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Résumé

Les modélisateurs rencontrent souvent des incertitudes sur la manière de concevoir un
modèle logiciel particulier. Les recherches existantes ont montré comment les modélisateurs
peuvent travailler en présence de ce type d’ “incertitude au moment de la conception”. Ce-
pendant, le processus par lequel les développeurs en viennent à exprimer leurs incertitudes
reste flou.

Dans cette thèse, nous prenons des pas pour combler cette lacune en proposant de créer
un langage de modélisation d’incertitude et une approche pour articuler l’incertitude au
moment de la conception. Nous illustrons notre proposition sur un exemple et l’évaluons
non seulement sur deux scénarios d’ingénierie logicielle, mais aussi sur une étude de cas
réel basée sur les incertitudes causées par la pandémie COVID-19. Nous menons également
un questionnaire post-étude avec les chercheurs qui ont participé à l’étude de cas. Afin de
prouver la faisabilité de notre approche, nous fournissons deux outils et les discutons. Enfin,
nous soulignons les avantages et discutons des limites de notre travail actuel.

Mots clés: Langage basé sur l’incertitude, langage de modélisation, ingénierie basée sur
les modèles, décision au moment de la conception, méga-modélisation.
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Abstract

Modellers often encounter uncertainty about how to design a particular software model.
Existing research has shown how modellers can work in the presence of this type of “design-
time uncertainty”. However, the process by which developers come to elicit and express their
uncertainties remains unclear.

In this thesis, we take steps to address this gap by proposing to create an uncertainty
modelling language and an approach for articulating design-time uncertainty. We illustrate
our proposal on a worked example and evaluate it not only on two software engineering
scenarios, but also on a real case study based on uncertainties caused by the COVID-19
pandemic. We also conduct a post-study questionnaire with the researchers who participated
in the case study. In order to prove the feasibility of our approach, we provide two tool
supports and discuss them. Finally, we highlight the benefits and discuss the limitations of
our current work.

Keywords: Uncertainty-wise language, modelling language, model-driven engineering,
design-time decision, mega-modelling.
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Chapter 1

Introduction

1.1. Research context
Making decisions at the right time is a key factor to successful software engineering tasks.

Making decisions prematurely, in the absence of all necessary information, may lead to losses
in terms of wasted effort, as well as to potentially dangerous unwarranted assumptions.
In real life, developers are often faced with uncertainty about various decisions. Thus,
researchers have investigated ways to provide them with the ability to work in the presence
of uncertainty, until the most opportune moment comes. In general, existing languages focus
on representing the uncertainty in the models. In this thesis, we focus on the uncertainty
that concerns the design of the models, also called ’design-time uncertainty’ [15].

Several researchers have attempted to model and manage design-time uncertainty. These
uncertainty-aware software development methodologies include the DETUM approach that
uses partial models [15] to perform engineering tasks such as reasoning [12], refinement [33],
and transformations [16], while leveraging a set of possible alternative designs. Although
partial models deal uniquely with one type of partiality, other partiality types have been
proposed in the literature in the context of the MAVO framework [30]. The U-Model [45]
is a conceptual model for uncertainty that has been proposed specifically for Cyber-Physical
Systems. The U-RUCM [46], an extension of the RUCM [43] methodology, bases on the
U-Model in the aim of specifying uncertainty for use case modelling. Other approaches
for modelling design-time uncertainty have been developed in the context of bidirectional
transformations using JTL [10], architectural interfaces [42, 18], and pattern matching [36].

Besides, design-time uncertainty concerns modelling uncertainty about decisions. Thus,
it is closely related to uncertainty about how to make decisions in a given problem
space. Approaches for modelling decisions include the OMG’s Decision Model and Nota-
tion (DMN) [27] and the DOPLER Variability Modelling Language [6].



1.2. Problem statement
Existing research has shown how modellers can work in the presence of design-time un-

certainty. However, to the best of our knowledge, there is no contribution that addresses the
process by which developers can express their design uncertainties and then, come to evolve
and articulate the design decisions. Thus, this uncertainty articulation process remains un-
clear, which makes it hard to adopt techniques for managing design-time uncertainty in the
regular rhythm of modelling, which in turn hinders their applicability.

Besides, due to the lack of adequate support and tools, currently when a modeller is faced
with some uncertainty, he has to stop modelling until further information is available. In
order to express his design-time uncertainties, to elicit his design decisions or to keep track of
their evolution, the modeller has to use other artifacts such as papers or textual notebooks,
misuse a feature of his modelling tool or use other modelling tools.

In this thesis, we propose to fill this gap in the literature by creating a modelling language,
an approach and tool support for the articulation of uncertainty.

1.3. Proposed research contributions
The research contributions of this thesis are as follows:

• Proposing an uncertainty modelling language that can be used with different mod-
elling artifacts.
• Proposing a set of constraints that assure the well-formedness and consistency of the
resulting uncertainty model.
• Proposing an operator-based methodology for the articulation of uncertainty.
• Defining a set of constraints that regulate the use of the operators and check their
correct usage.

