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Résumé

Sous l’hypothèse de Riemann généralisée et l’hypothèse d’indépendance linéaire, Rubinstein
et Sarnak ont prouvé que les valeurs de x > 1 pour lesquelles nous avons plus de nombres
premiers de la forme 4n + 3 que de nombres premiers de la forme 4n + 1 en dessous de
x ont une densité logarithmique d’environ 99,59 %. En général, l’étude de la différence
#{p 6 x : p ∈ A} −#{p 6 x : p ∈ B} pour deux sous-ensembles de nombres premiers A et
B s’appelle la course entre les nombres premiers de A et de B. Dans ce mémoire, nous
cherchons ultimement à analyser d’un point de vue numérique et statistique la course entre
les nombres premiers p tels que 2p+ 1 est aussi premier (aussi appelés nombres premiers de
Sophie Germain) et les nombres premiers p tels que 2p− 1 est aussi premier. Pour ce faire,
nous présentons au préalable l’analyse de Rubinstein et Sarnak pour pouvoir repérer d’où
vient le biais dans la course entre les nombres premiers 1 (mod 4) et les nombres premiers
3 (mod 4) et émettons une conjecture sur la distribution des nombres premiers de Sophie
Germain.

Mots-clés: Courses de nombres premiers, Biais de Chebyshev, Formule ex-
plicite, Fonctions L, Nombres premiers de Sophie Germain, Crible de Selberg,
Modèle de Cramér, Méthode du cercle, Théorie analytique des nombres
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Abstract

Under the Generalized Riemann Hypothesis and the Linear Independence Hypothesis, Ru-
binstein and Sarnak proved that the values of x which have more prime numbers less than
or equal to x of the form 4n + 3 than primes of the form 4n + 1 have a logarithmic density
of ≈ 99.59 %. In general, the study of the difference # {p 6 x : p ∈ A} −# {p 6 x : p ∈ B}
for two subsets of the primes A and B is called the prime number race between A and B. In
this thesis, we will analyze the prime number race between the primes p such that 2p+ 1 is
also prime (these primes are called the Sophie Germain primes) and the primes p such that
2p − 1 is also prime. To understand this, we first present Rubinstein and Sarnak’s analy-
sis to understand where the bias between primes that are 1 (mod 4) and the ones that are
3 (mod 4) comes from and give a conjecture on the distribution of Sophie Germain primes.

Keywords: Prime number races, Chebyshev’s bias, Explicit formula, L-
Functions, Sophie Germain primes, Selberg sieve, Cramér’s model, Circle
method, Analytic number theory
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Notation and conventions

In this thesis, the variable p always represents a prime number unless explicitly stated oth-
erwise. The sets of numbers N,Z,Q,R and C, respectively, designate the natural numbers,
the integers, the rational numbers, the real numbers and the complex numbers. The natural
numbers are the positive integers, namely the numbers 1, 2, 3, etc. We will have two different
ways to write the indicator function. If P (n) is a logical proposition, then 1P (n) returns 1
if P (n) is true, and 0 if P (n) is false. If A ⊂ Ω, then 1A : Ω → R is defined by 1A(x) = 1
whenever x ∈ A and 1A(x) = 0 otherwise.

From elementary number theory, when d and n are integers, we write d |n to mean that
n is divisible by d. If pν is a prime power, then pν ‖n means that pν is the highest power of p
dividing n and we say that pν divides exactly q. The gcd of two integers a and b is denoted
by the symbol (a, b) and their lcm is denoted by [a, b]. We have to note that (a, b) and [a, b]
could also represent real intervals but there will not be any ambiguity from the context. For
a finite set A, we use |A| or #A to represent the number of elements in A. For x ∈ R, the
greatest integer smaller than x, also called the integer part, is noted [x]. The fractional part
is defined by {x} = x− [x] and the distance between x and its closest integer is denoted by
‖x‖ = minn∈Z |x− n|.

If z is a complex number, then Re(z) denotes its real part and Im(z) denotes its imaginary
part. As Riemann originally did, we will often use the variable s to represent a complex
number, and we will denote its real and imaginary parts by σ and t, respectively, so that
s = σ + it. In addition, the nontrivial zeros of any L-function or of the Riemann zeta
function will have the special notation ρ = β + iγ. If we give a subscript to s or ρ, the
subscript is automatically given to the variables representing their real and imaginary parts.
For example, Re(s0) = σ0 and Im(ρχ) = γχ.

The symbol e(t) is another way to write e2πit. Moreover, we write log x for the natural
logarithm (with base e = 2.71828 . . .).

For asymptotic estimates, if f, g are two functions with real or complex values and a ∈
R̂ = R ∪ {±∞}, then

f(x) ∼ g(x) (x→ a) ⇐⇒ lim
x→a

f(x)
g(x) = 1.
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Also, if g takes positive real values in a neighbourhood of a, then

f(x) = o(g(x)) (x→ a) ⇐⇒ lim
x→a

f(x)
g(x) = 0.

To describe bounds, we will use Vinogradov’s notation f(x) � g(x) or Landau’s notation
f(x) = O(g(x)) to mean that |f(x)| 6 c · g(x) for a positive constant c. The range of x
where the bound is valid will be specified. If the constant c depends on a parameter α, then
we will write f(x)�α g(x) or f(x) = Oα(g(x)). If two positive functions f, g have the same
order of magnitude in the sense that f(x)� g(x)� f(x), then we write f(x) � g(x).

Finally, if f is a complex-valued function, then f ∗ is defined by

f ∗(x) = lim
ε→0

f(x− ε) + f(x+ ε)
2 ,

provided the limit exists.
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Chapter 1

As if they were random

1.1. Prime numbers
When we first start to master multiplication at the beginning of our elementary education,

we notice that some positive integers can be taken apart into a product of two smaller positive
integers. For example: 12 = 3 × 4 or 35 = 5 × 7. If the decomposition of n ∈ N was made
using addition, it would have been very easy to find every single way to break it down:
12 = 1 + 11 = 2 + 10 = . . . = 6 + 6. This is because subtracting from n any smaller number
m would result in another positive integer. With multiplication, though, factoring is not
as effortless. When 1 < m < n, the number n

m
is not always an integer, and this is where

we usually first see a clear distinction in the way we treat addition and multiplication. The
numbers in N, which cannot be written as a product of two smaller natural numbers, are
called prime numbers.

After breaking down a number (for example, 60 = 12×5), the factors themselves are not
necessarily prime, and they might have a nontrivial decomposition of their own (60 = 12×5 =
(4× 3)× 5). By inductively applying this reasoning at every step of the factorization, every
nonprime integer greater than 2 (which is also called a composite number) can be broken
down into a product of prime numbers:

60 = 12× 5 = 4× 3× 5 = 2× 2× 3× 5.

One of the most important results in elementary number theory, which is why prime num-
bers are so important when studying multiplication in integers, is that this decomposition
into prime numbers is unique (up to the order of the factors). This prime number decom-
position can characterize every integer, and it dictates the multiplicative relations between
them. Prime numbers take this way the roles of the atoms in the integer universe.



1.2. Chaos in primes
One might expect that primes, which have such a simple definition, are well-behaved

objects and that their distribution can be intuitive and predictable. However, we quickly see
by enumerating them that there is no clear pattern emerging. Taking a large odd prime, we
cannot predict easily where the next prime lies. The next odd number could have a lot of
prime factors. The next odd number could also be a prime number (in which case we say
they are twin primes). It is a famous open problem to prove that there are infinitely many
twin primes.

This chaos and lack of understanding of how the primes behave has some surprising
applications. For example, RSA cryptography is an algorithm widely used to secure data
transmission. This algorithm uses a public key, meaning that the tools used to encrypt a
message (which are huge integers in RSA) are not kept secret. The private key used to
decrypt the message should be kept hidden; otherwise, there would be no point in having
this type of cryptosystem since anyone could decipher an encrypted message.

In RSA cryptography, the public key is an integer N , which is the product of two primes,
and the private key is φ(N) := {1 6 n 6 N : (n,N) = 1}, where φ is called the Euler totient
function. If p1, p2 are distinct primes, then φ(p1p2) = (p1 − 1)(p2 − 1). Thus, we need to
know how to factor N into primes to compute φ(N), and there is no known polynomial-time
algorithm for integer factorization. This is what makes RSA cryptography so strong. There
is a correlation between our understanding of integer factorization into prime numbers and
the strength of the encryption scheme.

Let now p and q be two primes satisfying the linear equation q = 2p + 1. In this case,
we say that p is a Sophie Germain prime and that q is a safe prime. Safe primes are strong
candidates for RSA cryptography. The reason is that John M. Pollard created in 1974 an
algorithm (see [25]) to easily factor integers of the form N = p1p2 if either p1 − 1 or p2 − 1
are smooth numbers, that is, numbers with prime divisors lower than some fixed bound. By
taking safe primes, we ensure that one cannot use Pollard’s algorithm to find the private key
and decipher our messages.

1.3. Probability and number theory
There exist some deterministic tests that detect in polynomial time if a number is prime or

not1. However, to find prime numbers, we might have to take a more global and probabilistic
approach. Perhaps a regularity starts forming if we look at the prime numbers as an ensemble
instead of just looking at a prime and its neighbours. Some questions about the frequency
and the behaviour of prime numbers can be answered this way.
1The first one found that did not rely on any unproven conjecture was the AKS primality test, which was
created in 2002. See [1].
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We have been in a never-ending quest to find these mystical objects’ properties since
Euclid’s time. A fundamental question was answered by Euclid himself, who proved that
there are infinitely many prime numbers. Indeed, if there were only a finite amount, we can
get a new number by multiplying them all together and adding one:

N =
(∏

p

p

)
+ 1.

This number N cannot be divisible by any prime, so it should be a prime itself. The
contradiction is that we would have found a new prime bigger than any prime.

In this global view of the primes, the next question could naturally be: Do we know how
many primes are there around some large real number x? The chaotic nature of the primes
does not help us in having a straight answer. But looking at it through a probabilistic lens
and based on a multitude of computations, Carl Friedrich Gauss famously conjectured at 15
or 16 years of age that the probability that a large number x is a prime number is about

1
log x .

When looking at the prime numbers from a measure-theoretic standpoint, one has to
construct a prime-counting measure µ described by

µ(A) :=
∑
p∈A

1 = # {p ∈ A}

and this measure can be characterized by the following cumulative distribution function:

π(x) := µ((−∞,x]) =
∑
p6x

1 = # {p 6 x} .

This function π is a step-function that has jumps at every prime number. At first glance,
we have only changed the tools we are using to describe prime numbers. The advantage of
this point of view becomes clear when looking at the function π in a graph on a large scale.
The data indicate that we can approximate π by a smooth function (see Figure 1.1).

In his only paper in number theory, Bernhard Riemann used the function ζ(s) :=∑∞
n=1 n

−s, first introduced by Leonhard Euler, to study the distribution of prime numbers.
He proved that (s− 1)ζ(s) admits an analytic continuation on the entire complex plane and
provided a functional equation showing there is a symmetry between ζ(s) and ζ(1− s). The
function ζ is now referred to as the Riemann zeta function. Riemann also made multiple
conjectures about it in his paper. Here are three of them:

(1) If N(T ) is the number of zeros ρ = β + iγ such that |γ| 6 T and 0 < β < 1, then

N(T ) = T

π
log
(
T

2π

)
− T

π
+O(log T ) . (1.1)

(2) The function π(x)− Li(x) has an explicit formula given in terms of the zeros of ζ.
(3) If ρ = β + iγ is a complex number with 0 6 β 6 1 and ζ(ρ) = 0, then β = 1

2 .
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Fig. 1.1. Approximating π(x) with a smooth function.

The ζ function has zeros at every nonpositive even integers −2,−4, . . . Those are called
the trivial zeros. Every other zero of ζ, often referred as a nontrivial zero, is in the set
{s ∈ C : 0 < σ < 1} called the critical strip. We also call the set

{
s ∈ C : σ = 1

2

}
, the critical

line. As per conjecture (2) above, knowing where the nontrivial zeros are located inside the
critical strip helps us understand the error term π(x) − Li(x). Riemann’s conjecture (3),
known as the Riemann Hypothesis (RH), states that every nontrivial zero lies on the critical
line. This problem remains wide open to this day.

An asymptotic formula for the function π(x) was ultimately proven with the Prime
Number Theorem (PNT). It gives us a way to estimate π(x) with a smooth function by
saying that

π(x) ∼ Li(x) as x→∞,

where
Li(x) :=

∫ x

2

dt
log t .

In 1895, Hans von Mangoldt proved Riemann’s conjecture (2) by giving the following
explicit formula: For any x > 1 which is not a prime power, we have∑

pk6x

log p = x− lim
T→∞

∑
|γ|6T

xρ

ρ
− log(2π)− 1

2 log(1− x−2), (1.2)

where ρ = β + iγ runs over the nontrivial zeros of ζ with multiplicity. This formula shows
how the location of the zeros dictates the distribution of the primes. Von Mangoldt also
proved Riemann’s conjecture (1) about the density of zeros inside the critical strip.
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In 1896, Jacques Hadamard and Charles-Jean de la Vallée Poussin independently proved
the Prime Number Theorem by finding a region in the critical strip without any zeros of ζ.
This allowed them to say that the right-hand side of the explicit formula (1.2) is ∼ x. De la
Vallée Poussin ultimately proved that

π(x) = Li(x) +O
(
xe−c

√
log x

)
for x > 2, (1.3)

where c is an absolute positive constant.
The above bound on the error term has been improved to O

(
xe−c

′(log x)3/5(log log x)−1/5
)
for

another positive constant c′ by I. M. Vinogradov and N. M. Korobov in 1958, who enlarged
the known zero-free region of the critical strip. But the data reveals that we could still be
far away from the true order of the error term. Let α be a function on the interval [104, 108]
defined by the equation π(x) = Li(x)−xα(x). If we could not do better than Vinogradov and
Korobov’s estimate, than for any ε > 0, there would be infinitely many values of x such that
|π(x)− Li(x)| > x1−ε because x1−ε = o(xe−c′(log x)3/5(log log x)−1/5) as x → ∞. So we would
expect α(x) to sometimes wander just below 1 for x large enough. However, this is not quite
what happens as we see in Figure 1.2.

Fig. 1.2. Graph of the function α defined by π(x) = Li(x)− xα(x).

Indeed, we can understand α(x) in terms of the zeros of ζ. The explicit formula implies
that

lim sup
x→∞

log |π(x)− Li(x)|
log x 6 sup

{
β ∈ [1

2 ,1) : ζ(β + iγ) = 0
}
. (1.4)

The reversed inequality is also true, but uses different tools. Under the Riemann Hypothesis,
the right-hand side in (1.4) becomes 1

2 . In fact, we get a more precise version of the Prime
Number Theorem with π(x) = Li(x) +O(

√
x log x).

David Platt and Timothy Trudgian have numerically verified this year in [24] that every
ρ = β + iγ with ζ(ρ) = 0, 0 < β < 1 and |γ| 6 3 · 1012 are on the critical line and they
counted more than 12 trillion of them. This means that even if α seems to stay concentrated
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between 0.3 and 0.36 in Figure 1.22, we should expect that α will take values which are close
to 1

2 for larger values of x.
We may also derive the weaker but simpler-to-compute estimate π(x) ∼ x/ log x from

(1.3). Indeed, integration by parts gives

Li(x) =
∫ x

2

dt
log t = x

log x + 2
log 2 +

∫ x

2

dt
log2 t

= x

log x +O

(
x

log2 x

)
, (1.5)

where the bound
∫ x
2

dt
log2 t

� x
log2 x

can be found using l’Hôpital’s rule on the ratio of the
two sides and noting that it tends to 1. We can see in Figure 1.1 that we seem to have
the inequality π(x) > x

log x for large enough x. This is shown by using exactly the same
techniques as in (1.5) to find that for x > 2, we have

π(x) =
∑
k6n

(k − 1)!x
logk x

+On

(
x

logn+1 x

)
.

By taking n = 2, we see that
(
π(x)− x

log x

)
∼ x

log2 x
as x → ∞. We also seem to have the

inequality π(x) < Li(x) based on the Figure 1.1. However, John E. Littlewood showed in
1914 that this inequality is reversed infinitely many times as x gets larger. We have yet to
find the smallest x0 such that π(x0) > Li(x0). In 1999, Carter Bays and Richard H. Hudson
proved in [4] that there exists values of x such that π(x) > Li(x) inside the interval

[1.398201× 10316, 1.398244× 10316].

Using the estimate π(x) ≈ Li(x) to understand the rate of growth of the function π, we
have that (Li(x))′ = 1/ log x. Since the primes have a way of behaving randomly, this could
be an argument towards confirming Gauss’ intuition since the proportion of primes around
x can be represented by

π(x+ h)− π(x− h)
2h .

If π would have been a differentiable function, then this value could be approximated by the
derivative of π for a small enough h > 0.

1.4. Cramér’s model for primes
Let p1 < p2 < . . . be the list of prime numbers in ascending order. Using the prime

number theorem and the fact that π(pn) = n, we can find a formula approximating the nth

prime. First, we need x to be written as a function of π(x)

π(x) = x

log x

(
1 +O

(
1

log x

))
=⇒ x = π(x) log x

(
1 +O

(
1

log x

))

2The graph seems to be oscillating around the smooth curve log( 1
2 Li(x1/2)+ 1

3 Li(x1/3))
log x which is asymptotically

equal to 1
2 −

log log x
log x +O

(
1

log2 x

)
. We will give more details about this in Remark 3.3.
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where the error term has been shifted to the other side by using the fact that for small
enough y, we have 1

1+y = 1 + O(y). We wish we had log π(x) instead of log x, but we can
correct this by using the prime number theorem again and get

log π(x) = log x− log log x+O

(
1

log x

)
= log x

(
1 +O

(
log log x

log x

))
.

and replace log x by log π(x) and find

x = π(x) log π(x)
(

1 +O

(
log log x

log x

))
=⇒ pn = n log n

(
1 +O

(
log log pn

log pn

))
.

Finally, since we always have that n 6 pn and that log log x
log x is decreasing, we get the formula

pn = n(log n+O(log log n)). This gives us an approximate formula for the nth prime.
By an easy telescopic argument, we know that the gaps between the first N primes are

on average
1

N − 1

N−1∑
n=1

(pn+1 − pn) = pN − 2
N − 1 = logN +O(log logN) . (1.6)

Harald Cramér was investigating what the true order of maxn6x(pn+1−pn) is. He conjectured
that

max
n6x

(pn+1 − pn) ∼ log2 x

based on a probability model of the primes numbers (see Proposition 29.1 of [16]).
This model is defined by considering a sequence Xn of independent Bernoulli variables

such that P(Xn = 1) = 1
logn when n > 3 (we can also set X1 = 0 and X2 = 1 almost

surely). This sequence models the indicator function of the prime numbers. We can think
of the sequence an such that an = 1 if n is prime and 0 otherwise as a “typical” outcome of
this probability space. Notice that this model is in tune with what Gauss conjectured in his
teenage years.

The random function Π(x) := ∑
n6xXn simulates the prime-counting function π(x). By

summation by parts, we have

E[Π(x)] =
∑
n6x

E[Xn] = 1 +
∑

2<n6x

1
log n = Li(x) +O(1) ,

where the main term is exactly the smooth function we have estimated π(x) with previously.
Using the independence of the random variables, we find the variance of Π(x) to be

Var(Π(x)) =
∑
n6x

Var(Xn) =
∑

2<n6x

(
1

log n −
1

(log n)2

)
= x

log x +O

(
x

log2 x

)
,

where the last equality follows again by partial summation. Using the Law of the Iterated
Logarithm (LIL), we get the bound on the error term: |Π(x)− Li(x)| � (x log log x/ log x)1/2

almost surely as x→∞. So the Riemann Hypothesis holds almost surely for Cramér’s model.
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However, this model has its limitations. For any fixed k > 1, we have E[∑n6xXnXn+k] ∼
x

log2 x
. When k = 1, this absurdly suggests that we should expect infinitely many pairs of

prime numbers differing by one.
If we use Cramér’s model to study the distribution of primes in the congruence class

a (mod q), we find that the primes are distributed evenly between every congruence class
mod q. However, this is obviously false, and we do not have to look further than q = 2:
Every prime is odd except the number 2, so the class 1 (mod 2) contains almost all primes.
Andrew Granville suggested a refinement of the model that considers divisibility by small
primes (in this case, prime factors of q). In Chapter 5, we will see an application of this new
model to conjecture an asymptotic for the Sophie Germain primes.

1.5. Primes in arithmetic progressions
If we define

π(x; q, a) := # {p 6 x : p ≡ a (mod q)} ,

then the Prime Number Theorem for arithmetic progressions describes the equidistribution
of primes amongst the reduced residue classes mod q. The theorem can be stated as follows:
If x, q > 2 and (a, q) = 1, then there exists an absolute positive constant c such that

π(x; q, a)
π(x) = 1

φ(q) +Oq

(
e−c
√

log x
)
. (1.7)

Under a certain generalization of the Riemann Hypothesis called the Generalized Riemann
Hypothesis, which we will explain in the next chapter, we can have the better bound� log2 x√

x

uniformly for q 6 x in the error term in (1.7). It shows that, for a fixed q, the larger x gets,
the closer the primes less than x get to be evenly distributed between the reduced residue
classes.

By studying the function E(x; q, a, b) := log x√
x

(π(x; q, a) − π(x; q, b)), the Prime Number
Theorem for arithmetic progressions under the Generalized Riemann Hypothesis only tells
us that

E(x; q, a, b)� log2 x

for 2 6 q 6 x and a, b relatively prime to q. However, in a letter to M. Fuss in 1853, P.
L. Chebyshev noticed that the quantity E(x; 4, 3, 1) tends to oscillate around 1. This is
unexpected if we thought that primality did not follow any arithmetic structure besides the
fact that all the large primes resides in reduced residue classes, and are otherwise equidis-
tributed. Chebyshev’s remark leads us to conjecture that π(x; 4, 3) > π(x; 4, 1) for more than
half of the x and this puts an asterisk on the uniform distribution that the Prime Number
Theorem for arithmetic progressions gives. We can note that the normalisation log x/

√
x

in the definition of E(x; q, a, b) represents the order of magnitude of the standard deviation
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of π(x; 4, 3) − π(x; 4, 1), and its expected value for that matter, in a particular probabil-
ity space. The tendency of primes to be more frequent in one residue class over another
is often called in the literature: Chebyshev’s bias. Michael Rubinstein and Peter Sarnak
proved in 1994, under the Generalized Riemann Hypothesis and the Linear Independence
Hypothesis (which we will explain in Chapter 3), that we can measure the set of x such that
π(x; 4, 3) > π(x; 4, 1) using the logarithmic density:

lim
X→∞

1
logX

∫
[1,X]∩S0

dt
t

= 0.9959 . . . where S0 = {x > 1 : π(x; 4, 3) > π(x; 4, 1)}.

This shows that π(x; 4, 3) − π(x; 4, 1) changes signs infinitely many times since supS0 =
supSc0 = +∞. As we will see in Chapter 3, this problem is intimately linked to Littlewood’s
problem about the sign of π(x)− Li(x).

More generally, let πA(x) = # {p 6 x : p ∈ A} be the cumulative distribution function
of primes in A, a subset of N. The study of the sign of the quantity πA(x) − πB(x) for
two different natural number subsets A,B is called a prime number race. It is as if, at
every milestone x, the two sets are racing by trying to have the most primes below x. In
Chebyshev’s observation, the primes of the form 4n + 3 are more often in the lead against
the primes 4n+ 1.

This thesis will take a deep dive in understanding where Chebyshev’s bias comes from
and numerically comparing the 4n+ 1 and 4n+ 3 race to another race involving the Sophie
Germain primes, which are the primes p with 2p+ 1 also prime, against its sibling sequence,
the primes p such that 2p − 1 is also prime. However, since so little is known about these
last two sequences (we don’t even know if there are infinitely many of them), we will also
have to form conjectures to understand what their asymptotics might be.

From now on in this thesis, the primes p such that 2p+ 1 is also prime will be called the
Sophie Germain primes of the first kind3 and their counting function will be denoted by

π+(x) := {p 6 x : 2p+ 1 is also prime} .

Similarly, the primes p such that 2p−1 is also prime will be referred to as the Sophie Germain
primes of the second kind, and their counting function will be denoted by

π−(x) := {p 6 x : 2p− 1 is also prime} .

Studying the race between these two types of primes means studying the size and sign of
π+(x)− π−(x).

3A finite sequence of primes (pn) such that pn+1 = 2pn + 1 is called a Cunningham chain of the first kind. If
the condition were pn+1 = 2pn − 1 instead, then it would be called a Cunningham chain of the second kind.
This is why we use this terminology for Sophie Germain primes. It is believed that there are infinitely many
Cunningham chains of both kind having length k for any k > 1.
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1.6. Structure of the thesis
Chapter 2 intends to serve as an introduction to many definitions and tools of classi-

cal analytic number theory. In particular, we dive into the study of Dirichlet series, and
we present another version of the explicit formula (1.2) which is appropriate to prove the
Prime Number Theorem for arithmetic progressions under a generalization of the Riemann
hypothesis.

Chapter 3 explores the reason for Chebyshev’s bias by using the explicit formula to
rigorously explain why quadratic residues (mod q) have less “chance” of being primes than
quadratic nonresidues (mod q) for q = 4 or any odd prime. This chapter will also be where
we will discuss Littlewood’s problem about the sign of π(x)− Li(x).

The next three chapters (Chapters 4, 5 and 6) will be devoted to convince the reader of
the following conjecture:

Conjecture 1.1. As x→∞, we have

π+(x) ∼ π−(x) ∼ c2x

log2 x

where
c2 = 2

∏
p>3

(1− 1
(p− 1)2 ) ≈ 1.32032 . . .

