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Résumé 
L'un des objectifs centraux de la biologie est de comprendre comment l'ADN, la 
séquence primaire, donne lieu à des traits observables. À cette fin, nous examinons ici 
des méthodes pour identifier les composants génétiques qui influencent les traits 
microbiens. Par « identifier », nous entendons l'élucidation à la fois l'état allélique et de 
la position physique de chaque variante causale d'un phénotype d'intérêt à la 
résolution des nucléotides de paires de bases. Nous nous sommes concentrés sur les 
études d'association génomique (genome-wide association studies; GWAS) en tant 
qu'approche générale d’étudier l'architecture génétique des traits. L'objectif global de 
cette thèse était d'examiner de manière critique les méthodologies GWAS et de les 
considérer en pratique dans des populations microbiennes fortement clonales et non-
clonales (i.e. avec recombinaison fréquent). Le domaine de la GWAS microbienne est 
relativement nouveau par rapport aux quinze dernières années de la GWAS humaine, 
et en tant que tel, nous avons commencé par un examen de l'état de la GWAS 
microbienne. Nous avons posé deux questions principales : 1) Les méthodes GWAS 
humaines fonctionnent-elles facilement et sans modification pour les populations 
microbiennes ? 2) Et sinon, quels sont les problèmes méthodologiques centraux et les 
modifications nécessaires pour la GWAS microbienne? À partir de ces résultats, nous 
avons ensuite détaillé le déséquilibre de liaison (linkage disequilibrium; LD) comme 
principal obstacle dans la GWAS microbien, et nous avons présenté une nouvelle 
méthode, POUTINE, pour relever ce défi en exploitant les mutations homoplasiques 
pour briser implicitement la structure LD. Le reste de la thèse présente à la fois les 
méthodes traditionnelles GWAS (comptage des allèles) et POUTINE (comptage 
d’homoplasies) appliquées à une population hautement recombinogène de génomes 
de vibrions marins. Malgré une taille d'échantillon modeste, nous donnons un premier 
aperçu de l'architecture génétique de la résistance aux bactériophages dans une 
population naturelle, tout en montrant que les récepteurs des bactériophages jouent un 
rôle primordial. Ce résultat est en pleine cohérence avec des expériences en 
laboratoire de coévolution phage-bactérie. Il est important de noter que cette 
architecture met en évidence à quel point la sélection positive peut sculpter certains 
traits microbiens différemment de nombreux traits complexes humains, qui sont 
généralement soumis à une faible sélection purificatrice. Plus précisément, nous avons 
identifié des mutations à effet important à haute fréquence qui sont rarement 
observées dans les phénotypes complexes humains où de nombreuses mutations à 
faible effet contribuent à l'héritabilité. La thèse se termine par des perspectives sur les 
voies à suivre pour la GWAS microbienne. 
 
Mots-clés: étude d’association génomique microbienne, déséquilibre de liaison, 
comptage d'allèles, comptage d'homoplasie, architecture génétique 
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Abstract 
One of the central goals of biology is to understand how DNA, the primary sequence, 
gives rise to observable traits.  To this aim, we herein examine methods to identify the 
genetic components that influence microbial traits.  By "identify" we mean the 
elucidation of both the allelic state and physical position of each causal variant of a 
phenotype of interest down to the base-pair nucleotide resolution.  Our focus has been 
on genome-wide association studies (GWAS) as a general approach to dissecting the 
genetic architecture of traits.  The overarching aim of this thesis was to critically 
examine GWAS methodologies and to consider them in practice in both strongly clonal 
and highly recombining microbial populations.  The field of microbial GWAS is relatively 
new compared to the over fifteen years of human GWAS, and as such, we began this 
work with an examination of the state of microbial GWAS.  We asked and attempted to 
answer two main questions: 1) Do human GWAS methods readily work without 
modification for microbial populations?  2) And if not, what are the central 
methodological problems and changes that are required for a successful microbial 
GWAS?  Building from these findings, we then detailed linkage disequilibrium (LD) as 
the primary obstacle in microbial GWAS, and we presented a new method, POUTINE, 
to address this challenge by harnessing homoplasic mutations to implicitly break LD 
structure.  The remainder of the thesis showcases both traditional GWAS methods 
(allele counting) and POUTINE applied to a highly recombining population of marine 
vibrio genomes.  Despite a small sample size, we provide a first glimpse into the 
genetic architecture of bacteriophage resistance in a natural population and show that 
bacteriophage receptors play a primary role consistent with experimental populations 
of phage-bacteria coevolution.  Importantly, this architecture highlights how strong 
positive selection can sculpt some microbial traits differently than many human 
complex traits, which are generally under weak purifying selection.  Specifically, we 
identified common frequency, large-effect mutations that are rarely observed in human 
complex phenotypes where many low-effect mutations are thought to contribute to the 
bulk of heritability.  The thesis concludes with perspectives on ways forward for 
microbial GWAS. 
 
Keywords: microbial GWAS, linkage disequilibrium, allele counting, homoplasy 
counting, genetic architecture 
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Introduction 
Every generation, the genomes of organisms are passed down with great fidelity and 
give rise to a diversity of phenotypes.  The physical entity that carries this heritability 

was not always believed to be deoxyribonucleic acid (DNA), and for some time it was 
widely believed that proteins were the carriers of heritable information.  It was not until 

the Avery–MacLeod–McCarty experiment in 1944 [1] and the Hershey-Chase 
experiment in 1952 [2] that DNA was confirmed to be the material responsible for 
heredity.  In this thesis, we explore and further develop genome-wide association 

studies (GWAS) as a general approach to elucidate the genetic components that 
underlie the diversity of heritable phenotypes encoded by genomes.  The overarching 

aim of this thesis was to critically examine GWAS methodologies and to consider them 
in practice in both strongly clonal and highly recombining microbial populations. 

 
Viewing microbial GWAS within its historical context, two facets stand out: the diversity 

of life and the nascent history of microbial association studies.  Broadly, the diversity of 
life can be broken down into prokaryotes and eukaryotes.  Yet despite their genetic 

diversity and long evolutionary history, prokaryotes make up only a minority of 
genotype to phenotype studies.  Historically, much effort has gone into deciphering the 

genome sequence of eukaryotes, primarily Homo sapiens.  As of October 2021, the 

Human GWAS Catalog of the National Human Genome Research Institute (NHGRI) of 
the United States and the European Bioinformatics Institute (EBI) officially reports 
5,419 GWAS publications, each investigating a minimum of 100,000 single nucleotide 

polymorphisms (SNPs).  Within these studies, it is reported that greater than 60,000 
SNPs are associated with more than 600 phenotypes at genome-wide significance (p-

value ≤ 5.0 × 10-8)  (http://www.genome.gov/gwastudies/) [3].  Moreover, within the 
realm of eukaryotic studies, there have been prominent GWA studies in Arabidopsis  

thaliana, rice, maize, cattle, sheep, dog, and mice [4–10]. 

 

As with human phenotypes, prokaryotes and viruses also possess compelling traits of 
interest.   Importantly, genotype to phenotype studies in microbial populations can 
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elucidate the genetic basis of pathogenesis in infectious diseases.  Highlighting the 
translational and clinical importance of this area of study, a small sampling of infectious 

disease traits includes such phenotypes as drug resistance, transmissibility, virulence, 
biofilm formation, persistence in the host (evasion of the host immune system for 

prolonged periods), and vaccine attenuation (many vaccines are formulated from 
attenuated strains with no known knowledge of how the strains were attenuated).  

 

A Brief History of Genetic Mapping Studies  

The history of genotype to phenotype studies can be broken down into bottom-up and 
top-down approaches.  The bottom-up methods attempt to modify and perturb DNA to 

test its effect on phenotype. Changes to the phenotype are thought to be due to the 
changes made to the DNA.  This class of methods includes gene knockouts, over-

expression studies, and various mutagenesis techniques.  In contrast, top-down 
studies begin with the phenotype and attempt to “map” the underlying genetic 

components back to the primary sequence.  This class of methods is inherently 
agnostic in that there is no prior knowledge of the variants that contribute to the 

phenotype. Top-down approaches also have the significant advantage of studying 
natural genetic variation as it occurs in the natural environment, as opposed to bottom-
up approaches which are limited by the genetic variation that can be constructed in the 

lab (e.g., gene deletions or targeted mutations). Despite the challenges involved in top-

down approaches, they have the potential to shed light on evolutionary processes as 
they occur in nature. 

 
Genetic mapping dates back to the work of Alfred Henry Sturtevant and Thomas Hunt 

Morgan at Columbia University.  In Sturtevant’s 1913 publication, he put forth the logic 
of genetic mapping still in use today and created the world’s first genetic map [11]; this 

map was of the common fruit fly, Drosophila melanogaster.  The central idea here is 
that the genetic components underlying traits not only have regular positions along a 

chromosome but that their linear position can be deduced by exploiting the frequency 
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of recombination as a measure of approximate location (genetic distance), with loci 
farther apart experiencing more frequent recombination events (crossovers) between 

them.  In Sturtevant’s 1965 “A History of Genetics” [12], he writes: “In the latter part of 
1911, in conversation with Morgan ... I suddenly realized that the variations in strength 

of linkage, already attributed by Morgan to differences in the spatial separation of the 
genes, offered the possibility of determining sequences in the linear dimension of a 

chromosome.  I went home and spent most of the night (to the neglect of my 
undergraduate homework) in producing the first chromosome map, which included the 

sex-linked genes y, w, v, m, and r, in the order and approximately the relative spacing 
that they still appear on the standard maps.” 

 
The above logic guided an explosion of genetic maps in various model organisms, but 

it was not until 1980 that the same logic was published for human genomes [13].  
David Botstein and colleagues realized that naturally occurring human sequence 

variation (in this study they exploited RFLPs, restriction fragment length 
polymorphisms) can act as genetic markers to trace the inheritance patterns across 

human families in a manner analogous to the controlled crosses first done by 
Sturtevant with Drosophila.  These early human linkage studies had their most success 

in rare diseases where the causal locus is monogenic and behaves in a simple 
Mendelian manner.  However, these linkage studies largely failed to elucidate the 

genetic components of many traits of medical relevance that departed from Mendelian 
behavior and operated under a more complex pattern of inheritance (today these traits 

are known as complex traits). 
 

Addressing this problem and bringing us into the modern era of genotype to phenotype 
studies, Risch and Merikangas in 1996 proposed association studies as a way to 

capture higher-frequency, smaller-effect polymorphisms; in contrast, linkage studies 
were mainly suitable for capturing causal loci of large effect [14].  Briefly, a basic case 

and control GWAS attempts to statistically associate specific alleles with a phenotype 
of interest by looking for over-represented alleles in cases relative to controls.  On a 
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practical level, association studies possess an advantage in that it is easier to collect 
larger numbers of unrelated individuals from the general population versus the families 

(trios of two parents and one child) needed for linkage studies.  The main component 
missing was a readily available set of human sequence variation to power these 

association studies.  These insights provided the impetus to design and build a 
haplotype map (HapMap) of the human genome.  To date, this map consists of over 

three million SNPs scattered across the genome in four major world-wide populations 
consisting of 269 individuals [15].  The first HapMap was published in 2005, making it 

practical for association studies to move to the scope of whole-genome scans of 
association between variants and phenotypes [16]. 

 

The advent of microbial GWAS 

Although the genetic basis of traits was of interest to those studying bacterial 
genomes, there had not been a concerted effort to bridge the gap between genotype 
and phenotype akin to that seen in human disease studies and other eukaryotic model 

organisms.  It was not until 2006 that Falush and Bowden broached the subject in a 
paper entitled “Genome-Wide Association Mapping in Bacteria?” [17].  Drawing 

inspiration from the recently published HapMap, the authors argued for top-down 
methods, particularly a case and control association study design, to be employed for 

bacteria.  In brief, the authors claimed that the same principles that have guided human 
GWA studies are fundamentally unchanged for bacterial populations.  Presciently, in 

their final paragraph, they write: “However, to realize the full potential of these 
methods, a more detailed knowledge of how variation is distributed and transmitted 

within bacterial populations must be developed.  For example, the effectiveness of 
SNP typing as a method of resolving genetic relationships depends crucially on the 

rate of recombination, and association studies will be of limited use in organisms that 
are completely clonal or recombine infrequently.” 
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Perhaps one of the first computational efforts to link genotype to phenotype in 
bacterial genomes was published earlier that year [18].  Notably, the approach was not 

based upon the association methods that were in vogue at the time in human studies.  
Rather, the authors presented a method to determine lineage-specific molecular 

adaptations using comparisons of selection signals from different phenotypic 
populations.  The trait of interest was uropathogenicity in E. coli, a human-virulent 

lifestyle markedly different from the usual commensal state of this common gut 

bacteria.  Tests for positive natural selection at the protein level were performed using 
PAML (Phylogenetic Analysis Using Maximum Likelihood) [19], and the comparative 

portion of their approach was simply the presence or absence of positive selection in 
UPEC (uropathogenic E. coli) strains versus non-UPEC strains (i.e., a gene is UPEC-

specific because it showed positive selection in UPEC strains but no selection in non-
UPEC strains).  This study reported 29 genes under positive selection in only the UPEC 

strains, while remarkably using only seven genomes, of which two were UPEC strains. 
 

Highlighting the paucity of genotype to phenotype studies in bacterial genomes, it is 
not until 2013 that the first GWAS in bacterial genomes appears in the literature [20].  In 

this study, the phenotype of interest was host preference and the two host types 
examined were chicken and cattle.  The authors studied a dataset of 192 genomes of 

Campylobacter jejuni and Campylobacter coli (these bacteria are common causative 

agents of food poisoning in humans).  The authors provided an interesting variant of 
the classic GWAS approach.  While most GWAS methods rely on SNPs to “tag” nearby 

causal variants that are in linkage disequilibrium (LD) with the statistically associated 
SNP, the authors used unique 'words' of 30 nucleotides (30-mers) as the base unit of 

association.  This change allowed their method to capture not only SNPs but also 
whole gene absence or presence, as well as smaller insertions or deletions (indels).  
9,034 of these 30-mers were significantly associated with either cattle or chicken and 

mapped to 97 genes grouped into 10 genomic regions.  Within these 10 regions, the 
vast majority of the cattle-associated words mapped (minimum of 70% sequence 

identity and 50% alignment length) to three adjacent genes, panB, panC, and panD.  
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These genes have been known to be involved in the pantothenic acid (vitamin B5) 
synthesis pathway.  This association between the panBCD genes and cattle host 

preference was further supported by the authors’ in vitro functional study which 

consisted of growing Campylobacter strains possessing and lacking the panBCD 

region on growth medium with and without vitamin B5.  This set of tests showed that 
cattle-associated isolates do indeed have a greater capacity to grow in a vitamin B5 

depleted environment compared to isolates from chicken.  The authors postulated that 
host preference of Campylobacter was largely due to host diets where vitamin B5 is 

abundant in cereals and grains (main diet of chicken) but is at low concentration in 

grasses (main diet of cattle), thus suggesting that Campylobacter needs to produce the 

vitamin itself in order to persist in cattle. 
 

Thesis outline 

Rarely does one receive the fortune of being in the beginnings of a new field.  Thus, it 
was natural that we started our work with a thorough review of the microbial 

association studies available at that time, as presented in Chapter 1.  We note that this 
chapter was published in 2015 and that all but one paper reviewed was published 

within two years prior to this date.  Since 2015, a number of microbial GWAS studies 
have been published, highlighting the growing interest in this nascent field.  Chapter 1 

is not just a literature review, but also defines the terms 'allele counting' and 
'homoplasy counting,' and suggests the latter as a promising GWAS method in 

strongly clonal populations.  We compared these two approaches in a GWAS using a 
dataset of Mycobacterium tuberculosis genomes and antibiotic resistance phenotypes.  

