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Résumé

Dans certaines enquêtes auprès des entreprises, il n’est pas rare de s’intéresser à estimer

le total ou la moyenne d’une variable qui, par sa nature, prend souvent une valeur nulle.

En présence d’une grande proportion de valeurs nulles, les estimateurs usuels peuvent

s’avérer inefficaces. Dans ce mémoire, nous étudions les propriétés des estimateurs habituels

pour des populations exhibant une grande proportion de zéros. Dans un contexte d’une

approche fondée sur le modèle, nous présentons des prédicteurs robustes à la présence de

valeurs influentes pour ce type de populations. Finalement, nous effectuons des études par

simulation afin d’évaluer la performance de divers estimateurs/prédicteurs en termes de

biais et d’efficacité.

Mots-clefs: Robustesse ; Unités influentes ; Inférence basée sur le modèle ; Inférence

basée sur le plan de sondage ; Biais conditionnel.
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Abstract

In business surveys, we are often interested in estimating population means or totals

of variables which, by nature, will often take a value of zero. In the presence of a large

proportion of zero-valued observations, the customary estimators may be unstable. In this

thesis, we study the properties of commonly used estimators for populations exhibiting a

large proportion of zero-valued observations. In a model-based framework, we present some

robust predictors in the presence of influential units. Finally, we perform simulation studies

to evaluate the performance of several estimators in terms of bias and efficiency.

Keywords: Robustness ; Influential units ; Model-based inference ; Design-based infer-

ence ; Conditional bias.
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Introduction

Surveys are regularly conducted to gather information about a certain finite popula-

tion. In most surveys, information is collected on many variables of interest (also called

survey variables or characteristics of interest) and the aim is to estimate many population

parameters; such surveys are thus often referred to as multipurpose surveys.

In some surveys, especially in business surveys, it is not unusual to encounter survey

variables exhibiting a large proportion of zero-valued observations. For instance, we may

be interested in the consumption of propane used by Canadian businesses. For this type of

variable, we expect to observe a large proportion of zero-valued observations in the sample

as most businesses do not use propane but use another type of energy, such as electricity.

Depending on the sampling design, a large proportion of zero-valued observations may

lead to unstable estimators of population totals or population means. If the proportion

of zero-valued observations is very large, we could obtain a sample with only zero-valued

observations which would lead to an estimated total equal to zero when, in fact, the real

value for the total is larger than zero.

The objective of this work is to examine the properties of estimators/predictors in the

presence of zero-valued observations. In Chapter 1, we introduce the main inferential ap-

proaches in survey sampling: the design-based approach and the model-based approach. We

also describe some commonly used estimators and predictors such as the Horvitz-Thompson

estimator, the ratio estimator, the generalized regression estimator and the best unbiased

linear predictor. In Chapter 2, we examine the behavior of these estimators/predictors of

population totals in the presence of different proportions of zero-valued observations. We



also discuss the empirical best predictor based on a mixture model that accounts for the zero-

valued observations. In Chapter 3, in the context of the model-based approach, we consider

the problem of influential units for populations exhibiting a large proportion of zero-valued

observations. We describe several robust predictors to the presence of influential units in the

sample. In Chapter 4, we conduct several simulation studies to evaluate the performance of

customary estimators/predictors with varying proportions of zero-valued observations.
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Chapter 1

The design-based approach and the model-based

approach

1.1. Finite population and sample

Let us consider a finite population U consisting of N units. We write:

U = {1, ..., i, ..., N}.

For each unit, we collect a survey variable y. The aim is to estimate a finite population

parameter, which describes some aspect of the finite population. In this thesis, we focus on

the population total of the variable y, ty.

Most often, conducting a census is not an option due to a lack of resources and time.

Instead, it is common practice to select a sample s of size n, to estimate the parameters of

interest.

A sample can always be viewed as the result of a two-phase process: first, the finite

population U is generated from an infinite population, often referred to as a superpopulation,

according to a given model m. For instance, the values y1, . . . , yN , of a variable of interest y

may be generated from a normal infinite population with mean µ and variance σ2. Then, a

random sample s is selected from the finite population according to a sampling design p(s).

1.2. Sampling design

A sampling design is a function p(·) that assigns to every possible sample s its probability

of being selected. Since p(s) is a probability distribution, it must satisfy:

(1) p(s) ≥ 0 ∀s ∈ Ω,



(2)
∑

s∈Ω p(s) = 1,

where Ω denotes the set of all the possible samples. A sample is characterized by the vector

of sample selection indicators I = (I1, . . . , Ii, . . . , IN)>, where

Ii =

 1 if unit i ∈ s

0 otherwise.

Let πi = P (i ∈ s) = P (Ii = 1) be the first-order inclusion probability of unit i in

the sample and πij = P (i ∈ s, j ∈ s) = P (Ii = 1, Ij = 1) the second-order inclusion

probability of units i and j, i 6= j. A basic sampling design is simple random sampling

without replacement (SRSWOR). SRSWOR assigns to each of the
(
N
n

)
possible samples of

size n the same probability of being selected. That is,

p(s) =
1(
N
n

) .
As a result, we have πi = n/N for all i ∈ U .

Another simple sampling design is Poisson sampling, which is a random-sized design

unlike SRSWOR. Let πi be the first-order inclusion probability attached to unit i and set

prior to sampling, i = 1, . . . , N . Each of the N population units is subject to an independent

Bernoulli trial with probability πi. If the trial results in a success, the unit is included in the

sample, otherwise, it is rejected. When πi = π for all i ∈ U , Poisson sampling is referred to

as Bernoulli sampling. In that case, the probability of selecting a given sample is

p(s) = πns(1− π)N−ns ,

where ns denotes the random size of s and π = E (ns) /N .

After selecting a sample, there are two main approaches to inference: the design-

based approach and the model-based approach. In the former approach, the y-values

y = (y1, . . . ,yi, . . . ,yN)> are treated as fixed and the inferences are conducted with respect

to the sampling design p(s). In the latter approach, the sample s is treated as fixed while

the yi’s are random. Inferences are made with respect to a specified model m.

1.3. The design-based approach

For the design-based approach (Lohr, 2009), the subscript p is used to denote expectations

and variances with respect to the sampling design.
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1.3.1. The Horvitz-Thompson estimator

One of the most common estimator of a population total ty is the Horvitz–Thompson

estimator t̂HTy , also called expansion estimator. It is defined as

t̂HTy =
∑
i∈s

1

πi
yi =

∑
i∈s

diyi, (1.3.1)

where di = 1/πi denotes the design (or sampling) weight attached to unit i. It is a linear

estimator because it is expressed as
∑

i∈swiyi, where wi = di. When πi > 0 for all i, t̂HTy is

design-unbiased for ty. That is, Ep(t̂HTy ) = ty.

For a fixed-sized sampling design, if yi = cπi for some constant c, we have

t̂HTy =
∑
i∈s

1

πi
yi =

∑
i∈s

1

πi
cπi = cn =

∑
i∈U

cπi = ty.

The second to last equality follows from the fact that
∑

i∈U πi =
∑

i∈U E (Ii) = E
(∑

i∈U Ii
)

=

E (n) = n.

As a result, both the bias and the variance are equal to zero. Thus, we expect t̂HTy to

be efficient if there exists a linear relationship between the inclusion probabilities πi and the

variable of interest y, the relationship goes through the origin and the relationship is strong.

The design-variance of t̂HTy is given by

Vp(t̂
HT
y ) =

∑
i∈U

∑
j∈U

∆ij

πiπj
yiyj, (1.3.2)

where ∆ij = πij − πiπj. For SRSWOR, the variance (1.3.2) reduces to

Vp(t̂
HT
y ) = N2

(
1− n

N

) S2
y

n
, (1.3.3)

where

S2
y =

1

N − 1

∑
i∈U

(
yi − Y

)2
.

For Bernoulli sampling, (1.3.2) reduces to

Vp

(
t̂HTy
)

= N2

(
1− E (ns)

N

)∑
i∈U y

2
i

NE (ns)
. (1.3.4)
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1.3.2. The ratio estimator

Consider the case of a quantitative auxiliary variable x such that x is observed for all

i ∈ s and tx =
∑

i∈U xi is known. The ratio estimator of ty is given by

t̂ray =
t̂HTy

t̂HTx
tx,

=
∑
i∈s

wiyi, (1.3.5)

where

wi = di
tx

t̂HTx
.

Thus, the ratio estimator belongs to the class of linear estimators. If we apply the weights

wi to the x-variable, we have t̂rax =
∑

i∈swixi = tx. This property is often referred to as the

calibration property. When yi = cxi for some constant c, we have

t̂ray =
∑
i∈s

wiyi =
∑
i∈s

di
tx

t̂HTx
cxi = c

tx

t̂HTx
t̂HTx = ctx =

∑
i∈U

cxi = ty.

Thus, we expect the ratio estimator to be efficient if there is a linear relationship between

y and x going through the origin and if the relationship is strong. Since the ratio estimator

is a non-linear function of x and y, its variance is intractable and we rely on a first-order

Taylor expansion to get an approximation of Vp

(
t̂ray
)
. It leads to the following approximate

variance:

AVp

(
t̂ray
)

=
∑
i∈U

∑
j∈U

∆ij
Ei
πi

Ej
πj
, (1.3.6)

where Ei = yi −Rxi with R = ty/tx.

In the special case of SRSWOR, Expression (1.3.6) reduces to

AVp

(
t̂ray
)

= N2
(

1− n

N

) S2
E

n
, (1.3.7)

where

S2
E =

1

N − 1

∑
i∈U

(yi −Rxi)2 .

For Bernoulli sampling, (1.3.6) reduces to

AVp

(
t̂ray
)

= N2

(
1− E[ns]

N

)
1

E (ns)

N − 1

N
S2
E. (1.3.8)

If we assume that (N − 1) ≈ N , we note that (1.3.7) and (1.3.8) are identical.
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1.3.3. The GREG estimator

Let xi = (xi1, ..., xiq)
> be the vector of the q auxiliary variables available for i ∈ s and let

tx = (tx1, ..., txq)
> be the vector of totals in the population, which we assume to be known.

We assume that the relationship between y and x can be described by

m : yi = x>i β + εi, (1.3.9)

such that

Em(εi | xi) = 0, Em(εiεj | xi,xj, i 6= j) = 0, Vm(εi | xi) = σ2ci,

where ci > 0 is a known coefficient attached to unit i.

