
Université de Montréal

Towards Causal Federated Learning : A Federated
Approach To Learning Representations Using Causal

Invariance

par

Sreya Francis

Département de mathématiques et de statistique
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Discipline

October 26, 2021

© Sreya Francis, Année de la thèse

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Towards Causal Federated Learning : A Federated Approach
To Learning Representations Using Causal Invariance

présenté par

Sreya Francis

a été évalué par un jury composé des personnes suivantes :

Guy Wolf
(président-rapporteur)

Irina Rish
(directeur de recherche)

Golnoosh Farnadi
(membre du jury)

Résumé

L’apprentissage fédéré est une approche émergente d’apprentissage automatique distribué
préservant la confidentialité pour créer un modèle partagé en effectuant une formation
distribuée localement sur les appareils participants (clients) et en agrégeant les modèles locaux
en un modèle global. Comme cette approche empêche la collecte et l’agrégation de données,
elle contribue à réduire dans une large mesure les risques associés à la vie privée. Cependant,
les échantillons de données de tous les clients participants sont généralement pas indépendante
et distribuée de manière identique (non-i.i.d.), et la généralisation hors distribution (OOD)
pour les modèles appris peut être médiocre. Outre ce défi, l’apprentissage fédéré reste
également vulnérable à diverses attaques contre la sécurité dans lesquelles quelques entités
participantes malveillantes s’efforcent d’insérer des portes dérobées, dégradant le modèle
agrégé généré ainsi que d’inférer les données détenues par les entités participantes. Dans cet
article, nous proposons une approche pour l’apprentissage des caractéristiques invariantes
(causales) communes à tous les clients participants dans une configuration d’apprentissage
fédérée et analysons empiriquement comment elle améliore la précision hors distribution
(OOD) ainsi que la confidentialité du modèle appris final. Bien que l’apprentissage fédéré
permette aux participants de contribuer leurs données locales sans les révéler, il se heurte à des
problèmes de sécurité des données et de paiement précis des participants pour des contributions
de données de qualité. Dans ce rapport, nous proposons également une conception et un
flux de travail EOS Blockchain pour établir la sécurité des données, une nouvelle métrique
basée sur les erreurs de validation sur laquelle nous qualifions les téléchargements de gradient
pour le paiement, et implémentons un petit exemple de notre modèle d’apprentissage fédéré
blockchain pour analyser ses performances.
Mots clés: apprentissage fédéré, apprentissage automatique causal, blockchain, généralisation
hors distribution, apprentissage automatique préservant la confidentialité, robustesse, equité

5

Abstract

Federated Learning is an emerging privacy-preserving distributed machine learning approach
to building a shared model by performing distributed training locally on participating devices
(clients) and aggregating the local models into a global one. As this approach prevents data
collection and aggregation, it helps in reducing associated privacy risks to a great extent.
However, the data samples across all participating clients are usually not independent and
identically distributed (non-i.i.d.), and Out of Distribution (OOD) generalization for the
learned models can be poor. Besides this challenge, federated learning also remains vulnerable
to various attacks on security wherein a few malicious participating entities work towards
inserting backdoors, degrading the generated aggregated model as well as inferring the data
owned by participating entities. In this work, we propose an approach for learning invariant
(causal) features common to all participating clients in a federated learning setup and analyse
empirically how it enhances the Out of Distribution (OOD) accuracy as well as the privacy
of the final learned model. Although Federated Learning allows for participants to contribute
their local data without revealing it, it faces issues in data security and in accurately paying
participants for quality data contributions. In this report, we also propose an EOS Blockchain
design and workflow to establish data security, a novel validation error based metric upon
which we qualify gradient uploads for payment, and implement a small example of our
Blockchain Causal Federated Learning model to analyze its performance with respect to
robustness, privacy and fairness in incentivization.
Keywords: Federated Learning, Causal Machine Learning, Blockchain, Out-of-Distribution
Generalization, Privacy Preserving Machine Learning, Robustness, Fairness

7

Table des matières

Résumé . 5

Abstract . 7

Liste des tableaux . 13

Liste des figures . 15

Liste des sigles et des abréviations . 17

Remerciements . 19

Chapitre 1. Introduction . 21

1.1. Thesis Statement. 21

1.2. Statement Of Contributions . 22

1.3. List Of Papers Included In The Thesis: . 22

Chapitre 2. Related Work. 23

2.1. Federated Learning . 23
2.1.1. Privacy Threats . 24
2.1.2. Defense Strategies. 25
2.1.3. Domain Shift Issues . 26
2.1.4. Computational Assumptions . 27

2.2. Distributed Machine Learning . 27
2.2.1. Federated Learning Vs Distributed Machine Learning. 27

2.3. Causal Machine Learning . 28
2.3.1. Data Heterogenity . 28
2.3.2. Common Assumptions Made In Causal Invariance Learning 28

2.4. Invariant Risk Minimization. 30

2.5. What consist of a Fully Fledged FL Ecosystem? . 31

9

2.6. Blockchain For Incentivization . 31

2.7. How Can Blockchain Help? . 32

2.8. EOS Blockchain. 34
2.8.1. DPOS - Delegated Proof Of Stake. 34
2.8.2. Benefits . 35

Chapitre 3. Federated Causal Invariance Learning . 37

3.1. Motivation . 38

3.2. How can a federated setting help causal invariance learning? 39

3.3. How can causal invariance learning be of help in a federated learning setting? 39

3.4. Federated Learning On Non IID Data . 40
3.4.1. Data Sharing Strategies . 41
3.4.2. Knowledge Distillation . 41
3.4.3. Domain Adaptation . 42

3.5. Proposed Causal Federated Learning Approaches . 42
3.5.1. Approach 1 - CausalFed. 43
3.5.2. Approach 2 - CausalFedGSD . 46

3.6. Implementation Details . 47
3.6.1. Dataset Details . 47
3.6.2. Attack Implementation. 48

3.7. Results . 49
3.7.1. Evaluation Setup . 50
3.7.2. Approach 1 - CausalFed. 50
3.7.3. Approach 2 - CausalFedGSD . 51

3.8. Some Possible Steps To Further Enhance Privacy . 52

3.9. Challenges Posed To Proposed Approaches . 53

3.10. Conclusion. 53

Chapitre 4. Federated Incentivization With Blockchain 55

4.1. Background . 55

4.2. Record And Reward Federated Learning Contributions With Blockchain 58

10

4.3. Proposed Design And Architecture . 59
4.3.1. System And Blockchain Architecture . 60
4.3.2. Smart Contracts . 61
4.3.3. System Design And Workflow . 62
4.3.4. Global Model . 63
4.3.5. Data Validity And Quality . 63

4.4. Proof Of Concept . 64
4.4.1. Hyperledger Fabric - REST API . 65
4.4.2. Implementation Worflow . 67
4.4.3. Results . 67

4.5. Scalabilty . 68

4.6. Future Work . 69

4.7. Conclusion . 69

Chapitre 5. CausalFedBlock : Blockchain For Federated Causal Invariance
Learning With Fair Incentivization . 71

5.1. Background . 71
5.1.1. Domain Generalization . 71
5.1.2. Blockchain Based Incentivization . 72
5.1.3. Invariant Risk Minimization. 72
5.1.4. Fairness In Causal Invariance Learning . 73
5.1.5. Federated Causal Invariance Learning . 73
5.1.6. Data Sharing Strategy With Blockchain . 73

5.2. Proposed Architecture . 74
5.2.1. System Design . 76
5.2.2. Computation And Storage . 78
5.2.3. Restrictions For Permissioned Blockchain . 78
5.2.4. Addressing Privacy Leakage Of Global Data Using Access Control

Implementation . 79

5.3. Results. 81
5.3.1. Dataset . 81
5.3.2. Evaluation Setting . 81
5.3.3. Out of Distribution(OOD) Test results . 82

11

5.4. Conclusion And Future Work . 83

Chapitre 6. Conclusion And Future Directions . 85
6.0.1. Robustness . 85
6.0.2. Privacy . 86
6.0.3. Fairness in Incentivization . 86
6.0.4. Scaling. 86

Références bibliographiques . 89

12

Liste des tableaux

3.1 Network Architecture . 50
3.2 Comparison of methods in terms of training accuracy (mean ± std deviation) . . . 51
3.3 Comparison of methods in terms of testing accuracy (mean ± std deviation) 51
3.4 Leakage on inference attack . 51
3.5 Comparison of methods in terms of training accuracy (mean ± std deviation) . . . 51
3.6 Comparison of methods in terms of testing accuracy (mean ± std deviation) 51

4.1 Parameters required in a transaction upload from device Di @2019 IEEE. 60

5.1 Network Architecture . 81
5.2 Comparison of methods in terms of testing accuracy (mean ± std deviation) 82
5.3 Leakage on inference attack testing accuracy (mean ± std deviation) 82

13

Liste des figures

2.1 Federated Learning Architecture based on client server model (114) 24
2.2 Structural Equation Models can generate same observational distribution in many

cases. 29
2.3 Structural Equation Models can generate same observational distribution in some

cases under shift interventions on X . 30

3.1 Client data distribution in usual federated learning setting . 38
3.2 Existing approaches in FL to handle Non IID data. 40
3.3 Existing approaches in FL to handle Non IID data with our proposed approach

highlighted in green. 42
3.4 Causal Federated Learning . 44
3.5 Global Data sharing strategy . 46
3.6 ColoredMNIST . 47

4.1 As described in the proposal for BlockFL (56), the architecture of BlockFL
compared to "Vanilla" Federated Learning(83) @2019 IEEE. 56

4.2 The workflow of calculating and uploading update values δ for validation,as
explained in Section 4.3.3 @2019 IEEE. 59

4.3 The continued workflow of validating the δ via Smart Contracts and paying
successful candidates, as explained is Section 4.3.3 @2019 IEEE. 60

4.4 A device uploads the gradient value to an off-chain table within the IPFS file
system where it is later accessed by the Smart Contract for validation, and the
owner for gradient aggregation. Only the hash of the gradient remains on-chain to
any Producer @2019 IEEE. 62

4.5 Prior to training, a device D ∈ D sends a list of the classes for which it has
data, and receives a validation set containing data from only those classes. Once
the validation set is received, training proceeds and the set of validation errors
throughout training is sent along with the gradient δ @2019 IEEE. 65

15

4.6 Graphical results of training accuracy of 10 devices over 15 rounds @2019 IEEE. 68
4.7 Graphical results of training accuracy of centralized dataset over 15 rounds @2019

IEEE. 68

5.1 Model Tk+1 is calculated from applying the gradient values δi in Block k + 1 to
previous model Tk. 74

5.2 Causal Federated Learning with Global Data Sharing Strategy 75
5.3 The workflow of round k begins with (1) O distributing Tk and the version vk to

all devices, and simultaneously approving token transfer to the Payment() Smart
Contract; (2) each device Di uses a local dataset of size ni and global dataset
of size ng to calculate gradient δi(57); (3) the values δi, ni – the number of data
points, ai – the address of Di, and vi – the version of the model used, are packed
into a Transaction, along with a TxID, timestamp and a Smart Contract function
call to UploadGradient(); (4) each device Di sends its transaction to its closest
miner Mj; (5a) each miner Mj who received Txi validates the transaction and
adds it to its queue, while simultaneously broadcasting the received transactions to
all other miners and (5b) the miners who receive the remaining transactions have
their final queue of transactions for training model Tk. 77

5.4 The workflow continues with (6) miner Mj running each transaction in its queue,
which involves a call to UploadGradient() where the format of δi, the correct
version number vi, and the existence of the address ai are all checked; (7a) the
transactions that run without errors are added to the miners queue for the next
block and (7b) the devices who sent in the transaction are rewarded an amount of
tokens proportional to ni – the number of datapoints used for training. 78

16

Liste des sigles et des abréviations

FL Federated Learning

DML Distributed Machine Learning

IRM Invariant Risk Minimization

IPFS Inter Planetary File System

ERM Empirical Risk Minimization

RMatch Random Match

17

Remerciements

I would first like to thank my supervisor, Professor Irina Rish, whose expertise was invaluable
in formulating the research questions and methodology. Her insightful feedback pushed me
to sharpen my thinking. Her kindness, compassion and empathy taught me what it means to
be a good leader and changed me for the better.

I would like to acknowledge my colleagues from medical group at MILA for their helpful
collaboration and for all of the opportunities I was given to further my research. I also
thank all my teachers for their valuable guidance throughout my studies and for provi-
ding me with the tools that I needed to choose the right direction at each phase of my research.

Most importantly, I would like to thank my grand-father (Thomas), my parents (Susan
and Francis) and my best-friend Nivedita for being my constant pillars of support. I also
acknowledge the support of my extended family and friends who provided stimulating
discussions as well as happy distractions to rest my mind outside of my research.

19

Chapitre 1

Introduction

Federated learning is an approach to Distributed Machine Learning developed by the Google
AI team; this approach allows users to keep ownership of their data during the model
training process. In addition to keeping ownership of their data, users also have immediate
access to the newest model after they have trained it on their data. The sender of the
model benefits from distributed data, lower latency, and less local power consumption.
Since Federated Learning ensures privacy, more users who don’t share their data currently
become more willing to partake in the training process and ultimately creating smarter models.

The training process involves a central server sending out a model to a subset of
the current users. This set downloads the model, trains the model on their device with
their local data, and returns only the update that resulted in the new model. Each device
returns their particular update and the central server aggregates these updates to improve
the original model, which is the new global model.

1.1. Thesis Statement
In a federated setting, the data samples across all participating clients are usually not inde-
pendent and identically distributed (non-i.i.d.), and Out of Distribution (OOD) generalization
for the learned models can be poor. Besides this challenge, federated learning also remains
vulnerable to various attacks on security wherein a few malicious participating entities work
towards inserting backdoors, degrading the generated aggregated model as well as inferring
the data owned by participating entities. In this work, we propose an approach for learning
invariant (causal) features common to all participating clients in a federated learning setup
and analyse empirically how it enhances the Out of Distribution (OOD) accuracy as well
as the privacy of the final learned model. Moreover we also propose an approach to record

and reward contributions of each participant with the help of blockchain on our system
implementation.

1.2. Statement Of Contributions
The main contribution of this thesis are as follows:

• This thesis presents some approaches to bridge the fields of invariant causal feature
learning and federated learning.
• Despite the focus of existing work on enhancing test performance for clients within

the federated setting, the area of study on how these FL algorithms can generalize
well to unseen testing clients is relatively under explored. Our study helps assess how
FL performance can be enhanced in an out of distribution test setting for unseen test
clients.
• We show that our federated causal invariance learning approach helps enhance not

just the out of distribution generalization performance but also ensures higher security
against some of the privacy attacks posed in a distributed setting.
• This thesis also includes an attempt to bridge the fields of blockchain and federated

learning for fair incentivization.
• Our work with blockchain proposes an approach to democratize access to data and

enhance fair incentivization to every participant in the federated training process.
• This thesis also includes one of the very first attempts to bridge the fields of causal

invariance learning, federated learning and blockchain.

1.3. List Of Papers Included In The Thesis:
• Towards Causal Federated Learning For Enhanced Robustness and Privacy (37)

Presented at ICLR 2021 Distributed and Private Machine Learning Workshop.
• Record and Reward Federated Learning Contributions With Blockchain (78)

Presented at IEEE Conference on Distributed Computing and Knowledge Discovery.
• CausalFedBlock: Blockchain For Fair Incentivization in Causal Federated Learning

Accepted to AAAI 2022 Trustworthy AI for Healthcare Workshop.
Certain aspects of this thesis are taken from works that are in preparation for publication or
have been published. In particular, the introduction includes modified parts of (37) and (78).
The majority of Chapter 3 is reproduced from (37). The majority of Chapter 4 is reproduced
from (78) and chapter 5 is in preparation for publication. The author of this thesis was the
lead author of all these works, and the collaborators acknowledge the use of these works in
this thesis.

22

Chapitre 2

Related Work

The project at hand seeks to study causal approaches to enhance Federated Learning.

Our objective of this paper is to review the state-of-the-art of systems similar to
our proposed topic of interest. These state-of-the-art solutions will be reviewed across
three separate sections – Section 2.1: Federated Learning, Section 2.2: Distributed Machine
Learning (DML), 5.2.4: Blockchain and Section 2.7: Causal Learning. To the best of our
knowledge, this report is the first to investigate causal federated learning.

2.1. Federated Learning
Federated Learning is an approach to DML developed by the Google AI team (83)(57);
this approach allows users to keep ownership of their data during the model training
process. In addition to keeping ownership of their data, users also have immediate access
to the newest model after they have trained it on their data. The sender of the model
benefits from distributed data, lower latency, and less local power consumption. Since
Federated Learning ensures privacy, more users who don’t share their data currently
become more willing to partake in the training process and ultimately creating smarter models.

The training process involves a central server sending out a model to a subset of
the current users. This set downloads the model, trains the model on their device with
their local data, and returns only the update that resulted in the new model. Each device
returns their particular update and the central server aggregates these updates to improve
the original model,which is the new global model (83)(57)(56).

This is an approach (57) (83) whereby one entity O owns the training model T but not the
data; the full dataset is distributed among many users in U . This model is trained in the
following way:

Fig. 2.1. Federated Learning Architecture based on client server model (114)

(1) O distributes the same model T to many users u ∈ U .
(2) Each user u feeds their local data through the model T , and calculates their gradient

update δ (57) to improve the model performance.
(3) Each user u returns their update value δ to O.
(4) O receives the collection of update values δ and averages these values to a single value

δ̄ (57).
(5) O applies δ̄ to the current model T to obtain the new global model T ′, and T ← T ′.
(6) Steps 1-5 are repeated until O stops the Federated Learning process, at which point

training is complete.
The process can be broken down in the following way – we have multiple machines where
each maintains a copy of the training model, but keeps their local dataset as model input
representing a subset of the global dataset. These machines share the same parameters of
the training model, by uploading and downloading parameters to and from a centralized
parameter server. Each machine then upload their local training gradients based on which the
training model is updated by using some optimizer like Stochastic Gradient Descent (SGD).
The machines download updated parameters from the parameter server and continue to train
the local model. This process repeats until machines obtain the final trained model (120).