Briefly, homoplasies are mutations that occur independently in different lineages, 
thereby breaking the dependence structure of a clonal phylogeny.  Homoplasies are 

discussed in greater detail in Chapter 1 and provide the basis for a novel homoplasy-
based GWAS method (POUTINE) developed in Chapter 2.  In this next chapter, we 

examined the effects of LD on association signals from both allele and homoplasy 
counting methods in a GWAS using 1,330 M. tuberculosis genomes and isoniazid drug 
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resistance as the phenotype.  Importantly, we showed how strong and long-range LD 
can prevent allele-counting methods from distinguishing between a putative causal 

locus and its linked sites scattered throughout the genome.  In contrast, we showed 
that POUTINE hits were mostly unlinked from other sites, and thus these homoplasy-

counting hits could be considered the true driver of the association signal.  In Chapter 
3, we again compared allele-counting and homoplasy-counting GWAS methods in a 

dataset of aquatic Vibrio breoganii, a much more highly recombining and less clonal 

population than M. tuberculosis.  Despite a small sample size, we identified three 

genome-wide significant mutations of large effect, which highlights how strong positive 
selection can shape the genetic architecture of microbial traits in contrast to weakly 
purifying selection likely shaping many human complex phenotypes.  Consistent with 

phage-bacteria coevolution in experimental lab studies, we showed that modifications 
in bacteriophage receptors, whether directly via a mutation in the receptor gene or 

indirectly via a mutation in a gene that modifies receptor structure, played a primary 
role in bacteriophage resistance.  The thesis concludes with some perspectives on the 

field of microbial GWAS going forward. 
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Abstract 

Significant advances in sequencing technologies and genome-wide association studies 
(GWAS) have revealed substantial insight into the genetic architecture of human 

phenotypes.  In recent years, the application of this approach in bacteria has begun to 
reveal the genetic basis of bacterial host preference, antibiotic resistance, and 

virulence.  Here, we consider relevant differences between bacterial and human 
genome dynamics, apply GWAS to a global sample of Mycobacterium tuberculosis 

genomes to highlight the impacts of linkage disequilibrium, population stratification, 

and natural selection, and finally compare the traditional GWAS against phyC, a 
contrasting method of mapping genotype to phenotype based upon evolutionary 

convergence. We discuss strengths and weaknesses of both methods, and make 
suggestions for factors to be considered in future bacterial GWAS.   
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Introduction 

A central goal of biology is to understand how DNA, the primary sequence, gives rise 

to observable traits.  Historically, much effort has gone into deciphering the primary 
sequence of eukaryotes, primarily Homo sapiens.  As of August 8, 2014, the National 

Human Genome Research Institute (NHGRI) reported 1,961 publications of genome-

wide association studies (GWAS).  Within these studies, a total of 14,014 single 
nucleotide polymorphisms (SNPs) are associated with over 600 phenotypes.  The 

advent of GWAS in bacteria has mainly occurred in the last two years [1**, 2**, 3**, 4**, 
5**, 6**], and provides an unbiased "top-down" framework [7] to dissect the genetic 
basis of bacterial phenotypes.  In principle, any measurable bacterial phenotype (or 

archaeal phenotype, although here our focus is on bacteria) can be dissected with a 
GWAS approach. To date, bacterial GWAS have focused on clinically-relevant 

phenotypes such as virulence and antibiotic resistance, but there is also great potential 
to investigate environmentally or industrially relevant phenotypes as well.  
 

Bacterial genomes experience strong linkage, strong 

stratification, and strong selection 

Are bacterial genetic mapping studies any different from eukaryotic studies?  Although 
there are many fundamental differences, this review highlights three features that are 

most germane to GWAS.  The impact of the first two differences, in linkage and 
population stratification, have been recognized before [6**, 7], but we identify the 

strength of natural selection relative to drift as a third and under-appreciated factor to 
consider in bacterial GWAS. 

 
First, unlike eukaryotic recombination which occurs predominantly via the crossing-

over of two homologous chromosomes during meiosis, bacterial recombination occurs 
via gene conversion of relatively short stretches of DNA.  In bacteria, recombination is 
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not coupled with reproduction, and can occur multiple times within a cell's lifespan, or 
not at all.  Without any recombination, purely clonal transmission of DNA leaves the 

entire bacterial chromosome in complete linkage (in strong linkage disequilibrium; LD).  
As with eukaryotic genomes, bacterial recombination events break this linkage, but the 

landscape of LD is markedly different from that seen in eukaryotes; gene conversion 
events leave a “patchwork” of recombined tracts on top of a genomic background of 

linked regions called a clonal frame [8].  In contrast to eukaryotic LD patterns, all 
regions of the clonal frame are in complete linkage, and these regions may be quite 

distant from one another.  The clonal frame phenomenon limits the utility of classic 
genetic mapping methods mainly by obscuring the true causal variant from the rest of 

the linked sites in the clonal frame. Here, we define a variant as causal if it plays a 
functional role in the phenotype of interest, as opposed to only being correlated with 

the phenotype. 
 

Second, as with eukaryotes, bacterial genomic diversity may be shaped by population 
stratification.  Stratification refers to a “situation in which the population of interest 

includes subgroups of individuals that are on average more related to each other than 
to other members of the wider population” [9].  These subpopulations give rise to 

spurious associations when "cases" (with phenotype A) are on average more closely 

related with each other than with "controls" (without phenotype A); in other words, 
associations due to genetic relatedness rather than causality for the phenotype of 
interest.  The problem of population stratification is particularly acute in highly clonal 

(rarely recombining) bacteria, and in those with separate geographic or host-
associated subpopulations [6**]. 

 
Third, the phenotypes of most interest in bacterial GWAS are largely different from 

many human disease phenotypes. In particular, bacterial phenotypes tend to be 
shaped by strong natural selection (e.g. positive directional selection driving drug 

resistance), while many human disease phenotypes evolve largely by genetic drift 
owing to historically small effective population sizes (e.g. due to population 
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bottlenecks); in this scenario, drift overpowers purifying selection and leaves slightly 
deleterious alleles in the population that underlie disease traits [10, 11].  This is not to 

say that bacteria do not experience genetic drift (particularly in frequently bottlenecked 
populations), but simply that many traits of interest (e.g. resistance, virulence, host-

association) have evolved recently and under strong positive selection. These bacterial 
traits might also be controlled by mutations with large effect sizes on the phenotypes 

of interest. If this is the case, relatively small samples of bacterial genomes should be 
sufficient to identify causal mutations [11, 12]. 
 

Units of genetic and phenotypic variation 

The two basic requirements for GWAS are genotypic and phenotypic measurements 
from a sample of organisms. Phenotypes are usually broken into either discrete units 
(e.g. resistance/sensitive or high/low virulence) or continuous traits (e.g. human height). 

Phenotypes must be reproducible, and easy to measure, ideally in high-throughput if 
hundreds or thousands of samples are being studied.  At the genotypic level, a set of 

bacterial genomes can be broken down into a “core” genome shared among nearly all 

members and an “accessory” genome composed of elements present in some strains 
but not others (typically including genes involved in environmental adaptation) [13, 14].  

The genetic units of a GWAS may be variants in the core (e.g. single nucleotide 
polymorphisms (SNPs) or small indels) [2**, 3**, 4**, 5**] or in the flexible genome (e.g. 

presence/absence of larger pieces of DNA including genes or operons [1**, 15, 16, 17] 
(Table 1). While most bacterial GWAS to date have studied either SNPs or gene 

presence/absence, Sheppard et al. [1**] described a method that uses n-mers ("words" 
of DNA) as the basic unit of association, allowing them to study both the core and 
flexible genome simultaneously. 
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Table 1.  Examples of bacterial genome-wide associations studies to date.  SNP is 

single nucleotide polymorphism, MAF is minor allele frequency, CGH is comparative 

genomic hybridization. 

Study Year Taxa Relative 
recombination 

rate 

# 
genomes 

Phenotype Association 
method 

Addresses 
accessory 
genome? 

Unit of genetic 
variation 
studied 

# of 
variants 

Correction 
for 

population 
stratification 

Sheppard et al. 
[1] 

2013 C. jejuni moderate 29 (+ 
validation 

in 161) 

host 
specificity 

allele 
counting 

yes 30-bp DNA 
sequences 
(words) 

>10,000 
words (?) 

simulation of 
word 

gain/loss 
along the 

phylogenetic 
tree 

Farhat et al. 
[2] 

2013 M. 
tuberculosis 

low 123 antibiotic 
resistance 

homoplasy 
counting 

no SNPs ~25,000 implicit in 
phylogenetic 
convergence 

criterion 
Chen & 

Shapiro (This 
review) 

2015 M. 
tuberculosis 

low 123 antibiotic 
resistance 

allele 
counting  

no SNPs ~3,000 
MAF > 
0.05) 

inferred 
ancestry 
clusters 

Laabei et al. 
[3] 

2014 S. aureus low 90 virulence allele 
counting 

no SNPs & small 
indels 

~3000 genomic 
control 

Alam et al. [4] 2014 S. aureus low 75 antibiotic 
resistance 

allele 
counting 

and 
homoplasy 
counting 

no SNPs ~55,000 inferred 
ancestry 
clusters 

Chewapreecha 
et al. [5] 

2014 S. 
pneumoniae 

high 3085 (+ 
validation 

in 616) 

antibiotic 
resistance 

allele 
counting  

no SNPs ~400,000 
(MAF > 

0.01) 

inferred 
ancestry 
clusters 

Salipante et al. 
[16] 

2014 E. coli low-moderate 312 antibiotic 
resistance 

allele 
counting  

yes gene 
presence/absence 

~15,000 
genes 

inferred 
ancestry 
clusters 

Chaston et al. 
[17] 

2014 41 strains N/A 41 host 
development 

time and 
triglyceride 

content 

allele 
counting  

yes gene 
presence/absence 

~12,000 
genes 

consideration 
of genes with 

unique 
phylogenetic 
distributions 

van Hemert et 
al. [15] 

2010 L. 
plantarum 

low 42  host 
immune 
response 

allele 
counting  

yes gene 
presence/absence 

? (CGH) none 

 

Allele counting and homoplasy counting approaches to GWAS 

GWAS approaches for bacteria can be broadly broken down into allele counting [1**, 
3**, 4**, 5**] and homoplasy counting [2**, 12] methods (Table 1 and Graphical 

Abstract).  The primary association signal for allele counting methods is derived from 
an over-representation of an allele at the same site in cases relative to controls, which 
can later be corrected for population stratification.  In contrast, homoplasy counting 

methods (in this case, phyC [2**]) derives its evidence of association by counting 
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repeated and independently emerged mutations occurring more often on branches of 
cases relative to controls. Homoplasy, as an indicator of convergent evolution, is a 

well-known signal of positive selection [28]. Combining this signal of selection with 
phenotypic associations (e.g. convergent mutations that occur only in cases and not in 

controls) provides the basis for homoplasy-based association tests. 
 

Architecture of a strong association signal 

GWAS signals from allele counting and homoplasy counting methods are not expected 

to perfectly overlap because each method represents different strengths and 
weaknesses.  However, with a sufficiently large sample size, allele counting methods 

theoretically can detect all convergent sites (identified by homoplasy counting 
methods) as well as non-convergent sites.  Still, ever-increasing sample size does not 
directly address the confounding effects of both population stratification and LD on 

allele counting methods.  Homoplasy counting intrinsically accounts for these effects 
by virtue of its phylogenetic convergence criterion.  In contrast, allele counting 

methods have no such phylogenetic requirement. Thus, a monophyletic group 
containing many cases with the same over-represented allele at the same site may 

provide a strong signal for allele counting while providing no signal for homoplasy 
counting.  Conversely, homoplasy counting requires a smaller count of homoplasy 

events (versus allele counts) in order to reach statistical significance; thus, a relatively 
small sample size with a strong paraphyletic structure may provide homoplasy 

counting with a much stronger signal than allele counting. 
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A genome-wide association study of antibiotic drug resistance in 

Mycobacterium tuberculosis 

To examine the impacts of clonal frames (strong LD) and population stratification, we 

performed a 'traditional' GWAS using PLINK on a population of 123 M. tuberculosis 
(MTB) genomes that had been previously analyzed by phylogenetic convergence 

(phyC) [2**].  Of the 123 strains, 47 (cases) are resistant to at least one antibiotic and 76 
strains are sensitive to all antibiotics (controls).  This dataset contains 11 'gold 

standard' experimentally-verified antibiotic resistance alleles, all of which were 
identified by phyC, along with 39 new phyC hits in nonsynonymous coding sites and 

intergenic regions, and 7 hits in synonymous sites.  We chose this particular MTB 
dataset as it allows a comparison of the results from traditional GWAS and phyC, and 

also because MTB genomes possess extensive LD and strong population structure, 
making them challenging subjects for traditional GWAS. 
 

Clonal frames and the resolution of GWAS signals 

MTB is considered to be a highly clonal pathogen, with very little detectable 

recombination [18]. Consistent with this, we observe a clonal frame consisting of linked 
sites across the genome. This clonal frame is evident from the extensive genome-wide 

linkage (black or red in Figures 1a and b, respectively), interrupted by a few homoplasic 
sites (small white or black points, respectively) identified by the four-gamete test [19] or 

the D' measure [20] of linkage (Figure 1a and b). The r2 measure [21] does not directly 
measure recombination or homoplasy, but rather how well the allelic state at one site in 

the genome can predict the allele present at another site. The r2 analysis confirms that 
MTB has extensive genome-wide LD, posing a challenge to pinpointing causal variants 

(Figure 1c and d). Other more highly recombining bacteria, such as Streptococcus 

pneumoniae (Figure 1e) have less long-range LD and more localized, shorter LD blocks 
(black triangles near the horizontal axis), facilitating GWAS [5**]. Because the extent of 
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genome-wide linkage is unlikely to be known a priori, an important first step before 

performing a bacterial GWAS is to characterize LD, as illustrated here (Figure 1). 
 
Figure 1.  Patterns of linkage disequilibrium (LD) in bacterial genomes assessed by 

different metrics.  The x-axis of heat maps (a-d) represents the physical position along 

the MTB genome; (e) shows the S. pneumoniae genome.  Each square in the heat map 

represents a pairwise calculation of LD.  

a) Four-gamete test.  White squares denote four observed haplotypes indicating 

recombination may have occurred between the two sites.  Black squares denote 

three or fewer observed haplotypes (strong linkage). 

b) Pairwise |D’| measurements (range of |D’| values:  0 ≤ |D’| ≤ 1).  Red squares 

denote |D’| = 1 (strong linkage).  Black squares denote |D’| < 1. 

c) Pairwise r2 measurements (range of r2 values:  0 ≤ r2 ≤ 1).  Black squares denote r2 

= 1 (strong correlation).  The lighter squares denote progressively smaller r2 values. 

d) Pairwise r2 measurements for the top 133 GWAS hits only.  Black squares denote r2 

= 1.  The lighter squares denote progressively smaller r2 values. 

e) Pairwise r2 measurements of beta-lactam resistance associated variants co-detected 

in two separate S. pneumoniae populations [5**].  Black squares denote r2 = 1.  The 

lighter squares denote progressively smaller r2 values. 
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Correcting for population stratification  

The strong clonal nature of MTB also creates strong population substructures that in 

turn may lead to false positive associations.  Without any population stratification 
correction we observe a substantial systematic inflation of the association test p-

values (Figure 2a), likely due to both causal and non-causal resistance-associated 
mutations being linked on the same clonal frame.  We assessed two classic methods 
of addressing population stratification.  The first method, called genomic control [22],  

normalizes all p-values by a single inflation factor λ, which is the observed median chi-

square divided by the expected median chi-square with 1 degree of freedom.  Due to a 

relatively large observed inflation factor (λ = 12.20), genomic control seems to over-
correct, leaving no statistically significant GWAS hits (Figure 2b). A less conservative 

a b

c d

Four-gamete Test (M. tuberculosis) D’ (M. tuberculosis)

r2 (All Markers, M. tuberculosis) r2 (Top GWAS Hits, M. tuberculosis)

e r2 (Top GWAS Hits, S. pneumoniae)

~4.4 Mbps~4.4 Mbps

~4.4 Mbps ~4.4 Mbps

~2.2 Mbps
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correction for population stratification is to infer ancestry by identifying genetic 
subpopulations within the overall population, and then testing for association 

conditional on these subpopulations.  Subpopulations can be inferred using a variety of 
methods (e.g. multi-dimensional scaling in PLINK [23], principal component analysis in 

EIGENSTRAT[24], and BAPS [25]), then used as covariates in association testing (e.g. 
with the Cochran-Mantel-Haenszel test). Here, we defined subpopulations based on 14 

previously defined MTB epidemiological clusters [2**].  Using these epi-clusters as 
covariates reduced the inflation factor to 1, suggesting that it effectively controls for 

population stratification (Figure 2c). Although this procedure clearly changes the 
Manhattan plot (Figure 2, right panels), producing more clean 'hits' that stand out from 

the average p-value, we note that none of these hits pass correction for multiple 
hypothesis testing. Therefore, correcting for population stratification can reduce GWAS 

power significantly – a problem that could potentially be overcome by using larger 
sample sizes (e.g. thousands rather than hundreds of genomes; [5**]).  

 
Figure 2.  GWAS for antibiotic resistance in MTB. 

GWAS was performed using Plink version 1.07 [23]. The x=y line (red in QQ plots; left) 

represents the null hypothesis of no association signal. In Manhattan plots (right), SNPs 

in 'Gold Standard' resistance genes are shown in red, and SNPs in phyC candidate 

genes in green (excluding synonymous sites). Different corrections for population 

stratification were applied: 

a) No population stratification correction.  

b) Population correction with genomic control. 

c) Population correction using “epi-clusters” and Cochran-Mantel-Haenszel 2x2xK test, 

where K = 14 epi-clusters. 

