
Université de Montréal

Large State Spaces and Self-supervision in
Reinforcement Learning.

par

Ahmed Touati

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

August, 2021

© Ahmed Touati, 2021.

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée:

Large State Spaces and Self-supervision in
Reinforcement Learning.

présentée par:

Ahmed Touati

a été évaluée par un jury composé des personnes suivantes:

Yoshua Bengio, président-rapporteur
Pascal Vincent, directeur de recherche
Ioannis Mitliagkas, membre du jury
Matthieu Geist, examinateur externe

Thèse acceptée le: .

To my beloved parents Najoua and Mohammed,
to whom I owe an eternal gratitude.

iii

Résumé
L’apprentissage par renforcement (RL) est un paradigme d’apprentissage

orienté agent qui s’intéresse à l’apprentissage en interagissant avec un environ-
nement incertain. Combiné à des réseaux de neurones profonds comme approx-
imateur de fonction, l’apprentissage par renforcement profond (Deep RL) nous a
permis récemment de nous attaquer à des tâches très complexes et de permettre
à des agents artificiels de maîtriser des jeux classiques comme le Go, de jouer à
des jeux vidéo à partir de pixels et de résoudre des tâches de contrôle robotique.

Toutefois, un examen plus approfondi de ces remarquables succès em-
piriques révèle certaines limites fondamentales. Tout d’abord, il a été difficile
de combiner les caractéristiques souhaitables des algorithmes RL, telles que
l’apprentissage hors politique et en plusieurs étapes, et l’approximation de
fonctions, de manière à obtenir des algorithmes stables et efficaces dans de
grands espaces d’états. De plus, les algorithmes RL profonds ont tendance à
être très inefficaces en raison des stratégies d’exploration-exploitation rudimen-
taires que ces approches emploient. Enfin, ils nécessitent une énorme quantité
de données supervisées et finissent par produire un agent étroit capable de
résoudre uniquement la tâche sur laquelle il est entrainé. Dans cette thèse,
nous proposons de nouvelles solutions aux problèmes de l’apprentissage hors
politique et du dilemme exploration-exploitation dans les grands espaces
d’états, ainsi que de l’auto-supervision dans la RL.

En ce qui concerne l’apprentissage hors politique, nous apportons deux con-
tributions. Tout d’abord, pour le problème de l’évaluation des politiques, nous
montrons que la combinaison des méthodes populaires d’apprentissage hors
politique et à plusieurs étapes avec une paramétrisation linéaire de la fonc-
tion de valeur pourrait conduire à une instabilité indésirable, et nous dérivons
une variante de ces méthodes dont la convergence est prouvée. Deuxième-
ment, pour l’optimisation des politiques, nous proposons de stabiliser l’étape
d’amélioration des politiques par une régularisation de divergence hors poli-
tique qui contraint les distributions stationnaires d’états induites par des poli-
tiques consécutives à être proches les unes des autres.

Ensuite, nous étudions l’apprentissage en ligne dans de grands espaces
d’états et nous nous concentrons sur deux hypothèses structurelles pour rendre
le problème traitable : les environnements lisses et linéaires. Pour les environ-
nements lisses, nous proposons un algorithme en ligne efficace qui apprend ac-
tivement un partitionnement adaptatif de l’espace commun en zoomant sur les

iv

régions les plus prometteuses et fréquemment visitées. Pour les environnements
linéaires, nous étudions un cadre plus réaliste, où l’environnement peut main-
tenant évoluer dynamiquement et même de façon antagoniste au fil du temps,
mais le changement total est toujours limité. Pour traiter ce cadre, nous pro-
posons un algorithme en ligne efficace basé sur l’itération de valeur des moin-
dres carrés pondérés. Il utilise des poids exponentiels pour oublier doucement
les données qui sont loin dans le passé, ce qui pousse l’agent à continuer à ex-
plorer pour découvrir les changements.

Enfin, au-delà du cadre classique du RL, nous considérons un agent qui in-
teragit avec son environnement sans signal de récompense. Nous proposons
d’apprendre une paire de représentations qui mettent en correspondance les
paires état-action avec un certain espace latent. Pendant la phase non super-
visée, ces représentations sont entraînées en utilisant des interactions sans ré-
compense pour encoder les relations à longue portée entre les états et les actions,
via une carte d’occupation prédictive. Au moment du test, lorsqu’une fonction
de récompense est révélée, nous montrons que la politique optimale pour cette
récompense est directement obtenue à partir de ces représentations, sans aucune
planification. Il s’agit d’une étape vers la construction d’agents entièrement con-
trôlables.

Un thème commun de la thèse est la conception d’algorithmes RL prouvables
et généralisables. Dans la première et la deuxième partie, nous traitons de la
généralisation dans les grands espaces d’états, soit par approximation de fonc-
tions linéaires, soit par agrégation d’états. Dans la dernière partie, nous nous
concentrons sur la généralisation sur les fonctions de récompense et nous pro-
posons un cadre d’apprentissage non-supervisé de représentation qui est capa-
ble d’optimiser toutes les fonctions de récompense.

v

Abstract
Reinforcement Learning (RL) is an agent-oriented learning paradigm con-

cerned with learning by interacting with an uncertain environment. Com-
bined with deep neural networks as function approximators, deep reinforce-
ment learning (Deep RL) allowed recently to tackle highly complex tasks and
enable artificial agents to master classic games like Go, play video games from
pixels, and solve robotic control tasks. However, a closer look at these remark-
able empirical successes reveals some fundamental limitations. First, it has been
challenging to combine desirable features of RL algorithms, such as off-policy
and multi-step learning with function approximation in a way that leads to both
stable and efficient algorithms in large state spaces. Moreover, Deep RL algo-
rithms tend to be very sample inefficient due to the rudimentary exploration-
exploitation strategies these approaches employ. Finally, they require an enor-
mous amount of supervised data and end up producing a narrow agent able
to solve only the task that it was trained on. In this thesis, we propose novel
solutions to the problems of off-policy learning and exploration-exploitation
dilemma in large state spaces, as well as self-supervision in RL.

On the topic of off-policy learning, we provide two contributions. First, for
the problem of policy evaluation, we show that combining popular off-policy
and multi-step learning methods with linear value function parameterization
could lead to undesirable instability, and we derive a provably convergent vari-
ant of these methods. Second, for policy optimization, we propose to stabilize
the policy improvement step through an off-policy divergence regularization
that constrains the discounted state-action visitation induced by consecutive
policies to be close to one another.

Next, we study online learning in large state spaces and we focus on two
structural assumptions to make the problem tractable: smooth and linear envi-
ronments. For smooth environments, we propose an efficient online algorithm
that actively learns an adaptive partitioning of the joint space by zooming in
on more promising and frequently visited regions. For linear environments,
we study a more realistic setting, where the environment is now allowed to
evolve dynamically and even adversarially over time, but the total change is
still bounded. To address this setting, we propose an efficient online algorithm
based on weighted least squares value iteration. It uses exponential weights to
smoothly forget data that are far in the past, which drives the agent to keep
exploring to discover changes.

vi

Finally, beyond the classical RL setting, we consider an agent interacting with
its environments without a reward signal. We propose to learn a pair of repre-
sentations that map state-action pairs to some latent space. During the unsuper-
vised phase, these representations are trained using reward-free interactions to
encode long-range relationships between states and actions, via a predictive oc-
cupancy map. At test time, once a reward function is revealed, we show that the
optimal policy for that reward is directly obtained from these representations,
with no planning. This is a step towards building fully controllable agents.

A common theme in the thesis is the design of provable RL algorithms that
generalize. In the first and the second part, we deal with generalization in large
state spaces either by linear function approximation or state aggregation. In the
last part, we focus on generalization over reward functions and we propose a
task-agnostic representation learning framework that is provably able to solve
all reward functions.

vii

Keywords—Mots-clés
reinforcement learning, markov decision process, artificial agent, off-

policy learning, function approximation, exploration-exploitation trade-off,
self-supervision, generalization

apprentissage par renforcement, processus de décision markovien, agent
artificiel, apprentissage hors-politique, approximation de fonction, compromis
exploration-exploitation, auto-supervision, généralisation

viii

Contents

1 Introduction . 1
1.1 Research Contributions . 3

1.1.1 Off-Policy Learning . 3
1.1.2 Exploration v.s. Exploitation Dilemma 3
1.1.3 Unsupervised Learning in RL 4

1.2 List of Excluded Contributions . 5

2 Background . 7
2.1 Discounted Markov Decision Process 7

2.1.1 The Model . 7
2.1.2 Policies and Value Functions 8
2.1.3 Optimal Policies and Optimal Value Functions 9

2.2 Episodic Markov Decision Processes 9
2.3 Dynamic Programming . 10

2.3.1 Bellman Operators . 10
2.3.2 Value Iteration . 11
2.3.3 Policy Iteration . 12

2.4 Temporal Difference Learning . 13
2.4.1 Policy Evaluation . 14
2.4.2 Policy Learning . 15

2.5 Function Approximation . 16
2.5.1 Value-based Methods . 16
2.5.2 Policy Gradient . 17

2.6 Exploitation-Exploration Dilemma 18
2.6.1 Online Performance . 20

3 Multi-step Off-policy Learning with Function Approximation 22
3.1 Prologue to the Contribution . 22

3.1.1 Article Details . 22
3.1.2 Context . 22
3.1.3 Paper Abstract . 22
3.1.4 Recent Developments . 23

3.2 Introduction . 23
3.3 Tabular Off-policy Methods . 25

ix

3.4 Off-policy instability with function approximation 26
3.5 Convergent gradient off-policy algorithms 29
3.6 Convergence Rate Analysis . 30
3.7 Related Work and Discussion . 34
3.8 Experimental Results . 35

3.8.1 Evidence of instability in practice 35
3.8.2 Comparison with existing methods 36

3.9 Conclusion . 38

4 Stable Policy Optimization via Off-Policy Divergence Regularization 40
4.1 Prologue to the Contribution . 40

4.1.1 Article Details . 40
4.1.2 Context . 40
4.1.3 Paper Abstract . 41
4.1.4 Recent Developments . 41

4.2 Introduction . 41
4.3 Conservative Update Approaches 43
4.4 Theoretical Insights . 44
4.5 Off-policy Formulation Of Divergences 46
4.6 A Practical Algorithm Using Adversarial Divergence 48
4.7 Related Work . 52
4.8 Experiments And Results . 53

4.8.1 Important Aspects Of PPO-DICE 54
4.8.2 Results On Atari . 56
4.8.3 Results On OpenAI Gym MuJoCo 57

4.9 Conclusion . 57

5 Online Learning in Smooth Markov Decision Processes 58
5.1 Protologue To The Contribution . 58

5.1.1 Article Details . 58
5.1.2 Context . 58
5.1.3 Paper Abstract . 59
5.1.4 Recent Developments . 59

5.2 Introduction . 60
5.3 Related Work . 61
5.4 Problem Statement . 62

5.4.1 Episodic Reinforcement Learning and Regret 62
5.4.2 Metric Space . 63

5.5 The ZOOMRL algorithm . 64
5.6 Main results . 68

5.6.1 Result For The Misspecified Case 69
5.7 Proof Outline . 70

x

5.7.1 Regret Analysis . 72
5.8 Conclusion . 75

6 Online Learning in Non-stationary Linear Markov Decision Processes 76
6.1 Prologue to the Contribution . 76

6.1.1 Article Details . 76
6.1.2 Context . 76
6.1.3 Paper Abstract . 77
6.1.4 Recent Developments . 77

6.2 Introduction . 77
6.3 Problem Statement . 78

6.3.1 Notation . 78
6.3.2 Non-Stationary Reinforcement Learning and Dynamic Re-

gret . 78
6.3.3 Linear Markov Decision Processes 79

6.4 The Proposed Algorithm . 80
6.5 Non-stationary Linear Bandits . 81
6.6 Theoretical guarantee of OPT-WLSVI 85

6.6.1 Unknown variation budget 86
6.7 Technical Highlights . 88
6.8 Related Work . 90
6.9 Conclusion . 92

7 Learning One Representation to Optimize All Rewards 93
7.1 Prologue to the Contribution . 93

7.1.1 Article Details . 93
7.1.2 Context . 93
7.1.3 Paper Abstract . 93

7.2 Introduction . 94
7.3 Problem and Notation . 96
7.4 Encoding All Optimal Policies via the Forward-Backward Repre-

sentation . 96
7.5 Learning and Using Forward-Backward Representations 98
7.6 Experiments . 103

7.6.1 Environments and Experimental Setup 103
7.6.2 Goal-Oriented Setting: Quantitative Comparisons 104
7.6.3 More Complex Rewards: Qualitative Results 105
7.6.4 Embedding Visualizations 106

7.7 Related work . 107
7.8 Extended Results: Approximate Solutions and General Goals . . 109

7.8.1 The Forward-Backward Representation With a Goal or
Feature Space . 110

xi

7.8.2 Existence of Exact FB Solutions, Influence of Dimension d,
Uniqueness . 112

7.8.3 Approximate Solutions Provide Approximately Optimal
Policies . 114

7.8.4 F and B as Successor and Predecessor Features of Each
Other, Optimality for Rewards in the Span of B 119

7.8.5 Estimating zR from a Different State Distribution at Test
Time . 122

7.8.6 A Note on the Measure Mπ and its Density mπ 123
7.9 Conclusion . 124

8 Conclusion . 125
8.1 Summary of Contributions . 125
8.2 Future Research . 126

8.2.1 Towards Fully Controllable Agents 126
8.2.2 Optimization for RL . 126
8.2.3 Statistical RL with General Function Approximation . . . 127

A Appendix from Chapter 3 . 128
A.1 Proof of Proposition 1 . 128
A.2 Proof of Proposition 2 . 130
A.3 Proof of Proposition 3 . 130
A.4 Convergence Rate Analysis . 131
A.5 True on-line equivalence . 135

B Appendix For Chapter 4 . 138
B.1 Proof of Lemma 2 . 138
B.2 Score Function Estimator of the gradient with respect to the policy 138
B.3 Comparison with AlgaeDICE . 139
B.4 Additional Empirical Results on MuJoCo 140
B.5 Hyperparameters . 141

C Appendix For Chapter 5 . 142
C.1 Omitted proofs for the Lipschitz setting 142

C.1.1 Proof of Lemma 3 . 142
C.1.2 Proof of Lemma 4 . 143
C.1.3 Proof of Lemma 5 . 143
C.1.4 Proof of lemma 7 . 147
C.1.5 Bounding ∑H

h=1 ∑K
k=1 ξk

h+1 149
C.2 Misspecified Setting: Approximately Lipschtiz Case 150

C.2.1 Recursive Formula of Q̂
k
h(B)−Q?

h(s, a) 150
C.2.2 Bounding of Qk

h(B)−Q∗h(s, a) 151

xii

C.2.3 High Probability Bound On The Sampling Noise 151
C.2.4 Approximate Optimism Of Q-values 152

C.2.5 Upper Bound of Q̂
k
h(B)−Q?

h(s, a) 153
C.2.6 Regret Analysis . 154

C.3 Technical Lemmas . 155
C.3.1 Few Reminders on Probability Theory 155

D Appendix for Chapter 6 . 156
D.1 Technical Gaps in Published Bandit Papers 156
D.2 Regret Reanalysis of D-LINUCB . 157
D.3 Regret Analysis of OPT-WLSVI and Proof Outline 160

D.3.1 Single Step Error Decomposition 160
D.3.2 High Probability Bound on the Transition Variance 161
D.3.3 Optimism . 162
D.3.4 Final Regret Analysis . 163

D.4 Missing Proofs of Regret Analysis of OPT-WLSVI 165
D.4.1 Linearity of Q-values: Lemma 8 165
D.4.2 Non-Stationarity Bias . 165
D.4.3 Single Step Error Decomposition 168
D.4.4 Boundness of iterates . 169
D.4.5 Transition Concentration 170
D.4.6 Single-Step High Probability Upper Bound 171
D.4.7 Optimism . 172

D.5 Technical Lemmas . 173

E Appendix for Chapter 7 . 177
E.1 Proofs . 177
E.2 Experimental Setup . 189

E.2.1 Environments . 189
E.2.2 Architectures . 190
E.2.3 Implementation Details . 191
E.2.4 Experimental results . 192

xiii

List of Tables

3.1 Properties of different off-policy algorithms for policy evaluation. 26
3.2 Convergence results for gradient-based TD algorithms shown in

previous work [Sutton et al., 2009b,c, Liu et al., 2015, Wang et al.,
2017, Lakshminarayanan and Szepesvári, 2017, Dalal et al., 2017].
θ̄k stand for the Polyak-average of iterates: θ̄k ,

∑k αkθk
∑k αk

. Our algo-
rithms achieve O(1/k) without the need for projections or Polyak
averaging. 33

4.1 Mean final reward and 1 standard error intervals across 10 seeds
for Atari games evaluated at 10M steps. 55

6.1 Comparison of our regret bound with state-of-the-art bounds for
both linear bandits and linear MDPs. d is the dimension of the
features space, H is the planning horizon of the MDP, K is the
number of episodes and ∆ is the variation budget. When we go
from a bandit setting to MDPs, the work of Jin et al. [2020b] in
the stationary case and our work in the non-stationary case incur
an extra d1/2 factor and d3/8 respectively. Zanette et al. [2020b]
achieve a linear dependence on d in the stationary case but their
proposed algorithm is computationally intractable. 86

B.1 A complete overview of used hyper parameters for all methods. . 141

E.1 Hyperparameters of the FB algorithm 193
E.2 Hyperparameters of the goal-oriented DQN algorithm 193

xiv

List of Figures

1.1 Standard Reinforcement Learning setting 1

2.1 Restaurant selection example. Exploitation: Go to favorite restau-
rant. Exploration: Try a new restaurant 18

2.2 n-chain environment . 19

3.1 Two-state counterexample. We assign the features
{(1, 0)>, (2, 0)>, (0, 1)>, (0, 2)>} to the state-action pairs
{(1, right), (2, right), (1, left), (2, left)}. The target policy is given
by π(right | ·) = 1 and the behavior policy is µ(right | ·) = 0.5 . . 28

3.2 Baird’s counterexample. The combination of linear function
approximation with TB and RETRACE leads to divergence
(left panel) while the proposed gradient extensions GTB and
GRETRACE converge (right panel). 35

3.3 In the 2-states counterexample of section 3.4 showing that the
gradient-based TB and RETRACE converge while TB and RE-
TRACE diverge. 36

3.4 Each curves shows the 5th percentile of NMSE (over all possible
combination of step-size values) achieved by each algorithm for
different values of λ. 37

3.5 Comparison between the best empirical MSPBE obtained by each
algorithm for different values of λ. Only GRETRACE(λ) and AB-
TRACE(λ) are showed here because the other algorithms do not
have the same operators and hence not the same MSPBE. Note
that MSPBEs depend on λ. Thus, MSPBEs are not directly com-
parable across different values of λ. Both GRETRACE(λ) and AB-
TRACE(λ) have very similar performances. AB-TRACE(λ) per-
forms slightly better. 38

3.6 Comparison of empirical performance of GQ(λ), AB-TRACE(λ),
GRETRACE(λ) and GTB(λ) on an off-policy evaluation task in
Mountain Car domain. Each box plot shows the distribution
of the NMSE achieved by each algorithm after 2000 episodes
for different values of λ. NMSE distributions are computed
over all the possible combinations of step-size values (αk, ηk) ∈
[0.001, 0.005, 0.01, 0.05, 0.1]2. 39

xv

4.1 Comparison of χ2 and KL divergences for PPO-DICE for two ran-
domly selected environments in OpenAI Gym MuJoCo and Atari,
respectively. We see that KL performs better than χ2 in both set-
tings. Performance plotted across 10 seeds with 1 standard error
shaded. 53

4.2 Varying λ in Hopper_v2, 10 seeds, 1 standard error shaded. PPO-
DICE is somewhat sensitive to λ value, but the theoretically-
motivated adaptive version works well. 55

4.3 Comparison of PPO-DICE with clipped loss Lclip and without L.
We see that clipping the action loss is crucial for good performance. 55

4.4 Results from OpenAI Gym MuJoCo suite in more complex do-
mains, with 10 seeds and 1 standard error shaded. Results on the
full suite of environments can be found in B.4. 56

5.1 Left: a possible partition for 2-dimensional state-action space. For a
given state s, we show in orange the three relevant balls A, B and
C. Right: For the three relevant balls, we show how the index is
constructed based on the interpolation between Q-value estimates of
each ball. The gray piecewise linear curve corresponds to the function
: a→ minB′{Q̂h(B′) + L · dist((s, a), xB′)} for a given state. 66

7.1 Comparative performance of FB for different dimensions and DQN in
the FetchReach. Left: success rate averaged over 20 randomly selected
goals as function of the first 100 training epochs. Right: success rate
averaged over 20 random goals after 800 training epochs. 104

7.2 Comparative performance of FB for different dimensions and DQN in
Ms. Pacman. Left: success rate averaged over 20 randomly selected
goals as function of the first 200 training epochs. Right: success rate
averaged over the goal space after 800 training epochs. 105

7.3 Heatmap of maxa F(s, a, zR)
>zR for zR = B() Left: d = 25. Right: d = 75.106

7.4 Trajectories generated by the F>B policies for the task of reaching a target
position (star shape) while avoiding forbidden positions (red circle). 106

7.5 Trajectories generated by the F>B policies for the task of reaching the
closest among two equally rewarding positions (star shapes). (Opti-
mal Q-values are not linear over such mixtures.) 107

7.6 Contour plot of maxa∈A F(s, a, zR)
>zR in Continuous Maze. Left: for the

task of reaching a target while avoiding a forbidden region, Right: for
two equally rewarding targets. 107

7.7 Visualization of FB embedding vectors on Continuous Maze after
projecting them in two-dimensional space with t-SNE. Left: the
states to be mapped. Middle: the F embedding. Right: the B
embedding. The walls appear as large dents; the smaller dents
correspond to the number of steps needed to get past a wall. . . . 108

xvi

B.1 Our method with KL divergences in comparison to PPO and
TRPO on MuJoCo, with 10 seeds. Standard error shaded. 140

E.1 Discrete maze: Comparative performance of FB for different di-
mensions and DQN. Left: the policy quality averaged over 20
randomly selected goals as function of the training epochs. Right:
the policy quality averaged over the goal space after 800 training
epochs. 193

E.2 Continuous maze: Comparative performance of FB for different
dimensions and DQN. Left: the success rate averaged over 20
randomly selected goals as function of the training epochs. Right:
the success rate averaged over 1000 randomly sampled goals after
800 training epochs. 194

E.3 FetchReach: Comparative performance of FB for different dimen-
sions and DQN. Left: the success rate averaged over 20 randomly
selected goals as function of the training epochs. Right: the suc-
cess rate averaged over 1000 randomly sampled goals after 800
training epochs. 194

E.4 Ms. Pacman: Comparative performance of FB for different di-
mensions and DQN. Left: the success rate averaged over 20 ran-
domly selected goals as function of the training epochs. Right:
the success rate averaged over the 184 handcrafted goals after
training epochs. Note that FB-50 and F-100 have been trained only
for 200 epochs. 194

E.5 Distance to goal of FB for different dimensions and DQN as func-
tion of training epochs. Left: Continuous maze. Right: FetchReach.195

E.6 Discrete Maze: Heatmap plots of maxa∈A F(s, a, zR)
>zR (left) and

trajectories of the Boltzmann policy with respect to F(s, a, zR)
>zR

with temperature τ = 1 (right). Top row: for the task of reaching
a target while avoiding a forbidden region, Middle row: for the
task of reaching the closest goal among two equally rewarding
positions, Bottom row: choosing between a small, close reward
and a large, distant one. 196

E.7 Continuous Maze: Contour plots plot of maxa∈A F(s, a, zR)
>zR

(left) and trajectories of the ε greedy policy with respect to
F(s, a, zR)

>zR with ε = 0.1 (right). Left: for the task of reaching
a target while avoiding a forbidden region, Middle: for the
task of reaching the closest goal among two equally rewarding
positions, Right: choosing between a small, close reward and a
large, distant one.. 197

xvii

E.8 Ms. Pacman: Trajectories of the ε greedy policy with respect to
F(s, a, zR)

>zR with ε = 0.1 (right). Top row: for the task of reach-
ing a target while avoiding a forbidden region, Middle row: for
the task of reaching the closest goal among two equally rewarding
positions, Bottom row: choosing between a small, close reward
and a large, distant one.. 198

E.9 Full series of frames in Ms. Pacman along the trajectory generated
by the F>B policy for the task of reaching a target position (star
shape) while avoiding forbidden positions (red circle). 199

E.10 Discrete maze: Visualization of FB embedding vectors after pro-
jecting them in two-dimensional space with t-SNE. Left: the F
embedding for z = 0. Right: the B embedding. Note how both
embeddings recover the foor-room and door structure of the orig-
inal environment. The spread of B embedding is due to the regu-
larization that makes B closer to orthonormal. 200

E.11 Continuous maze: Visualization of FB embedding vectors after
projecting them in two-dimensional space with t-SNE. Left: the
states to be mapped. Middle: the F embedding. Right: the B
embedding. 200

E.12 Ms. Pacman: Visualization of FB embedding vectors after project-
ing them in two-dimensional space with t-SNE. Left: the agent’s
position corresponding to the state to be mapped. Middle: the F
embedding for z = 0. Right: the B embedding. Note how both
embeddings recover the cycle structure of the environment. F acts
on visual inputs and B acts on the agent’s position. 200

E.13 Continuous maze: visualization of F embedding vectors for dif-
ferent z vectors, after projecting them in two-dimensional space
with t-SNE. 201

xviii

List of acronyms and
abbreviations

RL reinforcement learning
e.g. exempli gratia [for instance]
MDP Markov decision process
TD temporal difference
GTD gradient temporal difference
MSPBE mean squared projected Bellman error
OFU optimism in face to the uncertainty
DQN deep Q-network
TRPO trust region policy optimization
PPO proximal policy optimization
CPI conservative Policy Iteration
KL Kullback-Leibler
FB forward-backward representations

xix

Acknowledgements
My PhD was both a humanly and scientifically rich journey. I am incredi-

bly fortunate to have done my PhD at Mila, certainly one of the most thriving
environments in the field. I feel greatly grateful to be surrounded by an uncount-
able number of beautiful humans and brilliant minds. The abovementioned ac-
knowledgments are surely brief and incomplete and won’t reflect perfectly my
deep gratitude.

To my mother and my father, Najoua and Mohammed, to whom this thesis
is dedicated, for their unconditional love, prayers and for raising me to value
education. To my sister and brother, Yosra and Khalil, for their support and
eternal companionship despite the geographical distance between us.

To Pascal Vincent, for believing in me and for giving me the opportunity to
spend these last 5 years at Mila. Being advised by him is a privilege. His scien-
tific rigor, honesty and openness helped me take shape as a researcher. Besides
being a remarkable academic mentor, he provided me a big emotional support.
He always managed to lift my spirit and helped me to go through my tough
times. None of this thesis would have existed without him.

To Doina Precup, for being a source of inspiration. Her introductory course
of RL is the reason why I decided to do my PhD in this field. I felt honored when
she invited me to attend my first conference RLDM 2017 to discover the active
research topics in RL. She is a wonderful woman.

To Pierre Luc Bacon, for all his advice and helpful technical discussions, es-
pecially at the early stage of my PhD. He also helped me to know better the RL
community by introducing me to many prominent researchers during confer-
ences.

To Joelle Pineau, for hosting me as part-time researcher within her Facebook
Research team in Montreal, for all the interesting discussions and thoughts she
shared with me. Her role as charismatic leader and great researcher makes her
a source of inspiration for many of us.

To Marc G. Bellemare, for offering me the opportunity to do an internship at
Google Brain in Montreal under his supervision, for his clarity of thoughts and
for always challenging my views.

To Yann Ollivier, for offering me an internship at Facebook research in Paris
under his supervision and whom I learnt a disproportionate amount from in the
short time. He is remarkable researcher and was fully committed to our project.
It was fantastic to collaborate with him.

xx

To Michal Valko, for being a good friend, for all his advice and guidance, for
our technical discussions and for helping me to overcome my insecurities.

To Alessandro Lazaric, for giving me a two-hour crash course on online
learning in RL, for being my mentor during my Facebook internship and for
his willingness to answer my technical questions.

To Matteo Pirotta, for the stimulating discussions and valuable feedback.
To all my collaborators at Mila, for the exciting work we have done together,

Chin-Wei Huang, Amy Zhang, Joshua Romoff and Harsh Satija,... to name few
of them. Special thanks to Harsh for providing me feedback on almost all my
papers and for always showing up at my posters during online events so I don’t
feel alone in the zoom room.

To my big Montreal family, who made my Montreal life more colorful and
warmer. To Max, Pier, Ben and Brett, for our beach volley ball sessions, for
all the the craziness and laughter we had together. To Léo, who has been my
roommate for almost 4 years, for her support and for making work from home
enjoyable. To my other roommates Sylvain and Anna, for all the moments we
shared together in our home. To Rim, for being like a sister from the first sight.
To Gabriel, Rémi, Gauthier, Hugo, Tom, Adrien, Valentin, Salem, David, Anne-
Marie, Victor, Angèle, Lucile, Benoît, Tess, Elodie, for all the experiences and
memories we created together. Finally, to Clement for always helping me to go
through the toughest moments of my PhD with his enthusiasm and creativity.

To my Friends from Tunisia and France, Omar, Achref, Nouha, Frikha, Tarak,
Dali, Lamloum, Qays, Kaabar, Amal, the two Nicolas, Florent, Fadi, Simon,
Matthieu, Solomane, Maxime, Rémi, Benjamin whom I keep a strong tie with
despite the geographical distance, for their constant support. I’m thankful to be
surrounded by such wonderful friends.

xxi

Notation
The set of real numbers R

The set {1, 2, . . . , N} for an integer N > 0 [N]
The set of states . S
The set of actions . A
The discount factor . γ
The reward upon taking the action a in state s r(s, a)
Transitioning probability into s′ conditioned on (s, a) P(ds′ | s, a)
Planning horizon . H
The reward upon taking the action a in state s at stage h . . . rh(s, a)
Transitioning probability into s′ conditioned on (s, a) at stage h Ph(ds′ | s, a)
Policy . π
The value function and action-value function of policy π . . . Vπ, Qπ

The advantage function for policy π Aπ

Optimal value function and action-value function V?, Q?

One-step transition operator for policy π Pπ

Bellman evaluation operator for policy π T π

Bellman optimality operator T
The discounted state visitation for π and initial distribution ρ dπ

ρ

Successor states measure Mπ(s, a, ds′, da′)
Successor states density mπ(s, a, s′, a′)
The Euclidien norm of vector x ‖x‖
The supremum norm of vector x ‖x‖∞
The Euclidien norm of vector x weighted by the matrix V . . ‖x‖V
The spectral norm of matrix V ‖V‖
The Frobenius norm of the matrix V ‖V‖F
The Kullback-Leibler divergence DKL
The total variation distance DTV
Indicator function that returns 1 if a = b and 0 otherwise . . . 1{a=b}

xxii

1 Introduction
«Intelligence is the computational part of the ability to achieve goals in the

world» –John McCarthy

Reinforcement Learning (RL) is a computational approach to solving sequen-
tial decision-making problems. Through trial and error an agent must learn to
act optimally in an unknown environment in order to maximize its expected
utility. A standard setting where a RL agent evolves is illustrated in Figure 1.1:
the agent observes the environment’s state and a reward associated with the last
state transition. It chooses an action. The environment makes a transition to a
new state and sends it back to the agent, and the process is repeated. The aim
of the agent is to learn to control the environment so as to maximize the long-
term total reward. What makes RL different from supervised learning is that
the agent receives only partial feedback about his executed actions. Moreover,
actions may have a long term effects. For example, a RL agent may take many
decisions over multiple steps where immediate rewards are (almost) zero and
where more relevant events are rather distant in the future. Such delayed sig-
nal makes it challenging to assign credit to temporally distant states and actions
that have an effect on the rewards. Finally, the agent’s actions affect the subse-
quent data it receives. The agent needs sometimes to sacrifice its current utility
and seek actions that reveal new information about its environment. This will
prevent it from prematurely exploiting early limited knowledge and falling into
local optima.

action

state, reward

Figure 1.1: Standard Reinforcement Learning setting

1

While RL remained on the margins of the broader artificial intelligence (AI)
community until relatively recently, today, RL flourishes as a vital learning
paradigm that captures many important AI applications, including self-driving
cars, robots, and adaptive medical treatments. This recent success is partly due
to the deployment of flexible function approximation schemes (such as the use
of deep neural networks in Deep RL) to deal with large state spaces. However, a
closer look at these impressive empirical results reveals some fundamental lim-
itations:

• It has been challenging to combine desirable features of RL algorithms,
such as off-policy and multi-step learning with function approximation in
a way that leads to both stable and efficient algorithms.

• Deep RL algorithms tend to be very sample inefficient due to the rudimen-
tary exploration-exploitation strategies these approaches employ.

• Furthermore, They require an enormous amount of supervised data and
end up producing a narrow agent able to solve only the task that it is
trained on.

Addressing the aforementioned challenges and bridging the gap between
practise and theory in RL are crucial steps to bring RL to real life and fulfill its
promise, and this is what inspired my research.

This thesis is structured as follows: The next section provides a synthetic
overview of the research contributions that will be detailed in subsequent chap-
ters. Readers less familiar with RL and its terminology and open challenges
will benefit from first reading the background presented in Chapter 2, which
attempts to be a compact formal introduction to RL and to the notions this the-
sis builds on. Each of the following chapters 3 to 7 corresponds to a published
or submitted research paper. Chapter 8 concludes the thesis, discussing future
research directions.

As this is a thesis by article, the review and discussion of the literature most
relevant to each contribution is to be found, in its context, within that contribu-
tion’s chapter, as in the corresponding article, rather than in a separate dedicated
literature review chapter.

2

1.1 RESEARCH CONTRIBUTIONS

1.1.1 Off-Policy Learning

Off-policy learning is concerned with evaluating or optimizing a target pol-
icy based on data from a different behavior policy. This can provide many ben-
efits: efficient parallel exploration and, reuse of past experience with experience
replay and, in many practical contexts, learning form data produced by policies
that are currently deployed, but which we want to improve.

However, we show in «Convergent Tree Backup and Retrace with Function Ap-
proximation» [Touati et al., 2018] (Chapter 3) that combining popular off-policy
and multi-step learning methods, for policy evaluation, with linear value func-
tion parameterization could lead to undesirable instability. Then, we derive a
provably convergent variant of these methods by converting the problem into a
primal-dual saddle point problem. Finally, we provide their finite sample anal-
ysis.

In another work « Stable Policy Optimization via Off-Policy Divergence Regular-
ization» Touati et al. [2020c] (Chapter 4), we ask a different question:

Given a stream of experience generated by a given policy, how could we improve it in a
safe and stable way?

For that, we revisit the foundations of conservative approaches to policy op-
timization that optimize a surrogate objective that can provide local improve-
ments to the current policy at each iteration. We highlight that these methods
rely solely on constraining immediate action probabilities and argue that the
latter might not be enough and that we should rather reason about the long-
term effect of the policies on the distribution of the future states. In particular,
we directly consider the divergence between state-action occupancy measures
induced by successive policies and use it as a regularization term added to the
surrogate objective. This regularization term is itself optimized in an adversarial
and off-policy manner. Finally, we empirically show that our proposed method
can have a beneficial effect on stability and improve final performance in bench-
mark high-dimensional control tasks.

1.1.2 Exploration v.s. Exploitation Dilemma

An RL agent, through trial and error, must learn to act optimally in an un-
known environment to maximize its expected utility. Exploration refers to the
execution of diversified actions to collect data that provide a well-rounded char-
acterization of the environment. Thus, an efficient learning requires balancing
exploration (to gain more knowledge) and exploitation (acting optimally accord-
ing to the available knowledge).

3

While a wealth of research has been developed to design systematic explo-
ration strategies in small state-space problems (known as tabular problems),
their theoretical measure guarantee typically scales with the number of discrete
states and the number of discrete actions. This precludes applying them to arbi-
trarily large state-action spaces.

An appealing challenge is to combine exploration strategies with generaliza-
tion methods in a way that leads to both provable sample efficient and compu-
tationally efficient RL algorithms for large-scale problems. This would require
some structural assumptions.

A simple way to ensure generalization over states is to aggregate them into
a finite set of meta-states and run a tabular exploration mechanism on the latter.
In this direction, we proposed in «Zooming for Efficient Model-free Reinforcement
Learning in Metric Spaces» [Touati et al., 2020b] (Chapter 5) to actively explore the
state-action space by learning on the-fly an adaptive partitioning that takes into
account the shape of the optimal value function. When the state-action space
is assumed to be a compact metric space, such adaptive discretization based
algorithms yield sublinear regret.

Another structural assumption, that received attention in the recent litera-
ture, is when both reward and transition dynamics are linear functions with
respect to a given feature mapping. This assumption enables the design of effi-
cient algorithms with a linear representation of the action value function. In our
work «Efficient learning in non-stationary linear Markov decision processes» [Touati
and Vincent, 2020a] (Chapter 6), we add exogenous non-stationarity where the
environment is now allowed to evolve dynamically and even adversarially over
time, but the total change is still bounded. This is a more challenging setting,
since what has been learned in the past may be obsolete in the present. To ad-
dress this setting, our proposed algorithm is based on weighted least squares
value iteration that uses exponential weights to smoothly forget data that are far
in the past, which drives the agent to keep exploring to discover changes. We
prove that this algorithm achieves state-of-the-art online performance.

1.1.3 Unsupervised Learning in RL

In standard RL, the agent is given a training signal from the environment
in the form of a scalar reward and aims to maximize the expected cumulative
rewards along its trajectories. This strategy ends up producing a narrow agent
that is only able to solve the single task that it is trained on. Furthermore, it
is arguably not how humans learn in real life. For example, a child might get
supervisions from his parents in various forms such as verbal instructions or
applause. But most of the time, he is exploring the world through curiosity and
play and gaining knowledge about his surroundings.

In our work «Learning One Representation to Optimize All Rewards» [Touati and

4

Ollivier, 2021] (Chapter 7), we ask this question:

Given an environment without reward information, is it possible to learn and store a
compact object that, for any reward function specified later, provides the optimal policy

for that reward, with a minimal amount of additional computation?

To address the question above, we propose to learn a pair of representations
F (for forward) and B (for backward) that map state-action pairs to some la-
tent space. During the unsupervised learning phase, these representations are
trained using reward-free interactions such that F>B encodes long-range rela-
tionships between states and actions, via a predictive occupancy map. At test
time, once a reward function is revealed, we show that the optimal policy for
that reward is directly obtained from these representations, with no planning.
Empirically, our approach compares well to goal-oriented RL algorithms on dis-
crete and continuous mazes, pixel-based MsPacman (an Atari game), and a vir-
tual robot arm. We also illustrate how the agent can immediately adapt to new
tasks beyond goal-oriented RL.

1.2 LIST OF EXCLUDED CONTRIBUTIONS

During my PhD, I produced other contributions on various machine learning
topics, that are not included in this thesis.

• Reinforcement Learning:

– Joshua Romoff, Peter Henderson, David Kanaa, Emmanuel Bengio,
Ahmed Touati, Pierre-Luc Bacon, Joelle Pineau. TDprop: Does Ja-
cobi Preconditioning Help Temporal Difference Learning?. AAMAS
2021. [Romoff et al., 2021]

– Ahmed Touati, Pascal Vincent. Sharp Analysis of Smoothed Bellman
Error Embedding. ICML 2020 Workshop on Theoretical Foundations
of Reinforcement Learning. [Touati and Vincent, 2020b]

– Zilun Peng*, Ahmed Touati*, Pascal Vincent and Doina Precup.
SVRG for Policy Evaluation with Fewer Gradient Evaluations. IJCAI
2020. [Peng et al., 2019]

– Joshua Romoff, Peter Henderson, Ahmed Touati, Yann Ollivier,
Emma Brunskill, Joelle Pineau. Separating value functions across
time-scales. ICML 2019. [Romoff et al., 2019]

5

– Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal,
Yoshua Bengio, Devi Parikh and Dhruv Batra. Learning Dynamics
Model in Reinforcement Learning by Incorporating the Long Term
Future. ICLR 2019. [Ke et al., 2019]

– Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, Pascal
Vincent. Randomized Value Functions via Multiplicative Normaliz-
ing Flows. UAI 2019. [Touati et al., 2020a]

• Bayesian Deep Learning:

– Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina
Dziugaite, Alexandre Lacoste, Aaron Courville. Stochastic Neural
Network with Kronecker Flow. AISTATS 2020. [Huang et al., 2020]

– Chin-Wei Huang, Ahmed Touati, Laurent Dinh, Michal Drozdzal,
Mohammad Havaei, Laurent Charlin, Aaron Courville. Learnable Ex-
plicit Density for Continuous Latent Space and Variational Inference.
ICML 2017 workshop. [Huang et al., 2017a]

• Generative Modeling:

– Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Simon
Julien-Lacoste. Adversarial Divergences are Good Task Losses for
Generative Modeling. Under review at Journal of Machine Learning
Research. [Huang et al., 2017b]

• Convex Optimization:

– Rémi Le Priol, Ahmed Touati and Simon Lacoste-Julien. Adaptive
Stochastic Dual Coordinate Ascent for Conditional Random Fields.
NIPS 2017 Workshop on Optimization for Machine Learning.

6

2 Background

2.1 DISCOUNTED MARKOV DECISION PROCESS

2.1.1 The Model

Markov Decision Processes [Puterman, 1994] are a mathematical tool for
modeling sequential decision-making problems where a decision maker or an
agent interacts with a system in a sequential fashion. A discounted Markov De-
cision Process (MDP) is a tuple (S ,A, P, r, γ) with state space S , action space A,
transition probabilities P mapping state-action pairs to distributions over next
states, immediate reward function r, and a discount fator γ ∈ [0, 1). The reward
could be stochastic. If S is discrete, for each (s, a), P(s′ | s, a) is a probability
mass function on s′ ∈ S . For general S , P(ds′ | s, a) is a probability measure on
s′ ∈ S .

For the ease of exposition in this chapter, we restrict our attention to finite
MDPs (S andA are finite). We also assume that the reward function is bounded,
r : S ×A → [0, rmax] for some positive scalar rmax.

An agent can select its actions at any stage based on the observed history.
A rule describing the way the actions are selected is called a policy. Starting
from an initial state s0 and executing the policy, the agent generates a random
sequence of state-action-reward {s0, a0, r0, sk+1, . . . st, at, rt, st+1 . . .} where rt =
r(st, at) and st+1 ∼ p(· | st, at). The return underlying a behavior is defined
as the total discounted sum of the rewards incurred:

R =
∞

∑
t=0

γtrt (2.1.1)

The goal of the agent is to choose a behavior that maximizes the expected return.
Such a maximizing policy is said to be optimal. It is known that an optimal
policy can be memoryless in the sense that it does not need the whole observed
history and may only depend on the current state. Moreover, it is known that to
be optimal over an infinite horizon setting, a policy can be stationary in the sense
that it does not depend on the time that a state was encountered.

7

2.1.2 Policies and Value Functions

As stated above, we will restrict our attention to memoryless and stationary
policies. Formally, we define a policy as a mapping from states to probabilities of
selecting each possible action. We denote by π(a | s) the probability of choosing
action a in state s under the policy π : S → Prob(A), where Prob(A) denotes
the space of probability distribution over actions.

An action-value function, know also as Q-function, is a function of state-
action pairs that estimate how good it is for the agent to be in a given state-action
pair. Thus, it is a way to evaluate policy and compare different policies. The
value of a state-action pair (s, a) under a policy π, denoted Qπ(s), is the expected
return when starting in state s, taking action a and following π thereafter:

Qπ(s, a) , E

[
∞

∑
t=0

γtrt

∣∣∣ (s0, a0) = (s, a), π

]
(2.1.2)

Where the expectation is over trajectories drawn by executing π:
{(st, at, rt, st+1)}t where at ∼ π(.|st), rt = r(st, at), and st+1 ∼ p(· | st, at).
Similarly, the value of a state s under a policy π, denoted Vπ(s), is the expected
return when starting in state s and following π thereafter:

Vπ(s) , E

[
∞

∑
t=0

γtrt

∣∣∣ s0 = s, π

]
(2.1.3)

Value function and action-value function are related as follows:

Vπ(s) = Ea∈π(·|s)[Q
π(s, a)] = ∑

a∈A
π(a | s)Qπ(s, a) (2.1.4)

A fundamental property of action-value functions used throughout rein-
forcement learning is that they satisfy the following recursive relationship:

Qπ(s, a) = E

[
∞

∑
t=0

γtrt

∣∣∣ (s0, a0) = (s, a), π

]

= r(s, a) + E

[
∞

∑
t=0

γt+1rt+1

∣∣∣ (s0, a0) = (s, a), π

]

= r(s, a) + γ ∑
s′

P(s′ | s, a)E

[
∞

∑
t=0

γtrt

∣∣∣ s0 = s′, π

]
︸ ︷︷ ︸

Vπ(s′)

= r(s, a) + γ ∑
s′,a′

P(s′ | s, a)π(a′ | s′)Qπ(s′, a′) (2.1.5)

8

This is the Bellman equation for Qπ. It expresses a relationship between the value
of a state-action pair and the values of its successor states and actions. Similarly,
the Bellman equation for Vπ is defined as follows:

Vπ(s) = ∑
a

π(a | s)r(s, a) + γ ∑
s′,a

π(a | s)P(s′|s, a)Vπ(s′) (2.1.6)

2.1.3 Optimal Policies and Optimal Value Functions

The optimal value functions, denoted by V? and Q? respectively, are defined
by:

V?(s) , max
π

Vπ(s), (2.1.7)

Q?(s, a) , max
π

Qπ(s, a) (2.1.8)

A remarkable property of MDPs is that there exists a stationary and determinis-
tic policy π that simultaneously maximizes Vπ(s) for all s ∈ S [Puterman, 1994].
We refer to such a π as an optimal policy. The optimal value and action-value
functions are connected by the following equations:

V?(s) = max
a∈A

Q?(s, a) (2.1.9)

Q?(s, a) = r(s, a) + γ ∑
s′

P(s′ | s, a)V?(s′) (2.1.10)

The latter equation is known as the optimal Bellman equation. We know that for all
policies π, Vπ(s) = ∑a π(a | s)Qπ(s, a) ∀s ∈ S . In order latter equation holds
for optimal value function V?, π?(a | s) > 0 only if Q?(s, a) = maxa′∈A Q?(s, a′),
which simply corresponds to choosing the action of maximum value in each
state. Therefore, the greedy policy with respect to Q? is an optimal policy.

2.2 EPISODIC MARKOV DECISION PROCESSES

We presented in the last section the infinite-horizon discounted setting of
MDPs where the return of a trajectory is given by ∑∞

t=0 γtrt. Popular alternative
choices include the finite-horizon undiscounted setting (return of a trajectory
is ∑T

t=1 rt with some finite horizon H < ∞) and the infinite-horizon average
reward setting (return is limT→∞

1
T ∑T

t=1 rt). The latter case often requires addi-
tional conditions on the transition dynamics (such as ergodicity) so that values
can be well-defined.

A finite horizon MDP is a tuple (S ,A, P, r, H) where S and A are the state
and action space, H is the planning horizon i.e number of steps in each episode,

9

P = {Ph} is a collection of the transition probabilities such that Ph(·|s, a) gives
the distribution over next states if action a is taken at state s at step h ∈ [H],
r = {rh} is a collection of reward functions such that rh(s, a) is the reward of
taking action a at state s at time step h.

For any step h ∈ [H] and (s, a) ∈ S × A, the action-value function of a
non-stationary policy π = (π1, . . . , πH) is defined as Qπ

h (s, a) = rh(s, a) +

E
[
∑H

i=h+1 ri(si, ai))
∣∣∣ (sh, ah) = (s, a), π

]
, and the value function is Vπ

h (s) =

∑a πh(a | s)Qπ
h (s, a). As the horizon is finite, there always exists an optimal pol-

icy π? whose value and action-value functions are defined as V?
h (x) = Vπ?

h (s) =
maxπ Vπ

h (s) and Q?
h(s, a) = Qπ?

h (s, a) = maxπ Qπ
h (s, a). Both Qπ and Q? can be

conveniently written as the result of the following Bellman equations

Qπ
h (s, a) = rh(s, a) + ∑

s′
Ph(s′ | s, a)Vπ

h+1(s
′), (2.2.1)

Q?
h(s, a) = rh(s, a) + ∑

s′
Ph(s′ | s, a)V?

h+1(s
′), (2.2.2)

where Vπ
H+1(s) = V?

H+1(s) = 0 and V?
h (s) = maxa∈A Q?

h(s, a), for all s ∈ S .

2.3 DYNAMIC PROGRAMMING
«An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision» –Bellman’s Principle of

Optimality [Bellman, 1957]

The term dynamic programming (DP) refers to a collection of algorithms that
can be used to compute optimal policies given a perfect model of the environ-
ment as a Markov decision process (MDP). DP leverages the structure of MDP
to simplify the problem solving. While DP has limited practical importance as
it assumes access to a perfect model, it remains of great theoretical interest and
gives valuable insights for the design of RL algorithms.

2.3.1 Bellman Operators

Many DP algorithms operate in the value function space by repeatedly ap-
plying transformations. Therefore, it is convenient to think of the latter as op-
erators. If we consider action-value function as mapping : S × A → R. An
operator B over action-value functions then takes a function Q : S × A → R

and maps it to a function over the same domain, BQ : S ×A → R.

10

Let us first define the transition operator Pπ for a policy π:

PπQ(s, a) , ∑
s′,a′

P(s′ | s, a)π(a′ | s′)Q(s′, a′). (2.3.1)

The spectral radius of Pπ, as stochastic matrix, is equal to one. This implies that
the Neuman expansion ∑∞

t=0 γt(Pπ)t is convergent and is equal to (I − γPπ)−1.
Therefore, we can write Qπ as

Qπ =
∞

∑
t=0

γt(Pπ)tr = (I − γPπ)−1r (2.3.2)

Now, we can write The Bellman evaluation operator over Q-functions, which
corresponds to applying (2.1.5) to all state-action pairs, as for any Q : S ×A →
R,

T πQ , r + γPπQ (2.3.3)

Similarly to this evaluation operator, we can define the Bellman optimality
operator as, for any Q : S ×A×R,

T Q , r + max
π
PπQ (2.3.4)

Both operators share nice properties that provide the basis for DP algorithms
such as Value Iteration and Policy Iteration. First, the Q-function of Qπ of the
policy π is a fixed point of Pπ while the optimal Q-function Q? is a fixed point of
T i.e T πQπ = Qπ and T Q? = Q?. Moreover, Both operators are γ-contraction in
supremum norm l∞ as for any pair of functions Q1, Q2 : S ×A → R, we have,

‖T πQ1 − T πQ2‖∞ ≤ γ‖Q1 −Q2‖∞, (2.3.5)
‖T Q1 − T Q2‖∞ ≤ γ‖Q1 −Q2‖∞. (2.3.6)

Finally, both operators are monotone in the sense that for any pair of functions
Q1 and Q2 such that Q1 ≤ Q2 component-wise, we have T πQ1 ≤ T πQ2 and
T Q1 ≤ T Q2.

2.3.2 Value Iteration

The Value Iteration (VI) [Bellman, 1957] algorithm operates on the Q-function
space. Starting with an arbitrary, initial Q-function estimate, it repeatedly ap-
plies the Bellman optimality operator T so that the Q-function estimate ap-
proaches the optimal Q-function in the limit. A basic form of VI is given in
algorithm 1. The behaviour of VI can be analyzed by the Banach fixed point

11

Algorithm 1 Value Iteration Algorithm

Input: MDP (S ,A, P, r, γ)
1: Initialize a value Q0
2: for k = 1 . . . K do
3: Qk+1 = T Qk
4: end for
5: Return the greedy policy πK(s) = arg maxa QK(s, a)

theorem that states, if X is a complete metric space1 with a contraction mapping
B : X → X , then B admits a unique fixed point and the sequence x,Bx,B2x, . . .
converge to that fixed point for any x ∈ X . In particular, it shows that the
optimal Q-function Q? is indeed the unique fixed point of T and repeated ap-
plications of T are guaranteed to yield it. Furthermore, it can be shown that VI
converges at a geometric rate. In fact, we have for any initial function Q,

‖T kQ−Q?‖∞ = ‖T (T k−1Q)− T Q?‖∞

≤ γ‖T k−1Q−Q?‖∞

≤ . . . ≤ γk‖Q−Q?‖∞

2.3.3 Policy Iteration

Another classic DP approach to solve MDPs is Policy Iteration (PI). This al-
gorithm 2 directly searches the optimal policy by interleaving between a pol-
icy evaluation step and a policy improvement step. Starting with an arbi-
trary policy, the algorithm proceeds in an iterative way. At iteration k > 0,
it computes the action-value function Qπk of πk. Next, it improves the pol-
icy by updating the policy to be the greedy policy with respect to Qπk i.e
πk+1(s) = arg maxa Qπk(s, a) for all s ∈ S . In terms of the Bellman operators,
this can be equivalently expressed as T πk+1 Qπk = T Qπk . We have that

Qπk = T πk Qπk ≤ T Qπk = T πk+1 Qπk (component-wise). (2.3.7)

By applying the operator T πk+1 on both sides and using the monotonicity prop-
erty, we obtain for any integer n > 0

Qπk ≤ T πk+1 Qπk ≤ . . . ≤ (T πk+1)nQπk (component-wise). (2.3.8)

1Intuitively, for a metric space to be complete means that there are no "points missing" from
it. Bounded real-valued functions can be shown to be complete, and therefore the space of Q-
functions with Q equipped with the l∞-norm is a complete metric space.

12

Algorithm 2 Policy Iteration Algorithm

Input: MDP (S ,A, P, r, γ)
1: Initialize a policy π1
2: for k = 1 . . . K do
3: given πk, compute Qπk /* Policy Evaluation
4: πk+1(s) = arg maxa Qπk(s, a) /* Policy Improvement
5: end for
6: Return the last policy πK

By applying the Banach fixed-point theorem on the contraction T πk+1 , we obtain
limn→(T πk+1)nQπk = Qπk+1 . Which implies that Qπk ≤ Qπk+1 . Therefore, PI
generates a sequences of policies with non-decreasing performance. Since we
have now T Qπk = T πk+1 Qπk ≤ Qπk+1 ≤ Q?, we obtain

‖Qπk+1 −Q?‖∞ ≤ ‖T πk+1 Qπk −Q?‖∞

= ‖T Qπk − T Q?‖∞

≤ γ‖Qπk −Q?‖∞

≤ . . . ≤ γk+1‖Qπ1 −Q?‖∞

Thus, PI converge at a linear rate.

2.4 TEMPORAL DIFFERENCE LEARNING
«TD learning is learning a prediction from another, later, learned prediction,
i.e, learning a guess from a guess» –Richard Sutton at Montreal summer

school, 2017.

Dynamic programming algorithms assume that both the transition probabil-
ities P and the reward function r are explicitly known. On the other hand, in the
general reinforcement learning setting, this information is not available to the
agent which needs a direct interaction with the environment in order to solve it.

For value function estimation at a given state, a straightforward alternative
is to approximate the expectation of the random return by an average over in-
dependent trajectories started from the given state. This is an instance to the
so-called Monte-Carlo method. However, this technique faces several issues: the
estimator tends to have high variance, it is computed only when all trajectories
are terminated, and it assumes that we are able to reset the environment to some
particular state.

13

To address these shortcomings, temporal difference (TD) learning [Sutton,
1988] has been proposed and has become the main building block of many RL
algorithms. TD learning approaches combine ideas from both Monte Carlo and
DP. Similarly to Monte Carlo, they learn from raw experiences without access
to an explicit model of the environment. Similarly to DP, they update estimates
of the values of states based on estimates of the values of successor states. This
latter is referred as bootsrapping.

2.4.1 Policy Evaluation

For the problem of policy evaluation, TD learning, in its simplest form TD(0),
updates the value of a state-action pair (st, at) towards an estimate of the return
rt + γQ(st+1, at+1), called the TD target, where rt is the reward given by the
environment at time t, st+1 is the state reached after the transition, and at+1 is
the action selected by the policy being evaluated. More precisely, TD(0) update
rule is as follows :

Q(st, at)← Q(st, at) + αt(st, at)
(
rt + γQ(st+1, at+1)−Q(st, at)

)
, (2.4.1)

where αt(s, a) ∈ (0, 1) is the learning rate associated to the state-action pair (s, a)
at time t. The term rt + γQ(st+1, at+1)− Q(st, at) is called the TD error, and is
usually denoted by δt. We have in expectation:

E
[
δt

∣∣∣ (st, at) = (s, a)
]
= (T πQ−Q)(s, a), ∀(s, a) (2.4.2)

Therefore, TD(0) can be interpreted as a stochastic approximation scheme for
solving a fixed point of the Bellman equation. Contraction property together
with general results from stochastic approximation theory can then be used to
show asymptotic convergence under the minimal assumption that for every
state-action pair (s, a), the sequence of step-size {αt(s, a)}t satisfies Robbins-
Monro conditions i.e ∑t αt(s, a) = ∞ and ∑t αt(s, a)2 < ∞ [Jaakkola et al., 1994].
Since the learning rate αt is less than 1, the first condition ∑t αt(s, a) = ∞ implies
that every state and every action should be visited infinitely often.

While the Monte Carlo method has no bias but could suffer from large vari-
ance, TD(0), a one-step TD, has a small variance but may introduce bias. We
can extend both methods by n-step TD which can shift from one to the other
smoothly as needed.

The target for an arbitrary n-step update is the n-step return:

Rt:t+n = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnQ(st+n, at+n). (2.4.3)

All n-step returns can be considered approximations to the full return, trun-
cated after n steps and then corrected for the remaining missing terms by
Q(st+n, at+n).

14

Therefore, n-step methods enable bootstrapping to occur over multiple steps.
Now we note that a valid update can be done not only toward any n-step return,
but also toward any average of n-step returns. A particular and popular way
of averaging n-step updates is to weight each n-step updates by λn−1, where
λ ∈ [0, 1] and then normalize it by a factor of 1− λ to ensure that the weights
sum to 1. This particular average is called the λ-return and is defined as

Rλ
t , (1− λ)

∞

∑
n=0

λn−1Rt:t+n (2.4.4)

TD(λ) algorithm updates the value function estimates towards this λ-return as
follows:

Q(st, at)← Q(st, at) + αt(st, at)
(

Rλ
t −Q(st, at)

)
(2.4.5)

λ = 0 corresponds to the TD(0) (one-step TD) update, and λ → 1 removes
the recursion on Q-function estimate, and recover the Monte Carlo estimate. λ
controls clearly the amount of sampling versus bootstrapping. Therefore, it is
a trade-off parameter between bias and variance. We have that E

[
Rλ

t
]
= T π

λ V
where T π

λ is the Bellman λ-operator defined as

T π
λ , (1− λ)

∞

∑
n=0

λn(T π)n+1 (2.4.6)

Qπ remains the fixed point of T π
λ . Therefore, TD(λ) could be interpreted as a

stochastic approximation scheme for finding the fixed point of the operator T π
λ .

2.4.2 Policy Learning

So far, we dealt with TD learning for the problem of approximating the value
function of a fixed policy. Now, we present the Q-learning algorithm [Watkins
and Dayan, 1992], one natural extension of TD learning to control problems,
where the goal is to learn an effective policy from data. Given a transition
(st, at, rt, st+1) at time t, Q-learning’s update rule is as follows:

Q(st, at)← Q(st, at) + αt(st, at)
(

rt + max
a

Q(st+1, a)−Q(st, at)
)

. (2.4.7)

If we consider the TD error δt = rt + maxa Q(st+1, a) − Q(st, at), we have in
expectation:

E [δt | st = s, at = a] = (T Q−Q)(s, a), ∀(s, a) (2.4.8)

Q-learning is then a stochastic approximation scheme for finding the fixed
point of the optimality Bellman operator T . The sequence of estimates is showed
to converge to Q? with probability one under the assumption that for every

15

state-action pair (s, a) the sequence of step-sizes {αt(s, a)}t satisfies Robbins-
Monro conditions [Jaakkola et al., 1994]. This condition requires that every state-
action pair is visited infinitely.

While TD(0), presented earlier, requires that actions are executed by the fixed
policy that we would like to evaluate, Q-learning allows us to learn from any
stream of experiences. Q-learning is thus an off-policy method. The commonly
used strategies in practice is to sample the actions following the ε-greedy or
the Botzmann policy with respect to the current estimate of the Q-value. While
such sampling strategies ensure the full coverage of the state-action space in
the limit of infinite time and eventually lead to asymptotic convergence, a more
directed exploration strategy would be critical to achieve a good performance in
a reasonable amount of time.

