
Université de Montréal

Data-Efficient Reinforcement Learning with Self-Predictive

Representations

par Max Schwarzer

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

August, 2020

c© Max Schwarzer, 2020.

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

Data-Efficient Reinforcement Learning with Self-Predictive

Representations

présenté par:

Max Schwarzer

a été évalué par un jury composé des personnes suivantes:

Phillipe Langlais, président-rapporteur

Alain Tapp, directeur de recherche

Aaron Courville, codirecteur

Laurent Charlin, membre du jury

Mémoire accepté le: .

Résumé

L’efficacité des données reste un défi majeur dans l’apprentissage par renforce-
ment profond. Bien que les techniques modernes soient capables d’atteindre des
performances élevées dans des tâches extrêmement complexes, y compris les jeux de
stratégie comme le StarCraft, les échecs, le shogi et le go, ainsi que dans des domaines
visuels exigeants comme les jeux Atari, cela nécessite généralement d’énormes quan-
tités de données interactives, limitant ainsi l’application pratique de l’apprentissage
par renforcement. Dans ce mémoire, nous proposons la SPR, une méthode inspirée
des récentes avancées en apprentissage auto-supervisé de représentations, conçue
pour améliorer l’efficacité des données des agents d’apprentissage par renforcement
profond. Nous évaluons cette méthode sur l’environement d’apprentissage Atari,
et nous montrons qu’elle améliore considérablement les performances des agents
avec un surcrôıt de calcul modéré. Lorsqu’on lui accorde à peu près le même temps
d’apprentissage qu’aux testeurs humains, un agent d’apprentissage par renforcement
augmenté de SPR atteint des performances surhumaines dans 7 des 26 jeux, une
augmentation de 350% par rapport à l’état de l’art précédent, tout en améliorant
fortement les performances moyennes et médianes. Nous évaluons également cette
méthode sur un ensemble de tâches de contrôle continu, montrant des améliorations
substantielles par rapport aux méthodes précédentes.

Le chapitre 1 présente les concepts nécessaires à la compréhension du travail
présenté, y compris des aperçus de l’apprentissage par renforcement profond et
de l’apprentissage auto-supervisé de représentations. Le chapitre 2 contient une
description détaillée de nos contributions à l’exploitation de l’apprentissage de repré-
sentation auto-supervisé pour améliorer l’efficacité des données dans l’apprentissage
par renforcement. Le chapitre 3 présente quelques conclusions tirées de ces travaux,
y compris des propositions pour les travaux futurs.

mots-clés: apprentissage profond, apprentissage par renforcement, apprentissage
auto-supervisé, apprentissage de représentations

iii

Summary

Data efficiency remains a key challenge in deep reinforcement learning. Although
modern techniques have been shown to be capable of attaining high performance
in extremely complex tasks, including strategy games such as StarCraft, Chess,
Shogi, and Go as well as in challenging visual domains such as Atari games, doing
so generally requires enormous amounts of interactional data, limiting how broadly
reinforcement learning can be applied. In this thesis, we propose SPR, a method
drawing from recent advances in self-supervised representation learning designed
to enhance the data efficiency of deep reinforcement learning agents. We evaluate
this method on the Atari Learning Environment, and show that it dramatically
improves performance with limited computational overhead. When given roughly
the same amount of learning time as human testers, a reinforcement learning agent
augmented with SPR achieves super-human performance on 7 out of 26 games, an
increase of 350% over the previous state of the art, while also strongly improving
mean and median performance. We also evaluate this method on a set of continuous
control tasks, showing substantial improvements over previous methods.

Chapter 1 introduces concepts necessary to understand the work presented,
including overviews of Deep Reinforcement Learning and Self-Supervised Repre-
sentation learning. Chapter 2 contains a detailed description of our contributions
towards leveraging self-supervised representation learning to improve data-efficiency
in reinforcement learning. Chapter 3 provides some conclusions drawn from this
work, including a number of proposals for future work.

Keywords: deep learning, reinforcement learning, self-supervised learning,
representation learning

iv

Contents

Résumé . iii

Summary . iv

Contents . v

List of Figures . vii

List of Tables . ix

List of Abbreviations . x

Acknowledgments . xi

1 Introduction . 1

1.1 Representation Learning . 1
1.1.1 Pretraining . 2
1.1.2 Reconstruction . 2
1.1.3 Data Augmentation . 4
1.1.4 Temporal Prediction . 4
1.1.5 Contrastive Learning . 5
1.1.6 Semi-Supervised Learning 8
1.1.7 Bootstrap Your Own Latent 10

1.2 Reinforcement Learning . 11
1.2.1 TD Learning . 12
1.2.2 Off-Policy Learning . 13
1.2.3 Deep Reinforcement Learning 13
1.2.4 Deep Continuous Control 14
1.2.5 Representation Learning for Reinforcement Learning 15
1.2.6 Data Efficiency . 16
1.2.7 DeepMind Control . 16
1.2.8 Atari Learning Environment 17

v

1.2.9 Evaluation in Atari . 17

2 Data-Efficient Reinforcement Learning with Self-Predictive Rep-

resentations . 18

2.1 Introduction . 19
2.1.1 Deep Q-Learning . 20
2.1.2 Self-Predictive Representations 22
2.1.3 Transition Model Architecture 25
2.1.4 Data Augmentation . 26
2.1.5 Implementation Details . 26

2.2 Results . 28
2.2.1 Sample-Efficient Atari . 28
2.2.2 DeepMind Control . 37

2.3 Discussion . 39
2.3.1 The role of the exponential moving average encoder 39
2.3.2 Propagating gradients through targets is harmful 41
2.3.3 Representational Collapse 42
2.3.4 Dynamics modeling is key 43
2.3.5 Comparison with contrastive losses 44

2.4 Related Work . 45
2.4.1 Data-Efficient RL: . 45
2.4.2 Representation Learning in RL: 46

3 Conclusion . 48

Bibliography . 50

vi

List of Figures

1.1 An image from ImageNet (Deng et al., 2009) and two augmented
views of the same, as used in AMDIM (Bachman et al., 2019). . . . 4

2.1 Median Human-Normalized scores of different methods across 26
games in the Atari 100k benchmark (Kaiser et al., 2019), averaged
over 10 random seeds. Each method is allowed access to only 100k
environment steps or 400k frames per game. (*) indicates that the
method uses data augmentation. SPR achieves a state-of-art-result
on median human-normalized score, improving over the previous
best, DrQ (Kostrikov et al., 2020), by 55%. Note that without data
augmentation SPR still outperforms prior methods that use data
augmentation. 21

2.2 Mean Human-Normalized scores of different methods across 26 games
in the Atari 100k benchmark (Kaiser et al., 2019), averaged over
10 random seeds. Each method is allowed access to only 100k en-
vironment steps or 400k frames per game. (*) indicates that the
method uses data augmentation. SPR achieves a state-of-art-result
on mean human-normalized score, improving over the previous best,
SimPLe (Kaiser et al., 2019), by 59%. Note that without data
augmentation SPR still outperforms prior methods that use data
augmentation. 22

2.3 An illustration of the full SPR method. Representations from the
online encoder are used in the reinforcement learning task and for
prediction of future representations from the target encoder via the
transition model. The target encoder and projection head are defined
as an exponential moving average of their online counterparts and
are not updated via gradient descent. For brevity, we illustrate only
the kth step of future prediction, but in practice we compute the
loss over all steps from 1 to K. Note: our implementation in Atari
includes go in the Q-learning head. 23

2.4 Upper-left: a preprocessed image taken from the Atari game Ms
Pacman, as it would be presented to the DQN used in SPR. Others:
Augmented views of this image under the augmentation scheme used
for SPR (Kostrikov et al., 2020). 27

vii

2.5 A bootstrapped estimate of the distribution of SPR’s median Human-
Normalized score on Atari when using augmentation, averaged over
10 random seeds. Vertical line denotes the original value. 33

2.6 A bootstrapped estimate of the distribution of SPR’s mean Human-
Normalized score on Atari when using augmentation, averaged over
10 random seeds. Vertical line denotes the original value. 34

2.7 A bootstrapped estimate of the distribution of SPR’s median DQN-
Normalized score on Atari when using augmentation, averaged over
10 random seeds. Vertical line denotes the original value. 35

2.8 A bootstrapped estimate of the distribution of SPR’s mean DQN-
Normalized score performance on Atari when using augmentation,
averaged over 10 random seeds. Vertical line denotes the original value. 36

2.9 SPR performance on Atari compared to our baseline DQN, averaged
over 10 random seeds. Both SPR and the baseline are given aug-
mented data. We plot 100 · SPR score−baseline score

baseline score
, using a symmetric

log scale. 38
2.10 SPR performance compared to the DrQ baseline, averaged over five

random seeds. We plot 100 · SPR score−DrQ score
DrQ score

, using a symmetric log
scale. 40

2.11 Average cosine similarity between representations of different states
for two variants of SPR with augmentation, τ = 0 and τ = 0.99, and
our base DQN, averaged over a subset of 10 games. Results averaged
over 10 random seeds per game. 43

viii

List of Tables

2.1 Hyperparameters for SPR on Atari, with and without augmentation. 29
2.2 Mean episodic returns on the 26 Atari games considered by Kaiser

et al. (2019) after 100k environment steps. Results for SPR are
recorded at the end of training and averaged over 10 random seeds,
including Human-Normalized Score (HNS) and DQN-Normalized
Score (DNS). Best results for each game and metric are bolded.
SPR outperforms prior methods on all aggregate metrics, and exceeds
expert human performance on 7 out of 26 games while using a similar
amount of experience. 31

2.3 95% percentile bootstrap confidence intervals for aggregate metrics
for SPR with augmentation on Atari. 33

2.4 Scores on the 26 Atari games under consideration for our base DQN
without SPR with and without augmentation, compared to previous
methods. The high mean DQN-normalized score of our DQN without
augmentation is due largely to a very high score on Private Eye,
without which it would be comparable to DER. 37

2.5 Mean episodic returns on 19 DeepMind Control environments after
100k environment steps. The results are recorded at the end of
training and averaged over five random seeds. 39

2.6 Scores on the 26 Atari games under consideration for variants of SPR
with different target encoder schemes, without augmentation. 42

2.7 Scores on the 26 Atari games under consideration for variants of SPR
with different target encoder schemes, with augmentation. 42

2.8 Scores on the 26 Atari games under consideration for variants of SPR
with ablated temporal prediction. 44

2.9 Scores on the 26 Atari games under consideration for various con-
trastive alternatives to SPR implemented in our codebase. 46

ix

List of Abbreviations

RL Reinforcement Learning

DRL Deep Reinforcement Learning

DQN Deep Q-Network

SAC Soft Actor-Critic

TD Temporal Difference

DDPG Deep Deterministic Policy Gradient

TD3 Twin Delayed DDGP

ALE Atari Learning Environment

KL Kullbach-Liebler

MSE Mean Squared Error

HNS Human-Normalized Score

DNS DQN-Normalized Score

SSL Self-Supervised Learning

EMA Exponential Moving Average

DM Control DeepMind Control

CNN Convolutional Neural Network

RNN Recurrent Neural Network

NCE Noise-Contrastive Estimation

SSL Self-Supervised Learning

VAE Variational Auto-Encoder

MI Mutual Information

PDF Probability Density Function

PMF Probability Mass Function

x

Acknowledgments

I am very grateful for the support I have received at Mila. I particularly wish to
thank Prof. Aaron Courville, who has taken immense amounts of time to introduce
me to machine learning research and profoundly shaped my research career thus far.
I likewise owe a debt to Philip Bachman, for going above and beyond the call of
duty in guiding our joint work on SPR.

I also wish to thank my coauthors, who have made my experience at Mila
as productive as it has been: Ankesh Anand, Jose Gallego, Ankit Vani, Rishab
Goel, Simon Lacoste-Julien, Devon Hjelm, Philip Bachman, and, of course, Aaron
Courville.

I would also like to thank friends at Mila for our interesting and fruitful conver-
sations on machine learning and other topics, including the above as well as but
not limited to Yutong Yan, Qizhen Zhang, Eeshan Dhekane, Alex Lamb, Disha
Srivastava, Gunshi Gupta, Tristan Deleu, Samarth Sinha, Jingyi He, Phong Nguyen,
Nitarshan Rajkumar, Bonnie Li, and Sai Rajeswar.

I am also extremely thankful for the astonishing computational resources provided
to me at Mila, both through the Mila cluster and Compute Canada.

Finally, the work reported in this thesis would not have been possible without
the financial support from: Hitachi, Calcul Quebec, Compute Canada, the Canada
Research Chairs and CIFAR.

xi

1 Introduction

In this chapter, we will provide an overview of the core concepts required to un-

derstand the contributions presented in this thesis. Our work lies at the intersection

of the fields of representation learning and reinforcement learning, and we structure

the overview accordingly. We first introduce developments in representation learning

from the 1990s to today, with a particular focus on representation learning methods

used in computer vision that this thesis and much related work draw from. We

then briefly introduce the field of reinforcement learning, concentrating on reinforce-

ment learning techniques using neural networks, or Deep Reinforcement Learning.