The constant c2 is often referred as the twin prime constant since the function π2(x) :=
# {p 6 x : p+ 2 is prime} shares exactly the same conjectured asymptotic as π+(x) and
π−(x). We will focus on the study of π+(x); all the results obtained can be transferred easily
to π−(x).

In Chapter 4, we will prove a nontrivial upper bound on π+(x) using Selberg’s sieve
method, which is four times higher than the conjectured size.

In Chapter 5, we explain Conjecture 1.1 using Granville’s refinement of Cramér’s model
with another sieving technique, which considers the divisibility by small primes.

In Chapter 6, we will explain the circle method developed by G. H. Hardy and J. E.
Littlewood by changing the problem into the evaluation of an integral over the unit circle
{z ∈ C : |z| = 1}. Hardy and Littlewood conjectured that the main contribution of this
integral comes from the major arcs, which consist of the z in the unit circle such that
arg(z)/π is close to a rational number with low denominator. We will prove that the major
arcs’ contribution is of the same size as the asymptotic in Conjecture 1.1. The rest of the
arcs on the unit circle are called minor arcs. In certain different settings, one could prove
that the minor arcs’ contribution is negligible compared to the contribution from the major
arcs. However, in our case, we will explain why minor arcs cannot be dealt with in the same
manner.
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Finally, in Chapter 7, we will present some figures graphing the prime number race for
Sophie Germain primes and studying its periodicity. The graph for the Sophie Germain
prime race will be closer to a random walk than to Chebyshev’s prime number race.

The numerical constants in this paper have been calculated using Wolfram Mathematica
12.1 or MATLAB R2020a, and the graphs have been generated with MATLAB R2020a or
Maple 2018.

Overall, this thesis will explore techniques to find or hypothesize densities of some subsets
of natural numbers, especially types of prime numbers, to ultimately study the distribution
of these seemingly random objects.

33





Chapter 2

The explicit formula

The absence of a simple formula dictating what would be the nth prime could blur our intu-
ition about prime numbers and their structure. This chapter intends to introduce classical
methods and tools used frequently in analytic number theory to get a clearer sight of the
distribution of prime numbers.

2.1. Primes in arithmetic progressions
The positive integers are partitioned into the q distinct congruence classes mod q in a way

such that the first N numbers are close to being evenly distributed among the congruence
classes: if we fix a and q such that 0 6 a < q, then we can find with simple combinatorial
arguments that

# {n 6 N : n ≡ a (mod q)}
#{n 6 N}

= 1
q

+O
( 1
N

)
.

The way prime numbers split among the different congruence classes is not as obvious.
First, any n ∈ N with n ≡ a (mod q) is divisible by common factors of both a and q.
Therefore, a prime p ≡ a (mod q) such that (a, q) > 1 would have to be divisible by (a, q) and
this means that there can only be at most one prime number in these particular congruence
classes.

For the classes a (mod q) with a and q relatively prime, Dirichlet proved in his 1837
memoir that they all contain infinitely many primes. His work is considered by many to
mark the birth of analytic number theory.

As a matter of fact, the primes are equidistributed among the different reduced residue
classes mod q. By this, we mean that if we fix a and q such that (a, q) = 1 and we let
π(x; q, a) be the number of prime numbers less than x in the congruence class a (mod q),
then it is known that

π(x; q, a)
π(x) → 1

φ(q) as x→∞



where φ(q) is Euler’s totient function returning the number of positive integers up to q which
are relatively prime to q. This result is called the Prime Number Theorem for arithmetic
progressions.

A quantitative form of the prime number theorem in arithmetic progressions is the Siegel-
Walfisz theorem which states that if we let A > 0, then there exists an absolute constant
c > 0 such that for 1 6 q 6 (log x)A and (a, q) = 1, we have

π(x; q, a) = Li(x)
φ(q) +OA

(
xe−c

√
log x

)
. (2.1)

This theorem lets q vary, and the bound on the error term is uniform with respect to q inside
the set of integers in the interval [1, (log x)A].

In the following sections, we will prove a stronger result, but it will be entirely depending
on a deep conjecture.

Theorem 2.1. Let A > 0. Under the Generalized Riemann Hypothesis, we have

π(x; q, a) = Li(x)
φ(q) +OA

(√
x log x

)
uniformly for q �A x

A and (a, q) = 1.

The Riemann Hypothesis is arguably one of the most famous unsolved problems in all of
modern pure mathematics. We will explain what this conjecture and its generalization mean
at the end of Section 2.5, and we will show how they are intimately linked to the distribution
of prime numbers.

This chapter will present the outline of the classical method to prove Theorem 2.1. It has
multiple steps, and it will introduce a new set of tools from complex analysis, which will be
useful in the rest of this memoir. We will define the Dirichlet L-functions and explain how
a linear combination of them encodes the distribution of primes in the reduced arithmetic
progressions of a modulus q. We will give an explicit formula to a function related to π(x; q, a)
in terms of the zeros of the L-functions. This will be the key to understand Chebyshev’s
bias in the next chapter.

2.2. Dirichlet series
Our goal will be to give an estimate for

π(x; q, a) =
∑
p6x

p≡a (mod q)

1.
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This represents the sum up to x of the sequence (bn)n∈N defined by

bn =

1 if n is a prime congruent to a (mod q),
0 otherwise.

We cannot estimate the sum ∑
n6x bn by approximating it with an integral using partial

summation since the terms bn are far from varying smoothly. However, another way to
study sequences and their partial sums in number theory and combinatorics is to find and
study a generating function of the sequence bn instead.

Let f be an arithmetic function with polynomial growth, meaning that f : N → C and
that f(n)� nk for some k ∈ N. We can define the function

F (s) =
∞∑
n=1

f(n)
ns

in the region of convergence of the series. This function is called the Dirichlet series of f .
If f(n) � nk, then for s such that σ > k + 1 we have f(n)n−s � nk−σ, which means

that F (s) is absolutely convergent. Conversely, if there exists s such that F (s) converges
absolutely, then the main term f(n)n−s → 0, which implies that f(n) � nσ. Thus we can
conclude that having a function f(n) with polynomial growth is equivalent to saying that
its Dirichlet series converges absolutely for some s ∈ C.

Moreover, a special class of arithmetic functions are called multiplicative function. They
are the functions f such that f(1) = 1 and f(n·m) = f(n)f(m) whenever we have (n,m) = 1.
It is known that we can rewrite F (s) as a product over primes:

F (s) =
∞∑
n=1

f(n)
ns

=
∏
p

(
1 + f(p)

ps
+ f(p2)

p2s + . . .

)
, (2.2)

whenever the series is absolutely convergent. The right-hand side of (2.2) is called the Euler
product of F (s). This equation can be proved using the fundamental theorem of arithmetic.

If f is completely multiplicative, that is to say, a function respecting f(1) = 1 and the
property f(n ·m) = f(n)f(m) without having any restriction on n and m, then

F (s) =
∏
p

1 + f(p)
ps

+
(
f(p)
ps

)2

+ . . .

 =
∏
p

(
1− f(p)p−s

)−1
(2.3)

in the region where the series converges absolutely since each term in the product becomes
a geometric series.

Example 2.2. One crucial example of a Dirichlet series is the Riemann zeta function

ζ(s) =
∞∑
n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

, (2.4)
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defined for σ > 1. It is the Dirichlet series of the constant function 1 and is the key to
understand the distribution of prime numbers.

By applying the logarithmic function on (2.3), we can transform the Euler product into
a sum over prime powers:

G(s) = logF (s) =
∑
p

log(1− f(p)p−s)−1 = −
∑
p

∑
k>1

f(p)k
kpks

,

where the last equality is the expansion of the logarithm into its Taylor series (this can only
be done when σ is big enough so that |f(p)p−s| < 1 for all primes p). Then G(s) is the
Dirichlet series of

g(n) =

−
f(p)k
k

if n = pk is a prime power
0 otherwise.

(2.5)

Like Cauchy’s integral formula for the power series, we will eventually need an inversion
formula involving the Dirichlet series to extract useful information on the sequence it repre-
sents. We will see in Section 2.4 that this inversion formula will be an integral over a vertical
line of the complex plane. However, in practice, this integral is not easy to compute directly,
and we will need the integrand to be meromorphic to use the residue theorem from complex
analysis and give a value to the integral.

Each term of the series F (s) is an analytic function of the form s 7→ f(n)n−s =
f(n)e−s logn since the exponential function have a power series representation which is con-
vergent on the whole complex plane. To determine a region where F (s) is analytic, it suffices
to show that the series converges uniformly on every compact subsets of the region1.

Theorem 2.3. Let ∑∞n=1 f(n)n−s0 be a convergent series, E = {s ∈ C : σ > σ0} and E1 =
{s ∈ C : σ > σ0 + 1}. Then the Dirichlet series F (s) = ∑∞

n=1 f(n)n−s converges uniformly
on every compact subsets of E implying that F (s) is analytic on E. In particular, the series
F (s) converges absolutely for s ∈ E1.

Proof. Let K be a compact subset of E, and let ε > 0. Since F (s0) is convergent, there
exists N0 such that for every M > N > N0, we have∣∣∣∣∣∣

∑
N<n6M

f(n)
ns0

∣∣∣∣∣∣ < ε.

1See Theorem 1 of [2] p. 176 for a proof of this.
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If we let S(t) = ∑
N0<n6t f(n)n−s0 , then |S(t)| < ε for every t > 0. By using the Riemann-

Stieltjes integral and integrating by parts, we find that∣∣∣∣∣∣
∑

N<n6M

f(n)n−s
∣∣∣∣∣∣ =

∣∣∣∣∣
∫ M

N

dS(t)
ts−s0

∣∣∣∣∣
=
∣∣∣∣∣ S(M)
M s−s0

− S(N)
N s−s0

+ (s− s0)
∫ M

N
S(t)ts0−s+1 dt

∣∣∣∣∣ 6 ε

(
2 + |s− s0|

σ − σ0

)
.

The quantity
(
2 + |s−s0|

σ−σ0

)
is uniformly bounded for s ∈ K because of the compactness of K.

Therefore, we can conclude that we have uniform convergence of the series on K.
Finally, if F (s0) converges, then |f(n)n−s0 | → 0, which implies that f(n) � nσ0 . For

s ∈ E1, we have ∣∣∣∣∣f(n)
ns

∣∣∣∣∣� 1
nσ−σ0

implying that F (s) absolutely converges. �

Consequently, we define the abscissa of convergence

σc = inf {σ ∈ R : the series F (σ) converges}

and the abscissa of absolute convergence

σa = inf {σ ∈ R : the series F (σ) converges absolutely} .

We can be sure by Theorem 2.3 that F (s) diverges for any σ < σc, converges conditionally2

for σ ∈ (σc, σa), converges absolutely for σ > σa, that σa − σc ∈ [0, 1] and that f with
polynomial growth is now equivalent to having σc < +∞.

We know that for a complex number a, if two Taylor series at a are equal on a set that
has a limit point, then the Taylor series’s coefficients are equal. An analogous uniqueness
theorem exists for Dirichlet series:

Theorem 2.4 (Uniqueness Theorem). If f1 and f2 are two arithmetic functions with poly-
nomial growth and

∞∑
n=1

f1(n)
nsk

=
∞∑
n=1

f2(n)
nsk

for a sequence sk such that σk → +∞, then f1 = f2.

Proof. Aiming for a contradiction, let’s suppose that f1 6= f2. Let’s define g : N → C,
α,N > 0 such that

g(n) = f1(n)− f2(n), g(n)� nα and N = min {n : g(n) 6= 0} .

2The interval may be empty if σc = σa.
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Let G(s) be the Dirichlet series of g. For every k ∈ N, we are supposed to have G(sk) = 0
by hypothesis. On the other hand, however, we have∑

n>N

g(n)
nsk
�

∑
n>N

1
nσk−α

�
∫ ∞
N

dt
tσk−α

�α,N
1

σkNσk
,

and this implies that

N skG(sk) = N sk
∑
n>N

g(n)
nsk

= g(N) +Ok,N

( 1
σk

)
=⇒ lim

k→∞
N skG(sk) = g(N).

This contradicts g(N) 6= 0. �

We have proved that F (s) is analytic on an open set as long as the Dirichlet series
converges at some point of the complex plane. Using analytic continuation, we can generally
extend the definition of F (s) to points where the series does not converge. However, when
it comes to logF (s), the complex logarithm is not a meromorphic function, and we have to
take into account which branch of the logarithm we are working with. An alternative would
be to work with the logarithmic derivative (logF (s))′ = F ′(s)/F (s), which is much easier to
use from an analytic point of view.

If we have again the series F (s) = ∑∞
n=1 f(n)n−s, then by differentiating term by term

we get the series −∑∞n=1(f(n) log n)n−s. Since −f(n) log n is of polynomial growth if f is,
then we can conclude that the series −∑∞n=1(f(n) log n)n−s is a well-defined function for at
least one point of the complex plane. Using Theorem 2.3 again, we can find an open region
of the complex plane where this series converges uniformly. Therefore, we are allowed to
say that when differentiating a Dirichlet series which converges at some point, it suffices to
multiply every term by − log n.

Coming back to the case where f is completely multiplicative, we can find the coef-
ficients of F ′(s)/F (s) by differentiating logF (s) in a region where σ > log|f(p)|

log p for all p.
By multiplying the coefficients (2.5) by − log n, we get the coefficients of −F ′(s)/F (s) =∑∞
n=1 f(n)Λ(n)n−s where

Λ(n) =

log p if n = pk,
0 otherwise.

The function Λ is commonly called in number theory the von Mangoldt function. What we
have done here is defining another function Λ, which is only supported on prime powers and
which can be used to filter the values of f at prime powers. The arithmetic function f · Λ
has an easy-to-use Dirichlet series given by −F ′(s)/F (s).

Instead of studying the sum

π(x; q, a) =
∑
p6x

p≡a (mod q)

1,
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it might be easier to study the function

ψ(x; q, a) :=
∑
n6x

n≡a (mod q)

Λ(n).

This is Chebyshev’s psi function for the arithmetic progression a (mod q). We will see that
since the powers greater or equal to 2 of the primes are sparser than the primes themselves,
their contribution to the sum will be negligible. The logarithmic weight varies slowly, so we
can remove it using partial summation and thus go from estimates on ψ(x; q, a) to estimates
on π(x; q, a) (and vice versa).

2.3. Dirichlet convolution
We take a detour from understanding primes in arithmetic progressions to explain how

multiplication of Dirichlet series works and develop an essential tool that will be used several
times in the next chapters.

The set of power series is closed under multiplication, but multiplying together two power
series is not as simple as multiplying the coefficients. For arithmetic functions f and g such
that their respective power series both converge in a specific open set U ⊂ C, then for x ∈ U ,
we have( ∞∑

n=0
f(n)xn

)
·
( ∞∑
n=0

g(n)xn
)

=
∞∑
n=0

h(n)xn where h(n) :=
∑

06a,b6n
a+b=n

f(a)g(b). (2.6)

An analogous version can be given for functions on the real line. Let F(f) denote the
Fourier transform of a function f , then F(f)F(g) = F(h) where

h(x) =
∫ ∞
−∞

f(t)g(x− t) dt.

Those two operations are often referred to as the convolution for power series3 and the Fourier
transform, respectively.

If F (s) and G(s) are the Dirichlet series of f(n) and g(n) respectively, then F (s) +G(s)
is the Dirichlet series of f(n) + g(n) as expected. However, for the region where both series
F (s) and G(s) are absolutely convergent, we have

F (s) ·G(s) =
( ∞∑
a=1

f(a)
as

)
·
( ∞∑
b=1

g(b)
bs

)
=
∞∑
a=1

∞∑
b=1

f(a)g(b)
(ab)s =

∞∑
n=1

(f ∗ g)(n)
ns

where (f ∗ g)(n) :=
∑

16a,b6n
ab=n

f(a)g(b) =
∑
d|n
f(d)g(n/d). (2.7)

3Sometimes, the convolution for the power series is sometimes called Cauchy product.
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The function f ∗ g is called the Dirichlet convolution. It is a multiplicative analogue
to the function h defined in (2.6). With the Dirichlet convolution, the arithmetic functions
with polynomial growth have a ring structure, making the Dirichlet convolution easy to
manipulate.

Theorem 2.5. Let A = {f : N→ C with polynomial growth}. Then the triplet (A,+, ∗)
forms a commutative ring with unity ε(n) = 1n=1. In addition, the set of multiplicative
functions in A form a subgroup of the unit group A∗.

Proof. Let D be the set of Dirichlet series converging somewhere on the complex plane.
The fact that (D,+, ·) is a commutative ring is obvious. This ring’s unity is the constant
function 1, which could be represented as the Dirichlet series of ε. Let ϕ : A → D be the
map defined by

ϕ(f) =
∞∑
n=1

f(n)
ns

.

Then ϕ(f +g) = ϕ(f)+ϕ(g), ϕ(f ∗g) = ϕ(f) ·ϕ(g) because of (2.7) and ϕ(ε) = 1. The map
ϕ is bijective and its inverse ϕ−1 is well-defined by the Uniqueness Theorem (Theorem 2.4).
All the commutative ring axioms are respected with the triplet (A,+, ∗) since they follow
the commutative ring axioms of (D,+, ·) via the bijective map ϕ. Therefore, the map ϕ is a
ring isomorphism between A and D.

Finally, f : N → C being multiplicative and having polynomial growth is equivalent to
having an Euler product representation for its Dirichlet series

F (s) =
∏
p

∞∑
k=0

f(pk)(p−s)k (2.8)

which implies that

1
F (s) =

∏
p

( ∞∑
k=0

f(pk)(p−s)k
)−1

=
∏
p

∞∑
k=0

g(pk)(p−s)k

where g(1) = 1 and we can define recursively

g(pk) = −
k−1∑
j=0

f(pk−j)g(pj)

for k > 1. Since the product of two Euler products of the form (2.8) can also be represented
as an Euler product by using (2.6) on the inner sum, the multiplicative functions with
polynomial growth form a subgroup of A∗. �

We give below some important examples of Dirichlet convolution used in the rest of the
thesis.
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Example 2.6. Let τ1 be the constant function 1 and τn = τn−1 ∗ 1 for n > 2. The function
τ2 is usually noted τ and is called the divisor function. This is because τ(n) counts the
number of divisors of n. Generally, τk(n) counts the number of ways to write n as a product
of k positive integers since

τk(n) =
∑

a1···ak=n
1.

Its Dirichlet series is ζ(s)k.

Example 2.7 (Möbius inversion formula). To find the Dirichlet inverse of the constant
function 1, we can use the Euler product of the Riemann zeta function. For σ > 1,

1
ζ(s) =

∏
p

(
1− 1

ps

)
,

which is the Euler product of the multiplicative function µ supported on squarefree integers
defined by µ(p) = −1 for every prime p. This function is called the Möbius function.

Since µ is the inverse of 1, we have the identity

1n=1 = ε(n) = (1 ∗ µ)(n) =
∑
d|n
µ(d). (2.9)

This is the Möbius inversion formula. One main application of this formula is to extract
from a sum ∑

an the terms such that n is coprime to some positive integer m: We have∑
n : (n,m)=1

an =
∑
n

an
∑

d|(n,m)
µ(d) =

∑
n

an
∑
d|n
d|m

µ(d) =
∑
d|m

µ(d)
∑

n≡0 (mod d)
an =

∑
d|m

µ(d)
∑
r

adr,

provided the series ∑ an absolutely converge. The last expression describes secretly the
inclusion-exclusion principle from combinatorics. The above formula transforms a problem
about a sum of terms with a coprimality condition into a problem about sums over arithmetic
progressions. This is the base idea of sieve theory (see Chapter 4 and Section 5.2).

Example 2.8. One idea where we can see the Möbius inversion formula in action is when
studying Euler’s totient function φ. Let us recall that φ(m) counts the positive integers less
than or equal to m which are coprime to m. Then

φ(m) =
∑
n6m

1(n,m)=1 =
∑
n6m

∑
d|n
d|m

µ(d) =
∑
d|m

µ(d)
∑
n6m
d|n

1 =
∑
d|m

µ(d)m
d

= (µ ∗ ι)(m)

where ι(n) = n is the inclusion map from N to C. The Dirichlet series of ι is obviously
ζ(s− 1) which means that the Dirichlet series of φ is ζ(s− 1)/ζ(s). We can also find

φ = µ ∗ ι =⇒ ι = 1 ∗ φ =⇒ n =
∑
d|n
φ(d),
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which is useful is we use it to write the gcd of n and m as a sum over their common divisors:

(n,m) =
∑
d|n
d|m

φ(d).

Example 2.9. The last example involves the von Mangoldt function Λ which we defined
in the previous section. From what we have seen so far, we can say that the Dirichlet series
of Λ is −ζ ′(s)/ζ(s). Furthermore, differentiating a Dirichlet series means multiplying every
coefficient by − log n. For example, the Dirichlet series of log is −ζ ′(s), whence

ζ(s) ·
(
−ζ
′(s)
ζ(s)

)
= −ζ ′(s) =⇒ 1 ∗ Λ = log .

We could also prove this directly. If νp is a function defined as νp(n) = k where pk ‖n, then

(1 ∗ Λ)(n) =
∑
d|n

Λ(d) =
∑
pj |n

log p =
∑
p|n

log p
∑

j6νp(n)
1

=
∑
p|n
νp(n) log p = log

∏
p|n
pνp(n)

 = log n.

2.4. Perron’s formula
For Dirichlet series to be useful in analytic number theory, we must be able to extract

from them information about the sequence they represent, as it is for any type of generating
functions. Let F (s) = ∑∞

n=1 f(n)n−s be a Dirichlet series which is convergent at the point
s = c− 2πiξ where c, ξ ∈ R (we temporarily use this notation instead of the usual s = σ+ it

for convenience). Our goal is to have a formula for S(x) = ∑
n6x f(n). A clear link between

F and S comes from partial summation that gives us the formula

F (s) =
∞∑
n=1

f(n)
ns

=
∫ ∞

0
x−s dS(x) = s

∫ ∞
0
S(x)x−s−1 dx.

This formula makes F (s)/s the Mellin transform4 of the function S(1/x). The Mellin trans-
form is the Fourier transform, written in a different form. To directly derive an inversion
formula, we will make the change of variables u = − log x:

F (c− 2πiξ)
c− 2πiξ =

∫ ∞
−∞

S(e−u)euce−2πiuξ du

We have that ξ 7→ F (c−2πiξ)
c−2πiξ is the Fourier transform of the function u 7→ S(e−u)euc. Since

S(e−u) is a compactly supported step function, it is piecewise continuously differentiable
function in L1(R), thus we can use Fourier’s inversion formula:

S∗(e−u)euc = lim
T→∞

∫ T

−T

F (c− 2πiξ)
c− 2πiξ e2πiuξ dξ.

4The Mellin transform of a function f is defined to be Mf (s) =
∫∞

0 f(x)xs d(log x) =
∫∞

0 f(x)xs−1 dx.
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The new function S∗ is simply redefined to satisfy the Fourier inversion formula by taking
the average of the left and right limit at every discontinuity:

S∗(x) = lim
ε→0+

S(x+ ε) + S(x− ε)
2 .

This means that S∗(x) = S(x)− f(n)
2 if x ∈ N and that S∗(x) = S(x) otherwise. By changing

back the variables in the integral from ξ to s, then we get

S∗(e−u) = 1
2πi lim

T→∞

∫ c+2πiT

c−2πiT

F (s)
s

e−us ds.

Thus we have proved5 that for every x > 0, we have

S∗(x) = 1
2πi

∫
(c)

F (s)
s

xs ds, (2.10)

where
∫

(c) means that we are taking the limit as T →∞ of the integral along the path along
the vertical segment γc,T : [−T, T ] → C defined by γc,T (t) = c + it. The equation (2.10) is
known as Perron’s formula.

To use this idea in practice, we need to evaluate the complex integral on the right-hand
side of (2.10), and the main tool for this is Cauchy’s residue theorem from complex analysis.
We will approximate the integral over the vertical line by a contour integral over a closed
loop.

As an example of a computation of Perron’s formula, we follow a proof from §17 of [5] to
give an integral which is a smooth approximation to the “almost” indicator function 1∗(1,∞)(y)
(“almost” in the sense that the function has the value 1

2 at the point y = 1). This proposition
will later be used in the proof of a truncated version of the integral in (2.10) (Lemma 2.14).

Proposition 2.10. For y, c, T > 0, we have∣∣∣∣∣ 1
2πi

∫ c+iT

c−iT

ys

s
ds− 1∗(1,∞)(y)

∣∣∣∣∣�


yc

1+T |log y| if y 6= 1,
c
T

if y = 1.

Proof. If y = 1, then
1

2πi

∫ c+iT

c−iT

1
s

ds = 1
2πi

∫ T

−T

i

c+ it
dt = 1

2πi

∫ T

−T

t+ ic

c2 + t2
dt = c

π

∫ T

0

dt
c2 + t2

.

With the change of variables u = t/c, we get

= 1
π

∫ T/c

0

du
1 + u2 = 1

π

∫ ∞
0

du
1 + u2 +O

(∫ ∞
T/c

du
u2

)
= 1

2 +O
(
c

T

)
.