The Generalized REGression (GREG) estimator is given by

t̂GREGy =
∑
i∈U

x>i B̂ +
∑
i∈s

diei, (1.3.10)

where

B̂ =

(∑
i∈s

dixic
−1
i x

>
i

)−1∑
i∈s

dixic
−1
i yi

and ei = yi−x>i B̂ denotes the sample residual for unit i. The GREG estimator can also be

written as

t̂GREGy =
∑
i∈s

wiyi,

where

wi = di

{
1 + c−1

i

(
tx − t̂

HT

x

)>
T̂
−1
xi

}
and T̂ =

∑
i∈s dixic

−1
i x

>
i . The ratio estimator (1.3.5) is a special case of the GREG estimator

with xi = xi and ci = xi.

The GREG estimator is calibrated on the vector of known population totals tx since

t̂
GREG

x =
∑
i∈s

wixi = tx.

A consequence of this result is the following: if yi = x>i β for some β, then

t̂GREGy =
∑
i∈s

wiyi =
∑
i∈s

wix
>
i β =

∑
i∈U

x>i β = ty.

That is, the GREG provides a perfect estimate of ty if there is a perfect linear relationship

between y and x.

23



Using a first-order Taylor expansion, the approximate variance of the GREG can be

written as

AVp

(
t̂GREGy

)
=
∑
i∈U

∑
j∈U

∆ij
Ei
πi

Ej
πj
, (1.3.11)

where Ei = yi − x>i B with

B =

(∑
i∈U

xic
−1
i x

>
i

)−1∑
i∈U

xic
−1
i yi.

For SRSWOR, (1.3.11) reduces to

AVp

(
t̂GREGy

)
= N2

(
1− n

N

) S2
E

n
, (1.3.12)

where

S2
E = (N − 1)−1

∑
i∈U

(
Ei − E

)2
. (1.3.13)

For Bernoulli sampling, (1.3.11) reduces to

AVp

(
t̂GREGy

)
= N2

(
1− E (ns)

N

)∑
i∈U E

2
i

NE (ns)
. (1.3.14)

Proposition 1.3.1. If there exists a vector of constant λ such that ci = λ>xi, then∑
i∈U Ei = 0 and S2

E in (1.3.13) reduces to S2
E = (N − 1)−1

∑
i∈U E

2
i .

Proof. ∑
i∈U

Ei =
∑
i∈U

(
yi − x>i B

)
=
∑
i∈U

yi −
∑
i∈U

ci
ci
x>i B

=
∑
i∈U

yi − λ>
∑
i∈U

xic
−1
i x

>
i B

=
∑
i∈U

yi − λ>
∑
i∈U

xic
−1
i yi

=
∑
i∈U

yi −
∑
i∈U

(
λ>xi

)
c−1
i yi

=
∑
i∈U

yi −
∑
i∈U

yi

= 0.

�
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Therefore, if ci = λ>xi and if we assume that (N − 1)/N ≈ 1, then (1.3.12) and (1.3.14)

are identical.

1.3.4. Conditional Bias

The conditional bias is a measure of influence of a unit proposed by Moreno Rebollo et

al. (1999) in the context of the design-based approach. For an estimator θ̂, the conditional

bias of a sampled unit i (Ii = 1) is defined as

B θ̂
1i = Ep

(
θ̂ | Ii = 1

)
− Ep

(
θ̂
)
. (1.3.15)

For a non-sampled unit, the conditional bias is defined as

B θ̂
0i = Ep

(
θ̂ | Ii = 0

)
− Ep

(
θ̂
)
. (1.3.16)

Since Ep(θ̂) = E
(
Ep
(
θ̂ | Ii

))
, (1.3.16) can be written as

B θ̂
0i = Ep

(
θ̂ | Ii = 0

)
− E

(
Ep
(
θ̂ | Ii

))
= Ep

(
θ̂ | Ii = 0

)
−
[
πiEp

(
θ̂ | Ii = 1

)
+ (1− πi)Ep

(
θ̂ | Ii = 0

)]
= πi

[
Ep
(
θ̂ | Ii = 0

)
− Ep

(
θ̂ | Ii = 1

)]
= πi

(
B θ̂

0i −B θ̂
1i

)
.

It follows that

B θ̂
0i = − πi

1− πi
B θ̂

1i.

The conditional bias of either a sampled or a non-sampled unit can be viewed as a measure

of its influence and units with a large conditional bias tend to be influential. However, at

the estimation stage, only the influence of sampled units can be reduced and nothing can be

done for the non-sampled units. Therefore, in the sequel, we focus on the conditional bias

of sampled units.

For the Horvitz-Thompson estimator, the conditional bias of a sampled unit is

BHT
1i = Ep

(
t̂HTy − ty | Ii = 1

)
= (di − 1) yi +

∑
j∈U
j 6=i

(
πij − πiπj
πiπj

)
yj. (1.3.17)
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Note that the conditional bias in (1.3.17) requires the first-order inclusion probability πi and

the second-order inclusion probability πij. This is due to the fact that Ep(Ij|Ii = 1) = πij/πi.

In the special case of SRSWOR, Expression (1.3.17) reduces to

BHT
1i =

N

N − 1

(
N

n
− 1

)(
yi − Y

)
. (1.3.18)

Thus, for SRSWOR, unit i has a large influence if its y-value is far from the mean Y . For

Bernoulli sampling, (1.3.17) reduces to

BHT
1i =

(
N

E (ns)
− 1

)
yi. (1.3.19)

Thus, for Bernoulli sampling, unit i has a large influence if its y-value is far from zero.

For the GREG estimator (1.3.10), the conditional bias is approximated by Taylor expan-

sion, which leads to

Bra
1i ≈ (di − 1)Ei +

∑
j∈U
j 6=i

(
πij − πiπj
πiπj

)
Ej,

where Ei = yi − x>i B. If
∑

i∈U Ei = 0 (which occurs if ci = λ>xi), the conditional bias for

unit i is given by

BGREG
1i ≈


N
N−1

(
N
n
− 1
)
Ei for SRSWOR(

N
E(ns)

− 1
)
Ei for Bernoulli sampling.

(1.3.20)

Hence, if we assume that (N − 1)/N ≈ 1, the conditional bias of a sampled unit is the

same irrespectively of the sampling design, SRSWOR or Bernoulli sampling. This wasn’t

the case for the Horvitz-Thompson estimator. From (1.3.20), it follows that a unit has a

large influence if it is associated with a large residual Ei.

1.4. Model-based approach

In the context of the model-based approach (Chambers and Clark, 2012), the sampling

design does not play an explicit role in the inference unlike in the design-based approach.

The population total ty is now a random variable that we wish to predict. It can be written

as

ty =
∑
i∈s

Yi +
∑
i∈U−s

Yi.

The first term is known as it is a function of the sampled observations only. The goal is

to predict the second term: the total of the non-sampled units,
∑

i∈U−s Yi. To that end,
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we postulate a model describing the relationship between the variable of interest y and a

vector of auxiliary variables. A commonly used model is the linear regression model given

by (1.3.9). The model-based approach is interested in the prediction error t̂y− ty and all the

properties are evaluated with respect to the assumed model m.

The Best Linear Unbiased Predictor (BLUP) of ty is of the form t̂y =
∑

i∈swiYi, where

the weights wi satisfy:

Em
(
t̂y − ty | s

)
= 0, (1.4.1)

Vm

(
t̂y − ty | s

)
≤ Vm

(
t̂∗y − ty | s

)
, (1.4.2)

where t̂∗y is any other linear unbiased predictor of ty. In other words, t̂y is model-unbiased

and has the smallest variance among all linear unbiased predictors of ty.

For Model (1.3.9), the weights wi satisfying (1.4.1) and (1.4.2) are given by

wi = 1 +
x>i
ci

(∑
i∈s

xix
>
i

ci

)−1(∑
i∈U

xi −
∑
i∈s

xi

)
.

The BLUP is then given by

t̂BLUPy =
∑
i∈s

wiYi

=
∑
i∈s

Yi +
∑
i∈U−s

x>i β̂WLS, (1.4.3)

where β̂WLS is the customary weighted least squares estimator of β:

β̂WLS =

(∑
i∈s

xic
−1
i x

>
i

)−1∑
i∈s

xic
−1
i Yi. (1.4.4)

The prediction variance of t̂BLUPy is

Vm

(
t̂BLUPy − ty | s

)
= σ2

{∑
i∈s

(wi − 1)2ci +
∑
i∈U−s

ci

}
. (1.4.5)

The reader is referred to Chambers and Clark (2012) for a more detailed discussion.

1.4.1. Conditional Bias

The definition of the conditional bias for the model-based approach is different than the

one for the design-based approach. For the model-based approach, the concept of conditional
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bias was defined by Beaumont et al. (2013). It is given by

Bi = Em
(
t̂y − ty | s, Yi = yi

)
.

For the BLUP, for i ∈ s, we have

BBLUP
i = (wi − 1)

(
yi − x>i β

)
. (1.4.6)

For i ∈ U − s, we have

BBLUP
i = −

(
yi − x>i β

)
. (1.4.7)

Thus, a sampled unit has a large influence when its weight wi and/or its residual(
yi − x>i β

)
is large; see Beaumont et al. (2013). Again, both sampled and non-sampled

units may have a large influence on the predictor t̂BLUPy . However, at the estimation stage,

nothing can be done for non-sampled units.
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Chapter 2

Inference for populations with a large number of

zero-valued observations

In practice, some variables of interest are prone to a large proportion of zero-valued

observations. In this case, we can think of the finite population as being generated from a

mixture of distributions.

For instance, in the Industrial Consumption of Energy Survey (ICES) conducted at Statis-

tic Canada, we are interested in learning about the consumption of some type of energy

(propane, electricity, natural gas, etc.) in the manufacturing sector in Canada. The sample

is selected from a sampling frame referred to as the business register, which is the reposi-

tory of baseline information on enterprises and establishments operating in Canada. With

the information from the business register, the enterprises are assigned to strata defined by

the type industry, the location and the size of the enterprise (often defined as a function of

revenue). The industry of an enterprise is defined by the North American Industry Classifi-

cation System (NAICS) which employs up to six digits in the most detailed industry level,

to classify businesses by type of economic activities. In each stratum, a sample is selected

using Bernoulli sampling and the estimates are provided at the industry level. Because some

types of energy are rarely used (e.g., propane), it follows that a large proportion of businesses

report a value equal to zero when asked about their consumption. For example, in 2015 for

miscellaneous manufacturing (NAICS 339), in a sample of 75 enterprises, the proportion of

zero-valued observations for electricity, a commonly used energy, was about 19%, whereas it



was equal to 43% for natural gas and 75% for propane. In the bakeries and tortillas man-

ufacturing (NAICS 3118), with a sample size of 74 enterprises, the proportion of zero was

about 3% for electricity, 10% for natural gas and 95% for propane.

