations. The Jacobians
dfi
dfi−1

are of shape Ni × Ni−1 where Ni is the output size of fi. Recall that f(x, θ) is a
loss function that takes a scalar value in a vast majority of machine learning applications,
therefore Nn = 1. Additionally, the jacobian dfi

dθi
is of shape Ni × |θi| where |θi| is the

number of parameters in fi. Given the associative nature of matrix multiplications, there
are a number of ways to go about computing df

dθi
. Naturally, there are two extreme opposite

methods, that is going about equation 2.1.1 from right to left, and from left to right, where
naively multiplying a matrix of shape N × M by one of M × P requires NMP atomic
operations. For the remaining discussion regarding computation and memory cost, reference
to θi alludes to the number of parameters in fi, |θi|.

Right to left corresponds finding the gradient as df
dθi

= dfn
dfn−1

(dfn−1
dfn−2

(. . . (dfi+1
dfi

dfi
dθi

))). This
involves maintaining a matrix of shape (.) × θi until reaching the desired matrix of shape
Nn × θi. The following number of operations are necessary

Ni+1Niθi +Ni+2Ni+1θi + . . .+NnNn−1θi .

Left to right corresponds finding the gradient as df
dθi

= ((( dfn
dfn−1

dfn−1
dfn−2

) . . .)dfi+1
dfi

) dfi
dθi

. This
involves maintaining a matrix of size Nn × (.) until reaching the desired matrix of shape
NN × θi. The following number of operations are necessary

NnNn−1Nn−2 +NnNn−2Nn−3 + . . .+NnNiθi

It is clear that if θi is much larger than Nj for all j and i, and Nn = 1, computing df
dθi

from left to right following equation 2.1.1 is more computationally efficient. Moreover, the
recursive nature of δi−1 lets us efficiently compute df

dθi−1
using δi. These two computational

advantages represent the two main benefits of using what is called reverse mode automatic
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Fig. 2.1. An example of how a typical recurrent neural network computes yt during the
forward pass (represented by the black arrows), and how credit is assigned through time
during backward pass (represented in blue).

differentiation 1 or backpropagation in machine learning. How can a similar idea be used to
assign credit through time?

2.1.2. Recurrent Networks

Originally introduced in [61], recurrent networks are an extension of traditional multilayer
perceptrons [58] to the problem of predicting a sequence of inputs. Given a sequence of data
st = x1x1 . . . xt, a basic recurrent neural network (RNN) is parameterized as g(st, θ, ψ) =
fψ ◦ f(xt, θ) ◦ f(xt−1, θ) ◦ . . . ◦ f(x1, θ), where f(.) behaves similarly to f(x,θ) in the previous
section. An RNN iteratively computes:

h0 := 0

ht := f(xt, ht−1, θ) (2.1.2)

yt := fψ(ht, ψ)

Even though f is a function of itself through time, the general procedure for backprop-
agation can still be applied for gradient calculations. Again, we are interested in finding df

dθ

1Why is it called reverse mode automatic differentiation if it appears to compute equation 2.1.1 in the
standard left to right direction, and what would be the alternative forward mode automatic differentiation?
Recall that in order to calculate the gradients, a forward pass through the function needs to be done to obtain
the values fn, fn−1, fn−1, . . . , fi+1, fi. Due to the compositional nature of fn, all previous intermediate values
fj<n need to be computed before doing the first matrix multiplication dfn

dfn−1

dfn−1
df n−2 , however the intermediate

results fj<n will be used later during backpropagation. Therefore, the intermediate values must be saved
during the forward pass, resulting in the use of a memory of sizeNi+. . .+Nn−1 for reverse mode autodiff. The
alternative, forward mode automatic differentiation, which computes equation 2.1.1 from right to left, aligns
its gradient computation with the forward pass, which means intermediate results fj<n can be discarded as
you go, saving you any memory hassle, hence the terms forward and backward differentiation. The (general)
computational benefits of backpropagation are therefore not free, and comes with a corresponding memory
tradeoff.
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for a given sequence of data st. We can unroll the forward computations, and apply the
chain rule to see what df

dθ
is really composed of:

dh0

dθ
:= 0

dht
dθ

:= df(xt, ht−1, θ)
dθ

dht
dθ

= ∂ht
∂θ

+ ∂ht
∂ht−1

dht−1

dθ
(2.1.3)

The gradient of interest for backpropagation through time can also be written recursively
as

dht
dθ

= ∂ht
∂θ

+
t−1∑
i=1

(
t∏

j=i+1

∂hj
∂hj−1

)
∂hi
∂θ

. (2.1.4)

Similarly to our previous discussion of backpropagation, we can compute equation 2.1.4
using reverse mode automatic differentiation for computational benefits2. Recurrent net-
works are built using the ideas of standard neural networks with a time component. Con-
sequently, backpropagation through time (BPPT) naturally extends credit assignment into
the temporal dimension.

2.2. Assigning Credit Through Experience
As discussed earlier, the agent-environment interactions of reinforcement learning lends

itself to a slightly different problem class than the above credit assignment paradigms. Su-
pervised learning is interested in changing some parameters θ that only emit a structural
dependency with respect to the loss to minimize. Conversely, the parameters of RL emit a
distributional dependency with respect to the performance measure to maximize [60].
Definition 2.2.1 (Expected Value). The expected value of a continuous random variable X
with a probability density function f(x) is

E [X] =
∫
xf(x)dx .

It then follows that if the probability density function of X is parameterized by θ as pθ(x),
and let h(X) be any function of X, then

Eθ [h(X)] =
∫
h(x)pθ(x)dx .

2There is a forward mode equivalency, called Real-time recurrent learning which inherits all the benefits
and drawbacks of forward mode differentiation as discussed in the previous section. However, because the
situations in which t gets very large in recurrent networks tend to be much more common and unavoidable
compared to the cases when n is very large in standard neural networks, there has been a lot more work
discussing the potential uses of RTRL [78, 48]
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In general, credit assignment in reinforcement learning involves sampling experiences,
X, from the environment with the agent, paramterized by θ, and maximizing an expected
performance measure h(X) with respect to the sampled experiences. The interest is therefore
in estimating the following gradient3:

∇θEθ [h(X)] = ∇θ

∫
h(x)pθ(x)dx . (2.2.1)

For practical reasons, we would the gradient in equation 2.2.1 to be inside the integrand
such that ∇θEθ [h(X)] can be estimated from samples of X. The different tricks used to
estimate this gradient has subsequently given rise to two main categories of reinforcement
learning; model-free learning, and model-based learning.

Under the MDP framework, X represents the sequence of states and actions, the perfor-
mance measure is the accumulated reward, and pθ(X) is the probability distribution of the
sequence of state-action pairs induced by the current policy and the dynamics:

X := S0, A0, S1, A1, . . . , ST ,AT ,

GT :=
T∑
t=0

r(St, At)

h(X) :=
T∑
t=0

r(St, At) ,

pθ(X) := µ(S0)
T∏
t=0

πθ(At|St)p(St+1|St, At) , (2.2.2)

where capital letters denote random variables of the environment. In this case, Si is the state
observed at time step i, Ai is the action observed at time step i and GT is the accumulated
reward.

2.2.1. Model-free Learning

Model-free learning estimates equation 2.2.1 without the need to know the environments
dynamics p(st+1|st, at). The basic building blocks of most model-free learning approaches
follow from the REINFORCE estimator derived in [77] and the policy gradient theorem first
shown in [68, 5, 37]. We will show here a derivation of the REINFORCE estimator starting
from (2.2.1) using likelihood ratios and score functions.

Likelihood ratios are most commonly used in the simulation community for importance
sampling. At its core, likelihood ratios can be used in importance sampling [60] for a change
of measure [12], that is we can measure Eθ [h(X)] under a different probability density

3The discussion so far is working under the assumption of continuous state spaces. For simplicity, we omit
the discrete counterpart.
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function q(X) through a simple multiplication:

Eθ [h(X)] = Eq
[
h(X)pθ(X)

q(X)

]
(2.2.3)

∫
h(x)pθ(x)dx =

∫
h(x)pθ(x)

q(x) q(x)dx . (2.2.4)

The resulting ratio pθ(x)
q(x) is called a likelihood ratio. Importantly, h(x)pθ(x) must be domi-

nated by the new distribution q(x). That is, q(x) = 0 =⇒ h(x)pθ(x) = 0.
Score functions are defined as the gradient of the log likelihood of a probability dis-

tribution. Often used in statistics for its various properties, it intuitively measures how a
small change of θ will affect the the overall probability distribution relative to the original
distribution [64]. This can be seen through the following identity given by calculus:

∂

∂x
logf(x) = ∇xf(x)

f(x) . (2.2.5)

Equipped with these concepts, we are now ready to see how to evaluate ∇θEθ [h(X)]
(equation 2.2.1) purely through experience. First, we use the likelihood ratio to rewrite
the aforementioned gradient with respect to a new distribution q(x), ∇θEθ [h(X)] =
∇θEq

[
h(X)pθ(X)

q(X)

]
. Second, the gradient operator can now be put inside the expectation,

since it no longer depends on θ, ∇θEθ [h(X)] = Eq
[
h(X)∇θpθ(X)

q(X)

]
. Finally, let us use the

score function of pθ(x), that is let q(x) = p(x):

∇θEθ [h(X)] = Eθ [h(X)∇θlogpθ(X)] . (2.2.6)

Aside from notation, this is how REINFORCE estimates the gradient of the performance
measure through experience, or in other words, how credit can be assigned through experi-
ence. For completeness, we rewrite the above equation using the MDP framework defined
in equations 2.2.2. Particularly, it is worth addressing how the score function induced by
pθ(X) = µ(S0)∏T

t=0 πθ(At|St)p(St+1|St, At) can be reduced:

∇θpθ(X)
pθ(X) = ∇θµ(S0)∏T

t=0 πθ(At|St)p(St+1|St, At)
µ(S0)∏T

t=0 πθ(At|St)p(St+1|St, At)
.

The initial distribution µ(S0) and transition probabilities p(St+1|St, At) can be canceled out
because they are independent of θ.

∇θpθ(X)
pθ(X) = ∇θ

∏T
t=0 πθ(At|St)∏T

t=0 πθ(At|St)
Then, we use the identity in (2.2.5) to rewrite it in terms of the log probabilities, which lets
us change the product into a summation,

∇θpθ(X)
pθ(X) =

T∑
t=0
∇θlogπθ(At|St) .
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Now, putting everything together recovers the REINFORCE estimator in (Williams 1992).

∇θEθ
[
T∑
t=0

r(St, At)
]

= Eθ
[
T∑
t=0

r(St, At)
t∑

k=0
∇θlogπθ(Ak|Sk)

]
(2.2.7)

= Eθ
[
T∑
t=0
∇θlogπθ(At|St)

T∑
k=t

r(Sk, Ak)
]

(2.2.8)

Note the switch in summation in equation 2.2.8 with which REINFORCE was first de-
rived with, and the form most current algorithms are based on. Many popular model-free
reinforcement learning algorithms, such as DQN[50], DDPG[42], TD3 [18], SARSA [67],
are derived using this formulation as a starting point, often replacing the cumulative reward
for value functions 4.

2.2.2. Model-based Learning

Model-based learning takes another approach to credit assignment. As the name implies,
using a known model of the dynamics, we can similarly assign credit with experience even
if the agent or environment may be stochastic. Using what many in the machine learning
community now call the reparameterization trick, we can move the stochasticity of the
original estimator elsewhere such that the gradient can be pushed inside the expectation.

The reparameterization trick5 recently popularized through variational auto-encoders
[36] is based on a change of variable instead of the change of measure used in model-free
learning. The goal of reparameterizing is to write a random variable as a deterministic
function with another random variable as input. In doing so, the new expectation is instead
conditioned on the new random variable. Take for example a random variable drawn from
a normal distribution X ∼ N (µ, σ2). The random variable X can instead be written as a
deterministic function of the new random variable ξ ∼ N (µ, σ2): x = f(ξ) = µ+ σξ.