5These back and forth between variables s and ξ could be avoided by having in our arsenal the Mellin
inversion formula f∗(x) = 1

2πi
∫ c+i∞
c−i∞Mf (s)x−s ds, which, as we just saw, is just a few changes of variables

away from Fourier’s inversion formula.
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The main term in the last part of the equation is obtained by noticing that 1
1+u2 is the

derivative of arctan(u).
If y 6= 1, the strategy is to shift the path in a part of the complex plane where the integral

will be small; this way, the value of the integral is the sum of the residues of the poles that
we encountered in the homotopy. Note that in our case, the meromorphic function ys

s
has

only one pole of residue 1 at s = 0.
In the case 0 < y < 1, the integrand’s size will be diminished if we push the path on the

far right of the complex plane. However, we still have to take into account the fact that the
endpoints of our path have to stay fixed in our homotopy, meaning that for all M > c, we
have∫ c+iT

c−iT

ys

s
ds =

∫ M−iT

c−iT

ys

s
ds+

∫ M+iT

M−iT

ys

s
ds−

∫ M+iT

c+iT

ys

s
ds =

∫ +∞−iT

c−iT

ys

s
ds−

∫ +∞+iT

c+iT

ys

s
ds,

where the last part of the equality is due to the fact that ys

s
tends to 0 as σ → +∞ uniformly

with respect to the imaginary part of s because∣∣∣∣yss
∣∣∣∣ 6 1

σ
.

We can bound the last two integrals trivially∣∣∣∣∣
∫ c+iT

c−iT

ys

s
ds
∣∣∣∣∣ =

∣∣∣∣∣
∫ +∞−iT

c−iT

ys

s
ds−

∫ +∞+iT

c+iT

ys

s
ds
∣∣∣∣∣ 6 2

T

∫ ∞
c
yσ dσ 6 2yc

|log y|T . (2.11)

This bound is good, but we will eventually need a better one for values of y close to
1. To remedy the situation, we can modify the path of the integral in another way. Let C
be the circle in the complex plane of radius R =

√
c2 + T 2 centered at 0 and let γ′ be the

circular arc of C parametrized by arc length starting at c − iT , travelling counterclockwise
and finishing at c+ iT :∣∣∣∣∣

∫ c+iT

c−iT

ys

s
ds
∣∣∣∣∣ =

∣∣∣∣∫
γ′

ys

s
ds
∣∣∣∣ 6 yc

R

∫
γ′

ds 6 yc

R
2πR 6 2πyc. (2.12)

If y > 1, then we will use a similar strategy to bound the integral by modifying the
contour in two ways by first pushing the integral to the left, and second, by travelling
clockwise around the circle C instead of counterclockwise. The only difference here is that
we will consider the pole at s = 0 by adding its residue. �

The reason to use this approximation of an indicator function as an integral to prove
Perron’s formula becomes clear when looking at S∗(x) = ∑∞

n=1 an1∗(1,∞)

(
x
n

)
. In section 2.6,

we are going to apply Proposition 2.10 in order to have an explicit formula for ψ(x; q, a).
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2.5. Dirichlet characters and L-functions
In general, the function n 7→ 1n≡a (mod q) is not completely multiplicative, which means

that we cannot do as we discussed at the end of Section 2.2 to find the Dirichlet series of

Λ(n)1n≡a (mod q)

since the indicator function is not completely multiplicative. The strategy will be to write
down 1n≡a (mod q) as a linear combination of completely multiplicative functions.

Having a function being q-periodic and supported on integers relatively prime to q is an
advantage for us because it can be redefined on the unit group of the ring of congruence
classes (mod q), which is usually denoted (Z/qZ)∗. Looking at the group as if it was a
probability space by assigning the same probability to each element of the group, then the
complex function space L2((Z/qZ)∗) containing every function f : (Z/qZ)∗ → C is a Hilbert
space with the inner product

〈f, g〉 = 1
φ(q)

∑
a∈(Z/qZ)∗

f(a)g(a).

This function space is of course of dimension φ(q) since the indicator functions n 7→
1n≡a (mod q) for (a, q) = 1 form a basis of L2((Z/qZ)∗). Dirichlet introduced another or-
thonormal basis containing only completely multiplicative functions.

The Dirichlet characters mod q are arithmetic functions χ : Z → C defined by being
q-periodic completely multiplicative functions with χ(n) 6= 0 if, and only if, (n, q) = 1. They
can be seen as being the lifts to Z of the group homomorphisms (Z/qZ)∗ → C∗, where C∗ is
the multiplicative group of nonzero complex numbers. For example, the indicator function
of the integers coprime to q is a Dirichlet character. This particular character is called the
principal character mod q and is denoted by χ0.

Let χ be a character mod q. Since χ is completely multiplicative, we have χ(1) = 1.
With Euler’s theorem, Dirichlet character can only take roots of unity or zero as their values
since for (a, q) = 1, we have χ(a)φ(q) = χ(aφ(q)) = 1.

Note that for q = 1, the only character is the principal character, which always returns
1. The principal character χ0 of a modulus q > 2 is the constant function 1 everywhere
on the principal character’s support. In general, when a character ξ of modulus m can be
decomposed as

ξ(n) = 1(n,m)=1 · χ(n)

where χ is of modulus q which is a factor of m, then we say that χ induces ξ. The smallest
modulus of the character inducing ξ is called the conductor . In the case where a character
of smaller modulus cannot induce ξ, then we say that ξ is a primitive character . This means
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that no principal characters of any modulus q > 2 can be primitive since it is induced by
the constant function returning 1.

In general, we can construct the Dirichlet characters mod q by decomposing (Z/qZ)∗ into
a direct product of cyclic groups. This is true, of course, because it is a finite abelian group.
However, we can find an explicit decomposition using the Chinese Remainder Theorem:

(Z/qZ)∗ ∼= (Z/pν1
1 Z)∗ × . . .× (Z/pνkk Z)∗

where q = pν1
1 . . . pνkk is the prime factorization of q. From elementary number theory, every

multiplicative group modulo a prime power is cyclic except for powers of 2 greater than 8
where

(Z/2νZ)∗ ∼= (Z/2Z)× (Z/2ν−2Z)

if ν > 3.
The generators of (Z/2νZ)∗ are −1 and 5 if ν > 3 and is only −1 when ν = 2 (for the

case ν = 1, the group is trivial). The generators of a multiplicative group of integers modulo
n are called primitive roots modulo n. If we know that g is a primitive root modulo p, then
either g or g + p is a primitive root modulo pν for ν > 2. A proof for all these statements
can be found in most elementary number theory books (see Theorems 2.39, 2.40 and 2.43
in [22] pp. 102-105). The difficulty when constructing Dirichlet characters lies in finding a
primitive root for the odd prime moduli since there is no known fast algorithm to find them.

The proof of the following proposition will show important properties of Dirichlet charac-
ters while giving a way to construct them if we know the primitive roots of every odd prime
power dividing exactly q.

Proposition 2.11. The Dirichlet characters mod q form an orthonormal basis of the space
L2((Z/qZ)∗).

Proof. Since dim(L2((Z/qZ)∗)) = φ(q), then a set of φ(q) orthonormal functions is an or-
thonormal basis. Let χ be a Dirichlet character mod q. Since every group (Z/qZ)∗ can be
written as a finite direct product of cyclic group, there exists a finite number of generators
g1, . . . , gk with respective orders m1, . . . ,mk such that every element has a unique represen-
tation as ga1

1 . . . gakk with 0 6 aj < mj. Thus a character is entirely defined by setting the
values of χ(gj) for every j. Furthermore, the product of the orders of the generators needs
to match the size of (Z/qZ)∗ so

m1 . . .mk = φ(q).

Since χ(gj)mj = 1, χ(gj) needs to be a mj
th root of unity. Conversely, choosing any of

the mj
th root of unity for our value of χ(gj) will satisfy every properties that a Dirichlet
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character needs to have. Therefore, each χ(gj) can take mj different values possible so there
are m1 . . .mk = φ(q) different ways to define a Dirichlet character mod q.

Every character has norm 1 because a root of unity always has 1 as its absolute value:

‖χ‖2 = 1
φ(q)

∑
a∈(Z/qZ)∗

|χ(a)|2 = 1.

Finally, to show the orthogonality between characters, we first notice that taking the
complex conjugate of one character or taking the product of two characters mod q also gives
a character as a result since it satisfies all the properties defining Dirichlet characters. We
then observe that for any group G and a fixed element b ∈ G, the function f : G→ G defined
by f(x) = bx is a permutation of the elements of G. This is true in particular for the group
(Z/qZ)∗, so if χ is a nonprincipal character mod q, then there exists an integer b coprime to
q such that χ(b) 6= 1 and∑

a∈(Z/qZ)∗
χ(a) =

∑
a∈(Z/qZ)∗

χ(ba) = χ(b)
∑

a∈(Z/qZ)∗
χ(a) =⇒

∑
a∈(Z/qZ)∗

χ(a) = 0. (2.13)

We therefore conclude that if χ1, χ2 are two distinct Dirichlet characters mod q, then the
product χ1 · χ2 is a nonprincipal character and

〈χ1, χ2〉 = 1
φ(q)

∑
a∈(Z/qZ)∗

χ1(a)χ2(a) = 0.

This means that the Dirichlet characters mod q are an orthonormal set of function of
L2((Z/qZ)∗), so they are linearly independent. Since we have φ(q) of them (which matches
the function space’s dimension), we get an orthonormal basis. �

Any function in L2((Z/qZ)∗) can be written as a linear combination of Dirichlet characters
using the multiplicative Fourier transform.

Example 2.12. The indicator function can be decomposed as

1n≡a (mod q) =
∑

χ (mod q)
cχχ(n)

where the sum is over all the Dirichlet characters mod q. The cχ are the Fourier coefficients,
and they can be deduced by noticing that for a particular character χ1, we have

cχ1 =
∑

χ (mod q)
cχ〈χ, χ1〉 = 〈1n≡a (mod q), χ1〉 = χ1(a)

φ(q) ,

giving us the identity
1n≡a (mod q) = 1

φ(q)
∑

χ (mod q)
χ(n)χ(a). (2.14)
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Example 2.13. Another example, which we will use in Section 6.1, is the function
n 7→ e(n/q)1(n,q)=1. This function is in L2((Z/qZ)∗) which means that we can find its
multiplicative Fourier transform. Using the same method as above, let cχ be the Fourier
coefficient defined as

e(n/q)1(n,q)=1 =
∑

χ (mod q)
cχχ(n).

We find that for a particular Dirichlet character χ1, we have

cχ1 = 〈e(·/q)1(·,q)=1, χ1〉 = 1
φ(q)

∑
a∈(Z/qZ)∗

χ1(a)e(a/q) = G(χ1)
φ(q) ,

where we define
G(χ) :=

∑
16a6q

χ(a)e(a/q).

This object is called the Gauss sum of χ. Thus we say that

e(n/q)1(n,q)=1 = 1
φ(q)

∑
χ (mod q)

G(χ)χ(n).

To find the Dirichlet series Λ(n)1n≡a (mod q), we use (2.14) to get the equation

Λ(n)1n≡a (mod q) = 1
φ(q)

∑
χ (mod q)

χ(a)(Λ(n)χ(n)). (2.15)

We define the Dirichlet L-functions as L(s, χ) := ∑∞
n=1 χ(n)n−s. Hence the Dirichlet series

of Λ(n)1n≡a (mod q) can be written as
∞∑
n=1

Λ(n)1n≡a (mod q)

ns
= 1
φ(q)

∑
χ (mod q)

χ(a)
∞∑
n=1

Λ(n)χ(n)
ns

= − 1
φ(q)

∑
χ (mod q)

χ(a)L
′(s, χ)
L(s, χ) .

(2.16)
In the case when q = 1, the only character is the constant function 1, meaning that the
associated Dirichlet L-function is ζ(s).

The series defining the L-functions converges absolutely for σ > 1 since |χ(n)| 6 1 for all
n. In addition, if χ is nonprincipal, then we have convergence for σ > 0 because (2.13) implies
that SN = ∑

n6N χ(n) is a bounded sequence and n−ε is a decreasing sequence tending to 0
for every ε > 0 so by Theorem 2.3, we have convergence of the series if σ > 0.

The important Dirichlet L-functions to study are the L(s, χ) where χ is primitive. This
is because if ξ (mod m) is induced by χ (mod q) where q is the conductor and χ is primitive,
we know that the Euler product of L(s, ξ) can be written as

L(s, ξ) =
∏
p

(1− ξ(p)p−s)−1 =
∏
p

(1− 1(p,m)=1χ(p)p−s)−1 = L(s, χ)
∏
p|m

(1− χ(p)p−s).
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In particular, if χ0 is the principal character mod q, then

L(s, χ0) =
∏
p|q

(1− p−s)ζ(s).

We are eventually going to need an analytic continuation of Dirichlet L-functions over the
complex plane.

To first find an analytic continuation of ζ(s), we can use partial summation to deduce
that if σ > 1, then

ζ(s) =
∫ ∞

1

dt
ts
−
∫ ∞

1−

d{t}
ts

= s

s− 1 − s
∫ ∞

1

{t}
ts+1 dt. (2.17)

Since the right-hand side is meromorphic and the integral is convergent when σ > 0, then
we obtain an analytic continuation of ζ(s) when σ > 0. Furthermore, Riemann proved in
his only paper about number theory (see [26] pp. 135-144) that the Riemann zeta function
has an analytic continuation on the whole complex plane with only one simple pole at 1.
He gave a functional equation which shows the symmetry of ζ(s) with respect to the critical
line. A convenient way to right this functional equation is

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s). (2.18)

where Γ is the gamma function6. With (2.17), we were able to extend the definition of ζ(s)
with σ > 0, and the functional equation (2.18) gives values for ζ(s) on the whole complex
plane (except for the simple pole of residue 1 at s = 1).

The series defining L(s, χ) is convergent for σ > 0. In 1882, Hurwitz gave a generalization
of the functional equation for L-functions of primitive characters χ with conductor q > 2.
He showed that L(s, χ) also has symmetry with respect to the critical line, thus giving values
for L(s, χ) on the whole complex plane.

The only values that χ(−1) can take are ±1 since χ(−1)2 = 1. Let a = 0 if χ(−1) = 1
(these characters are called even characters) and, in the other case, let a = 1 if χ(−1) = −1
(which are called odd characters). Let G(χ) be the Gauss sum, which was defined in Example
2.13. Then we can define the function

ξ(s, χ) := (π/q)−
s+a

2 Γ
(
s+ a

2

)
L(s, χ). (2.19)

The function ξ can be proven to be entire. We have excluded the case where q = 1 because
we usually multiply by s(s−1)

2 at the end of the definition to cancel the poles of Γ and ζ at

6The gamma function is a nice way to analytically generalize the factorial. It is defined by Γ(s) =∫∞
0 xs−1e−x dx for σ > 0. By integrating by parts, we can see that it respects the functional equation

Γ(s+ 1) = sΓ(s) and with this we can extend the Γ to be a meromorphic function with simple poles at every
nonpositive integers.
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0 and 1 respectively7. The functional equation for the L-function of a primitive character χ
can be written as

ξ(1− s, χ) =
ia
√
q

G(χ)ξ(s, χ). (2.20)

The proof of (2.20) is given in §12 of [5]. Now that we have defined Dirichlet L-functions
and that we know that they are all meromorphic over the complex plane, we can state the
Riemann Hypothesis and its generalization, which both remain unproven:

• The Riemann Hypothesis (RH) asserts that the real part of every nontrivial zero of
ζ(s) is 1

2 .
• The Generalized Riemann Hypothesis (GRH) asserts that, for every primitive char-
acter χ, the real part of every nontrivial zero of L(s, χ) is 1

2 .
All that remains is taking the Dirichlet series (2.16) and using Perron’s formula to have an
explicit formula for ψ(x; q, a).

2.6. The explicit formula
First, using (2.15), we get

ψ(x; q, a) =
∑
n6x

Λ(n)1n≡a (mod q) = 1
φ(q)

∑
χ (mod q)

χ(a)ψ(x, χ) (2.21)

where
ψ(x, χ) =

∑
n6x

Λ(n)χ(n).

By using Perron’s formula, we have

ψ∗(x, χ) = 1
2πi

∫
(c)
−L

′(s, χ)
L(s, χ)

xs

s
ds

for c > 1. The explicit formula comes from evaluating this integral. We will use the same
idea as in the proof of Proposition 2.10 by truncating the tails of the integral and pushing
the integral to the far left of the complex plane while picking up residues along the way.
However, to use the residue theorem, one detail we have omitted in this process is that one
needs to have an integrand that is holomorphic inside the region enclosed by the closed curve
we are integrating along, except maybe a finite number of isolated singularities.

To get the explicit formula, we want to get an estimate of the form

ψ(x, χ) ≈ 1
2πi

∫ c+iT

c−iT
−L

′(s, χ)
L(s, χ)

xs

s
ds ≈

∑
res, (2.22)

7Note that Γ also has simple poles at every negative integers but they are canceled out since ζ(−2n) = 0 for
n > 1. To prove this, we can simply take the functional equation (2.20) since it does not matter if ξ is entire
or not to use the equation.
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where the sum over the residues of the singularities z with Re(z) < c and |Im(z)| < T . The
following lemma gives us an error term of the truncated version of Perron’s formula to apply
it in practice:

Lemma 2.14. If A(s) = ∑∞
n=1 ann

−s is a Dirichlet series with |an| � log n for n > 2, then
for x, T > 2 and c = 1 + 1

log x we have

∑
n6x

an =
∫ c+iT

c−iT
A(s)x

s

s
ds+O

(
x log2 x

T
+ log x

)
.

Proof. First of all, let S(x) = ∑
n6x an, then

S(x) = S∗(x) +O(log x)

=
∞∑
n=1

an1∗(1,∞)

(
x
n

)
+O(log x)

=
∫ c+iT

c−iT
A(s)x

s

s
ds+

∞∑
n=1

anE(x
n
, T ) +O(log x) ,

where E(y, T ) is the error term in the Proposition 2.10. The Dirichlet series in the last
equality is obtained by interchanging an infinite series and an integral. This can be justified
because for a fixed x > 2, the series ∑∞n=1 an(x

n
)ss−1 converges uniformly for s on the vertical

line σ = c by the Weierstrass M-test. All that is left to show is that ∑∞n=1 anE(x
n
, T ) �

x log2 x
T

+ log x.
We are going to decompose the sum ∑∞

n=1 anE(x
n
, T ) with∑

n>1
=

∑
1<|n−x|6 x

T

+
∑

max{1, x
T
}<|n−x|6x2

+
∑

|n−x|>x2

+O(log x) ,

where the three sums on the right side are denoted E1, E2 and E3 respectively. Note that the
first sum may be empty and that the error term is composed of the sum over the values of
n respecting |n− x| 6 1, which contains at most 3 terms. Let us also note that xc = ex � x

since we are going to use it repetitively to bound every sum Ej.
For the interval of the first sum where 1 < |n− x| 6 x

T
, we use the bound E(x

n
, T )�

(
x
n

)c
since log(x/n) is getting too close to 0 to have a good bound with it in the denominator.
This means that by applying this bound and an � log n, we get

E1 �
∑

|n−x|6 x
T

log n
(
x

n

)c
�
(

x

x(1− 1
T

)

)c
log(x(1 + 1

T
))

∑
|n−x|6 x

T

1� x

T
log x.

In the second sum, using Taylor’s theorem, we know that |log(1 + y)| � |y| in any compact
subset of (−1,1). Thus we can use the estimate

|log(x/n)| = |log(n/x)| =
∣∣∣log

(
1 + n−x

x

)∣∣∣ � |n− x|
x
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because |n−x|
x
6 1

2 . This also implies that n � x in the range of n. We can then bound E2

with
E2 �

∑
max{1, x

T
}<|n−x|6x2

log n x(x/n)c
T |n− x|

� x log x
T

∑
max{1, x

T
}<|n−x|6x2

1
|n− x|

.

We can see that the last sum is close to the summation defining a harmonic number, so we
should expect the sum to contribute for about log x to the bound. To prove this, we can use
dyadic decomposition and show that

� x log x
T

∑
162j6x2

∑
2j<|n−x|62j+1

1
|n− x|

� x log x
T

∑
162j6x2

∑
2j<|n−x|62j+1

1
2j �

x log2 x

T
.

In the intervals of the third sum defined by |n− x| > x
2 , we have

E(x
n
, T )� (x/n)c

1 + T |log(x/n)| �
x

T
n−c

because |log(x/n)| � 1. By applying this bound and an � log n� nε/ε to E3 for ε = 1
2 log x ,

we get
E3 �

x

εT

∞∑
n=1

1
nc−ε

.

We can bound the last sum by an integral since the terms are decreasing, which would give
us

� x

εT

∫ ∞
1

dt
tc−ε

= x

εT
· 1
c− ε− 1 �

x log2 x

T
,

and this finally proves that ∑∞n=1 anE(x
n
, T ) � x log2 x

T
. This completes the proof of the

lemma. �

If we apply Lemma 2.14 to ψ(x, χ), we find

ψ(x, χ) = 1
2πi

∫ c+iT

c−iT
−L

′(s, χ)
L(s, χ)

xs

s
ds+O

(
x log2 x

T
+ log x

)
. (2.23)

We apply the residue theorem by shifting the contour to the far left:

ψ(x, χ) =
∑

res + 1
2πi

∫ c+iT

−∞+iT
−L

′(s, χ)
L(s, χ)

xs

s
ds

− 1
2πi

∫ c−iT

−∞−iT
−L

′(s, χ)
L(s, χ)

xs

s
ds+O

(
x log2 x

T
+ log x

)
, (2.24)

where ∑ res is defined as in equation (2.22). Note that −L
′(s,χ)

L(s,χ) ·
xs

s
� T log(qk)

kx2k uniformly on
the vertical line Re(s) = 2k + a + 1 for any positive integer k, which is why we could push
the contour to the far left without any problem. A proof of this and of the other bounds on
L′(s,χ)
L(s,χ) are in §19 of [5].

Furthermore, since we do not want to encounter a nontrivial zero of L(s, χ) when forming
our contour, we need to choose carefully T such that the distance between the contour and

54



the closest zero is controlled. By using the argument principle, we have a formula for the
density of the nontrivial zeros of L(s, χ):

Theorem 2.15. Let N(T, χ) be the number of zeros ρχ = βχ + iγχ in the critical strip of
L(s, χ) with |γχ| 6 T . Then

N(T, χ) = T

π
log

(
qT

2πe

)
+O(log(qT )) .

The proof is in §16 of [5]. This ensures that we can choose T arbitrarily large such that
|γχ − T | � 1

log(qT ) . Finally, the contribution of the two integrals in (2.24) is O
(
x log2(qxT )

T

)
.

The proof is also in §19 of [5].
The residues of −L

′(s,χ)
L(s,χ) ·

xs

s
come from the zeros of L(s, χ) and the origin (there is an

extra simple pole at s = 1 in the case q = 1). The pole at the origin is simple since we have
assumed GRH, and its residue is −L′(0, χ)/L(0, χ) if χ is an odd character or if q = 1, and
is of the form log x+ b(χ) if χ is even with conductor q > 2. Both L′(0, χ)/L(0, χ) and b(χ)
are O(log q) under GRH. The residue at the zero ρ of L(s, χ) is −mxρ/ρ, where m is the
multiplicity of the zero. Since sum of the residues of the trivial zeros is � log x, this leads
us to the following explicit formula:

Theorem 2.16. Let q, T > 1, x > 2 and χ be a character mod q. Then

ψ(x, χ) = x1χ=χ0 −
∑
|γχ|6T

xρχ

ρχ
+O

(
x log2(qxT )

T
+ log(qx)

)
,

where the ρχ = βχ + iγχ represents the zeros of L(s, χ) with real part between 0 and 1, and
each zero in the sum is counted with its multiplicity.

2.7. The Prime Number Theorem for arithmetic pro-
gressions

Taking together the density of zeros with the explicit formula, we can have a sense of the
size of the error term in Theorem 2.1. Let

β0 = max
ρ=β+iγ

β,

where the maximum is taken over every nontrivial zero of L-functions of Dirichlet characters
mod q, then if q �A x

A and T = x, we have

∑
|γχ|6T

xρ

ρ
� xβ0

∑
|γχ|6T

1
|ρ|
� xβ0

∫ T

1/q

log qt
t

dt = xβ0(log qT )2

=⇒ ψ(x, χ) = x1χ=χ0 +OA

(
xβ0 log2 x

)
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for a primitive character χ. In the case where ξ (mod m) is induced by χ (mod q) where q
is the conductor and χ is primitive, we obtain the same estimate as above since

ψ(x, ξ) =
∑
n6x

Λ(n)ξ(n) =
∑
n6x

(n,m)=1

Λ(n)χ(n) = ψ(x, χ) +O

∑
pk6x
p|m

log p


= ψ(x, χ) +O(logm log x) = ψ(x, χ) +OA

(
log2 x

)
.

Thus, with the Riemann Hypothesis for L-functions of Dirichlet characters mod q (meaning
that β0 = 1/2) and using (2.21), we have the estimate

ψ(x; q, a) = 1
φ(q)

∑
χ (mod q)

χ(a)ψ(x, χ) = x

φ(q) +OA

(
x1/2 log2 x

)
,

where the main term come from the estimate on the principal character. If we let β0 be free,
we see why we have (1.4).