In addition, we:

• Illustrate our language and approach on a lab-based software engineering example.
• Evaluate our language and approach not only on two worked software engineering
examples taken from the literature, but also on a real-case scenario based on the
COVID-19 pandemic. We also conduct a post-study questionnaire with the three
researchers who participated in the case study.
• Show the practicality of our proposal by providing two alternatives for tool support,
and discuss them.
• Discuss our work and develop the outline of our future research agenda.
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1.4. Running Example
In this section, we present an example that we will use throughout this thesis to illustrate

our language and approach. The example has been initially presented in [15].
In this example, the modeller wants to create a tool called CONCMOD, for modelling

concurrent systems. The tool uses the widely-used formalism of Petri Nets (PTNs) [23].
The modeller creates an initial draft of a meta-model for developing PTNs, presented in
Figure 1.1. The meta-model contains three classes. The class "Net" represents the entire
Petri Net. It contains a set of transitions and places. These are represented by two more
classes: the class "Transition" represents the events or actions that may occur in the system,
and the class "Place" represents the conditions that need to be met in order for an event to
happen. Each class has an attribute "name" that serves as a unique identifier. However, the
modeller is faced with some design uncertainty about how to represent other elements of the
meta-model, such as arcs and tokens. Specifically, she finds out that several variant PTNs
meta-models exist [1], and she does not know what elements of which ones are relevant for
CONCMOD. We will elaborate on this uncertainty in detail later in section 3.3.3.

Fig. 1.1. The part of the PTNs meta-model that don’t contain uncertainty

1.5. Thesis outline
This thesis is structured as follows. First, we introduce all necessary background knowl-

edge and related work in Chapter 2. Then, we introduce our language and methodology and
illustrate their usage in Chapter 3. We evaluate our work on the literature-based examples
in Chapter 4 and on the real-world case study in Chapter 5. After that, we present our
findings on providing tool support for our work in Chapter 6, and we discuss our proposal
in Chapter 7. Finally, we conclude and develop our future contributions in Chapter 8.
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Chapter 2

Background and Related work

In this chapter, we present all necessary background to introduce our work. We start
by introducing mega-models and model management. Then, we present related work on
uncertainty modelling and we explore in details the aspects that we build our proposal
upon. Finally, we introduce some approaches for decision-oriented modelling.

2.1. Model management and megamodels
Modern software development requires managing multiple diverse software artifacts [31].

Thus, several approaches have been proposed in the literature for the composition of het-
erogeneous modelling languages. In [9], the authors outline three existing techniques for the
reuse and composition of meta-models (meta-model merge, meta-model interfacing and class
refinement) and propose a new meta-model composition technique called Template Instan-
tiation. Haber et al. [20] propose a syntax-level integration approach of textual languages.

The interactions of heterogeneous languages within a software system poses several prob-
lems [24, 38, 4]. Model management refers to the challenges caused by working simultane-
ously with a collection of heterogeneous models. The need for model management has first
emerged in the area of meta-data management [2], then it was introduced in the field of
software modelling as the Software Model Management (SMM) problem.

Fig. 2.1. Core meta-model of mega-models [22]



SMM mainly addresses the complexity caused by the interconnection of several models.
It provides a high level overview to manipulate models and their relationships using transfor-
mations and operators [8]. SMM approaches use a special kind of models, Mega-models, to
represent sets of models and the relationships between them [34]. In fact, a mega-model is a
model whose elements are models and relationships between them [22]. The core meta-model
of mega-models is presented in Fig 2.1.

2.2. Related work on uncertainty modelling
The Uncertainty Principle in Software Engineering [47] states that Uncertainty is inher-

ent and inevitable in software development processes and products. However, uncertainty is
rarely captured in models. Therefore, several research works have tried to explicitly articu-
late and characterize uncertainty.

MAVO [33] is a set of four different partiality-related annotations that can be used with
arbitrary modelling languages. In [17], Famelis et al. proposed MAV-Vis, a notation for
partial models based on MAVO. They evaluated it on UML Class Diagrams and Entity-
Relationship Diagrams.

In [41], the authors attempt to harmonise the terminology and the typology of uncertainty
in model-based decision support. They provide a conceptual framework for the systematic
treatment of uncertainty, from a modeller’s perspective, in order to improve its management
in the decision making process. They suggest that uncertainty is a three dimensional concept
defined by its nature, its level and its location. Although their work resides at a higher level
of abstraction, their uncertainty matrix can be seen as a tool for typifying uncertainties in
terms of the three dimensions. Thus, the matrix they propose constitutes a snapshot of the
uncertainties in a system at a particular point in time.

In [44], Zhang et al. propose U-Model: a conceptual model for uncertainty specifically
designed for Cyber-Physical Systems (CPSs). In another work [46], the same authors extend
the Restricted Use case modelling (RUCM) methodology [43] and tool to identify and specify
uncertainty as part of system requirements. They call it U-RUCM. They prove the efficiency
of their method based on two Cyber-Physical Systems industrial case studies.

In [47], the authors propose a mathematically sound technique for modelling uncertainty
based on Bayesian belief networks (presented in section 5.2.2). The authors argue that the
Bayesian Network graph structure matches the one of the software systems: the belief values
are associated with the software artifacts and the probability matrices are associated with the
relations. Multiple Bayesian networks can be associated with one software system because
multiple belief values can be associated to one software entity. The Bayesian approach can
also cope with the dynamic updating of beliefs during software development thanks to its
underlying Bayesian updating technique.
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Partial models [12] are modelling artifacts that are capable of precisely and compactly
encoding a set of alternative designs. The DeTUM model (Design Time Uncertainty
Management Model) [15], is an uncertainty-aware methodology to manage design-time
uncertainty using partial models.

We explore more in detail the aspects of the above works that we build upon below.

2.2.1. Uncertainty modelling in model-based decision support

In [41], the authors suggest that uncertainty is a three dimensional concept defined by
its nature, its level and its location, as sketched in Fig 2.2.