 

 
 



 31 

 

Comparison of GWAS against convergence testing 

Despite the lack of significance after multiple testing correction, we identified 133 
potential GWAS hits (SNPs) in 77 genes that stood out as outliers from the average 

genome-wide p-value (Figure 2c), which we will discuss for illustration purposes. These 
GWAS hits overlapped with 5 of 11 previously known 'gold standard' resistance genes 

and 22 of 46 additional phyC candidate resistance genes.  It is also evident that 
correcting for population stratification improves the overlap with known resistance 
genes and phyC hits (Figure 3).   

 
 

a

b

c

MTB genome position (bp)

MTB genome position (bp)

MTB genome position (bp)

No Population Stratification Correction

Genomic Control

Epi-clusters
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Figure 3.  Overlap among GWAS candidates, phyC candidates, and “Gold standard” 

resistance genes.  Numbers in Venn diagrams are in units of genes or intergenic 

regions. 

a) No population stratification correction. 

b) Population correction using “epi-clusters” and Cochran-Mantel-Haenszel 2x2xK test, 

where K = 14 epi-clusters. 

 

Potential new drivers of drug resistance  

Of these top 133 GWAS hits, 75 SNPs (in 50 genes) did not overlap with either known 

resistance genes nor with phyC candidates (Figure 3b).  Due to long-range LD, it is not 
immediately clear without further analysis whether these 75 SNPs represent false 
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positives due to their correlation with the true drivers of resistance, either 'gold 
standard' resistance genes or phyC candidates. However, 15 out of these 75 SNPs 

were relatively uncorrelated (r2 < 0.3) with any of the other 133 top GWAS hits, 
suggesting they could play causal roles in resistance phenotypes.  As an example to 

illustrate the importance of assessing LD patterns around GWAS hits, the top GWAS 
hit (a nonsense mutation in an oxidoreductase gene, Rv0197) can be viewed from two 

different perspectives: 
 

The top GWAS hit may be a false positive because it is in moderate correlation (0.4 < r2 
< 0.5) with two phyC candidates (PPE9 and PE_PGRS4 genes) and two other GWAS 

hits (PE-PGRS30 and PE-PGRS46 genes), and does not represent a true causal 
variant. 

The top GWAS hit may be driving the association.  Although it is in moderate 
correlation with four other phyC or GWAS hits, all four hits reside within the PE/PGRS 

families of genes, which are highly polymorphic and might represent false positive 
associations [2**]. 

Whether this GWAS hit is causal or not can only be firmly established with followup 
experiments. 

 

Future Directions 

We have shown the potential of GWAS for bacterial genomes while highlighting two 

key obstacles: long-range LD within the clonal frame and extensive bacterial 
population stratification both reduce our ability to pinpoint causal mutations with 

confidence. However, a third feature of bacterial genomes – the relative strength of 
positive selection – provides an opportunity to increase the resolution and confidence 

of GWAS hits. One could combine positive selection tests and GWAS, as has been 
done previously for traits shaped by positive selection [26, 27]. This approach may 

potentially address the problem of clonal frames obscuring true causal variants and 
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making them indistinguishable from linked non-causal variants.  This idea attempts to 
identify causal variants in two steps: 

 
perform a genome-wide selection scan identifying any genomic regions that are 

putatively under positive selection 
perform a “targeted” association study on each genomic region under positive 

selection 
 

The rationale here is that each genomic region identified as being under positive 
selection effectively “unlinks” the putative causal variants from its background clonal 

frame, provided that the selection test itself can distinguish a positive selection region 

from the clonal frame upon which it occurred [28].  Since positive selection alone does 
not provide sufficient evidence that a region is associated with the phenotype of 
interest, step two targets each of the genomic regions identified in the selection scan 

and tests each one for association with a phenotype of interest. In phyC, the two steps 
are done simultaneously, using convergence as the signal of positive selection and the 

specificity of convergence to cases but not controls as the association signal. Future 

work might 'mix and match' different signals of selection and association. 
 

As this new and growing field develops, we envision a future where multiple genetic 
mapping approaches – including GWAS, phyC and selection scans – are combined.  

Each method may harbor its own strengths and weaknesses so that when combined, 
each method provides distinct information, thus increasing the power to detect true 

and causal associations.   
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Chapter 2:  Classic genome-wide association methods are 
unlikely to identify causal variants in strongly clonal microbial 
populations 
 

Chen PE, Jesse Shapiro B. Classic genome-wide association methods are unlikely to 

identify causal variants in strongly clonal microbial populations. bioRxiv. 2021. p. 
2021.06.30.450606. doi:10.1101/2021.06.30.450606 

 

Abstract 

Since the advent of genome-wide association studies (GWAS) in human genomes, an 
increasing sophistication of methods has been developed for more robust association 

detection.  Currently, the backbone of human GWAS approaches is allele-counting-
based methods where the signal of association is derived from alleles that are 

identical-by-state.   Borrowing this approach from human GWAS, allele-counting-
based methods have been popularized in microbial GWAS, notably the generalized 
linear model using either dimension reduction for fixed covariates and/or a genetic 

relationship matrix as a random effect in a mixed model to control for population 
stratification.  In this work, we show how the effects of linkage disequilibrium (LD) can 

potentially obscure true-positive genotype-phenotype associations (i.e., genetic 

variants causally associated with the phenotype of interest) and also lead to 
unacceptably high rates of false-positive associations when applying these classical 

approaches to GWAS in weakly recombining microbial genomes.  We developed a 
GWAS method called POUTINE (https://github.com/Peter-Two-Point-O/POUTINE), 

which relies on homoplastic mutation to both clarify the source of putative causal 
variants and reduce likely false-positive associations compared to traditional allele 

counting methods.  Using datasets of M. tuberculosis genomes and antibiotic-
resistance phenotypes, we show that LD can in fact render all association signals from 

allele counting methods to be fully indistinguishable from hundreds to thousands of 
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sites scattered across an entire genome.  These classic GWAS methods thus fail to 
pinpoint likely causal genotype-phenotype associations and separate them from 

background noise, even after applying methods to correct for population structure.   
We therefore urge caution when utilizing classical approaches, particularly in 

populations that are strongly clonal. 
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Introduction 

To date, human genome-wide association studies (GWAS) have revealed meaningful 

evidence both about genetic architectures and the underlying pathways involved in 
human disease and other heritable traits.  Microbial GWAS, while gaining popularity, is 

still in its infancy compared to human GWAS.  Borrowing knowledge and methodology 
from human studies, microbial association studies are prone to similar pitfalls but also 

present new challenges due to the distinct and diverse population genetics of 
microbes [1].  Notably, population stratification and linkage disequilibrium (LD) present 

substantial impediments to identifying potential causal genotype-phenotype 
associations in strongly clonal populations.  The first obstacle is a similar confounder 

seen in human GWAS, though microbial populations often exhibit a much higher 
magnitude of stratification owing to clonal descent.  The second obstacle is the focus 

of this paper, and perhaps the greater obstacle of the two.  Crucially, microbial 
populations exhibit both strong and long-range LD due to recombination mostly via 
relatively short gene conversion events rather than the process of crossing over, 

leaving large and potentially distant regions of the genome linked in a clonal frame [2]. 
 

The human haplotype map [3–5] exploited the block-like LD created by crossing over 
(i.e., recombination during meiosis in which homologous chromosomes exchange 

segments) to provide a shortcut where a relatively small subset of genome-wide 
markers within haplotype blocks could ‘tag’ other markers in LD as a proxy.  The non-

block-like structure of clonal frames seen in many microbial populations presents a 
situation that is the converse of that seen in the human haplotype map; where blocks 

allowed a shortcut to genome-wide coverage, clonal frames resemble one large 
haplotype block covering the length of entire microbial genomes, thus obscuring 

potential causal sites that are not distinguishable from the rest of the frame.  This 
scenario is perhaps analogous to the fine-mapping problem where an attempt is made 

to clarify the source of the putative causal signal within an LD region [6], except in 
highly clonal populations the region to fine-map is the entire clonal frame.  Population 
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genetic theory informs us that, in genomes exhibiting strong LD, only sites under 
convergent selection, which experience homoplasic mutations in independent lineages 

and thus not in LD with other sites, are likely to be distinguishable from other sites [1].  
Yet, much of the recent literature on microbial GWAS tends to report results without 

explicit mention of the LD profiles of the top hits, making it difficult to assess which 
mutations or genes are more likely to be driving the association and how many others 

are likely associated by LD.   
 

Currently, GWAS methods can be broadly broken down into two general approaches 
based upon the source of their primary association signal:  allele counting and 

homoplasy counting [1].  Regardless of the association model used, all allele counting 
methods derive their signal from alleles that are identical-by-state, whereas homoplasy 

counting methods derive their signal strictly from alleles that are identical-by-state but 
not identical-by-descent, often called homoplasic, convergent, or parallel mutations 

that arise repeatedly and independently on different genetic backgrounds.  To date, 
most microbial GWAS in the literature have primarily relied on the classical allele 

counting methods invented for human studies, notably generalized linear regression 
using either dimension reduction for fixed covariates and/or a genetic relationship 

matrix as a random effect in a mixed model to control for population stratification [7–9].   
 
Here we build off of our earlier homoplasy counting association method [10] and 

describe a next-generation GWAS method, which we call POUTINE.  We apply 
POUTINE to two datasets of M. tuberculosis genomes and antibiotic-resistance 

phenotypes and find that it identifies known resistance mutations while minimizing 

likely false-positive associations.  Utilizing our new tool, we further explore a major 
question concerning the state of classic allele counting and its use for strongly clonal 

microbial populations:  Do allele counting methods identify signals outside of 
convergent sites, and are these likely true or false-positive associations? 
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Results 

A new homoplasy counter 
We begin by describing key aspects of POUTINE, a GWAS method based on 
homoplasy counting, with specific details elaborated in the Methods. Homoplasies at 

each nucleotide position (site) are identified by finding all identical alleles that do not 
share a most recent common ancestor.  Using only homoplasic mutations offers 

solutions to two of the most substantial obstacles in microbial GWAS.  First, 
homoplasic mutations having arisen on independent genetic backgrounds are not 

linked to other sites in the genome. This feature allows homoplasies to naturally bypass 
the LD problem because convergent sites are by definition unlinked from the clonal 

frame and thus provide truly independent association signals.  Second, there is no 
need to further correct for the confounding effect of population stratification, which 

arises due to genetic ancestry.  By definition, homoplasic mutations are not identical-
by-descent, and thus do not contribute to spurious associations caused by 

subpopulations where cases are on average more genetically related with each other 
than controls.  Avoiding population stratification correction preserves statistical power 

that is otherwise potentially lost due to this correction.   
 

Our goal with POUTINE was to develop a homoplasy-based GWAS method that is 
both robust and user-friendly.  Currently, POUTINE input phenotypes are strictly 
discrete and binary.   Different from the original phyC method [10], ancestrally 

reconstructed phenotypic states are avoided due to the noise they may potentially 
introduce to the association signal.  With the growing scale of genome sequencing, 

larger sample sizes can compensate for excluding ancestral genotypes and 
phenotypes from the homoplasy counts.  Genotypes are strictly from the core genome 

and only biallelic single nucleotide variants (SNVs) are currently tested for associations 
with a discrete phenotype using a binomial test.  The background mutation rate across 

the genome can potentially vary, thus allowing some sites to have a higher expected 
level of homoplasies.  The binomial test incorporates the total number of observed 
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homoplasies at each site, thus accounting for any varying background mutation rates.  
Critical to homoplasy counting is the robustness of the input tree topology as this 

directly determines which mutations are called homoplasic.  The input ancestral 
phylogenetic reconstruction is optional; users may choose to precompute an ancestral 

reconstruction or opt for POUTINE to compute one based upon the topology of the 
input tree.   

 
Homoplasic mutations are often taken as hallmarks of positive selection.  The intuition 

is that adaptive mutations under positive selection will appear repeatedly in 
independent lineages experiencing the same selective pressure [11,12].  However, 

some baseline level of selectively neutral homoplasy is expected, and in the context of 
GWAS, some of these homoplasies will be spuriously associated with the phenotype 

under study.  In POUTINE, we therefore establish an empirical null distribution (with no 
association between phenotype and genotype) by permuting the phenotypes and 

leaving the genotypic structures completely intact.  We assess sites likely to be under 
convergent selection using Westfall and Young’s max(T) resampling scheme [13].  This 

marks an additional improvement from the earlier phyC method.  Principally, it 
produces a familywise error rate (FWER) that is far less conservative than methods that 

treat each hypothesis as being independent.  This feature is particularly appropriate in 
strongly clonal populations where many regions are in complete LD and thus all sites in 
the region present as identical hypotheses.  In addition, in the context of strongly 

clonal populations, the max(T) method is also more favorable than classic false 
discovery rate (FDR) based approaches.  Methods to strongly control the FDR, such as 

Benjamini and Hochberg’s step-up procedure [14] and Storey’s q-value [15], were 
originally proposed under the assumption of independent tests.  As such, these 

methods are unproven to strongly control the FDR in the face of pervasive dependence 
structures between sites.  We note that there have been recent developments in 

relaxing this assumption to allow for increasingly arbitrary dependence structures [16–
20]. 
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As a further improvement upon phyC, POUTINE has been designed to handle much 
larger datasets.  To scale to larger sample sizes in the tens of thousands of genomes, 

our implementation of POUTINE uses several optimizations including parallelizing the 
most time-consuming step, which is resampling.  To further decrease runtime, the user 

may set a minimum homoplasy count to ignore sites with low counts that are unlikely 
to be statistically significant.  We find this option to be helpful as many sites potentially 

have only one or two homoplasic mutations. 
 

Benchmarking POUTINE on a test dataset 
To empirically test the sensitivity and specificity of POUTINE, we reanalyzed a ‘test’ 
dataset of 123 M. tuberculosis genomes previously analyzed with phyC to identify 

convergent mutations associated with a broad resistance phenotype (defined as 

resistance to any anti-TB drug by conventional drug susceptibility testing) [10], and 
compared our new results to this reference set.  Table S1 shows the six genome-wide 
significant hits from the reanalysis.  All four genes previously identified in the literature 

as causal genes for drug resistance (rpoB, embB, rpsL, rrs) were re-identified as top 

hits, except for rpsL.  The lack of signal for rpsL could be due to the relatively small 

sample size of 123 genomes and only four homoplasic mutations at this site, not 
including mutations in ancestrally reconstructed internal branches. By including internal 

branches, the original phyC may have gained power to identify associations in rpsL, 
but at the likely risk of additional false-positive associations.  In particular, phyC 

identified associations in 16 PE/PPE genes in this dataset, which were reasoned to be 
false-positive associations [10], while the POUTINE reanalysis did not identify a single 

association in a PE/PPE gene.  The family of PE/PPE genes in M. tuberculosis is known 

to be problematic for both sequencing and alignment due to their similarity and 
repetitive nature; thus they are prone to GWAS false positives [10]. Three additional 

genes were identified by POUTINE that were not seen in the previous analysis 
(Rv0853c, Rv0587, Rv1639c).  An examination of the literature reveals that each of 

these three genes has been implicated in drug resistance in M. tuberculosis [21–23]. 
Overall, this real-world example suggests that POUTINE is similarly sensitive compared 
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to phyC (detecting likely true positives), and also more specific (reducing likely false 
positives in PE/PPE genes). 

 

An LD perspective on allele and homoplasy counting signals 
To compare the LD profiles of convergent vs. non-convergent GWAS hits, we analyzed 

a second ‘discovery’ dataset of 1330 M. tuberculosis genomes and an isoniazid drug-

resistance phenotype [24].  To identify non-convergent sites, we used a standard 
allele-counting GWAS approach, implemented in PLINK using logistic regression with 

principal components as covariates to control for population stratification (Methods). 
 

Using POUTINE, we identified three SNVs significantly associated with isoniazid 
resistance after correcting for multiple hypothesis testing, and another three 

‘secondary’ hits which did not survive multiple test correction (max(T)-corrected P = 
0.058; Table 1).  For illustrative purposes, we consider these secondary hits because 

all three sites are one homoplasic case count away from genome-wide statistical 
significance, suggesting that a larger sample size or combining more drug-resistant 

phenotypes into one broad resistant phenotype would show these sites to be 
significant.  In addition, two of the three secondary hits (sites 1674048 and 1674481) 

are in the same region as the primary hit at site 1673425, suggesting that a set-based 
test (i.e., combining mutation counts in the same gene or region) would likely identify 

these two secondary hits as genome-wide significant.   
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Table 1.  Discovery set top hits (POUTINE + PLINK-only hits). 