We assume knowledge of basic techniques and terminology in deep learning, in-

cluding feedforward, convolutional, and recurrent neural networks, regularization,

and gradient-based optimization, including stochastic gradient descent. We also

assume familiarity with traditional supervised learning tasks, such as classification

and regression. For readers unfamiliar with these topics, we recommend the book

Deep Learning (Goodfellow et al., 2016).

1.1 Representation Learning

In this section, we will introduce background material on representation learning

in deep learning. We begin with the early developments in the field, including

generative pretraining and autoencoding, before moving on to discuss contrastive

learning. We conclude with a discussion of recent developments in self-supervised

and semi-supervised representation learning, from which this work draws directly.

This is not meant to be a complete summary of the history of representations

learning; we present only a few key papers, and entirely omit many important

historical topics not critical to understanding the techniques used in this thesis,

such as Restricted Boltzmann Machines.

1

Naturally, many of the works considered have used different styles of notation. For

convenience, we thus introduce some shared notation; we denote representations as z,

targets used in representation learning objectives as x, and inputs to representation

learning objectives from which representations are derived as c (when they are

separate from x). We denote parameters of neural networks as θ, and encoders as

fθ and decoders as gθ, where appropriate. We denote a dataset from which x and

c are sampled as D. We denote learned distributions, typically parameterized by

neural networks, using the subscript θ, as in pθ and qθ.

1.1.1 Pretraining

Representation learning as a topic of study in deep learning dates back to early

models of multi-layer perceptrons, where generative pretraining was proposed as

a method to improve learning. Methods of the time struggled to directly train

deep neural networks (Tesauro, 1992; Bengio, 2009), as stabilizing techniques

such as the rectified linear unit (e.g., as used in Nair and Hinton, 2010), batch

normalization (Ioffe and Szegedy, 2015), and skip connections (He et al., 2016;

Srivastava et al., 2015) had not yet been adopted. Thus generative pretraining,

particularly the layer-wise pretraining proposed by deep belief nets (Bengio et al.,

2007), served as a means to aid the training of deep networks. By training each

layer of neural network individually to reconstruct its own inputs (either the input

to the network or the output from the previous layer), proceeding through the

network layer-by-layer, the network could be endowed with essentially a better

weight initialization, which propagated information through the network in a more

efficient fashion. This initialization could then be used to train the network to solve

a different (supervised) task, improving performance (Bengio et al., 2007).

1.1.2 Reconstruction

Starting in this period, many works in deep representation learning began to

employ reconstruction as an objective for representation learning, often (although

not always) in the context of autoencoding. In autoencoding, an encoder fθ maps a

high-dimensional input x (e.g., an image) to a lower-dimensional representation z

(e.g., a 100-dimensional vector). Then, a decoder gθ produces a reconstruction of x,

generally by maximizing the likelihood pθ(x|z) under a distribution parameterized

2

by g. 1

Popular variants, such as the variational autoencoder (VAE, Kingma and Welling,

2013) or Wasserstein autoencoder (WAE, Tolstikhin et al., 2018) introduce a

regularization term to ensure that z has a certain desired structure (e.g., that it

be normally distributed), and in doing so improve the quality of representations

learned (Higgins et al., 2016). For example, the VAE formulates its encoder as

parameterizing a distribution qθ(z|x) instead of the standard deterministic encoder

f(x). The VAE then jointly maximizes pθ(x|z) and regularizes qθ by minimizing the

Kullbach-Liebler divergence 2 between qθ(z|x) and a prior p(z) for the representation:

LV AE = Ex∼D

[

Ez∼qθ(z|x) [− log pθ(x|z)] + KL(qθ(z|x)||p(z))
]

; the prior is typically

chosen to be an isotropic Gaussian distribution, although other choices are not

unknown. The WAE, on the other hand, uses a separate critic network to estimate

and minimize the Wasserstein distance between qθ(z) and p(z). 3

In more general contexts, input and target output may not be identical. The

encoder is given some input c and the decoder is asked to maximize the probability

of a different target p(x|z). For example, the denoising autoencoder (Vincent et al.,

2008) applies noise to the input to f , as a form of regularization. In a task such as

video prediction, on the other hand, c might be an individual frame of a video, and

x the next frame.

In practical terms, however, reconstruction objectives face a common tendency

to disregard smaller objects or visual features, which will typically receive less weight

in a calculation of p(x|z). This is particularly true of regularized variants such as

variational autoencoders (VAEs), with an entire subfield of research developing

around fixing this problem (e.g., Alemi et al., 2018).

1. Many methods in reconstruction calculate the mean squared error between a prediction
from a deterministic decoder x̂ = gθ(z) and x; this is equivalent to maximizing p(x|z) under a
fixed-variance Gaussian distribution.

2. The KL divergence is defined as KL(q(z)||p(z)) = Ez∼q[log
q(z)
p(z)]

3. The Wasserstein distance between two probability measures µ and ν is defined in its minimal
form as Wp(µ, ν) = (infΓ∈P (X∼µ,Y∼ν) EΓ[c(X,Y)]), where Γ is a probability distribution with
marginals µ and ν and c is a cost function, chosen here to be a metric. In practice, this must be
approximated via duality, using a critic network (Tolstikhin et al., 2018).

3

Figure 1.1 – An image from ImageNet (Deng et al., 2009) and two augmented views of the same,
as used in AMDIM (Bachman et al., 2019).

1.1.3 Data Augmentation

As representation learning has developed, the use of data augmentation has

become increasingly foundational. Originally used in supervised learning (see Yaeger

et al., 1997; Simard et al., 2003; Krizhevsky et al., 2012), data augmentation stochas-

tically generates alternative “views” of data by adding noise, ideally while preserving

quantities of interest (Gontijo-Lopes et al., 2020). When applied to images, as in

many of the works to follow, data augmentation typically involves operations such

as rotations, cropping, blurring, flipping, and color distortion (e.g., see Grill et al.,

2020); when applied to other data, it is common to apply Gaussian noise or other

non-spatial distortions. See Fig. 1.1 for an example taken from Bachman et al.

(2019).

The use of image augmentation in representation learning can be traced back

to early reconstruction-based methods such as the denoising autoencoder (Vincent

et al., 2008), in which inputs to an autoencoder are perturbed by noise as a

form of regularization. However, image augmentation also enables other classes of

representation learning objectives designed to directly exploit the structure created

by augmentation.

1.1.4 Temporal Prediction

When temporal structure is present, as in language or video, representation

learning techniques that leverage temporal prediction may be used. The most

well-known such task is without a doubt language modeling in natural language

processing. In this problem the probability of a string of tokens t is factorized

4

as p(t1:N) =
∏n

i=1 p(ti|tk<i). When used for representation learning, a model

of the conditional distribution pθ(ti|tk<i) is parameterized by a neural network

capable of accepting inputs of variable length, such as a recurrent neural network

or transformers (Vaswani et al., 2017), allowing parameters to be entirely shared

between each pθ(ti|tk<i). As ti is generally a discrete token chosen from a finite

vocabulary, the true probability distribution p(ti|tk<i) takes the form of a categorical

distribution, which can be conveniently represented by neural networks using the

softmax function (Goodfellow et al., 2016). This allows the probability of the data

under the neural network model pθ to be directly maximized via maximium likelihood

estimation, using −
∑N

i=1 log pθ(ti|tk<i) as an objective. Networks pretrained in

this fashion on large corpora of natural language data have been shown to have

representations extremely useful in solving problems such as sentiment analysis,

natural language inference, and question answering (Radford et al.; Devlin et al.,

2018).

Temporal prediction has also been applied to non-linguistic domains, gener-

ally using reconstruction-based or contrastive objectives. PredNet (Lotter et al.,

2016) uses a reconstruction task, while CPC and CPC|Action combine contrastive

objectives with temporal prediction.

1.1.5 Contrastive Learning

In most reconstruction-based approaches, an explicit, normalized model of

the target x given representation z is learned, as pθ(x|z). In contrastive models,

this explicit, normalized reconstruction is replaced with an implicit, unnormalized

potential function fθ(x, z), trained indirectly to encourage fθ(x, z) to match p(x|z)

if properly normalized. To do this, fθ(x, z) is maximized for x sampled from the true

distribution pθ(x|z) and minimized for x sampled from a separate noise distribution.

This method was originally proposed as a means to learn non-normalized statistical

models, by Gutmann and Hyvärinen (2010); later, it was adapted by the deep

learning community as a tool for representation learning.

Deep Contrastive Learning

In the deep learning formulation of contrastive learning, the distribution p(x|c)

to be learned is generally either generated by augmentation (in which case p(x|c)

5

is typically the distribution of possible views of an image of which c is itself an

augmented view) (as used in various fashions in Hjelm et al., 2019; Bachman et al.,

2019; Hénaff et al., 2019; Chen et al., 2020a,b; He et al., 2019) or by temporal

structure (for example, where c is a frame in a video, and p(x|c) is the distribution

of future frames) (as in Oord et al., 2018; Anand et al., 2019; Mazoure et al., 2020).

Moreover, modeling conditional distributions enables the noise distribution to take

the form of the marginal p(x), a choice made by all of the methods cited above due

to its convenience.

The most common loss function used in contrastive Learning is the InfoNCE

loss, introduced by Oord et al. (2018), defined as

LInfoNCE = EX

[

− log
fk(x+, c)

∑

xj∈X
fk(xj, c)

]

(1.1)

Where X is a minibatch of examples drawn uniformly from a dataset D, x+ is a

positive sample drawn from p(x|c), and all other elements of X are negative samples

drawn from p(x). In all of the methods considered, fk typically involves the creation

of intermediate representations zc and zx, where zc is the representation used in

downstream tasks. The final step of fk generally consists of the application of a

learnable energy function hk(zc, zx), such as the dot product zc · zx or a learned

bilinear function zcWzx. If zc and zx are generated by different encoders, the

encoder used to generate zc is referred to in this work as the online encoder and

the encoder used to generate zx as the target encoder. When used with these

distributions, minimizing the InfoNCE loss is equivalent to maximizing a lower

bound on mutual information between zx and zc.
4 However, recent work suggests

that mutual information maximization is not critical to the success of contrastive

methods (Tschannen et al., 2019).

Deep contrastive learning methods are thus the first deep self-supervised methods

we will consider, as they use their own representations (zx) as targets. This stands

in sharp contrast to reconstruction and language modeling contexts, where data

x is itself used as a target. We will now consider a selection of deep contrastive

learning algorithms, focusing on several methods that appeared between June 2018

to June 2020, a period of rapid evolution during which the state-of-the-art top-1

4. This is the origin of the word info in the term InfoNCE

6

accuracy on ImageNet (generally the most common benchmark used, Deng et al.,

2009) among self-supervised methods advanced from 48.7% (Oord et al., 2018) to

79.6% (Grill et al., 2020).

One of the first works to introduce deep contrastive learning at a large scale was

CPC (Oord et al., 2018). CPC uses a contrastive temporal prediction objective for

video and audio data, training its representation of an initial observation c to predict

the representations of observations x later in the time series with an autoregressive

model, and directly optimizing a sum of InfoNCE objectives, one for each predicted

time step in the future. On images, CPC uses essentially an adaptation of the same

type of prediction loss, but using image position instead of time. CPC crops images

into vertically-overlapping patches, and then uses representations of the upper patch

to predict those in the lower patch.

Later approaches to contrastive learning introduce the notion of enforcing con-

sistency under augmentation, and of using contrastive losses that exploit the spatial

structure of images by forcing global representations to contain local information.

Thus, DIM and AMDIM (Hjelm et al., 2019; Bachman et al., 2019) introduce spatial

losses. In this DIM-style of spatial loss, multiple targets p(xi|c) are defined to be

the spatial locations in convolutional feature maps at one or more layers of the

encoder as it processes the image c; separate InfoNCE losses are computed for each

and then averaged. AMDIM augments DIM primarily by using different random

augmentations for c and x and in drawing targets xi from more layers of the encoder,

in total dramatically increasing the scale of the method.

More recent innovations to the contrastive learning paradigm, moreover, added

momentum encoders and emphasized the use of cosine similarity, both of which

would be critical for future methods. These methods also achieved state-of-the-

art performance without the use of spatially-structured comparisons (e.g., the

patch representations used in DIM and AMDIM), leading to substantially simpler

algorithms.

SimCLR (Chen et al., 2020a) pioneered the use of auxiliary projection networks;

instead of directly calculating H(zc, zx) as a dot product or bilinear function of

zc and zx, SimCLR applies a learnable non-linear function 5 to zc and zx, as g(zc)

and g(zx), where g is trained to minimize the same InfoNCE loss. SimCLR then

defines its energy function using the cosine similarity between these projections,

5. i.e., a two-layer MLP

7

as H(zc, zx) = t
g(zc)·g(zx)

‖g(zc)‖‖g(zx)‖
, where t is a fixed temperature hyperparameter. Using

the cosine similarity instead of a simple dot product regularizes the objective,

preventing the network from easily reducing its loss by modifying the magnitude

of its predictions, at the cost of introducing an important hyperparameter t which

must be tuned.