To transition to the function π(x), we decompose the sum forming ψ into the distinct
powers of primes

ψ(x; q, a) =
∑
pk6x

pk≡a (mod q)

log p = θ(x; q, a) +
∑
pk6x

pk≡a (mod q)
k>2

log p,

where
θ(x; q, a) =

∑
p6x

p≡a (mod q)

log p

is Chebyshev’s theta function. Since∑
pk6x

p2≡a (mod q)
k>2

log p�
∑

p6x1/2

log p
∑

26k6log x/ log p
1� x1/2 log x, (2.25)

we get |ψ(x; q, a)− θ(x; q, a)| �
√
x log x. Finally, we can get

θ(x; q, a) = x

φ(q) +OA

(
x1/2 log2 x

)
=⇒ π(x; q, a) = Li(x)

φ(q) +OA

(
x1/2 log x

)
with partial summation which proves Theorem 2.1. Let’s note that if we take q = 1, this
also proves the Prime Number Theorem under RH:

π(x) = Li(x) +O
(
x1/2 log x

)
.
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Chapter 3

Chebyshev’s bias

In this chapter, we will assume that GRH is true. The previous chapter established that the
prime numbers are approximately uniformly distributed in the reduced arithmetic progres-
sions mod q. The words “approximately uniformly distributed” mean in this context that
π(x; q, a) can be approximated by a function which is independent of the value a, as long as
we choose a to be relatively prime to q. However, Chebyshev noticed that there was a bias
in the race between the prime numbers of the form 4n+ 1 and the primes of the form 4n+ 3.
The difference π(x; 4, 3)− π(x; 4, 1) seemed to take positive values for a large proportion of
values of x. Let’s recall the function E(x; q, a, b) = log x√

x
(π(x; q, a) − π(x; q, b)). Figure 3.1

illustrates the behavior of E(x; 4, 3, 1) in the interval [104, 108].

Fig. 3.1. Graph of the function E(x; 4, 3, 1) = log x√
x

(π(x; 4, 3)− π(x; 4, 1)).

This graph shows three spikes falling below the x-axis. They represent the times where
the primes 1 (mod 4) take the lead in the race against the primes 3 (mod 4). The function
E(x; 4, 3, 1) is always positive for every x 6 108 except on a subset of the union of intervals
[26861, 26863) ∪ [616841, 633798) ∪ [12306137, 12382326).

At first glance, the graph seems erratic. However, the map u 7→ E(eu; 4, 3, 1) follows a
quasi-periodic structure since, as we will show, this function can be written as a superposition



of waves1. The frequencies and amplitudes of these waves can be determined by the zeros of
L(s, χ1) where χ1 is the only nonprincipal character mod 4. But with Theorem 2.1 we do not
have enough information to study the bias and all we can say is that E(x; 4, 3, 1)� (log x)2.
Revisiting the steps of the proof where we are bounding functions which contribute to the
error term of the theorem, we will give more details to (2.25) for the two reduced congruence
classes of the modulus q = 4. This is the starting point of the study of Chebyshev’s bias.

3.1. Being a quadratic residue makes a difference
The sum defining Chebyshev’s ψ function can be decomposed into the different powers

of prime numbers:
ψ(x; 4, a) =

∑
k6 log x

log 2

∑
p6x1/k

pk≡a (mod 4)

log p. (3.1)

Chebyshev wrote in his 1853 letter to Fuss (in French):
“En cherchant l’expression limitative des fonctions qui déterminent la totalité
des nombres premiers de la forme 4n + 1 et ceux de la forme 4n + 3, pris au
dessous d’une limite très grande, je suis parvenu à reconnaître que ces deux
fonctions diffèrent notablement entre elles par leurs seconds termes, dont la
valeur, pour les nombres 4n + 1, est plus grande que celle pour les nombres
4n+1; ainsi, si de la totalité des nombres premiers de la forme 4n+3, inférieurs
à une limite quelconque x, on retranche celle des nombres premiers de la forme
4n+1, et que l’on divise ensuite cette différence par la quantité

√
x

log x , on trouvera
plusieurs valeurs de x telles, que ce quotient s’approchera de l’unité aussi près
qu’on le voudra.”

In the second part of this quote, Chebyshev essentially writes that E(x; 4, 3, 1) has multiple
values around 1, which falls in line with what we can see from Figure 3.1. In the first part
of the quote however, he says that he recognized that the bias comes from the fact that the
term k = 2 in the equation (3.1) is completely different if we compare the two cases with a
being 1 or 3. This comes from the fact that every square of an odd prime is 1 (mod 4).

With the explicit formula for ψ, we will present how Rubinstein and Sarnak proved in
[27] that E(eu; 4, 3, 1) is close to a sum of trigonometric functions oscillating around 1. For
our further calculations in this chapter concerning the limiting distribution and in Chapter
7 when studying the periodicity of the function, we only need a bound on the norm of the
error term in L2 which is easily computable since L2 is a Hilbert space:

1This is why the graph of E in Figure 3.1 is presented with the x-axis on a logarithmic scale.
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Theorem 3.1. For u, T and U respecting u, log T ∈ [0, U ], then assuming GRH we can
write

E(eu; 4, 3, 1) = 1 +
∑

0<γ6T

cos(γu) + 2γ sin(γu)
1
4 + γ2 + ε(u;T )

where γ are the imaginary parts of the zeros of L(s, χ1) with χ1 being the nonprincipal
character mod 4 and ∫ U

0
ε(u;T )2 du� U log2 T

T
+ 1.

Proof. Let χ1 be the nonprincipal Dirichlet character mod 4. The difference π(x; 4, 3) −
π(x; 4, 1) is essentially a sum of values of χ1 over primes since we can use Proposition 2.11
to find that

1p≡3 (mod 4) − 1p≡1 (mod 4) = −χ1(p) (3.2)

and ultimately rewrite E(eu; 4, 3, 1) as

E(eu; 4, 3, 1) = −ue−u/2
∑
p6eu

χ1(p).

From the discussion at the end of Section 2.2, studying a sum of values of a completely
multiplicative function over primes is easier if we transition to the von Mangoldt function
Λ instead and use the theory of L-functions from the previous chapter. To do this, we can
decompose the sum into three parts and notice that χ1(p)2 = 1 for every odd prime to find
the equation ∑

p6x

χ1(p) =
∑
n6x

Λ(n)χ1(n)
log n − 1

2
∑

36p6
√
x

1−
∑

36k6 log x
log 2

1
k

∑
p6x1/k

χ1(p)k. (3.3)

The oscillations in the theorem come from the first sum on the right-hand side of (3.3), the
second sum will make the bias and the third double sum will contribute to the error term.

For the first sum on the right-hand side of (3.3), we can use partial summation twice.
For any Dirichlet character χ, let G(x, χ) =

∫ x
2 ψ(t, χ) dt. Then we have

∑
n6x

Λ(n)χ1(n)
log n =

∫ x

2−

dψ(t, χ1)
log t = ψ(x, χ1)

log x +
∫ x

2

ψ(t, χ1)
t log2 t

dt

= ψ(x, χ1)
log x + G(x, χ1)

x log2 x
+
∫ x

2

G(t, χ1)(log t+ 2)
t2 log3 t

dt. (3.4)

We can give a bound on G(x, χ1) by integrating the associated explicit formula for ψ(x, χ1)
with T = x and noting that the density of the zeros of L(s, χ1) from Theorem 2.15 implies
that ∑ 1

γ2 is a convergent series:

G(x, χ1) =
∫ x

2

∑
|γ|6x

t1/2+iγ

1
2 + iγ

+O

(
t log2(tx)

x
+ log t

)
dt� x3/2 ∑

|γ|6x

1
γ2 � x3/2.
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Applying the bound to (3.4), we obtain the estimate
∑
n6x

Λ(n)χ1(n)
log n = ψ(x, χ1)

log x +O

( √
x

log2 x

)
.

The second sum in (3.3) is simply evaluated with the Prime Number Theorem since
1
2(π(
√
x)− 1) =

√
x

log x

(
1 +O

(
1

log x

))
. Finally, the final sum in (3.3) can be bounded by

∑
36k6 log x

log 2

1
k

∑
p6x1/k

χ1(p)k �
∑

36k6 log x
log 2

π(x1/k)
k

�
∑

36k6 log x
log 2

x1/k

log x � x1/3.

We can combine these estimates in (3.3) to get

E(x; 4, 3, 1) = − log x√
x

∑
p6x

χ1(p) = 1− ψ(x, χ1)√
x

+O

(
1

log x

)
.

With the explicit formula from Theorem 2.16, we can define the function

E(eu; 4, 3, 1) = 1 +
∑
|γ|6T

eiγu

1
2 + iγ

+
∑

T<|γ|6eU

eiγu

1
2 + iγ

+O
(
eu/2−U(U2 + u2) + 1

u

)
(3.5)

We have separated the sum over the zeros of L(s, χ1) into two parts since we only need
a bound on the standard deviation if we replaced u by a uniform random variable on the
interval [log 2, U ]. Since χ1 is a real character, then the position of the zeros of L(s, χ1) are
symmetric with respect to reflection along the real axis. Thus, we can group the zeros in
pairs in the following way:

eiγu

1
2 + iγ

+ e−iγu

1
2 − iγ

= cos(γu) + 2γ sin(γu)
1
4 + γ2 .

All that is left to prove is to bound the mean square of the error term

ε(u;T ) =
∑

T<|γ|6eU

eiγu

1
2 + iγ

+O
(
eu/2−U(U2 + u2) + 1

u

)
.

By taking the square and using the Cauchy-Schwarz inequality, we get

ε(u;T )2 6
∑

T<|γ1|,|γ2|6eU

2ei(γ1−γ2)u

(1
2 + iγ1)(1

2 − iγ2) +O
(
eu−2U(U4 + u4) + 1

u2

)
. (3.6)

By integrating over the interval [0, U ] and by using the fact that
∫ U

0 e
i(γ1−γ2)u du �

min {U, 1/ |γ1 − γ2|} for arbitrary nontrivial zeros of L(s, χ1), we can get the bound∫ U

0
ε(u;T )2 du�

 ∑
T<|γ1|,|γ2|6eU

min{U, 1/ |γ1 − γ2|}
|γ1γ2|

+ 1.

Using the symmetry in the terms, it suffices to get an upper bound for the sum over the
pairs of zeros such that T < γ1 6 γ2 6 eU and for the sum over the ones such that
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γ1, (−γ2) ∈ (T,eU ], and since we have

∑
T<γ16eU

−eU6γ2<−T

1
|γ1γ2(γ1 − γ2)| =

∑
T<γ1,γ26eU

1
γ1γ2(γ1 + γ2) �

 ∑
T<γ16eU

1
γ

3/2
1

2

� 1,

then we only need to bound∫ U

0
ε(u;T )2 du�

 ∑
T<γ16γ26eU

min{U, 1/(γ2 − γ1)}
γ1γ2

+ 1

=

 ∑
γ1>T

1
γ1

 ∑
γ2∈[γ1,γ1+ 1

U
]

U

γ2
+

∑
γ2∈[γ1+1/U,eU ]

1
γ2(γ2 − γ1)


+ 1.

With partial summation and Theorem 2.15, we arrive to the desired upper bound on∫ U
0 ε(u;T )2 du.

�

3.2. The race π(x) vs. Li(x)
For any q which is an odd prime, the Legendre symbol n 7→

(
n
q

)
is a primitive character

mod q. Hence, we can use the same techniques as the proof of Theorem 3.1 to pit in a
prime number race the primes that are quadratic residues mod q against the ones that are
not and obtain a very similar theorem. One other prime number race, which does not really
respect the definition of the prime number race that we gave in Section 1.5, is letting the
primes collectively race against the smooth function Li(x). The Figure 3.2 illustrates how
Li(x) seem to be always bigger than π(x). To this day, there is no known number x such

Fig. 3.2. Graph of 2
Li(
√
x)(Li(x)− π(x)).

that Li(x)− π(x) is negative. But Littlewood showed that if we let x→∞, we will find an
infinite number of sign changes, we just haven’t determined any yet. Just as Chebyshev’s
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race, |ψ(x)− θ(x)| �
√
x log x is the crude bound blinding us from the reason of the bias in

the race between π and Li.
Following the proof of Theorem 3.1, we will show this using the explicit formula for ψ(x).

We will study the function

Π(x) =
∑
n6x

Λ(n)
log n =

∑
k6 log x

log 2

1
k
π(x1/k). (3.7)

Using Möbius inversion, we can get

π(x) =
∑

k6 log x
log 2

1
k
π(x1/k)

∑
dr=k

µ(d) =
∑

d6 log x
log 2

µ(d)
d

∑
r6 log x

d log 2

1
r
π((x1/d)1/r) =

∑
d6 log x

log 2

µ(d)
d

Π(x1/d).

If there is no bias in the race ψ(x) vs. x, then we can assume that Π(x) vs. Li(x) is also
unbiased by partial summation, which means that a better way to approximate π(x) would
be

π(x) ≈
∑

d6 log x
log 2

µ(d)
d

Li(x1/d). (3.8)

In fact, the function Li(x)− 1
2 Li(
√
x)− π(x) seems to already have much more sign changes

than Li(x)− π(x) as Figure 3.2 illustrates with the multiple times the graph crosses the line
y = 1.

We can write Π(x) in different ways. First, from (3.7) and the PNT with the Riemann
Hypothesis, we can write

Π(x) = π(x) + 1
2π(
√
x) +

∑
36k6 log x

log 2

1
k
π(x1/k) = π(x) + 1

2 Li(
√
x) +O

(
x1/3

)
.

In a different manner, we can write Π(x) − Li(x) as a Riemann-Stieltjes integral in the
following way:

Π(x)−Li(x) =
∫ x

2−

d(ψ(x)− x)
log x =⇒ Li(x)−π(x) = 1

2 Li(
√
x)−

∫ x

2−

d(ψ(x)− x)
log x +O

(
x1/3

)
.

Since the only difference between the explicit formula of ψ(x)− x and the one of ψ(x, χ1) is
the location of the zeros of their associated L-functions, we can also arrive to a theorem of
the same form and with an identical proof as that of Theorem 3.1:

Theorem 3.2. For u, T and U respecting u, log T ∈ [0, U ], then assuming the Riemann
Hypothesis we can write

2
Li(eu/2)(Li(eu)− π(eu)) = 1 +

∑
0<γ6T

cos(γu) + 2γ sin(γu)
1
4 + γ2 + ε(u;T )
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where γ are the imaginary parts of the zeros of ζ and∫ U

0
ε(u;T )2 du� U log2 T

T
+ 1.

Remark 3.3. The approximation (3.8) is the reason why the values of the function α(x)
defined in Figure 1.2 seem to oscillate around the smooth function

log(1
2 Li(x1/2) + 1

3 Li(x1/3))
log x . (3.9)

This function is asymptotic to 1
2−

log log x
log x which does not contradict the Riemann Hypothesis.

We only considered three terms in the sum in (3.8) since it seemed sufficient to model the
curve around which we have our oscillations.

Fig. 3.3. Graph of the function α defined by π(x) = Li(x)− xα(x) (in red) and the smooth
approximation (3.9) around which α(x) oscillates (in blue).

3.3. Why use the logarithmic density?
For a random positive real number x, could we predict the probability of having the

primes 1 (mod 4) in the lead over the primes 3 (mod 4) for this particular value of x? In
other words, what is the probability that E(x; 4, 3, 1) < 0? The words “a random positive
real number x” are ambiguous since we did not specify the probability measure. There is a
very natural way to understand which probability measure is appropriate for Chebyshev’s
race, the π(x) vs. Li(x) race and any race where we end up with similar theorems as Theorem
3.1 and Theorem 3.2.

If we were to ask instead for a random number in the interval [0, 1), then most people
would naturally assume that we are talking about the uniform distribution defined by the
Lebesgue measure. The reason for this is that the uniform distribution treats every points in
the interval with perfect equality, with no room for any bias. Every point in the interval is
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a mode of the uniform distribution. However, there is obviously no probability distribution
where the support is [0,∞) and where every point is a mode.

Instead of trying to find a perfect distribution supported on [0,∞), we can interpret a
random positive number as a uniformly distributed random variable in the interval [0, X] for
a very large X. If the limit

d(A) := 1
X

∫ X

0
1A(y) dy

exists, then we say that the natural density of A is d(A), and it acts as a probabil-
ity measure. In 1962, Stanisław Knapowski and Pál Turán conjectured in [15] that
d({x > 0 : E(x; 4, 3,1) < 0}) = 0. This turned out to be false, and Jerzy Kaczorowski [13]
showed that the natural density does not exist. Perhaps the natural density is not the right
way to measure {x > 0 : E(x; 4, 3,1) < 0}.

The Lebesgue measure λ is what we call an invariant measure under translations in the
group R/Z because for any E ⊂ R/Z, we have λ(E) = λ(E + a) for all a ∈ R/Z where the
set E+a = {x+ a : x ∈ E}. Any periodic function f : R→ R with period T can be entirely
defined by its values over [0, T ). Thus if we would like to know the distribution of the values
of f(x) for a real number x chosen uniformly at random, we can restrict our function on the
period and use the uniform distribution on the interval [0, T ).

Let g : R→ R, if g ◦ f is absolutely integrable over the period, then
1
T

∫ T

0
(g ◦ f)(x)dx = 1

nT

∫ nT

0
(g ◦ f)(x)dx

for every positive integer n. Thus for X > T , we have
1
X

∫ X

0
(g ◦ f)(x) dx = 1 +O(T/X)

T

∫ T

0
(g ◦ f)(x) dx.

So for a T -periodic function f , we can study its values with the probability distribution µ
such that

lim
X→∞

1
X

∫ X

0
(g ◦ f)(x) dx =

∫ ∞
−∞

g(y) dµ(y). (3.10)

For g(y) = 1y>0, the integral above would be the natural density of the set {x > 0 : f(x) > 0}.
The logarithmic density of A is defined by

δ(A) := lim
X→∞

1
logX

∫
[1,X]∩A

dt
t
.

With the change of variables t = ex in the integral of the left-hand side of (3.10), we get
that the logarithmic density of the set {t > 1 : f(log t) > 0} exists if f is a periodic function.
The idea is to think as E(eu; 4, 3, 1) as something close to a periodic function, which would
imply that the logarithmic density of {t > 1 : E(t; 4, 3, 1) > 0} exists.

With Theorem 3.1, we transformed E(eu; 4, 3, 1) into a sum of periodic functions. Any
sum of k periodic functions with respective period T1, . . . , Tk > 0 whose span over the
rationals is of dimension 1 is also a periodic function since there are integers m2, . . . ,mk
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and n2, . . . , nk such that Tj = mj
nj
T1 and it would imply that the sum of periodic functions

would have a period of [m2, . . . ,mk] · T1. If however the dimension of the span over the
rationals is greater than 1, then we cannot have a periodic function and the numbers T1/Tj

are not all rationals. However, with the rationals being dense in the real numbers, we could
approximate any irrational number by a close enough rational number.

Lemma 3.4 (Dirichlet’s approximation theorem for simultaneous approximation). For every
(α1, . . . , αd) ∈ Rd and N ∈ N, there exists fractions a1

q
, . . . , ad

q
with 1 6 q 6 Nd such that∣∣∣∣∣αi − ai

q

∣∣∣∣∣ < 1
qN

for all i 6 d.

Proof. Let’s consider the set{
([qNα1] mod N, . . . , [qNαd] mod N) : 1 6 q 6 Nd

}
,

which could be interpreted as a subset of the direct sum of d copies of the group Z/NZ. By
the pigeonhole principle, there exists 0 6 q′ < q′′ 6 Nd such that

[q′Nαi] ≡ [q′′Nαi] (mod N)

for all i 6 d. Let q = q′′ − q′. This means that for each i 6 d, there exists a number ai such
that

Nai = [q′′Nαi]− [q′Nαi] = qNαi + ({q1Nαi} − {q2Nαi}) =⇒ |qNαi −Nai| < 1,

which implies the theorem by dividing both sides by qN . �

Fix differentiable periodic functions f1, . . . , fk with respective period T1, . . . , Tk. Let
δ > 0 and choose N ∈ N big enough such that N > Tj/δ for all 2 6 j 6 k. Then by the
previous lemma, we can say that there exist fractions a2

q
, . . . , ak

q
with 1 6 q 6 Nk−1 such

that for every 2 6 j 6 k, we have∣∣∣∣∣T1

Tj
− aj

q

∣∣∣∣∣ < 1
qN

=⇒ |qT1 − ajTj| < δ.

Hence, the sum of the periodic functions S(x) = ∑
fj(x) are quasiperiodic in the sense that

S(x+ qT1) =
k∑
j=1

fj(x+ qT1) =
k∑
j=1

fj(x+ ajTj +O(δ)) =
k∑
j=1

fj(x+O(δ)) = S(x) +Ok(δ) .

We can conclude that E(eu; 4, 3, 1) is indeed very close to a periodic function.
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In fact, putting the x-axis on a logarithmic scale in Figure 3.1 makes the periodic structure
apparent in the graph. It suggests that maybe there is a probability measure µ such that

lim
X→∞

1
logX

∫ X

1
g(E(x; 4, 3, 1))dx

x
= lim

X→∞

1
X

∫ X

0
g(E(eu; 4, 3, 1)) du =

∫ ∞
−∞

g(y) dµ(y).

3.4. Limiting distribution
In this section, we are going to prove the following theorem to ultimately show that the

logarithmic density of the set {x > 1 : E(x; 4, 3, 1) > 0} exists:

Theorem 3.5. Assuming GRH, there exists a probability measure µ such that

lim
X→∞

1
logX

∫ X

1
g(E(x; 4, 3, 1))dx

x
=
∫ ∞
−∞

g(y) dµ(y)

for every Lipschitz continuous functions g : R→ R.

To key to prove this theorem is the following classical lemma for which its proof is given
in [12]:

Lemma 3.6 (Kronecker-Weyl Theorem). Let (α1, . . . , αd) ∈ Rd and let’s consider the set A
which is the closure of

B = {(e(tα1), . . . , e(tαd)) : t ∈ R}

in Td = {(z1, . . . , zd) : |zi| = 1 for all i 6 d} is the d-torus. Then A is an r-torus where r is
the dimension of the span of α1, . . . , αd over Q and B is equidistributed in A, which means
that for any continuous function h : Rd → R we have

lim
X→∞

1
X

∫ X

0
h(e(tα1), . . . , e(tαd)) dt =

∫
A
h(y) dν(y),

where ν is the normalized Haar measure on A.

Remark 3.7. Note that the Haar measure of a locally compact abelian topological group
is the unique measure, up to multiplication by a scalar, that is nonnegative, regular and
invariant under translations. In the case where the measure is finite, a normalized Haar
measure is to choose the Haar measure so that we get a probability measure (the whole
space is of measure 1). In particular for the d-torus, let ϕ : Td → (−1

2 ,
1
2 ]d be defined by

ϕ(z1, . . . , zd) = 1
2π (arg(z1), . . . , arg(zd)),

then the normalized Haar measure of a set E ⊂ Td is equal to the Lebesgue measure of the set
ϕ(E). In other words, the natural density of the values of t > 0 such that (e(tα1), . . . , e(tαd))
is in some subset S ⊂ Td is equal to the proportion of the d-torus this subset S occupies.
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Proof of Theorem 3.5. For T > 0, let k = 1
2N(T, χ1), the imaginary parts of the first k

zeros of L(s, χ1) above the x-axis in ascending order 0 6 γ1 6 . . . 6 γk and

GT (y1, . . . , yk) = g

1 +
k∑
j=1

Re(yj) + 2γjIm(yj)
1
4 + γ2

j

 . (3.11)

Let’s consider the set A, which is the closure of the set

B =
{

(eiuγ1 , . . . , eiuγk) : u ∈ R
}
.

Since the function GT is continuous on A, the Kronecker-Weyl theorem implies that A is an
r-torus where r is the dimension of the span of the first k zeros of L(s, χ1) and we can define
the normalized Haar measure on A as da to get∫
A
GT (a) da = lim

U→∞

1
U

∫ U

0
GT (eiuγ1 , . . . , eiuγk) du = lim

U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)− ε(u;T )) du.

If we let cg be a Lipschitz constant for g, then∫
A
GT (a) da = lim

U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)) +O(cg |ε(u;T )|) du.

By the Cauchy-Schwarz inequality, the error term inside the limit is

� cg√
U

(∫ U

0
|ε(u;T )|2 du

)1/2

� cg

(
log T√
T

+ 1√
U

)
which means that by letting U →∞, we get
∫
A
GT (a) da+O

(
cg log T√

T

)
6 lim inf

U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)) du

6 lim sup
U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)) du 6

∫
A
GT (a) da+O

(
cg log T√

T

)
.

Hence

lim sup
T→∞

∫
A
GT (a) da 6 lim inf

U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)) du

6 lim sup
U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)) du 6 lim inf

T→∞

∫
A
GT (a) da,

which means that the following limits exist and are equal:

lim
T→∞

∫
A
GT (a) da = lim

U→∞

1
U

∫ U

0
g(E(eu; 4, 3, 1)) du. (3.12)

By the change of variables u = log x, we can finish the proof of the theorem. �

Corollary 3.8. If we assume GRH and that µ({0}) = 0 where µ is the probability measure
defined in Theorem 3.5, then the logarithmic density of S0 := {x > 1 : π(x; 4, 3) > π(x; 4, 1)}
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defined by
δ(S0) = lim

X→∞

1
logX

∫
[1,X]∩S0

dt
t

exists and is equal to µ((0,∞)).

Proof. This is a consequence of the Portmanteau Theorem from probability theory (see
Theorem 13.16 of [14] for the general version of the theorem), which says that if we let a
bounded sequence of positive probability measures Pn converge weakly to a measure P on
a metric space, in the sense that for any Lipschitz continuous random variables X we have
En[X] → E[X], then we have Pn[A] → P[A] for any continuity sets A, meaning that those
sets have the property µ(∂A) = 0. Since we assumed that µ({0}) = 0, then (0,∞) is a
continuity set with respect to the measure µ. �

3.5. Primes 1 (mod 4) take the lead
To show that the logarithmic density δ(S0) > 1/2, we can first prove that δ(S1) =

1/2, where S1 := {x > 1 : E(x; 4, 3, 1) > 1}, hence quantifying the fact that the function
E(eu; 4, 3, 1) is oscillating around 1. To understand the symmetry, we need the Fourier
transform of the measure µ defined in Theorem 3.5. We are going to need the imaginary
parts of the first k zeros of L(s, χ1) to be linearly independent over Q in order to fix the
set A = Tk in the Kronecker-Weyl Theorem (Lemma 3.6). Unfortunately, this has not been
proved, but it is conjectured that for any fixed q > 1, the set⋃

χ (mod q)
χ primitive

{γ : L(β + iγ, χ) = 0, 0 < β < 1, γ > 0}

is linearly independent over Q. This conjecture is called the Linear Independence Hypothesis
(LI).