Let us see how equation 2.2.1 can be estimated using this trick. First, assume a deter-
ministic function f(θ, ξ), such that the random variable X becomes has the deterministic
relationship x = f(θ, ξ). Moreover, ξ is sampled from a known fixed distribution ξ ∼ p(ξ).
For example, it could the uniform distribution p(ξ) = U(0,1). The desired gradient then
becomes:

∇θEθ [h(X)] = ∇θ

∫
h(x)pθ(x)dx

= ∇θ

∫
h(f(θ, ξ))p(ξ)dξ

=
∫
∇θh(f(θ, ξ))p(ξ)dξ = Eξ∼p(ξ) [∇θh(f(θ, ξ))] (2.2.9)

4Learning value functions, or policy evaluation, will be addressed in a later section.
5Also known as infinitesmal perturbation analysis in the simulation community [39]
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A necessary first to estimating the above gradient is have access to f(θ, ξ). In the context of
reinforcement learning, this amounts to having the reparameterized dynamics of the model
st = f(st−1, at−1, ξ) and the reparamterized policy at = π(st, ξπ). In this case, equation 2.2.9
can be written as:

Ep(ξ)
[
T∑
t=0
∇θr(st,at)

]
,where (2.2.10)

st = fψ(st−1, at−1, ξ)

at = πθ(st, ξ)

Given that r(st, at), fψ(st−1, at−1, ξ) and πθ(st, ξ) are all deterministic thanks to the repa-
rameterization trick, it is straight forward to derive the gradient ∇θr(st,at) using backprop-
agation through time. The interesting parallel between recurrent networks and model-based
learning will be discussed later in this work.

Most of the derivation in this section for model-based learning is based on stochastic
value gradients (SVG) [30], and does not generalize all model-based learning algorithms.
The focus of this section is to introduce background for what are known as value gradient
methods [30, 15]. Other model-based methods exist based on planning [66, 25, 26] may
also make use of the reparameterization trick, but do not necessarily backpropagate through
the learned model for credit assignment. For the purposes of this thesis, any reference to
model-based learning references value gradient based methods as shown in this section.

2.3. Long-term Credit Assignment
How well do the above methods for gradient estimation scale over long horizons? For

reasons that will become clear, the basic approaches previously highlighted are not ideal
when assigning credit through a long period of time. We will see how the horizon T of
an environment or problem affects the behaviors of computing gradients in both supervised
learning and reinforcement learning.

2.3.1. Supervised Learning

Here, we discuss the challenges of applying backpropagation in the supervised learning
setting given long-time scales or deep networks. The main challenge, infamously known as
the vanishing/exploding gradient problem [20, 53] is particularly problematic in recurrent
neural networks given their depth.
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Recall the problem statement given in equation 2.1.2. For this discussion, let us simplify
ht to admit only a recurrent linear dependency :

h0 := 0 ,

ht := WTht−1 , (2.3.1)

find
dht
dW

,

where W ∈ RN×N and h0 ∈ RN . Given the iterative unrolling of dht
dW shown in equation

2.1.4 or the recurrent relationship in (2.1.3), the effect of changing the parameters in the
long term, say at time step i < t, are captured by :

∂ht
∂Wi

= ∂ht
∂ht−1

∂ht−1

∂Wi

= ∂ht
∂ht−1

∂ht−1

∂ht−2
. . .

∂hi+1

∂hi

∂hi
∂Wi

.

Following the relationship established in (2.3.1), the terms ∂hk
∂hk−1

for all i < k ≤ t can be
reduced to

∂hk
∂hk−1

= WT .

The long term effect of changing the parameters at time step i < t can therefore be found
to be

∂ht
∂Wi

= (W T )(t−i) ∂hi
∂Wi

(2.3.2)

Before we are ready to formally show the vanishing/exploding gradient problem, a couple
definitions are necessary.
Definition 2.3.1 (Eigenvalues and Eigenvectors). Let A ∈ Rm×m be a square matrix. For
any v 6= 0 such that Av = λv for some λ ∈ C, v is called an eigenvector corresponding to
the eigenvalue λ.
Definition 2.3.2 (Diagonalizable matrices, and Eigendecompositions). A matrix A ∈ Rm×m

is diagonalizable if and only if there exists a basis v1, v2, . . . , vm ∈ Rm of Rm consisting of
eigenvectors of A. In which case, A has the eigendecompositon:

A = QΛQ−1 ,

where Q ∈ Rm×m consists of the eigenvectors of A and Λ ∈ Rm consists of the corresponding
eigenvalues.
Theorem 2.3.3 (The vanishing/exploding gradients problem). Given a recurrent neural
network defined in (2.3.1), the long term effects of changing the parameters in i < t exhibit
an exponential relationship with respect to the eigenvalues of W and t− i.
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Proof. Given (2.3.1) and let W be diagonalizable, then
∂ht
∂Wi

= (WT )t−i ∂hi
∂Wi

= (Q−1ΛQ)t−i ∂hi
∂Wi

= Q−1Λt−iQ
∂hi
∂Wi

�

The implication of theorem 2.3.3 being that unless the eigenvalues of W are very close to
1, any long term effects captured through BPPT quickly reduce to 0 if the eigenvalues are
less than 1, and explode if the eigenvalues are more than 1. Long term credit assignment in
vanilla recurrent networks suffer from this, and it still remains a hot topic of research to this
day [32, 53, 3, 20]. Some common solutions to this include specially crafted gated RNNs
[32], gradient clipping [20] and, as we will see, gradient truncation.

2.3.2. Actor-Critic Methods

There are two main components to the REINFORCE estimator shown in equation 2.2.8.
The first of which is the score function estimator, and the second component evaluates the
performance of this policy with respect to the action taken. Put simply, the first part tells
us how changing the internal decisions θ affects the external decision πθ(at|st). This is the
primary credit assignment problem (Sutton’s structural credit assignment) introduced in
the introduction. The second part is the secondary credit assignment problem (Sutton’s
temporal credit assignment), and is often called a policy evaluation step. Policy evaluation
looks to estimate the following values:

V θ
t (s) := Eθ

[
T∑
t=t

r(St, At)
∣∣∣∣∣St = s

]
, (2.3.3)

Qθ
t (s,a) := Eθ

[
T∑
t=t

r(St, At)
∣∣∣∣∣St = s, At = a

]
. (2.3.4)

Particularly, Qθ(s,a), called the action-value function [67], can be used within the REIN-
FORCE estimator to provide an estimate of the expected return along the state-action pairs
of a trajectory:

∇θEθ
[
T∑
t=0

r(St, At)
]

= Eθ
[
T∑
t=0
∇θlogπθ(At|St)Qθ

t (St, At)
]

In its simplest form, the one used in (2.2.8), Q is estimated using a one-sample crude Monte
Carlo estimate. The variance of this estimate is therefore very high, especially when T is
very large. In the case of T =∞, the variance can even become unbounded.
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There are various ways to address this issue, the most popular of which is to learn a
function to approximate Q, called a critic. Still, true values need to be approximated for
the critic to ground itself. Temporal difference learning (TD) [65] serves just this purpose,
offering a middle ground between full Monte Carlo estimates and dynamic programming. A
detailed account of TD predictions can be found in [65] and [67]. In summary, TD learning
trades variance for bias by bootstrapping the value function. However temporal difference
predictions are also affected by the long-term credit assignment problem, as the bias of TD
also increases with the horizon. Another popular practice for long-term credit assignment is
to employ a recency heuristic [5, 65, 67], and discount future rewards. We will address this
approach in more detail in the next section.

2.3.3. Model-based Reinforcement Learning

Model-based RL does not suffer the same variance issue as model-free RL, due to its
implicit modeling of dependencies. However, since the model is typically learned during
training, any error in the model is propagated through time. Since the model is used at
every step of credit assignment, an error e in the dynamics model is accumulated through
time. Again, as T grows, errors in the model are accentuated for long-term credit assignment,
and become increasingly unreliable. Similarly to model-free learning, one can make use of a
critic to prevent the learned transition model to propagate its errors through time. However,
just like model-free learning, policy evaluation comes with its own issues for long-term credit
assignment.

We will also see that pure model-based reinforcement learning with no critic makes exten-
sive use of backpropagation through time. Consequently, the vanishing/exploding gradient
problem also plagues model-based RL.

2.4. Parsimony for Better Reasoning
Seeing the challenges of long-term credit assignment, let us explore further some of the

solutions in the current literature, and how they might relate to parsimonious reasoning.
We have already motivated the use of parsimony for credit assignment for biological and
psychological reasons, but this remains a heuristic. Generally, sparse reasoning can also be
seen as a way to artificially reduce the horizon T of our credit assignment problem. Whether
by changing time scales, or by ignoring a certain portion of the time steps, lowering the value
of T addresses most of the challenges associated with long-term credit assignment discussed
in the previous subsection at the cost of introducing bias.
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2.4.1. Discounting and Truncation

The easiest method for handling long-term credit assignment is to just heuristically cut
the horizon to a lower value. In fact, truncating or discounting the future (or past) is a
common practice in both recurrent networks and reinforcement learning [14, 79, 67]. So
much so, that the reinforcement learning literature has started considering the discount factor
as part of the environment parameters, rather than a hyper-parameter used to control the
horizon. In any case, the horizon is reduced following a recency heuristic, operating under
the hypothesis that events which are temporally near each other are more likely causally
correlated. While this form of local credit assignment is logically sound, it makes learning
long-term dependencies difficult, and biases the overall gradient estimates.

Consider again the performance measure h(X). As defined in reinforcement learning
in equation 2.2.2, the discounted-MDP takes an additional parameter, the discount factor
γ ∈ [0,1), and includes it in h(X) as

h(X) :=
T∑
t=0

γtr(S0, A0) .

The advantages are particularly meaningful in infinite horizon problems, effectively turn-
ing those into finite horizon ones all the while conserving convergence guarantees (1995
Bertsekas). Practically, we define the effective horizon of a discounted-MDP as 1

1−γ . The
motivation for this definition follows from the closed form solution to a geometric series.
Theorem 2.4.1 (Geometric Series). Given a ∈ R and −1 < γ < 1, then:

∞∑
t=0

aγt = a

1− γ

Proof. The proof follows by calling S := ∑∞
t=0 aγ

t, multiplying both sides with γ, and
subtracting S from both sides. �

Additionally, the discount factor in REINFORCE-like estimators is separately introduced in
GPOMDP [5] to account for memory and variance issues in the estimator for infinite horizon
problems. In their work, they show a natural bias-variance tradeoff with respect to the choice
of γ, where the variance roughly grows with 1

1−γ and the bias decreases as a function of 1
1−γ .

The effects of a discount factor in the model-based setting is not as well understood.
However, one can make the logical connection that if γ effectively reduces the horizon of a
problem, the issues of long-term credit assignment in model-based learning discussed in the
previous subsection should be mitigated. Instead, a common practice in computing value
gradients is to truncate the gradients [30], similarly to gradient truncation in recurrent neural
networks. Truncated backpropagation through time (TBPPT), first introduced around 1990
[14, 79], allows for a practical use of BPPT in excessively long recurrent relationships.
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TBPPT works by removing any recurrent relationships that are n steps away from the
current time step. In other words, even though forward computation remains the same,
the backward pass pretends that ht−n is an independent constant. Concretely, the recursive
relationship for the gradients in TBPPT can written as:

dht−n
dθ

:= 0 ,

dht
dθ

:= ∂ht
∂θ

+ ∂ht
ht−1

dht−1

dθ
. (2.4.1)

The memory and stability benefits are clear, since we are effectively replacing the horizon
T with n < T , and both the memory costs and stability issues associated with the vanish-
ing/exploding gradients problem are related to the size of T . Of course, this comes at the
large cost of being unable to assign credit to any time step further than n steps away.