MoCo (Momentum Contrastive Representation Learning, He et al., 2019) aug-

mented the contrastive framework used in previous works with the use of a polyak-

averaged (Polyak and Juditsky, 1992) target encoder to encode targets x, using an

exponential moving average (nicknamed momentum). Denoting the parameters of

the target encoder as θm and those of the online encoder as θo, the parameters of the

target encoder are updated as θm ← τθm + (1− τ)θo, where τ is a hyperparameter.

The primary role of the momentum target network in MoCo is to enable the use

of a memory buffer of negative examples which are used to dramatically increase

the effective batch size of the algorithm (up to 65,536 examples), although recent

work indicates that momentum target encoders can themselves improve training due

to their stabilizing influence (Grill et al., 2020). As the difficulty of a contrastive

task is directly related to the number of negative samples (see the definition of the

InfoNCE loss above; increasing the number of negative examples increases the de-

nominator of the softmax, monotonically increasing the loss), introducing this large

memory buffer enables for more finely-tuned representations. Later, innovations

from SimCLR were combined with MoCo, leading to a hybrid method with strong

performance (Chen et al., 2020c).

1.1.6 Semi-Supervised Learning

Most of the methods considered thus far have been optimized separately from a

supervised task such as regression or classification. Instead, they largely focus on

pretraining, using a representation learning method separately from the ultimate

downstream objective, which is optimized separately either by adapting the entire

network (e.g., Bengio et al., 2007) or by training a separate low-capacity algorithm

such as a linear classifier with the algorithm’s encoder as a preprocessing step

applied to inputs (as done during evaluation by Oord et al., 2018; He et al., 2019;

Bachman et al., 2019; Chen et al., 2020a).

However, when the goal is to design a representation learning method to solve a

8

specific downstream task, it is natural to instead jointly optimize a representation

learning loss alongside a supervised learning loss. Doing so is generally referred to as

semi-supervised learning, 6 and may offer improvements to the data efficiency for the

supervised learning task, reducing the number of (often costly, human-generated)

labels necessary to reach a certain level of performance. Both constrastive (e.g.,

Hénaff et al., 2019; Chen et al., 2020b) and reconstructive (e.g., Rasmus et al., 2015)

objectives have been used in semi-supervised learning; in linguistic domains, it is

common to employ temporal prediction tasks in the form of language modeling. This

has become particularly prominent in problems where labeled data is scarce. When

a great deal of unlabeled data is available, the representation learning objective

may be optimized over both labeled and unlabeled data, while the supervised

learning objective is optimized over only the labeled subset (e.g., Hénaff et al., 2019;

Vedantam et al., 2019; Chen et al., 2020b), although some techniques show benefits

for representation learning techniques even when no additional unlabeled data is

available (see experiments in Hénaff et al., 2019; Chen et al., 2020b; Tarvainen and

Valpola, 2017).

Consistency-based Losses

A number of self-supervised learning methods have been proposed in which a

“student” network is trained to directly match its outputs to those of a “teacher” net-

work under noise or various other perturbations, predominantly (but not exclusively)

in semi-supervised learning. In the most general formulation of this type of objective,

the “student” and “teacher” networks are presented with different augmented views

of an input, or are otherwise subjected to differing noise, e.g., by dropout (Srivastava

et al., 2014). Although invariance to noise or perturbation is a key aspect of many

contrastive works (as examined by Wang and Isola, 2020), these methods differ in

having no notion of “contrast”; instead, only a divergence is minimized, such as KL

divergence (when teacher outputs are interpreted as distributions, as in Sohn et al.,

2020; Fortunato et al., 2018) or mean squared error (when they are treated viewed

only as vectors Tarvainen and Valpola, 2017).

Mean Teacher (Tarvainen and Valpola, 2017) proposes to instantiate the“teacher”

network as an exponential moving average (EMA) of the student (Much as was later

done in contrastive learning by He et al., 2019), showing large boosts in performance

6. Not to be confused with self-supervised learning, with which it shares acronyms.

9

on classification tasks with only a small number of labels available. Moreover, they

show that using an EMA teacher network leads to a substantial boost in performance

over the alternative where the teacher is identical to the student, and demonstrate

that subjecting the teacher to additional noise (image augmentation, dropout)

greatly improves performance. Mean Teacher is also notable for minimizing the

squared error between the final output layer of the student and that of the teacher,

prefiguring both this work and later works in pure self-supervised learning (Grill

et al., 2020).

Noisy Student (Xie et al., 2020) modifies this general algorithm by adopting an

iterated approach, freezing the “teacher” network occasionally and reinitializing a

larger“student”network from scratch; after learning from the teacher for a set period

of time, the student becomes the new teacher and the cycle begins again. Noisy

Student, unlike Mean Teacher, applies no augmentation or noise whatsoever to the

inputs to the teacher; instead, Noisy Student uses enormous quantities of additional

unlabeled data (300 million images). Also unlike Mean Teacher, Noisy Student uses

the teacher to generate inferred labels and trains the student via classification using

these labels as targets. As a result of these innovations, Noisy Student shows large

improvements of performance even when trained with all ImageNet labels, including

large gains on robustness measures.

Fix-Match (Sohn et al., 2020) differs from Noisy Student in returning to the

teacher paradigm employed by Mean Teacher. Fix-Match also further refines the

distinction between augmentations used for teacher and student; the student is

presented with radically distorted images, while the teacher’s inputs are subjected to

only mild augmentation. Fix-Match also introduces a confidence threshold to avoid

training the student when the teacher is uncertain, by only treating the teacher’s

predictions as equivalent to classification labels if they are sufficiently confident.

1.1.7 Bootstrap Your Own Latent

Bootstrap Your Own Latent (BYOL, Grill et al., 2020) showed that this type of

objective is also viable in purely unsupervised learning, outperforming comparable

contrastive methods despite having no theoretical incentive to avoid representational

collapse. Essentially comparable to contrastive learning methods such as SimCLR

but with “contrastive” elements of its loss removed, BYOL directly maximizes the

10

cosine similarity between representations of different views of an input, achieving

state-of-the-art performance with a substantially simpler method. 7 Were represen-

tations to collapse to a constant vector the BYOL loss would be minimized, but

empirically this never occurs; the precise reason for this remains unknown (private

correspondence with authors of Grill et al., 2020).

This results in a dramatically simpler algorithm than that used by comparable

contrastive and reconstruction-based alternatives, which respectively need to employ

negative samples or train a decoder. Experiments demonstrate that reintroducing

negative samples to BYOL in fact reduces performance, contrary to arguments

by Wang and Isola (2020) that the representational uniformity enforced by negative

samples in contrastive methods is critical to their success. Despite the presence

of infinitely many spurious minima of the BYOL loss (online and target outputs

collapsing to a shared constant vector is sufficient to achieve zero loss), this does

not in practice occur, with the exponential moving average target encoder identified

as a key reason.

1.2 Reinforcement Learning

Reinforcement learning is a subfield of machine learning that studies how agents

learn behavioral patterns, or policies, to maximize an objective, or reward, while

interacting with an environment. In the standard reinforcement learning setting (see

Sutton and Barto, 2018), agents interact with a Markov Decision Process (MDP),

defined as consisting of a set of states S, a set of possible actions A, a set of possible

rewards R, a state transition distribution p(s′|s, a) and a reward distribution

p(r|s′, s, a). 8

Agents interact with their environment by choosing actions according to a policy

π(a|s), which is a probability mass (or density, if A is infinite) function. After

choosing an action, agents observe a reward and the next state; this sequence of state-

action-reward-state is commonly referred to as a transition. Agents’ interactions

7. The authors of BYOL describe their method as minimizing normalized L2 distance, similar
to Mean Teacher’s choice of MSE (Tarvainen and Valpola, 2017), but also acknowledge that this
is equivalent up to a loss scaling factor to maximing cosine similarity.

8. These take the form either of probability mass functions or probability density functions,
depending on the finiteness of S and R.

11

are commonly divided into episodes, sequences of transitions, and are written as

s0, a0, r0, s1, a1, r1, These episodes may be infinite, in which case the quantity of

interest for optimization is the average reward received by the agent across timesteps.

In the setting considered here, however, the quantity of interest is the discounted

sum of rewards (or return), defined as Gt , rt + γrt+1 + γ2rt+2 + . . . =
∑∞

k=t γ
t−krk,

where γ ∈ [0, 1] is a discount factor that causes the agent to prioritize nearer

rewards (Sutton and Barto, 2018).

It is common for agents to estimate these returns with a learned value function,

V : S → R, which is trained to approximate the true expected return of a state

vπ(s) , Eπ[Gt|st = s]. Alternatively, many algorithms instead estimate an action-

conditioned variant of the value function, generally denoted as Q : S × A → R,

which is trained to approximate Q∗(s, a) , E[Gt|st = s, at = a]. When actions

are selected according to a policy π, estimating Q is strictly more general than

estimating V , as a value function V can be recovered by taking the expectation of

Q over actions: V (s) = Ea∼π(a|s)[Q(s, a)].

1.2.1 TD Learning

Although a wide variety of methods have been proposed to estimate Q and V ,

the methods used in this thesis are based on temporal-difference (TD) learning. In

TD methods, agents learn from individual transitions of the form (st, at, rt, st+1),

updating their estimates of V (st) or Q(st, at) using their estimate for the value

of st+1. In the context of value learning, the TD error of a transition is defined

as δt , rt + γV (st+1) − V (s). With infinite data and certain assumptions about

optimization, the correct value function can be learned by iteratively minimizing

this error (Sutton and Barto, 2018), converging at a rate governed by γ.

In this work, we largely focus on Q-learning, a variant of TD learning used

to jointly estimate the optimal policy π∗, defined as π∗ , arg maxπ Eπ,so [G0], and

the optimal value function, defined as q∗(s, t) = Eπ∗ [Gt|st = s, at = a]. When the

MDP in question is perfectly known and states and actions can be enumerated, an

agent’s estimate of Q can iteratively improved by applying the Bellman optimality

operator, defined as Qi+1(St, At) = E[rt + γ maxa Qi(St+1, a)] (Sutton and Barto,

2018); this operator converges to the optimal policy π = π∗ and Q function Q = q∗

at its fixed point. When this is not the case and Q must be learned from data,

12

this is generally done by minimizing a TD error corresponding to the operator

δt , rt + γ maxat+1
Q(st+1, at+1)−Q(s, a).

1.2.2 Off-Policy Learning

The objectives defined for TD learning contain a number of expectations, over

the agent’s policy, the reward distribution of the environment, and the environment’s

transition function. When the MDP in question is fully known, these expectations

are not problematic, as they can be directly evaluated. In practice, however, this

is often not the case, and these expectations must generally be approximated by

samples taken from the agent’s interactions with the environment.

Approaches for doing so can be divided into two classes: on-policy and off-

policy, based on whether data used is collected according to the current policy π or

some other policy or set of policies. Off-policy methods offer significant theoretical

advantages, enabling agents to learn from arbitrarily-collected data, but often

suffer from instability, especially when combined with TD learning and function

approximation such as neural networks (Sutton and Barto, 2018).

Moreover, some methods are intrinsically off-policy. In Q-learning, for example,

the agent’s policy is deterministic; although this allows the agent to learn what

is strictly the optimal policy, it means that the agent will generally not select a

wide-enough variety of actions to explore its environment, potentially causing the

best action for a state to go undiscovered. As a result, it is common in Q-learning

for agents to collect data in their environment according to stochastic exploration

policy based on π but with added noise. As a result, data for Q-learning is never

sampled according to the agent’s actual policy.

1.2.3 Deep Reinforcement Learning

When states and actions can be enumerated, Q can be learned as a |S| × |A|

matrix, and V can be learned as a |A| vector. In more general settings, however,

function approximation must be used for Q and V . Among parametric function

approximation methods, both linear regression and neural networks are common

choices. When linear function approximation is used, some guarantees of stability or

performance are available (Sutton and Barto, 2018). However, in practice nonlinear

function approximation is required in many cases, particularly those with visual

13

inputs (for example, see Mnih et al., 2015).

When using parametric function approximation with Q-learning, as we do in

this work, it is standard to minimize the following objective via gradient descent on

the parameters of Q:

LQ(st, at, rt, st+1) = (Q(st, at)− E[rt + γ max
a

Qt(st+1, a)])2 (1.2)

where Qt is a separate “target” function reflecting an older version of Q. It is key

that Q not be modified by gradients taken through the target Qt, even when Qt

is defined to be the same as Q; failing to do this leads the algorithm to arrive at

incorrect solutions (Sutton and Barto, 2018).