Theorem 3.9. Let µ be defined as the measure in Theorem 3.5. Assuming GRH and LI,
the Fourier transform of µ is

µ̂(ξ) = e(−ξ)
∏
γ>0

J0

 4πξ√
1
4 + γ2

 ,
where the product is over the imaginary parts of the zeros of L(s, χ1) with χ1 being the
nonprincipal character mod 4. The function J0 is the Bessel function of the first kind defined
by

J0(z) =
∫ 1

0
e−iz cos(2πt) dt.

Proof. Let g(y) = e(−ξy) and let T, k, γ1, . . . , γk and GT as in the beginning of the proof
of Theorem 3.5. We can define GT as in (3.11). Since g is a Lipschitz function, the Fourier
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transform of µ is
µ̂(ξ) =

∫ ∞
−∞

g(y) dµ(y) = lim
T→∞

∫
Tk
GT (a) da

by Theorem 3.5 and (3.12). The measure da is the normalized Haar measure of Tk, we have

µ̂(ξ) =
∫ 1

0
. . .
∫ 1

0
e

−ξ
1 +

k∑
j=1

cos(2πxj) + 2γj sin(2πxj)
1
4 + γ2

j

 dx1 . . . dxj

= e(−ξ)
k∏
j=1

∫ 1

0
e

(
− ξ

1
4 + γ2

j

(cos(2πx) + 2γj sin(2πx))
)

dx. (3.13)

Let Tj be a right triangle with its two legs being of lengths 1 and 2γj. We can define θj as
the acute angle adjacent to the leg of length 1. By the Pythagorean theorem, the hypotenuse
of Tj is of length 2

√
1
4 + γ2

j . Thus, we have

cos(2πx− θj) = cos(θj) cos(2πx) + sin(θj) sin(2πx) = cos(2πx) + 2γj sin(2πx)
2
√

1
4 + γ2

j

.

We can apply this in (3.13) and use the fact that we are integrating over the period of the
function x 7→ cos(2πx) to obtain

µ̂(ξ) = e(−ξ)
k∏
j=1

∫ 1

0
e

−2ξ cos(2π(x− θ/2π))√
1
4 + γ2

j

 dx = e(−ξ)
k∏
j=1

J0

 4πξ√
1
4 + γ2

j

 .
�

We can understand any probability measure if we understand its Fourier transform2.
Since e(ξ)µ̂(ξ) is an even function and is real-valued for real values of ξ, we know that the
distribution of µ is symmetric around 1 by Fourier inversion, which means that δ(S1) = 1

2 .
More specifically, we can use Fourier inversion to find a formula for µ([1, 1 + x)) for every
x > 0. Indeed, since the Fourier transform of the indicator function 1(−x,x) is sin(2πxξ)

πξ
, then

for every x > 0, we have

µ((1− x, 1 + x)) + 1
2(µ({1− x}) + µ({1 + x})) =

∫ ∞
−∞

sin(2πxξ)
πξ

∏
γ>0

J0

 4πξ√
1
4 + γ2

 dξ.

If we assume µ� λ, then by symmetry, we obtain

µ([1, 1 + x)) =
∫ ∞

0

sin(2πxξ)
πξ

∏
γ>0

J0

 4πξ√
1
4 + γ2

 dξ. (3.14)

Lemma 3.10. The function x 7→ µ([1, 1 + x)) is real analytic for every x > 0.

2In probability theory, we would look at the mapping x 7→ E(x; 4, 3, 1) as a random variable in the sample
space (1,∞) with the logarithmic density δ as its probability measure. The event space would be the σ-algebra
generated by E(x; 4, 3, 1). In this context, µ is the probability distribution and µ̂(ξ) is the characteristic
function of the random variable E(x; 4, 3, 1).
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Proof. A characterization of real analytic functions is given in Lemma 1.2.9 of [17]: A
function f is real analytic on an open set U if, and only if, it is real smooth and for every
compact set K ⊂ U , there exists C > 0 such that

f (k)(x)� Ckk!.

for every x ∈ K and every k > 0. To apply this characterization, we need to prove that the
function f : (0,∞) → [0,∞) defined by f(x) := x 7→ µ([1, 1 + x)) is a real smooth function
and find all of its derivatives.

First, we will need a bound on the infinite product. The Bessel function has the following
asymptotic: as x > 0, we have

|J0(x)| 6 min
{

1,
√

2
πx

}
. (3.15)

This is a consequence of Theorem 5.1 in [8]. Since every imaginary parts γ of the nontrivial
zeros of L(s, χ1) are |γ| > 6 (see [29]), there exists a positive constant c such that

log
∏
γ>0

∣∣∣∣∣∣J0

 4πξ√
1
4 + γ2

∣∣∣∣∣∣ 6 c
∑

6<γ6ξ
log(γ/ξ) = c

2

∫ ξ

6
log(t/ξ) dN(t, χ1) = − c2

∫ ξ

6

N(t, χ1)
t

dt.

Thus we can conclude that ∏γ>0 J0(4πξ/
√

1
4 + γ2) � e−c

′ξ for some other absolute positive
constant c′ by using Theorem 2.15. Hence, the integrand of (3.14) is Lebesgue-integrable for
every fixed x > 0.

We should first note that if g(x, ξ) = sin(2πxξ), then∣∣∣∣∣∂kg∂xk
(x, ξ)

∣∣∣∣∣ 6 (2πξ)k.

Let M > 0. To prove that all the derivatives of f exist for every 0 < x < M and every
ξ > 0, we can find the upper bound

sin(2πxξ)
πξ

∏
γ>0

J0

 4πξ√
1
4 + γ2

�χ1 Me−c
′ξ.

Since this upper bound is integrable over (0,∞), then by the dominated convergence theorem,
we can conclude that f is differentiable for every x ∈ (0,M). Furthermore, for every k > 1,
we have

1
πξ
· ∂

kg

∂xk
(x, ξ)

∏
γ>0

J0

 4πξ√
1
4 + γ2

�χ1 (2πξ)k−1e−c
′ξ.

which is also integrable on (0,∞). Thus we can say that f is real smooth over (0,M) and
its derivative is

f (k)(x) =
∫ ∞

0

1
πξ
· ∂

kg

∂xk
(x, ξ)

∏
γ>0

J0

 4πξ√
1
4 + γ2

 dξ �
∫ ∞

0
(2πξ)k−1e−c

′ξ dξ � (2π/c′)kk!.

70



Hence we can conclude that f(x) is real analytic over (0,M) and since M can be arbitrarily
large, this proves the theorem. �

Having a real analytic distribution means that µ([1, 1 +x)) cannot be identically zero on
an open interval I ⊂ (0,∞). Thus µ([1, 1 +x)) is strictly decreasing for x > 0, and we arrive
to the following theorem:

Theorem 3.11. Assuming GRH, LI and µ � λ, the logarithmic density of
S0 = {x > 1 : π(x; 4, 3) > π(x; 4, 1)} is strictly between 1/2 and 1.

From this theorem, we deduce that supSc0 =∞, which means that in the prime number
race, the primes 1 mod 4 take the lead infinitely many times. Since we can generalize the
theorem to the π(x) vs. Li(x) race, we can also conclude that under the assumptions in
3.11, there must necessarily exists an unbounded sequence of real numbers xn such that
π(xn) > Li(xn), even with the fact that we still don’t know where this sequence could start.
Finally, using the Fourier transform from Theorem 3.9, Rubinstein and Sarnak computed
in Section 4 of [27] that the logarithmic density of the set A1 := {x > 1 : Li(x) > π(x)} is
0.99999973 . . .

In general for q > 2, let Aq be the set of x > 1 such that there are more primes less
than x which are quadratic nonresidues mod q than quadratic residues mod q. In particular,
A4 = S0 from Corollary 3.8. Rubinstein and Sarnak also computed that

δ(A3) = 0.9990 . . .

δ(A4) = 0.9959 . . .

δ(A5) = 0.9954 . . .

δ(A7) = 0.9782 . . .

δ(A11) = 0.9167 . . .

δ(A13) = 0.9443 . . .

It seems like δ(Aq) seems to gets closer to 1/2 as q gets bigger. We will see that this is the
case if q is restricted to odd primes3.

3This statement is not true if we let q be any natural number. Daniel Fiorilli proved in [6] that there exists a
sequence of natural numbers qn such that δ(Aqn

)→ 1. For example, δ(A4849845) = 0.999999928 . . . > δ(A1).
This heavier bias comes from the fact that a number with a lot of distinct prime factors has much more
quadratic nonresidues classes than quadratic residues classes (in the example, 4849845 = 3·5·7·11·13·17·19).
The only moduli for which we have the same number of quadratic residue and nonresidue classes are 4, odd
prime powers, or numbers which are two times an odd prime power.
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3.6. CLT-like theorem
In most introductory statistics class, one usually learns that if n is large (in applications,

this n has to be generally larger than 30, see [19] p. 280) and x1, . . . , xn are n random observa-
tions independently drawn from the same distribution with finite mean µ and finite variance
σ2, whatever this distribution is, then the sample mean x = 1

n

∑n
j=1 xj is approximately

normally distributed with mean µ and variance σ2/n. This comes from the Central Limit
Theorem (CLT) from probability. Formally, the classical version of the CLT can be stated as
follows: Let X1, X2, . . . be a sequence of independent and identically distributed such that
E[X1] = 0 and Var(X1) = 1 and let Sn = ∑n

j=1Xj. Then Sn/
√
n converges in distribution

to a standard normal distribution, which have the density function (2π)−1/2e−x
2/2.

Similarly as what we discussed at the beginning of Section 3.2, we can replace 4 by any
odd prime q in every statement of this chapter and the theorems would still hold, except
that we would be working with the nontrivial zeros of the L-function L(s, χq) where χq is
the Legendre symbol mod q. In particular, if we let EN,R(x; q) := log x√

x

∑
p6x

(
p
q

)
, then for

every fixed q, EN,R(x; q) have a limiting distribution µq, similar to the one for E(x; 4, 3, 1)
in Theorem 3.5, and the Fourier transform of µq is

µ̂q(ξ) = e(−ξ)
∏

γχq>0
J0

 4πξ√
1
4 + γ2

χq


where the product is now over the imaginary parts γχq of the nontrivial zeros of L(s, χq).
Like the CLT, the limiting distribution of EN,R(x; q) is approximately a normal distribution
of mean 1 and variance log q as q →∞ over primes. This implies that the bias dissipates in
the prime number race between residues mod q and nonresidues mod q as q → ∞. Here is
the formal statement of the theorem:

Theorem 3.12. Let µ∗q be the limiting distribution of (EN,R(x; q)− 1)/
√

log q, in the sense
that ∫ ∞

−∞
g(y) dµ∗q(y) = lim

X→∞

1
logX

∫ X

1
g

(
EN,R(x; q)− 1√

log q

)
dx
x

for every Lipschitz continuous functions g : R → R. If we let qk be the kth odd prime, then
µ∗qk converges in measure to a standard normal distribution as k →∞.

Proof. As in the proof of the Central Limit Theorem, the key is Lévy’s continuity theorem
from probability which states that a sequence of random variables (Xn) converges in distri-
bution to X if, and only if, the characteristic functions of the Xn converge pointwise to the
characteristic function of X.
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For an arbitrary odd prime q, we have that

µ̂∗q(ξ) =
∏

γχq>0
J0

 4πξ√
log q(1

4 + γ2
χq)


by the scaling and translation properties of the Fourier transform. Thus, for every ξ > 0, we
can use log J0(z) = −z2/4 + O(z4) for z → 0 from the Taylor series of J0(z) and log(1− z)
to obtain

log µ̂∗q(ξ) = −4π2ξ2

log q
∑
γχq>0

1
1
4 + γ2

χq

+Oξ

 1
log2 q

∑
γχq>0

1
(1

4 + γ2
χq)2

 . (3.16)

The sum ∑(1
4 + γ2

χq)−1 can be deduced from p. 83 of [5]:
∑
γχq>0

1
1
4 + γ2

χq

= log q
2 + L′(1, χq)

L(1, χq)
+O(1) = log q

2 +O(log log q) (3.17)

where the last bound (L′(1, χq)/L(1, χq) � log log q) is given by Littlewood in [18] under
GRH. Furthermore, since (1

4 + γ2
χq)−1 6 4, then

∑
γχq>0

1
(1

4 + γ2
χq)2 6 4

∑
γχq>0

1
1
4 + γ2

χq

� log q. (3.18)

By applying the estimate (3.17) and the bound (3.18) in the equation (3.16), we finally
obtain

log µ̂∗q(ξ) = −2π2ξ2 +Oξ

(
log log q

log q

)
=⇒ µ̂∗q(ξ) = e−2π2ξ2 +Oξ

(
log log q

log q

)
.

Thus since qk represents the kth odd prime, then for any fixed ξ, we have

lim
k→∞

µ̂∗qk(ξ) = e−2π2ξ2

which is the Fourier transform of the density function of the standard normal distribution.
We can finally prove the theorem by applying Lévy’s continuity theorem. �

We can observe in Figure 3.4 how the standard deviation gets larger as q grows, and how
the bias is really apparent for q = 11, but not for q = 100003.
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Fig. 3.4. Graphs of the function EN,R(x; q) = log x√
x

∑
p6x

(
p
q

)
for q = 11, 101, 1009, 10007 and

100003 (from top to bottom).
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Chapter 4

Selberg’s sieve method

To theoretically study the race of π+(x) vs. π−(x), we need to know the asymptotic size
of π+(x) and π−(x). However, it still has not been proven if both these functions tend to
infinity. In the next three chapters, we will try to make sense of Conjecture 1.1.

The Dirichlet series ideas of Chapter 2 cannot be directly used to estimate the size of the
set of Sophie Germain primes up to x since the indicator function of {n ∈ N : 2n+ 1 is prime}
is neither multiplicative nor periodic. In this chapter, we will prove an upper bound on π+(x)
and π−(x), which is of the same order of magnitude as their conjectured asymptotic size.

Theorem 4.1. For x > 3, we have

π+(x), π−(x) 6
(

4c2 +O

(
log log x

log x

))
x

log2 x
.

The proof method is due to Selberg, who showed his technique to obtain an upper
bound in [28]. We will directly apply his method to our situation. To have a more general
perspective of sieve methods, we refer the reader to Part 4 of [16].

4.1. Sieve methods
One of the earliest known algorithms generating a list containing every prime numbers is

called the sieve of Eratosthenes. It comes from the simple idea that every composite number
n > 4 has a prime factor less than or equal to

√
n.

Let In :=
(
22n−1

, 22n
]
for n > 1. We start with a list P0 containing only the number 2

(we immediately deduce its primality by noticing that there is no room for another positive
factor between 1 and 2). Assuming we have created the finite list Pn−1, we remove every
multiple of every prime in Pn−1 from the interval In. We then create a new list Pn containing
Pn−1 and the remaining integers in In. This way, by induction, Pn is a list of every prime
p 6 22n .



The word “sieve” comes from the idea of sifting the elements of a set. The integers with
small prime factors will pass through the sieve, leaving behind only integers with large prime
factors, which we are interested in. As in the sieve of Eratosthenes, if we know where the
primes less than

√
x are, then we can have a formula for π(x) of the form

π(x)− π(
√
x) = #{p ∈ (

√
x, x]} = #

n 6 x : n is coprime to
∏
p6
√
x

p

− 1. (4.1)

The −1 in the equation comes from the fact that 1 is coprime to every positive integer.
For notational simplicity, we will note from now on

P (y) :=
∏
p6y

p.

Saying that a number n is coprime to P (y) is equivalent to saying that n is a y-rough number ,
which means that n has no prime factors less than or equal to y. Also, the relation d | P (y)
is equivalent to d being squarefree and y-smooth, that is to say, every prime factor of d is
less than or equal to y.

The formula (4.1) is useful because of Möbius inversion, since it gives us have a formula
for the number of primes without the use of the Prime Number Theorem (by using the trivial
estimate π(

√
x) 6

√
x):

π(x) =
∑
n6x

1(n,P (
√
x))=1 +O

(√
x
)

=
∑
n6x

∑
d|P (
√
x)

dr=n

µ(d) +O
(√

x
)

(4.2)

and by changing the order of summation, we get

π(x) =
∑

d|P (
√
x)
µ(d)

[
x

d

]
+O

(√
x
)
.

Note that this equation is essentially the inclusion-exclusion principle where we are subtract-
ing 1 from the set {n 6 x} for every multiple of every prime p 6

√
x, and adding 1 for every

multiple of every product of two distinct primes p1 < p2 6
√
x since we’ve removed too much

at the first step, and subtracting 1 for product of three distinct primes, and so on and so
forth.

We can approach Sophie Germain primes the same way. Let’s define

π+(x; y) := # {p 6 x : (2p+ 1, P3(y)) = 1}

where y 6
√

2x+ 1 and P3(y) is defined1 as

P3(y) :=
∏

36p6y
p.

1We could use P (y) instead of P3(y) but it is not necessary since 2p+ 1 can never be divisible by 2.
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If y =
√

2x+ 1, then π+(x;
√

2x+ 1) counts Sophie Germain primes between
√

2x+ 1
and x. We introduced the parameter y because we want control over how many integers our
sieve is retaining.

If we find a way to upper bound π+(x; y), then we could try to get an upper bound on
π+ by using the simple observation that

π+(x) 6 π+(x; y) +O

(
y

log y

)
for y 6

√
2x+ 1, (4.3)

since p and 2p+ 1 being both primes implies either that 2p+ 1 does not have a prime factor
less than y or that p 6 y−1

2 .
We can have an exact formula for π+(x; y) by using the same idea as in (4.2):

π+(x; y) =
∑
p6x

1(2p+1,P3(y))=1 =
∑
p6x

∑
d|2p+1
d|P3(y)

µ(d) =
∑

d|P3(y)
µ(d)Nd(x) (4.4)

where Nd(x) = # {p 6 x : 2p ≡ −1 (mod d)}. Since we are summing over odd values of d, we
know that 2 has a multiplicative inverse mod d which we call 2−1 and Nd(x) = π(x; d,−2−1).
Hence, by assuming GRH and asking for y � log(x), we obtain P3(y) �A xA for some
positive A, and Theorem 2.1 leads us to

π+(x; y) =
∑

d|P3(y)
µ(d)π(x; d,−2−1) = Li(x)

∑
d|P3(y)

µ(d)
φ(d) +O

(
2π(y)√x log x

)
. (4.5)

Since µ(d)/φ(d) is a multiplicative function, we have

π+(x; y) = Li(x)
∏

36p6y

(
1− 1

p− 1

)
+O

(
2π(y)√x log x

)
. (4.6)

To estimate the product, we can use the logarithm function

log
∏

36p6y

(
1− 1

p− 1

)
=

∑
36p6y

log
(

1− 1
p− 1

)
= −

∑
36p6y

(
1
p

+O

(
1
p2

))

= − log log y + c+O
(
e−c

′√log y
)

where c, c′ are constants and the last equality comes from partial summation and the Prime
Number Theorem2. By exponentiating, we retrieve the product and prove that

π+(x; y) = ec Li(x)
log y +O

(
2π(y)√x log x+ xe−c

′′√log y

log x

)

2Mertens proved, without the Prime Number Theorem, that there exists a constant c′ such that
∑
p6x 1/p =

log log x+ c′ +O(1/ log x) using the convolution 1 ∗ Λ = log proved in Example 2.9.
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for some positive constant c′′. But asking for y � log x cannot lead us to Theorem 4.1, and
the best upper bound we can get with this strategy is

π+(x)� x

log x log log x.

The problem was that we had to sum too many terms together in (4.5).

4.2. Sieve weights
The key idea of sieve methods is to replace the Möbius function with another function

that is easier to work with. Going back to (4.4), if we find a sequence ρd supported on the
divisors of P3(y) such that

1(n,P3(y))=1 6
∑
d|n
ρd (4.7)

with the extra condition that ρd = 0 if d > D for another parameter D, we would be able to
control how many times we are sieving our set while simulating the behaviour of µ(d) and
get an upper bound on π+(x; y).

Selberg’s sieve constructs the weights ρd by optimizing the inequality

1(n,P3(y))=1 6

∑
d|n
λd

2

. (4.8)

Here, λd is a sequence of real numbers satisfying λ1 = 1 and supported on

D :=
{
d : d | P3(y) and d 6

√
D
}
.

Expanding the right-hand side in (4.8), we get an upper bound sieve by having

ρd =
∑

[d1,d2]=d
λd1λd2 (4.9)

in Equation (4.7).
We can now apply our sieve on π+(x; y):

π+(x; y) =
∑
p6x

1(2p+1,P3(y))=1 6
∑
p6x

∑
d|2p+1

ρd =
∑

d1,d2∈D
λd1λd2π(x; [d1, d2],−2−1). (4.10)

Note that if we were to study the function π2(x) = {p 6 x : p+ 2 is prime} instead of π+(x),
then we would arrive at the same bound by this method since we would only have to replace
π(x; [d1, d2],−2−1) by π(x; [d1, d2],−2) and these two quantities are of the same size as seen
in Chapter 3. If we define rd1,d2 via the equation

π(x; [d1, d2],−2−1) = Li(x)
φ([d1, d2]) + rd1,d2
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and we use this relation in (4.10), we get

π+(x; y) 6 Li(x)
∑

d1,d2∈D

λd1λd2

φ([d1,d2]) +
∑

d1,d2∈D
λd1λd2rd1,d2 . (4.11)

Notice that equation (4.11) is true, no matter how we choose our sequence λd. If we look
at every λd in the support as free variables, we get a quadratic form, and Selberg’s strategy
was to choose the ideal sequence that minimizes the main term.

For a multiplicative function f and any two squarefree numbers a and b, we prove the
propriety

f(a)f(b) = f(a)f
(

b
(a,b)

)
f((a, b)) = f([a, b])f((a, b)).

Thus, by using this property on φ in (4.11), we change the lcm into a gcd:
1

φ([d1, d2]) = φ((d1, d2))
φ(d1)φ(d2) = (1 ∗ µ ∗ φ)((d1, d2))

φ(d1)φ(d2) = 1
φ(d1)φ(d2)

∑
m|d1,d2

(µ ∗ φ)(m).

This means that we can rewrite the sum in the main term of (4.11) as

Q :=
∑

d1,d2∈D

λd1λd2

φ([d1,d2]) =
∑

d1,d2∈D

λd1λd2

φ(d1)φ(d2)
∑

m|d1,d2

(µ ∗ φ)(m)

=
∑
m∈D

(µ ∗ φ)(m)
∑

a1,a2∈D

λma1λma2

φ(ma1)φ(ma2) =
∑
m∈D

(µ ∗ φ)(m)
φ(m)2

(∑
a∈D

λma
φ(a)

)2

. (4.12)

By making the change of variables

ξm =
∑
a∈D

λma
φ(a) ,

we diagonalize Q:
Q =

∑
m∈D

(µ ∗ φ)(m)ξ2
m

φ(m)2 .

Note that, as it was for λd, the sequence ξm is also supported on D. The change of variables
is invertible since, by Möbius inversion, we have

λn =
∑
m∈D

λmn
φ(m)

∑
d|m

µ(d) =
∑
d∈D

µ(d)
φ(d)

∑
a∈D

λdna
φ(a) =

∑
d∈D

µ(d)ξdn
φ(d) ,

where we used the fact that if m is squarefree and m = da, then (a, d) = 1, and implies
that φ(m) = φ(a)φ(d). We can use the Cauchy-Schwarz inequality to minimize Q with the
condition λ1 = 1:

1 = λ1 =
∑
m∈D

µ(m)
√
g(m) · ξm√

g(m)φ(m)
6
√
L ·Q =⇒ Q >

1
L
,
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where g is the multiplicative function supported at odd squarefree integers such that g(p) :=
1
p−2 at every odd prime and

L :=
∑
m∈D

g(m)

In addition, we obtain the equality Q = 1
L
if we chose our λd such that the ratio

µ(m)ξm
g(m)φ(m) = k (4.13)

over every m ∈ D where k is a constant. To satisfy the condition λ1 = 1, we take k = 1
L
,

since we will then have

λ1 =
∑
d∈D

µ(d)ξd
φ(d) = k

∑
d∈D

g(d) = kL = 1.

To obtain a formula for λn with n ∈ D, we have to take into account that ξdn 6= 0 implies
that dn ∈ D:

λn =
∑
d∈D

µ(d)ξdn
φ(d) = µ(n)g(n)φ(n)

L

∑
d : dn∈D

g(d),

and since g(p)φ(p) = 1 + 1
p−2 = g(1) + g(p) = (1 ∗ g)(p) for odd primes, then we can write

λn = µ(n)
L

∑
δ|n
g(δ)

∑
d : dn∈D

g(d) = µ(n)
L

∑
δ|n

∑
d : dn∈D

g(δd). (4.14)

Since n ∈ D, the product (δ, d) 7→ δd is a one-to-one correspondence from {δ : δ | n} ×
{d : dn ∈ D} to {a ∈ D : [a, n] 6 y}. Thus we can write

λn = µ(n)

1− 1
L

∑
a∈D

[a,n]>y

g(a)

 for n ∈ D.

Coming back to (4.3) and (4.11), we get the upper bound

π+(x) 6 Li(x)
L

+
∑

d1,d2∈D
λd1λd2rd1,d2 +O

(
y

log y

)
(4.15)

for y 6
√

2x+ 1.

