
Université de Montréal

IIRC: Incremental Implicitly-Refined Classification

par

Mohamed Abdelsalam

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

May 04, 2021

c© Mohamed Abdelsalam, 2021

Résumé

Nous introduisons la configuration de la "Classification Incrémentale Implicitement Raffinée
/ Incremental Implicitly-Refined Classification (IIRC)", une extension de la configuration
de l’apprentissage incrémental des classes où les lots de classes entrants possèdent deux
niveaux de granularité, c’est-à-dire que chaque échantillon peut avoir une étiquette (label)
de haut niveau (brute), comme "ours”, et une étiquette de bas niveau (plus fine), comme
"ours polaire". Une seule étiquette (label) est fournie à la fois, et le modèle doit trouver
l’autre étiquette s’il l’a déjà apprise. Cette configuration est plus conforme aux scénarios
de la vie réelle, où un apprenant aura tendance à interagir avec la même famille d’entités
plusieurs fois, découvrant ainsi encore plus de granularité à leur sujet, tout en essayant de ne
pas oublier les connaissances acquises précédemment. De plus, cette configuration permet
d’évaluer les modèles pour certains défis importants liés à l’apprentissage tout au long de
la vie (lifelong learning) qui ne peuvent pas être facilement abordés dans les configurations
existantes. Ces défis peuvent être motivés par l’exemple suivant: “si un modèle a été entraîné
sur la classe ours dans une tâche et sur ours polaire dans une autre tâche; oubliera-t-il le
concept d’ours, déduira-t-il à juste titre qu’un ours polaire est également un ours ? et
associera-t-il à tort l’étiquette d’ours polaire à d’autres races d’ours ?” Nous développons un
benchmark qui permet d’évaluer les modèles sur la configuration de l’IIRC. Nous évaluons
plusieurs algorithmes d’apprentissage ”tout au long de la vie” (lifelong learning) de l’état de
l’art. Par exemple, les méthodes basées sur la distillation sont relativement performantes
mais ont tendance à prédire de manière incorrecte un trop grand nombre d’étiquettes par
image. Nous espérons que la configuration proposée, ainsi que le benchmark, fourniront un
cadre de problème significatif aux praticiens.

Mots Clés: Apprentissage Automatique, Apprentissage Profond, Apprentissage Tout Au
Long De La Vie, Apprentissage Continu, Apprentissage Progressif, Vision Par Ordinateur.

Abstract

We introduce the “Incremental Implicitly-Refined Classification (IIRC)” setup, an extension
to the class incremental learning setup where the incoming batches of classes have two
granularity levels. i.e., each sample could have a high-level (coarse) label like “bear” and
a low-level (fine) label like “polar bear”. Only one label is provided at a time, and the
model has to figure out the other label if it has already learned it. This setup is more
aligned with real-life scenarios, where a learner usually interacts with the same family of
entities multiple times, discovers more granularity about them, while still trying not to forget
previous knowledge. Moreover, this setup enables evaluating models for some important
lifelong learning challenges that cannot be easily addressed under the existing setups. These
challenges can be motivated by the example ”if a model was trained on the class bear in one
task and on polar bear in another task, will it forget the concept of bear, will it rightfully infer
that a polar bear is still a bear? and will it wrongfully associate the label of polar bear to
other breeds of bear?”. We develop a standardized benchmark that enables evaluating models
on the IIRC setup. We evaluate several state-of-the-art lifelong learning algorithms and
highlight their strengths and limitations. For example, distillation-based methods perform
relatively well but are prone to incorrectly predicting too many labels per image. We hope
that the proposed setup, along with the benchmark, would provide a meaningful problem
setting to the practitioners.

Keywords: Machine Learning, Deep Learning, Lifelong Learning, Continual Learning,
Incremental Learning, Computer Vision.

ii

Contents

Résumé . i

Abstract . ii

List of tables . vi

List of figures . vii

List of Abbreviations . xi

Acknowledgements . xiii

Chapter 1. Introduction. 1

1.1. Contributions . 4

1.2. Thesis Outline . 4

Chapter 2. Background . 6

2.1. Supervised Learning . 6

2.2. Deep Learning . 7

2.3. Lifelong Learning . 11
2.3.1. Lifelong Learning Setups . 12
2.3.2. Lifelong Learning Methods . 14

2.4. Lifelong Learning Baselines . 16
2.4.1. Experience Replay (ER) . 16
2.4.2. Incremental Classifier and Representation Learning (iCaRL) 17
2.4.3. Learning a Unified Classifier Incrementally via Rebalancing (LUCIR). 18
2.4.4. Large Scale Incremental Learning (BiC) . 21
2.4.5. Averaged Gradient Episodic Memory (AGEM) . 22

Chapter 3. Incremental Implicitly Refined Classification 24

3.1. Introduction . 24

iii

3.2. Under-explored challenges in class incremental learning setting 26

3.3. Terminology . 27

3.4. Setup . 28

3.5. Benchmark . 29
3.5.1. Dataset . 29
3.5.2. Metrics . 32

3.6. Baselines . 33
3.6.1. Model Adaptations . 34

3.6.1.1. iCaRL . 34
3.6.1.2. BiC. 34

3.7. Summary . 35

Chapter 4. Experiments and Discussion . 36

4.1. Experimental Setup . 36

4.2. Results and Discussion . 37
4.2.1. Overall Performance . 37
4.2.2. Knowledge Retention and Model Capacity . 39
4.2.3. Confusion Between Related Classes . 44

4.3. Ablations . 47
4.3.1. JS vs pw-JS: . 47
4.3.2. Buffer Size Effect . 48
4.3.3. Effect of Margin Ranking Loss and Distillation in LUCIR 49
4.3.4. Bias Correction in BiC using pseudo-labels . 50

Chapter 5. Conclusion and Future Directions. 52

5.1. Future Directions . 53

References . 55

Appendix A. Pseudo Codes . 61

Appendix B. IIRC Datasets Hierarchies . 65

B.1. IIRC-CIFAR Hierarchy . 65

B.2. IIRC-ImageNet Hierarchy . 66

iv

Appendix C. Results Raw Data . 73

Appendix D. Graphs with Standard Deviation . 79

v

List of tables

3.1 The number of samples for each split of the training set. “With Duplicates"
represents the number of samples including the duplicates between some
superclasses and their subclasses (the samples that the model see two times
with two different labels). This does not happen for the post-task validation set
and the test set, as they are in the complete information setup 29

3.2 For each dataset, these are the number of superclasses, the number of subclasses
that belong to these superclasses, the number of orphan subclasses that don’t have
a superclass, as well as the total number classes . 30

3.3 Several examples for different classes and the number of samples they have in the
training set. The subclass on the right is a subclass that belongs to the superclass
(if any) on the left. The left side is blank for orphan subclasses. 31

C.1 The average performance on IIRC-CIFAR after each task using the precision-
weighted Jaccard Similarity. This table represents the same results as in Figure 4.2
with the standard deviation between brackets . 73

C.2 The average performance on IIRC-ImageNet-lite after each task using the
precision-weighted Jaccard Similarity. This table represents the same results
as in Figure 1(a) with the standard deviation between brackets. 74

C.3 The average performance on IIRC-ImageNet-full after each task using the
precision-weighted Jaccard Similarity. This table represents the same results
as in Figure 1(b) with the standard deviation between brackets 76

vi

List of figures

2.1 Illustration of a fully connected neural network. In this network, each node in
a layer l is connected to all the nodes of the previous layer l − 1 by a linear
transformation followed by a nonlinear activation function. This cascade of
nonlinear layers is what gives neural networks their ability to learn complex
representations . 8

2.2 Illustration of how a typical CNN performs an image classification task. A CNN
is more suitable for dealing with images, since it takes into account the spatial
information, and allowes weight sharing which decreases the complexity. 9

2.3 Shallow layers learn more fine-grained information about the input sample (like
edges). As each layer builds upon the output of the previous layer, deeper layers are
able to combine this finegrained information into more sophisticated information,
and consequently deeper layers are able to learn more abstract concepts (like
object parts). 10

2.4 During training on task T −1, the optimal model parameters θ∗T −1 reach an
optimal region where the loss is minimal for task T −1. During training on task
T , the optimal model parameters θ∗T reach an optimal region where the loss is
minimal only for task T . Although, for sufficiently large models, exists regions of
overlap between the optimal region for task T −1 and the optimal region for task
T , the model typically does not reach there if not trained to do so (for example,
by joint training). This is known as catastrophic forgetting. 12

2.5 Illustration of the adverse effects caused by the imbalance between old and new
classes in multi-class incremental learning, and how our approach tackle them. . . 19

2.6 In BiC, there exists two training stages per task. The first stage is the stage done
by all the replay based methods, where the model is trained on the new data
along with the existing replay buffer (using distillation from previous model). The
second stage is a bias correction stage, where two balanced validation sets (not
used in the first stage) from the replay buffer and the new training data are used
to tune a bias correction layer. 21

vii

3.1 Humans incrementally accumulate knowledge over time. They encounter new
entities and discover new information about existing entities. In this process, they
associate new labels with entities and refine or update their existing labels, while
ensuring the accumulated knowledge is coherent. 26

3.2 IIRC setup showing how the model expands its knowledge and associates and re-
associates labels over time. The top right label shows the label model sees during
training, and the bottom label (annotated as “Target”) is the one that model
should predict during evaluation. The right bottom panel for each task shows the
set classes that model is evaluated on and the dashed line shows different tasks. . 28

3.3 The distribution of the number of subclasses per superclass in IIRC-ImageNet.
Some superclasses have a large number of subclasses (like “dogs” which has 118
subclasses), while most superclasses have 3− 8 subclasses. 30

4.1 Average performance on IIRC-ImageNet-lite and IIRC-ImageNet-full as measured
by the precision-weighted Jaccard Similarity (Equation 3.4). (see Figure D.1 for
the standard deviation) . 38

4.2 Average performance on IIRC-CIFAR as measured by the precision-weighted
Jaccard Similarity (Equation 3.4). (see Figure D.2 for the standard deviation). . . 39

4.3 The Performance of three middle tasks throughout the whole training process,
to measure their catastrophic forgetting and backward transfer. Note that a
degradation in performance is not necessarily caused by catastrophic forgetting,
as a new subclass of a previously observed superclass might be introduced and the
model would be penalized for not applying that label retroactively. (see Figure D.3
for the standard deviation). 40

4.4 Current task performance; Per task performance over the test samples of a specific
task j, after training on that task (Rjj using Equation 3.3). see Figure D.4 for
the standard deviation) . 41

4.4 Confusion matrix after observing task 10 of IIRC-CIFAR. The y-axis is the correct
label (or one of the correct labels). The x-axis is the predicted labels. Labels are
arranged by their order of introduction. Only 25 labels across the tasks are shown
for better visibility. 43

4.5 Confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively.
The y-axis is the correct label (or one of the correct labels). The x-axis is the
model predicted labels. Labels are arranged by their order of introduction. Only

viii

25 labels are shown for better visibility. (1st row) Ground Truth, (2nd row) ER,
(3rd row) iCaRL-norm, (4th row) LUCIR. 44

4.6 The average performance of IIRC-ImageNet-full and IIRC-CIFAR if only the
superclasses are taken into account for calculating this performance. (see
Figure D.5 for the standard deviation) . 45

4.7 The average precision of IIRC-CIFAR and IIRC-ImageNet-full over each type of
subclasses, excluding other types of classes, to measure how much do the models
confuse the subclasses as they encounter more related subclasses. (see Figure D.6
for the standard deviation). 46

4.8 Average performance on IIRC-CIFAR and IIRC-ImageNet-full, as measured by
the precision-weighted Jaccard Similarity compared to the Jaccard Similarity. (see
Figure D.7 for the standard deviation) . 47

4.9 The effect of increasing the size of the buffer on the performance of ER and
iCaRL-norm in IIRC-CIFAR. For each baseline, darker lines correspond to larger
buffer size. (See Figure D.8 for the standard deviation) . 48

4.10 The performance of LUCIR after removing the margin ranking loss LUCIR-
no_margin, using a distillation objective LUCIR-distil, and both LUCIR-distil-
no_margin. (See Figure D.9 for the standard deviation). 49

4.11 The performance of BiC after using a distillation objective during the bias
correction phase BiC-distil. (See Figure D.10 for the standard deviation) 51

D.1 Average performance on IIRC-ImageNet-lite and IIRC-ImageNet-full as measured
by the precision-weighted Jaccard Similarity (Equation 3.4). (see Figure D.1 for
the original figure) . 80

D.2 Average performance on IIRC-CIFAR as measured by the precision-weighted
Jaccard Similarity (Equation 3.4). (see Figure D.2 for the original figure) 81

D.3 The Performance of three middle tasks throughout the whole training process,
to measure their catastrophic forgetting and backward transfer. Note that a
degradation in performance is not necessarily caused by catastrophic forgetting,
as a new subclass of a previously observed superclass might be introduced and the
model would be penalized for not applying that label retroactively. (see Figure 4.3
for the original figure) . 81

ix

D.4 Current task performance; Per task performance over the test samples of a specific
task j, after training on that task (Rjj using Equation 3.3). see Figure 4.4 for the
original figure) . 82

D.5 The average performance of IIRC-ImageNet-full and IIRC-CIFAR if only the
superclasses are taken into account for calculating this performance. (see Figure 4.6
for the original figure) . 82

D.6 The average precision of IIRC-CIFAR and IIRC-ImageNet-full over each type of
subclasses, excluding other types of classes, to measure how much do the models
confuse the subclasses as they encounter more related subclasses. (see Figure 4.7
for the original figure) . 83

D.7 Average performance on IIRC-CIFAR and IIRC-ImageNet-full, as measured by
the precision-weighted Jaccard Similarity compared to the Jaccard Similarity. (see
Figure 4.8 for the original figure). 84

D.8 The effect of increasing the size of the buffer on the performance of ER and
iCaRL-norm in IIRC-CIFAR. For each baseline, darker lines correspond to larger
buffer size. (See Figure 4.9 for the original figure) . 85

D.9 The performance of LUCIR after removing the margin ranking loss LUCIR-
no_margin, using a distillation objective LUCIR-distil, and both LUCIR-distil-
no_margin. (See Figure 4.10 for the original figure) . 86

D.10 The performance of BiC after using a distillation objective during the bias
correction phase BiC-distil. (See Figure 4.11 for the original figure) 87

x

List of Abbreviations

AGEM Average Gradient Episodic Memory

ANN Artificial Neural Networks

BCE Binary Cross Entropy

BiC Large Scale Incremental Learning / Bias Correction

CIFAR Canadian Institute for Advanced Research

CIL Class Incremental Learning

CNN Convolutional Neural Network

DL Deep Learning

ER Experience Replay

GEM Gradient Episodic Memory

iCaRL Incremental Classification and Representation Learning

xi

iid Independent and Identically Distributed

IIRC Incremental Implicitly Refined Classification

JS Jaccard Similarity

LUCIR Learning a Unified Classifier via Rebalancing

ML Machine Learning

OOD Out Of Distribution

pw-JS precision weighted Jaccard Similarity

SGD Stochastic Gradient Descent

TIL Task Incremental Learning

xii

Acknowledgements

First, I would like to thank my supervisor, Sarath Chandar, for his continuous guidance and
support throughout my degree. Sarath has been a great mentor, he was always available for
insightful discussion and feedback, from which I have learned a lot. I am grateful to have
had this opportunity of working with him.

Second, I would like to thank my main collaborators throughout my degree, Mojtaba
Faramarzi and Shagun Sodhani, and also Prasanna Parthasarathi, with whom I had the
opportunity to work on other interesting side projects. I would like also to acknowledge all
the lab members, with whom we have shared lots of discussions, insights, and fun.

Finally, I would like to thank my family, and especially my mother, who have provided me
with unconditional support and care, and without their support I would have never reached
this stage.

xiii

Chapter 1

Introduction

Machine learning is a broad field of research that focuses on building systems which learn
how to map a set of inputs to a set of outputs in order to solve a specific task. Since most
useful tasks are too complex to directly craft such mappings, and with the increase in the
size of data available for such tasks, there is a growing trend in data-driven machine learning,
where a system learns the mapping function directly from the data. An example for such
tasks is the task of insurance premium estimation, where the machine needs to estimate the
insurance premium that needs to be paid for a specific client given the available data about
that client. Another example is the task of automatically detecting brain tumours given the
magnetic resonance imaging (MRI) and computed tomography (CT) scans. A third example
is the task of machine translation, where the machine needs to read a piece of text in some
language, and output the text in some other language. These examples show how these tasks
can very in nature and in complexity.

During the twentieth century, extensive research was done in two direction in machine
learning, the first one is now dubbed classical machine learning, and the other one is now
dubbed deep learning . Classical machine learning assumes that each problem is unique
and requires a unique representation that can only be guaranteed by specialized algorithms,
and that includes a lot of manual feature engineering to provide the algorithms with the
most useful features instead of the raw data. Classical machine learning includes powerful
algorithms such as SVMs [Hearst, 1998] and Random Forests [Breiman, 2001]. On the other
hand, deep learning assumes that the artificial neural networks (ANNs) are powerful enough
to learn the required representations. ANNs apply a cascade of projection operations on the
input, which makes them able to learn highly complex mappings and reduce the need for
manual feature engineering, given that enough data is available. For the most part, classical
machine learning algorithms used to be the more practical choice for most tasks, since they
are less computationally expensive, their decisions are more interpretable, and they worked

1

better on smaller datasets. In brief, they were the more rational choice because, simply, they
worked.

The effect of classical methods remained limited in scope due to their reliance on feature
engineering to perform properly. This kind of feature engineering can be prohibitive when it
comes to some forms of data with extremely high dimensional nature (images, videos, text,
etc).