In practice, this objective is optimized using samples taken from the environment.

Data collected by the agent is placed in a replay buffer, a buffer of the agent’s most

recent experiences; typical buffer sizes may be up to several million transitions.

This was originally introduced to stabilize training (Mnih et al., 2015), but recent

research suggests that allowing the agent to learn from old experience has a strong

positive effect even in newer, more stable methods (Fedus et al., 2020).

Despite this, Deep Q-Learning, or Deep Q Networks (DQN), has thus emerged

as a particularly successful method in reinforcement learning. This is largely due

to the implementation of a wide range of algorithmic improvements beyond the

basic Q-learning algorithm; when combined, in Rainbow (Hessel et al., 2018), the

resulting algorithm achieves performance far above a naive version. We refer the

reader to Hessel et al. (2018) for a full summary of these improvements; although

we take advantage of them, they are largely orthogonal to this work.

1.2.4 Deep Continuous Control

DQN, the method introduced above, is in practice specific to the discrete control

setting, where A is finite. This is due to the maxa Q(s, a) operation that must be

performed as part of both optimization and action selection; when A is discrete and

reasonably small, enumerating Q(s, a) for all actions in A is a reasonably efficient

way of finding maxa Q(s, a).

However, when A is continuous or otherwise infinite, finding maxa Q(s, a) is

non-trivial. One of the most common alternatives to DQN is to thus learn a separate

policy network as at = πθ(st) to approximate arg maxa Q(s, a). This method, known

14

as Deep Deterministic Policy Gradient (Lillicrap et al., 2016) leads to the following

objective analogous to DQN:

LQ(st, at, rt, st+1) = (Q(st, at)− rt + γQt(st+1, πθ(st+1)])
2
. (1.3)

πθ is trained directly to maximize Q, by differentiating through the Q network.

Lπ(s) = −Q(s, πθ(s)) (1.4)

More refined variants of this algorithm were introduced by Twin Delayed

DDGP (TD3, Fujimoto et al., 2018), which introduces techniques to fight value

over-estimation and instability due to function approximation error, and Stochastic

Actor-Critic (Haarnoja et al., 2018), which learns a stochastic policy πθ(a|s), using

entropy regularization to force πθ to maintain a certain level of randomness. This

results in the following Q-learning loss:

LQ(st, at, rt, st+1) =
(

Q(s, a)− Eat+1∼π(a|st+1)[rt + γQt(St+1, at+1]
)2

. (1.5)

1.2.5 Representation Learning for Reinforcement Learning

One popular approach to resolving instability in Deep Reinforcement learning is

to focus on improving the representations learned by the neural networks used (Lesort

et al., 2018). This has in the past taken the form either of directly integrating

methods from unsupervised representation learning Oord et al. (2018); Srinivas et al.

(2020); Yarats et al. (2019), or in using alternative techniques designed specifically

for deep reinforcement learning (see for example Gelada et al., 2019; Dabney et al.,

2020; Guo et al., 2020). The most common approach used to combine DRL and

representation learning is to jointly optimize a reinforcement learning loss and a

representation learning loss (as in this work and Oord et al., 2018; Srinivas et al.,

2020; Yarats et al., 2019; Guo et al., 2020; Gelada et al., 2019). In this sense,

reinforcement learning with representation learning is treated somewhat analogously

to semi-supervised learning, with rewards serving as supervision, the equivalent of

labels in a supervised learning context, and the reinforcement learning loss the role

of the supervised classification or regression loss. Some methods (e.g., Lee et al.,

2019b) employ extra data without supervision by rewards, while others (e.g., this

work, Yarats et al., 2019) do without additional data, although it is possible that

their performance could be improved if additional data were used.

15

This approach generally requires choosing a hyperparameter λ governing the

weight given to the representation learning loss relative to the reinforcement learning

loss. The main alternative formulation would be learning representations with

a method from section 1.1 and then doing reinforcement learning using these

representations, analogous to a pretraining-based approach in representation learning.

Although linear reinforcement learning applied to frozen representations would

have some guarantees of stability, it lacks any means of correcting sub-optimal

representations, unlike in the standard approach. Moreover, this two-stage process

is impractical when only a limited amount of interaction time is available, where it

is vital that reinforcement learning progress happen as quickly as possible; by the

time a dataset of sufficient size to fully train the representation learning method had

been collected, little time would remain for the reinforcement learning algorithm to

train.

1.2.6 Data Efficiency

Data efficiency is a major challenge in deep reinforcement learning. Although

recent algorithms have been able to effectively solve a number of challenging tasks,

such as DotA 2 (OpenAI et al., 2019), Starcraft 2 (Vinyals et al., 2019), and

Atari (Badia et al., 2020), they have done so using enormous amounts of experience.

As a result, it has become increasingly common to focus on improving the data

efficiency of reinforcement learning, generally defined as improving performance with

limited environment interaction time. A number of methods have been proposed to

this end, from model-based methods that aim to accelerate learning by learning an

explicit model of environment dynamics and reward distributions (e.g., Kaiser et al.,

2019) to tweaked versions of existing algorithms that were previously optimized for

performance in large-data regimes (for example, Data-Efficient Rainbow from van

Hasselt et al., 2019).

1.2.7 DeepMind Control

Tassa et al. (2018) introduced DeepMind Control (DM Control), a new bench-

mark for continuous control tasks, adapting the MuJoCo (Todorov et al., 2012)

framework. DM Control environments have been widely used in previous work (see

Kostrikov et al., 2020; Hafner et al., 2020; Laskin et al., 2020), and represent the

16

current standard for continuous control. DM Control includes the option to provide

agents with either state representations (vectors representing the state of the envi-

ronment) or pixels (images representing the state of the environment) as inputs,

with performance given pixel inputs traditionally lagging far behind performance

with state representations (see for example Yarats et al., 2019).

1.2.8 Atari Learning Environment

(Bellemare et al., 2013) introduced the Atari Learning Environment (ALE), a

challenging reinforcement learning task in which agents learn to play Atari games

using visual inputs. This task is different from many of those traditionally studied

in reinforcement learning in that nonlinear function approximation (e.g., neural

networks) are key. Atari games are discrete control tasks, in which agents choose

between up to 18 actions at each step. The traditional goal, surpassing human

performance, has now been achieved on all 57 ALE games (Badia et al., 2020)

but only when algorithms are given effectively infinite interaction time. In the

limited-time regime, agent performance remains weak (compare results in Badia

et al., 2020; Kostrikov et al., 2020).

1.2.9 Evaluation in Atari

Performance on Atari is generally calculated as the human-normalized score,

calculated separately on each game as agent score−random score
human score−random score

. Unlike in many con-

tinuous control domains such as DM Control, where algorithm hyperparameters

are often selected on a per-task basis, the standard in deep reinforcement learning

for Atari has since Mnih et al. (2015) been to use identical hyperparameters on all

games. This has important effects on algorithm design; by forcing methods to be

successful on a wide range of games, approaches requiring finely-tuned hyperparam-

eters are relatively disadvantaged, and encourages the development of methods that

organically tune hyperparameters during training, such as Agent57. As a result,

performance by methods that do not adhere to this standard, such as Sunrise (Lee

et al., 2020), cannot be compared to that of methods that do.

17

2

Data-Efficient
Reinforcement Learning
with Self-Predictive
Representations

Authors: Max Schwarzer*, Ankesh Anand*, Rishab Goel, Devon Hjelm,

Aaron Courville and Philip Bachman.

This chapter presents a lengthened version of a joint work with Ankesh Anand,

Rishab Goel, Devon Hjelm, Aaron Courville, and Philip Bachman. It will be

submitted to the conference track of the 2021 International Conference on Learning

Representations, and has been accepted at the 2020 Montreal AI Symposium.

Contributions: The idea was initially conceptualized as a work on temporal

contrastive learning with Ankesh Anand, Devon Hjelm, and my advisor Prof. Aaron

Courville. I refined the current non-contrastive formulation of the project, wrote

code for and performed all of the experiments for Atari listed in the paper, and

helped write code for experiments on DeepMind Control. Ankesh Anand adapted

code for the rlpyt framework for our project, helped develop our method, and helped

write the paper. Rishab Goel wrote code for and ran experiments on DeepMind Con-

trol. Devon Hjelm, Prof. Aaron Courville, and Philip Bachman provided advising

and helped refine the paper. I am joint first author of the paper with Ankesh Anand.

Affiliation

— Max Schwarzer, Mila, University of Montreal

— Ankesh Anand, Mila, University of Montreal, Microsoft Research

— Rishab Goel, Mila

— Devon Hjelm, Mila, University of Montreal, Microsoft Research

— Aaron Courville, Mila, University of Montreal

— Philip Bachman, Microsoft Research

18

2.1 Introduction

Deep Reinforcement Learning (deep RL, François-Lavet et al., 2018) has proven

to be an indispensable tool for training successful agents on difficult sequential

decision-making problems (Bellemare et al., 2013; Tassa et al., 2018). The success

of deep RL is particularly noteworthy in highly complex strategic games such as

StarCraft (Vinyals et al., 2019) and DoTA2 (OpenAI et al., 2019), where deep RL

agents now surpass expert human performance in some scenarios.

Deep RL involves training agents based on large neural networks using large

amounts of data (Sutton, 2019), a trend evident across both model-based (Schrit-

twieser et al., 2019) and model-free (Badia et al., 2020) learning. The sample

complexity of such state-of-the-art agents is often incredibly high: MuZero (Schrit-

twieser et al., 2019) and Agent-57 (Badia et al., 2020) use 10-50 years of experience

per game, and OpenAI Five (OpenAI et al., 2019) uses 45,000 years of experience

to accomplish its remarkable performance.

This is clearly impractical: unlike easily-simulated environments such as video

games, collecting interaction data for many real-world tasks is costly. Moreover,

when given less data, DRL agents’ performance is generally far worse; the previous

state of the art on data-efficient Atari attained human-level performance on only

two games out of 26 when given the same amount of time to learn the game as

human players. 1 Thus, making improved data efficiency a prerequisite for successful

use of deep RL in these settings (Dulac-Arnold et al., 2019).

Meanwhile, new self-supervised representation learning methods have signif-

icantly improved data efficiency when learning new vision and language tasks,

particularly in low data regimes or semi-supervised learning (Xie et al., 2019; Hénaff

et al., 2019; Chen et al., 2020b). Self-supervised methods improve data efficiency by

leveraging a nearly limitless supply of training signal from tasks generated on-the-fly,

based on “views” drawn from the natural structure of the data (e.g., image patches,

data augmentation or temporal proximity, see Doersch et al., 2015; Oord et al.,

2018; Hjelm et al., 2019; Tian et al., 2019; Bachman et al., 2019; He et al., 2019;

Chen et al., 2020a).

Motivated by successes in semi-supervised and self-supervised learning (Tar-

vainen and Valpola, 2017; Xie et al., 2019; Grill et al., 2020), we train better state

1. Roughly two hours per game.

19

representations for RL by forcing representations to be temporally predictive and

consistent when subject to data augmentation. Specifically, we extend a strong

model-free agent by adding a dynamics model which predicts future latent repre-

sentations provided by a parameter-wise exponential moving average of the agent

itself. We also add data augmentation to the future prediction task, which enforces

consistency across different views of each observation. Contrary to some methods

(Kaiser et al., 2019; Hafner et al., 2019), our dynamics model operates entirely in

the latent space and doesn’t rely on reconstructing raw states.

We evaluate our method, which we call Self-Predictive Representations (SPR),

on 26 games in the Atari 100k benchmark (Kaiser et al., 2019), where agents are

allowed only 100k steps of environment interaction (producing 400k frames of input)

per game, which roughly corresponds to two hours of real-time experience. Notably,

the human experts in Mnih et al. (2015) and Van Hasselt et al. (2016) were given

the same amount of time to learn these games, so a budget of 100k steps permits a

reasonable comparison in terms of data efficiency.

In our experiments, we augment a modified version of Data-Efficient Rainbow

(DER) (van Hasselt et al., 2019) with the SPR loss, and evaluate versions of SPR

with and without data augmentation. We find that each version is superior to

controlled baselines. When coupled with data augmentation, SPR achieves a median

score of 0.415, which is a state-of-the-art result on this benchmark, outperforming

prior methods by a significant margin. Notably, SPR also outperforms human

expert scores on 7 out of 26 games while using roughly the same amount of in-game

experience. We now describe our overall approach in detail.