Both reward discounting, and gradient truncation are crude examples of a parsimony bias
widely adopted in the current literature to address some of the issues regarding long-term
credit assignment. However, such practices are far from ideal, and present more of a practical
way to avoid long-term credit assignment, rather than a solution to it.

2.4.2. Counterfactuals

The term counterfactual has a rich history within causal theory. In this world, counterfac-
tuals adheres to a strict definition useful for causal discovery and inference. There are recent
accounts of using strict causal counterfactuals in reinforcement learning [16, 4, 17, 82],
but this series of work remain closer to causal theory than to reinforcement learning. Al-
ternatively, another line of work in counterfactual, or hindsight, reinforcement learning
[28, 11, 49] has also gained traction recently that is much more familiar to the RL literature.
A larger focus will be put on the latter, but we will give a brief overview of counterfactuals
in causality to gain a better understanding of its intuitive benefits and motivation.

One of the first detailed accounts of counterfactuals for causation was in [41], where
Lewis says : “We think of a cause as something that makes a difference, and the difference
it makes must be a difference from what would have happened without it. Had it been absent,
its effects [...] would have been absent as well”. Later, Judea Pearl would introduce a
mathematical framework for causal reasoning that would change the way many interact
with causal discovery. The framework, introduced in [54], called Do-calculus, would also
provide insight on a hierarchy of causal information: Pearl’s causal hierarchy [?]. In this
theory, causal inference would be separated into three layers: observational, interventional,
and counterfactual. These layers emit a natural ordering of information, with counterfactual
being the strongest form of causal inference, and observational being the weakest. The three
layers can be better understood using Table 2.1 and Figure 2.2. In general, counterfactuals
of this form can be evaluated in a three step process:
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Layer Notation Question Example
Observational P (Y = y|X = x) How does seeing x

affect my belief in
y

I saw someone take
an aspirin, will his
headache be cured?

Interventional P (Y = y|do(X = x)) How will doing x
affect y

If I take an aspirin, will
my headache be cured?

Counterfactual P (Yx = y|X = x′, Y = y′) Given that do-
ing x′ led to y′,
how would doing
x instead have
affected y?

Not taking an as-
pirin did not cure my
headache, keeping all
things equal, would
taking an aspirin have
cured my headache?

Table 2.1. The different layers of causal inference, their mathematical notation, and exam-
ples. Note that a subscript denotes a do operation. Therefore P (Yx = y) = P (Y = y|do(X =
x).

Fig. 2.2. Visualisation of the structural causal model of the various layers of PCH. In the
observational setting, exogenous variables U may counfound the two variables in question.
In the interventional setting, we cut any parents of X, therefore avoiding any potential
confounders. In the Counterfactual setting, abduction lets us make an inference over U , thus
truly understanding if do(x) causes Y , as opposed to a possible exogenous variable affecting
it.

(1) Abduction: Update the probability P (u) conditioned on e: P (u|e), where u are any
exogenous variables.

(2) Action: Intervene, performing a do(x) operation to the causal model
(3) Prediction: Use the modified intervened model and better understanding of u to

predict P (Yx = y|e).
The benefit of counterfactuals over the interventional layer is in being able to keep any
exogenous variables the same, and reasoning only on the effects of X on Y . In other words,
if I observed Y = y′|do(X = x′), counterfactuals would be able to answer what would happen
to Y if i did something else do(X = x) in the exact same scenario. Following Pearl’s causal
hierarchy, this form of parsimonious reasoning is the ultimate form of causal inference.
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In reinforcement learning, the idea of predicting the outcome of other actions beyond the
one actually taken [56, 44], vaguely resembling the form counterfactuals take in causality.
Off-policy methods [56] using importance sampling [60] is a popular method addressing just
this question. However, such off-policy methods have actually been shown to be an instance
of interventional inference from Table 2.1. Another approach to counterfactual inference
in RL is to use hindsight [28, 49].

The relationship of counterfactuals with hindsight is one that has been exploited in recent
work regarding hindsight credit assignment [28, 49, 11] for reinforcement learning. At the
core of these works is the novelty of conditioning some of the familiar reinforcement learning
estimators with the future. Specifically, work in hindsight credit assignment postulates that
the value functions, in the form of equation 2.3.3 or 2.3.4 can benefit from being conditioned
on some future statistic φt. Counterfactuals then arise when considering an alternative course
of events based on new information retrospectively or in hindsight. The future conditioned
value functions can be written as:

V θ
t (s|φt) := Eθ

[
Gπ

∣∣∣∣∣St = s, φt

]
, (2.4.2)

Qθ
t (s,a|φt) := Eθ

[
Gπ

∣∣∣∣∣St = s, At = a, φt

]
, (2.4.3)

where Gπ denotes the return following the policy π. The work in hindsight credit assignemnt
(HCA) [28] show convincing empirical evidence supporting the use of hindsight conditioned
policy evaluation, and even some theoretical evidence with regards to the variance benefits.
We will show in this work a deeper treatment of hindsight credit assignment algorithms,
offering a new perspective into the role of hindsight in credit assignment.

2.4.3. Attention

Ever since its introduction in 2014, the attention model [3] has had a lasting impact onto
many fields of deep learning including natural language processing (NLP) and computer
vision [80, 72]. Dot product key-value attention [71] is used in Transformer models for
language processing. This attention architecture acts as a filter over a set of values, and
appropriately performs a weighted sum of the values based on a given query. The formula
given in [71] for this filtering process takes as input a query Q ∈ R1×n, a set of m values
represented as the matrix V ∈ Rm×h, and the associated m keys K ∈ Rm×n:

Attention(Q,K,V ) = softmax(QKT )V . (2.4.4)

This process therefore performs a weighted average over V , functionally compressing all the
values in V into one vector. Effectively densely feeding V into whatever model that may
need V for prediction, attention assumes the same parsimony inductive bias that motivates
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this thesis, filtering out unnecessary information in V , and simplifying the prediction task
downstream. For example, in NLP, V may represent the sequence of m words in a sentence,
and computer vision might use V the different convolutions of an image.

In its basic form, attention is not required to be sparse. Instead, empirical evidence
suggests that attention excels at directing the focus of downstream tasks onto important
parts of V . Sparse attentive backtracking (SAB) demonstrates that the explicit use of sparse
attention over a recurrent network helps in learning long-term dependencies [35]. Moreover,
they note the importance of sparsity for long time scales. Other works, such as Neural
Production Systems [22] also show the value of sparsity in attention for structural credit
assignment.

Even though attention has seen much practical success in deep learning, it has sparingly
made its way into reinforcement learning. Most notable uses of attention in reinforcement
learning [22, 70] do not leverage attention directly for temporal credit assignment, instead
using it on an auxiliary task to enrich representation. One example of the use of attention
for temporal credit assignment in reinforcement learning is in the work on Temporal Value
Transport (TVT) [33]. Based on on the attention weights learned for state representation
in a POMDP, value is transported heuristically from the future to moments when attention
drew focus on. Although the authors of TVT note that true credit assignment in humans
is probably model-based [55, 29], TVT is a model-free algorithm. Moreover, the attention
weights are re-used heuristically, and do not fully leverage the rich structure an attention-
augmented recurrent network might offer.
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Chapter 3

Counterfactuals for Efficient Credit
Assignment

Counterfactuals rely on conditioning on what has already happened to infer what could
have happened. We formally build upon this idea to develop a framework for model-free
counterfactual policy evaluation that has favorable variance properties. This is desirable for
long-term credit assignment as was pointed out in section 2.3.2. As it turns out, the family
of Hindsight Credit Assignment algorithms in [28], of which [11, 49] follow, and the tree
backup algorithm proposed in [56] directly follow from this framework, shedding light onto
some theoretical benefits of HCA and tree backup. For the remainder of this chapter, we
consider the discounted-MDP setting.

Fig. 3.1. A high level overview of using counterfactuals for better policy evaluation. The
agent is able to reason about possible alternative x′ based on experience from a different
behavior x.

3.1. Conditional Importance Sampling
Conditional importance sampling (CIS) is the backbone of our derivation for counter-

factual policy evaluation. Originally introduced in [46], CIS leverages a variance reduction



technique known as the (extended) conditional Monte Carlo method [8], which arises natu-
rally from the law of total variance.

3.1.1. Importance Sampling

Importance sampling [31, 10, 59] is a popular tool in reinforcement learning for off-
policy evaluation. That is, estimating the value function of a target policy π under samples
taken from some other behavior policy µ. The term importance sampling originates from the
simulation community [8], where it is meant to be used as a variance reduction method. In
the context of RL, importance sampling simply refers to using likelihood ratios for a change
of measure as seen in equation 2.2.3. Concretely,

Eπ [GT ] = Eµ
[
GT

Pπ(τ)
Pµ(τ)

]
= Eµ

[
GT

T∏
k=0

π(Ak|Sk)
µ(Ak|Sk)

]
:= Eµ [GTPπ,µ0:T ] , (3.1.1)

where τ is a shorthand for the trajectory of random variables S0, A0, S1, A1, . . . , ST , AT and
Pπ,µi:j is the importance sampling ratio ∏j

k=i
π(Ak|Sk)
µ(Ak|Sk) . It is well-known that importance sam-

pling is prone to high variance in high dimensional settings [60, 8, 40], which is especially
pronounced in reinforcement learning when learning over long horizon [45, 46]. To build
upon this intuition, note that for long horizons, Pπ,µ0:T takes values close to 0 with a high
probability, but may also be very large when rare trajectories are sampled. However, the
expectation of Pπ,µ0:T is always 1, no matter the horizon, which means the variance only grows
with T .

To reduce the variance of importance sampling, marginalized estimators [81, 27, 45, 19]
have been suggested. The underlying mechanism of these marginalized estimators stems from
the conditional Monte Carlo Method as shown in [46], giving rise to conditional importance
sampling for reinforcement learning.

3.1.2. The Conditional Monte Carlo Method

The conditional Monte Carlo estimator is a variance reduction technique that naturally
follows from the law of total variance.
Theorem 3.1.1 (Law of Total Variance). Given the random variables Y and X, the variance
of Y can be decomposed as

Var(Y ) = E [Var(Y |X)] + Var(E [Y |X]) (3.1.2)

Proof. The proof follows from the law of total expectation [75]. �
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Applied to the importance sampling estimator in (3.1.1), let φT be some statistic of the
entire trajectory τ0:T , we have:

V π(s) = Eµ
[
GTPπ,µ0:T

∣∣∣∣∣S0 = s

]
= Eµ

[
Eµ
[
GTPπ,µ0:T

∣∣∣∣∣S0 = s, φT

] ∣∣∣∣∣S0 = s

]
. (3.1.3)

By the law of total variance,

Var
(
Eµ
[
GTPπ,µ0:T

∣∣∣∣∣S0 = s, φT

])
= Var

(
GTPπ,µ0:T

)
− Eµ

[
Var

(
GTPπ,µ0:T

)∣∣∣∣∣S0 = s, φT

]
.

Since the expected variance of a random variable is always non-negative, we have that the
variance of the conditional importance sampling estimator in (3.1.3) is always equal or lower
than the variance of the crude importance sampling estimator in (3.1.1):

Var
(
Eµ
[
GTPπ,µ0:T

∣∣∣∣∣S0 = s, φT

])
≤ Var

(
GTPπ,µ0:T

)
.

There is also an extension of the conditional Monte Carlo estimator, aptly named the
extended conditional Monte Carlo estimator [8] that allows us to condition instead on a
stage-dependent variable φt instead of φT :

V π(s) = Eµ
[
T∑
t=0

γtRtPπ,µ0:T

∣∣∣∣∣S0 = s

]
= Eµ

[
T∑
t=0

γtEµ
[
RtPπ,µ0:T

∣∣∣∣∣S0 = s, φt

] ∣∣∣∣∣S0 = s

]
. (3.1.4)

Unforunately, unlike CMC, ECM does not guarantee the variance remain unchanged or is
reduced [8]. While we can similarly show that the variance of each term in the summation
is individually reduced, the variance of a sum of random variables is not the sum of the
variance of the random variables:

Var(
T∑
t=0

Xt) =
∑
t=0

Var(Xt) +
T∑
k 6=t

Cov(Xk, Xt) .