As deep learning algorithms do not need this high degree of feature engineering, and
with the advances in the available computational power, and the exponential increase in
the amount of data available, deep learning started to gain more ground during the last
twenty years. Deep learning algorithms have led to transformational breakthroughs in com-
puter vision [Deng et al., 2009, He et al., 2016], natural language processing [Hochreiter and
Schmidhuber, 1997, Vaswani et al., 2017], speech processing [Amodei et al., 2016, Baevski
et al., 2020], reinforcement learning [Mnih et al., 2015, Silver et al., 2017], robotics [Akkaya
et al., 2019, Hafner et al., 2019], recommendation systems [Cheng et al., 2016, He et al.,
2017] etc. On several tasks, deep learning models have either matched or surpassed human
performance. However, such super-human performance is still limited to some very narrow
and well-defined setups. These setups roughly follow the following progression:

(1) A large amount of training data is collected for whatever task we want the model to
solve, this training data is assumed to be drawn in an independently and identically
distributed (iid) manner from the same distribution of the unseen data.

(2) The model is trained on this data using an iterative optimization algorithm such as
stochastic gradient descent (SGD). In doing so, the model has to perform several
passes (epochs) over the training data till it reaches some satisfasctory low value on
the training loss.

(3) The model is deployed to solve the target task, and it is expected to perform well if the
training and testing distributions proved to be similar (as per the initial assumption).

If there is not enough data available for a specific task, then the power of deep learning
as a way of learning meaningful representations allows for training of the model on a similar
task, for which we have access to sufficient data. Then this model can be finetuned on the
small data of the original task [Tan et al., 2018].

Tom M. Mitchell Definition for Machine Learning [Mitchell, 1997]
«A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E. »

2

Tom M. Mitchell provides a definition for machine learning in Box 1. This definition is
particularly relevant to deep learning, since more data usually translates to better perfor-
mance. However, if the model is trained incrementally on this additional data in the absence
of the older data, the model might overfit to this additional data. The problem is even more
severe if this additional data does not follow the same distribution as the original data, or if
it corresponds to newer classes, as in this case the model usually forgets what it has learned
in the original data, a phenomenon which is known as catastrophic forgetting.

Let’s imagine a specific realistic scenario to explain this problem more concretely. We
have a model that we would like deploy in order to classify cars based on the car model, and
we have sufficient data to train such model. However, new car models always keep coming
out, which necessitates that we keep augmenting the knowledge of our model with these new
car models, so as to preserve its capacity to differentiate between the different car models.

A seemingly easy solution for this scenario is to use the initial training data corresponding
to the older car models, in addition to the new data corresponding to the newer car models,
to finetune or retrain our model. However, it is easy to spot the problems associated with this
approach. The first problem is what if the initial data was not available anymore. This can
be due to one of many reasons, most importantly of which would be for memory constraints
or due to privacy restrictions that do not allow for keeping all the data. The second problem
would be the time constraint, where the time required for this finetuning/retraining would
keep increasing as long as the car models keep increasing.

Another alternative solution would be to finetune the model only on the new data corre-
sponding to the new car models. However, catastrophic forgetting happens in this case, as the
new information starts to interfere with the previously learned information, which usually
leads to a drop in the performance of the model on the previously introduced classes/tasks.

These challenges are broadly studied under the domain of Lifelong Learning [Thrun and
Mitchel, 1995], also called Incremental Learning [Schlimmer and Granger, 1986], Continual
Learning [Thrun and Mitchel, 1997], and Never Ending Learning [Mitchell et al., 2018]. In
the general lifelong learning setup, the model experiences new knowledge, in terms of new
tasks, from the same domain or different domains. The model is expected to learn and solve
new tasks while retaining useful knowledge from previous tasks. Humans can continually
learn and accumulate knowledge over their lifetime, while the current learning algorithms
are known to suffer from several challenges when training over a sequence of tasks [Chaudhry
et al., 2018, Goodfellow et al., 2013, McCloskey and Cohen, 1989, Sodhani et al., 2020].

There are two popular paradigms in lifelong learning [van de Ven and Tolias, 2018]: i)
task incremental learning, where the model has access to a task delimiter (say a task id),

3

which distinguish between tasks. Models for this setup are generally multi-headed, where
there exists a separate classification layer for each task. ii) class incremental learning, where
the model does not have access to a task delimiter, so it needs to discriminate between all
classes from all tasks at inference time. Therefore, models developed for this paradigm are
generally single-headed. The class incremental setup is more closely aligned with the real-life
scenarios and is more challenging than the task incremental scenario.

1.1. Contributions
In this thesis, we try to extend the class incremental learning setup to a more challenging

setup (which we call IIRC, or incremental implicitly refined classification). IIRC setup allows
for exploring a breadth of challenges which could be faced by any model that is required to
continue learning after deployment, and which cannot be examined using the current lifelong
learning setups.

The main contributions of the thesis are as follows:
(1) We propose the Incremental Implicitly-Refined Classification (IIRC) setup, where

the model starts training with some coarse, high-level classes and observes new, fine-
grained classes as it trains over new tasks. Only the labels that belong to the current
task are provided during training, and hence the model needs to use what it acquired
during previous tasks to recognize if the samples also belong to a higher-level class in
addition to the fine-grained class. During the lifetime of the model, it may encounter
a new sample or an old sample with another label (the fine-grained label).

(2) We provide a standardized benchmark to evaluate lifelong learning algorithms in
the IIRC setup. We adapt the commonly used ImageNet and CIFAR datasets, and
provide the benchmark setup compatible with several major deep learning frameworks
(PyTorch and Tensorflow)1.

(3) We evaluate well-known lifelong learning algorithms on the benchmark, and highlight
their strengths and limitations, while ensuring that the models are compared in a fair
and standardized setup.

1.2. Thesis Outline
The chapters will proceed as follows: Chapter 2 will explain what is lifelong learning, what

are the current state of the art methods, and how do they try to overcome the challenges of the
current lifelong learning setups. Chapter 3 explains our proposed setup and benchmark, the
1https://chandar-lab.github.io/IIRC/

4

https://chandar-lab.github.io/IIRC/

datasets and how they were modified, our introduced metric for evaluating the performance,
and the baselines compared and how the different methods were adapted for use with this
setup. Chapter 4 presents the experiments and their results, and compares between the
performance of the different methods and what makes each method performs the way it
does. Finally, chapter 5 presents the conclusion and discusses what are the promising future
directions.

5

Chapter 2

Background

In this chapter, we shall start by the basic definitions for supervised learning, deep learning,
and lifelong learning. We shall see what are the current available setups for lifelong learning,
and why deep learning fails in the context of lifelong learning. Finally, we shall explore how
the different approaches try to deal with this problem.

2.1. Supervised Learning
Machine Learning is synonymous with learning from data, where there exists some data

from the past, and this data is to be used to recognize patterns and predict the future.
Machine Learning is used as a tool that helps in making the process of decision making more
informed and more autonomous. Supervised learning is a machine learning paradigm which
is characterized by the availability of labeled data for whatever task we want to create a
machine learning model for, and this is the branch that we are interested in for the rest of
this thesis. Building a supervised learning model usually proceeds in the following steps:

(1) Collecting labeled data in the form of input-output pairs, where the input corresponds
to what the model is expected to encounter, and the output corresponds to what the
decision that the model is expected to take. The input can be in its raw format, or
it can be represented by a set of hand-crafted features.

(2) This data is divided into a training, validation and test splits. The training split
is used for training the model, the validation split is used for evaluating the model
during the development stage, and the test split is used for the final evaluation of the
model before deployment.

(3) A algorithm is picked to be used for training. Many algorithms can be tried, and the
final algorithm can be chosen using the validation split.

(4) The optimal model given a set of data can be obtained analytically using a closed
form solution for some of these algorithms (ex. Linear Regression). However, finding

6

a closed form solution is usually intractable, and hence iterative optimization tech-
niques are employed (ex. gradient descent). Some of these algorithms are convex,
and hence a global minimum is guaranteed (ex. SVM), and others are non-convex
but it is usually sufficient to find a good local minimum (ex. neural networks).

In supervised learning, we would like to learn a function f : X → Y that is able to
predict a target vector y ∈ Y , when given an input sample x ∈ X (where x can be in raw
form, or in the form of a curated set of features for the raw input). To do so, we have access
to some training data D = {(xi, yi)ni=1}, which consists of n pairs of input samples xi ∈ X
and their corresponding target vectors yi ∈ Y , and that we assume are drawn independently
and identically distributed (iid) from a fixed distribution P (x,y).

In order to train this function f , we use some loss function L that captures how much
the function prediction ŷ = f(x) is different from the ground truth y given a sample x. The
risk associated with this function becomes:

R(f) = Ex,y∼P [L(f(x), y)] , (2.1)

and hence the optimal function f ∗ is the function that minimize this risk:

f ∗ = arg min
f

R(f) , (2.2)

However, since the distribution P is unknown, the risk R cannot be computed. As an
alternative, the Empirical Risk Minimization (ERM) principle [Vapnik, 1991] is usually used,
which seeks to obtain the optimal function f̂ that minimizes the empirical risk R̂

R̂(f) = 1
n

n∑
i=1

L(f(xi), yi) , (2.3)

f̂ = arg min
f

R̂(f) , (2.4)

2.2. Deep Learning
Although any algorithm can be used with IIRC, we shall be limited in scope to neural

networks (deep learning). Neural networks (Figure 2.1) are networks that consist of a cascade
of n layers, where each layer hl is composed of nodes hl,:, and each node hl,j (the j-th node
in the l-th layer) is a non-linear transformation of the previous layer hl−1

hl = gl(hl−1; θl) = σ(θlhl−1) , (2.5)

f(x; θ) = gn ◦ gn−1 . . . g2 ◦ g1(x) , (2.6)

7

Fig. 2.1. Illustration of a fully connected neural network. In this network, each node in a
layer l is connected to all the nodes of the previous layer l − 1 by a linear transformation
followed by a nonlinear activation function. This cascade of nonlinear layers is what gives
neural networks their ability to learn complex representations

where σ is an element-wise non-linear function (sigmoid, RelU, etc.), θl is the matrix of
weights for layer l (where each row represents a node), and the bias term was omitted for
brevity.

This form of neural networks is known as fully connected network (Figure 2.1). Another
form of neural networks more suitable for dealing with images is known as Convolutional
Neural Networks (CNN) (Figure 2.2), where each layer is composed of channels, and each
of these channels are constructed by convolving its filter/kernel over the channels of the
previous layer.

Although a single layer (Equation 2.5) is a simple function, the fact that it is a non-linear
function, and that a neural network model f is a cascade of such functions, makes f a highly
complex nonlinear function that is capable of learning extremely complex patterns. More-
over, the setup of neural networks, where layers are built upon layers, helps the network learn
more meaningful representation/features, where the earlier layers learn more finegrained de-
tails of the input (for example, the edges present in an image), and the later layers capture
more coarse concepts (for example, the object present in an image), see Figure 2.3. This

8

Fig. 2.2. Illustration of how a typical CNN performs an image classification task. A CNN
is more suitable for dealing with images, since it takes into account the spatial information,
and allowes weight sharing which decreases the complexity. Source1

limits the need for the manual handpicking of useful features, especially when dealing with
structured inputs such as images, where the raw pixels themselves are not useful but rather
how the pixels are organized together.

The high complexity of a neural network model gives it a high capacity, but it also makes
it more difficult to deal with analytically. Fortunately, simple optimization methods, which
only have convergence guarantees in the case of convex problems, still perform decently
in the case of neural networks. Gradient descent and its variants are considered the most
popular choice for optimizing neural networks. Gradient descent is an iterative optimization
algorithm, where the variables to be optimized take a step after each iteration in the direction
that minimizes the objective function (in this case, the empirical risk R̂).

θnew = θold − ε∇θR̂ , (2.7)

where ε represents the step size (learning rate). This update rule will cease to take any more
steps if ∇θR̂ is equal to zero across all the dimensions, which only happens in the case of
stationary points. It is also guaranteed to converge in the case of a convex functions (if

1https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

9

Fig. 2.3. Shallow layers learn more fine-grained information about the input sample (like
edges). As each layer builds upon the output of the previous layer, deeper layers are able to
combine this finegrained information into more sophisticated information, and consequently
deeper layers are able to learn more abstract concepts (like object parts). Source:[Goodfellow
et al., 2016]

R̂ is convex in terms of θ) given that a suitable step size is used. As neural networks are
highly non convex with respect to weights, it can be extremely difficult to reach a global
minimum, or even a local minimum. However, it is not usually required to reach a minimum
for the neural networks to perform well in most realistic settings, as achieving a relatively
low value for the loss is usually sufficient. However, for this to be the case, the training set
D over which R̂ is calculated needs to be drawn iid from the test distribution P (x,y), and
the gradient descent algorithm would need to do several passes/epochs over this training set.
Since this is not the case in lifelong learning, due to its incremental nature as we would see
in the next section, it should be evident why an optimization technique like gradient descent
would lead to catastrophic forgetting if left unregularized.

10

2.3. Lifelong Learning
Lifelong Learning is a broad, multi-disciplinary, and expansive research domain with

several synonyms: Incremental Learning [Schlimmer and Granger, 1986], Continual Learn-
ing [Thrun and Mitchel, 1997], and Never Ending Learning [Mitchell et al., 2018]. In lifelong
learning, the data is not available at once, but rather the model has to train sequentially on
a continuous stream of tasks/concepts and their associated data. In an optimal scenario, the
model should learn the new concepts without the need to retrain on the previous concepts
and without the need to have access to the previous data. Moreover, as the model is trained
on more concepts, it has more understanding of the world, and hence it should be able to
learn new concepts faster and more efficiently, and it should be able as well to curate its
understanding of the previous concepts and improve its performance on them. Finally, the
model’s capacity should not be limited so as to limit its ability to learn new concepts. In
the lifelong learning literature, these ideas are referred to by the following terms:

(1) Catastrophic Forgetting: The deterioration of the model’s performance on older tasks
as it learns new tasks.

(2) Forward Transfer: The ability to learn newer tasks faster and more efficiently.
(3) Backward Transfer: The increase in the model’s performance on older tasks as it

learns newer tasks.
(4) Capacity Saturation: The inability of the model to learn new tasks.
Although these four concerns are all important for a machine learning model to be consid-

ered intelligent, neural networks are especially prone to catastrophic forgetting (see Figure 2.4
for an illustration), due to what is known as the stability-plasticity dilemma [Abraham and
Robins, 2005]. Plasticity is the ability of the model to unreservedly change its weights to
be able to acquire new tasks, but then large changes in weights will make these weights
irrelevant to older tasks, and hence catastrophic forgetting happens. On the other hand,
stability is to keep the weights of the network stable and prevent them from making large
changes, but then this will limit the model’s ability to learn new tasks (which can be seen
as capacity saturation).

Different lifelong methods try to tackle these challenges from different perspectives, but
let’s first explain the most common lifelong learning setups, as some of these methods are
more tailored to a specific setup.

11

Fig. 2.4. During training on task T −1, the optimal model parameters θ∗T −1 reach an
optimal region where the loss is minimal for task T −1. During training on task T , the
optimal model parameters θ∗T reach an optimal region where the loss is minimal only for
task T . Although, for sufficiently large models, there exists regions of overlap between the
optimal region for task T −1 and the optimal region for task T , the model typically does
not reach there if not trained to do so (for example, by joint training). This is known as
catastrophic forgetting.

2.3.1. Lifelong Learning Setups

Lifelong Learning has three main setups (following the definitions in [van de Ven and
Tolias, 2018], which are widely adapted in the literature):

(1) Task-incremental Learning (TIL): In this setup, the model is always given the task id
during training and during evaluation, which means that the model is only required to
differentiate between the classes within its task. Hence, a multi-headed architecture
is typically used within this setup, where the tasks share most of the network, and
each task has its own output layer/head. For example, if the first task is {0, 1} and
the second task is {2, 3}, then when the model encounters a new sample that belongs

12

to 0, it is told that it belongs to the first task and hence it has only to identify
whether it is 0 or 1.

(2) Domain-incremental Learning (DIL): In this setup, the model is not given the task id
neither during training nor during evaluation, but it is not required to know it either.
Therefore, a single head architecture is typically used. So if we apply the previous
example to this setup, then the model does not need to know whether an input
sample belongs to the first or the second task, as it only needs to predict whether a
new sample belongs to the first output node (0 or 2), or to the second output node
(1 or 3).

(3) Class-incremental Learning (CIL): In this setup, the set of classes keeps expanding
and the model has to identify which class among all the classes an input sample
belongs to. To say in a way more aligned with the previous definitions, the task id
is only given during training, and the model has to identify during evaluation both
the task id and the class within this task. An expanding single-head is usually used
with this setup. So if we apply the previous example to this setup, then if the first
task is {0, 1} and the second task is {2, 3}, and the test input belongs to 0, then the
model has to predict whether it belongs to 0 or 1 or 2 or 3.

IIRC is more related to CIL than to the other setups, hence let us define how the CIL
setup differs from the supervised learning setup in more concrete terms.

In CIL setup, there exists a sequence of tasks, or episodes, where each task t represents
a set of unique classes C(t), where C(t) ⊆ Y (the set of all possible classes), and C(a) ∩ C(b) =
Φ ∀a, b ∈ W if a 6= b. Each task t comes as well with its set of data D(t) = {(xi, yi)s+nti=s },
where xi ∈ X and yi ⊆ C(t). In incremental class learning, the output space Y(T) keeps
expanding whenever a new task T is introduced Y(T) = ⋃T

t=1 C(t), the goal is still to learn the
function that maps the input to output space across all the previous tasks fT : X → Y(t).
Applying the ERM principle as is would lead us to the following equation:

R̂T (f) = 1
T

T∑
t=1

1
|D(t)|

∑
(xi,yi)∈D(t)

L(f(xi), yi) , (2.8)

f̂T = arg min
f

R̂T (f) , (2.9)

However, as the data from older tasks t < T is not available anymore, calculating the
risk this way becomes infeasible. On the other hand, minimizing the risk on only the data
available will lead to good performance on the current task only, and catastrophic forgetting

13

of the previous tasks. We shall explain in the next sections how the different currently
state-of-the-art methods try to deal with this issue.