Zero-valued observations are also very common in audit sampling (Liu et al., 2005).

Auditing is the process by which a company’s financial records are examined and since

companies do their own financial record we might be interested, for example, in estimating

the amount subject to sales tax, the amount deductible from income tax and compare them

to the company’s results in order to detect manipulation or fraud. The sampling unit is

typically an invoice and the observed value is the qualified amount, meaning the amount that

satisfies tax requirement. Hence, this observed value ranges from zero, when the invoice is

not qualified, to the full amount. In that scenario, the proportion of zero-valued observations

can be quite large.

As mentioned above, finite populations involving a large number of zero-valued observa-

tions may be viewed as being generated from a mixture of populations. Let U1 ⊂ U , of size

N1 be the population consisting of units with y > 0 and U0 ⊂ U , of size N0, the popula-

tion consisting of the units with zero-valued observations. We have that U = U1 ∪ U0 and

N = N1+N0. From the population U , a sample s of size n is selected and we have s = s1∪s0,

where s1, of size n1, is the subset of s units exhibiting a strictly positive y-value and s0, of

size n0, is the subset of s units with a zero-valued observation. We have n = n0 + n1.

2.1. Design-based approach

2.1.1. The Horvitz-Thompson estimator

In the situation introduced above, the Horvitz-Thompson estimator of ty in (1.3.1) re-

duces to

t̂HTy =
∑
i∈s

1

πi
yi =

∑
i∈s0

1

πi
yi +

∑
i∈s1

1

πi
yi =

∑
i∈s1

1

πi
yi.

The design variance of t̂HTy given by (1.3.2) reduces to

Vp(t̂
HT
y ) =

∑
i∈U1

∑
j∈U1

∆ij

πiπj
yiyj. (2.1.1)

We now examine the case of SRSWOR. Let p0 = N0/N be the proportion of zero-valued

observations. By approximating (N1−1) and (N−1) by N1 and N respectively, the variance

30



of t̂HTy given by (2.1.1) reduces to

Vp(t̂
HT
y ) ≈ N2

(
1− n

N

) 1

n
(1− p0)

(
S2

1 + p0Y
2

1

)
, (2.1.2)

where

S2
1 = (N1 − 1)−1

∑
i∈U1

(
yi − Y 1

)2

and Y 1 = N−1
1

∑
i∈U1

yi. It is often useful to make use of the design coefficient of variation,

which is a standardized measure of variance of an estimator. For a parameter θ and an

estimator θ̂, it is denoted by CV (θ̂) and defined as

CV (θ̂) =

√
Vp(θ̂)

Ep(θ̂)
.

Noting that

Y =

∑
i∈U yi

N
=

∑
i∈U1

yi

N
= (1− p0)Y 1,

it follows from (2.1.2) that the squared coefficient of variation of t̂HTy is given by

CV 2
(
t̂HTy
)
≡

Vp(t̂
HT
y )

t2y
≈
(

1− n

N

) 1

n

1

(1− p0)

(
p0 + CV 2

1 (y)
)
, (2.1.3)

where CV1(y) = S1

Y 1
denotes the coefficient of variation of the y-variable in the population

U1.

For Bernoulli sampling, the design variance of t̂HTy in (2.1.1) simplifies to

V
(
t̂HTy
)
≈ N2

(
1− E (ns)

N

)
1

E (ns)
(1− p0)(S2

1 + Y
2

1)

and the squared coefficient of variation of t̂HTy is given by

CV 2
(
t̂HTy
)
≈
(

1− E (ns)

N

)
1

E (ns)

1

(1− p0)

(
1 + CV 2

1 (y)
)
. (2.1.4)

Expressions (2.1.3) and (2.1.4) suggest that the coefficient of variation increases as CV1(y)

increases for a fixed value of p0 or increases as p0 also increases, because of the 1
1−p0 term,

for a fixed value of CV1(y).

We now compare Expressions (2.1.3) and (2.1.4). The main difference is p0 in the last

term on the right-hand side of (2.1.3), which is replaced by a one in (2.1.4). The coefficient

of variation of t̂HTy for SRSWOR is always smaller than the one for Bernoulli sampling if we

do not consider the extreme case where all units have a zero-valued observation such that

p0 = 1.
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To compare both sampling designs, we use the design effect of Bernoulli sampling defined

as

deff(BE) =
VBE

(
t̂y
)

VSRSWOR

(
t̂y
) .

Fig. 2.1 shows the design effect of Bernoulli sampling as a function of CV1(y) with p0 =

0.5. As the coefficient of variation CV1(y) increases, the difference between the two sampling

designs becomes smaller. When CV1(y) ≥ 3, the design effect is very close to 1 and both

sampling methods are essentially equivalent in terms of efficiency.

Fig. 2.2 shows the design effect as a function of p0 with CV1(y) = 1. As p0 increases,

Fig. 2.1. Design effect of Bernoulli sampling as a function of the CV1(y) for p0 = 0.5.

the difference between both designs becomes smaller and the design effect approaches 1. In

the extreme situation where p0 = 1, meaning that all population units have zero-valued

observations, both variances are equal and we have VBE
(
t̂y
)

= VSRSWOR

(
t̂y
)

= 0.

Indeed, the conditional bias of a unit i ∈ s0 is

BHT
1i =

 −N
N−1

(
N
n
− 1
)
Y for SRSWOR

0 for Bernoulli sampling.

That is, a unit with a zero-valued observation has no influence under Bernoulli sampling,

whereas it could have a substantial influence under SRSWOR if the population mean Y is far

from zero. Therefore, Bernoulli sampling becomes increasingly efficient relative to SRSWOR

as the proportion of zero-valued observations, p0, increases.
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Fig. 2.2. Design effect of Bernoulli sampling as a function of the proportion p0 for CV1(y) =

1.

2.1.2. The ratio estimator

In the presence of zero-valued observations, the ratio estimator of ty (1.3.5) reduces to

t̂ray =
∑
i∈s

wiyi

=
∑
i∈s0

wiyi +
∑
i∈s1

wiyi

=
∑
i∈s1

wiyi

=
∑
i∈s1

di

(
tx

t̂HTx

)
yi.

Let R1 =
∑

i∈U1
yi/
∑

i∈U1
xi = ty,1/tx,1 and φ0 =

∑
i∈U0

xi/tx = tx,0/tx, the fraction of tx

corresponding to population U0. When N is large, we can safely replace N − 1 by N and

Equations (1.3.7) and (1.3.8) are identical. For both SRSWOR and Bernoulli sampling, the

variance of t̂ray reduces to

AVp(t̂
ra
y ) ≈ N2 1− n/N

n

{
(1− p0)S2

E1
+ 2(1− p0)R1φ0SE1,x

+
φ2

0R
2
1

∑
i∈U1

x2
i

N − 1
+

(1− φ0)2R2
1

∑
i∈U0

x2
i

N − 1

}
,

(2.1.5)
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where S2
E1

= (N1 − 1)−1
∑

i∈U1
(yi −R1xi)

2.

In Chapter 4, we assess the efficiency of t̂ray as a function of p0 and φ0 through a simulation

study.

The influence of a sampled unit having a zero-valued observation can, once again, be

measured with the conditional bias from (1.3.20). It reduces to

Bra
1i ≈

 − N
N−1

(
N
n
− 1
)
Rxi for SRSWOR

−
(
N
n
− 1
)
Rxi for Bernoulli sampling.

The ratio estimator involves a straight line passing through the origin. Therefore, a

sample zero-valued observation with a large x-value will have a large influence as its residual

yi − Rxi = −Rxi will be large. On the other hand, a sample zero-valued observation with

an x-value close to zero will have virtually no influence.

2.1.3. The GREG estimator

In the presence of zero-valued observations, the GREG estimator of ty given by (1.3.10)

reduces to

t̂GREGy =
∑
i∈s

wiyi

=
∑
i∈s0

wiyi +
∑
i∈s1

wiyi

=
∑
i∈s1

wiyi

=
∑
i∈U

x>i B̂ +
∑
i∈s1

diei −
∑
i∈s0

dix
>
i B̂.

We focus on the case whereby ci = λ>xi so that
∑

i∈U Ei = 0. Then, (1.3.12) and

(1.3.14) are identical and they reduce to

AV
(
t̂GREGy

)
≈ N2 1− n/N

n

{
(1−p0)S2

E1
+
∑
i∈U1

[
x>i (B1 −B)

]2
+2
∑
i∈U1

(yi−x>i B)
{
x>i (B1 −B)

}
+
∑
i∈U0

(
x>i B

)2
}
,

where

B1 =

(∑
i∈U1

xic
−1
i x

>
i

)−1 ∑
i∈U1

xic
−1
i yi
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and

S2
E1

= (N1 − 1)−1
∑
i∈U1

(yi − x>i B1)2.

The efficiency of t̂GREGy depends, among others, on the difference between B1 and B, where

B1 is the vector of estimated regression coefficients that would have been obtain had we fitted

a linear regression model at the population level, based on the nonzero valued observations

only, whereas B is the vector of estimated regression coefficients based on all population

units (zero-valued and nonzero-valued observations). The approximate variance of t̂GREGy

increases as the difference between B1 and B increases. The efficiency also depends on the

proportion of nonzero valued observation (1−p0). We assess the efficiency of t̂GREGy through

a simulation study in Chapter 4.

For the GREG estimator, the influence of a sample zero-valued observation from (1.3.20)

reduces to

BGREG
1i ≈

 − N
N−1

(
N
n
− 1
)
x>i B for SRSWOR

−
(
N
n
− 1
)
x>i B for Bernoulli sampling.

As for the ratio estimator, a sample zero-valued observation will have a large influence if its

population fit x>i B is large.

2.2. Model-based approach

For the model-based approach, the population U can be viewed as being generated from

the model

m : Yi = δi(x
>
i β1 + εi) + (1− δi)× 0 (2.2.1)

where δi is an indicator variable associated with unit i such that

δi =

 1 if yi > 0

0 if yi = 0.

We assume that

Em(εi | δi = 1) = 0, Em(εiεj | δi = 1, δj = 1, i 6= j) = 0, Vm(εi | δi = 1) = σ2ci.