2.1.1 Deep Q-Learning

We focus on the Atari Learning Environment (Bellemare et al., 2013), a chal-

lenging setting where the agent takes discrete actions while receiving purely visual,

pixel-based observations. A prominent method for solving Atari, Deep Q Net-

works (DQN, Mnih et al., 2015), trains a neural network Qθ to approximate the

agent’s current Q-function (policy evaluation) while updating the agent’s policy

greedily with respect to this Q-function (policy improvement). This involves mini-

mizing the error between predictions from Qθ and a target value estimated by Qξ,

20

Figure 2.1 – Median Human-Normalized scores of different methods across 26 games in the Atari
100k benchmark (Kaiser et al., 2019), averaged over 10 random seeds. Each method is allowed
access to only 100k environment steps or 400k frames per game. (*) indicates that the method
uses data augmentation. SPR achieves a state-of-art-result on median human-normalized score,
improving over the previous best, DrQ (Kostrikov et al., 2020), by 55%. Note that without data
augmentation SPR still outperforms prior methods that use data augmentation.

an earlier version of the network:

LDQN =
(

Qθ(ot, at)− (rt + γ max
a

Qξ(ot+1, a))
)2

. (2.1)

Various improvements have been made over the original DQN: Distributional

RL (Bellemare et al., 2017) models the full distribution of future reward rather than

just the mean, Dueling DQN (Wang et al., 2016) decouples the value of a state from

the advantage of taking a given action in that state, Double DQN (Van Hasselt

et al., 2016) modifies the Q-learning update to avoid overestimation due to the max

operation, among many others. Rainbow (Hessel et al., 2018) consolidates these

improvements into a single combined algorithm and has been adapted to work well

in data-limited regimes (van Hasselt et al., 2019).

We also evaluate SPR on DeepMind Control (DM Control, Tassa et al., 2018), a

21

Figure 2.2 – Mean Human-Normalized scores of different methods across 26 games in the Atari
100k benchmark (Kaiser et al., 2019), averaged over 10 random seeds. Each method is allowed
access to only 100k environment steps or 400k frames per game. (*) indicates that the method
uses data augmentation. SPR achieves a state-of-art-result on mean human-normalized score,
improving over the previous best, SimPLe (Kaiser et al., 2019), by 59%. Note that without data
augmentation SPR still outperforms prior methods that use data augmentation.

continuous control task. As DQN is designed for discrete control settings, it cannot

be used in DM Control. However, a number of methods comparable to DQN have

been proposed for continuous control; we use Soft Actor-Critic (SAC, Haarnoja

et al., 2018), as employed by DrQ (Kostrikov et al., 2020).

2.1.2 Self-Predictive Representations

For our auxiliary loss, we start with the intuition that encouraging state rep-

resentations to be predictive of future observations given future actions should

improve the data efficiency of RL algorithms. Let (st:t+K , at:t+K) denote a sequence

of K + 1 previously experienced states and actions sampled from a replay buffer,

where K is the maximum number of steps into the future which we want to predict.

Our method has four main components which we describe below:

22

Figure 2.3 – An illustration of the full SPR method. Representations from the online encoder
are used in the reinforcement learning task and for prediction of future representations from the
target encoder via the transition model. The target encoder and projection head are defined as an
exponential moving average of their online counterparts and are not updated via gradient descent.
For brevity, we illustrate only the kth step of future prediction, but in practice we compute the loss
over all steps from 1 to K. Note: our implementation in Atari includes go in the Q-learning head.

— Online and Target networks: We use an online encoder fo to transform

observed states st into representations zt , fo(st). We use these representations

in an objective that encourages them to be predictive of future observations up

to some fixed temporal offset K, given a sequence of K actions to perform. We

augment each observation st independently when using data augmentation. In

most cases, we find it beneficial to follow prior work (Tarvainen and Valpola,

2017; Grill et al., 2020) by computing target representations for future states

using a separate target encoder fm, whose parameters are an exponential moving

average (EMA) of the online encoder parameters. Denoting the parameters of

fo as θo, those of fm as θm, and the EMA coefficient as τ ∈ [0, 1), the update

rule for θm is:

θm ← τθm + (1− τ)θo. (2.2)

Note that this means the target encoder is not updated via gradient descent. A

special case of interest is τ = 0, in which case the target encoder is identical to

the online encoder with a stopgradient applied to its outputs. We find this case

to perform best in some settings where stability is not a concern.

23

— Transition Model: For the prediction objective, we generate a sequence of

K predictions ẑt+1:t+K of future state representations z̃t+1:t+K using an action-

conditioned transition model h. We compute ẑt+1:t+K iteratively: ẑt+k+1 ,

h(ẑt+k, at+k), starting from ẑt , zt , fo(st). We compute z̃t+1:t+K by applying

the target encoder fm to the observed future states st+1:t+K : z̃t+k , fm(st+k).

The transition model and prediction loss operate in the latent space, thus

avoiding pixel-based reconstruction objectives. We describe the architecture of

h in section 2.1.3.

— Projection Heads: We use online and target projection heads go and gm

(Kaiser et al., 2019) to project online and target representations to a smaller

latent space, and apply an additional prediction head q (Grill et al., 2020) to

the online projections to predict the target projections:

ŷt+k , q(go(ẑt+k)), ∀ẑt+k ∈ ẑt+1:t+K ; ỹt+k , gm(z̃t+k), ∀z̃t+k ∈ z̃t+1:t+K .

(2.3)

The target projection head parameters are given by the same update rule as the

online and target encoders.

— Prediction Loss: We compute the future prediction loss for SPR by summing

over cosine similarities 2 between the predicted and observed representations at

timesteps t + k for 1 ≤ k ≤ K:

LSPR(st:t+K , at:t+K) = −
K
∑

k=1

(

ỹt+k

||ỹt+k||2

)⊤ (

ŷt+k

||ŷt+k||2

)

, (2.4)

where ỹt+k and ŷt+k are computed from (st:t+K , at:t+K) as we just described.

We call our method Self-Predictive Representations (SPR), following the self-

predictive nature of the objective. During training, we combine the SPR loss

with the Q-learning loss for Rainbow. The SPR loss affects fo, go, q and h. The

Q-learning loss affects fo and the Q-learning head, which contains additional layers

specific to Rainbow. Denoting the Q-learning loss from Rainbow as LRL, our full

optimization objective is: Ltotal
θ = LRL

θ + λLSPR
θ .

Compared to prior work (Kostrikov et al., 2020; Laskin et al., 2020), our method

can leverage data augmentations more effectively by encouraging consistency between

2. Cosine similarity is proportional to the “normalized L2” loss used in BYOL (Grill et al.,
2020)

24

representations of different augmented views. We empirically verify this via a

controlled comparison to DrQ (see section 2.3.4). It should be noted that SPR can

still be used in contexts where data augmentation is unavailable or counterproductive.

Compared to related work on contrastive representation learning, SPR does not use

negative samples, which may require careful design of contrastive tasks, large batch

sizes (Chen et al., 2020a), or the use of a buffer to emulate large batch sizes (He

et al., 2019).

Algorithm 1: Self-Predictive Representations

Denote parameters of online encoder fo and projection go as θo
Denote parameters of target encoder fm and projection gm as θm
Denote parameters of transition model h, predictor q and Q-learning head
as φ

Denote the maximum prediction depth as K

initialize replay buffer B

while Training do

collect experience (s, a, r, s′) with (θo, φ) and add to buffer B

sample minibatch (s, a, r, s′) ∼ B

if augmentation then
s← augment(s)

end

z0 ← fθ(s0) // online representations

l ← 0
for k in (1, . . . , K) do

ẑk ← h(ẑk−1, ak−1) // latent states via transition model

z̃k ← fm(sk) // target representations

ŷk ← q(go(ẑk)), ỹk ← gm(z̃k) // projections

l ← l −
(

ỹk
||ỹk||2

)⊤ (

ŷk
||ŷk||2

)

// SPR loss at step k

end

l ← λl + RL loss(s, a, r, s′; θo) // Add RL loss for batch with θo
θo, φ← optimize((θo, φ), l) // update online parameters

θm ← τθo + (1− τ)θm // update target parameters

end

2.1.3 Transition Model Architecture

For the transition model h, we apply a convolutional network directly to the

64× 7× 7 spatial output of the convolutional encoder fo. The network comprises

25

two 64-channel convolutional layers with 3 × 3 filters, with batch normalization

(Ioffe and Szegedy, 2015) after the first convolution and ReLU nonlinearities after

each convolution. We append a one-hot vector representing the action taken to

each location in the input to the first convolutional layer, similar to Schrittwieser

et al. (2019). We use a maximum prediction depth of K = 5, and we truncate

calculation of the SPR loss at episode boundaries to avoid encoding environment reset

dynamics into the model. Encoders for DeepMind Control generally output a vector

representation rather than a spatial feature map (e.g., as in Lillicrap et al., 2016),

so we instead use a two-layer multilayer perceptron applied to the 50-dimensional

vector representation. We use ReLU nonlinearities and batch normalization after

the first layer, as in Atari. As actions are continuous rather than discrete, we

concatenate actions themselves to the input to the first layer of the MLP.

2.1.4 Data Augmentation

When using augmentation, we use the same set of image augmentations as in

DrQ from Kostrikov et al. (2020), consisting of small random shifts and color jitter;

see Figure 2.4 for an example of the augmentation used. We found it important to

normalize activations to lie in [0, 1] at the output of the convolutional encoder and

transition model when using augmentation, as in Schrittwieser et al. (2019). We

use Kornia (Riba et al., 2020) for efficient GPU-based data augmentations.

When not using augmentation, we find that SPR performs better when dropout

with probability 0.5 is applied at each layer in the online and target encoders. This

is consistent with Laine and Aila (2016); Tarvainen and Valpola (2017), who find

that adding noise inside the network is important when not using image-specific

augmentation, as proposed by Bachman et al. (2014). We found that applying

dropout in this way was not helpful when using image-specific augmentation.

2.1.5 Implementation Details

For our Atari experiments, we largely follow van Hasselt et al. (2019) for DQN

hyperparameters, with several exceptions. We follow DrQ (Kostrikov et al., 2020)

by: using the 3-layer convolutional encoder from Mnih et al. (2015), using 10-step

returns instead of 20-step returns for Q-learning, and not using a separate DQN

target network when using augmentation. We also perform two gradient steps

26

Figure 2.4 – Upper-left: a preprocessed image taken from the Atari game Ms Pacman, as it
would be presented to the DQN used in SPR. Others: Augmented views of this image under the
augmentation scheme used for SPR (Kostrikov et al., 2020).

27

per environment step instead of one. We show results for this configuration with

and without augmentation in Table 2.4, and confirm that these changes are not

themselves responsible for our performance. We reuse the first layer of the DQN

MLP head as the SPR projection head go. When using dueling DQN (Wang et al.,

2016), go concatenates the outputs of the first layers of the value and advantage

heads. When these layers are noisy (Fortunato et al., 2018), go does not use the

noise parameters. Finally, we parameterize the predictor q as a linear layer. For

Ltotal
θ = LRL

θ + λLSPR
θ , we use λ = 2 based on early experiments.

For our DM Control experiments, we adapt the publicly available DrQ codebase

(see link in Kostrikov et al., 2020) based on SAC. Following results from DrQ showing

that type of encoder used is not important when using augmentation, we replace the

convolutional portion of the encoder used by DrQ with the three-layer convolutional

network used in Atari, which is more computationally efficient. Unlike some other

approaches that introduce a separate optimization step for a representation learning

objective, we follow our approach in Atari by jointly optimizing a sum of the critic

(value learning) and SPR losses. Due to the dramatically-varying scales of the critic

loss, we find that the SPR loss weight λ must be tuned separately per environment,

although λ = 200 is the most commonly successful value. As the first layer of

the Q-head in SAC is action-conditioned, we instead define our projection go as a

separate MLP. Other hyperparameters follow Atari.

Our implementation is based on rlpyt (Stooke and Abbeel, 2019) and PyTorch

(Paszke et al., 2019).

2.2 Results

2.2.1 Sample-Efficient Atari

We test SPR on the sample-efficient Atari setting introduced by Kaiser et al.

(2019) and van Hasselt et al. (2019). In this task, only 100,000 environment steps of

training data are available – equivalent to 400,000 frames, or just under two hours –

compared to the typical standard of 50,000,000 environment steps, or roughly 39

days of experience. When used without image augmentation, SPR demonstrates

scores comparable to the previous best result from Kostrikov et al. (2020). When

28

Table 2.1 – Hyperparameters for SPR on Atari, with and without augmentation.