2.3.2. Lifelong Learning Methods

Lifelong learning methods take different approaches when dealing with the challenges
presented in Section 2.3, they can be divided into these three broad categories:

(1) replay based methods
(2) regularization based methods
(3) parameter isolation based methods
Parameter isolation based methods are a family of methods which use different sub-

networks for different tasks, either by using a mask that decides which parameters to be
used for each task, or by adding a new sub-network for each new task with connections to
the older sub-networks. Due to the way parameter isolation methods work, they need access
to a task identifier, making them a good fit for the TIL setup. For this reason, we will
not use any parameter isolation methods in this work. Prominent methods that follow this
approach include Progressive Neural Networks [Rusu et al., 2016], Piggyback [Mallya et al.,
2018], PackNet [Mallya and Lazebnik, 2018], HAT [Serra et al., 2018], TFM [Masana et al.,
2020b], DAN [Rosenfeld and Tsotsos, 2018], PathNet [Fernando et al., 2017].

Regularization based methods can be further categorized into two categories: impor-
tance based regularization and distillation based regularization. The way importance based
regularization works is by adding a regularization term in the objective function that con-
strains the parameters of the network during training on a new task from deviating too
much from the optimal parameters obtained for the previous task. This constraint is se-
lective in the sense that changes in more important parameters are more penalized than
changes in less important parameters. Each method defines its way of measuring that im-
portance, but simplifications of the Fischer Information Matrix are usually used as a proxy
for the importance of the parameters (For example, Kirkpatrick et al. [2017] uses the diag-
onal terms of the Fischer Information Matrix). Among the most prominent works in this
direction are Elastic Weight Consolidation (EWC) [Kirkpatrick et al., 2017], Synaptic In-
telligence (SI) [Zenke et al., 2017], Memory Aware Synapses (MAS) [Aljundi et al., 2018],
and Riemannian Walk [Chaudhry et al., 2018]. Although importance based regularization
methods are not limited by definition to TIL setup the way parameter isolation based meth-
ods are, they still tend to perform very poorly in the CIL setup compared to replay based
methods [Masana et al., 2020a].

14

Distillation based regularization was introduced by Learning Without Forgetting
(LWF) [Li and Hoiem, 2017], and it is considered as an extension to the idea of knowledge
distillation introduced by Hinton et al. [2015]. The idea is basically to keep a snapshot
of the model trained on the last task (fT −1), and whenever a new task is introduced, the
output of this frozen snapshot (fT −1) is used as soft targets during the training of (fT)
on the new task (this happens for the output on the base classes shared between the two
models, not the new classes introduced in the new task). The assumption is that the
samples of the newer task might provide a poor sampling for the older tasks, and hence
teaching the model to give the same output it used to give for older tasks might limit their
catastrophic forgetting. Learning Without Memorization (LWM) [Dhar et al., 2019] extends
LWF [Li and Hoiem, 2017] by adding an attention distillation loss so that the new model
(fT) produces similar attention maps as the old model (fT −1) for the classes that belong
to old tasks. Many replay based methods, to be discussed, are built upon the concepts of
LWF [Li and Hoiem, 2017].

As for the replay based approaches, iCaRL [Rebuffi et al., 2017] extends LWF by mak-
ing use of a replay buffer, and by separating the training and evaluation phases. iCaRL
selects exemplars for the replay buffer using the herding strategy, and alleviates catastrophic
forgetting by using distillation loss during training, and using a nearest-mean-of-exemplars
classifier during inference. EEIL [Castro et al., 2018] modifies iCaRL by learning the feature
extractor and the classifier jointly in an end to end manner. LUCIR [Hou et al., 2019] applies
the distillation loss on the normalized latent space rather than the output space, proposes
to replace the standard softmax layer with a cosine normalization layer, and uses a margin
ranking loss to ensure a large margin between the old and new classes. BIC [Wu et al., 2019]
tries to overcome the bias of the network towards newer classes by adding a bias correction
layer that is trained on a balanced subset of the data in a separate stage after each task.
Other works include LGM [Ramapuram et al., 2017], IL2M [Belouadah and Popescu, 2019],
and ER [Rolnick et al., 2019]. GEM [Lopez-Paz and Ranzato, 2017] is another replay-based
method, which solves a constrained optimization problem. It uses the replay buffer to con-
strain the gradients on the current task by projecting them in a direction so that the loss on
the previous tasks does not increase. Although GEM is still a replay based method, it can
be also regarded as a regularization based method, and it has only been shown to perform
well in the incremental task setup. AGEM [Chaudhry et al., 2019a] improves over GEM
by relaxing some of the constraints, and hence increasing the efficiency, while retaining the
performance. Finally, Chaudhry et al. [2019b] shows that vanilla experience replay, where

15

the model simply trains on the replay buffer along with the new task data, is by itself a very
strong baseline.

In this thesis, we include adapted versions of iCaRL, LUCIR, BiC, AGEM, and vanilla
experience replay as baselines. Hence we shall explain them in more details in the next
section.

2.4. Lifelong Learning Baselines
2.4.1. Experience Replay (ER)

The most naive approach for training a model in a continual fashion is to keep finetuning
the model whenever a new task is introduced, but as mentioned earlier, this would cause
catastrophic forgetting, since the loss is being minimized only on the current task data D(T),
and there is no way for the model to know what it should preserve from before and what
it should not. Naive finetuning would be equivalent to finding the optimal model fT that
minimizes the objective with respect to the current task only:

θ∗T = arg min
θ

1
|D(T)|

∑
(xi,yi)∈D(T)

L(f(xi; θ), yi) , (2.10)

Since training a neural network model would usually be done using an iterative optimization
algorithm like gradient descent, the only effect that the parameters trained on task T −1
(θ∗T −1) would have on this optimization process is that they will act as the starting point for
the training trajectory of the parameters (θT).

The most basic solution to this problem that can help alleviate catastrophic forgetting,
is to keep some samples M (c) for each class c learnt so far in a replay bufferM, and replay
them along with the current task data D(T). Hence equation 2.10 becomes:

θ∗T = arg min
θ

1
|D|

∑
(xi,yi)∈D

L(f(xi; θ), yi), where D = D(T) ∪M , (2.11)

[Chaudhry et al., 2019b] shows that, as simple as this baseline seems, it performs exceed-
ingly well compared to other more sophisticated algorithms.

Replay buffers can be either of a total fixed size (m), and hence after any task t, the
samples kept per any class c (M (c)) would be of size |M (c)| = m

|Y(t)| . This type of buffers
make sense if the only constraints that prevents keeping all the previous data are memory
and time constraints. The other type of replay buffer is the buffer with a fixed number of
samples per class |M (c)| = m̄. Hence, the total size of the replay buffer after any task t is
basically m̄×|Y(t)|. This buffer makes more sense if the constraints that prevents keeping all

16

the previous data are also privacy related constraints. For the rest of the thesis, the buffer
used is the buffer with a fixed number of samples per class, unless otherwise stated.

The samples in the buffer are usually picked either randomly, or by an approach called
herding, which shall be explained in the next subsection.

2.4.2. Incremental Classifier and Representation Learning (iCaRL)

iCaRL [Rebuffi et al., 2017] was among the first deep learning methods to use exemplar
rehearsal in order to alleviate the catastrophic forgetting in the class incremental learning
setup. Most of the other methods developed for class incremental learning are one way or
another related to iCaRL, which makes it an important baseline to consider.

iCaRL is based upon three concepts, namely:
(1) Learning representations using knowledge distillation and experience replay
(2) Choosing exemplars based on the herding approach
(3) Classification at test time using the nearest-mean-of-exemplars
So the first part is the same as in experience replay, keeping samples in the buffer for

all the observed classes, and replaying them along with the data that belongs to incoming
classes. However, the different aspect here is using knowledge distillation [Hinton et al.,
2015] when replaying these samples. This idea is building upon the contribution of Li and
Hoiem [2017] (LWF), and it goes as follows: whenever a new set of classes are introduced,
the target for the older classes is not the ground truth label, but rather the output of the
older model, which means that the classification loss is only applied to the new classes, while
the distillation loss is applied to the older classes to make sure that the output of the current
model is close to the output of the previous model. iCaRL uses the binary cross entropy loss
for classification, hence the resulting loss becomes:

L(f(x; θ),y; θ∗T −1) = −
∑

c∈C(T)

[δc=y log fc(x; θ) + δc6=y log (1− fc(x; θ))

−
∑

c∈Y(T −1)

fc(x; θ∗T −1) log fc(x; θ) + (1− fc(x; θ∗T −1)) log (1− fc(x; θ))] , (2.12)

The second element in iCaRL is how to choose the exemplars. As mentioned before,
iCaRL keeps a specific number of exemplars (k) per new class in its replay buffer. How-
ever, instead of choosing the exemplars randomly, they are chosen so that they their mean
approximates the class mean in the latent space, which is called the herding approach. The
intuition here is that if they approximate the class mean in the latent space, then they are a
better representation of the whole class than a randomly sampled set of exemplars. So let’s

17

divide a neural network model f(x; θ) into a feature function g(x; θl−1) and a classification
layer h(x; θl), such that f(x) = h(g(x)) (we shall omit the dependence on θ except when
needed, for brevity). Then the latent space of a sample x becomes its representation g(x),
and the class mean for class c becomes:

µc = 1
|D(c)|

∑
(xi,yi)∈D(c)

g(xi) (2.13)

where if class c belongs to task t, then D(c) is the subset of D(t) with yi = c. Hence in herding,
the exemplars are added sequentially in a greedy manner to M c to best approximate µc:

M c
j = arg min

x
(x,y)∈D(c)

x/∈Mc

||µc −
1
j

[g(x) +
j−1∑
i=1

g(M c
i)]|| , (2.14)

It has to be noted that µ and g are normalized before being used in this equation.
The final part in iCaRL is that, although they use a classification layer h during training,

they use a nearest-mean-of-exemplars approach during evaluation, where the class mean is
approximated by the mean of the class exemplars in the latent space. Therefore, for any test
sample x observed after task T , the model prediction ŷ is obtained as follows:

ŷ = arg min
y∈Y(T)

||g(x)− 1
|M (y)|

∑
xi∈M(y)

g(xi)|| (2.15)

2.4.3. Learning a Unified Classifier Incrementally via Rebalancing
(LUCIR)

LUCIR [Hou et al., 2019] is another replay based method that has proved to be an
effective method in the context of class incremental learning. It tries to deal with the
imbalance between the number of samples for older classes (the samples in the replay buffer)
and newer classes. It claims that this imbalance has the following effects (see Figure 2.5):

(1) Imbalanced Magnitudes: The class embeddings (weight vectors) of the newer classes
are significantly larger than those of the older classes.

(2) Deviation: The relationship between the class embeddings of the older classes and
the feature vectors of the samples that belong to these classes keeps deviating when
learning newer tasks.

(3) Ambiguities: the class embedding of newer classes are close to those of older classes,
leading to ambiguities.

In order to mitigate these effects, LUCIR proposes applying the following three techniques
for each of the three effects respectively:

18

(1) Cosine Normalization: This ensures that the magnitudes of the class embeddings are
balanced across both the older and newer classes.

(2) Less-Forget Constraint: This helps in preserving the geometric configuration of the
older classes.

(3) Inter-Class Separation: This ensures the existence of a margin that separates older
and newer classes, reducing the ambiguities.

So the first technique is cosine normalization. The result of a node i that belongs to the
last layer l is given by hi(x) = θTl,ig(x)+bl,i, which is followed by a softmax or a sigmoidal unit
to give the class probability. This tends to favor newer classes as they have higher magnitudes

Fig. 2.5. Illustration of how the imbalance between the older and newer classes affect the
learned embeddings in the incremental learning setting, and how LUCIR tries to tackle these
effects. Source:[Hou et al., 2019]

19

for their weights and biases. To address this issue, LUCIR uses a cosine normalization in
the last layer

hi(x) = η〈θ̄l,i, ḡ(x)〉 , (2.16)

where v̄ = v
||v||2 , 〈v1, v2〉 = ||v1||||v2|| cosα, and α is the angle between v1 and v2, hence,

〈v̄1, v̄2〉 = cosα. Since cosα is constrained in the range [−1,1], η is introduces as a learnable
multiplier which is shared across all the output nodes. This way, the magnitudes of the
classification nodes of both old and new class are within the same range.

The second technique is the less-forget constraint, which is a stronger distillation loss
than what was presented in iCaRL. In iCaRL, the distillation is performed on the level of
the model output f(x), but in LUCIR, they propose fixing the weights of the last layer
corresponding to the older classes, and applying the distillation on the level of the latent
space features g(x):

Ldis(x) = 1− 〈ḡ(x; θ:l−1), ḡ(x; θ∗T −1:l−1
)〉 , (2.17)

Although this is a stronger regularization as is, it becomes even stronger since LUCIR is
fixing the weights of the older classes nodes θ:l,:m = θ∗T −1:l−1,:m

, where m is the number of
older classes m = |Y(T −1)|. It has to be noted that Ld is constrained in the range [0,2]. Ldis
is weighted by a multiplier λ, which increases its weight as the number of observed classes
to new classes increases:

λ = λbase

√√√√ |CT |
|Y(T −1)|

, (2.18)

The third and final technique is adding a margin ranking loss, which increases the inter-
class separation between the older classes and newer classes, so that it becomes insufficient
to just classify the fewer samples of the older classes correctly, but to also keep a distance
from the newer classes. So for a given sample x, where x ∈M (c), we have

Lmr(x, c) =
∑
k∈K

max(0,m− 〈θ̄l,c, ḡ(x)〉+ 〈θ̄l,k, ḡ(x)〉) , (2.19)

Where K ⊆ C(T) represent the top K newer classes which have the highest output scores h
for the sample x, and m is the margin distance.

Hence, the final loss for LUCIR becomes:

L = 1
|D|

∑
(xi,yi)∈D

Lclassification(f(xi), yi) + λLdis(xi) + 1
|M|

∑
(xj ,yj)∈M

Lmr(xj,yj) , (2.20)

where D = DT ∪M, and T is the current task. LUCIR uses the herding approach for filling
the replay buffer.

20

2.4.4. Large Scale Incremental Learning (BiC)

Fig. 2.6. In BiC, there exists two training stages per task. The first stage is the stage done
by all the replay based methods, where the model is trained on the new data along with the
existing replay buffer (using distillation from previous model). The second stage is a bias
correction stage, where two balanced validation sets (not used in the first stage) from the
replay buffer and the new training data are used to tune a bias correction layer. Source:[Wu
et al., 2019]

Large Scale Incremental Learning (BiC) [Wu et al., 2019] is an extension to LWF [Li
and Hoiem, 2017] and iCaRL [Rebuffi et al., 2017]. It is borrowing from these methods the
concept of knowledge distillation between the teacher model fT −1 and the student model
fT , and keeping a replay buffer M which is filled using the herding approach. The main
differentiator for this method is its emphasis on the concept of bias correction (hence the
name BiC). So BiC reasons that the main challenge that prevents lifelong learning methods
from performing well on large sequences of classes comes to two coupled factors, namely:

• The imbalance in the training data between the number of samples available for the
older classes, and the number of samples available for the newer classes.
• As the model observes more classes, the probability of the presence of visually sim-
ilar classes becomes higher, which means many visually similar classes would have
smaller margins around the decision boundary, and these margins would be especially
susceptible to the problem of data imbalance.

To deal with this problem, BiC proposes the introduction of a bias correction layer, which
is a layer of two parameters. The tuning of this layer takes place in a separate stage after
the training on the task is done (see Figure 2.6).

After each task is introduced, BiC is first trained using a baseline very common with
iCaRL, where there is a classification loss and a distillation loss. The classification loss is a

21

softmax cross entropy:

Lclassification(f(x; θ),y) = −
∑

c∈Y(T)

δc=y log fc(x; θ) , (2.21)

while the distillation loss is formulated as:

Ldis(f(x; θ),y; θ∗T −1) = −
∑

c∈Y(T)

fc(x; θ∗T −1) log fc(x; θ) , (2.22)

with fc(x; θ) = eqc(x;θ)∑
ĉ∈Y(T) e

qĉ(x;θ) .
The two losses are combined as follows:

L = 1
|D|

∑
(xi,yi)∈D

λLdis(xi) + (1− λ)Lclassification(f(xi), yi) , (2.23)

where D = DT ∪M, and T is the current task. λ is a scalar that is calculated according to
the following formula λ = |Y(T −1)|

Y(T) , hence it gives more importance for the distillation loss as
the number of observed classes increases.

After this training on the task data is done, a second phase of training (bias correction
phase) takes place on a special validation set, this validation set is created by merging a
subset from the training set with another subset from the buffer, and it is not used during
the first training phase. This validation set is balanced as it has an equal number of samples
per class for all the classes in Y(T). This bias correction takes place by applying a linear
model to the logits oc(x; θ) of the new classes c ∈ C(T).

qc(x; θ∗T) =

 oc(x; θ∗T) c ∈ Y(T −1)

αoc(x; θ∗T) + β c ∈ C(T) (2.24)

The parameters α and β are shared among by all the new classes c ∈ C(T), and they are
trained using the softmax cross entropy loss.

2.4.5. Averaged Gradient Episodic Memory (AGEM)

Averaged Gradient Episodic Memory (AGEM) [Chaudhry et al., 2019a] lies at the inter-
section of replay based methods, where they keep a replay buffer of samples from previous
tasks, and regularization based methods, where they do not minimize the loss on the replay
buffer directly, but they use it to regularize the direction of the gradient on the current
task T . AGEM (and GEM [Lopez-Paz and Ranzato, 2017]) were mainly introduced in the
context of incremental task learning, where AGEM was proposed as a computationally more
efficient version of GEM. GEM is a constrained optimization method, which uses a replay

22

bufferM = ∪t<TM (t) to constrain the gradients of the loss on the current task D(T), so as to
update the model parameters θT in a direction that would not interfere with the performance
on the previous tasks.