Fig. 2.2. Uncertainty as a three dimensional concept [41]

The authors perceive the uncertainty level as a continuous progression between deter-
minism and ignorance, as captured in Fig 2.3. The level of uncertainty is therefore where
the uncertainty manifests itself along the spectrum. The authors distinguish between the
following uncertainty levels:

• Determinism refers to the ideal situation, where everything is known precisely.
• Statistical Uncertainty refers to any uncertainty that follows a statistical distri-
bution.
• Scenario Uncertainty refers to the existence of a set of possible alternative sce-
narios. The uncertainty resides in the fact that we don’t know which alternative to
choose.
• Recognized Ignorance refers to the fundamental uncertainty, where we acknowl-
edge that we don’t know something.
• Indeterminacy also called Irreducible ignorance is at the edge of the Recognized
Ignorance. It refers to the situation where it is impossible to resolve the ignorance
due to its indeterminate nature.
• Total Ignorance means that we don’t know that we don’t know.
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Fig. 2.3. The uncertainty levels spectrum [41]

2.2.2. Uncertainty modelling for Cyber-Physical Systems (CPSs)

In [44], Zhang et al. propose U-Model: a conceptual model for uncertainty specifically
designed for Cyber-Physical Systems (CPSs). U-Model includes a BeliefModel, a Measure-
Model and an UncertaintyModel and is mapped to the CPSs three logical levels: Application,
Infrastructure, and Integration. Figures 2.4, 2.5 and 2.6 present respectively an overview of
the U-Model, the UncertaintyModel and the BeliefModel.

Fig. 2.4. U-Model overview [44]

Fig. 2.5. U-Model Uncertainty model [44]

Fig. 2.6. U-Model Belief model [44]

The U-Model introduced several uncertainty-related concepts, among which we men-
tion Indeterminacy, IndeterminacySource and IndeterminacyNature. Indeterminacy is an
abstract concept that refers to a situation whereby the necessary knowledge is unavailable.
IndeterminacySource is the only concretization of an Indeterminacy. It represents the fac-
tors that lead to an uncertainty. As there are several kinds of IndeterminacySources, the
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authors propose to categorize them as different IndeterminacyNatures. This categorization
is presented in Table 2.1.

Indeterminacy Nature Definition
Insufficient Resolution The available information is not precise enough.
Missing Information Some related information is unavailable.
Non-determinism The phenomenon is non-deterministic.
Composite A combination of two or more indeterminacy natures.
Unclassified None of the above.

Table 2.1. Indeterminacy Natures categorization [44]

For example, a modeller is working on the design of some system. The modeller has
already received the specifications from the client. In his design, the modeller wants to use
multi-inheritance. However, he is aware that some object oriented programming languages
do not support this feature. Thus, he is uncertain about this design-decision: Should he
use multi-inheritance?. Besides, the specification file he received does not mention any
implementation details. In this situation, the IndeterminacySource refers to the fact that
the specifications file does not contain any implementation details, and its nature is of type
Missing Information.

2.3. Partial models
In this section, we define partial models as well as their related MAVO and DeTUM

frameworks.

2.3.1. Partial models as modelling artifacts

Partial models were first introduced in [14] as novel development artifacts capable of
precisely and compactly encoding a set of alternative designs. Partial models were meant
to capture design-time uncertainty, and allow developers to work in its presence without
having to make a premature decision. We note that design-time uncertainty in the context
of partial models refers to a set of alternative design solutions. Thus, partial models help
modellers work with all the possible solutions and differ the design decision making to a later
time. Each alternative solution is called a concretization of a partial model. The process of
reducing uncertainty in partial models is called refinement. The end point of a refinement
process is the obtention of a concrete model.

Fig 2.7 presents an example of a partial model concerning a network controller. Fig (a)
represents the part of a system that the modellers are certain about. Fig (b)-(d) represent
the alternative potential designs. Fig (e) is the partial model. The dashed-elements in the
model are optional elements. They are Maybe-Annotated elements, as they may or may
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Fig. 2.7. A partial model (e) of a network controller and its set of concretizations (b)-(d)
[14]

not exist in the final design choice. We also note the Boolean formula associated with the
model. That formula is called the May formula and is used to capture the set of allowable
configurations of the optional elements.

2.3.2. MAVO Framework

As mentioned above, partial models only deal with a special kind of partiality, which
is the May partiality as defined in the MAVO framework [33]. However, there exists other
types of partiality. In fact, the MAVO framework distinguishes four partiality types:

(1) May partiality: May partiality allows modellers to express how certain they are
about the presence or not of particular elements in the model, by annotating them
as "may" elements.
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(2) Abs partiality: Abs partiality allows modellers to express their uncertainty about
the uniqueness of the elements in the model, by annotating them as a "set" of elements
or a "particular" element.

(3) Var partiality: Var partiality allows modellers to express their uncertainty about
the distinctness of individual elements in the model, by annotating them as "con-
stants" or "variables".

(4) OW partiality: OW partiality is a model-level partiality that allows modellers to
express the completeness or not of the model, bu annotating it as "COMP" or "INC".

2.3.3. DeTUM Framework

The DeTUM model (Design Time Uncertainty Management Model), is an uncertainty-
aware methodology to manage design-time uncertainty using partial models [15]. The De-
TUM model consists of three stages: the Articulation stage, during which a set of candidate
solutions is elicited; the Deferral stage, during which developers use partial models as mod-
elling artifacts to avoid making premature decisions, and the Resolution stage; during which
the modellers incorporate new information in the partial model in a systematic way. Fig 2.8
presents the level of uncertainty in the different stages of the DeTUM model.

Fig. 2.8. The evolution of uncertainty throughout the DeTUM stages [15]

The DeTUM model is far from being a firm sequence of the above stages. In the contrary,
DeTUM stages may overlap or happen in different orders. Fig 2.9 summarizes all possible
transitions between the stages.