Bratley [8] suggests that we need to simply hope for the covariance terms to play in our
favor when using the extended Monte Carlo estimator1.

Equations 3.1.3 and 3.1.4 provide the necessary framework for conditional importance
sampling. In what follows, we will see how counterfactual policy evaluation corresponds to an
application of the above concepts, and consequently the family of hindsight credit assignment
algorithms and tree backup.

3.2. Counterfactual Policy Evaluation
Importance sampling, and consequently conditional importance sampling are methods

for off-policy evaluation, while HCA pertains to the on-policy setting. We first argue that
on-policy evaluation of equation 2.3.4 can be seen as a special case of off-policy evaluation
1[46] further develops some sufficient conditions for variance reduction for extended conditional importance
sampling.
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of equation 2.3.3. From this perspective we can derive a method for counterfactual policy
evaluation using conditional importance sampling that amounts to HCA.

3.2.1. Off-policy Value Evaluation

Policy evaluation takes two forms as shown in equations 2.3.3 and 2.3.4. The first of
which corresponds to the expected value of a policy conditioned only on some initial state s.
The second form evaluates the expected value of a policy additionally conditioned on some
initial action a. Let us consider instead a perturbed policy denoted πa to be identical to π,
except that πa performs action a as its first action every time instead. Specifically,

πa(at|st) := π(at|st) for t > 0

πa(a0|s0) := 1 for a0 = a

πa(a0|s0) := 0 for a0 6= a

The on-policy evaluation of the action-value function Q in equation 2.3.4 can also be seen
as the off-policy evaluation of the value function of πa under the behavior policy π:

Qπ(s,a) = V πa(s) = Eπ
[
Pπ

a,π
0:T

T∑
t=0

γtRt

∣∣∣∣∣S0 = s

]
. (3.2.1)

Naively, the above formulation reduces to the classical crude Monte Carlo estimate for
Qπ(s,a), since Pπ

a,π
0:T just filters out all samples where A0 6= a:

Qπ(s,a) = Eπ
[
Pπ

a,π
0:T

T∑
t=0

γtRt

∣∣∣∣∣S0 = s

]
= Eπ

[
T∑
t=0

γtRt

∣∣∣∣∣S0 = s, A0 = a

]
.

3.2.2. The Counterfactual Policy Estimator

Recall the idea of counterfactuals is to condition on what has or will happen to to improve
credit assignment. Let us use CMC 3.1.3 or ECMC 3.1.4 on 3.2.1 by conditioning the off
policy estimator with some future statistic φT or φt to get the following counterfactual policy
evaluation estimators:

Qπ(s,a) = Eπ
[
Eπ
[
Pπ

a,π
0:T GT |S0 = s, φT

] ∣∣∣∣∣S0 = s

]
, (3.2.2)

Qπ(s,a) = Eπ
[
T∑
t=0

γtEπ
[
RtPπ

a,π
0:T |S0 = s, φt

] ∣∣∣∣∣S0 = s

]
. (3.2.3)
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These estimators generalise the family of Hindsight Credit Assignment algorithms, which
take two possible forms in [28]:

Qπ(s,a) = E
[
R0

∣∣∣∣∣S0 = s, A0 = a

]
+ Eπ

[
T∑
t>0

γt
hπ(A0 = a|S0, St)

π(a|S0) Rt

∣∣∣∣∣S0 = s

]
(3.2.4)

Qπ(s,a) = Eπ
[
GT

hπ(A0 = a|S0, GT )
π(a|S0)

∣∣∣∣∣S0 = s

]
, (3.2.5)

where hπ(A0 = a|S0, GT ) = Pπ(A0 = a|S0, GT ) and hπ(A0 = a|S0, St) = Pπ(A0 = a|S0, St).
Particularly, the counterfactual policy evaluation estimator ’s connection to the hindsight
estimators can be formally stated as the following two theorems.

Lemma 3.2.1. For any state s, action a, and policy π for which π(at|st) > 0 for all t, we
have

Eπ
[
Pπ

a,π
0:T

∣∣∣∣∣S0 = s, S0,A0

]
= Pπ(A0 = a|A0)

π(a|s)

Eπ
[
Pπ

a,π
0:T

∣∣∣∣∣S0 = s, St,At

]
= Pπ(A0 = a|S0 = s,St)

π(a|s) for t > 0

Proof.

Eπ
[
Pπ

a,π
0:T

∣∣∣∣∣S0 = s, St,At

]
=

∑
s0,a0,...,sT ,aT

Pπ
a,π

0:T Pπ(s0, a0, . . . , sT , aT |S0 = s, St, At)

=
∑
s0∈S

∑
a0∈A

πa(a0|s0)
π(a0|s0)

∑
s1,a1,...,sT ,aT

Pπ
a,π

1:T Pπ(s0,a0|S0 = s, St, At)Pπ(τ1:T |S0 = s, St, At, s0, a0)

Because πa(at|st) = π(at|st) for t > 0

=
∑
s0∈S

∑
a0∈A

πa(a0|s0)
π(a0|s0) Pπ(s0,a0|S0 = s, St, At)

∑
s1,a1,...,sT ,aT

Pπ(s1, a1, . . . , sT , aT |S0 = s, St, At, s0, a0)

=
∑
s0∈S

∑
a0∈A

πa(a0|s0)
π(a0|s0) Pπ(s0,a0|S0 = s, St, At)

=
∑
a0∈A

πa(a0|s)
π(a0|s)

Pπ(a0|S0 = s, St, At)

Because πa(a0|s) = 1 only when a0 = a, and 0 otherwise

= Pπ(A0 = a|S0 = s, St, At)
π(a|s)

Now consider when t = 0, because A0 is independent of S0 given A0:
Pπ(A0 = a|S0 = s, S0, A0)

π(a|s) = Pπ(A0 = a|A0)
π(a|s)
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And when t > 0, because A0 is independent of At given St for t > 0:
Pπ(A0 = a|S0 = s, St, At)

π(a|s) = Pπ(A0 = a|S0 = s, St)
π(a|s)

�

Theorem 3.2.2 (State Conditioned Hindsight Estimator). Given the counterfactual policy
evaluation estimator 3.2.2 that makes use of the extended conditional Monte Carlo method,
and setting φt = (St, At, Rt), for any state s, action a, and policy π for which π(at|st) > 0
for all t, we obtain the state conditioned hindsight estimator in 3.2.4.

Qπ(s,a) = Eπ
[
T∑
t=0

γtEπ
[
RtPπ

a,π
0:T

∣∣∣∣∣S0 = s, St,At, Rt

] ∣∣∣∣∣S0 = s

]

= E
[
R0

∣∣∣∣∣S0 = s, A0 = a

]
+ Eπ

[
T∑
t>0

γt
Pπ(A0 = a|S0, St)

π(a|S0) Rt

∣∣∣∣∣S0 = s

]
.

Proof.

Qπ(s,a) = Eπ
[
T∑
t=0

γtRtPπ
a,π

0:T

∣∣∣∣∣S0 = s

]

= Eπ
[
T∑
t=0

γtEπ
[
RtPπ

a,π
0:T

∣∣∣∣∣S0 = s, St,At, Rt

] ∣∣∣∣∣S0 = s

]
by (3.2.3)

Since Pπ
a,π

0:T is conditionally independent of Rt given St, At

= Eπ
[
T∑
t=0

γtRtEπ
[
Pπ

a,π
0:T

∣∣∣∣∣S0 = s, St,At

] ∣∣∣∣∣S0 = s

]

= Eπ
[
R0

Pπ(A0 = a|A0)
π(a|s)

∣∣∣∣∣S0 = s

]
+ Eπ

[
T∑
t>0

γtRt
Pπ(A0 = a|S0, St)

π(a|S0)

∣∣∣∣∣S0 = s

]
by lemma 3.2.1

= Eπ
[
R0

∣∣∣∣∣S0 = s, A0 = a

]
+ Eπ

[
T∑
t>0

γtRt
Pπ(A0 = a|S0, St)

π(a|S0)

∣∣∣∣∣S0 = s

]

�

Lemma 3.2.3. For any state s, action a, and policy π for which π(at|st) > 0 for all t, we
have

Eπ
[
Pπ

a,π
0:T |S0 = s,GT

]
= Pπ(A0 = a|S0 = s,GT )

π(a|s)
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Proof.

Eπ
[
Pπ

a,π
0:T |S0 = s,GT

]
=

∑
s0,a0,...,sT ,aT

Pπ
a,π

0:T Pπ(s0, a0, . . . , sT , aT |S0 = s,GT )

Because πa(at|st) = π(at|st) for t > 0

=
∑
s0∈S

∑
a0∈A

πa(a0|s0)
π(a0|s0)

∑
s1,a1,...,sT ,aT

Pπ(s0,a0|S0 = s,GT )Pπ(s1, a1, . . . , sT , aT |S0 = s,GT , s0, a0)

=
∑
s0∈S

∑
a0∈A

πa(a0|s0)
π(a0|s0) Pπ(s0,a0|S0 = s,GT )

∑
s1,a1,...,sT ,aT

Pπ(s1, a1, . . . , sT , aT |S0 = s,GT , s0, a0)

=
∑
s0∈S

∑
a0∈A

πa(a0|s0)
π(a0|s0) Pπ(s0,a0|S0 = s,GT )

=
∑
a0∈A

πa(a0|s)
π(a0|s)

Pπ(a0|S0 = s,GT )

Because πa(a0|s) = 1 only when a0 = a, and 0 otherwise

= Pπ(A0 = a|S0 = s,GT )
π(a|s)

�

Theorem 3.2.4 (Return Conditioned Hindsight Estimator). Given the counterfactual policy
evaluation estimator (3.2.3) that makes use of the conditional Monte Carlo method, and
setting φT = GT , for any state s, action a, and policy π for which π(at|st) > 0 for all t, we
obtain the state conditioned hindsight estimator in (3.2.5).

Qπ(s,a) = Eπ
[
Eπ
[
Pπ

a,π
0:T GT

∣∣∣∣∣S0 = s,GT

] ∣∣∣∣∣S0 = s

]

= Eπ
[
GT

Pπ(A0 = a|S0, GT )
π(a|S0)

∣∣∣∣∣S0 = s

]
.

Proof.

Qπ(s,a) = Eπ
[
GTPπ

a,π
0:T

∣∣∣∣∣S0 = s

]

= Eπ
[
Eπ
[
GTPπ

a,π
0:T

∣∣∣∣∣S0 = s,GT

] ∣∣∣∣∣S0 = s

]
by (3.2.2)

Since Pπ
a,π

0:T is conditionally independent of GT given GT

= Eπ
[
GTEπ

[
Pπ

a,π
0:T

∣∣∣∣∣S0 = s,GT

] ∣∣∣∣∣S0 = s

]

= Eπ
[
GT

Pπ(A0 = a|S0, GT )
π(a|S0)

∣∣∣∣∣S0 = s

]
by lemma 3.2.3
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In light of theorems 3.2.2 and 3.2.4, we can therefore distill HCA into three main ingre-
dients:

(1) Importance sampling using a perturbed policy as the target
(2) The use of the Conditional Monte Carlo Method over the importance sampling

weights.
(3) A particular choice of conditioning statistics φt, φT

3.3. Tree Backup
The tree backup algorithm originally derived in [56] is an approach for off-policy evalu-

ation that does not involve explicit importance sampling ratios. In fact, the absence of the
behavior policy at the denominator means that off-policy evaluation can be achieved with-
out knowledge of the behavior policy. Consider the off-policy evaluation problem of equation
2.3.4, where Qπ is estimated using samples from an unknown behavior policy µ. The full
Monte Carlo version of n-step tree backup2, where n = T is

Qπ(s,a) = Eµ

 T∑
t=0

γt
t∏

k=1
π(Ak|Sk)(Rt + γ

∑
α 6=At+1

π(α|St+1)Qπ(St+1, α))
∣∣∣∣∣S0 = s, A0 = a

 .