2.5 FUNCTION APPROXIMATION

When the state space is large, which is the case of most domains of interest,
it is not feasible to keep a separate value for each state in the memory. In order
to obtain generalization between different state-action pairs, value functions or
policies should be represented in a compact functional form.

2.5.1 Value-based Methods

Value-based method learn parametrized value-functions. A traditional
choice is the linear function approximation of the form:

Q(s, a) = θ>φ(s, a) ,

where θ ∈ Θ ⊂ Rd is a weight vector and φ : S ×A → Rd is a feature map from
a state-action pairs to a given d-dimensional feature space.

The natural extension of Q-learning to function approximation with para-
metric form {Qθ, θ ∈ Rd} is:

θt+1 = θt + αtδt∇θQθt(st, at) (2.5.1)

where δt = rr + γ maxa Qθt(st+1, a)− Qθt(st, at). Note that with linear function,
∇θQθt(st, at) = φ(st, at) and when features are defined by one-hot encoding
vectors, we recover the Q-learning algorithm in the tabular case. Moreover, if
we ignore the effect of θ on the target yt = rr + γ maxa Qθt(st+1, a), the update
rule looks like a stochastic gradient descent on:

E
[
(Qθ(s, a)− y)2

]
(2.5.2)

16

However, we include only a part of the gradient by taking into account the effect
of changing the weight vector θt on the estimate Qθt , but ignore its effect, via the
bootstrapping, on the target yt. Such methods are called semi-gradient methods.

Although update rule 2.5.1 is commonly used in practice, not much can be
said regarding its convergence properties. In fact, we know that Q-learning with
linear function approximation may diverge. Some properties of combining tem-
poral difference with function approximation will be extensively studied in our
first contribution.

The limitation of linear functions is that we need to handcraft feature extrac-
tors for each domain. This could be painful and time-consuming especially in
high-dimensional domains or when a good prior for feature design is not avail-
able.

This partially motivates the recent trend of combining reinforcement learn-
ing with deep leaning, which is known as deep reinforcement learning (deep
RL). Deep RL opens up new applications as it allows us solve a wide range of
complex decision-making tasks that were previously out of reach for a machine.

Deep neural networks are made up of multiple processing layers. Each layer
consists in an affine transformation followed by non-linear activations. The se-
quence of non-linear transformations allows to learn different levels of abstrac-
tions. This enables representations learning and obviates the need to handcraft
features to describe the inputs.

Deep Q-Networks (DQN) [Mnih et al., 2015] incorporates a deep neural net-
work, parameterized by θ, as a function approximator for the action-value func-
tion. The neural network parameters are estimated by minimizing the squared
temporal difference residual:

L(θ) = E(s,a,r,s′)∼D
[
(Qθ(s, a)− y)2

]
, y = r + γ max

a∈A
Qθ−(s

′, a) (2.5.3)

where transitions (s, a, r = r(s, a), s′ ∼ P(s′ | s, a)) are sampled from a replay
buffer of recent observed transitions D. Here θ− denotes the parameters of a
target network which is updated (θ− ← θ) regularly and held fixed between
individual updates of θ.

2.5.2 Policy Gradient

Policy gradients methods search over a parameterized class of polices by per-
forming stochastic gradient ascent on an objective function capturing the cumu-
lative expected rewards. Specifically, they consider the scalar objective function

Jπ , Es∼ρ[Vπ(s)] (2.5.4)

which averages the total value function Vπ over a random initial state distribu-
tion ρ.

17

The Usual Place Grande Opening Grande Opening

Figure 2.1: Restaurant selection example. Exploitation: Go to favorite restaurant. Exploration:
Try a new restaurant

Let’s first define the discounted state visitation distribution dπθ
ρ of policy π:

dπ
ρ (s) = (1− γ)

∞

∑
t=0

γt Pr(st = s|s0 ∼ ρ, π) (2.5.5)

where Pr(st = s|s0 ∼ ρ, π) is the state visitation probability that st = s, after we
execute π starting at a state s0 sampled from ρ.

For the class of stochastic differentiable policies {πθ, θ ∈ Θ ⊂ Rd}, the funda-
mental result underlying these algorithms is the policy gradient theorem [Sutton
et al., 1999a]:

∇θ Jπθ =
1

1− γ
Es∼d

πθ
ρ ,a∼πθ

[
∇θ(log πθ(a|s))Qπθ(s, a)

]
(2.5.6)

The latter expression suggests that we can estimate the gradient by approximat-
ing the action-value function. It can be done by TD(0) with function approxima-
tion. This gave rise to the actor-critic architecture [Konda and Tsitsiklis, 2000].

Another instance of policy-gradient is the REINFORCE algorithm [Williams,
1992] which, instead of a learned value function, uses the cumulative return
averaged over rollouts generated by the policy πθ.

2.6 EXPLOITATION-EXPLORATION DILEMMA

A RL agent aims at maximizing its long-term utility by exploiting its knowl-
edge about the environment and allocating resources to the choices that are iden-
tified to be highly rewarding. However, this knowledge has to be acquired by
the agent itself through exploring different choices that may reduce short-term
utility. An illustrative situation is depicted in figure 2.1. An agent has the choice
between going to its favorite restaurant so far or trying a new restaurant. A con-
servative agent would stick to its usual place that may be suboptimal choice. An
active learner would experiment the new restaurant to figure out if it is worth

18

s1 s2 sn�1 sn

r = 1r = 0.001

Figure 2.2: n-chain environment

going back to it and gain more knowledge. An efficient learning should balance
carefully between exploration and exploitation.

The simplest approach to exploration is the ε-greedy strategy, which selects
the greedy action with probability 1− ε and otherwise selects uniformly at ran-
dom from all currently available actions. It is commonly used because it is easy
to implement and disentangles explicitly between exploration and exploitation.
However, such an approach does not take into account the level of information
that actions could bring, and thus wastes exploratory resources.

To illustrate the inefficiency of random exploration, let us consider the n-
chain environment in Figure 2.2. The environment consists of n states. The agent
always starts at the second state s2 and has two possible actions: move right or
move left. A small reward r = 0.001 is received in the first state s1, a large reward
r = 1 in the final state sn, otherwise the reward is zero. Q-learning with ε-
greedy does poorly in this example. It takes O(2n) samples in expectation to visit
the right end state for one time, resulting in an exponential sample complexity.
What makes exploration particularly challenging in this toy example is that the
agent only observes the informative signal after committing to the action right
over an extended period of time. Therefore a directed exploration, involving a
planning over time, is critical for effective learning.

Optimism in the face of uncertainty (OFU) is one of the traditional guiding prin-
ciples that offers provably efficient learning algorithms. We can distinguish two
classes of approaches: confidence-intervals based methods [Kearns and Singh,
2002, Strehl and Littman, 2005, Jaksch et al., 2010] and exploration-bonus based
methods [Azar et al., 2017, Jin et al., 2018, Jian et al., 2019]. In the former, the
agent builds a set of statistically plausible Markov Decision Processes (MDPs)
that contains the true MDP with high probability. Then, the agent selects the
most optimistic version of its model and acts optimally with respect to it. In the
latter, discoveries of poorly understood states and actions are rewarded by an
exploration bonus. Such bonus is designed to bound estimation errors on the
value function.

An entire body of algorithms for efficient exploration is inspired by Thompson
sampling [Thompson, 1933]. Bayesian dynamic programming was first introduced

19

in Strens [2000] and is more recently known as posterior sampling for reinforcement
learning (PSRL) [Osband et al., 2013]. In PSRL, the agent starts with a prior belief
over world models and then proceeds to update its full posterior distribution
over models with the newly observed samples. A model hypothesis is then
sampled from this distribution, and a greedy policy with respect to the sampled
model is followed thereafter.

Why, intuitively, does PSRL works? let Hk the history of observations up to
episode k. The posterior distribution f (.|Hk) generates only plausible models
and it concentrates around the True MDP.

• In early iterations, the posterior distribution is flat and its spread capture
the uncertainty which enables exploration.

• As we collect more data, the mode of the posterior distribution captures
the maximum likelihood estimates, which enable exploitation.

2.6.1 Online Performance

In order to quantitatively assess the exploration-exploitation trade-off,
we use some online performance measures. the most common performance
measures widely used in the literature are the sample complexity of explo-
ration [Kakade, 2003] (defined for discounted and episodic MDPs) and the regret
(defined traditionally for the average-reward and episodic MDPs and extended
recently to discounted MDPs [Liu and Su, 2020])

In episodic MDPs, if an algorithm follows policy πk in episode k, then the
optimality gap in episode k is ∆k , V∗1 (s1) − Vπk

1 (s1), where V∗1 and Vπk
1 is

respectively the optimal value function and the value function of πk at stage
h = 1, and s1 is the initial state.

The sample complexity of exploration is defined as N(ε, K) , ∑K
k=1 1{∆k>ε}

i.e the total number of errors (ε-suboptimal policies). We say that a learning
algorithm is (ε, δ)-PAC (Probably Approximately Correct) if there exists a poly-
nomial function of 1/ε, δ and MDP’s parameters such that N(ε, K) is smaller
than this function with probability at least 1− δ. In other term, the number of
errors can be bounded by a number polynomial in the relevant quantities with
high probability.

The regret is defined as the total sum of optimality gap over episodes:
REGRET(K) = ∑K

k=1 ∆k. A learning algorithm is said "efficient" if it achieves a
sublinear regret i.e REGRET(K) = o(K) when K ← ∞ in expectation or with high
probability. A high probability bound is a stronger results as it can always be
converted to a bound in expectation. Another quantity is the expected Bayesian
regret where we consider the expectation of the regret over a prior distribution
on MDPs. This is a weaker guarantee as the measure holds only in expectation
over MDPs and not for a specific MDP.

20

The tow aforementioned performance measures are not directly comparable.
An algorithm with small regret can make small mistakes infinitely often and
thus it cannot be (ε, δ)-PAC for ε small enough. Dann et al. [2017] provide an
extensive study of the connection between the two quantities.

21

3
Multi-step Off-policy
Learning with Function
Approximation

«Before a decision is made, a set of options constitute candidates for future
reality. After the decision has been made and its consequences are known,

those unchosen options can never become reality, but they may nevertheless
haunt us, amuse us, or influence our perception of the decision process itself.»

– [Roese, 1999]

3.1 PROLOGUE TO THE CONTRIBUTION

3.1.1 Article Details

This chapter is based on the article «Convergent TREE-BACKUP and RETRACE
with Function Approximation» [Touati et al., 2018]. This is joint work with Pierre-
Luc Bacon, Doina Precup and Pascal Vincent. This paper was accepted as a long
oral at ICML 2018. I am the main author. I performed the theoretical analysis,
the derivation of the new algorithm and the experiments.

3.1.2 Context

This work started originally as a course project in the context of the RL class
taught by Doina Precup at Mcgill university. I was interested in optimization-
based RL algorithms. Pierre-luc Bacon, who was the teaching assistant at the
time, suggested to me to study the behavior of RETRACE algorithm with func-
tion approximation. RETRACE was recently introduced as a safe and efficient
off-policy method in Munos et al. [2016] and became quickly at the heart of sev-
eral successful deep RL architectures such as REACTOR (Retrace-Actor) [Gruslys
et al., 2017] and ACER [Wang et al., 2016].

3.1.3 Paper Abstract

Off-policy learning is key to scaling up reinforcement learning as it allows to
learn about a target policy from the experience generated by a different behavior
policy. Unfortunately, it has been challenging to combine off-policy learning

22

with function approximation and multi-step bootstrapping in a way that leads
to both stable and efficient algorithms.

In this work, we show that popular multi-step off-policy methods such as
TREE BACKUP [Precup, 2000] and RETRACE [Munos et al., 2016] are unstable
with linear function approximation, both in theory and in practice with specific
examples. Based on our analysis, we then derive stable and efficient gradient-
based algorithms using a quadratic convex-concave saddle-point formulation.
By exploiting the problem structure proper to these algorithms, we are able to
provide convergence guarantees and finite-sample bounds. The applicability of
our new analysis also goes beyond TREE BACKUP and RETRACE and allows us
to provide new state-of-the-art convergence rates for the GTD and GTD2 algo-
rithms without having recourse to projections or Polyak averaging.

3.1.4 Recent Developments

While our work focuses on linear function approximation, Wai et al. [2019]
extend the primal-dual formulation of policy evaluation to nonlinear smooth
function approximation, show that it converges to a stationary point and pro-
vide its finite sample analysis.

I worked on a followup in [Peng et al., 2019], jointly led by Zilun Peng and
in collaboration with Pascal Vincent and Doina Precup. We proposed a reduced
variance methods for the problem of off-policy policy evaluation that achieve
a linear convergence rate while addressing the computational bottleneck that
previously proposed reduced variance methods in Du et al. [2017] suffer from.

3.2 INTRODUCTION

Rather than being confined to their own stream of experience, off-policy
learning algorithms are capable of leveraging data from a different behavior
than the one being followed, which can provide many benefits: efficient parallel
exploration as in Mnih et al. [2016] and Wang et al. [2016], reuse of past experi-
ence with experience replay [Lin, 1992] and, in many practical contexts, learning
form data produced by policies that are currently deployed, but which we want
to improve (as in many scenarios of working with an industrial or health care
partner). Moreover, a single stream of experience can be used to learn about a
variety of different targets which may take the form of value functions corre-
sponding to different policies and time scales [Sutton et al., 1999c] or to predict-
ing different reward functions as in Sutton and Tanner [2004] and Sutton et al.
[2011]. Therefore, the design and analysis of off-policy algorithms using all the
features of reinforcement learning, e.g. bootstrapping, multi-step updates (eli-
gibility traces), and function approximation has been explored extensively over

23

three decades. While off-policy learning and function approximation have been
understood in isolation, their combination with multi-steps bootstrapping pro-
duces a so-called deadly triad [Sutton, 2015, Sutton and Barto, 2018], i.e., many
algorithms in this category are unstable.

A typical off-policy approach to is provided by importance sampling, which
bends the behavior policy distribution onto the target one [Precup, 2000, Precup
et al., 2001]. However, as the length of the trajectories increases, the variance of
importance sampling corrections tends to become very large. The TREE BACKUP
algorithm [Precup, 2000] is an alternative approach which remarkably does not
rely on importance sampling ratios directly. More recently, Munos et al. [2016]
introduced the RETRACE algorithm which also builds on TREE BACKUP to per-
form off-policy learning without importance sampling.

Until now, TREE BACKUP and RETRACE(λ) had only been shown to converge
in the tabular case, and their behavior with linear function approximation was
not known. In this paper, we show that this combination with linear function
approximation is in fact divergent. We obtain this result by analyzing the mean
behavior of TREE BACKUP and RETRACE using the ordinary differential equa-
tion (ODE) [Borkar and Meyn, 2000] associated with them. We also demonstrate
this instability with a concrete counterexample.

Insights gained from this analysis allow us to derive a new gradient-based al-
gorithm with provable convergence guarantees. Instead of adapting the deriva-
tion of Gradient Temporal Difference (GTD) learning from [Sutton et al., 2009c],
we use a primal-dual saddle point formulation [Liu et al., 2015, Macua et al.,
2015] which facilitates the derivation of sample complexity bounds. The under-
lying saddle-point problem combines the primal variables, function approxima-
tion parameters, and dual variables through a bilinear term.

In general, stochastic primal-dual gradient algorithms like the ones derived
in this paper can be shown to achieve O(1/k) convergence rate (where k is the
number of iterations). For example, this has been established for the class of
forward-backward algorithms with added noise [Rosasco et al., 2016]. Further-
more, this work assumes that the objective function is composed of a convex-
concave term and a strongly convex-concave regularization term that admits
a tractable proximal mapping. In this paper, we are able to achieve the same
O(1/k) convergence rate without having to assume strong convexity with re-
spect to the primal variables and in the absence of proximal mappings. As corol-
lary, our convergence rate result extends to the well-known gradient-based tem-
poral difference algorithms GTD [Sutton et al., 2009c] and GTD2 [Sutton et al.,
2009b] and hence improves the previously published results.

The algorithms resulting from our analysis are simple to implement, and
perform well in practice compared to other existing multi-steps off-policy learn-
ing algorithms such as GQ(λ) [Maei and Sutton, 2010] and AB-TRACE(λ) [Mah-
mood et al., 2017].

24

3.3 TABULAR OFF-POLICY METHODS

In this work, we are concerned with the policy evaluation problem [Sutton
and Barto, 1998] under model-free off-policy learning. That is, we will evaluate
a target policy π using trajectories (i.e. sequences of states, actions and rewards)
obtained from a different behavior policy µ.

Munos et al. [2016] provided a unified perspective on several off-policy
learning algorithms, namely: those using explicit importance sampling cor-
rections [Precup, 2000] as well as TREE BACKUP (TB(λ)) [Precup, 2000] and
Qπ(λ) [Harutyunyan et al., 2016] which do not involve importance ratios. As a
matter of fact, all these methods share a general form based on the λ-return [Sut-
ton and Barto, 2018] but involve different coefficients κi in :

Gλ
k , Q(sk, ak) +

∞

∑
t=k

(λγ)t−k

(
t

∏
i=k+1

κi

)
(rt + γEπQ(st+1, ·)−Q(st, at))

= Q(sk, ak) +
∞

∑
t=k

(λγ)t−k

(
t

∏
i=k+1

κi

)
δt ,

where EπQ(st+1, .) , ∑a∈A π(a | st+1)Q(st+1, a) and δt , rt + γEπQ(st+1, .)−
Q(st, at) is the temporal-difference (TD) error. The coefficients κi determine how
the TD errors would be scaled in order to correct for the discrepancy between
target and behavior policies. From this unified representation, Munos et al.
[2016] derived the RETRACE(λ) algorithm. Both TB(λ) and RETRACE(λ) con-
sider this form of return, but set κi differently. The TB(λ) updates correspond to
the choice κi = π(ai | si) while RETRACE(λ) sets κi = min

(
1, π(ai|si)

µ(ai|si)

)
, which is

intended to allow learning from full returns when the target and behavior poli-
cies are very close. The importance sampling approach [Precup, 2000] converges
in the tabular case by correcting the behavior data distribution to the distribu-
tion that would be induced by the target policy π (κi =

π(ai|si)
µ(ai|si)

). However, these
correction terms lead to high variance in practice. Since Q(λ) does not involve
importance ratios (κi = 1), this variance problem is avoided but at the cost of
restricted convergence guarantees satisfied only when the behavior and target
policies are sufficiently close.

The analysis provided in this paper concerns TB(λ) and RETRACE(λ), which
are convergent in the tabular case, but have not been analyzed in the function
approximation case. We start by noting that the Bellman operator 1 R underly-

1We overload our notation over linear operators and their corresponding matrix representa-
tion.

25

Value of κi
l∞ contraction

guarantee
Estimation

variance
Importance
sampling

π(ai|si)
µ(ai|si)

for any π, µ High

Qπ(λ) 1 only for π close to µ Low
TB(λ) π(ai | si) for any π, µ Low

RETRACE(λ) min
(

1, π(ai|si)
µ(ai|si)

)
for any π, µ Low

Table 3.1: Properties of different off-policy algorithms for policy evaluation.

ing these algorithms can be written in the following form:

(RQ)(s, a) , Q(s, a) + Eµ

[∞

∑
t=0

(λγ)t

(
t

∏
i=1

κi

)
(rt + γEπQ(st+1, ·)−Q(st, at))

]
= Q(s, a) + (I − λγPκµ)−1(T πQ−Q)(s, a) ,

where Eµ is the expectation over the behavior policy and MDP transition prob-
abilities and Pκµ is the operator defined by:

(PκµQ)(s, a) , ∑
s′∈S
a′∈A

P(s′ | s, a)µ(a′ | s′)κ(s′, a′)Q(s′, a′) .

In the tabular case, these operators were shown to be contraction mappings
with respect to the supremum norm [Precup, 2000, Munos et al., 2016]. In this
paper, we focus on what happens to these operators when combined with linear
function approximation.

3.4 OFF-POLICY INSTABILITY WITH FUNCTION

APPROXIMATION

In order to obtain generalization between different state-action pairs, Qπ

should be represented in a functional form. In this paper, we focus on linear
function approximation of the form:

Q(s, a) , θ>φ(s, a) ,

where θ ∈ Θ ⊂ Rd is a weight vector and φ : S ×A → Rd is a feature map from
a state-action pairs to a given d-dimensional feature space.

26

When combined with function approximation, the temporal difference up-
dates corresponding to the λ-return Gλ

k are given by

θk+1 = θk + αk

(
Gλ

k −Q(sk, ak)
)
∇θQ(sk, ak)

= θk + αk

(
∞

∑
t=k

(λγ)t−k

(
t

∏
i=k+1

κi

)
δk

t

)
φ(sk, ak) (3.4.1)

where δk
t = rt + γθ>k Eπφ(st+1, ·)− θ>k φ(st, at) and αk are positive non-increasing

step sizes. The updates (3.4.1) implies off-line updating as Gλ
k is a quantity

which depends on future rewards. This will be addressed later using eligibility
traces: a mechanism to transform the off-line updates into efficient on-line ones.
Since (3.4.1) describes stochastic updates, the following standard assumption is
necessary:

Assumption 1. The Markov chain induced by the behavior policy µ is ergodic and
admits a unique stationary distribution, denoted by ξ, over state-action pairs. We write
Ξ for the diagonal matrix whose diagonal entries are (ξ(s, a))s∈S ,a∈A.

Our first proposition establishes the expected behavior of the parameters in
the limit.

Proposition 1. If the behavior policy satisfies Assumption 1 and (θk)k≤0 is the Markov
process defined by (3.4.1) then:

E[θk+1 | θ0] = (I + αk A)E[θk | θ0] + αkb ,

where matrix A and vector b are defined as follows:

A , Φ>Ξ(I − λγPκµ)−1(γPπ − I)Φ ,

b , Φ>Ξ(I − λγPκµ)−1r .

Sketch of Proof (The full proof is in the appendix).

θk+1 = θk + αk

(
∞

∑
t=k

(λγ)t−k

(
t

∏
i=k+1

κi

)
φ(sk, ak)([γEπφ(xt+1, ·)− φ(xt, at)]

>θk + rt)

)
= θk + αk (Akθk + bk) .

So, E[θk+1 | θk] = (I + αk A)θk + αkb where A = E[Ak] and b = E[bk]

The ODE (Ordinary Differential Equations) approach [Borkar and Meyn,
2000] is the main tool to establish convergence in the function approximation
case [Bertsekas and Tsitsiklis, 1995, Tsitsiklis et al., 1997]. In particular, we use
Proposition 4.8 in Bertsekas and Tsitsiklis [1995], which states that under some

27

conditions, θk converges to the unique solution θ∗ of the system Aθ∗ + b = 0.
This crucially relies on the matrix A being negative definite i.e y>Ay < 0, ∀y 6= 0.
In the on-policy case, when µ = π, we rely on the fact that the stationary dis-
tribution is invariant under the transition matrix Pπ i.e d>Pπ = d> [Tsitsiklis
et al., 1997, Sutton et al., 2015]. However, this is no longer true for off-policy
learning with arbitrary target/behavior policies and the matrix A may not be
negative definite: the series θk may then diverge. We will now see that the same
phenomenon may occur with TB(λ) and RETRACE(λ).

Counterexample: We extend the two-states MDP of Tsitsiklis et al. [1997], orig-
inally proposed to show the divergence of off-policy TD(0), to the case of func-
tion approximation over state-action pairs. This environment has only two
states, as shown in Figure 3.1, and two actions: left or right.

1 2

Figure 3.1: Two-state counterexample. We assign the features {(1, 0)>, (2, 0)>, (0, 1)>, (0, 2)>}
to the state-action pairs {(1, right), (2, right), (1, left), (2, left)}. The target policy is given by
π(right | ·) = 1 and the behavior policy is µ(right | ·) = 0.5

In this particular case, both TB(λ) and RETRACE(λ) share the same matrix
Pκµ and Pκµ = 0.5Pπ:

Pπ =

0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0

 , (Pπ)n =

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

 ∀n ≥ 2

If we set β := 0.5γλ, we then have:

(I − λγPκµ)−1 =

1 β

1−β 0 0
0 1

1−β 0 0

β
β2

1−β 1 0

β
β2

1−β 0 1

 , A =

 6γ−β−5
1−β 0

3(γβ−β2−β−γ)
1−β −5

 .

Therefore, ∀ γ ∈ (5
6 , 1) and ∀ λ ∈ [0, min(1, 12γ−10

γ)), the first eigenvalue

e1 = 6γ−β−5
1−β of A is positive. The basis vectors (1, 0)> and (0, 1)> are eigen-

vectors of A associated with e1 and -5, then if θ0 = (η1, η2)
>, we obtain

28

E[θk | θ0] = (η1 ∏k−1
i=0 (1+ αie1), η2 ∏k−1

i=0 (1− 5αi))
> implying that ||E[θk | θ0]|| ≥

|η1|∏k−1
i=0 (1 + αie1). Hence, as ∑k αk → ∞, ||E[θk | θ0]|| → ∞ if η1 6= 0.

3.5 CONVERGENT GRADIENT OFF-POLICY

ALGORITHMS

If A were to be negative definite, RETRACE(λ) or TB(λ) with function approx-
imation would converge to θ∗ = −A−1b. It is known [Bertsekas, 2011] that Φθ∗

is the fixed point of the projected Bellman operator :

Φθ∗ = ΠµR(Φθ∗) ,

where Πµ = Φ(Φ>ΞΦ)−1Φ>Ξ is the orthogonal projection onto the space
S = {Φθ|θ ∈ Rd} with respect to the weighted Euclidean norm ||.||Ξ. Rather
than computing the sequence of iterates given by the projected Bellman opera-
tor, another approach for finding θ∗ is to directly minimize [Sutton et al., 2009a,
Liu et al., 2015] the Mean Squared Projected Bellman Error (MSPBE):

MSPBE(θ) =
1
2
||ΠµR(Φθ)−Φθ||2Ξ .

This is the route that we take in this paper to derive convergent forms of
TB(λ) and RETRACE(λ). To do so, we first define our objective function in terms
of A and b which we introduced in Proposition 1.

Proposition 2. Let M , Φ>ΞΦ = E[ΦΦ>] be the covariance matrix of features. We
have:

MSPBE(θ) =
1
2
||Aθ + b||2M−1

(The proof is provided in the appendix.)

In order to derive parameter updates, we could compute gradients of the
above expression explicitly as in Sutton et al. [2009c], but we would then obtain
a gradient that is a product of expectations. The implied double sampling makes
it difficult to obtain an unbiased estimator of the gradient. Sutton et al. [2009c]
addressed this problem with a two-timescale stochastic approximations. How-
ever, the algorithm obtained in this way is no longer a true stochastic gradient
method with respect to the original objective. Liu et al. [2015] suggested an al-
ternative which converts the original minimization problem into a primal-dual
saddle-point problem. This is the approach that we chose in this paper.

The convex conjugate of a real-valued function f is defined as:

f ∗(y) = sup
x∈X

(〈y, x〉 − f (x)) , (3.5.1)

29

and f is convex, we have f ∗∗ = f . Also, if f (x) = 1
2 ||x||M−1 , then f ∗(x) =

1
2 ||x||M. Note that by going to the convex conjugate, we do not need to invert
matrix M. We now go back to the original minimization problem:

min
θ

MSPBE(θ)⇔ min
θ

1
2
||Aθ + b||2M−1

⇔ min
θ

max
ω

(
〈Aθ + b, ω〉 − 1

2
||ω||2M

)
The gradient updates resulting from the saddle-point problem (ascent in ω and
descent in θ) are then:

ωk+1 = ωk + ηk(Aθk + b−Mωk) ,

θk+1 = θk − αk A>ωk .
(3.5.2)

where {ηk} and {αk} are non-negative step-size sequences. As the A, b and
M are all expectations, we can derive stochastic updates by drawing samples,
which would yield unbiased estimates of the gradient.

On-line updates: We now derive on-line updates by exploiting equivalences
in expectation between forward views and backward views outlined in Maei
[2011].

Proposition 3. Let ek be the eligibility traces vector, defined as e−1 = 0 and :

ek = λγκ(sk, ak)ek−1 + φ(sk, ak) ∀k ≥ 0 .

Furthermore, let Âk = ek(γEπ[φ(sk+1, .)]− φ(sk, ak)])
>, b̂k = r(sk, ak)ek, M̂k =

φ(sk, ak)φ(sk, ak)
>. Then, we have E[Âk] = A, E[b̂k] = b and E[M̂k] = M.

(The proof is provided in the appendix.)

This proposition allows us to replace the expectations in Eq. (3.5.2) by corre-
sponding unbiased estimates. The resulting detailed procedure is provided in
Algorithm 3.

3.6 CONVERGENCE RATE ANALYSIS

In order to characterize the convergence rate of the algorithm 3, we need to
introduce some new notations and state new assumptions.

We denote by ‖A‖ , sup‖x‖=1 ‖Ax‖ the spectral norm of the matrix A and
by c(A) = ‖A‖‖A−1‖ its condition number. If the eigenvalues of a matrix A

30

Algorithm 3 Gradient Off-policy with eligibility traces

Given: target policy π, behavior policy µ
Initialize θ0 and ω0
for n = 0 . . . do

set e0 = 0
for k = 0 . . . end of episode do

Observe sk, ak, rk, sk+1 according to µ
/* Update traces
ek = λγκ(sk, ak)ek−1 + φ(sk, ak)
/* Update parameters
δk = rk + γθ>k Eπφ(sk+1, .)− θ>k φ(sk, ak)

ωk+1 = ωk + ηk
(
δkek −ω>k φ(sk, ak)φ(sk, ak)

)
θk+1 = θk − αkω>k ek (γEπφ(sk+1, .)− φ(sk, ak))

end for
end for

are real, we use λmax(A) and λmin(A) to denote respectively the largest and the
smallest eigenvalue.

If we set ηk = βαk for a positive constant β, it is possible to combine the two
iterations present in our algorithm as a single iteration using a parameter vector

zk ,

(
θk

1√
β

ωk

)
where :

zk+1 = zk − αk(Ĝkzk − ĝk)

where:

Ĝk ,
(

0
√

βÂ>k
−
√

βÂk βM̂k

)
ĝk ,

(
0√
βb̂k

)
Let G , E

[
Ĝk
]

and g = E [ĝk]. It follows from the proposition 3 that G and g
are well defined and more specifically:

G =

(
0

√
βA>

−
√

βA βM

)
g =

(
0√
βb

)
Furthermore, let Fk = σ(z0, Ĝ0, ĝ0 . . . , zk, Ĝk, ĝk, zk+1) be the sigma-algebra gen-
erated by the variables up to time k. With these definitions, we can now state
our assumptions.

Assumption 2. The matrices A and M are nonsingular. This implies that the saddle-
point problem admits a unique solution (θ?, ω?) = (−A−1b, 0) and we define z? ,
(θ?, 1√

β
ω?).

31

Assumption 3. The features and reward functions are uniformly bounded. This implies
that the features and rewards have uniformly bounded second moments. It follows that
there exists a constant σ such that:

E[‖Ĝkzk − ĝk‖2|Fk−1] ≤ σ2(1 + ‖zk‖2)

Before stating our main result, the following key quantities needs to be de-
fined:

ρ , λmax(A>M−1A), δ , λmin(A>M−1A),

LG ,
∥∥∥E
[

Ĝ>k Ĝk | Fk−1

] ∥∥∥
The following proposition characterize the convergence in expectation of ‖zk −
z?‖2 = ‖θk − θ?‖2 + 1

β‖wk‖2

Proposition 4. Suppose assumptions 2 and 3 holds and if we choose β = 8ρ
λmin(M)

and

αk = 92×2δ
8δ2(k+2)+92ζ

where ζ = 2× 92c(M)2ρ2 + 32c(M)LG. Then the mean square

error E
[
‖zk − z?‖2] is upper bounded by:

92 × 8c(M)
{ (8δ + 9ζ)2E

[
‖z0 − z?‖2]

(82δ2k + 92ζ)2 +
8σ2(1 + ‖z?‖2)

(82δ2k + 92ζ)

}
Sketch of Proof (The full proof is in the appendix). The beginning of our proof relies
on Du et al. [2017] which shows the linear convergence rate of deterministic
primal-dual gradient method for policy evaluation. More precisely, we make
use of the spectral properties of matrix G shown in the appendix of this paper.
The rest of the proof follows a different route exploiting the structure of our
problem.

The above proposition 4 shows that the mean square error E
[
‖zk − z?‖2] at

iteration k is upper bounded by tow terms. The first bias term tells that the initial
error E

[
‖z0 − z?‖2] is forgotten at a rate O(1/k2) and the constant depends on

the condition number of the covariance matrix c(M). The second variance term
shows that noise is rejected at a rate O(1/k) and the constant depends on the
variance of estimates σ2 and c(M). The overall convergence rate is O(1/k).

Existing stochastic saddle-point problem results: Chen et al. [2014] provides
a comprehensive review of stochastic saddle-point problem. When the objective
function is convex-concave, the overall convergence rate is O(1/

√
k). Although

several accelerated techniques could improve the dependencies on the smooth-
ness constants of the problem in their convergence rate, the dominant term that
depends on the gradient variance still decays only as O(1/

√
k).

32

Paper step-sizes Projection Polyak
averaging

Convergence
rate

Sutton et al. [2009c],
Sutton et al. [2009b]

ηk = βαk, β > 0,
∑k αk = ∞, ∑k α2

k < ∞ No No θk → θ?

with probability one

Liu et al. [2015] constant step-size,
αk = ηk

Yes Yes MSPBE(θ̄k) ∈ O(1/
√

k)
with high probability

Wang et al. [2017]
αk = ηk, ∑k αk = ∞,

∑k α2
k

∑k αk
< ∞

Yes Yes MSPBE(θ̄k) ∈ O(
∑k α2

k
∑k αk

)

with high probability
Lakshminarayanan

and Szepesvári [2017]
constant step-size,

αk = ηk
No Yes E[‖θ̄k − θ?‖2] ∈ O(1/k)

Dalal et al. [2017]
αk =

1
k1−c ,

ηk =
1

k(2/3)(1−c)

where c ∈ (0, 1)
Yes No ‖θk − θ?‖ ∈ O(k−

1
3+

c
3)

with high probability

Our work ηk = βαk, β > 0,
αk ∈ O(1/k) No No E[‖θk − θ?‖2] ∈ O(1/k)

Table 3.2: Convergence results for gradient-based TD algorithms shown in previous work [Sut-
ton et al., 2009b,c, Liu et al., 2015, Wang et al., 2017, Lakshminarayanan and Szepesvári, 2017,
Dalal et al., 2017]. θ̄k stand for the Polyak-average of iterates: θ̄k ,

∑k αkθk
∑k αk

. Our algorithms
achieve O(1/k) without the need for projections or Polyak averaging.

When the objective function is strongly convex-concave, Rosasco et al. [2016]
and Palaniappan and Bach [2016] showed that stochastic forward-backward al-
gorithms can achieve O(1/k) convergence rate. Algorithms in this class are fea-
sible in practice only if their proximal mappings can be computed efficiently.
In our case, our objective function is strongly concave because of the positive-
definiteness of M but is otherwise not strongly convex. Because our algorithms
are vanilla stochastic gradient methods, they do not rely on proximal mappings.

Singularity: If assumption 2 does not hold, the matrix G is singular and either
Gz + g = 0 has infinitely many solutions or it has no solution. In the case of
many solutions, we could still get asymptotic convergence. In Wang and Bert-
sekas [2013], it was shown that under some assumptions on the null space of
matrix G and using a simple stabilization scheme, the iterates converge to the
Drazin [Drazin, 1958] inverse solution of Gz + g = 0. However, it is not clear
how extend our finite-sample analysis because the spectral analysis of the ma-
trix G [Benzi and Simoncini, 2006] in our proof assumes that the matrices A and
M are nonsingular.

33

3.7 RELATED WORK AND DISCUSSION

Convergent RETRACE: Mahmood et al. [2017] have recently introduced the
ABQ(ζ) algorithm which uses an action-dependent bootstrapping parameter
that leads to off-policy multi-step learning without importance sampling ra-
tios. They also derived a gradient-based algorithm called AB-TRACE(λ) which
is related to RETRACE(λ). However, the resulting updates are different from
ours, as they use the two-timescale approach of Sutton et al. [2009a] as basis for
their derivation. In contrast, our approach uses the saddle-point formulation,
avoiding the need for double sampling. Another benefit of this formulation
is that it allows us to provide a bound of the convergence rate (proposition 4)
whereas Mahmood et al. [2017] is restricted to a more general two-timescale
asymptotic result from Borkar and Meyn [2000]. The saddle-point formulation
also provides a rich literature on acceleration methods which could be incor-
porated in our algorithms. Particularly in the batch setting, Du et al. [2017]
recently introduced Stochastic Variance Reduction methods for state-value esti-
mation combining GTD with SVRG Johnson and Zhang [2013] or SAGA Defazio
et al. [2014]. This work could be extended easily to ours algorithms in the batch
setting.

Existing Convergence Rates: Our convergence rate result 4 can apply to GT-
D/GTD2 algorithms. Recall that GTD/GTD2 are off-policy algorithms designed
to estimate the state-value function using temporal difference TD(0) return while
our algorithms compute the action-value function using RETRACE and TREE

BACKUP returns. In both GTD and GTD2, the quantities Âk and b̂k involved
in their updates are the same and equal to Âk = φ(sk)(γφ(sk+1) − φ(sk))

>,
b̂k = r(sk, ak)φ(sk) while the matrix M̂k is equal to φ(sk)φ(sk)

> for GTD2 and
to identity matrix for GTD.
The table 3.2 show in chronological order the convergence rates established in
the literature of Reinforcement learning. GTD was first introduced in Sut-
ton et al. [2009c] and its variant GTD2 was introduced later in Sutton et al.
[2009b]. Both papers established the asymptotic convergence with Robbins-
Monro step-sizes. Later, Liu et al. [2015] provided the first sample complexity
by reformulating GTD/GTD2 as an instance of mirror stochastic approximation
[Nemirovski et al., 2009]. Liu et al. [2015] showed that with high probability,
MSPBE(θ̄k) ∈ O(1/

√
k) where θ̄k ,

∑k αkθk
∑k αk

. However, they studied an alter-
nated version of GTD/GTD2 as they added a projection step into bounded con-
vex set and Polyak-averaging of iterates. Wang et al. [2017] studied also the same
version as Liu et al. [2015] but for the case of Markov noise case instead of the
i.i.d assumptions. They prove that with high probability MSPBE(θ̄k) ∈ O(

∑k α2
k

∑k αk
)

when the step-size sequence satisfies ∑k αk = ∞, ∑k α2
k

∑k αk
< ∞. The optimal

34

rate achieved in this setup is then O(1/
√

k). Recently, Lakshminarayanan and
Szepesvári [2017] improved on the existing results by showing for the first time
that E[‖θ̄k − θ?‖2] ∈ O(1/k) without projection step. However, the result still
consider the Polyak-average of iterates. Moreover, the constants in their bound
depend on the data distribution that are difficult to relate to the problem-specific
constants, such as those present in our bound 4. Finally, Dalal et al. [2017] stud-
ied sparsily projected version of GTD/GTD2 and they showed that for step-sizes
αk =

1
k1−c , ηk =

1
k(2/3)(1−c) where c ∈ (0, 1), ‖θk − θ?‖ ∈ O(k−

1
3+

c
3) with high prob-

ability. The projection is called sparse as they project only on iterations which
are powers of 2.
Our work is the first to provide a finite-sample complexity analysis of GT-
D/GTD2 in its original setting, i.e without assumption a projection step or
Polyak-averaging and with diminishing step-sizes.

3.8 EXPERIMENTAL RESULTS

3.8.1 Evidence of instability in practice

To validate our theoretical results about instability, we implemented TB(λ),
RETRACE(λ) and compared them against their gradient-based counterparts
GTB(λ) and GRETRACE(λ) derived in this paper. The first one is the 2-states
counterexample that we detailed in the third section and the second is the
7-states versions of Baird’s counterexample [Baird et al., 1995]. Figures 3.2
and 3.3 show the MSBPE (averaged over 20 runs) as a function of the number
of iterations. We can see that our gradient algorithms converge in these two
counterexamples whereas TB(λ) and RETRACE(λ) diverge.

0 50 100
episode

0

5

10

15

RM
SB

PE

TB(λ)
Retrace(λ)

0 200 400
episode

0.25

0.50

0.75

1.00

1.25

RM
SB

PE

GTB(λ)
GRetrace(λ)

Figure 3.2: Baird’s counterexample. The combination of linear function approximation with TB
and RETRACE leads to divergence (left panel) while the proposed gradient extensions GTB and
GRETRACE converge (right panel).

35

0 50 100
episode

0.50

0.75

1.00

1.25

1.50
RM

SB
PE

TB(λ)
Retrace(λ)

0 50 100
episode

0.0

0.2

0.4

0.6

RM
SB

PE

GTB(λ)
GRetrace(λ)

Figure 3.3: In the 2-states counterexample of section 3.4 showing that the gradient-based TB and
RETRACE converge while TB and RETRACE diverge.

3.8.2 Comparison with existing methods

We also compared GTB(λ) and GRETRACE(λ) with two recent state-of-the-
art convergent off-policy algorithms for action-value estimation and function
approximation: GQ(λ) [Maei, 2011] and AB-TRACE(λ) [Mahmood et al., 2017].
As in Mahmood et al. [2017], we also consider a policy evaluation task in the
Mountain Car domain. In order to better understand the variance inherent to
each method, we designed the target policy and behavior policy in such a way
that the importance sampling ratios can be as large as 30. We chose to describe
state-action pairs by a 96-dimensional vector of features derived by tile coding
[Sutton and Barto, 1998]. We ran each algorithm over all possible combinations
of step-size values (αk, ηk) ∈ [0.001, 0.005, 0.01, 0.05, 0.1]2 for 2000 episodes and
reported their normalized mean squared errors (NMSE):

NMSE(θ) =
‖Φθ −Qπ‖2

Ξ
‖Qπ‖2

Ξ

where Qπ is estimated by simulating the target policy and averaging the
discounted cumulative rewards overs trajectories. As AB-TRACE(λ) and
GRETRACE(λ) share both the same operator, we can evaluate them using
the empirical MSPBE = 1

2 ||Âθ + b̂||2
M̂−1 where Â, b̂ and M̂ are Monte-Carlo

estimates obtained by averaging Âk, b̂k and M̂k defined in proposition 3 over
10000 episodes.
Figure 3.5 shows that the best empirical MSPBE achieved by AB-TRACE(λ) and
GRETRACE(λ) are almost identical across value of λ. This result is consistent
with the fact that they both minimize the MSPBE objective function. However,
significant differences can be observed when computing the 5th percentiles of
NMSE (over all possible combination of step-size values) for different values of

36

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.2

0.4

0.6

0.8

1.0

1.2

NM
SE

GRetrace(λ)
AB-Trace(λ)
GTB(λ)
GQ(λ)

Figure 3.4: Each curves shows the 5th percentile of NMSE (over all possible combination of
step-size values) achieved by each algorithm for different values of λ.

λ in Figure 3.4. When λ increases, the NMSE of GQ(λ) increases sharply due
to increased influence of importance sampling ratios. This clearly demonstrate
the variance issues of GQ(λ) in contrast with the other methods based on the
TREE BACKUP and RETRACE returns (that are not using importance ratios). For
intermediate values of λ, AB-TRACE(λ) performs better but its performance is
matched by GRETRACE(λ) and TB(λ) for small and very large values of λ. In
fact, AB-TRACE(λ) updates the function parameters θ as follows:

θk+1 = θk − αk (δkek − ∆k)

where ∆k , γw>k ek(Eπφ(sk+1, .) − λ ∑a κ(sk, a)µ(a | sk)φ(sk, a)) is a gradient
correction term. When the instability is not an issue, the correction term could
be very small and the update of θ would be essentially θk+1 ∼ θk− αkδkek so that
θk+1 follows the semi-gradient of the mean squared error ‖Φθ − Gλ

k ‖2
Ξ.

To better understand the errors of each algorithm and their robustness to step-
size values, we propose the box plots shown in Figure 3.6. Each box plot shows
the distribution of NMSE obtained by each algorithm for different values of λ.
NMSE distributions are computed over all possible combinations of step-size
values. GTB(λ) has the smallest variance as it scaled its return by the target
probabilities which makes it conservative in its update even with large step-size
values. GRETRACE(λ) tends to more more efficient than GTB(λ) since it could
benefit from full returns. The latter observation agrees with the tabular case of
TREE BACKUP and RETRACE [Munos et al., 2016]. Finally, we observe that AB-
TRACE(λ) has lower error, but at the cost of increased variance with respect to

37

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.5

1.0

1.5

2.0

2.5

M
SP

BE

GRetrace(λ)
AB-Trace(λ)

Figure 3.5: Comparison between the best empirical MSPBE obtained by each algorithm for
different values of λ. Only GRETRACE(λ) and AB-TRACE(λ) are showed here because the
other algorithms do not have the same operators and hence not the same MSPBE. Note that
MSPBEs depend on λ. Thus, MSPBEs are not directly comparable across different values of λ.
Both GRETRACE(λ) and AB-TRACE(λ) have very similar performances. AB-TRACE(λ) performs
slightly better.

step-size values.

3.9 CONCLUSION

Our analysis highlighted for the first time the difficulties of combining the
TREE BACKUP and RETRACE algorithms with function approximation. We ad-
dressed these issues by formulating gradient-based algorithm versions of these
algorithms which minimize the mean-square projected Bellman error. Using a
saddle-point formulation, we were also able to provide convergence guarantees
and characterize the convergence rate of our algorithms GTB and GRETRACE.
We also developed a novel analysis method which allowed us to establish a
O(1/k) convergence rate without having to use Polyak averaging or projections.
Furthermore, our proof technique is general enough that we were able to apply
it to the existing GTD and GTD2 algorithms. Our experiments finally suggest
that the proposed GTB(λ) and GRETRACE (λ) are robust to step-size selection
and have less variance than both GQ(λ) [Maei, 2011] and AB-TRACE(λ) [Mah-
mood et al., 2017].

38

0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
M
S
E

Algorithm
GRetrace(λ)
AB-Trace(λ)
GTB(λ)
GQ(λ)

Figure 3.6: Comparison of empirical performance of GQ(λ), AB-TRACE(λ), GRETRACE(λ) and
GTB(λ) on an off-policy evaluation task in Mountain Car domain. Each box plot shows the
distribution of the NMSE achieved by each algorithm after 2000 episodes for different values
of λ. NMSE distributions are computed over all the possible combinations of step-size values
(αk, ηk) ∈ [0.001, 0.005, 0.01, 0.05, 0.1]2.

39

4
Stable Policy Optimization
via Off-Policy Divergence
Regularization

4.1 PROLOGUE TO THE CONTRIBUTION

4.1.1 Article Details

This chapter is based on the article «Stable Policy Optimization via Off-Policy
Divergence Regularization» [Touati et al., 2020c], jointly led with Amy Zhang and
in collaboration with Joelle Pineau and Pascal Vincent. This paper was accepted
as oral at UAI 2020. I share the first authorship with Amy Zhang. I was at the
origin of the project’s idea and the derivation of the new algorithm. I helped
with the implementation of the algorithm and Amy performed the large-scale
experiments of the paper.

4.1.2 Context

In the previous chapter, we saw how the discrepancy between the policy that
generated the data to be learnt from (the behavior policy) and the policy being
evaluated (the target policy) can lead to undesirable behavior. This behavior
can be arbitrarily more complex in the control setting where we aim at learning
a near-optimal policy. Some policy optimization algorithms control this distri-
bution shift by ensuring that the improved policy stays in the vicinity of the
current policy in term of their action probabilities.

In this work, we want to improve how these algorithms leverage off-policy
data and stabilize the policy learning. Especially, we believe that the regulariza-
tion based on immediate actions is not enough and that we should reason about
long-term future state-action distribution. This is well supported when we look
at formal analysis of offline RL algorithms such as approximate Value Iteration
and Fitted Q-iteration [Munos, 2005, Munos and Szepesvári, 2008, Chen and
Jiang, 2019, Touati and Vincent, 2020b]. These algorithms are concerned with
finding a near-optimal policy given a fixed dataset of transitions and their anal-
yses rely on strong assumptions about the distribution of batch data. Especially,
they assume that the ratio between the induced state-action distribution of any
non-stationary policy and the state-action distribution of the batch data is upper
bounded by a constant, referred to as the concentrability coefficient. Unfortu-
nately, this coefficient may be arbitrarily large or infinite, due the large policy
class, which makes the error bounds of these analysis vacuous.

40

Even though our setting is easier than the fully batch setting as we allow
ourselves to collect online data, we believe that, to use better off-policy data, we
need to bias algorithmically the policy class in the improvement step to the one
that is well-supported by the current off-policy data distribution.

4.1.3 Paper Abstract

Trust Region Policy Optimization (TRPO) and Proximal Policy Optimiza-
tion (PPO) are among the most successful policy gradient approaches in deep
reinforcement learning (RL). While these methods achieve state-of-the-art per-
formance across a wide range of challenging tasks, there is room for improve-
ment in the stabilization of the policy learning and how the off-policy data are
used. In this paper we revisit the theoretical foundations of these algorithms
and propose a new algorithm which stabilizes the policy improvement through
a proximity term that constrains the discounted state-action visitation distribu-
tion induced by consecutive policies to be close to one another. This proximity
term, expressed in terms of the divergence between the visitation distributions,
is learned in an off-policy and adversarial manner. We empirically show that our
proposed method can have a beneficial effect on stability and improve final per-
formance in benchmark high-dimensional control tasks. Our code is available at
https://github.com/facebookresearch/ppo-dice.

4.1.4 Recent Developments

In the fully batch setting, the work of [Liu et al., 2020] has the same underly-
ing motivation as our work i.e constraining the learned policy not only in term
of action distribution, like in previous batch RL methods, but rather in term of its
coverage of the provided state-action distribution. They implement this idea as
follows: given a batch of data, they learn a state-action density function, then, in
both policy evaluation and improvement steps, they filter out state-action pairs
whose estimated densities are below than some threshold. Theoretically, they
show that they can find the approximately best policy with sufficient support in
the batch data, without requiring a priori strong concentrability assumptions.

4.2 INTRODUCTION

Combined with deep neural networks as function approximators, policy gra-
dient methods have enjoyed many empirical successes on RL problems such as
video games [Mnih et al., 2016] and robotics [Levine et al., 2016]. Their recent
success can be attributed to their ability to scale gracefully to high dimensional
state-action spaces and complex dynamics.

41

https://github.com/facebookresearch/ppo-dice

The main idea behind policy gradient methods is to parametrize the policy
and perform stochastic gradient ascent on the discounted cumulative reward
directly [Sutton et al., 2000]. To estimate the gradient, we sample trajectories
from the distribution induced by the policy. Due to the stochasticity of both
policy and environment, variance of the gradient estimation can be very large,
and lead to significant policy degradation.

Instead of directly optimizing the cumulative rewards, which can be chal-
lenging due to large variance, some approaches [Kakade and Langford, 2002,
Azar et al., 2012, Pirotta et al., 2013, Schulman et al., 2015] propose to optimize a
surrogate objective that can provide local improvements to the current policy at
each iteration. The idea is that the advantage function of a policy π can produce
a good estimate of the performance of another policy π′ when the two policies
give rise to similar state visitation distributions. Therefore, these approaches ex-
plicitly control the state visitation distribution shift between successive policies.

However, controlling the state visitation distribution shift requires measur-
ing it, which is non-trivial. Direct methods are prohibitively expensive. There-
fore, in order to make the optimization tractable, the aforementioned methods
rely on constraining action probabilities by mixing policies [Kakade and Lang-
ford, 2002, Pirotta et al., 2013], introducing trust regions [Schulman et al., 2015,
Achiam et al., 2017] or clipping the surrogate objective [Schulman et al., 2017,
Wang et al., 2019b].

Our key motivation in this work is that constraining the probabilities of the
immediate future actions might not be enough to ensure that the surrogate ob-
jective is still a valid estimate of the performance of the next policy and conse-
quently might lead to instability and premature convergence. Instead, we argue
that we should reason about the long-term effect of the policies on the distribu-
tion of the future states.

In particular, we directly consider the divergence between state-action visi-
tation distributions induced by successive policies and use it as a regularization
term added to the surrogate objective. This regularization term is itself opti-
mized in an adversarial and off-policy manner by leveraging recent advances
in off-policy policy evaluation [Nachum et al., 2019a] and off-policy imitation
learning [Kostrikov et al., 2019]. We incorporate these ideas in the PPO algo-
rithm in order to ensure safer policy learning and better reuse of off-policy data.
We call our proposed method PPO-DICE.

The present paper is organized as follows: after reviewing conservative ap-
proaches for policy learning, we provide theoretical insights motivating our
method. We explain how off-policy adversarial formulation can be derived to
optimize the regularization term. We then present the algorithmic details of our
proposed method. Finally, we show empirical evidences of the benefits of PPO-
DICE as well as ablation studies.

42

4.3 CONSERVATIVE UPDATE APPROACHES

We consider a discounted MDP (S ,A, γ, P, r, ρ) with continuous state and
action spaces S and A. We assume in this chapter that all probability distribu-
tions are absolutely continuous with respect to the Lebesgue measure and we
confound probability distributions with their probability density functions, by
abuse of notation.

The goal of the agent is to find a policy π that maximizes the expected value
from under the initial state distribution ρ:

max
π

J(π) , (1− γ)Es∼ρ[Vπ(s)].

We define the normalized discounted state visitation density dπ
ρ induced by

a policy π:

dπ
ρ (s) , (1− γ)

∞

∑
t=0

γt Pr(st = s | s0 ∼ ρ, π),

where Pr(st = s | s0 ∼ ρ, π) is the probability density that st = s, after we ex-
ecute π for t steps, starting from initial state s0 distributed according to ρ. Sim-
ilarly, we define the discounted state-action visitation density µπ

ρ (s, a) of policy
π

µπ
ρ (s, a) , (1− γ)

∞

∑
t=0

γt Pr(st = s, at = a | s0 ∼ ρ, π).

It is known [Puterman, 1990] that µπ
ρ (s, a) = dπ

ρ (s) · π(a | s) and that µπ is
characterized via: ∀(s′, a′) ∈ S ×A

µπ
ρ (s
′, a′) = (1− γ)ρ(s′)π(a′ | s′) + γ

∫
π(a′ | s′)P(s′ | s, a)µπ

ρ (s, a)ds da,

Most policy training approaches in RL can be understood as updating a cur-
rent policy π to a new improved policy π′ based on the advantage function
Aπ , Qπ(s, a) − Vπ(s) or an estimate Â of it. We review here some popu-
lar approaches that implement conservative updates in order to stabilize policy
training.

First, let us state a key lemma from the seminal work of Kakade and Lang-
ford [2002] that relates the performance difference between two policies to the
advantage function.

Lemma 1 (The performance difference lemma [Kakade and Langford, 2002]).
For all policies π and π′,

J(π′) = J(π) + Es∼dπ′
ρ

Ea∼π′(.|s) [A
π(s, a)] . (4.3.1)

43

This lemma implies that maximizing Equation (4.3.1) will yield a new pol-
icy π′ with guaranteed performance improvement over a given policy π. Un-
fortunately, a naive direct application of this procedure would be prohibitively
expensive since it requires estimating dπ′

ρ for all π′ candidates. To address this is-
sue, Conservative Policy Iteration (CPI) [Kakade and Langford, 2002] optimizes
a surrogate objective defined based on current policy πi at each iteration i,

Lπi(π
′) = J(πi) + Es∼d

πi
ρ

Ea∼π′(.|s) [A
πi(s, a)] , (4.3.2)

by ignoring changes in state visitation distribution due to changes in the policy.
Then, CPI returns the stochastic mixture πi+1 = αiπ

+
i + (1− αi)πi where π+

i =
arg maxπ′ Lπi(π

′) is the greedy policy and αi ∈ [0, 1] is tuned to guarantee a
monotonically increasing sequence of policies.

Inspired by CPI, the Trust Region Policy Optimization algorithm
(TRPO) [Schulman et al., 2015] extends the policy improvement step to
any general stochastic policy rather than just mixture policies. TRPO maximizes
the same surrogate objective as CPI subject to a Kullback-Leibler (KL) diver-
gence constraint that ensures the next policy πi+1 stays within δ-neighborhood
of the current policy πi:

πi+1 = arg max
π′

Lπi(π
′) (4.3.3)

s.t Es∼d
πi
ρ

[
DKL(π

′(· | s)‖πi(· | s))
]
≤ δ,

where DKL is the Kullback–Leibler divergence. In practise, TRPO considers
a differentiable parameterized policy {πθ, θ ∈ Θ} and solves the constrained
problem (4.3.3) in parameter space Θ. In particular, the step direction is esti-
mated with conjugate gradients, which requires the computation of multiple
Hessian-vector products. Therefore, this step can be computationally heavy.

To address this computational bottleneck, Proximal Policy Optimization
(PPO) [Schulman et al., 2017] proposes replacing the KL divergence constrained
objective (4.3.3) of TRPO by clipping the objective function directly as:

Lclip
πi (π′) = E

(s,a)∼µ
πi
ρ

[
min

{
Aπi(s, a) · κπ′/πi

(s, a),

Aπi(s, a) · clip(κπ′/πi
(s, a), 1− ε, 1 + ε)

}]
, (4.3.4)

where ε > 0 and κπ′/πi
(s, a) = π′(s,a)

πi(s,a) is the importance sampling ratio.

4.4 THEORETICAL INSIGHTS

In this section, we present the theoretical motivation of our proposed
method.

44

At a high level, algorithms CPI, TRPO, and PPO follow similar policy update
schemes. They optimize some surrogate performance objective (Lπi(π

′) for CPI
and TRPO and Lclip

π (π′) for PPO) while ensuring that the new policy πi+1 stays
in the vicinity of the current policy πi. The vicinity requirement is implemented
in different ways:

• CPI computes a sequence of stochastic policies that are mixtures between
consecutive greedy policies.

• TRPO imposes a constraint on the KL divergence between old policy and
new one (Es∼d

πi
ρ
[DKL(π

′(· | s)‖πi(· | s))] ≤ δ).

• PPO directly clips the objective function based on the value of the impor-
tance sampling ratio κπ′/πi

between the old policy and new one.

Such conservative updates are critical for the stability of the policy optimization.
In fact, the surrogate objective Lπi(π

′) (or its clipped version) is valid only in the
neighbourhood of the current policy πi, i.e, when π′ and πi visit all the states
with similar probabilities. The following lemma more precisely formalizes this1:

Lemma 2. For all policies π and π′,

J(π′) ≥ Lπ(π
′)− επDTV(dπ′

ρ ‖dπ
ρ) (4.4.1)

≥ Lclip
π (π′)− επDTV(dπ′

ρ ‖dπ
ρ),

where επ = maxs∈S |Ea∼π′(·|s) [Aπ(s, a)] | and DTV is the total variation distance.

The proof is provided in appendix for completeness. Lemma 2 states that
Lπ(π′) (or Lclip

π (π′)) is a sensible lower bound to J(π′) as long as π and π′

are close in terms of total variation distance between their corresponding state
visitation distributions dπ′

ρ and dπ
ρ . However, the aforementioned approaches

enforce closeness of π′ and π in terms of their action probabilities rather than
their state visitation distributions. This can be justified by the following inequal-
ity [Achiam et al., 2017]:

DTV(dπ′
ρ ‖dπ

ρ) ≤
2γ

1− γ
Es∼dπ

ρ

[
DTV(π

′(.|s)‖π(.|s))
]

. (4.4.2)

Plugging the last inequality (4.4.2) into (4.4.1) leads to the following lower
bound:

J(π′) ≥ Lπ(π
′)− 2γεπ

1− γ
Es∼dπ

ρ

[
DTV(π

′(.|s)‖π(.|s))
]

. (4.4.3)

1The result is not novel, it can be found as intermediate step in proof of theorem 1 in Achiam
et al. [2017], for example.

45

The obtained lower bound (4.4.3) is, however, clearly looser than the one in in-
equality (4.4.2). Lower bound (4.4.3) suffers from an additional multiplicative
factor 1

1−γ , which is the effective planning horizon. It is essentially due to the
fact that we are characterizing a long-horizon quantity, such as the state visita-
tion distribution dπ

ρ (s), by a one-step quantity, such as the action probabilities
π(· | s). Therefore, algorithms that rely solely on action probabilities to define
closeness between policies should be expected to suffer from instability and pre-
mature convergence in long-horizon problems.