Fig. 2.9. The transitions between the DeTUM stages [15]
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2.4. Decision-oriented modelling
Approaches for modelling decisions include the OMG’s Decision Model and Notation

(DMN) [27] as well as several product line oriented decision modelling languages.

2.4.1. The OMG Decision Model and Notation (DMN) standard

The OMG’s Decision Model and Notation (DMN) [27] is a standard issued in the aim of
providing the needed constructs to model decisions. Before its introduction, decision-making
was uniquely addressed from two perspectives based on the existing modelling standards:
business process models and decision logic models. DMN mainly introduced a third perspec-
tive; the Decision Requirements Graph (DRG) and its corresponding notation; the Decision
Requirements Diagram (DRD) that bridges between the other existing two perspectives.
DRDs are intended to define the decisions to be made in the tasks of the business process
models, their interrelationships, and their requirements for decision logic [27]. However, the
standard stresses out that DMN is not dependent on business process models and can be
used separately.

A DRD is composed of elements that constitute the domain of decision-making and
the dependencies between them. The dependencies express three types of requirements: the
Knowledge Requirement, the Authority Requirement and the Information Requirement. The
Information Requirement dependency refers to the idea that an output of a decision is used
as input to another decision.

2.4.2. Decision-oriented modelling in Product Lines

In this section, we present decision modelling in the context of Software Product Lines
Engineering. We start by introducing the Decision-Oriented Product Line Engineering for
effective Reuse approach, then we focus on the common parts of different modelling ap-
proaches.

DOPLER (Decision-Oriented Product Line Engineering for effective Reuse [5]) is a vari-
ability modelling approach for Software Product Line Engineering (SPLE). SPLE is a set
of methods, tools and techniques for modelling and managing families of similar software
products that have slight variations [29]. DOPLER was proposed to compensate the rigidity
of the existing variability modelling approaches, as it easily allowed domain-specific adapta-
tions.

DoplerVML is a modelling language for product lines definition [6] based on DOPLER.
DoplerVML’s meta-model is presented in Fig 2.10. The language distinguishes between two
key concepts: the Decisions and the Assets. The decisions are used to represent the problem
space, e.g the available customization options, while the assets are used to define the solution
space, e.g the parts required to compose the product. In other words, the decisions are
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Fig. 2.10. DoplerVML meta-model [6]

defined for the variable parts of the product line. The model also defines traceability links
between the two concepts. Thus, the customer-specific product configuration is generated
automatically based on the user’s input in the decisions values.

In [35], the authors review several decision modelling approaches for product lines, in-
cluding DOPLER, and define their common elements as a basic model structure. This
structure is presented in Fig 2.11.

Fig. 2.11. Common meta-model elements for decision modelling in product lines [35]
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From Fig 2.11, we can note that all approaches define a Decision element with a question
attribute that describes the decision to the user. All approaches also agree that there exists
different types for decisions, and all of them support the Boolean and Enumeration types.
Finally, all approaches allow creating dependencies between decisions, and agree that there
can be a hierarchy of dependencies types.

In this chapter, we introduced several existing concepts from the modelling literature. In
the next chapter, we detail how we used these concepts in our work.
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Chapter 3

Introducing the Druide Language and
Methodology

In this chapter, we start by describing the modellers needs that our work addresses.
Then, we introduce our proposal that we call Druide; Design and Requirements Uncertainty
Integrated Development Environment. First, we present Druide modelling language and we
show how it integrates different concepts from previous works in a coherent way. Afterwards,
we detail our methodology to use it and we utilize the PTNs running example (section 1.4)
for illustration.

3.1. Specifications
In order to propose a language and a methodology to articulate design-time uncertainty,

we focus on the modellers needs.
First, modellers should be able to express that they are uncertain about how to design

some aspects of the model. This could be as vague as necessary, even if they have not figured
out how their uncertainty would impact the model. Then, as the modellers understand
better the implications of their uncertainty, they should be able to elaborate their original
statements into more concrete design decisions. We anticipate that decisions can evolve and
depend on each other.

In addition, modellers should be able to express how their uncertainty and decisions are
related to the model under construction. Specifically, modellers should be able to say where
their uncertainty is located in the model. This could be specific model elements, or the
entire model. Moreover, if they have elicited more specific design decisions, they should be
able to express how these decisions can be made operational in the model.

In the rest of this chapter, we present Druide and show how it responds to these speci-
fications.



3.2. Language Definition
In this section, we introduce the Druide language. Fig 3.1 presents the Druide meta-

model.
We start by noticing that Druide model distinguishes between two main concepts:

DUncertainties and DDecisions. DUncertainties are objects representing the uncertainty
of a modeller about the design of a software artifact, while DDecisions represent decisions
to be made about the design. Each DDecision is related to one DUncertainty. This sepa-
ration is inspired from the distinction between the problem space and the solution space in
DoplerVML as presented in section 2.4.2

The DUncertainty specializes the Uncertainty element of the U-Model presented in sec-
tion 2.2.2 by adding a description attribute to provide the modeller with the ability to
express his uncertainty. Similarly, the DIndeterminacySource specializes U-Model’s Indeter-
minacySource element by adding a description attribute so the modeller can explain what
caused the uncertainty. Besides, the DIndeterminacySource has a nature attribute of type
DIndeterminacyNature. DIndeterminacyNature is an enumeration that adds Untrustworthi-
ness to the other indeterminacy natures presented in Table 2.1. Untrustworthiness means
that although the information exists, we are not certain that it can be trusted. Untrust-
worthiness can be considered as an Insufficiant Resolution when the information about the
source of the information is not precise enough. However, we opted to separate it as an-
other nature in order to make the distinction between the two clear: Insufficiant Resolution
happens when the uncertainty concerns the information, while Untrustworthiness is the case
when the uncertainty is about the source of the information.