2.1.1. Privacy Threats

Although the Federated Learning architecture and process makes considerable efforts to keep
the user’s data private, an attacker could analyze the weights of the sent updates to make
conclusions about the data of users (103). Certain Machine Learning algorithms such as
Neural Networks and Recurrent Language models are known to memorize data labelling and
patterns. In such cases, a user’s data may risk losing its privacy since they are represented in
the model (15). While this might sound unlikely if not done on purpose, there have been
experiments that show it is possible to reconstruct some data points (38)

24

FL algorithms are vulnerable to some attacks, namely membership inference (7) (102), model
inversion (80) and model extraction (36).
Membership Inference typically determine whether a point is in the training dataset or not.
Shokri et al. (102) propose a shadow training technique: first train k shadow models to
mimic the behavior of target model, then accordingly train an attack (membership inference)
model. Salem et al. (7) greatly broaden the application of (102) by gradually relaxing its
limitations: first adversary only needs to train one shadow model; second adversary uses a
totally different training set and one shadow model; then third adversary could infer the
membership only based on empirical statistics.
Model Inversion attacks try to use black-box access to estimate the feature values from
training dataset. Fredrikson et al. (80) explored model inversion attacks in two settings:
decision trees and neural networks.
Model Extraction attacks try to duplicate the parameters of target model. Tramèr et al.
(36) propose effective attack methods to logistic regression, neural networks and decision trees.

Model Poisoning, which differs from traditional data poisoning is one of the major threats
to a federated setting which involves an adversary controlling a small number of malicious
agents, mostly not exceeding one in number, aiming to cause the global model to misclassify
a set of chosen inputs with very high confidence hence degrading the global model performance.

Membership Inference Attack which is yet another threat to federated setting was first
presented by Shokri et al (102) . The general idea behind this attack is to use several models
(one for each prediction class), called as attack models, to make membership inference over
the target model’s output which is its posterior probabilities.Assuming that the target
model is a black-box API, the proposition was to construct several such shadow models
to mimic the target model’s behavior and derive the required data which is again the posterior.

Adversarial Robustness We observed that despite many relevant work on adversarial
defense, most of them fail when it comes to generalizable robustness to adversarial examples
beyond distributional constraints(95). The most approached method is to include adversarial
examples in the training cohort. We observe that causal feature learning(95) can help beyond
existing pre-defined norms.

2.1.2. Defense Strategies

To combat this possible privacy issue, McMahan, Daniel & Kunal have proposed a
differentially private variant of federated learning framework (103) (15). This variant

25

proposes changes to the Federation Learning algorithm in order to provide differential
privacy to a client’s contributions. This is achieved by randomly sampling user updates to be
aggregated, and adding Gaussian noise to the final updates of this group (15)(38)(103). In
spite of high computation cost and slower convergence rate, this tends to provide a negligible
loss of accuracy as the previous state-of-the-art implementations. (15) (38)

Some researchers have proposed some defense strategies for robust federated lear-
ning ((26), (97)) FoolsGold (26) is a defense mechanism against Sybil attacks by adjusting
the learning rates of local models based on contribution similarity. The algorithm identifies
grouped actions as Sybil attacks and promotes the difference of local model update. However,
FoolsGold may identify harmless participants as attackers when these participants have
similar local data. (138) proposed a model, CalTrain, that represents data with fingerprints
to identify poisoned data and models. (58) propose to maintain a small reference dataset to
justify the quality and accountability of models. While this method is effective, it requires
a lot of time to evaluate each model in every single round. Some researchers proposed to
improve the privacy preservation of federated learning (103) (121) There has also been several
proposals for a privacy-preserving protocol for model aggregation in federated learning. (103)
was the first to introduce differential privacy into federated learning.

By using cryptography techniques, it is possible to ensure that the updates of indi-
viduals can only be read when enough users has submitted updates (13). This makes
man-in-the-middle attacks much harder, i.e. an adversary cannot make conclusions about
the training data based on the intercepted network activity of an individual user. To perform
such an attack, an adversary would need to intercept the messages of many users (13).

2.1.3. Domain Shift Issues

The main idea behind federated learning is to have each node learn on its own local data
and not share either the data or the model parameters.While federated learning promises
better privacy and efficiency, existing methods ignore the fact that the data on each node are
collected in a non-i.i.d manner, leading to domain shift between nodes (52). For example,
one device may take photos mostly indoors,while another mostly outdoors.
Consider two clients A and B in a Federated learning setup. In real word scenario, we always
have PA ̸= PB The participating clients can have varying marginal distribution PA(x) termed
covariate shift despite of having a shared P(B | x). Apart from feature distribution skew,
there can also be cases with label distribution skew wherein marginal distributions PA(y)
may vary across clients, even if P(x | B) is the same (95)

26

2.1.4. Computational Assumptions

Federated Learning was first proposed with two possible avenues for decreased smartphone
computation – either use more devices to decrease computation amount per phone, or have
each phone partake in more complex computations between model updates. Both of these
proposals are based on the assumption that phone processing power can easily handle the
computations necessary for model updates during an idle state (45).
In the event that the amount of computation needed is too large for the phone or that a
phone is never idle enough to perform these computations, the use of local computation
devices – such as in Mobile Edge Computing –is needed (72).

2.2. Distributed Machine Learning
Generally, there are two approaches for distributed machine learning – model parallelism and
data parallelism. The former partitions a training model among multiple machines with the
same dataset, and the latter partitions the dataset among multiple machines with the same
model (83)(120). In the case of Federated Learning, we focus on the data parallelism approach.

One problem that may arise is the disclosure of local data and model. Though
each machine uploads only its gradient which should keep its local data hidden, adversaries
can infer important information about this local data by initiating inference attacks or
membership attacks (71).

2.2.1. Federated Learning Vs Distributed Machine Learning

While Federated Learning and DML are similar on a technical level, Federated Learning
has some major differences to DML applications in data centers where the training data is
distributed among many machines (57)(111). Since Machine Learning generally requires
a lot of data, many applications for which Machine Learning models are generated have
many users; every one of these users could theoretically participate in Federated Learning,
making it far more distributed than anything in a data center. While earlier DML setting
expected data to be balanced with identical distribution, Federated Learning should expect
unbalanced number of samples with non identical distributions. (57). In a DML setting,
it is expected that nodes can communicate quickly with each other and that it is ensured
that messages do not get lost; in Federated Learning, these assumptions cannot be made.
Uploads are typically much slower than downloads and may be extremely slow – especially in

27

the case of mobile phone networks (124)(57)(111).

Federated learning is not just a distributed version of standard machine learning.
It is a distributed system and therefore must be robust to arbitrarily misbehaving
participants. Unfortunately, existing techniques for Byzantine-tolerant distributed learning
do not apply when the participants’ training data are not i.i.d., which is exactly the
motivating scenario for federated learning. How to design robust federated learning systems
is an important topic for future research.

2.3. Causal Machine Learning
In contrast to the current domain generalization approaches used in federated learning, causal
invariant learning techniques to address OOD generalization problem in unseen test client
distribution are derived from the causal inference literature which targets use of causal
variables for prediction problems.
All causal learning studies assume access to heterogeneous data from multiple environments
which is exactly the scenarion in a federated learning setting. In our approach, we concentrate
on ’causal invariance’ as underlying principle under the assumption that if predictors are
causal, estimator is invariant across interventions.

2.3.1. Data Heterogenity

In a federated setting consider that the data of each client is denoted by Dc = {Xc, Y c}
which represents multiple training environments c ∈ supp (Etrain), Xc ⊂ X and Y c ⊂ Y are
the collection of data and label from each client environment c. Let P c be the distribution of
data and label in client environment c. Usually, for all c ∈ supp(Etrain), the data and label
distribution P c(X, Y) can be quite different from that of training environments Etrain

2.3.2. Common Assumptions Made In Causal Invariance Learning

2.3.2.1 Assumption On Causality:

In causal inference literature, it common to make an assumption about causally invariant
relationship between the target Y and its direct causes Xpa(Y) which can be an indicator on
the stability of causal variables Xpa(Y) across different participating client environments (17).

28

Fig. 2.2. Structural Equation Models can generate same observational distribution in many
cases

More specifically, this assumption of causality states that given the structural equation
models:

Y c ← fY

(
Xc

pa(Y), ϵc
Y

)
, ϵc

Y ⊥ Xc
pa(Y),

remains the same across all environments c ∈ supp (Eall), that is, ϵc
Y has the same distribution

as ϵY for all client environments(115).
Several methods have been developed aiming to obtain causal variables from heterogeneous
data to achieve OOD generalization. However as the main standard to such cause effect
identification is via randomized control trials, these approaches are not practical in real
world scenarios or usual machine learning settings. Hence the research focus was shifted
to obtaining a causal explanation to find prensence of invariance across different data
environments. Several papers (98) (28) (47) (40)(92) have studied methods to leverage such
invariance in participating data environmnets.

2.3.2.2 Assumption On Invariance

The invariance assumption states that there exists a subset S∗ ⊆ {1, . . . , p} of the covariate
indices such that P (Y c | Xc

S∗) is the same for all participating client environments c ∈ E .
This implies that the conditional distribution is invariant across all participating client
environments from E when conditioning on the covariates from S∗(115).

29

Fig. 2.3. Structural Equation Models can generate same observational distribution in some
cases under shift interventions on X

The initial study on invariance being a possible factor that can help infer causal structure
under certain conditions and assumtions was done by (96) in Invariant Causal Predcition
with a detailed statistical test on whether a subset of covariates can satisfy the invariance
assumption. In this paper (96), they state that the conditional distribution of the target
given the direct causes will remain constant when interfering all variables except for the
target in the model when all its direct causes are considered.

2.4. Invariant Risk Minimization
(96) was extended to more practical and general settings by invariant risk minimization
(10) method which mainly targets latent causal mechanisms and generalizes the invariance
assumption to representation level.
(10) assumes that there exists data representation Φ(X) such that for all client envrionment
, c′ ∈ supp (Etrain), E [Y | Φ (Xc)] = E

[
Y | Φ

(
Xc′

)]
, where Etrain can be considered the

available client train environments.
Based on this assumption, (10) aims to find data representation Φ(X) that can evoke an
invariant linear predictor w across all client train environments Etrain(115).

min
Φ(X),w

∑
c∈supp(Etrain)

Lc(w ⊙ Φ(X), Y)

s.t. w ∈ arg min
w̄
Lc(w̄ ⊙ Φ(X)), for all c ∈ supp (Etrain)

30

2.5. What consist of a Fully Fledged FL Ecosystem?
The proposed inclusion of causal learning techniques in federated learning setting explores a
novel FL model training schemes, which is especially effective in non-IID learning scenarios.
Apart from the model training, the establishment of a complete Federated Learning system
requires a series of auxiliary mechanisms which includes incentive mechanism (108)(54),
model compression(22), backdoor defense (58), communication protocol (14)(99), etc., which
will guarantee the healthy development of FL ecosystem. We have found that our proposed
approaches can be seamlessly embedded into most of the existing methods on these topics
but we specifically concentrate on incentivization schemes to begin with in this thesis. Hence,
we will discuss some main topics in blockchain that can help with incentivization schemes in
our proposed FL setting.

2.6. Blockchain For Incentivization
Blockchain is a revolutionary technology that has the potential to cast a great impact
on modern society with its transparency, decentralization, and security properties. This
technology gained considerable attention due to its very first application of Cryptocurrencies
like Bitcoin. In the near future, Blockchain technology is determined to transform the way
we live, interact, and perform business transactions.
Blockchain can be considered as the chain of digital blocks connected and associated with
each other as an open distributed ledger which was initially used to store only transactions
of digital currencies but later started being widely used in numerous applications beyond
currency and payments (118).
There are 3 main categories of Blockchains solely based on their usage and distinct attributes
as follows:

• Public/Permissionless blockchains : Blockchains are truly decentralized and allow
anyone to join the network and engage in managing them.
• Private/Permissioned blockchains : Blockchains that allow only invited people from a

single organization to join the network and manage them.
• Consortium blockchains : These Federated Blockchains have attributes in between

public and private Blockchain, in terms of permissions and management. It allows
only invited people from different organizations to join the network.

Now we will take a look at some of the basic concepts associated with blockchain technology:
Peer to Peer/ P2P Network : P2P network is a distributed network architecture which
enables sharing of resources among participants who make their resources available to be
shared with other participants. Each participant node is considered a ’peer’ and acts in roles
of both client and server. At one time, peer C, acting as client can directly request services

31

from other peer B who acts as server of the network without any intermediate entities and
vice versa. (113).
Hash And Hash Chain :
Hash is one-way mathematical function in which original data cannot be calculated back
from the unique output to protect the integrity of data. It works by calculating a fixed-sized
unique value called hash value for every variable input.(112)
A hash chain is generated by successively applying the hash function on a piece of data and
plays an integral role in Blockchain(61)
Cryptography And Encryption :There are two types of modern cryptography, namely
Symmetric key cryptography in which same key is used by sender and receiver for cryptographic
operations and Asymmetric key cryptography where each communicating party has two
different keys called public and private keys used for different cryptographic operations in
different ways. (8) Encryption is a process to encode the plaintext into cipher text. The
decryption is the reverse process to convert cipher text into plaintext.(112)
Digital Signatures And TimeStamp : Digital signatures are used as a proof of authorship
along with the contents. The signatures are usually applied using public key cryptography in
which, a signer uses its private key to sign a document and a recipient can verify the signatures
using signer’s public key.(85) Timestamp is the time at which event occurrence is recorded
by a computer and it records the date and time of the day at which event occurred which
is accurate to a small fraction of second. This timestamp’s data is recoded in a consistent
manner along with the actual data for easy comparison of two different records to track
progress over time.(12) (34)

2.7. How Can Blockchain Help?
Blockchain is a distributed, decentralized, immutable ledger used to store encrypted data
whereas Federated learning can enable analytics and decision making from the large groups
of data collected from diversified clients.

It goes without saying that each technology has its own individual degree of com-
plexity, but both Federated Learning and Blockchain are in situations where they can benefit
from each other, and help one another.

With both these technologies able to effect and enact upon data in different ways,
their coming together makes sense, and it can take the exploitation of data to new levels. At
the same time, the integration of Federated Learning into Blockchain, and vice versa, can
enhance blockchain’s underlying architecture and boost potential of Federated Learning.

32

Additionally, Blockchain can also make Federated learned models more coherent
and understandable, and we can trace and determine why decisions are made in each of
them. Blockchain and its ledger can record all data and variables that go through a decision
made under Federated Learning.

Putting the two technologies together has the potential to use data in ways never
before thought possible. Data is the key ingredient for the development and enhancement of
all Federated learning algorithms, and Blockchain secures this data, allows us to audit all
intermediary steps taken to draw conclusions from the data and allows participating clients
to monetize their produced data.

In our attempt, we mainly concentrate on rewarding participating client contributions as well
as enhancing privacy.
The main features of blockchain that can help in our attempt of developing an incentivization
system are listed below:

• Decentralization The Blockchain ledger exists on multiple computers/devices, called
nodes, that form a Blockchain network by working in a Peer to peer mechanism,
validating access to the information without a centralized authority (130)(132)(70)
. A distributed structure is followed for storing, updating, recording, transmission,
verification and maintenance in the Blockchain network (67)(131). This specific feature
of blockchain eliminates the need for powerful central authorities paving the way to
transfer of control to the individual user which will help in making the system fair and
considerably more secure. Most of the transactions are validated using a set of rules
and algorithms called consensus protocols(which is achieved when majority devices
agree about what should be recorded onto a Blockchain) to ensure that information
is consistent and incorruptible (130) (137).
• Transparency All transactions lmade on Blockchain are entirely with open availability

of details and history of any transaction to anyone. This unique feature of Blockchain
provides a great deal of accountability and integrity to the information, ensuring zero
deceitful alteration/addition/ deletion.
• Security The use of asymmetrical cryptography in blockchain which includes a set of

public keys visible to anyone and a set of private keys visible only to the owner, makes
this technology incredibly secure. The public and private keys ensure the authenticity,
integrity, confidentiality, and authorization of the transaction (35) (131) (130).
• Immutability This unique charactersitic of blockchain guarantees that any source

of data that has been added to a Blockchain (35), (130) will remain un-altered,
un-tampered (131), persistent (137) and unforgeable (70). Each data block within

33

a Blockchain is time stamped as well as encrypted with hash algorithm ensuring
immutability of each data entry. (67), (131). As none of these transactions can be
changed or deleted, this process is irreversible and immutable with any change leading
to generation of a different hash right away (100) (130).
• Anonymity Anonymity is one of the main characteristics of Blockchain that helps

ensure privacy. This particular feature is achieved by authenticating transactions
without revealing any personal information of parties involved in the transaction
ensuring protection from unauthorized intrusion or observation (9) (67) (137).
• Democratization Blockchain follows a P2P approach to ensure democracy in all

decisions made by pariticipating nodes, that are relatively independent with equal
rights, with the help of consensus algorithms (130).Consensus gives permission to
specific nodes to add or append new blocks and ensures proper synchronization of
their copies across all nodes in the blockchain (132), (130), (131).

2.8. EOS Blockchain
EOSIO is the open-source blockchain led by the company Block.one. The cryptocurreny EOS
runs on this blockchain. EOSIO is comparable to the larger currency and blockchain Ethereum
in that its blockchain enables other smart contracts and decentralized apps in addition to its
own currency. But unlike Ethereum, EOS transactions don’t require any fees(44) (5). EOSIO
has been designed to address scalability and latency issues in the pre-existing blockchains
like Ethereum. It is built like an operating system on which applications are built. The
software provides accounts, authentication, databases, asynchronous communication, and the
scheduling of applications across many of CPU cores or clusters.
A very detailed description of EOS can be found in the EOS white paper(44).