LD(θ) = 1
|D|

∑
(xi,yi)∈D

L(f(xi; θ), yi) , (2.25)

θ∗T = arg min
θ
LD(T)(θ) s.t. LM(t)(θ) ≤ LM(t)(θ∗T −1) ∀t < T , (2.26)

GEM is a very computationally expensive approach that is not applicable to large-scale
setups, since it requires that the loss on each of the previous tasks t < T (represented by
M (t)) does not increase, which requires computing the gradient using the whole replay buffer
M, as well as solving a quadratic programming problem. AGEM provides a more efficient
version of GEM, by relaxing the constraints as it only requires that the overall loss on the
previous tasks does not increase, which reduce the constraints from T −1 constraints to a
single constraint:

θ∗T = arg min
θ
LD(T)(θ) s.t. LM(θ) ≤ LM(θ∗T −1) , (2.27)

This can be solved using just an inner product between the gradients of LD(T) and LM
instead of a quadratic program. It also uses a random batch from the replay buffer rather
than the whole replay buffer.

23

Chapter 3

Incremental Implicitly Refined Classification

This thesis is mainly based on the following publication:

Mohamed Abdelsalam, Mojtaba Faramarzi, Shagun Sodhani, and Sarath Chandar. IIRC:
Incremental implicitly-refined classification. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021

My contribution starts with suggesting the idea based on a discussion among the four authors.
The idea was then refined into a full standardized setup with its set of metrics based on
discussions among the four authors. I was responsible for much of the coding, with some help
fromMojtaba Faramarzi and Shagun Sodhani, and where Mojtaba Faramarzi was responsible
for reviewing that the code is up to standard and without any faults. The experiments were
mostly run by me and the Shagun Sodhani, and the results were discussed among the four
authors. The writing of the paper was mainly done by me, with the help of the Mojtaba
Faramarzi and Shagun Sodhani, and with constant feedback from Sarath Chandar. My
supervisor, Sarath Chandar, was constantly advising and giving periodic feedback. I would
also like to thank Mojtaba Faramarzi for his artistic contribution, as he is responsible for
drawing Figure 3.1 and Figure 3.2, mostly by hand.

3.1. Introduction
Several useful benchmarks have been proposed for evaluating models in the lifelong learn-

ing setting [Antoniou et al., 2020, Lomonaco and Maltoni, 2017]. While useful for measuring
high-level aggregate quantities, these benchmarks take a narrow and limited view on the
broad problem of lifelong learning. One common assumption that many class incremental
setups make is “information about a given sample (say label) can not change across tasks”.

24

For example, an image of a bear is always labeled as “bear”, no matter how much knowledge
the model has acquired.

While this assumption appears to be “obviously correct” in the context of the supervised
learning paradigm (where each sample generally has a fixed label), the assumption is not
always satisfied in real-life scenarios. Humans often interact with the same entities multiple
times and discover new information about them. Instead of invalidating the previous knowl-
edge or outright rejecting the new information, they refine their previous knowledge using
the new information. Figure 3.1 illustrates an example where a child may recognize all bears
as “bear” (and hence label them as “bear”). However, while growing up, they may hear
different kinds of bear being called by different names, and so they update their knowledge
as: “Some bears are brown bears, some bears are polar bears, and other bears are just bears.
Brown bears and polar bears are both still bears, but they are distinct”. This does not mean
that their previous knowledge was wrong (or that previous label “bear” was “incorrect”),
but they have discovered new information about an entity and have coherently updated their
knowledge. This is the general scheme of learning in humans.

A concrete instantiation of this learning problem is that two similar, or even identical,
input samples can have two different labels across two different tasks. We would want the
model to learn the new label, associate it with the old label without forgetting the old label.
Evaluating lifelong learning models for these capabilities is generally outside the scope of
existing benchmarks. We propose the Incremental Implicitly-Refined Classification (IIRC)
setup to fill this gap. We adapt the publicly available CIFAR100 and ImageNet datasets to
create a benchmark instance for the IIRC setup and evaluate several well-known algorithms
on the benchmark. The goal is not to develop a new state-of-the-art model, but rather
to surface the challenges posed by the IIRC setup, and how the different lifelong learning
algorithms react to this setup, highlighting their strengths and limitations.

While the class incremental learning setup is a challenging and close to real-life formu-
lation of the lifelong learning problem, most existing benchmarks do not explore the full
breadth of the complexity of the problem. They tend to over-focus on catastrophic forget-
ting (which is indeed an essential aspect) at the expense of several other unique challenges
to the lifelong learning paradigm. In this thesis, we highlight those challenges and propose
the Incremental Implicitly-Refined Classification (IIRC) setting, an extension of the class
incremental learning setting, that enables the studying of these under-explored challenges,
along with the other well-known challenges like catastrophic forgetting. We provide an in-
stantiation of the setup, in the form of a benchmark, and evaluate several well-known lifelong
learning algorithms on it.

25

Fig. 3.1. Humans incrementally accumulate knowledge over time. They encounter new
entities and discover new information about existing entities. In this process, they asso-
ciate new labels with entities and refine or update their existing labels, while ensuring the
accumulated knowledge is coherent.

3.2. Under-explored challenges in class incremental
learning setting

In class incremental learning, the model encounters new classes as it trains over new tasks.
The nature of the class distributions and the relationship between classes (across tasks) can
lead to several interesting challenges for the learning model: If the model is trained on a
high-level label (say “bear”) in the initial task, and then trained on a low-level label, which
is a refined category of the previous label (say “polar bear”), what kind of associations will
the model learn and what associations will it forget? Will the model generalize and label
the images of polar bear as both “bear” and “polar bear”? Will the model catastrophically
forget the concept of “bear”? Will the model infer the spurious correlation: “all bears
are polar bears”? What happens if the model sees different labels (at different levels of

26

granularity) for the same sample (across different tasks)? Does the model remember the
latest label or the oldest label or does it remember all the labels? These challenges can not
to be trivially overcome by removing restrictions on memory or replay buffer capacity (as
we show in Section 4.2).

3.3. Terminology
We describe the terminology used in the paper with the help of an example. As shown

in Figure 3.2, at the start, the model trains on data corresponding to classes “bear”, “bus”
and “dog”. Training the model on data corresponding to these three classes is the first task.
After some time, a new set of classes (“polar bear”, “lamp” and “whippet”) is encountered,
forming the second task. Since “whippet” is a type of “dog”, it is referred as the subclass,
while “dog” is refereed as the superclass. The “dog-whippet” pair is referred to as the
superclass-subclass pair. Note that not all classes have a superclass (example “lamp”). We
refer to these classes as orphan subclasses. When training the model on an example of a
“whippet”, we may provide only “whippet” as the supervised learning label. This setup is
referred to as the incomplete information setup, where if a task sample has two labels,
only the label that belongs to the current task is provided. Alternatively, we may provide
both “whippet” and “dog” as the supervised learning labels. This setup is referred as the
complete information setup, where if a task sample has two labels, labels that belong
to the current and previous tasks are provided. Note that majority of our experiments are
performed in the incomplete information setup as that is closer to the real life setup, requiring
the model to recall the previous knowledge when it encounters some new information about
a known entity. We want to emphasize that the use of the word task in our setup refers to
the arrival of a new batch of classes for the model to train on in a single-head setting, and
so it is different from its use to indicate a distinct classification head in the task incremental
learning setup.

As the model is usually trained in an incomplete information setup, it would need access
to a validation set to monitor the progress in training that is still an incomplete information
set, otherwise there would be some sort of labels leakage. On the other hand, after training
on a specific task, the model has to be be evaluated on a complete information set, hence
a complete information validation set is needed to be used during the process of model
development and tweaking, so as to not overfit on the test set. We provide both in the
benchmark, where we call the first one the in-task validation set, while the latter one the
post-task validation set.

27

Fig. 3.2. IIRC setup showing how the model expands its knowledge and associates and re-
associates labels over time. The top right label shows the label model sees during training,
and the bottom label (annotated as “Target”) is the one that model should predict during
evaluation. The right bottom panel for each task shows the set classes that model is evaluated
on and the dashed line shows different tasks.

3.4. Setup
We describe the high-level design of the IIRC setup (for a visual illustration, see Fig-

ure 3.2). We have access to a series of N tasks denoted as T1, · · · , TN . Each task comprises
of three collections of datasets for training, validation, and testing. The ground truth of each
sample can have one or two labels associated with it. In the case of samples with two labels,
one label is a subclass and the other label is a superclass. For any superclass-subclass pair,
the superclass is always introduced in an earlier task, with the intuition that a high-level
label should be relatively easier to learn. Moreover, the number of samples for a superclass
is always more than the number of samples for each of its subclasses (the number of samples
for a superclass increases linearly with the number of its subclasses, up to a limit). During
training, we always follow the incomplete information setup, as it allows the studying of the
challenges mentioned earlier. During the first task, only a subset of superclasses (and no
subclasses) are used to train the model. The first task has more classes (and hence, samples)
compared to the other tasks, as it can be seen as a kind of pretraining task. The subsequent
tasks have a mix of superclasses, subclasses, and orphan subclasses. During the training
phase, the model is evaluated on the in-task validation set (which follows the incomplete in-
formation setup), and during the evaluation phase, the model is evaluated on the post-task
validation set and the test set (both follow the complete information setup).

In more formal terms, extending the formulation of the CIL setup in Section 2.3, in IIRC,
there still exists a sequence of tasks, where each task has its unique set of classes C(t) =

28

{. . . , pm, . . . , bn, . . . , cl, . . . } and its associated data D(t) = {(xi, ỹi)s+nti=s }, with xi ∈ X and
ỹi ∈ C(t). p, b, and c represent superclasses, subclasses, and orphan subclasses respectively.
However, ỹ(t)

i does not represent the ground truth target for xi anymore. There exists a
ground truth qi ∈ Y which is a superclass-subclass pair qi = {pa, bb}, or a single orphan
subclass qi = {ca}. ỹi = qi ∩ C(t) represents a piece of the ground truth which belongs to the
current task. After a new task T is observed, the output space become Y(T) = ⋃T

t=1 C(t), and
the objective is to learn a function that predicts the part of the ground truth which belongs
to the observed tasks so far yTi = qi ∩ YT .

3.5. Benchmark
3.5.1. Dataset

We use two popular computer vision datasets in our benchmark - ImageNet [Deng et al.,
2009] and CIFAR100 [Krizhevsky, 2009]. For both datasets, we create a two-level hierarchy
of class labels, where each label starts as a leaf-node and visually similar labels are assigned
a common parent. The leaf-nodes are the subclasses and the parent-nodes are the super-
classes. Some of the subclasses do not have a corresponding superclass, so as to enrich the
setup and make it more realistic. While the datasets come with a pre-defined hierarchy
(e.g. ImageNet follow the WordNet hierarchy), we develop a new hierarchy as the existing
hierarchy focuses more on the semantics of the labels and less on the visual similarity, for
example, “sliding door” and “fence” are both grouped under “barriers” in WordNet hierarchy
although they are not visually similar. We refer to these adapted datasets as IIRC-ImageNet
and IIRC-CIFAR.

With Duplicates Without Duplicates
Dataset Train In-task Validation Train In-task vVlidation Post-task Validation Test

IIRC-CIFAR 46,160 5,770 40,000 5,000 5,000 10,000
IIRC-Imagenet-full 1,215,123 51,873 1,131,966 48,802 51,095 49,900

Table 3.1. The number of samples for each split of the training set. “With Duplicates"
represents the number of samples including the duplicates between some superclasses and
their subclasses (the samples that the model see two times with two different labels). This
does not happen for the post-task validation set and the test set, as they are in the complete
information setup

In IIRC-CIFAR, each superclass has a similar number of subclasses (four to eight). On
the other hand, the subclasses distribution in IIRC-ImageNet is much more skewed (see

29

Figure 3.3) as the number of sublcasses per superclass varies from 3 to 118. We explicitly
decided not to fix this imbalance to ensure that visually similar classes are grouped together.
Moreover, in real life, not all classes are observed at the same frequency, making our setup
more realistic. More statistics about the IIRC-CIFAR and IIRC-ImageNet datasets are
provided in Table 3.1, Table 3.2, and Table 3.3. Moreover, the full class hierarchies for both
IIRC-ImageNet and IIRC-CIFAR are provided in AppendixB.

Fig. 3.3. The distribution of the number of subclasses per superclass in IIRC-ImageNet.
Some superclasses have a large number of subclasses (like “dogs” which has 118 subclasses),
while most superclasses have 3− 8 subclasses.

As mentioned in Section 3.4, we use two validation sets - one with incomplete information
(for model selection and monitoring the model performance during training) and one with
complete information (for the model evaluation after each task). Each validation dataset
comprises 10% of the training data for CIFAR, and 4% of the training data for ImageNet,
and is fixed through all the runs. Some aggregate information about the splits is provided
in Table 3.1.

Dataset Superclasses Subclasses Orphan Subclasses Total Number of Classes
IIRC-CIFAR 15 77 23 115

IIRC-Imagenet-full 85 788 210 1083

Table 3.2. For each dataset, these are the number of superclasses, the number of sub-
classes that belong to these superclasses, the number of orphan subclasses that don’t have a
superclass, as well as the total number classes

Since we are creating the class hierarchy, superclasses do not have any samples assigned to
them. For the training set and the in-task validation set, we assign 40% of the samples that

30

belong to each subclass to its superclass, while retain 80% of the samples for the subclass.
This means that superclass-subclass pairs share about 20% of the samples. In other words, in
20% of the cases, the model observes the same sample with different labels (across different
tasks). Since some superclasses have an extremely large number of subclasses, we limit the
total number of samples in a superclass. A superclass with more than eight subclasses, uses

8
number of subclasses × 40% of the samples that belong to its subclasses. We provide the pseudo
code for the dataloader in AppendixA.

Dataset Superclass Num of Subclasses Superclass Size Subclass Subclass Size
IIRC-CIFAR vehicles 8 1,280 bus 320
IIRC-CIFAR small mammals 5 800 squirrel 320
IIRC-CIFAR - - - mushroom 400

IIRC-ImageNet bird 58 3,762 ostrich 956
IIRC-ImageNet big cat 6 2,868 leopard 956
IIRC-ImageNet keyboard instrument 4 1,912 grand piano 956
IIRC-ImageNet - - - wooden spoon 1,196

Table 3.3. Several examples for different classes and the number of samples they have in
the training set. The subclass on the right is a subclass that belongs to the superclass (if
any) on the left. The left side is blank for orphan subclasses.

Now that we have a dataset with superclasses and subclasses, and with samples that
belong to both kinds of classes, the tasks are created as follows: The first task is always the
largest task with 63 superclasses for IIRC-ImageNet, and 10 superclasses for IIRC-CIFAR.
In the subsequent tasks, each new task introduces 30 classes for IIRC-ImageNet and 5
classes for IIRC-CIFAR. Recall that each task introduces a mix of superclasses, subclasses,
and orphan subclasses. IIRC-ImageNet has a total of 35 tasks, while IIRC-CIFAR has a
total of 22 tasks. Since the order of classes can have a bearing on the models’ evaluation,
we create 5 preset class orders (called task configurations) for IIRC-ImageNet and 10 task
configurations for IIRC-CIFAR, and the average (and standard deviation) of the performance
on these configurations is reported in the experiments in Chapter 4.

Finally, we acknowledge that while IIRC-ImageNet provides interesting challenges in
terms of data diversity, training on the dataset could be difficult and time consuming. Hence,
we provide a shorter, lighter version which has ten tasks (with five tasks configurations). We
shall call the original version IIRC-ImageNet-full, and the lighter version IIRC-ImageNet-lite,
while referring to both collectively as IIRC-ImageNet. This lighter version is not supposed to
replace the full version for benchmarking the model performance, it is just to make it easier

31

for others to perform quicker debugging experiments and to not overfit on IIRC-ImageNet-
full. All the metrics on IIRC-ImageNet-liteare reported as well.

3.5.2. Metrics

Most lifelong learning benchmarks operate in the single-label classification setup, making
accuracy the appropriate metric. In IIRC setup, the model should be able to predict multiple
labels for each sample, even if those labels are seen across different tasks. We considered
using the Exact-Match Ratio (MR) metric [Sorower, 2010], a multi-label extension of the
accuracy metric. MR is defined as:

MR = 1
n

n∑
i=1

I(Yi == Ŷi) , (3.1)

where I is the indicator function, Ŷi are the set of (model) predictions for the ith sample, Yi
are the ground truth labels, and n is the total number of samples. One limitation for the
MR metric is that it does not differentiate between the partially incorrect predictions and
the completely incorrect predictions.

Another popular metric for multi-label classification is the Jaccard similarity(JS), also
called “intersection over union”[Sorower, 2010]. JS is defined as:

JS = 1
n

n∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

, (3.2)

which, as opposed toMR, gives partial credit to the partially correct predictions. To further
penalize the imprecise models, we weight the Jaccard similarity by the per sample precision
(i.e., the ratio of true positives over the sum of true positives and false positives per sample).
The motive behind this is that one of the main challenges in IIRC are whether the model
can predict the correct associations between labels, and hence we wanted the performance
metric to capture this aspect by further penalizing the imprecision of a model. We refer to
this variant as the precision-weighted Jaccard similarity (pw-JS) metric. Section 4.3.1 shows
a comparison between both metrics.

We measure the performance of a model on task k after training on task j using the
precision-weighted Jaccard similarity, denoted Rjk, as follow:

Rjk = 1
nk

nk∑
i=1

|Yki ∩ Ŷki|
|Yki ∪ Ŷki|

× |Yki ∩ Ŷki|
|Ŷki|

, (3.3)

where (j ≥ k), Ŷki is the set of (model) predictions for the ith sample in the kth task, Yki
are the ground truth labels, and nk is number of samples in the task. Rjk can be used as a

32

proxy for the model’s performance on the kth task as it trains on more tasks (i.e. as the j
increases).