Moreover, theDIndeterminacySource specializes U-Model’s IndeterminacySource element
by adding a level attribute of type DUncertaintyLevel. DUncertaintyLevel is an enumeration
that captures the uncertainty levels proposed by Walker et al. [41] as detailed in section
2.2.1. The DUncertaintyLevel enumeration neither includes the Determinism level because
it refers to the absence of uncertainty, nor the Indeterminacy level because the modelling
task in software engineering is deterministic by nature. In fact, although there might be
some uncertainty during the modelling process, the modeller should be able to resolve it
and deliver the final design by the end. Finally, the DUncertaintyLevel enumeration doesn’t
include the Total Ignorance level because we simply can’t model the uncertainty that we are
unaware of.

The DDecision element is inspired from the DoplerVML language presented in section
2.4.2. A DDecision has a question attribute that textually represents the question that must
be answered for a DDecision to be considered resolved. Besides, it has a resolved Boolean
attribute that indicates whether the decision has been made. A DDecision also has an
allowedPartiality attribute of type DPartiality. DPartiality is an enumeration that captures
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Fig. 3.1. Druide meta-model
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MAVO different partiality types as introduced in section 2.3.2. For the scope of this thesis,
we only consider the MAY partiality type.

The DDecision concept in Druide is inspired from the variability modelling languages.
It defines similar concepts to those commonly found among decisions-oriented meta-models,
namely the types and dependencies concepts, as we detailed in section 2.4.2. In fact, a
DDecision can be of different types. Druide introduces a hierarchy of possible DTypes that
include a DPolar type that means a Boolean decision, a DClosedEnded type that means an
Enumeration decision (The decision is answered by selecting an answer from a predefined set
of possible alternative answers) and a DOpenEnded type that means resolving the decision
is still vague (There is no set of alternative answers).

Besides, Druide introduces a hierarchy of DDependencies between DDecisions. A
DDependency can link several DDecisions and can be whether a DLogicalDependency, a
DRephrasingDependency or a DInformationRequirementDependency. A DLogicalDependency
is used when there is a logical dependency between a source set of decisions and a target set
of decisions. The DLogicalDependency has an associated DDependencyFormula that is used
to express the propositional logical formula that defines the dependency. We articulate two
special cases for the DLogicalDependency: DRequires and DExcludes. DRequires means the
source set of decisions requires the target set of decisions to be made, and DExcludes means
the source set of decisions excludes the target set of decisions from being made.

The DRephrasingDependency is used when a DDecision rephrases another. This rephras-
ing can be a simple reframing that describes the decision from another perspective and con-
serves the same DType, or it can be a refinement. In the latter case, there is an evolution
from the source DDecisions types to the target DDecisions types. This DType evolution can
be from a DOpenEnded to a DClosedEnded, or from a DClosedEnded to a DPolar.

The DInformationRequirementDependency is inspired from the DMN standard (section
2.4.1). This kind of dependency is to be used in order to express the situation where a set
of decisions output (the target set) is used as input for another set of decisions (source set).

In order to assure the well-formedness and consistency of the resulting Druide model,
we introduce a set of dependency-focused constraints presented in Table 3.1.

Constraint Rationale
The same set of decisions cannot de-
pend on itself.

Otherwise, it will not make sense.

There is no cycle dependencies of the
same type.

Avoid cycle dependencies.
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The same sets of decisions can’t have
more than one dependency between
them

Druide introduces a hierarchy of dependencies
that is intended to capture all possible dependency
types between a set of decisions.

A set of only DPolar decisions can’t be
rephrased.

DPolar decisions (binary questions) should be an-
swered by yes or no. They are the final result of
the thinking process. The decision should be clear
enough at this point.

Logical dependencies can only exist be-
tween sets of DPolar Decisions.

Only DPolar decisions can be expressed as logical
propositions. (We will detail our work in progress
concerning Druide semantics later in Chapter 8.)

A DRephrasing Dependency only links
DDecisions (the source and target sets)
with the same DUncertainty.

When a set of decisions rephrases another set of
decisions, they should all concern the same uncer-
tainty.

Table 3.1. Druide dependency constraints

Since providing modellers with only a language is not sufficient, in the next section, we
introduce our methodology for articulating design-time uncertainty using Druide and for
working with models that contain it subsequently.

3.3. Methodology Definition
In this section, we introduce our operator-based methodology for modelling in the pres-

ence of uncertainty. We start by giving an overview, then we introduce our atomic articula-
tion operators in detail. Afterwards, we propose a workflow and illustrate its application on
the PTNs example.

3.3.1. Overview

The key idea of our approach is to work simultaneously with heterogeneous models. Thus,
it is based on model management and mega-modelling (section 2.1). Mainly, it consists of
using the Druide modelling language simultaneously with any other modelling language,
and linking them using traces.

To do so, we define a mega-model that encompasses both models meta-models and defines
the relationships between them. This resulting meta-model is sketched in Fig 3.2.

The resulting mega-model is composed of three parts: the domain modelling language
is used to model some system, Druide is used to express the design-time uncertainties and
their corresponding decisions, and the traces are used to localize the uncertainties in the
system and to elicit the decisions in terms of the system elements. This distinction between
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Fig. 3.2. Design-time uncertainty aware language mega-model

both spaces (the uncertainty space and the system space) is similar to the idea of separation
between the problem space and the solution space presented in DoplerVML (section 2.4.2).