2.8.1. DPOS - Delegated Proof Of Stake

EOS doesn’t rely on a proof-of-work (PoW) mining system which is the main system used
in Bitcoin and Ethereum. Instead, EOS is based on delegated proof-of-stake (DPOS)
system which relies on block producers voted on by the network to handle the blockchain
operations on its behalf(5). Proof-of-Work mining system involves the miners solving
a numerical puzzle which is computationally intensive and in return, miners receive
a fixed number of bitcoins as reward. In such a system the entities with the highest
computation resources are expected to succeed in adding a new block. Additionally such
a system encourages users to form mining pools and thereby causing consolidation of
computation power within large pools which begins to create an environment of centralisation.

34

In a significant improvement over the proof-of-work system, the proof-of-stake system
eliminates the compute-intensive competition and instead selects validators of transactions in
a block from the nodes in a network using an algorithm based on the stake (an amount of
cryptocurrency proposed by the node) and coin-age of the nodes. The coin-age conveys how
long the node has stayed as a validator. Nodes with a higher coin-age and higher stake value
will be preferred. The stake along with the block reward is handed to the validator once the
new block with the verified transactions are approved by the other nodes in the network.
The current validator’s coin-age is set to 0. Even in the POS system, centralization can
happen over time if a group of candidate nodes decide to combine their wealth, enabling
them to raise higher stakes thereby improving their chances of being picked by the algorithm.

The Delegated POS improves the method of selection of validators by making it more
democratic and reducing the advantage of wealth. Users vote for a delegate to become block
producer by sending tokens to a pool assigned to the delegate. A group of block producers are
elected and they are scheduled to produce blocks in an order agreed upon by the producers.
Once a block is produced, the block reward from verifying the transactions are shared among
the voters who elected for the particular block producer based on each voter’s stake or token
value. This system produces blocks in a series of rounds with one block being produced every
0.5 seconds under normal conditions. A transaction can be considered confirmed with 99.9%
certainty after an average of 0.25 seconds from time of broadcast(44).

2.8.2. Benefits

While EOS centralizes some of the blockchain operations more than competitors, it also
enables better scale and higher transaction volumes than some others. Bitcoin network fees
and Ethereum gas can be expensive, and transaction times can slow down during periods of
network congestion. EOS aims to provide a faster transaction time with no built-in fees. As
EOS relies on fewer computers and hence consume less energy to keep the network running,
it is considered more environment friendly(5).
The main advantages of EOS blockchain are specified below:

• It can support thousands of transactions per second which is drastically higher than
what Bitcoin or Ethereum can support.
• Parallel processing is supported.
• The usage of DPOS makes it much more energy efficient than the other platforms.
• EOSIO has been designed for scalability and hence this can be achieved readily by

adding more computing power.
• There are no built-in fees.

35

• There are provisions for handling unpredictable or undesired behaviour, wherein the
corresponding smart contract or application can be frozen or modified based on a
vote by the block producers

36

Chapitre 3

Federated Causal Invariance Learning

This chapter partly consists of a reproduction of (37). This was accepted to ICLR 2021
Distributed and Private Machine Learning Workshop with reviewers rating this a very
promising and plausible research direction.
The idea was initially conceptualized by the author of this thesis as a work on enabling
learning representations using causal invariance in a distributed learning setting. The
author of this thesis is the primary author and is responsible for coming up with the
idea, formulating the problem statement, developing the architecture, experimentation and
analysis. Her advisor Prof. Irina Rish provided advising and helped refine the paper.

Federated Learning enables participating entities to learn a shared prediction model in
collaboration while keeping their training data locally. We know that Federated Learning
prevents data collection and aggregation and hence helps in reducting associated privacy
risks to a great extent. However, it still remains vulnerable to numerous attacks on security
wherein a few malicious participating entities work towards:

• degrading the generated aggregated model
• inserting backdoors
• inferring the data owned by participating entities

In this chapter we explore the ways in which Causal feature learning can enhance the out
of distribution robustness and various ways in which it can help reduce effects of backdoor
as well as inference attacks in federated learning setup. Also federated approach to causal
learning has added advantages to the field of causal learning. So this is a two way beneficial
approach.

3.1. Motivation

Fig. 3.1. Client data distribution in usual federated learning setting

It is next to impossible to observe client level data to be distributed in an independent and
identical manner in a federated learning setup. When training a federated learning system
with the i.i.d. assumption, an implicit assumption is made on the underlying data generating
process defining an envrionment for the client level data. Each data generating processes
leads to different client environments consisting of varying underlying distributions of features
and targets.
If the server side environment or client side test environment in which inference is to be done
differs from the environment in which the federated learning model was trained, we get poor
results owing to the fact that correlations between features and the target are different. To be
more specific, the federated model can only map from features to target in one environment
resulting in inferring incorrect values of the target for the features in a different server/client
environment.
Current associational learning techniques used in federated learning aims to exploit correlations
between features to gain predictive performance and encodes the invariants of the dataset
on which they’re trained. Birds and branches are highly correlated due to which if birds
dominantly appear on the dataset, we should expect this to be learned.
Our goal is to develop a federated model highly confident of predictions outside the client
level train datasets with enhanced robustness to distributional shifts away from the training
set with weightage to learning a representation common to all participating clients relying
upon features that affect the target in all participating client environments ignoring individual
client dataset-specific correlations. We propose approaches to develop a federated model that
generalizes beyond the limited set of client environments that the server can access during a
specific round for training with the capability to extrapolate to new and unseen environments
in server/client side.

38

3.2. How can a federated setting help causal invariance
learning?

In the invariance-based causal learning approaches to domain generalization, we always aim
to learn a classifier that only uses invariant features which are the features whose distribution
is constant across environments. In such cases the question on how many environments
are needed to identify the causal features remains the most complicated one to answer. In
(106), it has been shown that popular approaches like IRM(77) can require a large number of
environments to work which is linear in the number of spurious features, even on a simple
linear data model. In order to achieve invariance across all participating client environments,
IRM (10) (115) requires sufficient diversity across environments and assumes that for a set of
training environments, Etrain lie in linear general position of degree r, if and only if for some
r ∈ N : |Etrain| > d− r + d

r
. Also for all non-zero x ∈ Rd :

dim
(

span
({

EXc

[
XcXcT

]
x− EXc,ϵc [Xcϵc]

}
c∈Etrain

))
> d− r

The number of environments is unrealistic in practice for a centralized learning approach
employed for causal learning. This is exactly where federated learning setting fits in for causal
learning. Federated setting has exactly the required practical setting of non identical and
highly diverse client train environments to help achieve invariance.

3.3. How can causal invariance learning be of help in a
federated learning setting?

As compared to associational models that are being used in federated learning, models that
are learnt wrt causal structure always exhibit better generalization to Non IID data ie data
from different distributions.
One of the main attacks posed to federated learning is membership inference attacks which is
the case wherein only the model predictions could be observed by the attacker
(107), (87).

In (87), it has been proved that the distribution of the training data as well as the
generalizability of the model significantly contribute to the membership leakage. Particularly,
they show that overfitted models are more susceptible to membership inference attacks than
generalized models. Hence it could be inferred that such inference attacks could be nullified
to some extent with learning networks that exibit better generalization.
In (116), the generalization property of causal learning has been proved wherein they establish
a theoretical link between causality and privacy.It is shown that models learnt using causal
structure generalize better to unseen data, especially on data from different distributions

39

than the train distribution. It was also proved that causal models provide much bet-
ter differential privacy guarantees as compared to the current associational models that we use.

In (53), it has been proved that a causal view to domain adaptation with multiple
source domains generalizes better and noted that the background causal knowledge in the
data-generating process helps greatly in domain adaptation. In each situation, it is beneficial
to investigate what knowledge is appropriate to transfer and find the optimal target-domain
hypothesis. This gives an intuitive interpretation of the assumptions underlying certain
previous methods and motivates new ones. Under appropriate assumptions, the availability
of multiple source domains allows a natural way to reconstruct the conditional distribution
on the target domain; (53) proposed to model PX|Y (the process to generate effect X from
cause Y) on the target domain as a linear mixture of those on source domains, and estimate
all involved parameters by matching the target-domain feature distribution.

Instead of enhancing just privacy preservation, we focus on both privacy and the
robustness of federated learning so that the global model should behave correctly even when
there is a large portion of malicious participants.

3.4. Federated Learning On Non IID Data

Fig. 3.2. Existing approaches in FL to handle Non IID data (139).

In a federated learning setting, as the client local data distributions mostly differ from the
global data distribution, the averaged local model parameters can exhibit high divergence

40

from the global optima (136), particularly when the number of epochs for local updates is
large (127)(109)(31). Federated averaging (81) shows high degradation in performance on
Non-IID / heterogeneous setting (136) as client models might end up converging to different
models because of the heterogeneity in local data distributions leading to high divergence
between the calculated global model and the ideal/expected model.

As depicted in 3.2, although several approaches(139) have been experimented based on data,
algorithm and system to handle distributional shift in client/server side data, causal learning
techniques have not yet been included in such studies. With the evident benefits of causal
machine learning in out of distribution generalization, this thesis studies some approaches to
handle some of the existing issues in federated learning with causal learning.
The approaches we propose mainly focus on the below specified strategies:

3.4.1. Data Sharing Strategies

Data sharing techniques have been very well explored in the field of federated learning
for dealing with heterogeneous/ Non-IID datasets. This was introduced initially in (136)
where the concept of a globally shared dataset G was first used. This global dataset G,
which is stored on the server, has a uniform distribution and a random percentage of G is
transferred to all participating clients in each round of the training process. Each participating
client updates their respective local model by training on both local data pertaining to that
particular client as well as the shared global data G. This widely used approach contributed
to enhancing the test accuracy on CIFAR10 dataset by almost 30% with a small portion of
globally shared data.
Many similar approaches have been proposed in literature to enhance the model performance
on Non-IID data in a federated setting, some specifically propose sharing local data with
server (133) (122).

3.4.2. Knowledge Distillation

The idea of information transfer from large to small models(16) forms the base of knowledge
distillation (48)(43)(16). This concept has been widely in use in a federated learning setting
to transfer knowledge from server to client, client to client/server or clients to a particular
client to improve the model performance on unknown heterogeneous data. Federated Transfer
learning(69) (126) plays the most significant role in enabling knowledge distiallation in a
federated setting.
(68) proposed an ensemble distillation strategy that enhances robust fusion of multiple client
models which proved to have evident benefits in alleviating risk of leakage. (23) developed a
collaborative robust learning method for uploading learned features from clients instead of

41

local models to implement client level personalization. To further enhance personalization and
generalization to unseen mobile devices, (126) developed a next-word prediction model with
different hyperparameters. Many of these knowledge transfer techniques rely on homomorphic
encryption (41) and secret sharing (24) protocols to enhance privacy. Another approach
to decentralize federated learning was proposed by (65) which involved mutual knowledge
transfer among clients in a peer-to-peer manner without any involvement of a central server.
(65) stated that the concept of mutual knowledge transfer is very important in federated
learning domain as it helps mitigate the influence of label-shift (135).

3.4.3. Domain Adaptation

Domain adaptation is another significant aspect of knowledge distillation where the emphasis
is on eliminating the differences between the data shards among the clients. A domain
adaptation algorithm called federated adversarial domain adaptation presented in (94) aims
to solve the domain shift problem using adversarial techniques. Another instance is the FeMD
algorithm proposed in (66) which enables clients to train their models on local data. This
is acheived by transfering knowledge from a public dataset without privacy leakage risk by
training the clients’ models with this public data and then another round of training is done
using the private local dataset. This tackles the privacy leakage risk.

3.5. Proposed Causal Federated Learning Approaches

Fig. 3.3. Existing approaches in FL to handle Non IID data with our proposed approach
highlighted in green.

42

With plethora of work on feature transfer among clients and server in a federated learning
setting to enhance robustness, applying causal risk minimization strategies to these techniques
can further help enhance the generalization of the final learned model to unseen test clients.
Although local data sharing methods outperform global data sharing strategies by a big
margin when it comes to Non-IID setting, this has very evident privacy issues attached to it.
While global shared dataset seems to be a convincing strategy to deal with data heterogenity
keeping the client data private, it is hard to attain a uniformly distributed global dataset,
provided the fact that the server can never be well informed about the data distributions
present in the participating client datasets. However, with our proposed approach of learning
causally invariant features common to both the client and global shared data, this issue can
be solved.

3.5.1. Approach 1 - CausalFed

:
Keeping the data private, coming up with a way to collaboratively learn causal features
common to all the participants was a bit challenging. In our federated causal learning
framework, the inital layer (local) is the one where in each of the participating client entities
do the local training for extracting features from their respective input data and outputs the
respective features in the form of numerical vectors. Consider client data DC = (xC

i ,yC
i)NC

i=1

where xC
i is ith input and yC

i is ith label for client C. The hidden representation of each
participating client is produced by neural network as

hC
i = ϕC(xC

i)

where hC ∈ RNC×d , d is the dimension of hidden representation layer. The federation
layer is for the participating clients to exchange intermediate training components and
train the federated model in collaboration by minimizing the empirical average loss as
well as regularizing the model by the gradient norm of the loss for both the participating
entities/environments as (77):

S,NC∑
C,i

Ld(w ◦ hi,yi) + λ
S∑
C

∥∥∥∥∇w|w=1.0

NC∑
i

Ld(w ◦ hi,yi)
∥∥∥∥

2

where S equals set of clients/ source domains, NC equals number of samples per client C, Ld

equals classification loss, and h, y to represent the hidden representation and its corresponding
true class label and λ is hyperparameter.The error is the usual error we would use for any
machine learning problem calculated on each environment.

43

Fig. 3.4. Causal Federated Learning

It how well the model is performing in each environment whereas the penalty term
measures how much the performance could be improved in each client environment with
one gradient step as well as punishes high gradients (for example a case in which a
large improvement in one particular participating client environment would be possible
with one more epoch of learning) which in turn accounts for the model having a low
gradient in each participating client environment ensuring that the learning is balanced
between all the client environments. This is perspective on the domain-invariance of
representation for domain generalization where we do not seek to match the represen-
tation distribution of all client domains, but enforce the optimal classifier on top of
the representation space to be the same across all participating client domains. The
intuition is that the ideal representation for prediction is the cause of y, and the causal
mechanism should not be affected by other factors, thus is domain-invariant. With Invariant
Risk Minimization (IRM) (77) we attempt to learn invariant predictors in a federated
learning setup that can attain an optimal empirical risk on all the participating client domains.

44

Algorithm 1 CausalFed
ServerCausalUpdate:

Initialize Ws
0

for each server epoch, t = 1,2,..k do
Select random set of S clients
Share initial model with the selected clients
for each client k ∈ S do

(ϕ(xk
t), Yk)← ClientRepresentation(k,Wk

t)
Evaluate loss Lk

end for
Ls = ∑S

k Lk + λ
∑S

k

∥∥∥∥∇Lk

∥∥∥∥2

Ws
t+1 ←Ws

t − η∇Ls

end for
Wk

t ← ClientUpdate(∇Ls)
ClientRepresentation(Wk

t):
if k is first client to start training then

Wk
t ← initial weights from server

else
Wk

t ←Wk−1
t−1 from the previous ClientUpdate(∇Ls)

end if
for each local client epoch, i=1,2,..k do

Calculate hidden representation ϕ(xk
t)

end for
return ϕ(xk

t) and Yk to server
ClientUpdate:

for each client k ∈ S do
Wk

t+1 ←Wk
t − η∇Ls

end for
return Wk

t+1 to server

45

3.5.2. Approach 2 - CausalFedGSD

Fig. 3.5. Global Data sharing strategy

With our previous approach, there are many privacy concerns regarding the client data
which are still not addressed due to which depending on a global data set(with different
enviroments) to enhance causal feature learning within a federated learning setup seems
plausible. As we have no control on the clients’ data, we can distribute a small subset of
global data containing a distribution over all the classes/enviroments from the cloud to the
clients during the initialization stage of federated learning.
The local model of each client is learned by minimizing the empirical average loss as well
as regularizing the model by the gradient norm of the loss for both the shared data from
server (Global Environment) and private data from each client (Local Environment). This
enhances the learning of causal/invariant features common to both the client and global data
environments without losing the privacy of client side data.
In (134), it has been shown that globally shared data can reduce EMD (earth mover’s
distance) between the data distribution on clients and the population distribution which
can help in improved test accuracy. As this globally shared data is a separate dataset from
that of the client, this approach is not privacy sensitive with respect to clients. But it poses
privacy issues to the global server. One possible approach to tackle this issue would be to

46

anonymize data or de-identify data. This involves removal of sensitive/personally idenitifiable
information pertaining to the global data subject so that sample anonymity is preserved (90).