Parameter Setting (for both variations)

Gray-scaling True

Observation down-sampling 84x84

Frames stacked 4

Action repetitions 4

Reward clipping [-1, 1]

Terminal on loss of life True

Max frames per episode 108K

Update Distributional Q

Dueling True

Support of Q-distribution 51

Discount factor 0.99

Minibatch size 32

Optimizer Adam

Optimizer: learning rate 0.0001

Optimizer: β1 0.9

Optimizer: β2 0.999

Optimizer: ǫ 0.00015

Max gradient norm 10

Priority exponent 0.5

Priority correction 0.4 → 1

Exploration Noisy nets

Noisy nets parameter 0.5

Training steps 100K

Evaluation trajectories 100

Min replay size for sampling 2000

Replay period every 1 step

Updates per step 2

Multi-step return length 10

Q network: channels 32, 64, 64

Q network: filter size 8× 8, 4× 4, 3× 3

Q network: stride 4, 2, 1

Q network: hidden units 256

Non-linearity ReLU

Target network: update period 1

λ (SPR loss coefficient 2

K (Prediction Depth) 5

Parameter With Augmentation Without Augmentation

Data Augmentation Random shifts (±4 pixels) & None

Intensity(scale=0.05)

Dropout 0 0.5

τ (EMA coefficient) 0 0.99

29

combined with image augmentation, SPR achieves a median human-normalized

score of 0.415, which is a new state-of-the-art result on this task. SPR achieves

super-human performance on seven games in this data-limited setting: Boxing,

Krull, Kangaroo, Road Runner, James Bond, Up N Down, and Crazy Climber,

compared to a maximum of two for any previous methods, and achieves scores

higher than DrQ (the previous state-of-the-art method) on 23 out of 26 games.

See Table 2.2 for a full list of scores. For consistency with previous works, we

report human and random scores from Wang et al. (2016), and compare against

SimPLe (Kaiser et al., 2019), Data-Efficient Rainbow (DER, van Hasselt et al.,

2019), Overtrained Rainbow (OTRainbow, Kielak, 2020), CURL (Srinivas et al.,

2020) and DrQ (Kostrikov et al., 2020).

Atari Evaluation

We evaluate the performance of different methods by computing the average

episodic return at the end of training. It is common to normalize scores with

respect to expert human scores to account for different scales of scores in each

game. The human-normalized performance of an agent on a game is calculated as
agent score−random score
human score−random score

and then aggregated across the 26 games by taking their mean

or median. It is common to report the median human-normalized performance, as

the median is less susceptible to outliers. However, we find that in some games

human scores are so high that differences between methods are washed out when

normalizing scores. This makes it difficult for scores in these games, such as Alien,

Asterix, and Seaquest, to influence aggregate metrics.

Moreover, we find that the use of the median, as opposed to mean or some other

aggregate metric, has some traits that make it undesirable in the sample-efficient

setting (and perhaps in the regular setting as well; see (Badia et al., 2020)). In

particular, performance on the median human-normalized game score is affected

only by a small number of games, such as Pong and Battlezone. On many other

games, such as Alien and Seaquest, agents rarely achieve strong enough performance

to influence the median, while on games such as Krull, Kung Fu Master, and

James Bond agents almost always achieve performance far above the median. We

hypothesize that this is due to some games simply being relatively less tractable for

DQNs, perhaps due to human visual and game-based priors being relatively more

important.

30

Table 2.2 – Mean episodic returns on the 26 Atari games considered by Kaiser et al. (2019)
after 100k environment steps. Results for SPR are recorded at the end of training and averaged
over 10 random seeds, including Human-Normalized Score (HNS) and DQN-Normalized Score
(DNS). Best results for each game and metric are bolded. SPR outperforms prior methods on all
aggregate metrics, and exceeds expert human performance on 7 out of 26 games while using a
similar amount of experience.

Game Random Human SimPLe DER OTRainbow CURL DrQ SPR (no Aug) SPR

Alien 227.8 7127.7 616.9 739.9 824.7 558.2 771.2 847.2 801.5

Amidar 5.8 1719.5 88.0 188.6 82.8 142.1 102.8 142.7 176.3

Assault 222.4 742.0 527.2 431.2 351.9 600.6 452.4 665.0 571.0

Asterix 210.0 8503.3 1128.3 470.8 628.5 734.5 603.5 820.2 977.8

Bank Heist 14.2 753.1 34.2 51.0 182.1 131.6 168.9 425.6 380.9

BattleZone 2360.0 37187.5 5184.4 10124.6 4060.6 14870.0 12954.0 10738.0 16651.0

Boxing 0.1 12.1 9.1 0.2 2.5 1.2 6.0 12.7 35.8

Breakout 1.7 30.5 16.4 1.9 9.8 4.9 16.1 12.9 17.1

ChopperCommand 811.0 7387.8 1246.9 861.8 1033.3 1058.5 780.3 667.3 974.8

Crazy Climber 10780.5 35829.4 62583.6 16185.3 21327.8 12146.5 20516.5 43391.0 42923.6

Demon Attack 152.1 1971.0 208.1 508.0 711.8 817.6 1113.4 370.1 545.2

Freeway 0.0 29.6 20.3 27.9 25.0 26.7 9.8 16.1 24.4

Frostbite 65.2 4334.7 254.7 866.8 231.6 1181.3 331.1 1657.4 1821.5

Gopher 257.6 2412.5 771.0 349.5 778.0 669.3 636.3 774.5 715.2

Hero 1027.0 30826.4 2656.6 6857.0 6458.8 6279.3 3736.3 5707.4 7019.2

Jamesbond 29.0 302.8 125.3 301.6 112.3 471.0 236.0 367.2 365.4

Kangaroo 52.0 3035.0 323.1 779.3 605.4 872.5 940.6 1359.5 3276.4

Krull 1598.0 2665.5 4539.9 2851.5 3277.9 4229.6 4018.1 3123.1 3688.9

Kung Fu Master 258.5 22736.3 17257.2 14346.1 5722.2 14307.8 9111.0 15469.7 13192.7

Ms Pacman 307.3 6951.6 1480.0 1204.1 941.9 1465.5 960.5 1247.7 1313.2

Pong -20.7 14.6 12.8 -19.3 1.3 -16.5 -8.5 -16.0 -5.9

Private Eye 24.9 69571.3 58.3 97.8 100.0 218.4 -13.6 52.6 124.0

Qbert 163.9 13455.0 1288.8 1152.9 509.3 1042.4 854.4 606.6 669.1

Road Runner 11.5 7845.0 5640.6 9600.0 2696.7 5661.0 8895.1 10511.0 14220.5

Seaquest 68.4 42054.7 683.3 354.1 286.9 384.5 301.2 580.8 583.1

Up N Down 533.4 11693.2 3350.3 2877.4 2847.6 2955.2 3180.8 6604.6 28138.5

Median HNS 0.000 1.000 0.144 0.161 0.204 0.175 0.268 0.307 0.415

Mean HNS 0.000 1.000 0.443 0.285 0.264 0.381 0.357 0.463 0.704

Median DNS 0.000 0.994 0.118 0.142 0.103 0.142 0.131 0.225 0.361

Mean DNS 0.000 23.382 0.232 0.239 0.197 0.325 0.171 0.336 0.510

Superhuman 0 N/A 2 2 1 2 2 5 7

31

This behavior is well-known to make the mean human-normalized score a poor

predictor of overall performance, as it is dominated by outliers with very high scores

(Badia et al., 2020). However, it perhaps counter-intuitively also makes the median

quite sensitive to individual games; in our reported results without augmentation,

for example, weakened performance on Frostbite alone could result in a median

score of 0.24, while improved performance on only Battle Zone could yield a median

score of 0.38. This applies to other algorithms as well; for our baseline DQN with

augmentation, similar changes could lead to median scores ranging between 0.435

and 0.245. We thus also provide scores normalized not by human performance but

by scores from the original DQN as reported by Wang et al. (2016) 3 We also report

the number of games with super-human performance, an important measure of

data efficiency given that 400k frames corresponds to roughly the same amount of

environment interaction given to human testers.

Additionally, we note that the standard evaluation protocol of evaluating over

only 500,000 frames per game is problematic, as the quantity we are trying to

measure is expected return over episodes. Due to the very long lengths of some

episodes (up to 108,000 frames), this method may collect as few as four complete

episodes. This problem is compounded by the fact that better policies tend to have

longer episodes on many games, leading stronger algorithms to experience even

greater variance in this estimate of expected episodic returns. As variance is already

a concern in deep RL (see Henderson et al., 2018), we propose evaluating over 100

episodes irrespective of their length, but we report results using the standard metric.

Finally, in the interest of replicability, we provide full bootstrap distributions to

estimate the uncertainty in our headline result. We construct 1000 synthetic sets

of results by independently resampling results for each game, and then recalculate

aggregate metrics for each set of results. Distributions can be seen in Figures 2.5-2.8.

We find that the variance of the resulting distributions of aggregate metrics is quite

large, with 95% confidence intervals given in Table 2.3.

3. Although a natural choice, normalizing by scores from Data Efficient Rainbow is undesirable;
its very poor results on several games result in extremely high normalized scores and make the
mean unusable as a metric.

32

Figure 2.5 – A bootstrapped estimate of the distribution of SPR’s median Human-Normalized
score on Atari when using augmentation, averaged over 10 random seeds. Vertical line denotes
the original value.

Table 2.3 – 95% percentile bootstrap confidence intervals for aggregate metrics for SPR with
augmentation on Atari.

Metric Point Estimate 95% Confidence Interval

Median Human-Normalized Score 0.415 (0.365, 0.484)

Mean Human-Normalized Score 0.704 (0.617, 0.809)

Median DQN-Normalized Score 0.361 (0.316, 0.386)

Mean DQN-Normalized Score 0.510 (0.410, 0.635)

33

Figure 2.6 – A bootstrapped estimate of the distribution of SPR’s mean Human-Normalized
score on Atari when using augmentation, averaged over 10 random seeds. Vertical line denotes
the original value.

34

Figure 2.7 – A bootstrapped estimate of the distribution of SPR’s median DQN-Normalized
score on Atari when using augmentation, averaged over 10 random seeds. Vertical line denotes
the original value.

35

Figure 2.8 – A bootstrapped estimate of the distribution of SPR’s mean DQN-Normalized score
performance on Atari when using augmentation, averaged over 10 random seeds. Vertical line
denotes the original value.

36

Table 2.4 – Scores on the 26 Atari games under consideration for our base DQN without SPR
with and without augmentation, compared to previous methods. The high mean DQN-normalized
score of our DQN without augmentation is due largely to a very high score on Private Eye, without
which it would be comparable to DER.

Variant Human-Normalized Score DQN-Normalized Score

median mean median mean

Our DQN (no aug) 0.204 0.240 0.149 0.374

OTRainbow 0.204 0.264 0.103 0.197

DER 0.161 0.285 0.142 0.239

Our DQN (w/ aug) 0.346 0.480 0.278 0.284

DrQ 0.268 0.357 0.131 0.171

Controlled baselines

To ensure that the hyper-parameter changes we make to the DER baseline are not

solely responsible for our improved performance, we perform controlled experiments

using the same hyper-parameters and same random seeds but with SPR disabled.

We find that our DQN without augmentation is slightly stronger than Data-Efficient

Rainbow and comparable to Overtrained Rainbow, while with augmentation enabled

our results are somewhat stronger than those of DrQ (unsurprisingly so, as DrQ

did not employ a number of the innovations included in Rainbow). None of

these methods, however are close to the performance of SPR. Insofar as that our

hyperparameters yield better performance than those used by previous methods,

they may be considered an auxiliary contribution of this work. We show performance

for these baselines in Table 2.4, and visualize the robust improvements granted by

SPR in Figure 2.9.

2.2.2 DeepMind Control

We also evaluate SPR on the DeepMind Control (Tassa et al., 2018), testing over

19 different environments. We focus on the data-efficient setting where only 100k

environment steps are given to the agent, as asymptotic (e.g., 500k step) performance

is already essentially perfect for many environments. As our code is based on that

of DrQ but contains some modifications, we run controlled experiments against

37

Figure 2.9 – SPR performance on Atari compared to our baseline DQN, averaged over 10 random
seeds. Both SPR and the baseline are given augmented data. We plot 100 · SPR score−baseline score

baseline score ,
using a symmetric log scale.

38

Table 2.5 – Mean episodic returns on 19 DeepMind Control environments after 100k environment
steps. The results are recorded at the end of training and averaged over five random seeds.

Environment DrQ SPR

acrobot swingup 7.39 5.36

cartpole balance 963.44 990.14

cartpole balance sparse 1000.0 1000.0

cartpole swingup 808.72 809.44

cartpole swingup sparse 154.96 140.26

cheetah run 347.25 473.30

cup in catch 972.62 968.06

finter turn easy 369.58 394.76

hopper hop 0.93 152.16

hopper stand 520.47 449.83

pendulum swingup 63.8 235.6

quadruped walk 63.89 107.5

quadruped run 72.97 82.19

walker stand 646.53 961.33

walker walk 837.90 818.94

finger spin 871.4 982.54

reacher easy 530.5 506.52

reacher hard 365.82 434.9

walker run 300.37 338.73

DrQ using its default settings. We find that SPR improves performance on 12 out

of 19 environments, and degrades performance on only 7. We show full results in

Table 2.5 and Figure 2.10.

2.3 Discussion

2.3.1 The role of the exponential moving average encoder

We find that using an EMA target encoder to be beneficial in most but not all

circumstances, with the stability of training appearing to play a defining role. In

39

Figure 2.10 – SPR performance compared to the DrQ baseline, averaged over five random seeds.
We plot 100 · SPR score−DrQ score

DrQ score , using a symmetric log scale.