In sections 2.2.1 and 2.2.2, we consider two predictors of ty when the population contains

a large number of zero-valued observations. The first predictor is the customary BLUP of

ty given by (1.4.3) derived under model (1.3.9) while the second predictor is based on the

mixture model (2.2.1).
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2.2.1. Best Linear Unbiased Predictor (BLUP)

A first predictor of ty is the BLUP given by (1.4.3), based on the customary linear model

(1.3.9):

t̂BLUPy =
∑
i∈s

wiYi

=
∑
i∈s0

wiYi +
∑
i∈s1

wiYi

=
∑
i∈s1

wiYi

=
∑
i∈s1

Yi +
∑
i∈U−s

xi
>β̂WLS, (2.2.2)

where β̂WLS is given by (1.4.4). A unit in U1 has the same conditional bias as in (1.4.6) and

(1.4.7), depending on whether unit i has been selected in the sample or not. For a unit in

U0, the conditional bias with respect to model (1.3.9) becomes

BBLUP
i =

 −(wi − 1)xi
>β if i ∈ s

xi
>β if i ∈ U0 − s.

Thus, a sampled unit i from U0 has a large influence if its weight wi is large and/or the

census "fit"
(
xi
>β
)
is large.

2.2.2. Empirical Best Predictor (EBP)

Under the mixture model (2.2.1), we can derive the Empirical Best Predictor (EBP) of

ty. We start by noting that

Em (Yi) = E (E (Yi | δi))

= piE(x>i β1 + εi | δi = 1)

= pix
>
i β1,

where pi = P (δi = 1). Also, the variance of Yi under model (2.2.1) is

Vm (Yi) = E (V (Yi | δi)) + V (E (Yi | δi))

= piV
(
x>i β1 + εi | δi = 1

)
+ pi (1− pi)E

(
x>i β1 + εi | δi = 1

)2

= piσ
2ci + pi (1− pi)

(
x>i β1

)2
. (2.2.3)
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The EBP of ty denoted by t̂EBPy is given by

t̂EBPy =
∑
i∈s1

Yi +
∑
i∈U−s

p̂ix
>
i β̂1, (2.2.4)

where p̂i and β̂1 are consistent estimators for pi and β1. In this paper, we use the weighted

least squares estimator of β1:

β̂1,WLS =

(∑
i∈s1

xic
−1
i x

>
i

)−1∑
i∈s1

xic
−1
i Yi.

The predictor (2.2.4) involves the estimated probabilities p̂i. To obtain these estimated

probabilities, we may postulate a parametric model of the form

pi = P (δi = 1) = ψ(xi,γ),

where ψ(·) is a predetermined functional and γ is a vector of unknown coefficients. A

frequently encountered parametric model is the logistic regression model given by

pi =
exp

(
x>i γ

)
1 + exp

(
x>i γ

) .
The estimated probabilities p̂i are given by p̂i = ψ(xi,γ̂), where γ̂ is a suitable estimator (e.g.,

the maximum likelihood estimator) of γ. However, point estimators based on parametric

imputation procedures may suffer from bias if the form of the model is misspecified or if the

specified X fails to include interactions or predictors accounting for curvature.

Alternatively, one may use a nonparametric procedure in order to obtain estimates of

the pi’s. In contrast to parametric methods, the shape of the relationship is left unspecified.

Also, nonparametric procedures have the ability to capture nonlinear trends in the data and

tend to be robust to the non-inclusion of interactions or predictors accounting for curvature.

However, many traditional nonparametric procedures tend to breakdown when the dimension

of the x-vector is large, a problem often referred as the curse of dimensionality.

A simple nonparametric procedure is Kernel Density Estimation (KDE). For simplicity,

we assume a scalar x, in which case a KDE of pi is

ψ̂(x, h) =
1

nh

∑
i∈s

K

(
x− xi
h

)
,

where K is the so-called kernel function and h > 0 is a smoothing parameter called the band-

width. Popular kernel functions include the Epanechnikov (Epanechnikov, 1969), Tricube,
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and Gaussian kernels. The bandwidth h is a parameter whose value may considerably affect

the resulting estimate. The bandwidth is usually selected so as to achieve a compromise

between bias and variance. As h increases, ψ̂(x, h) approaches the constant value 1− n0/n,

the sample proportion of nonzero-valued observations.

In the context of highly skewed distributions with a large proportion of zero-valued obser-

vations, Karlberg (2000) studied the EBP with the pi’s estimated through a logistic regression

model and the nonzero-valued observations yi’s modeled by a lognormal distribution.

For simplicity, we assume that the pi’s are known for all i in the sequel. The predictor

(2.2.4) can be written as

t̂EBPy =
∑
i∈s1

wiYi,

where

wi = 1 +
x>i
ci

(∑
i∈s1

xix
>
i

ci

)−1(∑
i∈U

pixi −
∑
i∈s

pixi

)
.

Its prediction variance is given by

Vm

(
t̂EBPy − ty

)
= Vm

(∑
i∈s

wiYi −
∑
i∈U

Yi

)

= Vm

(∑
i∈s

wiYi −
∑
i∈s

Yi −
∑
i∈U−s

Yi

)

=
∑
i∈s

(wi − 1)2 Vm(Yi) +
∑
i∈U−s

Vm(Yi),

where Vm(Yi) is defined by (2.2.3).

We now compute the conditional bias of unit i. There are four cases to consider: unit

i is included or not in the sample and δi = 1 or δi = 0. If a unit i has a nonzero-valued
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observation and is selected in the sample, its conditional bias is given by

BEBP
i = Em

(
t̂EBPy − ty | s, Yi = yi

)
= Em

(∑
j∈s

wjYj −
∑
j∈U

Yj | s, Yi = yi

)

= Em

wiYi − Yi +
∑
j∈s
j 6=i

wjYj −
∑
j∈U
j 6=i

Yj | s, Yi = yi


= (wi − 1)(yi − pixi>β1) +

∑
j∈s

wjpjxj
>β1 −

∑
j∈U

pjxj
>β1.

If unit i is not included in the sample, its conditional bias is

BEBP
i = Em

(
t̂EBPy − ty | s, Yi = yi

)
= Em

(∑
j∈s

wjYj −
∑
j∈U

Yj | s, Yi = yi

)

= Em

−Yi +
∑
j∈s

wjYj −
∑
j∈U
j 6=i

Yj | s, Yi = yi


= −(yi − pixi>β1) +

∑
j∈s

wjpjxj
>β1 −

∑
j∈U

pjxj
>β1.

Therefore, the conditional bias of unit i with respect to EBP is given by

BEBP
i =

 (wi − 1)(yi − pixi>β1) +
∑

j∈swjpjxj
>β1 −

∑
j∈U pjxj

>β1 if i ∈ s

−(yi − pixi>β1) +
∑

j∈swjpjxj
>β1 −

∑
j∈U pjxj

>β1 if i ∈ U − s.
(2.2.5)

In particular when δi = 0, (2.2.5) reduces to

BEBP
i =

 −(wi − 1)pixi
>β1 +

∑
j∈swjpjxj

>β1 −
∑

j∈U pjxj
>β1 if i ∈ s

pixi
>β1 +

∑
j∈swjpjxj

>β1 −
∑

j∈U pjxj
>β1 if i ∈ U − s.

Thus, a sampled unit i from U0 has a large influence if its weight wi is large and/or

the census "fit"
(
pixi

>β1

)
is large. The conditional bias (2.2.5) is unknown and must be

estimated, this is considered in the next section.
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2.2.3. Estimation of the conditional bias

The conditional bias BBLUP
i in (1.4.6) and (1.4.7) are unknown since β is unknown.

Therefore, we must estimate it. We note that it is not possible to estimate the conditional

bias of a unsampled unit as its y-value is not observed. For a sample unit, the conditional

bias BBLUP
i can be estimated by replacing the unknown β by an estimator β̃:

B̂BLUP
i =

 (wi − 1)(yi − x>i β̃) if i ∈ s1

−(wi − 1)x>i β̃ if i ∈ s0.
(2.2.6)

If β̃ = β̂LS, then B̂BLUP
i is unbiased for BBLUP

i . If β̃ = β̂
(−i)
LS , then B̂BLUP

i is conditionally

unbiased for BBLUP
i in the sense that

Em(B̂BLUP
i |s, Yi = yi) = BBLUP

i , (2.2.7)

where β̂
(−i)
LS is the least squares estimator calculated without unit i. The proof is given in

the Appendix.

For the conditional bias of the EBP given in (2.2.5) and (2.2.2), both β1 and pi’s are

unknown. As before, we can only estimate the conditional bias of a unit selected in the

sample. The conditional bias BEBP
i can be estimated by replacing β1 and the pi’s with some

estimator β̂1 and p̂i, respectively.
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Chapter 3

Robust prediction

In this chapter, we focus on the model-based approach, whereby the observations are

assumed to have been generated from a given model. In some cases, one must face the pres-

ence of outliers in the sample. Outliers correspond to observations that have been generated

from a model different from the one that has generated the majority of the observations.

The non-outliers are often referred to as inliers. An outlier may be due to a measurement

error or it may be a legitimate observation. In this chapter, we focus on the latter case.

Measurement errors are typically detected and corrected at the editing stage. Figure 3.1

shows the relationship between a variable y and an auxiliary variable x. From Figure 3.1,

most of the observations follow a linear model (in blue), while a few of them are outliers (in

red).

Chambers (1986) identified two types of outliers. The first type is called nonrepresen-

tative. The latter can either be due to an error or it is believed to be unique. The second

type is a representative outlier, which is a valid sample observation that "represents" other

similar units in the non-sampled part of the population. If a nonrepresentative outlier is

deemed legitimate, it makes sense to assign it a weight equal to 1. For a representative

outlier, the situation is more intricate as we do not know how many observations this outlier

represents in the non-sampled part of the population. As a result, it is harder to decide

which weight to attribute to this outlier. Representative outliers may be influential in the

sense that including or excluding this unit from the sample may have a drastic impact on

the estimate. Influential units make the usual predictors (e.g., the BLUP or the EBP)

unstable (i.e., exhibiting a large prediction variance).



Fig. 3.1. Example of inliers and outliers for a linear model

In this chapter, we are interested in predicting the population total of a survey variable y

in the presence of influential units in the sample. More specifically, we describe some robust

predictors of ty in the presence of influential units. By robust, we mean a predictor whose

efficiency is close to that of the optimal estimator (e.g., the BLUP) when the model holds but

whose efficiency is not affected by a small deviation from the model. A small deviation from

the model corresponds to a small proportion of observations that do not follow the model

that generated the rest of the observations or to having the first two moments of the model

correctly specified but that the distribution of the errors is highly skewed. A robust predictor

is expected to exhibit a mean square error smaller than that of a non-robust predictor when

influential units are present in the sample. This is achieved at the expense of introducing a

bias.