Furthermore, in the exact case if we take at iteration i, πi+1 ←
arg maxπ′ Lπi(π

′)− επi DTV(dπ′
ρ ‖dπi

ρ), then

J(πi+1) ≥ Lπi(πi+1)− επi DTV(d
πi+1
ρ ‖dπi

ρ)

≥ Lπi(πi) (by optimality of πi+1)
= J(πi)

Therefore, this provides a monotonic policy improvement, while TRPO suffers
from a performance degradation that depends on the level of the trust region δ
(see Proposition 1 in Achiam et al. [2017]).

It follows from our discussion that DTV(dπ′
ρ ‖dπ

ρ) is a more natural proxim-
ity term to ensure safer and more stable policy updates. Previous approaches
excluded using this term because we don’t have access to dπ′

ρ , which would re-
quire executing π′ in the environment. In the next section, we show how we can
leverage recent advances in off-policy policy evaluation to address this issue.

4.5 OFF-POLICY FORMULATION OF DIVERGENCES

In this section, we explain how divergences between state-visitation distribu-
tions can be approximated. This is done by leveraging ideas from recent works
on off-policy learning [Nachum et al., 2019a, Kostrikov et al., 2019].

Consider two different policies π and π′. Suppose that we have access to
state-action samples generated by executing the policy π in the environment, i.e,
(s, a) ∼ µπ

ρ . As motivated by the last section, we aim to estimate DTV(dπ′
ρ ‖dπ

ρ)

without requiring on-policy data from π′. Note that in order to avoid using
importance sampling ratios, it is more convenient to estimate DTV(µ

π′
ρ ‖µπ

ρ), i.e,
the total divergence between state-action visitation distributions rather than the
divergence between state visitation distributions. This is still a reasonable choice

46

as DTV(dπ′
ρ ‖dπ

ρ) is upper bounded by DTV(µ
π′
ρ ‖µπ

ρ) as shown below:

DTV(dπ′
ρ ‖dπ

ρ) =
∫

s

∣∣∣(dπ′
ρ − dπ

ρ)(s)
∣∣∣ds

=
∫

s

∣∣∣ ∫
a
(µπ′

ρ − µπ
ρ)(s, a)da

∣∣∣ds

≤
∫

s

∫
a

∣∣∣(µπ′
ρ − µπ

ρ)(s, a)
∣∣∣da ds

= DTV(µ
π′
ρ ‖µπ

ρ).

The total variation distance belongs to a broad class of divergences known as
φ-divergences [Sriperumbudur et al., 2009]. A φ-divergence is defined as,

Dφ(µ
π′
ρ ‖µπ

ρ) = E
(s,a)∼µπ′

ρ

[
φ

(
µπ

ρ (s, a)

µπ′
ρ (s, a)

)]
, (4.5.1)

where φ : [0, ∞)→ R is a convex, lower-semicontinuous function and φ(1) = 0.
Well-known divergences can be obtained by appropriately choosing φ. These
include the KL divergence (φ(t) = t log(t)), total variation distance (φ(t) =
|t − 1|), χ2-divergence (φ(t) = (t − 1)2), etc. Working with the form of φ-
divergence given in Equation (4.5.1) requires access to analytic expressions of
both µπ

ρ and µπ
ρ as well as the ability to sample from µπ′

ρ . We have none of these
in our problem of interest. To bypass these difficulties, we turn to the alternative
variational representation of φ-divergences [Nguyen et al., 2009, Huang et al.,
2017b] as

Dφ(µ
π′
ρ ‖µπ

ρ) = sup
f :S×A→R

[
E
(s,a)∼µπ′

ρ
[f (s, a)]−E(s,a)∼µπ

ρ
[φ? ◦ f (s, a)]

]
, (4.5.2)

where φ?(t) = supu∈R{tu − φ(u)} is the convex conjugate of φ. The varia-
tional form in Equation (4.5.2) still requires sampling from µπ′

ρ , which we cannot
do. To address this issue, we use a clever change of variable trick introduced
by Nachum et al. [2019a]. Define g : S ×A → R as the fixed point of the follow-
ing Bellman equation,

g(s, a) = f (s, a) + γPπ′g(s, a), (4.5.3)

where Pπ′ is the transition operator induced by π′, defined as Pπ′g(s, a) =∫
π′(a′ | s′)P(s′ | s, a)g(s′, a′). g may be interpreted as the action-value func-

tion of the policy π′ in a modified MDP which shares the same transition model
P as the original MDP, but has f as the reward function instead of r. Applying
the change of variable (4.5.3) to (4.5.2) and after some algebraic manipulation as

47

done in Nachum et al. [2019a], we obtain

Dφ(µ
π′
ρ ‖µπ

ρ) = sup
g:S×A→R

[
(1− γ)Es∼ρ,a∼π′ [g(s, a)]−

E(s,a)∼µπ
ρ

[
φ?
(
(g− γPπ′g)(s, a)

)]]
. (4.5.4)

Thanks to the change of variable, the first expectation over µπ′
ρ in (4.5.2) is con-

verted to an expectation over the initial distribution and the policy i.e s ∼
ρ(·), a ∼ π′(· | s). Therefore, this new form of the φ-divergence in (4.5.4) is
completely off-policy and can be estimated using only samples from the policy
π.

Other possible divergence representations: Using the variational represen-
tation of φ-divergences was a key step in the derivation of Equation (4.5.4).
But in fact any representation that admits a linear term with respect to µπ′

ρ

(i.e E
(s,a)∼µπ′

ρ
[f (s, a)]) would work as well. For example, one can use the the

Donkser-Varadhan representation [Donsker and Varadhan, 1983] to alterna-
tively express the KL divergence as:

Dφ(µ
π′
ρ ‖µπ

ρ) = sup
f :S×A→R

[
E
(s,a)∼µπ′

ρ
[f (s, a)]− log

(
E(s,a)∼µπ

ρ
[exp(f (s, a))]

)]
.

(4.5.5)

The log-expected-exp in this equation makes the Donkser-Varadhan representa-
tion (4.5.5) more numerically stable than the variational one (4.5.4) when work-
ing with KL divergences. Because of its genericity for φ-divergences, we base
the remainder of our exposition on (4.5.4). But it is straightforward to adapt
the approach and algorithm to using (4.5.5) for better numerical stability when
working with KL divergences specifically. Thus, in practice we will use the lat-
ter in our experiments with KL-based regularization, but not in the ones with
χ2-based regularization.

4.6 A PRACTICAL ALGORITHM USING

ADVERSARIAL DIVERGENCE

We now turn these insights into a practical algorithm. The lower
bounds in lemma 2, suggest using a regularized PPO objective2 :

2 Both regularized Lclip
πi and Lπi are lower bounds on policy performance in Lemma 2. We

48

Algorithm 4 PPO-DICE

1: Initialisation: random initialize parameters θ1 (policy), ψ1 (discriminator)
and ω1 (value function).

2: for i=1, . . . do
3: Generate a batch of M rollouts {s(j)

1 , a(j)
1 , r(j)

1 , s(j)
1 , . . . , s(j)

T , a(j)
T , r(j)

T , s(j)
T+1}M

j=1
by executing policy πθi in the environment for T steps.

4: Estimate Advantage function: Â(s(j)
t , a(j)

t) = ∑T
t=1(γλ)t−1(r(j)

t +

γVωi(s
(j)
t+1)−Vωi(s

(j)
t))

5: Compute target value y(j)
t = r(j)

t + γr(j)
t+1 + . . . + γT+1−tVωi(sT+1)

6: ω = ωi; θ = θi; ψ = ψi
7: for epoch n=1, . . . N do
8: for iteration k=1, . . . K do
9: // Compute discriminator loss:

L̂D(ψ, θ) =
1

MT

M

∑
j=1

T

∑
t=1

φ?
(

gψ(s
(j)
t , a(j)

t)− γgψ(s
(j)
t+1, a′(j)

t+1)
)
− (1− γ)gψ(s

(j)
1 , a′(j)

t)

where a′(j)
t ∼ πθ(· | s(j)

1), a′(j)
t+1 ∼ πθ(· | s(j)

t+1).
10: // Update discriminator parameters: (using learning rate cψη)
11: ψ← ψ− cψη∇ψ L̂D(ψ, θ);
12: end for
13: // Compute value loss:

14: L̂V(ω) = 1
MT ∑M

j=1 ∑T
t=1

(
Vω(s

(j)
t)− y(j)

t

)2

15: // Compute PPO clipped loss:

L̂clip(θ) =
1

MT

M

∑
j=1

T

∑
t=1

min
{

Â(s(j)
t , a(j)

t)κπθ/πθi
(s(j)

t , a(j)
t),

Â(s(j)
t , a(j)

t) · clip(κπθ/πθi
(s(j)

t , a(j)
t), 1− ε, 1 + ε)

}
16: // Update parameters: (using learning rate η)
17: ω ← ω− η∇ω L̂V(ω);
18: θ ← θ + η∇θ(L̂clip(θ) + λ · L̂D(ψ, θ)) (if reparametrization trick applica-

ble, else gradient step on Eq. (4.6.7))
19: end for
20: ωi+1 = ω; θi+1 = θ; ψi+1 = ψ
21: end for

use Lclip
πi rather than Lπi because we expect it to work better as the clipping already provides

some constraint on action probabilities. Also this will allow a more direct empirical assessment
of what the regularization brings compared to vanilla PPO.

49

Lclip
π (π′) − λDTV(dπ′

ρ ‖dπ
ρ), where λ is a regularization coefficient. If in

place of the total variation we use the off-policy formulation of φ-divergence
Dφ(µπ′

ρ ‖µπ
ρ) as detailed in Equation (4.5.4), our main optimization objective can

be expressed as the following min-max problem:

max
π′

min
g:S×A→R

Lclip
πi (π′)− λ

(
(1− γ)Es∼ρ,a∼π′ [g(s, a)]−

E
(s,a)∼µ

πi
ρ

[
φ?
(
(g− γPπ′g)(s, a)

)])
, (4.6.1)

When the inner minimization over g is fully optimized, it is straightforward to
show – using the score function estimator – that the gradient of this objective
with respect to π is (proof is provided in appendix):

∇π′L
clip
πi (π′)− λ

(
(1− γ)E s∼ρ

a∼π′
[g(s, a)∇π′ log π′(a | s)] (4.6.2)

+ γE
(s,a)∼µ

πi
ρ

[
∂φ?

∂t

(
(g− γPπ′g)(s, a)

)
Es′∼P(·|s,a),

a′∼π′(·|s′)

[
g(s′, a′)∇π′ log π′(a′ | s′)

]])
.

Furthermore, we can use the reparametrization trick if the policy π is
parametrized by a Gaussian, which is usually the case in continuous control
tasks. We call the resulting new algorithm PPO-DICE, (detailed in Algorithm 4),
as it uses the clipped loss of PPO and leverages the DIstribution Correction
Estimation idea from Nachum et al. [2019a].

In the min-max objective (4.6.1), g plays the role of a discriminator, as in
Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]. The policy
π′ plays the role of a generator, and it should balance between increasing the
likelihood of actions with large advantage versus inducing a state-action distri-
bution that is close to the one of πi.

As shown in Algorithm 4, both policy and discriminator are parametrized
by neural networks πθ and gψ respectively. We estimate the objective (4.6.1)
with samples from πi = πθi as follows. At a given iteration i, we generate a

batch of M rollouts {s(j)
1 , a(j)

1 , r(j)
1 , s(j)

1 , . . . , s(j)
T , a(j)

T , r(j)
T , s(j)

T+1}M
j=1 by executing the

policy πi in the environment for T steps. Similarly to the PPO procedure, we
learn a value function Vω by updating its parameters ω with gradient descent
steps, optimizing the following squared error loss:

L̂V(ω) =
1

MT

M

∑
j=1

T

∑
t=1

(
Vω(s

(j)
t)− y(j)

t

)2
, (4.6.3)

where y(j)
t = r(j)

t + γr(j)
t+1 + . . . + γT+1−tVω(sT+1). Then, to estimate the advan-

tage, we use the truncated generalized advantage estimate

Â(s(j)
t , a(j)

t) =
T

∑
t=1

(γλ)t−1(r(j)
t + γVω(s

(j)
t+1)−Vω(s

(j)
t)). (4.6.4)

50

This advantage estimate is used to compute an estimate of Lclip
πi given by:

L̂clip(θ) =
1

MT

M

∑
j=1

T

∑
t=1

min
{

Â(s(j)
t , a(j)

t)κπθ/πi(s
(j)
t , a(j)

t), (4.6.5)

Â(s(j)
t , a(j)

t) · clip(κπθ/πi(s
(j)
t , a(j)

t), 1− ε, 1 + ε)
}

The parameters ψ of the discriminator are learned by gradient descent on the
following empirical version of the regularization term in the min-max objective
(4.6.1)

L̂D(ψ, θ) =
−1
MT

M

∑
j=1

T

∑
t=1

(1− γ)gψ(s
(j)
1 , a′(j)

t)− φ?
(

gψ(s
(j)
t , a(j)

t)− γgψ(s
(j)
t+1, a′(j)

t+1)
)

,

(4.6.6)

where a′(j)
t ∼ πθ(· | s(j)

1) and a′(j)
t+1 ∼ πθ(· | s(j)

t+1).
If the reparametrization trick is applicable (which is almost always the case

for continuous control tasks), the parameters θ of the policy are updated via gra-
dient ascent on the objective L̂clip(θ) + λL̂D(ψ, θ) as we can backpropagate gra-
dient though the action sampling while computing L̂D(ψ, θ) in Equation (4.6.6).
Otherwise, θ are updated via gradient ascent on the following objective:

L̂clip(θ)− λ

MT

M

∑
j=1

T

∑
t=1

(1− γ)gψ(s
(j)
1 , a′(j)

t) log πθ(a′(j)
t | s(j)

1) (4.6.7)

+ γ
∂φ?

∂t

(
gψ(s

(j)
t , a(j)

t)− γgψ(s
(j)
t+1, a′(j)

t+1)
)
· gψ(s

(j)
t+1, a′(j)

t+1) log πθ(a′(j)
t+1) | s(j)

t+1)

Note that the gradient of this equation with respect to θ corresponds to an em-
pirical estimate of the score function estimator we provided in Equation 4.6.2.

We train the value function, policy, and discriminator for N epochs using
M rollouts of the policy πi. We can either alternate between updating the policy
and the discriminator, or update gψ for a few steps M before updating the policy.
We found that the latter worked better in practice, likely due to the fact that
the target distribution µ

πi
ρ changes with every iteration i. We also found that

increasing the learning rate of the discriminator by a multiplicative factor cψ of
the learning rate for the policy and value function η improved performance.

Choice of divergence: The algorithmic approach we just described is valid
with any choice of φ-divergence for measuring the discrepancy between state-
visitation distributions. It remains to choose an appropriate one. While Lemma 2
advocates the use of total variation distance (φ(t) = |t − 1|), it is notoriously
hard to train high dimensional distributions using this divergence (see Kodali

51

et al. [2017] for example). Moreover, the convex conjugate of φ(t) = |t − 1| is
φ?(t) = t if |t| ≤ 1

2 and φ?(t) = ∞ otherwise. This would imply the need to
introduce an extra constraint ‖g− Pπg‖∞ ≤ 1

2 in the formulation (4.5.4), which
may be hard to optimize.

Therefore, we will instead use the KL divergence (φ(t) = t log(t), φ?(t) =

exp(t− 1)). This is still a well justified choice as we know that DTV(µ
π′
ρ ‖µπ

ρ) ≤√
1
2 DKL(µπ′

ρ ‖µπ
ρ) thanks to Pinsker’s inequality. We will also try χ2-divergence

(φ(t) = (t− 1)2) that yields a squared regularization term.

4.7 RELATED WORK

Constraining policy updates, in order to minimize the information loss due
to policy improvement, has been an active area of investigation. Kakade and
Langford [2002] originally introduce CPI by maximizing a lower bound on the
policy improvement and relaxing the greedification step through a mixture of
successive policies. Pirotta et al. [2013] build on Kakade and Langford [2002]
refine the lower bounds and introduce a new mixture scheme. Moreover, CPI
inspired some popular Deep RL algorithms such as TRPO [Schulman et al., 2015]
and PPO [Schulman et al., 2015], Deep CPI [Vieillard et al., 2019] and MPO [Ab-
dolmaleki et al., 2018]. The latter uses similar updates to TRPO/PPO in the
parametric version of its E-step. So, our method can be incorporated to it.

Our work is related to regularized MDP literature [Neu et al., 2017,
Geist et al., 2019]. Shannon Entropic regularization is used in value itera-
tion scheme [Haarnoja et al., 2017, Dai et al., 2018] and in policy iteration
schemes [Haarnoja et al., 2018]. Note that all the mentioned works employ
regularization on the action probabilities. Recently, Wang et al. [2019a] intro-
duce divergence-augmented policy optimization where they penalize the policy
update by a Bregman divergence on the state visitation distributions, motivated
the mirror descent method. While their framework seems general, it doesn’t
include the divergences we employ in our algorithm. In fact, their method
enables the use of the conditional KL divergence between state-action visita-
tions distribution defined by

∫
µπ

ρ (s, a) log π(a|s)
π′(a|a) and not the KL divergence∫

µπ
ρ (s, a) log

µπ
ρ (s,a)

µπ′
ρ (s,a)

. Note the action probabilities ratio inside the log in the

conditional KL divergence allows them to use the policy gradient theorem, a
key ingredient in their framework, which cannot be done for the KL divergence.

Our work builds on recent off-policy approaches: DualDICE [Nachum et al.,
2019a] for policy evaluation and ValueDICE [Kostrikov et al., 2019] for imitation
learning. Both use the off-policy formulation of KL divergence. The former
uses the formulation to estimate the ratio of the state visitation distributions

52

Figure 4.1: Comparison of χ2 and KL divergences for PPO-DICE for two randomly selected
environments in OpenAI Gym MuJoCo and Atari, respectively. We see that KL performs better
than χ2 in both settings. Performance plotted across 10 seeds with 1 standard error shaded.

under the target and behavior policies. Whereas, the latter learns a policy by
minimizing the divergence.

The closest related work is the recently proposed AlgaeDICE [Nachum et al.,
2019b] for off-policy policy optimization. They use the divergence between
state-action visitation distribution induced by π and a behavior distribution,
motivated by similar techniques in Nachum et al. [2019a]. However, they in-
corporate the regularization to the dual form of policy performance J(π) =
E(s,a)∼µπ

ρ
[r(s, a)] whereas we consider a surrogate objective (lower bound on the

policy performance). Moreover, our method is online off-policy in that we col-
lect data with each policy found in the optimization procedure, but also use pre-
vious data to improve stability. Whereas, their algorithm is designed to learn a
policy from a fixed dataset collected by behaviour policies. Further comparison
with AlgaeDICE is provided in appendix.

4.8 EXPERIMENTS AND RESULTS

We use the PPO implementation by Kostrikov [2018] as a baseline and mod-
ify it to implement our proposed PPO-DICE algorithm. We run experiments on
a randomly selected subset of environments in the Atari suite [Bellemare et al.,
2013a] for high-dimensional observations and discrete action spaces, as well as
on the OpenAI Gym [Brockman et al., 2016] MuJoCo environments, which have
continuous state-action spaces. All shared hyperparameters are set at the same

53

values for both methods, and we use the hyperparameter values recommended
by Kostrikov [2018] for each set of environments, Atari and MuJoCo 3.

4.8.1 Important Aspects Of PPO-DICE

Choice of Divergence

We conducted an initial set of experiments to compare two different choices
of divergences, KL and χ2, for the regularization term of PPO-DICE. Figure 4.1
shows training curves for one continuous action and one discrete action envi-
ronment. There, as in the other environments in which we run this comparison,
KL consistently performed better than χ2. We thus opted to use KL divergence
in all subsequent experiments.

Effect of Varying λ

Next we wanted to evaluate the sensitivity of our method to the λ param-
eter that controls the strength of the regularization. We examine in Figure 4.2
the performance of PPO-DICE when varying λ. There is a fairly narrow band
for Hopper-v2 that performs well, between 0.01 and 1. Theory indicates that the
proper value for λ is the maximum of the absolute value of the advantages (see
Lemma 2). This prompted us to implement an adaptive approach, where we
compute the 90th percentile of advantages within the batch (for stability), which
we found performed well across environments. To avoid introducing an addi-
tional hyperparameter by tuning λ, we use the adaptive method for subsequent
experiments.

3Code: https://github.com/facebookresearch/ppo-dice

54

Figure 4.2: Varying λ in Hopper_v2, 10
seeds, 1 standard error shaded. PPO-DICE
is somewhat sensitive to λ value, but the
theoretically-motivated adaptive version
works well.

Figure 4.3: Comparison of PPO-DICE with
clipped loss Lclip and without L. We see
that clipping the action loss is crucial for
good performance.

Game PPO PPO-DICE

AirRaid 4305.0± 638.15 5217.5± 769.19
Asterix 4300.0± 169.31 6200.0± 754.10
Asteroids 1511.0± 125.03 1653.0± 112.20
Atlantis 2120400.0± 471609.93 3447433.33± 100105.82
BankHeist 1247.0± 21.36 1273.33± 7.89
BattleZone 29000.0± 2620.43 19000.0± 2463.06
Carnival 3243.33± 369.51 3080.0± 189.81
ChopperCommand 566.67± 14.91 900.0± 77.46
DoubleDunk −6.0± 1.62 −4.0± 1.26
Enduro 1129.9± 73.18 1308.33± 120.09
Freeway 32.33± 0.15 32.0± 0.00
Frostbite 639.0± 334.28 296.67± 5.96
Gopher 1388.0± 387.65 1414.0± 417.84
Kangaroo 4060.0± 539.30 6650.0± 1558.16
Phoenix 12614.0± 621.71 11676.67± 588.24
Robotank 7.8± 1.33 12.1± 2.91
Seaquest 1198.0± 128.82 1300.0± 123.97
TimePilot 5070.0± 580.53 7000.0± 562.32
Zaxxon 7110.0± 841.60 6130.0± 1112.48

Table 4.1: Mean final reward and 1 standard error intervals across 10 seeds for Atari games
evaluated at 10M steps.

55

Figure 4.4: Results from OpenAI Gym MuJoCo suite in more complex domains, with 10 seeds
and 1 standard error shaded. Results on the full suite of environments can be found in B.4.

Importance of Clipping the Action Loss

We earlier mentioned (see footnote 2) two possible forms of our regularized
objective: one with clipped action loss Lclip and one without L. Clipping the
action loss was an extra regularizing measure proposed in PPO [Schulman et al.,
2017]. For our algorithm also, we hypothesized that it would be important for
providing additional constraints on the policy update to stay within the trust
region. Figure 4.3 confirms this empirically: we see the effect on our method
of clipping the action loss versus keeping it unclipped. Initially, not having the
additional regularization allows it to learn faster, but it soon crashes, showing
the need for clipping to reduce variance in the policy update.

4.8.2 Results On Atari

Given our above observations we settled on using a KL-regularized Lclip,
with the adaptive method for λ that we explained Section 4.8.1. We run PPO-
DICE on randomly selected environments from Atari. We tuned two additional
hyperparameters, the learning rate for the discriminator and the number of dis-
criminator optimization steps per policy optimization step. We found that K = 5
discriminator optimization steps per policy optimization step performed well.

56

Fewer steps showed worse performance because the discriminator was not up-
dating quickly enough, while more optimization steps introduced instability
from the discriminator overfitting to the current batch. We also found that in-
creasing the discriminator learning rate to be cψ = 10× the policy learning rate
helped most environments. We used the same hyperparameters across all envi-
ronments. Results are shown in Figure 4.1. We see that PPO-DICE significantly
outperforms PPO on a majority of Atari environments.

4.8.3 Results On OpenAI Gym MuJoCo

For the OpenAI Gym MuJoCo suite, we also used K = 5 discriminator opti-
mization steps per policy optimization step, and cψ = 10× learning rate for the
discriminator in all environments. We selected 5 of the more difficult environ-
ments to showcase in this present (4.4), but additional results on the full suite
and all hyperparameters used can be found in B.4. We again see improvement
in performance in the majority of environments with PPO-DICE compared to
PPO and TRPO.

4.9 CONCLUSION

In this work, we have argued that using the action probabilities to con-
strain the policy update is a suboptimal approximation to controlling the state
visitation distribution shift. We then demonstrate that using the recently pro-
posed DIstribution Correction Estimation idea [Nachum et al., 2019a], we can
directly compute the divergence between the state-action visitation distributions
of successive policies and use that to regularize the policy optimization objec-
tive instead. Through carefully designed experiments, we have shown that our
method beats PPO in most environments in Atari [Bellemare et al., 2013a] and
OpenAI Gym MuJoCo [Brockman et al., 2016] benchmarks.

57

5 Online Learning in Smooth
Markov Decision Processes

5.1 PROTOLOGUE TO THE CONTRIBUTION

5.1.1 Article Details

This paper is based on the preprint Zooming for Efficient Model-Free Reinforce-
ment Learning in Metric Spaces [Touati et al., 2020b]. This is a joint work with
Adrien Ali Taiga and Marc G. Bellemare. I am the main author. I performed the
derivation of the new algorithm and its theoretical analysis.

5.1.2 Context

In previous chapters, we were concerned with better exploiting the off-policy
data but we didn’t talk that much about the data collection itself. While re-
cent RL empirical successes have been demonstrated in simulated environments
where data can be generated indefinitely up to computational limits, bringing
RL to real systems require us to focus on statistical efficiency as real data collec-
tion is costly and limited by the physical context. A statistically efficient agent
must carefully balance between exploiting its current knowledge and exploring
towards informative data.

My interest in this line of research was triggered by an inspiring talk given by
Benjamin Van Roy at Mcgill university about what he coined as deep exploration.
Deep exploration means exploration which is directed over multiple time steps
and takes into account the consequences of an action on future learning. In Os-
band et al. [2019], his group developed a new approach consisting in choosing
actions that are greedy with respect a randomly drawn value function from a
proxy of the posterior distribution over value functions. As a first contribution
on the topic of exploration, I proposed in Touati et al. [2020a] to scale the idea of
randomized value functions to deep RL by leveraging recent advances in varia-
tional inference to account for the uncertainty of estimates

Now, the missing piece is that even though randomized value functions of-
fer a promising computationally tractable approach for high dimensional state
spaces, the algorithm comes with no theoretical guarantee when combined with
function approximation. Especially, it is only shown to be provably efficient
with tabular representation. In fact, there was (and it is still true at some extent)
a huge gap between the RL theory and practise: despite the wealth of research

58

into provably efficient reinforcement learning algorithms, most works focus on
tabular representation and thus struggle to handle exponentially or infinitely
large state-action spaces. This present work is a step towards bridging this gap.

To make exploration with large state-action space intractable, we need to
make some structural assumption. In this work, we assume that the MDP is
smooth: a natural metric characterizes the proximity between different states
and actions and the optimal action-value function is Lipschitz with respect to
this metric. This is also known as the metric space assumption.

5.1.3 Paper Abstract

Despite the wealth of research into provably efficient reinforcement learn-
ing algorithms, most works focus on tabular representation and thus struggle
to handle exponentially or infinitely large state-action spaces. In this paper,
we consider episodic reinforcement learning with a metric state-action space.
We propose ZOOMRL, an online model-free algorithm that learns an adaptive
discretization of the joint space by zooming in more promising and frequently
visited regions while carefully balancing the exploitation-exploration trade-off.
We show that ZOOMRL achieves a worst-case regret Õ(H

5
2 K

d+1
d+2) where H is the

planning horizon, K is the number of episodes and d is the covering dimen-
sion of the space with respect to the metric. Moreover, our algorithm enjoys im-
proved metric-dependent guarantees that reflect the geometry of the underlying
space. Finally, we show that our algorithm is robust to small misspecification er-
rors.

5.1.4 Recent Developments

The bounds presented in this work are instance-independent guarantees. A
recent work Cao and Krishnamurthy [2020] shows that adaptive partitioning
approaches achieve problem-dependent guarantees which depend on the zoom-
ing dimension instead of the covering dimension of the space. The zooming di-
mension is a measure of near-optimal regions. In benign instances where the
near-optimal regions concentrate to a low dimensional manifold, the zooming
dimension could be much smaller than the covering dimension, which enables
sharper regret bounds.

Model-based algorithms for metric spaces was proposed in Domingues et al.
[2020b] using non-parametric kernel estimators and in Sinclair et al. [2020] using
adaptive discretization but their regret bounds have sub-optimal dependence on
K.

59

5.2 INTRODUCTION

In the regime of MDPs with a finite state-action space, the OFU principle
has been successfully implemented and efficient algorithms typically achieve
regret that scales sublinearly with the number of discrete states and the number
of discrete actions. This precludes applying them to arbitrarily large state-action
spaces. On the other hand, MDPs with continuous state-action spaces have been
an active area of investigation [Ortner and Ryabko, 2012, Lakshmanan et al.,
2015, Song and Sun, 2019]. A common theme is to assume some structure knowl-
edge, such as the existence of similarity metric between state-action pairs, and
then to use a uniform discretisation of the space or nearest-neighbor approxima-
tors.

In this work, we focus on the finite-horizon MDP formalism with an un-
known transition kernel. We suppose that the state-action space is equipped by
a metric that characterizes the proximity between different states and actions.
Such metrics have been studied in previous work for state aggregation [Ferns
et al., 2004, Ortner, 2007]. We assume that the optimal action-value function is
Lipschitz continuous with respect to this metric, which means that state-action
pairs that are close to each other have similar optimal values.

We propose an online model-free RL algorithm, ZOOMRL, that actively ex-
plores the state-action space by learning on-the-fly an adaptive partitioning. Al-
gorithms based on uniform partitions, such as the works in Ortner and Ryabko
[2012] and Song and Sun [2019], disregard the shape of the optimal value func-
tion and thus could waste effort in partitioning irrelevant regions of the space.
Moreover, the granularity of the partition should be tuned and it depends on the
time horizon and the covering dimension of joint space. In contrast, ZOOMRL is
able to take advantage of the structure of the problem’s instance at hand by ad-
justing the discretisation to frequently visited and high-rewarding regions to get
better estimates. Zooming approaches have been successfully applied in Lips-
chitz bandits [Kleinberg et al., 2008] and continuous contextual bandits [Slivkins,
2014]. However, in the bandit setting, an algorithm’s cumulative regret can be
easily decomposed into regret incurred in each sub-partition which is controlled
by the size of the sub-partition itself. In contrast, in the reinforcement learn-
ing setting, the errors are propagated through iterations and we need to care-
fully control how they accumulate over iterations and navigate through sub-
partitions. We show that ZOOMRL achieves a worst-case regret Õ(H

5
2 K

d+1
d+2)

where H is the planning horizon, K is the number of episodes and d is the cover-
ing dimension of the space with respect to the metric. Moreover, ZOOMRL en-
joys an improved metric-dependent guarantee that reflects the geometry of the
underlying space and whose scaling in terms of K is optimal as it matches the
lower bound in continuous contextual bandit [Slivkins, 2014] when H = 1. Fi-
nally, we study how our algorithm cope with the misspecified setting (Assump-

60

tion 5). We show that it is robust to small misspecification error as it suffers only
from an additional regret term O(HKε) if the true optimal action-value function
is Lipschitz up to an additive error uniformly bounded in absolute value by ε.

5.3 RELATED WORK

Exploration in metric spaces: There have been several recent works that study
exploration in continuous state-action MDPs under different structured assump-
tions. Kakade et al. [2003] assume a local continuity of the reward function and
the transition kernel with respect to a given metric. They propose a generaliza-
tion of the E3 algorithm of Kearns and Singh [2002] to metric spaces. Their sam-
ple complexity depends on the covering number of the space under the continu-
ity metric instead of the number of the states. However, their algorithm requires
access to an approximate planning oracle. Lattimore et al. [2013] assume that
the true transition kernel belongs to a finite or compact hypothesis class. Their
algorithm consists in maintaining a set of transitions models and pruning it over
time by eliminating the provable implausible models. They establish a sample
complexity that depends polynomially on the cardinality or covering number of
the model class. Pazis and Parr [2013] consider a continuous state-action MDP,
develop a nearest-neighbor based algorithm under the assumption that all Q-
functions encountered are Lipschitz continuous, showing a sample complexity
that depends on an approximate covering number. Ortner and Ryabko [2012]
develop a model-based algorithm that combines state aggregation with the stan-
dard UCRL2 algorithm [Jaksch et al., 2010] under the assumption of Lipschitz
or Hölder continuity of rewards and transition kernel and they establish a re-
gret bound scaling in K

2d+1
2d+2 where d in the dimension of the state space and K

is the number of episodes. Lakshmanan et al. [2015] improve the latter work
by considering a kernel density estimator instead of a frequency estimator for
the transition probabilities. They achieve a regret bound of K

d+1
d+2 . Yang et al.

[2019] consider a deterministic control system under a Lipschitz assumption of
the optimal action-value functions and the transition function and they estab-
lish a regret of K

d−1
d where d here is the doubling dimension. Recently, Song

and Sun [2019] extended the tabular Q-learning with upper-confidence bound
exploration strategy, developed in Jin et al. [2018], to continuous state-action
MDPs using a uniform discretisation of the joint space leading to the regret
bound Õ(H

5
2 K

d+1
d+2) where H is the planning horizon and d is the covering di-

mension. They only assume that the optimal action-value function is Lipschitz
continuous. This assumption is more general than that used in the aforemen-
tioned works as it is known that Lipschitz continuity of the reward function and

61

the transition kernel leads to Lipschitz continuity of the optimal action-value
function [Asadi et al., 2018]. We use the same condition in this present paper.

Adaptive discretization: Our method is closely related to methods that learn
partition from continuous bandit literature [Kleinberg et al., 2008, Bubeck et al.,
2009, Slivkins, 2014, Azar et al., 2014, Munos et al., 2014]. In particular, our
method is inspired by the contextual Zooming algorithm introduced in Slivkins
[2014] for contextual bandits, that we extend in non-trivial way to episodic
RL setting. Our method is similar to two recently proposed algorithms. Zhu
and Dunson [2019] propose and analyze an adaptive partitioning algorithm ap-
proach in the specific case where the metric space is a subset of Rd equipped
with l∞ distance as similarity metric. Concurrently to our work, Sinclair et al.
[2019] extend the latter result to any generic metric space. However, their al-
gorithm ADAPTIVE Q-LEARNING requires, at each re-partition step, a packing
oracle that is able to take a region and value r and outputs an r-packing of that
region. Whereas, our algorithm is oracle-free and creates at most a single sub-
region when needed. More comparison with this work requires the introduction
of some notations and is therefore deferred to Section 5.5.

5.4 PROBLEM STATEMENT

5.4.1 Episodic Reinforcement Learning and Regret

We consider a finite horizon MDP (S ,A, P, r, H). We assume that re-
ward rh(s, a) ∈ [0, 1] for any state-action (s, a) and h ∈ [H]. We recall that
for any step h ∈ [H] and (s, a) ∈ S × A, the state-action value function
of a non-stationary deterministic policy π = (π1, . . . , πH) is defined as

Qπ
h (s, a) = rh(s, a) + E

[
∑H

i=h+1 ri(si, πi(si))
∣∣∣ sh = s, ah = a

]
, and the value

function is Vπ
h (s) = Qπ

h (s, πh(s)). As the horizon is finite, under some
regularity conditions [Shreve and Bertsekas, 1978], there always exists an
optimal policy π? whose value and action-value functions are defined as
V?

h (x) , Vπ?

h (s) = maxπ Vπ
h (s) and Q?

h(s, a) , Qπ?

h (s, a) = maxπ Qπ
h (s, a).

Moreover, both Qπ and Q? can be conveniently written as the result of the
following Bellman equations

Qπ
h (s, a) = rh(s, a) + (PhVπ

h+1)(s, a), (5.4.1)

Q?
h(s, a) = rh(s, a) + (PhV?

h+1)(s, a), (5.4.2)

where Vπ
H+1(s) = V?

H+1(s) = 0 and V?
h (s) = maxa∈A Q?

h(s, a), for all s ∈ S .

62

We focus on the online episodic reinforcement learning setting in which the
reward and the transition kernel are unknown. The learning agent plays the
game for K episodes k = 1, . . . , K, where each episode k starts from some initial
state sk

1 sampled according to some initial distribution. The agent controls the
system by choosing a policy πk at the beginning of the k-th episode. The total
expected regret is defined then

REGRET(K) ,
K

∑
k=1

V∗1 (s
k
1)−Vπk

1 (sk
1).

5.4.2 Metric Space

We assume that the state-action space X , S ×A is compact endowed with
a metric dist : X ×X → R+. This leads us to state our main assumption:

Assumption 4 (Lipschitz Continuous Q?). We assume that for any h ∈ [H], Q?
h is

L-Lipschitz continuous: for all (s, a), (s′, a′) ∈ S ×A
|Q?

h(s, a)−Q?
h(s
′, a′)| ≤ L · dist

(
(s, a), (s′, a′)

)
,

and without loss of generality,

dist
(
(s, a), (s′, a′)

)
≤ 1, ∀(s, a), (s′, a′) ∈ S ×A.

Assumption 4 tells us that the optimal action values of nearby state-action
pairs are close.

For a metric space X and ε > 0, we denote the ε-net,N (ε) ⊂ X , as a set such
that

∀x ∈ X , ∃x′ ∈ N (ε), dist(x, x′) ≤ ε.

If X is compact, we denote N(ε) as the minimum size of an ε-net for X . The
covering dimension d of X is defined

d , inf
d′
{d′ ≥ 0, ∀ε > 0 N(ε) ≤ ε−d′}.

In particular, if X is a subset of Euclidean space equipped with lp distance then
its covering dimension is at most the linear dimension of X . In many applica-
tions of interests, state-action spaces are commonly thought to be concentrated
near a lower-dimensional manifold lying in high-dimensional ambient space. In
this case, the covering dimension is much smaller than the linear dimension of
the ambient space.

Covering is closely related to packing. We denote an ε-packing,M(ε) ⊂ X ,
as a set such that

∀x, x′ ∈ M(ε), dist(x, x′) > ε.

If X is compact, we denote M(ε) as the maximum size of an ε-packing. N(ε)
and M(ε) have the same scaling as we have M(2ε) ≤ N(ε) ≤ M(ε).

63

5.5 THE ZOOMRL ALGORITHM

The ZOOMRL algorithm, shown in Algorithm 5, incrementally builds an op-
timistic estimate of the optimal action-value function overX . The main idea is to
estimate Q-values precisely in near-optimal regions, while estimating it loosely
in sub-optimal regions. To implement this idea, we learn a partition of the space
by zooming in more promising and frequently visited regions.

ZOOMRL maintains a partition of the space X that consists of a growing set
of balls, of various sizes. Initially the set contains a single ball which includes
the entire state-action space. Over time the set is expanded to include additional
balls. The algorithm assigns two quantities to each ball: the number of times
the ball is selected and an optimistic estimate of the Q-value of its center. By in-
terpolating between these estimates using the Lipschitz structure, the algorithm
assigns a tighter upper bound (called index) of the Q-value of each ball’s center.
These indices are then used to select the next ball and the next action to execute
(line 8 -10 of Algorithm 5). Based on the received reward and the observed next
state, the algorithm updates the selected ball’s statistics (cf line 14-17 of Algo-
rithm 5). Then, one ball may be created inside the selected ball according to an
activation rule that reflects a bias-variance tradeoff (line 19-22 of Algorithm 5).

We denote by Bh the set of balls at step h ∈ [H] that may change from episode
to episode. Each ball B = {x ∈ X , dist(xB, x) ≤ rad(B)} has a radius rad(B),
center xB = (sB, aB) and a domain. The domain of ball B ∈ Bh, denoted by
domh(B), is defined as the subset of B that excludes all active balls in Bh that
have radius strictly smaller than rad(B), i.e

domh(B) , B \
(
∪ B′∈Bh

rad(B′)<rad(B)
B′
)

.

B is called relevant to a state s at step h if (s, a) ∈ domh(B) for some action a ∈ A.
We denote the set of relevant balls to a given state s at step h by relh(s) , {B ∈
Bh : ∃a ∈ A, (s, a) ∈ domh(B)}. For each ball B ∈ Bh for some h, we keep track
of the number of times B is selected at step h (denoted by nh(B)), as well as a
high probability upper bound (denoted by Q̂h(B)) for the optimal Q-value of the
center of B (i.e Q?

h(sB, aB)).
Using the Lipschitz continuity assumption, we have that L · rad(B) +

Q̂h(B′) + L · dist(xB, xB′) is a valid high probability upper bound on Q?(sB, aB)
for any B′ ∈ Bh. Consequently, we get a tighter (less overoptimistic) upper
bound, denoted by indexh(B), by taking the minimum of these bounds

indexh(B) , L · rad(B) + min
B′∈Bh

rad(B′)≥rad(B)

{Q̂h(B′) + L · dist(B, B′)},

where, by abuse of notation, we write dist(B, B′) = dist(xB, xB′)).

64

To facilitate the algorithm’s description, we introduce episode-indexed ver-
sions of the quantities, as shown in algorithm 5. We will use sk

h, ak
h and Bk

h to
represent the state, the action and the ball generated at time step h of the k-th

episode. Moreover, Q̂
k
h(B) and nk

h(B) are the statistics associated with each ball
B at time step h at the beginning of the k-th episode.

The algorithm proceeds as follows. Initially, ZOOMRL creates a ball centered
at arbitrary state-action pair with radius 1, hence covering the whole space. At
step h of the k-th episode, a state sk

h is observed, the algorithm finds the set of
relevant balls to sk

h (i.e relk
h(s

k
h)) and picks the ball Bk

h with the largest index
(i.e indexk

h) among the relevant balls. Once the ball is selected, an action ak
h is

chosen randomly among actions a satisfying (sk
h, a) ∈ domk

h(Bk
h). Action ak

h is
then executed in the environment, a reward rk

h is obtained and next state sk
h+1 is

observed.
Based on the received reward and next state, the algorithm updates the

statistics of the selected ball. The number of visits nk
h(Bk

h) is incremented by
1: nk+1

h (Bk
h) = nk

h(Bk
h) + 1. Let t = nk+1

h (Bk
h), the Q-value estimate is updated as

follows

Q̂
k+1
h (Bk

h)← (1− αt) Q̂
k
h(Bk

h) + αt
(
rk

h + V̂
k
h+1(s

k
h+1)

+ ut + 2L · rad(Bk
h)
)
.

Vk
h+1(xk

h+1) = min{H, maxB∈relk
h+1(s

k
h+1)

indexk
h+1(B)} here is the estimate of the

next state’s value and αt , H+1
H+t is a learning rate. The term ut + 2L · rad(Bk

h)
corresponds to an exploration bonus used to bound estimation errors on the
value function with high probability. The first term of the bonus is set to ut =

4
√

H3ı
t (we use ı , log(4HK2/p) for p ∈ (0, 1) to denote the log factor). It

corresponds to a Hoeffding-style bonus which reflects the sample uncertainty
due to insufficient number of samples. The second term 2L · rad(Bk

h) accounts
for the maximum possible variation of Q-values over the selected ball Bk

h.

Contrary to Q-values, the value of next state V̂
k
h(sk

h+1) is defined over the
entire state space, we don’t need to maintain V̂h but we query it whenever we

need. In particular, V̂
k
h(sk

h+1) is defined by the largest index among the relevant
balls to sk

h+1 clipped above by H. The clipping here is to keep the value esti-
mate into the range of plausible values while preserving the optimism as H is
an upper bound on the true optimal value function.

Finally, ZOOMRL may create a new ball according to the following activa-
tion rule: If nk

h(Bk
h) ≥ 1

rad(Bk
h)

2 , a new ball B′, centered in (sk
h, ak

h) and radius

rad(B′) = rad(Bk
h)/2, is created and its Q value is initialized to H. The acti-

vation criterion (which is equivalent to 1√
nk

h(Bk
h)
≤ rad(Bk

h)) reflects a tradeoff

65

Action

State

s

{{ {A B C A B C Action

{ {

Q̂h(C)
<latexit sha1_base64="Y90Hb6u1fT/FQOOUlxaUfxEbKL8=">AAAB/nicbVDLSsNAFJ34rPUVFVduBotQNyWpgi6L3bhswT6gCWEynTRDJ5MwMxFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOX7CqFSW9W2srW9sbm1Xdqq7e/sHh+bRcV/GqcCkh2MWi6GPJGGUk56iipFhIgiKfEYG/rRd+INHIiSN+YOaJcSN0ITTgGKktOSZp06EVOgHmRMilXVzL6y3L3PPrFkNaw64SuyS1ECJjmd+OeMYpxHhCjMk5ci2EuVmSCiKGcmrTipJgvAUTchIU44iIt1sHj+HF1oZwyAW+nEF5+rvjQxFUs4iX08WYeWyV4j/eaNUBbduRnmSKsLx4lCQMqhiWHQBx1QQrNhME4QF1VkhDpFAWOnGqroEe/nLq6TfbNhXjWb3uta6K+uogDNwDurABjegBe5BB/QABhl4Bq/gzXgyXox342MxumaUOyfgD4zPHwcBlYQ=</latexit>

Q̂h(B)
<latexit sha1_base64="TMi4dh2NKMUWOaQRNR4gX8k5g1I=">AAAB/nicbVDLSsNAFJ34rPUVFVduBotQNyWpgi5L3bhswT6gCWEynTRDJ5MwMxFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOX7CqFSW9W2srW9sbm1Xdqq7e/sHh+bRcV/GqcCkh2MWi6GPJGGUk56iipFhIgiKfEYG/vSu8AePREga8wc1S4gboQmnAcVIackzT50IqdAPMidEKuvmXlhvX+aeWbMa1hxwldglqYESHc/8csYxTiPCFWZIypFtJcrNkFAUM5JXnVSSBOEpmpCRphxFRLrZPH4OL7QyhkEs9OMKztXfGxmKpJxFvp4swsplrxD/80apCm7djPIkVYTjxaEgZVDFsOgCjqkgWLGZJggLqrNCHCKBsNKNVXUJ9vKXV0m/2bCvGs3uda3VLuuogDNwDurABjegBe5BB/QABhl4Bq/gzXgyXox342MxumaUOyfgD4zPHwV7lYM=</latexit>

Q̂h(A)
<latexit sha1_base64="11e9p8nF5FllrzQqGWh7UhHIo3Y=">AAAB/nicbVDLSsNAFJ34rPUVFVduBotQNyWpgi6rbly2YB/QhDCZTpqhk0mYmQglBPwVNy4Ucet3uPNvnLRZaOuBgcM593LPHD9hVCrL+jZWVtfWNzYrW9Xtnd29ffPgsCfjVGDSxTGLxcBHkjDKSVdRxcggEQRFPiN9f3JX+P1HIiSN+YOaJsSN0JjTgGKktOSZx06EVOgHmRMilXVyL6zfnOeeWbMa1gxwmdglqYESbc/8ckYxTiPCFWZIyqFtJcrNkFAUM5JXnVSSBOEJGpOhphxFRLrZLH4Oz7QygkEs9OMKztTfGxmKpJxGvp4swspFrxD/84apCq7djPIkVYTj+aEgZVDFsOgCjqggWLGpJggLqrNCHCKBsNKNVXUJ9uKXl0mv2bAvGs3OZa11W9ZRASfgFNSBDa5AC9yDNugCDDLwDF7Bm/FkvBjvxsd8dMUod47AHxifPwP1lYI=</latexit>

L · rad(C)
<latexit sha1_base64="ebMJ6VYaR8aBzpF50lpS2GKoa2M=">AAACAHicdVDJSgNBEO1xjXEb9eDBS2MQ4iXMxP0WzMWDhwhmgcwQeno6SZOehe4aMQxz8Ve8eFDEq5/hzb+xswiuDwoe71VRVc+LBVdgWe/GzOzc/MJibim/vLK6tm5ubDZUlEjK6jQSkWx5RDHBQ1YHDoK1YslI4AnW9AbVkd+8YVLxKLyGYczcgPRC3uWUgJY65vYldqgfAXaA3QJAKomfFav7HbNglY4s++zYxr+JXbLGKKApah3zzfEjmgQsBCqIUm3bisFNiQROBcvyTqJYTOiA9Fhb05AETLnp+IEM72nFx91I6goBj9WvEykJlBoGnu4MCPTVT28k/uW1E+ieuikP4wRYSCeLuonAEOFRGtjnklEQQ00IlVzfimmfSEJBZ5bXIXx+iv8njXLJPiiVrw4LlfNpHDm0g3ZREdnoBFXQBaqhOqIoQ/foET0Zd8aD8Wy8TFpnjOnMFvoG4/UDQnmWNQ==</latexit>

L · dist(B, C)
<latexit sha1_base64="EqA7EeedHaoCfy5FDGbnn3dM5dA=">AAACBHicdVDJSgNBEO2JW4xb1GMujUGIIMNM3G8huXjwEMEskAyhp6eTNOlZ6K4Rw5CDF3/FiwdFvPoR3vwbO4vg+qDg8V4VVfXcSHAFlvVupObmFxaX0suZldW19Y3s5lZdhbGkrEZDEcqmSxQTPGA14CBYM5KM+K5gDXdQGfuNayYVD4MrGEbM8Ukv4F1OCWipk81d4Db1QsBtYDcAkHh656hQ3seVvU42b5lHln12bOPfxDatCfJohmon+9b2Qhr7LAAqiFIt24rASYgETgUbZdqxYhGhA9JjLU0D4jPlJJMnRnhXKx7uhlJXAHiifp1IiK/U0Hd1p0+gr356Y/EvrxVD99RJeBDFwAI6XdSNBYYQjxPBHpeMghhqQqjk+lZM+0QSCjq3jA7h81P8P6kXTfvALF4e5kvlWRxplEM7qIBsdIJK6BxVUQ1RdIvu0SN6Mu6MB+PZeJm2pozZzDb6BuP1A5Bal2g=</latexit>

Figure 5.1: Left: a possible partition for 2-dimensional state-action space. For a given
state s, we show in orange the three relevant balls A, B and C. Right: For the three
relevant balls, we show how the index is constructed based on the interpolation be-
tween Q-value estimates of each ball. The gray piecewise linear curve corresponds to
the function : a→ minB′{Q̂h(B′) + L · dist((s, a), xB′)} for a given state.

between the variance of Q-value estimate, due to the number of samples (i.e
1√

nk
h(B)

) and the bias, corresponding to the radius of the ball.

Comparison with Sinclair et al. [2019]: Concurrently to our work, Sinclair
et al. [2019] use a similar approach to learn an adaptive discretization. We
highlight here differences between ZOOMRL and their algorithm ADAPTIVE Q-
LEARNING:

• ADAPTIVE Q-LEARNING requires, at each re-partition step, a packing or-
acle that is able to take a ball B and value r to output an r-packing of B.
Whereas, our algorithm is oracle-free and creates at most a single child
ball when needed.

• We leverage more the Lipschitz structure to define the ball’s index, which
is not used in their algorithm.

• Sinclair et al. [2019] use an exploration bonus 2
√

H3 log(4HK/p)
t + 4L√

t
where

t = nk
h(Bk

h). The first term looks similar to our term ut with K2 instead of
K in the log factor. We think it is due to small issue in their proof because
there is a missing union bound over K possible values of the random stop-

66

ping time t = nk
h(Bk

h) (cf Proof C.1.3 in appendix). The second term, 4L√
t
, is

different than ours, L · rad(Bk
h).

• Finally, in [Sinclair et al., 2019] each child ball inherents statistics from their
parent while in our algorithms the statistics are initialized by zero for nh
and H for Q̂h.

Algorithm 5 ZOOMRL

1: Data: For h ∈ [H], we have a collection Bh of balls.
2: Init: create ball B, with rad(B) = 1 and arbitrary center. B1

h ← {B} for all
h ∈ [H]

3: Q̂
1
h(B) = H and n1

h(B) = 0, ∀h ∈ [H]
4: for episode k = 1, . . . , K do
5: Observe xk

1
6: for step h = 1, . . . , H do
7: // Select action
8: Bk

h ← arg maxB∈relk
h(s

k
h)

indexk
h(B)

9: ak
h ← any arm a such that (sk

h, a) ∈ dom(Bk
h)

10: Execute action ak
h, observe reward rk

h and next state sk
h+1

11: // Query the next value function

12: V̂
k
h+1(sk

h+1)← min{H, maxB∈relk
h+1(s

k
h+1)

indexk
h+1(B)}

13: // Update the selected ball’s statistics
14: t = nk+1

h (Bk
h)← nk

h(Bk
h) + 1

15: ut ← 4
√

H3ı
t

16: Q̂
k+1
h (Bk

h)← (1− αt) Q̂
k
h(Bk

h) + αt

(
rk

h + V̂
k
h+1(sk

h+1) + ut + 2L · rad(Bk
h)
)

17: // New ball’s activation step
18: if nk

h(B) ≥ 1
rad(Bk

h)
2 then

19: Create a new ball B′ centered in (sk
h, ak

h) and radius rad(B′) =

rad(Bk
h)/2

20: Bk+1
h = Bk

h ∪ B′

21: Q̂
k+1
h (B′) = H and nk+1

h (B′) = 0, ∀h ∈ [H]
22: end if
23: end for
24: end for

67

5.6 MAIN RESULTS

In this section, we present our main theoretical result which is an upper
bound on the total regret of ZOOMRL (see Algorithm 5). We start by showing a
pessimistic version of the regret bound.

Theorem 1 (Worst case guarantee). For any p ∈ (0, 1), with probability 1 − p,
the total regret of ZOOMRL (see Algorithm 5) is at most O(

√
H5ıLK

d+1
d+2) where ı =

log(4HK2/p) and d is the covering dimension of the state-action space.

The bound in Theorem 1 matches the regret bound achieved by Net-based
Q-learning (NBQL) studied in Song and Sun [2019] which assumes access to an
ε-net of the whole space as input to the algorithm. Moreover, the ε-net should
be optimal in the sense that the granularity ε of the covering must be chosen in
advance (ε = K

−1
d+2). Meanwhile, ZOOMRL builds the partition on the fly and in

data-dependent fashion by allocating more effort in promising regions, which
would considerably save the memory requirement in favorable problems while
preserving the worst-case guarantee (as shown in Theorem 1).

Now, we present a refined regret bound that reflects better the geometry of
the underlying space.

Theorem 2 (Refined regret bound). For any p ∈ (0, 1), with probability 1− p, the
total regret of ZOOMRL (see Algorithm 5) is at most

O

(L +
√

H5ı) min
r0∈(0,1)

{
Kr0 + ∑

r=2−i
r≥r0

M(r)
r

}
+ H2 +

√
H3Kı

 ,

where ı = log(4HK2/p), M(r) is the r-packing number of the state-action space.

Since M(r) is non-increasing in r, the leading term (the first term) of the
bound of Theorem 2 is upper bounded by minr0∈(0,1)

{
Kr0 +

M(r0)
r0

log(r0)
}

. By

setting r0 = K
−1

d+2 , we recover the worst-case bound in Theorem 1. Note that the
work of Sinclair et al. [2019] achieves the same regret bound.

The r-packing number M(r) is here to uniformly upper bound the number
of balls of radius r generated by the algorithm, as we will see in the analysis de-
ferred to the next section. Intuitively, balls with small radius would not cover the
whole state-action space but rather would be concentrated around near-optimal
regions. We expect that their number would be much smaller that M(r) in prac-
tice.

68

Comparison with contextual bandit setting: We would like to highlight a
negative result of the RL setting comparing to the contextual bandit setting.
When H = 1 and if we ignore logarithmic factors in Theorem 2, we obtain
a bound in minr0∈(0,1)

{
Kr0 + ∑r=2−i≥r0

M(r)
r

}
. This looks similar to the regret

bound of the contextual Zooming algorithm [Slivkins, 2014]. But there is a cru-
cial difference: M(r) here is the r-packing of the entire space while it is replaced
by the r-packing of near-optimal regions in Slivkins [2014]. This follows from
the fact that in contextual bandit setting, total regret could be straightforwardly
written as sum of instant regrets incurred by each ball. Such regret is bounded,
up to a multiplicative constant, by the radius of the ball in which the context
falls.

However the dependence of our regret bound on K is still optimal,
up to logarithmic factor, with respect to the worst Lipschitz structure. In
fact, theorem 8 in Slivkins [2014] states that there exists a distribution
I over problem instances on (S × A, dist) such that for any contex-
tual bandit algorithm, the expected regret over I is lower bounded by
Ω
(

minr0∈(0,1)

{
Kr0 + ∑r=2−i≥r0

M(r)
r

}
/ log(K)

)
.

Tabular MDP In the case of finite state-action MDP without any structural
knowledge, one can pick the metric to be dist((s, a), (s′, a′)) = H, ∀(s, a) 6=
(s′, a′). It is obvious that the optimal action-value function is 1-Lipschitz (i.e
L = 1) with respect to this metric and that the packing number is at most equal

to |S||A|. In this case, if we set r0 to
√
|S||A|

K , the regret bound in Theorem 2
becomes O(

√
|S||A|H5Kı). Hence, we recover exactly the regret bound of Q-

learning with UCB-Hoeffding algorithm of Jin et al. [2018].

5.6.1 Result For The Misspecified Case

We study now how ZOOMRL deals with misspecification error. First, we
present a formal definition for an approximate Lipscthiz Q-value.

Assumption 5 (Approximately Lipschitz Q?). We assume that for any h ∈ [H], Q?
h

can be decomposed as a L-Lipschitz continuous term and a bounded term as:

∀(s, a) ∈ X , Q?
h(s, a) = fh(s, a) + ∆h(s, a),

where for all (s, a), (s′, a′) ∈ X

| fh(s, a)− fh(s′, a′)| ≤ L · dist
(
(s, a), (s′, a′)

)
and

|∆h(s, a)| ≤ ε.

69

A straightforward consequence of Assumption 4 is:

|Q?
h(s, a)−Q?

h(s
′, a′)| ≤ L · dist((s, a), (s′, a′)) + 2ε.

The next theorem states that our algorithm, without any modification, is robust
to small misspecification error ε.

Theorem 3 (Regret bound in the misspecified case). Suppose that Assumption 5
holds. For any p ∈ (0, 1), with probability 1− p, the total regret of ZOOMRL (see
Algorithm 5) is at most

O

(L +
√

H5ı) min
r0∈(0,1)

{
Kr0 + ∑

r=2−i
r≥r0

M(r)
r

}
+ H2 +

√
H3Kı + HKε

 ,

where ı = log(4HK2/p), M(r) is the r-packing number of the state-action space.

The Theorem 3 states that ZOOMRL incurs at most an extra regret term
O(HKε), comparing to Theorem 2. This term is linear in the number of episodes
K as well as the error ε. The good news is that our algorithm, without any adap-
tation, does not break down entirely and it enjoys good guarantees when the
optimal Q-value is close to a Lipschitz function i.e the error ε is small.

5.7 PROOF OUTLINE

In this section we outline some key steps in the proof of Theorem 2. All
the omitted proofs as well as the analysis of the misspecified case can be found
in the appendix. We start by showing two useful properties of our partitioning
scheme.

Lemma 3 (Partition’s properties). At each step h ∈ [H] in episode k ∈ [k], we have

• The domains of balls cover the space-action space i.e ∪B∈Bk
h
domk

h(B) = S ×A.

• For any two balls of radius r > 0, their centers are at distance at least r. In other
words, for any r > 0, the set {B ∈ Bk

h, rad(B) = r} forms an r-packing for
S ×A.

We set αt = H+1
H+t . This specific choice of learning rate comes from Jin et al.

[2018] where they show that this choice is crucial to obtain regret that is not
exponential in H. We denote α0

t = ∏t
j=1(1− αj) and αi

t = αi ∏t
j=i+1(1− αj). We

have α0
t = 0, ∀t ≥ 1 and α0

t = 1 when t = 0. The lemma below establishes the
recursive formula of Q-values estimates for the balls.

70

Lemma 4. At any (h, k) ∈ ×[H]× [K] and B ∈ Bk
h, let t = nk

h(B), and suppose B
was previously selected at step h of episodes k1, k2, ..., kt < k. By the update rule of Q̂,
we have:

Q̂
k
h(B) = α0

t · H +
t

∑
i=1

αi
t ·
(

rh(xki
h , aki

h) + V̂
ki
h+1(xki

h+1)

+ ui + 2L · rad(B)
)

.

Throughout the learning process, we hope that our estimation Q̂
k
h will get

closer to the optimal value Q?
h, as k increases while we preserve optimism. Us-

ing Azuma-Hoeffding concentration inequality (see Lemma 15 in appendix) to-

gether with the Lipschitz assumption, our next lemma shows that Q̂
k
h is an upper

bound on Q?
h at any episode k with high probability and the difference between

Q̂
k
h and Q?

h is controlled by quantities from the next step.