The traces are simply objects that reference two other objects. We distinguish between
Operationalization Traces and Localization Traces. We show an illustrative meta-model
fragment for the traces in Figure 3.3.

Fig. 3.3. Traces meta-model fragment

The action of creating a Localization Trace is called Localization while we refer to the
action of creating an Operationalization Trace by Operationalization. In order to provide a
sound basis for our methodology, we define Localization and Operationalization as atomic
operators for the articulation of uncertainty in the next section.

3.3.2. Articulation operators

Our methodology to articulate uncertainty is built upon two atomic operators. We define
them below:

• Localization: Localization of an uncertainty simply means identifying the parts of the
system that the uncertainty concerns. Localization is done using Localization Traces.
• Operationalization: We borrow the concept of Operationalization from the require-
ments engineering field, where the leaf-level goals of a goal model are operationalized
into tasks [39]. In a similar mindset, we only allow Operationalization for the last
evolution level of the decisions, e.g, for the DPolar decisions. We mean by the Op-
erationalization of a DPolar design decision its reflexion in the existence of a set of
system elements. Thus, Operationalization Traces are used to link a DPolar decision
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with the corresponding elements that elicit it, e.g, represent it in terms of the system
elements. As mentioned above, in the scope of this thesis we are only considering the
MAY partiality type. The action of operationalizing a DPolar decision by a set of
elements also corresponds to annotating them as Maybe elements (section 2.3). We
will explain the reason for this later in Chapters 7 and 8.

In order to regulate the use of the operators and check their correct usage, we define a
set of constraints listed in Table 3.2.

Operator Constraint Rationale
Localize/ create
a localization
trace object

All uncertainties should be local-
ized (e.g should at least have one
localization trace).

Avoid having extremely vague uncer-
tainties. The user should at least be
able to denote which parts of the sys-
tem the uncertainty relates to. In the
worst case, the user can localize the un-
certainty at the model level.

An uncertainty can’t have two lo-
calization traces with the same
target element, e.g same source
and same target.

Avoid redundant links

Operationalize/
create an opera-
tionalization
trace object

Only DPolar decisions can be op-
erationalized.

Other types of decisions can’t be op-
erationalized, they are still at a higher
thought level.

A DPolar decision can’t have
two operationalization traces
with the same target element, e.g
same source and target.

Avoid redundant links

Every operationalization trace
target should be linked to at least
one of the uncertainty localiza-
tion traces’ target elements

The elements that operationalize a de-
cision should be traced to the elements
where that decision’s uncertainty was
localized. This is to make sure, to some
extent, that the operationalization and
the localization are consistent.
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The source DPolar decisions of a
DInformationRequirementDepen-
dency can’t be operationalized
if one of its targets is still
unresolved

A DInformationRequirementDepen-
dency means that the output of the
target decisions set is used as input
for the source decisions set. Therefore,
the source set can’t possibly be oper-
ationalized unless the target set has
been already resolved.

Table 3.2. Constraints regarding the atomic operators

In order to illustrate better the usage of the above operators, we present an exemplar
modelling workflow in the next section.

3.3.3. Modelling workflow

In this section, we propose a workflow to model in the presence of uncertainty and
illustrate it using the PTNs example.

The workflow we propose is as follows:
(1) Executing a modelling task.
(2) When faced with an uncertainty, model it as a DUncertainty and optionaly charac-

terize its DIndeterminacySource.
(3) Localize the DUncertainty element modeled using a localization trace. A design-time

uncertainty can be localized at different parts of the system e.g, it can have multiple
localization traces.

(4) Check the Localization constraints.
(5) Describe the DDesicions that you need to make and characterize them.
(6) Use the DRephrasingDependency associations to evolve your decisions.
(7) Use the DInformationRequirementDependency when the input of some DDesicions

depends on the output of others.
(8) Use the DLogicalDependency associations to model any logical dependency between

your DPolar decisions.
(9) Check the dependency constraints.
(10) If you have a clear idea about how to implement a DPolarDecision, use the oper-

ationalization traces to operationalize it by linking it to the corresponding system
elements, and introduce new elements if necessary. A decision can be operationalized
by several elements, e.g it can have several operationalization traces.

(11) Check the Operationalization constraints.
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In the rest of this section, we illustrate the application of the above process on the PTNs
example presented in section 1.4. Fig 3.4 presents the final Petri Net model with the modeller
uncertainties and decisions.

The modeller was executing a modelling task when she faced some design uncertainty.
Specifically, there are several ways to model the PTNs formalism, and the modeller is not
sure which way to adopt [15]. So, she adds a DUncertainty element (DU1 ) and localizes it
at the Net class level (blue link). She characterizes it by adding a DIndeterminacySource
object (DI1 ) and specifying its level attribute to the ScenarioUncertainty value, as she faces
a set of possibilities. Since the example in [15] does not specify the factors leading to this
uncertainty, we suppose that the DIndeterminacySource is of type MissingInformation. The
modeller didn’t break any Localization constraints.

Afterwards, the modeller thinks more concretely about the design-decisions that she
needs to make to finish modelling the PTNs meta-model. She comes to express the three
following design-decisions:

(1) D1: How should Arcs be represented?
(2) D2: If Arcs are represented using separate meta-classes, should the arc meta-classes

contain the weight attributes?
(3) D3: Should the meta-model enable the storage of the location of the graphical ele-

ments on the diagram?
The modeller adds her DDecisions to the model (DD1, DD2 and DD3 ). As we can easily

notice from the formulation of the design decisions above, D2 and D3 are DPolar decisions,
and so the modeller models them as such.