Algorithm 2 CausalFedGSD
ServerUpdate:

G ← 5% distribution over all environments present in server
Initialize W0
Initialize random portion of G as G0
for each server epoch, t = 1,2,..k do

Select random set of S clients
Share G0 and initial model with the selected clients
for each client k ∈ S do

Wk
t+1 = ClientUpdate(k,Wt)

end for
Wt+1 = ∑K

k=1
nk

n
Wk

t+1
end for

ClientUpdate(W):
Etr ∈ [Client Env] ⋃ [Global Env]
for each local client epoch, t=1,2,..k do

LIRM(Φ, Wk
t) = ∑

e∈Etr Re(W ◦ Φ) + λ · D(W, Φ, e)
Wk

t = Wk
t − η∇LIRM(Wk

t)
end for
return W to server

3.6. Implementation Details
3.6.1. Dataset Details

Fig. 3.6. ColoredMNIST

47

Colored MNIST: Unlike the MNIST dataset which consists of digits 0-9 in grayscale, the
colored MNIST dataset consists of input images with digits 0-4 colored red and labelled 0
while digits 5-9 are colored green with label with shape of the digit as the causal feature. In our
causal federated learning setup, we split the dataset to two environments, each corresponding
to a participant/client. We sample 2000 data points per client/server domain. Within the
client environments, 80 - 90 % of inputs have their color correlated to the digit whereas
within the central server test enviroment has just 10% color-digit correlation which helps in
testing the robustness despite the spurious correlation within the inputs.
Rotated MNIST: This dataset consist of original MNIST split to multiple client/parti-
cipating environments by rotating each digit[0-9] with angles 0◦, 15◦, 30◦, 45◦, and 60◦. We
sample 1000 data points per client/server environment. The server side test domain consist
of digits with angles 75◦ and 90◦

Rotated Fashion MNIST: Fashion-MNIST is a dataset of Zalando’s article images —
consisting of a training set of 60,000 examples and a test set of 10,000 examples. Here
again we split the dataset to multiple client/participating environments by rotating each
digit[0-9] with angles 0◦, 15◦, 30◦, 45◦, and 60◦. We sample 10000 data points per client/server
environment. The server side test domain consist of digits with angles 75◦ and 90◦.

3.6.2. Attack Implementation

Backdoor Attack Setting
For an initial basic analysis, we tried two backdoor attacks:

• A single-pixel attack, where in the attacker changes the top-left pixel color of all the
inputs, and mislabels them.
• A semantic backdoor where in the attacker selects certain features as the backdoors

and misclassifies them. For example, the attacker classifies digits rotated 15◦ with
label 7 as 0.

In both the cases, CausalFed exhibited better resilience as compared to FedAvg.

Membership Inference Attack Setting We use pytorch code provided by M. Nasr, R.
Shokri(102) For this particular attack, we consider a scenario wherein stochastic gradient
descent is used to train the target model and we do one global aggregation per training epoch
which implies that all the participating clients will be reporting their local models to the
central server after each step of local gradient descent followed by the server aggregating the
models by taking a weighted average which(resulting model) in turn is sent to the participating
clients. This setup is considered to give a target model which can be considered equivalent to
the model trained by gradient descent on the union of all the participating client train data.

48

The main idea is that each training data point affects the gradients of the loss function
such that the adversary can use Stochastic Gradient Descent algorithm (SGD) to extract
information from other clients’ data (91). The adversary can perform gradient ascent on
a target data point before local parameter update. SGD reduces the gradient,in case the
considered data point is part of a client’s set resulting in a succesful membership inference.
Attack can come from both the client side and the server side. An adversarial client can
observe the aggregated model updates and extract information about the union of the training
dataset of all other participants by injecting adversarial model updates. For a server side
attack, it can control the view of each target participant on the aggregated model updates
and extract information from its dataset(91).
In our implementation, we sample 1,000 datapoints for Rotated-MNIST, 500 datapoints for
Colored-MNIST and 1,000 datapoints for Fashion-MNIST from the original train and test
dataset to create the attack-train and attack-test dataset. We use pytorch code provided by
(102)(91)
Property Inference Attack Setting In this setting, the adversary aims to recognize
patterns within a model to reveal some property which the participant client never intended
to disclose. Melis et al(49), has listed different approaches on how to infer properties of
participant client train data whose features have no correlation with the ones that characterize
the classes of the model.
The main idea behind this attack is that, at each round, each client’s contribution is based
on a batch of their local training data, so the attacker can infer properties that characterize
the target dataset for which the adversary needs sample train data, which is labeled with
the attribute to be infered.(20) It is aimed at infering properties of client data that are
uncorrelated with the features that characterize the classes of the model. In our experiments
we decided on client domain as the attribute which is to be inferred by the adversary. Another
such attribute that is uncorrelated with the final prediction is the color of the input.
We observe that federated causal models provide better pivacy guarantees(116) against this
attack which could be owed to the fact that inversion based on learning correlations between
attributes and final prediction, e.g., using color to predict the digit, can be eliminated by
causal models, since a non-causal feature will not be included in the our final causal federated
model.

3.7. Results
In our experiments, we compare the performance of federated averaging (Fed-Avg) with the
following approaches:
Fed-ERM Within the CausalFed setup, this approach minimizes the empirical average of
loss over training data points and treats the data from different domains as i.i.d. ERM loss is

49

given by:
S,NC∑

C,i

Ls(w ◦ hi,yi)

where S equals set of clients/ source domains, NC equals number of samples per client C, Ls

equals classification loss.
CausalFed-RM In this approach, we minimize the random match(RMatch) causal loss (76)
within the CausalFed setup. RMatch loss is given by:

S,NC∑
C,i

Ls(w ◦ hi,yi) + λ ∗
∑

Ω(j,k)=1|j∼NC ,k∼NC′

Dist(hj, hk)

where Ω represents the match function used to randomly pair the data points across the
different client domains.
CausalFed-IRM In this approach, we minimize the IRM loss (77) within the CausalFed
setup.

3.7.1. Evaluation Setup

In our setting, client nodes and server nodes are run on separate computing nodes of
compute canada cluster. All clients are bound to update the model in each epoch of training.
Approximately 12 GB RAM was allocated per slurm job. Python 3.7 is the language used for
all the code implementation. Pytorch 1.10 is the machine learning library employed for all
the prototypes. The network architecture and learning rates are selected based on model
performance during intial rounds of training.

Tableau 3.1. Network Architecture

Architecture No of Layers Kernel spec Learning Rate
LeNet 5 (5x5), (2x2) 0.003
AlexNet 8 (11x11), (5x5), (3x3) 0.0001
ResNet18 18 (7x7), (3x3) 0.0004

Federated Averaging denoted as FedAvg is considered the benchmark in our comparison study.
The results shown are observed on 150 global epochs on a set of 10 clients with batch size set
to 512. To test the variation of accuracy over each global epoch, we computed CV which
is the coefficient of variation to measure the dispersion. It is given by the ratio of standard
deviation to mean. Based on our analysis, CV coefficient values range from 0.02 - 3.16 for
train results and 0.3 - 4.8 on test results after epoch 5.

3.7.2. Approach 1 - CausalFed

We perform our evaluation to analyze the relation between learning causal features and OOD
generalization accuracy gap within client-sever in a federated learning setting. We observed

50

that when clients have out of distribution data in a federated setting, FedAvg as well as
FedERM does not fare well in the test data set though they give highly accurate train results
whereas CausalFed-RM and CausalFed-IRM perfoms much better on test data.

Tableau 3.2. Comparison of methods in terms of training accuracy (mean ± std deviation)

Dataset Arch Fed-Avg Fed-ERM CausalFed-RM CausalFed-IRM
Colored MNIST ResNet18 80.3±.18 82.97 ±.2 60.42 ±2.9 59.33 ±3.2
Rotated MNIST ResNet18 85.2±.14 86.5 ±.12 79.8 ±1.7 80.2±2.1
Rotated FMNIST LeNet 81.4±.12 82.3 ±.16 72.1 ±1.4 71.5 ±2.6

Tableau 3.3. Comparison of methods in terms of testing accuracy (mean ± std deviation)

Dataset Arch Fed-Avg Fed-ERM CausalFed-RM CausalFed-IRM
Colored MNIST ResNet18 11±.17 10.2±.8 65.62 ±3.1 60.3 ±4.8
Rotated MNIST ResNet18 82.7±.5 82.9±.7 90.2±2.9 89.1±4.1
Rotated FMNIST LeNet 69±.2 71.6±.16 74.6±3.9 73.9±4.6

We perform our evaluation to compare privacy attack accuracy of FedAvg with CausalFed
training methods on Colored-MNIST, Rotated-MNIST and Fashion-MNIST datasets. The
privacy leakage on each of the attacks is measured by testing the accuracy of attack model.

Tableau 3.4. Leakage on inference attack

Dataset Fed-Avg Fed-ERM CausalFed-RM CausalFed-IRM
Colored MNIST 79.21 % 79.45 % 58.57 % 56.9 %
Rotated MNIST 84.4 % 85.24 % 68.3 % 64.4 %
Rotated FMNIST 76.61 % 78.23 % 57.55 % 55.7 %

3.7.3. Approach 2 - CausalFedGSD

Tableau 3.5. Comparison of methods in terms of training accuracy (mean ± std deviation)

Dataset Arch Fed-Avg Fed-ERM CausalFedGSD-RM CausalFedGSD-IRM
CMNIST ResNet18 80.3±.15 82.97±.4 57.42±2.1 55.32±2.9
RMNIST ResNet18 85.2±.12 86.5±.21 73.7±2.2 77.2±2.9
RFMNIST LeNet 81.4±..3 82.3±.21 69.2±3.5 68.6 ±4.2

Tableau 3.6. Comparison of methods in terms of testing accuracy (mean ± std deviation)

Dataset Arch Fed-Avg Fed-ERM CausalFedGSD-RM CausalFedGSD-IRM
CMNIST ResNet18 11±.2 10.2±.4 55.62±2.5 52.3±4.6
RMNIST ResNet18 82.7±.19 82.9±.15 85.2±2.8 83.1±4.5
RFMNIST LeNet 69±.2 71.6±.18 71.9±3.7 70.2±4.8

51

We observed that when clients have out of distribution data in a federated setup, FedAvg as
well as FedERM does not fare well in the server side test data set though they give highly
accurate results on train data(iid) whereas CausalFed-RM and CausalFed-IRM perfoms
much better on test data(non iid). With respect to privacy, we observe that in our setup
with an out of distribution(OOD) test set, the membership inference attack accuracy of a
federated causal client adversary model is much lesser as compared to a federated setup with
associational client models. It was also observed that federated causal models provide better
pivacy guarantees against property inference attacks which could be owed to the fact that
inversion based on learning correlations between attributes and final prediction, e.g., using
color to predict the digit, can be eliminated by causal models, since a non-causal feature will
not be included in our final causal federated model.

3.8. Some Possible Steps To Further Enhance Privacy
Homomorphic Encryption: A cryptographic technique that preserves the ability
to perform mathematical operations on data as if it was unencrypted i.e., plain text.
For example, performing neural network computations on encrypted data without the
need of first decrypting it. Homomorphic encryption is studied for private federated
logistic regression(88) Moving forward, these techniques can be applied to CausalFed approach.

Secure Multiparty Computation: The technique is based on splitting data among
collaborating entities to perform joint computation but prevents any collaborating entity
from gaining knowledge of the data. For example, identifying the common patients among
two hospitals without disclosing the respective hospital patient’s list. So many examples
worth trying in literature (25)

Differential Privacy The alteration of a dataset to obfuscate individual data points while
retaining the ability of interaction with a data within a certain scope (privacy budget)
and of statistical analysis. The approach can also be applied to algorithms. For example,
randomization of data to omit relationships between individuals and respective data entries.
It provides privacy preservation against membership-inference attack in the model inference
stage (103)

Data Anonymization Eventhough we proposed anonymization as a solution to privacy
leakage in CausalFedGSD, data anonymisation has to balance well between privacy-guarantee
and utility as removal of sensitive attributes might result in degradation of the utility of the
dataset. Also it is possible for an adversary to combine the global shared data with other
anonymous datasets in an attempt to compare and re-identify the original data subject. This

52

kind of an attack is termed linkage attack (39) and it is one of the most prominent attacks
for de-anonymization. To prevent the occurence of linkage attack in CausalFedGSD setting,
we will look into exisitng techniques proposed to handle this attack such as k-anonymity (62),
l-diversity (73) and t-closeness - a technique built on both k-anonymity and l-diversity that
preserves the distribution of sensitive attributes in a dataset so that it reduces the risk of
re-identifying a data subject in a same quasi-identifier group(64).

3.9. Challenges Posed To Proposed Approaches
Research work on incorporating causal learning techniques into federated learning framework
is crucial. However, we still have challenges to make this approach work in practical scenarios.
Some of the main challenges posed are:

• We need to develop better schemes to learn the causal knowledge in a way that
it can well capture the invariant features common to all participating clients.In
contrast to the current sequential and centralized causal learning techniques where
the causal/invariant features is mostly represented in one universal pre-trained model,
we have it distributed among local models. In our case, each participating client has
significant control over building its local model. We should strive to acquire a balance
between autonomy and generalization performance of the causal federated learning
models.
• We need to come up with distributed learning approaches that would ensure preserving

the privacy of the shared causal representation of all participating clients. Under the
federated learning framework, transfer knowledge is not only learned in a distributed
manner, but also is typically not allowed to be exposed to any participant. Thus,
we need to figure out precisely what each participant contributes to the shared
representation in the federation and consider how to preserve the privacy of the shared
representation.
• Downloading parts of global dataset to each client for model training in CausalFed-

GSD setting can be considered as a violation to the requirement of privacy preserving
learning in Federated setting. Moving forward, we will study possible approaches to
tackle this issue.

3.10. Conclusion
In this work, we show that CausalFed is more accurate than non-privacy-preserving approaches
as well as superior to non-federated associational learning approaches in comparison to existing
privacy enhancing approaches in federated setup which suffer from pretty high accuracy loss.
We were able to prove that causal feature learning can enhance out of distribution robustness
in federated learning. Moving forward, we need to analyse the performance of this approach

53

in real world datsets as well as compare various other causal learning approaches which
can further enhance the out of distribution robustess and improve leakage protection in our
current setup. We believe that CausalFed is a general approach that offers several extensions
for future work.

54

Chapitre 4

Federated Incentivization With Blockchain

This chapter partly consists of a reproduction of (78) 978-1-7281-2542-8/19/$31.00 @2019
IEEE DOI 10.1109/ CyberC. 2019.00018. This was accepted to International Conference on
Distributed Computing and Knowledge Discovery with reviewers rating this an innovative
approach to incentivize participants in a federated learning setting.
The idea was initially conceptualized by the author of this thesis. She is the joint first author
of this paper with Ismael Martinez. She came up with the idea, wrote the entire python
section of the code for both blockchain and federated learning training phase and formulated
the class validation error metric. Both the authors contributed equally to writing. This
chapter is included in this thesis as an introduction to the next chapter which is aimed at
incentivizing participants in the causalfed (37) setting.

4.1. Background
In today’s data market, users generate data in various forms including social media behaviour,
purchasing patterns, and health care records, which is then collected by firms and used
either for sale or for in-house data analytics and machine learning . As a result, each of us is
essentially giving away a personal resource for no reward. In addition, these organizations
have full access to our data, which can be a major invasion of privacy depending on
the type of data collected. One proposed method of mitigating this issue of ownership
and privacy when the purpose of the data is proprietary machine learning is Federated
Learning (57) (83), where an owner sends the training model to users who train on their
local data and send back only the updated weights of the model. By doing this, a user
never unveils the data to the owner, and keeps ownership of said data. A secondary result
of this type of training is that users with sensitive data such as health care data are more
likely to partake in the training, meaning the owner also receives more data to use for training.

There still remains the concern of handing out our data, a useful resource to orga-
nizational training models, for free. We propose the use of blockchain to facilitate the
uploading and tracking of updates from users, as well as rewarding users for the data they
used in computation. An additional benefit to using a blockchain is that it renders the
updates immutable and thus secure. The combination of data privacy and security coupled
with rewards for uploads renders this system desirable to a larger scope of users, some
with sensitive data, allowing organizers to collect a larger pool of data from a wider set of users.

BlockFL (56) uses blockchain to reward users for their local updates proportional to
how many local data points are used as shown in Figure 4.1. The payment to devices is left
to the miner to pay "out-of-pocket", which is not a lasting solution if miners pay devices
more than they are rewarded for blocks.This device reward benefits an honest node; however,
this value may be inflated by a malicious node seeking higer reward.

Fig. 4.1. As described in the proposal for BlockFL (56), the architecture of BlockFL
compared to "Vanilla" Federated Learning(83) @2019 IEEE.
Kurtulmus and Daniel (59) proposed a blockchain implementation of machine learning to
reward the user who could produce a valuable machine learning model for a publicly available
dataset and evaluation function published by an organizer. One large problem that arises
with this system is that all model evaluations are done on the blockchain which yields large
gas costs; many users must each pay gas for their models to be evaluated, however only a
small selected group is paid out.

DeepChain looks into using blockchain for Distributed Deep Learning applications (128)
as a means to keep both data and model private and secure. DeepChain proposes an

56

incentive-based blockchain mechanism where both parties – those who upload data to
the model, and workers – the ones who process the data and update the model, get paid
an amount πP and πW based on their contribution ωP and ωW for parties and worker
respectively. In addition, DeepChain proposes the use of a penalty mechanism whereby
rewards to dishonest nodes are frozen and re-allocated. Although these two mechanisms
works for a DML system where it is public how many data points each party is uploading,
this cannot be applied to Federated Learning since only the update values δ are uploaded.
Regarding a penalty mechanism, there is no need for one if Smart Contracts (19) are used.
With a Smart Contract validating and administering the payment, a faulty transaction
would fail and the payment would not be administered. The consensus protocol used
by DeepChain is blockwise-BA, which elects a randomly chosen using cryptographic
sortition (86) and a seed that changes with every block. Once a worker is selected, the
worker creates a block, which is verified by a selected committee before being added to the
blockchain. This method relies on choosing an honest committee, and for the random algo-
rithm to be negligibly close to perfectly random, both issues which may not be true in practice.