Physical 
Position Gene Annotation 

Homoplasy 
Counts      

[cases, controls] 

Allele Counts 
[cases, controls] 

max(T) 
FWER 

Firth P-
value 

Odds Ratio       
(95% CI) 

  POUTINE Hits     

761155* Rv0667 (rpoB) [10, 0] [17, 0] 1.00e-05 5.10e-04 170   
(9-3073) 

1673425* intergenic:  Rv1482c (hypothetical 
protein) - Rv1483 (fabG1/mabA) [32, 0] [42, 0] 1.00e-05 9.52e-06 586  

(35-9841) 

2726145* intergenic:  Rv2427A (oxyR) - 
Rv2428 (ahpC) [5, 0] [5, 0] 8.01e-03 1.33e-02 58     

(2-1425) 

1674048**! Rv1483 (fabG1/mabA) [4, 0] [50, 29] 5.80e-02 2.00e-18 89     
(33-245) 

1674481** Rv1484 (inhA) [4, 0] [4, 0] 5.80e-02 2.79e-02 40     
(1-1062) 

4247574** Rv3795 (embB) [4, 0] [4, 0] 5.80e-02 3.25e-02 35       
(1-935) 

  PLINK-only Hits     

3941959 intergenic:  Rv3511 (PE_PGRS55) - 
Rv3512 (PE_PGRS56) [0, 0] [46, 35] 1 1.69e-21 39       

(18-84) 

2834870 Rv2518c (ldtB) [0, 0] [42, 21] 1 1.35e-20 59     
(25-140) 

1341120 Rv1198 (esxL) [2, 5] [50, 47] 1 1.13e-19 23       
(12-45) 

1341099 Rv1198 (esxL) [3, 5] [52, 52] 1 1.69e-19 18  
(10-33) 

4123 Rv0003 (recF) [0, 0] [45, 25] 1 3.49e-19 80          
(31-210) 

1552719 Rv1379 (pyrR) [0, 0] [45, 25] 1 3.49e-19 80  
(31-210) 

3485785 Rv3120 (hypothetical protein) [0, 0] [46, 31] 1 1.93e-18 67        
(26-173) 

2241734 Rv1997 (ctpF) [0, 0] [45, 28] 1 2.08e-18 70       
(27-183) 

2372126 Rv2112c (dop) [0, 1] [46, 30] 1 2.94e-18 66          
(26-171) 

*!Denotes primary POUTINE hit.  ** Denotes secondary POUTINE hit.  ✦ Denotes the only site that is 
both a POUTINE and PLINK hit.  Cases refer to resistant phenotypes and controls to sensitive. 
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In contrast to POUTINE, it proved difficult to distinguish GWAS hits from background 
noise using PLINK, even with standard corrections for population stratification.  Due to 

pervasive LD, a genome-wide significance threshold cannot be relied upon to identify a 
subset of plausible hypotheses because of the overwhelming numbers of false 

positives that LD drags below this threshold.  Consider a Bonferroni-corrected P-value 

cutoff of 0.01 (red line in Figure 1).  Even using such a conservative threshold would 
still include too many false-positive associations and would leave the investigator with 

288 genome-wide significant PLINK hits – a daunting number to consider for 
experimental follow-up.  Manhattan plots of strongly clonal populations often feature 

groupings of sites in strong LD that we refer to as ‘LD frames’, visible as horizontal 
lines of sites with near-identical P-values (Figure 1).  We refer to these plots as 

Montreal plots to reflect the low, horizontal skyline in contrast to the vertical 
skyscrapers of Manhattan.  

 
For our purpose of examining LD profiles of allele counting hits, we arbitrarily chose the 

10 sites visually distinguishable above the top LD frame as the top PLINK hits (Figure 
1).  Of these 10, only site 1674048 overlaps with a secondary POUTINE hit (Table 1).  

The careful reader will note that the top PLINK hit by raw allele counts (42 cases to 0 
controls in Table 1) should be site 1673425 but this is not the case in Figure 1.  Due to 

the phenomenon of complete statistical separation at this site (caused by allele counts 
showing all cases and zero controls) as well as a small sample size at the minor allele, 

even the Firth correction used does not sufficiently improve the accuracy of the 
significance estimate (note in Table 1 the wide confidence intervals around the 

estimated effect size).  However, this problem is avoided when using an exact test 
such as Fisher’s exact test, for which we do see site 1673425 as the top hit (Figure S2).  

For the purposes of the further analyses below, this detail does not affect our general 
conclusions. 
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Figure 1.  Montreal plot of the discovery set with correction for population stratification.  

P-values along the y-axis were calculated using PLINK’s logistic regression with the 

Firth correction.  Population stratification was corrected using the first four principal 

components.  The x-axis shows the nucleotide positions along the M. tuberculosis 

genome. 

 
 
To further investigate the effects of linkage on GWAS hits, we compared how PLINK-

only hits were linked to other sites in the genome to the six POUTINE hits.  To focus on 
relatively strong LD, we plot sites across the genome that are linked to a top GWAS hit 
with a threshold of r2 >= 0.5 (Figure 2).  The complete distribution of r2 values is shown 

in Supplementary Figure S1.   Contrasting the two sets of LD profiles shows that the 
homoplasy-counting-based POUTINE signals are predominately free of strong linkage 

from each other and from the rest of the genome.  Conversely, the allele-counting hits 
show strong linkage to sites throughout the genome.  The only POUTINE hit that 

shows a similar LD pattern to the set of PLINK-only hits is position 1674048.  This is 
the only POUTINE hit where the mutations are predominantly non-homoplasic; there 

are 79 minor alleles at this site, only four of which are homoplasies (Table 1).  The other 
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five POUTINE hits are at sites that consist of entirely or predominantly homoplasies.  
These five hits suggest that sites composed of predominantly homoplasic mutations 

can be considered the sole source of an association signal, i.e., there are no other sites 
in strong LD that can be driving this signal, or hitchhiking along with a causal 

association.  In contrast, the associations at site 1674048 and the set of nine PLINK-
only hits cannot be disentangled from linked mutations across the genome (Figure 2).  

Because these hits show strong linkage to each other and to many sites across the 
entire genome, it is unclear how many and which of these sites are driving the 

association signal.   
 

To determine what might be driving the POUTINE hit at site 1674048, we identified all 
the sites to which it is strongly linked (r2 >= 0.5).  Strikingly, all sites in strong LD with 

site 1674048 (orange points in Figure 1) include the entire top LD frame and all nine 
PLINK-only hits.  Among these 10 potential hits, site 1674048 is the only one with a 

known causal mutation (a silent mutation that confers isoniazid resistance) in the 
literature [25].  It, therefore, seems likely that this site is driving the association signal, 

with the other sites being associated due to linkage.  
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Figure 2.  Genome-wide LD (r2 >= 0.5) of top hits (POUTINE + PLINK-only hits). 

 
 
What would the association results look like if one relied only on classical allele 

counting methods (i.e., all homoplasy information is removed from the above 
analyses)?  First, one would mistakenly identify 9 of the 10 top hits as plausible 

candidates of association to isoniazid resistance, with site 1674048 being the only 
known causal mutation.  Even upon further examination of LD for all 10 sites, one is left 
with no meaningful signal because each top hit is strongly linked to sites across the 

entire genome; the likely causal site 1674048 does not stand out in any identifiable 
way.  Second, one would miss all five other POUTINE hits (sites 761115, 1673425, 

1674481, 2726145, 4247574).  Since these five sites are predominantly homoplasic, it 
is possible that with increased sample sizes allele counting would identify them, 

provided that the increase in sample size also increases the minor allele frequencies at 
these sites.  Only then could further examination of LD reveal that these five sites are 

not strongly linked to one another nor to the rest of the genome, and thus be 
considered as plausible candidates. 
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Population stratification corrections do not break up LD 
As an alternative to homoplasy counting, allele-counting GWAS methods are typically 
corrected in an attempt to remove the confounding effect of population stratification. 

Regardless of the population stratification control used, these corrections effectively 
reweight statistical significance at each affected site and thus only shifts the site up or 

down along the y-axis of a Manhattan plot.  Crucially, these corrections say nothing 
about the correlational structures between sites.  Consider how the Manhattan plot 
changes when one removes the stratification control; here we simply removed all 

principal components used in the regression model (Figure 3).  The nine PLINK-only 
hits identified with stratification correction (Figure 1; Table 1) are no longer discernible 

from the top LD frame, leaving only site 1674048 as the lone top hit which rises above 
the top LD frame in the absence of correction (Figure 3).  Therefore, stratification 

correction of an allele counting GWAS identifies eight additional hits compared to an 
uncorrected approach, none of which overlap with homoplasy counting hits.  Without 

LD information, one is susceptible to being misled into thinking that these allele 
counting hits are distinguishable from the top LD frame, when in fact their LD profiles 

say otherwise (Figure 2).   In summary, stratification correction alone cannot bypass the 
confounding effects of LD. 
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Figure 3.  Montreal plot of the discovery set without correction for population 

stratification. The analysis is identical to Figure 1, except no population stratification 

correction was done. 

 
 

 

Discussion 

The state of allele counting methods for strongly clonal populations 
To demonstrate the impediment LD presents to classical GWAS methods, we chose M. 

tuberculosis, a clonal species that features strong and long-range LD across the entire 

genome.  We sought to answer a critical question regarding the utility of homoplasy- 
and allele-counting GWAS approaches:  Do allele counting methods meaningfully 

identify signals outside of sites evolving under convergent evolution?  The answer to 
this question is likely no.  Although allele counting methods may produce strong GWAS 

signals for causal variants that are not convergent, those signals are indistinguishable 
from other similarly strong signals in linked sites.  Crucially, the vast majority of these 
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linked sites – which can easily number in the hundreds or thousands – are likely false 
positives.  The LD frames that represent groupings of strongly linked sites feature 

prominently in Manhattan plots of strongly clonal microbial populations.  In such 
populations, Manhattan plots are more appropriately called Montreal plots because 

they more closely resemble the relatively flat skyline of a city like Montreal (where 
regulations prevent buildings taller than its namesake Mount Royal, with an elevation of 

only 233 m) rather than the skyscrapers punctuating the Manhattan skyline.   
 

Is LD friend or foe? 
The implications of these findings can be extended to other clonal populations, and 
likely to many other populations across the gamut of microbial recombination rates.  It 

is unclear if there exist microbial populations with a sufficiently high rate of 
recombination to exhibit similar block-like LD structures seen in eukaryotic genomes.  

If so, these populations would be more amenable to allele counting methods.  We note 
that there do exist recombination hotspots in bacterial species, such as E. coli [26], C. 

jejuni [27], and others [28].  These distinct regions are relatively unlinked from the rest 

of the genome, and as such can potentially provide a cleaner signal of association.  In 
one such notable example, Chewapreecha et al. analyzed a highly recombining S. 

pneumoniae population to identify six common recombination hotspots [29].  A follow-

up GWAS applying an allele-counting approach (specifically, the Cochran-Mantel-
Haenszel test using population clusters identified with BAPS [30]) on beta-lactam 

antibiotic resistance in this population identified plausible association signals in genes 
encoding penicillin-binding proteins and involved in peptidoglycan synthesis – which 

tended to reside within one of the six common recombination hotspots [31].  It remains 
to be seen if allele-counting GWAS approaches can identify hits outside of such 

hotspots. 
 

A viral population of current substantial interest is SARS-CoV-2.  This population offers 
a timely example of the ramifications of our findings.  This population is strongly clonal 

with evidence showing that there has been little realized recombination, although the 
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potential for recombination is present [32].  Intriguingly, many of the variants of concern 
(VOCs) identified thus far harbor mutations (e.g., E484K in the spike gene) that are 

thought to be under convergent selection [33].  This highlights that even potentially 
recombining populations may be effectively clonal at the early stages of an outbreak 

(or pandemic), at which time homoplasy-counting methods are likely to be much more 
effective than allele-counting to identify genotype-phenotype associations. 

 

Limitations of POUTINE and future directions 
Homoplasy-based methods such as POUTINE provide a promising lifeline for tackling 

association studies in microbial populations.  Its major limitation is that if the causal 
variants to discover are not convergent mutations, then there simply will be no signal to 

discover.  It is unclear at this time what proportion of causal variants are sculpted by 
convergent evolution.  In addition, it is also unclear how much genetic heterogeneity 

underlies the genetic architecture of many microbial traits.  Both locus and allelic 
heterogeneity can dilute the association signal, requiring higher sample sizes to 

recapitulate any signal.  To address allelic heterogeneity, we plan on adding a set-
based test to aggregate individual variants into localized regions to boost the signal.  

Currently, our initial implementation assays biallelic SNVs inside the core genome.  As 
such, POUTINE excludes sources of variation including tri/quad-allelic sites, small 
indels, and the accessory genome.  In the future, it would be straightforward to include 

tri/quad-allelic sites using a multinomial test instead of the binomial.  We note that it is 
currently possible to recode loci in the accessory genome as present or absent among 

the population and run POUTINE as if these recoded loci were core SNVs.  When 
taking this approach, one should proceed with caution because the recombination 

dynamics of the accessory genome may differ from the core.  Lastly, a further limitation 
of homoplasy-based methods can be their inability to identify hemiplasies from 

homoplasies.  A hemiplasy is a form of incomplete lineage sorting that can mask as a 
homoplasy [34,35].  If hemiplasies were mistakenly identified as homoplasies, it would 

no longer be appropriate to consider a homoplasy-based hit to be free from linkage to 
other sites.  As such, sites composed of hemiplasies would present the same problem 
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to homoplasy counting methods as that seen in non-convergent sites for allele 
counting methods. 

 
This work highlights the necessity to both examine and report the LD profiles of top 

association signals.  However, the importance of examining LD should not steer the 
reader away from utilizing prior knowledge of their phenotype of interest, as such 

knowledge can play a clarifying role in narrowing down hypotheses.  However, lesser 
understood phenotypes serve as prime targets for the agnostic view of GWAS to reveal 

underlying mutations in genes and other loci we know nothing or little about. 
 

Because many causal variants may be hiding in non-convergent sites, it is critical that 
we understand if allele counting methods can provide meaningful association signals in 

the face of pervasive LD observed across microbial populations.  For strongly clonal 
populations that are not amenable to allele counting approaches, we must improve 

upon these classical methods, and if these methods prove intractable to LD, we must 
open a new line of inquiry perhaps beyond homoplasy-based solutions in hopes of 

capturing non-convergent causal variants.  Until such time, we urge caution when 
using classical GWAS methods to tackle microbial populations, particularly those with 

little measurable recombination. 
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Methods 

Sample collection, genotyping, and phenotyping 
The reference set of 123 Mycobacterium tuberculosis genomes comprises 14 major 

phylogenetic clusters from different micro-epidemics and 23 geographically diverse 
drug-sensitive isolates.  Of the 123 isolates, 47 were resistant to one or more 

antibiotics. Isolate selection, sequencing, variant calling, and phenotyping are 
described in detail in [10]. 

 
The discovery set of 1330 M. tuberculosis genomes (GenBank BioProject accession: 

PRJNA413593) includes isolates collected by the British Columbia Public Health 
Laboratory of the British Columbia Centre for Disease Control.  Isolate collection and 

phenotypic drug susceptibility testing are detailed in [24].  Samples were sequenced 
on the Illumina HiSeq2500 platform at the Michael Smith British Columbia Genome 

Sciences Centre using 125-bp paired-end reads [36].  All reads were quality checked 
using FastQC [37], trimmed with Trimmomatic [38], and mapped against the H37Rv 

reference genome (GenBank Reference Sequence accession: NC000962.2) using 
BWA-MEM [39].  All variants were called using GATK [40] requiring a Phred quality 

score > 20 and read depth > 5. Variants were further filtered out if a site had a missing 
call rate > 10% of samples, and only biallelic SNVs were kept. 

 

Allele counting 
Both PLINK 1.9 and 2.0 [41] were used for both preprocessing and association testing 

described below.  All PLINK analyses were done with PLINK version 1.90b6.21 64-bit 
(19 Oct 2020) except for firth regression which used PLINK version 2.00a3 AVX2 (28 

Mar 2021).  For all runs, --chr-set -1 was used to designate a single haploid genome. 
   

Population substructures 

To capture population substructures, LD pruning was done in two ways: 1) whole-
genome pruning using one window including all markers, and using the PLINK option -
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-indep-pairwise with varying r2 thresholds of 0.50, 0.90, 0.99;  2) local pruning using 
non-overlapping windows of 1000 markers at a time, and using --indep-pairwise with 

an r2 threshold of 0.99.  Principal component analyses were run on the above LD-
pruned sets and once without any LD pruning using --pca 20 header var-wts (Figure 

S3). 
 