4.3. Estimating the sum L

We need to get a lower bound on L in (4.15). By taking D = y2, we can rewrite L as

L =
∑
m6y

g(m)

Since g(p) ≈ 1
p
at every odd prime, we can try to write every term as a Dirichlet convolution

1
g(m) = ∑

ab=m
h(a)
b

where h is relatively small if m is odd. To explicitly find h, we can use a
Dirichlet series: For σ > 0, where every series and products below absolutely converge, we
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have
∞∑
m=1

g(m)
ms

=
∏
p>3

(
1 + 1

(p− 2)ps

)

=
∏
p>3

(
1 + 2

(p− 2)ps+1 −
1

(p− 2)p2s+1

)(
1− 1

ps+1

)−1

=
(

1− 1
2s+1

)∏
p>3

(
1 + 2

(p− 2)ps+1 −
1

(p− 2)p2s+1

)∏
p

(
1− 1

ps+1

)−1

= H(s)ζ(s+ 1)

where H is the Dirichlet series of h, which is a multiplicative function supported on cubefree
integers not divisible by 4 defined by h(2) = −1

2 , h(p) = 2
p(p−2) and h(p2) = − 1

p(p−2) whenever
p is an odd prime.

Looking at the Euler product, we see that H(s) converges absolutely for σ > −1
2 . Hence

for such a σ, we have ∑
a>z

|h(a)| � zσ
∑
a>z

|h(a)| a−σ �σ z
σ (4.16)

Thus for ε > 0 we have∑
a6z

h(a) = H(0) +Oε

(
z−

1
2 +ε

)
= 1
c2

+Oε

(
z−

1
2 +ε

)
. (4.17)

Using Dirichlet’s convolution, we can get the following estimate for L:

Proposition 4.2. If D = y2 in the definition of D, then for y > 1 and for every ε > 0, we
have

L = log y + γ

c2
+H ′(0) +Oε

(
y−

1
3 +ε

)
where γ is the Euler-Mascheroni constant, and H is the Dirichlet series defined above.

Proof. With the convolution that we found above,

L =
∑
ab6y

h(a)
b

=
∑

a6y2/3

h(a)
∑
b6 y

a

1
b

+
∑

b6y1/3

1
b

∑
y2/3<a6 y

b

h(a). (4.18)

This decomposition was found using Dirichlet’s hyperbola method. The functions y1/3 and
y2/3 in (4.18) were chosen such that their product equals y and would ultimately minimize
the error term.

Using partial summation, we get
∑

a6y2/3

h(a)
∑
b6 y

a

1
b

=
∑

a6y2/3

h(a)
(

log y − log a+ γ +O

(
a

y

))
.
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Using the same type of bounds as in (4.16), we get the bounds∑
a>z

|h(a)| log a�ε z
− 1

2 +ε and
∑
a6z

a |h(a)| �ε z
1
2 +ε

for ε > 0. Thus we get∑
a6y2/3

h(a)
∑
b6 y

a

1
b

= log y + γ

c2
+H ′(0) +Oε

(
y−

1
3 +ε

)
.

For the second double sum, we can use (4.16) again and get∑
b6y1/3

1
b

∑
y2/3<a6 y

b

h(a)�
∑

b6y1/3

1
b

∑
a>y2/3

|h(a)| �ε y
− 1

3 +ε.

This proves the proposition. �

4.4. The Bombieri-Vinogradov theorem
All that is left is to understand (4.15) is to choose y properly to get the quantity

R =
∑

d1,d26y

λd1λd2rd1,d2

as small as needed. It is easier to sum over the possible values of [d1, d2]:

R =
∑
d6y2

d|P3(y)

Rd

∑
d1,d26y

[d1,d2]=d

λd1λd2 (4.19)

where Rd is the error term defined by the equation

π(x; d,−2−1) = Li(x)
φ(d) +Rd.

The inner sum in the last equality of (4.19) has at most 3ω(d) terms where the prime
omega function ω(d) counts the number of distinct prime factors of d. This is because for
every prime factor p of a squarefree number d, we can construct every pair of d1 and d2 such
that [d1, d2] = d by choosing either that p | d1 but p - d2, that p - d1 but p | d2 or that p | d1

and p | d2. Since |λd1λd2| 6 1, we can conclude that

R �
∑
d6y2

d|P3(y)

|Rd| 3ω(d). (4.20)

This is why one could ask for a bound on the error term for π(x; q, a) that is uniform for q
in an interval that depends on x.
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If we assume GRH, then Rd �
√
x log x uniformly for every odd d 6 x by 2.1. Conse-

quently, by taking y 6
√
x we get

R �
√
x log x

∑
d6y2

d|P3(y)

3ω(d) (4.21)

We know that 3ω(d) 6 τ3(d) where τ3 = 1 ∗ 1 ∗ 1 since both functions are multiplicative and
the inequality obviously holds for prime powers. Then∑

d6y2

3ω(d) 6
∑
d6y2

τ3(d) =
∑

abc6y2

1 6
∑
a6y2

∑
b6y2

∑
c6 y

2
ab

1� y2 log2 y. (4.22)

Hence, by taking y = x1/4

log3 x
in (4.15) and using the estimate L = log y

c2
+ O(1) that we found

in 4.2, we obtain

π+(x) 6 4c2 Li(x)
log x+O(log log x) +O

(
x

log3 x

)
= 4c2x

log2 x

(
1 +O

(
log log x

log x

))
(4.23)

which exactly leads to the result for π+(x) in Theorem 4.1.

But to prove the theorem, we do not need to bring up an unsolved conjecture such as
GRH. A naive approach would be to bound R by taking y = logA x for some positive number
A and using the Siegel-Walfisz theorem, but it can only lead us to

π+(x)�A
x

log log x.

We do not necessarily need a pointwise bound on Rd, simply a bound on its average.
Enrico Bombieri and A. I. Vinogradov proved the following theorem, and it is sometimes
referred to as “The Riemann Hypothesis on average”. It gives an upper bound for ∑d6Q |Rd|
for Q depending on x.

Theorem 4.3 (Bombieri-Vinogradov Theorem). For A > 1 and x > 2, we have
∑
q6Q

max
y6x

max
a6q

(a,q)=1

∣∣∣∣∣π(x; q, a)− Li(x)
φ(q)

∣∣∣∣∣�A
x

logA x

where Q =
√
x

logA+2 x
.

A proof of this theorem can be found in Chapter 26 of [16]. Using the Cauchy-Schwarz
inequality on (4.20), we get

R2 �
∑
d6y2

|Rd|
∑
d6y2

d|P3(y)

9ω(d) |Rd| (4.24)

For the second sum, we can use the trivial bound Rd � x
d
uniformly for d� x. The weight

9ω(d) can be bounded above by τ9(d) and by using exactly the same method as in (4.22) to
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find that if y �
√
x, then

∑
d6y2

d|P3(y)

9ω(d) |Rd| � x
∑
d6y2

9ω(d)

d
� x

∑
a1...a96y2

1
a1 . . . a9

� x

∑
a6y2

1
a

9

� x log9 y.

Combining this result and the Bombieri-Vinogradov theorem with A = 15 on the first
sum in (4.24), we get

R � x log9/2 y

logA/2 x
� x

log3 x

by choosing y = x1/4/(log17/2 x). Thus by choosing this value for y and inserting it in (4.15),
we get exactly the same result as in (4.23), which proves Theorem 4.1 unconditionally for
π+(x). We can apply the same procedure to prove the theorem for π−(x).

4.5. A different perspective
Instead of studying π+(x; y), we could have studied the function

π′+(x; y) := # {n 6 x : (n(2n+ 1), P (y)) = 1} .

As in (4.3), we can get the following upper bound

π+(x) 6 π′+(x; y) +O(y) where y 6
√

2x+ 1, (4.25)

since for every Sophie Germain prime of the first kind p, we have either p 6 y or p(2p + 1)
without any prime factor less than y. We can then use Selberg’s sieve method as in the
previous sections. The best upper bound on π′+(x; y) we can do using the same framework
as (4.10) is to replace the constant 4 by 8 in Theorem 4.1, which is not as good but still
gives us a bound of the right order of magnitude. Sieve methods can be applied in different
settings. Generally, a problem has to respect a set of axioms to consider using sieve methods
for processing an estimate or a bound.

Let A be a finite set of integers and P be a finite set of primes. We define

S(A,P) := # {n ∈ A : n has no prime factors in P} .

Let’s also define Ad := # {n ∈ A : d | n} and P := ∏
p∈P p. These are the axioms of sieve

theory, which are the starting point for estimating S(A,P):

Axiom 1. We can define a parameter X, a multiplicative function f with 0 6 f(p) < 1 for
every prime p and a sequence rd such that

Ad = f(d)X + rd for d | P .
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Axiom 2. There exist constants κ, k > 0 and 0 < ε 6 1 such that f(p) 6 1 − ε and
f(p) 6 k/p for primes p ∈ P, and we have∑

p∈P
p6z

f(p) log p = κ log z +O(1) for z 6 maxP .

Axiom 3. There exist constants A > 0, m ∈ N and D > 1 such that∑
d6D
d|P

τm(d) |rd| 6
X

logAX
.

Let us explain how these axioms represent sieving. We think of A as a set that grows
whenever a variable x grows, e.g., {n 6 x} and {p+ 2 : p 6 x}. The goal is to sieve out all
the multiples of P from A. Let’s suppose that #A ≈ X = X(x) as x → ∞, and that we
can find a multiplicative function f such that Ad ≈ f(d)X as x → ∞. We then define the
sequence of remainders rd by setting rd := Ad− f(d)X. They satisfy Axiom 1 by definition.
Let’s also suppose that the rd satisfy Axiom 3 with fixed A,m and D.

Instead of using Möbius inversion to find a formula for 1(n,P )=1, we seek two sequences
ρ−d and ρ+

d such that
∣∣∣ρ−d ∣∣∣ , ∣∣∣ρ+

d

∣∣∣ 6 τm(d) (we say that these sequences are divisor bounded),
which are supported on {d | P : d 6 D}, and such that∑

d|n
ρ−d 6 1(n,P )=1 6

∑
d|n
ρ+
d . (4.26)

Then we say that the sequence ρ+
d is an upper bound sieve of level D for the set of primes

P , and we write (ρ+
d )d ∈ Λ+(D,P). We can similarly say that ρ−d is a lower bound sieve of

level D for the set of primes P , and we can write that (ρ−d )d ∈ Λ−(D,P).
If we want to get an upper bound on S(A,P), then

S(A,P) =
∑
n∈A

1(n,P )=1 6
∑
d|P

ρ+
d Ad = X

∑
d|P

ρ+
d f(d) +O

(
X

logAX

)
,

and similarly if we want a lower bound

S(A,P) > X
∑
d|P

ρ−d f(d) +O

(
X

logAX

)
.

In practice, the sieves ρ−d and ρ+
d should behave like µ(d)1d|P since from (4.26), we have∑

d|n
ρ−d 6

∑
d|n
µ(d)1d|P 6

∑
d|n
ρ+
d .

The only difference is that we control the size of the support with the parameter D. Without
this control, we may be handling too many terms, which would lead us to a poor bound on
the error term, such as in (4.5). In this chapter, Selberg’s sieve method exploited squares’
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nonnegativity to construct a family of upper bound sieves ρ+
d . This family is noted by

Λ2(D,P).
No matter how we choose A and P , Axiom 1 is useless on its own since by simply fixing

X and f , there always exists a sequence of remainders rd. Axiom 1 is not really an axiom
per se, but it defines X, f and rd for the other axioms to make sense.

Axiom 2 gives an average value to our function f on primes. The function f could
be understood as the proportion of congruence classes mod d which are sieved out. The
parameter κ is called the sifting dimension. It represents the average number of congruence
classes that we are sieving for every prime modulus q.

Finally, Axiom 3 takes care of the remainders rd. With sieve methods, we only need
to bound remainders on average. The parameter D of this axiom is called the level of
distribution.

In our two problems about π+(x; y) and π′+(x; y), we can understand it as a sieve problem
in Table 4.1, and we can use Selberg’s sieve method with these parameters.

Problems π+(x; y) π′+(x; y)

Defining
S(A,P)

A {2p+ 1 : p 6 x} {n(2n+ 1) : n 6 x}

P {3 6 p 6 y} {p 6 y}

Axiom 1
X Li(x) x

f(p) 1/φ(p) = 1/(p− 1) (2− 1p=2)/p

Axiom 2
κ 1 2

k 3/2 2

ε 1/2 1/3

Axiom 3
A 2 3

m 3 3

D
√
x/ log17 x x/ log8 x

Table 4.1. Parameters of the sieve problems π+(x; y) and π′+(x; y).

Remark 4.4. The fact that every value in Table 4.1 makes the three axioms valid is trivial,
except for how both values of D satisfy Axiom 3. We chose D =

√
x/ log17 x for the problem

π(x; y) for the same reason that we chose y = x1/4/ log17/2 x in the previous section. For the
problem π′(x; y), the rd are bounded above by the number of congruence classes satisfying
n(2n + 1) ≡ 0 (mod d), which is itself bounded above by 2ω(d). Hence, our choice D =
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x/ log8 x was to satisfy∑
d6D
d|P (y)

τ3(d)rd �
∑
d6D
d|P (y)

τ3(d)2ω(d) =
∑
d6D
d|P (y)

6ω(d) �
∑
d6D

τ6(d)� D log5D � x

log3 x
,

where we found the upper bound on the sum of τ6(d) in the same fashion as in (4.22).

We can generalize the Selberg sieve from the previous sections with the following theorem.

Theorem 4.5. For A and P ⊂ {p 6 y}, if the Axioms 1, 2 and 3 hold with A = κ + 1,
m = 3, D > y2 and logX > log y, then

S(A,P) 6 X

logκ y

(
1 +Oκ,k,ε

(
1

log y

))
Γ(κ+ 1)

∏
p∈P

(1− f(p))
∏
p6y

(
1− 1

p

)−κ
.

A proof of this theorem is given in its full generality in [16] Theorem 21.2. Taking y =
√
D

in Theorem 4.5 and the parameters defined in Table 4.1, we can easily obtain

π+(x; y) 6
(

4c2 +O

(
log log x

log x

))
x

log2 x

and
π′+(x; y) 6

(
8c2 +O

(
log log x

log x

))
x

log2 x
.

We can notice that the products, when put together, absolutely converge to c2 with an error
term Oκ(1/ log y). We have X/ logκ y ∼ 4x/ log2 x as x → ∞ for both sieve problems. The
only difference comes from the Γ(κ + 1), which means that the sifting dimension is why
we have a worse bound with π′+(x; y). We start with a bigger set and have to sieve more
congruence classes making our process less precise.

4.6. Sums of reciprocals
A consequence of Theorem 4.1, which indicates the sparsity of Sophie Germain primes,

comes around when looking at the sum over the reciprocals.
In calculus, the first test to determine whether a series converges or not is by looking

at the limit of the main term. One learns that if ∑ an converges, then an → 0 as n → ∞.
To avoid any student incorrectly using the converse statement as a test for convergence in
their final exam, the teacher sometimes follows with the statement “This does not mean that
an → 0 implies that the series ∑ an is convergent.” The intent is to introduce the student
to the rigorous syntax of mathematical statements and provoke a thought about the true
meaning of logical implications.

87



The first counterexample to the converse is usually the harmonic series. One way to
prove the divergence is to say that for N > 1∑

n6N

1
n

=
∫ N

1

dt
t
−
∫ N

1−

d{t}
t

= logN + 1−
∫ N

1

{t}
t2

dt = logN + γ +O
( 1
N

)
.

where γ = 1−
∫∞

1
{t}
t2

dt is the Euler-Mascheroni constant.
It is not necessary to take all the terms of the harmonic series to have divergence. Euler

showed that even though the primes are rare in the integers3, the series ∑ 1
p
also diverges.

Since we have the Prime Number Theorem at our disposal, we can use partial summation to
show this. If R(x) := π(x)− Li(x), which is O

(
xe−c

√
log x

)
for an absolute positive constant

c, then ∑
p6N

1
p

=
∫ N

2−

dπ(t)
t

=
∫ N

2

dt
t log t +

∫ N

2−

dR(t)
t

= log logN + A+O
(
e−c

′√logN
)

where A is a constant and c′ is another absolute positive constant.
When Brun was studying twin primes, he arrived at the conclusion that the sum of

reciprocals of twin primes converges by giving a slightly weaker upper bound than ours on
π2(x). For any subset A ⊂ N, if {n 6 x : n ∈ A} � x

(log x)α , then
∑
n∈A

1
n
converges if, and

only if, α > 1. This is shown in the proof of the following corollary:

Corollary 4.6. The series ∑ 1
p
over the Sophie Germain primes of the first kind is conver-

gent.

Proof. Using Theorem 4.1, we need to evaluate using partial summation∑
p>N

2p+1 is prime

1
p

=
∫ ∞
N

dπ+(t)
t

= −π+(N)
N

+
∫ ∞
N

π+(t)
t2

dt� 1
log2N

+
∫ ∞
N

1
t log2 t

dt� 1
logN

and the corollary follows4. �

Remark 4.7. We can note that Conjecture 1.1 would imply that we cannot have a faster
rate of convergence than ∑

p>N
2p+1 is prime

1
p
∼ c2

logN .

3In the sense that π(n)
n → 0 as n→∞.

4Another proof of Corollary 4.6 is by dyadic decomposition: Let Sj :=
∑ 1

p , where the sum is over the Sophie
Germain primes of the first kind in the interval (2j−1, 2j ]. Since Sj � π+(2j)/2j−1 � 1/j2 and

∑∞
j=1 1/j2

converges, then
∑∞
j=1 Sj also converges and the corollary follows.
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Chapter 5

Cramér’s model refined

To make a conjecture about the size of π+ and π−, we go back to the Bernoulli variables Xn

of Cramér’s model defined in Section 1.4. We mainly use Cramér’s construction when we try
to interpret the primes’ indicator as just a generic outcome of the sequence Xn. In general,
the law of large numbers would imply that we should expect a sum of random variables to be
quite close to its expected value. To give a bound on the error term for any sum of uniformly
essentially bounded random variables, we can use the following lemma:

Lemma 5.1 (Hausdorff’s estimate). Let Yn be a sequence of independent real random vari-
ables such that E[Yn] = 0 and ‖Yn‖∞ 6 1 for all n ∈ N. Then, for ε > 0, we have∑

j6n

Yj �ε n
1
2 +ε

almost surely.

Proof. Let Sn = ∑
j6n Yj. By taking the 2kth moment of Sn for some k > 1

2ε , expanding
the sum and taking into account that every Yi have mean zero, we can use the multinomial
theorem to get that

E[S2k
n ] =

∑
j1+···+jn=2k
j` 6=1 ∀`

(
2k

j1, . . . , jn

)
E[Y j1

1 ] . . .E[Y jn
n ]�k

∑
j1+···+jn=2k
j` 6=1 ∀`

1 (5.1)

since the multinomial coefficients have (2k)! as a uniform upper bound. For every n > k,
if we want to write 2k as a sum of n non-negative integers without any ones, we know that
at least n − k of these integers are zero. Thus, we can give a bound by first counting the
number of ways to place n − k zeros amongst the n possible positions and then counting
the number of ways to write 2k as a sum of the k nonnegative integers for the remaining
positions. Thus, we get the bound

E[S2k
n ]�k

(
n

k

)(
3k − 1
k − 1

)
�k n

k.



Using Markov’s inequality, we get that for α = 1
2 + ε, we have

P (|Sn/nα| > 1) = P(S2k
n > n2kα) 6 E[S2k

n ]
n2kα �k

1
nk(2α−1) .

Thus with the first Borel-Cantelli lemma, we get that |Sn/nα| < 1 for n big enough almost
surely because ∑∞n=1

1
nk(2α−1) is convergent and this completes the proof. �

To model the behaviour of π+, we need to think about the indicator of the primes as
a specific outcome ω of the probability space generated by Cramér’s model to say that
Xn(ω) = 1n is prime and that

π+(x) =
∑
n6x

1n is prime12n+ 1 is prime =
∑
n6x

Xn(ω)X2n+1(ω).

Let Yn = XnX2n+1− 1
logn log(2n+1) for n > 3 and α = 1/2 + ε for any ε > 0 in Lemma 5.1.

We then obtain almost surely that∑
n6x

XnX2n+1 =
∑

36n6x

1
log n log(2n+ 1) +O

(
x

1
2 +ε

)

=
∑

36n6x

(
1

log n log 2n +O

(
1

n log3 n

))
+O

(
x

1
2 +ε

)
= L(x) +O

(
x

1
2 +ε

)
(5.2)

where
L(x) =

∫ x

2

dt
log t log 2t

and the last equality is obtained by partial summation. With l’Hôpital’s rule used similarly
as in (1.5), we arrive to the estimate L(x) ∼ x

log2 x
.

If we assume that ω is in the event {ω : Equation (5.2) is true} (which is of measure 1),
then it would lead to the conjecture that π+(x) ∼ L(x) ∼ x

log2 x
.

This is great news since x
log2 x

is, up to a constant, the upper bound obtained on π+(x)
in the previous chapter using Selberg’s sieve method (see Theorem 4.1). However, looking
at Figure 5.1, the ratio π+(x)

L(x) seems to converge to c2 instead of 1 as x→∞.

5.1. The Cramér-Granville model
As we discussed in the last paragraph of Section 1.4, the Cramér model can lead us to

absurd contradictions. In 1985, Maier found that if y = logA x for A > 1, then

lim sup
x→∞

π(x+ y)− π(x)
y/ log x > 1 and lim inf

x→∞

π(x+ y)− π(x)
y/ log x < 1. (5.3)

This is surprising because one would not reach the same conclusion by making a prediction
using Cramér’s model. Maier found (5.3) by first sieving out the integers with a small prime
factor and then using density arguments. Granville used this idea to have a more accurate
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Fig. 5.1. Graph of π+(x)/L(x) (in blue) and of π−(x)/L(x) (in orange).

way to predict the behaviour of primes. He started by first sieving the primes less than a
parameter y, before applying Cramér’s ideas and put a probability measure proportional to
1/ log n on the y-rough integers.

When removing multiples of small primes to adjust Cramér’s model, we must have a
more accurate description of the primes. Let P be a set of primes, P the products of all
primes in P and α which only depends on P . We define a sequence of independent Bernoulli
random variables Zn with

P(Zn = 1) = α

log n1(n,P )=1

for n large enough such that this probability is 6 1. Then to model the primes, we would
need to respect the prime number theorem, which means that

E

∑
n6x

Zn

 = α
∑
n6x

(n,P )=1

1
log n ∼ α

∏
p∈P

(
1− 1

p

)
Li(x)

as long as maxP = log x
log 2 − ξ(x) where ξ(x)→ +∞ as x→∞. We prove this by using partial

summation, coupled with the fact that∑
n6x

(n,P )=1

1 =
∑
n6x

∑
d|n
d|P

µ(d) =
∑
d|P

µ(d)
∑
n6x
d|n

1 =
∑
d|P

µ(d)
[
x

d

]

= x
∑
d|P

µ(d)
d

+O
(
2maxP

)
∼ x

∏
p∈P

(
1− 1

p

)

as x→∞. This means it is convenient to choose

α =
∏
p∈P

(
1− 1

p

)−1

.
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This is the idea of presieving a set of primes. Franz Mertens proved that
∏
p6y

(
1− 1

p

)
= e−γ

log y

(
1 +O

(
1

log y

))
(5.4)

where γ is the Euler-Mascheroni constant. This means that we can define a probability
measure for n > (maxP)2. Every Zn with n 6 (maxP)2 can be almost surely the primes’
indicator function.

Example 5.2. If we want to model the primes a mod q for (a, q) = 1 and give a conjecture
for the Prime Number Theorem for arithmetic progressions mod q for a fixed q, then we have
to take into account that those primes have to be coprime to q; thus it would be useful to
presieve prime factors of q. Then we would expect π(x; q, a) to be

∑
n6x

n≡a (mod q)

E[Zn] =
∏
p|q

(
1− 1

p

)−1 ∑
q2<n6x

n≡a (mod q)

1
log n +Oq(1) ∼ Li(x)

φ(q)

for fixed q as x→∞.

Often, presieving is done with a set of primes of the form {p 6 y} for a parameter y.
For example, if we study the set of Sophie Germain primes of the first kind, then we expect
π+(x) to be

∑
n6x

E[ZnZ2n+1] =
∑

26n6x
(n(2n+1),P (y))=1

α2

log n log(2n+ 1) +O

(
y2

log2 y

)
. (5.5)

In order to estimate the sum in (5.5), we need to understand the function π′(x; y) from
Section 4.5. Using partial summation and Proposition 5.3, which we will prove in the next
section, we can get

= 2
∏

36p6y

(
1− 2

p

)(
1− 1

p

)−2

L(x) +O

(
x

log2 x log y
+ y2

log2 y

)

=
(
c2 +O

(
log log x

log x

))
x

log2 x
.

(5.6)

if we take y = x1/8 log log x. We would get the same result if we tried to model π−(x). This
agrees with Conjecture 1.1.

5.2. Brun’s pure sieve
For a finite set of integers A and P = {p 6 y} for some parameter y, we wish to prove

an estimate on the value S(A,P) defined in Section 4.5. We will present Brun’s ideas,
who proved that the series of reciprocals of twin primes converges. His method differs from
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the Selberg sieve by providing an upper and lower bound; however, the upper bound will
not be as good as the one given in the previous chapter. This will give us an estimate on
π′+(x; y) = # {n 6 x : (n(2n+ 1), P (y)) = 1}.