3.1. Robust regression

A naive approach to robust prediction of ty is to replace the weighted least squares

estimator β̂WLS in (1.4.3) by a robust estimator β̂R. A naive predictor t̂Ry is thus defined as

t̂Ry =
∑
i∈s

Yi +
∑
i∈U−s

x>i β̂R. (3.1.1)

There exist many approaches for robust estimation of β. Three of the most common ones

are M-estimation, least-trimmed squares estimation and MM-estimation.
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The least squares estimator β̂LS is obtained by minimizing the sum of the squared errors

ei = Yi − x>i β:

β̂LS = argmin
β

∑
i∈s

(
Yi − x>i β

)2
. (3.1.2)

The rationale behind M-estimation is to minimize an alternative function whose role

is to reduce the influence of units exhibiting large residuals (Huber, 1981). M-estimation

can be viewed as a generalization of maximum-likelihood estimation. The estimator of β is

determined by minimizing a function ρ, called the objective function:

β̂M = argmin
β

∑
i∈s

ρ(ei) = argmin
β

∑
i∈s

ρ(Yi − x>i β),

where ρ is nonnegative, monotone, symmetric and behaves like the identity function around

the origin. An example of such function is ρ(ei) = e2
i , which gives back the least squares

estimator (3.1.2). Let ψ = ρ′ be the derivative of ρ. By taking the derivative of the objective

function with respect to β and setting every partial derivatives to zero, we get a system of

estimating equations to obtain the coefficients:∑
i∈s

ψ(ei)xi = 0.

Two of the most commonly used ρ-functions in a classical setup are the Huber function and

bisquare function, also called Tukey’s biweight. The objective functions and the derivative

associated with these functions are given in Table (3.1). Both depend on k, a tuning constant.

A small value of k makes the predictor more resistant to outliers but may lead to a loss of

efficiency when the errors are normally distributed. The tuning constant is usually chosen so

as to achieve 95% efficiency under the normal model. The value is usually set to k = 1.345σ

for the Huber function and to k = 4.685σ for the bisquare function. These functions are

illustrated in Figure 3.2 and Figure 3.3.

Another approach for obtaining a robust estimator of β is least-trimmed squares (LTS)

regression. We consider the ordered residuals of the sample from smallest to largest:

e(1),..., e(n).

The LTS estimator β̂LTS minimizes the sum of the smallest m (say) squared residuals:

β̂LTS = argmin
β

m∑
i=1

e2
(i).
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Method Objective Function φ-Function

Huber ρH(e) =

 1
2
e2 for |e| ≤ k

k|e| − 1
2
k2 for |e| > k.

ψH(e) =


k for e > k

e for |e| ≤ k

−k for e < k.

Bisquare ρB(e) =


k2

6

{
1−

[
1−

(
e
k

)2
]3
}

for |e| ≤ k

k2

6
for |e| > k.

ψB(e) =

 e
[
1−

(
e
k

)2
]2

for |e| ≤ k

0 for |e| > k

Tab. 3.1. Objective function and corresponding φ-function for Huber and bisquare function

Fig. 3.2. Huber function with k = 1.345.

In this case, the units having the m smallest residuals are considered to be the inliers and

when m = n, we get back the least squares estimator.

Finally, the last method is MM-estimator (Yohai, 1987) which is obtained in three stages:

(1) Compute an initial robust estimate of β denoted by β̂0. The initial estimator should

have a high breakdown point but may possibly suffer from a low efficiency. The

breakdown point of an estimator is the minimum proportion of incorrect observations

leading to the breakdown of the estimator.
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Fig. 3.3. Bisquare function with k = 4.685.

(2) Compute a robust estimate of σ, which is the solution to

1

n

n∑
i=1

ρ

(
Yi − xiβ̂0

σ̂

)
= EΦ {ρ(e)} ,

where Φ is the standard normal distribution.

(3) Let ρ1 be another objective function and let ψ1 = ρ′1. The MM-estimator β̂MM is

defined as the solution of
n∑
i=1

ψ1

(
Yi − xiβ

σ̂

)
xi = 0,

such that
n∑
i=1

ρ1

(
Yi − xiβ̂MM

σ̂

)
≤

n∑
i=1

ρ1

(
Yi − xiβ̂0

σ̂

)
.

The predictor (3.1.1) based on a robust estimator of β is called naive because it is

essentially designed to deal with nonrepresentative outliers. If the sample contains nonrep-

resentative outliers only, we expect the naive predictor to perform very well in terms of mean

squared error since it reduces the influence of these unique observations on the estimation of

β. However, if the outliers are representative, then the naive predictor may be substantially

biased. In Fig 3.4, the purple line corresponds to the customary least squares fit. It is clear

that the line is highly influenced by the outliers (represented by the red crosses). Predic-

tions based on the least squares lines are poor for most of the observations. The red line
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corresponds to the fit obtained by a robust method (M-estimation). It is clear that for the

outlying observations, the predictions based on the robust line would be too small. If these

outliers are representative, we expect the naive predictor (3.1.1) to be biased negatively. A

solution to this problem was first suggested by Chambers (1986).

Fig. 3.4. Example of the customary least squares fit (purple) and the fit from a robust

method (red) in presence of outliers.

3.2. Predictor of Chambers

Chambers (1986) suggests a bias-adjusted robust predictor:

t̂Cy (k,c) = t̂Ry (k) +
∑
i∈s

(wi − 1)σ̂iψ2

(
Yi − x>i β̂R

σ̂i
; c

)
, (3.2.1)

where ψ2 is a ψ-function based on the tuning constant c and on σ̂i, which is a robust estimator

of σ. The estimator β̂R in (3.2.1) denotes any robust estimator of β based on a ψ-function

ψ1 and tuning constant k. The first term on the right hand-side of (3.2.1) is the naive robust

prediction, whereas the second term can be viewed as a bias correction term. The tuning

constant k is selected to obtain a highly efficient estimator, whereas the tuning constant c

should be large enough. Chambers (1986) advocated a value of c lying between 4 and 6.

When c = 0, t̂Cy (k,c) reduces to

t̂Cy (k,0) = t̂Ry (k),
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the naive robust predictor, which is expected to be stable but biased. When c =∞, t̂Cy (k,c)

reduces to

t̂Cy (k,∞) = t̂BLUPy ,

which is unbiased but unstable. Therefore, c is chosen to achieve a good compromise between

bias and variance. This is often referred to as the bias-variance trade-off.

3.3. Predictor based on the conditional bias

Beaumont, Haziza and Ruiz-Gazen (2013) suggested an alternative robust predictor based

on the concept of conditional bias. It is defined as

t̂CBy (c) = t̂BLUPy −
∑
i∈s

B̂BLUP
i +

∑
i∈s

ψ(B̂BLUP
i ; c), (3.3.1)

where B̂BLUP
i is an estimator of the conditional bias defined in (2.2.6) and ψ is usually the

Huber function with a tuning constant c. An alternative expression of (3.3.1) is given by

t̂CBy (c) =
∑
i∈s

Yi +
∑
i∈U−s

x>i β̂ +
∑
i∈s

ψ
{

(wi − 1)(Yi − x>i β̂); c
}
.

When the tuning constant c = 0, the estimator t̂CBy (c) reduces to

t̂CBy (0) =
∑
i∈s

Yi +
∑
i∈U−s

x>i β̃,

which depends on the choice of β̃. If β̂ = β̂R, we obtain the naive predictor t̂Ry , which is

stable but biased. When c =∞, the estimator t̂CBy (c) reduces to

t̂CBy (∞) = t̂BLUPy ,

which is unbiased but unstable. To choose the tuning constant c, Beaumont et al. (2013)

suggest to select the value of c that minimizes the largest absolute estimated conditional bias

of t̂CBy (c). That is, we seek the value of c that minimizes

max
{
|B̂CB

i (c)|
}
,

where B̂CB
i (c) is an estimator of the conditional bias attached to unit i of t̂CBy . By rewriting

(3.3.1) as

t̂CBy (c) = t̂BLUPy −∆(c),
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where ∆(c) =
∑

i∈s B̂i −
∑

i∈s ψ(B̂i; c), we have

BBC
i (c) = Em

(
t̂BCy − ty|s,Yi = yi

)
= Em

(
t̂BLUPy −∆(c)− ty|s,Yi = yi

)
= Em

(
t̂BLUPy − ty −∆(c)|s,Yi = yi

)
= Bi − Em (∆(c)|s,Yi = yi) .

A conditionally unbiased estimator of BBC
i (c) is then given by

B̂BC
i (c) = B̂i −∆(c).

Therefore, we want to minimize max
{
|B̂i −∆(c)|

}
. Beaumont et al. (2013) showed the

solution to be

∆(copt) = −1

2

(
B̂BLUP
min + B̂BLUP

max

)
,

where B̂min and B̂max are the smallest and largest estimated conditional bias in the sample

of the nonrobust estimator t̂BLUPy . This leads to the robust predictor based on conditional

bias:

t̂CBy (copt) = t̂BLUPy − 1

2

(
B̂BLUP
min + B̂BLUP

max

)
. (3.3.2)

Unlike in robust statistics, the cut-off value copt is adaptative in the sense that it depends

on the sample size. That is, it increases as the sample size increases, which is a desirable

property.

In the presence of zero-valued observations, a robust version of the EBP given by (2.2.4)

can be obtained in a similar fashion. This leads to

t̂CBy (copt) = t̂EBPy − 1

2

(
B̂EBP
min + B̂EBP

max

)
. (3.3.3)

In this context, a naive EBP is obtained by replacing β1 with a robust estimator β̂1R.

This leads to

t̂Ry =
∑
i∈s1

Yi +
∑
i∈U−s

p̂ix
>
i β̂1R.

The performance of these predictors in terms of bias and efficiency will be assessed in Chapter

4.
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Chapter 4

Empirical investigations

In this section, we present the results from three simulation studies: the first assesses

the performance of design-based estimators in terms of bias and efficiency while the second

investigates the performance of predictors in a model-based framework. The third compares

several robust predictors presented in Chapter 3 in the presence of influential units, again in

terms of bias and efficiency.

4.1. Design-based approach

We generated several populations of size N = 1000 consisting of a single auxiliary variable

x and a survey variable y. The x-variable was first generated from a Gamma distribution

with shape parameter equal to 2 and scale parameter equal to 5. Each unit was assigned to

either the population of zero-valued observations, U0, or to the population of nonzero-valued

observations, U1. To that end, we performed 1000 Bernoulli trials with probability pi. That

is, we generated the indicator variables δi from a Bernoulli distribution with probability pi.

If a trial was a success the unit was assigned to the population U1. The pi’s were generated

according to a logistic model:

pi =
exp (γ0 + γ1xi)

1 + exp (γ0 + γ1xi)
,

where the values of γ0 and γ1 were set so as (i) to obtain an overall proportion, p0, of

zero-valued observations from 0.1 to 0.9 and (ii) for each value of p0, the probability pi was

either increasing with xi (i.e., larger values of xi exhibited a larger proportion of zero-valued

observations), which will be called Mechanism 1 below, or decreasing with xi (i.e., smaller



values of xi exhibited a larger proportion of zero-valued observations), which will be called

Mechanism 2 below.