We evaluate the overall performance of the model after training till task j, as the average
precision-weighted Jaccard similarity over all the classes that the model has encountered so
far. Note that during this evaluation, the model has to predict all the correct labels for
a given sample, even if the labels were seen across different tasks (i.e. the evaluation is
performed in the complete information setup). We denote this metric as Rj and computed
it as follow:

Rj = 1
n

n∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

× |Yi ∩ Ŷi|
|Ŷi|

, (3.4)

where n is the total number of evaluation samples for all the tasks seen so far.

3.6. Baselines
We evaluate several well-known lifelong learning baselines. We also consider two training

setups where the model has access to all the labels for a given sample (complete information
setup): i) joint where the model is jointly trained on all the classes/tasks at once and
ii) incremental joint where as the model trains across tasks, it has access to all the data
from the previous tasks in a complete information setup. In the Finetune baseline, the
model continues training on new batches of classes without using any replay buffer. Vanilla
Experience Replay (ER) method finetunes the model on new classes, while keeping some
older samples in the replay buffer and rehearsing on them. Experience Replay with
infinite buffer (ER-infinite) is similar to incremental joint, but in incomplete information
setup as in ER. This means that if a new label is introduced that applies to an old sample, the
target for that sample will be updated with that new label in the incremental joint baseline
but not in the ER-infinte baseline . We also have A-GEM [Chaudhry et al., 2019a] that
is a constrained optimization method in the replay-based methods category. It provides an
efficient version of GEM [Lopez-Paz and Ranzato, 2017] by minimizing the average memory
loss over the previous tasks at every training step. Another baseline is iCaRL [Rebuffi et al.,
2017] that proposed using the exemplar rehearsal along with a distillation loss. LUCIR [Hou
et al., 2019] is a replay-based class incremental method that alleviates the catastrophic
forgetting and the negative effect of the imbalance between the older and newer classes.
BiC is also a replay-based class incremental method that introduces a bias correction phase
after each task to aleviate the bias towards newer classes. More details about the baselines
can be found in Section-2.4.

33

3.6.1. Model Adaptations

The earlier-stated baselines were proposed for the single label CIL setup, while IIRC
setup requires the model to be able to make multi-label predictions. Therefore, some changes
have to be applied to the different models to make them applicable in the IIRC setup. To
this end, we use a sigmoid unit followed by the binary cross-entropy loss (BCE) as the
classification loss in all the baselines. This was already used in the iCaRL paper [Rebuffi
et al., 2017], however, LUCIR [Hou et al., 2019], BiC [Wu et al., 2019], and AGEM [Chaudhry
et al., 2019a] originally used a softmax unit followed by a cross-entropy loss. The BCE loss
is averaged by the number of observed classes so that its range does not increase as the
number of classes increases during training. During prediction, the output of the sigmoid
unit is used and classes with values above a threshold (0.5 in our experiments) are considered
as the model’s predicted labels.

3.6.1.1. iCaRL. Although iCaRL [Li and Hoiem, 2017] uses a classification layer dur-
ing training, it uses a nearest-mean-classifier during evaluation (see Section 2.4.2 for more
details). However, using the nearest-mean-classifier strategy for classifying samples is not
feasible for our setting, as the model should be able to predict a variable number of labels.
To overcome this issue, we use the output of the classification layer, which was used during
training, and call this variant as iCaRL-CNN. We further consider a variant of iCaRL-CNN,
called iCaRL-norm, which uses a cosine normalization in the last layer. [Hou et al., 2019] sug-
gests that using this normalization improves the performance in the context of incremental
learning. Hence the classification score is calculated as:

pi(x) = σ(η〈θ̄l i , ḡ(x)〉) , (3.5)

where σ is the sigmoid function, θ̄l i are the normalized weights of the last layer that corre-
spond to label i, and ḡ(x) is the output of the last hidden layer for sample x. η is a learnable
scalar that controls the peakiness of the sigmoid. It is important to have η since 〈θ̄l i , ḡ(x)〉 is
restricted to the range [−1,1]. We can either fix the η or consider it as a learnable parameter.
We observed that learning η works better in practice.

3.6.1.2. BiC. In Equation 2.24 in the original BiC method [Wu et al., 2019], the bias
correction parameters are only applied on the logits of the newer classes (see Section 2.4.4
for more details). These parameters are responsible for changing the magnitudes of these
logits so as to balance the older and newer classes, and since a softmax is followed, these
changes reflect on the output of all the classes (increasing the logits of newer classes increases
the output of these classes and simultaneously decreases the output of older classes, and vice

34

versa). However, since we are using a sigmoid instead of a softmax (due to the presence
of multiple labels), changes applied to the logits of newer classes would not reflect on the
outputs of older classes. Hence, we replace Equation 2.24 by the following equation:

qc(x; θ∗T) =

oc(x;θ∗T)

α
− β c ∈ Y(T −1)

αoc(x; θ∗T) + β c ∈ C(T) (3.6)

This way, increasing the logits of newer classes still reflect on those of the older classes and
vice versa. Another change from the original BiC is that BiC uses a separate balanced
validation set for the bias correction phase. In our experiments, the buffer (after being
updated with the new classes samples) is itself used for the bias correction phase to make it
more aligned with the other baselines.

3.7. Summary
In this chapter, we introduced the IIRC setup along with its motivations, challenges,

terminology, and metrics. We introduced as well the benchmark and how the CIFAR and
ImageNet datasets were adapted to be used with IIRC, along with details about the hierarchy
we proposed for them. We introduced the baselines that will be compared in the experiments
in the next chapter, and how these baselines were modified to be used with the IIRC setup. In
the next chapter, we shall discuss the experiments and their results, along with the different
aspects associated with these experiments.

35

Chapter 4

Experiments and Discussion

In this chapter, the results of the different methods and baselines on IIRC-CIFAR, IIRC-
ImageNet-lite, and IIRC-ImageNet-full are presented. We design our experimental setup
to surface the challenges that lifelong learning algorithms face when operating in the IIRC
setup. Our goal is neither to develop a new state-of-the-art model nor to rank the existing
models. The aim is to highlight the strengths and weakness of the dominant lifelong learning
algorithms, with the hope that this analysis will spur new research directions in the field.

All the plots in this chapter are based on the average of several runs corresponding to
pre-specified class orders, as explained in Section 3.5.1, with 10 class orders in the case of
IIRC-CIFAR, and 5 class orders for each of IIRC-ImageNet-full and IIRC-ImageNet-lite.
The same figures are included in Appendix D with the standard deviation included in the
plots. The reason for providing the two versions is that the plots with only the mean are
less cluttered and easier to comprehend. The raw data used to plot the figures is provided
as well in Appendix C for easier future comparisons.

4.1. Experimental Setup
All the models used are built upon the ResNet architecture [He et al., 2016], with ResNet-

50 being used for IIRC-ImageNet, and the reduced ResNet-32 is used for IIRC-CIFAR.
The optimizer used is stochastic gradient descent (SGD) with momentum, as it performs

better in the lifelong learning setups compared with the optimizers which use adaptive learn-
ing rates [Mirzadeh et al., 2020]. In all the experiments, the value of the momentum is set
to 0.9, and a scheduler is used to decrease the learning rate by a factor of 10 upon plateau
of the performance of on in-task validation subset that belongs to the current task. For
the IIRC-CIFAR experiments, the starting learning rate is set to 1.0 for all the methods.
For the IIRC-ImageNet experiments, the starting learning rate is set to 0.5 in the case of
iCaRL-CNN, iCaRL-norm, and BiC, and 0.1 in the case of finetune, ER and, LUCIR. The
number of training epochs per task is 140 for IIRC-CIFAR, and 100 for IIRC-ImageNet,

36

with the first task always trained for double the number of epochs due to its larger size. The
minibatch size is set to 128, and the weight decay parameter is set to 1e − 5. Moreover,
the AGEM memory batch size, which is used to calculate the reference gradient, is set to
128. For LUCIR, the margin distance m is set to 0.5 (Equation 2.19), and λbase is set to 5
(Equation 2.18). All the hyperparameters were tuned based on the validation performance
in experiments that include a short sequence that includes only the first four tasks. The
intuition behind that is that in real-life, we never know in advance how many tasks the
model will encounter, hence it does not make sense to do the hyperparameter tuning based
on the whole sequence of tasks.

During training, data augmentations are applied as follows:
• for the two IIRC-ImageNet variants, a random crop of size (224 × 224) is sampled
from the image, then a random horizontal flip is applied, and finally the pixels are
normalized by a precalculated per-channel mean and standard deviation.
• for IIRC-CIFAR, a padding of size 4 is added to each edge, then a random crop of
size (32 × 32) is sampled, followed by a random horizontal flip, then the pixels are
normalized.

Replay buffers with a fixed number of samples per class were used (20 samples per class,
except otherwise indicated). Hence, the capacity increases linearly as the model learns
more classes. These samples are chosen randomly in the case of ER and AGEM, and using
the herding approach in the case of iCaRL-CNN, iCaRL-norm, LUCIR, and BiC (refer to
Chapter 2 for more details).

4.2. Results and Discussion
4.2.1. Overall Performance

Let us start by analyzing how well does the model perform over all the observed classes
as it encounters new classes. Specifically, as the model finishes training on the jth task, we
report the average performance Rj, as measured by the pw-JS metric using Equation 3.4,
over the test set of all the tasks that the model has seen so far (Figures 4.1 and 4.2). Recall
that when computing Rj, the model has to predict all the correct labels for a given sample,
even if the labels were seen across different tasks. This makes Rj a challenging metric, as
the model cannot achieve a good performance by just memorizing the older labels, but it
has to learn the relationship between older and newer labels.

Firstly, in Figure 4.2, we notice that there exists a big discrepancy between the perfor-
mance of the ER-infinite baseline and the incremental joint baseline. Recall from Section 3.6

37

(a) IIRC-ImageNet-lite

(b) IIRC-ImageNet-full

Fig. 4.1. Average performance on IIRC-ImageNet-lite and IIRC-ImageNet-full as measured
by the precision-weighted Jaccard Similarity (Equation 3.4). (see Figure D.1 for the standard
deviation)

that, although both baselines do not discard samples from previous tasks, incremental joint is
using the complete information setup, and hence it updates the older samples with the newly
learned labels if applicable, while ER-infinite is using the incomplete information setup. This
result tells us that dealing with the memory constraint is not sufficient by itself for a model
to be able to perform well in the IIRC setup, as only dealing with the catastrophic forgetting
challenge (the way ER-infinite does) is not sufficient to obtain decent performance.

38

Fig. 4.2. Average performance on IIRC-CIFAR as measured by the precision-weighted Jac-
card Similarity (Equation 3.4). (see Figure D.2 for the standard deviation)

In Figures 4.1 and 4.2, we observe that the iCaRL-CNN and iCaRL-norm models per-
form relatively better than the other methods, with iCaRL-norm having the edge in the
case of IIRC-ImageNet. The reason for this outperformance is that iCaRL uses knowledge
distillation from the previous model to the newer model (as explained in Section 2.4.2), and
hence the previous model acts as a provider for pseudo-labels, which is a potential way for
incorporating the model’s previous knowledge into the guidance it is receiving. However,
this also has a side effect, as the iCaRL family of models are usually predicting more labels
(some of which are incorrect), a problem we shall explore in more details in Section 4.2.3. We
can notice that BiC and LUCIR perform worse than ER after some point, which indicates
that they do not make the best use of the replay buffer in their current form in the IIRC
setup (as opposed to the CIL setup, where they generally perform better than iCaRL). We
also note that the AGEM model performs poorly in the case of IIRC-CIFAR, even when
compared to vanilla ER, and hence we didn’t run AGEM on IIRC-ImageNet.

4.2.2. Knowledge Retention and Model Capacity

In lifelong learning setups, the model should retain the previous knowledge as it learns
new tasks. Our setup is even more challenging because the model should not only retain
previous knowledge, but it should incorporate the new labels as well in this previous knowl-
edge. In Figure 4.3, we track how well the model performs on a specific task, as it is trained
on subsequent tasks. Unlike the standard class incremental setup, the model should be able
to continually re-associate labels across different tasks to keep performing well on a previous

39

(a) Task 1 (IIRC-CIFAR) (b) Task 5 (IIRC-CIFAR) (c) Task 10 (IIRC-CIFAR)

(d) Task 1 (IIRC-ImageNet-full) (e) Task 5 (IIRC-ImageNet-full) (f) Task 10 (IIRC-ImageNet-full)

Fig. 4.3. The Performance of three middle tasks throughout the whole training process,
to measure their catastrophic forgetting and backward transfer. Note that a degradation
in performance is not necessarily caused by catastrophic forgetting, as a new subclass of a
previously observed superclass might be introduced and the model would be penalized for
not applying that label retroactively. (see Figure D.3 for the standard deviation)

task. The key takeaway is that, while the baselines are generally expected to reasonably
alleviate catastrophic forgetting, their performance degrades rapidly as the model trains on
more tasks. ER’s poor performance may be accounted for by two hypothesis: i) The model
is trained on a higher fraction of samples per class for classes that belong to the current task,
than those of previous tasks, causing bias towards newer classes. ii) The model sometimes
gets conflicting supervising signal, as the model might observe samples that belong to the
same subclass (ex. “polar bear”), once with the superclass label from the buffer (“bear”),
and another with the subclass label from the current task data (“polar bear’), and it doesn’t
connect these two pieces of information together. In the case of LUCIR, we hypothesize that
the model’s performance deteriorates also because of the conflicting signal problem, which
is exacerbated by LUCIR’s use of the margin ranking loss (see Section 4.3.3 for more details
on the effect of the margin ranking loss).

We can see as well in Figure 4.4 the performance of each model on the current task j,
after training on that task (Rjj using Equation 3.3). The general trend is that the less the
model is regularized, the higher it can perform on the current task, which is intuitive. Since
LUCIR is highly regularized, and the IIRC setup requires the flexibility of the model to
consolidate between its previous beliefs and the new information, we can see that LUCIR

40

(a) IIRC-CIFAR (b) IIRC-ImageNet-full

Fig. 4.4. Current task performance; Per task performance over the test samples of a specific
task j, after training on that task (Rjj using Equation 3.3). see Figure D.4 for the standard
deviation)

nearly fails to learn new classes. We can see as well that BiC forgets quickly on one hand
(Figure 4.3), and its ability to learn new classes deteriorates with the time (Figure 4.4), both
although BiC is similar to iCaRL-CNN but with the addition of a bias correction phase.
The reason is that although BiC uses distillation during training, it does not use distillation
during the bias correction phase, which reduces its ability for the retention of knowledge (see
Section 4.3.4 for the effect of using distillation during the bias correction phase). Moreover,
the reason for the collapse of its ability to learn new classes in the longer sequence of IIRC-
ImageNet-full is that as the number of observed classes increase, the λ becomes much more
skewed towards the distillation loss (see Equation 2.23), which hinders its ability to learn
new classes, especially that the relationship between classes is not as simple as in the CIL
setup.

41

(a) Ground Truth

(b) ER

42

(c) iCaRL-norm

(d) LUCIR

Fig. 4.4. Confusion matrix after observing task 10 of IIRC-CIFAR. The y-axis is the correct
label (or one of the correct labels). The x-axis is the predicted labels. Labels are arranged
by their order of introduction. Only 25 labels across the tasks are shown for better visibility.

43

(e) After task 0 (f) After task 1 (g) After task 5 (h) After task 10

(i) After task 0 (j) After task 1 (k) After task 5 (l) After task 10

(m) After task 0 (n) After task 1 (o) After task 5 (p) After task 10

(q) After task 0 (r) After task 1 (s) After task 5 (t) After task 10

Fig. 4.5. Confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively.
The y-axis is the correct label (or one of the correct labels). The x-axis is the model predicted
labels. Labels are arranged by their order of introduction. Only 25 labels are shown for better
visibility. (1st row) Ground Truth, (2nd row) ER, (3rd row) iCaRL-norm, (4th row) LUCIR.

4.2.3. Confusion Between Related Classes

Some other important questions are whether the model correctly associates the newly
learned subclass labels to their previously learned superclass, and whether it incorrectly as-
sociates/confuses the newly learned subclass label with other previously learned subclasses

44

(a) IIRC-CIFAR (b) IIRC-ImageNet-full

Fig. 4.6. The average performance of IIRC-ImageNet-full and IIRC-CIFAR if only the
superclasses are taken into account for calculating this performance. (see Figure D.5 for the
standard deviation)

(that have the same superclass). We dig deeper into the confusion matrix (Figure 4.4) for the
predictions of the different models after training on ten tasks of IIRC-CIFAR. Note that in
Figure 4.4, the lower triangular matrix shows the percentage the model predicts older labels
for the newly introduced classes, while the upper triangular matrix represents the percentage
the model predict newer labels to older classes, with the ground truth being Figure 5(a).
We can see that the ER method predictions are highly skewed towards the newly learned
labels (last five classes), as shown in Figure 5(b)). The iCaRL-norm model, as shown in
Figure 5(c), performs relatively well in terms of associating the (newly learned) subclasses
to their (previously learned) superclasses. For example, whales are always correctly labeled
as aquatic mammals, and pickup trucks are correctly labeled as vehicles 94% of the time.
However, these models learn some spurious associations as well. For instance, “television”
is often mislabeled as “food containers”. Similarly, the model in general correctly associates
older superclasses with their newer subclasses, but many times it incorrectly create these
associations (eg associating “ aquatic mammals” with “whales” 48% of the time and “vehi-
cles” with “pickup trucks” 44% of the time, while by looking at figure 5(a), we see that they
only represent 20% and 12.5% of their superclasses respectively) The LUCIR model provides
accurate superclass labels to the subclasses. This is shown in Figure 5(d) where LUCIR
follows the trends of the ground truth more closely than iCaRL-norm in the lower triangular
part of the confusion matrix. However, it fails to learn new associations. We provide more
instances of such plots in Figure4.5, which shows that the observed trends are quite general.