40

this sense, using an EMA target encoder can be understood as being comparable

to the role of the target network in deep reinforcement learning, where it serves

to stabilize learning. Assuming a pefectly correct transition model h (i.e., that

h(fo(st), at) = fo(st+1))
4 our choice of a linear layer as predictor q softly constrains

the output of the projection layer go(ẑ) to be a linear transformation of the target

projection gm(z̃). This thus serves to limit how quickly the network’s representations

can change, a form of stabilization different from and weaker than that of traditional

target networks in DRL, which instead limit how quickly the network’s outputs

can change. However, we should thus expect using an EMA target encoder to slow

down learning when instability is not a concern, much like target networks limit

how quickly new information can be propagated through an agent’s estimates of

value.

In continuous control, which is notoriously unstable (see for example Fujimoto

et al., 2018), we found that using an EMA target encoder 5 greatly improved

performance, and quickly discontinued experiments without it. In discrete control,

on the other hand, we find that stability is less of a concern. Kostrikov et al.

(2020) showed that data augmentation provides sufficient stabilization as to obviate

the need for a separate DQN target network. We observe a similar result; when

augmentation is in use, not using an EMA target encoder is slightly superior, even

when the DQN is not using a separate target network. When augmentation is

disabled, however, we find that using an EMA target encoder provides a boost in

performance (see Tables 2.6 and 2.7).

2.3.2 Propagating gradients through targets is harmful

When not using an EMA target encoder, we find that allowing gradients to

propagate through target representations leads to catastrophic reductions in perfor-

mance both with and without augmentation, as can be seen in Tables 2.6 and 2.7.

This can be informatively contrasted to other works, such as DeepMDP (Gelada

et al., 2019), which employs a somewhat similar future prediction objective but

propagates gradients through target representations as well. As a result, DeepMDP

had a strong tendency to exhibit representational collapse; collapse to a constant

4. Obviously this does not occur in practice and is only possible in deterministic environments,
but is a useful example

5. τ = 0.01

41

Table 2.6 – Scores on the 26 Atari games under consideration for variants of SPR with different
target encoder schemes, without augmentation.

Variant Human-Normalized Score DQN-Normalized Score

median mean median mean

SPR (τ = 0.99) 0.307 0.463 0.225 0.336

No Stopgradient SPR 0.208 0.375 0.233 0.301

SPR (τ = 0) 0.228 0.512 0.246 0.312

Table 2.7 – Scores on the 26 Atari games under consideration for variants of SPR with different
target encoder schemes, with augmentation.

Variant Human-Normalized Score DQN-Normalized Score

median mean median mean

SPR (τ = 0) 0.415 0.704 0.361 0.510

No Stopgradient SPR 0.278 0.515 0.231 0.344

SPR (τ = 0.99) 0.396 0.622 0.287 0.356

vector minimizes both the DeepMDP and SPR prediction losses, and propagating

gradients makes this solution far simpler to find. By contrast, contrastive methods

such as CPC (Oord et al., 2018; Guo et al., 2018) are less likely to suffer from

this problem, as they are inherently less prone to representational collapse (indeed,

collapse to a constant vector leads to very high losses with InfoNCE). However,

we consistently find that contrastive methods are outperformed by SPR (see next

section).

2.3.3 Representational Collapse

One of the key questions surrounding non-contrastive self-supervised learning

methods such as BYOL and SPR is the reason for their apparent stability. Although

representational collapse to a fixed vector minimizes the SPR and BYOL losses, this

solution appears never to be arrived at. Empirically, we find that adding SPR has

little-to-no effect on the homogeneity of representations learned by a DQN, which

we define as the average cosine similarity between representations of different states

in each minibatch. We log this measure at the first layer of the Q head in Atari

42

Figure 2.11 – Average cosine similarity between representations of different states for two
variants of SPR with augmentation, τ = 0 and τ = 0.99, and our base DQN, averaged over a
subset of 10 games. Results averaged over 10 random seeds per game.

(i.e., the projection layer used by SPR) on a subset of 10 games over the course

of training (see Figure 2.11) and find that SPR if anything slightly increases the

diversity of representations when used with an EMA target encoder and has no

effect when not. Insofar as that there is a tendency for representations to be highly

homogeneous, this is already present in the base DQN and is not caused by SPR.

2.3.4 Dynamics modeling is key

A key distinction between SPR and other recent approaches leveraging repre-

sentation learning for reinforcement learning, such as CURL (Srinivas et al., 2020)

and DRIML (Mazoure et al., 2020), is our use of an explicit multi-step dynamics

model. We test two ablated versions of SPR, one with no dynamics modeling and

one that models only a single step. Each of these variants has degraded performance

compared to five-step SPR, with extended dynamics modeling improving perfor-

mance (see Table 2.8). However, there is evidence that a BYOL-style objective (i.e.,

43

Table 2.8 – Scores on the 26 Atari games under consideration for variants of SPR with ablated
temporal prediction.

Variant Human-Normalized Score DQN-Normalized Score

median mean median mean

SPR 0.415 0.704 0.361 0.510

1-step SPR 0.301 0.570 0.346 0.337

Non-temporal SPR 0.271 0.507 0.295 0.326

No SPR 0.346 0.480 0.278 0.284

SPR without temporal prediction) provides at least some benefit on most aggregate

metrics, perhaps due to providing additional supervision to learn representations

invariant to augmentation.

2.3.5 Comparison with contrastive losses

Although many recent works in representation learning have employed contrastive

learning, we find that SPR consistently outperforms both temporal and non-temporal

variants of contrastive losses (see Table 2.9), including CURL (Srinivas et al., 2020).

Recent work has suggested that contrastive learning objectives such as InfoNCE

implicitly optimize two quantities; the invariance of the representation to shifts or

distortions, and the uniformity of the representation (Wang and Isola, 2020), and

has suggested optimizing for these metrics individually. We note that the SPR loss

is conceptually similar to the invariance loss suggested by Wang and Isola (2020),

but lacks a comparable term to encourage representations to be distinct, which the

theory suggests would be catastrophic. However, SPR outperforms the contrastive

method CURL (Srinivas et al., 2020) by a large margin. To further examine this

discrepancy, we implement four contrastive controls in our codebase:

— A temporal contrastive objective that learns an action-conditioned transition

model and optimizes the InfoNCE (Oord et al., 2018) using negative examples

from other time steps in the same trajectory as well as from other trajectories

(this is roughly similar to the approach taken by CPC|Action, but using the

InfoNCE loss)

44

— A temporal contrastive objective that directly draws target representations

from one state after the encoder, without learning an explicit transition model

(roughly similar to the approach taken by STDIM (Anand et al., 2019) or

DRIML (Mazoure et al., 2020).

— A non-temporal contrastive objective similar to CURL (Srinivas et al., 2020).

Targets are taken from different augmented views of the same image.

— A soft contrastive approach inspired by the repulsion objective proposed by

Wang and Isola (2020). We optimize the repulsion objective jointly with

the SPR loss, which is quite close to the “invariance” objective they propose.

We use t = 2 and a weight equal to that given to the SPR loss, based on

hyperparameters used by Wang and Isola (2020).

We use the same hyperparameters as SPR, including augmentation. We follow

SimCLR (Chen et al., 2020a) in using normalized representations in calculating

the contrastive loss, with a temperature of τ = 0.1, and in using projection layers,

defined identically to SPR. We also use a predictor, following the controls in Grill

et al. (2020).

We show results for these experiments in Table 2.9. We find that SPR consistently

outperforms all controls by large margins, consistent with experiments conducted

by BYOL that indicate that repulsion provided by negative samples actively harms

performance in their case (Grill et al., 2020). Perhaps more surprisingly, however,

the contrastive approaches tested fail even to achieve the same level of performance

as their base DQN; we hypothesize that the repulsive aspect of the contrastive losses

somehow interferes with the DQN objective.

2.4 Related Work

2.4.1 Data-Efficient RL:

A number of works have sought to improve sample efficiency in deep RL. SiMPLe

(Kaiser et al., 2019) learns an explicit pixel-level transition model for Atari to

generate simulated training data, achieving strong results on several games in the

100k frame setting. However, both van Hasselt et al. (2019) and Kielak (2020)

45

Table 2.9 – Scores on the 26 Atari games under consideration for various contrastive alternatives
to SPR implemented in our codebase.

Variant Human-Normalized Score DQN-Normalized Score

median mean median mean

SPR 0.415 0.704 0.361 0.510

Base DQN 0.346 0.480 0.278 0.284

5-step contrastive 0.172 0.506 0.142 0.239

1-step contrastive 0.231 0.473 0.213 0.280

Non-temporal contrastive 0.200 0.379 0.179 0.268

SPR with repulsion 0.176 0.422 0.144 0.271

demonstrate that variants of Rainbow (Hessel et al., 2018) tuned for sample efficiency

can achieve comparable or superior performance.

In the context of continuous control, several works propose to leverage a latent-

space model trained on reconstruction loss to improve sample efficiency (Hafner

et al., 2019; Lee et al., 2019a; Hafner et al., 2020). Most recently, DrQ (Kostrikov

et al., 2020) and RAD (Laskin et al., 2020) have found that applying modest image

augmentation can substantially improve sample efficiency in reinforcement learning,

yielding better results than prior model-based methods. Data augmentation has also

been found to improve generalization of reinforcement learning methods (Combes

et al., 2018; Laskin et al., 2020) in multi-task and transfer settings. We show that

data augmentation can be more effectively leveraged in reinforcement learning by

forcing representations to be consistent between different augmented views of an

observation while also predicting future latent states.

2.4.2 Representation Learning in RL:

Representation learning has a long history of use in reinforcement learning (For a

detailed overview of previous methods, see Lesort et al., 2018). For example, CURL

(Srinivas et al., 2020) recently proposed a combination of image augmentation and

a contrastive loss to perform representation learning for RL. However, follow-up

results from RAD (Laskin et al., 2020) suggest that most of the benefits of CURL

come from its use of image augmentation rather than its contrastive loss.

46

CPC (Oord et al., 2018), CPC|Action (Guo et al., 2018), ST-DIM (Anand et al.,

2019) and DRIML (Mazoure et al., 2020) propose to optimize various temporal

contrastive losses in reinforcement learning environments. We perform an ablation

comparing such temporal contrastive losses to our method in section 2.3.5. Kipf

et al. (2019) propose to learn object-oriented contrastive representations by training

a structured transition model based on a graph neural network.

SPR bears some resemblance to Deep MDP (Gelada et al., 2019), which trains a

transition model with an unnormalized L2 loss to predict representations of future

states, along with a reward prediction objective. However, DeepMDP uses its online

encoder for prediction targets as well rather than employing a target encoder, and

is thus prone to representational collapse (sec. C.5 in Gelada et al. (2019)). To

mitigate this issue, DeepMDP relies on an additional observation reconstruction

objective. In contrast, our model is self-supervised, trained entirely in the latent

space, and uses a normalized loss. Our ablations (see section 2.3.1) demonstrate

that using an EMA target encoder has a large impact on our method, making it

another key difference between SPR and DeepMDP.

SPR is also similar to PBL (Guo et al., 2020), which also directly predicts

representations of future states. However, PBL uses a separate target network

trained via gradient descent, whereas SPR generates its own targets. Moreover,

PBL studies multi-task generalization in the asymptotic limits of data, whereas SPR

is concerned with single-task performance in low data regimes, using 0.01% as much

data as PBL. Unlike PBL, SPR is also designed to work with data augmentation,

similarly to Mean Teachers or BYOL (Tarvainen and Valpola, 2017; Grill et al.,

2020), which empirically provides a large boost in performance.

47

3 Conclusion

In this work, we introduced Self-Predictive Representations (SPR), a self-

supervised representation learning algorithm designed to improve the data efficiency

of deep reinforcement learning agents. SPR learns representations that are both

temporally predictive and consistent across different views of environment obser-

vations, directly predicting representations of future states produced by a target

encoder based on the agent itself. SPR achieves state-of-the-art performance on

the 100k steps Atari benchmark, demonstrating significant improvements over prior

work, and also provides improvements in challenging continuous control tasks in

the DeepMind Control suite. Our experiments show that SPR is highly robust, and

is able to outperform the previous state of the art even without data augmentation.

We therefore believe that SPR opens up a variety of avenues for future work.

Recent work in both visual (Chen et al., 2020b) and language representation learning

(Brown et al., 2020) has suggested that self-supervised models trained on large

datasets perform exceedingly well on downstream problems with limited data, often

outperforming methods trained using only task-specific data. Future works could

similarly exploit large corpora of unlabelled data, perhaps from multiple MDPs or

raw videos, to further improve the performance of RL methods in low-data regimes.

As the SPR objective does not require supervision by reward data, it could be

directly applied in such settings.