Given the x-values, for the units belonging to U1, the y-values were generated according

to the so-called ratio model:

yi = 10xi +
√
xiεi, (4.1.1)

where the errors εi were generated from a normal distribution with mean equal to zero and

variance equal to 25.

Figures 4.1 and 4.2 show simultaneously the relationship between y and x and the rela-

tionship between pi and xi for an overall proportion p0 of zero-valued observations equal to

40% for Mechanisms 1 and 2, respectively.

Fig. 4.1. Relationship between y

and x under Mechanism 1

Fig. 4.2. Relationship between y

and x under Mechanism 2

From each population, we selected R = 1000 samples, of size n = 100, according to simple

random sampling without replacement. In each sample, we computed the ratio estimator

given by (1.3.5).

The Monte Carlo average of the estimator t̂ray,r is defined as

EMC(t̂ray ) =
1

R

R∑
r=1

t̂ray,r, (4.1.2)

where t̂ray,r denotes the ratio estimator in the rth iteration, r = 1, . . . , R. We computed the

relative mean squared error (RMSE) of t̂ray,r defined as

RMSE(t̂ray ) =
MSEMC(t̂ray )

ty
, (4.1.3)
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where

MSEMC(t̂ray ) =
1

R

R∑
r=1

(
t̂ray,r − ty

)2
.

Figure 4.3 shows the RMSE of t̂ray as a function of φ0 (see Equation (2.1.5)) for Mecha-

nisms 1 and 2, whereas Figure 4.4 shows the RMSE as function of p0.

Fig. 4.3. RMSE as a function of φ0

for Mechanism 1 (in blue) and Mech-

anism 2 (in red).

.png

Fig. 4.4. RMSE as a function of p0

for Mechanism 1 (in blue) and Mech-

anism 2 (in red).

From Figure 4.3, we note that, as φ0 increases, the RMSE of t̂ray increases for both

mechanisms. The same is true in Figure 4.4, where the RMSE increases as the proportion

of zero-valued observations, p0, increases. This can be explained by the fact that, as p0

increases, we are getting farther from the ratio model, which assumes a straight line that

passes through the origin, making the ratio estimator less efficient.

4.2. Model-based approach

We conducted a model-based simulation to assess the performance of the BLUP and the

EBP in terms of bias and efficiency. For each scenario, we repeated R = 1,000 iterations of

the following process:

(i) A finite population of size N = 1,000 was generated. First, the sub-populations U0

and U1 were generated according to six mechanisms. In addition to Mechanisms 1

and 2 used in Section 4.1, we used the following four additional mechanisms:

(3) pi = γ0;

(4) pi = γ0 + γ1xi + γ2x
2
i ;
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Fig. 4.5. Relationship between y

and x under Mechanism 3.

Fig. 4.6. Relationship between y

and x under Mechanism 4.

(5) pi =
exp [γ0+γ1xi+γ2x

2
i +γ3 cos(γ4x2i ) sin(γ5xi)]

1+exp [γ0+γ1xi+γ2x2i +γ3 cos(γ4x2i ) sin(γ5xi)]
;

(6) pi = | cos(γ0 + γ1xi)|.

For all mechanisms the parameters γ0, . . . , γ5 were set so as to obtain an overall

proportion, p0, of zero-valued observations equal to 0.1, 0.3, 0.5, 0.7, and 0.9.

Again, for the units in U1, the y-values were generated according to the ratio model

given by (4.1.1). Figures 4.5-4.8 show simultaneously the relationship between y and

x and the mechanism for generating the pi’s for Mechanisms 3-6.

(ii) From the finite population generated in Step (i), a sample of size n = 100 was selected

according to simple random sampling without replacement.

(iii) In each sample, we computed the following predictors of ty:

(a) the BLUP given by (2.2.2).

(b) the EBP given by (2.2.4), where the probabilities pi = P (δi = 1) were estimated

using three procedures: a logistic regression model, the overall proportion of

nonzero-valued observations, 1 − n0/n, and a kernel density estimator based on

the Gaussian kernel, where the bandwidth h was defined as h = H × range(x),

and the values of H were set to 0.1, 0.2, and 0.5.

Let t̂y be a generic notation. We computed the Monte Carlo percent relative bias (RB)

defined as

RBMC

(
t̂y
)

= 100× EMC

(
t̂y − ty
ty

)
. (4.2.1)
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Fig. 4.7. Relationship between y

and x under Mechanism 5.

Fig. 4.8. Relationship between y

and x under Mechanism 6.

We also computed a measure of relative efficiency (RE) defined as

RE
(
t̂EBPy

)
= 100×

MSEMC

(
t̂EBPy

)
MSEMC

(
t̂BLUPy

) . (4.2.2)
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Mech.1 Mech.2 Mech.3

t̂y p̂i H p0 RB RE RB RE RB RE

B
LU

P

0.1 0.0 100 0.8 100 -0.2 100

0.3 0.0 100 0.6 100 -0.3 100

0.5 -0.3 100 0.5 100 -0.1 100

0.7 -0.6 100 0.0 100 -0.2 100

0.9 -1.7 100 0.1 100 -0.1 100
E
B
P

Lo
gi
st
ic

0.1 0.0 96 0.1 29 -0.3 108

0.3 0.0 82 -0.1 34 -0.3 104

0.5 0.0 59 -0.2 51 -0.1 103

0.7 0.0 35 -0.2 75 -0.2 104

0.9 0.0 25 0.6 87 0.4 107

E
B
P

C
on

st
an

t

0.1 -7.1 2065 17.4 572 -0.2 74

0.3 -19.3 6276 51.1 2833 -0.1 71

0.5 -30.8 5378 91.0 6066 0.0 70

0.7 41.0 2574 154.9 8912 -0.1 74

0.9 -54.8 606 291.2 8338 -0.2 69

E
B
P

N
P

0.1

0.1 -1.8 219 -1.1 33 0.0 110

0.3 -3.7 248 -0.4 34 0.0 113

0.5 -2.1 85 7.4 92 0.1 116

0.7 0.6 34 26.0 402 0.3 115

0.9 4.7 29 88.8 837 -0.5 104

E
B
P

N
P

0.2

0.1 -2.5 383 -1.9 47 -0.1 108

0.3 -5.9 647 1.9 41 0.0 105

0.5 -5.6 247 17.9 285 0.0 110

0.7 -1.2 36 51.8 1080 -0.1 110

0.9 7.8 45 129.6 1697 -0.1 104

E
B
P

N
P

0.5

0.1 -3.2 478 -1.8 51 -0.1 116

0.3 -7.1 908 5.0 65 0.0 103

0.5 -7.7 417 24.1 476 -0.1 108

0.7 -3.4 52 61.5 1498 0.4 107

0.9 7.7 51 146.5 2154 0.2 102

Tab. 4.1. Results for the model-based predictors for Mechanisms 1, 2, and 3.
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Mech.4 Mech.5 Mech.6

t̂y p̂i H p0 RB RE RB RE RB RE

B
LU

P

0.1 0.1 100 0.0 100 -0.1 100

0.3 0.2 100 -0.3 100 0.6 100

0.5 0.6 100 -0.2 100 0.5 100

0.7 1.6 100 -0.1 100 0.5 100

0.9 1.2 100 -1.7 100 -0.3 100
E
B
P

Lo
gi
st
ic

0.1 0.2 97 0.0 99 -0.2 103

0.3 0.2 97 -0.3 87 0.5 99

0.5 0.6 101 0.0 74 0.4 101

0.7 1.7 103 -0.2 52 -0.2 98

0.9 5.3 120 -0.2 30 -1.1 98

E
B
P

C
on

st
an

t

0.1 -2.8 140 -1.2 126 2.5 79

0.3 -3.7 178 -6.6 228 5.5 99

0.5 -5.1 221 -15.9 472 9.0 121

0.7 -8.4 328 -32.2 922 16.6 168

0.9 -12.2 121 -55.8 588 26.9 137

E
B
P

N
P

0.1

0.1 -0.1 100 0.9 83 0.0 118

0.3 -0.1 101 2.8 79 0.2 109

0.5 0.0 102 3.3 61 0.7 116

0.7 0.2 94 3.4 50 -0.4 106

0.9 -0.1 116 4.7 25 3.1 104

E
B
P

N
P

0.2

0.1 -0.7 104 1.2 88 -0.2 116

0.3 -0.8 107 3.3 90 0.0 105

0.5 -1.0 107 3.8 71 0.7 109

0.7 -1.4 103 4.0 57 -0.3 102

0.9 -2.0 113 7.8 42 6.7 108

E
B
P

N
P

0.5

0.1 -0.8 97 0.9 86 -0.2 111

0.3 -0.9 100 2.5 81 -0.1 102

0.5 -1.1 99 2.3 63 0.6 105

0.7 -1.4 93 2.1 51 -0.3 98

0.9 -1.3 113 7.6 48 7.3 100

Tab. 4.2. Results for the model-based predictors for Mechanisms 4, 5, and 6.

Tables 4.1 and 4.2 show the Monte Carlo RB and RE for the BLUP and EBP for each

scenario.
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As expected, the BLUP t̂BLUPy showed negligible bias in all scenarios. For the EBP, the

bias varied depending on the method used for estimating the pi’s:

• When using a logistic model to estimate pi, the predictor t̂EBP (log)
y showed negligible

bias for all mechanisms except for Mechanism 4, where it showed a slight bias (5.3%)

when p0 = 0.9.

• When using the overall proportion of zero to estimate pi, the predictor t̂EBP (const)
y

was biased for every mechanisms except for Mechanism 3, as expected. Except for

Mechanism 3, the bias increased as p0 increased.

• When using a kernel density estimator, the predictor t̂EBP (NP )
y showed negligible

bias for Mechanisms 3 and 4 for all values of p0. For Mechanism 6, it is only biased

when p0 = 0.9. All the other mechanisms had a small bias (around 2% to 7%),

especially for the larger values of p0. The value of H = 0.1 leads to the least amount

of bias.