In order to provide these insights in a more quantitative way, we provide in Figure 4.6
how much each model is able to retain the superclasses it has learned, and apply them to the

45

(a) Subclasses Precision (IIRC-CIFAR) (b) Orphan Subclasses Precision (IIRC-CIFAR)

(c) Subclasses Precision (IIRC-ImageNet) (d) Orphan Subclasses Precision (IIRC-ImageNet)

Fig. 4.7. The average precision of IIRC-CIFAR and IIRC-ImageNet-full over each type of
subclasses, excluding other types of classes, to measure how much do the models confuse
the subclasses as they encounter more related subclasses. (see Figure D.6 for the standard
deviation)

newly introduced samples that belong to their subclasses. This is measured by calculating
the pw-JS solely over the superclasses (only the model predictions that belong to superclasses
are taken into account).

Moreover, Figure 4.7 shows how much each model is confused between the subclasses
that belong to superclasses, which is measured by calculating the precision over only these
subclasses (only the model predictions that belong to these subclasses are taken into account).
This is contrasted against the precision over orphan subclasses, so as to give an idea of how
much the loss in precision can be attributed to the visual similarity between the subclasses.
Intuitively, we can see that the models collectively tend to be less precise with subclasses
vs orphan subclasses. It should be noted that if the model predicts no labels (zero true
positives and zero false positives), the convention used is to set the precision to one, since
the goal of this figure is to capture how much the model confuses the outputs together, rather
than if the model is learning or not. This explains why the precision of BiC significantly

46

increases when the model collapses. We can also observe that the precision of both iCaRL
variants increases in the second half of the tasks sequence in the case of IIRC-ImageNet-full,
which can be explained by the model’s increased forgetting of the previous labels, and hence
decreased confusion.

4.3. Ablations
4.3.1. JS vs pw-JS:

(a) precision-weighted Jaccard Similarity (IIRC-
CIFAR)

(b) Jaccard Similarity (IIRC-CIFAR)

(c) precision-weighted Jaccard Similarity (IIRC-
ImageNet-full)

(d) Jaccard Similarity (IIRC-Imagenet-full)

Fig. 4.8. Average performance on IIRC-CIFAR and IIRC-ImageNet-full, as measured by the
precision-weighted Jaccard Similarity compared to the Jaccard Similarity. (see Figure D.7
for the standard deviation)

As mentioned in Section 3.5.2, the reasoning behind introducing the precision-weighted
Jaccard similarity is to give a special weight to whether the model is predicting the correct
associations between the classes. In Figure 4.8, we compare between the overall performance
of the different methods when measured using the JS versus when measured using our

47

proposed pw-JS. As evident from the figure, both metrics mostly follow the same trend.
However, the discrepancy appears in the case of the distillation based methods (iCaRL-
CNN and iCaRL-norm), as they tend to be imprecise due to the nature of their objective,
as elaborated earlier. This discrepancy is basically what we wanted to capture by using
the pw-JS as the main metric, as it gives a better idea of which methods perform better in
the knowledge retention aspect, and simultaneously are more able to modify their previous
knowledge and associate the labels together in a precise way.

4.3.2. Buffer Size Effect

(a) Average Performance (b) Current Task Performance

(c) Superclasses Performance (d) Subclasses Precision

Fig. 4.9. The effect of increasing the size of the buffer on the performance of ER and iCaRL-
norm in IIRC-CIFAR. For each baseline, darker lines correspond to larger buffer size. (See
Figure D.8 for the standard deviation)

In all the previous experiments, the replay buffer size was set to 20 samples per class.
In this set of experiments, we try the ER baseline and the iCaRL-norm baseline using
different sizes for the replay buffer (20, 50, 100, and 200 samples per class) to see how their
performance reacts to increasing the replay buffer size. Intuitively, increasing the buffer size

48

increases the performance for both baselines (Figure 9(a)). However, The large buffer size
does not prevent ER from forgetting the superclasses, which are mostly introduced during
the early tasks (Figure 9(c)). An interesting observation in Figure 9(d) is that although
using pseudo-labels makes iCaRL-norm prone to lower precision, especially when the classes
are visually similar, increasing the buffer size significantly increases the subclasses precision.

4.3.3. Effect of Margin Ranking Loss and Distillation in LUCIR

(a) Average Performance (b) Current Task Performance

(c) Superclasses Performance (d) Subclasses Precision

Fig. 4.10. The performance of LUCIR after removing the margin ranking loss LUCIR-
no_margin, using a distillation objective LUCIR-distil, and both LUCIR-distil-no_margin.
(See Figure D.9 for the standard deviation)

If we have a look at Section 2.4.3, we would find that there are two problems with the
LUCIR approach that need to be tackled in order to improve its performance in the IIRC
setup. The first problem is that, as in the case of ER, LUCIR does not use the pseudo-labels
provided by the older model as training targets. We have seen in Section 4.2.2 that this
does not work in the context of IIRC, since the model would be receiving conflicting signals
with no way of consolidating them. We try a variation, which we call LUCIR-distil that

49

uses the pseudo-labels during training in order to see their effect. The other problem is that
one of the three techniques that LUCIR employs to alleviate the problem of catastrophic
forgetting, is the technique of applying the margin ranking loss on the samples of the replay
buffer (Equation 2.19). This loss helps in increasing the interclass separation between the
older classes and newer classes. However, it can be seen how this technique can hurt the
performance on IIRC, since it can try to increase the separation between the superclass and
its newly introduced subclass, which would make it more difficult to learn such subclass. We
try a variant, which we call LUCIR-no_margin, where this loss is removed. Finally, we try
a third variant LUCIR-distil-no_margin which combines the two variants together.

In Figure 10(b), we can see that removing the margin ranking loss does moderately
increase the capacity of the model to learn new tasks in both LUCIR-no_margin, and to
a smaller extent LUCIR-distil-no_margin. On the other hand, We can see that using the
distillation targets improves the knowledge retention of the previously learnt superclasses
for both LUCIR-distil and LUCIR-distil-no_margin (Figure 10(c)), but it also decreases the
subclasses precision in Figure 10(d). However, when it comes to the overall performance,
these variants only marginally outperform LUCIR(Figure 10(a)). This might indicate that
LUCIR and its variants are held back by their strong regularization, which decrease their
flexibility at breaking associations between labels and creating new ones.

4.3.4. Bias Correction in BiC using pseudo-labels

BiC method tries to overcome the bias towards newer classes by having a separate bias
correction phase after each task during which the parameters of a bias correction layer are
tuned. This layer scales the logits of the classes in order to balance them (see Section 2.4.4
for more details). Although BiC uses knowledge distillation as is the case in iCaRL-norm, it
does not apply these pseudo-labels as targets during the bias correction phase. This might
make sense in the context of the class incremental setup, since the dataset used during
this bias correction phase is balanced, however it might hurt the performance in the case
of IIRC since the model is not able to incorporate its previous knowledge during the bias
correction process. We experiment with a BiC variant (BiC-distil), where we try to see how
would the model perform if the pseudo-labels provided by the previous model were used
as targets during the bias correction phase as well. In Figure 11(c), we can see that BiC-
distil significantly improves the ability of BiC in knowledge retention of the superclasses
and in applying these previously learned superclasses to the samples that belong to them
in subsequent tasks, while hurting its precision when it comes to distinguishing between
subclasses (Figure 11(d)), which is similar to what happened when distillation was used

50

(a) Average Performance (b) Current Task Performance

(c) Superclasses Performance (d) Subclasses Precision

Fig. 4.11. The performance of BiC after using a distillation objective during the bias
correction phase BiC-distil. (See Figure D.10 for the standard deviation)

in LUCIR-distil. However, The overall performance of BiC-distil almost does not improve
upon the performance of BiC, as BiC-distil has a significantly lower ability to learn new
tasks (Figure 11(b)). This can be attributed to the higher weight that BiC-distil gives to
the distillation loss as the number of observed classes increase (Equation 2.23), as opposed
to iCaRL which does not have such weighting (Equation 2.12). Moreover, the pseudo-labels
are provided for the older labels, but they are not provided for the newer labels. This means
that the new samples help in retaining the old classes, but the old samples from the buffer
try to suppress the newer classes, and since the dataset is balanced across the old classes
and new classes during the bias correction phase, this effect becomes more pronounced.

51

Chapter 5

Conclusion and Future Directions

In the previous chapters, we have seen what is lifelong learning, and how it derives its
importance from the very first principles of machine learning. Lifelong learning is a difficult
problem, as it includes the challenges that we as humans face during our lifetimes. However,
the current lifelong learning setups are still limited in the breadth of the challenges that they
explore, which necessitates the introduction of new setups that allow the exploration of such
challenges.

To that end, the IIRC setup and benchmark was introduced. In the IIRC setup, the
model starts training on the high-level superclasses, and then observes the subsequent tasks
which are mainly composed of more fine-grained classes. The training happens in an incom-
plete information setting, where the labels that belong to the current task are the only labels
that are provided during training, and hence the model needs to use what it has acquired
during the previous tasks to recognize if the samples belong as well to some higher level su-
perclass it has already learned. IIRC-CIFAR and IIRC-ImageNet were introduced to serve
as benchmarks for this setup, and precision-weighted Jaccard similarity was introduced to
serve as a metric of performance that captures the different aspects related to the setup. The
benchmark was introduced in a standardized way with a preset tasks configurations and two
validation sets to allow for fair and easy comparison.

Although the IIRC setup follows a particular scenario that might seem too specific, the
strength of IIRC lies in that the challenges it tries to address are generalizable to a much
broader set of scenarios that exist in real-life. The idea that when we learn a concept, we
might not be told the whole story at each time, but we might be given some part of the
truth and we are required to use our previous knowledge in order to complete the whole
picture. This is especially true in a lifelong learning scenario, since it can be expensive to
provide extensive data with all the labels, especially that it should be expected that the
number of observed classes are to increase dramatically in such scenario. Removing that
constraint, by incorporating what the model already knows, makes the process smarter and

52

easier. Moreover, real-life is rarely static, we learn new things everyday that may require us
to alter our previous understanding, and hence the quality of being flexible enough to not
only keep the previous knowledge, but also alter it when new facts are revealed, is essential
for a model to be deployed in a realistic lifelong learning environment. Finally, learning in
a gradually refined way has its roots in how humans learn, and this also reflects on real life
since it is always easier to collect data for the less refined classes and augment the model
with the refined concepts once they are available.

We also tested the most important lifelong learning methods after adapting them to IIRC
setup. Distillation-based methods proved to be strong baselines, as they allow the model
to incorporate its previous knowledge and to gradually change the associations they build
between the different concepts. However, they are weak when it comes to detecting out-of-
distribution (OOD) samples, as they might apply some pseudo-labels to these OOD samples,
as in applying a superclass pseudo-label to a newly introduced orphan subclass that it has
not seen before. Another weakness for distillation based methods in a partially multi-label
setting like IIRC is that it exacerbates the model’s ability to distinguish between visually
similar classes, since in a multi-label setting the model is allowed to give the samples of two
similar classes “A” and “B” both the labels “A” and “B”. On the other hand, LUCIR have
a strong regularization which helps in the case of CIL setup. However, since IIRC requires
more flexibility from the model’s side, this strong regularization hurts in the context of IIRC.
Some ablations were done to make LUCIR less regularized and to use the distillation strategy,
however it then suffers from the same problems as the other distillation based baselines.

5.1. Future Directions
One future direction to strengthen the performance of the distillation-based models can

be by employing an explicit complementary OOD detection algorithm [Lee et al., 2018, Vyas
et al., 2018] in detecting labels which have no associations with previous labels. However,
this algorithm would need to be adapted so that it does not suffer itself from catastrophic
forgetting, and hence confusing previously seen classes as OOD. Moreover, unlabeled data
can be used as well for this OOD algorithm [Yu and Aizawa, 2019], as unlabeled data is easily
available even in the context of lifelong learning. Another advantage for using unlabeled data
is that this data by itself can be used in a self-supervised manner to enrich the representation
learnt by the lifelong learning model and regularize it in meaningful manner [Zhang et al.,
2020].

53

On the other hand, further research is needed in the direction of extending the setups
and benchmarks in the area of lifelong learning so as to make the lifelong learning models
more suitable for deployment in real life. Typically, a realistic setup would include all
the aspects from class incremental learning (where the classes are added sequentially), to
task incremental learning (where the classes can sometimes belong to different tasks with
different output heads), to domain incremental learning (where the domain shifts for some of
the classes), to IIRC (where the classes are related and only some of the labels are present at
a time). Incorporating all these challenges in a single setup would result in models which are
more prepared for real-life. However, at the current state of the lifelong learning research,
this setup might prove too difficult and hence would be limited in utility, since it contains
a lot of components which would make analyzing where do the models fail very challenging.
Hence, developing models for these more specialized setups is beneficial, as long as they take
into account the existence of other challenges that would need to be tackled at some point,
and the longer term goal should be to start this kind of universal setups once the models
start to show decent performance in each of these more specialized setups.

54

References

Mohamed Abdelsalam, Mojtaba Faramarzi, Shagun Sodhani, and Sarath Chandar. IIRC:
Incremental implicitly-refined classification. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

W. Abraham and A. Robins. Memory retention – the synaptic stability versus plasticity
dilemma. Trends in Neurosciences, 28:73–78, 2005.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving
rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 139–154, 2018.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Batten-
berg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al.
Deep speech 2: End-to-end speech recognition in english and mandarin. In Proceedings
of the International conference on Machine Learning, pages 173–182, 2016.

Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining
benchmarks for continual few-shot learning, 2020.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations. arXiv preprint
arXiv:2006.11477, 2020.

Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with dual memory.
In Proceedings of the IEEE International Conference on Computer Vision, pages 583–592,
2019.

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN 0885-6125.
doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European conference on
computer vision (ECCV), pages 233–248, 2018.

55

https://doi.org/10.1023/A:1010933404324

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Rie-
mannian walk for incremental learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 532–547,
2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with a-gem. In International Conference on Learning
Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
Puneet K. Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic
memories in continual learning, 2019b.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Arad-
hye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learn-
ing for recommender systems. In Proceedings of the 1st workshop on deep learning for
recommender systems, pages 7–10, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.
Learning without memorizing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5138–5146, 2019.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A.
Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient de-
scent in super neural networks, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In Proceedings
of the International Conference on Machine Learning, pages 2555–2565. PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

56

http://www.deeplearningbook.org

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide
web, pages 173–182, 2017.

Marti A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28, July
1998. ISSN 1541-1672. doi: 10.1109/5254.708428. URL https://doi.org/10.1109/
5254.708428.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop, 2015. URL
http://arxiv.org/abs/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a uni-
fied classifier incrementally via rebalancing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 831–839, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.
URL https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, NIPS’18, page
7167–7177, Red Hook, NY, USA, 2018. Curran Associates Inc.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for contin-
uous object recognition. In Proceedings of the 1st Annual Conference on Robot Learning,
volume 78, pages 17–26, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In Advances in neural information processing systems, pages 6467–6476, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network
by iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018.

57

https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/5254.708428
http://arxiv.org/abs/1503.02531
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network
to multiple tasks by learning to mask weights. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 67–82, 2018.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and
Joost van de Weijer. Class-incremental learning: survey and performance evaluation.
arXiv preprint arXiv:2010.15277, 2020a.

Marc Masana, Tinne Tuytelaars, and Joost van de Weijer. Ternary feature masks: continual
learning without any forgetting. arXiv preprint arXiv:2001.08714, 2020b.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24,
pages 109–165. Elsevier, 1989.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh.
Understanding the role of training regimes in continual learning, 2020.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1 edition, 1997. ISBN
0070428077.

Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bishan Yang, Justin
Betteridge, Andrew Carlson, Bhavana Dalvi, Matt Gardner, Bryan Kisiel, et al. Never-
ending learning. Communications of the ACM, 61(5):103–115, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015.

Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative mod-
eling. arXiv preprint arXiv:1705.09847, 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert.
icarl: Incremental classifier and representation learning. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne.
Experience replay for continual learning. In Advances in Neural Information Processing
Systems, pages 350–360, 2019.

Amir Rosenfeld and John K Tsotsos. Incremental learning through deep adaptation. IEEE
transactions on pattern analysis and machine intelligence, 2018.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-
patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural net-
works, 2016.

58

Jeffrey C Schlimmer and Richard H Granger. Incremental learning from noisy data. Machine
learning, 1(3):317–354, 1986.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming cata-
strophic forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423,
2018.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of go without human knowledge. nature, 550(7676):354–359, 2017.

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. Toward training recurrent neural
networks for lifelong learning. Neural computation, 32(1):1–35, 2020.

Mohammad Sorower. A literature survey on algorithms for multi-label learning, 2010.
Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu.
A Survey on Deep Transfer Learning: 27th International Conference on Artificial Neural
Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III, pages 270–279. 10
2018. ISBN 978-3-030-01423-0. doi: 10.1007/978-3-030-01424-7_27.

Sebastian Thrun and Tom M. Mitchel. Lifelong robot learning. Robotics and Autonomous
Systems, 1995.

Sebastian Thrun and Tom M. Mitchel. Child: A first step towards continual learning.
Machine Learning, 28:77–104, 1997.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning. In Neurips
2018, 2018. URL https://arxiv.org/pdf/1904.07734.pdf.

V. Vapnik. Principles of risk minimization for learning theory. In Proceedings of the
4th International Conference on Neural Information Processing Systems, NIPS’91, page
831–838, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. ISBN
1558602224.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and
Theodore L. Willke. Out-of-distribution detection using an ensemble of self supervised
leave-out classifiers. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss, editors, Computer Vision – ECCV 2018, pages 560–574, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-01237-3.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun
Fu. Large scale incremental learning. In Proceedings of the IEEE Conference on Computer

59

https://arxiv.org/pdf/1904.07734.pdf

Vision and Pattern Recognition, pages 374–382, 2019.
Qing Yu and Kiyoharu Aizawa. Unsupervised out-of-distribution detection by maximum
classifier discrepancy. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9517–9525, 2019. doi: 10.1109/ICCV.2019.00961.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic in-
telligence. In Proceedings of the International conference on Machine Learning, volume 70,
pages 3987–3995. PMLR, 2017.