(3.3.1)

By convention when k > j, ∏j
k=iXk = 1. The algorithm intuitively bootstraps a sample

trajectory with estimated Q-values for all unseen paths to estimate Qπ. Like HCA, tree
backup also extrapolates from all the actions that could have been taken along a trajectory
of the behavior policy. However, instead of assuming that the same policy would be followed
in those alternatives, it can use a different policy as a target.

Using the same conditional importance sampling framework discussed previously, we can
re-derive the tree-backup algorithm, and explain for the first time the statistical concepts
at play without having recourse to eligibility traces which they have always been associated
with [56, 51, 47].

Theorem 3.3.1 (Tree Backup and Conditional Importance). Given the extended conditional
importance sampling estimator in (3.1.4), if φt = (A1, A2, . . . , At), the off-policy action-value
estimator reduces to the tree backup algorithm in (3.3.1)

Qπ(s,a) = Eµ
[
T∑
t=0

γtEµ
[
RtPπ,µ1:t

∣∣∣∣∣S0 = s, A0 = a,A1, A2, . . . , At

] ∣∣∣∣∣S0 = s, A0 = a

]

= Eµ

 T∑
t=0

γt
t∏

k=1
π(Ak|Sk)(Rt + γ

∑
α 6=At+1

π(α|St+1)Qπ(St+1, α))
∣∣∣∣∣S0 = s, A0 = a

 .

2The results in this section can be extended to any other values of n.
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Proof. The proof can be found in Appendix A.1 �

From Theorem 3.3.1, we can achieve a better understanding of the real benefits of the tree
backup algorithm. We leave any theoretical analysis of this theorem for future work, but
this provides a good starting point for explaining the empirical results of tree backup [56].
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Chapter 4

Sparse Attentive Value Gradients: A
Model-Based Method for Better Credit

Assignment

We have seen in Chapter 2 how credit is assigned in model-based RL, and some of the
shortcomings of crude value gradient estimators for long-term credit assignment. Based
on the parallel between recurrent networks and value gradients, we devise new solutions
to address the problem of long-term credit assignment. In this chapter, we explore this
connection and propose a new method for long-term credit assignment in partially observable
environments using attention and gradient truncation.

4.1. Value Gradients and Recurrent Networks
The connection between value gradient learning and recurrent networks has been estab-

lished previously [15, 30]. More precisely, the recurrent process fθ(xt, ht−1) in an RNN is
replaced with a composition of a transition model fψ(st−1, at−1, ξ) and a policy πθ(st, ξ).
While the popularized SVG algorithm [30] claims this relationship, it is not immediately
clear from the value gradient formulation derived in their work that it shares the same form
as BPPT in equation 2.1.3. For this reason, we will re-derive value gradients for reinforce-
ment learning following a similar process as the derivation of equation 2.1.4, and show its
equivalence with the value gradient derived for SVG(∞) [30].

Recall the problem statement, where we are looking to maximize Eθ [h(X)]. Without loss
of generality, let us assume for the remainder of this section that X is deterministic. There-
fore, we are trying to maximize h(x) = ∑T

t=0 r(st,at) as written in 2.2.2. Moreover, assume
an initial state s0, then we are equivalently interested in maximizing the value function in



Fig. 4.1. Visualisation of the computation graph for computing the reward at time step t.
If f , r and π are known and differentiable, the similarities with Figure 2.1 imply an identical
form of backpropagation for credit assignment.

equation 2.3.3, maxθ V 0(s0; θ) where

V 0 :=
T∑
t=0

rt , st := f(st−1, at−1) for t > 0 ,

rt := r(st, at) , at := πθ(st) . (4.1.1)

If f , r and πθ are all differentiable with respect to their arguments, then we can maximize
V 0(s0; θ) by gradient ascent using the gradient ∇θV

0(s0; θ).

∇θV
0(s0; θ) =

T∑
t=0

drt
dθ

drt
dθ

= ∂rt
∂st

dst
dθ

+ ∂rt
∂at

dat
dθ

dst
dθ

= ∂st
∂st−1

dst−1

dθ
+ ∂st
∂at−1

dat−1

dθ

dat
dθ

= ∂at
∂θ

+ ∂at
∂st

dst
dθ

ds0

dθ
:= 0
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Cleaning up the above equations, we can identify the recurrent relationship:

∇θV
0(s0; θ) =

T∑
t=0

drt
dθ

drt
dθ

=
(
∂rt
∂st

+ ∂rt
∂at

∂at
∂st

)
dst
dθ

+ ∂rt
∂at

∂at
∂θ

dst
dθ

dst
dθ

dst
dθ

= ∂st
∂at−1

∂at−1

∂θ
+
(
∂st
∂st−1

+ ∂st
∂at−1

∂at−1

∂st−1

)
dst−1

dθ

dst−1

dθ

dst−1

dθ
(4.1.2)

ds0

dθ
:= 0

The same recurrent relationship (highlighted in bold) is found in value gradients as in tra-
ditional recurrent networks, described in equation 2.1.3, the only difference being the added
policy π(st) that must be differentiated through to obtain the state’s relationship with θ.
From this parallel, the problems of long-term credit assignment in RNNs, namely the vanish-
ing/exploding gradient problem, also need to be addressed for value gradients. Thankfully, a
lot of research has already been done for RNNs to improve long-term credit assignment, and
given the similarities with value gradients, can be readily applied for reinforcement learning.

4.1.1. Forward Versus Backward Credit Assignment

It is worth noting the two different forms the value gradient may take: the forward version
seen in equation 4.1.2, and the backward version derived in [30]:

∇θV
t(st; θ) =

T∑
k=t

∂rk
∂ak

∂ak
∂θ

+ ∂sk+1

∂ak

∂ak
∂θ

∂V k+1(sk+1; θ)
∂sk+1

,

∂V k(sk; θ)
∂sk

= ∂rk
∂sk

+ ∂rk
∂ak

∂ak
∂sk

+
(
∂st+k
∂sk

+ ∂st+k
∂ak

∂ak
∂sk

)
∂V k+1(sk+1; θ)

∂sk+1
, (4.1.3)

∂V T (sT ; θ)
∂sT

:= 0 .

The main difference being that credit is assigned in the forward version by assessing how
changing actions in the past may affect the current reward. The backward version instead
assigns credit by determining how a current change in actions may affect future rewards. The
implication of (4.1.3) is that current gradient estimates are dependent on the future, while
(4.1.2) estimates current gradients with respect to the past. The same duality can be found
between the popular REINFORCE estimator (2.2.8) and the separately derived GPOMDP[5]
estimator (2.2.7). Again, the duality can also be said for reverse and forward mode AD. In
every case, the backward algorithm ((4.1.3), REINFORCE, reverse AD, BPPT) use future
values for credit assignment, while their forward counterparts ((4.1.2), GPOMDP, forward
AD, RTRL[78]) use past values. Theoretically, the corresponding pairs always compute the
same values, but offer different practical advantages [68, 5, 78, 76, 20]. Just like how
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GPOMDP is generally more amenable to the online setting [5], forward SVG(∞) (4.1.2)
inherits similar properties, because the gradient at t computed using only past Jacobians
(instead of future Jacobians as in (4.1.3)).

4.2. Truncated Value Gradients
Gradient truncation is a simple solution to manage memory and unstable gradients in long

recurrent networks. Given the shared recurrence relationship in value gradients, it is natural
to extend gradient truncation to model-based reinforcement learning. An n-truncated
value gradient, ∇θV

t
n−trunc(st; θ) can be derived from (4.1.2) and (2.4.1), where in the RL

case st−n is considered a constant during backpropagation with respect to a reward rt.
Definition 4.2.1 (n-truncated Value Gradients). Consider the model-based reinforcement
learning setting, where we are interested in finding the gradient of the deterministic value
function V t

θ (s) = ∑T
k=t rk, where rk is defined in (4.1.1). The n-truncated value gradient

is

∇θV
t(st; θ) =

T∑
k=t

drk
dθ

drk
dθ

=
(
∂rk
∂sk

+ ∂rk
∂ak

∂ak
∂sk

)
dsk
dθ

+ ∂rk
∂ak

∂ak
∂θ

dsi
dθ

= ∂si
∂ai−1

∂ai−1

∂θ
+
(
∂si
∂si−1

+ ∂si
∂ai−1

∂ai−1

∂si−1

)
dsi−1

dθ
, for i > k − 1

dsk−n
dθ

:= 0

The implication of an n-truncated value gradient being that the horizon is reduced
to n during credit assignment, preventing any long-term credit assignment. We can visualize
this truncation in Figure 4.2. Even though this may seem like a naive solution, it is not so
far-fetched when compared to current common practices in RL, namely discounting.

4.2.1. Relationship with Discounted Critics

The truncated value gradient can also be written in backwards form as:

∇θV
t
n−trunc(st; θ) =

T∑
k=t

∂rk
∂ak

∂ak
∂θ

+ ∂sk+1

∂ak

∂ak
∂θ

∂V k+1(sk+1; θ)
∂sk+1

,

∂V i(si; θ)
∂si

= ∂ri
∂si

+ ∂ri
∂ai

∂ai
∂si

+
(
∂si+1

∂si
+ ∂si+1

∂ai

∂ai
∂si

)
∂V i+1(si+1; θ)

∂si+1
, for i < T − n

(4.2.1)
∂V T−n(sT−n; θ)

∂sT−n
:= 0 .
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Fig. 4.2. A visualisation of how credit is assigned a time step t in traditional value gradients
and truncated value gradients. Above is a full application of backpropagation, and below is
an example of TBPPT (n = 3) in value gradients.

We can rewrite the recurrent relationship iteratively using similarly to equation 2.1.4 to
better understand how it compares to the original value function:

∂V i
n−trunc(si; θ)

∂si
= ∂ri
∂si

+ ∂ri
∂ai

∂ai
∂si

+
i+n∑
j=i+1

( j∏
l=i

(∂sl+1

∂sl
+ ∂sl+1

∂al

∂al
∂sl

)
)

(∂rj
∂sj

+ ∂rj
∂aj

∂aj
∂sj

) (4.2.2)

The original un-truncated and undiscounted value function being:

V i(si; θ) =
T∑
k=i

rk

∂V i(si; θ)
∂si

= ∂ri
∂si

+ ∂ri
∂ai

∂ai
∂si

+
T∑

j=i+1

( j∏
l=i

(∂sl+1

∂sl
+ ∂sl+1

∂al

∂al
∂sl

)
)

(∂rj
∂sj

+ ∂rj
∂aj

∂aj
∂sj

) ,
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and an n-step value function being:

V i
n−step(si; θ) =

i+n∑
k=i

rk

∂V i
n−step(si; θ)
∂si

= ∂ri
∂si

+ ∂ri
∂ai

∂ai
∂si

+
i+n∑
j=i+1

( j∏
l=i

(∂sl+1

∂sl
+ ∂sl+1

∂al

∂al
∂sl

)
)

(∂rj
∂sj

+ ∂rj
∂aj

∂aj
∂sj

) . (4.2.3)

We can now appreciate the equivalence between equations 4.2.2 and 4.2.3, demonstrating
that the n-truncated value gradient is equivalent to a full value gradient using an n-
step value function. Given that in traditional actor-critic methods, the critic V̂ i(si) is only
used derivative estimation [13], the n-truncated value gradient is not so different than
policy gradient algorithms with γ = 1 − 1

n
, where future rewards are discounted smoothly

instead of discretely. In fact, in the derivation for GPOMDP [5], the proposed discount
factor, in their case β, was the first-order infinite impulse response filter alternative to the
discrete n-th order finite impulse response filter of an n-step return . Given the success
and popularity of the discount factor in RL, the logical parallel in value gradients would
be to truncate the gradients just as in RNNs. There is therefore a strong precedent to use
n-truncated value gradients in RL from both the deep learning, and the reinforcement
learning literature.