As expected, the predictor t̂EBP (log)
y did great when the real model used to generate the

probability pi was a logistic model (Mechanisms 1 and 2) with a relative efficiency ranging

from 25% to 96%. For Mechanism 1, the relative efficiency decreased as p0 increased while

for Mechanism 2, it is the inverse. The reason can be seen in Figure 4.9, where the blue

dots represent the y-values for the non-sampled units, the black dots represent the values

predicted by the EBP and the red line is the BLUP prediction. For Mechanism 1, when

p0 = 0.1, the zero-valued observations have only a small influence on the BLUP prediction

since there are few of them and their x-values are small. Hence, the predictions from the

BLUP and EBP are similar. However, when p0 = 0.9, the zero-valued observations have a

greater impact on the BLUP predictions and the predictions of EBP are much better. For

Mechanism 2, the inverse happens and it can be seen in Figure 4.10.

Similar graphs can be found in the Appendix for all mechanisms.

For all other mechanims, the predictor t̂EBP (log)
y has a relative efficiency near 100% except

for Mechanism 5 where some gain was obtained (RE of 30% to 99%), especially when the

proportion of zero is high. The predictor t̂EBP (const)
y did better than the BLUP for Mechanism

3 and for low values of p0 for Mechanism 6. In the other scenarios, it did poorly which was
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Fig. 4.9. Example of population with Mechanism 1 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. 4.10. Example of population with Mechanism 2 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

expected. The predictors t̂EBP (NP )
y and t̂EBP (log)

y had similar performances: they did well for

high values of p0 for Mechanism 1, low values of p0 for Mechanism 2, and did better than the

BLUP for Mechanism 5. For other mechanisms, it performed similarly to the BLUP (RE is

close to 100%). In general, the value of H did not affect the relative efficiency.

4.3. Robust Prediction

We conducted a simulation study to assess the performance of the robust predictors

presented in Chapter 3, in terms of bias and efficiency. Again, we repeated 1,000 iterations

of the process described in Section 4.2.
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We first generated an x-variable from a Gamma distribution with shape parameter equal

to 2 and scale parameter equal to 5. Then, the survey variable y was generated from the

conditional distribution

Yi|xi ∼ D(µi,νi), (4.3.1)

where µi = β0 +β1xi and νi = σ2xi. We used four different distributions D : normal, gamma,

lognormal and Pareto. The parameters of each distribution were chosen such that µi and νi

were the same for every distribution. We also generated a fifth population from a mixture

of two normal distributions:

Yi = ∆iN (µ1,σ
2
1) + (1−∆i)N (µ2, σ

2
2), (4.3.2)

where P (∆i = 1) = 0.95 and µ1, µ2, σ1 and σ2 are the parameters of the two normal distri-

butions (See the Appendix for the values of the parameters). Zero-valued observations were

then generated according to Bernoulli trials with probability

pi =
1

1 + exp (−10 + 0.15xi)
.

This led to an overall proportion of zero-valued observations, p0 = 0.23.

From each of the 1,000 populations, we selected a sample of size n = 100 according to

simple random sampling without replacement. Examples of the five types of populations are

shown in Figures 4.11-4.15.

Fig. 4.11. Example of Population 1

with a normal distribution.

Fig. 4.12. Example of Population 2

with a gamma distribution.

In each sample, the following predictors were computed:
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Fig. 4.13. Example of Population 3

with a lognormal distribution.

Fig. 4.14. Example of Population 4

with a Pareto distribution.

Fig. 4.15. Example of Population 5

with a mixture distribution.

(1) The BLUP:

t̂BLUPy =
∑
i∈s

Yi +
∑
i∈U−s

x>i β̂WLS.

(2) The EBP:

t̂EBPy =
∑
i∈s1

Yi +
∑
i∈U−s

p̂ix
>
i β̂WLS1,

where pi was estimated using a logistic model.

(3) The naive robust predictors BLUP and EBP:

t̂RBLUPy (k) =
∑
i∈s

Yi +
∑
i∈U−s

x>i β̂R

and

t̂REBPy (k) =
∑
i∈s1

Yi +
∑
i∈U−s

p̂ix
>
i β̂R1,
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where β̂R and β̂R1 were either a Huber M-estimator with k = 0.1, 0.8, 1.345, 2, a Bisquare

M-estimator with k = 3.5, 4.685, 6, a LTS estimator or a MM-estimator.

(4) The predictor of Chambers (1986):

t̂Cy (k,c) = t̂RBLUPy (k) +
∑
i∈s

(wi − 1)σ̂ψ2

(
Yi − x>i β̂R

σ̂
; c

)
,

where ψ2 is the Huber function with c = 2, 4, 6 and 8 and σ̂ was estimated by the median

absolute deviation. Note that t̂Cy (k,0) ≡ t̂RBLUPy (k).

(5) The predictor based on conditional bias for both BLUP and EBP:

t̂CB(BLUP )
y (copt) = t̂BLUPy − 1

2

(
B̂BLUP
min + B̂BLUP

max

)
t̂CB(EBP )
y (copt) = t̂EBPy − 1

2

(
B̂EBP
min + B̂EBP

max

)
,

where B̂BLUP was estimated by (2.2.6) with β̃ = β̂WLS. The conditional bias in the predictor

t̂
CB(EBP )
y (copt) was estimated by

B̂EBP
i = −(wi − 1)p̂ixi

>β̂WLS1.

We used the Monte Carlo relative bias (%) and relative efficiency (%) to compare the pre-

dictors to one another. Tables 4.3-4.7 show the results for all the predictors and populations.

The naive predictor t̂RBLUPy was generally highly biased in all the scenarios. The bias

increased as k decreased. It was also less efficient than the BLUP in all the scenarios. These

results suggest that using a naive predictor in the context of survey sampling can lead to

poor performances. The same was true for the naive EPB, t̂REBPy .

Turning to the predictor of Chambers (1986), the best performances were obtained for

c = 4 and c = 6. This is consistent with what was suggested by Chambers. For Populations

1-3, the predictor of Chambers showed a value of efficiency close to 100. Some gains were

observed for Population 4 and Population 5 with values of relative efficiency ranging from

77 to 80.

The predictor based on the conditional bias, t̂CB(BLUP )
y (copt) was never less efficient

than t̂BLUPy but the gains were modest with values of relative efficiency ranging from 91
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to 100. On the other hand, the predictor t̂CB(EBP )
y (copt) leads to good gains in efficiency,

with values of relative efficiency ranging from 68% to 92%. The greatest gains were

observed for Population 4 (i.e., the Pareto distribution). It is worth pointing out that both

t̂
CB(BLUP )
y (copt) and t̂CB(EBP )

y (copt) exhibited small biases with an absolute relative bias less

than 1.5%.
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BLUP EBP

t̂y
0.4 -0.1

(100) (80)

t̂CBy
0.0 0.5

(100) (80)

t̂Cy (k,c)

Huber

c c = 0

0 2 4 6 8

Huber

k

0.1
-15.7 -3.9 0.2 0.4 0.4 0.1

(528) (125) (99) (99) (100) (96)

0.8
-11.2 -3.4 0.2 0.4 0.4 0.2

(295) (116) (99) (100) (100) (83)

1.345
-4.4 -2.7 0.3 0.4 0.4 0.2

(137) (110) (99) (100) (100) (79)

2
-1.0 -2.4 0.3 0.4 0.4 0.1

(102) (107) (99) (100) (100) (79)

Bisquare

k

3.5
-10.9 -3.4 0.2 0.4 0.4 0.3

(320) (118) (99) (100) (100) (89)

4.685
-5.2 -2.8 0.3 0.4 0.4 0.2

(158) (111) (100) (100) (100) (81)

6
-2.8 -2.6 -0.3 0.4 0.4 0.2

(116) (108) (100) (100) (100) (79)

LTS
-25.9 -4.3 0.2 0.4 0.4 0.3

(300) (193) (105) (101) (100) (90)

MM
-10.4 -3.3 0.2 0.4 0.4 0.2

(271) (115) (99) (100) (100) (86)

Tab. 4.3. Results for Population 1 with p0 = 0.23.
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BLUP EBP

t̂y
0.3 0.3

(100) (80)

t̂CBy
-0.7 0.7

(99) (80)

t̂Cy (k,c)

Huber

c c = 0

0 2 4 6 8

Huber

k

0.1
-19.6 -7.0 -0.6 0.4 0.5 -8.7

(698) (165) (98) (99) (100) (190)

0.8
-15.0 -6.4 -0.5 0.4 0.5 -7.0

(427) (151) (98) (99) (100) (143)

1.345
-7.0 -5.5 -0.4 0.4 0.5 -4.7

(173) (135) (98) (99) (100) (104)

2
-2.2 -5.0 -0.3 0.4 0.5 -2.4

(107) (128) (98) (99) (100) (84)

Bisquare

k

3.5
-16.3 -6.6 -0.6 0.4 0.5 -9.2

(526) (158) (98) (99) (100) (193)

4.685
-8.8 -5.7 -0.4 0.4 0.5 -5.9

(230) (141) (98) (99) (100) (125)

6
-5.0 -5.2 -0.3 0.4 0.5 -3.8

(141) (133) (98) (99) (100) (103)

LTS
-33.3 -8.5 -0.9 0.3 0.5 -17.5

(1838) (225) (99) (99) (100) (500)

MM
-14.9 -6.4 -0.5 0.4 0.5 -8.2

(427) (151) (98) (99) (100) (163)

Tab. 4.4. Results for Population 2 with p0 = 0.23.
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BLUP EBP

t̂y
0.4 -0.1

(100) (80)

t̂CBy
-0.8 0.2

(99) (79)

t̂Cy (k,c)

Huber

c c = 0

0 2 4 6 8

Huber

k

0.1
-19.2 -8.2 -1.6 -0.1 0.2 -10.6

(605) (170) (96) (96) (99) (241)

0.8
-15.4 -7.7 -1.5 -0.1 0.2 -8.9

(402) (159) (95) (96) (99) (184)

1.345
-7.9 -6.8 -1.2 0.0 0.2 -6.2

(179) (144) (95) (97) (99) (127)

2
-3.1 -6.3 -1.1 0.0 0.3 -3.5

(110) (134) (95) (97) (99) (93)

Bisquare

k

3.5
-17.2 -8.0 -1.5 -0.1 0.2 -11.7

(509) (167) (95) (97) (98) (270)

4.685
-10.2 -7.1 -1.3 -0.1 0.2 -8.1

(245) (150) (96) (97) (98) (172)

6
-6.2 -6.6 -1.2 0.0 0.3 -5.7

(153) (141) (95) (97) (98) (123)

LTS
-32.6 -9.7 -1.9 -0.2 -0.2 -19.0

(1618) (230) (98) (96) (98) (598)

MM
-15.9 -7.8 -1.5 -0.1 0.2 -10.2

(423) (161) (95) (96) (98) (218)

Tab. 4.5. Results for Population 3 with p0 = 0.23.
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BLUP EBP

t̂y
0.4 0.0

(100) (77)

t̂CBy
-0.8 -0.1

(91) (68)

t̂Cy (k,c)