One blockchain implementation of ML sought reward the user who could produce
the best ML model for a publicly available dataset and evaluation function published
by an organiser (59) in an architecture and process akin akin to Kaggle Data Science
Competitions (1). In this workflow, users would produce and train an ML model with the
published dataset that would maximize the score given when the model is applied to the
evaluation function; either the first model, the best model, or both would be rewarded by
means of smart contracts. One issue addressed is that of a biased test/train split by the
organizer that could cause good models to not be rewarded due to poor performance on
the chosen split; the proposed solution was to randomize the split in a fashion out of the
organizer’s control, however there is nothing stopping the organizer for adding new data to
the system. One large problem that arises with this system is that all model evaluations are
done on the blockchain. Although the issue of too many models being evaluated at once is
addressed, the larger issue of the large gas costs associated with the evaluation is still present;
many users must each pay gas for their models to be evaluated, however only a selected
group is paid out. One consideration would be to have this computation and evaluation done
off chain, with only the results returned and recorded in the blockchain.

Another study (84) looks into Distributed Deep Learning in order to take advan-
tage of increased processing power and big data; it is proposed to use blockchain to
create an incentive-compatible data market. Similarly, (29) attempts to make a DML
system with user rewards based on Ethereum Smart Contracts (129). It also briefly
mentions a system of data owners granting access to others to view its data (29).When

57

we are working with blockchains that are not fully public, it is proposed to be using a
form of Access Control (74) (75) (123). One proposed method is to use Attribute-Based
Access Control whenever working with blockchains (74)(33) (49). Another proposed form
of Access Control in blockchain is through the use of Smart Contracts (74) (75) (123) (19) (21).

Computation of model updates is proposed in Federated Learning (57) (83) to ei-
ther be distributed over a higher number of smartphones, or to run complex computations in
idle states. Both of these methods are based on the assumption that a smartphone has the
processing capabilities for these computations in their idle states.

A number of sites have appeared with services around a decentralized data market-
place. The Ocean Protocol (2) is a blockchain service that describes itself as "a tokenized
service layer that exposes data, storage, compute and algorithms for consumption". It is a
data marketplace where users can sell or buy data in a secure, safe and transparent fashion,
and was created with data sharing for AI in mind. Per the White Paper (93), this service
leverages the Ethereum interface for smart contracts and token exchanges. Another such
marketplace is Wibson (3) where in addition to transparency and anonimity, ensures users
maintain control of the use of their data after it is sold. The price of data is dictated by the
market, and Wibson utility tokens are rewarded to facilitate the use of Wibson on top of
the Ether that’s rewarded for the data; the system is built on Ethereum and the tokens are
stated as ERC20 tokens (79). The Datum Network (4) uses DAT tokens to be used within
the blockchain network with these tokens available for purchase or sale from Ether (104);
there is however the problem of value, since the price at which a user is selling their data is
unclear. The Datum Network does propose a functionally rich system where data is able to
be queried and searched (104).

One key factor that isn’t mentioned in many studies is the format of distributed
data (128) (84) (29) (57). (83) (56); we may not be able to assume homogeneneous data
with heterogeneous devices. In addition, a standard for the format of δ uploaded updates is
not well defined from the device to the miner (57) (83) (56).
The limitations of the related work can be summarized as inaccuracy or inefficiency in
rewarding user contributions, and lack of scalability of data on the blockchain.

4.2. Record And Reward Federated Learning Contribu-
tions With Blockchain

The main contributions of this chapter can be summarized as follows:

58

Fig. 4.2. The workflow of calculating and uploading update values δ for validation,as
explained in Section 4.3.3 @2019 IEEE.

• Merging Federated Learning with blockchain to ensure both data privacy (50) (82)
and security, and thus motivate more user contributions.
• Using EOS Blockchain and IPFS to record uploaded updates in a sclalable manner

and reward users based on training data cost.
• Proposal of a Class-Sampled Validation Error Scheme (CSVES) for validating and

rewarding only valuable uploaded updates via Smart Contracts.
• Simple implementation with Python and Hyperledger Fabric to verify the feasibility

of the system, with plans to implement a PoC in EOS at a later date.

4.3. Proposed Design And Architecture
Taking related work into consideration, we choose to make adjustments to improve privacy,
access control and storage; the architecture and workflow of the proposed system are shown
in Fig. 5.3 and 5.4.
The following assumptions are made regarding the devices and data in the system.

• A smartphone device has enough storage to store the kth model.
• A smartphone device does not necessarily have enough extra storage to store the

entire blockchain.
• The training data for the model is homogeneous across different devices.

59

Fig. 4.3. The continued workflow of validating the δ via Smart Contracts and paying
successful candidates, as explained is Section 4.3.3 @2019 IEEE.

Tableau 4.1. Parameters required in a transaction upload from device Di @2019 IEEE.
Parameter Purpose Size Section
TxID Unique identifier

of the transaction
256 bits

ai Address of device
Di

160 bits

H(δi) SHA256 Hash of
binary represen-
tation of training
model weight
updates

~256 bits Section 4.3.3

ni The data cost –
number of data
points used to
calculate the
model update

16 bits Section 4.3.3

vi The current ver-
sion k of Tk

16 bits Section 4.3.4

v, r, s Signature of hash
of the transaction

65 bits

4.3.1. System And Blockchain Architecture

For our system design, we are using EOS Blockchain, a public blockchain with no transaction
fees which further incentivizes its use by users (44) (5). EOS uses a set of 21 producers
to create blocks simultaneously, creating an extremely scalable blockchain able to process
millions of transactions per second. In our system, the model owner O has full liability of
payment for the device and producer work, as opposed to devices D needing to pay for their
transactions (60), or miners to reward devices out-of-pocket (46).

60

Our base implementation of Federated Learning is built with smartphone devices in mind
who act as the users performing the training and sending in δ values. We have a model owner
O who defines the initial model and distributes the reward.
A transaction in our system carries the information needed for the Federated Learning process.
For a user Di and a global model Tk, we define these transaction parameters below.
The gradient upload δi is the binary representation of the weight updates to the model. For a
received model Tk, T i

k is the result of training the model on local data di and our gradient is
the difference δi = T i

k − Tk. Regardless of what data we’re using, the value of δi will be quite
large. For example, the single channel MNIST image data (30) is 1 MB per update δi; this
value could decrease for non-image data, or increase for larger image data. The way we record
these values within the blockchain is to store signed transactions in a table off-chain within
the IPFS file system (11), and record only the hash of the gradient value H(δi) on-chain.
This process is shown in Fig. 4.4. This means that when the Smart Contract validates the
format of δ, it must use an oracle to access the value in the table off-chain. When the owner
updates the model, it must grab the gradients from this same off-chain table by querying
IPFS for the document with the same on-chain gradient hash.
The data cost |di| = ni of Di is the number of datapoints used for training the model Tk to
obtain δi. The amount rewarded to Di for its gradient δi is proportional to the data cost ni.
The version of the model being used is the integer value k of the current Global Model Tk.
If the uploaded version vi does not match the current version k, either the update value δi

needs to be adjusted, or the value δi should be dropped.
The address ai is the network address of the device Di where payment is to be sent.
In addition to these values, each transaction has a transaction id to uniquely identify a
transaction, and a signature created by the user’s private and public key pair and denoted by
v, r, s values. A summary of the transaction values is available in Table 4.1.

4.3.2. Smart Contracts

We propose the creation and usage of three Smart Contracts in our system.
UploadGradient – This Smart Contract verifies that every parameter as described in Table 4.1
is present in the transaction. It compares the hash of the transaction update value δi with
the same value on the off-chain IPFS record as per Fig. 4.4, ensures that the hashes are equal,
that the true value of δi follows the required size and format requirements for Tk as set by O,
and verifies the submitted version vi is the same value as the last version value vk sent out
by O (Section 4.3.1). Once a transaction is validated as being a proper update transaction,
the Smart Contract returns true.
Payment – Once a transaction from device Di ∈ D is validated, this Smart Contract is
triggered to send payment proportional to the data cost ni to address ai. Since we are using

61

Fig. 4.4. A device uploads the gradient value to an off-chain table within the IPFS file
system where it is later accessed by the Smart Contract for validation, and the owner for
gradient aggregation. Only the hash of the gradient remains on-chain to any Producer @2019
IEEE.

EOS, this payment would take the form of a EOS tokens of which O has given prior approval
to the Smart Contract to transfer to devices.
FederatedLearning – This is the only Smart Contract a user may call; it verifies a user’s
role per a set of restrictions defined in Section 5.2.3 and forwards its transaction to the
UploadGradient Smart Contract if the validation succeeds. The parameters required by
this function for a device Di are H(δi), ni, vi and ai, and is forwarded to later calls of
UploadGradient() and Payment().

4.3.3. System Design And Workflow

The kth model is calculated from applying all of the model updates currently in the blockchain
up to the kth block. We define D to be the set of all devices and P to be the set of all
producers. As in Fig. 5.3, step (1), each device Di ∈ D has a copy of Tk given to it by O,
along with the current version vk; this is defined as round k. We walk-through the process

62

of training the next model, validating the transactions and paying the users, referring to
Fig. 5.3 and 5.4.
For each device Di ∈ D upon receiving the kth model Tk, (2) Di trains the model Tk off-chain
using it’s local data di of size ni to get an updated model T i

k. The gradient is then calculated
as δi = T i

k − Tk. (3) The values of δi, the size of di = ni, the device address ai and the
version vk are set as parameters to the Smart Contract FederatedLearning() together with
a TxID and a digital signature. (4) The device Di sends this transaction on-chain to any
producer Pj to which Di is connected. (5) Each producer Pj ∈ P adds the transactions
received by the devices to their transaction queue (i.e., pending transactions) to be verified
for Block k. (6) Each producer executes each transaction in its queue, which involves a call
to FederatedLearning() to validate the user role, then a call to UploadGradient() where
details about each transaction are validated, such as the correct format for δi, the correct
version vi, and that the address ai exists. (7a) Once validated, this transaction is added
to the next block; (7b) the device Di ∈ D who submitted a valid transaction is rewarded
through a call to Payment() an amount proportional to the data cost ni via the submitted
address ai.

4.3.4. Global Model

The initial model T0 has all weights initialized to normally distributed values with mean 0
and variance 1; therefore, we define each weight w ∼ N (0,1).
To calculate T1, the owner O applies the aggregate of all δi updates from the blockchain
where version = 1; we denote the number of such updates by b1. We define wl as being the
lth weight in T0, and δi,l as the lth weight of the ith gradient value; the training model will
apply the update

wl ← wl + η · δ̄l = wl + η · 1
b1

∑
i=1,...,b1

δi,l

to each wl ∈ T0, where η is the learning rate (119).
Similarly, to calculate Tk+1, the owner O applies the update

wl ← wl + η · δ̄l = wl + η · 1
bk+1

∑
i=1,...,bk+1

δi,l

to each wl ∈ Tk . If the most recent version for which the uploads have been aggregated is
version K, then TK is known as the Global Model.

4.3.5. Data Validity And Quality

The validation check we have defined earlier requires producers to trust that the data cost
value a device claims to have used is correct. We propose a new concept of tailoring a

63

validation set to a device’s data breakdown which we will call a Class-Sampled Validation
Error Scheme (CSVES).
This proposed method, shown in Fig. 4.5, begins prior to training. We define the set of all
classes available as C = {C1, C2, ..., Cp} for p classes. For a device D ∈ D, we define the set
CD as the set of all classes for which D has data. Then, CD ⊆ C because there may exist a
class Ci ∈ C such that for all local datapoints d ∈ d, d /∈ Ci. D sends the set CD to O and
receives a validation set with datapoints chosen only from the classes in CD. Once received,
D begins to train model Tk with the local training dataset d and the received validation set.
During training, the model will intermittently apply the validation set to the training model
and record the validation error; if the model is improving, we expect the validation error to
decrease. At the end of training, D will send the validation errors alongside other parameters
for the function call UploadGradient(). We modify this function to look at the general
trend of the validation errors over training time; if the validation errors are decreasing, we
say δ is a valuable and valid gradient update, and we reward D based on its data cost n.
This algorithm does not require any trust of the devices who can inflate their data cost n

for a higher reward; however, it is possible for either a faulty gradient δ to appear valuable
and thus be rewarded, or for a valid gradient δ to have an increasing validation error if the
datapoints used by D don’t reflect the data in the received validation set and thus not be
rewarded.
The most obvious issue with CSVES is that it is only defined here for classification problems;
it would be useful to find other similar schemes for tailoring validation sets based on non-
classification data. This scheme has also not been implemented and tested, so it is still to be
seen whether it is possible to filter out "garbage" data that does not pertain to the model at
all, or conversely how accurate this scheme is at identifying valuable gradients.

4.4. Proof Of Concept
We made a small implementation of our design in order to test out the general workflow in
practice. For this implementation, we used 15 training rounds of 10 local Device participants
who performed the model training off-chain in Python, and sent transactions to the Hyper-
ledger Fabric blockchain. Future plans include a larger implementation of this system with
EOS blockchain.
The Proof of Concept seeks to answer whether a blockchain could work with Federated
Learning implementation in Python to record and reward gradient uploads; since we’re using
a REST API to interact with Hyperledger Fabric, then any programming language that
supports API calls can interact with our blockchain system.

64

Fig. 4.5. Prior to training, a device D ∈ D sends a list of the classes for which it has data,
and receives a validation set containing data from only those classes. Once the validation
set is received, training proceeds and the set of validation errors throughout training is sent
along with the gradient δ @2019 IEEE.

4.4.1. Hyperledger Fabric - REST API

For this implementation on Hyperledger Fabric we made use of Hyperledger Fabric Composer
where we defined the files model.cto – where we define the participants, assets and transac-
tions, logic.js – where we define the Smart Contract chain code, and permissions.acl –
where we define the ruleset restricting/allowing the actions of the participants.
The model.cto defines the participants, assets, and functions of our system. We can have
multiple Device participants, which make up the users in our Federated Learning process.
Although training of the model occurs off-chain, we have a single instance of a TrainingModel
asset which we use to keep track for which version we are currently uploading gradient values.
A Gradient asset is linked to a Device participant, and has the hash of the gradient as in
Fig. 4.4, the current training version, and the dataCost claimed by the Device participant.
The Token asset is also linked to a Device participant, has the current training version, and
a value which is equal to the claimed dataCost. The UploadGradient() transaction is the
parameter description of our Smart Contract, requires a Device participant instance and the
TrainingModel asset instance, and has the hash, dataCost, and version parameters which
we’ve seen in the other assets.

65

The logic.js file is the chaincode of our application which is HyperLedger Fabric’s version of
a Smart Contract written in pure JavaScript. In this function, we have decided to combine the
Payment() functionality within the same UploadGradient() function – the script validates
the submitted parameters, creates the necessary assets, and rewards the user for their upload.
The script follows these steps:
UploadGradient(tx.{Device, TrainingModel, version, hash, dataCost})

(1) Validation
(a) Verify that the uploaded tx.version is equal to the current

tx.TrainingModel.version attribute.
(2) Create new Gradient

(a) Create a blank asset of type Gradient with unique id <tx.Device.deviceId_tx.version>.
(b) Gradient.device ← tx.Device
(c) Gradient.version ← tx.version
(d) Gradient.hash ← tx.hash

(3) Pay user via a Token
(a) Create a blank asset of type Token with unique id tx.Device.deviceId _tx.version .
(b) Token.value ← tx.dataCost
(c) Token.Device ← tx.Device

Within Hyperledger Fabric, the deviceId of a Device is used in the same way as the address
ai from our design. We leave it for future work to both implement and test the Class-Sample
Validation Error Scheme and to use an Oracle to check the off-chain format of the gradient δ,
both as part of the Validation phase.
Our permission.acl file defines the allowance of participants of which actions they can
perform. We set the following rules:

• Devices have no access to create or modify Gradient assets unless submitting a
transaction to UploadGradient()
• Devices have no access to create or modify Token assets unless submitting a transaction

to UploadGradient()
• All participants have READ access to the all Gradient assets.

This ruleset ensures that participants only see the information they need to see, which are at
most all the gradients being uploaded; they do not need to see the rewarded tokens.
To run and interact with the blockchain locally, we deployed the blockchain with a local
REST API. Then, we could perform off-chain training and data storage with Python while
sending calls to the API to read the blockchain data, getting the list of active participants
for whom we need to train, and posting transactions with calls to UploadGradient().

66

4.4.2. Implementation Worflow

We have Python and Hyperledger Fabric working together to achieve Federated Learning
using the following workflow.

(1) (a) Create the Initial Model in Python as per Section 4.3.4.
(b) Create the TrainingModel asset in Hyperledger Fabric with version: 0.

(2) (a) Create D local devices in Python, each with a unique id.
(b) Create D Device participants with the same id values as in Python.

(3) For version v = k, k ∈ {0,...,V }, perform the Federated Learning Process:
for D ∈ D do

T ′
k ← train(Tk)

δ ← T ′
k − Tk

· Write δ off-chain with version and dataCost
· Upload δ, version and dataCost to Hyperledger Fabric, creating a Gradient
asset and a Token asset

end for
(4) Average all gradients with version v = k to obtain δ̄k.
(5) Apply the federated aggregation on Tk to obtain

Tk+1 ← Tk + η · δ̄k

where η ∈ (0,1] is the aggregation factor.
(6) Increment TrainingModel.version v ← k + 1 on Hyperledger Fabric.

4.4.3. Results

For initial evaluation, our setting consist of n = 10 clients each with an uneven and
overlapping split within the range of 0.5 to 0.1 of the MNIST dataset, and running 15
rounds, we obtain the accuracy metrics of the Global Model shown in Fig. 4.6. We can see
from Fig. 4.6 and Fig. 4.7 that the model improves but quickly plateau with small dips in
accuracy without deviating significantly from a centralized approach. This confirms that
the blockchain does not interfere with the Federated Learning process, while recording
and rewarding devices for their data in Hyperledger Fabric which we can easily view from
the browser’s REST API dashboard. This plateau could be due to the lack of diversity
of the devices per round, or the lack of diversity in the datasets of each device per round.
Ideally, the Federated Learning training model would see new data every round; this type of
experimentation is left for future work. Another reason may be that the number of steps
taken by the training model is not optimal; we attempted to make every device train the
same way, fixing the number of training iterations to do so. The small dips in accuracy could
be due to over-fitting on the part of each device as the model become more accurate. For

67

these two reasons, more optimal methods of enforcing a standard training process to avoid
over-fitting and to reach training optimization are left for future work (32).