Song Zhang, Gehui Shen, Jinsong Huang, and Zhi-Hong Deng. Self-supervised learning aided
class-incremental lifelong learning, 2020.

60

Appendix A

Pseudo Codes

Algorithm 1: IncrementalTrain
Require: tasks // A list of the classes to-be-introduced at each task

1 trainSet, validSetinTask, validSetpostTask, testSet ← LoadDatasets()
2 model ← CreateModel()

/* create an empty buffer */
3 buffer ← CreateBuffer()
4 for task in tasks do
5 model ← TrainOnTask(model, buffer, trainingSet, validSetinTask)

/* add randomly selected samples to buffer */
6 buffer ← AddToBuffer (buffer, trainingSet)
7 PostTaskEvaluate(model, validSetpostTask, testSet)
8 end

Algorithm 2: LoadDatasets
input : rawDatatrain // The default single-label full dataset (train)
input : rawDatatest // The default single-label full dataset (test)
input : classHierarchy // A dictionary that maps each superclass to its

constituent subclasses
1 multilabeledDatatrain ← AddSuperclassLabels(rawDatatrain, classHierarchy)
2 multilabeledDatatest ← AddSuperclassLabels(rawDatatest, classHierarchy)
3 multilabeledDatatrain, multilabeledDatavalidinTask , multilabeledDatavalidpostTask ←

SplitData(multilabeledDatatrain)
4 trainSet ← IncompleteInfoIncrementalDataset(multilabeledDatatrain)
5 validSetinTask ← IncompleteInfoIncrementalDataset(multilabeledDatavalidinTask)
6 validSetpostTask ← CompleteInfoIncrementalTestDataset(multilabeledDatavalidpostTask)
7 testSet ← CompleteInfoIncrementalTestDataset(multilabeledDatatest)
output : trainSet // The incomplete information incremental learning training

set
output : validSetinTask // The incomplete information incremental learning

validation set (for in-task performance)
output : validSetpostTask // The complete information incremental learning

validation set (for post-task performance)
output : testSet // The complete information incremental learning test set

62

Algorithm 3: IncompleteInfoIncrementalDataset
input : multilabelData // A list of samples with each sample in the form of

(image, (superclassLabel, subclassLabel)) or (image, (subclassLabel)))
input : superclassToSubclass // a mapping that maps superclasses to their

constituent subclasses
input : tasks // The classes to-be-introduced at each task
Require: subclasses // All refined subclasses (those who have a superclass as

well as those who don’t)
output : a dataset object with the data changing along the tasks

1 Initialization:
2 classToDataIndices ← EmptyDictionary
3 currentTaskId ← 0
4 dataIndicestask ← []
5 for subclass in subclasses do

/* get the indices of the samples which correspond to this subclass
*/

6 dataIndicessubclass ← GetSamplesIndices(mtultilabelData, subclass)
7 if subclass has superclass then
8 dataSubsetLengthsuperclass ← 0.4 * Length(dataIndicessubclass)
9 dataSubsetLengthsubclass ← 0.8 * Length(dataIndicessubclass)

10 dataIndicessubclass ← Shuffle(dataIndicessubclass)
11 dataSubsetIndicessubclass ← dataIndicessubclass[:dataSubsetLengthsubclass]
12 dataSubsetIndicessuperclass ← dataIndicessubclass[-dataSubsetLengthsuperclass:]
13 classToDataIndices[subclass] ← dataIndicessubclass
14 classToDataIndices[superclass] ← classToDataIndices[superclass] ∪

dataSubsetIndicessuperclass
15 end
16 else if subclass has no superclass then
17 classToDataIndices[subclass] ← dataIndicessubclass
18 end
19 end
20 IncrementTask:
21 currentTaskId ← currentTaskId+ 1
22 dataIndicestask ← []
23 for class in tasks[currentTaskId] do
24 dataIndicestask ← dataIndicestask ∪ classToDataIndices[class]
25 end
26 GetItem:

Require: classestask // The classes present in the current task
input : index // an index in the range of length of dataIndicestask

27 image, labels ← multilabelData[dataIndicestask[index]]
28 label ← labels ∩ classestask

output : image // The sample image
output : label // The label corresponding to this image that exists in the current

task

63

Algorithm 4: CompleteInfoIncrementalTestDataset
input : multilabelData // A list of samples with each sample in the form of

(image, (superclassLabel, subclassLabel)) or (image, (subclassLabel)))
input : superclassToSubclass // a mapping that maps superclasses to their

constituent subclasses
input : tasks // The classes available at each task
Require: subclasses // All refined subclasses (those who have a superclass as

well as those who don’t)
output : a test dataset object which keeps collecting data along the tasks

1 Initialization:
2 classToDataIndices ← empty_dictionary
3 classesobserved ← []
4 dataIndicesaccessible ← []
5 for subclass in subclasses do

/* get the indices of the samples which correspond to this subclass
*/

6 dataIndicessubclass ← GetSamplesIndices(multilabelData, subclass)
7 classToDataIndices[subclass] ← dataIndicessubclass
8 if subclass has superclass then
9 classToDataIndices[superclass] ← classToDataIndices[superclass] ∪

classToDataIndices[subclass]
10 end
11 end
12 LoadTask

input : taskId // The index of the task to load
13 dataIndicesaccessible ← []
14 classesobserved ← classesobserved ∪ tasks[taskId]
15 for class in tasks[taskId] do
16 dataIndicesaccessible ← dataIndicesaccessible ∪ classToDataIndices[class]
17 end
18 LoadAllObservedData

Require: classesobserved // All classes observed till now in all previous tasks
19 dataIndicesaccessible ← []
20 for class in classesobserved do
21 dataIndicesaccessible ← dataIndicesaccessible ∪ classToDataIndices[class]
22 end
23 dataIndicesaccessible ← RemoveDuplicates(dataIndicesaccessible)
24 GetItem

Require: classesobserved // All classes observed till now in all previous tasks
input : index // an index in the range of task_data_indices

25 image, labels ← multilabelData[dataIndicesaccessible[index]]
26 labels ← labels ∩ classesobserved

output : image // The sample image
output : labels // The labels corresponding to this image that exist in the

classesobserved

64

Appendix B

IIRC Datasets Hierarchies

B.1. IIRC-CIFAR Hierarchy

superclass subclasses
aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout
flowers orchid, poppy, rose, sunflower, tulip

food containers bottle, bowl, can, cup, plate
fruit and vegetables apple, orange, pear, sweet pepper
household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores leopard, lion, tiger, wolf

large omnivores and herbivores bear, camel, cattle, chimpanzee, elephant, kangaroo
medium sized mammals fox, porcupine, possum, raccoon, skunk

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple tree, oak tree, palm tree, pine tree, willow tree

vehicles
bicycle, bus, motorcycle, pickup truck, train, streetcar, tank,

tractor

-
mushroom, clock, keyboard, lamp, telephone, television, bridge,

castle, house, road, skyscraper, cloud, forest, mountain, plain, sea,
crab, lobster, snail, spider, worm, lawn mower, rocket

B.2. IIRC-ImageNet Hierarchy

superclass subclasses

dog

dalmatian, basenji, pug, Leonberg, Newfoundland, Great
Pyrenees, Mexican hairless, Brabancon griffon, Pembroke,

Cardigan, Chihuahua, Japanese spaniel, Maltese dog, Pekinese,
Shih-Tzu, toy terrier, papillon, Blenheim spaniel, Rhodesian

ridgeback, boxer, bull mastiff, Great Dane, Saint Bernard, Eskimo
dog, Tibetan mastiff, French bulldog, malamute, Siberian husky,
Samoyed, Pomeranian, chow, keeshond, toy poodle, miniature

poodle, standard poodle, Afghan hound, basset, beagle,
bloodhound, bluetick, redbone, Ibizan hound, Norwegian

elkhound, otterhound, Saluki, Scottish deerhound, Weimaraner,
black-and-tan coonhound, Walker hound, English foxhound,

borzoi, Irish wolfhound, Italian greyhound, whippet, Bedlington
terrier, Border terrier, Kerry blue terrier, Irish terrier, Norfolk

terrier, Norwich terrier, Yorkshire terrier, Airedale, cairn,
Australian terrier, Dandie Dinmont, Boston bull, Scotch terrier,
Tibetan terrier, silky terrier, soft-coated wheaten terrier, West

Highland white terrier, Lhasa, Staffordshire bullterrier, American
Staffordshire terrier, wire-haired fox terrier, Lakeland terrier,
Sealyham terrier, German short-haired pointer, vizsla, kuvasz,

schipperke, Doberman, miniature pinscher, affenpinscher, Brittany
spaniel, clumber, cocker spaniel, Sussex spaniel, English springer,
Welsh springer spaniel, Irish water spaniel, English setter, Irish
setter, Gordon setter, flat-coated retriever, curly-coated retriever,
golden retriever, Labrador retriever, Chesapeake Bay retriever,
miniature schnauzer, giant schnauzer, standard schnauzer,

Greater Swiss Mountain dog, Bernese mountain dog, Appenzeller,
EntleBucher, briard, kelpie, komondor, Old English sheepdog,
Shetland sheepdog, collie, Border collie, Bouvier des Flandres,

Rottweiler, German shepherd, groenendael, malinois

66

bird

cock, hen, ostrich, bee eater, hornbill, hummingbird, jacamar,
toucan, coucal, quail, partridge, peacock, black grouse, ptarmigan,

ruffed grouse, prairie chicken, water ouzel, robin, bulbul, jay,
magpie, chickadee, brambling, goldfinch, house finch, junco, indigo

bunting, black swan, European gallinule, goose, drake,
red-breasted merganser, pelican, albatross, king penguin,

spoonbill, flamingo, limpkin, bustard, white stork, black stork,
American coot, oystercatcher, red-backed sandpiper, redshank,
dowitcher, ruddy turnstone, little blue heron, bittern, American
egret, African grey, macaw, sulphur-crested cockatoo, lorikeet,

vulture, kite, bald eagle, great grey owl

garment

suit, abaya, kimono, cardigan, feather boa, stole, jersey,
sweatshirt, poncho, brassiere, jean, gown, military uniform,

pajama, apron, academic gown, vestment, bow tie, Windsor tie,
fur coat, lab coat, trench coat, hoopskirt, miniskirt, overskirt,

sarong, cloak

beverage espresso, red wine, cup, eggnog

aircraft airship, balloon, airliner, warplane, wing, space shuttle

bear brown bear, American black bear, ice bear, sloth bear

fox red fox, kit fox, Arctic fox, grey fox

wolf timber wolf, white wolf, red wolf, coyote

bag backpack, mailbag, plastic bag, purse, sleeping bag

footwear clog, cowboy boot, Loafer, running shoe, sandal

toiletry hair spray, lotion, perfume, face powder, sunscreen, lipstick

box carton, chest, crate, mailbox, pencil box, safe

rodent hamster, porcupine, marmot, beaver, guinea pig, fox squirrel

bottle
beer bottle, pill bottle, pop bottle, water bottle, wine bottle,

water jug, whiskey jug

fabric velvet, wool, bib, dishrag, handkerchief, bath towel, paper towel

cup
beer glass, goblet, cocktail shaker, measuring cup, pitcher, beaker,

coffee mug

fungus
coral fungus, gyromitra, stinkhorn, earthstar, hen-of-the-woods,

bolete, agaric

musteline weasel, mink, polecat, black-footed ferret, otter, skunk, badger

67

truck
fire engine, garbage truck, pickup, tow truck, trailer truck, moving
van, police van, recreational vehicle, forklift, harvester, snowplow,

tractor

headdress
crash helmet, football helmet, bearskin, bonnet, cowboy hat,
sombrero, bathing cap, mortarboard, shower cap, pickelhaube

ball
baseball, basketball, croquet ball, golf ball, ping-pong ball,
punching bag, rugby ball, soccer ball, tennis ball, volleyball

car
ambulance, beach wagon, cab, convertible, jeep, limousine, Model

T, racer, sports car, minivan, grille, golfcart

measuring instrument
barometer, scale, odometer, rule, sundial, digital watch, hourglass,
parking meter, stopwatch, analog clock, digital clock, wall clock

tool
hammer, plunger, screwdriver, shovel, cleaver, letter opener, can
opener, corkscrew, hatchet, chain saw, plane, scabbard, power

drill, carpenter’s kit

watercraft
schooner, catamaran, trimaran, fireboat, gondola, canoe, yawl,
lifeboat, speedboat, pirate, wreck, container ship, liner, aircraft

carrier, submarine, amphibian, paddle

dish Petri dish, mixing bowl, soup bowl, tray

bus minibus, school bus, trolleybus

cart horse cart, jinrikisha, oxcart

tracked vehicle snowmobile, half track, tank

lamp candle, spotlight, jack-o’-lantern, lampshade, table lamp

optical instrument
binoculars, projector, sunglasses, lens cap, loupe, Polaroid camera,

reflex camera

gymnastic apparatus balance beam, horizontal bar, parallel bars

swine hog, wild boar, warthog

rabbits hare, wood rabbit, Angora

echinoderm starfish, sea urchin, sea cucumber

wild dog dingo, dhole, African hunting dog

pouched mammal wombat, wallaby, koala

aquatic mammal dugong, grey whale, killer whale, sea lion

person ballplayer, scuba diver, groom

mollusk chiton, chambered nautilus, conch, snail, slug, sea slug

68

weapon bow, projectile, cannon, missile, rifle, revolver, assault rifle, holster

bovid
bison, water buffalo, ram, ox, bighorn, ibex, hartebeest, impala,

gazelle

salamander
European fire salamander, common newt, eft, spotted salamander,

axolotl

frog tree frog, tailed frog, bullfrog

big cat leopard, snow leopard, jaguar, lion, tiger, cheetah

domestic cat tabby, tiger cat, Persian cat, Siamese cat, Egyptian cat

cooking utensil
spatula, frying pan, wok, Crock Pot, Dutch oven, caldron,

coffeepot, teapot

primate

Madagascar cat, indri, gibbon, siamang, orangutan, gorilla,
chimpanzee, marmoset, capuchin, howler monkey, titi, spider
monkey, squirrel monkey, guenon, patas, baboon, macaque,

langur, colobus, proboscis monkey

fish
barracouta, electric ray, stingray, hammerhead, great white shark,

tiger shark, sturgeon, gar, puffer, rock beauty, anemone fish,
lionfish, eel, tench, goldfish, coho

lizard
banded gecko, common iguana, American chameleon, whiptail,
agama, frilled lizard, alligator lizard, Gila monster, green lizard,

African chameleon, Komodo dragon

turtle mud turtle, terrapin, box turtle, loggerhead, leatherback turtle

spider
black and gold garden spider, barn spider, garden spider, black

widow, tarantula, wolf spider, spider web

insect

ringlet, sulphur butterfly, lycaenid, cabbage butterfly, monarch,
admiral, dragonfly, damselfly, lacewing, cicada, leafhopper,

cockroach, mantis, walking stick, grasshopper, cricket, bee, ant,
fly, tiger beetle, ladybug, ground beetle, long-horned beetle, leaf

beetle, weevil, dung beetle, rhinoceros beetle

green groceries

acorn, hip, ear, fig, pineapple, banana, jackfruit, custard apple,
pomegranate, strawberry, orange, lemon, Granny Smith, buckeye,
rapeseed, corn, cucumber, artichoke, cardoon, mushroom, bell

pepper, mashed potato, zucchini, spaghetti squash, acorn squash,
butternut squash, broccoli, cauliflower, head cabbage

keyboard instrument accordion, organ, grand piano, upright

69

percussion instrument chime, drum, gong, maraca, marimba, steel drum

stringed instrument banjo, acoustic guitar, electric guitar, cello, violin, harp

wind instrument
ocarina, harmonica, flute, panpipe, bassoon, oboe, sax, cornet,

French horn, trombone

crustacean
isopod, crayfish, hermit crab, spiny lobster, American lobster,

Dungeness crab, rock crab, fiddler crab, king crab

pen ballpoint, fountain pen, quill

display desktop computer, laptop, notebook, screen, television, monitor

electronic equipement
cassette player, CD player, modem, oscilloscope, tape player,
iPod, printer, joystick, dial telephone, pay-phone, cellular

telephone, mouse, hand-held computer

snake

sea snake, horned viper, boa constrictor, rock python, Indian
cobra, green mamba, diamondback, sidewinder, thunder snake,
ringneck snake, hognose snake, green snake, king snake, garter

snake, water snake, vine snake, night snake

geological formation
cliff, geyser, lakeside, seashore, valley, promontory, alp, volcano,

coral reef, sandbar

food
dough, guacamole, chocolate sauce, carbonara, French loaf, bagel,
pretzel, plate, trifle, ice cream, ice lolly, pizza, potpie, burrito,

consomme, hot pot, hotdog, cheeseburger, meat loaf

white home appliances dishwasher, refrigerator, washer, stove

kitchen appliances microwave, toaster, waffle iron, espresso maker

wheel car wheel, paddlewheel, pinwheel, potter’s wheel, reel, disk brake

seat
toilet seat, studio couch, park bench, barber chair, folding chair,

rocking chair, throne

baby bed bassinet, cradle, crib

cabinet
medicine chest, wardrobe, china cabinet, bookcase, chiffonier, file,

entertainment center, plate rack

table desk, pool table, dining table

bridges steel arch bridge, suspension bridge, viaduct

fence chainlink fence, picket fence, stone wall, worm fence

long structures beacon, obelisk, totem pole

movable homes mountain tent, mobile home, yurt

70

building
planetarium, barn, cinema, boathouse, palace, monastery, castle,

dome, church, mosque, stupa, bell cote, thatch, tile roof,
triumphal arch

body armor chain mail, cuirass, bulletproof vest, breastplate

mask mask, oxygen mask, gasmask, ski mask

curtain-screen window shade, shower curtain, theater curtain

bike
moped, bicycle-built-for-two, tricycle, unicycle, mountain bike,

motor scooter

train
passenger car, freight car, electric locomotive, bullet train,

streetcar, steam locomotive

swimsuit bikini, maillot, swimming trunks

socks mittens Christmas stocking, mitten, sock

keyboard computer keyboard, space bar, typewriter keyboard

71

-

African crocodile, American alligator, triceratops, trilobite,
harvestman, scorpion, tick, centipede, tusker, echidna, platypus,
jellyfish, sea anemone, brain coral, flatworm, nematode, crane,

hyena, cougar, lynx, mongoose, meerkat, sorrel, zebra,
hippopotamus, Arabian camel, llama, armadillo, three-toed sloth,
Indian elephant, African elephant, lesser panda, giant panda,
abacus, altar, apiary, ashcan, bakery, Band Aid, bannister,

barbell, barbershop, barrel, barrow, bathtub, binder, birdhouse,
bobsled, bolo tie, bookshop, bottlecap, brass, breakwater, broom,
bucket, buckle, butcher shop, car mirror, carousel, cash machine,
cassette, chain, cliff dwelling, coil, combination lock, confectionery,
crutch, dam, diaper, dock, dogsled, doormat, drilling platform,
drumstick, dumbbell, electric fan, envelope, fire screen, flagpole,
fountain, four-poster, gas pump, go-kart, greenhouse, grocery

store, guillotine, hair slide, hamper, hand blower, hard disc, home
theater, honeycomb, hook, iron, jigsaw puzzle, knee pad, knot,
ladle, lawn mower, library, lighter, loudspeaker, lumbermill,

magnetic compass, manhole cover, matchstick, maypole, maze,
megalith, microphone, milk can, mortar, mosquito net, mousetrap,

muzzle, nail, neck brace, necklace, nipple, oil filter, packet,
padlock, paintbrush, parachute, patio, pedestal, pencil sharpener,
photocopier, pick, pier, piggy bank, pillow, plow, pole, pot, prayer
rug, prison, puck, quilt, racket, radiator, radio, radio telescope,
rain barrel, remote control, restaurant, rotisserie, rubber eraser,

safety pin, saltshaker, scoreboard, screw, seat belt, sewing
machine, shield, shoe shop, shoji, shopping basket, shopping cart,
ski, slide rule, sliding door, slot, snorkel, soap dispenser, solar

dish, space heater, spindle, stage, stethoscope, strainer, stretcher,
sunglass, swab, swing, switch, syringe, teddy, thimble, thresher,
tobacco shop, torch, toyshop, tripod, tub, turnstile, umbrella,
vacuum, vase, vault, vending machine, wallet, washbasin, water

tower, whistle, wig, window screen, wooden spoon, web site, comic
book, crossword puzzle, street sign, traffic light, book jacket,
menu, hay, bubble, daisy, yellow lady’s slipper, toilet tissue