Huber

c c = 0

0 2 4 6 8

Huber

k

0.1
-9.7 -6.1 -3.1 -1.5 -0.7 -13.4

(351) (185) (85) (79) (81) (305)

0.8
-10.2 -7.7 -3.2 -1.5 -0.7 -11.6

(261) (169) (83) (78) (81) (242)

1.345
-7.2 -7.7 -3.2 -1.4 -0.7 -8.6

(141) (146) (80) (77) (81) (158)

2
-4.1 -7.2 -3.1 -1.4 -0.7 -6.0

(90) (133) (80) (77) (81) (107)

Bisquare

k

3.5
-12.1 -8.3 -3.3 -1.6 -0.8 -14.6

(317) (177) (86) (78) (81) (357)

4.685
-8.9 -8.0 -3.2 -1.5 -0.7 -11.8

(183) (152) (82) (77) (80) (251)

6
-6.7 -7.6 -3.2 -1.5 -0.7 -9.5

(127) (142) (80) (77) (80) (184)

LTS
1.9 4.1 1.2 -0.7 -0.6 -16.9

(1363) (448) (136) (84) (83) (453)

MM
-10.2 -7.6 -3.0 -1.5 -0.7 -12.4

(302) (182) (88) (78) (80) (207)

Tab. 4.6. Results for Population 4 with p0 = 0.23.
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BLUP EBP

t̂y
0.6 0.6

(100) (92)

t̂CBy
-1.5 -1.0

(93) (87)

t̂Cy (k,c)

Huber

c c = 0

0 2 4 6 8

Huber

k

0.1
-25.3 -13.6 -7.0 -3.8 -1.8 -12.4

(540) (182) (92) (80) (83) (146)

0.8
-20.8 -13.0 -6.8 -3.8 -1.7 -12.0

(368) (171) (91) (80) (83) (138)

1.345
-14.2 -12.3 -6.6 -3.6 -1.6 -11.4

(196) (158) (90) (80) (83) (128)

2
-9.7 -11.8 -6.5 -3.5 -1.5 -10.3

(121) (150) (89) (80) (83) (114)

Bisquare

k

3.5
-23.7 -13.4 -6.9 -3.8 -1.8 -14.7

(471) (178) (92) (80) (83) (185)

4.685
-18.4 -12.8 -6.8 -3.7 -1.7 -14.4

(296) (166) (90) (80) (83) (176)

6
-15.4 -12.4 -6.7 -3.7 -1.7 -13.8

(221) (160) (90) (80) (83) (166)

LTS
-35.7 -14.6 -7.3 -4.1 -1.9 -15.0

(1073) (214) (95) (80) (82) (217)

MM
-22.2 -13.2 -6.9 -3.8 -1.7 -14.6

(404) (173) (91) (80) (83) (182)

Tab. 4.7. Results for Population 5 with p0 = 0.23.
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Conclusion

In this thesis, we examined the use of design-based estimators and model-based

predictors of a population total ty when the population is prone to a large number of

zero-valued observations. We also developed robust predictors based on the concept of

conditional bias when influential observations are present in the sample.

We began by introducing usual estimators and predictors and examined their properties

when used for populations with a large number of zero-valued observations. For the

design-based approach, the results of a simulation study presented in Chapter 4 suggested

that the variance of the customary estimators increases as the proportion of zeroes p0

increases. For the ratio and GREG estimators, their variance not only depends on the

proportion p0 but also on φ0, the fraction of the total tx corresponding to the zero-valued

observations. This suggests that the distribution of the zero/nonzero status has an impact

on the variance of these estimators. In the context of the model-based approach, we studied

the BLUP and the EBP based on a mixture model. We saw that, when the assumption made

on the model about the probability of zero/nonzero status, pi, is correct, the EBP leads to

a gain in efficiency compared to the BLUP. However, when the model is misspecified, the

resulting predictor may be highly biased.

In the second simulation, we compared the robust predictors in the presence of influ-

ential observations. The results suggested that using naive predictors may lead to poor

performances. On the other hand, the performance of the predictor of Chambers (1986)

depends on the choice of the tuning constant c. The values c = 4 or c = 6 turned out to

be the best values, in general, which is consistent with what was advocated by Chambers

(1986). The robust version of the EBP based on the conditional bias did well in terms of



efficiency and was never less efficient than the BLUP. Also, the predictor t̂EBPy in the pres-

ence of influential units still does better than the robust BLUP t̂
CB(BLUP )
y but we note that

when predicting the EBP in the simulation study, we used the correctly specified model of

pi which is, most of the time, unknown. The result from the first simulation showed that a

misspecification of pi can have a great effect on the performance. Hence, when unsure about

the distribution, it might be better to use the predictor based on the conditional bias for

BLUP t̂
CB(BLUP )
y as it will treat the zero-valued observations as outliers and still give better

results than the simple BLUP, without any assumption made on pi.
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Appendix A

A.1. Proof of conditional bias estimator

i) When β̃=β̂LS:

Em(B̂BLUP
i |s) = Em

{
(wi − 1)(yi − x>i β̂LS|s

}
= (wi − 1)

(
yi − x>i Em

{
β̂LS|s

})
= (wi − 1)(yi − x>i β)

= BBLUP
i .

ii) When β̃=β̂
(−i)
LS :

First,

(yi − x>i β̂
(−i)
LS )(1− hii) = yi − yihii − x>i β̂

(−i)
LS + x>i β̂

(−i)
LS hii

= yi − yihii − x>i β̂
(−i)
LS

∑
j∈s
j 6=i

xjx
>
j

(∑
j∈s

xjx
>
j

)−1

= yi − yixjx>j

(∑
j∈s

xjx
>
j

)−1

− x>i
∑
j∈s
j 6=i

xjYj

∑
j∈s
j 6=i

xjx
>
j


−1∑

j∈s
j 6=i

xjx
>
j

(∑
j∈s

xjx
>
j

)−1

= yi − x>i yixi

(∑
j∈s

xjx
>
j

)−1

− x>i
∑
j∈s
j 6=i

xjYj

(∑
j∈s

xjx
>
j

)−1



= yi − x>i
∑
j∈s

xjYj

(∑
j∈s

xjx
>
j

)−1

= yi − x>i β̂LS.

Hence,

yi − x>i β̂
(−i)
LS =

yi − x>i β̂LS
1− hii

.

Then,

Em
(
B̂BLUP
i |s, Yi = yi

)
= Em

{
(wi − 1)

yi − x>i β̂LS
1− hii

|s, Yi = yi

}

=
wi − 1

1− hii

(
yi − Em

{
x>i β̂LS|s, Yi = yi

})
=
wi − 1

1− hii

yi − E

x>i ∑
j∈s

xjYj

(∑
j∈s

xjx
>
j

)−1

|s, Yi = yi




=
wi − 1

1− hii

yi − x>i xiyi
(∑

j∈s

xjx
>
j

)−1

−Em

x>i
∑
j∈s
j 6=i

xjYj

(∑
j∈s

xjx
>
j

)−1

|s, Yi = yi




=
wi − 1

1− hii

yi − hiiyi − x>i ∑
j∈s
j 6=i

xjx
>
j β

(∑
j∈s

xjx
>
j

)−1


=
wi − 1

1− hii

yi − hiiyi − x>i ∑
j∈s

xjx
>
j β

(∑
j∈s

xjx
>
j

)−1

+x>i xix
>
i β

(∑
j∈s

xjx
>
j

)−1


=
wi − 1

1− hii
(
yi − hiiyi − x>i β + hiix

>
i β
)

=
wi − 1

1− hii
(
yi − x>i β

)
(1− hii)
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= (wi − 1)
(
yi − x>i β

)
= BBLUP

i .
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A.2. Graphs

Fig. A.1. Example of population with Mechanism 1 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. A.2. Example of population with Mechanism 2 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. A.3. Example of population with Mechanism 3 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.
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Fig. A.4. Example of population with Mechanism 3 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. A.5. Example of population with Mechanism 4 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. A.6. Example of population with Mechanism 4 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.
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Fig. A.7. Example of population with Mechanism 5 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. A.8. Example of population with Mechanism 5 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.

Fig. A.9. Example of population with Mechanism 6 and its predictions for BLUP and EBP

with p0 = 0.1 on the left and p0 = 0.9 on the right.
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Fig. A.10. Example of population with Mechanism 6 and its predictions for BLUP and

EBP with p0 = 0.1 on the left and p0 = 0.9 on the right.

A.3. Parameters used in simulations

Design-based Model-based

p0 γ0 γ1 γ2 γ3 γ4 γ5

Mechanism 1

0.1 -2.3 1

All combinations of 0.3 -5.5 1

of γ0 = 1 to 9 0.5 -8.6 1

and γ1 = 0.1 to 0.8 0.7 -12.3 1

0.9 -18.1 0.9

Mechanism 2

0.1 -18.1 0.9

All combinations of 0.3 -12.3 1

of γ0 = 1 to 9 0.5 -8.6 1

and γ1 = 0.1 to 0.8 0.7 -5.5 1

0.9 -2.3 1

Mechanism 3

0.1 0.9

0.3 0.7

0.5 0.5

0.7 0.3

0.9 0.1

Tab. A.1. Parameters of pi for the first part of simulation for both design-based and model-

based (Mech. 1 to 3).
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Design-based Model-based

p0 γ0 γ1 γ2 γ3 γ4 γ5

Mechanism 4

0.1 250 11 -0.3

0.3 180 11 -0.3

0.5 110 11 -0.3

0.7 40 11 -0.3

0.9 2 11 -0.3

Mechanism 5

0.1 8 -1.6 0.1 4.1 0.2 -1.9

0.3 5.3 -1.6 0.1 4.1 0.2 -1.9

0.5 3.5 -1.6 0.1 4.1 0.2 -1.9

0.7 1.4 -1.6 0.1 4.1 0.2 -1.9

0.9 -8.8 -1.6 0.1 4.1 0.2 -1.9

Mechanism 6

0.1 0.36 0.01

0.3 0.7 0.01

0.5 0.95 0.01

0.7 1.16 0.01

0.9 1.38 0.01

Tab. A.2. Parameters of pi for the first part of simulation for both design-based and model-

based (Mech. 4 to 6). Note that for Mechanism 4, the final pi is found by dividing the

resulting pi the maximum value of the pi.

For the simulation for robust predictions:

• Population 1 to 4: µi = 100 + 10xi and νi = 25xi.

• Population 5: µ1 = 100 + 10xi, σ2
1 = 2000xi, µ2 = 5µ1 and σ2

2 = 10σ2
1.
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