Fig. 4.6. Graphical results of training accuracy of 10 devices over 15 rounds @2019 IEEE.

Fig. 4.7. Graphical results of training accuracy of centralized dataset over 15 rounds @2019
IEEE.

4.5. Scalabilty
Transaction latency is an essential characteristic for a blockchain platform. The number
of transactions executed per second is a significant concern for most blockchain platforms
because of the blockchain transactions requiring each node in the network to come to a
consensus for anything to pass through. (125)(132). The core underlying issues rise from
limitations of low throughput, high transactional latency, and increasingly high resource
needs when used in a federated setting (132). The storage space requirements for the
Blockchain will continue to increase as the number of clients increase. Such large storage
requirements may eventually result in few prominent clients to take control of majority of
the nodes and may lead to cheating whereas the other nodes are not able to detect this fraud
(18).

68

By using EOS blockchain, we hope to address this issue since EOS is designed to support
high scalability. EOS blockchain used in our implementation claims the ability to support
millions of transactions/clients per second owing to their distributed proof of stake (DPOS)
mechanism. With EOS, it takes just 0.5 seconds to create new blocks in the network which is
comparatively very less than the existing blockchain platforms. Federated blockchain systems
can expect participation of numerous clients and hence EOS is a feasible solution in terms of
scalability.

4.6. Future Work
Moving forward, further implementation, testing and analysis of the proposed validation
model CSVES is left as future work to evaluate whether CVES is an accurate scheme for
determining the quality or usefulness of local data used for training the model. We also plan
to investigate other validation schemes that can accurately determine how much payment a
gradient upload should be rewarded, either based on verified number of data points or on
evaluated data model improvement. Finally, we have acknowledged the value of having a
standardized form of training such that two devices with the same data calculate the same
gradients; such a standard will lead to consistency in uploaded results and fairness in rewards.

4.7. Conclusion
In this proposal, we addressed the problems of data privacy, security, and fair reward in
distributed machine learning using blockchain and Federated Learning. An in-depth workflow
was presented for scalable recording and rewarding of gradients using a combination of
blockchain and off-chain databases of records. We have also proposed CSVES to validate
and verify gradients to determine a reasonable device reward. We implemented a Proof of
Concept with a small set of clients and rounds to demonstrate that the blockchain does
not interfere with the federated learning aggregation, while limiting the number of uploads
and validating the claimed data cost per device. Finally, we composed a list of aspects of
Federated Learning and Blockchain that require more in-depth study for implementation as
part of future work. With the proposed system, individuals benefit by retaining ownership
and receiving incentives for their data, and model owners benefit from access to a larger
and more diverse set of client data, leading to more robust and higher performing Machine
Learning models.

69

Chapitre 5

CausalFedBlock : Blockchain For Federated
Causal Invariance Learning With Fair

Incentivization

Federated learning has become increasingly popular as it facilitates collaborative training
among multiple clients under the coordination of a central server, while preserving the client
data privacy. In practice, some of the main challenges posed to federated learning is model
robustness, out of distribution generalization, fair incentivization and vulnerability to various
privacy attacks. We propose a novel blockchain based causal approach to developing a robust
federated ecosystem that achieves generalization beyond the limited set of client environments
accessible to the server during a specific round of training, with the capability to extrapolate
to new and unseen environments in server/client side enhancing fair incentivization for all
participants. For real world deployment of federated systems, participant incentivization
based on causal/invariant learning as opposed to associational learning methods will prove to
be extremely beneficial in terms of fairness, privacy and robustness. In this work, fairness
refers to equitable incentivization.

5.1. Background
5.1.1. Domain Generalization

Robustness to unseen domains is of utmost importance in federated setting and hence highly
dependent on the fields of domain adaptation, domain generalization and invariant learning,
all of which aim at enhancing model performance on a test distribution distinct from that of
the training distribution. In the field of domain adaptation, the learner exploits the access to
labeled data from the training domain and unlabeled data from test domain and performs well
on the test domain. Domain generalization methods (77)(7)(53) in supervised learning use
labeled data from multiple training domains while not requiring any unlabeled test data and

learn models that generalize well to unseen domains. Domain generalization based methods
seem to outperform domain adaptation methods in several use cases but have not been
explored well in federated setting, which is the objective of this work. In our work, we rely
on a recent domain generalization framework called invariant risk minimization (IRM) (77).
The IRM uses the following principle to perform well on unseen domains: rely on features
whose predictive power is invariant across domains, and ignore features whose predictive
power varies across domains.

5.1.2. Blockchain Based Incentivization

The original concept of Federated Learning sought to allow users to keep ownership and
privacy of their data during the model training process by only returning the δ update based
on local data and not the local data itself(57)(83). This approach can however lead to privacy
breaches by analyzing the δ output of users (103) (83)(38); a proposed solution to these
privacy issues is to add noise to the updates at a negligible loss(83)(103)(38). In the absence of
blockchain security, distributed learning techniques have been suggested to use homomorphic
encryption to protect training data (51)(101); however, Federated Learning’s approach to
only uploading δ updates ensures privacy, and the blockchain ensures security(57) (83) One
implementation of Federated Learning known as BlockFL uses blockchain to reward users for
their local updates proportional to how many local data points are used(56). The blockchain
is meant to enhance privacy and security of local the update δ for the user, and validity of
δ to the model(56). In (56), the reward system may not produce a lasting solution since
many miners would be paying users "out-of-pocket". These rewards are proportional to the
number of data points used for the update, and may be inflated by a malicious node; it is
proposed for a miner to analyze computation time of users to combat this, though even that
could be misrepresented(56). Though the BlockFL implementation warns that two miners
simultaneously creating a block may cause two separate blockchains, using the "Longest
Chain" rule will mitigate this (89). DeepChain looks into using blockchain for Distributed
Deep Learning applications(51) as a means to keep both the data and the model private and
secure. DeepChain proposes an incentive-based blockchain mechanism where both parties
who upload data to the model, and workers who process the data and update the model, get
paid an amount πP and πW based on their contribution ωP and ωW for parties and worker
respectively.(78)proposed solutions to some of the issues faced in the previous approaches to
improve privacy, access control and storage.

5.1.3. Invariant Risk Minimization

Consider datasets De, consisting of features of the feature vector (x ∈ X) and the label
(y ∈ Y), from multiple training domains e ∈ Etr. (77) proposes to use these multiple datasets

72

to learn a predictor f : X → Y that minimizes the maximum risk over all the domains E
which implies minf maxe∈E Re(f) where Re(f) = E(x,y)∼Pe [l(f(x), y)] is the risk under domain
e for a convex and differentiable loss function l. The equations is given by

min
Φ:X →Y

∑
e∈Etr

Re(Φ) + λ
∥∥∥∇w|w=1.0Re(w · Φ)

∥∥∥2

where λ ∈ [0,∞) is a regularizer balancing between the first term(standard ERM), and the
invariance of the predictor 1 · Φ(x). Φ : X → Y is an invariant predictor, w = 1.0 is just a
dummy classifier, the gradient norm penalty measures the optimality of the dummy classifier
at each domain e.

5.1.4. Fairness In Causal Invariance Learning

In light of recent interest in ML community on how robust machine learning methods relate to
algorithmic fairness, (6) studied whether algorithms from robust ML can be used to improve
the fairness of classifiers that are trained on biased data and tested on unbiased data.In their
experiments, they show that IRM(77) achieves better out-of-distribution accuracy and fairness
than Empirical Risk Minimization (ERM) methods. (27) proposed another domain-invariant
learning framework that incorporates Environment Inference to directly infer partitions that
are maximally informative for downstream Invariant Learning with established connection to
algorithmic fairness, which enables accuracy improvement and calibration in a fair prediction
problem.

5.1.5. Federated Causal Invariance Learning

With the above stated benefits of IRM in the field of learning, it is very evident that applying
it to a federated setting will enhance robustness, privacy and fairness of the final learned
model. (37) proposed an approach for the same in a federated setting and demonstrated the
improvement in out of distribution accuracy as well as privacy of the final learned model.

5.1.6. Data Sharing Strategy With Blockchain

The rise of Big Data and Internet of Things (IoT) technology has led to several distributed
data stored in a central repository which impose huge processing and computing requirements.
Due to higher memory, disk capacity, processing capability, I/O throughput, and storage,
distributed approaches are preferred over centralized approaches for Big Data, and are
particularly good for parallel processing (120)(42). Also, distributed learning algorithms
have their foundations in ensemble learning which helps build a set of classifiers to improve
the accuracy of a single classifier. An ensemble approach merges with that of a distributed
environment since a classifier is trained onsite, with a subset of data stored in it.(63) Hence,
the older practice which was so far concentrated on monolithic data sets from where machine

73

learning algorithms generate a single model is now getting phased out with distributed
machine learning algorithms (120)(42)(63)

Though Blockchain appears to be a good solution for Big Data storage, the mana-
gement and architectural implications to handle big data is not as well researched. (54).

5.2. Proposed Architecture

Fig. 5.1. Model Tk+1 is calculated from applying the gradient values δi in Block k + 1 to
previous model Tk.

CausalFedBlock Architecture

In our proposed architecture, we are using Permissioned Blockchain which gives the owner O
more control over who participates in the training process. This also gives the owner O full
liability of payment for the device and miner work, as opposed to devices D needing to pay
for their transactions (59), or miners to reward devices out-of-pocket (56). Although there
may be a large number of devices uploading their δ values, the number of miners is restricted
to however many the owner O designates the network needs; in practice the number of miners
should be far less than the number of devices since the transactions are infrequent, only
arriving once per device per training round at most. In our implementation, we have a model
owner O who defines the initial model, shares the global data and distributes the reward.
The initial model T0 has all weights initialized to normally distributed values with mean 0
and variance 1; therefore, we define each weight w ∼ N (0,1).This initial model, defined as
model-0, is seen as a black box to all users except O; we do not allow for any device or miner
to view the model.

74

Fig. 5.2. Causal Federated Learning with Global Data Sharing Strategy
An Overview of Data Sharing Strategy

(37) proposed an approach to apply invaraint risk minimization on a federated setting based
on which we built our pipeline for causalfedblock. To enhance learning of invariant features
on each round of training, the model owner shares a small subset of global data containing a
distribution over all the classes/enviroments from the server to block 1 during the initialization
stage along with model-0.The local model of each client is learned by minimizing the empirical
average loss as well as regularizing the model by the gradient norm of the loss for both the
shared data from the owner(global environment) and private data from each client(Local
Environment). This enhances the learning of invariant features common to both the client
and global data environments without losing the privacy of client side data. In order to both
keep the model from unaltered visibility from devices while allowing devices to train on the
model, we employ homomorphic encryption to the model via the Paillier Cryptosystem which
is commonly used in distributed deep learning(128). This symmetric cryptographic scheme
has the property such that E(x + y) = E(x) ·E(y), where E(x) is the encryption of x. Since
for a given weight in our training model we ultimately want to set w ← w + η · δ̄(120), we
can achieve this by setting E(w)← E(w) ·E(η · δ̄). To calculate model-1, a miner applies the
aggregate of all δi updates from the 1st block; we denote the number of updates in block 1 by
b1. We define wl as being the lth weight in T0, and δi,l as the lth weight of the ith gradient
value; the training model will apply the update

wl ← wl + η · δ̄l = wl + η · 1
b1

∑
i=1,...,b1

δi,l

to each wl ∈ T0, where η is the learning rate(120).

Similarly, to calculate model-(k + 1), the owner O applies the update

wl ← wl + η · δ̄l = wl + η · 1
bk+1

∑
i=1,...,bk+1

δi,l

75

to each wl ∈ Tk . If there are currently K blocks in the blockchain, then model-K is the
Global Model; this process is shown in Figure5.1. The consensus protocol we elect to use is
that of Byzantine Fault Tolerance (BFT)(117)(110). This protocol has a set of endorsement
peers who each run a transaction, and each output whether a transaction is valid or not. The
BFT endorsement protocol requires 3f < n, where f is the number of faulty nodes and n is
the total number of nodes taking part in BFT(110). In other words, we need more than 2/3
of the endorsement peers to agree on the validity of the transaction in order for consensus to
be reached. Once consensus is determined for each transaction, the next Block k is created.

5.2.1. System Design

The system design is inspired from (78). The kth model is calculated from applying all of the
model updates currently in the blockchain up to the kth block. We define D to be the set of
all devices and M to be the set of all miners. As in Figure 5.3, step (1), each device Di ∈ D
has a copy of Tk given to it by O, along with the current version vk; this is defined as round
k. We walk-through the process of training the next model, validating the transactions and
paying the users, referring to Figure 5.3 and 5.4.

For each device Di ∈ D upon receiving the kth model Tk, (2) Di trains the model
Tk off-chain using it’s local data di of size ni to get an updated model T i

k. The gradient is
then calculated as δi = T i

k−Tk. (3) The values of δi, the size of di = ni, the device address ai

and the version vk are set as parameters to the Smart Contract UploadGradient() together
with a TxID, a timestamp and a digital signature. (4) The device Di sends this transaction
on-chain to its nearest miner Mj. (5a) Each miner Mj ∈M adds the transactions received
by the devices to their transaction queue, and simultaneously broadcasts the transactions to
other miners; (5b) each miner receives the remaining transactions from other miners and add
them to the final queue of transactions to be verified for Block k. (6) Each miner executes
each transaction in its queue, which involves a call to UploadGradient() where details
about each transaction are validated, such as the correct format for δi, the correct version vi,
and that the address ai exists. (7a) Once validated, this transaction is added to the miner’s
pending queue for the next block; (7b) the device Di ∈ D who submitted a valid transaction
is rewarded an amount proportional to the data cost ni via the submitted address ai.

76

Fig. 5.3. The workflow of round k begins with (1) O distributing Tk and the version vk to
all devices, and simultaneously approving token transfer to the Payment() Smart Contract;
(2) each device Di uses a local dataset of size ni and global dataset of size ng to calculate
gradient δi(57); (3) the values δi, ni – the number of data points, ai – the address of Di,
and vi – the version of the model used, are packed into a Transaction, along with a TxID,
timestamp and a Smart Contract function call to UploadGradient(); (4) each device Di

sends its transaction to its closest miner Mj; (5a) each miner Mj who received Txi validates
the transaction and adds it to its queue, while simultaneously broadcasting the received
transactions to all other miners and (5b) the miners who receive the remaining transactions
have their final queue of transactions for training model Tk.

CausalFedBlock Workflow

77

Fig. 5.4. The workflow continues with (6) miner Mj running each transaction in its queue,
which involves a call to UploadGradient() where the format of δi, the correct version number
vi, and the existence of the address ai are all checked; (7a) the transactions that run without
errors are added to the miners queue for the next block and (7b) the devices who sent in the
transaction are rewarded an amount of tokens proportional to ni – the number of datapoints
used for training.

CausalFedBlock Incentivization

5.2.2. Computation And Storage

A device Di ∈ D must calculate it’s update value δi locally since we assume we cannot use any
miner Mj ∈M to aid in computation since sending local data would break the data privacy
benefits of Federated Learning. In order to avoid the need for Mobile Edge Computing (72),
it is assumed that a device Di ∈ D has enough processing power and memory to calculate an
updated model T i

k from model Tk; this may not be realistic if the size of Tk becomes much
larger than what we had considered. It is not assumed that Di can store the entire blockchain
in-memory, only the block headers are useful to Di along with the Merkle Path to the reward
transaction of Di.

5.2.3. Restrictions For Permissioned Blockchain

This blockchain system is partially private, since all block data needs to be visible to all those
that partake in the blockchain, but to nobody outside the system. We define a member x of
the blockchain as either a device x ∈ D, a miner x ∈ M or the model owner x = O. The
only restriction we put is that O ∩ D = ∅, meaning O doesn’t take part in the Federated
Learning training process and none of the devices take part in the model aggregation process.
To achieve this, we are using a permissioned blockchain (21) for this task, and specifically
we’ll be working with Hyperledger Fabric (21) which has permissions which is a ruleset which
defines which members have access to which actions. In this ruleset, we define the owner O
as not being able to send any transactions that call the UploadGradient() Smart Contract,
thus impeding it from contributing its own data to the process. Furthermore, we define a rule
to limit a device’s only action as sending in a transaction with a call to UploadGradient().

78

At any time, the owner O can amend this ruleset in order to complete the training process by
stopping all devices from uploading gradients. In addition to having a ruleset to restrict/allow
actions from members of the network, a permissioned blockchain gives the owner O full
control over who joins the network in the first place, and can revoke access to joined devices
at any time.

5.2.4. Addressing Privacy Leakage Of Global Data Using Access
Control Implementation

In the BlockFL architecture proposition (56), the blockchain stored only the aggregated
updates of the local devices, and not the data itself. Even then, Access Control is an
important part in Blockchain systems that are not fully public (74)(75)(123). In the context
of CausaFed setting, our objective is to regulate access of the global shared data portion
and model updates in the Blockchain to authorized participating clients, being those with
permission to view and send updates regarding the distributed model (83)(57)(56). This
permission and authorization rule set can be varied as per the specific requirements of the
data shared or the problem trying to be solved with the setup.

When Access Control in implemented, permission as to who can view the data is set by the
owner of the data; however, the permission is granted by an entity that this owner trusts (74)
- in this case being the model originator (83)(57)(56). Two conclusions may arise. Since the
model updates are all aggregated, viewing a single block would require permission to be
granted to the entity by each and every device that has partaken in those model updates; in
this case, it would be necessary for viewing permission to the appropriate parties be given in
addition to the local model updates. Secondly, though a device may give permission for their
global data portion to be viewed by appropriate parties, a malicious central device may deny
access to these same parties; a blockchain approach to these permissions will ensure that
permissions given by a device are the same permissions granted by the central device (74).
Thus, in the presence of an Access Control system, it serves to hold both model updates (56)
and global shared data access permissions (74)(75).