Associating testing 

Fisher’s exact testing was run with a mid-p correction and 107 permutations using 
PLINK options --assoc fisher-midp mperm=10000000, and filtering out sites with a 

minor allele count < 3, sites with a missing call rate > 0.10, and samples with a missing 
call rate > 0.10 using --mac 3, --geno 0.1, --mind 0.1, respectively. 

 
Logistic regression with a Firth penalty was conducted using --glm firth 

cols=+a1count,+totallele,+a1countcc,+a1countcc,+totallelecc,+a1freq,+a1freqcc.  Firth 
correction serves as a penalty during maximum likelihood estimation to avoid non-

convergence issues due to statistical separation [42]. 
 

To control for population stratification, --covar was used with the LD-pruned set, 
described above, which was calculated with non-overlapping windows of 1000 

markers.  The first four principal components were selected as fixed covariates using --
covar-name PC1-PC4 (Figure S4).  Sites were removed from Firth regression using --

mac 4, --geno 0.1, and --mind 0.1.  Multiple-testing correction reports were generated 
using --adjust.  95% confidence intervals around each odds ratio were reported using -

-ci 0.95. 
 

Linkage disequilibrium 

r2 was calculated using PLINK options --r2, --ld-snps followed by sample ID names, --
ld-window 69722 and --ld-window-kb 5000 to remove default settings to allow all 
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genome-wide pairs of markers conditional on the specified sites in --ld-snps, and --ld-
window-r2 0 to report all r2 values. 

 

Homoplasy counting 
All steps except for the building of an input tree are implemented in POUTINE, the 

method introduced here. 
 

Input tree 

Phylogenies were inferred using both FastTree [43] version 2.1.11 double precision (No 
SSE3) and raxml-ng [44] version 1.0.2.  FastTree was run with -nt -gtr settings, and 

raxml-ng was run with --model GTR+G settings. To improve the inference of the tree 
topology, likely homoplasic regions (39 genes previously associated with drug 

resistance from [45]), as well as repetitive regions (e.g., PE/PPE and PGRS genes), 
were filtered out (273 genes; 10% of the genome; genes listed in [46]).  Both tree 

topologies were effectively identical and did not affect the final homoplasy-based hits 
(Figure S5).  Newick format parsing was done using the Coevolution library [47].  

 

Homoplasy identification 

Ancestral genotypic reconstructions were done using TreeTime [48] version 0.7.6.  The 

ancestral subcommand was used with the --gtr infer settings and used the default joint 
maximum likelihood method.  To identify homoplasic mutations, ancestral mutations 

were mapped onto the input tree, and a homoplasic event was called if at least two 
identical mutations/alleles at the same segregating site occurred on independent 

genetic backgrounds, i.e., the two mutations do not share a most recent common 
ancestor. 

 

Association model 

Associations of homoplasic mutations to the phenotype of interest is conducted using 

a binomial test using the binomial distribution defined as binomial(n, p, x), where n is 
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the total number of homoplasic mutations observed at each site, p is the probability of 
success of each Bernoulli trial and is equal to the case to control ratio for all sites, and 

x is the count of homoplasic mutations in cases at each site.  We assume that the 
mutation rate at a particular site is a proxy for the background rate of expected 

homoplasic mutations at that site.   Considering n at each site helps address any 
possible variation in the background mutation rate across the genome, and also 

satisfies the exchangeability principle between sites to allow for resampling of 
permutations.  The implementation of the binomial test is from the Apache Math 

Commons 3.6.1 library (https://commons.apache.org/proper/commons-math/). 
 

Significance assessment 

P-values are derived using a resampling-based multiple-testing method by Westfall & 

Young [13].  This approach is sometimes referred to as max(T) for the maximum test 
statistic.  max(T) is a single-step adjustment method: 

 

𝑝"! = Pr &𝑚𝑎𝑥
"#$#%

*𝑇$* ≥ |𝑡!|	0 𝐻&2 

 

𝑝"! is the probability that the largest test statistic in the resampled data set, 𝑇$, is larger 

than the observed test statistic, 𝑡!, given that all null hypotheses, 𝐻&, are true.  𝑘 is the 

number of tests.  
 

Specifically, for each site a familywise error rate (FWER) is calculated as follows: 
1) pointwise estimate: for each replicate, only phenotypes are permuted while 

genotypes and their dependency structures are left unmodified and completely 
intact.  For each site, a resampled null distribution of no association is 
constructed from m replicates, where m is defined as the user-specified total 
number of replicates/permutations.  The pointwise estimate is defined as 
(𝑟'(!)* + 1) (𝑚 + 1)⁄  [49], where 𝑟'(!)* is the number of replicates equal to or 
more extreme than the observed binomial test statistic. 
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2) familywise estimate: for each replicate, the maximum test statistic is saved, and 
a second null distribution is constructed using all m maximum test statistics 
across all replicates.  The familywise estimate is defined as 
(𝑟+,-!./ + 1) (𝑚 + 1)⁄ , where 𝑟+,-!./	is the total number of maximum test 
statistics equal to or more extreme than the observed binomial test statistic.  

 

Availability of POUTINE 
Download and installation instructions for POUTINE are available at GitHub: 
https://github.com/Peter-Two-Point-O/POUTINE. 
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Supplementary material 

 
Table S1.  All six genome-wide significant POUTINE hits in the reference set of 123 M. 

tuberculosis genomes. 

Physical 

Position 
Gene Annotation 

Homoplasy Counts 

[cases, controls] 

max(T) 

FWER 

1473246* Rvnr01 (rrs) [9,0] 8.89e-04 

761155* Rv0667 (rpoB DNA-directed RNA polymerase subunit beta) [8,0] 6.30e-03 

949535** Rv0853c (pdc alpha-keto-acid decarboxylase) [8,0] 6.30e-03 

4247429* Rv3795 (embB arabinosyltransferase B) [7,0] 2.90e-02 

685461** Rv0587 (yrbE2A hypothetical protein:  ABC-type transporter Mla maintaining 

outer membrane lipid asymmetry, permease component MlaE [Cell 

wall/membrane/envelope biogenesis]) 

[7,0] 2.90e-02 

1847919** Rv1639c (hypothetical protein:  Enterochelin esterase or related enzyme 

[Inorganic ion transport and metabolism]) 
[8,1] 4.23e-02 

* Denotes an overlapping hit with phyC.  ** Denotes a new POUTINE hit not identified by phyC. 
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Figure S1.  Distribution of genome-wide r2 values for the set of POUTINE hits vs the set 

of PLINK-only hits. 
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Figure S2.  Montreal plot of the discovery set.  P-values along the y-axis were 

calculated using PLINK’s Fisher’s exact test with the mid-p correction. 
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Figure S3.  Score plots of the first four principal components derived from the LD 

pruned set using r2 > 0.99 and non-overlapping windows of 1000 sites.  The three colors 

(red, green, and blue) highlight three broad subpopulations as inferred from the 

phylogeny of the discovery set (Figure S5). 
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Figure S4.  Scree plot of the first 20 principal components derived from the LD pruned 

set using r2 > 0.99 and non-overlapping windows of 1000 sites. 
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Figure S5.  Phylogeny inferred using FastTree (double precision version) of the 

discovery set of 1330 M. tuberculosis genomes.  The three colors (red, green, and blue) 

highlight three broad subpopulations. 

 

 

  

Tree scale: 0.01
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Note:  This is an ongoing study.  Currently, we are waiting for an updated dataset from 
our collaborators, which will likely expand our sample size to over 100 host genomes.  

In addition, we will be including a new phenotyping assay that tests for the lack of 
phage replication post adsorption. 
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Abstract 

Phages are key regulators of bacterial abundance and diversity across Earth’s 

ecosystems, and phage therapy is a promising approach to combat antimicrobial 
resistant infections.  Phages typically bind a specific receptor on the surface of 

bacterial hosts, and laboratory studies have shown how mutations in receptor genes 
can confer phage resistance, triggering cycles of co-evolution in which phage evolve to 

bind the mutated receptors.  In addition to surface receptor mutations, bacteria encode 
various anti-phage systems, including restriction modification systems and CRISPR-

Cas.  The relative importance of these different phage resistance genes or mutations 
has not been studied extensively in natural bacterial and phage populations.  Here, we 

apply a genome-wide association study (GWAS) to identify genes and mutations 
associated with phage resistance in a natural population of Vibrio breoganii.  Both V. 

breoganii and sympatric phages were isolated from the same seawater sampled off the 

coast of Massachusetts, USA.  Despite a limited sample size of 32 V. breoganii 

genomes, we identify three genome-wide significant associations between phage 
resistance and point mutations in lamB, a known phage receptor in E. coli, a sugar 

transferase that modifies the host cell surface, and a hypothetical protein.  Secondary 
GWAS hits (not genome-wide significant) involving both point mutations and gene 

gain/loss also point to lamB homologs and other surface proteins as the major 

determinants of resistance.  Our results contrast with a recent study of phage 
resistance in another much more closely-related Vibrio population, which found mobile 

phage defense elements to be the major determinants of resistance, not surface 

receptors.  Together, this suggests that surface receptor variation can explain phage 
resistance on longer evolutionary time scales, while more recently evolved resistance is 
mostly due to mobile defense elements. 
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Introduction 

Since the discovery of bacteriophages (also known as phages) in the early 1900s, they 

have come to be understood as the most abundant biological entities on the planet, 
estimated to have a population size of 1031 - 1032 phage particles [1,2].  They have been 

isolated from a diversity of niches from the human gut to the marine environment, and 
it is believed that there is at least one type of phage to infect every single bacterial cell 

[3].  Many studies have detailed the coevolution of these bacterial-viral systems, but 
we have yet to develop a complete picture of the genetic architecture of phage 

resistance, a potentially complex set of mechanisms where resistance to phage 
infection can occur at any stage of the viral life cycle, from the initial stage of 

attachment to the bacterial host surface to the lysis of the cell [4].  With the emergence 
of multi-drug antibiotic resistance, phage therapy has once again gained popularity 

and further highlights our need to better understand how bacterial resistance to 
phages can evolve during treatment [5].   
 

Although there have been many experimental studies examining phage resistance, 
particularly using experimental evolution and transposon insertion sequencing [6–10], 

there have been few studies examining natural populations.  The sequences of 
laboratory-evolved strains do not fully reflect the natural history of a population and 

depending on the experimental design may only reflect laboratory-scale time of 
evolution between host and a single phage.  A natural population in its niche will have 

experienced a long history of coevolution with a multitude of phages along with other 
external pressures both biotic and abiotic.  Thus, the genome sequences of natural 

phage-resistant and -sensitive bacterial populations capture a more complete picture 
of the genetic architecture underlying phage-bacteria interactions.  A recent and 

notable study used 259 diverse Staphylococcus aureus strains challenged against 

eight phages belonging to all three morphological categories (Siphoviridae, Myoviridae, 
and Podoviridae) that infect the host species.  The authors performed a genome-wide 

association study (GWAS) to discover underlying genetic components of phage 
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resistance, and then followed up newly reported putative causal loci not found in the 
literature with wet-lab verification using both transposon mutants and complemented 

strains [11]. 
 

In this study, we conducted a GWAS in a natural population of 32 Vibrio breoganii to 

examine the underlying genetic elements that influence phage resistance against 22 
marine phages (these bacteria and phages were collected as part of a much wider 

study on a new lineage of non-tailed dsDNA Vibrio phages [12]).  V. breoganii is a rarely 

characterized non-motile marine bacterium that specializes in algal carbohydrates 
[13,14].  While little is known about this species, and our sample size is quite small, we 
demonstrated that there is sufficient statistical power to detect high-effect, common 

mutations of known mechanisms to phage resistance. 
 

 

Results 

Underlying all our association analyses is a set of 32 V. breoganii genomes and a panel 

of 22 phages (Table S1) isolated sympatrically off the coast of Massachusetts.  
Although plaque assays were performed against 22 phages, 18 plaque assays showed 
an insufficient number of controls (i.e., phage susceptibility) to be of further use for 

association analysis.  In addition, upon further examination of the full panel of plaque 
assays, nine of the V. breoganii genomes showed resistance to all 22 phages.  We thus 

introduced a new phenotype labeled, “all-resistant”.  In total, our association analyses 

were conducted using five phenotypes:  phage resistance against four individual 
phages (labeled as 1.034.O, 2.117.0, 1.139.A, 1.117.0) and the all-resistant phenotype. 

 
Although Vibrio genomes tend to exhibit relatively more recombination [15] than typical 

clonal populations, such as Mycobacterium tuberculosis [16], bacterial genomes in 

general lack the block-like linkage disequilibrium (LD) structures necessary for classic 
"allele-counting" GWAS approaches to distinguish between the true drivers of 
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association and hitchhiking background passengers that are in strong LD [17].  Thus, 
we applied both an allele-counting approach and a homoplasy-counting approach to 

both the core and accessory genomes.  For allele counting, we used PLINK [18], and 
for homoplasy counting, we used our recently developed method, POUTINE [17].  A 

summary of all the primary (genome-wide significant, after correction for multiple 
hypothesis tests) and secondary (uncorrected p-values < 10-4) hits is shown in Table 1. 

 
Table 1.  Summary of all hits in both the core and accessory genomes using both 

PLINK and POUTINE across all five phage phenotypes.  Red represents primary hits 

while all other hits are secondary. 

 

1.034.O Phage 
Phenotype

All-resistant 
Phenotype

1.117.O     
Phenotype

2.117.O  
Phenotype

1.139.A  
Phenotype

Core Genome 
Associations

lamB homologue 
maltoporin phage 

receptor
Sugar transferase Hypothetical 

protein
Tyrosine kinase/

phosphatase Permease

lamB homologue 
maltoporin phage 

receptor

Tyrosine kinase/
phosphatase

Permease

malM (part of the 
lamB operon)

Efflux pump

Accessory 
Genome 

Associations

lamB homologue 
maltoporin phage 

receptor

lamB homologue 
maltoporin phage 

receptor

ompF
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Core genome association 
Variant calling was conducted using the 1C10 V. breoganii genome from the National 
Center for Biotechnology Information (NCBI) database because it was longer (4.15 

Mbp) than all other assemblies in our study population.  Using 1C10 as the reference 
better ensures that portions of the core genome are not left out of the core genome 

multiple sequence alignment as the assemblies in our study population varied in total 
genome length (Figure S1).  After variant calling, 265,936 biallelic nucleotide sites were 

observed across the 32 V. breoganii genomes.  To increase the power of the study 

given the small sample size, we reduced the number of markers to 84,607 biallelic sites 
by filtering out all sites with a minor allele frequency < 0.20.  This cutoff was chosen as 

a reasonable detectable limit of association for logistic regression and a relatively small 
sample size of 32.  We further reduced the number of markers tested by filtering out all 

sites that are in complete linkage disequilibrium (LD) with an r2 = 1, while keeping one 
representative site for each subset of sites in complete LD.  Thus, the total number of 

markers used in the core genome association analysis was 42,072 sites. 
 
Using these 42,072 biallelic sites, we examined the magnitude of population 

stratification in our population.  Across all five phenotypes, we observed relatively low 
levels of stratification (Figure S2) compared to the higher levels typically observed in 

microbial populations [19].  We note that this lower level of stratification aids in the 
detection of significant associations, in that any stratification correction will be less 

severe and thus lead to a smaller loss of power.  The first principal component (Figure 
S3) by itself captures the five V. breoganii genomes (222.51.E5, 261.52.F8, 286.51.B5, 

FF-50, 261.52.C1) that are most phylogenetically distant from the rest of the isolates 

(Figure S4).  Thus, using the first two principal components, which explained 27% of 
the total variance, reasonably captured the population structures that contributed to 

stratification. 
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Primary GWAS hits 

Although the sample size of 32 genomes is relatively small, we observed three 
genome-wide significant GWAS hits in the core genome with a familywise p-value ≤ 

0.05.  Two of the three hits are PLINK-only hits while the third hit is a POUTINE-only 

hit.   
 