Lemma 5. For any p ∈ (0, 1), we have βt = 2 ∑t
i=1 αi

tui ≤ 16
√

H3ı
t and, with

probability at least 1− p/2, we have that for all (s, a, h, k) ∈ S ×A× [H]× [K] and
any ball B ∈ Bk

h such that (s, a) ∈ domk
h(B):

(a) Q̂
k
h(B) ≥ Q?

h(s, a).

(b) Q̂
k
h(B)−Q?

h(x, a) ≤ α0
t ·H+ βt + 4L ·rad(B)+∑t

i=1 αi
t · (V̂

ki
h+1−V∗h+1)(s

ki
h+1).

where t = nk
h(B) and k1, · · · , kt < k are the episodes where B was selected at step h.

The next lemma translates the optimism in terms of Q-value estimates to
optimism in terms of value function estimates.

Lemma 6 (Optimism). Following the same setting as in Lemma 5, for any (h, k), with

probability at least 1− p/2, we have for any s ∈ S , V̂
k
h(s) ≥ V?

h (s).

Proof. Let s ∈ S , We have V?
h (s) = Q?

h(s, π?
h(s)). As the set of domains of ac-

tive balls covers the entire space, there exists B? ∈ Bk
h+1 such that (s, π?

h(s)) ∈
domk

h(B∗). By the definition of index, we have indexk
h(B?) = L · rad(B?) +

71

Q̂
k
h(B̃?) + L · dist(B̃?, B?) for some active ball B̃?. We have

V̂
k
h(s)−V?

h (s)

= min{H, max
B∈relk

h(s)
indexk

h(B)} −Q?
h(s, π?(s))

≥ max
B∈relk

h(s)
indexk

h(B)−Q?
h(s, π?(s))

≥ indexk
h(B?)−Q?

h(s, π?(s))

= L · rad(B?) + Q̂
k
h(B̃?) + L · dist(B̃?, B?)−Q?

h(s, π?(s))
≥ L · rad(B?) + Q?

h(sB̃? , aB̃?) + L · dist(B̃?, B?)−Q?
h(s, π?(s))

≥ L · rad(B?) + Q?
h(sB? , aB?)−Q?

h(s, π?(s))
≥ 0

Where (sB? , aB?) and (sB̃? , aB̃?) denote respectively the centers of balls B? and
B̃?. The first inequality follows from Q?

h(s, a) ≤ H for any state-action pair (s, a).
The third inequality follows from lemma 5. The fourth and the last inequalities
follow from Lipschitz assumption 4

5.7.1 Regret Analysis

πk is the policy executed by the algorithm in step h for H steps to reach the
end of the episode. By the optimism of our estimates with respect to the true
value function (see lemma 6), we have with probability at least 1− p/2

REGRET(K) =
K

∑
k=1

(V∗1 −Vπk
1)(xk

1) ≤
K

∑
k=1

(V̂
k
1−Vπk

1)(xk
1)

Denote by δk
h , (V̂

k
h−Vπk

h)(sk
h) and φk

h , (V̂
k
h−V?

h)(s
k
h). As V?

h ≥ Vπk , we have
φk

h ≤ δk
h. In the sequel, we aim to upper bound δk

h as we have REGRET(K) ≤
∑k=1 δk

1.
Let Bk

h the ball selected at step h of episode k and Binit be the initial ball of
radius one that covers the whole space. We denote Bk,pa

h the parent of Bk
h. When

Bk
h is the initial ball, we consider that it is parent of itself.

Lemma 7 (Bound on estimation). Let P̂h the empirical transition operator defined
as [P̂hV](sk

h, ak
h) = V(sk

h+1) for any function V, any h and k. If we denote ξk
h+1 =

72

[(Ph − P̂h)(V?
h+1 −Vπk

h)](sk
h, ak

h), we have

δk
h ≤ Hα0

nk
h(Bk

h)
· I{Bk

h=Binit} + (11L + 32
√

H3ı) rad(Bk
h)

+
nk

h(Bk,pa
h)

∑
i=1

αi
nk

h(Bk,pa
h)

φ
ki(Bk,pa

h)

h+1 − φk
h+1 + δk

h+1 + ξk
h+1,

where ki(Bk,pa
h) is the i-th episode where Bk,pa

h is selected at step h.

Taking the sum over k ∈ [K] of the estimation bound in lemma 7,

K

∑
k=1

δk
h ≤�+ (11L + 32

√
H3ı)

K

∑
k=1

rad(Bk
h)

+4+
K

∑
k=1

(−φk
h+1 + δk

h+1 + ξk
h+1),

where� = H ∑K
k=1 α0

nk
h(Bk

h)
· I{Bk

h=Binit} and4 = ∑K
k=1 ∑

nk
h(Bk,pa

h)

i=1 αi
nk

h(Bk,pa
h)

φ
ki(Bk,pa

h)

h+1 .

For the fist term, we have� = H ∑K
k=1 I{Bk

h=Binit,nk
h(Binit)=0} = H. For the second

term 4, we regroup the summation in a different way. For every k′ ∈ [K], the
term φk′

h+1 appears in the summation with k > k′ when Bk
h and Bk′

h share the same

parent. The first time it appears we have nk
h(Bk,pa

h) = nk′
h (Bk′,pa

h) + 1, the second

time it appears we have nk
h(Bk,pa

h) = nk′
h (Bk′,pa

h) + 2 and so on. Therefore:

4 ≤
K

∑
k′=1

φk′
h+1

∞

∑
t=nk′

h (Bk′ ,pa
h)+1

α
nk′

h (Bk′ ,pa
h)

t

≤
(

1 +
1
H

) K

∑
k=1

φk
h+1.

We use in the last inequality ∑∞
t=i αi

t = 1+ 1
H (Lemma 16 in appendix). Therefore,

using that φk
h+1 ≤ δk

h+1

K

∑
k=1

δk
h ≤ H + (11L + 32

√
H3ı)

K

∑
k=1

rad(Bk
h)

+

(
1 +

1
H

) K

∑
k=1

φk
h+1 +

K

∑
k=1

(−φk
h+1 + δk

h+1 + ξk
h+1)

≤ H + (11L + 32
√

H3ı)
K

∑
k=1

rad(Bk
h) +

(
1 +

1
H

) K

∑
k=1

δk
h+1 +

K

∑
k=1

ξk
h+1.

73

By unrolling the last inequality for h ∈ [H] and using the fact δk
H+1 = 0 ∀k ∈

[K], we obtain

K

∑
k=1

δk
1 ≤

H

∑
h=1

(1 +
1
H
)h−1

(
H + (11L + 32

√
H3ı)

K

∑
k=1

rad(Bk
h) +

K

∑
k=1

ξk
h+1

)

≤ 3H2 + 3(11L + 32
√

H3ı)
H

∑
h=1

K

∑
k=1

rad(Bk
h) + 3

H

∑
h=1

K

∑
k=1

ξk
h+1. (5.7.1)

The last inequality follows from the fact ∀h ∈ [H],
(

1 + 1
H

)h−1
≤
(

1 + 1
H

)H
≤

exp(1) ≤ 3.
Now, we proceed to upper bound the two terms ∑H

h=1 ∑K
k=1 rad(Bk

h) and
∑H

h=1 ∑K
k=1 ξk

h+1. Using concentration argument, we show with probability at
least 1− p/2, we have (see Lemma 12 in appendix)

H

∑
h=1

K

∑
k=1

ξk
h+1 ≤ 4

√
2H3Kı (5.7.2)

Bounding ∑H
h=1 ∑K

k=1 rad(Bk
h): Let’s consider all balls of radius r that have

been activated at step h throughout the execution of the algorithm. The maxi-
mum number of times a ball B of radius r can be selected before it becomes a
parent is upper bounded by 1

r2 . After ball B becomes a parent, a new ball of
radius r/2 is created every time B is selected. Therefore, we can write the sum
over all ball B ∈ BK

h of radius r as the sum over set of rounds which consists of
the round when B was created and all rounds when B was selected before being

74

a parent. Let r0 ∈ (0, 1). we have

K

∑
k=1

rad(Bk
h) = ∑

r=2−i
∑

B∈BK
h

rad(B)=r

∑
k∈[K]
Bk

h=B

r

= ∑
r=2−i
r<r0

∑
B∈BK

h
rad(B)=r

∑
k∈[K]
Bk

h=B

r + ∑
r=2−i
r≥r0

∑
B∈BK

h
rad(B)=r

∑
k∈[K]
Bk

h=B

r

≤ Kr0 + ∑
r=2−i
r≥r0

∑
B∈BK

h
rad(B)=r

r
r2 + 2r

≤ Kr0 + 3 ∑
r=2−i
r≥r0

|{B ∈ BK
h : rad(B) = r}|1

r

≤ Kr0 + 3 ∑
r=2−i
r≥r0

M(r)
r

(5.7.3)

The last step follows from lemma 3: The set of active balls of radius r is a r-
packing of S × A. Thus, |{B ∈ BK

h : rad(B) = r}| ≤ M(r) where M(r) is the
r-covering number.

Plugging bounds (5.7.2) and (5.7.3) in (5.7.1) and using the union bound, we
obtain the desired regret bound in Theorem 2

5.8 CONCLUSION

In this paper, we present ZOOMRL, a provably efficient model-free reinforce-
ment learning algorithm in continuous state-action spaces under the assumption
that the true optimal action-value function is Lipscthiz with respect to similarity
metric between state-action pairs. Our algorithm takes into account the geome-
try of the action-value function by allocating more attention to relevant regions.
We show that our method achieves sublinear regret that depends on the packing
number of the state-action space and that it is robust to small misspecification
errors.

Our method requires the knowledge of the Lipschitz constant L as well as
the metric dist to achieve its performance. A natural future question is whether
an RL algorithm can be proved to be efficient without knowing L or dist in
advance.

75

6
Online Learning in
Non-stationary Linear
Markov Decision Processes

6.1 PROLOGUE TO THE CONTRIBUTION

6.1.1 Article Details

This chapter is based on the article «Efficient Learning in Non-Stationary Linear
Markov Decision Processes» [Touati and Vincent, 2020a], joint work with Pascal
Vincent. I am the first author. I performed the derivation of the new algorithm
and its theoretical analysis.

6.1.2 Context

In order to design both provable sample-efficient and computationally effi-
cient RL algorithms for large-scale problems, an appealing challenge is to com-
bine exploration strategies with generalization methods. In the previous chap-
ter, we ensured generalization over states by aggregating them into a finite set
of meta-states and run tabular exploration mechanism on the latter. In particu-
lar, we proposed to actively explore the state-action space by learning on-the-fly
an adaptive partitioning that takes into account the shape of the optimal value
function. When the state-action space is assumed to be a compact metric space,
we showed that such adaptive discretization-based algorithm yield sublinear
regret but suffer from the curse of dimensionality as their regret scales almost
exponentially with the covering dimension of the whole space.

Another structural assumption, that received attention in the recent litera-
ture [Yang and Wang, 2019, Jin et al., 2020b, Zanette et al., 2020a], is when both
reward and transition dynamics are linear functions with respect to a given fea-
ture mapping. This assumption enables the design of efficient algorithms with
a linear representation of the action-value function.

Most prior algorithms with linear function approximation assume that the
environment is stationary and minimize the regret over the best fixed policy.
However, in many problems of interest, we are faced with a changing world, in
some cases with substantial non-stationarity. This is a more realistic and chal-
lenging setting, since what has been learned in the past may be obsolete in the
present.

76

6.1.3 Paper Abstract

We study episodic reinforcement learning in non-stationary linear (a.k.a.
low-rank) Markov Decision Processes (MDPs), i.e, both the reward and tran-
sition kernel are linear with respect to a given feature map and are allowed to
evolve either slowly or abruptly over time. For this problem setting, we pro-
pose OPT-WLSVI an optimistic model-free algorithm based on weighted least
squares value iteration which uses exponential weights to smoothly forget
data that are far in the past. We show that our algorithm, when competing
against the best policy at each time, achieves a regret that is upper bounded
by Õ(d5/4H2∆1/4K3/4) where d is the dimension of the feature space, H is the
planning horizon, K is the number of episodes and ∆ is a suitable measure of
non-stationarity of the MDP. Moreover, we point out technical gaps in the study
of forgetting strategies in non-stationary linear bandits setting made by previous
works and we propose a fix to their regret analysis.

6.1.4 Recent Developments

The authors of Cheung et al. [2019] who pioneered the non-stationary linear
bandit, released recently a revised version of their AISTATS 2019 paper to ac-
knowledge the mistake in the analysis. In order for their optimal rate Õ(T2/3)
to hold, they assume that actions are orthogonal.

Zhao and Zhang [2021] identify also the mistake and proposed the same fix
than ours in a technical note released slightly after we had made public on arxiv
a version of our paper containing the fix.

Faury et al. [2021] build on our proposed fix to provide a correct regret anal-
ysis for non-stationary generalized linear bandit.

While our work shows that forgetting strategies achieve the rate of Õ(T3/4),
the recent work Wei and Luo [2021] follows a substantially different approach to
achieve the optimal rate Õ(T2/3) for the first time in the setting of non-stationary
linear bandit and MDP. Their algorithm detects non-stationarity by running
multiple instances of a base (stationary) algorithm with different durations in
a randomized schedule.

6.2 INTRODUCTION

In the present work, we study the problem of online learning in episodic non-
stationary linear Markov Decision Processes (MDP), where both the reward and
transition kernel are linear with respect to a given feature map and are allowed
to evolve dynamically and even adversarially over time. The interaction of the

77

agent with the environment is divided into K episodes of fixed length H. More-
over, we assume that the total change of the MDP, that we measure by a suitable
metric, over the K episodes is upper bounded by ∆, called variation budget.

To address this problem, we propose a computationally efficient model-free
algorithm, that we call OPT-WLSVI. We prove that, in the setting described
above, its regret when competing against the best policy for each episode is at
most Õ(d5/4H2∆1/4K3/4). Concurrently to our work, Zhou et al. [2020] propose
to periodically restart LSVI-UCB from scratch, achieving the same regret. By con-
trast, our algorithm is based on weighted least squares value iteration that uses
exponential weights to smoothly forget data that are far in the past, which drives
the agent to keep exploring to discover changes. Our approach is motivated by
the recent work of Russac et al. [2019] who establish a new deviation inequality
to sequential weighted least squares estimator and apply it to the non-stationary
stochastic linear bandit problem. However, in contrast to linear bandit, our al-
gorithm handles the additional problem of credit assignment since future states
depend in non-trivial way on the agent’s policy and thus we need to carefully
control how errors are propagated through iterations. Moreover, we discovered
technical errors in the regret analysis of forgetting strategies in non-stationary
linear bandits made by previous works and we propose a correction.

6.3 PROBLEM STATEMENT

6.3.1 Notation

Throughout the paper, all vectors are column vectors. We denote by ‖·‖ the
Euclidean norm for vectors and the operator norm for matrices. For positive
definite matrix A, we use ‖x‖A to denote the matrix norm

√
x>Ax. We define

[N] to be the set {1, 2, . . . , N} for any positive integer N.

6.3.2 Non-Stationary Reinforcement Learning and Dynamic
Regret

We consider a non-stationary undiscounted finite-horizon MDP
(S ,A, P, r, H) where S and A are the state and action space, H is the
planning horizon i.e number of steps in each episode, P = {Pt,h}t>0,h∈[H] and
r = {rt,h}t>0,h∈[H] are collections of transition kernels and reward functions,
respectively. More precisely, when taking action a in state s at step h of the t-th
episode, the agent receives a reward rt,h(s, a) and makes a transition to the next
state according to the probability measure Pt,h(· | s, a).

78

For any step h ∈ [H] of an episode t and (s, a) ∈ S × A, the state-
action value function of a policy π = (π1, . . . , πH) is defined as Qπ

t,h(s, a) =

rt,h(s, a) + E
[
∑H

i=h+1 rt,i(si, πi(si))
∣∣∣ sh = s, ah = a

]
, and the value function is

Vπ
t,h(s) = Qπ

t,h(s, πh(s)). The optimal value and action-value functions are de-
fined as V?

t,h(x) , maxπ Vπ
t,h(s) and Q?

t,h(s, a) , maxπ Qπ
t,h(s, a). If we denote

[Pt,hVt,h+1](s, a) = Es′∼Pt,h(·|s,a)[Vt,h+1(s′)], both Qπ and Q? can be conveniently
written as the result of the following Bellman equations

Qπ
t,h(s, a) = rt,h(s, a) + [Pt,hVπ

t,h+1](s, a), (6.3.1)

Q?
t,h(s, a) = rt,h(s, a) + [Pt,hV?

t,h+1](s, a), (6.3.2)

where Vπ
t,H+1(s) = V?

t,H+1(s) = 0 and V?
t,h(s) = maxa∈A Q?

t,h(s, a), for all s ∈ S .

Learning problem: We focus on the online episodic reinforcement learning set-
ting in which the rewards and the transition kernels are unknown. The learning
agent plays the game for K episodes t = 1, . . . , K, where each episode t starts
from some initial state st,1 sampled according to some initial distribution. The
agent controls the system by choosing a policy πt at the beginning of the t-th
episode. We measure the agent’s performance by the dynamic regret, defined as
the sum over all episodes of the difference between the optimal value function
in episode t and the value of πt:

REGRET(K) =
K

∑
t=1

V∗t,1(st,1)−Vπt
t,1 (st,1).

6.3.3 Linear Markov Decision Processes

In this work, we consider a special class of MDPs called linear MDPs, where
both reward function and transition kernel can be represented as a linear func-
tion of a given feature mapping φ : S × A → Rd. Now we present our main
assumption

Assumption 6 (Non-stationary linear MDP). (S ,A, P, r, H) is non-stationary lin-
ear MDP with a feature map φ : S ×A → Rd if for any (t, h) ∈ N× [H], there exist
d unknown (signed) measures µt,h = (µ

(1)
t,h , . . . , µ

(d)
t,h) over S and an unknown vector

θt,h ∈ Rd, such that for any (s, a) ∈ S ×A, we have
Pt,h(· | s, a) = φ(s, a)>µt,h(·), (6.3.3)

rt,h(s, a) = φ(s, a)>θt,h. (6.3.4)

79

Without loss of generality, we assume1 ‖φ(s, a)‖ ≤ 1 for all (s, a) ∈ S × A, and
max{‖µt,h(S)‖ , ‖θt,h‖} ≤

√
d for all (t, h) ∈N× [H].

Linear MDPs are also know as low-rank MDPs [Zanette et al., 2020a]. In
fact, in the case of finite state and action spaces with cardinalities |S| and |A|
respectively, the transition matrix P ∈ R(|S|×|A|)×|S| could be expressed by the
following low-rank factorization for any (t, h):

Pt,h = ΦMt,h

where Φ ∈ R(|S|×|A|)×d such as Φ[(s, a), :] = φ(s, a)> and Mt,h ∈ Rd×|S| such
that Mt,h[:, s] = µt,h(s) a discrete measure. Therefore the rank of the matrix P is
at most d.

An important consequence of Assumption 6 is that the Q-function of any
policy is linear in the features φ.

Lemma 8. For every policy π and any (t, h) ∈ N? × [H] there exists wπ
t,h ∈ Rd such

that
Qπ

t,h = φ(s, a)>wπ
t,h, ∀(s, a) ∈ S ×A. (6.3.5)

6.4 THE PROPOSED ALGORITHM

Algorithm 6, referred as OPT-WLSVI (OPTimistic Weighted Least Squares
Value Iteration), parametrizes the Q-values Qt,h(s, a) by a linear form
φ(s, a)>wt,h and updates the parameters wt,h by solving the following
regularized weighted least squares problem:

wt,h = arg min
w∈Rd

{ t−1

∑
τ=1

η−τ
(

rτ,h + Vt,h+1(sτ,h+1)−φ>τ,hw
)2

+ λη−(t−1) ‖w‖2
}

where η ∈ (0, 1) is a discount factor, Vt,h+1(st,h+1) = maxa∈A Qt,h+1(sτ,h+1, a)
and rτ,h and φτ,h are shorthand for rτ,h(sτ,h, aτ,h) and φ(sτ,h, aτ,h) respectively.
The discount factor η plays an important role as it gives exponentially increasing
weights to recent transitions, hence, the past is smoothly forgotten.

The regularized weighted least-squares estimator of the above problem can
be written in closed form

wt,h = Σ−1
t,h

(
t−1

∑
τ=1

η−τφτ,h(rτ,h + Vt,h+1(sτ,h+1))

)
(6.4.1)

1A concrete case that would satisfy these assumptions, is if ∀i ∈ [d],φi(s, a) ≥ 0 and

∑d
i=1 φi(s, a) = 1, and ∀i ∈ [d],µ(i)

t,h is a probability measure. In this caseφ(s,a) can be understood
as providing the mixture coefficients with which to mix the d measures in µt,h.

80

where Σt,h = ∑t−1
τ=1 η−τφτ,hφ

>
τ,h + λη−(t−1) · I is the Gram matrix. We further

define the matrix

Σ̃t,h =
t−1

∑
τ=1

η−2τφτ,hφ
>
τ,h + λη−2(t−1) · I (6.4.2)

The matrix Σ̃t,h is connected to the variance of the estimator wt,h, which involves
the squares of the weights {η−2τ}τ≥0. OPT-WLSVI uses both matrices Σt,h and
Σ̃t,h to define a upper confidence bound (UCB) term β(φ>Σ−1

t,h Σ̃t,hΣ−1
t,hφ)

1/2 to
encourage exploration, where β is a scalar.

The algorithm proceeds as follows. At the beginning of episode t, OPT-WLSVI
estimates the weighted least square estimator wt,h for each step h ∈ [H] as given
by Equation (6.4.1). Then, the algorithm updates the Q-value and the value
function estimates as follows:

Qt,h(·, ·) = φ(·, ·)>wt,h + β(φ(·, ·)>Σ−1
t,h Σ̃t,hΣ−1

t,hφ(·, ·))1/2

Vt,h(·) = min{max
a∈A

Qt,h(·, s), H}

The UCB term is used to bound the estimation error of the value function, due
to an insufficient number of samples, with high probability. The clipping of the
value estimate is here to keep Vt,h within the range of plausible values while pre-
serving the optimism as H is an upper bound on the true optimal value function.
Finally the algorithm collects a new trajectory by following the greedy policy πt
with respect to the estimated Q-values.

Computational complexity: At each step h ∈ [H] of an episode t ∈ [K], we
need to compute the inverse of Σt,h to solve the weighted least-squares problem.
A naive implementation requires O(d3) elementary operations, but as Σt,h is
essentially a sum of rank-one matrices, we need only O(d2) using the Sherman-
Morrison update formula. Furthermore, O(d2) operations are needed to com-
pute the exploration bonus (φ>Σ−1

t,h Σ̃t,hΣ−1
t,hφ)

1/2 that can be computed using
only matrix-vector multiplications. Therefore computing Vt,h+1 for all the past
successor states requires O(d2|A|K) (the |A| factor is due to the maximization
over actions). As we need to do this at all steps and for every episode, the overall
computation complexity of our algorithm is O(d2|A|HK2).

6.5 NON-STATIONARY LINEAR BANDITS

Before providing the analysis of OPT-WLSVI, we start by examining the linear
bandit case when the horizon H = 1. Let us first recall the non-stationary linear
bandit model

81

Algorithm 6 Optimistic Weighted Least-Squares Value Iteration (OPT-WLSVI)

1: for episode t = 1, . . . , K do
2: Receive the initial state st,1.
3: /* Run LSVI procedure
4: Vt,H+1(·)← 0
5: for step h = H, . . . , 1 do
6: wt,h ← Σ−1

t,h (∑
k−1
τ=1 η−τφτ,h(rτ,h + Vt,h+1(sτ,h+1)))

7: Qt,h(·, ·)← φ(·, ·)>wt,h + β(φ(·, ·)>Σ−1
t,h Σ̃t,hΣ−1

t,hφ(·, ·))1/2

8: Vt,h(·)← min{maxa∈A Qt,h(·, s), H}
9: end for

10: end for
11: /* Execute greedy policy
12: for step h = 1, . . . , H do
13: Execute at,h = argmaxa∈A Qt,h(st,h, a)
14: receive rt,h and observe st,h+1
15: /* Update matrices
16: Σt+1,h ← Σt,h + η−tφt,hφ

>
t,h + λη−t(1− η) · I

17: Σ̃t+1,h ← Σ̃t,h + η−2tφt,hφ
>
t,h + λη−2t(1− η2) · I

18: end for
19: end for
20: end for

Definition 1 (Non-stationary linear bandit). Let X ⊂ Rd a set of decisions. At
iteration t, the player makes a decision xt from a subset set Xt ⊂ X , then observes the
reward rt satisfying:

rt = x>t θt + zt (6.5.1)

where θt is the unknown regression parameter at iteration t and zt is conditionally σ-
subgaussian noise. We assume further that ‖x‖ ≤ 1, ∀x ∈ X and ‖θt‖ ≤ S, ∀t.

When H = 1 linear MDP reduces to linear bandit if we let X = {φ(s, a), a ∈
A, s ∈ S} and Xt = {φ(st, a), a ∈ A} where st is sampled from a given fixed
distribution over states.

For the bandit setting, forgetting strategies have been proposed such
as sliding-window, weighted regression and restarting in [Cheung et al.,
2019], [Russac et al., 2019] and Zhao et al. [2020] respectively. Randomized
exploration with weighting strategy has also been introduced in Kim and
Tewari [2020]. The aforementioned works provide a regret of Õ(d2/3∆1/2K2/3)
which is optimal as it matches the established lower bound Ω(d2/3∆1/3K2/3)
in [Cheung et al., 2019] up to log(K) factors. Unfortunately, we find tech-
nical gaps in the regret analysis provided by the earliest paper [Cheung

82

et al., 2019], which were then reproduced by the other three papers. Specif-
ically Cheung et al. [2019] attempted, in their Lemma 1, to upper bound the
non-stationarity bias of the reward parameters by controlling the eigenvalues
of matrix M = V−1

t ∑
p
τ=t−W xτx>τ , where Vt = ∑t−1

τ=1 xτx>τ + λ · I is the Gram
matrix and for any integer p ∈ {t−W, . . . , t− 1}. They then needed to prove
that M is positive semi-definite, but their argument has technical errors. We
precise in the appendix the issue in their argument and we provide concrete
counter-examples.

Now, we provide a fix to the original error in the regret analysis of SW-UCB
algorithm in Cheung et al. [2019] (see also Appendix D.2 for the analysis of D-
LINUCB algorithm proposed by Russac et al. [2019]). At time t, SW-UCB selects a
decision as follows:

xt = arg max
x∈Xt

x>θ̂t + β ‖x‖V−1
t

(6.5.2)

where θ̂t = V−1
t ∑t−1

τ=max{1,t−W} xτrτ is the solution of the sliding window least
squares problem

In their Lemma 1, Cheung et al. [2019] attempts to control the non-
stationarity bias ‖θt − θ̄t‖ where θ̄t , V−1

t ∑t−1
τ=max{1,t−W} Aτ A>τ θτ + λθt is

the average of the true regression parameters over the sliding window. We
propose to control |x>(θt − θ̄t)| for any x ∈ X and then use the fact that
‖θt − θ̄t‖ = maxx:‖x‖=1 |x>(θt − θ̄t)|

|x>(θt − θ̄t)|

=

∣∣∣∣∣∣x>V−1
t

t−1

∑
τ=max{1,t−W}

xτx>τ (θτ − θt)

∣∣∣∣∣∣
≤

t−1

∑
τ=max{1,t−W}

∣∣∣x>V−1
t xτ

∣∣∣ · |x>τ (θτ − θt)| (triangle inequality)

=
t−1

∑
τ=max{1,t−W}

|x>V−1
t xτ| · |x>τ (

t−1

∑
s=τ

(θs − θs+1))|

≤
t−1

∑
τ=max{1,t−W}

|x>V−1
t xτ| · ‖xτ‖ · ‖

t−1

∑
s=τ

(θs − θs+1)‖ (Cauchy-Schwarz)

≤
t−1

∑
τ=max{1,t−W}

|x>V−1
t xτ| ·

t−1

∑
s=τ

‖θs − θs+1‖ (‖xτ‖ ≤ 1)

83

≤
t−1

∑
s=max{1,t−W}

s

∑
τ=max{1,t−W}

|x>V−1
t xτ| · ‖θs − θs+1‖

(∑t−1
τ=max{1,t−W} ∑t−1

s=τ = ∑t−1
s=max{1,t−W} ∑s

τ=max{1,t−W})

≤
t−1

∑
s=max{1,t−W}

√√√√[s

∑
τ=max{1,t−W}

x>V−1
t x

]
·
[s

∑
τ=max{1,t−W}

x>τ V−1
t xτ

]
· ‖θs − θs+1‖

(Cauchy-Schwarz)

≤
t−1

∑
s=max{1,t−W}

√√√√[s

∑
τ=max{1,t−W}

x>V−1
t x

]
· d · ‖θs − θs+1‖ ((?))

≤ ‖x‖
√

d
t−1

∑
s=max{1,t−W}

√
∑t−1

τ=max{1,t−W} 1

λ
· ‖θs − θs+1‖ (λmax(V−1

t) ≤ 1
λ)

≤ ‖x‖
√

dW
λ

t−1

∑
s=max{1,t−W}

‖θs − θs+1‖

where the inequality (?) follows from the fact that ∑s
τ=max{1,t−W} x>τ V−1

t xτ ≤
d that can be proved as follows. We have ∑t−1

τ=max{1,t−W} x>τ V−1
t xτ =

∑t−1
τ=max{1,t−W} tr

(
x>τ V−1

t xτ

)
= tr

(
V−1

t ∑t−1
τ=max{1,t−W} xτx>τ

)
. Given the

eigenvalue decomposition ∑t−1
τ=max{1,t−W} xτxτ = diag(λ1, . . . , λd)

>, we have

Vt = diag(λ1 + λ, . . . , λd + λ)>, and tr
(

V−1
t ∑t−1

τ=1 xτx>τ
)
= ∑d

i=1
λj

λj+λ ≤ d.

Comparing to the bound on ‖θ̄t − θt‖ in the Lemma 1 of Cheung et al.

[2019], there is an extra factor
√

dW
λ that multiplies the local non-stationarity

term ∑t−1
s=t−W ‖θs − θs+1‖. This extra factor will consequently multiply the vari-

ation budget term in the final regret, as stated in the following proposition:

Proposition 5. Under the assumption that ∑K−1
t=1 ‖θt − θt+1‖ ≤ ∆, for any δ ∈ (0, 1),

if we set β =
√

λS + σ
√

2 log(K/δ) + d log(1 + W
λd) in the algorithm 1 SW-UCB

of Cheung et al. [2019], then with probability 1− δ, the dynamic regret of SW-UCB is
at most

O
(√

dW
λ

∆W + β
√

dK
√
dK/We

√
log(1 +

W
dλ

)

)

Comparing to the regret upper bound in Theorem 3 of Cheung et al. [2019],
our fix leads to an extra factor

√
dW multiplying the variation budget in , which

becomes now Õ(d1/2∆W3/2 + dKW−1/2). Optimizing over the sliding window

84

size W leads to a final dynamic regret of Õ(d7/8∆1/4K3/4). Note that the latter
is not optimal since it does not match the lower bound Ω(d2/3∆1/3K2/3). This
leaves the question of whether or not forgetting strategies are optimal to handle
non-stationarity in linear bandits as an open research problem.

6.6 THEORETICAL GUARANTEE OF OPT-WLSVI
In this section, we present our main theoretical result which is an upper

bound on the dynamic regret of OPT-WLSVI (see Algorithm 6). First, we quan-
tify the variations on reward function and transition kernel over time in terms
of their respective variation budgets ∆r and ∆P. The main advantage of using
the variation budget is that it accounts for both slowly-varying and abruptly-
changing MDPs.

Definition 2 (MDP Variation budget). We define ∆ = ∆r + ∆P where

∆r ,
K

∑
t=1

H

∑
h=1
‖θt,h − θt+1,h‖ ,

∆P ,
K

∑
t=1

H

∑
h=1
‖µt,h(S)−µt+1,h(S)‖ .

A similar notion has already been proposed in the literature, for instance
total variance distance between Pt,h and Pt+1,h in tabular MDPs [Ortner et al.,
2019, Cheung et al., 2020] or Wasserstein distance in smooth MDPs [Domingues
et al., 2020a].

Now we present our bound on the dynamic regret for OPT-WLSVI.

Theorem 4 (Regret Bound). Under Assumption 6, there exists an absolute constant
c > 0 such that, for any fixed δ ∈ (0, 1), if we set λ = 1 and β = c · dH

√
ı in

Algorithm 6 with ı , log
(

2dH
δ(1−η)

)
, then with probability 1− δ, for any W > 0 the

dynamic regret of OPT-WLSVI is at most

O
(

cd3/2H
√

Kı

√
2K log(1/η) + 2 log

(
1 +

1
dλ(1− η)

)
+

H3/2
√

Kı +

√
d

λ(1− η)
HW∆ +

H2K
√

d
λ

ηW

1− η︸ ︷︷ ︸
non-stationarity bias

)
, (6.6.1)

where O(·) hides only absolute constants.

85

Linear Stationary Non-stationary

Bandits Õ(dK1/2)
[Abbasi-Yadkori et al., 2011]

Õ(d7/8∆1/4K3/4)
Cheung et al. [2019]

Russac et al. [2019] and our work

MDPs Õ(d3/2H2K1/2) [Jin et al., 2020b]
Õ(dH2K1/2) [Zanette et al., 2020b]

Õ(d5/4H2∆1/4K3/4)
Our work

Table 6.1: Comparison of our regret bound with state-of-the-art bounds for both linear bandits
and linear MDPs. d is the dimension of the features space, H is the planning horizon of the
MDP, K is the number of episodes and ∆ is the variation budget. When we go from a bandit
setting to MDPs, the work of Jin et al. [2020b] in the stationary case and our work in the non-
stationary case incur an extra d1/2 factor and d3/8 respectively. Zanette et al. [2020b] achieve a
linear dependence on d in the stationary case but their proposed algorithm is computationally
intractable.

The last two terms of the of Equation (6.6.1) are the result of the bias due to
the non-stationarity of the MDP. In theorem 4 we introduce the parameter W that
can be interpreted, at a high level, as the effective temporal window equivalent
to a particular choice of discount factor η: the bias resulting from transitions that
are within the window W may be bounded in term of W while the remaining
ones are bounded globally by the last term of Equation (6.6.1).

The following corollary shows that by optimizing the parameters W and η,
our algorithm achieves a sublinear regret.

Corollary 1. If we set log(1/η) =
(

∆
dK

)1/2
and W =

log(K/(1−η))
log(1/η)

; under the same
assumptions as in Theorem 4, for any δ ∈ (0, 1), we have that with probability 1− δ,
the dynamic regret of OPT-WLSVI is at most Õ(d5/4H2∆1/4K3/4) where Õ(·) hides
logarithmic factors.

In Corollary 1, we rely on the knowledge of the variation budget ∆ (or at
least an upper bound on ∆) in order to achieve a sublinear regret. We show in
the next section how to relax the requirement of knowing the variation budget.
In particular, we will describe how to extend our algorithm, using the Bandit-
over-Reinforcement-Learning framework [Cheung et al., 2020] in order to deal
with an unknown variation budget.

6.6.1 Unknown variation budget

Our algorithm OPT-WLSVI needs the variation budget ∆ to set the optimal

value of the forgetting parameter as log(1/η?) =
(

∆
dK

)1/2
. We can use the

Bandit-over-Reinforcement-Learning framework (BoRL) [Cheung et al., 2020] to
tune the forgetting parameter online.

86

The idea is to run a multi-armed bandit algorithm over a set of sub-algorithm
each using a different parameter. In our case, each sub-algorithm is a OPT-WLSVI

with a different guess on η?. If ∆ ≥
√

K the regret bound is vacuous (linear
regret), we are only interested in problems with ∆ in the range [1,

√
K]. This

implies that the set of log(1/η) only needs to span the range [1√
dK

, 1√
d
].

We divide the horizon K into K
M equal-length intervals each of length M,

specified later. In each interval, sub-algorithm i restarts a OPT-WLSVI with
log(1/ηi) = 2i√

dK
. We have in total I = blog2(

√
K)c + 1 possible value of

log(1/η) in the form of 2i√
dK

that spans [1√
dK

, 1√
d
]. We can verify that there

exists i? ∈ [A] such that log(1/ηi?) ≤ log(1/η?) ≤ 2 log(1/ηi?), which well-
approximates the optimal parameter up to constant factors.

On top of these sub-algorithms, we run the EXP3.P [Auer et al., 2002]. The
arms are the sub-algorithms. There are I arms and the reward for each arm or
sub-algorithm i in interval m ∈ [K

M] is the total of reward collected in the MDP
during this interval. EXP3.P is called for K

M rounds to select the arm.

Regret Analysis of OPT-WLSVI + BORL: Let im the arm selected by EXP3.P for
the interval m ∈ [K

M] and πi is the algorithm followed by a sub-algorithm i. The
regret of the overall algorithm can be decomposed as the regret of the algorithm
i? that optimally tunes the parameter plus the loss due to learning i? with the
EXP3.P algorithm:

REGRET(K) =

(
K

∑
t=1

V?
t,1(s

1
t)−Vπi?

t
t,1 (s1

t)

)

+

 K
M

∑
m=1

mM

∑
t=(m−1)M+1

Vπi?
t

t,1 (s1
t)−Vπim

t
t,1 (s1

t)

The fist term corresponds to OPT-WLSVI with parameter ηi? . Therefore, we

can bound this term using Theorem 6.2. As ηi? differs from η? up to constant
factor, we obtain the bound in Corollary 6.3 i.e Õ(d5/4H2∆1/4K3/4).

The second term corresponds to the regret of the EXP3.P learner against the
sub-algorithm i?. There are I arms, EXP3.P is called for K

M rounds and the re-
wards collected during each interval is upperbounded by MH. Therefore, by
a classical regret bound of EXP3.P [Auer et al., 2002], the second term is upper-
bounded with high probability by:

Õ(MH

√
I

K
M

) = Õ(H
√

MK)

87

We obtain that REGRET(K) = Õ(d5/4H2∆1/4K3/4 + H
√

MK) and by choosing
M =

√
K, we conclude that REGRET(K) = Õ(d5/4H2∆1/4K3/4). Note that we

obtain the same regret bound when the variation budget is known.

6.7 TECHNICAL HIGHLIGHTS

In this section, we give an overview of some key ideas leading to the regret
bound in Theorem 4. Inspired by the analysis of weighting approach in ban-
dit [Russac et al., 2019], one can attempt to interpret the algorithm as acting
optimistically with respect to the weighted parameters of the optimal Q-value
defined as w̄t,h(s, a) = Σ−1

t,h (∑
t−1
τ=1 η−τφτ,hφ

>
τ,hw?

τ,h + λη−(t−1)w?
t,h), where w?

t,h
are the true parameters of the optimal Q-value. This first attempt was unsuc-
cessful. Then, we came up with the implicitly defined weighted MDP and we
were able to interpret our algorithm as acting optimistically with respect to this
weighted MDP. We provide the full proofs and derivations in the appendix. We
first translate the parameter update produced by the algorithm into the follow-
ing compact update of Q-value estimates for any t ∈ [K] and h ∈ {H, . . . 1}:

Qt,h = r̂t,h + P̂t,hVt,h+1 + Bt,h (6.7.1)

where we define the implicitly empirical reward function r̂ and transition mea-
sure P̂ as follows:

r̂t,h(s, a) , φ(s, a)>Σ−1
t,h (

t−1

∑
τ=1

η−τφτ,hrτ,h),

P̂t,h(· | s, a) , φ(s, a)>Σ−1
t,h (

t−1

∑
τ=1

η−τφτ,hδ(·, sτ,h+1)),

and Bt,h(·, ·) = β(φ(·, ·)>Σ−1
t,h Σ̃t,hΣ−1

t,hφ(·, ·))1/2 = β ‖φ(·, ·)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
is the ex-

ploration bonus.
We can interpret the Equation (6.7.1) as an approximation of the backward

induction in a weighted average MDP defined formally as follows.

Definition 3 (Weighted Average MDP). let for any (s, a) ∈ S ×A,

r̄t,h(s, a) , φ(s, a)>Σ−1
t,h (

t−1

∑
τ=1

η−τφτ,hφ
>
τ,hθτ,h + λη−(t−1)θt,h),

P̄t,h(· | s, a) , φ(s, a)>Σ−1
t,h (

t−1

∑
τ=1

η−τφτ,hφ
>
τ,hµτ,h(·) + λη−(t−1)µt,h(·)).

(S ,A, P̄, r̄) is called the weighted average MDP.

88

We can see that if we ignore the regularization term (we set λ to zero), r̂t,h
coincides with r̄t,h and P̂t,h is an unbiased estimate of P̄t,h. Therefore, in contrast
with the stationary case, we are tracking the Q-value of the weighted average
MDP instead of the true MDP at time t. The next Lemma quantifies the bias
arising from the time variations of the environment.

Lemma 9 (Non-stationarity bias). For any W ∈ [t− 1] and for any bounded function
f : S → R such as ‖ f ‖∞ ≤ H, we have:

|rt,h(s, a)− r̄t,h(s, a)| ≤ biasr(t, h),
∣∣∣[(Pt,h − P̄t,h) f](s, a)

∣∣∣ ≤ HbiasP(t, h),

where

biasr(t, h) =

√
d

λ(1− η)

t−1

∑
s=t−W

‖θs,h − θs+1,h‖+
2
√

dηW

λ(1− η)
,

biasP(t, h) =

√
d

λ(1− η)

t−1

∑
s=t−W

‖µs,h(S)−µs+1,h(S)‖+
2
√

dηW

λ(1− η)
.

We analyse now the one-step error decomposition of the difference between
the estimates Qt,h and Qπ

t,h of a given policy π. To do that, we use the weighted
MDP (S ,A, P̄, r̄) to isolate the bias term. The decomposition contains four parts:
the reward bias and variance, the transition bias and variance, and the difference
in value functions at step h + 1. It can be written as:

φ(s, a)>wt,h −Qπ
t,h(s, a) = (r̄t,h − rt,h)(s, a)︸ ︷︷ ︸

reward bias

+ (r̂t,h − r̄t,h)(s, a)︸ ︷︷ ︸
reward variance

+

[(P̄t,h − Pt,h)Vπ
t,h+1](s, a)︸ ︷︷ ︸

transition bias

+ [(P̂t,h − P̄t,h)Vt,h](s, a)︸ ︷︷ ︸
transition variance

+ [P̄t,h(Vt,h+1 −Vπ
t,h+1)](s, a)︸ ︷︷ ︸

difference in value functions of next step

.

This differs from the error decomposition in the analysis of LSVI-UCB in several
aspects: firstly, the variance terms are with respect the newly defined weighted
MDP and not the true MPD. Secondly, we have additional reward and transition
bias terms. Finally, the difference in the difference in value-functions at step
h + 1 hides also another bias term. Therefore, we need to carefully propagate
bias terms through iteration.

The reward and transition bias terms are controlled by Lemma 9 using the
fact that ‖Vπ

t,h‖∞ ≤ H. The difference in value-functions at step h + 1 can be
rewritten as [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a) + [(P̄t,h − Pt,h)(Vt,h+1 −Vπ
t,h+1)](s, a). We

control the second term by applying again Lemma 9 since ‖Vt,h+1 −Vπ
t,h+1‖∞ ≤

H.
It remains now the two variance terms. The reward variance is easy to con-

trol and it reduces simply to the bias due to the regularization as we assume

89

that r is a deterministic function. Note that the assumption of deterministic re-
ward is not a limiting assumption since the contribution of a stochastic reward
in the final regret has lower order term than the contribution of a stochastic tran-
sition. Controlling the transition variance is more involved. Basically, we would
like use the concentration of weighted self-normalized processes [Russac et al.,
2019] to get a high probability bound. However, as Vt,h+1 is estimated from past
transitions and thus depends on the latter in a non-trivial way, we show a con-
centration bound that holds uniformly for all possible value functions generated
by the algorithm. This done by using a union bound argument over an ε-net of
the set of possible value functions with an appropriate value of ε.

Lemma 10. For any δ ∈ (0, 1), with probability at least 1 − δ/2, we have for all
(t, h) ∈ [K]× [H],∥∥∥∥∥ t−1

∑
τ=1

η−τφτ,hετ,h

∥∥∥∥∥
Σ̃−1

t,h

≤ CdH

√
log
(

dHβ

λ(1− η)
· 2

δ

)

where C > 0 is an absolute constant.

Let bias , biasr + biasP the total non-stationarity bias of the MDP. By de-
riving an appropriate value of β (see Lemma 20) and an induction arguments,
we establish the optimism of our value estimates.

Lemma 11 (Optimism). There exists an absolute value c such that β = cdH
√

ı where
ı = log

(
2dH

(1−η)δ

)
, λ = 1 and for all (s, a, t, h) ∈ S × A × [K]× [H], we have with

probability at least 1− δ/2

Qt,h(s, a) + 2H
H

∑
h′=h

bias(t, h) ≥ Q?
t,h(s, a) (6.7.2)

6.8 RELATED WORK

RL with linear function approximation: Provable algorithms with linear
function approximation have seen a growing research interest in the recent liter-
ature. Under the assumption of stationary linear MDP, Jin et al. [2020b] propose
an optimistic version of LSVI (LSVI-UCB) that achieves a regret of Õ(d3/2H2K1/2)
where the exploration is induced by adding a UCB bonus to the estimate of the
action-value function. Whereas Zanette et al. [2020a] introduce a randomized
version of LVSI that achieves Õ(d2H2K1/2) regret where the exploration is in-
duced by perturbing the estimate of the action-value function. Lately, Zanette
et al. [2020b] consider a more general assumption, zero inherent Bellman error,

90

which states that the space of linear functions is close with respect to the Bell-
man operator (Note that linear MDPs have zero inherent Bellman error). Instead
of adding UCB bonuses for every experienced states at each step h ∈ [H], they
propose to solve a global planning optimization program that returns an opti-
mistic solution at the initial state, achieving Õ(dH2K1/2) regret. Yang and Wang
[2019] study a slightly different assumption where the transition kernel admits
a three-factor low-rank factorization P(· | ·) = φ(·)>M?ψ(·). They propose a
model-based algorithm that tries to learn the core matrix M? and they show that
it achieves Õ(dH2K1/2) regret.

Linear function approximations have also been studied in adversarial set-
tings, where the reward function is allowed to change between episodes in
an adversarial manner but the transition kernel stays the same. In the full-
information setting, Cai et al. [2019] propose an optimistic policy optimization
algorithm that achieves Õ(dH2K1/2) providing that the transition kernel has a
linear structure Ph(s′ | s, a) = ψ(s, a, s′)>θh. In the bandit feedback setting, Neu
and Olkhovskaya [2020] propose a new algorithm based on adversarial linear
bandit that achieves Õ((d|A|)1/3H2K2/3) regret under the assumption that all
action-value functions can be represented as linear functions.

Concurrently to our work, Zhou et al. [2020] also study non-stationary lin-
ear MDPs. They establish a lower bound of Ω(d2/3H2∆1/3K2/3) and they pro-
pose a restart strategy that achieves the same dynamic regret as in our Corol-
lary 1. Their algorithm consists in restarting periodically LSVI-UCB, and is thus
markedly different from our approach. By throwing away historical data from
time to time such a restart strategy would be best suited for abrupt changes in
the environment, whereas our approach, by smoothly forgetting the past, would
be more beneficial for gradually changing environments. Empirical comparison
of both strategies in the bandit setting [Zhao et al., 2020] confirm this.

Non-stationary RL: Provably efficient algorithms for non-stationary RL in
the tabular case have been introduced in several recent works. While Gajane
et al. [2018] and Cheung et al. [2020] use a sliding-window approach, Ortner
et al. [2019] implement a restart strategy where at each restart, past observa-
tions are discarded and new estimators for the reward and the transition ker-
nel are built from scratch. Very recently, Domingues et al. [2020a] tackle non-
stationary RL in continuous environments, where rewards and transition ker-
nel are assumed to be Lipschitz with respect to some similarity metric over the
state-action space. They propose a kernel-based algorithm with regret guarantee
using time and space dependant smoothing kernels.

91

6.9 CONCLUSION

In this paper, we studied the problem of RL with linear function approxi-
mation in a changing environment where the reward and the transition kernel
can change from time to time as long as the total changes are bounded by some
variation budget. We introduced a provably efficient algorithm in this setting.
The algorithm uses a discount factor to reduce the influence of the past and es-
timates the Q-value’s parameters through weighted LSVI. We revisited as well
the linear bandit setting. We pointed out a serious technical problem in the anal-
ysis of all forgetting strategies. Then, we provide a new regret analysis of these
algorithms.

Limitations: In order to obtain theoretical guarantees, we need to make some
assumptions such as Linear MDPs. Assumptions weaker than linear MDP either
result in computationally inefficient algorithms (as in Zanette et al. [2020b]) or
require the transition to be deterministic [Du et al., 2020]. Furthermore, our
Õ(T3/4) regrets for both bandits and MDPs don’t match the Ω(T2/3) lower
bounds for these problems. Forgetting strategies have been mistakenly believed
optimal in linear bandits. In contrast, our work shows that the latter is not true
and leaves the question of minimax rate open again. It is an interesting direction
to explore in future work.

92

7
Learning One
Representation to Optimize
All Rewards

7.1 PROLOGUE TO THE CONTRIBUTION

7.1.1 Article Details

This chapter is based on the article «Learning One Representation to Optimize
All Rewards» [Touati and Ollivier, 2021], joint work with Yann Ollivier. This pa-
per was presented as long oral in the self-supervision for reinforcement learning
workshop at ICLR 2021. It was also accepted at NeurIPS 2021. I am the first
author. Yann Ollivier was at the origin of the idea of the project and had already
developed a large part of the theory. I was in charge of implementing the new al-
gorithm and performing the experiments. I also contributed to further develop
the theoretical analysis.

7.1.2 Context

We have focused so far on the classical RL paradigm which aims to maximize
the cumulative reward when the agent has access to the reward signal. Despite
being able to capture many AI applications, this reward-driven framework leads
to a task-specific agent that is only able to solve the task at hand and needs to
be trained from the scratch to adapt to new tasks. It is obvious here that we
overlook a lot of information about the environment that could be leveraged
across tasks. In this project, we are motivated by the following research problem:

Imagine you have a fixed environment where you can perform actions but you receive
no reward information. Your mission is to build a summary of the environment using
these reward-free interactions, such that as soon as I describe a reward function, you

immediately know what to do to maximize your reward.

This is a step towards building controllable agents able to follow instructions.

7.1.3 Paper Abstract

We introduce the forward-backward (FB) representation of the dynamics of a
reward-free Markov decision process. It provides explicit near-optimal policies
for any reward specified a posteriori. During an unsupervised phase, we use

93

reward-free interactions with the environment to learn two representations via
off-the-shelf deep learning methods and temporal difference (TD) learning. In
the test phase, a reward representation is estimated either from reward observa-
tions or an explicit reward description (e.g., a target state). The optimal policy
for that reward is directly obtained from these representations, with no plan-
ning. We assume access to an exploration scheme or replay buffer for the first
phase.

The unsupervised FB loss is well-principled: if training is perfect, the policies
obtained are provably optimal for any reward function. With imperfect training,
the sub-optimality is proportional to the unsupervised approximation error. The
FB representation learns long-range relationships between states and actions, via
a predictive occupancy map, without having to synthesize states as in model-
based approaches.

Our approach compares well to goal-oriented RL algorithms on discrete and
continuous mazes, pixel-based MsPacman, and the FetchReach virtual robot
arm. We also illustrate how the agent can immediately adapt to new tasks be-
yond goal-oriented RL.

Our Code is available at: https://github.com/ahmed-touati/
controllable_agent.

7.2 INTRODUCTION

We consider one kind of unsupervised reinforcement learning problem:
Given a Markov decision process (MDP) but no reward information, is it pos-
sible to learn and store a compact object that, for any reward function specified
later, provides the optimal policy for that reward, with a minimal amount of
additional computation? In a sense, such an object would encode in a compact
form the solutions of all possible planning problems in the environment. This
is a step towards building agents that are fully controllable after first exploring
their environment in an unsupervised way.

Goal-oriented RL methods [Andrychowicz et al., 2017, Plappert et al., 2018]
compute policies for a series of rewards specified in advance (such as reaching
a set of target states), but cannot adapt in real time to new rewards, such as
weighted combinations of target states or dense rewards.

Learning a model of the world is another possibility, but it still requires ex-
plicit planning for each new reward; moreover, synthesizing accurate trajecto-
ries of states over long time ranges has proven difficult [Talvitie, 2017, Ke et al.,
2018].

Instead, we exhibit an object that is both simpler to learn than a model of
the world, and contains the information to recover near-optimal policies for any
reward provided a posteriori, without a planning phase.

94

https://github.com/ahmed-touati/controllable_agent
https://github.com/ahmed-touati/controllable_agent

Borsa et al. [2018] learn optimal policies for all rewards that are linear combi-
nations of a finite number of feature functions provided in advance by the user.
This limits applications: e.g., goal-oriented tasks would require one feature per
goal state, thus using infinitely many features in continuous spaces. We reuse
a policy parameterization from Borsa et al. [2018], but introduce a novel repre-
sentation with better properties, based on state occupancy prediction instead of
expected featurizations. We use theoretical advances on successor state learning
from Blier et al. [2021]. We obtain the following.

• We prove the existence of a learnable “summary” of a reward-free discrete
or continuous MDP, that provides an explicit formula for optimal policies
for any reward specified later. This takes the form of a pair of represen-
tations F : S × A × Z → Z and B : S × A → Z from state-actions into a
representation space Z ' Rd, with policies πz(s) , argmaxa F(s, a, z)>z.
Once a reward is specified, a value of z is computed from reward values
and B; then πz is used. Rewards may be specified either explicitly as a
function, or as target states, or by samples as in usual RL setups.

• We provide a well-principled unsupervised loss for F and B. If FB training
is perfect, then the policies are provably optimal for all rewards (Theo-
rem 1). With imperfect training, sub-optimality is proportional to the FB
training error (Theorems 5–6). In finite spaces, perfect training is possible
with large enough dimension d (Proposition 6).

Explicitly, F and B are trained so that F(s, a, z)>B(s′, a′) approximates the
long-term probability to reach s′ from s if following πz. This is akin to a
model of the environment, without synthesizing state trajectories.

• We provide a TD-like algorithm to train F and B for this unsupervised loss,
with function approximation, adapted from recent methods for successor
states [Blier et al., 2021]. No sparse rewards are used: every transition
reaches some state s′, so every step is exploited. As usual with TD, learning
seeks a fixed point but the loss itself is not observable.

• We prove viability of the method on several environments from mazes to
pixel-based MsPacman and a virtual robotic arm. For single-state rewards
(learning to reach arbitrary states), we provide quantitative comparisons
with goal-oriented methods such as HER. (Our method is not a substitute
for HER: in principle they could be combined, with HER improving replay
buffer management for our method.) For more general rewards, which
cannot be tackled a posteriori by trained goal-oriented models, we provide
qualitative examples.

• We also illustrate qualitatively the sub-optimalities (long-range behavior

95

is preserved but local blurring of rewards occurs) and the representations
learned.

7.3 PROBLEM AND NOTATION

LetM = (S, A, P, γ) be a reward-free Markov decision process.
For any policy π : : S → Prob(A) and state-action (s0, a0), define the succes-

sor measure Mπ(s0, a0, ·) as the measure over S × A representing the expected
discounted time spent in each set X ⊂ S× A:

Mπ(s0, a0, X) , ∑
t≥0

γt Pr ((st, at) ∈ X | s0, a0, π) (7.3.1)

for each X ⊂ S × A. Viewing M as a measure deals with both discrete and
continuous spaces.

We consider the following informal problem: Given a reward-free MDP
(S, A, P, γ), can we compute a convenient learnable object E such that, once a
reward function r : S × A → R is specified, we can easily (with no planning)
compute, from E and r, a policy π whose performance is close to maximal?

7.4 ENCODING ALL OPTIMAL POLICIES VIA THE

FORWARD-BACKWARD REPRESENTATION

We first present forward-backward (FB) representations of a reward-free
MDP as a way to summarize all optimal policies via explicit formulas. The re-
sulting learning procedure is described in Section 7.5.

Core idea. The main algebraic idea is as follows. Assume, at first,
that S is finite. For a fixed policy, the Q-function depends lineary
on the reward: namely, Qπ

r (s, a) = ∑s′,a′ Mπ(s, a, s′, a′)r(s′, a′) where
Mπ(s, a, s′, a′) = ∑t≥0 γt Pr ((st, at) = (s′, a′)|s, a, π). This rewrites as Qπ

r = Mπr
viewing everything as vectors and matrices indexed by state-actions.

Now let (πz)z∈Rd be any family of policies parameterized by z. Assume that
for each z, we can find d × (S × A)-matrices Fz and B such that Mπz = F>z B.
Then Qπz

r = F>z Br. Specializing to zR , Br, the Q-function of policy πzR on
reward r is Q

πzR
r = F>zR

zR. So far πz was unspecified; but if we define πz(s) ,
argmaxa(F>z z)sa at each state s, then by definition, πzR is the greedy policy with
respect to F>zR

zR. At the same time, F>zR
zR is the Q-function of πzR for reward r:

96

thus, πzR is the greedy policy of its own Q-function, and is therefore optimal for
reward r.

Thus, if we manage to find F, B, and πz such that πz = argmax F>z z and
F>z B = Mπz for all z ∈ Rd, then we obtain the optimal policy for any reward r,
just by computing Br and applying policy πBr.

This criterion on (F, B, πz) is entirely unsupervised. Since F and B depend
on πz but πz is defined via F, this is a fixed point equation. An exact solution
exists for d large enough (Appendix, Prop. 6), while a smaller d provides lower-
rank approximations Mπz ≈ F>z B. In Section 7.5 we present a well-grounded
algorithm to learn such F, B, and πz.

In short, we learn two representations F and B such that F(s0, a0, z)>B(s′, a′) is
approximately the long-term probability Mπz(s0, a0, s′, a′) to reach (s′, a′) if start-
ing at (s0, a0) and following policy πz. Then all optimal policies can be computed
from F and B. We think of F as a representation of the future of a state, and B as
the ways to reach a state (Appendix 7.8.4): if F>B is large, then the second state
is reachable from the first. This is akin to a model of the environment, without
synthesizing state trajectories.

General statement. In continuous spaces with function approximation, Fz and
B become functions S× A → Rd instead of matrices; since Fz depends on z, F
itself is a function S× A×Rd → Rd. The sums over states will be replaced with
expectations under the data distribution ρ.

Definition 4 (Forward-backward representation). Let Z = Rd be a representation
space, and let ρ be a measure on S × A. A pair of functions F : S × A × Z → Z
and B : S × A → Z, together with a parametric family of policies (πz)z∈Z, is called
a forward-backward representation of the MDP with respect to ρ, if the following
conditions hold for any z ∈ Z and (s, a), (s0, a0) ∈ S× A:

πz(s) = argmax
a

F(s, a, z)>z, Mπz(s0, a0, ds, da) = F(s0, a0, z)>B(s, a)ρ(ds, da)

(7.4.1)

where Mπ is the successor measure defined in (7.3.1), and the last equality is between
measures.

Theorem 1 (FB representations encode all optimal policies). Let (F, B, (πz)) be a
forward-backward representation of a reward-free MDP with respect to some measure ρ.

Then, for any bounded reward function r : S× A→ R, the following holds. Set

zR ,
∫

s,a
r(s, a)B(s, a) ρ(ds, da). (7.4.2)

assuming the integral exists. Then πzR is an optimal policy for reward r in the MDP.
Moreover, the optimal Q-function Q? for reward r is Q?(s, a) = F(s, a, zR)

>zR.

97

For instance, for a single reward located at state-action (s, a), the optimal
policy is πzR with zR = B(s, a). (In that case the factor ρ(ds, da) does not matter
because scaling the reward does not change the optimal policy.)

We present in Section 7.5 an algorithm to learn FB representations. The mea-
sure ρ will be the distribution of state-actions visited in a training set or under
an exploration policy: then zR = E(s,a)∼ρ[r(s, a)B(s, a)] can be obtained by sam-
pling from visited states.