4.2.2. Experiments

We run a simple set of experiments to verify the benefits in truncating gradient for model-
based RL. As a baseline, we use the SV G(∞) proposed in [30], and compare its performance
with a truncated version following equation 4.1.2. For completeness, a full description of the
models and environments follows.

Openai Gym’s Pendulum-v0 The Pendulum environment is the one implemented in
the Openai Gym library [9], named Pendulum-v0. The task consists of swinging a hanging
pendulum upwards, and keeping it stable while upright over a period of T time steps. Con-
sider θt to be the angle between the desired upright position and the current position of the
pendulum, θ̇t the current angular velocity of the pendulum, and the current action at to be
the torque applied to the pendulum, then the reward is defined as

rt = θ2
t + 0.1(θ̇2

t ) + 0.001(a2
t ) .

Cancer environment The Cancer environment is taken from [52]. It models the
growth of a tumour over time under the influence of chemotherapy. The state of the envi-
ronment is xt, the normalized density of the tumour, and the actions of an agent ut is the
strength of the drug used for chemotherapy. The reward and dynamics of the environment
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Fig. 4.3. Sketch of the pendulum-v0 task as described in the OpenAI gym documentation
. The action is a torque applied to the simple pendulum, and the state space is described

as the angular position θt and the angular momentum θ̇.

can be identified as:

rt := −(ax2
t + u2

t ) (4.2.4)

xt+1 := xt + (rxtln( 1
xt

)− δutxt)∆ , (4.2.5)

where a = 3 is a cost coefficient related to the tumour density, r = 0.3 is the growth rate
coefficient of the tumour, δ = 0.45 describes the power of the chemotherapy, and ∆ = 1

20 is
a time scale coefficient.
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Fig. 4.4. An example trajectory is plotted for the optimal behavior of a long-term agent
(N = 100) and a myopic agent (N = 10) in the cancer environment. On the left, early
rewards are favored by the short-term agent at the cost of long-term performance. On the
right, we can see that the payoff for early action is only observed much later.
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SVG(∞) The stochastic value
gradient implemented here follows
(4.1.2). The policy and transition
model are reparameterized using a
Gaussian distribution with mean
µ = 0 and standard deviation σπ

and σf respectively. More precisely,
the policy takes the deterministic
form πθ(st, ηt) = π̄θ(st) +ηtσπ, where
ηt ∼ N (0,1). The transition model
is similarly defined and is trained
directly without noise with the
following loss:

Given st, at, st+1

Lf = 1
2(st+1 − f̄(st, at))2 (4.2.6)

for any t, and noise is inferred dur-
ing policy optimization to avoid com-
pounding errors. The noise inference
procedure is:

Given st, at, st+1

ξ = (st+1 − f̄(st,at))/σf , (4.2.7)

following from the fact that st+1 =
f̄(st, at) + σfξ for a Gaussian distri-
bution. We assume the true differ-
entiable reward function r(st,at) is
given.

Algorithm 1: T-SVG(∞)
Input: Horizon T , truncate length N ,

random process ρ(η), true reward
function r(st,at)

while not converged do
Observe initial state s1;
for t← 1 to T do

at ← πθ(st, ηt), ηt ∼ ρ(η);
Take action at and observe st+1, rt

from the environment ;
Insert (st, at, rt, st+1) into D;

end
Train transition model f(st, at, ξ) with
D using (4.2.6);
Initialize return: G← 0;
Initialize predicted state: ŝ1 ← s1;
for t← 1 to T do

Infer ξ|st, at, st+1 using (4.2.7);
ât ← πθ(ŝt, ηt);
r̂t ← r(ŝt, ât);
ŝt+1 ← f(ŝt, ât, ξ);
if t+ 1 mod N == 0 then

ŝt+1 ←Detach(ŝt+1);
end
G← G+ r̂t;

end
Update πθ using ∇θG;

end

T-SVG(∞) The truncated stochastic value gradient (T-SVG) is a generalization of SVG(∞)
with the added choice of gradient truncation hyper-parameter N . In the case that N exceeds
the horizon T , T-SVG(∞) reduces to SVG(∞). In practice, it is easier to truncate the
gradient by cutting the episode into sequences of length N instead of maintaining a moving
window of length N .

The benefits and pitfalls of gradient truncation are demonstrated in the results of Figure
4.5. Depending on the environment, the added gradient stability from truncation can some-
times outweigh the bias of forgetting about long-term dependencies, as is the case in the
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pendulum environment. However, in the case where long-term reasoning is necessary to find
an optimal policy, as is the case for the cancer environment shown in Figure 4.4, gradient
truncation impedes on performance.

We can also verify the relationship of discounting and gradient truncation discussed in
Section 4.2.1 from the results in Figure 4.5. Notably, the qualitative behavior of discounting
and gradient truncation are the same in both environment. In the pendulum task, perfor-
mance improves for smaller values of γ and N , and gradient norms are reduced. In the
cancer environment, performance suffers from weaker foresight, and gradient norms are not
so easily reduced.

Finally, in both environments, we can empirically observe the exploding gradient problem
in Figure 4.7. Namely, the log-magnitude of the value gradient seems to increase linearly
with the effective horizon N .
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Fig. 4.5. Performance of T-SVG(∞) given different discount factors λ and truncation
lengths N on the pendulum and cancer tasks. Both tasks are evaluated on episodes of
length 100. When the truncation length is being changed (top two graphs), the discount
factor is set to 1. Vice versa, when the discount factor is being changed (bottom 2 graphs),
the truncation length is set to N = 100. For certain tasks that require long-term credit
assignment, such as the cancer environment, too much truncation degrades performance.

57



0 100 200 300 400 500

−5

0

5

10

15

Episode Number

ln
(
|∇
θ
V
|)

N = 5

N = 20

N = 60

N = 100

Pendulum

0 100 200 300 400 500

0

5

10

15

20

Episode Number

ln
(
|∇
θ
V

|)

N = 10

N = 20

N = 60

N = 100

Cancer

0 100 200 300 400 500

−10

−5

0

5

10

15

Episode Number

ln
(
|∇
θ
V
|)

λ = 1

λ = 0.99

λ = 0.9

Pendulum

0 100 200 300 400 500

−5

0

5

10

15

20

Episode Number

ln
(
|∇
θ
V
|)

λ = 1

λ = 0.99

λ = 0.9

Cancer

Fig. 4.6. The norm of the value gradient is plotted across experiments over time. Value gra-
dient truncation has a larger effect on the pendulum environment, suggesting that truncating
in the pendulum environment is more effective than the cancer environment. Discounting
has a similar effect on the gradient behaviors.

4.3. Sparse Credit Assignment with Memory and At-
tention

The goal of the rest of this thesis is to design a method for long-term credit assignment
that can perform long-term reasoning while applying gradient truncation. First, we move to
the partially observable setting as it poses a more difficult credit assignment problem. More
specifically, we seek to solve a so-called type 1 information acquisition task as described
in [33], as opposed to a type 2 task. We give a detailed description of the corresponding
environments used for each task in this work, which will better demonstrate the difficulties
in each.
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Fig. 4.7. The average log maximum gradients are plotted with respect to truncation length.
The maximum gradient for each experiment is computed by taking the mean of the twenty
largest gradients during training.

4.3.1. Environments

4.3.1.1. Passive Memory Task (Type 2 Information Acquisition). The passive memory
task (PMT) is designed to test an agent’s ability to learn adequate state representations in a
partially observable setting where past observations, however distant, are necessary for future
reward predictions. Conceptually inspired by the grid world environments in [33][74], the
passive memory task in question here is a simplification of the aforementioned environments
generalised in the continuous state-action space. The task is separated in three phases:
remember, distractor, and recall.

(1) The remember phase: A random observation om is generated for the agent to see.
Any actions in this phase bears zero consequences.

(2) The distractor phase: Any desired continuous task can be inserted here. It serves to
distract the agent with an unrelated task, temporally distancing the first and second
phase.

(3) The recall phase: Inconsequential and unrelated observations are shown here, but
a reward is awarded to the agent for adequately remember the randomly generated
observation om seen during the remember phase.

Consider t1 to be the final time step of the remember phase, t2 the transition step between
phases 2 and 3, and a constant c as the maximum possible reward per time step. Let’s
also normalize 1 the action at and observation om, then the rewards specific to this simple

1The goal here is to make this reward work for any state and action dimensionality, regardless of their
maximum and and minimum values. For example, it would be sufficient to do the following operations:
sigmoid(mean(~at)) and sigmoid(mean(~ot)).
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memory task are defined :

rt<t1 = 0

rt≥t2 = (at − om)2 + c (4.3.1)

4.3.1.2. Active Memory Task (Type 1 Information Acquisition). The active memory task
(AMT) is designed to test an agent’s ability to simultaneously learn adequate memory-based
state representations, and perform long-term temporal credit assignment in the action-space.
Concretely, the memory state is not passively observed in this setting. Instead, the agent
must actively seek to obtain the memory state, and is only rewarded for it in the future
when it needs to be recalled. Once again inspired by the grid world environments in [33],
the active memory task here is a simplification of the Active Visual Match task generalised
in the continuous state-action space. Similarly to the passive memory task, this problem
is also separated in the same three phases: remember, distractor, and recall. The main
difference is in the first phase, where the randomly generated memory observation om is only
fully observed if the agent performs the correct action. The intuition is that credit needs to
be assigned from the rewards in t ≥ t2 to the actions in t < t1, which was not required in
the passive memory task. Given the correct action is am, statically defined as part of the
environment, then the observations seen during phase 1 are defined as:

ot<t1 = om + (am − at)N (0,1) (4.3.2)

4.3.1.3. Distractor Environment. In the two previous problems, a core environment is
needed to complete the tasks. We use two different candidates for this: a dummy environ-
ment, and the pendulum environment described in Section 4.2.2. The dummy environment
just serves to extend the passive and active memory tasks into a larger horizon. This envi-
ronment always returns st = 0, rt = 0 for any t and any at.

4.3.2. Latent Stochastic Value Gradient

Latent stochastic value gradient is an extension of the original stochastic value gradient
algorithm in a partially observable environment. Planning in a latent space using, model-
based reinforcement learning has been explored more in depth previously [26, 25, 73].
Here, we employ a simplified version of those ideas, and apply them directly to T-SVG(∞)
in algorithm 1.

At a high level, the goal of latent-SVG(∞) is to learn a latent representation of the state
space such that the resulting latent space operates as a markovian process. That is, a latent
model takes as input the current history of observations and actions, (o1a1o2a2, . . . , at−1ot),
and outputs a latent state ht that fully contains the information necessary to predict rt and
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ht+1 given at. After learning the correct latent representation, latent-SVG(∞) operates just
as SVG(∞) would, but in this latent space.

Recall the dynamics of a partially observable environment defined as:

st+1 ∼ p(st+1|st, at)

ot ∼ p(ot|st)

rt ∼ p(rt|st, at)

Given only access to experience containing observations, actions, and rewards, we seek to
learn a belief state ht that can replace the true hidden state st. The models learned for
latent planning are:

ht = b(o1..ta1..t−1) Encoder (4.3.3)

ot = d(ht) Decoder (4.3.4)

ht = f(ht−1, at−1) Transition model (4.3.5)

rt = r(ht, at) Reward model (4.3.6)

Given a dataset of transition observations sampled from the environment (o1..ta1..t−1, at, ot+1, rt)
the above models are trained on the following loss function:

ht =b(o1..ta1..t−1) ,

ht+1 =b(o1..t+1a1..t) ,

Lrew =1
2

[
rt(ht, at)− rt

]2

,

Ldecoder =1
2

[
d(ht)− ot

]2

,

Ltrans =1
2 ||f(StopGradient(ht), at)− StopGradient(ht+1)||2 .