D1 is a DClosedEnded decision with two DPolar alternatives: Arcs are represented as
separate meta-classes? or Arcs are represented as associations? [15]. Thus, the modeller
continues modelling by evolving the first design-decision (DD1 ) using a DRephrasingDe-
pendency (DR1 ). She represents the two alternatives DDecisions: Are arcs represented as
associations? (DD5 ) and Are arcs represented as separate meta-classes? (DD4 ). Since these
are two DPolar decisions, the modeller can use logical dependencies between them. She uses
the DExcludes (DE1 ) dependency to indicate that the decisions are mutually exclusive.

We can also easily remark a clear DRequires dependency link between D2 decision and
the first DPolar alternative of D1 : (Are arcs represented as separate meta-classes?). The
modeller uses the DRequires association (DRe1 ) to represent this. The resulting model does
not break any dependency constraints.

Finally, the modeller starts operationalizing the DPolar decisions. She operationalizes
DD4 and DD5 by introducing new elements such as the classes PlaceToTransitionArc and
TransitionToPlaceArc and the associations src and dest. Then, she proceeds to the op-
erationalization of DD2 by adding the weight attributes in the PlaceToTransitionArc and
TransitionToPlaceArc classes. Finally, the modeller operationalizes DD3 by the addition of
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Fig. 3.4. Druide applied to the Petri Nets model
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the Location class and three location associations. The operationalization traces are shown
in red in Fig 3.4. The modeller didn’t break any Operationalization constraints.

As mentioned above, the Operationalization results in annotating the newly introduced
elements as Maybe elements. In our example, all the elements introduced as a result of the
Operationalization operation are Maybe elements. For instance, the classes PlaceToTransi-
tionArc and TransitionToPlaceArc and the associations src and dest are Maybe elements.
They may or may not exist in the final model.

Using the PTNs example, we have shown that Druide satisfies the specifications
introduced in section 3.1. In fact, the modeller was able to express that she was uncertain
about how to design some aspects of the model at different levels of abstractions. She
started by modelling a vague DUncertainty that she elaborated afterwards into a set of
concrete DPolar decisions. The modeller was also able to evolve her decisions (for example,
she evolved DD1 to DD4 and DD5 ), and express the dependencies between them. Finally,
she was able to express where her uncertainty is located and how her specific decisions can
be made operational in the model thanks to the localization and operationalization traces.

In this section, we have presented and illustrated the Druide methodology. We have not
yet explained how we specified the above-mentioned constraints (Tables 3.1 and 3.2) over
the model. We discuss this in the next section.

3.4. Formalization of the constraints
A part of our work is to formalize the constraints in order to be able to check and constrain

them over the model. In this section, we only present an illustration of the formalization of
the constraints. We will present the formalization of all the constraints later in Chapter 6.

For the constraints formalization, we have chosen to use the OCL (Object Constraint
Language) formalism [28]. OCL is a general-purpose textual language used to describe
expressions on models. We have chosen OCL because it is part of the OMG (Object Man-
agement Group) standard.

To illustrate, we consider the first dependency constraint from Table 3.1: The same set
of decisions cannot depend on itself. When the same set of decisions depends on itself, this
implies the existence of some DDependency object that has the same set of decisions as both
source and target sets. Thus, the above constraint can be obtained if we add a constraint
over the DDependency class stating that its source must be different from its target. This
can be formalized in OCL as follows:

context DDependency inv DepSourceNotTarget: self.source 6= self.target.
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In the above PTNs example (Fig 3.4), none of the dependencies (DR1, DRe1 and DE1 )
have the same set of decisions as source and target sets. Thus, the above constraint holds
for the resulting model.

In this chapter, we presented our approach for the articulation of design-time uncertainty
and illustrated it on a worked software engineering example taken from the literature. In
the next chapter, we evaluate it on two other software engineering examples.
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Chapter 4

Lab-based evaluation of Druide Model and
Approach

In this chapter, we begin by specifying our evaluation setup, then we focus on Druide
lab-based evaluation.

4.1. Evaluation setup
In this section, we present our evaluation setup by introducing the research questions. In

order to evaluate Druide model and methodology, we defined three main research questions:

• RQ1: Adequacy. Is Druide a language-independent modelling language and a
methodology that can adequately articulate uncertainty when modelling, given the
stated criteria (section 3.1)?
• RQ2: Expressiveness. Is Druide expressive enough for representing both intra-
model and inter-model uncertainties; for both in-lab and real-life scenarios?
We decompose this research question into four sub-questions.

– RQ2-1: Expressiveness for in-lab scenarios. Is Druide expressive enough
for in-lab scenarios?

– RQ2-2: Expressiveness for real-life scenarios. Is Druide suitable for real-
life scenarios?

– RQ2-3: Expressiveness for intra-model uncertainties. Can Druide ex-
press intra-model design uncertainty?

– RQ2-4: Expressiveness for inter-model uncertainties. Can Druide ex-
press inter-model design uncertainty ?

• RQ3: Usability. To what extent is Druide usable?

To answer the above research questions, we conducted a lab-based evaluation over two
literature-based worked examples, a real-life case study and a post-study questionnaire with



the three participant researchers of the case study.

In the rest of this chapter, we focus on the lab-based evaluation. The rest of the evaluation
will be presented in the next chapter.

4.2. Lab-based evaluation
In this section, we present our lab-based evaluation. We start by introducing the evalu-

ation systems and explaining our evaluation rationale. Then, we apply Druide on each of
the systems.

4.2.1. Evaluation systems and rationale

In order to evaluate our language and approach, we have chosen two worked examples;
the Peer-to-Peer example and the UMLet Bug example, presented in [15] after slightly mod-
ifying them. We have chosen these examples because they are non-trivial realistic worked
scenarios that have been used to validate prior relevant research work [15]. Since these
examples were used to evaluate May-based partial models, e.g models working with a set of
alternative designs (section 2.3), they both deal with ScenarioUncertainty-level uncertainties.