In finite spaces, exact FB representations exist, provided the dimension
d is larger than #S × #A (Appendix, Prop. 6). In infinite spaces, arbitrar-
ily good approximations can be obtained by increasing d, corresponding to a
rank-d approximation of the cumulated transition probabilities Mπ. Impor-
tantly, the optimality guarantee extends to approximate F and B, with opti-
mality gap proportional to F>B − Mπz /ρ (Appendix, Theorems 5–6 with var-
ious norms on F>B − Mπ/ρ). For instance, if, for some reward r, the er-
ror

∣∣F(s0, a0, zR)
>B(s, a)−MπzR (s0, a0, ds, da)/ρ(ds, da)

∣∣ is at most ε on average
over (s, a) ∼ ρ for every (s0, a0), then πzR is 3ε ‖r‖∞ /(1− γ)-optimal for r.

These results justify using some norm over
∣∣F>B−Mπz /ρ

∣∣, averaged over
z ∈ Rd, as a training loss for unsupervised reinforcement learning. (Below, we
average over z ∈ Rd from a fixed rescaled Gaussian. If prior information is
available on the rewards r, the corresponding distribution of zR may be used
instead.)

If B is fixed in advance and only F is learned, the method has similar proper-
ties to successor features based on B (Appendix 7.8.4). But one may set a large d
and let B be learned: arguably, by Theorem 1, the resulting features “linearize”
optimal policies as much as possible. The features learned in F and B may have
broader interest.

7.5 LEARNING AND USING FORWARD-BACKWARD

REPRESENTATIONS

Our algorithm starts with an unsupervised learning phase, where we learn the
representations F and B in a reward-free way, by observing state transitions in
the environment, generated from any exploration scheme. Then, in a reward
estimation phase, we estimate a policy parameter zR = E[r(s, a)B(s, a)] from some
reward observations, or directly set zR if the reward is known (e.g., set zR =
B(s, a) to reach a known target (s, a)). In the exploitation phase, we directly use
the policy πzR(s) = argmaxa F(s, a, zR)

>zR.

The unsupervised learning phase. No rewards are used in this phase, and no
family of tasks has to be specified manually. F and B are trained off-policy from

98

observed transitions in the environment, to approximate the successor density:
F>(s0, a0, z)B(s′, a′) ≈ mπz(s0, a0, s′, a′) for every z. Training is based on the Bell-
man equation for the successor measure Mπ,

Mπ(s0, a0, {(s′, a′)}) = 1s0=s′, a0=a′ + γEs1∼P(ds1|s0,a0)Mπ(s1, π(s1), {(s′, a′)}).
(7.5.1)

We leverage a well-principled algorithm from Blier et al. [2021] in the single-
policy setting: it learns the successor density mπ of a policy π without using the
sparse reward 1s0=s′, a0=a′ (which would vanish in continuous spaces). This al-
gorithm uses a parametric model mπ

θ (s0, a0, s′, a′). Given an observed transition
(s0, a0, s1) from the training set, generate an action a1 ∼ π(a1|s1), and sample
another state-action (s′, a′) from the training set, independently from (s0, a0, s1).
Then update the parameter θ by θ ← θ + ηδθ with learning rate η and

δθ , ∂θmπ
θ (s0, a0, s0, a0)+ ∂θmπ

θ (s0, a0, s′, a′) ×
(
γ mπ

θ (s1, a1, s′, a′)−mπ
θ (s0, a0, s′, a′)

)
(7.5.2)

This computes the density mπ of Mπ with respect to the distribution ρ of state-
actions in the training set. Namely, the true successor state density mπ is a fixed
point of (7.5.2) in expectation Blier et al. [2021]. Variants exist, such as using a
target network for mπ

θ (s1, a1, s′, a′) on the right-hand side, as in DQN.
Thus, we first choose a parametric model Fθ, Bθ for the representations F and

B, and set mπz
θ (s0, a0, s′, a′) , Fθ(s0, a0, z)>Bθ(s′, a′). Then we iterate the update

(7.5.2) over many state-actions and values of z. This results in Algorithm 7. At
each step, a value of z is picked at random, together with a batch of transitions
(s0, a0, s1) and a batch of state-actions (s′, a′) from the training set, with (s′, a′)
independent from z and (s0, a0, s1).

For sampling z, we use a fixed distribution (rescaled Gaussians, see Ap-
pendix E.2). Any number of values of z may be sampled: this does not use
up training samples. We use a target network with soft updates (Polyak av-
eraging) as in DDPG. For training we also replace the greedy policy πz =
argmaxa F(s, a, z)>z with a regularized version πz = softmax(F(s, a, z)>z/τ) with
fixed temperature τ (Appendix E.2). Since there is unidentifiability between F
and B (Remark 4), we normalize B via an auxiliary loss in Algorithm 7.

For exploration in this phase, we use the policies being learned: the explo-
ration policy chooses a random value of z from some distribution (e.g., Gaus-
sian), and follows πz for some time (Algorithm 7). However, the algorithm can
also work from an existing dataset of off-policy transitions.

The reward estimation phase. Once rewards are available, we estimate a re-
ward representation (policy parameter) zR by weighing the representation B by
the reward:

zR , E[r(s, a)B(s, a)] (7.5.3)

99

where the expectation must be computed over the same distribution ρ of state-
actions (s, a) used to learn F and B (see Section 7.8.5 for using a different dis-
tribution). Thus, if the reward is black-box as in standard RL algorithms, then
the exploration policy has to be run again for some time, and zR is obtained by
averaging r(s, a)B(s, a) over the states visited.

If the reward is known explicitly, this phase is unnecessary. For instance, if
the reward is to reach a target state-action (s0, a0) while avoiding some forbid-
den state-actions (s1, a1), ..., (sk, ak), one may directly set

zR = B(s0, a0)− λ ∑ B(si, ai) (7.5.4)

where the constant λ adjusts the negative reward for visiting a forbidden state.
This can be used for goal-oriented RL.

If the reward is known algebraically as a function r(s, a), then zR may be
computed by averaging the function r(s, a)B(s, a) over a replay buffer from the
unsupervised training phase. We may also use a reward model r̂(s, a) of r(s, a)
trained on some reward observations from any source. An approximate value
for zR still provides an approximately optimal policy (Proposition 7 and Theo-
rem. 7).

The exploitation phase. Once the reward representation zR has been esti-
mated, the Q-function is estimated as

Q(s, a) = F(s, a, zR)
>zR. (7.5.5)

The corresponding policy πzR(s) = argmaxa Q(s, a) is used for exploitation.
Fine-tuning was not needed in our experiments, but it is possible to fine-tune

the Q-function using actual rewards, by setting Q(s, a) = F(s, a, zR)
>zR + qθ(s, a)

where the fine-tuning model qθ is initialized to 0 and learned via any standard
Q-learning method.

Incorporating prior information on rewards in B. Trying to plan in advance
for all possible rewards in an arbitrary environment may be too generic and
problem-agnostic, and become difficult in large environments, requiring long
exploration and a large d to accommodate all rewards. In practice, we are often
interested in rewards depending, not on the full state, but only on a part or some
features of the state (e.g., a few components of the state, such as the position of
an agent, or its neighbordhood, rather than the full environment).

If this is known in advance, the representation B can be trained on that part
of the state only, with the same theoretical guarantees (Appendix, Theorem 2). F
still needs to use the full state as input. This way, the FB model of the transition
probabilities (7.3.1) only has to learn the future probabilities of the part of inter-
est in (s′, a′), based on the full initial state (s0, a0). Explicitly, if φ : S× A → G

100

Algorithm 7 FB algorithm: Unsupervised Phase

1: Inputs: replay buffer D , Polyak coefficient α , ν a probability distribution
over Rd, randomly initialized networks Fθ and Bω, learning rate η, mini-
batch size b, number of episodes E, number of gradient updates N, temper-
ature τ and regularization coefficient λ.

2: for m = 1, . . . do
3: /* Collect E episodes
4: for episode e = 1, . . . E do
5: Sample z ∼ ν
6: Observe an initial state s0
7: for t = 1, . . . do
8: Select an action at according to some behaviour policy (e.g the ε-

greedy with respect to Fθ(st, a, z)>z)
9: Observe next state st+1

10: Store transition (st, at, st+1) in the replay buffer D
11: end for
12: end for
13: /* Perform N stochastic gradient descent updates
14: for n = 1 . . . N do
15: Sample a mini-batch of transitions {(si, ai, si+1)}i∈I ⊂ D of size |I| = b.
16: Sample a mini-batch of target state-action pairs {(s′i, a′i)}i∈I ⊂ D of size

|I| = b.
17: Sample a mini-batch of {zi}i∈I ∼ ν of size |I| = b.
18: Set πzi(· | si+1) = softmax(Fθ−(si+1, ·, zi)

>zi/τ)

19: L (θ, ω) = −1
b ∑i∈I Fθ(si, ai, zi)

>Bω(si, ai)+

1
2b2 ∑i,j∈I2

(
Fθ(si, ai, zi)

>Bω(s′j, a′j)− γ ∑a∈A πzi(a | si+1) · Fθ−(si+1, a, zi)
>Bω−(s′j, a′j)

)2

20: /* Compute orthonormality regularization loss
21: Lreg(ω) = −1

b ∑i∈I Bω(si, ai)
>stop-gradient(Bω(si, ai)) +

1
b2 ∑i,j∈I2 Bω(si, ai)

>stop-gradient(Bω(s′j, a′j)) ·stop-gradient(Bω(si, ai)
>Bω(s′j, a′j))

22: Update θ ← θ − η∇θL (θ, ω) and ω ← ω − η∇ω(L (θ, ω) + λ ·
Lreg(ω))

23: end for
24: /* Update target network parameters
25: θ− ← αθ− + (1− α)θ
26: ω− ← αω− + (1− α)ω
27: end for

is a feature map to some features g = φ(s, a), and if we know that the reward
will be a function R(g), then Theorem 1 still holds with B(g) everywhere instead

101

of B(s, a), and with the successor density mπ(s0, a0, g) instead of mπ(s0, a0, s′, a′)
(Theorem 2). Rewards can be arbitrary functions of g, so this is more general
than Borsa et al. [2018] which only considers rewards linear in g. For instance,
in MsPacman below, we let g be the 2D position (x, y) of the agent, so we can
optimize any reward function that depends on this position.

Limitations. First, this method does not solve exploration: it assumes access to
a good exploration strategy. (Here we used the learned πz with random values
of z, corresponding to random rewards.)

Next, this task-agnostic approach is relevant if the reward is not known in
advance, but may not bring the best performance on a particular reward. Mit-
igation strategies include: increasing d; using prior information on rewards by
including relevant variables into B, as discussed above; and fine-tuning the Q-
function at test time based on the initial F>B estimate.

Indeed, as reward functions are represented by a d-dimensional vector zR =
E[r.B], some information about the reward is necessarily lost. Any reward un-
correlated to B is treated as 0. The necessary dimension d for good behavior
may be large. Still, d ≈ 100 worked in our experiments, and Section 7.8.2 argues
theoretically that d = O(n) is enough for navigation on an n-dimensional grid.

We expect this method to have an implicit bias for long-range behavior
(spatially smooth rewards), while local details of the reward function may
be blurred. Indeed, F>B is optimized to approximate the successor measure
Mπ = ∑t γt(Pπ)t with (Pπ)t the t-step transition kernel for each policy π. The
rank-d approximation will favor large eigenvectors of Pπ, i.e., small eigenvectors
of the Markov chain Laplacian Id−γPπ. These loosely correspond to long-range
(low-frequency) behavior Mahadevan and Maggioni [2007]: presumably, F and
B will learn spatially smooth rewards first. Indeed, experimentally, a small d
leads to spatial blurring of rewards and Q-functions (Fig. 7.3). Arguably, with-
out any prior information this is a reasonable prior; Stachenfeld et al. [2017]
have argued for the cognitive relevance of low-dimensional approximations of
successor representations.

Variance is a potential issue in larger environments, although this did not
arise in our experiments. Learning mπ requires sampling a state-action (s0, a0)
and an independent state-action (s′, a′). In large spaces, most state-action pairs
will be unrelated. A possible mitigation is to use strategies such as Hindsight
Experience Replay Andrychowicz et al. [2017] to select goals related to the cur-
rent state-action. The following may help a lot: the update of F and B decouples
as an expectation over (s0, a0), times an expectation over (s′, a′). Thus, by esti-
mating these expectations by a moving average over a dataset, it is easy to have
many pairs (s0, a0) interact with many (s′, a′). The cost is handling full d × d
matrices. This will be explored in future work.

102

7.6 EXPERIMENTS

We first consider the task of reaching arbitrary goal states. For this, we can
make quantitative comparisons to existing goal-oriented baselines. Next, we
illustrate qualitatively some tasks that cannot be tackled a posteriori by goal-
oriented methods, such as introducing forbidden states. Finally, we illustrate
some of the representations learned.

7.6.1 Environments and Experimental Setup

We run our experiments on a selection of environments that are diverse in
term of state space dimensionality, stochasticity and dynamics.

• Discrete Maze is the classical gridworld with four rooms. States are repre-
sented by one-hot unit vectors.

• Continuous Maze is a two dimensional environment with impassable
walls. States are represented by their Cartesian coordinates (x, y) ∈ [0, 1]2.
The execution of one of the actions moves the agent in the desired direc-
tion, but with normal random noise added to the position of the agent.

• FetchReach is a variant of the simulated robotic arm environment
from Plappert et al. [2018] using discrete actions instead of continuous
actions. States are 10-dimensional vectors consisting of positions and
velocities of robot joints.

• Ms. Pacman is a variant of the Atari 2600 game Ms. Pacman, where an
episode ends when the agent is captured by a monster Rauber et al. [2018].
States are obtained by processing the raw visual input directly from the
screen. Frames are preprocessed by cropping, conversion to grayscale
and downsampling to 84 × 84 pixels. A state st is the concatenation of
(xt−12, xt−8, xt−4, xt) frames, i.e. an 84× 84× 4 tensor. An action repeat of
12 is used. As Ms. Pacman is not originally a multi-goal domain, we define
the goals as the 148 reachable coordinates (x, y) on the screen; these can be
reached only by learning to avoid monsters.

For all environments, we run algorithms for 800 epochs. Each epoch consists of
25 cycles where we interleave between gathering some amount of transitions,
to add to the replay buffer, and performing 40 steps of stochastic gradient de-
scent on the model parameters. To collect transitions, we generate episodes us-
ing some behavior policy. For both mazes, we use a uniform policy while for
FetchReach and Ms. Pacman, we use an ε-greedy policy with respect to the cur-
rent approximation F(s, a, z)>z for a sampled z. At evaluation time, ε-greedy
policies are also used, with a smaller ε. More details are given in Appendix E.2.

103

Figure 7.1: Comparative performance of FB for different dimensions and DQN in the
FetchReach. Left: success rate averaged over 20 randomly selected goals as function of
the first 100 training epochs. Right: success rate averaged over 20 random goals after
800 training epochs.

7.6.2 Goal-Oriented Setting: Quantitative Comparisons

We investigate the FB representation over goal-reaching tasks and compare it
to goal-oriented baselines: DQN1, and DQN with HER when needed. We define
sparse reward functions. For Discrete Maze, the reward function is equal to
one when the agent’s state is equal exactly to the goal state. For Discrete Maze,
we measured the quality of the obtained policy to be the ratio between the true
expected discounted reward of the policy for its goal and the true optimal value
function, on average over all states. For the other environments, the reward
function is equal to one when the distance of the agent’s position and the goal
position is below some threshold, and zero otherwise. We assess policies by
computing the average success rate, i.e the average number of times the agent
successfully reaches its goal.

Figs. 7.1 and 7.2 show the comparative performance of FB for different di-
mensions d, and DQN respectively in FetchReach and Ms. Pacman (similar re-
sults in Discrete and Continuous Mazes are provided in Appendix E.2). In Ms.
Pacman, DQN totally fails to learn and we had to add HER to make it work.
The performance of FB consistently increases with the dimension d and the best
dimension matches the performance of the goal-oriented baseline.

In Discrete Maze, we observe a drop of performance for d = 25 (Ap-
pendix E.2, Fig. E.1): this is due to the spatial smoothing induced by the small

1Here DQN is short for goal-oriented DQN, Q(s, a, g).

104

Figure 7.2: Comparative performance of FB for different dimensions and DQN in Ms.
Pacman. Left: success rate averaged over 20 randomly selected goals as function of
the first 200 training epochs. Right: success rate averaged over the goal space after 800
training epochs.

rank approximation and the reward being nonzero only if the agent is exactly
at the goal. This spatial blurring is clear on heatmaps for d = 25 vs d = 75
(Fig. 7.3). With d = 25 the agent often stops right next to its goal.

To evaluate the sample efficiency of FB, after each epoch, we evaluate the
agent on 20 randomly selected goals. Learning curves are reported in Figs. 7.1
and 7.2 (left). In all environments, we observe no loss in sample efficiency com-
pared to the goal-oriented baseline. In Ms. Pacman, FB even learns faster than
DQN+HER.

7.6.3 More Complex Rewards: Qualitative Results

We now investigate FB’s ability to generalize to new tasks that cannot be
solved by an already trained goal-oriented model: reaching a goal with forbid-
den states imposed a posteriori, reaching the nearest of two goals, and choosing
between a small, close reward and a large, distant one.

First, for the task of reaching a target position g0 while avoiding some for-
bidden positions g1, . . . gk , we set zR = B(g1)− λ ∑k

i=1 B(gi) and run the corre-
sponding ε-greedy policy defined by F(s, a, zR)

>zR. Fig. 7.4 shows the resulting
trajectories, which succeed at solving the task for the different domains. In Ms.
Pacman, the path is suboptimal (though successful) due to the sudden appear-
ance of a monster along the optimal path. (We only plot the initial frame; see
the full series of frames along the trajectory in Appendix E.2, Fig. E.9.) Fig. 7.6

105

Figure 7.3: Heatmap of maxa F(s, a, zR)
>zR for zR = B() Left: d = 25. Right: d = 75.

Figure 7.4: Trajectories generated by the F>B policies for the task of reaching a target
position (star shape) while avoiding forbidden positions (red circle).

(left) provides a contour plot of maxa∈A F(s, a, zR)
>zR for the continuous maze

and shows the landscape shape around the forbidden regions.
Next, we consider the task of reaching the closest target among two equally

rewarding positions g0 and g1, by setting zR = B(g0) + B(g1). The optimal Q-
function is not a linear combination of the Q-functions for g0 and g1. Fig. 7.5
shows successful trajectories generated by the policy πzR . On the contour plot
of maxa∈A F(s, a, zR)

>zR in Fig. 7.6 (right), the two rewarding positions appear
as basins of attraction. Similar results for a third task are shown in Appendix E.2:
introducing a “distracting” small reward next to the initial position of the agent,
with a larger reward further away.

7.6.4 Embedding Visualizations

We visualize the learned FB state embeddings for Continuous Maze by pro-
jecting them into 2-dimensional space using t-SNE [Van der Maaten and Hinton,
2008] in Fig. 7.7. For the forward embeddings, we set z = 0 corresponding to the
uniform policy. We can see that FB partitions states according to the topology
induced by the dynamics: states on opposite sides of walls are separated in the
representation space and states on the same side lie together. Appendix E.2 in-

106

Figure 7.5: Trajectories generated by the F>B policies for the task of reaching the closest
among two equally rewarding positions (star shapes). (Optimal Q-values are not
linear over such mixtures.)

Figure 7.6: Contour plot of maxa∈A F(s, a, zR)
>zR in Continuous Maze. Left: for the task

of reaching a target while avoiding a forbidden region, Right: for two equally rewarding
targets.

cludes embedding visualizations for different z and for Discrete Maze and Ms.
Pacman.

7.7 RELATED WORK

Borsa et al. [2018] learn optimal policies for rewards that are linear combi-
nations of a finite number of feature functions provided in advance by the user.
This approach cannot tackle generic rewards or goal-oriented RL: this would re-
quire introducing one feature per possible goal state, requiring infinitely many
features in continuous spaces.

Our approach does not require user-provided features describing the fu-
ture tasks, thanks to using successor states [Blier et al., 2021] where Borsa et al.
[2018] use successor features. Schematically, and omitting actions, successor
features start with user-provided features φ, then learn ψ such that ψ(s0) =
∑t≥0 γtE[φ(st) | s0]. This limits applicability to rewards that are linear com-
binations of φ. Here we use successor state probabilities, namely, we learn two

107

Figure 7.7: Visualization of FB embedding vectors on Continuous Maze after projecting them
in two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the F embedding.
Right: the B embedding. The walls appear as large dents; the smaller dents correspond to the
number of steps needed to get past a wall.

representations F and B such that F(s0)
>B(s′) = ∑t≥0 γt Pr(st = s′ | s0). This

does not require any user-provided input.
We use a similar parameterization of policies by F(s, a, z)>z as in Borsa et al.

[2018], for similar reasons, although z encodes a different object.
Successor representations where first defined in Dayan [1993] for finite

spaces, corresponding to an older object from Markov chains, the fundamental
matrix [Kemeny and Snell, 1960, Brémaud, 1999, Grinstead and Snell, 1997].
For successor representations in continuous spaces, a finite number of features
φ are specified first; this can be used for generalization within a family of tasks,
e.g., Barreto et al. [2017], Zhang et al. [2017], Grimm et al. [2019], Hansen et al.
[2019]. Blier et al. [2021] moves from successor features to successor states
by providing pointwise occupancy map estimates even in continuous spaces,
without using the sparse reward 1st=s′ . We borrow a successor state learning
algorithm from Blier et al. [2021]. Blier et al. [2021] also introduced simpler
versions of F and B for a single, fixed policy; Blier et al. [2021] does not consider
the every-optimal-policy setting.

There is a long literature on goal-oriented RL. For instance, Schaul et al.
[2015] learn goal-dependent value functions. Goal-dependent value functions
have been investigated in earlier works such as Foster and Dayan [2002] and Sut-
ton et al. [2011]. Hindsight experience replay (HER) [Andrychowicz et al., 2017]
improve the sample efficiency of multiple goal learning with sparse rewards.
A family of rewards has to be specified beforehand, such as reaching arbitrary
target states. Specifying rewards a posteriori is not possible: for instance, learn-
ing to reach target states does not extend to reaching the nearest among several
goals, reaching a goal while avoiding forbidden states, or maximizing any dense
reward.

Hierarchical methods such as options [Sutton et al., 1999b] can be used for
multi-task RL problems. However, RL training and planning on top of the op-
tions is still needed after the task is known.

108

For finite state spaces, Jin et al. [2020a] use reward-free interactions to build a
training set that summarizes a finite environment, in the sense that any optimal
policies later computed on this training set instead of the true environment are
provably ε-optimal, for any reward. They prove tight bounds on the necessary
set size. Planning still has to be done afterwards for each reward.

7.8 EXTENDED RESULTS: APPROXIMATE

SOLUTIONS AND GENERAL GOALS

This section provides additional theoretical insights and formal statements
on approximate FB representations. All the proofs are provided in the ap-
pendix E.1. It is organized as follows:

• Section 7.8.1 formalizes the forward-backward representation with a goal
or feature space.

• Section 7.8.2 establishes the existence of exact FB representations in finite
spaces, and discusses the influence of the dimension d.

• Section 7.8.3 shows how approximate solutions provide approximately op-
timal policies.

• Section 7.8.4 shows how F and B are successor and predecessor features of
each other, and how the policies are optimal for rewards linearly spanned
by B.

• Section 7.8.5 explains how to estimate zR at test time from a state distribu-
tion different from the training distribution.

• Section 7.8.6 presents a note of the measure Mπ and its density mπ.

Notation. In general, we denote by Mπ the successor measure of policy π as defined in
(7.3.1), and by mπ its density, if it exists, with respect to a reference measure ρ. Namely,

Mπ(s0, a0, ds, da) = mπ(s0, a0, s, a)ρ(ds, da). (7.8.1)

Thus, the defining property of forward-backward representations (Definition 4) is
F(s0, a0, z)>B(s, a) = mπz(s0, a0, s, a).

We use the same convention for parametric models, with Mπ
θ a measure and mπ

θ
its density. The reference measure ρ is fixed and may be unknown (typically ρ is the
distribution of state-actions in a training set or under an exploration policy).

109

7.8.1 The Forward-Backward Representation With a Goal or
Feature Space

Here we state a generalization of Theorem 1 covering some extensions men-
tioned in the text.

First, this covers rewards known to only depend on certain features g =
φ(s, a) of the state-action (s, a), where φ is a known function with values in some
goal state G (for instance, rewards depending only on some components of the
state). Then it is enough to compute B as a function of the goal g. Theorem 1 cor-
responds to φ = Id. This is useful to introduce prior information when available,
resulting in a smaller model (F, B).

This also recovers successor features as in Borsa et al. [2018], defined by user-
provided features φ. Indeed, fixing B to Id and setting our φ to the φ of Borsa
et al. [2018] (or fixing B to their φ and our φ to Id) will represent the same set
of rewards and policies as in Borsa et al. [2018], namely, optimal policies for
rewards linear in φ (although with a slightly different learning algorithm and
up to a linear change of variables for F and z given by the covariance of φ, see
Appendix 7.8.4). More generally, keeping the same φ but letting B free (with
larger d) can provide optimal policies for rewards that are arbitrary functions of
φ, linear or not.

For this, we extend successor state measures to values in goal spaces, repre-
senting the discounted time spent at each goal by the policy. Namely, given a
policy π, let Mπ be the the successor state measure of π over goals g:

Mπ(s, a, dg) , ∑
t≥0

γt Pr (φ(st, at) ∈ dg | s0 = s, a0 = a, π) (7.8.2)

for each state-action (s, a) and each measurable set dg ⊂ G. This will be the
object approximated by F(s, a, z)>B(g).

Second, we use a more general model of successor states: instead of m ≈ F>B
we use m ≈ F>B+ m̄ where m̄ does not depend on the action, so that the F>B part
only computes advantages. This lifts the constraint that the model of m has rank
at most d, because there is no restriction on the rank on m̄: the rank restriction
only applies to the advantage function.

Third, we state a form of policy improvement for the FB representation.
Namely, the Q-function F(s, a, zR)

>zR for a given reward can be computed as
a supremum over all values of z.

For simplicity we state the result with deterministic rewards, but this extends
to stochastic rewards, because the expectation zR will be the same.

Definition 5 (Extended forward-backward representation of an MDP). Consider
an MDP with state space S and action space A. Let φ : S× A → G be a function from
state-actions to some goal space G = Rk.

110

Let Z = Rd be some representation space. Let

F : S× A× Z → Z, B : G → Z, m̄ : S× Z× G → R (7.8.3)

be three functions. For each z ∈ Z, define the policy

πz(a|s) , argmax
a

F(s, a, z)>z. (7.8.4)

Let ρ be any measure over the goal space G.
We say that F, B, and m̄ are an extended forward-backward representation of

the MDP with respect to ρ, if the following holds: for any z ∈ Z, any state-actions
(s, a), and any goal g ∈ G, one has

Mπz(s, a, dg) =
(

F(s, a, z)>B(g) + m̄(s, z, g)
)

ρ(dg) (7.8.5)

where Mπz is the successor state measure (7.8.2) of policy πz.

Theorem 2 (Forward-backward representation of an MDP, with features as
goals). Consider an MDP with state space S and action space A. Let φ : S× A → G
be a function from state-actions to some goal space G = Rk.

Let F, B, and m̄ be an extended forward-backward representation of the MDP with
respect to some measure ρ over G.

Then the following holds. Let R : S× A→ R be any bounded reward function, and
assume that this reward function depends only on g = φ(s, a), namely, that there exists
a function r : G → R such that R(s, a) = r(φ(s, a)). Set

zR ,
∫

g∈G
r(g)B(g) ρ(dg) (7.8.6)

assuming the integral exists.
Then:

1. πzR is an optimal policy for reward R in the MDP.

2. For any z ∈ Z, the Q-function of policy πz for the reward R is equal to

Qπz(s, a) = F(s, a, z)>zR + V̄z(s) (7.8.7)

and the optimal Q-function Q?
R is obtained when z = zR:

Q?
R(s, a) = F(s, a, zR)

>zR + V̄zR(s). (7.8.8)

Here
V̄z(s) ,

∫
g∈G

m̄(s, z, g)r(g) ρ(dg) (7.8.9)

and in particular V̄ = 0 if m̄ = 0.

The advantages Qπz(s, a) − Qπz(s, a′) do not depend on V̄, so computing V̄ is
not necessary to obtain the policies.

111

3. If m̄ = 0, then for any state-action (s, a) one has

Q?
R(s, a) = F(s, a, zR)

>zR = sup
z∈Z

F(s, a, z)>zR. (7.8.10)

(We do not claim that V̄ is the value function and F>zR the advantage func-
tion, only that the sum is the Q-function. When m̄ = 0, the term F>zR is the
whole Q-function.)

The last point of the theorem is a form of policy improvement. Indeed, by the
second point, F(s, a, z)>zR is the estimated Q-function of policy πz for rewards r.
This may be useful if zR falls outside of the training distribution for F: then the
values of F(s, a, zR) may not be safe to use. In that case, it may be useful to use
a finite set Z′ ⊂ Z of values of z closer to the training distribution, and use the
estimate supz∈Z′ F(s, a, z)>zR instead of F(s, a, zR)

>zR for the optimal Q-function.
A similar option has been used, e.g., in Borsa et al. [2018], but in the end it was
not necessary in our experiments.

Remark 3. Formally, the statement holds for arbitrary ρ, but it only makes sense if ρ
has full support (or at least covers all reachable parts of the state space): (7.8.5) requires
the support of Mπz to be included in that of ρ. Otherwise, FB representations may not
exist and the statement is empty.

7.8.2 Existence of Exact FB Solutions, Influence of Dimension
d, Uniqueness

Existence of exact FB representations in finite spaces. We now prove exis-
tence of an exact solution for finite spaces if the representation dimension d is
at least #S× #A. Solutions are never unique: one may always multiply F by an
invertible matrix C and multiply B by (C>)−1, see Remark 4 below (this allows
us to impose orthonormality of B in the experiments).

The constraint d ≥ #S× #A can be largely overestimated depending on the
tasks of interest, though. For instance, we prove below that in an n-dimensional
toric grid S = {1, . . . , k}n, d = 2n is enough to obtain optimal policies for
reaching every target state (a set of tasks smaller than optimizing all possible
rewards).

Proposition 6 (Existence of an exact FB representation for finite state spaces).
Assume that the state and action spaces S and A of an MDP are finite. Let Z = Rd

with d ≥ #S× #A. Let ρ be any probability distribution on S× A, with ρ(s, a) > 0 for
any (s, a).

Then there exists F : S× A× Z → Z and B : S× A → Z, such that F>B is equal
to the successor state density of πz with respect to ρ:

F>(s, a, z)B(s′, a′) = ∑
t≥0

γt Pr((st, at) = (s′, a′) | s0 = s, a0 = a, πz)

ρ(s′, a′)
(7.8.11)

112

for any z ∈ Z and any state-actions (s, a) and (s′, a′), where πz is defined as in Theo-
rem 1 by πz(s) = argmaxa F(s, a, z)>z.

A small dimension d can be enough for navigation: examples. In practice,
even a small d can be enough to get optimal policies for reaching arbitrary many
states (as opposed to optimizing all possible rewards). Let us give an example
with S a toric n-dimensional grid of size k.

Let us start with n = 1. Take S = {0, . . . , k − 1} to be a length-k cycle with
three actions a ∈ {−1, 0, 1} (go left, stay in place, go right). Take d = 2, so that
Z = R2 ' C.

We consider the tasks of reaching an arbitrary target state s′, for every s′ ∈ S.
Thus the goal state is G = S in the notation of Theorem 2, and B only depends
on s′. The policy for such a reward is πzR = πB(s′).

For a state s ∈ {0, . . . , k− 1} and action a ∈ {−1, 0, 1}, define

F(s, a, z) , e2iπ(s+a)/k, B(s) , e2iπs/k. (7.8.12)

Then one checks that πB(s′) is the optimal policy for reaching s′, for every
s′ ∈ S. Indeed, F(s, a, zR)

>zR = cos(2π(s + a− s′)/k). This is maximized for the
action a that brings s closer to s′.

So the policies will be optimal for reaching every target s′ ∈ S, despite the
dimension being only 2.

By taking the product of n copies of this example, this also works on the n-
dimensional toric grid S = {0, . . . , k− 1}n with 2n + 1 actions (add ±1 in each
direction or stay in place), with a representation of dimension d = 2n in Cn,
namely, by taking B(s)j , e2iπsj/k for ecah direction j and likewise for F. Then
πB(s′) is the optimal policy for reaching s′ for every s′ ∈ S.

More generally, if one is only interested in the optimal policies for reach-
ing states, then it is easy to show that there exist functions F : S× A → Z and
B : S → Z such that the policies πz describe the optimal policies to reach each
state: it is enough that B be injective (typically requiring d = dim(S)). Indeed,
for any state s ∈ S, let π?

s be the optimal policy to reach s. We want πz to
be equal to π?

s for z = B(s) (the value of zR for a reward located at s). This
translates as argmaxa F(s′, a, B(s))>B(s) = π?

s (s′) for every other state s′. This is
realized just by letting F be any function such that F(s′, π?

s (s′), B(s)) , B(s) and
F(s′, a, B(s)) , −B(s) for every other action a. As soon as B is injective, there
exists such a function F.

Let us turn to uniqueness of F and B.

Remark 4. Let C be an invertible d× d matrix. Given F and B as in Theorem 1, define

B′(s, a) , CB(s, a), F′(s, a, z) , (C>)−1F(s, a, C−1z) (7.8.13)

113

together with the policies π′z(s) , argmaxa F′(s, a, z)>z. For each reward r, define
z′R , E(s,a)∼ρ[r(s, a)B′(s, a)].

Then this operation does not change the policies or estimated Q-values: for any re-
ward, we have π′z′R

= πzR , and F′(s, a, z′R)
>z′R = F(s, a, zR)

>zR.
In particular, assume that the components of B are linearly independent. Then,

taking C =
(

E(s,a)∼ρB(s, a)B(s, a)>
)−1/2

, B′ is L2(ρ)-orthonormal. So up to reducing

the dimension d to rank(B), we can always assume that B is L2(ρ)-orthonormal.

Reduction to orthonormal B will be useful in some proofs below. Even after
imposing that B be orthonormal, solutions are not unique, as one can still apply
a rotation matrix on the variable z.

For a single policy πz, the F>B decomposition may be further standardized in
several ways: after a linear change of variables in Rd, and up to decreasing d by
removing unused directions in Rd, one may assume either that Covρ B = Id and
Covρ F is diagonal, or that Covρ F = Covρ B is diagonal, or write the decomposi-
tion as F̃>DB̃ with D diagonal and Covρ F̃ = Covρ B̃ = Id, thus corresponding to
an approximation of the singular value decomposition of the successor measure
Mπz in L2(ρ). However, since B is shared between all values of z and all policies
πz, it is a priori not possible to realize this for all z simultaneously.

7.8.3 Approximate Solutions Provide Approximately Optimal
Policies

Here we prove that the optimality in Theorems 1 and 2 is robust to ap-
proximation errors during training: approximate solutions still provide approx-
imately optimal policies. We deal first with the approximation errors on (F, B)
during unsupervised training, then on zR during the reward estimation phase
(in case the reward is not known explicity).

Influence of Approximate F and B: Optimality Gaps are Proportional to mπ −
F>B

In continuous spaces, Theorems 1 and 2 are somewhat spurious: the equality
F>B = m will never hold exactly with finite representation dimension d. Instead,
F>B will only be a rank-d approximation of m. Even in finite spaces, since F and
B are learned by a neural network, we can only expect that F>B ≈ m in gen-
eral. Therefore, we provide results that extend Theorems 1 and 2 to approximate
training.

Optimality gaps are directly controlled by the error mπ − F>B on the solution
F>B. We provide this result for different notions of approximations between mπ

and F>B. First, in sup norm over (s, a) but in expectation over (s′, a′) (so that a

114

perfect model of the successor states (s′, a′) of each (s, a) is not necessary, only
an average model). Second, for the weak topology on measures (this is the most
relevant in continuous spaces: for instance, a Dirac measure can be approached
by a continuous model in the weak topology). Finally, we provide pointwise es-
timates instead of only norms: for any reward, we show that the optimality gaps
at each state can be bounded by an explicit matrix product directly involving the
FB error matrix mπ − F>B (Theorem 6).

F and B are trained such that F(s, a, z)>B(s′, a′) approximates the successor
state density mπz(s, a, s′, a′). In the simplest case, we prove that if for some re-
ward R,

E(s′,a′)∼ρ

∣∣∣F(s, a, zR)
>B(s′, a′)−mπzR (s, a, s′, a′)

∣∣∣ ≤ ε (7.8.14)

for every (s, a), then the optimality gap of policy πzR is at most (3ε/(1 −
γ)) sup |R| for that reward (Theorem 5, first case).

In continuous spaces, mπ is usually a distribution (Appendix 7.8.6), so such
an approximation will not hold, and it is better to work on the measures them-
selves rather than their densities, namely, to compare F>Bρ to Mπ instead of
F>B to mπ. We prove that if F>Bρ is close to Mπ in the weak topology, then the
resulting policies are optimal for any Lipschitz reward.2

Remember that a sequence of nonnegative measures µn converges weakly
to µ if for any bounded, continuous function f ,

∫
f (x)µn(dx) converges to∫

f (x)µ(dx) (Bogachev [2007], §8.1). The associated topology can be defined via
the following Kantorovich–Rubinstein norm on nonnegative measures (Bogachev
[2007], §8.3)∥∥µ− µ′

∥∥
KR , sup

{ ∣∣∣∣∫ f (x)µ(dx)−
∫

f (x)µ′(dx)
∣∣∣∣ :

f 1-Lipschitz function with sup | f | ≤ 1
}

(7.8.15)

where we have equipped the state-action space with any metric compatible with
its topology.3

The following theorem states that if F>B approximates the successor state
density of the policy πz (for various sorts of approximations), then πz is approx-
imately optimal. Given a reward function r on state-actions, we denote

‖r‖∞ , sup
(s,a)∈S×A

|r(s, a)| (7.8.16)

2This also holds for continuous rewards, but the Lipschitz assumption yields an explicit
bound in Theorem 5.

3The Kantorovich–Rubinstein norm is closely related to the L1 Wasserstein distance on prob-
ability distributions, but slightly more general as it does not require the distance functions to be
integrable: the Wasserstein distance metrizes weak convergence among those probability mea-
sures such that E[d(x, x0)] < ∞.

115

and

‖r‖Lip , sup
(s,a) 6=(s′,a′)∈S×A

r(s, a)− r(s′, a′)
d((s, a), (s′, a′))

(7.8.17)

where we have chosen any metric on state-actions.
The first statement is for any bounded reward. The second statement only

assumes an F>B approximation in the weak topology but only applies to Lips-
chitz rewards. The third statement is more general and is how we prove the first
two: weaker assumptions on F>B work on a stricter class of rewards.

Theorem 5 (If F and B approximate successor states, then the policies πz yield
approximately optimal returns). Let F : S× A× Z → Z and B : S× A→ Z be any
functions, and define the policy πz(s) = argmaxa F(s, a, z)>z for each z ∈ Z.

Let ρ be any positive probability distribution on S × A, and for each policy π, let
mπ be the density of the successor state measure Mπ of π with respect to ρ. Let

m̂z(s, a, s′, a′) , F(s, a, z)>B(s′, a′), M̂z(s, a, ds′, da′) , m̂z(s, a, s′, a′)ρ(ds′, da′)
(7.8.18)

be the estimates of m and M obtained via the model F and B.
Let r : S× A → R be any bounded reward function. Let V? be the optimal value

function for this reward r. Let V̂πz be the value function of policy πz for this reward.
Let zR = E(s,a)∼ρ[r(s, a)B(s, a)].

Then:

1. If E(s′,a′)∼ρ |m̂zR(s, a, s′, a′)−mπzR (s, a, s′, a′)| ≤ ε for any (s, a) in S× A, then∥∥V̂πzR −V?
∥∥

∞ ≤ 3ε ‖r‖∞ /(1− γ).

2. If r is Lipschitz and
∥∥M̂zR(s, a, ·)−MπzR (s, a, ·)

∥∥
KR ≤ ε for any (s, a) ∈ S× A,

then
∥∥V̂πzR −V?

∥∥
∞ ≤ 3ε max(‖r‖∞ , ‖r‖Lip)/(1− γ).

3. More generally, let ‖·‖A be a norm on functions and ‖·‖B a norm on measures,
such that

∫
f dµ ≤ ‖ f ‖A ‖µ‖B for any function f and measure µ. Then for any

reward function r such that ‖r‖A < ∞,

∥∥V̂πzR −V?
∥∥

∞ ≤
3 ‖r‖A
1− γ

sup
s,a

∥∥M̂zR(s, a, ·)−MπzR (s, a, ·)
∥∥

B . (7.8.19)

Moreover, the optimal Q-function is close to F(s, a, zR)
>zR:

sup
s,a

∣∣∣F(s, a, zR)
>zR −Q?(s, a)

∣∣∣ ≤ 2 ‖r‖A
1− γ

sup
s,a

∥∥M̂zR(s, a, ·)−MπzR (s, a, ·)
∥∥

B .

(7.8.20)

116

Pointwise optimality gaps. We now turn to a more precise estimation of the
optimality gap at each state, expressed directly as a matrix product involving
the FB error mπ − F>B.

Here we assume that the state space is finite: this is not essential but simpli-
fies notation since everything can be represented as matrices and vectors. Rcall
that for each stochastic policy π, Pπ denotes the associated stochastic matrix
on state-actions: (Pπ)(sa)(s′a′) = P(s′|s, a)π(s′)[a′]. We also view rewards and
Q-functions as vectors indexed by state-actions.

Theorem 6. Assume that the state space is finite. Let F : S × A × Rd → Rd and
B : S × A → Rd be any functions. Define πz as in Theorem 1. Let ρ > 0 be any
distribution over state-actions, and let mπ be the successor density (7.8.1) of policy π
with respect to ρ.

For each z ∈ Rd, define the FB error E(z) as a matrix over state-actions:

E(z)(sa)(s′a′) , mπz(s, a, s′, a′)− F(s, a, z)>B(s′, a′). (7.8.21)

Let r be any reward function and let Q? and π? be its optimal Q-function and policy.
Let zR = Eρ[r.B] as in Theorem 1, and let QπzR be the Q-function of policy πzR .

Then we have the componentwise inequality between state-action vectors

0 ≤ Q? −QπzR ≤
(

∑
t≥0

γt+1(Pπ?
)t

)(
Pπ? − PπzR

)
E(zR)diag(ρ) r. (7.8.22)

In particular, if E(zR) = 0 then πzR is optimal for reward r.

The matrix ∑t≥0 γt+1(Pπ?
)t represents states visited along the optimal tra-

jectory starting at the initial state. Multiplying by (Pπ? − PπzR) visits states one
step away from this trajectory. Therefore, what matters are the values of the FB
error matrix E(zR)(sa)(s′a′) at state-actions (s, a) one step away from the optimal
trajectories.

In unsupervised RL, we have no control over the first part ∑t≥0 γt+1(Pπ?
)t,

which depends only on the optimal trajectories of the unknown future tasks r.
Therefore, in general it makes sense to just minimize E(z) in some matrix norm,
for as many values of z as possible. (The choice of matrix norm influences which
rewards will be best optimized, as illustrated by Theorem 5.)

An approximate zR yields an approximately optimal policy

We now turn to the second source of approximation: computing zR in the
reward estimation phase. This is a problem only if the reward is not specified
explicitly.

We deal in turn with the effect of using a model of the reward function, and
the effect of estimating zR = E(s,a)∼ρr(s, a)B(s, a) via sampling.

117

Which of these options is better depends a lot on the situation. If training
of F and B is perfect, by construction the policies are optimal for each zR: thus,
estimating zR from rewards sampled at N states (si, ai) ∼ ρ will produce the op-
timal policy for exactly that empirical reward, namely, a nonzero reward at each
(si, ai) but zero everywhere else, thus overfitting the reward function. Reduc-
ing the dimension d reduces this effect, since rewards are projected on the span
of the features in B: B plays both the roles of a transition model and a reward
regularizer. This appears as a

√
d/N factor in Theorem 7 below.

Thus, if both the number of samples to train F and B and the number of
reward samples are small, using a smaller d will regularize both the model of the
environment and the model of the reward. However, if the number of samples
to train F and B is large, yielding an excellent model of the environment, but
the number of reward samples is small, then learning a model of the reward
function will be a better option than direct empirical estimation of zR.

The first result below states that reward misidentification comes on top of the
approximation error of the F>B model. This is relevant, for instance, if a reward
model r̂ is estimated by an external model using some reward values.

Proposition 7 (Influence of estimating zR by an approximate reward). Let r̂ : S×
A→ R be any reward function. Let ẑR = E(s,a)∼ρ[r̂(s, a)B(s, a)].

Let εFB be the error attained by the F>B model in Theorem 5 for reward r̂; namely,
assume that

∥∥V̂πẑR − V̂?
∥∥

∞ ≤ εFB with V̂? the optimal value function for r̂.
Then the policy πẑR(s) = argmaxa F(s, a, ẑR)

>ẑR defined by the model r̂ is(
2 ‖r− r̂‖∞
(1− γ)

+ εFB

)
-optimal for reward r.

This still assumes that the expectation ẑR = E(s,a)∼ρ[r̂(s, a)B(s, a)] is com-
puted exactly for the model r̂. If r̂ is given by an explicit model, this expectation
can in principle be computed on the whole replay buffer used to train F and B,
so variance would be low. Nevertheless, we provide an additional statement
which covers the influence of the variance of the estimator of zR, whether this
estimator uses an external model r̂ or a direct empirical average reward obser-
vations r(s, a)B(s, a).

Definition 6. The skewness ζ(B) of B is defined as follows. Assume B is bounded.
Let B1, . . . , Bd : S× A → R be the functions of (s, a) defined by each component of B.
Let 〈B〉 be the linear span of the (Bi)1≤i≤d as functions on S× A. Set

ζ(B) , sup
f∈〈B〉, f 6=0

‖ f ‖∞
‖ f ‖L2(ρ)

. (7.8.23)

118

Theorem 7 (Influence of estimating zR by empirical averages). Assume that zR =
E(s,a)∼ρ[r(s, a)B(s, a)] is estimated via

ẑR ,
1
N

N

∑
i=1

r̂iB(si, ai) (7.8.24)

using N independent samples (si, ai) ∼ ρ, where the ri are random variables such that
E[r̂i|si, ai] = r(si, ai), Var[r̂i|si, ai] ≤ v for some v ∈ R, and the r̂i are mutually
independent given (si, ai)i=1,...,N.

Let V? be the optimal value function for reward r, and let V̂ be the value function of
the estimated policy πẑR for reward r.

Then, for any δ > 0, with probability at least 1− δ,∥∥V̂ −V?
∥∥

∞ ≤ εFB +
2

1− γ

√
ζ(B) d

Nδ

(
v +

∥∥r(s, a)−Eρr
∥∥2

L2(ρ)

)
(7.8.25)

which is therefore the bound on the optimality gap of πẑR for r. Here εFB is the error due
to the F>B model approximation, defined as in Proposition 7.

The proofs are not direct, because F is not continuous with respect to z. Con-
trary to Q-values, successor states are not continuous in the reward: if an action
has reward 1 and the reward for another action changes from 1− ε to 1 + ε, the
return values change by at most 2ε, but the actions and states visited by the op-
timal policy change a lot. So it is not possible to reason by continuity on each of
the terms involved.

7.8.4 F and B as Successor and Predecessor Features of Each
Other, Optimality for Rewards in the Span of B

We now give two statements. The first encodes the idea that F encodes the
future of a state while B encodes the past of a state.

The second proves that the FB policies are optimal for any reward that lies
in the linear span of the features learned in B; for rewards out of this span, it is
best if the features in B are spatially smooth.

The intuition that F and B encode the future and past of states is formalized
as follows: if F and B minimize their unsupervised loss, then F is equal to the
successor features from the dual features of B, and B is equal to the predecessor
features from the dual features of F (Theorem 8).

This statement holds for a fixed z and the corresponding policy πz. So, for
the rest of this section, z is fixed.

By “dual” features we mean the following. Define the d× d covariance ma-
trices

Cov F , E(s,a)∼ρ[F(s, a, z)F(s, a, z)>], Cov B , E(s,a)∼ρ[B(s, a)B(s, a)>].
(7.8.26)

119

Then (Cov F)−1/2F(s, a, z) is L2(ρ)-orthonormal and likewise for B. The “dual”
features are (Cov F)−1F(s, a, z) and (Cov B)−1B(s, a), without the square root:
these are the least square solvers for F and B respectively, and these are the ones
that appear below.

The unsupervised FB loss for a fixed z is

`(F, B) ,
∫ ∣∣∣∣∣F(s, a, z)>B(s′, a′)−∑

t≥0
γt Pt(ds′, da′|s, a, πz)

ρ(ds′, da′)

∣∣∣∣∣
2

ρ(ds, da)ρ(ds′, da′)

(7.8.27)

=
∥∥∥F(·, z)>B(·)−mπz(·, ·)

∥∥∥2

L2(ρ)⊗L2(ρ)
. (7.8.28)

Thus, minimizers in dimension d correspond to an SVD of the successor state
density in L2(ρ), truncated to the largest d singular values.

Theorem 8. Consider a smooth parametric model for F and B, and assume this model
is overparameterized. 4 Also assume that the data distribution ρ has positive density
everywhere.

Let z ∈ Z. Assume that for this z, F and B lie in L2(ρ) and achieve a local extremum
of `(F, B) within this parametric model. Namely, the derivative ∂θ`(F, B) of the loss
with respect to the parameters θ of F is 0, and likewise for B.

Then F is equal to (Cov B)−1 times the successor features of B: for any (s, a) ∈
S× A,

(Cov B)F(s, a, z) = ∑
t≥0

γt
∫
(s′,a′)

Pt(ds′, da′|s, a, πz) B(s′, a′) (7.8.29)

and B is equal to (Cov F)−1 times the predecessor features of F:

(Cov F)B(s′, a′) = ∑
t≥0

γt
∫
(s,a)

Pt(ds′, da′|s, a, πz)

ρ(ds′, da′)
F(s, a, z) ρ(ds, da) (7.8.30)

ρ-almost everywhere. Here the covariances have been defined in (7.8.26), and
Pt(·|s, a, π) denotes the law of (st, at) under trajectories starting at (s, a) and following
policy π.

The same result holds when working with features φ(s′, a′), just by applying it to
B ◦ φ.

4Intuitively, a parametric function f is overparameterized if every possible small change of f
can be realized by a small change of the parameter. Formally, we say that a parametric family
of functions θ ∈ Θ 7→ fθ ∈ L2(X, Rd) smoothly parameterized by θ, on some space X, is over-
parameterized if, for any θ, the differential ∂θ fθ is surjective from Θ to L2(X, Rd). For finite X,
this implies that the dimension of θ is larger than #X. For infinite X, this implies that dim(θ) is
infinite, such as parameterizing functions on [0; 1] by their Fourier expansion.

120

Note that in the FB framework, we may normalize either F or B (Remark 4),
but not both.

As a consequence of Theorem 8, we characterize below which kind of re-
wards we can capture if we fix B and train only F to minimize the unsupervised
loss given B. Namely, we show that for any reward r, the resulting policy is
optimal for the L2(ρ)-orthogonal projection of r onto the span of B.

Theorem 9 (Optimizing F for a given B; influence of the span of B). Let B a fixed
function in L2(ρ, Rd). Define the span of B as the set of functions w>B ∈ L2(ρ, R)
when w ranges in Rd.

Consider a smooth parametric model for F, and assume this model is overparameter-
ized. Assume that F lies in L2(ρ) and achieves a local extremum of `(F, B) within this
parametric model for each z ∈ Z.

Assume that the data distribution ρ has positive density everywhere.
Then for any bounded reward function r : S× A→ R that lies in the span of B, πzR

is an optimal policy for the reward r.
More generally, for any bounded reward function r : S× A → R, the policy πzR is

an optimal policy for the reward rB defined as the L2(ρ)-orthogonal projection of r onto
the span of B.

Moreover,

‖VπzR −V?‖∞ ≤
2

1− γ
‖r− rB‖∞ (7.8.31)

with V? the optimal value function for r. More precisely,

‖VπzR −V?‖∞ ≤
∥∥∥(Id−γPπ?)−1(r− rB)

∥∥∥
∞
+
∥∥∥(Id−γPπzR

)−1(r− rB)
∥∥∥

∞
(7.8.32)

with π? the optimal policy for reward r, and notation Pπ as in Theorem 6.

The last bounds implies the previous one, as (Id−γPπ)−1 is bounded by 1
1−γ

in L∞ norm for any policy π.

Discussion: optimal B and priors on rewards. This bound is interesting if
r− rB is small, namely, if B captures most of the components of the reward func-
tions we are interested in. But even for rewards not spanned by B, the bound
is smaller if r − rB avoids the largest eigendirections of (Id−Pπ)−1 for various
policies π, namely, if B captures these largest eigendirections. These eigendi-
rections are those of Pπ: so the bound will be small if B contains the largest
eigendirections of Pπ for various policies π, corresponding to spatially continu-
ity of functions under transitions in the environment (Pπ f close to f).

If we are interested in spatially smooth rewards r, then r − rB is small if
B if captures smooth functions first. But even for rewards not spanned by B,
and for non-spatially smooth rewards (e.g., goal-oriented problems with reward

121

1s=goal), the bound (7.8.32) shows that B should first capture spatially smooth
eigenvectors of many policies π.

Is this a natural consequence of FB training? Up to some approximations,
yes. For a single z and policy πz, the loss (7.8.27) used to train B is optimal
when B captures the largest singular directions of (Id−Pπz)

−1, which is slightly
different. The optimal policy (Id−Pπ?)−1 is not represented in the criterion,
and it is not clear to what extent spatial continuity with respect to Pπz or Pπ?

differ. Moreover, in the full algorithm, B is shared between several z and several
policies. So we have no rigorous result here. Still, the intuition shows that FB
training goes in the correct direction.

7.8.5 Estimating zR from a Different State Distribution at Test
Time

Theorem 1 requires zR = E(s,a)∼ρ[r(s, a)B(s, a)] to be estimated using re-
wards observed from the same state-action distribution ρ as the one used to
define mπ and train F and B. The algorithm of Section 7.5 computes mπ with
respect to the distribution ρ of the training set. So in general, estimating zR
requires either being able to run the exploration policy again once reward sam-
ples are available, or being able to explicitly estimate r(s, a) on states stored in
the training set.

However, at test time, we would generally like to use the policy learned,
rather than the exploration policy. This will result in a distribution of states-
actions ρtest(s, a) different from the training distribution ρ(s, a).

If the training set remains accessible, a generic solution is to train a model
r̂(s, a) of the reward function, from rewards r(s, a) observed at test time under
any distribution (s, a) ∼ ρtest. Then one can estimate zR by averaging this model
r̂ over state-actions sampled from the training set:

ẑR , E(s,a)∼ρ[r̂(s, a)B(s, a)]. (7.8.33)

However, the training set may not be available anymore at test time. But as
it turns out, if we use for r̂ a linear model based on the features learned in B,
then we do not need to store the training set: it is enough to estimate the matrix
Covρ(B), which can be pre-computed during training. This is summarized in
the following.

Proposition 8. Let r̂ be the linear model of rewards computed at test time by linear
regression of the reward r over the components B1, . . . , Bd of B, with state-actions taken
from a test distribution ρtest. Explicitly,

r̂(s, a) , B(s, a)>w, w ,
(
Covρtest B

)−1
E(s,a)∼ρtest [r(s, a)B(s, a)]. (7.8.34)

122

Here we assume that Covρtest B = E(s,a)∼ρtest [B(s, a)B(s, a)>] is invertible.
Then the estimate ẑR computed by using this model r̂ in (7.8.33) is

ẑR = (Covρ B)
(
Covρtest B

)−1
E(s,a)∼ρtest [r(s, a)B(s, a)]. (7.8.35)

Moreover, if ρ = ρtest, or if r is linear over B, then ẑR = zR .

For this estimate, Covρtest B and E(s,a)∼ρtest [r(s, a)B(s, a)] can be computed at
test time, while the matrix Covρ B must be computed at training time. This way,
the training set can be discarded.

If the estimate (7.8.34) is used, the learned policies correspond to using uni-
versal successor features approximators Borsa et al. [2018] on top of the features
learned by B. Indeed, universal successor features with features φ use the poli-
cies argmaxa ψ(s, a, w)>w with w =

(
Covρtest φ

)−1
E(s,a)∼ρtest [r(s, a)φ(s, a)] the re-

gression vector of r over the features φ, and with ψ = Succ(φ) the successor
features of φ. Here we use the policies πẑR = argmaxa F(s, a, ẑR)

>ẑR. Let us set
φ , B as the base features in successor features. Then the above shows that
ẑR = (Covρ B)w when using the linear model of rewards. Moreover, we proved
in Theorem 8 that the optimum for F is F = (Covρ B)−1 Succ(B). Therefore, the
policies coincide in this situation.

Thus, universal successor features based on B appear as a particular case if
a linear model of rewards is used at test time, although in general any reward
model may be used in (7.8.33).

7.8.6 A Note on the Measure Mπ and its Density mπ

In finite spaces, the definition of the successor state density mπ via

Mπ(s, a, ds′, da′) = mπ(s, a, s′, a′)ρ(ds′, da′) (7.8.36)

with respect to the data distribution ρ poses no problem, as long as the data
distribution is positive everywhere.

In continuous spaces, this can be understood as the (Radon–Nikodym) den-
sity of Mπ with respect to ρ, assuming Mπ has no singular part with respect to
ρ. However, this is never the case: in the definition (7.3.1) of the successor state
measure Mπ, the term t = 0 produces a Dirac measure δs,a. So Mπ has a singular
component due to t = 0, and mπ is better thought of as a distribution.

When mπ is a distribution, a continuous parametric model mπ
θ learned by

(7.5.2) can approximate mπ in the weak topology only: mπ
θ ρ approximates Mπ

for the weak convergence of measures. Thus, for the forward-backward repre-
sentation, F(s, a, z)>B(s′, a′)ρ(ds′, da′) weakly approximates Mπz(s, a, ds′, da′).

We have not found this to be a problem either in theory or practice, and
Theorem 5 covers weak approximations.

123

Alternatively, one may just define successor states starting at t = 1 in (7.3.1).
This only works well if rewards r(s, a) depend on the state s but not the action
a (e.g., in goal-oriented settings). If starting the definition at t = 1, mπ is an
ordinary function provided the transition kernels P(ds′|s, a) of the environment
are non-singular, ρ has positive density, and π(da|s) is non-singular as well.
Starting at t = 1 induces the following changes in the theorems:

• In the learning algorithm (7.5.2) for successor states, the term
∂θmπ

θ (s, a, s, a) becomes γ ∂θmπ
θ (s, a, s′, a′).

• The expression for the Q-function in Theorem 1 becomes Q?(s, a) =
r(s, a) + F(s, a, zR)

>zR, and likewise in Theorem 2. The r(s, a) term covers
the immediate reward at a state, since we have excluded t = 0 from the
definition of successor states.

• In general the expression for optimal policies becomes

πz(s) , argmax
a
{r(s, a) + F(s, a, z)>z} (7.8.37)

which cannot be computed from z and F alone in the unsupervised train-
ing phase. The algorithm only makes sense for rewards that depend on s
but not on a (e.g., in goal-oriented settings): then the policy πz is equal to
πz(s) , argmaxa F(s, a, z)>z again.

7.9 CONCLUSION

The FB representation is a learnable mathematical object that “summarizes”
a reward-free MDP. It provides near-optimal policies for any reward specified
a posteriori, without planning. It is learned from black-box reward-free inter-
actions with the environment. In practice, this unsupervised method performs
comparably to goal-oriented methods for reaching arbitrary goals, but is also
able to tackle more complex rewards in real time.

124

8 Conclusion

8.1 SUMMARY OF CONTRIBUTIONS

The aim of this thesis was to provide theoretical solutions and insights to
some fundamental issues in modern RL. This dissertation touched upon three
major research areas: off-policy learning, exploration-exploitation dilemma in
large state spaces, and self-supervision in RL.

• Off-policy learning is one of the main keys in scaling up RL agents as it
enables the use of other streams of experiences than the one generated by
themselves. In chapter 3, we showed how we can combine multi-step up-
dates, for a rapid propagation of the errors, with function approximation
in a provable way. We also provided a state-of-the-art finite sample analy-
sis of gradient TD methods for policy evaluation. In chapter 4, we showed
how to better exploit off-policy data to stabilize the policy improvement
step. In particular, we proposed to learn in off-policy way the divergence
between state-action visitations, which acts then as regularizer for the pol-
icy update. This improves upon conservative approaches which rely only
on immediate action distributions for the regularization.