The total loss sums all the above terms, and can be controlled by the constants
αrew, αdecoder, αtrans,

Lmodels = αrewLrew + αdecoderLdecoder + αtransLtrans . (4.3.7)

The decoder model acts as a regularizer, and provides a training signal beyond simple
reward prediction for the latent model.

4.3.3. Latent Memory Stochastic Value Gradient

The latent memory stochastic value (LM-SVG) gradient algorithm is a special case of
L-SVG, where the latent model is augmented by a memory module. Recent work using a
memory-augmented representation model in deep learning [35, 33, 74] has shown the value
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of using attention and memory in recurrent networks for sequence modeling, especially in
long-horizon tasks. No restrictions were made to the structure of the latent model in the
previous section, as long as it can model a sequence of observations into a single latent
representation.

It is therefore natural to use a memory augmented recurrent network for the encoder b
to model tasks for which memory might be beneficial. For the purposes of this work, we use
the SAB-augmented LSTM as described in [35] for the encoder in LM-SVG. The high level
parameterization of this encoder is

htm := att(hi<t) ,

ht := b(ht−1, h
t
m, otat−1) ,

where att(hi<t) selects k latent states from the past, summarizes them, and passes it along
the encoder b in order to better predict ht. A full description of the the SAB-augmented
LSTM can be found in [35].

While it may be appealing to simply substitute the SAB-augmented LSTM as the encoder
for L-SVG, the resulting latent states are no longer appropriate for latent planning under
the Markovian assumption. That is, p(ht|hi<t) 6= p(ht|ht−1) under a memory augmented
recurrent network. Moreover, we have already seen and discussed the benefits of gradient
truncation during policy optimization. Truncating the gradients results in a myopic agent,
no matter the accuracy of the model employed. To summarize, there are two fundamental
problems with using an SAB-augmented LSTM for latent planning:

(1) The resulting latent space is non-markovian. The transition model is therefore
ill-defined, and no longer has access to all the information needed for predicting the
next latent state.

(2) Fails to account for long-term credit assignment during policy optimiza-
tion. Learning a better model is an auxiliary task belonging to supervised learning.
It does not directly address the long-term credit assignment issues of backpropagating
through the value function.

4.3.4. Latent Sparse Attentive Value Gradient

The latent sparse attentive value gradient (LSAVG) algorithm fully integrates a memory
and attention augmented recurrent network into policy optimization. By leveraging the rich
structure learned during model fitting, we claim that LSAVG can perform efficient long-
term credit assignment while being compatible with the discounting paradigm of modern
RL. More precisely LSAVG seeks to solve Type 1 information acquisition tasks using
truncated value gradients.
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Fig. 4.8. LSAVG forward and backward passes. An access to memory from m = 2 to t
results in a skip connection in the forward pass, allowing for credit to be directly assigned
from m to t.

LSAVG starts by using the same encoder proposed for LM-SVG. The only modification
we make to LM-SVG to obtain the latent sparse attentive value gradient algorithm is to
include htm as an argument to the transition model f . In doing so, (1) the belief state
ht + htm becomes Markovian again, and (2) skip connections are made during the forward
pass of the value function for long-term credit assignment. The credit assignment procedure
of LSAVG can be seen in Figure 4.8, which demonstrates how long-term dependencies can
still be learned with gradient truncation through the skip connections learned by the memory
augmented LSTM. The complete description of LSAVG is shown in Algorithm 2.

We claim that LSAVG is capable of efficient long-term credit assignment in par-
tially observable settings if:

• LSAVG is compatible with value gradient truncation
• LSAVG is capable of solving type 2 information acquisition tasks
• LSAVG is capable of solving type 1 information acquisition tasks

We demonstrate these three points by running a truncated version of LSAVG on the previ-
ously described type 1 and type 2 memory tasks, and compare its performance with LM-SVG.
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Algorithm 2: Latent Sparse Attentive Value Gradient
Input:
b(ht, wt|o1..t, a1..t−1) Attention Encoder T Episode length

d(ot|ht) Decoder N Truncation length
f(ht+1|ht, hm, at, ξ) Transition Model

r(rt|ht,at) Reward Model
πθ(at|ht, η) Policy

while not converged do
Observe initial observation o1;
for t← 1 to T do

ht ← b(o1..t, a1..t−1) from Algorithm 3;
at ← πθ(ht, ηt), ηt ∼ ρ(η);
Take action at and observe ot+1, rt from the environment ;
Insert (ot, at, rt, ot+1) into D;

end
Train environment models f(ht, hm, at, ξ) and r(ht, at) with D;
Initialize latent state ĥ1 ← b(o1a0);
Initialize memory: M∈ RT×|h|,M[1]← ĥ1;
Initialize return: G← 0;
for t← 1 to T do

Infer ξ, wt|ot−1, at−1, ot following Algorithm 3 and 4.2.7;
hm ←

∑
wt[i]∈wt wt[i]M[i];

ât ← πθ(ĥt, ηt), r̂t ← r(ĥt, ât);
ĥt+1 ← f(ĥt, hm, ât, ξ);
G← G+ r̂t;
if t+ 1 mod N == 0 then

ĥt ←Detach(ĥt);
end
M[t+ 1]← ĥt;

end
Update πθ using ∇θG;

end

4.4. Experiments For LSAVG
We test the capabilities of truncated LSAVG compared to truncated LM-SVG on three

different memory tasks in order of complexity: dummy-PMT, dummy-AMT, and pendulum-
AMT. For every task, t1 = 3, t2 = 10, and T = 15. That is, the remember phase is comprised
of time steps 0 through 2, the distractor phase includes time steps 4 through 9, and the recall
phase encompasses time steps 11 to 14. For both PMT and AMT tasks, the reward function
is as defined in 4.3.1, where c = 0.5. This means that the maximum possible return for each
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episode is 0.5× 4 = 2. All algorithms are subjected to a truncation length of N = 4, which
means that long-term credit assignment from the recall phase to the remember phase in type
2 information tasks is impossible in the traditional sense. The results of truncated LM-SVG
and truncated LSAVG for all three tasks are shown in Figure 4.9.

4.4.1. Passive Memory Credit Assignment

In dummy-PMT, both LM-SVG and LSAVG are capable of solving the task. All that
is required in this task is to produce state representations ht such that r(ht, at) can make
accurate predictions. No credit needs to be assigned to past time steps, since the memory
state in phase 1 is observed no matter what. We can also see that the memory-augmented
encoder is making proper use of attention during the recall phase. An argument can be
made that LM-SVG outperforms LSAVG in terms of variance and efficiency in Figure 4.9.
A possible explanation for this is due to the added connections in the transition model
that effectively makes the model deeper than its LM-SVG counterpart, resulting in more
unstable gradients. Until now, the behaviors of the algorithms are unsurprising, as [33] and
[74] have already demonstrated that a memory augmented LSTM is capable of solving type 1
information acquisition tasks. Those results are extended here for a model-based algorithm.

4.4.2. Active Memory Credit Assignment

In both dummy-AMT and pendulum-AMT, the truncated LM-SVG model is incapable
of obtaining returns beyond what a perfect myopic agent could achieve. The maximum
return of a myopic agent in both settings is based on a policy that perfectly acts in phases
2 and 3 according to the noisy observation in 4.3.2, but acts completely randomly in the
first phase. Therefore, this agent is able to act accordingly during the recall phase only if it
randomly happened to perform the correct action(s) in phase 1. Interestingly, truncated LM-
SVM seemingly approaches this myopic maximum, but is unable to surpass it. Conversely,
truncated LSAVG reliably approaches the maximum possible return of the active memory
task. Additionally, the attention weights for the remember phase obtained at t = 12 (the
recall phase) are larger than those obtained at t = 8 (the distractor phase), suggesting that
the agent is actively recalling appropriate memories when necessary.

If we direct our attention to Figure 4.10, we can start to appreciate how LM-SVG (1)
has an ill-defined transition model, and (2) fails to account for long-term credit assignment.
Regarding the first point, we can see that LM-SVG struggles to learn a good transition model
when compared to LSAVG. Secondly, LM-SVG is just as capable as LSAVG in performing
short-term credit assignment, since its performance on the distractor pendulum phase is
comparable to LSAVG. The discrepancy in overall performance is therefore due to the active
memory task.
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Fig. 4.9. Results of truncated LSAVG and truncated LM-SVG on dummy-PMT, dummy-
AMT and pendulum-AMT. On the left, the return is plotted against the number of episodes
during training. On the right, the attention weights for LSAVG are shown with their corre-
sponding tasks. In red are the time steps recalled during the recall phase (t = 12), and in
blue are the time steps recalled during the distractor phase (t = 8).
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Fig. 4.10. From left to right, the ln(loss) of the transition model, the ln(loss) of the reward
model, and the returns on the pendulum task within AMT are shown. LM-SVG is incapable
of learning a good transition model, but sees similar performance for learning the reward
model and acting in the distractor phase when compared to LSAVG.

4.5. Related Work
The work in this chapter builds on a number of of recent papers studying the problem

of long-term credit assignment, most notably the sparse attentive backtracking network
proposed in [35], and the temporal value transport mechanism of [33]. Let us elaborate
further on the differences and similarities LSAVG has with SAB and TVT.

4.5.1. Sparse Attentive Backtracking

The computation graph for sparse attentive backtracking closely resembles that of
LSAVG. As pointed out in section 4.1, we believe that a lot of the benefits of SAB for
long-term credit assignment can be translated into value gradients, which is what we sought
out to show in this chapter. Moreover, LSAVG directly makes use of a SAB network for rep-
resentation learning. The key difference in LSAVG is that the skip connections are learned
on an auxiliary task, reward prediction, and recycled during policy optimization. It is not
yet clear at the moment if attention can be learned to directly optimize returns, and we leave
that for future work.

4.5.2. Temporal Value Transport

Just like SAB and MERLIN [74], LSAVG and TVT use a memory augmented network to
learn state representations. The novelty in TVT is in reusing the attention weights learned
for latent representation to train the policy’s action distribution. Given the attention weight
wmt telling the latent network to use a memory at time step m < t to predict the state
st, TVT heuristically transports value from the t to m during policy optimization (in an
undiscounted setting):

Vm = rm + Vm+1 + wmt Vt (4.5.1)
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How does this fit in the model-based setting? If we modify the value function accordingly in
equation 4.2.12, then the recurrent relationship for the value gradient estimate becomes
∂V m(sm; θ)

∂sm
= ∂rm
∂sm

+ ∂rm
∂am

∂am
∂sm

+
(
∂sm+1

∂sm
+ ∂sm+1

∂am

∂am
∂sm

)
∂V m+1(sm+1; θ)

∂sm+1
+ ∂Vt(st; θ)

∂st
,

for the recalled time step m. LSAVG instead modifies the recurrent relationship for the
forward value gradient. In the case where recalled information is strictly additive, st =
f(st−1, at−1) + sm, the recurrence for time step t changes to

dst
dθ

= ∂st
∂at−1

∂at−1

∂θ
+
(
∂st
∂st−1

+ ∂st
∂at−1

∂at−1

∂st−1

)
dst−1

dθ
+ dsm

dθ
.

LSAVG is also not forced into an additive recall step, as sm is used however deemed necessary
to better predict st, and the resulting function approximation is automatically differentiated
through.

It is important to note that equation 4.5.1 results in a biased estimator of the policy
gradient. Unlike TVT, backpropagating through the skip connections of the transition model
does not bias the gradient, since we are not making any changes to the underlying auto-
differentiation mechanism. Therefore, LSAVG can be seen as an unbiased generalisation
of TVT in the model-based setting. Interestingly, the authors of TVT themselves note a
biological bias towards model-based reasoning in humans, which might motivate the use of
a model-based alternative.