72

Appendix C

Results Raw Data

task model
ER iCaRL-CNN iCaRL-norm LUCIR AGEM incremental joint ER-infinite

0 0.72 (0.039) 0.71 (0.042) 0.75 (0.037) 0.74 (0.036) 0.72 (0.032) 0.71 (0.032) 0.72 (0.033)
1 0.31 (0.046) 0.47 (0.032) 0.5 (0.035) 0.5 (0.101) 0.15 (0.024) 0.7 (0.035) 0.64 (0.067)
2 0.23 (0.054) 0.36 (0.017) 0.39 (0.024) 0.35 (0.178) 0.1 (0.023) 0.67 (0.029) 0.63 (0.029)
3 0.2 (0.027) 0.3 (0.022) 0.32 (0.026) 0.3 (0.162) 0.07 (0.028) 0.66 (0.021) 0.58 (0.054)
4 0.17 (0.024) 0.26 (0.022) 0.27 (0.024) 0.27 (0.148) 0.05 (0.01) 0.66 (0.02) 0.55 (0.04)
5 0.18 (0.024) 0.23 (0.017) 0.24 (0.027) 0.25 (0.13) 0.07 (0.034) 0.65 (0.019) 0.55 (0.027)
6 0.19 (0.03) 0.21 (0.022) 0.21 (0.028) 0.23 (0.133) 0.07 (0.031) 0.64 (0.02) 0.52 (0.02)
7 0.17 (0.035) 0.19 (0.021) 0.19 (0.027) 0.19 (0.141) 0.06 (0.045) 0.63 (0.029) 0.51 (0.019)
8 0.16 (0.02) 0.18 (0.02) 0.18 (0.026) 0.18 (0.135) 0.04 (0.014) 0.63 (0.022) 0.49 (0.026)
9 0.15 (0.021) 0.17 (0.018) 0.18 (0.022) 0.15 (0.134) 0.04 (0.018) 0.63 (0.021) 0.47 (0.033)
10 0.17 (0.035) 0.16 (0.017) 0.17 (0.017) 0.14 (0.118) 0.06 (0.039) 0.62 (0.019) 0.45 (0.036)
11 0.15 (0.018) 0.16 (0.017) 0.16 (0.018) 0.13 (0.117) 0.04 (0.019) 0.62 (0.023) 0.44 (0.043)
12 0.15 (0.03) 0.16 (0.017) 0.16 (0.015) 0.12 (0.109) 0.05 (0.033) 0.62 (0.022) 0.43 (0.035)
13 0.15 (0.025) 0.15 (0.016) 0.16 (0.016) 0.13 (0.094) 0.05 (0.025) 0.62 (0.016) 0.43 (0.02)
14 0.14 (0.017) 0.15 (0.011) 0.15 (0.014) 0.11 (0.096) 0.04 (0.022) 0.62 (0.014) 0.42 (0.028)
15 0.13 (0.012) 0.15 (0.01) 0.15 (0.014) 0.11 (0.094) 0.03 (0.012) 0.62 (0.012) 0.4 (0.02)
16 0.14 (0.011) 0.15 (0.013) 0.15 (0.015) 0.09 (0.094) 0.03 (0.005) 0.63 (0.013) 0.39 (0.037)
17 0.14 (0.019) 0.15 (0.013) 0.15 (0.013) 0.07 (0.084) 0.04 (0.021) 0.63 (0.017) 0.39 (0.011)
18 0.14 (0.012) 0.15 (0.012) 0.15 (0.012) 0.06 (0.081) 0.03 (0.014) 0.63 (0.013) 0.37 (0.01)
19 0.14 (0.019) 0.15 (0.009) 0.14 (0.012) 0.06 (0.075) 0.03 (0.012) 0.63 (0.007) 0.36 (0.009)
20 0.13 (0.011) 0.15 (0.01) 0.14 (0.011) 0.06 (0.072) 0.03 (0.015) 0.63 (0.007) 0.35 (0.011)
21 0.13 (0.005) 0.15 (0.01) 0.15 (0.01) 0.06 (0.071) 0.02 (0.003) 0.63 (0.008) 0.35 (0.012)

Table C.1. The average performance on IIRC-CIFAR after each task using the precision-
weighted Jaccard Similarity. This table represents the same results as in Figure 4.2 with the
standard deviation between brackets

task model
ER iCaRL-CNN iCaRL-norm LUCIR incremental joint

0 0.7 (0.027) 0.78 (0.018) 0.8 (0.019) 0.76 (0.025) 0.73 (0.02)
1 0.13 (0.022) 0.46 (0.039) 0.49 (0.034) 0.17 (0.044) 0.73 (0.026)
2 0.12 (0.071) 0.34 (0.047) 0.38 (0.041) 0.15 (0.048) 0.73 (0.019)
3 0.08 (0.01) 0.27 (0.035) 0.31 (0.024) 0.14 (0.045) 0.73 (0.012)
4 0.08 (0.01) 0.23 (0.022) 0.27 (0.015) 0.1 (0.068) 0.73 (0.015)
5 0.07 (0.012) 0.2 (0.018) 0.25 (0.014) 0.1 (0.063) 0.73 (0.01)
6 0.07 (0.017) 0.18 (0.018) 0.23 (0.017) 0.06 (0.062) 0.73 (0.01)
7 0.06 (0.004) 0.17 (0.013) 0.22 (0.013) 0.04 (0.057) 0.73 (0.013)
8 0.07 (0.013) 0.16 (0.01) 0.21 (0.01) 0.03 (0.056) 0.72 (0.015)
9 0.06 (0.002) 0.16 (0.011) 0.2 (0.01) 0.03 (0.053) 0.72 (0.017)

Table C.2. The average performance on IIRC-ImageNet-lite after each task using the
precision-weighted Jaccard Similarity. This table represents the same results as in Fig-
ure 1(a) with the standard deviation between brackets

74

task model
ER iCaRL-CNN iCaRL-norm LUCIR joint

0 0.7 (0.024) 0.78 (0.009) 0.8 (0.009) 0.75 (0.017) -
1 0.13 (0.023) 0.47 (0.016) 0.51 (0.014) 0.15 (0.044) -
2 0.1 (0.024) 0.34 (0.026) 0.39 (0.02) 0.14 (0.046) -
3 0.08 (0.008) 0.27 (0.02) 0.32 (0.014) 0.13 (0.044) -
4 0.08 (0.021) 0.23 (0.014) 0.28 (0.008) 0.12 (0.061) -
5 0.1 (0.064) 0.21 (0.025) 0.26 (0.011) 0.11 (0.06) -
6 0.07 (0.008) 0.19 (0.015) 0.23 (0.011) 0.1 (0.056) -
7 0.06 (0.007) 0.17 (0.017) 0.22 (0.013) 0.11 (0.051) -
8 0.06 (0.006) 0.16 (0.016) 0.21 (0.011) 0.1 (0.045) -
9 0.06 (0.005) 0.15 (0.015) 0.2 (0.009) 0.09 (0.06) -
10 0.06 (0.015) 0.15 (0.019) 0.19 (0.014) 0.08 (0.054) -
11 0.06 (0.005) 0.14 (0.017) 0.19 (0.012) 0.08 (0.05) -
12 0.06 (0.011) 0.14 (0.012) 0.19 (0.008) 0.08 (0.047) -
13 0.06 (0.006) 0.13 (0.013) 0.19 (0.005) 0.07 (0.045) -
14 0.06 (0.007) 0.13 (0.011) 0.18 (0.006) 0.07 (0.042) -
15 0.05 (0.001) 0.13 (0.015) 0.18 (0.005) 0.07 (0.04) -
16 0.05 (0.003) 0.12 (0.018) 0.18 (0.007) 0.06 (0.036) -
17 0.05 (0.008) 0.12 (0.017) 0.17 (0.005) 0.06 (0.034) -
18 0.05 (0.01) 0.12 (0.019) 0.17 (0.008) 0.05 (0.031) -
19 0.05 (0.003) 0.11 (0.021) 0.17 (0.009) 0.05 (0.03) -
20 0.05 (0.004) 0.11 (0.022) 0.16 (0.009) 0.05 (0.028) -
21 0.04 (0.004) 0.11 (0.024) 0.16 (0.01) 0.04 (0.025) -
22 0.04 (0.004) 0.1 (0.023) 0.16 (0.009) 0.04 (0.024) -
23 0.04 (0.008) 0.1 (0.019) 0.15 (0.008) 0.04 (0.022) -
24 0.04 (0.001) 0.1 (0.018) 0.15 (0.007) 0.03 (0.023) -
25 0.03 (0.003) 0.1 (0.017) 0.14 (0.007) 0.02 (0.022) -
26 0.04 (0.004) 0.09 (0.018) 0.13 (0.007) 0.02 (0.021) -
27 0.03 (0.002) 0.09 (0.018) 0.12 (0.004) 0.02 (0.019) -
28 0.03 (0.002) 0.08 (0.016) 0.12 (0.003) 0.02 (0.018) -

75

29 0.03 (0.002) 0.08 (0.016) 0.11 (0.003) 0.02 (0.017) -
30 0.03 (0.005) 0.08 (0.014) 0.11 (0.003) 0.02 (0.016) -
31 0.02 (0.006) 0.08 (0.015) 0.1 (0.01) 0.02 (0.015) -
32 0.02 (0.01) 0.08 (0.016) 0.09 (0.007) 0.02 (0.014) -
33 0.02 (0.005) 0.08 (0.017) 0.09 (0.011) 0.02 (0.012) -
34 0.01 (0.001) 0.07 (0.016) 0.08 (0.01) 0.01 (0.015) 0.42 (0.018)

Table C.3. The average performance on IIRC-ImageNet-full after each task using the
precision-weighted Jaccard Similarity. This table represents the same results as in Fig-
ure 1(b) with the standard deviation between brackets

76

————————————————————————-

77

Appendix D

Graphs with Standard Deviation

(a) IIRC-ImageNet-lite

(b) IIRC-ImageNet-full

Fig. D.1. Average performance on IIRC-ImageNet-lite and IIRC-ImageNet-full as measured
by the precision-weighted Jaccard Similarity (Equation 3.4). (see Figure D.1 for the original
figure)

80

Fig. D.2. Average performance on IIRC-CIFAR as measured by the precision-weighted
Jaccard Similarity (Equation 3.4). (see Figure D.2 for the original figure)

(a) Task 1 (IIRC-CIFAR) (b) Task 5 (IIRC-CIFAR) (c) Task 10 (IIRC-CIFAR)

(d) Task 1 (IIRC-ImageNet-full) (e) Task 5 (IIRC-ImageNet-full) (f) Task 10 (IIRC-ImageNet-full)

Fig. D.3. The Performance of three middle tasks throughout the whole training process,
to measure their catastrophic forgetting and backward transfer. Note that a degradation
in performance is not necessarily caused by catastrophic forgetting, as a new subclass of a
previously observed superclass might be introduced and the model would be penalized for
not applying that label retroactively. (see Figure 4.3 for the original figure)

81

(a) IIRC-CIFAR (b) IIRC-ImageNet-full

Fig. D.4. Current task performance; Per task performance over the test samples of a specific
task j, after training on that task (Rjj using Equation 3.3). see Figure 4.4 for the original
figure)

(a) IIRC-CIFAR (b) IIRC-ImageNet-full

Fig. D.5. The average performance of IIRC-ImageNet-full and IIRC-CIFAR if only the
superclasses are taken into account for calculating this performance. (see Figure 4.6 for the
original figure)

82

(a) Subclasses Precision (IIRC-CIFAR) (b) Orphan Subclasses Precision (IIRC-CIFAR)

(c) Subclasses Precision (IIRC-ImageNet) (d) Orphan Subclasses Precision (IIRC-ImageNet)

Fig. D.6. The average precision of IIRC-CIFAR and IIRC-ImageNet-full over each type of
subclasses, excluding other types of classes, to measure how much do the models confuse the
subclasses as they encounter more related subclasses. (see Figure 4.7 for the original figure)

83

(a) precision-weighted Jaccard Similarity (IIRC-
CIFAR)

(b) Jaccard Similarity (IIRC-CIFAR)

(c) precision-weighted Jaccard Similarity (IIRC-
ImageNet-full)

(d) Jaccard Similarity (IIRC-Imagenet-full)

Fig. D.7. Average performance on IIRC-CIFAR and IIRC-ImageNet-full, as measured by
the precision-weighted Jaccard Similarity compared to the Jaccard Similarity. (see Figure 4.8
for the original figure)

84

(a) Average Performance (b) Current Task Performance

(c) Superclasses Performance (d) Subclasses Precision

Fig. D.8. The effect of increasing the size of the buffer on the performance of ER and
iCaRL-norm in IIRC-CIFAR. For each baseline, darker lines correspond to larger buffer
size. (See Figure 4.9 for the original figure)

85

(a) Average Performance (b) Current Task Performance

(c) Superclasses Performance (d) Subclasses Precision

Fig. D.9. The performance of LUCIR after removing the margin ranking loss LUCIR-
no_margin, using a distillation objective LUCIR-distil, and both LUCIR-distil-no_margin.
(See Figure 4.10 for the original figure)

86

(a) Average Performance (b) Current Task Performance

(c) Superclasses Performance (d) Subclasses Precision

Fig. D.10. The performance of BiC after using a distillation objective during the bias
correction phase BiC-distil. (See Figure 4.11 for the original figure)

87

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of Abbreviations
	Acknowledgements
	Chapter 1. Introduction
	1.1. Contributions
	1.2. Thesis Outline

	Chapter 2. Background
	2.1. Supervised Learning
	2.2. Deep Learning
	2.3. Lifelong Learning
	2.3.1. Lifelong Learning Setups
	2.3.2. Lifelong Learning Methods

	2.4. Lifelong Learning Baselines
	2.4.1. Experience Replay (ER)
	2.4.2. Incremental Classifier and Representation Learning (iCaRL)
	2.4.3. Learning a Unified Classifier Incrementally via Rebalancing (LUCIR)
	2.4.4. Large Scale Incremental Learning (BiC)
	2.4.5. Averaged Gradient Episodic Memory (AGEM)

	Chapter 3. Incremental Implicitly Refined Classification
	3.1. Introduction
	3.2. Under-explored challenges in class incremental learning setting
	3.3. Terminology
	3.4. Setup
	3.5. Benchmark
	3.5.1. Dataset
	3.5.2. Metrics

	3.6. Baselines
	3.6.1. Model Adaptations
	3.6.1.1. iCaRL
	3.6.1.2. BiC

	3.7. Summary

	Chapter 4. Experiments and Discussion
	4.1. Experimental Setup
	4.2. Results and Discussion
	4.2.1. Overall Performance
	4.2.2. Knowledge Retention and Model Capacity
	4.2.3. Confusion Between Related Classes

	4.3. Ablations
	4.3.1. JS vs pw-JS:
	4.3.2. Buffer Size Effect
	4.3.3. Effect of Margin Ranking Loss and Distillation in LUCIR
	4.3.4. Bias Correction in BiC using pseudo-labels

	Chapter 5. Conclusion and Future Directions
	5.1. Future Directions

	References
	Appendix A. Pseudo Codes
	Appendix B. IIRC Datasets Hierarchies
	B.1. IIRC-CIFAR Hierarchy
	B.2. IIRC-ImageNet Hierarchy

	Appendix C. Results Raw Data
	Appendix D. Graphs with Standard Deviation