Following existing proposals for using Access Control in blockchain (74)(33), we use
Attribute Based Access Control (ABAC) (49) in our approach which is a form of Access
Control where permission is granted according to a set of rules; if an entity’s attributes
satisfy the conditions set by these rules, the entity is awarded access. This type of
access would allow for all appropriate parties to be given access with a single ABAC
policy stored in the blockchain transaction. Similarly, permission updates’ revokation
can be done via a new transaction (74). Whenever an entity attempts to access a

79

block, an Access Control system verifies whether this entity’s attributes satisfy the ABAC
policy across all ABAC transactions, and grants the entity access to the block accordingly (74).

Another method of Access Control enforcement is through the use of smart contracts. Maesa,
Mori & Ricci (74)(75) (123) (19) (21) have explored the use of smart contracts, such as those
used in Ethereum (19), for enforcing Access Control. Similarly, Uchibeke, Kassani, Schneider
& Deter (123) did substantial investigation on using Hyperledger smart contracts (21) for
Access Control.

namespace org.ownername.federatedlearning

participant Device identified by deviceId{
o String deviceId

}

asset Gradient identified by deviceVersionId{
--> Device device
o String deviceVersionId
o String hash
o Integer version
o Integer dataCost

}

asset Global Shared Data portion identified by deviceVersionId{
--> Device device
o String deviceVersionId
o String hash
o Integer version

}

asset TrainingModel identified by modelId{
o String modelId
o Integer version

}

asset Token identified by deviceVersionId{
o String deviceVersionId
o Integer value

80

o Integer version
--> Device device

}

transaction UploadGradient{
--> Device device
--> TrainingModel trainingmodel
o String hash
o Integer dataCost
o Integer version

}

Listing 5.1. model.cto – Participant, Asset and Transaction definition.

5.3. Results
5.3.1. Dataset

We use Colored MNIST Rotated MNIST and Rotated FMNIST as was used in the
previous chapters for fair comparison of results.

5.3.2. Evaluation Setting

We use the same setting as was followed in previous chapters to ensure fair comparison of
results. Client nodes and server nodes are run on separate computing nodes of compute canada
cluster. All clients are bound to update the model in each epoch of training. Approximately
12 GB RAM was allocated per slurm job. Python 3.7 is the language used for all the code
implementation. Pytorch 1.10 is the machine learning library employed for all the prototypes.
The network architecture and learning rates are selected based on model performance during
intial rounds of training.

Tableau 5.1. Network Architecture
Architecture No of Layers Kernel spec Learning Rate
LeNet 5 (5x5), (2x2) 0.003
AlexNet 8 (11x11), (5x5), (3x3) 0.0001
ResNet18 18 (7x7), (3x3) 0.0004

Federated Averaging denoted as FedAvg is considered the benchmark in our comparison study.
The results shown are observed on 150 global epochs on a set of 10 clients with batch size set
to 512. To test the variation of accuracy over each global epoch, we computed CV which

81

is the coefficient of variation to measure the dispersion. It is given by the ratio of standard
deviation to mean. Based on our analysis, CV coefficient values range from 0.04 - 5.2 for
train results and 0.5 - 5.8 on test after epoch 5.

5.3.3. Out of Distribution(OOD) Test results

Tableau 5.2. Comparison of methods in terms of testing accuracy (mean ± std deviation)

Dataset Arch Fed-Avg CausalFed CausalFedGSD CausalFedBlock
Colored MNIST ResNet18 11±.15 65.62±.6 55.62±2.8 54.9±4.2
Rotated MNIST ResNet18 82.7±.4 90.2±.8 85.2±2.5 84.5±4.9
Rotated FMNIST LeNet 69±.19 74.6±.22 71.9±3.6 71.3±5.1

We observe that addition of blockchain to our system does not severely affect the test
performance. However, scalabilty of the proposed approach is a concern as was specified in
the previous chapter and hence future improvements will be considered to enhance better
scalability of the CausalFedBlock Framework.

Table below shows a sample scenario for simulation of valid data acceptance rates via
CSVES-Th with τ = 0.1. Here we have simulated the training of 1000 instances on Rotated
MNIST dataset with 5 epochs each of 1000 training points and 100 validation points.

Number of Classes Instances Accepted % Accepted
1 9 5 %55.555
2 41 41 %100.000
3 112 112 %100.000
4 211 211 %100.000
5 240 238 %99.167
6 203 203 %100.000
7 119 119 %100.000
8 50 50 %100.000
9 13 12 %92.308

Tableau 5.3. Leakage on inference attack testing accuracy (mean ± std deviation)
Dataset Fed-Avg CausalFed CausalFedGSD CausalFedBlock

Colored MNIST 79.45±.12 56.57±1.5 58.57±2.6 57.9±3.4
Rotated MNIST 85.24±.5 63.3±2.9 65.3±2.9 64.4±3.1
Rotated FMNIST 78.23±.9 53.55±3.5 54.55±4.9 53.7±5.2

82

The privacy leakage on each of the attacks is measured by testing the accuracy of attack
model. The use of smart contracts to validate each gradient upload as well as the validation
scheme employed helped in maintaining better privacy guarantees for the proposed system.

5.4. Conclusion And Future Work
In this work, we addressed the problems of data privacy, out of distribution generalization and
fair incentivization in a federated setting using invariant learning and blockchain. An in-depth
workflow with detailed architecture and system design was presented on the development of
a federated model highly confident of predictions outside the client level train datasets with
enhanced robustness to distributional shifts away from the training set giving weightage to
learning a representation common to all participating clients relying upon features that affect
the target in all participating client environments ignoring individual client dataset-specific
correlations ensuring fair incentivization for paticipating clients. Also, our work is the first to
blend the fields of blockchain, federated learning and causal/invariant learning, each of which
makes incredible contributions to enhance the other.
For future work, improving model fairness will be of interest. In the Colored MNIST
experiments the spurious covariate (colour) is easily inferable from image data using RGB
channel information(6). Hence moving forward, we will focus on more biased datasets like
the toxic comment detection task to evaluate the generalization and fairness properties
of causalfedblock. One way would be to induce positive spurious correlation between the
comment being about a particular demographic identity and comment toxicity construct
across client domains followed by reversing that correlation strength in the owner/server
domain.

83

Chapitre 6

Conclusion And Future Directions

In this work, we addressed the problems of data privacy, out of distribution generalization
and fair incentivization in a federated setting using causal invariance learning and blockchain.
With blockchain, we addressed the problems of data privacy, security, and fair reward in
distributed machine learning using blockchain and Federated Learning. An in-depth workflow
was presented for scalable recording and rewarding of gradients using a combination of
blockchain and off-chain databases of records. We have also proposed CSVES to validate
and verify gradients to determine a reasonable device reward. We implemented a Proof of
Concept with a small set of clients and rounds to demonstrate that the blockchain does not
interfere with the federated learning aggregation, while limiting the number of uploads and
validating the claimed data cost per device. An in-depth workflow with detailed architecture
and system design was presented on the development of a federated model highly confident of
predictions outside the client level train datasets with enhanced robustness to distributional
shifts away from the training set giving weightage to learning a representation common to all
participating clients.

In the field of federated learning, the study of causal invariance learning and incentive
mechanisms is still in its infancy, and there exist many open issues. We just point out some
directions for the future studies.

6.0.1. Robustness

In our experiments, we observe that for most of the distribution shifts involving confounders
or anti-causal variables, our approach with causal invariant learning gives close to the desired
OOD solutions in the finite sample regime. While the results in using invariant learning
techniques in federated setting seems promising, some problems of these methods have been
studied in (105) on classification tasks. Eventhough the optimal solution succeeds in the

linear case, (105) demonstrated simple conditions under which these approaches fail to recover
the optimal invariant predictor. Specifically, Rosenfeld et al. (105) show that there exists
a feasible solution which uses only the environmental features yet performs better than
the optimal invariant predictor on all e ∈ Eall (105). Unless the test data are sufficiently
similar to the training distribution, these methods fail catastrophically in nonlinear regime.
(105). Hence moving forward, more studies need to be made on finding an optimal invaraint
predictor in non linear regimes.

6.0.2. Privacy

We need to come up with distributed learning approaches that would ensure preserving the
privacy of the shared causal representation of all participating clients. Under the federated
learning framework, transfer knowledge is not only learned in a distributed manner, but
also is typically not allowed to be exposed to any participant. Thus, we need to figure out
precisely what each participant contributes to the shared representation in the federation
and consider how to preserve the privacy of the shared representation. Downloading parts of
global dataset to each client for model training in CausalFed-GSD setting can be considered
as a violation to the requirement of privacy preserving learning in Federated setting for which
we proposed access control techniques based on blockchain. Still, further studies need to be
done to ensure privacy of some aspects of these approaches. Moving forward, we will focus on
homomorphic encryption (41) and secret sharing (24) protocols to further enhance privacy.

6.0.3. Fairness in Incentivization

In the future, we will consider formulating a multi-dimensional metric instead of a single-
dimensional metric which can appeal to multi-goals and multifunctionalities in one scheme.
Moving forward, we will put more emphasis on cross-silo federated setting. Also, further
implementation, testing and analysis of the proposed validation model CSVES on real world
diverse datasets is left as future work to evaluate whether CVES is an accurate scheme for
determining the quality or usefulness of local data used for training the model in real world
settings. For an appropriate incentive design of high potential scenarios such as mobile edge
computing, we will look into learning techniques such as graph neural networks, generative
adversarial networks and multi-agent reinforcement learning.

6.0.4. Scaling

With the already specified advantage of EOS blockchain with scaling, we will further study
possible approaches to enhance scalability of the proposed approaches. Some initial suggestions
would be to rely on On-chain scaling and off-chain scaling techniques (132). Another
favorable approach is edge computing which is suitable for high computational resources and

86

storage requirements distributed at the network edge, offloading the Blockchain and mining
computation from the power-limited nodes (132). We will study in detail existing approaches
to various scalability solutions and come up with more viable scaling techniques consisting of
on-chain, off-chain, sidechain, child-chain, and inter-chain-based solutions (55).
.

87

Références bibliographiques

[1] Kaggle: Your home for data science – competitions. https://www.kaggle.com/
competitions. Accessed: 2019-03-25.

[2] The ocean protocol. https://oceanprotocol.com/protocol/. Accessed: 2019-03-25.
[3] Wibson: Don’t give away your data for free. make a profit. https://wibson.org/.

Accessed: 2019-03-25.
[4] Wibson: Don’t give away your data for free. make a profit. https://wibson.org/.

Accessed: 2019-03-25.
[5] Eosio. 2019.
[6] Robert Adragna, Elliot Creager, David Madras et Richard Zemel : Fairness and

robustness in invariant learning: A case study in toxicity classification, 2020.
[7] Mathias Humbert Pascal Berrang-Mario Fritz Michael Backes Ahmed Salem,

Yang Zhang : Mlleaks model and data independent membership inference attacks and
defenses. 2018.

[8] J.R. Anderson : Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley, Indianapolis, IN, USA, 2nd édition.

[9] Anonymous et Feb : ‘new kid on the blockchain,’. New Scientist, 225(3009):7,.
Available:.

[10] M. Arjovsky, L. Bottou, I. Gulrajani et D. Lopez-Paz : Invariant risk minimi-
zation. arXiv preprint arXiv:1907.02893,.

[11] J. Benet : Ipfs-content addressed, versioned, p2p file system. 2014.
[12] A.P. Bernstein et E. Newcomer : Principles of Transaction Processing. Morgan

Kaufmann, Burlington, VT, USA, 2nd édition.
[13] Kreuter B Marcedone A-McMahan HB Patel S Ramage D Segal A Seth K Bonawitz K,

Ivanov V : Practical secure aggregation for privacy-preserving machine learning. pages
1175–1191, 2017.

[14] Hubert Eichner Bonawitz Keith : Towards federated learning at scale: System
design.

[15] K Zhang Brendan McMahan, Ramage Talwar : Learning differentially private
language models without losing accuracy. 2017.

https://www.kaggle.com/competitions
https://www.kaggle.com/competitions
https://oceanprotocol.com/protocol/
https://wibson.org/
https://wibson.org/

[16] C. Bucilua, R. Caruana et A. Niculescu-Mizil : Model compression. In Procee-
dings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, page 535–541.

[17] P. Buhlmann : Invariance, causality and robustness. arXiv preprint arXiv:1812.08233,.
[18] V. Buterin : A next generation smart contract and decentralized application platform.

Accessed: May 13, 2019. Available:.
[19] Vitalik Buterin et al. : A next-generation smart contract and decentralized application

platform. white paper, 2014.
[20] Melis C, Song E, De Cristofaro et V. Shmatikov : Exploiting unintended feature

leakage in collaborative learning. IEEE Symposium on Security and Privacy, 2019.
[21] Christian Cachin : Architecture of the hyperledger blockchain fabric. In Workshop on

distributed cryptocurrencies and consensus ledgers, volume 310, 2016.
[22] Jakub Konecny H.Brendan McMahan Caldas, Sebastian.
[23] H. Chang, V. Shejwalkar, R. Shokri et A. Houmansadr : Cronus: Robust and

heterogeneous collaborative learning with black-box knowledge transfer. arXiv preprint
arXiv:1912.11279 .

[24] W.T. Chang et R. Tandon : On the capacity of secure distributed matrix multiplica-
tion. In 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, page
1–6.

[25] Minghao Zhao Zhenxiang Chen-Chong Zhi Gao Hongwei Li Yuan Tan Chuan Zhao,
Shengnan Zhao : Secure multi party computation theory practice and applications.
2019.

[26] Ivan Beschastnikh Clement Fung, Chris JM Yoon : Mitigating sybils in federated
learning poisoning. 2018.

[27] Elliot Creager, Jörn-Henrik Jacobsen et Richard Zemel : Environment inference
for invariant learning, 2021.

[28] P. B uhlmann D. Rothenhausler, N. Meinshausen et J. Peters : “anchor
regression: heterogeneous data meets causality. arXiv preprint arXiv:1801.06229,.

[29] Decentralized Machine Learning : Decentralized machine learning white paper,
cited March 2019.

[30] L. Deng : The mnist database of handwritten digit images for machine learning
research. 2012.

[31] C. Dwork : Differential privacy: A survey of results, in: International conference on
theory and applications of models of computation. Springer.

[32] Y. Hua D. Estrin-V. Shmatikov E. Bagdasaryan, A. Veit : How to backdoor federated
learning. 2018.

[33] Hamza Es-Samaali, Aissam Outchakoucht et Jean Philippe Leroy : A blockchain-
based access control for big data. International Journal of Computer Networks and

90

Communications Security, 5(7):137, 2017.
[34] C. Esposito, A.De Santis, G. Tortora, H. Chang et K.-K.-R. Choo : ‘blockchain:

A panacea for healthcare cloud-based data security and privacy?’. IEEE Cloud Comput,
5(1):31–37,.

[35] M.A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras et H. Ja-
nicke : ‘blockchain technologies for the internet of things: Research issues and
challenges,’. IEEE Internet Things J, 6(2):2188–2204,.

[36] Ari Juels Michael K Reiter Florian Tramèr, Fan Zhang et Thomas Ristenpart :
Stealing machine learning models via prediction apis. 2016.

[37] Sreya Francis, Irene Tenison et Irina Rish : Towards causal federated learning for
enhanced robustness and privacy, 2021.

[38] Ristenpart T Fredrikson M, Jha S : Model inversion attacks that exploit confidence
information and basic countermeasures. pages pp. 1322–1333, 2015.

[39] Benjamin C. M. Fung, Ke Wang, Rui Chen et Philip S. Yu : Privacy-preserving
data publishing: A survey of recent developments. ACM Comput. Surv., 42(4), jun
2010.

[40] J.L. Gamella et C. Heinze-Deml : Active invariant causal prediction: Experiment
selection through stability. In NIPS.

[41] C. Gentry : A fully homomorphic encryption scheme.
[42] Gennaro Costagliola Gianluca Roscigno, Giuseppe Cattaneo : The role of distributed

computing in big data science: Case studies in forensics and bioinformatics. 2015.
[43] J. Gou, B. Yu, S.J. Maybank et D. Tao : Knowledge distillation: A survey.

International Journal of Computer Vision, page 1–31.
[44] I. Grigg : Eos - an introduction. 2017.
[45] Daniel Ramage Seth Hampson Blaise Agüera y Arcas H. Brendan McMahan,

Eider Moore : Communication-efficient learning of deep networks from decentralized
data. 2017.

[46] M. Bennis H. Kim, J. Park et S.-L. Kim : On-device federated learning via blockchain
and its latency analysis. 2017.

[47] C. Heinze-Deml, J. Peters et N. Meinshausen : Invariant causal prediction for
nonlinear models. Journal of Causal Inference.

[48] G. Hinton, O. Vinyals et J. Dean : Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 .

[49] Junbeom Hur et Dong Kun Noh : Attribute-based access control with efficient
revocation in data outsourcing systems. IEEE Transactions on Parallel and Distributed
Systems, 22(7):1214–1221, 2011.

[50] F. X. Yu P. Richtárik A. T. Suresh J. Konečny, H. B. McMahan et D. Bacon :
Federated learning: Strategies for improving communication efficiency. 2016.

91

[51] J. Zhang M. Li Y. Zhang J. Weng, J. Weng et W. Luo : Deepchain: Auditable and
privacy-preserving deep learning with blockchain-based incentive. 2018.

[52] Anton Schwaighofer Joaquin Quionero-Candela, Masashi Sugiyama et Neil D
Lawrence : Dataset shift in machine learning. 2019.

[53] B Schölkopf K Zhang, M Gong : Multi-source domain adaptation: A causal view.
2015.