2Remember that value functions for policy gradient based algorithms are only used for derivative estimation.
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Chapter 5

Conclusion and Future Work

Credit assignment plays an integral role in machine learning. By correctly identifying what
was responsible for certain outcomes, it guides autonomous agents towards optimal behav-
iors. In reinforcement learning, CA generally takes one of two forms: model-free learning and
model-based learning. Unfortunately, whatever the approach, agents struggle to perform effi-
cient and expressive credit assignment over long horizons. In the latter case, variance quickly
grows over long time spans, and in the former, errors in the model propagating through time
either exaggerate or underestimate long-term dependencies. Intuitively, humans are able to
reason over extended periods of time because the effects of an event at time t on a future
event at t′ can be directly inferred without necessarily having recourse to every event between
t and t′. Concretely, counterfactuals and attention allow for this form of sparse reasoning.

Counterfactuals answer questions like what if x′ had happened instead of x? By reasoning
solely about X, it is easier to isolate its effects, and consequently perform credit assignment
over X. In fact, it turns out that counterfactuals of this form for policy evaluation in RL,
called counterfactual policy evaluation, can be shown to be a variance reduction technique
relating to the conditional Monte Carlo method and importance sampling. Existing ap-
proaches to policy evaluation can be seen through this lens, which helps better understand
some of their theoretical properties. In this thesis, we showed that HCA [28] and tree
backup [56] are specific cases of counterfactual policy evaluation. We leave for future work
the possibility of discovering or rediscovering other estimators that may also be seen as a
form counterfactual policy evaluation. We also leave room for a deeper theoretical analysis
of when and how counterfactual policy evaluation is the most effective.

Attention mechanisms were originally proposed to allow models to focus on a specific
subset of inputs to better assign credit where needed [3]. Latent sparse attentive value gra-
dients leverage the rich structure induced by such attention mechanisms for sparse temporal
credit assignment in model-based RL. To the best of our knowledge, this is the first of its
kind, and it is demonstrated to be able to solve the same types of tasks TVT, its model-free



counterpart, was designed to solve. Value gradient based algorithms have historically had is-
sues scaling to larger more complex environments [30, 1], and can benefit greatly from using
an approximate value function. A natural followup to LSAVG is to scale it to more difficult
problems, and to see how critics and value functions might translate into this framework.
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Appendix A

Proofs for Chapter 2

A.1. Proof of Theorem 3.3.1

Proof. Lemma 1. Given any state s, action a, target policy π, and behavior policy µ for
which µ(at|st) > 0 for all at and st:

Qπ(s,a) = Eµ
[
R0 +

T∑
t=1

γTRtPπ,µ1:t

∣∣∣∣∣S0 = s, A0 = a

]
= Eµ

[
T∑
t=0

γtRtPπ,µ1:t

∣∣∣∣∣S0 = s,A0 = a

]

Proof. By per decision importance sampling:

V π(s) = Eµ

[
T∑
t=0

γtRt

t∏
k=0

π(Ak|Sk)
µ(Ak|Sk)

∣∣∣∣S0 = s

]
By the law of total expectation

= Eµ

[
Eµ

[
T∑
t=0

γtRt

t∏
k=0

π(Ak|Sk)
µ(Ak|Sk)

∣∣∣∣S0 = s,A0

] ∣∣∣∣S0 = s

]

=
∑
a∈A

µ(a|s)Eµ

[
T∑
t=0

γtRt

t∏
k=0

π(Ak|Sk)
µ(Ak|Sk)

∣∣∣∣S0 = s,A0 = a

]

=
∑
a∈A

µ(a|s)Eµ

[
π(A0|S0)
µ(A0|S0)

T∑
t=0

γtRt

t∏
k=1

π(Ak|Sk)
µ(Ak|Sk)

∣∣∣∣S0 = s,A0 = a

]

=
∑
a∈A

µ(a|s)π(a|s)
µ(a|s)Eµ

[
T∑
t=0

γtRt

t∏
k=1

π(Ak|Sk)
µ(Ak|Sk)

∣∣∣∣S0 = s,A0 = a

]

=
∑
a∈A

π(a|s)Eµ

[
T∑
t=0

γtRt

t∏
k=1

π(Ak|Sk)
µ(Ak|Sk)

∣∣∣∣S0 = s,A0 = a

]

By definition, V π(s) =
∑
a∈A

π(a|s)Qπ(s,a), therefore

Qπ(s,a) = Eµ

[
T∑
t=0

γtRtPπ,µ1:t

∣∣∣∣S0 = s,A0 = a

]



�

Lemma 2. Consider the MDP setting, where random variables Si, Ai, . . . , St, At are actions
and states visited by a policy µ. Let µ(a|s) be the conditional probability of taking action a

at state s, then:

Eµ
[
T∑
t=i

f(Si, Ai, . . . , St, At)
]

= Eµ

 ∑
α 6=Ai

µ(α|Si)Eµ
[
T∑
t=i

f(Si, Ai, . . . , St, At)
∣∣∣∣∣Ai = α

]
+ µ(Ai|Si)

T∑
t=i

f(Si, Ai, . . . , St, At)


Proof.

Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)
]

By the law of total expecation

= Eµ

[
Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)
∣∣∣∣Ai
]]

=
∑
α∈A

Pµ(A′i = α)Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)|Ai = α

]

= Eµ

[∑
α∈A

Pµ(A′i = α)Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)|Ai = α

]]

= Eµ

 ∑
α 6=Ai

Pµ(A′i = α)Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)|Ai = α

]
+ Pµ(A′i = Ai)Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)|Ai = Ai

]
= Eµ

 ∑
α 6=Ai

µ(α|Si)Eµ

[
T∑
t=i

f(Si, Ai, . . . , St, At)|Ai = α

]
+ µ(Ai|Si)

T∑
t=i

f(Si, Ai, . . . , St, At)


�

Back to Theorem 1
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Consider first conditioning on A1

Qπ(s,a) = Eµ

[
R0 +

T∑
t=1

γtRtPπ,µ1:t

∣∣∣∣S0 = s,A0 = a

]
By Lemma 2 on the second term, where i = 1

= Eµ
[
R0 +

∑
α 6=A1

µ(α|S1)Eµ

[
T∑
t=1

γtRtPπ,µ1:t

∣∣∣∣S0 = s,A0 = a,A1 = α

]

+ µ(A1|S1)
T∑
t=1

γtRtPπ,µ1:t

∣∣∣∣S0 = s,A0 = a

]

= Eµ
[
R0 +

∑
α 6=A1

µ(α|S1)π(α|S1)
µ(α|S1)Eµ

[
T∑
t=1

γtRtPπ,µ2:t

∣∣∣∣S0 = s,A0 = a,A1 = α

]

+ µ(A1|S1)π(A1|S1)
µ(A1|S1)

T∑
t=1

γtRtPπ,µ2:t

∣∣∣∣S0 = s,A0 = a

]

= Eµ
[
R0 +

∑
α 6=A1

π(α|S1)Eµ

[
T∑
t=1

γtRtPπ,µ2:t

∣∣∣∣S0 = s,A0 = a,A1 = α

]

+ π(A1|S1)
T∑
t=1

γtRtPπ,µ2:t

∣∣∣∣S0 = s,A0 = a

]
And by Lemma 1

= Eµ
[
R0 +

∑
α 6=A1

π(α|S1)γQπ(S1, α) + γπ(A1|S1)
T∑
t=1

γt−1RtPπ,µ2:t

∣∣∣∣S0 = s,A0 = a

]
Now, since π(A1|S1) is independent of any future actions or states, we may do the same thing onto
the last term, conditioning on A2 now to obtain:

Qπ(s,a) = Eµ

[
R0 +

T∑
t=1

γtRtPπ,µ1:t

∣∣∣∣S0 = s,A0 = a

]

=
[
R0 +

∑
α 6=A1

π(α|S1)γQπ(S1, α)

+ γπ(A1|S1)
(
R1 +

∑
α 6=A2

γπ(α|S2)Qπ(S2, α) + γπ(A2|S2)
T∑
t=2

γt−2RtPπ,µ3:t

)∣∣∣∣S0 = s,A0 = a

]

= Eµ
[ 1∑
t=0

γt
t∏

k=0
π(Ak|Sk)(Rt + γ

∑
α 6=At+1

π(α|St+1)Qπ(St+1, α))

+ γ2
2∏

k=1
π(Ak|Sk)

T∑
t=2

γt−2RtPπ,µ3:t

∣∣∣∣S0 = s,A0 = a

]
Continuously applying the same logic up to AT results in:

Qπ(s,a) = Eµ

 T∑
t=0

γt
t∏

k=0
π(Ak|Sk)(Rt + γ

∑
α 6=At+1

π(α|St+1)Qπ(St+1, α))
∣∣∣∣S0 = s,A0 = a
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Notice that the conditional trick is not applied to terms in the time steps before Ai, therefore:

Qπ(s,a) = Eµ

[
T∑
t=0

γtEµ
[
RtPπ,µ1:t

∣∣∣∣S0 = s,A0 = a,A1, A2, . . . , At

] ∣∣∣∣S0 = s,A0 = a

]

= Eµ

 T∑
t=0

γt
t∏

k=1
π(Ak|Sk)(Rt + γ

∑
α 6=At+1

π(α|St+1)Qπ(St+1, α))
∣∣∣∣S0 = s,A0 = a


�
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Appendix B

Additional Results

B.1. Pendulum and Cancer

Horizon parameter Solved time step Max gradients Final gradients
N = 5 116.40± 5.60 253.15± 55.70 0.07± 0.04
N = 10 97.8± 14.19 639.59± 88.50 0.10± 0.06
N = 20 120.4± 23.01 2142.58± 194.33 0.17± 0.06
N = 40 156.40± 19.02 9450.35± 2013.10 0.20± 0.04
N = 60 185.00± 32.52 29584.90± 9039.43 0.16± 0.06
N = 100 − 1680621.60± 992127.25 9777.83± 5939.89
λ = 0.9 94.20± 31.17 320.19± 168.80 0.01± 0.01
λ = 0.99 240.2± 33.38 60988.41± 12155.56 0.52± 0.46
λ = 1 − 1680621.60± 992127.25 9777.83± 5939.89

Table B.1. Results of T-SVG(∞) for different truncation lengths and discount factors in
the pendulum environment. Episodes are 100 time steps long, and the confidence intervals
represent a 90% confidence bound.

Horizon parameter Return Max gradients Final gradients
N = 10 −216.37± 0.39 339.07± 44.37 3.59± 1.10
N = 20 −185.54± 0.36 838.79± 226.28 3.45± 0.43
N = 40 −163.82± 0.43 656.28± 88.05 7.13± 5.88
N = 60 −157.86± 0.09 20450.7± 20329.77 1.58± 0.19
N = 100 −155.74± 0.01 39331804.0± 39346094.6 2.09± 0.77
λ = 0.9 −195.13± 0.73 3417.46± 3867.03 0.37± 0.08
λ = 0.99 −156.57± 0.08 18711126.0± 21392030.9 1.36± 0.22
λ = 1 −155.74± 0.01 39331804.0± 39346094.6 2.09± 0.77

Table B.2. Results of T-SVG(∞) for different truncation lengths and discount factors in
the cancer environment. Episodes are 100 time steps long, and the confidence intervals
represent a 90% confidence bound.



B.2. LSAVG and LM-SVG
B.2.1. Memory-augmented encoder

The memory-augmented encoder described and used for LSAVG is a simplification of the
SAB network in [35]. In fact, we elect to use an architecture closer to a Transformer [71]
given the simplicity of the tasks. The encoder is described in the following algorithm

Algorithm 3: Procedure for b(ht, wt|o1..t, a1..t−1)
Input:

History o1..t, a1..t−1 ∈ Rt×d

Sparsity k

Attention Key-gen W ∈ Rd×dk

MLP mlpψ : R1×d → R1×dk

K ← o1..t, a1..t−1W;
ht ← mlpψ(otat−1);
attnw ← htK

T ;
attnk ← sorted(attnw)[k + 1];
attnk ← ReLU(attnw − attnk);
hm ←

∑t

i=1 attnk[i]oiai−1∑
i
attnk[i] ;

return ht + hm, attnk
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