Brun’s idea to get an upper and lower bound sieve is to exploit the fact that the Möbius
inversion is an inclusion-exclusion process. Let Ad = {n ∈ A : d | n} and Ad be its size.
Since

S(A,P) = #
A \ ⋃

p6y

Ap

 = A1 −#
⋃
p6y

Ap

and Ad is multiplicative in d in the sense that Ad1 ∩Ad2 = Ad1d2 for coprime d1 and d2, then
we can use Bonferroni’s inequalities to stop the inclusion-exlusion process after k steps and
get

S(A,P) 6 A1 +
k∑
j=1

(−1)j
∑

p1<...<pj6y

Ap1...pj =
∑
n∈A

1 +
k∑
j=1

(−1)j
∑

p1<...<pj6y

1p1...pj |n


=
∑
n∈A

∑
d|P (y)
d|n

ω(d)6k

µ(d) =
∑
d|P (y)
ω(d)6k

µ(d)Ad

if k is even, and we get the reversed inequality if k is odd. We have an upper and lower
bound sieve with

ρ+
d = µ(d)1 d|P (y)

ω(d)6k
if k is even and ρ−d = µ(d)1 d|P (y)

ω(d)6k
if k is odd.

Thus, if we define X, f and rd such that our problem satisfies Axiom 1, we have the estimate

S(A,P) =
∑
d|P (y)
ω(d)<k

µ(d)Ad +O

 ∑
d|P (y)
ω(d)=k

Ad



= X
∏
p6y

(1− f(p)) +O

 ∑
d|P (y)
ω(d)6k

|rd|+X
∑
d|P (y)
ω(d)=k

f(d)

 (5.7)

as long as we keep k 6 π(y). When trying to study π′+(x; y) with the parameters from Table
4.1, we get Axiom 1 with

Ad = # {n 6 x : n(2n+ 1) ≡ 0 (mod d)} = x
ν(d)
d

+O(ν(d)) where ν(p) =

1 if p = 2
2 if p > 3

and ν is multiplicative. With the multiplicity, we can get the bound ν(d) � 2ω(d). This
function ν(d) represents the number of roots of the polynomial n(2n+ 1) in Z/dZ. Putting
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this in (5.7), we get

π′+(x; y) = x

2
∏

36p6y

(
1− 2

p

)
+O

2k

 ∑
d|P (y)
ω(d)6k

1 + x
∑
d|P (y)
ω(d)=k

1
d


 .

The main term is x
log2 y

. For the sums in the remainder, we have

2k
∑
d|P (y)
ω(d)=k

1
d

= 2k
∑

p1<...<pk6y

1
p1 . . . pk

6
2k
k!

∑
p6y

1
p

k .
This last expression looks like eλP(Z = k) where Z is a Poisson random variable of mean
λ = ∑

p6y 2/p ≈ 2 log log y. Poisson random variables have a standard deviation of
√
λ and

their distribution resembles the normal distribution as λ→∞. This means that taking k as
a large multiple of log log y would give us an error term really small. If k = [7.94 log log y],
we would have

�

2e
k

∑
p6y

1
p

k �
 2e∑p6y

1
p

7.94 log log y

k � (0.685)7.94 log log y = (log y)7.94 log 0.685 � 1
log3 y

where we used n!� (n/e)n from Stirling’s formula.
The other sum in the remainder can be seen as the number of products of at most k

distinct primes less than or equal to y; this has to be less than or equal to yk. If 3 6 y 6

x
1

8 log log x , then
(2y)k log3 y � x

7.94
8 log3 x� x =⇒ (2y)k � x

log3 y
.

We get the following estimate for π′(x; y).

Proposition 5.3. For 3 6 y 6 x1/8 log log x, we have

π′+(x; y) = x

2
∏

36p6y

(
1− 2

p

)(
1 +O

(
1

log y

))
.

We get an estimate on the distribution of objects which are the basis of the Cramér-
Granville model.

5.3. Variance of the Sophie Germain prime race
The indicator of the Sophie Germain primes of the first kind is 1n is prime12n+ 1 is prime and

the indicator of the Sophie Germain primes of the second kind is 1n is prime12n− 1 is prime. We
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can write the difference π+(x)− π−(x) as sum of indicator functions:

π+(x)− π−(x) =
∑
n6x

1n is prime12n+ 1 is prime

−
∑
n6x

1n is prime12n− 1 is prime


=
∑
n6x

1n is prime(12n+ 1 is prime − 12n− 1 is prime).

Thus we can try modelling the race with

Mx =
∑
n6x

Zn(Z2n+1 − Z2n−1),

where the Zn are the Bernoulli random variables of the Cramér-Granville model at the end
of Section 5.1 with the same parameter y = x1/8 log log x.

To understand how far from the mean we should expect the prime race to be, we can
calculate the variance. In the sum, the only of terms after n which are dependant with the
nth term are the terms n+ 1, 2n− 1 and 2n+ 1. By using the formula for the variance of a
sum, we get

Var(Mx) =
∑
n6x

[Var(ZnZ2n+1) + Var(ZnZ2n−1)− 2 Cov(ZnZ2n+1, ZnZ2n−1)

− 2 Cov(ZnZ2n+1, Zn+1Z2n+1)− 2 Cov(ZnZ2n−1, Z2n−1Z4n−1)

+ 2 Cov(ZnZ2n−1, Z2n−1Z4n−3) + 2 Cov(ZnZ2n+1, Z2n+1Z4n+3)

− 2 Cov(ZnZ2n+1, Z2n+1Z4n+1)].

(5.8)

To evaluate the covariances, we can note that if W1,W2,W3 are three independent Bernoulli
variables of parameters p1, p2, p3 repectively, then

Cov(W1W2,W1W3) = E[W1W2W3]− E[W1W2]E[W1W3] = p1p2p3(1− p1). (5.9)

Since n(n+ 1)(2n+ 1) is always even and n(2n+ 1)(2n− 1), n(2n− 1)(4n− 1) and n(2n+
1)(4n+1) are always multiples of 3, then from the six covariances above, we only need to keep
the fourth and the fifth because the variables in the other covariances will be uncorrelated
whenever we sieve out the multiples of 2 and 3.

The polynomials n(2n−1)(4n−3) and n(2n+ 1)(4n+ 3) have one solution in Z/2Z, two
solutions in Z/3Z and three solutions in Z/pZ for p > 5. When applying (5.9) on the fourth
and fifth covariances in (5.8), then we get that the contributions of the covariances in the
sum is of the size 18∏p>5(1 − 3p−1

(p−1)3 ) x
log3 x

. Since the product of two independent Bernoulli
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variables is a Bernoulli variable itself, then we obtain

Var(Mx) =
∑
n6x

Var(ZnZ2n+1) + Var(ZnZ2n−1) +O

(
x

log3 x

)

=
∑
n6x

E[ZnZ2n+1] + E[ZnZ2n−1] +O

 x

log3 x
+
∑
n6x

(
E[ZnZ2n+1]2 + E[ZnZ2n−1]2

)
= 2c2x

log2 x
+O

 x

log3 x
+
∑
n6x

(
E[ZnZ2n+1]2 + E[ZnZ2n−1]2

) .
To give an upper bound on the sum in the error term, we have
∑
n6x

E[ZnZ2n+1]2 �
∑
n6x

(n(2n+1),P (y))=1

α4

log4 n
� x

log4 x

∏
36p6y

(
1− 2

p

)(
1− 1

p

)−4

� x log2 y

log4 x

with Mertens’ estimate (5.4). Since we previously set the parameter y = x1/8 log log x to our
Cramér-Granville model, then

Var(Mx) =
(

2c2 +O

(
1

(log log x)2

))
x

log2 x
. (5.10)

We can standardize Mx by dividing it by an approximation of the standard deviation.
Thus we can have a clearer image of the race by studying instead the quantity log x√

x
(π+(x)−

π−(x)) as we will see ahead in Figure 7.1.

5.4. Twin primes vs. Sophie Germain primes
To pass from (5.5) to (5.6), we had to use partial summation and the estimate for t > 2

1
log t log(2t+ 1) = 1

log t log(2t) +O

(
1

t log3 t

)
=⇒

∫ x

2

1
log t log(2t+ 1) = L(x) +O(1)

to ultimately get the conjecture π+(x) = c2L(x). Since the logarithmic function is slowly
oscillating, meaning that for every positive real number k we have log(kt) ∼ log t as t→∞,
why not replace the log(2t) by log t in the denominator of the integrand. The reason is that
this will get the error term too large. Indeed, if Li2(x) =

∫ x
2

dt
log2 t

, then (Li2(x) − L(x)) =∫ x
2

log 2 dt
log2 t log(2t) ∼

x log 2
log3 x

, which is very big compared to the standard deviation of the Sophie
Germain race.

As a matter of fact, the twin prime constant c2 does not have this appellation for no
reason. Using the Cramér-Granville model, we get that ∑n6x E[ZnZn+2] = c2 Li2(x) +
O
(
x1/4 log log x

)
which means that the twin prime counting function π2(x) is asymptotic to

c2x
log2 x

, as is π+(x). However, if we would race the two functions against each other, then we
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could conjecture that

log3 x

x
(π2(x)− π+(x)) ≈ log3 x

x

∑
n6x

E[Zn(Zn+2 − Z2n+1)]
 ∼ c2 log3 x

x
(Li2(x)− L(x))

which would mean that for x sufficiently large, there is always more twin primes than Sophie
Germain primes less than x since

lim
x→∞

log3 x

x
(π2(x)− π+(x)) = c2 log 2 ≈ 0.9151786 . . .

as seen in Figure 5.2.

Fig. 5.2. Graph of (π2(x)− π+(x))/
∫ x

2
dt

log2 t log(2t) .
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Chapter 6

The circle method

To study the number of Sophie Germain primes of the first kind, it suffices to estimate

ψ+(x) :=
∑
n6x

Λ(n)Λ(2n+ 1).

The proper prime powers contribute to a negligible amount to this sum, and the logarithmic
weight can be easily removed to have an estimate for π+(x). This can be compared to the
techniques we used in Section 2.7 to transform our estimate for ψ(x; q, a) into an estimate
for π(x; q, a). Similarly, for Sophie Germain primes of the second kind, we need to estimate
the quantity

ψ−(x) :=
∑
n6x

Λ(n)Λ(2n− 1).

Since
∫ 1

0 e(kα) dα = 1k=0, for x > 2 we can rewrite ψ+(x) as

ψ+(x) =
∑
n6x

m62x+1
m=2n+1

Λ(n)Λ(m) =
∑
n6x

m62x+1

Λ(n)Λ(m)
∫ 1

0
e((2n−m+ 1)α) dα

=
∫ 1

0
Sx(2α)S2x+1(−α)e(α) dα, (6.1)

where
Sx(α) :=

∑
n6x

Λ(n)e(nα).

Similarly,
ψ−(x) =

∫ 1

0
Sx(2α)S2x−1(−α)e(−α) dα.

In 1918, G. H. Hardy and Srinivasa Ramanujan developed a method to study the partition
function that counts the number of ways to write a number as a sum of positive integers.
In the 1920s, Hardy and Littlewood proved multiple additive number theory problems by
transforming the problem at hand into evaluating an integral of Fourier series over the unit



circle1, similar to the one given in (6.1). They noticed that the Fourier series Sx(α) is larger
for α near rational numbers with low denominators. Such values ought to give the dominant
contribution of the integral in (6.1).

Let us explain their idea in detail. Let P and Q be positive real parameters such that2

Q > 2P 2. For q 6 P , 1 6 a 6 q and (a, q) = 1, we define M(q, a) as the set of α such that
‖α− a/q‖ 6 1/Q, where ‖α‖ is the distance between α and the closest integer3. We can
define the major arcs as

M =
⋃
q6P

⋃
16a6q
(a,q)=1

M(q, a)

and the minor arcs as
m = [0, 1] \M.

In the next section, we will prove that

Theorem 6.1. For x→∞ and A > 1, we have∫
M
Sx(2α)S2x+1(−α)e(α)dα = c2x+OA

(
x

logA−1 x

)

where c2 is the twin prime constant. The same estimate holds if we replace e(α) by e(−α)
in the integrand.

Let W =
{
pk : k > 2

}
be the set of proper prime powers. To show how Theorem 6.1

connects with Conjecture 1.1, we have to remove the terms such that either n or 2n + 1 is
in W :

∑
n6x

n∈W or 2n+1∈W

Λ(n)Λ(2n+ 1)�
∑
n6x
n∈W

Λ(n)Λ(2n+ 1) +
∑
n6x

2n+1∈W

Λ(n)Λ(2n+ 1)

� log x

∑
n6x
n∈W

Λ(n) +
∑
n6x

2n+1∈W

Λ(2n+ 1)

� log x

∑
n6x
n∈W

Λ(n) +
∑

n62x+1
n∈W

Λ(n)

� √x log2 x

where the last bound comes from (2.25). Thus we can say

ψ+(x) = θ+(x) +O
(√

x log x
)

where θ+(x) =
∑
p6x

2p+1 is prime

log p log(2p+ 1).

1Let S1 = {z ∈ C : |z| = 1} = {e(α) : α ∈ R}, then we can write Sx(α) as a function over S1 which means
that we can look at the integral in (6.1) as a complex integral over S1 with a change of variable.
2This condition is necessary to keep the major arcs from overlapping, as we will see with (6.2).
3This function can be seen as a metric in S1. For any α, β ∈ R, ‖α− β‖ represent the length of the smallest
arc on the unit circle between e(α) and e(β) divided by 2π. We can note that M(q, a) can also be defined
by the α such that |α− a/q| 6 1/Q, except for M(1, 1).
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Then if we assumed that the contribution of (6.1) did come from the major arcs, then
we could get

θ+(x) = ψ+(x) +O
(√

x log x
)

= c2x+OA

(
x

logA−1 x

)
.

Using partial summation, we can get

π+(x) =
∫ x

2−

dθ+(t)
log t log(2t+ 1) = c2

∫ x

2

dt
log t log(2t+ 1) +OA

(
x

logA+1 x

)
,

which would lead us to the conjecture

π+(x) = c2x

log2 x
+O

(
x

log3 x

)
.

However, we still did not manage to prove that the minor arcs offer a negligible contribution.

6.1. Major arcs
We are going to prove Theorem 6.1 following the ideas of Chapter 26 in [5]. Let A > 1.

We are setting the parameters defining the major arcs to P = logA x and Q = x/ logA x.
First, we show that all the M(q, a) with q 6 P are pairwise disjoint subsets of [0, 1]. Let
a/q 6= a′/q′ be two rational numbers with q, q′ 6 P in the additive group R/Z. Then∣∣∣∣∣aq − a′

q′

∣∣∣∣∣ = |aq
′ − a′q|
qq′

>
1
qq′
>

1
P 2 >

2
Q

(6.2)

as long as x is big enough to have x/ log3A x > 2. Thus we cannot have two distinct major
arcs overlapping.

The reason why it is easy to estimate Sx(α) on major arcs is because, for α ∈ M(a, q),
we can approximate Sx(α) by Sx(a/q), which is easily manageable: Using Example 2.13 and
the Siegel-Walfisz theorem, we have

∑
n6x

(n,q)=1

Λ(n)e(na/q) = 1
φ(q)

∑
n6x

Λ(n)
∑

χ (mod q)
G(χ)χ(na) = 1

φ(q)
∑

χ (mod q)
G(χ)χ(a)ψ(x, χ)

= G(χ0)x
φ(q) +OA

(
qxe−c1

√
log x

)
= G(χ0)x

φ(q) +OA

(
xe−c2

√
log x

)
, (6.3)

where c1 and c2 are two positive constants and we used the trivial bound G(χ) � q. By
using the trivial bound ω(q) 6 q 6 P , we also have:∑

n6x
(n,q)>1

Λ(n)e(na/q) =
∑
p|q

log p
∑

k6 log x
log p

e(pka/q)� ω(q) log x� logA+1 x.
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Thus we obtain the estimate

Sx(a/q) =
∑
n6x

(n,q)=1

Λ(n)e(na/q) +
∑
n6x

(n,q)>1

Λ(n)e(na/q) = µ(q)x
φ(q) +OA

(
xe−c2

√
log x

)
, (6.4)

where we used the fact that G(χ0) = µ(q). This can be proved using Möbius inversion and
the fact that ∑R

r=1 e(ar/R) = 0 if R - a:∑
b6q

(b,q)=1

e(b/q) =
∑
b6q

e(b/q)
∑
d|b
d|q

µ(d) =
∑
d|q
µ(d)

∑
r6q/d

e(dr/q) = µ(q). (6.5)

For a and q fixed and α ∈ M(q, a), we can now study S2x(α) by defining β := α −
a/q (mod 1) and writing e(nα) as e(na/q)e(nβ). Inside the major arc M(a, q), we are now
working with a variable β such that |β| < 1/Q (mod 1). Let Ba,q(t) := St(a/q), Ra,q(t) :=
Ba,q(t)− µ(q)[t]/φ(q) and Tx(β) := ∑

n6x e(nβ). By using (6.4), we obtain the upper bound

Ra,q(t)�A te
−c2
√

log t �A xe
−c2
√

log x

uniformly for 1 6 t 6 x. Thus we can use partial summation to change our problem about
primes into a problem about natural numbers:

Sx(α) =
∑
n6x

Λ(n)e(na/q)e(nβ)

=
∫ x

1−
e(tβ) dBa,q(t)

= µ(q)
φ(q)

∫ x

1−
e(tβ) d[t] +

∫ x

1−
e(tβ) dRa,q(t)

= µ(q)
φ(q)Tx(β) +Ra,q(x)e(xβ)− 2πiβ

∫ x

1
Ra,q(t)e(tβ) dt

= µ(q)
φ(q)Tx(β) +OA

(
(1 + x/Q)xe−c2

√
log x

)
= µ(q)
φ(q)Tx(β) +OA

(
xe−c3

√
log x

)
,

(6.6)

for an absolute positive constant c3. By the same techniques, we can find

Sx(−α) = µ(q)
φ(q)Tx(−β) +OA

(
xe−c3

√
log x

)
. (6.7)

However, we have to be more vigilant with Sx(2α). The Fourier transform of n 7→
e(2na/q)1(n,q)=1 in L2((Z/qZ)∗) is

1
φ(q)

∑
χ (mod q)

G2(χ)χ(n) where G2(χ) :=
∑
a6q

χ(a)e(2a/q).
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Similarly as in (6.4), we have

Sx(2a/q) = G2(χ0)x
φ(q) +OA

(
xe−c2

√
log x

)
= µ2(q)x

φ(q) +OA

(
xe−c2

√
log x

)
,

where µ2 is a multiplicative function4 with Dirichlet series (1 + 21−s)ζ(s)−1. We can see that
G2(χ0) = µ2(q) by using the same techniques as in (6.5). Hence we have

Sx(2α) = µ2(q)
φ(q) Tx(2β) +OA

(
xe−c3

√
log x

)
. (6.8)

By putting (6.6), (6.7) and (6.8) in the integral over a major arc, we get∫
M(q,a)

Sx(2α)S2x+1(−α)e(α) dα

= µ2(q)µ(q)
φ(q)2 e(a/q)

∫ 1/Q

−1/Q
Tx(2β)T2x+1(−β)e(β) dβ +O

(
x2

Q
e−c3

√
log x

)
which implies that when we bring the major arcs together, there exists a positive constant
c′ such that∫

M
Sx(2α)S2x+1(−α)e(α) dα

=
∑
q6P

µ2(q)µ2(q)
φ(q)2

∫ 1/Q

−1/Q
Tx(2β)T2x+1(−β)e(β) dβ +O

(
xe−c

′√log x
)
. (6.9)

Lemma 6.2. For x > 2 and Q = x
logA x , we have

∫ 1
Q

− 1
Q

Tx(2β)T2x+1(−β)e(β) dβ = x+O

(
x

logA x

)
.

Proof. To understand the integral above, we want to estimate it with the same integral
on the interval [0, 1]. This allows us to transform the calculation of this integral into a
combinatorial problem like in (6.1):∫ 1

0
Tx(2β)T2x+1(−β)e(β) dβ = #{(n,m) : n 6 x and m = 2n+ 1} = x+O(1) . (6.10)

The only major arc for the integers (where the Fourier series Tx(β) is at its largest) is
around 1 on the unit circle. To see this, Tx(β) can be understood as a geometric sum: For

4We prove the multiplicativity of µ2 since it is the Dirichlet convolution of two multiplicative functions.
The values of µ2 coincides with the ones for the Möbius function µ at odd integers and have the values
µ2(2) = 1, µ2(4) = −2 and µ2(2k) = 0 for k > 3. In general, one might have to work with the sum
cq(n) =

∑
a6q χ0(a)e(na/q) which is called the Ramanujan’s sum. We can notice that cq(1) = µ(q) and

cq(2) = µ2(q). By applying the same methods as we did to understand the multiplicativity and the Dirichlet
series of µ2, we can say that q 7→ cq(n) is multiplicative and find the formula cq(n) = µ(q/(n,q))φ(q)

φ(q/(n,q)) by seeing
that it coincides at prime powers.
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β /∈ Z, we have

Tx(β) =
∑
n6x

e(nβ) = e([x+ 1]β)− e(β)
e(β)− 1 � 1

|e(β)− 1| �
1
‖β‖

(6.11)

uniformly for x > 0. Thus, when 2β /∈ Z, then Tx(2β)T2x+1(−β)e(β)� ‖2β‖−1 ‖β‖−1 and∫ 1
2−

1
Q

1
Q

Tx(2β)T2x+1(−β)e(β) dβ �
∫ 1

2−
1
Q

1
Q

dβ
‖2β‖ ‖β‖ = 1

2

∫ 1− 2
Q

2
Q

dβ
‖β‖ ‖β/2‖ = 2

∫ 1
2

2
Q

dβ
β2 � Q.

(6.12)
We can get the same upper bound using the same method for the same integral in the interval
[1/2 + 1/Q, 1 − 1/Q]. For the integral on an interval very close to 1/2, we have the trivial
bound Tx(2β)� x and T2x+1(β)� 1 by (6.11), which leads us to∫ 1

2 + 1
Q

1
2−

1
Q

Tx(2β)T2x+1(−β)e(β) dβ � x

Q
. (6.13)

By putting together (6.10), (6.12) and (6.13), we can prove the lemma. �

The summation in (6.9) converges if P →∞ which means that we can estimate it using
the infinite series. The Euler product representation of the Dirichlet series of f(q) = µ2(q)µ2(q)

φ2(q)
is

F (s) =
(

1 + 1
2s
)∏
p>3

(
1− 1

(p− 1)2ps

)
,

which converges absolutely for σ > −1. Thus if we let ε = 1
A
, then

∑
q6P

µ2(q)µ2(q)
φ2(q) = F (0) +O

∑
q>P

|f(q)|
 = c2 +O

 1
P 1−ε

∑
q>P

|f(q)|
q−1+ε

 = c2 +O

(
1

logA−1 x

)
.

Placing this estimate and Lemma 6.2 into (6.9), we get Theorem 6.1. The proof is very
similar for the Sophie Germain primes of the second kind.

6.2. Minor arcs in ternary problems
The study of ψ+(x) is a binary problem, in the sense that we are studying the summatory

function of Λ(n)Λ(m) over pairs of integers (n,m) satisfying one linear condition. In contrast,
a ternary problem would be the study of a summatory function Λ(n1)Λ(n2)Λ(n3) over triplets
of integers (n1, n2, n3) satisfying one linear condition. We have a hard time understanding
the contribution of minor arcs integral in (6.1), and this characteristic is shared with most
binary problems. In this section, we will show a way to deal with the minor arcs in a ternary
problem, and we will explain in the next section why we cannot use the same techniques
to understand binary problems and show that the minor arcs have a negligible contribution
compared to the major arcs. For example, the Goldbach’s conjecture, stating that every even
integer greater or equal to 4 can be written as a sum of two primes, is a binary problem and
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remains unsolved since Christian Goldbach stated the problem in a letter to Euler in 1742.
However, Goldbach’s weak conjecture, which says that every odd integer greater or equal to
7 can be written as a sum of three primes, is a ternary problem. It has been solved, and the
main argument of the proof uses the circle method5.

An example of a ternary problem is the study of prime pairs p1, p2 such that p1 + p2 + 1
is also prime. We can notice that if we have a pair (p1, p2) with p1 = p2 and with p1 + p2 + 1
prime, then p1 is a Sophie Germain prime of the first kind. If a proof of Goldbach’s conjecture
existed, we would immediately deduce the infinitude of pairs (p1, p2) with p1 + p2 + 1 prime.
We will prove this unconditionally using the circle method:

Theorem 6.3. For x > 2, the number of unordered pairs of primes p1, p2 6 x such that
p1 + p2 + 1 is also prime is (

K

2 +O

(
log log x

log x

))
x2

log3 x

where
K =

∏
p

(
1 + 1

(p− 1)3

)
≈ 2.30096 . . .

We will eventually have to evaluate an integral around the unit circle like before. Still, in
order to get an upper bound on the integral over the minor arcs, we first need Vinogradov’s
nontrivial upper bound on the Fourier series Sx(α) = ∑

n6x Λ(n)e(nα):

Lemma 6.4. For x > 2, α ∈ R, q > 0 and an irreducible fraction a
q
such that

∣∣∣α− a
q

∣∣∣ < 1
q2 ,

we have
Sx(α)� (xq−1/2 + x4/5 + (xq)1/2) log5/2 x.

A proof of this is given in Chapter 23 of [16]. To use this lemma, we will need to know
that for every real number α, there is a rational number that is close enough relative to the
magnitude of the denominator.

In particular, using Dirichlet’s approximation theorem (Lemma 3.4 with d = 1), we know
that for every α ∈ R there always exists an irreducible fraction a/q such that |α− a/q| < q−2.
We will now use the same setup as in Section 6.1 for the proof of Theorem 6.3.