Another interesting direction is to use the transition model learned by SPR

for planning. MuZero (Schrittwieser et al., 2019) has demonstrated that planning

with a model supervised via reward and value prediction can work extremely well

given sufficient (massive) amounts of data. It remains unclear whether such models

can work well in low-data regimes, and whether augmenting such models with

self-supervised objectives such as SPR can improve their data efficiency. Moreover,

SPR also offers a more light-weight approach to model learning than MuZero; as the

predictions generated by SPR are themselves the inputs to the agent’s Q-function,

they represent a form of indirect value prediction. Thus, it may be possible to

48

avoid the costly and potentially-disruptive step of training the transition model to

explicitly predict value, as undertaken by methods such as MuZero (Schrittwieser

et al., 2019).

49

Bibliography

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin

Murphy. Fixing a broken elbo. In International Conference on Machine Learning,

pages 159–168, 2018. Cited on page 3.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté,

and R Devon Hjelm. Unsupervised state representation learning in atari. In

NeurIPS, 2019. Cited on pages 6, 45, and 47.

Philip Bachman, Ouais al Sharif, and Doina Precup. Learning with pseudo-ensembles.

Advances in Neural Information Processing Systems (NIPS), 2014. Cited on

page 26.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations

by maximizing mutual information across views. In NeurIPS, 2019. Cited on

pages vii, 4, 6, 7, 8, and 19.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,

Alex Vitvitskyi, Daniel Guo, and Charles Blundell. Agent57: Outperforming

the atari human benchmark. arXiv preprint arXiv:2003.13350, 2020. Cited on

pages 16, 17, 19, 30, and 32.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of

Artificial Intelligence Research, 47, 2013. Cited on pages 17, 19, and 20.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on

reinforcement learning. ICML, 2017. Cited on page 21.

Yoshua Bengio. Learning deep architectures for ai. Machine Learning, 2(1):1–127,

2009. Cited on page 2.

50

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-

wise training of deep networks. In Advances in neural information processing

systems, pages 153–160, 2007. Cited on pages 2 and 8.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,

2020. Cited on page 48.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. ICML, 2020a. Cited

on pages 6, 7, 8, 19, 25, and 45.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey

Hinton. Big self-supervised models are strong semi-supervised learners. arXiv

preprint arXiv:2006.10029, 2020b. Cited on pages 6, 9, 19, and 48.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with

momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020c. Cited

on page 8.

Remi Tachet des Combes, Philip Bachman, and Harm van Seijen. Learning invari-

ances for policy generalization. arXiv preprint arXiv:1809.02591, 2018. Cited on

page 46.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G

Bellemare, and David Silver. The value-improvement path: Towards better

representations for reinforcement learning. arXiv preprint arXiv:2006.02243, 2020.

Cited on page 15.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009. Cited on pages vii, 4,

and 7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018. Cited on page 5.

51

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representa-

tion learning by context prediction. In ICCV, 2015. Cited on page 19.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world

reinforcement learning. arXiv preprint arXiv:1904.12901, 2019. Cited on page 19.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo

Larochelle, Mark Rowland, and Will Dabney. Revisiting fundamentals of experi-

ence replay. arXiv preprint arXiv:2007.06700, 2020. Cited on page 14.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo

Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis,

Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy networks for explo-

ration. In ICLR, 2018. URL https://openreview.net/forum?id=rywHCPkAW.

Cited on pages 9 and 28.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and

Joelle Pineau. An introduction to deep reinforcement learning. arXiv preprint

arXiv:1811.12560, 2018. Cited on page 19.

S Fujimoto, H van Hoof, and D Meger. Addressing function approximation error in

actor-critic methods. Proceedings of Machine Learning Research, 80:1587–1596,

2018. Cited on pages 15 and 41.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G

Bellemare. Deepmdp: Learning continuous latent space models for representation

learning. ICML, 2019. Cited on pages 15, 41, and 47.

Raphael Gontijo-Lopes, Sylvia J Smullin, Ekin D Cubuk, and Ethan Dyer. Affinity

and diversity: Quantifying mechanisms of data augmentation. arXiv preprint

arXiv:2002.08973, 2020. Cited on page 4.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016. Cited on pages 1 and 5.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent:

52

A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733,

2020. Cited on pages 4, 7, 8, 10, 11, 19, 23, 24, 45, and 47.

Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien Grill, Florent Altché,

Rémi Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive repre-

sentations for multitask reinforcement learning. arXiv preprint arXiv:2004.14646,

2020. Cited on pages 15 and 47.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires,

and Rémi Munos. Neural predictive belief representations. ICML, 2018. Cited

on pages 42 and 47.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, pages

297–304, 2010. Cited on page 5.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

arXiv preprint arXiv:1801.01290, 2018. Cited on pages 15 and 22.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak

Lee, and James Davidson. Learning latent dynamics for planning from pixels. In

ICML, 2019. Cited on pages 20 and 46.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream

to control: Learning behaviors by latent imagination. ICLR, 2020. Cited on

pages 16 and 46.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016. Cited on page 2.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-

tum contrast for unsupervised visual representation learning. arXiv preprint

arXiv:1911.05722, 2019. Cited on pages 6, 8, 9, 19, and 25.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch,

SM Eslami, and Aaron van den Oord. Data-efficient image recognition with

53

contrastive predictive coding. arXiv preprint arXiv:1905.09272, 2019. Cited on

pages 6, 9, and 19.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and

David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018. Cited on page 32.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David

Silver. Rainbow: Combining improvements in deep reinforcement learning. In

AAAI, 2018. Cited on pages 14, 21, and 46.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic

visual concepts with a constrained variational framework. 2016. Cited on page 3.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil

Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by

mutual information estimation and maximization. ICLR, 2019. Cited on pages 6,

7, and 19.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, 2015. Cited on pages 2

and 26.

 Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Mi los, B lażej Osiński, Roy H Camp-

bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey

Levine, et al. Model based reinforcement learning for atari. In ICLR, 2019. Cited

on pages vii, ix, 16, 20, 21, 22, 24, 28, 30, 31, and 45.

Kacper Piotr Kielak. Do recent advancements in model-based deep reinforcement

learning really improve data efficiency?, 2020. URL https://openreview.net/

forum?id=Bke9u1HFwB. Cited on pages 30 and 45.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2013. Cited

on page 3.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured

world models. arXiv preprint arXiv:1911.12247, 2019. Cited on page 47.

54

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you

need: Regularizing deep reinforcement learning from pixels. arXiv preprint

arXiv:2004.13649, 2020. Cited on pages vii, 16, 17, 21, 22, 24, 26, 27, 28, 30, 41,

and 46.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012. Cited on page 4.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning.

arXiv preprint arXiv:1610.02242, 2016. Cited on page 26.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Ar-

avind Srinivas. Reinforcement learning with augmented data. arXiv preprint

arXiv:2004.14990, 2020. Cited on pages 16, 24, and 46.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent

actor-critic: Deep reinforcement learning with a latent variable model. arXiv

preprint arXiv:1907.00953, 2019a. Cited on page 46.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent

actor-critic: Deep reinforcement learning with a latent variable model. arXiv

preprint arXiv:1907.00953, 2019b. Cited on page 15.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple

unified framework for ensemble learning in deep reinforcement learning, 2020.

Cited on page 17.

Timothée Lesort, Natalia Dı́az-Rodŕıguez, Jean-Franois Goudou, and David Filliat.

State representation learning for control: An overview. Neural Networks, 108,

2018. Cited on pages 15 and 46.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep

reinforcement learning. In ICLR (Poster), 2016. Cited on pages 15 and 26.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks

for video prediction and unsupervised learning. 2016. Cited on page 5.

55

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and

R Devon Hjelm. Deep reinforcement and infomax learning. arXiv preprint

arXiv:2006.07217, 2020. Cited on pages 6, 43, 45, and 47.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540), 2015. Cited on pages 14, 17, 20, and 26.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In ICML, 2010. Cited on page 2.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. Cited on

pages 6, 7, 8, 15, 19, 42, 44, and 47.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-

mys law De֒biak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,

Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,

Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim

Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,

Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep re-

inforcement learning. arXiv preprint arXiv:1912.06680, 2019. URL https:

//arxiv.org/abs/1912.06680. Cited on pages 16 and 19.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: An imperative style, high-performance deep learning library. In NeurIPS,

2019. Cited on page 28.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation

by averaging. SIAM journal on control and optimization, 30(4):838–855, 1992.

Cited on page 8.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training. Cited on page 5.

56

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko.

Semi-supervised learning with ladder networks. In Advances in neural information

processing systems, pages 3546–3554, 2015. Cited on page 9.

Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski.

Kornia: an open source differentiable computer vision library for pytorch. In The

IEEE Winter Conference on Applications of Computer Vision, 2020. Cited on

page 26.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent

Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore

Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned

model. arXiv preprint arXiv:1911.08265, 2019. Cited on pages 19, 26, 48, and 49.

Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for

convolutional neural networks applied to visual document analysis. In Icdar,

volume 3, 2003. Cited on page 4.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,

Ekin D Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simpli-

fying semi-supervised learning with consistency and confidence. arXiv preprint

arXiv:2001.07685, 2020. Cited on pages 9 and 10.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised

representations for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Cited on pages 15, 30, 43, 44, 45, and 46.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1), 2014. Cited on page 9.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.

arXiv preprint arXiv:1505.00387, 2015. Cited on page 2.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement

learning in pytorch. arXiv preprint arXiv:1909.01500, 2019. Cited on page 28.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 2019. http://www.

incompleteideas.net/IncIdeas/BitterLesson.html. Cited on page 19.

57

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. URL http://incompleteideas.net/

book/the-book-2nd.html. Cited on pages 11, 12, 13, and 14.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results. In

NeurIPS, 2017. Cited on pages 9, 11, 19, 23, 26, and 47.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las

Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.

Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018. Cited on pages 16,

19, 21, and 37.

Gerald Tesauro. Practical issues in temporal difference learning. In Advances in

neural information processing systems, pages 259–266, 1992. Cited on page 2.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.

arXiv preprint arXiv:1906.05849, 2019. Cited on page 19.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based

control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 5026–5033, 2012. Cited on page 16.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasser-

stein auto-encoders. In International Conference on Learning Representations,

2018. URL https://openreview.net/forum?id=HkL7n1-0b. Cited on page 3.

Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario

Lucic. On mutual information maximization for representation learning. arXiv

preprint arXiv:1907.13625, 2019. Cited on page 6.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In Thirtieth AAAI conference on artificial intelligence,

2016. Cited on pages 20 and 21.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric

models in reinforcement learning? In NeurIPS, 2019. Cited on pages 16, 20, 21,

26, 28, 30, and 45.

58

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in neural information processing systems, pages 5998–6008, 2017. Cited on page 5.

Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra,

and Devi Parikh. Probabilistic neural symbolic models for interpretable visual

question answering. In International Conference on Machine Learning, pages

6428–6437, 2019. Cited on page 9.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th international conference on Machine learning, pages

1096–1103, 2008. Cited on pages 3 and 4.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement

learning. Nature, 2019. Cited on pages 16 and 19.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning

through alignment and uniformity on the hypersphere, 2020. Cited on pages 9,

11, 44, and 45.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando

Freitas. Dueling network architectures for deep reinforcement learning. In ICML,

2016. Cited on pages 21, 28, 30, and 32.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsuper-

vised data augmentation for consistency training. arXiv preprint arXiv:1904.12848,

2019. Cited on page 19.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with

noisy student improves imagenet classification. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 10687–10698,

2020. Cited on page 10.

Larry S Yaeger, Richard F Lyon, and Brandyn J Webb. Effective training of a

59

neural network character classifier for word recognition. In Advances in neural

information processing systems, pages 807–816, 1997. Cited on page 4.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob

Fergus. Improving sample efficiency in model-free reinforcement learning from

images. arXiv preprint arXiv:1910.01741, 2019. Cited on pages 15 and 17.

60

	Résumé
	Summary
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgments
	Introduction
	Representation Learning
	Pretraining
	Reconstruction
	Data Augmentation
	Temporal Prediction
	Contrastive Learning
	Semi-Supervised Learning
	Bootstrap Your Own Latent

	Reinforcement Learning
	TD Learning
	Off-Policy Learning
	Deep Reinforcement Learning
	Deep Continuous Control
	Representation Learning for Reinforcement Learning
	Data Efficiency
	DeepMind Control
	Atari Learning Environment
	Evaluation in Atari

	Data-Efficient Reinforcement Learning with Self-Predictive Representations
	Introduction
	Deep Q-Learning
	Self-Predictive Representations
	Transition Model Architecture
	Data Augmentation
	Implementation Details

	Results
	Sample-Efficient Atari
	DeepMind Control

	Discussion
	The role of the exponential moving average encoder
	Propagating gradients through targets is harmful
	Representational Collapse
	Dynamics modeling is key
	Comparison with contrastive losses

	Related Work
	Data-Efficient RL:
	Representation Learning in RL:

	Conclusion
	Bibliography