[54] Elena Karafiloski et Anastas Mishev : Blockchain solutions for big data challenges:
A literature review. In IEEE EUROCON 2017-17th International Conference on Smart
Technologies, pages 763–768. IEEE, 2017.

[55] H. Kim et A. Mnih : Disentangling by factorising. In International Conference on
Machine Learning, page 2649– 2658. PMLR.

[56] Hyesung Kim, Jihong Park, Mehdi Bennis et Seong-Lyun Kim : On-device federated
learning via blockchain and its latency analysis. arXiv preprint arXiv:1808.03949, 2018.

[57] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh et Dave Bacon : Federated learning: Strategies for
improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[58] Nikola Konstantinov et Christoph Lampert : Robust learning from untrusted
sources. 2019.

[59] A Besir Kurtulmus et Kenny Daniel : Trustless machine learning contracts; eva-
luating and exchanging machine learning models on the ethereum blockchain. arXiv
preprint arXiv:1802.10185, 2018.

[60] B. Kurtulmus et K. Daniel : Trustless machine learning contracts;evaluating and
exchanging machine learning models on the ethereum blockchain. 2018.

[61] L. Lamport : ‘password authentication with insecure communication,’. Commun.
ACM, 24(11):770–772,.

[62] Latanyasweeney : k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, 05 2012.

[63] Mu Li, David G Andersen, Alexander J Smola et Kai Yu : Communication
efficient distributed machine learning with the parameter server. In Advances in Neural
Information Processing Systems, pages 19–27, 2014.

[64] Ninghui Li, Tiancheng Li et Suresh Venkatasubramanian : t-closeness: Privacy
beyond k-anonymity and l-diversity. In 2007 IEEE 23rd International Conference on
Data Engineering, pages 106–115, 2007.

[65] X. Li, P. Jiang, T. Chen, X. Luo et Q. Wen : ‘a survey on the security of blockchain
systems,’. Future Gener. Comput. Syst, 107:841–853,.

[66] Y. Li, Y. Yang, W. Zhou et T. Hospedales : Feature-critic networks for heteroge-
neous domain generalization. In International Conference on Machine Learning, page
3915–3924. PMLR.

92

[67] I.-C. Lin et T.-C. Liao : ‘a survey of blockchain security issues and challenges,’. Int. J.
Netw. Secur, 19(5):653–659,.

[68] T. Lin, L. Kong, S.U. Stich et M. Jaggi : Ensemble distillation for robust model
fusion in federated learning. In 34th Conference on Neural Information Processing
Systems.

[69] Y. Liu, Y. Kang, C. Xing, T. Chen et Q. Yang : A secure federated transfer learning
framework. IEEE Intelligent Systems, 35:70–82.

[70] Y. Lu : ‘blockchain: A survey on functions, applications and open issues,’. J. Ind.
Integr. Manage, 3(4).

[71] Emiliano De Cristofaro Vitaly Shmatikov Luca Melis, Congzheng Song : Exploiting
unintended feature leakage in collaborative learning. 2018.

[72] Pavel Mach et Zdenek Becvar : Mobile edge computing: A survey on architecture and
computation offloading. IEEE Communications Surveys & Tutorials, 19(3):1628–1656,
2017.

[73] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke et Muthuramakrishnan
Venkitasubramaniam : l-diversity: Privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data (TKDD), 1(1):3–es, 2007.

[74] Damiano Di Francesco Maesa, Paolo Mori et Laura Ricci : Blockchain based access
control. In IFIP International Conference on Distributed Applications and Interoperable
Systems, pages 206–220. Springer, 2017.

[75] Damiano Di Francesco Maesa, Laura Ricci et Paolo Mori : Distributed access
control through blockchain technology. Blockchain Engineering, page 31, 2017.

[76] D Mahajan, S Tople et A Sharma : Domain generalization using causal matching.
arXiv:2006.07500, 2020.

[77] Ishaan Gulrajani David Lopez-Paz Martin Arjovsky, Léon Bottou : Invariant risk
minimization. 2019.

[78] Ismael Martinez, Sreya Francis et Abdelhakim Senhaji Hafid : Record and reward
federated learning contributions with blockchain. In 2019 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pages 50–57,
2019.

[79] Matias Travizano, Martin Minnoni, Gustavo Ajzenman, Carlos Sarraute,
Nicolas Della Penna : Wibson: A decentralized marketplace empowering indivi-
duals to safely monetize their personal data, cited March 2019.

[80] Thomas Ristenpart Matt Fredrikson, Somesh Jha : Model inversion attacks that
exploit confidence information and basic countermeasures. 2018.

[81] B. McMahan, E. Moore, D. Ramage, S. Hampson et B.A. Arcas : Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence
and Statistics, page 1273–1282.

93

[82] B. McMahan et D. Ramage : Federated learning: Collaborative machine learning
without centralized training data. 2017.

[83] Brendan McMahan et Daniel Ramage : Federated learning: Collaborative machine
learning without centralized training data. Google Research Blog, 2017.

[84] Gihan J Mendis, Moein Sabounchi, Jin Wei et Rigoberto Roche : Blockchain
as a service: An autonomous, privacy preserving, decentralized architecture for deep
learning. arXiv preprint arXiv:1807.02515, 2018.

[85] C.R. Merkle : ‘method of providing digital signatures,’. U.S. Patent, 4:309 569,.
[86] Silvio Micali : Algorand: the efficient and democratic ledger. arXiv preprint

arXiv:1607.01341, 2016.
[87] Amir Houmansadr Milad Nasr, Reza Shokri : Comprehensive privacy analysis of

deep learning. 2018.
[88] Shuang Wang Yuhou Xia-Xiaoqian Jiang Miran Kim, Yongsoo Song : Secure logistic

regression based on homomorphic encryption design and evaluation. 2018.
[89] Satoshi Nakamoto et al. : Bitcoin: A peer-to-peer electronic cash system. 2008.
[90] Arvind Narayanan et Vitaly Shmatikov : Robust de-anonymization of large sparse

datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 111–125,
2008.

[91] Nasr, Reza Shokri et Amir Houmansadr : Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against centralized and
federated learning. arXiv:1812.00910, 2018.

[92] M. Oberst, N. Thams, J. Peters et D. Sontag : Regularizing towards causal
invariance: Linear models with proxies. In ICML.

[93] Ocean Protocol Foundation with BigchainDB GmbH and Newton Circus
(DEX Pte. Ltd.) : Ocean protocol: A decentralized substrate for ai data services
technical whitepaper, cited March 2019.

[94] X. Peng, Z. Huang, Y. Zhu et K. Saenko : Federated adversarial domain adaptation.
arXiv preprint arXiv:1911.02054 .

[95] Brendan Avent Aurélien Bellet-Mehdi Bennis Arjun Nitin Bhagoji Keith Bonawitz
Zachary Charles Graham Cormode Rachel Cummings Peter Kairouz, Brendan Mc-
mahan : Advances and open problems in federated learning. In Advances and Open
Problems in Federated Learning. arxiv, 2019.

[96] J. Peters, P. Buhlmann et N. Meinshausen : Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical
Society, 78(5):947–1012,. Series B (Statistical Methodology),.

[97] Julien Stainer Peva Blanchard, Rachid Guerraoui : Machine learning with adversa-
ries: Byzantine tolerant gradient descent. 2017.

94

[98] N. Pfister, P. Buhlmann et J. Peters : Invariant causal pre- diction for sequential
data. Journal of the American Statistical Association.

[99] Foster J Provost et Daniel N Hennessy : Scaling up: Distributed machine learning
with cooperation. In AAAI/IAAI, Vol. 1, pages 74–79. Citeseer, 1996.

[100] D. Puthal, N. Malik, S.P. Mohanty, E. Kougianos et C. Yang : ‘the blockchain
as a decentralized security framework.

[101] T. Klein R. C. Geyer et M. Nabi : Differentially private federated learning: A client
level perspective. 2017.

[102] Congzheng Song Vitaly Shmatikov Reza Shokri, Marco Stronati : Membership
inference attacks against machine learning models. 2017.

[103] Moin Nabi Robin C. Geyer, Tassilo Klein : Differentially private federated learning:
A client level perspective. 2017.

[104] Roger Haenni : Datum network: The decentralized data marketplace, cited March
2019.

[105] E. Rosenfeld, P. Ravikumar et A. Risteski : The risks of invariant risk minimiza-
tion. arXiv preprint arXiv:2010.05761,.

[106] Elan Rosenfeld, Pradeep Ravikumar et Andrej Risteski : The risks of invariant
risk minimization, 2021.

[107] M. Fredrikson S. Jh S. Yeom, I. Giacomelli : Privacy risk in machine learning:
Analyzing the connection to overfitting. 2018.

[108] BLOCKCHAIN LUXEMBOURG S.A. : Average bitcoin block size, line chart, 2019.
[109] A.K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar et V. Smith : On the

convergence of federated optimization in heterogeneous networks. CoRR. URL:.
[110] Lakshmi Siva Sankar, M Sindhu et M Sethumadhavan : Survey of consensus

protocols on blockchain applications. In 2017 4th International Conference on Advanced
Computing and Communication Systems (ICACCS), pages 1–5. IEEE, 2017.

[111] Peter Richtarik Barnabas Poczos-Alex Smola Sashank Reddi, Jakub Konecny : Aide
fast and communication efficient distributed optimization. 2016.

[112] B. Schneier : Applied Cryptography, Protocols, Algorithms and Source Code in C.
Wiley, Hoboken, NJ, USA, 2nd édition.

[113] R. Schollmeier : ‘a definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications,’. In Proc. 1st Int. Conf, page 101–102, Peer
Peer Comput., Linkoping, Sweden.

[114] Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin et Spyridon
Bakas : Multi-institutional deep learning modeling without sharing patient data: A
feasibility study on brain tumor segmentation, 2018.

[115] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu et Peng
Cui : Towards out-of-distribution generalization: A survey, 2021.

95

[116] Aditya V. Noris Shruti Tople, Amit Sharma : Alleviating privacy attacks via causal
learning. 2020.

[117] Joao Sousa, Alysson Bessani et Marko Vukolic : A byzantine fault-tolerant ordering
service for the hyperledger fabric blockchain platform. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 51–58.
IEEE, 2018.

[118] M. Swan : Blockchain, Blueprint for a New Economy. O’Reilly Media, Sebastopol,
CA, USA.

[119] T. Hoefler T. Ben-Nun : Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. 2018.

[120] TORSTEN HOEFLER TAL BENNUN : Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. 2018.

[121] Bo Xing Tshilidzi Marwala : Blockchain and artificial intelligence. 2018.
[122] T. Tuor, S. Wang, B.J. Ko, C. Liu et K.K. Leung : Overcoming noisy and irrelevant

data in federated learning. arXiv e-prints , arXiv–2001.
[123] Uchi Ugobame Uchibeke, Sara Hosseinzadeh Kassani, Kevin A Schneider et Ralph

Deters : Blockchain access control ecosystem for big data security. arXiv preprint
arXiv:1810.04607, 2018.

[124] Maziar Sanjabi Ameet Talwalkar Virginia Smith, Chao-Kai Chiang : Federated
multi-task learning. 2017.

[125] M. Vukolic : ‘the quest for scalable blockchain fabric: Proof-of-work vs. bft replication,’.
In Proc. Int. Workshop Open Problems Netw, volume 29, page 112–125, Secur., Zurich,
Switzerland.

[126] H. Wang, B. Ustun et F. Calmon : Repairing without retraining: Avoiding disparate
impact with counterfactual distributions. In International Conference on Machine
Learning, page 6618–6627.

[127] J. Wang, Y. Chen, W. Feng, H. Yu, M. Huang et Q. Yang : Transfer learning
with dynamic distribution adaptation. ACM Transactions on Intelligent Systems and
Technology (TIST, 11(1):1–25,.

[128] J Weng, Jian Weng, J Zhang, M Li, Y Zhang et W Luo : Deepchain: Auditable
and privacy-preserving deep learning with blockchain-based incentive. Cryptology ePrint
Archive, Report 2018/679, 2018.

[129] Gavin Wood : Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014.

[130] J. Xie, H. Tang, T. Huang, F.R. Yu, R. Xie, J. Liu et Y. Liu : ‘a survey of
blockchain technology applied to smart cities: Research issues and challenges,’. IEEE
Commun. Surveys Tuts, 21(3):2794–2830,.

96

[131] Y. Xinyi, Z. Yi et Y. He : ‘technical characteristics and model of blockchain,’. In
Proc. 10th APCA Int. Conf. Control Soft Comput, page 562–566. CONTROLO), Jun.

[132] R. Yang, F.R. Yu, P. Si, Z. Yang et Y. Zhang : ‘integrated blockchain and edge
computing systems: A survey, some research issues and challenges,’. IEEE Commun.
Surveys Tuts, 21(2):1508–1532,.

[133] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto et R. Yonetani : Hybrid-fl:
Cooperative learning mechanism using non-iid data in wireless networks. CoRR. URL:.

[134] Liangzhen Lai Naveen Suda Damon Civin Vikas Chandra Yue Zhao, Meng Li :
Federated learning with non-iid data. 2018.

[135] Y. Zhang, T. Xiang, T.M. Hospedales et H. Lu : Deep mutual learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, page
4320–4328.

[136] Y. Zhao, Y. Li, Q. Mu, B. Yang et Y. Yu : ‘secure pub-sub: Blockchainbased
fair payment with reputation for reliable cyber physical systems,’. IEEE Access, 6:
12295–12303,.

[137] Z. Zheng, S. Xie, H. Dai, X. Chen et H. Wang : ‘an overview of blockchain
technology: Architecture, consensus, and future trends,’. In Proc. IEEE 6th Int, page
557–564, Honolulu, HI, USA. Congr. Big Data.

[138] Dong Su Heqing Huang Jialong Zhang Tengfei Ma Dimitrios Pendarakis Ian Molloy
Zhongshu Gu, Hani Jamjoom : Reaching data confidentiality and model accountability
on the caltrain. 2018.

[139] Hangyu Zhu, Jinjin Xu, Shiqing Liu et Yaochu Jin : Federated learning on non-iid
data: A survey, 2021.

97

	Résumé
	Abstract
	Table des matières
	Liste des tableaux
	Liste des figures
	Liste des sigles et des abréviations
	Remerciements
	Chapitre 1. Introduction
	1.1. Thesis Statement
	1.2. Statement Of Contributions
	1.3. List Of Papers Included In The Thesis:

	Chapitre 2. Related Work
	2.1. Federated Learning
	2.1.1. Privacy Threats
	2.1.2. Defense Strategies
	2.1.3. Domain Shift Issues
	2.1.4. Computational Assumptions

	2.2. Distributed Machine Learning
	2.2.1. Federated Learning Vs Distributed Machine Learning

	2.3. Causal Machine Learning
	2.3.1. Data Heterogenity
	2.3.2. Common Assumptions Made In Causal Invariance Learning

	2.4. Invariant Risk Minimization
	2.5. What consist of a Fully Fledged FL Ecosystem?
	2.6. Blockchain For Incentivization
	2.7. How Can Blockchain Help?
	2.8. EOS Blockchain
	2.8.1. DPOS - Delegated Proof Of Stake
	2.8.2. Benefits

	Chapitre 3. Federated Causal Invariance Learning
	3.1. Motivation
	3.2. How can a federated setting help causal invariance learning?
	3.3. How can causal invariance learning be of help in a federated learning setting?
	3.4. Federated Learning On Non IID Data
	3.4.1. Data Sharing Strategies
	3.4.2. Knowledge Distillation
	3.4.3. Domain Adaptation

	3.5. Proposed Causal Federated Learning Approaches
	3.5.1. Approach 1 - CausalFed
	3.5.2. Approach 2 - CausalFedGSD

	3.6. Implementation Details
	3.6.1. Dataset Details
	3.6.2. Attack Implementation

	3.7. Results
	3.7.1. Evaluation Setup
	3.7.2. Approach 1 - CausalFed
	3.7.3. Approach 2 - CausalFedGSD

	3.8. Some Possible Steps To Further Enhance Privacy
	3.9. Challenges Posed To Proposed Approaches
	3.10. Conclusion

	Chapitre 4. Federated Incentivization With Blockchain
	4.1. Background
	4.2. Record And Reward Federated Learning Contributions With Blockchain
	4.3. Proposed Design And Architecture
	4.3.1. System And Blockchain Architecture
	4.3.2. Smart Contracts
	4.3.3. System Design And Workflow
	4.3.4. Global Model
	4.3.5. Data Validity And Quality

	4.4. Proof Of Concept
	4.4.1. Hyperledger Fabric - REST API
	4.4.2. Implementation Worflow
	4.4.3. Results

	4.5. Scalabilty
	4.6. Future Work
	4.7. Conclusion

	Chapitre 5. CausalFedBlock : Blockchain For Federated Causal Invariance Learning With Fair Incentivization
	5.1. Background
	5.1.1. Domain Generalization
	5.1.2. Blockchain Based Incentivization
	5.1.3. Invariant Risk Minimization
	5.1.4. Fairness In Causal Invariance Learning
	5.1.5. Federated Causal Invariance Learning
	5.1.6. Data Sharing Strategy With Blockchain

	5.2. Proposed Architecture
	5.2.1. System Design
	5.2.2. Computation And Storage
	5.2.3. Restrictions For Permissioned Blockchain
	5.2.4. Addressing Privacy Leakage Of Global Data Using Access Control Implementation

	5.3. Results
	5.3.1. Dataset
	5.3.2. Evaluation Setting
	5.3.3. Out of Distribution(OOD) Test results

	5.4. Conclusion And Future Work

	Chapitre 6. Conclusion And Future Directions
	6.0.1. Robustness
	6.0.2. Privacy
	6.0.3. Fairness in Incentivization
	6.0.4. Scaling

	Références bibliographiques