• Balancing between exploration and exploitation is critical for data-
efficient learning i.e reaching optimal solution within a decent number of
interactions. In this thesis, we focused on large state spaces. In chapter 5,
we assumed that the optimal Q-function is smooth and we introduced
ZOOMRL, an efficient online algorithm that learns a data-driven parti-
tioning and we proved that its regret scales with the covering dimension
and does not depend on the number of states. In chapter 6, we assumed
that both reward and transition kernel are linear and non-stationary. We
introduced OPT-WLSVI, an efficient online algorithm that deploys a linear
function approximation and uses discounting strategy to deal with the
non-stationarity. We also fixed a serious flaw in the regret analysis of the
non-stationary linear bandits, propagated in the literature.

• We focused in chapter 7 on self-supervision in reward-free environments.
We proposed to learn representations, using interactions without reward
signal, that encode a predictive occupancy map over states and actions. We

125

showed that we can read directly on these representation optimal policies
for all reward functions.

A recurrent theme in the presented contributions is generalisation. In chap-
ter 3, we devised convergent algorithms for policy evaluation that use off-policy
multi-step traces while generalizing over states via a linear function approximator.
In chapter 5, under smoothness assumptions, our proposed algorithm ZOOMRL
generalizes over large state-action spaces by learning a data-driven partitioning. In
chapter 6, our algorithm OPT-WLSVI generalizes over states by using linear func-
tion approximation in a non-stationary linear environment. Finally, in chapter 7 we
focused on another kind of generalization which is the generalization over reward
functions. Our learned forward-backward representations can return optimal be-
havior for any reward function or any goal state by computing a simple average.

8.2 FUTURE RESEARCH

To build reliable RL systems, there is far more to be done and I am eager to
explore in the next few years some promising directions that I describe below.

8.2.1 Towards Fully Controllable Agents

Unsupervised learning provides a useful paradigm for the autonomous ac-
quisition of task-agnostic knowledge. Our last-mentioned work in Chapter 7
is a step towards building agents that are fully controllable after first exploring
their environment in an unsupervised way. While we tackled the representation
learning problem, the exploration aspect remains a missing piece. The lack of ex-
ploration could limit the applicability of the learned representation to complex
downstream tasks.

The open question that I would like to investigate is

Could we devise a principled unsupervised objective to discover behaviors or skills that
are useful for both exploration (acquisition task-agnostic knowledge) and exploitation

(solving a downstream task)?

8.2.2 Optimization for RL

While RL methods are traditionally dynamic-programming (DP) based algo-
rithms, the field witnesses a recent trend that frames RL problems as well-posed
optimization problems. Such algorithms have the benefit of avoiding inherent
instability of DP and are more compatible with nonlinear/ linear function ap-
proximation. My first contribution in Chapter 3 lies in this direction. I would

126

like to investigate to what extent we can learn from established optimization
tools to tackle RL problems.

To give a concrete example, I plan to look at the linear programming (LP) for-
mulation of RL. This LP problem can be cast into a primal-dual problem where
primal and dual variables are value functions and occupancy measures respec-
tively. I would like to propose optimization-based algorithms tailored to this
problem and study their convergence rate and sample complexity.

8.2.3 Statistical RL with General Function Approximation

It has been shown empirically that combining RL algorithms with neural
network function approximators could lead to impressive performance on var-
ious tasks. However, the design of provable efficient RL algorithm with such
general function classes remains elusive. In the past few years, there was some
progress on this topic: Jiang et al. [2017] and Dong et al. [2020] introduce al-
gorithms whose performance guarantees can be upper bounded in terms of the
Bellman rank. However, these algorithms are not computationally efficient. Ay-
oub et al. [2020] and Wang et al. [2020] propose algorithms whose regret bounds
scale with the Eluder dimension. However, we don’t know if there are interest-
ing function classes, beyond linear and generalized linear functions, with finite
Eluder dimension.

In order to understand the role of function approximation in RL, the research
question I would like to explore is

Could we develop better capacity measures of function class, adapted to the rich
temporal structures of RL?

127

A Appendix from Chapter 3

A.1 PROOF OF PROPOSITION 1
We compute E[Ak] and E[bk] where expectation are over trajectories drawn

by executing the behavior policy: sk, ak, rk, sk+1, . . . st, at, rt, st+1 . . . where sk, ak ∼
d, rt = r(st, at), st+1 ∼ p(· | st, at). We note that under stationarity of d,
E[Ak] = E[A0] and E[bk] = E[b0]. Let θ, θ′ ∈ Rd and let Q = Φθ and Q′ = Φθ′

their respective Q-functions.

θ′>E[Ak]θ

= E

[
∞

∑
t=0

(λγ)t

(
t

∏
i=1

κi

)
Q′(s0, a0)[γEπQ(st+1, .)−Q(st, at)]

>
]

=
∞

∑
t=0

(λγ)tEs0:t+1
a0:t

[
Q′(s0, a0)

(
t

∏
i=1

κi

)
[γEπQ(st+1, .)−Q(st, at)]

>
]

=
∞

∑
t=0

(λγ)tEs0:ta0:t

[
Q′(s0, a0)

(
t

∏
i=1

κi

)
(γEst+1 [EπQ(st+1, .)|st, at]−Q(st, at))

]

=
∞

∑
t=0

(λγ)tEs0:ta0:t

[
Q′(s0, a0)

(
t

∏
i=1

κi

)
(γ ∑

s′∈S
∑

a′∈A
p(s′ | st, at)π(a′|s′)Q(s′, a′)−Q(st, at))

]

=
∞

∑
t=0

(λγ)tEs0:ta0:t

[
Q′(s0, a0)

(
t

∏
i=1

κi

)
(γPπQ(st, at)−Q(st, at))

]

=
∞

∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q′(s0, a0)

(
t−1

∏
i=1

κi

)
× ∑

s′∈S
∑

a′∈A
p(s′ | st−1, at−1)κ(a′, s′)µ(a′|s′)(γPπQ(s′, a′)−Q(s′, a′))

]
=

∞

∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q′(s0, a0)

(
t−1

∏
i=1

κi

)
Pκµ(γPπ − I)Q(st−1, at−1)

]

= Es0,a0

[
Q′(s0, a0)

∞

∑
t=0

(λγ)t(Pκµ)t(γPπ − I)Q(x0, a0)

]

128

= Es0,a0

[
Q′(s0, a0)(I − λγPκµ)−1(γPπ − I)Q(s0, a0)

]
= ∑

s∈S
∑

a∈A
ξ(s, a)Q′(s, a)(I − λγPκµ)−1(γPπ − I)Q(s, a)

= Q′>Ξ(I − λγPκµ)−1(γPπ − I)Q

So, θ′>E[Ak]θ = θ′>Φ>Ξ(I − λγPκµ)−1(γPπ − I)Φθ ∀θ, θ′ ∈ Rd, which im-
plies that:

E[Ak] = Φ>Ξ(I − λγPκµ)−1(Pπ − I)Φ

θ>E[bk]

= E[
∞

∑
t=0

(λγ)t

(
t

∏
i=1

κi

)
rtQ(s0, a0)] =

∞

∑
t=0

(λγ)tEs0:ta0:t

[
Q(s0, a0)

(
t

∏
i=1

κi

)
r(st, at)

]

=
∞

∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q(s0, a0)

(
t−1

∏
i=1

κi

)
∑

s′∈S
∑

a′∈A
p(s′ | st−1, at−1)κ(a′, s′)µ(a′ | s′)r(s′, a′)

]

=
∞

∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q(s0, a0)

(
t−1

∏
i=1

κi

)
Pκµr(s′, a′)

]
= Es0,a0

[
Q(s0, a0)(I − λγPκµ)−1r(s0, s0)

]
= ∑

s∈S
∑

a∈A
ξ(s, a)Q(s, a)(I − λγPκµ)−1r(s, a) = Q>Ξ(I − λγPκµ)−1r

So, θ>E[bk] = θ>Φ>Ξ(I − λγPκµ)−1r ∀θ ∈ Rd, which implies that:

E[bk] = Φ>Ξ(I − λγPκµ)−1r

129

A.2 PROOF OF PROPOSITION 2

MSPBE(θ)

=
1
2
‖ΠµR(Φθ)−Φθ||2Ξ

=
1
2
‖Πµ (R(Φθ)−Φθ) ‖2

Ξ

=
1
2
(Πµ (R(Φθ)−Φθ))> Ξ (Πµ (R(Φθ)−Φθ))

=
1
2

(
Φ>Ξ (R(Φθ)−Φθ)

)>
(Φ>ΞΦ)−1Φ>Ξ

(
Φ(Φ>ΞΦ)−1Φ>Ξ(R(Φθ)−Φθ)

)
=

1
2
‖Φ>Ξ (R(Φθ)−Φθ) ‖2

M−1

=
1
2
‖Φ>Ξ

(
(I − λγPµπ)−1(T π − λγPµπ)Φθ −Φθ

)
‖2

M−1

=
1
2
‖Φ>Ξ(I − λγPµπ)−1(γPπ − I)Φθ + Φ>Ξ(I − λγPµπ)−1r‖2

M−1

=
1
2
‖Aθ + b‖2

M−1

A.3 PROOF OF PROPOSITION 3
Let’s show that E[Âk] = A. Let’s ∆t denotes [γEπφ(st+1, .)> − φ(st, at)>]

A = E

[
∞

∑
t=k

(λγ)t−k

(
t

∏
i=k+1

κi

)
φ(sk, ak)∆t

]

= E

[
φ(sk, ak)∆k +

∞

∑
t=k+1

(λγ)t−k

(
t

∏
i=k+1

κi

)
φ(sk, ak)∆t

]

= E

[
φ(sk, ak)∆k +

∞

∑
t=k

(λγ)t−k+1

(
t+1

∏
i=k+1

κi

)
φ(sk, ak)∆t+1

]
= E

[
φ(sk, ak)∆k + λγκ(sk+1, ak+1)φ(sk, ak)∆k+1

+
∞

∑
t=k+1

(λγ)t−k+1

(
t+1

∏
i=k+1

κi

)
φ(sk, ak)∆t+1

]

130

(?)
= E

[
φ(sk, ak)∆k + λγκ(sk, ak)φ(sk−1, ak−1)∆k

+
∞

∑
t=k+1

(λγ)t−k+1

(
t+1

∏
i=k+1

κi

)
φ(sk, ak)∆t+1

]
= E

[
∆k(φ(sk, ak) + λγκ(sk, ak)φ(sk−1, ak−1)

+ (λγ)2κ(sk, ak)κ(sk−1, ak−1)φ(sk−2, ak−2) + ...)
]

= E

[
∆k

(
k

∑
i=0

(λγ)k−i

(
k

∏
j=i+1

κj

)
φ(xi, ai)

)]
= E[∆kek] = E[Âk]

we have used in the line (?) the fact that E[κ(sk+1, ak+1)φ(skak)∆k+1] =
E[κ(sk, ak)φ(sk−1ak−1)∆k] thanks to the stationarity of the distribution d.
we have also denote by ek the following vector:

ek =
k

∑
i=0

(λγ)k−i

(
k

∏
j=i+1

κj

)
φ(si, ai)

= λγκk

(
k−1

∑
i=0

(λγ)k−1−i

(
k−1

∏
j=i+1

κj

)
φ(si, ai)

)
+ φ(sk, ak)

= λγκkek−1 + φ(sk, ak)

Vector ek corresponds to the eligibility traces defined in the proposition. Simi-
larly, we could show that Eµ[b̂k] = b.

A.4 CONVERGENCE RATE ANALYSIS

Let’s recall the key quantities defined in the main article:

ρ , λmax(A>M−1A), δ , λmin(A>M−1A), LG ,
∥∥∥E
[

Ĝ>k Ĝk | Fk

]∥∥∥
We will make use of spectral properties of the matrix G provided in the appendix
A of [Du et al., 2017]. it was shown that if we set β = 8ρ

λmin(M)
, the matrix G is

diagonalizable with all its eigenvalues real and positive. It is a straightforward
application of result from [Benzi and Simoncini, 2006]
Moreover, it was proved that G can be written as: G = QΛQ−1 where Λ is a

131

diagonal matrix whose diagonal entries are the eigenvalues of G and Q con-
sists of it eigenvectors as columns such that the condition number of Q is upper
bounded by the one of M as follows:

c(Q)2 ≤ 8c(M)

Finally, the paper showed upper and lower bounds for the eigenvalues of G:

λmax(G) ≤ 9c(M)ρ

λmin(G) ≥ 8
9

δ

Let’s recall our updates:

zk+1 = zk − αk(Ĝkzk − ĝk)

By subtracting z? from both sides on the later equation and using the optimality
condition Gz? + g = 0:

∆k+1 = ∆k − αkG∆k + αk
[
Gzk − g− (Ĝkzk − ĝk)

]
where ∆k , zk − z?

(A.4.1)
By multiplying both sides by Q−1 and using the fact that Q−1G = ΛQ−1:

Q−1∆k+1 = Q−1∆k − αkQ−1G∆k + αkQ−1 [Gzk − g− (Ĝkzk − ĝk)
]

= (I − αkΛ)Q−1∆k + αkQ−1 [Gzk − g− (Ĝkzk − ĝk)
]

E

[∥∥∥Q−1∆k+1

∥∥∥2
| Fk−1

]
= E

[∥∥∥(I − αk)Q−1∆k + αkQ−1 [Gzk − g− (Ĝkzk − ĝk)
] ∥∥∥2
| Fk−1

]
= E

[∥∥∥(I − αkΛ)Q−1∆k

∥∥∥2
| Fk−1

]
+ 2E

[〈
(I − αk)Q−1∆k, αkQ−1 [Gzk − g− (Ĝkzk − ĝk)

] 〉
| Fk−1

]
+ α2

kE

[∥∥∥Q−1 [Gzk − g− (Ĝkzk − ĝk)
] ∥∥∥2
| Fk−1

]
=
∥∥∥(I − αkΛ)Q−1∆k

∥∥∥2
+ α2

kE

[∥∥∥Q−1 [Gzk − g− (Ĝkzk − ĝk)
] ∥∥∥2
| Fk−1

]
≤
∥∥∥I − αkΛ

∥∥∥2∥∥∥Q−1∆k

∥∥∥2
+ α2

kE
[
‖Q−1(Ĝkzk − ĝk)‖2 | Fk−1

]
=
∥∥∥I − αkΛ

∥∥∥2∥∥∥Q−1∆k

∥∥∥2
+ α2

kE
[∥∥∥Q−1(Ĝk∆k + Ĝkz? − ĝk)‖2 | Fk−1

]
≤
∥∥∥I − αkΛ

∥∥∥2∥∥∥Q−1∆k

∥∥∥2
+ 2α2

kE

[∥∥∥Q−1Ĝk∆k

∥∥∥2
| Fk−1

]
+ 2α2

kE

[∥∥∥Q−1(Ĝkz? + ĝk)
∥∥∥2
| Fk−1

]
132

we use in the third line the fact that E
[
Ĝk | Fk−1

]
= G and E [ĝk−1 | Fk−1] = g.

‖I − αkΛ‖2 = max{|1− αkλmin(G)|2, |1− αkλmax(G)|2}
≤ 1− 2αkλmin + α2

kλ2
max

≤ 1− 2αk
8
9

δ + α2
k92c(M)2ρ2

≤ 1− 2αkδ′ + α2
k92c(M)2ρ2 where δ′ ,

8
9

δ

E

[∥∥∥Q−1Ĝk∆k

∥∥∥2
| Fk−1

]
≤ ‖Q−1‖2E

[∥∥∥Ĝk∆k

∥∥∥2
| Fk−1

]
= ‖Q−1‖2E

[
∆>k Ĝ>k Ĝk∆k | Fk−1

]
= ‖Q−1‖2∆>k E

[
Ĝ>k Ĝk | Fk−1

]
∆k

≤ ‖Q−1‖2
∥∥∥E
[

Ĝ>k Ĝk | Fk

] ∥∥∥2
∆>k ∆k

≤ ‖Q−1‖2LG‖∆k‖2

= ‖Q−1‖2LG‖QQ−1∆k‖2

≤ ‖Q−1‖2‖Q‖2LG‖Q−1∆k‖2

≤ c(Q)2LG‖Q−1∆k‖2

So, we have:

E
[
‖Q−1∆k+1‖2

]
≤ (1− 2αkδ′ + α2

k92c(M)2ρ2 + 16α2
kc(M)LG)E

[
‖Q−1∆k‖2

]
+ 2α2

k‖Q−1‖2E
[
‖Ĝkz? − ĝk)‖2

]
By selecting αk = 2δ′

δ′2(k+2)+2×92c(M)2ρ2+32c(M)LG
= 2δ′

δ′2(k+2)+ζ
with ζ = 2 ×

133

92c(M)2ρ2 + 32c(M)LG, we get:

E
[
‖Q−1∆k+1‖2

]
≤ (1− δ′αk)E

[
‖Q−1∆k‖2

]
+ 2α2

k‖Q−1‖2E
[
‖Ĝkz? − ĝk‖2

]
=

δ′2k + ζ

δ′2(k + 2) + ζ
E
[
‖Q−1∆k‖2

]
+

8δ′2

(δ′2(k + 2) + ζ)2‖Q
−1‖2E

[
‖Ĝkz? + ĝk)‖2

]
≤
(

k

∏
i=0

δ′2i + ζ

δ′2(i + 2) + ζ

)
E
[
‖Q−1∆0‖2

]
+ 8δ′2

k

∑
i=0

(
k

∏
j=i

δ′2 j + ζ

δ′2(j + 2) + ζ

)
1

(δ′2(i + 2) + ζ)2‖Q
−1‖2E

[
‖Ĝiz? + ĝi)‖2

]
=

ζ(δ′2 + ζ)

(δ′2(k + 1) + ζ)((δ′2(k + 2) + ζ)
E
[
‖Q−1∆0‖2

]
+ 8δ′2

k

∑
i=0

(δ′2(i + 1) + ζ)(δ′2i + ζ)

(δ′2(k + 1) + ζ)((δ′2(k + 2) + ζ)

1
(δ′2(i + 2) + ζ)2‖Q

−1‖2E
[
‖Ĝiz? − ĝi‖2

]
≤ ζ(δ′2 + ζ)

(δ′2(k + 1) + ζ)(δ′2(k + 2) + ζ)
E
[
‖Q−1∆0‖2

]
+ 8δ′2

k

∑
i=0

1
(δ′2(k + 1) + ζ)(δ′2(k + 2) + ζ)

‖Q−1‖2E
[
‖Ĝiz? − ĝi‖2

]
≤ (δ′ + ζ)2

(δ′2(k + 1) + ζ)2 E
[
‖Q−1∆0‖2

]
+ 8

δ′2(k + 1)
(δ′2(k + 1) + ζ)(δ′2(k + 2) + ζ)

‖Q−1‖2 sup
i=0...k

E
[
‖Ĝiz? + ĝi)‖2

]
≤ (δ′ + ζ)2

(δ′2(k + 1) + ζ)2 E
[
‖Q−1∆0‖2

]
+

8
(δ′2(k + 1) + ζ)

‖Q−1‖2 sup
i=0...k

E
[
‖Ĝiz? − ĝi‖2

]
≤ (δ′ + ζ)2‖Q−1‖2

(δ′2(k + 1) + ζ)2 E
[
‖∆0‖2

]
+

8σ2‖Q−1‖2

(δ′2(k + 1) + ζ)
(1 + ‖z?‖2)

Moreover, we have E
[
‖∆k+1‖2] = E

[
‖QQ−1∆k+1‖2] ≤ ‖Q‖2E

[
‖Q−1∆k+1‖2].

134

Then, we get:

E
[
‖∆k+1‖2

]
≤ (δ′ + ζ)2c(Q)2

(δ′2(k + 1) + ζ)2 E
[
‖∆0‖2

]
+

8σ2c(Q)2

(δ′2(k + 1) + ζ)
(1 + ‖z?‖2)

≤ 8(δ′ + ζ)2c(M)

(δ′2(k + 1) + ζ)2 E
[
‖∆0‖2

]
+

82σ2c(M)

(δ′2(k + 1) + ζ)
(1 + ‖z?‖2)

=
892(8δ + 9ζ)2c(M)

(82δ2(k + 1) + 92ζ)2 E
[
‖∆0‖2

]
+

92 × 82σ2c(M)

(82δ2(k + 1) + 92ζ)
(1 + ‖z?‖2)

= 92 × 8c(M)
{ (8δ + 9ζ)2E

[
‖∆0‖2]

(82δ2(k + 1) + 92ζ)2 +
8σ2(1 + ‖z?‖2)

(82δ2(k + 1) + 92ζ)

}
The overall convergence rate is then equal to O(1/k).

A.5 TRUE ON-LINE EQUIVALENCE

In van Hasselt et al. [2014], the authors derived a true on-line update for
GTD(λ) that empirically performed better than GTD(λ) with eligibility traces.
Based on this work, we derive true on-line updates for our algorithm. The gra-
dient off-policy algorithm was derived by turning the expected forward view
into an expected backward view which can be sampled. In order to derive a true
on-line update, we sample instead the forward view and then we turn the sam-
pled forward view to an exact backward view using Theorem 1 in van Hasselt
et al. [2014]. If k denotes the time horizon, we consider the sampled truncated
interim forward return:

∀t < k, Yk
t =

k−1

∑
i=t

(λγ)i−t

(
i

∏
j=t+1

κj

)
δi

where δi = ri + θ>t Eπφ(st+1, ·) − θ>t φ(st, at), which gives us the sampled
forward update of ω:

∀k < t, ωk
t+1 = ωk

t + αt(Yk
t − φ(xt, at)

>ωk
t)φ(xt, at) (A.5.1)

Proposition 9. For any k, the parameter ωk
k defined by the forward view (A.5.1) is

equal to ωk defined by the following backward view:

eω
−1 = 0, ∀k ≥ 0

eω
k = λγκkeω

k−1 + αk(1− λγκkφ(sk, ak)
>eω

k−1)φ(sk, ak)

ωk+1 = ωk + δkeω
k − αtφ(sk, ak)

>ωkφ(sk, ak)

135

Proof. The return’s temporal difference Yk+1
t −Yk

t are related through:

∀t < k, Yk+1
t −Yk

t =
k

∑
i=t

(λγ)i−t(
i

∏
j=t+1

κj)δi −
k−1

∑
i=t

(λγ)i−t(
i

∏
j=t+1

κj)δi

= (λγ)k−t

(
k

∏
j=t+1

κj

)
δk

= λγκk+1

(
(λγ)k−(t+1)

(
k

∏
j=t+2

κj

)
δk

)
= λγκk+1

(
Yk+1

t+1 −Yk
t+1

)
We could then apply Theorem 1 of van Hasselt et al. [2014] that give us the
following backward view:

e0 = α0φ(x0, a0)

et = λγκtet−1 + αt(1− λγκkφ(st, at)
>et−1)φ(st, at) ∀t > 0

ωt+1 = ωt + (Yt+1
t −Yt

t)et + αt(Yt
t − φ(st, at)

>ωt)φ(st, at)

(?)
= ωt + δtet − αtφ(st, at)

>ωtφ(st, at)

We used in the line (?) that Yt+1
t = δt and Yt

t = 0

The resulting detailed procedure is provided in Algorithm 8.
Note that when λ is equal to zero, the Algorithm 1 and 2 both reduce to the

same update:

ωk+1 = ωk + αk(δk − φ(sk, ak)
>ωk)φ(sk, ak)

θk+1 = θk − αkφ(sk, ak)
>wk(γEπ[φ(sk+1, .)]− φ(sk, ak)])

136

Algorithm 8 Gradient Off-policy with eligibility/Dutch traces

Given: target policy π, behavior policy µ
1: Initialize θ0 and ω0
2: for n = 0 . . . do
3: set eθ

−1 = eω
−1 = 0

4: for k = 0 . . . end of episode do
5: Observe sk, ak, rk, sk+1 according to µ
6: /* Update traces
7: ek = λγκ(sk, ak)ek−1 + φ(sk, ak)
8: /* Update Dutch traces
9: eω

k = λγκkeω
k−1 + αk

(
1− λγκkφ(sk, ak)

>eω
k−1

)
φ(sk, ak)

10: /* Update parameters
11: δk = rk + γθ>k Eπφ(sk+1, .)− θ>k φ(sk, ak)

12: ωk+1 = ωk + δkeω
k − αkφ(sk, ak)

>ωkφ(sk, ak)

13: θk+1 = θk − αkω>k ek (γEπ[φ(sk+1, .)]− φ(sk, ak))
14: end for
15: end for

137

B Appendix For Chapter 4

B.1 PROOF OF LEMMA 2
According to performance difference lemma 1, we have

J(π′) = J(π) + Es∼dπ′
ρ

Ea∼π′(·|s) [A
π(s, a)]

= J(π) +

(
Es∼dπ

ρ
Ea∼π′(·|s) [A

π(s, a)] +
∫

s∈S
Ea∼π′(·|s) [A

π(s, a)] (dπ′
ρ (s)− dπ

ρ (s))ds
)

≥ J(π) +

(
Es∼dπ

ρ
Ea∼π′(·|s) [A

π(s, a)]−
∫

s∈S
|Ea∼π(·|s) [A

π(s, a)] | · |dπ′
ρ (s)− dπ

ρ (s)|ds
)

≥ J(π) +

(
Es∼dπ

ρ
Ea∼π′(·|s) [A

π(s, a)]− επ
∫

s∈S
|dπ′

ρ (s)− dπ
ρ (s)|ds

)
≥ J(π) +

(
Es∼dπ

ρ
Ea∼π′(·|s) [A

π(s, a)]− επDTV(dπ′
ρ ‖dπ

ρ)
)

= Lπ(π
′)− επDTV(dπ′

ρ ‖dπ
ρ)

where επ = maxs |Ea∼π′(·|s) [Aπ(s, a)] | and DTV is total variation distance.
The first inequality follows from Cauchy-Schwartz inequality.

B.2 SCORE FUNCTION ESTIMATOR OF THE

GRADIENT WITH RESPECT TO THE POLICY

∇π′E s∼ρ
a∼π′

[g(s, a)] = ∇π′

∫
g(s, a)ρ(s)π′(a | s)

=
∫

g(s, a)ρ(s)∇π′π
′(a | s)

= E s∼ρ
a∼π′

[g(s, a)∇π′ log π′(a | s)]

138

∇π′E(s,a)∼µ
πi
ρ

[
φ?
(
(g− γPπ′g)(s, a)

)]
= E

(s,a)∼µ
πi
ρ

[
∇π′φ

?
(
(g− γPπ′g)(s, a)

)]
= E

(s,a)∼µ
πi
ρ

[∂φ?

∂t

(
(g− γPπ′g)(s, a)

)
∇π′(g− γPπ′g)

]
= −γE

(s,a)∼µ
πi
ρ

[∂φ?

∂t

(
(g− γPπ′g)(s, a)

)
∇π′

∫
g(s′, a′)P(s′ | s, a)π′(a′ | s′))

]
= −γE

(s,a)∼µ
πi
ρ

[∂φ?

∂t

(
(g− γPπ′g)(s, a)

)
Es′∼P(·|s,a)

a′∼π′(·|s′)

[
g(s′, a′)∇π′ log π′(a′ | s′)

]]

B.3 COMPARISON WITH ALGAEDICE
Both the recent AlgaeDICE [Nachum et al., 2019b] and our present work pro-

pose regularisation based on discounted state-action visitation distribution but
in different ways. Firstly, AlgaeDICE is initially designed to find an optimal
policy given a batch of training data. They alter the objective function itself i.e
the policy performance J(π) by adding the divergence between the discounted
state-action visitation distribution and training distribution, while our approach
adds the divergence term to Lπ(π′). The latter is a first order Taylor approxima-
tion of the policy performance J(π′). Therefore, our approach could be seen as
a mirror descent that uses the divergence as a proximity term. Secondly, their
training objective is completely different from ours. Their method ends up being
an off-policy version of the actor-critic method.

We implemented the AlgaeDICE min-max objective to replace our surrogate
min-max objective in the PPO training procedure i.e at each iteration, we sample
rollouts from the current policy and update the actor and the critic of AlgaeDICE
for 10 epochs. Empirically, we observed that AlgaeDICE objective is very slow
to train in this setting. This was expected as it is agnostic to training data while
our method leverages the fact that the data is produced by the current policy and
estimates advantage using on-policy multi-step Monte Carlo. So our approach
is more suitable than AlgaeDICE in this setting. However, AlgaeDICE, as an
off-policy method, would be better when storing all history of transitions and
updating both actor and critic after each transition, as shown in Nachum et al.
[2019b].

139

B.4 ADDITIONAL EMPIRICAL RESULTS ON

MUJOCO

See Figure B.1

Figure B.1: Our method with KL divergences in comparison to PPO and TRPO on MuJoCo, with
10 seeds. Standard error shaded.

140

B.5 HYPERPARAMETERS

For the OpenAI Gym environments we use the default hyperparameters in
Kostrikov [2018].

Parameter name MuJoCo Atari
Number of minibatches 4 4

Discount γ 0.99 0.99
Optimizer Adam Adam

Learning rate 3e-4 2.5e-4
PPO clip parameter 0.2 0.1

PPO epochs 10 4
Number of processes 1 8

GAE λ 0.95 0.95
Entropy coef 0 0.01

Value loss coef 0.5 0.5
Number of forward steps per update 2048 128

Table B.1: A complete overview of used hyper parameters for all methods.

141

C Appendix For Chapter 5

C.1 OMITTED PROOFS FOR THE LIPSCHITZ

SETTING

C.1.1 Proof of Lemma 3

(a) It is obvious that ∪B∈Bk
h
domk

h(B) ⊂ ∪B∈Bk
h
B. Let x ∈ ∪B∈Bk

h
B. Con-

sider a smallest radius ball B in Bk
h that contains x. Hence, x ∈ domk

h(B).
This shows that ∪B∈Bk

h
B ⊂ ∪B∈Bk

h
domk

h(B) and consequently ∪B∈Bk
h
B =

∪B∈Bk
h
domk

h(B). Moreover, ∪B∈Bk
h
B = S × A as it contains the initial ball

which covers the whole space.

(b) Let (B, B′) ∈ Bk
h two balls of radius r > 0. Without loss of generality, we

suppose that B is created in episode τ ≤ k with parent ball Bpa and B′ is
created before τ. According to the activation step in ZOOMRL algorithm,
(sτ

h , aτ
h) is the center of B and (sτ

h , aτ
h) ∈ domτ

h(Bpa). By the definition of a
ball’s domain, (sτ

h , aτ
h) /∈ B′, which proves that dist(B, B′) > r.

142

C.1.2 Proof of Lemma 4

Proof. We fix B ∈ Bk
h. For notation simplicity, denote t = nk

h(B). We have:

Q̂
k
h(B) = (1− αt) · Q̂

kt
h (B) + αt ·

(
rh(xkt

h , akt
h) + V̂

kt
h+1(xkt

h+1) + ut + 2L · rad(B)
)

= (1− αt) ·
(
(1− αt−1) · Q̂

kt−1
h (B)

+ αt−1 ·
(

rh(xkt−1
h , akt−1

h) + V̂
kt−1
h+1(xkt−1

h+1) + ut−1 + 2L · rad(B)
))

+ αt ·
(

rh(xkt
h , akt

h) + V̂
kt
h+1(xkt

h+1) + ui + 2L · rad(B)
)

= . . .

=
t

∏
i=1

(1− αi)H +
t

∑
i=1

αi

t

∏
j=i+1

(1− αj)
(

rh(xki
h , aki

h) + V̂
ki
h+1(xki

h+1) + ui + 2L · rad(B)
)

= α0
t · H +

t

∑
i=1

αi
t ·
(

rh(xki
h , aki

h) + V̂
ki
h+1(xki

h+1) + ui + 2L · rad(B)
)

,

where the first step follows from the update rule of Q̂
k
h, the second step follows

from the update rule for Q̂
kt−1
h , the third step follows from recursively represent-

ing Q̂
ki
h using Q̂

ki−1
h until i = 1, and the last step follows from the definition of α0

t
and αi

t.

C.1.3 Proof of Lemma 5

Proof. Let B ∈ Bk
h and (s, a) ∈ domk

h(B).
Since ∑t

i=0 αi
t = 1, we have that Q?

h(s, a) = α0
t Q?

h(s, a) + ∑t
i=1 αi

tQ
∗
h(s, a).

By the Lipschitz assumption 4 and the fact ∀i ∈ [t], (ski
h , aki

h) ∈ B and (s, a) ∈
B, we have:

|Q?
h(s

ki
h , aki

h)−Q?
h(s, a)| ≤ L · dist((xki

h , aki
h), (x, a)) ≤ 2L · rad(B).

Then we have

Q?
h(s, a) ≥ α0

t Q?
h(s, a) +

t

∑
i=1

αi
t

(
Q?

h(s
ki
h , aki

h)− 2L · rad(B)
)

(C.1.1)

Q?
h(s, a) ≤ α0

t Q?
h(s, a) +

t

∑
i=1

αi
t

(
Q?

h(s
ki
h , aki

h) + 2L · rad(B)
)

. (C.1.2)

By Bellman equation, we have Q?
h(s

ki
h , aki

h) = rh(s
ki
h , aki

h) + [PhV?
h+1](s

ki
h , aki

h).

Recall [P̂ki
h Vh+1](s

ki
h , aki

h) = Vh+1(s
ki
h+1), we have:

Q?
h(s

ki
h , aki

h) = rh(s
ki
h , aki

h) + [(Ph − P̂ki
h)V?

h+1](s
ki
h , aki

h) + V?
h+1(s

ki
h+1).

143

Substitute the above equality into Eq. (C.1.1) and (C.1.2), we have:

Q?
h(s, a) ≥ α0

t Q?
h(x, a)) +

t

∑
i=1

αi
t

(
rh(xki

h , aki
h) + [(Ph − P̂ki

h)V?
h+1](xki

h , aki
h)

+ V?
h+1(xki

h+1)− 2L · rad(B)
)

(C.1.3)

and

Q?
h(s, a) ≤ α0

t Q?
h(s, a)) +

t

∑
i=1

αi
t

(
rh(xki

h , aki
h) + [(Ph − P̂ki

h)V?
h+1](xki

h , aki
h)

+ V?
h+1(xki

h+1) + 2L · rad(B)
)

(C.1.4)

Subtracting the formula in Lemma 4 from the two above inequalities, we
have:

Q̂
k
h(B)−Q?

h(s, a) ≥
t

∑
i=1

αi
t

(
(V̂

ki
h+1−V?

h+1)(xki
h+1) + [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h) + ui

)
(C.1.5)

and

Q̂
k
h(B)−Q?

h(s, a) ≤ α0
t H +

t

∑
i=1

αi
t

(
(V̂

ki
h+1−V?

h+1)(xki
h+1) + [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

+ ui + 4L · rad(B)
)

(C.1.6)

High probability bounds on the sampling noise

To ensure that our estimates concentrate around the true optimal Q-values,
we need to ensure that the noise terms [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h), due to the next
states sampling, are not large.

For each ball B ∈ Bk
h, ki is the episode of which B was selected as step

h for the i-th time. Let Ft be the σ-field generated by all the random vari-
ables until episode t, step h. As {ki = t} ∈ Ft, the random variable ki is a
stopping time. By definition for any i ≥ 0, ki ≤ ki+1 so the σ-algebra Fki
at time ki satisfies Fki ⊂ Fki+1

(see Lemma 17). Let’s denote Gi = Fτi+1 .
Then, (Gi)i is a filtration. Moreover, via optional stopping [Chow and Teicher,

1998],
(

I(ki ≤ K)[(P̂ki
h − P)V∗h+1](xki

h , aki
h)
)τ

i=1
is a 2H-bounded martingale dif-

ference sequence w.r.t the filtration (Gi)i≥0. By Azuma-Hoeffding 15, we have
∀t > 0, τ ∈ [K]

Pr

[∣∣∣∣∣ τ

∑
i=1

αi
τ · I(ki ≤ K) · [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(−t2

8H2 ∑τ
i=1(α

i
τ)2

)
144

Let p ∈ (0, 1), by setting 2 exp
(

−t2

8H2 ∑τ
i=1(α

i
τ)2

)
= p

2HK2 , we have that for all τ ∈ [k]

with probability at least 1− p
2HK2 :

∣∣∣∣∣ τ

∑
i=1

αi
τ · I(ki ≤ K) · [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

∣∣∣∣∣ ≤ 2
√

2H

√
τ

∑
i=1

(αi
τ)2 ln(4HK2/p)

≤ 4

√
H3 ln(4HK2/p)

τ
= 4

√
H3ı
τ

where the second inequality follows from ∑τ
i=1(α

i
τ)

2 ≤ 2H
τ for any τ > 0 (see

lemma 16). Then by union bound over τ ∈ [K], we have with probability at least
1− p

2HK

∀τ ∈ [K],

∣∣∣∣∣ τ

∑
i=1

αi
τ · I(ki ≤ K) · [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

∣∣∣∣∣ ≤ 4

√
H3ı
τ

Since the above inequality holds for all τ ∈ [K], it also holds for τ = t = nh
h(B) ≤

K. We also have that I(ki ≤ K) = 1 for any i ≤ nh
h(B). As |Bk

h| ≤ K for all
(h, k) ∈ [H]× [K], using union bound for all balls and for all steps, we have with
probability at least 1− p/2: ∀(h, k) ∈ [H]× [K] and for all ball B ∈ Bk

h,∣∣∣∣∣ t

∑
i=1

αi
t · [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

∣∣∣∣∣ ≤ 4

√
H3ı

t
, where t = nk

h(B) (C.1.7)

According to Lemma 16, we have 1/
√

t ≤ ∑i=1
αi

t
t ≤ 2/

√
t. This implies

4

√
H3ı

t
≤ 4
√

H3ı ·
t

∑
i=1

αi
t

t
=

t

∑
i=1

αi
tui = βt/2 ≤ 8

√
H3ı

t

Then Eq (C.1.7) gives that, with probability at least 1− p/2: ∀(h, k) ∈ [H]×
[K] and for all ball B ∈ Bk

h,∣∣∣∣∣ t

∑
i=1

αi
t · [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

∣∣∣∣∣ ≤ βt/2, where t = nk
h(B) (C.1.8)

Optimism of Q-values: Lemma 5 (a)

We proceed by induction. By definition, we have Q̂
k
H+1 = Q∗H+1 = 0 which

implies Qk
H+1(B)−Q∗H+1(s, a) = 0. Assume that Qk

h+1(B)−Q∗h+1(s, a) ≥ 0.

145

Let i ∈ [1, t], We have V?
h+1(s

ki
h+1) = Q?

h+1(s
ki
h+1, π?

h+1(s
ki
h+1)). As the set of

domains of active balls covers the entire space, there exists B? ∈ Bk
h+1 such

that (ski
h+1, π?

h+1(s
ki
h+1)) ∈ domk

h+1(B∗). By the definition of index, we have

indexk
h+1(B?) = L · rad(B?) + Q̂

k
h+1(B̃?) + L · dist(B̃?, B?) for some active ball

B̃?.
We have

V̂
k
h+1(s

ki
h+1)−V?

h+1(s
ki
h+1)

= min{H, max
B∈relk

h+1(s
ki
h+1)

indexk
h+1(B)} −Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ max
B∈relk

h+1(s
ki
h+1)

indexk
h+1(B)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ indexk
h+1(B?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

= L · rad(B?) + Q̂
k
h+1(B̃?) + L · dist(B̃?, B?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ L · rad(B?) + Q?
h+1(sB̃? , aB̃?) + L · dist(B̃?, B?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ L · rad(B?) + Q?
h+1(sB? , aB?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ 0,

where (sB? , aB?) and (sB̃? , aB̃?) denote respectively the centers of balls B? and B̃?.
The first inequality follows from Q?

h+1(s, a) ≤ H for any state-action pair (s, a).
The third inequality follows from the induction hypothesis. The fourth and the
last inequalities follow from Lipschitz assumption 4

Therefore, we have

Qk
h(B)−Q∗h(s, a) ≥

t

∑
i=1

αi
t ·
(
(V̂

ki
h+1−V?

h+1)(s
ki
h+1) + [(P̂ki

h − Ph)V?
h+1](s

ki
h , aki

h) + ui

)
≥ −βt/2 + βt/2 = 0.

146

Upper bound: lemma 5 (b)

We have:

Q̂
k
h(B)−Q?

h(s, a)

≤ α0
t · H +

t

∑
i=1

αi
t ·
(
(Vki

h+1 −V∗h+1)(xki
h+1) + [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h) + ui + 4r(B)
)

.

≤ α0
t H +

t

∑
i=1

αi
t · (V̂

ki
h+1−V∗h+1)(xki

h+1) + βt/2 +
t

∑
i=1

αi
tui + 4L

t

∑
i=1

αi
t rad(B)

≤ α0
t H + βt + 4L · rad(B) +

t

∑
i=1

αi
t · (V̂

ki
h+1−V∗h+1)(xki

h+1),

where the second inequality follows from the inequality C.1.8. The third in-
equality follows from ∑t

i=1 αi
t ≤ 1

C.1.4 Proof of lemma 7

Let Bk
h the ball selected at step h of episode k and Binit be the initial ball of

radius one that covers the whole space. We need to distinguish between cases
where Bk

h = Binit or not. By the selection step in ZOOMRL algorithm, we have
maxB∈relk

h(s
k
h)

indexk
h(B) = indexk

h(Bk
h) and πk(sk

h) = ak
h.

1. Case of Bk
h 6= Binit: We denote Bk,pa

h the parent of Bk
h.

δk
h = (V̂

k
h−Vπk

h)(sk
h)

≤ max
B∈relk

h(s
k
h)

indexk
h(B)−Vπk

h (sk
h)

= indexk
h(Bk

h)−Qπk
h (sk

h, ak
h)

≤ L · rad(Bk
h) + Q̂

k
h(Bk,pa

h) + L · dist(Bk,pa
h , Bk

h)−Qπk
h (sk

h, ak
h)

≤ L · rad(Bk
h) + Q̂

k
h(Bk,pa

h) + L · rad(Bk,pa
h)−Qπk

h (sk
h, ak

h)

= 3L · rad(Bk
h) + Q̂

k
h(Bk,par

h)−Q∗h(s
k
h, ak

h)︸ ︷︷ ︸
q1

+(Q∗h −Qπk
h)(sk

h, ak
h)

The third inequality follows from the fact that the center of Bk
h is in Bk,pa

h
and the last equality follows from rad(Bk,pa

h) = rad(Bk
h).

147

Since (xk
h, ak

h) ∈ dom(Bk
h) ⊂ Bk,pa

h , we have by Lemma 5

q1 ≤ α0
nk

h(Bk,pa
h)

H + β
nk

h(Bk,pa
h)

+ 4L · rad(Bk,pa
h)

+
nk

h(Bk,par
h)

∑
i=1

αi
nk

h(Bk,pa
h)

(V
ki(Bk,pa

h)

h+1 −V∗h+1)(x
ki(Bk,pa

h)

h+1)

where we denote by ki(B) ∈ [1, nk
h(B)] the i-th episode where B was se-

lected by the algorithm at step h. As Bk,pa
h is a parent, we have nk

h(Bk,pa
h) > 0

implying that α0
nk

h(Bk,pa
h)

= I{nk
h(Bk,pa

h) = 0} = 0. Moreover, by the ac-

tivation rule, we have 1√
nk

h(Bk,pa
h)
≤ rad(Bk,pa

h), implying that β
nk

h(Bk,pa
h)
≤

16
√

H3ı
nk

h(Bk,pa
h)
≤ 16

√
H3ı rad(Bk,pa

h) = 32
√

H3ı rad(Bk
h). Consequently,

q1 ≤ (8L + 32
√

H3ı) rad(Bk
h) +

nk
h(Bk,pa

h)

∑
i=1

αi
nk

h(Bk,pa
h)

φ
ki(Bk,pa

h)

h+1

and therefore,

δk
h ≤ (11L + 32

√
H3ı) rad(Bk

h) +
nk

h(Bk,pa
h)

∑
i=1

αi
nk

h(Bk,pa
h)

φ
ki(Bk,pa

h)

h+1 + (Q∗h −Qπk
h)(sk

h, ak
h)

(C.1.9)

2. Case of Bk
h = Binit:

δk
h ≤ max

B∈relk
h(s

k
h)

indexk
h(B)−Vπk

h (sk
h)

= indexk
h(Bk

h)−Qπk
h (sk

h, ak
h)

≤ L · rad(Bk
h) + Q̂

k
h(Bk

h)−Qπk
h (sk

h, ak
h)

= L · rad(Bk
h) + Q̂

k
h(Bk

h)−Q∗h(s
k
h, ak

h) + (Q∗h −Qπk
h)(sk

h, ak
h)

≤ 5L · rad(Bk
h) + α0

nk
h(Bk

h)
H + βnk

h(Bk
h)
+

nk
h(Bk

h)

∑
i=1

αi
nk

h(Bk
h)

φ
ki(Bk

h)

h+1 + (Q∗h −Qπk
h)(sk

h, ak
h)

≤ α0
nk

h(Bk
h)

H + (5L + 16
√

H3ı) rad(Bk
h) +

nk
h(Bk

h)

∑
i=1

αi
nk

h(Bk
h)

φ
ki(Bk

h)

h+1 + (Q∗h −Qπk
h)(sk

h, ak
h)

(C.1.10)

148

The third inequality follows from lemma 5 and the last inequality follows
from the fact that rad(Bk

h) = rad(Binit) = 1

Now, we can unify the bound (C.1.9) obtained in the first case where the
algorithm selects a ball other than the initial ball and the bound (C.1.10) in sec-
ond case where the initial ball is selected. To do that, we consider, by abuse
of notation, that the initial ball is parent of itself i.e when Bk

h = Binit we have
Bk,pa

h = Binit and we take the maximum over the two bounds

δk
h ≤ α0

nk
h(Bk

h)
HI{Bk

h=Binit} + (11L + 32
√

H3ı) rad(Bk
h)

+
nk

h(Bk,pa
h)

∑
i=1

αi
nk

h(Bk,pa
h)

φ
ki(Bk,pa

h)

h+1 + (Q∗h −Qπk
h)(sk

h, ak
h) (C.1.11)

we obtain the desired result but noting that

(Q?
h −Qπk

h)(sk
h, ak

h)

= [Ph(V?
h −Vπk

h)](sk
h, ak

h)

= [(Ph − P̂h)(V?
h+1 −Vπk

h+1)](s
k
h, ak

h) + (V?
h+1 −Vπk

h+1)(s
k
h+1)

= [(Ph − P̂h)(V?
h+1 −Vπk

h+1)](s
k
h, ak

h) + (V? − V̂
πk)(sk

h+1) + (V̂
k
h+1−Vπk

h+1)(s
k
h+1)

= ξk
h+1 − φk

h+1 + δk
h+1

C.1.5 Bounding ∑H
h=1 ∑K

k=1 ξk
h+1

Lemma 12. With probability at least 1− p/2, we have

H

∑
h=1

K

∑
k=1

ξk
h+1 ≤ 4

√
2H3Kı

Let Fk,h be the σ-field generated by all the random variables until episode k,
step h. Then, ξk

h+1 = [(Ph − P̂h)(V∗h+1 − Vπk
h+1)](s

k
h, ak

h) is a martingale difference
sequence w.r.t the filtration {Fk,h}k,h≥0 bounded by 4H. By Azuma-Hoeffding

(lemma 15), we have ∀t > 0, Pr
[∣∣∣∑H

h=1 ∑K
k=1 ξk

h+1

∣∣∣ ≥ t
]
≤ 2 exp

(
−t2

32H3K

)
There-

fore,

Pr

[∣∣∣∣∣ H

∑
h=1

K

∑
k=1

ξk
h+1

∣∣∣∣∣ ≥ 4
√

2H3Kı

]
≤ 2 exp

(−32H3Kı
32H3K

)
= 2

p
4H2K2 ≤ p/2

149

Hence, with probability at least 1− p/2, we have

H

∑
h=1

K

∑
k=1

ξk
h+1 ≤ 4

√
2H3Kı

C.2 MISSPECIFIED SETTING: APPROXIMATELY

LIPSCHTIZ CASE

The proof structure is similar to the structure in Appendix B. We will par-
ticularly focus on the parts that require different treatments in the misspecified
setting.

C.2.1 Recursive Formula of Q̂
k
h(B)−Q?

h(s, a)

Let B ∈ Bk
h and (s, a) ∈ domk

h(B).
Since ∑t

i=0 αi
t = 1, we have that Q?

h(s, a) = α0
t Q?

h(s, a) + ∑t
i=1 αi

tQ
∗
h(s, a).

By the ε-approximately Lipschitz assumption 5 and the fact ∀i ∈
[t], (ski

h , aki
h) ∈ B and (s, a) ∈ B, we have:

|Q?
h(s

ki
h , aki

h)−Q?
h(s, a)| ≤ L · dist((xki

h , aki
h), (x, a)) + 2ε ≤ 2L · rad(B) + 2ε.

Then we have

Q?
h(s, a) ≥ α0

t Q?
h(s, a) +

t

∑
i=1

αi
t

(
Q?

h(s
ki
h , aki

h)− 2L · rad(B)− 2ε
)

(C.2.1)

Q?
h(s, a) ≤ α0

t Q?
h(s, a) +

t

∑
i=1

αi
t

(
Q?

h(s
ki
h , aki

h) + 2L · rad(B) + 2ε
)

. (C.2.2)

By Bellman equation, we have Q?
h(s

ki
h , aki

h) = rh(s
ki
h , aki

h) + [PhV?
h+1](s

ki
h , aki

h).

Recall [P̂ki
h Vh+1](s

ki
h , aki

h) = Vh+1(s
ki
h+1), we have:

Q?
h(s

ki
h , aki

h) = rh(s
ki
h , aki

h) + [(Ph − P̂ki
h)V?

h+1](s
ki
h , aki

h) + V?
h+1(s

ki
h+1).

Substitute the above equality into Eq. (C.2.1) and (C.2.2), we have:

Q?
h(s, a) ≥ α0

t Q?
h(s, a)) +

t

∑
i=1

αi
t

(
rh(xki

h , aki
h) + [(Ph − P̂ki

h)V?
h+1](xki

h , aki
h)

+ V?
h+1(xki

h+1)− 2L · rad(B)− 2ε
)

150

Q?
h(s, a) ≤ α0

t Q?
h(s, a)) +

t

∑
i=1

αi
t

(
rh(xki

h , aki
h) + [(Ph − P̂ki

h)V?
h+1](xki

h , aki
h)

+ V?
h+1(xki

h+1) + 2L · rad(B) + 2ε
)

Subtracting the formula in Lemma 4 from the two above inequalities, we
have:

Q̂
k
h(B)−Q?

h(s, a) ≥
t

∑
i=1

αi
t

(
(V̂

ki
h+1−V?

h+1)(xki
h+1) + [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

+ ui − 2ε
)

(C.2.3)

Q̂
k
h(B)−Q?

h(s, a) ≤ α0
t H +

t

∑
i=1

αi
t

(
(V̂

ki
h+1−V?

h+1)(xki
h+1) + [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

+ ui + 4L · rad(B) + 2ε
)

(C.2.4)

C.2.2 Bounding of Qk
h(B)−Q∗h(s, a)

Lemma 13. Suppose Assumption 5 holds. For any p ∈ (0, 1), we have βt =

2 ∑t
i=1 αi

tui ≤ 16
√

H3ı
t and, with probability at least 1 − p/2, we have that for all

(s, a, h, k) ∈ S ×A× [H]× [K] and any ball B such that (s, a) ∈ domk
h(B):

(a) Q̂
k
h(B)−Q?

h(s, a) ≥ −4(H − h + 1)ε

(b) Q̂
k
h(B) − Q?

h(x, a) ≤ α0
t · H + βt + 4L · rad(B) + 2ε + ∑t

i=1 αi
t ·

(V̂
ki
h+1−V∗h+1)(s

ki
h+1)

where t = nk
h(B) and k1, · · · , kt < k are the episodes where B was selected at step

h.

C.2.3 High Probability Bound On The Sampling Noise

The same reasoning as in the subsection C.1.3 in the exact lipschitz case gives:
with probability at least 1− p/2: ∀(h, k) ∈ [H]× [K] and for all ball B ∈ Bk

h,∣∣∣∣∣ t

∑
i=1

αi
t · [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h)

∣∣∣∣∣ ≤ βt/2, where t = nk
h(B) (C.2.5)

151

C.2.4 Approximate Optimism Of Q-values

We proceed by induction. By definition, we have Q̂
k
H+1 = Q∗H+1 = 0

which implies Qk
H+1(B) − Q∗H+1(s, a) = −4(H − (H + 1) + 1)ε. Assume that

Qk
h+1(B)−Q∗h+1(s, a) ≥ −4(H − (h + 1) + 1)ε = −4(H − h)ε.

Let i ∈ [1, t], We have V?
h+1(s

ki
h+1) = Q?

h+1(s
ki
h+1, π?

h+1(s
ki
h+1)). As the set of

domains of active balls covers the entire space, there exists B? ∈ Bk
h+1 such

that (ski
h+1, π?

h+1(s
ki
h+1)) ∈ domk

h+1(B∗). By the definition of index, we have

indexk
h+1(B?) = L · rad(B?) + Q̂

k
h+1(B̃?) + L · dist(B̃?, B?) for some ball B̃?.

We have

V̂
k
h+1(s

ki
h+1)−V?

h+1(s
ki
h+1)

= min{H, max
B∈relk

h+1(s
ki
h+1)

indexk
h+1(B)} −Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ max
B∈relk

h+1(s
ki
h+1)

indexk
h+1(B)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ indexk
h+1(B?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

= L · rad(B?) + Q̂
k
h+1(B̃?) + L · dist(B̃?, B?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ L · rad(B?)− 4(H − h)ε + Q?
h+1(sB̃? , aB̃?) + L · dist(B̃?, B?)−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ L · rad(B?)− 4(H − h)ε + Q?
h+1(sB? , aB?)− 2ε−Q?

h+1(s
ki
h+1, π?(ski

h+1))

≥ −(4(H − h) + 2)ε

Where (sB? , aB?) and (sB̃? , aB̃?) denote respectively the centers of balls B? and B̃?.
The first inequality follows from Q?

h+1(s, a) ≤ H for any state-action pair (s, a).
The third inequality follows from the induction hypothesis. The fourth and the
last inequalities follow from the assumption 5

Therefore, we have

Qk
h(B)−Q∗h(s, a) ≥

t

∑
i=1

αi
t ·
(
(V̂

ki
h+1−V?

h+1)(s
ki
h+1) + [(P̂ki

h − Ph)V?
h+1](s

ki
h , aki

h) + ui − 2ε
)

≥ −(4(H − h) + 2)ε− βt/2 + βt/2− 2ε = −4(H − h + 1)ε

152

C.2.5 Upper Bound of Q̂
k
h(B)−Q?

h(s, a)

We have:

Q̂
k
h(B)−Q?

h(s, a)

≤ α0
t · H +

t

∑
i=1

αi
t ·
(
(Vki

h+1 −V∗h+1)(xki
h+1) + [(P̂ki

h − Ph)V∗h+1](xki
h , aki

h) + ui + 4 rad(B) + 2ε
)

≤ α0
t H +

t

∑
i=1

αi
t · (V̂

ki
h+1−V∗h+1)(xki

h+1) + βt/2 +
t

∑
i=1

αi
tui +

t

∑
i=1

αi
t(4L · rad(B) + 2ε)

≤ α0
t H + βt + 4L · rad(B) + 2ε +

t

∑
i=1

αi
t · (V̂

ki
h+1−V∗h+1)(xki

h+1)

where the second inequality follows from the inequality C.2.5. The third in-
equality follows from ∑t

i=1 αi
t ≤ 1

Lemma 14 (Approximate Optimism). Following the same setting as in Lemma 13,
for any (h, k), with probability at least 1− p/2, we have for any s ∈ S :

V̂
k
h(s) ≥ V?

h (s)− (4(H − h) + 5)ε

Proof. Let s ∈ S , We have V?
h (s) = Q?

h(s, π?
h(s)). As the set of domains of ac-

tive balls covers the entire space, there exists B? ∈ Bk
h+1 such that (s, π?

h(s)) ∈
domk

h(B∗). By the definition of index, we have indexk
h(B?) = L · rad(B?) +

Q̂
k
h(B̃?) + L · dist(B̃?, B?) for some active ball B̃?.

We have

V̂
k
h(s)−V?

h (s)

= min{H, max
B∈relk

h(s)
indexk

h(B)} −Q?
h(s, π?(s))

≥ max
B∈relk

h(s)
indexk

h(B)−Q?
h(s, π?(s))

≥ indexk
h(B?)−Q?

h(s, π?(s))

= L · rad(B?) + Q̂
k
h(B̃?) + L · dist(B̃?, B?)−Q?

h(s, π?(s))
≥ L · rad(B?) + Q?

h(sB̃? , aB̃?)− 4(H − h + 1)ε + L · dist(B̃?, B?)−Q?
h(s, π?(s))

≥ L · rad(B?) + Q?
h(sB? , aB?)− 2ε− 4(H − h + 1)ε−Q?

h(s, π?(s))
≥ −4ε− 4(H − h + 1)ε = −(4(H − h) + 5)ε

Where (sB? , aB?) and (sB̃? , aB̃?) denote respectively the centers of balls B? and
B̃?. The first inequality follows from Q?

h(s, a) ≤ H for any state-action pair (s, a).
The third inequality follows from lemma 13. The fourth and the last inequalities
follow from assumption 5

153

C.2.6 Regret Analysis

By the approximate optimism of our estimates with respect to the true value
function (see lemma 14), we have with probability at least 1− p/2

REGRET(K) =
K

∑
k=1

(V∗1 −Vπk
1)(xk

1)

≤
K

∑
k=1

(V̂
k
1−Vπk

1)(xk
1) + K(4H + 1)ε

=
K

∑
k=1

δk
1 + K(4H + 1)ε

Similarly to the Lemma 7, we can show that using Lemma 13 applied on Bk,pa
h

the parent of the selected ball at step h of the episode k.

δk
h ≤ α0

nk
h(Bk

h)
HI{Bk

h=Binit} + (11L + 32
√

H3ı) rad(Bk
h)

+
nk

h(Bk,pa
h)

∑
i=1

αi
nk

h(Bk,pa
h)

φ
ki(Bk,pa

h)

h+1 − φk
h+1 + δk

h+1 + ξk
h+1 + 2ε

Following the same steps of the Section 5.7.1 in the exact lipschitz setting, we
obtain

K

∑
k=1

δk
h ≤ H + (11L + 32

√
H3ı)

K

∑
k=1

rad(Bk
h) +

(
1 +

1
H

) K

∑
k=1

δk
h+1 +

K

∑
k=1

ξk
h+1 + 2Kε

By unrolling the last inequality for h ∈ [H] and using the fact δk
H+1 = 0 ∀k ∈

[K], we obtain

K

∑
k=1

δk
1 ≤

H

∑
h=1

(1 +
1
H
)h−1

(
H + (11L + 32

√
H3ı)

K

∑
k=1

rad(Bk
h) +

K

∑
k=1

ξk
h+1 + 2Kε

)

≤ 3H2 + 3(11L + 32
√

H3ı)
H

∑
h=1

K

∑
k=1

rad(Bk
h) + 3

H

∑
h=1

K

∑
k=1

ξk
h+1 + 6HKε

(C.2.6)

Plugging bounds (5.7.2) and (5.7.3) from Section 5.7.1 in (C.2.6) and using
union bound, we have with probability 1− p

K

∑
k=1

δk
1 ≤ O

(
H2 +

√
H3Kı + (L +

√
H5ı) min

r0∈(0,1)

{
Kr0 + ∑

r=2−i
r≥r0

M(r)
r

}
+ HKε

)

We obtain the regret bound in theorem 3 by noting that REGRET(K) ≤ ∑K
k=1 δk

1 +
O(HKε).

154

C.3 TECHNICAL LEMMAS

Lemma 15 (Azuma-Hoeffding inequality). Suppose {Xk : k = 0, 1, 2, 3, · · · } is a
martingale and |Xk − Xk−1| < ck, almost surely. Then for all positive integers N and
all positive reals t,

Pr[|XN − X0| ≥ t] ≤ 2 exp

(
−t2

2 ∑N
k=1 c2

k

)
.

Lemma 16 (Lemma 4.1 in Jin et al. [2018]). The following properties hold for αi
t:

(a) 1√
t
≤ ∑t

i=1
αi

t√
i
≤ 2√

t
for every t ≥ 1.

(b) maxi∈[t] αi
t ≤ 2H

t and ∑t
i=1(α

i
t)

2 ≤ 2H
t for every t ≥ 1.