PLINK hit in a lamB gene 

In the 1.034.O phage phenotype, PLINK revealed a cluster of seven nearby nucleotide 
sites which all showed a familywise p-value = 0.02 and reside inside a lamB gene 

(Figure 1).  Five of the sites are nonsynonymous single nucleotide variants (SNVs) and 
the other two are synonymous (Table S2).  The lamB gene codes for an outer 

membrane protein, and is known to serve two broad functions: (1) as a beta barrel that 

transports maltose (a disaccharide comprised of two glucose molecules) across the 
outer membrane [20,21], and (2) as a phage receptor for various phages including the 

classic λ phage that infects E. coli [22–24].  Thus, this maltoporin has binding sites for 

both maltosaccharide and the tip attachment J protein of the tail of phages [25].  In 

fact, resistance to phage λ has been associated with partial or complete loss of the 

ability to grow on maltose [26].  It is unsurprising that a genome-wide significant hit 
was found inside a classic phage receptor, but what is striking is the near-complete 

penetrance of the putative causal alleles of these seven sites (Table S2).  Only two host 
genomes (10N.261.51.F2, 10N.286.51.A6) that possess the putative causal variant are 

not resistant.  It is this high level of penetrance that amplifies the statistical signal to 
allow for genome-wide significance to occur with such a small sample size.  The effect 
size of each of these seven sites is extremely large (Odds Ratio of 189).  To place this 

massive effect size into context, a typical genome-wide significant association hit in 
common traits in humans shows an OR of 1.5 or less [27], and even these estimates 

are likely to be inflated [28].  As hypothesized in our previous work [19], the genetic 
architecture of prokaryotes can differ from multicellular eukaryotes in that common 

mutations of large effect size may be prevalent, whereas among human traits common, 
large-effect mutations are mainly observed in monogenic and Mendelian traits [29]. 
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Figure 1.  Montreal plot for the 1.034.O phage phenotype, showing the primary hit in 

lamB.  Seven nearby sites (all seven sites overlap onto one single red dot due to the 

scale of the plot) are genome-wide significant inside the lamB gene.  Y-axis shows 

unadjusted p-values from logistic regression using PLINK.  Red labels show the 

physical positions of each of the seven sites. 

 
 

PLINK hit in a sugar transferase gene 

In the all-resistant phage phenotype, PLINK identifies two nearby sites as genome-

wide significant with a familywise p-value = 0.05 (Figure 2).  These two sites reside in a 
sugar transferase gene, and both mutations are nonsynonymous.  Based upon RAST 

and Prokka annotations, as well as manual searches in the NCBI non-redundant 
database and UniProt database, there are many homologs of this gene.  These 

homologs include sypR, tuaA, rfa/rfb, and tag genes like tagO.  Despite this apparent 

diversity, they all function as sugar transferases.  The closest sugar transferase 
homolog to this V. breoganii gene is the undecaprenyl-phosphate N-

acetylgalactosaminyl 1-phosphate transferase gene.  This gene and close homologs 
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have been shown to cause phage resistance in both gram-negative [8,30] and gram-
positive bacteria [31,32] and also cyanobacteria [33].  Although there are variations to 

the underlying mechanism of phage resistance by this gene, all mechanisms involve 
the disruption of the sugar transferase in lipopolysaccharide (LPS) synthesis.  LPS 

structures on the outer membrane of gram-negative bacteria are commonly used as 
phage receptors [34].  In all but a few cases, phage adsorption involves either 

constituents of the cell wall or structures protruding from the cell wall.  Specifically, this 
sugar transferase is known to modify the O-antigen portion of the LPS, thus disrupting 

phage adsorption; the O-antigen portion being a common interaction point between 
bacteria and phage [35].  For this all-resistant phage phenotype, the implication of an 

LPS sugar transferase suggests that it is very likely that there exists at least one LPS 
phage receptor among these nine host genomes that are entirely resistant to all 22 

phages assayed.  The minor allele frequency of this putative causal mutation is 0.28 
and its effect size is an OR of 38.  Again, we observe a potential phage resistance 

mutation that is common in frequency with a relatively large effect size.   
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Figure 2.  Montreal plot of the sugar transferase gene primary hit in the all-resistant 

phenotype.  Two nearby sites are genome-wide significant inside the sugar transferase 

gene.  Y-axis shows unadjusted p-values from logistic regression using PLINK.  Red 

labels show the physical positions of the two sites. 

 
 

POUTINE hit in a hypothetical protein 

In the 1.117.O phage phenotype, POUTINE identified one genome-wide significant site 
with a familywise p-value = 0.04 (Figure 3).  This putative causal variant resides in a 

hypothetical protein and is a nonsynonymous mutation.  The minor allele frequency at 
this site is 0.375 which corresponds to 12 minor alleles.  POUTINE shows that all 12 

alleles are resistant to phage 1.117.O, and again we observe a common mutation with 
a large effect size, where the minor allele has complete penetrance (i.e., all genomes 

that harbor this minor allele are resistant to phage 1.117.O).  This site is also a "hybrid 
site"; 12 of the alleles are homoplasic while the remaining 20 alleles are identity-by-
descent alleles.  Thus, it is not always the case that convergent sites consist of only 

homoplasic mutations.  Other such hybrid sites have been observed, for example in a 
causal mutation in isoniazid drug resistance in an M. tuberculosis population [17].  The 
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function of this hypothetical protein is currently unknown.  Both RAST and Prokka 
annotations show this gene to be a hypothetical protein.  A search for sequence 

homology in the NCBI database reveals 35% identity over 91% coverage to the 
VP1478 hypothetical protein in Vibrio parahaemolyticus RIMD 2210633 and 95.4% 

identity across the entire length of a hypothetical protein in the FF-50 V. breoganii 

genome.  Thus, this gene has no homology to any available sequence to date that has 

an annotated function.  This finding is consistent with the fact that V. breoganii is less 
characterized relative to other vibrios such as V. cholerae.  The only V. breoganii 

genomes submitted to any database have been provided by the Polz laboratory. 

 
Figure 3.  Montreal plot of the unknown gene primary hit in the 1.117.O phage 

phenotype.  One site is genome-wide significant inside this hypothetical protein.  Y-axis 

p-values are pointwise estimates using POUTINE. 
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LD profiles of primary hits 

Because bacterial genomes exhibit strong and long-range LD even in relatively highly 
recombining species like the vibrios, it is crucial to examine all other loci that are in 

strong LD with these hits to determine the likely driver of the association signal [17].   
 

lamB LD profile 

The lamB primary hit contains seven nucleotide sites that are in complete LD (r2 = 1).  
We surveyed the entire genome for sites in relatively strong LD (r2 > 0.5) with this 

cluster of genome-wide significant hits, and this revealed only two loci.  The first locus 
is a 1074 bp region located completely within the lamB gene and surrounds the cluster 

of seven sites.  This region spans almost the entirety of the lamB gene, with the rest of 

the gene in relatively weak LD to this region (Figure 4).  The second locus is a single 

nonsynonymous site (r2 = 0.62) located in a nearby gene, malR, approximately 1 Kbp 
from lamB.  The malR gene in some gram-positive bacteria is known to be part of the 

maltose regulon and functions as a repressor of the regulon in the absence of maltose 

[36].  It is unclear at this time what the full complement of genes is that participate in 
the maltose regulon for V. breoganii species, however, the proximity of malR to lamB is 

consistent with how operons are spatially organized in clusters within the genome.  

Even if malR does function as a repressor for the operon that contains lamB, it is 
unclear how an altered malR function, potentially caused by this nonsynonymous 

mutation, would affect lamB expression.  Since no other loci within the genome are in 

strong LD with the lamB primary hit, it is reasonable to conclude that the lamB gene, 

and potentially also the linked malR gene, are causal loci for resistance against phage 

1.034.O. 
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Figure 4.  Heatmap of linkage disequilibrium within the lamB gene primary PLINK hit.  

LD of the seven genome-wide significant sites against all other segregating sites within 

the lamB gene (1302 bp).   

 
 

Sugar transferase LD profile 

The sugar transferase primary hit consists of two sites in complete LD.  Similar to the 

lamB LD profile, we observed a 228 bp region of strong LD surrounding the two sites 
and located completely within the transferase gene.  This region spans close to half the 

length of the transferase gene, with the rest of the gene in relatively weak LD (Figure 5).  
In addition, we also observed a distant site ~474 Kbp away in strong LD (r2 = 0.57) and 

located inside a gene annotated as an N-carbamoyl-L-amino acid hydrolase.  A 
literature search revealed no known connection with phage resistance and therefore it 

is reasonable to conclude that the sugar transferase alone is the likely causal gene, 
although any causal effect from the hydrolase cannot currently be ruled out. 

 
Figure 5.  Heatmap of linkage disequilibrium within the sugar transferase gene primary 

PLINK hit.  LD of the two genome-wide significant sites against all other segregating 

sites within the sugar transferase gene primary hit (639 bp). 
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Hypothetical protein LD profile 

This primary hit consists of only one site located inside an unknown protein.  
Consistent with the fact that this site is a target of convergent mutation, we observed 

no other sites within the genome that is in complete LD with this POUTINE hit.  Similar 
to the other two primary hits, this convergent site is only in strong LD with seven other 
sites that are spread across a relatively small 72 bp region that spans ~10% of the 

length of the unknown gene (Figure 6).  In addition, this primary hit is in strong LD (r2 = 
0.54) with one synonymous site in the malT gene that is located ~3.37 Mbps away.  

The canonical E. coli malT gene is a transcriptional activator of the operon containing 

lamB [37], and mutations disrupting malT are known to lower the expression of lamB 

and thus diminish phage adsorption [10].  The linkage between the unknown protein 
and malT is difficult to interpret partly owing to the lack of any functional annotation for 

the primary hit.  Moreover, without a higher sample size, we cannot conclude that malT 

is not a causal gene for phage 1.117.O, albeit the current statistical evidence does not 

show this site to be genome-wide significant.  One reasonable interpretation is that the 
linkage between the two genes is not functional but rather a side-effect of the pattern 

of recombination where even in moderate to high recombining microbial populations, 
there will still exist long-range LD [15,19]; we note that an r2 > 0.5 is an arbitrary 
threshold for this analysis and does not signify a precise biological meaning.  Finally, it 

is unclear if malT is interacting with the unknown protein, perhaps as an 

uncharacterized member of the maltose regulon, or that the unknown protein is acting 
alone in a non-lamB-related mechanism.   
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Figure 6.  Heatmap of linkage disequilibrium within the unknown gene primary 

POUTINE hit.  LD of the one genome-wide significant site against all other segregating 

sites within the unknown gene primary hit (1020 bp). 

 
 

The three primary hits reside in recombination hotspots 

All three LD profiles of the primary hits (Figures 4-6) showed the same pattern of LD 

where each set of genome-wide significant sites is surrounded by a region of strong 
LD relatively unlinked to the rest of the genome.  No other regions in the genome 

(except for the three exceptions detailed above) showed strong LD (r2 > 0.5) with these 
three highly localized regions.  This pattern is consistent with recombination hotspots.  

This genomic feature has allowed for a cleaner dissection of which sites are likely the 
true positive drivers underlying the association signals for the lamB and sugar 

transferase allele counting hits.  Curiously, we did not observe homoplasy counting hits 
in either putative recombination hotspot.  By definition, recombinant tracts are 

homoplasic, so the expectation is that if a site is genome-wide significant inside a 
hotspot, then it will likely be identified as also convergent.  A likely explanation is that 

homoplasic mutations are not being accurately identified.  Two main reasons may 
prevent the identification of homoplasies:  1) Our small sample size provides little 

sample diversity and therefore there is insufficient polyphyletic structure in the inferred 
phylogeny to observe all homoplasic mutations.  2) The branches of the phylogeny are 

not well-resolved due to the level of historical recombination present, and thus the 
inferred phylogeny does not accurately reflect clonal relationships but rather the 

population's recombination history [38].  We examined the level of homoplasy within 
and surrounding the hotspots and we did not observe an elevated level of homoplasies 

inside the two putative recombination hotspots relative to their surrounding regions.  If 
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recombination is ongoing, the expectation would be that the hotspots harbor elevated 
levels of homoplasic mutations relative to the rest of the genome.  The lack of 

homoplasies in the two putative hotspots supports the theory that these mutations are 
not being identified with sufficient accuracy. 

 
 

Secondary hits 

Despite the small sample size and low statistical power in our study, both common 
frequency and large effect size mutations allowed the identification of three putative 

causal genes for phage resistance at genome-wide significance.  To further probe for 
other potential candidates of phage resistance, we examined a relatively small subset 

of sites enriched at a pointwise p-value (resampling-derived point estimates from 
permutation testing) of less than 10-4, and that also showed an annotated function and 

underlying mechanism that has been reported in the literature to be involved in phage 
resistance.  We consider these hits as ‘secondary hits’ in contrast to the three ‘primary 

hits’.  Here, we highlight the following promising candidates and note that if they are 
causal genes, they can potentially reach genome-wide significance with higher sample 

size. 

 

PLINK hit located 5’ of a permease gene 

In the 1.139.A phage phenotype, the top PLINK site with the smallest pointwise p-value 
estimate contains a nonsynonymous mutation that resides in the non-coding region 

that is 5’ relative to the start of a permease gene.  Permease proteins in general 
catalyze the transport of specific classes of molecules across cell membranes and are 

found in virtually all cells ranging from multicellular eukaryotes to archaea [39].  Gram-
negative bacteria such as vibrios also contain many permease genes for both signal 

transduction and energy transport; one of the classic permeases, lacY, is a 

transmembrane protein that is part of the lac operon in gram-negative E. coli and 

facilitates the active transport of lactose [40].  Interestingly, in E. coli it has been shown 
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that the mannose permease, encoded by the manXYZ locus of three genes, is not only 

necessary for the transport of mannose and maltose but also the penetration of λ 

phage DNA across the inner membrane [41–43].  This secondary hit in a non-coding 

region 5’ of a V. breoganii permease could function as a cis-acting regulatory element 
that modifies the expression of its corresponding permease gene, which then acts 

similarly as the mannose permease for λ phage. 

  

PLINK hit inside a tyrosine kinase/phosphatase system 

Examining the most significant pointwise estimates revealed that PLINK identified 
nearly the same set of sites inside a tyrosine kinase and tyrosine phosphatase gene in 
both the 2.117.O and 1.117.O phage phenotypes.  For the tyrosine phosphatase locus, 

the same four sites were found between the two phenotypes.  In the tyrosine kinase 
locus, each phenotype revealed a different site only 30 bps apart.  A relevant study in 

L. monocytogenes [44] revealed a mechanism for the tyrosine phosphorylation system 

to cause resistance to Listeria phage A511 and P35.  In this study, the authors created 

a deletion mutant that lacks all four of the highly conserved tyrosine phosphatase 
genes seen in the strains studied.  The deletion mutant was observed to lack N-

acetylglucosamine in its wall teichoic acid, a structure that protrudes beyond the cell 
wall and capsule of gram-positive bacteria analogous to LPS structures and outer 

membrane proteins in gram-negative bacteria, thus capable of binding with phages.  
Wall teichoic acid is also a primary phage receptor for Staphylococcus species [32].  

As further evidence that the tyrosine phosphatase genes are necessary for phage 

resistance, the authors created a set of complement strains harboring varying sets of 
the four genes and showed that phage susceptibility was recapitulated to varying 

degrees depending on the complement strain used.  Phage adsorption assays further 
showed that the mechanism underlying resistance was likely at the attachment phase 

of the phage to the host cell wall.  Although the example above is in a gram-positive 
bacteria and wall teichoic acids are not found in gram-negative bacteria, there are 

reported examples in gram-negative bacteria of how tyrosine kinase/phosphatase 
systems can modify various cell wall entities.  In enteropathogenic E. coli species, the 
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Etk/Etp tyrosine kinase/phosphatase genes are required for capsule formation [45], a 
structure that resides outside of the outer membrane and cell wall.  In the gram-

negative plant pathogen, Erwinia amylovora, an Etk homolog was shown to play a role 

in exopolysaccharide formation.  The authors created a complement strain using a 
phage-resistant mutant and showed the restoration of phage susceptibility to E. 

amylovora phage Ea1h [46].  Broadly, the tyrosine phosphatase system has been 

shown to play a role in the regulation of cell wall integrity [47] and biofilm formation 
[48], thus disruption of either the kinase or phosphatase component may lead to a 

modification of various cell wall structures and downstream modification of the 
magnitude of phage adsorption. 