Proof of Theorem 6.3. As in the case of Sophie Germain primes, let us define

R(x) :=
∑

n,m6x

Λ(n)Λ(m)Λ(n+m+ 1).

5In 1922, Hardy and Littlewood proved that, assuming the Generalized Riemann Hypothesis, Goldbach’s
weak conjecture holds for every sufficiently large integer. In 1937, I. M. Vinogradov gave a proof of this
unconditionally. Finally, in 2013, Harald A. Helfgott proved Goldbach’s weak conjecture for every integer
n > 7.
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It suffices to prove that R(x) = Kx2(1 +O(1/ log x)). Later in the proof, we will show how
we can deduce the theorem from the result on R(x). Using the same method as in (6.1), we
have

R(x) =
∫ 1

0
Sx(α)2S2x+1(−α)e(α) dα

=
∫
M
Sx(α)2S2x+1(−α)e(α) dα +

∫
m
Sx(α)2S2x+1(−α)e(α) dα

with the major and minor arcs defined in exactly the same way as in the previous sections
with P = log9 x and Q = [x/ log9 x]. We follow the same procedure as Section 6.1 to obtain∫

M
Sx(α)2S2x+1(−α)e(α) dα = Kx2

(
1 +O

(
1

log8 x

))
.

By Lemma 3.4 there exists an irreducible fraction a/q such that q 6 Q and |α− a/q| <
1/(qQ) 6 q2 and if α ∈ m, then we know that q > P . Using Lemma 6.4, we know that for
α ∈ m

S2x+1(−α)� (xP−1/2 + x4/5 + (xQ)1/2) log5/2 x = x

log2 x
. (6.14)

Furthermore, if we look at Sx(α) as a Fourier series, then Parseval’s identity gives us the
average value of |Sx(α)|2:∫ 1

0
|Sx(α)|2 dα =

∑
n6x

Λ(n)2 = x log x+O(x) . (6.15)

since proper prime powers have a contribution �
√
x log x and partial summation leads us

to ∑
p6x

log2 p =
∫ x

1
log t dθ(t) = θ(x) log x−

∫ x

1

θ(t)
t

dt = x log x+O(x) .

Combining (6.14) and (6.15), we can get an upper bound on the contribution of the minor
arcs: ∫

m
Sx(α)2S2x+1(−α)e(α) dα�

∫
m
|Sx(α)|2 |S2x+1(−α)| dα� x2

log x. (6.16)

If we now combine the results of the major and minor arcs, we obtain

R(x) =
∑

n,m6x

Λ(n)Λ(m)Λ(n+m+ 1) = Kx2 +O

(
x2

log x

)
.
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To remove the contribution of proper prime powers, we use the same technique as before
and say that if we let W =

{
pk : k > 2

}
, then

∑
n,m6x
n∈W or
m∈W or

n+m+1∈W

Λ(n)Λ(m)Λ(n+m+ 1) 6
∑

n,m6x
n∈W

Λ(n)Λ(m)Λ(n+m+ 1)

+
∑

n,m6x
m∈W

Λ(n)Λ(m)Λ(n+m+ 1) +
∑

n,m6x
n+m+1∈W

Λ(n)Λ(m)Λ(n+m+ 1)

� log2 x

x ∑
n6x
n∈W

Λ(n) + x
∑
m6x
m∈W

Λ(m) +
∑

n,m6x
n+m+1∈W

Λ(n+m+ 1)

 .
The number of pairs n,m 6 x such that n+m+ 1 = k is less than x, which implies that we
have

� x log2 x

∑
n6x
n∈W

Λ(n) +
∑
m6x
m∈W

Λ(m) +
∑

36k62x+1
k∈W

Λ(k)

� x3/2 log3 x.

The last bound comes from (2.25), and it leaves us with

B(x) :=
∑

p1,p26x
p1+p2+1 is prime

log p1 log p2 log(p1 + p2 + 1) = Kx2 +O

(
x2

log x

)
. (6.17)

Finally, we cannot use partial summation as usual to remove the logarithmic weights
since the sum is over two variables6. First,

B(x) =
∑

p1,p26x
p1+p2+1 is prime

log p1 log p2 log(p1 + p2 + 1) 6 r(x) log3 x

(
1 +O

(
1

log x

))
(6.18)

where
r(x) :=

∑
p1,p26x

p1+p2+1 is prime

1.

Let
rδ(x) :=

∑
x1−δ<p1,p26x

p1+p2+1 is prime

1.

By the PNT, we have for x sufficiently large and δ < 1/4:

r(x)− rδ(x) 6 2
∑

p1,p26x
p16x1−δ

p1+p2+1 is prime

1 6 2π(x1−δ)π(x) 6 3x2−δ

log2 x
,

6The rest of the proof, about deducing the theorem from (6.17), is inspired from the proof of Theorem 8.1
in [21] (pp. 228-230).
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which implies

B(x) >
∑

x1−δ<p1,p26x
p1+p2+1 is prime

log p1 log p2 log(p1 + p2 + 1) > (1− δ)3 log3(x)rδ(x)

> (1−O(δ)) log3 x

(
r(x)− 3x2−δ

log2 x

)
=⇒ B(x)

r(x) log3 x
> (1−O(δ))

(
1− 3x2−δ

r(x) log2 x

)
.

We have the lower bound r(x) log2 x � x2/ log x by combining (6.17) and (6.18) which
ultimately gives us

B(x)
r(x) log3 x

> 1 +O

(
δ + log x

xδ

)
.

By choosing δ = 2 log log x/ log x and taking the upper bound (6.18) into account7, we obtain

B(x) = r(x) log3 x

(
1 +O

(
log log x

log x

))
=⇒ r(x) = B(x)

log3 x

(
1 +O

(
log log x

log x

))

= Kx2

log3 x

(
1 +O

(
log log x

log x

))
,

which proves of the theorem when applying the symmetry arguments since almost8 every
unordered pair p1, p2 6 x in the sum r(x) has been counted twice. �

6.3. Minor arcs in binary problems
Let’s come back to the distribution of Sophie Germain primes of the first kind. To

ultimately prove Conjecture 1.1 and have an asymptotic for π+(x), we need to estimate∫
m
Sx(2α)S2x+1(−α)e(α) dα. (6.19)

From (6.15), we know that the expected value of |Sx(α)|2 if α is uniformly distributed on
the interval [0, 1] is asymptotic to x log x as x→∞, thus we should expect that

|Sx(α)| = x1/2+o(1)

for a generic α ∈ [0, 1]. Let λ be the Lebesgue measure. We can note that, in practice,
we choose the major arcs such that λ(M) = o(1) and λ(m) = 1 − o(1), so we expect
|Sx(α)| = x1/2+o(1) for most α ∈ m. Then no matter how we choose our major and minor
arcs, we cannot expect to bound the contribution over the minor arcs trivially, otherwise
we get a bound as big as the main term found in Theorem 6.1. With the Cauchy-Schwarz
inequality, we can prove an upper bound on the expected value of |S(α)| rigorously, if α was

7Note that choosing δ this way means that x1−δ = x/ log2 x.
8The only exceptions are when p1 = p2 are both Sophie Germain primes of the first kind. They have a
negligible contribution to the sum since there is so few of them.
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uniformly distributed in m:
(∫

m
|Sx(α)| dα

)2
6
(∫ 1

0
|Sx(α)| dα

)2
6
∫ 1

0
|Sx(α)|2 dα ∼ x log x

=⇒ 1
λ(m)

∫
m
|Sx(α)| dα 6

√
x log x(1 + o(1)).

If we were to use the circle method to prove Conjecture 1.1, we would need to find parts of
the integral in (6.19) which cancel each other.
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Chapter 7

Numerical investigations

In this chapter, we want to understand if the Sophie Germain prime number race shares
similarities with Chebyshev’s race or if it behaves more like a random walk. Under GRH,
the proof of the existence of a limiting distribution for the function E(x; 4, 3, 1) comes from
the fact that we were able to prove that E(eu; 4, 3, 1) is close to a sum of periodic functions
in the function space L2 (see Theorem 3.1). This sum can be decomposed into a constant
function, which led to the bias and a superposition of trigonometric functions. We obtained
the sum of trigonometric functions by using the explicit formula for ψ(x, χ1) where χ1 was the
nonprincipal character mod 4. We know that ψ(x, χ1) is a step-function that jumps at every
prime power, and squares’ contribution is not negligible in the study of this prime number
race. However, the fact that every square of primes is 1 mod 4 creates this imbalance. In
other words, numbers that are 3 mod 4 have more chance to be prime since they cannot be
square numbers. Maybe the squares also lead to a bias in the Sophie Germain prime number
race.

The graph of log x√
x

(π+(x) − π−(x)) in Figure 7.1 looks quite different from the races in
Figure 3.1 or in Figure 3.2. We are going to study this prime number race with a logarithmic

Fig. 7.1. Graph of log x√
x

(π+(x)− π−(x)).



scale. This is because primes are on average logarithmically spaced, which is why it is not
really surprising to see in Chapter 3 that the right way to measure the distribution of the
values of E(x; 4, 3, 1) is through the logarithmic density. Maybe the Sophie Germain prime
number race is periodic on the logarithmic scale.

7.1. Do squares make a difference?
In Chebyshev’s race, the bias essentially came from the fact that every square of primes

is of the form 1 (mod 4). When we look at our race π+ vs. π−, the number 2p+ 1 can never
be a square because, for any prime p > 3, we have

2p+ 1 is a square =⇒ 2p+ 1 ≡ 1 (mod 4) =⇒ 4 | 2p

which is impossible. However, for any prime p,

2p− 1 is a square ⇐⇒ ∃k such that 2p− 1 = (2k + 1)2 ⇐⇒ p = 2k2 + 2k + 1.

By using the Cramér-Granville model from Chapter 5, we can then conjecture that the
function

ξ(x) = #
{
p 6 x : ∃k such that p = 2k2 + 2k + 1

}
∼

∑
k6(x/2)1/2+O(1)

E[X2k2+2k+1] ∼ C
√
x

log x ,

(7.1)

where
C =

√
2
∏
p

(
1− χ1(p)

p− 1

)
≈ 1.9414 . . .

with χ1 being the only nonprincipal character mod 4. The second product is convergent
because if we let B(x) = ∑

p6x χ1(p) which is � xe−c
√

log x for a positive constant c by the
PNT for arithmetic progressions, then with partial summation we get

∑
p>y

χ1(p) log
(

1− 1
p

)
= −B(y) log

(
1− 1

y

)
−
∫ ∞
y

B(t)
t(t− 1) dt

� e−c
√

log y +
∫ ∞
y

e−c
√

log t

t
dt� e−c

′√log y

so that

∏
p>y

(
1− χ1(p)

p− 1

)
=

∏
p>y

p≡1 (mod 4)

(
1− 1

(p− 1)2

) ∏
p>y

(
1− 1

p

)χ1(p)

= (1 +O(1/y))
(
1 +O

(
e−c

′√log y
))

= 1 +O
(
e−c

′√log y
)

for a constant c′ < c.
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If the Sophie Germain race was anything like the Chebyshev race, the fact that 2p + 1
can never be a square should make it more probable to be a prime than 2p − 1. However,
Figure 7.1 shows that the Sophie Germain prime race has a very different structure than
Chebyshev’s race.

If we suppose that, like in the Chebyshev race, the function c2x is a good approximation
for ∑n6x Λ(n)Λ(2n+ 1) in the sense that the race between these two functions do not have
any bias, then so will c2L(x) against Π+(x) := ∑

n6x
Λ(n)Λ(2n+1)

logn log(2n+1) . We can decompose Π+(x)
into three different sums. The first is over the n which are Sophie Germain primes of the
first kind, the second is over the n which are squares of primes and 2n + 1 is prime, and
the third is over the n such that either n or 2n+ 1 is in W3 :=

{
pk : k > 3

}
. Note that the

second sum equals to 1/2 since for every p 6= 3, we have 3 | 2p2 + 1.

Π+(x) = π+(x) + 1
2 +

∑
n6x

n∈W3 or
2n+1∈W3

Λ(n)Λ(2n+ 1)
log n log(2n+ 1) .

We can bound the sum above by∑
n6x

n∈W3 or
2n+1∈W3

Λ(n)Λ(2n+ 1)
log n log(2n+ 1) �

∑
n6x

n∈W3 or
2n+1∈W3

1�
∑
n6x
n∈W3

1 +
∑
n6x

2n+1∈W3

1�
∑

p6x1/3

∑
k6 log x

log p

1� x1/3.

Thus Π+(x) = π+(x)+O
(
x1/3

)
which means that c2L(x) would also be a good approximation

for π+(x) since the error term O
(
x1/3

)
is less than the standard deviation of the race.

However, if we do the same process for Π−(x) := ∑
n6x

Λ(n)Λ(2n−1)
logn log(2n−1) , then we have to take

into account whenever n or 2n− 1 is the squares of a prime which would give us

Π−(x) = π−(x) + 1
2ξ1(x) + 1

2ξ2(x) + 1
4ξ3(x) +O

(
x1/3

)
where

ξ1(x) := # {p 6 x : 2p− 1 is the square of a prime}

= #
{
p 6
√

2x− 1 : p
2 + 1

2 is prime
}
,

ξ2(x) := #
{
p 6
√
x : 2p2 − 1 is prime

}
and ξ2(x) := #

{
p 6
√
x : 2p2 − 1 is the square of a prime

}
.

Let A =
{
n(n2 + 1)/2 : n 6

√
2x− 1

}
, B = {n(2n2 − 1) : n 6

√
x}, P = {p 6 x1/5}, and

let’s use the same definitions as in Section 4.5. By applying Selberg’s sieve method from
Chapter 4 or by directly using Theorem 4.5, we have the upper bounds

ξ1(x) 6 S(A,P) +O
(
x1/5

)
�
√
x

log2 x
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and
ξ2(x), ξ3(x) 6 S(B,P) +O

(
x1/5

)
�
√
x

log2 x
.

The main reason why we have a better bound than the trivial bound is because of the sifting
dimension. We know that n(2n2 − 1) ≡ 0 (mod p) has three solutions if p ≡ 1, 3 (mod 8),
and it has only one solution if p ≡ 5, 7 (mod 8). We also know that n(n2 +1)/2 ≡ 0 (mod p)
has three solutions for p ≡ 1 (mod 4) and only one for p ≡ 3 (mod 4). Thus both problems
S(A,P) and S(B,P) respect the Axiom 2 with κ = 2.

We can conclude that

Π+(x)− Π−(x) = π+(x)− π−(x) +O

( √
x

log2 x

)
.

Since the error term is negligible compared to the conjectured standard deviation
√

2c2x/ log x from (5.10), we conclude that squares do not influence the Sophie Germain
race like they do in the Chebyshev race.

7.2. Periodicity
Following the discussion in Section 3.3, a finite superposition of trigonometric function is

almost a periodic function. The next theorem quantifies this “almost periodicity” by giving a
bound on the second moment of E(eU+h; 4, 3, 1)−E(eU ; 4, 3, 1) where U is a uniform random
variable in the interval [0, X] for an X very large.

Theorem 7.1. Let χ1 be the nonprincipal character mod 4, T > 1, δ > 0 and let h > 0
such that ‖γh/2π‖ < δ for every nontrivial zero of L(s, χ1) with imaginary part 0 < γ 6 T .
Then, assuming GRH, we have

1
X

∫ X

0
(E(eu+h; 4, 3, 1)− E(eu; 4, 3, 1))2 du� δ2 log4 T + log2 T

T
+ 1
X
.

Proof. To prove this theorem, we can use the trigonometric approximation of E(eu; 4, 3, 1)
that we found in Theorem 3.1. We have the following identities:

cos(γ(u+ h))− cos(γu) = −2 sin(γh/2) sin(γ2 (2u+ h)),

sin(γ(u+ h))− sin(γu) = 2 sin(γh/2) cos(γ2 (2u+ h)).

Thus we can use these equations to find that

∑
0<γ6T

cos(γ(u+ h))− cos(γu) + 2γ(sin(γ(u+ h))− sin(γu))
1
4 + γ2

=
∑

0<γ6T

4 sin(γh/2) sin(γ2 (2u+ h)− θγ)√
1
4 + γ2

,
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where θγ is defined as the angle in any right triangle such that the adjacent leg to θγ is of
length 1 and its opposite leg is of length 2γ (similarly as in the proof of Theorem 3.9).

For X > h, let’s denote the norm in L2 by ‖f(u)‖2 =
(∫X

0 f(u)2 du
)1/2

for any function
f ∈ L2([0, X]) (not to be confused with ‖·‖ as the distance to the closest integer in the
statement of the theorem). We can define the function ε(u;T ) as in Theorem 3.1, and use
Minkowski’s inequality to find that∥∥∥E(eu+h; 4, 3, 1)− E(eu; 4, 3, 1)

∥∥∥
2

6
∑

0<γ6T

4 |sin(γh/2)|
∥∥∥sin(γ2 (2u+ h)− θγ)

∥∥∥
2√

1
4 + γ2

+ ‖ε(u+ h;T )‖2 + ‖ε(u;T )‖2

� δ
√
X

∑
0<γ6T

1
γ

+ log T
√
X√

T
+ 1

where we used the bound |sin(πx)| 6 π‖x‖ for every real number x. We can finally use the
density of the zeros of L-functions (Theorem 2.15) to have the bound ∑0<γ6T 1/γ � log2 T

and prove the theorem. �

This theorem shows that the “almost periods” of E(eu; 4, 3, 1) are characterized by the
numbers h such that γh/2π is close to an integer for every first few zeros of L(s, χ1). Figure
7.2 gives out the second moment of the difference between the graph and different translations
of the graph 3.1 on the logarithmic scale.

Fig. 7.2. Second moment of E(10U+x/100; 4, 3, 1) − E(10U ; 4, 3, 1) for a random variable U
which is uniform in [0, 106].

To show that the depressions in the graph corresponds to the “almost periods” of
E(eu; 4, 3, 1) discussed above, Table 7.1 gives the values of x where the second moment
in Figure 7.2 is low and their corresponding values for xγ log 10

200π for the first five nontrivial
zeros of L(s, χ1). The five zeros of L(s, χ1) in the table are taken out of [29].
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Values of x
Second
moment in
Figure 7.2

Zeros of L(s, χ1)

6.02095 10.24377 12.98810 16.34261 18.29199

48 0.1455 1.05911 1.80193 2.28467 2.87474 3.21764

84 0.1658 1.85345 3.15337 3.99816 5.03079 5.63088

104 0.2220 2.29474 3.90417 4.95011 6.22860 6.97156

131 0.1854 2.89049 4.91776 6.23523 7.84564 8.78149

167 0.3360 3.68483 6.26920 7.94873 10.0017 11.1947

183 0.1926 4.03787 6.86984 8.71029 10.9599 12.2673

Table 7.1. Values of xγ log 10
200π for the corresponding nontrivial zero γ of L(s, χ1).

The colours in the tables are there to highlight the values close to an integer. If the value∥∥∥xγ log 10
200π

∥∥∥ 6 0.05, then it is in red. If it is between 0.05 and 0.10, then it is in magenta. If it
is between 0.10 and 0.15, then it is in blue.

We can notice that the low spikes in Figure 3.1, where the graph falls below the x-axis
and have been characterized at the beginning of Chapter 3, seem to be evenly spaced on the
logarithmic scale. In fact

100(log 616841− log 26861)
log 10 ≈ 136.105 and 100(log 12306137− log 616841)

log 10 ≈ 129.995.

Those values are close to x = 131.
We can also see that the second moment for the value x = 167 is high, but it is around

a local minimum. This shows that the first zeros’ contribution for a low second moment
is more important than the next ones. We can understand this directly from Theorem 3.1
since the smaller zeros represent waves with higher amplitudes.

In the Sophie Germain race, we can create a graph similar to Figure 7.2. We can compute
the second moment in Figure 7.3 of the difference between translations of the graph over the
logarithmic scale in Figure 7.1. We see that the Figure 7.3 points do not oscillate as much
and do not go as low relatively to their mean value as the ones in Figure 7.2. It means that
we should not expect to have a trigonometric representation that approximates our race. We
can’t use the same techniques as in Section 3.4 to prove that the logarithmic density exists
since the race is not “almost periodic”.

Chebyshev’s race π(x; 4, 3)−π(x; 4, 1) can be written as a sum of a Dirichlet character over
primes as we saw in (3.2). As we discussed in Section 2.2, the Dirichlet series ∑p χ1(p)p−s is
not easy to use. However, we used instead L(s, χ1) = ∑

n>1 Λ(n)χ1(n)n−s which was useful
to obtain the trigonometric representation of E(eu; 4, 3, 1) in Theorem 3.1. With Perron’s
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Fig. 7.3. Second moment of f(10U+x/100)−f(10U) for a random variable U which is uniform
in [0, 106] and f(x) = log x√

x
(π+(x)− π−(x)).

formula, we arrived at an explicit formula for ψ(x, χ1) in Theorem 2.16 in terms of the zeros
of L(s, χ1). To have this explicit formula, we needed an analytic continuation for L(s, χ1)
over the whole complex plane and the functional equation 2.20 provided that. However, what
made finding the distribution of π+(x) hard is that there is no Dirichlet series representing
the Sophie Germain primes at our disposal that is meromorphic on the whole complex plane
like L-functions are.

As we saw in 3.6, the race between the quadratic residues and the quadratic nonresidues
mod q for a large prime q is approximately normally distributed with a larger variance than
Chebyshev’s race. We also saw that the bias dissipates as q → ∞ over primes. These are
consequences of the fact that the nontrivial zeros of L(s, χq) where χq is the Legendre symbol
mod q become denser as q gets larger. Since denser zeros means that the amplitudes and
frequencies are closer together, then we obtain a race which behaves randomly. In fact, it
is likely that the expression log x√

x
(π+(x)− π−(x)) can be written as a superposition of many

waves of similar amplitudes. János Pintz has a method of finding an explicit formula that
points to this direction in [23]. This is why we can suspect that log x√

x
(π+(x)−π−(x)) behaves

like a random walk.

To model the Sophie Germain prime number race, we take inspiration from Cramér’s
model. For every prime, let Xp be a sequence of independent discrete random variable
supported in {−1, 0, 1} such that P(Xp = −1) = P(Xp = 1) = 1/ log(2p). We can also define

S(x) := log x√
x

∑
p6x

Xp.

Figure 7.4 presents eight different outcomes of S(x). As we can see, Figure 7.1 could fit in
with the graphs of Figure 7.4 more than the structured “almost periodic” graph in Figure 3.1,
and the Sophie Germain race seems more like a “typical outcome” of the probability space.
In Figure 7.5, we also have the graphs of the second moments of the different translations of
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S(x) over the logarithmic scale. These graphs look more are not as oscillatory as the graph
for Chebyshev’s race in Figure 7.2. The Sophie Germain race looks more like a random walk
than the Chebyshev prime number race.
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Fig. 7.4. Different outcomes of the random walk S(x).
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Fig. 7.5. Second moment of S(10U+x/100)−S(10U) for a random variable U which is uniform
in [0, 106] where S(x) is the outcome in the same position in Figure 7.4.
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Chapter 8

Conclusion

This thesis investigated the differences between the structured mod 4 prime number race
and the more random race between two kinds of Sophie Germain primes.

We established an explicit formula for different prime counting functions using the theory
of L-functions, and we proved the Prime Number Theorem for arithmetic progressions. Using
this explicit formula, we approximated the prime number race with a sum of trigonometric
functions, and we established that the race is biased to the primes 3 mod 4 because they are
quadratic nonresidues. We discussed that we could measure this bias using the logarithmic
density.

We also wanted to establish a conjecture (Conjecture 1.1) on the distribution of Sophie
Germain prime counting function:

π+(x) ∼ c2x

log2 x

as x → ∞. We gave an upper bound on π+(x) with the same order of magnitude as the
conjecture using Selberg’s sieve method. We presented Granville’s refinement of Cramér’s
model for primes and used it to find that we should expect the conjecture to be true. We
also used the Hardy-Littlewood circle method to find an asymptotic on the major arcs of the
integral representing the function ψ+(x) which matches the conjecture, and we also proved
unconditionally that there exists infinitely many primes of the form p+ q + 1 where p, q are
primes. In Figure 5.1, we show that the data supports Conjecture 1.1. These techniques are
efficient to establish conjectures on the distribution of subsets of primes defined by a linear
equation (like the Sophie Germain primes or the twin primes), even if we have never proved
if these subsets are infinite.

We finally studied the Sophie Germain prime number race in the same way we studied
the mod 4 race. We established that, even though 2p + 1 can never be a square, but we
can use the Cramér-Granville model to predict that there are infinitely many squares of
the form 2p − 1, it does not seem like this fact have any contribution to generate a bias,



otherwise we would have seen that the graph in Figure 7.1 would have a mean value which
is over 0.9707 . . ., which is not the case. We also studied the periodicity of this graph and
compared it to the periodicity of random walks and the mod 4 race to conclude that the
Sophie Germain prime race looks more like a random walk.
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natural density, 64
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Perron’s formula, 45
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Prime Number Theorem, 26
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prime numbers, 23
prime omega function, 82
primitive root, 48

quasiperiodicity, 65

Ramanujan’s sum, 103
Riemann Hypothesis, 26, 52
Riemann zeta function, 25, 37
rough number, 76

safe primes, 24
Siegel-Walfisz theorem, 36
sieve of Eratosthenes, 75
sifting dimension, 86
slowly oscillating function, 96
smooth number, 24, 76
Sophie Germain primes
of the first kind, 31
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the usual definition, 7, 24

ternary problem, 104
trivial zeros, 26
twin prime constant, 32
twin primes, 24

upper bound sieve, 85

von Mangoldt function, 40
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