(c) ∑∞
t=i αi

t = 1 + 1
H for every i ≥ 1.

C.3.1 Few Reminders on Probability Theory

We consider a probability space (Ω,F , P). We borrow notation from Qian
et al. [2018]. We call filtration any increasing (for the inclusion) sequence of sub-
σ-algebras of F i.e., (Fn)n∈N where ∀n ∈ N, Fn ⊂ Fn+1 ⊂ F . We denote by
F∞ = ∪n∈NFn.

Definition 7 (Stopping time). A random variable τ : Ω :→ N ∪ {+∞} is called
stopping time with respect to a filtration (Fn)n∈N if for all n ∈N, {τ = n} ∈ Fn.

Definition 8 (σ-algebra at stopping time). let τ be a stopping time. An event prior
to τ is any event A ∈ F∞ s.t A ∩ τ = n ∈ Fn for all n ∈N. The set of events prior to
τ is a σ-algebra denoted Fr and called σ−algebra at time τ:

Fr = {A ∈ F∞, ∀ ∈N, A ∩ τ = n ∈ Fn}

Lemma 17. let τ1 and τ2 be two stopping times with respect to the same filtration
(Fn)n∈N s.t τ1 ≤ τ2 almost surely. Then Fτ1 ⊂ Fτ2

155

D Appendix for Chapter 6

D.1 TECHNICAL GAPS IN PUBLISHED BANDIT

PAPERS

In this section, we highlight the technical error made by [Cheung et al., 2019]
when controlling the bias term due to the non-stationarity of the reward func-
tion. Let us first recall the non-stationary linear bandit model

Definition 9 (Non-stationary linear bandit). At iteration t, the player makes a deci-
sion At from a feasible set A ⊂ Rd, then observes the reward rt satisfying:

rt = A>t θt + zt (D.1.1)

where θt is the unknown regression parameter at iteration t and zt is conditionally σ-
subgaussian noise. We assume further that ‖A‖ ≤ 1, ∀A ∈ A and ‖θt‖ ≤ S, ∀t.

Cheung et al. [2019] propose the SW-UCB algorithm based on a sliding win-
dow approach of size W. At time t, actions are selected as follows:

At = arg max
a∈A

a>θ̂t + β ‖a‖V−1
t

(D.1.2)

where θ̂t is the solution of the sliding window least squares problem:

θ̂t = V−1
t

t−1

∑
τ=max{1,t−W}

Aτrτ , where Vt =
t−1

∑
τ=max{1,t−W}

Aτ A>τ +λ · I is the Gram matrix.

(D.1.3)
In the proof of lemma 1 in Cheung et al. [2019], the authors consider matrix

M = V−1
t X where X = ∑

p
τ=t−W Aτ A>τ for any integer p ∈ {t−W, . . . , t− 1}.

They attempt to show that M is positive semi-definite (PSD) (i.e y>My ≥ 0, ∀y ∈
Rd) as follows: they first prove that M shares the same characteristic polynomial
as the matrix V−1/2

t XV−1/2, then assert that since V−1/2
t XV−1/2 is PSD, M is

PSD as well.
Unfortunately, this last assertion does not hold in general. As a coun-

terexample, let us consider the 2 dimensional identity matrix I and
B = ((1, 0)>, (−10, 1)>). I and B share the same characteristic polynomial

156

p(x) = (x − 1)2, I is obviously PSD but B is not, as for y = (1, 1)>, we have
y>By = −8 < 0.

Moreover, in general, a matrix of the form M = V−1
t X is not guaranteed to

be PSD. If one sets d = 2, t = 3, λ = 1, A1 = (1, 0)> and A2 = (1, 1)>. with A1 =
(1, 0)> and A2 = (1, 1)>, we have M = V−1

t A1A>1 = ((0.4,−0.2)>, (0, 0)>). If
we consider y = (1, 5)>, we have y>My = −0.6 < 0.

D.2 REGRET REANALYSIS OF D-LINUCB

Russac et al. [2019] propose the D-LINUCB algorithm, based on sequential
weighted least squares regression. At time t, actions are selected as follows:

xt = arg max
x∈Xt

x>θ̂t + β ‖x‖V−1
t ṼtV−1

t
(D.2.1)

where Vt = ∑t−1
τ=1 η−τxτx>τ + λη−(t−1) · I is the Gram matrix, Ṽt =

∑t−1
τ=1 η−2τxτx>τ + λη−2(t−1) · I and θ̂t is the solution the weighted least

squares problem:

θ̂t = V−1
t

t−1

∑
τ=1

η−τxτrτ. (D.2.2)

As our analysis follows the same proof steps as in Russac et al. [2019], we
will only highlight our proposed fix to their technical error and the changes that
it induces.

Non-stationarity bias Let θ̄t , V−1
t ∑t−1

τ=1 η−τxτx>τ θτ + λη−(t−1)θt the
weighted average of the true regression parameters. To characterize the
bias, Russac et al. [2019] attempt to control directly ‖θt − θ̄t‖. Instead, we
propose to control |x>(θt − θ̄t)| for any x ∈ X and then use the fact that
‖θt − θ̄t‖ = maxx:‖x‖=1 |x>(θt − θ̄t)|

|x>(θt − θ̄t)| =
∣∣∣∣∣x>V−1

t

t−1

∑
τ=1

η−τxτx>τ (θτ − θt)

∣∣∣∣∣
≤
∣∣∣∣∣x>V−1

t

t−1

∑
τ=t−W

η−τxτx>τ (θτ − θt)

∣∣∣∣∣︸ ︷︷ ︸
(?)

+

∣∣∣∣∣x>V−1
t

t−W−1

∑
τ=1

η−τxτx>τ (θτ − θt)

∣∣∣∣∣︸ ︷︷ ︸
(??)

157

Bound on (?):∣∣∣∣∣x>V−1
t

t−1

∑
τ=t−W

η−τxτx>τ (θτ − θt)

∣∣∣∣∣
≤

t−1

∑
τ=t−W

η−τ
∣∣∣x>V−1

t xτ

∣∣∣ · |x>τ (θτ − θt)| (triangle inequality)

=
t−1

∑
τ=t−W

η−τ|x>V−1
t xτ| · |x>τ (

t−1

∑
s=τ

(θs − θs+1))|

≤
t−1

∑
τ=t−W

η−τ|x>V−1
t xτ| · ‖xτ‖ · ‖

t−1

∑
s=τ

(θs − θs+1)‖ (Cauchy-Schwarz)

≤
t−1

∑
τ=t−W

η−τ|x>V−1
t xτ| ·

t−1

∑
s=τ

‖θs − θs+1‖ (‖xτ‖ ≤ 1)

≤
t−1

∑
s=t−W

s

∑
τ=t−W

η−τ|x>V−1
t xτ| · ‖θs − θs+1‖

(∑t−1
τ=t−W ∑t−1

s=τ = ∑t−1
s=t−W ∑s

τ=t−W)

≤
t−1

∑
s=t−W

√[s

∑
τ=t−W

η−τx>V−1
t x

]
·
[s

∑
τ=t−W

η−τx>τ V−1
t xτ

]
· ‖θs − θs+1‖

(Cauchy-Schwarz)

≤
t−1

∑
s=t−W

√[s

∑
τ=t−W

η−τx>V−1
t x

]
· d · ‖θs − θs+1‖ (by lemma 22)

≤ ‖x‖
√

d
t−1

∑
s=t−W

√
∑t−1

τ=t−W η−τ

λη−(t−1)
· ‖θs − θs+1‖ (λmax(V−1

t) ≤ 1
λη−(t−1))

≤ ‖x‖
√

d
λ(1− η)

t−1

∑
s=t−W

‖θs − θs+1‖

158

Bound on (??):∣∣∣∣∣x>V−1
t

t−W−1

∑
τ=1

η−τxτx>τ (θτ − θt)

∣∣∣∣∣ ≤ ‖x‖
∥∥∥∥∥V−1

t

t−W−1

∑
τ=1

η−τxτx>τ (θτ − θt)

∥∥∥∥∥
≤ ‖x‖ 1

λη−(t−1)

∥∥∥∥∥t−W−1

∑
τ=1

η−τxτx>τ (θτ − θt)

∥∥∥∥∥
(
∥∥∥V−1

t

∥∥∥ = λmax(V−1
t) ≤ 1

λη−(t−1))

≤ ‖x‖ 1
λ

t−W−1

∑
τ=1

η(t−1−τ) ‖xτ‖2 ‖θτ − θt‖

≤ ‖x‖ 2S
λ

ηW

1− η
(‖θt‖ ≤ S and ‖xt‖ ≤ 1)

We conclude for any x ∈ Rd

|x>(θt − θ̄t)| ≤ ‖x‖
(√

d
λ(1− η)

t−1

∑
s=t−W

‖θs − θs+1‖+
2S
λ

ηW

1− η

)

which proves that

‖θt − θ̄t‖ ≤
√

d
λ(1− η)

t−1

∑
s=t−W

‖θs − θs+1‖+
2S
λ

ηW

1− η

Comparing to the bound on ‖θt − θ̄t‖ in the proof of Russac et al. [2019],
there is an extra factor

√
d

λ(1−η)
that multiplies the local non-stationarity term

∑t−1
s=t−W ‖θs − θs+1‖. This extra factor will consequently multiply the variation

budget term in the final regret as stated in the following proposition:

Proposition 10. Under the assumption that ∑K−1
t=1 ‖θt − θt+1‖ ≤ ∆, for any δ ∈

(0, 1), if we set β =
√

λS + σ
√

2 log(1/δ) + d log(1 + 1
λd(1−γ)

) in the algorithm 1
D-LINUCB of Russac et al. [2019], then with probability 1− δ, for any W > 0 the
dynamic regret of D-LINUCB is at most

O
(√

d
λ(1− η)

∆W +
S
λ

ηW

1− η
K + β

√
dK

√
K log(1/η) + log(1 +

1
dλ(1− η)

)

)

Proposition 11. Under the same assumption as 10 If we set log(1/η) =

d−1/4∆1/2K−1/2, W =
log(K/(1−η))

log(1/η)
and λ = 1; for any δ ∈ (0, 1); we have that with

probability 1− δ, the dynamic regret of D-LINUCB is at most Õ(d7/8∆1/4K3/4).

159

Proof. With the choice log(1/η) = d−1/4∆1/2K−1/2 and W =
log(K/(1−η))

log(1/η)
;

we have ηW

1−η K = 1, η = exp(−
(

∆
K

)1/2
) ∼

K→∞1 − d−1/4∆1/2K−1/2 so that√
d

λ(1−η)
∆W ∼

√
d∆ log(K/(1 − η))

(
d1/4∆−1/2K1/2)3/2

= Õ(d7/8∆1/4K3/4)

and β
√

dK
√

K log(1/η) + log(1 + 1
dλ(1−η)

) = Õ(dK
(
d−1/4∆1/2K−1/2)1/2

) =

Õ(d7/8∆1/4K3/4).

D.3 REGRET ANALYSIS OF OPT-WLSVI AND PROOF

OUTLINE

D.3.1 Single Step Error Decomposition

In this section, we analyse the one-step error decomposition of the difference
between the estimates Qt,h and Qπ

t,h of a given policy π. To do that, we use the
weighted MDP (S ,A, P̄, r̄) to isolate the bias term. The decomposition contains
four parts: the reward bias and variance, the transition bias and variance, and
the difference in value functions at step h + 1. It can be written as:

φ(s, a)>wt,h −Qπ
t,h(s, a) = (r̄t,h − rt,h)(s, a)︸ ︷︷ ︸

reward bias

+ (r̂t,h − r̄t,h)(s, a)︸ ︷︷ ︸
reward variance

+ [(P̄t,h − Pt,h)Vπ
t,h+1](s, a)︸ ︷︷ ︸

transition bias

+ [(P̂t,h − P̄t,h)Vt,h](s, a)︸ ︷︷ ︸
transition variance

+ [P̄t,h(Vt,h+1 −Vπ
t,h+1)](s, a)︸ ︷︷ ︸

difference in value functions of next step

.

The reward and transition bias terms are controlled by Lemma 9 using the fact
that ‖Vπ

t,h‖∞ ≤ H. The difference in value-functions at step h+ 1 can be rewritten
as [Pt,h(Vt,h+1−Vπ

t,h+1)](s, a)+ [(P̄t,h− Pt,h)(Vt,h+1−Vπ
t,h+1)](s, a). We control the

second term by applying again Lemma 9 since ‖Vt,h+1 −Vπ
t,h+1‖∞ ≤ H.

It remains now the two variance terms. The reward variance is easy to control
and it reduces simply to the bias due to the regularization as we assume that r
is a deterministic function. Note that the assumption of deterministic reward
is not a limiting assumption since the contribution of a stochastic reward in the
final regret has lower order term than the contribution of a stochastic transition.
We have, using the Cauchy-Shwartz inequality and

∥∥∥Σ̃−1
t,h

∥∥∥ ≤ 1
λη−2(t−1) :

160

|(r̂t,h − r̄t,h)(s, a)| = λη−(t−1)|φ(s, a)>Σ−1
t,h θt,h|

≤
√

dλ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
.

Controlloing the transition variance is more involved, and we differ the analysis
to the next section. If we define bias , biasr + biasP the total non-stationarity
bias of the MDP, we can summarize the one-step analysis as follows:

φ(s, a)>wt,h −Qπ
t,h(s, a) ≤2Hbias(t, h) + [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a) (D.3.1)

+
√

dλ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
+ [(P̂t,h − P̄t,h)Vt,h](s, a)

D.3.2 High Probability Bound on the Transition Variance

In this section, we will establish a high probability bound on the term (P̂t,h −
P̄t,h)Vt,h. From the definitions of P̂ and P̄ and the Cauchy-Schwartz inequality,
we have

[(P̂t,h − P̄t,h)Vt,h](s, a) ≤
∥∥∥∥∥ t−1

∑
τ=1

η−τφτ,hετ,h

∥∥∥∥∥
Σ̃−1

t,h

+ H
√

dλ

 ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
,

where ετ,h = Vt,h+1(sτ,h+1) − [Pt,hVt,h+1](sτ,h, aτ,h). If Vt,h+1 was a fixed func-
tion, ετ,h would be zero-mean conditioned on the history of transitions up
to step h at episode τ and we would use the concentration of weighted self-
normalized processes [Russac et al., 2019] to get a high probability bound on∥∥∥∑t−1

τ=1 η−τφτ,hετ,h

∥∥∥
Σ̃−1

t,h

. However, as Vt,h+1 is estimated from past transitions

and thus depends on the latter in a non-trivial way, we will show a concentra-
tion bound that holds uniformly for all possible value functions generated by
the algorithm. We proceed first by establishing the boundness of iterates in the
next Lemma.

Lemma 18 (Boundness of iterates). For any (t, h) ∈ [K]× [H], the weight wt,h and
the matrix Σ−1

t Σ̃tΣ−1
t in Algorithm 6 satisfies:

‖wt,h‖ ≤ 2H

√
d(1− ηt−1)

λ(1− η)
and

∥∥∥Σ−1
t Σ̃tΣ−1

t

∥∥∥ ≤ 1
λ

Any value function estimate produced by Algorithm 6 could be written in
the following form

Vw,A(·) = min{max
a∈A
{w>φ(·, a) +

√
φ(·, a)>Aφ(·, a)}, H}

161

where w ∈ Rd and A ∈ Rd×d is a symmetric definite positive matrix that are in

G =

{
w, A : ‖w‖ ≤ 2H

√
d

λ(1− η)
and ‖A‖F ≤

√
dβ2

λ

}

The ε-covering number of G, identified as Euclidean ball in Rd+d2
of radius

2H
√

d
λ(1−η)

+ β2
√

d
λ , is bounded by

(
3
(

2H
√

d
λ(1−η)

+ β2
√

d
λ

)
/ε
)d+d2

. The latter
number is exponential in the dimension d but only the square root of its loga-
rithm, which is linear in d, will contribute to the bound as we will show next.

By applying the concentration of weighted self-normalized processes [Rus-
sac et al., 2019] and using a union bound argument over an ε-net of G with an
appropriate value of ε, we obtain the desired high probability bound stated in
the following Lemma

Lemma 19. For any δ ∈ (0, 1), with probability at least 1 − δ/2, we have for all
(t, h) ∈ [K]× [H],∥∥∥∥∥ t−1

∑
τ=1

η−τφτ,hετ,h

∥∥∥∥∥
Σ̃−1

t,h

≤ CdH

√
log
(

dHβ

λ(1− η)
· 2

δ

)

where C > 0 is an absolute constant.

Finally, by combining the single error decomposition in Equation (D.3.1) and
the transition concentration in Lemma 19 with an appropriate choice of β, we
obtain the following high probability single-step bound.

Lemma 20 (Key lemma). There exists an absolute value c such that β = cdH
√

ı
where ı = log

(
2dH

(1−η)δ

)
, λ = 1 and for any fixed policy π, we have with probability at

least 1− δ/2 for all (s, a, h, t) ∈ S ×A× [H]× [K],∣∣∣φ(s, a)>wt,h −Qπ
t,h(s, a)− [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a)
∣∣∣

≤ 2Hbias(t, h) + β ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
.

D.3.3 Optimism

Now, we show that the true value functions can be upper bounded by the
value functions computed by OPT-WLSVI plus a bias term. In fact, unlike the
stationary case, we act optimistically with respect to the weighted average MDP.
To prove this, we use the key Lemma 20 in the previous section and we proceed
by induction argument over steps h ∈ [H].

162

Lemma 21 (Optimism). For all (s, a, t, h) ∈ S ×A× [K]× [H], we have with prob-
ability at least 1− δ/2

Qt,h(s, a) + 2H
H

∑
h′=h

bias(t, h) ≥ Q?
t,h(s, a) (D.3.2)

D.3.4 Final Regret Analysis

Now, having the results provided in previous sections at hand, we turn to
proving the regret bound of our algorithm. Let πt the policy executed by the
algorithm in step h for H steps to reach the end of the episode. If we define
δt,h , Vt,h(st,1)−Vπt

t,h (st,h), a straightforward application of Lemma 21 is that the
regret is upper bounded by the sum of δt,h and bias terms with probability at
least 1− δ/2 i.e

REGRET(K) ≤︸︷︷︸
by optimism

K

∑
t=1

δt,h + 2H
K

∑
t=1

H

∑
h=1

bias(t, h). (D.3.3)

The policy πt is the greedy policy with respect to Qt,h, and at,h = πt(st, h) =
arg maxa∈A Qt,h(st,h, a). Therefore, we have δt,h = Qt,h(st,h, at,h)− Qπt

t,h(st,h, at,h).
Using the definition of Qt,h and the key Lemma 20, we obtain with probability
at least 1− δ/2,

δt,h ≤ [Pt,h(Vt,h+1 −Vπt
t,h+1)](st,h, at,h) + 2β ‖φt,h‖Σ−1

t,h Σ̃t,hΣ−1
t,h

+ 2Hbias(t, h)

= δt,h+1 + ξt,h+1 + 2β ‖φt,h‖Σ−1
t,h Σ̃t,hΣ−1

t,h
+ 2Hbias(t, h)

where we define ξt,h+1 = [Pt,h(Vt,h+1 − Vπt
t,h+1)](st,h, at,h) − (Vt,h+1 −

Vπt
t,h+1)(st,h+1). Unrolling the last inequality H times, we obtain

δt,1 ≤
H

∑
h=1

ξt,h + 2β
H

∑
h=1
‖φt,h‖Σ−1

t,h Σ̃t,hΣ−1
t,h

+ 2H
H

∑
h=1

bias(t, h) (D.3.4)

Hence, by combining Equations (D.3.3) and (D.3.4), we obtain with probabil-
ity at least 1− δ/2,

REGRET(K) ≤
K

∑
t=1

H

∑
h=1

ξt,h︸ ︷︷ ︸
(A)

+2β
K

∑
t=1

H

∑
h=1
‖φt,h‖Σ−1

t,h Σ̃t,hΣ−1
t,h︸ ︷︷ ︸

(B)

+ 4H
K

∑
t=1

H

∑
h=1

bias(t, h)︸ ︷︷ ︸
(C)

. (D.3.5)

163

Now, we proceed to upper bound the different terms in the RHS of Equa-
tion (D.3.5).

Term (A): The computation of Vt,h is independent from (st,h, at,h), therefore,
{ξt,h} is 2H-bounded martingale difference sequence. Therefore, by Azuma-

Hoeffding, we have for all t > 0, P
(∣∣∣∑K

t=1 ∑H
h=1 ξt,h

∣∣∣ ≥ t
)
≤ 2 exp

(
−t2

16H3K

)
.

Then, P
(∣∣∣∑K

t=1 ∑H
h=1 ξt,h

∣∣∣ ≥ 4
√

H3K log(4/δ)
)
≤ δ/2. Therefore, with proba-

bility at least 1− δ/2, we have∣∣∣∣∣ K

∑
t=1

H

∑
h=1

ξt,h

∣∣∣∣∣ ≤ O(H3/2
√

Kı) (D.3.6)

Term (B): By application of Cauchy-Schwartz, we obtain

K

∑
t=1

H

∑
h=1
‖φt,h‖Σ−1

t,h Σ̃t,hΣ−1
t,h
≤
√

K
H

∑
h=1

√√√√ K

∑
t=1
‖φt,h‖2

Σ−1
t,h Σ̃t,hΣ−1

t,h
.

From Lemma 18, we have
∥∥∥Σ−1

t Σ̃tΣ−1
t

∥∥∥ ≤ 1
λ , then, ‖φt,h‖Σ−1

t,h Σ̃t,hΣ−1
t,h
≤

1√
λ
‖φt,h‖ = ‖φt,h‖ ≤ 1. So, we can use the bound on the sum of the

squared norm of the features provided in proposition 4 of Russac et al. [2019] to
obtain

K

∑
t=1

H

∑
h=1
‖φt,h‖Σ−1

t,h Σ̃t,hΣ−1
t,h
≤ H
√

K

√
2dK log(1/η) + 2d log

(
1 +

1
dλ(1− η)

)
.

(D.3.7)

Term (C): We control the bias term using the MDP variation budget as follows.

K

∑
t=1

H

∑
h=1

bias(t, h) ≤ 4HK
√

d
λ

ηW

1− η
+

√
d

λ(1− η)
·

K

∑
t=1

H

∑
h=1

t−1

∑
s=t−W

‖θs,h − θs+1,h‖+ ‖µs,h(S)−µs+1,h(S)‖

≤ 4HK
√

d
λ

ηW

1− η
+

√
d

λ(1− η)
W∆. (D.3.8)

Finally, the desired regret bound in Theorem 4 is obtained by combining Equa-
tions (D.3.5), (D.3.6), (D.3.7) and (D.3.8).

164

D.4 MISSING PROOFS OF REGRET ANALYSIS OF

OPT-WLSVI

D.4.1 Linearity of Q-values: Lemma 8

Proof. The definition of non-stationary linear MDP from Assumption 6 together
with the Bellman equation gives:

Qπ
t,h = rt,h(s, a) + [Pt,hVπ

t,h+1](s, a)

= φ(s, a)>θt,h +
∫

s′
φ(s, a)>Vπ

t,h+1(s
′)dµt,h(s′)

= φ(s, a)>
(
θt,h +

∫
s′

Vπ
t,h+1(s

′)dµt,h(s′)
)

We define wπ
t,h to be the term inside the parentheses.

D.4.2 Non-Stationarity Bias

Proof of Lemma 9

Reward Bias:

|rt,h(s, a)− r̄t,h(s, a)|

≤
∣∣∣∣∣φ(s, a)>

(
θt,h − Σ−1

t,h

(
t−1

∑
τ=1

η−τφτ,hφ
>
τ,hθτ,h + λη−(t−1)θt,h

))∣∣∣∣∣
=

∣∣∣∣∣φ(s, a)>
t−1

∑
τ=1

Σ−1
t,h η−τφτ,hφ

>
τ,h(θt,h − θτ,h)

∣∣∣∣∣
≤
∣∣∣∣∣φ(s, a)>

t−1

∑
τ=t−W

Σ−1
t,h η−τφτ,hφ

>
τ,h(θt,h − θτ,h)

∣∣∣∣∣︸ ︷︷ ︸
(?)

+

∣∣∣∣∣φ(s, a)>
t−W−1

∑
τ=1

Σ−1
t,h η−τφτ,hφ

>
τ,h(θt,h − θτ,h)

∣∣∣∣∣︸ ︷︷ ︸
(??)

165

Bound on (?):∣∣∣∣∣φ(s, a)>
t−1

∑
τ=t−W

Σ−1
t,h η−τφτ,hφ

>
τ,h(θt,h − θτ,h)

∣∣∣∣∣
=

∣∣∣∣∣ t−1

∑
τ=t−W

η−τφ(s, a)>Σ−1
t,hφτ,hφ

>
τ,h(θt,h − θτ,h)

∣∣∣∣∣
≤

t−1

∑
τ=t−W

η−τ
∣∣∣φ(s, a)>Σ−1

t,hφτ,h

∣∣∣ · ∣∣∣φ>τ,h(θt,h − θτ,h)
∣∣∣

≤
t−1

∑
τ=t−W

η−τ
∣∣∣φ(s, a)>Σ−1

t,hφτ,h

∣∣∣ ‖φτ,h‖ ‖θt,h − θτ,h‖

≤
t−1

∑
τ=t−W

η−τ
∣∣∣φ(s, a)>Σ−1

t,hφτ,h

∣∣∣ ‖θt,h − θτ,h‖ (‖φτ,h‖ ≤ 1)

=
t−1

∑
τ=t−W

η−τ
∣∣∣φ(s, a)>Σ−1

t,hφτ,h

∣∣∣ ∥∥∥∥∥t−1

∑
s=τ

θs,h − θs+1,h

∥∥∥∥∥
≤

t−1

∑
τ=t−W

η−τ
∣∣∣φ(s, a)>Σ−1

t,hφτ,h

∣∣∣ t−1

∑
s=τ

‖θs,h − θs+1,h‖

≤
t−1

∑
s=t−W

s

∑
τ=t−W

η−τ
∣∣∣φ(s, a)>Σ−1

t,hφτ,h

∣∣∣ ‖θs,h − θs+1,h‖

(∑t−1
τ=t−W ∑t−1

s=τ = ∑t−1
s=t−W ∑s

τ=t−W)

≤
t−1

∑
s=t−W

√[s

∑
τ=t−W

η−τφ(s, a)>Σ−1
t,h φ(s, a)

]
·
[s

∑
τ=t−W

η−τφ>τ,hΣ−1
t,hφτ,h

]
· ‖θs,h − θs+1,h‖ (Cauchy-Schwartz)

≤
t−1

∑
s=t−W

√[s

∑
τ=t−W

η−τφ(s, a)>Σ−1
t,h φ(s, a)

]
·
√

d · ‖θs,h − θs+1,h‖

(by Lemma 22)

≤
t−1

∑
s=t−W

√
d

t−1

∑
s=t−W

√
∑t−1

τ=t−W η−τ

λη−(t−1)
‖θs,h − θs+1,h‖

(‖φ(s, a)‖ ≤ 1 and λmax(Σ−1
t,h) ≤ 1

λη−(t−1))

≤
√

d
λ(1− η)

t−1

∑
s=t−W

‖θs,h − θs+1,h‖

166

Bound on (??):∣∣∣∣∣φ(s, a)>
t−W−1

∑
τ=1

Σ−1
t,h η−τφτ,hφ

>
τ,h(θt,h − θτ,h)

∣∣∣∣∣
≤ 1

λ
‖φ(s, a)‖

t−W−1

∑
τ=1

ηt−τ−1‖φτ,h‖ · |φ>τ,h(θt,h − θτ,h)| (λmax(Σ−1
t,h) ≤ 1

λη−(t−1))

≤ 1
λ
‖φ(s, a)‖

t−W−1

∑
τ=1

ηt−τ−1‖φτ,h‖2‖θt,h − θτ,h‖

≤ 2
√

d
λ

ηW

1− η
(φ(s, a) ≤ 1 and ‖θt,h‖ ≤

√
d)

Transition Bias: ∀ f : S → R such that ‖ f ‖∞ < ∞ (real-valued bounded
function), similarly to what we have done for the reward function, we obtain

|[(Pt,h − P̄t,h) f](s, a)| ≤
∥∥∥∥∥Σ−1

t,h

t−1

∑
τ=1

η−τφτ,hφ
>
τ,h

∫
f (s′)(dµt,h(s′)− dµτ,h(s′))

∥∥∥∥∥
(‖φ(s, a)‖ ≤ 1)

≤
√

d
λ(1− η)

t−1

∑
s=t−W

∥∥∥∥∫ f (s′)(dµs,h(s′)− dµs+1,h(s′))
∥∥∥∥

+
1
λ

t−W−1

∑
τ=1

ηt−τ−1
∥∥∥∥∫ f (s′)(dµt,h(s′)− dµτ,h(s′))

∥∥∥∥
Furthermore,

∥∥∥∥∫ f (s′)(dµt,h(s′)− dµτ,h(s′))
∥∥∥∥ =

√√√√ d

∑
l=1

∣∣∣∣∫ f (s′)(dµ(l)
t,h(s

′)− dµ(l)
τ,h(s

′))
∣∣∣∣2

≤ ‖ f ‖∞

√√√√ d

∑
l=1
|µ(l)

t,h(S)−µ
(l)
τ,h(S))|2

= ‖ f ‖∞‖µs,h(S)−µs+1,h(S)‖
≤ 2
√

d‖ f ‖∞

Therefore,

|[(Pt,h − P̄t,h) f](s, a)| ≤ ‖ f ‖∞

(√
d

λ(1− η)

t−1

∑
s=t−W

‖(µs,h(S)−µs+1,h(S))‖+
2
√

d
λ

ηW

1− η

)

167

D.4.3 Single Step Error Decomposition

We provide here the full derivation of the single-error decomposition. We
have for all (t, h) ∈ [K]× [H]

φ(s, a)>wt,h −Qπ
t,h(s, a) = (r̄t,h − rt,h)(s, a)︸ ︷︷ ︸

reward bias

+ (r̂t,h − r̄t,h)(s, a)︸ ︷︷ ︸
reward variance

+

[(P̄t,h − Pt,h)Vπ
t,h+1](s, a)︸ ︷︷ ︸

transition bias

+ [(P̂t,h − P̄t,h)Vt,h+1](s, a)︸ ︷︷ ︸
transition variance

+

[P̄t,h(Vt,h+1 −Vπ
t,h+1)](s, a)︸ ︷︷ ︸

difference in value functions of next step

.

Reward & transition bias: Thanks to Lemma 9, we have

|r̄t,h(s, a)− rt,h(s, a)| ≤ biasr(t, h),∣∣∣[(P̄t,h − Pt,h)Vπ
t,h+1](s, a)

∣∣∣ ≤ biasP(t, h). (‖Vπ
t,h+1‖∞ ≤ H)

Difference in value functions of next step:

[P̄t,h(Vt,h+1 −Vπ
t,h+1)](s, a) = [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a) + [(P̄t,h − Pt,h)(Vt,h+1 −Vπ
t,h+1)](s, a)

≤ [Pt,h(Vt,h+1 −Vπ
t,h+1)](s, a) + biasP(s, a).

(‖Vt,h+1 −Vπ
t,h+1‖∞ ≤ H)

Reward variance: The reward variance here reduces simply to the bias due
to the regularization as we assume that r is a deterministic function.

∣∣∣(r̂t,h − r̄t,h)(s, a)
∣∣∣ = λη−(t−1)|〈φ(s, a), Σ−1

t,h θt,h〉|

≤ λη−(t−1) ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

∥∥∥Σ−1
t,h θt,h

∥∥∥
Σt,hΣ̃−1

t,h Σt,h

= λη−(t−1) ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
‖θt,h‖Σ̃−1

t,h

≤ λη−(t−1) ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

√∥∥∥Σ̃−1
t,h

∥∥∥ ‖θt,h‖

≤
√

dλ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

The last step follows from ‖θt,h‖ ≤
√

d (Assumption 6) and
∥∥∥Σ̃−1

t,h

∥∥∥ ≤ 1
λη−2(t−1) .

168

If we define bias , biasr + 2 · biasP the total non-stationarity bias of the
MDP, we can summarize the one-step analysis as follows:

φ(s, a)>wt,h −Qπ
t,h(s, a) ≤ bias(t, h) + [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a)+
√

dλ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
+ [(P̂t,h − P̄t,h)Vt,h](s, a)

D.4.4 Boundness of iterates

We will start with the following elementary lemma:

Lemma 22. Let Σt = ∑t−1
τ=1 η−τφτφ

>
τ + λη−(t−1)I where φτ ∈ Rd and λ > 0, η ∈

(0, 1). Then:
t−1

∑
τ=1

η−τφ>τ Σ−1
t φτ ≤ d

Proof. We have ∑t−1
τ=1 η−τφ>τ Σ−1

t φτ = ∑t−1
τ=1 tr

(
η−τφ>τ Σ−1

t φτ

)
=

tr
(

Σ−1
t ∑t−1

τ=1 η−τφτφ
>
τ

)
. Given the eigenvalue decomposition ∑t−1

τ=1 η−τφτφτ =

diag(λ1, . . . , λd)
>, we have Σt = diag(λ1 + λη−(t−1), . . . , λd + λη−(t−1))>, and

tr
(

Σ−1
t ∑t−1

τ=1 η−τφτφ
>
τ

)
= ∑d

i=1
λj

λj+λη−(t−1) ≤ d

Proof of Lemma 18

Bound on ‖wt,h‖: For any vector v ∈ Rd, we have

|v>wt,h| =
∣∣∣∣∣v>Σ−1

t,h

t−1

∑
τ=1

η−τφτ,h[rτ,h + max
a

Qτ,h+1(sτ,h+1, a)]

∣∣∣∣∣
≤

t−1

∑
τ=1

η−τ|v>Σ−1
t,hφτ,h| · 2H ≤

√√√√[t−1

∑
τ=1

η−τv>Σ−1
t,h v
]
·
[t−1

∑
τ=1

η−τφ>τ,hΣ−1
t,hφτ,h

]
· 2H

≤ 2H ‖v‖
√

∑t−1
τ=1 η−τ

λη−(t−1)
· d = 2H ‖v‖

√
d(1− ηt−1)

λ(1− η)

where the third inequality is due to Lemma 22 and the fact that the eigenvalues
of Σ−1

t,h are upper bounded by 1
λη−(t−1) . The remainder of the proof follows from

the fact that ‖wt,h‖ = maxv:‖v‖=1 |v>wt,h|.
Bound on

∥∥∥Σ−1
t Σ̃tΣ−1

t

∥∥∥:

Σ̃t =
t−1

∑
τ=1

η−2τφτφ
>
τ +λη−2(t−1)I ≤ η−(t−1)

t−1

∑
τ=1

η−τφτφ
>
τ +λη−2(t−1)I = η−(t−1)Σt

(D.4.1)

169

Hence,
Σ−1

t Σ̃tΣ−1
t ≤ η−(t−1)Σ−1

t ΣtΣ−1
t = η−(t−1)Σ−1

t

and ∥∥∥Σ−1
t Σ̃tΣ−1

t

∥∥∥ ≤ η−(t−1)
∥∥∥Σ−1

t

∥∥∥ ≤ η−(t−1) 1
λη−(t−1)

=
1
λ

D.4.5 Transition Concentration

∣∣∣[(P̂t,h − P̄t,h)Vt,h](s, a)
∣∣∣

≤
∣∣∣φ(s, a)>

(
Σ−1

t,h

k−1

∑
τ=1

η−τφτ,h(Vt,h+1(sτ,h+1)− [Pt,hVt,h+1](sτ,h, aτ,h))

− λη−(t−1)Σ−1
t,hµt,hVt,h+1

)∣∣∣
≤ ‖φ(s, a)‖Σ−1

t,h Σ̃t,hΣ−1
t,h

(∥∥∥∥∥ t−1

∑
τ=1

η−τφτ,h (Vt,h+1(sτ,h+1)− [Pt,hVt,h+1](sτ,h, aτ,h))

∥∥∥∥∥
Σ̃−1

t,h

+ λη−(t−1)
√∥∥∥Σ̃−1

t,h

∥∥∥ ‖µt,h(S)‖ ‖Vt,h+1‖∞

)
(Cauchy-Schwarz)

≤ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

(∥∥∥∥∥ t−1

∑
τ=1

η−τφτ,h (Vt,h+1(sτ,h+1)− [Pt,hVt,h+1](sτ,h, aτ,h))

∥∥∥∥∥
Σ̃−1

t,h

+ H
√

dλ
)

(D.4.2)

The last step follows from ‖µt,h(S)‖ ≤
√

d (Assumption 6) and
∥∥∥Σ̃−1

t,h

∥∥∥ ≤
1

λη−2(t−1) .
Let us now consider the following function form:

Vw,A(·) = min{max
a∈A
{w>φ(·, a) +

√
φ(·, a)>Aφ(·, a)}, H} (D.4.3)

where w ∈ Rd and A ∈ Rd×d is a symmetric definite positive matrix that are in

G =

{
w, A : ‖w‖ ≤ 2H

√
d

λ(1− η)
and ‖A‖F ≤

√
dβ2

λ

}
(D.4.4)

In the technical Lemma 26, we prove a concentration bound that holds uni-
formly for any function on the form Vw,A where w, A ∈ G. The statement and
full proof of this lemma is defered to section D.5 of the appendix. As a corollary
of Lemma 26, we can prove the concentration of the transition as follows.

170

For any τ > 0, h ∈ [H], let Fτ,h be the σ-field generated by all the random
variables until episode τ, step h. {sτ,h} defines a stochastic process on state space
S with corresponding filtration {Fτ,h}. We have

Vτ,h+1(·) = max
a∈A
{min{w>t,h+1φ(·, a) + βt[φ(·, a)>Σ−1

t,h Σ̃t,hΣ−1
t,hφ(·, a)]1/2, H}}

= Vw,A(·)

where w = wt,h+1 and A = β2
t Σ−1

t,h Σ̃t,hΣ−1
t,h . We have ‖w‖ ≤ 2H

√
d(1−ηt−1)

λ(1−η)
and

‖A‖F ≤
√

dβ2
t‖A‖ ≤

√
dβ2

t
λ by Lemma 18. Therefore (w, A) ∈ G and we can

apply Lemma 26: we have with probability at least 1− δ/2∥∥∥∥∥ t−1

∑
τ=1

η−τφτ,h (Vt,h+1(sτ,h+1)− [Pt,hVt,h+1](sτ,h, aτ,h))

∥∥∥∥∥
Σ̃−1

t,h

≤ CdH

√
log
(

dHβ
1

λ(1− η)

)
+ log(2/δ) (D.4.5)

Combining Equation (D.4.2) and (D.4.5), we obtain that with probability at
least 1− δ/2:

∣∣∣[(P̂t,h − P̄t,h)Vt,h](s, a)
∣∣∣

≤ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

(
CdH

√
log
(

dHβ
1

λ(1− η)

)
+ log(2/δ) + H

√
dλ
)

D.4.6 Single-Step High Probability Upper Bound

Proof of Lemma 20

We have shown so far:

φ(s, a)>wt,h −Qπ
t,h(s, a) ≤ bias(t, h) + [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a)

+ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

(
CdH

√
log
(

dHβ
1

λ(1− η)

)
+ log(2/δ) + H

√
dλ +

√
dλ
)

so there exists an absolute constant C′ > 0 such that

φ(s, a)>wt,h −Qπ
t,h(s, a) ≤ bias(t, h) + [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a)

+ ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h

(
C′dH

√
λ

√
log
(

dHβ
1

λ(1− η)

)
+ log(2/δ)

)

171

The missing ingredient to prove our key lemma is the choice of the parameter β
Now, we would like to find an appropriate choice of β such that

C′dH
√

λ

√
log
(

dHβ
1

λ(1− η)

)
+ log(2/δ) ≤ β (D.4.6)

First we set λ = 1. A good candidate for β is in the form of β = cβdH
√

ı where

cβ > 1 is an absolute constant and ı = log
(

2dH
δ(1−η)

)
. With this choice, we obtain:

C′dH
√

λ

√
log
(

dHβ
1

λ(1− η)

)
+ log(2/δ) = C′dH

√
log(cβdH

√
ı) + ı

≤ C′′dH
√

log(cβ) + ı
(C′′ > 0 is an absolute constant)

≤ C′′dH(
√

log(cβ) +
√

ı)

Let cβ > 1 such that C′′(
√

log(cβ) +
√

log(2)) ≤ cβ√
2

√
log(2). In particular

we have necessarily
cβ√

2
≥ C′′ Therefore, we have:

C′′(
√

log(cβ) +
√

ı) = C′′(
√

log(cβ) +
√

log(2) + (ı− log(2)) (ı ≥ log(2))

≤ C′′(
√

log(cβ) +
√

log(2) +
√
(ı− log(2))

≤ cβ√
2

√
log(2) + C′′

√
(ı− log(2)

≤ cβ√
2
(
√

log(2) +
√
(ı− log(2))

≤ cβ√
2

√
2
√

log(2) + ı− log(2)

((a + b)2 ≤ 2(a2 + b2)⇒ a + b ≤
√

2(a2 + b2))

≤ cβ

√
ı

Therefore, with this choice of cβ and β = cβdH
√

ı, we obtain that

∣∣〈φ(s, a), wt,h〉 −Qπ
t,h(s, a)− [Pt,h(Vt,h+1 −Vπ

t,h+1)](s, a)
∣∣ ≤ bias(t, h) + β ‖φ(s, a)‖Σ−1

t,h Σ̃t,hΣ−1
t,h

.

D.4.7 Optimism

Proof of Lemma 21

We proceed by induction. By definition, we have Qt,H+1 = Q?
t,H+1 = 0

and the desired statement trivially holds at step H + 1. Now, assume that the

172

statement holds for h + 1. Consider step h. By Lemma 20, we have∣∣∣φ(s, a)>wt,h −Q?
t,h(s, a)− [Pt,h(Vt,h+1 −V?

t,h+1)](s, a)
∣∣∣ ≤ bias(t, h) + β ‖φ(s, a)‖Σ−1

t,h Σ̃t,hΣ−1
t,h

Moreover, we have

V?
t,h+1(s)−Vt,h+1(s) = max

a∈A
Q?

t,h+1(s, a)−max
a∈A

Qt,h+1(s, a)

≤ max
a∈A

(
Q?

t,h+1(s, a)−Qt,h+1(s, a)
)

≤
H

∑
h′=h+1

bias(t, h) (by the induction hypothesis)

Therefore, we obtain

Q?
t,h(s, a) ≤ φ(s, a)>wt,h + β ‖φ(s, a)‖Σ−1

t,h Σ̃t,hΣ−1
t,h

+ [Pt,h(V?
t,h+1 −Vt,h+1)](s, a) + bias(t, h)

≤ φ(s, a)>wt,h + β ‖φ(s, a)‖Σ−1
t,h Σ̃t,hΣ−1

t,h
+

H

∑
h′=h

bias(t, h)

We have

Q?
t,h(s, a) ≤ φ(s, a)>wt,h〉++β ‖φ(s, a)‖Σ−1

t,h Σ̃t,hΣ−1
t,h

+
H

∑
h′=h

bias(t, h)

= Qt,h(s, a) +
H

∑
h′=h

bias(t, h)

D.5 TECHNICAL LEMMAS

Lemma 23 (Concentration of weighted self-normalized processes [Russac et al.,
2019]). Let {εt}∞

t=1 be a real-valued stochastic process with corresponding filtration
{F}∞

t=1. Let εt | Ft−1 be zero-mean and σ-subGaussiasn; i.e E[εt | Ft−1] = 0 and

∀λ ∈ R, E[eλεt | Ft−1] ≤ eλ2σ2/2

Let {φt}∞
t=1 be a predictable Rd-valued stochastic process (i.e φt is Ft−1-

measurable) and {ωt}∞
t=0 be a sequence of predictable and positive weights. Let

Σ̃t = ∑t
s=1 ω2

sφsφ
>
s + µt · I where {µt}∞

t=1 a deterministic sequence of scalars. Then
for any δ > 0, with probability at least 1− δ, we have for all t ≥ 0:∥∥∥∥∥ t

∑
s=1

ωsφsεs

∥∥∥∥∥
Σ̃−1

t

≤ σ

√√√√2 log
(

1
δ

)
+ log

(
det(Σ̃t)

µd
t

)
(D.5.1)

173

Lemma 24 (Determinant inequality for the weighted Gram matrix Russac et al.
[2019]). Let {λt}∞

t=0 and {ωt}∞
t=0 be a deterministic sequence of scalars. Let Σt =

∑t
t=1 wsφsφ

>
s + λt · I be the weighted Gram matrix. Under the assumption ∀t, ‖φt‖ ≤

1, the following holds

det(Σt) ≤
(

λt +
∑t

s=1 ωs

d

)d

(D.5.2)

Lemma 25 (Covering Number of Euclidean Ball [Pollard, 1990]). For any ε > 0,
the ε-covering number of the Euclidean ball in Rd with radius R > 0 is upper bounded
by (3R

ε)d

Lemma 26 (Uniform concentration). Let {st}∞
t=1 be a stochastic process on state state

S with corresponding filtration {Ft}∞
t=0. Let {φt}∞

t=1 be an Rd-valued stochastic pro-
cess where φt is Ft−1-measurable, and ‖φ‖ ≤ 1. Let Σ̃t = ∑t

τ=1 η−2τφτφ
>
τ + λη−2t ·

I. Then for any ε ∈ (0, 1) and δ > 0, with probability at least 1− δ, for all t > 0 and
for all w, A ∈ G defined in (D.4.4), we have∥∥∥∥∥ t

∑
τ=1

η−τφτ

(
Vw,A(sτ)−E

[
Vw,A(sτ) | Fτ−1

])∥∥∥∥∥
Σ̃−1

t

≤ O
(

dH

√
log
(

dHβt
1

λ(1− η)

)
+ log(1/δ)

)
(D.5.3)

where Vw,A is defined in Equation (D.4.3).

Proof. Let t > 0. For w, A ∈ Ot and τ ∈ [t] define

εw,A
τ = Vw,A(sτ)−E

[
Vw,A(sτ) | Fτ−1

]
(D.5.4)

Then εw,A
τ defines a martingale difference sequence with filtrationFτ. Moreover,

by the definition of Vw,A, each εw,A
τ is bounded in absolute value by H, so that

each εw,A
τ is H-subgaussian random variable.

So, by lemma 23, the εw,A
τ induce a self normalizing process so that for any

δ > 0, with probability at least 1− δ, we have for all t > 0:∥∥∥∥∥ t

∑
τ=1

η−τφsε
w,A
τ

∥∥∥∥∥
Σ̃−1

t

≤ H

√√√√2 log
(

1
δ

)
+ log

(
det(Σ̃t)

(λη−2t)d

)
(D.5.5)

≤ H

√
2 log

(
1
δ

)
+ d log

(
1 +

1− η2t

λd(1− η2)

)
(D.5.6)

The last step is due to det(Σ̃t) ≤
(

λη−2t + η−2t−1
d(1−η−d)

)d
by lemma 24.

174

Let Nε(G) be covering number of G. So, by union bound, with probability δ.
For all w̃, Ã in the ε-covering of G that∥∥∥∥∥ t

∑
τ=1

η−τφsε
w̃,Ã
τ

∥∥∥∥∥
Σ̃−1

t

≤ H

√
2 log

(Nε(G)
δ

)
+ d log

(
1 +

1− η2t

λd(1− η2)

)
(D.5.7)

For any (w, A) ∈ G, we choose a specific (w̃, Ã) in the ε-covering of G such
that ‖w− w̃‖ ≤ ε and

∥∥A− Ã
∥∥

F ≤ ε.

∥∥∥∥∥ t

∑
τ=1

η−τφsε
w,A
τ

∥∥∥∥∥
Σ̃−1

t

≤
∥∥∥∥∥ t

∑
τ=1

η−τφsε
w̃,Ã
τ

∥∥∥∥∥
Σ̃−1

t

+

∥∥∥∥∥ t

∑
τ=1

η−τφs

(
εw,A

τ − εw̃,Ã
τ

)∥∥∥∥∥
Σ̃−1

t

≤ H

√
2 log

(Nε(G)
δ

)
+ d log

(
1 +

1− η2t

λd(1− η2)

)
+

∥∥∥∥∥ t

∑
τ=1

η−τφs

(
εw,A

τ − εw̃,Ã
τ

)∥∥∥∥∥
Σ̃−1

t

(D.5.8)

We can bound∥∥∥∥∥ t

∑
τ=1

η−τφs

(
εw,A

τ − εw̃,Ã
τ

)∥∥∥∥∥
Σ̃−1

t

≤ 1√
λη−t

∥∥∥∥∥ t

∑
τ=1

η−τφs

(
εw,A

τ − εw̃,Ã
τ

)∥∥∥∥∥
≤ 1√

λη−t
· η−t − 1

1− η
sup

τ
|εw,A

τ − εw̃,Ã
τ |

=
1− ηt
√

λ(1− η)
sup

τ
|εw,A

τ − εw̃,Ã
τ |

≤ 2(1− ηt)√
λ(1− η)

sup
τ
|Vw,A(sτ)−Vw̃,Ã(sτ)|

175

By the definition of Vw,A, we have

sup
τ
|Vw,A(sτ)−Vw̃,Ã(sτ)|

≤ sup
s,a

∣∣∣∣(w>φ(s, a) +
√
φ(s, a)>Aφ(s, a)

)
−
(

w̃>φ(s, a) +
√
φ(s, a)>Ãφ(s, a)

)∣∣∣∣
≤ sup
φ∈Rd :‖φ‖≤1

∣∣∣∣(w>φ+
√
φ>Aφ

)
−
(

w̃>φ+
√
φ>Ãφ

)∣∣∣∣
≤ sup
φ∈Rd :‖φ‖≤1

|(w− w̃)>φ|+ sup
φ∈Rd :‖φ‖≤1

√
φ>(A− Ã)φ

= ‖w− w̃‖+
√∥∥A− Ã

∥∥
≤ ‖w− w̃‖+

√∥∥A− Ã
∥∥

F ≤ ε +
√

ε ≤ 2
√

ε.

Therefore, ∥∥∥∥∥ t

∑
τ=1

η−τφs

(
εw,A

τ − εw̃,Ã
τ

)∥∥∥∥∥
Σ̃−1

t

≤ 4(1− ηt)√
λ(1− η)

√
ε (D.5.9)

The ε-covering number of G as Euclidean ball in Rd+d2
of radius

2H
√

d
λ(1−η)

+ β2
√

d
λ is bounded by Lemma 25 as

(
3
(

2H
√

d
λ(1−η)

+ β2
√

d
λ

)
/ε
)d+d2

.
Now, combining Equations (D.5.8) and (D.5.9) we obtain:

∥∥∥∥∥ t

∑
τ=1

η−τφsε
w,A
τ

∥∥∥∥∥
Σ̃−1

t

≤ 2H

√√√√2(d2 + d) log

(
3
ε

(
2H

√
d

λ(1− η)
+

β2
√

d
λ

))
+ 2 log(

1
δ
) + d log

(
1 +

1− η2t

λd(1− η2)

)

+
4
√

ε(1− ηt)√
λ(1− η)

Finally by taking ε = λ(1−η)2

16 and keeping only dominant term for each pa-
rameter, we obtain.∥∥∥∥∥ t

∑
τ=1

η−τφsε
w,A
τ

∥∥∥∥∥
Σ̃−1

t

≤ O
(

dH

√
log
(

dHβ
1

λ(1− η)

)
+ log(1/δ)

)

176

E Appendix for Chapter 7

E.1 PROOFS

The first proposition is a direct consequence of the definition (7.8.2) of suc-
cessor states with a goal space G.

Proposition 12. Let φ : S× A→ G be a map to some goal space G.
Let π be some policy, and let Mπ be the successor state measure (7.8.2) of π in goal

space G. Let mπ be the density of Mπ with respect to some positive probability measure
ρ on G.

Let r : G → R be some function on G, and define the reward function R(s, a) ,
r(φ(s, a)) on S× A.

Then the Q-function Qπ of policy π for reward R is

Qπ(s, a) =
∫

r(g) Mπ(s, a, dg)

= Eg∼ρ [r(g)mπ(s, a, g)] .

Proof of Proposition 12. For each time t ≥ 0, let Pπ
t (s0, a0, dg) be the probability

distribution of g = φ(st, at) over trajectories of the policy π starting at (s0, a0) in
the MDP. Thus, by the definition (7.8.2),

Mπ(s, a, dg) = ∑
t≥0

γtPπ
t (s, a, dg). (E.1.1)

The Q-function of π for the reward R is by definition (the sums and integrals
are finite since R is bounded)

Qπ(s, a) = ∑
t≥0

γtE[R(st, at) | s0 = s, a0 = a, π]

= ∑
t≥0

γtE[r(φ(st, at)) | s0 = s, a0 = a, π]

= ∑
t≥0

γt
∫

g
r(g)Pπ

t (s, a, dg)

=
∫

g
r(g)Mπ(s, a, dg)

=
∫

g
r(g)mπ(s, a, g)ρ(dg)

= Eg∼ρ[r(g)mπ(s, a, g)]

177

by definition of the density mπ.

Proof of Theorems 1 and 2. Theorem 1 is a particular case of Theorem 2 (φ = Id
and m̄ = 0), so we only prove the latter.

Let R(s, a) = r(φ(s, a)) be a reward function as in the theorem.
The Q-function of π for the reward R is, by Proposition 12,

Qπ(s, a) = Eg∼ρ[r(g)mπ(s, a, g)]. (E.1.2)

The assumptions state that for any z ∈ Z, mπz(s, a, g) is equal to
F(s, a, z)>B(g) + m̄(s, z, g). Therefore, for any z ∈ Z we have

Qπz(s, a) = Eg∼ρ

[
r(g)F(s, a, z)>B(g) + r(g)m̄(s, z, g)

]
= F(s, a, z)>Eg∼ρ [r(g)B(g)] + Eg∼ρ[r(g)m̄(s, z, g)]

= F(s, a, z)>zR + V̄z(s)

by definition of zR and V̄. This proves the claim (7.8.7) about Q-functions.
By definition, the policy πz selects the action a that maximizes F(s, a, z)>z.

Take z = zR. Then

πzR = argmax
a

F(s, a, zR)
>zR (E.1.3)

= argmax
a

{
F(s, a, zR)

>zR + V̄z(s)
}

(E.1.4)

since the last term does not depend on a.
This quantity is equal to QπzR (s, a). Therefore,

πzR = argmax
a

QπzR (s, a) (E.1.5)

and by the above, QπzR (s, a) is indeed equal to the Q-function of policy πzR

for the reward R. Therefore, πzR and QπzR constitute an optimal Bellman pair
for reward R. Since QπzR (s, a) is the Q-function of πZR , it satisfies the Bellman
equation

QπzR (s, a) = R(s, a) + γEs′|(s,a)Q
πzR (s′, πzR(s

′)) (E.1.6)

= R(s, a) + γEs′|(s,a) max
a′

QπzR (s′, a′) (E.1.7)

by (E.1.5). This is the optimal Bellman equation for R, and πzR is the optimal
policy for R.

We still have to prove the last statement of Theorem 2. Since πzR is an optimal
policy for R, for any other policy πz and state-action (s, a) we have

QπzR (s, a) ≥ Qπz(s, a). (E.1.8)

178

Using the formulas above for Qπ, with m̄ = 0, this rewrites as

F(s, a, zR)
>zR ≥ F(s, a, z)>zR (E.1.9)

as needed. Thus F(s, a, zR)
>zR ≥ supz∈Z F(s, a, z)>zR, and equality occurs by

taking z = zR. This ends the proof of Theorem 2.

Proof of Proposition 6. Assume d = #S× #A; extra dimensions can just be ignored
by setting the extra components of F and B to 0.

With d = #S× #A, we can index the components of Z by pairs (s, a).
First, let us set B(s, a) , 1s,a.
Let r : S × A → R be any reward function. Let zR ∈ R#S×#A be defined as

in Theorem 1, namely, zR = E(s,a)∼ρ[r(s, a)B(s, a)]. With our choice of B, the
components of zR are (zR)s,a = r(s, a)ρ(s, a). Since ρ > 0, the correspondence
r ↔ zR is bijective.

Let us now define F. Take z ∈ Z. Since r ↔ zR is bijective, this z is equal to
zR for some reward function r. Let πz be an optimal policy for this reward r in
the MDP. Let Mπr be the successor state measure of policy πz, namely:

Mπz(s, a, s′, a′) = ∑
t≥0

γt Pr
(
(st, at) = (s′, a′) | (s0, a0) = (s, a), πz

)
. (E.1.10)

Now define F(s, a, z) by setting its (s′, a′) component to Mπz(s, a, s′, a′)/ρ(s′, a′)
for each (s′, a′):

F(s, a, z)s′,a′ , Mπz(s, a, s′, a′)/ρ(s′, a′). (E.1.11)

Then we have

F(s, a, z)>B(s′, a′) = ∑
s′′,a′′

F(s, a, z)s′′,a′′ B(s′, a′)s′′,a′′

= F(s, a, z)s′,a′ = Mπz(s, a, s′, a′)/ρ(s′, a′) (E.1.12)

because by our choice of B, B(s′, a′)s′′a′′ = 1s′=s′′, a′=a′′ .
Thus, F(s, a, z)>B(s′, a′) is the density of the successor state measure Mπz of

policy πz with respect to ρ, as needed.
We still have to check that πz satisfies πz(s) = argmax F(s, a, z)>z (since this

is not how it was defined). Since πz was defined as an optimal policy for the
reward r associated with z, it satisfies

πz(s) = argmax
a

Qπz(s, a) (E.1.13)

179

with Qπz(s, a) the Q-function of policy πz for the reward r. This Q-function is
equal to the cumulated expected reward

Qπz(s, a) = ∑
t≥0

γtE [r(st, at) | s0 = s, a0 = a, πz]

= ∑
t≥0

γt ∑
s′,a′

r(s′, a′)Pr
(
(st, at) = (s′, a′) | s0 = s, a0 = a, πz

)
= ∑

s′,a′
r(s′, a′) ∑

t≥0
γt Pr

(
(st, at) = (s′, a′) | s0 = s, a0 = a, πz

)
= ∑

s′,a′
r(s′, a′)Mπz(s, a, s′, a′)

= ∑
s′,a′

r(s′, a′)F(s, a, z)s′,a′ ρ(s′, a′)

= F(s, a, z)>
(

∑
s′a′

r(s′, a′)ρ(s′, a′)1s′a′

)
= F(s, a, z)>z

since z is equal to E(s′,a′)∼ρ[r(s′, a′)B(s′, a′)]. This proves that πz(s) =

argmaxa Qπz(s,a) = argmaxa F(s, a, z)>z. So this choice of F and B satisfies all the
properties claimed.

We will rely on the following two basic results in Q-learning.

Proposition 13 (r 7→ Q? is Lipschitz in sup-norm). Let r1, r2 : S× A → R be two
bounded reward functions. Let Q?

1 and Q?
2 be the corresponding optimal Q-functions,

and likewise for the V-functions. Then

sup
S×A
|Q?

1 −Q?
2 | ≤

1
1− γ

sup
S×A
|r1 − r2| and sup

S
|V?

1 −V?
2 | ≤

1
1− γ

sup
S×A
|r1 − r2| .

(E.1.14)
Moreover for any policy π, we have

sup
S×A
|Qπ

1 −Qπ
2 | ≤

1
1− γ

sup
S×A
|r1 − r2| and sup

S
|Vπ

1 −Vπ
2 | ≤

1
1− γ

sup
S×A
|r1 − r2| .

(E.1.15)

Proof. Assume supS×A |r1 − r2| ≤ ε for some ε ≥ 0.
For any policy π, let Qπ

1 be its Q-function for reward r1, and likewise for
r2. Let π1 and π2 be optimal policies for r1 and r2, respectively. Then for any

180

(s, a) ∈ S× A,

Q?
1(s, a) = Qπ1

1 (s, a)
≥ Qπ2

1 (s, a)

= ∑
t≥0

γtE [r1(st, at) | π2, (s0, a0) = (s, a)]

≥ ∑
t≥0

γtE [r2(st, at)− ε | π2, (s0, a0) = (s, a)]

= ∑
t≥0

γtE [r2(st, at) | π2, (s0, a0) = (s, a)]− ε

1− γ

= Q?
2(s, a)− ε

1− γ

and likewise in the other direction, which ends the proof for Q-functions. The
case of V-functions follows by restricting to the optimal actions at each state s.