 

Multiple PLINK secondary hits in the all-resistant phenotype 

Examining the most significant sites in the all-resistant phenotype, PLINK revealed 

multiple candidates, some of whose functions have already been detailed above.  First, 
among the top secondary hits were four sites in complete LD located inside a lamB 

maltoporin phage receptor homolog that is different than the lamB porin identified as a 

primary hit in the 1.034.O phage phenotype.  Of the four sites, one is nonsynonymous 
and is likely the true driver of the association signal.  Because these nine host strains 

are resistant to all 22 phages tested, it is not unlikely that more than one phage 
receptor has been disrupted.  Second, another permease gene was identified, this time 

with one site located inside the gene harboring a nonsynonymous minor allele.  Third, 
two sites in complete LD were identified inside the malM gene, which is part of the 

maltose regulon that contains the lamB gene.  Importantly, a third lamB homolog is 

located next to this malM gene.  Little is known about the function of malM since its 

first reporting in the literature [49].  However, malM is not just a part of the maltose 

regulon, it is also part of the operon containing lamB, which hints at a possible 

mechanism that affects lamB function as the actual phage receptor.  Curiously, in an E. 

coli and λ phage study [50], the authors identified various mutations that confer phage 

resistance in both the lamB gene and malT, the transcriptional activator of the lamB 
operon.  In their study, the malM gene that is a secondary hit in our study was not 
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sequenced and analyzed.  As such, it remains to be seen if these two sites in malM 

underlie a mechanism to disrupt phage binding to the lamB receptor like its sister malT 

gene.  Lastly, two nonsynonymous sites were identified inside an efflux pump.  These 
structures are protein complexes that span the outer membrane and extend beyond 

the cell wall.  Thus, like LPS, wall teichoic acid, and porin channels such as lamB, 
efflux pumps can provide a feasible structural target for phage binding.  In one study 

using E. coli and phage LTS [51], the authors showed that the tolC protein, which can 

act as an efflux pump, can harbor missense mutations mostly in two hypervariable 
regions of the gene that cause resistance to phage LTS.  In an intriguing study using E. 

coli and phage U136B [30], the authors examined the evolutionary trade-offs between 

multi-drug efflux pumps and phage resistance.  Their study showed that there exists an 
antagonistic pleiotropy where an increase in phage resistance resulted in a decreased 

sensitivity to antibiotics, owing to both phage and antibiotics sharing the same efflux 
pumps.  Relevant to our study is that these authors demonstrated that phages can be 

highly dependent on efflux pumps as phage receptors. 
 

 

Accessory genome association 
The concept of the pangenome, the total set of genes among a group of organisms 

(typically a species), was introduced in 2005 [52] using only eight S. agalactiae 

genomes.  In an excellent review [53], Lapierre and Gogarten defined the genes in the 
pangenome into four gene classes:  core, extended core, character, and accessory.  

The core genes are defined as genes present among all members of a group, the 
extended core genes are genes present in at least 99% of members, the character 
genes are present in some but not all members, and the accessory genes are absent 

from at least 95% of members, with many accessory genes only observed in one 
member (i.e., ORFans).  Importantly, the authors calculated the pangenome of 573 

diverse bacterial genomes and showed that the core plus extended core genome of an 
average bacterial genome consists of ~250 gene families spread across only 8% of the 

length of the genome.  The small genomic territory covered by the core genome 
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highlights the need to examine the non-core portion of the pangenome when 
conducting association studies.  A major difference between human and bacterial 

genomes is that the latter possesses markedly larger pangenomes.  It is not to say that 
there is no human pangenome [54] but that they have not been included in human 

GWAS, partly because few novel sequences, on the order of ~30 Mbps equal to ~1% 
of the human reference sequence, have been identified in human pangenome studies 

[55]. 
 

We first characterized the pangenome of our V. breoganii population by frequency of 

gene occurrence, and we showed the characteristic ‘U’ shape [53] from the dominant 
frequencies of accessory (5271 genes) and core genes (1919 genes) out of a total of 

10403 genes (Figure 7).  By definition, each host genome contributes to the core 
genome the same number of genes, while in the other gene classes individual 

contributions vary particularly in the accessory genes, with sample 10N.261.45.E9 
contributing 22x more accessory genes than sample 10N.261.52.F5 (Figure S1).   
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Figure 7.  All genes in the population of the 32 V. breoganii genomes broken down by 

their frequency of occurrence. 

 
 
Also as expected in our study host population, we observed that the pangenome is 
‘open’ (Figure S5); as more genomes are sampled, the number of core genes plateau 

while the number of non-core genes continues to rise, demonstrating the large genic 
diversity not sampled if one were to constrain their association study to only the core 

genome.  Concretely in our study, if one considered the genomic territory occupied by 
each gene class for the “mean genome”, we see that the core genome only accounts 

for 52% of this genome (Figure 8).  Furthermore, the core genome only accounts for 
18% of the total number of genes in the pangenome, leaving 82% of the total genes 

unconsidered in a strictly core genome association (Figure 8).  In other words, without 
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examining the pangenome, one effectively is excluding approximately half of each 
genome as potentially playing a role in the phenotype. 

 
Figure 8.  The four gene class sizes.  The inner pie chart represents the proportion of 

genomic territory occupied in the “mean genome” by each gene class; the mean 

genome is simply the mean of the proportions for each class across all samples.  The 

outer pie chart represents the proportion of total genes in each gene class. 
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To expand our study to the pangenome, we recoded each gene as if it were a biallelic 
SNV.  Specifically, for each gene, the absence of the gene from a particular genome 

was coded as an “A” allele and a presence of the gene was coded as a “G” allele.  For 
purposes of simplification and consistent with the pangenome literature, we refer to all 

genes outside of the core genome as the accessory genome. 
 

Primary and secondary accessory genome hits 

Using both PLINK for allele counting and POUTINE for homoplasy counting, we did not 
observe any genome-wide significant genes in the accessory genome.  In the same 

fashion as our core genome analysis, we examined our most significant pointwise 
estimates for each phenotype to probe for potential causal genes that may become 

genome-wide significant with higher sample size.  Here, we report two such promising 
candidates with a known phage resistance mechanism.  Consistent with the literature, 

many genes in the V. breoganii pangenome are hypothetical proteins; 42% of the 

genes in this pangenome have no known function, with 93% of these hypothetical 
proteins residing outside of the core genome (Figure S6).  Genes outside of the core 

genome are less conserved, with accessory genes often specific to strains and 
serotypes, thus their functions are mostly unknown.  Considering this, we note that 

many of the secondary hits identified using pointwise estimates are hypothetical 
proteins and would require a higher sample size to potentially provide stronger 

statistical evidence for further consideration. 
 

PLINK hit in a lamB homolog phage receptor 

The first secondary candidate is a PLINK hit to another lamB phage receptor homolog.  

In contrast to the two core lamB genes identified in our core genome association 

analysis, this accessory lamB gene is completely absent in 16 of the 32 genomes, with 

14 out of 21 cases missing this gene and 9 out of 11 controls with this gene present.  
The interpretation for this accessory genome hit is more straightforward (i.e., presence 

or absence) than core genes in which it is unclear how a silent or missense mutation 

affects the gene, and perhaps even more unclear are the downstream effects of a 
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mutation in a non-coding region.  Here, we observe the lamB gene is mostly absent 

from cases (phage resistant) but not controls, which is consistent with the abolishing of 
this lamB porin as a potential receptor for phage 1.034.O.  We further note a large 

effect size for this gene of OR = 17.  As further evidence this accessory lamB gene may 

be causal, we observed a secondary hit for this same gene in the all-resistant 
phenotype.  We again observed a large effect size of OR = 18, and 8 out of the 9 all-

resistant host strains are missing this lamB gene in its accessory genome. 

 

PLINK hit in the ompF gene  

In the all-resistant phenotype, another outer membrane protein, ompF, was identified 

as a secondary hit.  Similar to the lamB porin, the ompF protein folds into beta barrels 

and has been reported to function in a trimeric complex as a general porin [56].  The 
ompF porin is known to allow the transport of a range of molecules including sugars 

[57], bacteriocins [58], and antibiotics [59,60].  Although the amino acid sequences of 

lamB and ompF are quite different, they both show similar crystal structures [61–63].  

Crucially, ompF is known to bind to various phages including E. coli phage K20 [64,65].  
In our study population, the ompF gene is absent in 8 out of 9 cases and present in 15 

out of 23 controls.  Again, we observe a large effect size of OR = 23.   

 

In a 2012 experimental evolution study [7], the authors report that λ phage evolved to 

use the E. coli ompF porin as an alternative receptor in lieu of its primary receptor, the 

lamB porin.  The authors observed an interesting historical contingency of mutations 

that involved the coevolution of both the lamB receptor and the J protein of the λ 

phage tail that binds to this receptor.  In total, four mutations in the phage J protein are 

required for phage utilization of the ompF receptor in what the authors describe as an 

“all-or-none form of epistasis”.  However, the order of mutational events in both host 
and phage are critical in allowing an adaptive path to this novel receptor phenotype, as 

such not all λ populations in their study evolved this new capability.  First, the host 

bacteria evolved resistance to λ phage infection via mutations in the malT positive, 
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transcriptional regulator of lamB.  Second, despite the malT disruption, spontaneous 

inductions of the lamB gene generated a subpopulation of phenotypically sensitive 
cells that sustained a small population of phages that continued to utilize the lamB 

receptor.  Third, perhaps due to the diminished availability of lamB receptors, λ phage 

evolved mutations in the J protein that improved its performance on the lamB receptor.  

Fourth, it is these mutations that are required for the fourth and final mutation to have 

occurred, thus enabling the phage to target the new receptor, ompF.  Interestingly, this 

historical contingency demonstrates that the final adaptive selection for binding to 
ompF was not directly responsible for the rise of the three prior mutations.  It is unclear 

in our study if the ompF gene is lost in the accessory genome only after the disruption 

of the production of the lamB protein, nevertheless the loss of an alternative phage 

receptor is consistent with resistance to all 22 Vibrio phages. 
 

 

Discussion 

The role of low-hanging fruits in the genetic architecture 
In this work, we demonstrate that using a small sample size paired with phenotypes 

likely operating under strong selection can yield genome-wide significant associations.  
Although higher sample size is expected to reveal causal sites of lower penetrance and 

thus of lower effect, in this study we have captured some of the “low-hanging fruits” of 
very large effect.  Specifically, we identified three putative causal hits with common 

frequency in the V. breoganii population.  Two of the three genes, the lamB phage 

receptor and the sugar transferase that alters the O-antigen binding site of various LPS 
receptors, are known phage resistance mechanisms in gram-negative bacteria.  The 

third putative causal gene in a hypothetical protein is perhaps a common mechanism 
whose role is yet to be revealed for phage resistance in V. breoganii.  An examination 

of the primary and secondary hits shown in Table 1 highlights the role that they play in 
the phage adsorption phase of infection.  Aside from the unknown gene identified and 
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the two permeases, all hits either play a direct role in binding as receptors (lamB, 

ompF, efflux pump) or indirectly as disruptors of binding by modifying the receptor 

(sugar transferase, malM, tyrosine kinase/phosphatase).  Moreover, all the above 

mechanisms plus the two permease structures highlight how critical the integrity of the 
bacterial cell wall, both inner and outer membranes, is to viral infection. 
 

Although there are still other causal loci to discover, the discovery of low-hanging fruits 
in our small sample study begins to reveal a genetic architecture of these phage 

phenotypes that is reminiscent of the omnigenic model of complex traits [66].  In this 
model, a small number of “core genes” that can have the strongest single effects on 

the traits, are followed by a larger number of “peripheral genes” of smaller effect that 
together contribute a larger proportion of heritability; we note that this latter point on 

heritability remains unclear in the genetic architecture of phage resistance.  In addition, 
this genetic architecture has also been observed in the cancer genome landscape for 

common forms of human cancer where a small set of “mountains”, genes altered in a 
high percentage of tumors, are followed by a much larger number of “hills”, genes 

altered infrequently [67].  Moving beyond low-hanging fruits by applying larger sample 
sizes, we expect to observe higher levels of allelic and locus heterogeneity in causal 

loci due to the bewildering diversity of mechanisms of resistance to phage infection.   
 

Limitations of our study and future directions 
Aside from the obvious need to increase the number of host samples, this study does 
not address variation outside of either biallelic SNVs in the core genome or whole gene 

presence or absence in the accessory genome.  Small indels within the core genome 
were not included in the association analysis.  These indels may include spacer 
elements as part of the broader requisite CRISPR machinery of the host to defend 

against viral attack [68].  In addition, allelic diversity in the accessory genome was not 
examined.  It is possible that aside from whole gene absence, accessory genes can 

contain SNVs that allow them to play an altered role in the phenotype.  In our study, we 
lacked the host sample diversity to observe more homoplasic mutations in portions of 
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the tree.  These portions likely include the three recombination hotspots identified 
surrounding our three primary hits.  Furthermore, the accuracy of the topology of the 

inferred tree is critical to identifying homoplasies [17].  Because Vibrio genomes have 

undergone substantial historical recombination, a future study could attempt to identify 
these recombination tracts and remove them from the set of variants used for tree 

inference to better capture clonal ancestry.  For a future study, increasing the number 
of host samples can potentially bring the rest of the unused phages in the 22-phage 

panel for use as individual phenotypes.  For instance, for phage 1.206.O no plaques 
were observed (i.e., all host samples were resistant to this phage) and as such there 

currently are no host sample controls (Table S1).  Another avenue to explore may be to 
look for correlations between multiple phages to identify any pleiotropic causal loci.  In 

this study, we show two potential examples.  First, the sugar transferase primary hit 
identified in the all-resistant phenotype may cause modifications to multiple LPS 

receptors that disrupt adsorption to different phages.  Second, the two secondary hits 
in the tyrosine kinase/phosphatase system may play a role in altering the cell wall 
structure which impedes binding in both phages 2.117.O and 1.117.O.  A more 

complete picture of the genetic architecture in V. breoganii may reveal other phages 

that share similar mechanisms underlying resistance to viral infection.   
 

A recent study using 19 V. lentus genomes showed that these near-clonal host 

genomes were differentially infected by a panel of 22 lytic siphovirus phages [69].  
Specifically, the phage broke down into two groups, with each infecting a different set 

of hosts.  The authors reported discovering phage defense genes clustered together in 
large and highly diverse mobile genetic elements in the accessory genome (called 

phage defense elements or PDEs).  Crucially, three PDEs were specific to one group of 
hosts while two other PDEs were specific to the remaining hosts.  In V. lentus, these 

PDEs were primarily responsible for the differing phage resistance phenotypes 
between the two host groups, while phage receptors played a secondary role due to 

the near-clonality of the host genomes.  In contrast, we showed that part of the genetic 
architecture of phage resistance in V. breoganii involved constituents of the cell wall 
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including potential phage receptors.  This finding is similar to the results from some 
studies using experimental populations that showed receptors to play a primary role.  

We caution that any conclusions regarding the genetic architecture revealed thus far in 
our study must be interpreted in the context of a small sample size and that a larger 

study could potentially reveal more diverse mechanisms of resistance, perhaps even in 
support of similar phage defense elements identified in mobile elements of the 

accessory genome.  Alternatively, it is possible that there are species-specific 
differences in genetic architecture, particularly when considering less clonal 

populations, like the V. breoganii population presented in this study, compared to the 

near-clonal 19 V. lentus genomes.  Moreover, examining populations from vastly 
differing evolutionary time scales or differing recombination capabilities may also 

potentially show varying architectures to phage resistance not yet revealed in 
experimental evolution studies or the few studies in natural populations.   

 
 

Methods 

Sample collection, genotyping, phenotyping, and plaque assays 
Both bacterial and viral samples were collected from the littoral marine zone at Canoe 
Cove, Nahant, Massachusetts, USA.  The details of the sample collection are in [12].  

Briefly, the bacterial samples were collected using size-fractionation and selective-
medium cultivation-based methods described in [70].  The protocol for the preparation 

of bacterial genomic libraries and sequencing using Illumina HiSeq is described in [71].  
Viral samples were collected using a previously described iron flocculation approach 

described in [72].  Sequencing of viral samples, using both Illumina MiSeq and HiSeq, 
and plaque assays are described in [12]. 

 



 101 

Accessory Genome 
Genome assemblies were done using CLC Genomics Workbench v6.5.1 and v8.5.1 
and CLC assembly cell v4.4.2.133896.  Annotations were done using both Prokka [73] 

and Rast [74] programs on default settings.  The accessory genome was built using 
default settings in Roary [75].  

 

Allele-counting 
All allele-counting associations were conducted using PLINK 1.9 [18].  For all runs, --
chr-set -1 was used to designate a single haploid genome. 

 
Principal component analysis was done using –pca 20 header.  The first two principal 

components used for population stratification correction were incorporated as 
covariates in logistic regression using the following settings: 

--chr-set -1 
--allow-no-sex 

--no-fid  
--no-parents  

--pheno  
--all-pheno 

--logistic mperm=100000 
--covar 

--covar-name PC1-PC2 
--maf 0.20 

 
All final p-values were calculated using the max(T) resampling scheme of Westfall and 
Young [76]. 
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Homoplasy counting 
The phylogenetic inference for the input tree to POUTINE was done using raxml-ng 
using --model GTR+G settings [77].  POUTINE was run using default settings [17]. 