Now, let π a policy. We have

|Qπ
1 (s, a)−Qπ

2 (s, a)| =
∣∣∣∑

t≥0
γtE [r1(st, at) | π, (s0, a0) = (s, a)]

−∑
t≥0

γtE [r2(st, at) | π, (s0, a0) = (s, a)]
∣∣∣

≤ ∑
t≥0

γtE [|r2(st, at)− r1(st, at)| | π, (s0, a0) = (s, a)]

≤ 1
1− γ

sup
S×A
|r1 − r2| .

The case of V-functions follows by taking the expectation over actions according
to π.

Proposition 14. Let f : S×A→ R be any function, and define a policy π f by π f (s) ,
argmaxa f (s, a). Let r : S× A → R be some bounded reward function. Let Q? be its
optimal Q-function, and let Qπ f be the Q-function of π f for reward r.

Then
sup
S×A
| f −Q?| ≤ 2

1− γ
sup
S×A
| f −Qπ f | (E.1.16)

and
sup
S×A
|Qπ f −Q?| ≤ 3

1− γ
sup
S×A
| f −Qπ f | (E.1.17)

Proof of Theorem 5. By construction of the Kantorovich–Rubinstein norm, the
second claim of Theorem 5 is a particular case of the third claim, with ‖ f ‖A ,
max(‖ f ‖∞ , ‖ f ‖Lip) and ‖µ‖B , ‖µ‖KR.

181

Likewise, since m is the density of M with respect to ρ, the first claim is an
instance of the third, by taking ‖ f ‖A , ‖ f ‖∞ and ‖µ‖B ,

∥∥∥dµ
dρ

∥∥∥
L1(ρ)

. Therefore,

we only prove the third claim.
Let z ∈ Z and let r : S× A → R be any reward function. By Proposition 12

with G = S× A and φ = Id, the Q-function of policy Qπz for this reward is

Qπz(s, a) =
∫

r(s′, a′) Mπz(s, a, ds′, da′). (E.1.18)

Let εz(s, a, ds′, da′) be the difference of measures between the model F>Bρ
and Mπz :

εz(s, a, ds′, da′) , Mπz(s, a, ds′, da′)− M̂z(s, a, ds′, da′) (E.1.19)

= Mπz(s, a, ds′, da′)− F(s, a, z)>B(s′, a′)ρ(ds′, da′). (E.1.20)

We want to control the optimality gap in terms of sups,a ‖εz(s, a, ·)‖B.
By definition of εz,

Qπz(s, a) =
∫

r(s′, a′)F(s, a, z)>B(s′, a′)ρ(ds′, da′) +
∫

r(s′, a′) εz(s, a, ds′, da′)

(E.1.21)

= F(s, a, z)>zR +
∫

r(s′, a′) εz(s, a, ds′, da′) (E.1.22)

since zR =
∫

r(s′, a′)B(s′, a′)ρ(ds′, da′). Therefore,∣∣∣Qπz(s, a)− F(s, a, z)>zR

∣∣∣ = ∣∣∣∣∫ r(s′, a′) εz(s, a, ds′, da′)
∣∣∣∣

≤ ‖r‖A ‖εz(s, a, ·)‖B

for any reward r and any z ∈ Z (not necessarily z = zR).
Let Q? be the optimal Q-function for reward r. Define f (s, a) , F(s, a, zR)

>zR.
By definition, the policy πzR is equal to argmaxa f (s, a). Therefore, by Proposi-
tion 14,

sup
S×A
|QπzR −Q?| ≤ 3

1− γ
sup
S×A
| f −QπzR | . (E.1.23)

and
sup
S×A
| f −Q?| ≤ 2

1− γ
sup
S×A
| f −QπzR | . (E.1.24)

But by the above,

sup
S×A
| f −QπzR | = sup

S×A

∣∣∣F(s, a, zR)
>zR −QπzR (s, a)

∣∣∣
≤ ‖r‖A sup

S×A
‖εzR(s, a, ·)‖B .

182

Therefore, for any reward function r,

sup
S×A
|QπzR −Q?| ≤ 3 ‖r‖A

1− γ
sup
S×A
‖εzR(s, a, ·)‖B . (E.1.25)

This inequality transfers to the value functions, hence the result. In addition,
using again f (s, a) = F(s, a, zR)

>zR, we obtain

sup
S×A

∣∣∣F(s, a, zR)
>zR −Q?(s, a)

∣∣∣ ≤ 2 ‖r‖A
1− γ

sup
S×A
‖εzR(s, a, ·)‖B . (E.1.26)

Proposition 15 (Pointwise optimality gap). Assume the state space is finite, and
view rewards and Q-functions as vectors over state-actions.

Let r1 and r2 be two reward functions, and let π1 and π2 be optimal policies for r1
and r2 respectively. Let P1 and P2 be the stochastic transition matrices over state-actions
induced by π1 and π2.

Then the optimality gap of policy π2 on reward r1 is at most

0 ≤ Qπ1
r1 −Qπ2

r1 ≤
(
(Id−γP1)

−1 − (Id−γP2)
−1
)
(r1 − r2) (E.1.27)

where the equality holds componentwise viewing the Q-functions as vectors over state-
actions.

Proof. This is a classical result. The inequality 0 ≤ Qπ1
r1 − Qπ2

r1 is trivial since π1
is optimal for r1 and the optimal policy is optimal at every state-action. Denote
M1 , (Id−γP1)

−1 and likewise for M2. Then for any reward function r one has
Qπ1

r = M1r and likewise for M2. Therefore

Qπ1
r1 −Qπ2

r1 = M1r1 −M2r1

= M1r1 −M1r2 + M1r2 −M2r1

≤ M1r1 −M1r2 + M2r2 −M2r1 since π2 is optimal for r2

= (M1 −M2)(r1 − r2).

Proof of Theorem 6. Let f : S× A→ R be any function. Define the policy π f (s) ,
argmaxa f (s, a). Define r′ , (Id−γPπ f) f . The equality f = r′ + γPπ f f can be
rewritten as

f (s, a) = r′(s, a) + γEs′∼P(ds′|s,a) f (s′, π f (s′)). (E.1.28)

But by definition of π f , π f (s′) = argmaxa′ f (s′, a′). Therefore

f (s, a) = r′(s, a) + γEs′∼P(ds′|s,a) max
a′

f (s′, a′) (E.1.29)

183

namely, f is the optimal Q-function for reward r′, with π f the corresponding
optimal policy.

Let r be any reward function and let Qπ f be the Q-function of π f for r. By
definition, it satisfies the Bellman equation Qπ f = r + γPπ f Qπ f , namely, r =
(Id−γPπ f)Qπ f . Therefore,

r− r′ = (Id−γPπ f)(Qπ f − f). (E.1.30)

For any policy π, denote Mπ , (Id−γPπ)−1. (Mπ is the successor measure
seen as a matrix.) The Q-function of π for reward r is Mπr.

Since π? is optimal for r, and π f is optimal for r′, Proposition 15 yields

0 ≤ Q? −Qπ f ≤ (Mπ? −Mπ f)(r− r′)

= (Mπ? −Mπ f)(Id−γPπ f)(Qπ f − f).

Since Mπ f is the inverse of Id−γPπ f and likewise for π?, we have

(Mπ? −Mπ f)(Id−γPπ f) = Mπ?
(Id−γPπ f)− Id

= Mπ?
(Id−γPπ f − (Id−γPπ?

))

= γMπ?
(Pπ? − Pπ f)

and therefore

0 ≤ Q? −Qπ f ≤ γMπ?
(Pπ? − Pπ f)(Qπ f − f). (E.1.31)

Now set
f (s, a) , F(s, a, zR)

>zR (E.1.32)

or in matrix notation, f = F(zR)
>zR. Then π f = πzR by definition. Thus Qπ f =

MπzR r = mπzR diag(ρ)r in matrix notation. Moreover, zR = Eρ[B(s, a)r(s, a)] =
B diag(ρ)r in matrix notation. So f = F(zR)

>B diag(ρ)r. Therefore,

Qπ f − f = (mπzR − F(zR)
>B)diag(ρ)r (E.1.33)

and

Q? −Qπ f ≤ γMπ?
(Pπ? − Pπ f)

(
mπzR − F(zR)

>B
)

diag(ρ)r (E.1.34)

and using Mπ?
= ∑t≥0 γtPt

π?
provides the required inequality.

As a remark, the same proof works on continuous state spaces, by viewing
all matrices as linear operators over functions on S× A.

184

Proof of Proposition 7. This is just a triangle inequality.

‖VπẑR
r −V?

r ‖∞ ≤ ‖V
πẑR
r −V

πẑR
r̂ ‖∞ + ‖VπẑR

r̂ −V?
r̂ ‖∞ + ‖V?

r̂ −V?
r ‖∞

≤ ‖r− r̂‖∞

1− γ
+ εFB +

‖r− r̂‖∞

1− γ
.

The last inequality follows from two facts: by assumption, the difference be-
tween the value function of πẑR and the optimal value function V?

r̂ is at most
εFB, then by Proposition 13, the difference between V?

r̂ and V?
r as well as the

difference between V
πẑR
r and V

πẑR
r̂ are bounded by 1

1−γ supS×A |r̂− r|.

Proof of Theorem 7. We proceed by building a reward function r̂ corresponding
to ẑR. Then we will bound r̂− r and apply Proposition 7.

First, by Remark 4, up to reducing d, we can assume that B is L2(ρ)-
orthonormal.

For any function φ : (s, a) → R, define zφ , E(s,a)∼ρ[φ(s, a)B(s, a)]. For each
z ∈ Z, define φz via φz(s, a) , B(s, a)>z. Then, if B is L2(ρ)-orthonormal, we
have zφz = z. (Indeed, zφz = E[(B(s, a)>z)B(s, a)] = E[B(s, a)(B(s, a)>z)] =(
E[B(s, a)B(s, a)>]

)
z.)

Define the function
r̂ , r + φẑR−zR (E.1.35)

using the functions φz defined above. By construction, zr̂ = zR + zφẑR−zR
= ẑR.

Therefore, the policy πẑR associated to ẑR is the policy associated to the reward
r̂.

We will now apply Proposition 7 to r and r̂. For this, we need to bound
‖φẑR−zR‖∞.

Let B1, B2, . . . , Bd be the components of B as functions on S × A. For any
z ∈ Z, we have

‖φz‖2
L2(ρ) =

∥∥∥∥∥∑i
ziBi

∥∥∥∥∥
2

L2(ρ)

= ∑
i

z2
i = ‖z‖2 (E.1.36)

since the Bi are L2(ρ)-orthonormal. Moreover, by construction, φz lies in the
linear span 〈B〉 of the functions (Bi). Therefore

‖φz‖∞ ≤ ζ(B) ‖φz‖L2(ρ) = ζ(B) ‖z‖ (E.1.37)

by the definition of ζ(B) (Definition 6).
Therefore,

‖φẑR−zR‖∞ ≤ ζ(B) ‖ẑR − zR‖ . (E.1.38)

185

Let us now bound ẑR − zR:

E
[
‖ẑR − zR‖2

]
= E

[
E
[
‖ẑR − zR‖2 | (si, ai)

]]
= E

[
E
[
‖ẑR −E[ẑR | (si, ai)]‖2 + ‖E[ẑR | (si, ai)]− zR‖2 | (si, ai)

]]
= E

E

∥∥∥∥∥ 1
N ∑

i
(r̂i − r(si, ai))B(si, ai)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
N ∑

i
r(si, ai)B(si, ai)− zR

∥∥∥∥∥
2

| (si, ai)

The first term satisfies

E

∥∥∥∥∥ 1
N ∑

i
(r̂i − r(si, ai))B(si, ai)

∥∥∥∥∥
2

| (si, ai)

 =
1

N2 ∑
i

E
[
(r̂i − r(si, ai))

2 ‖B(si, ai)‖2
]

≤ 1
N2 ∑

i
v ‖B(si, ai)‖2

because the r̂i are independent conditionally to (si, ai), and because B is deter-
ministic. The expectation of this over (si, ai) is

E

[
1

N2 ∑
i

v ‖B(si, ai)‖2

]
=

v
N

E(s,a)∼ρ ‖B(s, a)‖2 =
v
N
‖B‖2

L2(ρ) (E.1.39)

which is thus a bound on the first term.
The second term satisfies

E

∥∥∥∥∥ 1
N ∑

i
r(si, ai)B(si, ai)− zR

∥∥∥∥∥
2
 =

1
N
∥∥r(s, a)B(s, a)−Eρ[r(s, a)B(s, a)]

∥∥2
L2(ρ)

(E.1.40)
since the (si, ai) are independent with distribution ρ. By the Cauchy–Schwarz
inequality (applied to each component of B), this is at most

1
N
∥∥r(s, a)−Eρr

∥∥2
L2(ρ) ‖B‖

2
L2(ρ) . (E.1.41)

Therefore,

E
[
‖ẑR − zR‖2

]
≤
(

v +
∥∥r(s, a)−Eρr

∥∥2
L2(ρ)

) ‖B‖2
L2(ρ)

N
. (E.1.42)

Since B is orthonormal in L2(ρ), we have ‖B‖2
L2(ρ) = d. Putting everything

together, we find

E
[
‖r̂− r‖2

∞

]
≤ ζ(B) d

N

(
v +

∥∥r(s, a)−Eρr
∥∥2

L2(ρ)

)
. (E.1.43)

186

Therefore, by the Markov inequality, for any δ > 0, with probability 1− δ,

‖r̂− r‖∞ ≤
√

ζ(B) d
Nδ

(
v +

∥∥r(s, a)−Eρr
∥∥2

L2(ρ)

)
(E.1.44)

hence the conclusion by Proposition 7.

Proof of Theorem 8. Let

m(s, a, s′, a′) , ∑
t≥0

γt Pt(ds′, da′|s, a, πz)

ρ(ds′, da′)
(E.1.45)

so that

`(F, B) =
∫ ∣∣∣F(s, a, z)>B(s′, a′)−m(s, a, s′, a′)

∣∣∣2 ρ(ds, da)ρ(ds′, da′). (E.1.46)

Let us first take the derivative with respect to the parameters of F. This is 0
by assumption, so we find

0 =
∫

∂θ F(s, a, z)>B(s′, a′)
(

F(s, a, z)>B(s′, a′)−m(s, a, s′, a′)
)

ρ(ds, da)ρ(ds′, da′)

(E.1.47)

=
∫

∂θ F(s, a, z)>G(s, a)ρ(ds, da) (E.1.48)

where

G(s, a) ,
∫

B(s′, a′)
(

F(s, a, z)>B(s′, a′)−m(s, a, s′, a′)
)

ρ(ds′, da′) (E.1.49)

Since the model is overparameterized, we can realize any L2 function f (s, a)
as the derivative ∂θ F(s, a, z) for some direction θ. Therefore, the equation
0 =

∫
∂θ F(s, a, z)>G(s, a)ρ(ds, da) implies that G(s, a) is L2(ρ)-orthogonal to

any function f (s, a) in L2(ρ). Therefore, G(s, a) vanishes ρ-almost everywhere,
namely∫

B(s′, a′)F(s, a, z)>B(s′, a′)ρ(ds′, da′) =
∫

B(s′, a′)m(s, a, s′, a′)ρ(ds′, da′)
(E.1.50)

Now, since F(s, a, z)>B(s′, a′) is a real number, F(s, a, z)>B(s′, a′) =
B(s′, a′)>F(s, a, z). Therefore, the right-hand-side above rewrites as∫

B(s′, a′)B(s′, a′)>F(s, a, z)ρ(ds′, da′) = (Cov B)F(s, a, z) (E.1.51)

so that

(Cov B)F(s, a, z) =
∫

B(s′, a′)m(s, a, s′, a′)ρ(ds′, da′). (E.1.52)

Unfolding the definition of m yields the statement for F. The proof for B is
similar.

187

Proof of Theorem 9. According to the proof of Theorem 8, if F achieves a local
extremum of `(F, B) given a fixed B, we have

(Cov B)F(s, a, z) =
∫

B(s′, a′)mπz(s, a, s′, a′)ρ(ds′, da′) (E.1.53)

where mπz(s, a, s′, a′) = ∑t≥0 γt Pt(ds′,da′|s,a,πz)
ρ(ds′,da′) is the successor state density in-

duced by the policy πz.
Let r : S × A → R a bounded reward function that lies in the span

of B i.e there exists ω ∈ Rd such that r(s, a) = B(s, a)>ω for any state-
action pair (s, a). This implies that (Cov B)ω = E(s,a)∼ρ[B(s, a)B(s, a)>ω] =

E(s,a)∼ρ[B(s, a)r(s, a)] = zR, by definition of zR.
Therefore,

F(s, a, zR)
>zR = F(s, a, zR)

>(Cov B)ω

= ((Cov B)F(s, a, zR))
> ω

=

(∫
B(s′, a′)>mπzR (s, a, s′, a′)ρ(ds′, da′)

)
ω

=
∫

B(s′, a′)>ω mπzR (s, a, s′, a′)ρ(ds′, da′)

=
∫

r(s′, a′)mπzR (s, a, s′, a′)ρ(ds′, da′)

= QπzR (s, a)

Therefore, πzR is the greedy policy with respect to its own Q-value. We conclude
that πzR is optimal for r.

Now, let r : S× A → R be an arbitrary bounded reward function, and let rB
be the L2(ρ)-projection of r onto the span of B. Both r and rB share the same
zR = E(s,a)∼ρ[r(s, a)B(s, a)] = E(s,a)∼ρ[rB(s, a)B(s, a)]. According to the first part
of our proof, πzR is optimal for rB since rB lies in the span of B. Denote by the
subscript r in Vr the reward function that a value function corresponds to. By
Proposition 15,

0 ≤ V?
r −V

πzR
r ≤ (Id−γPπ?

)−1(r− rB)− (Id−γPπzR)−1(r− rB) (E.1.54)

hence, taking norms,

‖VπzR −V?‖∞ ≤
∥∥∥(Id−γPπ?

)−1(r− rB)
∥∥∥

∞
+
∥∥∥(Id−γPπzR)−1(r− rB)

∥∥∥
∞

(E.1.55)
as needed.

The bound with 2
1−γ follows by noting that (Id−γPπ)−1 is bounded by 1

1−γ

in L∞ norm for any policy π.

188

Proof of Proposition 8. From the definition (7.8.33) of ẑR and the definition (7.8.34)
of r̂, we find

ẑR = Eρ[B(s, a)r̂(s, a)]

= Eρ[B(s, a)B(s, a)>w]

= (Covρ B)w

hence the result given the expression (7.8.34) for w.
If ρ = ρtest, then the covariances cancel out: we find ẑR =

(Covρ B)w = (Covρ B)(Covρtest B)−1Eρtest [r(s, a)B(s, a)] = Eρtest [r(s, a)B(s, a)] =
Eρ[r(s, a)B(s, a)] = zR.

If r is linear in B, then the linear regression model does not depend on the
data distribution ρtest used: if r(s, a) = B(s, a)>w0 then w = w0 for any ρtest,
as long as Covρtest B is invertible. In that case, both zR and ẑR are equal to
(Covρ B)w0.

E.2 EXPERIMENTAL SETUP

In this section we provide additional information about our experiments.

E.2.1 Environments

• Discrete maze: is the 11× 11 classical tabular gridworld with foor rooms.
States are represented by one-hot unit vectors, S = {0, 1}121. There are
five available actions , A = {left, right, up, down, do nothing }. The
dynamics are deterministic and the walls are impassable.

• Continuous maze: is a two dimensional environment with impassable
walls. States are represented by their Cartesian coordinates (x, y) ∈
S = [0, 1]2. There are five available actions, A = {left, right, up,
down, do nothing }. The execution of one of the actions moves the agent
0.1 units in the desired direction, and normal random noise with zero
mean and standard deviation 0.01 is added to the position of the agent
(that is, a move along the x axis would be x′ = x ± 0.1 + N (0, 0.01),
where N (0, 0.01) is a normal variable with mean 0 and standard de-
viation 0.01). If after a move the agent ends up outside of [0, 1]2, the
agent’s position is clipped (e.g if x < 0 then we set x = 0). If a move
make the agent cross an interior wall, this move is undone. For all algo-
rithms, we convert a state s = (x, y) into feature vector φ(s) ∈ R441 by
computing the activations of a regular 21 × 21 grid of radial basis func-
tions at the point (s, y). Especially, we use Gaussian functions: φ(s) =

189

(
exp(− (x−xi)

2+(y−yi)
2

σ), . . . , exp(− (x−x441)
2+(y−y441)

2

2σ2)
)

where (xi, yi) is the

center of the ith Gaussian and σ = 0.05.

• FeatchReach: is a variant of the simulated robotic arm environment
from Plappert et al. [2018] using discrete actions instead of continuous
actions. States are 10-dimensional vectors consisting of positions and
velocities of robot joints. We discretise the original 3-dimensional action
space into 6 possible actions using action stepsize of 1 (The same way as in
https://github.com/paulorauber/hpg, the implementation of hindsight
policy gradient Rauber et al. [2018]). The goal space is 3-dimensional
space representing of the position of the object to reach.

• Ms. Pacman: is a variant of the Atari 2600 game Ms. Pacman Bellemare
et al. [2013b], where an episode ends when the agent is captured by a mon-
ster Rauber et al. [2018]. States are obtained by processing the raw visual
input directly from the screen. Frames are preprocessed by cropping, con-
version to grayscale and downsampling to 84× 84 pixels. A state st is the
concatenation of (xt−12, xt−8, xt−4, xt) frames, i.e. an 84× 84× 4 tensor. An
action repeat of 12 is used. As Ms. Pacman is not originally a multi-goal
domain, we define the set of goals as the set of the 148 reachable coordinate
pairs (x, y) on the screen; these can be reached only by learning to avoid
monsters. In contrast with Rauber et al. [2018], who use a heuristic to find
the agent’s position from the screen’s pixels, we use the Atari annotated
RAM interface wrapper Anand et al. [2019].

E.2.2 Architectures

We use the same architecture for discrete maze, continuous maze and
FeatchReach. Both forward and backward networks are represented by a
feedforward neural network with three hidden layers, each with 256 ReLU
units. The forward network receives a concatenation of a state and a z vector
as input and has |A| × d as output dimension. The backward network receives
a state as input (or gripper’s position for FeatchReach) and has d as output
dimension. For goal-oriented DQN, the Q-value network is also a feedforward
neural network with three hidden layers, each with 256 ReLU units. It receives
a concatenation of a state and a goal as input and has |A| as output dimension.

For Ms. Pacman, the forward network is represented by a convolutional neu-
ral network given by a convolutional layer with 32 filters (8× 8, stride 4); convo-
lutional layer with 64 filters (4× 4, stride 2); convolutional layer with 64 filters
(3× 3, stride 1); and three fully-connected layers, each with 256 units. We use
ReLU as activation function. The z vector is concatenated with the output of
the third convolutional layer. The output dimension of the final linear layer is

190

|A| × d. The backward network acts only on agent’s position, a 2-dimensional
input. It is represented by a feedforward neural network with three hidden lay-
ers, each with 256 ReLU units. The output dimension is d. For goal-oriented
DQN, the Q-value network is represented by a convolutional neural network
with the same architecture as the one of the forward network. The goal’s posi-
tion is concatenated with the output of the third convolutional layer. The output
dimension of the final linear layer is |A|.

E.2.3 Implementation Details

For all environments, we run the algorithms for 800 epochs. Each epoch
consists of 25 cycles where we interleave between gathering some amount of
transitions, to add to the replay buffer D (old transitions are thrown when we
reach the maximum of its size), and performing 40 steps of stochastic gradient
descent on the model parameters. To collect transitions, we generate episodes
using some behavior policy. For both mazes, we use a uniform policy while for
FetchReach and Ms. Pacman, we use an ε-greedy policy (ε = 0.2) with respect
to the current approximation F(s, a, z)>z for a sampled z. At evaluation time, ε-
greedy policies are also used, with a smaller ε = 0.02 for all environments except
from discrete maze where we use Boltzmann policy with temperature τ = 1. We
train each models for three different random seeds.

For generality, we will keep using the notation B(s, a) while in our experi-
ments B acts only on φ(s, a), a part of the state-action space. For discrete and
continuous mazes, φ(s, a) = s, for FetchReach, φ(s, a) the position of arm’s grip-
per and for Ms. Pacman, φ(s, a) is the 2-dimensional position (x, y) of the agent
on the screen.

We denote by θ and ω the parameters of forward and backward networks
respectively and θ− and ω− the parameters of their corresponding target net-
works. Both θ− and ω− are updated after each cycle using Polyak averaging; i.e
θ− ← αθ− + (1− α)θ and ω− ← αω− + (1− α)ω where α = 0.95 is the Polyak
coefficient.

During training, we sample z from a rescaled Gaussian that we denote ν. Es-
pecially, we sample a d-dimensional standard Gaussian variable x ∼ N (0, Id) ∈
Rd and a scalar centered Cauchy variable u ∈ R of scale 0.5, then we set
z =
√

du x
‖x‖ . We use a Cauchy distribution to ensure that the norm of z spans the

non-negative real numbers space while having a heavy tail: with a pure Gaus-
sian, the norm of z would be very concentrated around a single value. We also
scale by

√
d to ensure that each component of z has an order of magnitude of 1.

Before being fed to F, z is preprocessed by z← z√
1+‖z‖2

2/d
; this way, z ranges

over a bounded set in Rd, and this takes advantage of optimal policies being
equal for a reward R and for λR with λ > 0.

191

To update network parameters, we compute an empirical loss by sampling 3
mini-batches, each of size b = 128, of transitions {(si, ai, si+1)}i∈I ⊂ D, of target
state-action pairs {(s′i, a′i)}i∈I ⊂ D and of {zi}i∈I ∼ ν:

L (θ, ω) = −1
b ∑

i∈I
Fθ(si, ai, zi)

>Bω(si, ai) (E.2.1)

1
2b2 ∑

i,j∈I2

(
Fθ(si, ai, zi)

>Bω(s′j, a′j)− γ ∑
a∈A

πzi(a | si+1) · Fθ−(si+1, a, zi)
>Bω−(s

′
j, a′j)

)2

where we use the Boltzmann policy πzi(· | si+1) = softmax(Fθ−(si+1, ·, zi)
>zi/τ)

with fixed temperature τ = 200 to avoid the instability and discontinuity caused
by the argmax operator.

Since there is unidentifiability between F and B (Appendix, Remark 4), we
include a gradient to make B closer to orthonormal, E(s,a)∼ρB(s, a)B(s, a)>≈ Id:

1
4

∂ω

∥∥∥E(s,a)∼ρBω(s, a)Bω(s, a)>− Id
∥∥∥2

=

E(s,a)∼ρ,(s′,a′)∼ρ∂ωBω(s, a)>
(

Bω(s, a)>Bω(s′, a′) · Bω(s′, a′)− B(s, a)
)

(E.2.2)

To compute an unbiased estimate of the latter gradient, we use the following
auxiliary empirical loss:

Lreg(ω) = −1
b ∑

i∈I
Bω(si, ai)

>stop-gradient(Bω(si, ai)) (E.2.3)

1
b2 ∑

i,j∈I2

Bω(si, ai)
>stop-gradient(Bω(s′j, a′j)) · stop-gradient(Bω(si, ai)

>Bω(s′j, a′j))

Finally, we use the Adam optimizer and we update θ and ω by taking a
gradient step on L (θ, ω) and L (θ, ω) + λ ·Lreg(ω) respectively, where λ is a
regularization coefficient that we set to 1 for all experiments.

We summarize the hyperparameters used for FB algorithm and goal-oriented
DQN in table E.1 and E.2 respectively.

E.2.4 Experimental results

In this section, we provide additional experimental results.

Goal-Oriented Setup: Quantitative Comparisons

More Complex Rewards: Qualitative Results

Embedding Visualization

192

Hyperparameters Discrete Maze Continuous Maze FetchReach Ms. Pacman

number of cycles per epoch 25 25 25 25
number of episodes per cycles 4 4 2 2
number of timesteps per episode 50 30 50 50
number of updates per cycle 40 40 40 40
exploration ε 1 1 0.2 0.2
evaluation ε Boltzman with τ = 1 0.02 0.02 0.02
temperature τ 200 200 200 200

learning rate 0.001 0.0005 0.0005 0.0001 if d = 100
else 0.0005

mini-batch size 128 128 128 128
regularization coefficient λ 1 1 1 1
Polyak coefficient α 0.95 0.95 0.95 0.95
discount factor γ 0.99 0.99 0.9 0.9
replay buffer size 106 106 106 106

Table E.1: Hyperparameters of the FB algorithm

Hyperparameters Discrete Maze Continuous Maze FetchReach Ms. Pacman

number of cycles per epoch 25 25 25 25
number of episodes per cycles 4 4 2 2
number of timesteps per episode 50 30 50 50
number of updates per cycle 40 40 40 40
exploration ε 0.2 0.2 0.2 0.2
evaluation ε Boltzman with τ = 1 0.02 0.02 0.02
learning rate 0.001 0.0005 0.0005 0.0005
mini-batch size 128 128 128 128
Polyak coefficient α 0.95 0.95 0.95 0.95
discount factor γ 0.99 0.99 0.9 0.9
replay buffer size 106 106 106 106

ratio of hindsight replay - - - 0.8

Table E.2: Hyperparameters of the goal-oriented DQN algorithm

Figure E.1: Discrete maze: Comparative performance of FB for different dimensions and DQN.
Left: the policy quality averaged over 20 randomly selected goals as function of the training
epochs. Right: the policy quality averaged over the goal space after 800 training epochs.

193

Figure E.2: Continuous maze: Comparative performance of FB for different dimensions and
DQN. Left: the success rate averaged over 20 randomly selected goals as function of the training
epochs. Right: the success rate averaged over 1000 randomly sampled goals after 800 training
epochs.

Figure E.3: FetchReach: Comparative performance of FB for different dimensions and DQN.
Left: the success rate averaged over 20 randomly selected goals as function of the training
epochs. Right: the success rate averaged over 1000 randomly sampled goals after 800 train-
ing epochs.

Figure E.4: Ms. Pacman: Comparative performance of FB for different dimensions and DQN.
Left: the success rate averaged over 20 randomly selected goals as function of the training
epochs. Right: the success rate averaged over the 184 handcrafted goals after training epochs.
Note that FB-50 and F-100 have been trained only for 200 epochs.

194

Figure E.5: Distance to goal of FB for different dimensions and DQN as function of training
epochs. Left: Continuous maze. Right: FetchReach.

195

Figure E.6: Discrete Maze: Heatmap plots of maxa∈A F(s, a, zR)
>zR (left) and trajectories of the

Boltzmann policy with respect to F(s, a, zR)
>zR with temperature τ = 1 (right). Top row: for the

task of reaching a target while avoiding a forbidden region, Middle row: for the task of reaching
the closest goal among two equally rewarding positions, Bottom row: choosing between a small,
close reward and a large, distant one.

196

Figure E.7: Continuous Maze: Contour plots plot of maxa∈A F(s, a, zR)
>zR (left) and trajectories

of the ε greedy policy with respect to F(s, a, zR)
>zR with ε = 0.1 (right). Left: for the task of

reaching a target while avoiding a forbidden region, Middle: for the task of reaching the closest
goal among two equally rewarding positions, Right: choosing between a small, close reward
and a large, distant one..

197

Figure E.8: Ms. Pacman: Trajectories of the ε greedy policy with respect to F(s, a, zR)
>zR with

ε = 0.1 (right). Top row: for the task of reaching a target while avoiding a forbidden region,
Middle row: for the task of reaching the closest goal among two equally rewarding positions,
Bottom row: choosing between a small, close reward and a large, distant one..

198

Figure E.9: Full series of frames in Ms. Pacman along the trajectory generated by the F>B policy
for the task of reaching a target position (star shape) while avoiding forbidden positions (red
circle).

199

Figure E.10: Discrete maze: Visualization of FB embedding vectors after projecting them in two-
dimensional space with t-SNE. Left: the F embedding for z = 0. Right: the B embedding. Note
how both embeddings recover the foor-room and door structure of the original environment.
The spread of B embedding is due to the regularization that makes B closer to orthonormal.

Figure E.11: Continuous maze: Visualization of FB embedding vectors after projecting them in
two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the F embedding.
Right: the B embedding.

Figure E.12: Ms. Pacman: Visualization of FB embedding vectors after projecting them in
two-dimensional space with t-SNE. Left: the agent’s position corresponding to the state to be
mapped. Middle: the F embedding for z = 0. Right: the B embedding. Note how both embed-
dings recover the cycle structure of the environment. F acts on visual inputs and B acts on the
agent’s position.

200

Figure E.13: Continuous maze: visualization of F embedding vectors for different z vectors,
after projecting them in two-dimensional space with t-SNE.

201

Bibliography
Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems, pages
2312–2320, 2011.

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. A.
Riedmiller. Maximum a posteriori policy optimisation. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=S1ANxQW0b.

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 22–31. JMLR. org, 2017.

A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm. Unsuper-
vised state representation learning in atari. arXiv preprint arXiv:1906.08226,
2019.

M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-
Grew, J. Tobin, P. Abbeel, and W. Zaremba. Hindsight experience replay. In
NIPS, 2017.

K. Asadi, D. Misra, and M. L. Littman. Lipschitz continuity in model-based
reinforcement learning. arXiv preprint arXiv:1804.07193, 2018.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang. Model-based reinforce-
ment learning with value-targeted regression. In International Conference on
Machine Learning, pages 463–474. PMLR, 2020.

M. G. Azar, V. Gómez, and H. J. Kappen. Dynamic policy programming. Journal
of Machine Learning Research, 13(Nov):3207–3245, 2012.

M. G. Azar, A. Lazaric, and E. Brunskill. Online stochastic optimization under
correlated bandit feedback. In ICML, pages 1557–1565, 2014.

202

https://openreview.net/forum?id=S1ANxQW0b

M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 263–272. JMLR. org, 2017.

L. Baird et al. Residual algorithms: Reinforcement learning with function ap-
proximation. In Proceedings of the twelfth international conference on machine
learning, 1995.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, D. Silver, and H. P. van
Hasselt. Successor features for transfer in reinforcement learning. In NIPS,
2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. J. Artif. Int. Res., 47
(1):253–279, May 2013a. ISSN 1076-9757.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013b.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

M. Benzi and V. Simoncini. On the eigenvalues of a class of saddle point matri-
ces. Numerische Mathematik, 2006.

D. P. Bertsekas. Temporal difference methods for general projected equations.
IEEE Transactions on Automatic Control, 2011.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview.
In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on. IEEE,
1995.

L. Blier, C. Tallec, and Y. Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

V. I. Bogachev. Measure theory. Springer, 2007.

V. S. Borkar and S. P. Meyn. The o.d.e. method for convergence of stochastic
approximation and reinforcement learning. SIAM Journal on Control and Opti-
mization, jan 2000.

D. Borsa, A. Barreto, J. Quan, D. Mankowitz, R. Munos, H. van Hasselt, D. Silver,
and T. Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, vol-
ume 31. 1999.

203

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym, 2016.

S. Bubeck, G. Stoltz, C. Szepesvári, and R. Munos. Online optimization in x-
armed bandits. In Advances in Neural Information Processing Systems, pages
201–208, 2009.

Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy
optimization. arXiv preprint arXiv:1912.05830, 2019.

T. Cao and A. Krishnamurthy. Provably adaptive reinforcement learning in met-
ric spaces. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, 2020.

J. Chen and N. Jiang. Information-theoretic considerations in batch reinforce-
ment learning. In International Conference on Machine Learning, pages 1042–
1051. PMLR, 2019.

Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of
saddle point problems. SIAM Journal on Optimization, 2014.

W. C. Cheung, D. Simchi-Levi, and R. Zhu. Learning to optimize under non-
stationarity. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1079–1087, 2019.

W. C. Cheung, D. Simchi-Levi, and R. Zhu. Reinforcement learning for non-
stationary markov decision processes: The blessing of (more) optimism. arXiv
preprint arXiv:2006.14389, 2020.

Y. Chow and H. Teicher. Probability theory: Independence, interchangeability,
martingales. Journal of the American Statistical Association, 93, 12 1998. doi:
10.2307/2670078.

B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song. Sbeed:
Convergent reinforcement learning with nonlinear function approximation.
In International Conference on Machine Learning, pages 1125–1134, 2018.

G. Dalal, B. Szorenyi, G. Thoppe, and S. Mannor. Finite sample analysis of two-
timescale stochastic approximation with applications to reinforcement learn-
ing. arXiv preprint arXiv:1703.05376, 2017.

C. Dann, T. Lattimore, and E. Brunskill. Unifying pac and regret: Uniform pac
bounds for episodic reinforcement learning. In NIPS, 2017.

P. Dayan. Improving generalization for temporal difference learning: The suc-
cessor representation. Neural Computation, 5(4):613–624, 1993.

204

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Ad-
vances in neural information processing systems, 2014.

O. D. Domingues, P. Ménard, M. Pirotta, E. Kaufmann, and M. Valko. A kernel-
based approach to non-stationary reinforcement learning in metric spaces.
arXiv preprint arXiv:2007.05078, 2020a.

O. D. Domingues, P. Ménard, M. Pirotta, E. Kaufmann, and M. Valko.
Regret bounds for kernel-based reinforcement learning. arXiv preprint
arXiv:2004.05599, 2020b.

K. Dong, J. Peng, Y. Wang, and Y. Zhou. Root-n-regret for learning in markov
decision processes with function approximation and low bellman rank. In
Conference on Learning Theory, pages 1554–1557. PMLR, 2020.

M. D. Donsker and S. S. Varadhan. Asymptotic evaluation of certain markov
process expectations for large time. iv. Communications on Pure and Applied
Mathematics, 36(2):183–212, 1983.

M. P. Drazin. Pseudo-inverses in associative rings and semigroups. The American
Mathematical Monthly, aug 1958.

S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction
methods for policy evaluation. In International Conference on Machine Learning,
2017.

S. S. Du, J. D. Lee, G. Mahajan, and R. Wang. Agnostic q-learning with function
approximation in deterministic systems: Near-optimal bounds on approxi-
mation error and sample complexity. Advances in Neural Information Processing
Systems, 33, 2020.

L. Faury, Y. Russac, M. Abeille, and C. Calauzènes. A technical note on non-
stationary parametric bandits: Existing mistakes and preliminary solutions.
In ALT, 2021.

N. Ferns, P. Panangaden, and D. Precup. Metrics for finite markov decision pro-
cesses. In Proceedings of the 20th conference on Uncertainty in artificial intelligence,
pages 162–169. AUAI Press, 2004.

D. Foster and P. Dayan. Structure in the space of value functions. Machine Learn-
ing, 49(2):325–346, 2002.

P. Gajane, R. Ortner, and P. Auer. A sliding-window algorithm for markov
decision processes with arbitrarily changing rewards and transitions. arXiv
preprint arXiv:1805.10066, 2018.

205

M. Geist, B. Scherrer, and O. Pietquin. A theory of regularized markov decision
processes. In International Conference on Machine Learning, pages 2160–2169,
2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

C. Grimm, I. Higgins, A. Barreto, D. Teplyashin, M. Wulfmeier, T. Hertweck,
R. Hadsell, and S. Singh. Disentangled cumulants help successor representa-
tions transfer to new tasks. arXiv preprint arXiv:1911.10866, 2019.

C. M. Grinstead and J. L. Snell. Introduction to probability. American Mathemati-
cal Soc., 1997.

A. Gruslys, W. Dabney, M. G. Azar, B. Piot, M. Bellemare, and R. Munos. The re-
actor: A fast and sample-efficient actor-critic agent for reinforcement learning.
arXiv preprint arXiv:1704.04651, 2017.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1352–1361. JMLR. org, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In Interna-
tional Conference on Machine Learning, pages 1861–1870, 2018.

S. Hansen, W. Dabney, A. Barreto, T. Van de Wiele, D. Warde-Farley, and V. Mnih.
Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

A. Harutyunyan, M. G. Bellemare, T. Stepleton, and R. Munos. Q (λ) with off-
policy corrections. In International Conference on Algorithmic Learning Theory.
Springer, 2016.

C.-W. Huang, A. Touati, L. Dinh, M. Drozdzal, M. Havaei, L. Charlin, and A. C.
Courville. Learnable explicit density for continuous latent space and varia-
tional inference. ArXiv, abs/1710.02248, 2017a.

C.-W. Huang, A. Touati, P. Vincent, G. K. Dziugaite, A. Lacoste, and A. Courville.
Stochastic neural network with kronecker flow. In International Conference on
Artificial Intelligence and Statistics, pages 4184–4194. PMLR, 2020.

G. Huang, H. Berard, A. Touati, G. Gidel, P. Vincent, and S. Lacoste-Julien. Para-
metric adversarial divergences are good task losses for generative modeling.
arXiv preprint arXiv:1708.02511, 2017b.

206

T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic iter-
ative dynamic programming algorithms. Neural computation, 6(6):1185–1201,
1994.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 2010.

Q. Jian, R. Fruit, M. Pirotta, and A. Lazaric. Exploration bonus for regret min-
imization in discrete and continuous average reward mdps. In Advances in
Neural Information Processing Systems, pages 4891–4900, 2019.

N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Con-
textual decision processes with low bellman rank are pac-learnable. In Inter-
national Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient?
In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

C. Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pages
4870–4879. PMLR, 2020a.

C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory,
pages 2137–2143. PMLR, 2020b.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using pre-
dictive variance reduction. In Advances in neural information processing systems,
2013.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement
learning. In ICML, volume 2, pages 267–274, 2002.

S. Kakade, M. J. Kearns, and J. Langford. Exploration in metric state spaces. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03),
pages 306–312, 2003.

S. M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, UCL
(University College London), 2003.

N. R. Ke, A. Singh, A. Touati, A. Goyal, Y. Bengio, D. Parikh, and D. Batra.
Modeling the long term future in model-based reinforcement learning. In
International Conference on Learning Representations, 2018.

N. R. Ke, A. Singh, A. Touati, A. Goyal, Y. Bengio, D. Parikh, and D. Batra.
Modeling the long term future in model-based reinforcement learning. In
ICLR, 2019.

207

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial
time. Machine learning, 2002.

J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand, New York,
1960.

B. Kim and A. Tewari. Randomized exploration for non-stationary stochastic
linear bandits. In Conference on Uncertainty in Artificial Intelligence, pages 71–
80. PMLR, 2020.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
681–690. ACM, 2008.

N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On convergence and stability of
gans. arXiv preprint arXiv:1705.07215, 2017.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014. Citeseer, 2000.

I. Kostrikov. Pytorch implementations of reinforcement learning algorithms.
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

I. Kostrikov, O. Nachum, and J. Tompson. Imitation learning via off-policy dis-
tribution matching. arXiv preprint arXiv:1912.05032, 2019.

K. Lakshmanan, R. Ortner, and D. Ryabko. Improved regret bounds for undis-
counted continuous reinforcement learning. In International Conference on Ma-
chine Learning, pages 524–532, 2015.

C. Lakshminarayanan and C. Szepesvári. Linear stochastic approximation: Con-
stant step-size and iterate averaging. arXiv preprint arXiv:1709.04073, 2017.

T. Lattimore, M. Hutter, P. Sunehag, et al. The sample-complexity of general
reinforcement learning. In Proceedings of the 30th International Conference on
Machine Learning. Journal of Machine Learning Research, 2013.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep vi-
suomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016.

L.-J. Lin. Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching. Machine Learning, may 1992.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample
analysis of proximal gradient td algorithms. In UAI. Citeseer, 2015.

208

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

S. Liu and H. Su. Regret bounds for discounted mdps. arXiv preprint
arXiv:2002.05138, 2020.

Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill. Provably good batch rein-
forcement learning without great exploration. arXiv preprint arXiv:2007.08202,
2020.

S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed. Distributed policy evaluation
under multiple behavior strategies. IEEE Transactions on Automatic Control,
2015.

H. R. Maei. Gradient temporal-difference learning algorithms. 2011.

H. R. Maei and R. S. Sutton. Gq (λ): A general gradient algorithm for temporal-
difference prediction learning with eligibility traces. In Proceedings of the Third
Conference on Artificial General Intelligence, 2010.

S. Mahadevan and M. Maggioni. Proto-value functions: A laplacian framework
for learning representation and control in markov decision processes. Journal
of Machine Learning Research, 8(10), 2007.

A. R. Mahmood, H. Yu, and R. S. Sutton. Multi-step off-policy learning without
importance sampling ratios. arXiv preprint arXiv:1702.03006, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, 2016.

R. Munos. Error bounds for approximate value iteration. In Proceedings of the
National Conference on Artificial Intelligence, volume 20, page 1006. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal
of Machine Learning Research, 9(5), 2008.

R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing
Systems, 2016.

R. Munos et al. From bandits to monte-carlo tree search: The optimistic principle
applied to optimization and planning. Foundations and Trends® in Machine
Learning, 7(1):1–129, 2014.

209

O. Nachum, Y. Chow, B. Dai, and L. Li. Dualdice: Behavior-agnostic estima-
tion of discounted stationary distribution corrections. In Advances in Neural
Information Processing Systems, pages 2315–2325, 2019a.

O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074,
2019b.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM Journal on optimization,
2009.

G. Neu and J. Olkhovskaya. Online learning in mdps with linear function ap-
proximation and bandit feedback. arXiv preprint arXiv:2007.01612, 2020.

G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized
markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

X. Nguyen, M. J. Wainwright, M. I. Jordan, et al. On surrogate loss functions and
f-divergences. The Annals of Statistics, 37(2):876–904, 2009.

R. Ortner. Pseudometrics for state aggregation in average reward markov deci-
sion processes. In International Conference on Algorithmic Learning Theory, pages
373–387. Springer, 2007.

R. Ortner and D. Ryabko. Online regret bounds for undiscounted continuous
reinforcement learning. In Advances in Neural Information Processing Systems,
pages 1763–1771, 2012.

R. Ortner, P. Gajane, and P. Auer. Variational regret bounds for reinforcement
learning. In UAI, page 16, 2019.

I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, 2013.

I. Osband, B. Van Roy, D. J. Russo, and Z. Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-
point problems. In Advances in Neural Information Processing Systems, 2016.

J. Pazis and R. Parr. Pac optimal exploration in continuous space markov de-
cision processes. In Twenty-Seventh AAAI Conference on Artificial Intelligence,
2013.

Z. Peng, A. Touati, P. Vincent, and D. Precup. Svrg for policy evaluation with
fewer gradient evaluations. arXiv preprint arXiv:1906.03704, 2019.

210

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In
International Conference on Machine Learning, pages 307–315, 2013.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell,
J. Schneider, J. Tobin, M. Chociej, P. Welinder, et al. Multi-goal reinforcement
learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

D. Pollard. Empirical processes: theory and applications. In NSF-CBMS regional
conference series in probability and statistics, pages i–86. JSTOR, 1990.

D. Precup. Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series, 2000.

D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal difference learn-
ing with function approximation. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, 2001.

M. L. Puterman. Markov decision processes. Handbooks in operations research and
management science, 2:331–434, 1990.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. ISBN
0471619779.

J. Qian, R. Fruit, M. Pirotta, and A. Lazaric. Exploration bonus for regret mini-
mization in undiscounted discrete and continuous markov decision processes.
arXiv preprint arXiv:1812.04363, 2018.

P. Rauber, A. Ummadisingu, F. Mutz, and J. Schmidhuber. Hindsight policy
gradients. In International Conference on Learning Representations, 2018.

N. Roese. Counterfactual thinking and decision making. Psychonomic bulletin &
review, 6(4):570–578, 1999.

J. Romoff, P. Henderson, A. Touati, E. Brunskill, J. Pineau, and Y. Ollivier. Sepa-
rating value functions across time-scales. In International Conference on Machine
Learning, pages 5468–5477. PMLR, 2019.

J. Romoff, P. Henderson, D. Kanaa, E. Bengio, A. Touati, P.-L. Bacon, and
J. Pineau. Tdprop: Does adaptive optimization with jacobi preconditioning
help temporal difference learning? In Proceedings of the 20th International Con-
ference on Autonomous Agents and MultiAgent Systems, pages 1082–1090, 2021.

L. Rosasco, S. Villa, and B. C. Vũ. Stochastic forward–backward splitting for
monotone inclusions. Journal of Optimization Theory and Applications, 2016.

211

Y. Russac, C. Vernade, and O. Cappé. Weighted linear bandits for non-stationary
environments. In Advances in Neural Information Processing Systems, pages
12017–12026, 2019.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function ap-
proximators. In F. Bach and D. Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 1312–1320, Lille, France, 07–09 Jul 2015. PMLR. URL
http://proceedings.mlr.press/v37/schaul15.html.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897,
2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

S. E. Shreve and D. P. Bertsekas. Alternative theoretical frameworks for finite
horizon discrete-time stochastic optimal control. SIAM Journal on control and
optimization, 16(6):953–978, 1978.

S. Sinclair, T. Wang, G. Jain, S. Banerjee, and C. Yu. Adaptive discretization for
model-based reinforcement learning. Advances in Neural Information Processing
Systems, 33, 2020.

S. R. Sinclair, S. Banerjee, and C. L. Yu. Adaptive discretization for episodic
reinforcement learning in metric spaces. arXiv preprint arXiv:1910.08151, 2019.

A. Slivkins. Contextual bandits with similarity information. The Journal of Ma-
chine Learning Research, 15(1):2533–2568, 2014.

Z. Song and W. Sun. Efficient model-free reinforcement learning in metric
spaces. arXiv preprint arXiv:1905.00475, 2019.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. Lanck-
riet. On integral probability metrics,φ-divergences and binary classification.
arXiv preprint arXiv:0901.2698, 2009.

K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman. The hippocampus as a
predictive map. Nature neuroscience, 20(11):1643, 2017.

A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval es-
timation. In Proceedings of the 22nd international conference on Machine learning.
ACM, 2005.

M. Strens. A bayesian framework for reinforcement learning. In ICML, 2000.

212

http://proceedings.mlr.press/v37/schaul15.html

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 1988.

R. S. Sutton. Introduction to reinforcement learning with function approxima-
tion. Tutorial Session of the Neural Information Processing Systems Confer-
ence, 2015.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 2nd edition, Near-final draft – May 27, 2018.

R. S. Sutton and B. Tanner. Temporal-difference networks. In Advances in Neural
Information Processing Systems 17, 2004.

R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient
methods for reinforcement learning with function approximation. In NIPs,
volume 99, pages 1057–1063. Citeseer, 1999a.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999b.

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence,
aug 1999c.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pages 1057–1063, 2000.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning - ICML. ACM Press, 2009a.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning. ACM, 2009b.

R. S. Sutton, H. R. Maei, and C. Szepesvári. A convergent o(n) temporal-
difference algorithm for off-policy learning with linear function approxima-
tion. In Advances in neural information processing systems, 2009c.

213

R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Pre-
cup. Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’11, Richland,
SC, 2011. International Foundation for Autonomous Agents and Multiagent
Systems.

R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the prob-
lem of off-policy temporal-difference learning. The Journal of Machine Learning
Research, 2015.

E. Talvitie. Self-correcting models for model-based reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

W. R. Thompson. On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples. Biometrika, 1933.

A. Touati and Y. Ollivier. Learning one representation to optimize all rewards.
arXiv preprint arXiv:2103.07945, 2021.

A. Touati and P. Vincent. Efficient learning in non-stationary linear markov de-
cision processes. arXiv preprint arXiv:2010.12870, 2020a.

A. Touati and P. Vincent. Sharp analysis of smoothed bellman error embedding.
arXiv preprint arXiv:2007.03749, 2020b.

A. Touati, P.-L. Bacon, D. Precup, and P. Vincent. Convergent tree backup and
retrace with function approximation. In International Conference on Machine
Learning, pages 4955–4964. PMLR, 2018.

A. Touati, H. Satija, J. Romoff, J. Pineau, and P. Vincent. Randomized value
functions via multiplicative normalizing flows. In Uncertainty in Artificial In-
telligence, pages 422–432. PMLR, 2020a.

A. Touati, A. A. Taiga, and M. G. Bellemare. Zooming for efficient model-free re-
inforcement learning in metric spaces. arXiv preprint arXiv:2003.04069, 2020b.

A. Touati, A. Zhang, J. Pineau, and P. Vincent. Stable policy optimization via
off-policy divergence regularization. In Conference on Uncertainty in Artificial
Intelligence, pages 1328–1337. PMLR, 2020c.

J. N. Tsitsiklis, B. Van Roy, et al. An analysis of temporal-difference learning with
function approximation. IEEE transactions on automatic control, 1997.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

214

H. van Hasselt, A. R. Mahmood, and R. S. Sutton. Off-policy td (λ) with a true
online equivalence. In Proceedings of the 30th Conference on Uncertainty in Arti-
ficial Intelligence, Quebec City, Canada, 2014.

N. Vieillard, O. Pietquin, and M. Geist. Deep conservative policy iteration. arXiv
preprint arXiv:1906.09784, 2019.

H.-T. Wai, M. Hong, Z. Yang, Z. Wang, and K. Tang. Variance reduced policy
evaluation with smooth function approximation. Advances in Neural Informa-
tion Processing Systems, 32:5784–5795, 2019.

M. Wang and D. P. Bertsekas. Stabilization of stochastic iterative methods for
singular and nearly singular linear systems. Mathematics of Operations Research,
2013.

Q. Wang, Y. Li, J. Xiong, and T. Zhang. Divergence-augmented policy optimiza-
tion. In Advances in Neural Information Processing Systems, pages 6097–6108,
2019a.

R. Wang, R. R. Salakhutdinov, and L. Yang. Reinforcement learning with gen-
eral value function approximation: Provably efficient approach via bounded
eluder dimension. Advances in Neural Information Processing Systems, 33, 2020.

Y. Wang, W. Chen, Y. Liu, Z.-M. Ma, and T.-Y. Liu. Finite sample analysis of
the gtd policy evaluation algorithms in markov setting. In Advances in Neural
Information Processing Systems, pages 5510–5519, 2017.

Y. Wang, H. He, and X. Tan. Truly proximal policy optimization. arXiv preprint
arXiv:1903.07940, 2019b.

Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas. Sample efficient actor-critic with experience replay. arXiv
preprint arXiv:1611.01224, 2016.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

C.-Y. Wei and H. Luo. Non-stationary reinforcement learning without prior
knowledge: An optimal black-box approach. In COLT, 2021.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

L. F. Yang and M. Wang. Reinforcement learning in feature space: Matrix bandit,
kernels, and regret bound. arXiv preprint arXiv:1905.10389, 2019.

L. F. Yang, C. Ni, and M. Wang. Learning to control in metric space with optimal
regret. arXiv preprint arXiv:1905.01576, 2019.

215

A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequen-
tist regret bounds for randomized least-squares value iteration. In International
Conference on Artificial Intelligence and Statistics, pages 1954–1964, 2020a.

A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill. Learning near opti-
mal policies with low inherent bellman error. arXiv preprint arXiv:2003.00153,
2020b.

J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard. Deep reinforce-
ment learning with successor features for navigation across similar environ-
ments. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 2371–2378. IEEE, 2017.

P. Zhao and L. Zhang. Non-stationary linear bandits revisited. arXiv preprint
arXiv:2103.05324, 2021.

P. Zhao, L. Zhang, Y. Jiang, and Z.-H. Zhou. A simple approach for non-
stationary linear bandits. In International Conference on Artificial Intelligence
and Statistics, pages 746–755. PMLR, 2020.

H. Zhou, J. Chen, L. R. Varshney, and A. Jagmohan. Nonstationary rein-
forcement learning with linear function approximation. arXiv preprint
arXiv:2010.04244, 2020.

X. Zhu and D. Dunson. Stochastic lipschitz q-learning. 2019.

216

	Contents
	Introduction
	Research Contributions
	Off-Policy Learning
	Exploration v.s. Exploitation Dilemma
	Unsupervised Learning in RL

	List of Excluded Contributions

	Background
	Discounted Markov Decision Process
	The Model
	Policies and Value Functions
	Optimal Policies and Optimal Value Functions

	Episodic Markov Decision Processes
	Dynamic Programming
	Bellman Operators
	Value Iteration
	Policy Iteration

	Temporal Difference Learning
	Policy Evaluation
	Policy Learning

	Function Approximation
	Value-based Methods
	Policy Gradient

	Exploitation-Exploration Dilemma
	Online Performance

	Multi-step Off-policy Learning with Function Approximation
	Prologue to the Contribution
	Article Details
	Context
	Paper Abstract
	Recent Developments

	Introduction
	Tabular Off-policy Methods
	Off-policy instability with function approximation
	Convergent gradient off-policy algorithms
	Convergence Rate Analysis
	Related Work and Discussion
	Experimental Results
	Evidence of instability in practice
	Comparison with existing methods

	Conclusion

	Stable Policy Optimization via Off-Policy Divergence Regularization
	Prologue to the Contribution
	Article Details
	Context
	Paper Abstract
	Recent Developments

	Introduction
	Conservative Update Approaches
	Theoretical Insights
	Off-policy Formulation Of Divergences
	A Practical Algorithm Using Adversarial Divergence
	Related Work
	Experiments And Results
	Important Aspects Of PPO-DICE
	Results On Atari
	Results On OpenAI Gym MuJoCo

	Conclusion

	Online Learning in Smooth Markov Decision Processes
	Protologue To The Contribution
	Article Details
	Context
	Paper Abstract
	Recent Developments

	Introduction
	Related Work
	Problem Statement
	Episodic Reinforcement Learning and Regret
	Metric Space

	The ZoomRL algorithm
	Main results
	Result For The Misspecified Case

	Proof Outline
	Regret Analysis

	Conclusion

	Online Learning in Non-stationary Linear Markov Decision Processes
	Prologue to the Contribution
	Article Details
	Context
	Paper Abstract
	Recent Developments

	Introduction
	Problem Statement
	Notation
	Non-Stationary Reinforcement Learning and Dynamic Regret
	Linear Markov Decision Processes

	The Proposed Algorithm
	Non-stationary Linear Bandits
	Theoretical guarantee of OPT-WLSVI
	Unknown variation budget

	Technical Highlights
	Related Work
	Conclusion

	Learning One Representation to Optimize All Rewards
	Prologue to the Contribution
	Article Details
	Context
	Paper Abstract

	Introduction
	Problem and Notation
	Encoding All Optimal Policies via the Forward-Backward Representation
	Learning and Using Forward-Backward Representations
	Experiments
	Environments and Experimental Setup
	Goal-Oriented Setting: Quantitative Comparisons
	More Complex Rewards: Qualitative Results
	Embedding Visualizations

	Related work
	Extended Results: Approximate Solutions and General Goals
	The Forward-Backward Representation With a Goal or Feature Space
	Existence of Exact FB Solutions, Influence of Dimension d, Uniqueness
	Approximate Solutions Provide Approximately Optimal Policies
	F and B as Successor and Predecessor Features of Each Other, Optimality for Rewards in the Span of B
	Estimating zR from a Different State Distribution at Test Time
	A Note on the Measure M and its Density m

	Conclusion

	Conclusion
	Summary of Contributions
	Future Research
	Towards Fully Controllable Agents
	Optimization for RL
	Statistical RL with General Function Approximation

	Appendix from Chapter 3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Convergence Rate Analysis
	True on-line equivalence

	Appendix For Chapter 4
	Proof of Lemma 2
	Score Function Estimator of the gradient with respect to the policy
	Comparison with AlgaeDICE
	Additional Empirical Results on MuJoCo
	Hyperparameters

	Appendix For Chapter 5
	Omitted proofs for the Lipschitz setting
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of lemma 7
	Bounding h=1H k=1K h+1k

	Misspecified Setting: Approximately Lipschtiz Case
	Recursive Formula of `39`42`"613A``45`47`"603AQ"0362Qhk(B) - Qh(s, a)
	Bounding of Qhk(B) - Qh*(s, a)
	High Probability Bound On The Sampling Noise
	Approximate Optimism Of Q-values
	Upper Bound of `39`42`"613A``45`47`"603AQ"0362Qhk(B) - Qh(s, a)
	Regret Analysis

	Technical Lemmas
	Few Reminders on Probability Theory

	Appendix for Chapter 6
	Technical Gaps in Published Bandit Papers
	Regret Reanalysis of d-linucb
	Regret Analysis of opt-wlsvi and Proof Outline
	Single Step Error Decomposition
	High Probability Bound on the Transition Variance
	Optimism
	Final Regret Analysis

	Missing Proofs of Regret Analysis of opt-wlsvi
	Linearity of Q-values: Lemma 8
	Non-Stationarity Bias
	Single Step Error Decomposition
	Boundness of iterates
	Transition Concentration
	Single-Step High Probability Upper Bound
	Optimism

	Technical Lemmas

	Appendix for Chapter 7
	Proofs
	Experimental Setup
	Environments
	Architectures
	Implementation Details
	Experimental results