 

LD profiles 
All r2 values were calculated using PLINK and the following options:  
--allow-no-sex 

--no-fid  
--no-parents  

--chr-set -1 
--r2 

--ld-snp sample ID names for each primary hit 
--ld-window 265936 

--ld-window-kb 5000 
--ld-window-r2 0 
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Supplementary Material 

Table S1.  Panel of plaque assays using 32 V. breoganii bacterial genomes against 22 

phages.  The host bacterial genomes are by row and the phages by column.  Plaque 

formation (i.e., phage sensitivity) is indicated with '1' and empty cells indicate phage 

resistance. 
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Figure S1.  Individual host genome contributions to the four pangenome gene classes. 
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Figure S2.  Example quantile-quantile plot (phenotype phage 1.034.O), showing 

relatively insignificant population stratification.  The red line represents the x=y line. 
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Figure S3.  Population structure of 32 V. breoganii genomes.  Score plot of the first two 

principal components. 
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Figure S4.  Phylogeny of the 32 V. breoganii genomes inferred using raxml-ng. 
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Table S2.  Genome-wide significant nucleotide sites in the lamB core gene for 

phenotype 1.034.O.  Alleles broken down by cases (red) and controls (blue).  Host 

bacterial genomes are shown in the “Strains” column, with each subsequent column 

showing the physical position of each site relative to the 1C10 reference sequence. 

Strains 1C10_1546915 1C10_1546916 1C10_1546922 1C10_1546940 1C10_1546973 1C10_1547100 1C10_1547175 
 

nonsyn (T->E, 
G->A) nonsyn (C->E, 

G->Q) nonsyn (G->R, 
T->S) nonsyn (T->N, 

C->D) nonsyn (T->N, 
C->D) syn (G->Y, A-

>Y) syn (G->R, A-
>R) 

10N.286.54.A10 G G T C C A A 
10N.286.52.C12 T C G T T G G 
10N.261.45.E9 T C G T T G G 
10N.261.55.F5 T C G T T G G 
10N.261.52.A10 T C G T T G G 
10N.261.54.B2 T C G T T G G 
10N.261.52.C1 T C G T T G G 
10N.261.48.E3 T C G T T G G 
10N.261.49.E4 T C G T T G G 
10N.261.52.F10 T C G T T G G 
10N.261.52.F8 T C G T T G G 
10N.261.48.B1 T C G T T G G 
10N.261.48.E5 T C G T T G G 
10N.261.52.F6 T C G T T G G 
10N.286.52.F9 T C G T T G G 
10N.222.51.E5 T C G T T G G 
10N.261.52.B1 T C G T T G G 
10N.261.52.F5 T C G T T G G 
10N.286.46.E1 T C G T T G G 
10N.261.54.C7 T C G T T G G 
10N.286.51.A9 T C G T T G G 
10N.261.51.E6 G G T C C A A 

FF-50 G G T C C A A 
10N.261.45.B7 G G T C C A A 
10N.261.48.C6 G G T C C A A 
10N.261.46.B7 G G T C C A A 
10N.261.46.C3 G G T C C A A 
10N.286.51.B5 G G T C C A A 
10N.261.51.F2 T C G T T G G 
10N.261.49.F3 G G T C C A A 
10N.286.51.A6 T C G T T G G 
10N.261.49.C1 G G T C C A A 
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Figure S5.  Number of genes observed as a function of the number of genomes 

sampled.  The ‘total genes’ trend shows that the V. breoganii pangenome is ‘open’.   
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Figure S6.  Proportion of genes of no known function (i.e., hypothetical protein) 

categorized by gene class.   
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Conclusions and future directions 
 

Our contributions to the nascent field of microbial GWAS 

In this thesis, we critically examined GWAS approaches and applied both allele and 

homoplasy counting methods to strongly clonal and highly recombining populations.  
In Chapter 1, we presented the origins of microbial GWAS and then took stock of how 

far the nascent field has progressed.  Principally, we asked the question: “Do human 
GWAS methods readily work for microbial populations, and if not, what are the central 

problems and changes that are required for a more successful microbial GWAS?  In 
answering this question, we highlighted the major differences between eukaryotic and 

prokaryotic GWAS; specifically, that prokaryotic genomes tend to experience strong 
LD, strong population stratification, and strong selection.  The first difference, strong 

positive selection, is mostly an advantage for microbial GWAS in that smaller sample 
sizes will be required to achieve sufficient statistical power to identify genome-wide 

significant loci.  Unlike human complex traits, many microbial traits under strong 
positive selection will likely be underlain by variants that are of common frequency and 

of large effect.  The second difference, strong population stratification, can be 
reasonably dealt with using current methods developed for human GWAS, principally 

the capturing of population structures either using dimensionality reduction in a fixed 
model regression framework, or a genetic relationship matrix in a random model 
regression framework.  No major advancements for dealing with population 

stratification have thus been made for microbial GWAS.  We note that there is room for 
improvement in this area, specifically a quantitative assessment of how well 

dimensionality reduction and genetic relationship matrices capture fine-scale microbial 
population substructures.  The third of the major differences, strong LD, has presented 

the greatest challenge.  We readily saw this in the association study in a strongly clonal 
population in Chapter 1.  In our GWAS using M. tuberculosis, we showed that the 

problem is not that an association signal cannot be detected (the strong selective 
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pressure from antibiotic resistance allowed association signals to be observed) but 
rather that the strong signal is often indistinguishable from linked sites that have 

hitchhiked from across the genome.  In this manner, it is unclear which of the many loci 
were the true causal drivers of association.   

 
From our findings in Chapter 1, it had become clear that for microbial GWAS to be 

successful, we needed to identify the degree to which LD limits the detection of true 
positive causal drivers of association.  A number of microbial GWAS studies were 

published since our publication of Chapter 1, and many of the GWAS hits identified 
were often reported without any analysis of LD.  In our work in Chapter 2, we critically 

examined allele counting methods in a strongly clonal population, and we showed that, 
in fact, the vast majority of genome-wide significant hits were likely false positives.  

Thus, our work suggested that perhaps a substantial proportion of previously reported 
GWAS hits may be false positives.  A corollary to this is that the few reported allele 

counting hits that are relatively unlinked from the rest of the genome have likely 
undergone convergent evolution.  We showed an example of this in Chapter 2 using a 

newly developed homoplasy counting method, POUTINE, that directly addressed the 
challenge of LD.  Specifically, in our GWAS we observed one site (site 1674048 in the 

M. tuberculosis genome) that was both a genome-wide significant allele and 
homoplasy counting hit. 

 
Building from our work in Chapter 2, we used POUTINE and PLINK, as a representative 

allele counting method, and conducted a GWAS in a relatively highly recombining 
population of marine vibrios.  As we theorized in Chapter 1, microbial populations may 

experience strong positive selection and thus show a much different genetic 
architecture than the negative purifying selection thought to be acting on many human 

complex traits.  In our work in Chapter 3, we highlighted this difference by identifying 
three genome-wide significant putative causal loci, all of which are mutations of 

common frequency and high effect.  These hits represent a departure from the genetic 
architecture observed in human complex traits where many of the reported hits are 
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mostly mutations of common frequency and low effect, or sometimes mutations of rare 
frequency but high effect [1–5].  We note that there likely exist microbial phenotypes 

that on the spectrum of genetic architectures may lie closer to what has been observed 
in human complex traits.  For these phenotypes, larger sample sizes will be required to 

capture either mutations of low effect or rare in frequency.  However, no sample size 
will overcome the problem presented by LD.   

 

Future directions 

A recurring theme in this thesis is the important role that strong LD from microbial 
recombination dynamics played in various aspects of microbial GWAS.  Namely, the 

role of LD in obscuring the association signal, and the role of LD in multiple hypothesis 
testing, where correlated tests can exacerbate the already stringent criterion of 

controlling for the familywise error rate.  The following three projects represent the 
continuation of the work presented in this thesis, and all three projects highlight either 
the challenges or even the benefits of strong microbial LD.  

 

Genome-wide LD landscapes across the gamut of microbial recombination 

rates 
Perhaps our most important finding is how LD presents a limit on which microbial 
populations may be suitable for allele counting methods.  There is a pressing need to 

examine the LD landscape and recombination patterns in more highly recombining 
populations.  Specifically, how prevalent are block-like LD structures that are localized 

and unlinked from the rest of the genome?  If the answer to this question is that in 
more highly recombining populations there do exist block-like LD structures 

throughout the genome (like those found in human genomes), then we can similarly 
deploy allele counting methods as seen in human GWAS.  If the answer is that there 

exists a sparsity of LD blocks, perhaps all isolated to only a few recombination 
hotspots, then even for highly recombining populations we must develop new 



 121 

methodological extensions to allele counting in order to discover non-convergent 
causal loci.  Although homoplasy counting does bypass LD, it is completely reliant on 

convergent evolution for any association signal, and it is unclear how often this form of 
evolution occurs.  We can answer this question by examining empirical datasets of 

varying recombination rates [6,7].  Because there is a plethora of microbial populations 
yet to be studied, we can probe the limits to which recombination can shape block-like 

LD structures using simulations of populations evolving under varying recombination 
parameters that stretch the gamut of values beyond what has been reported in the 

literature.  Such parameters should likely include the rate of recombination, the length 
of recombination tracts, and the spatial localization of recombination tracts.   

 

LD-based tests of convergence 
Based upon our work in Chapter 2, we have begun formulating a new method to 

identify convergent sites.  The crux of this method is that sites undergoing convergent 
evolution may often be partially or fully unlinked from the rest of the genome.  We 

observed this feature in the analysis of LD presented in Chapter 2.  Thus, a future 
method may directly use measures of LD to identify convergent sites.  Such an LD-

based method has a principal advantage over POUTINE in that a phylogeny is not 
required for the identification of homoplasic mutations.  This feature is most appealing 
in populations where tree inference is problematic either due to rampant recombination 

interfering with the signal from clonal ancestry, or due to a lack of a sufficient number 
of mutations for accurate resolving of branching.  This latter point has been observed 

in tree inferences for SARS-CoV-2 causing debate over whether many homoplasies 
identified are false positives [8–10].  One intriguing possibility is to use such an LD-

based method for SARS-CoV-2 to identify variants of concern that have so far been 
mostly convergent.  This phenotype-free use of the method is appealing because a 

GWAS using SARS-CoV-2 can be problematic if the phenotype cannot be easily 
measured.  A timely example of such a phenotype is the transmissibility of the virus, 

where quantification of transmission levels of new variants has proven difficult due to 
the potential level of confounding caused by human behavior and public health 
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measures being unequally enacted across geography [11,12].  Another intriguing 
possibility is to combine such an LD-based convergence test with the GWAS 

framework we developed for POUTINE.  For traits that can be feasibly measured, it is 
appealing to rely on two disparate sources of convergent sites, where concordance 

between tree-based convergence and LD-based convergence suggests a more robust 
hit, while discordance between the two sources has the potential for revealing 

convergent sites that would otherwise have gone undetected by only one method.  
Concretely, a nucleotide site that is completely unlinked from the rest of the genome is 

easily identified by the LD-based method, while a tree-based method may potentially 
miss this convergent site if the topology of the tree is inaccurate and homoplasic 

mutations at this site are missed.  Conversely, a hybrid site harboring both 
homoplasies and non-homoplasies (one such example is site 1674048 as presented in 

Chapter 2) can potentially show strong linkage to many other sites and be missed by 
the LD-based method, while a tree-based method with an accurate topology may have 

identified homoplasic mutations at this site. 
 

Set-based testing in POUTINE 
And finally, our next planned enhancement of POUTINE is to develop a set-based test 
that can capture allelic heterogeneity.  A “set” could be any set of variants within a 
meaningful genetic region (e.g., a gene), and the test would assess the cumulative 

effects of the variants in this region.  This addition will boost our ability to detect causal 
loci when multiple convergent sites underlie a single locus, particularly when the 

sample size is insufficient to capture any individual convergent site.  This strategy is 
akin to various set-testing approaches used in GWAS focused on rare variants [13].  

One strategy to explore is integrating a rare variant testing program as an addition to 
the max(T) resampling scheme used in POUTINE.  One such option is the popular 

SKAT-O program [14] which unifies both burden and kernel-based classes of rare 
variant testing thus optimizing for a distribution of causal variants that is unknown 

ahead of time [15].  A second strategy to accomplish set-testing for POUTINE is to 
explore integrating the harmonic mean p-value test [16].  This method belongs to the 
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family of approaches best exemplified by the well-known Fisher’s combined probability 
test [17], where the method aggregates multiple hypothesis tests into one composite 

test.  While Fisher’s test assumed independence between tests, the harmonic mean p-
value is designed to consider dependent tests.  A third strategy forward, inspired by 

the two approaches above, is to consider expanding our max(T) resampling framework 
to include all homoplasies in a particular region.  Variants could be collapsed into one 

burden variable prior to hypothesis testing (similar to burden testing) or variants could 
be aggregated after their pointwise p-value estimates have been determined during 

resampling (similar to kernel-based testing and the harmonic mean p-value). 
 

A note on ethics 

As we continue to advance our capability to dissect microbial phenotypes, this 

progress must go hand-in-hand with our sense of ethics surrounding the proper use of 
such knowledge.  Once Nature’s functions have been reverse-engineered, it is entirely 
possible for humans to bootstrap off this knowledge and construct designs of their 

own.  In this age of genome editing, it is easy to imagine a multitude of nefarious uses 
one can design if the blueprints for various phenotypes were readily available.  To read 

is to write.  As with many potent technologies, they can serve us or harm us.  I close 
this thesis by unequivocally stating that ethics must never be a distant second to this 

endeavor and must be placed at the tip of the research spear.  Humans should not 
always build what they can, and instead, build what they should. 

 
 

  



 124 

References 

1.  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. 
Finding the missing heritability of complex diseases. Nature. 2009;461: 747–753. 

2.  Park J-H, Gail MH, Weinberg CR, Carroll RJ, Chung CC, Wang Z, et al. 
Distribution of allele frequencies and effect sizes and their interrelationships for 
common genetic susceptibility variants. Proc Natl Acad Sci U S A. 2011;108: 
18026–18031. 

3.  Simons YB, Bullaughey K, Hudson RR, Sella G. A population genetic interpretation 
of GWAS findings for human quantitative traits. PLoS Biol. 2018;16: e2002985. 

4.  Gazal S, Loh P-R, Finucane HK, Ganna A, Schoech A, Sunyaev S, et al. Functional 
architecture of low-frequency variants highlights strength of negative selection 
across coding and non-coding annotations. Nat Genet. 2018;50: 1600–1607. 

5.  O’Connor LJ, Schoech AP, Hormozdiari F, Gazal S, Patterson N, Price AL. 
Extreme polygenicity of complex traits is explained by negative selection. Am J 
Hum Genet. 2019;105: 456–476. 

6.  Vos M, Didelot X. A comparison of homologous recombination rates in bacteria 
and archaea. ISME J. 2009;3: 199–208. 

7.  Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NP, Enright MC, et al. 
Recombination within natural populations of pathogenic bacteria: short-term 
empirical estimates and long-term phylogenetic consequences. Proc Natl Acad 
Sci U S A. 2001;98: 182–187. 

8.  Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, et al. 
Phylogenetic analysis of SARS-CoV-2 data is difficult. Mol Biol Evol. 2021;38: 
1777–1791. 

9.  Jo Y-S, Tamuri AU, Towers GJ, Goldstein RA. SARS-CoV-2 convergent evolution 
cannot be reliably inferred from phylogenetic analyses. bioRxiv. bioRxiv; 2021. 
doi:10.1101/2021.05.15.444301 

10.  Turakhia Y, De Maio N, Thornlow B, Gozashti L, Lanfear R, Walker CR, et al. 
Stability of SARS-CoV-2 phylogenies. PLoS Genet. 2020;16: e1009175. 

11.  van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M, Balloux F. No evidence for 
increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun. 
2020;11: 5986. 



 125 

12.  Obermeyer F, Schaffner SF, Jankowiak M, Barkas N, Pyle JD, Park DJ, et al. 
Analysis of 2.1 million SARS-CoV-2 genomes identifies mutations associated with 
transmissibility. bioRxiv. 2021. doi:10.1101/2021.09.07.21263228 

13.  Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study 
designs and statistical tests. Am J Hum Genet. 2014;95: 5–23. 

14.  Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, et al. 
Optimal unified approach for rare-variant association testing with application to 
small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 
2012;91: 224–237. 

15.  Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, et al. 
Testing for an unusual distribution of rare variants. PLoS Genet. 2011;7: e1001322. 

16.  Wilson DJ. The harmonic mean p-value for combining dependent tests. Proc Natl 
Acad Sci U S A. 2019;116: 1195–1200. 

17.  Fisher RA. Statistical methods for research workers. 5th ed. Oliver and Boyd: 
Edinburgh; 1934. 

 