In the following, we evaluate each example from a different perspective in order to evaluate
different aspects of Druide. Thus, each example plays a different role in this evaluation:

• The Peer-to-peer example is used to highlight the fact that Druide is language-
independent. This example shows Druide application over a behavioural model,
in contrast with its application over the structural PTNs model presented in the
previous chapter as an illustration. Moreover, we use the Peer-to-peer example to
illustrate more the usage of the Localization and Operationalization operators, as well
as to highlight the usefulness of the constraints.
• The UMLet Bug example is used to put an emphasis on the articulation and the
elaboration of uncertainty rather than to focus on the mappings with the system
under construction. Besides, we use the UMLet Bug example to prove the usefulness
of the constraints and to detect some of Druide limitations.

4.2.2. Peer-to-Peer example

In this section, we present Druide evaluation over the Peer-to-peer example. The pur-
pose of this example is to:

(1) Show that Druide is language-independent.
(2) Illustrate the use of the Localization and Operationalization operators.
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(3) Show the usefulness of the constraints.

In the example, a group of engineers is engaged in the modelling of a simple peer-to-peer
file sharing system, called PtPP. They use UML State Machines Diagrams to model the
behavior of the system. The system has three possible states: the Idle state which is the
initial state, the Leeching state that refers to the state of downloading a file and the Seeding
state during which the peer is sharing a complete local copy of a file. Both Seeding and
Leeching states can be canceled by invoking the action cancel() and the downloading always
starts from the Idle state. Figure 4.1 shows the corresponding object diagram.

Fig. 4.1. The peer-to-peer example object diagram

The modellers have three uncertainties about other behavioural aspects of the system
[15]. In the rest of this section, we show how the team uses Druide to model their uncer-
tainties and operationalize their decisions. The resulting object diagram is presented in Fig
4.2.

First, the team models their uncertainties as three DUncertainty elements:
• DU1: How is seeding initiated?
• DU2: Is restarting downloads part of the wanted behaviour?
• DU3: How should the system behave when a download finishes?

Since the three uncertainties are the result of the same factor, they all share the same
DIndeterminacySource (DI1 ). The example in [15] does not specify the source of this un-
certainty, thus we suppose it is of type MissingInformation. As mentioned above, we are at
the level of the ScenarioUncertainty.

Second, the modellers use the localization traces to localize their uncertainties in the cor-
responding parts of the system, as represented by the blue links in Fig 4.2. For instance, DU1
is localized at the Seeding state. This localization didn’t break any localization constraints.
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Fig. 4.2. The resulting mega-model after applying Druide on the Peer-to-peer example
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Afterwards, the team articulates the specific design decisions that they need to make in
order to resolve their uncertainty. Specifically, they express the following three design-time
decisions that respectively correspond to the above uncertainties:

• D1) Can users initiate seeding?
• D2) Can users restart downloads?
• D3) What happens when a download is completed?

Besides, when it comes to the third design-decision, the team considers three potential
design solutions: a benevolent policy in which the program automatically starts seeding once
the leeching is completed, a selfish policy in which the program becomes idle once the leeching
is completed and a compromise policy in which the program stops accepting new peers but
doesn’t disconnect from connected peers once the leeching is completed. Furthermore, the
team decides to only allow the ability to start seeding for the selfish and compromise policies
[15].

Now, for each uncertainty, the team models its corresponding decisions. For instance, the
first design-decision D1) Can users initiate seeding? is a boolean decision that corresponds
to the DUncertainty DU1. Thus, the team adds the DPolar decision DD1. Similarly, the
team models the second design decision D2) Can users restart downloads? that corresponds
to the DUncertainty DU2 as the DPolarDecision DD2.

After that, the engineers model the third design-decision D3) What happens when a
download is completed? as a DClosedEnded DDecision DD3. As detailed above, the team
has already thought about three alternative policies to adopt when a download is complete.
The modellers model this refinement of DD3 using the DRephrasingDependency DR1. They
evolve DD3 to three DPolar decisions corresponding to the three policies: selfish (DD5),
benevolent (DD6) and compromise (DD4).

The three policies are mutually-exclusive. The engineers express this using the logical
dependencies DE1, DE2 and DE3. Finally, as mentioned above, the team wants to allow
the ability to start seeding uniquely for the selfish and compromise policies. So, they add a
DExcludes dependency DE4 between the benevolent policy DDecision (DD6) and the ability
to start seeding DDecision (DD1).

When checking the dependency constraints, the team finds out their model (Fig 4.2)
breaks the following constraint: There is no cycle dependencies of the same type. In fact,
the DExcludes dependencies DE1, DE2 and DE3 form a cycle of the same type. In the final
model, the modellers fix this by swapping the target and source decisions of DE1.

Although in this particular case, detecting a cycle of DExcludes dependencies may not
seem very useful, the constraint of detecting cycle dependencies in general is very beneficial.
For instance, semantically, detecting a cycle of DRequires dependencies may help detect
infinite loops and recursions or prevent some unexpected failures. We will detail our work
in progress concerning Druide semantics later in Chapter 8.
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The team now starts operationalizing the DPolar decisions. They operationalize DD1
by the addition of a transition with the share() action from the idle state to the seeding
state. Similarly, the team operationalizes the second design decision D2) Can users restart
downloads? (DD2 ) by the addition of a transition with the restart() action from the Seeding
state to the Leeching state. After that, they operationalize each of the three mutually
exclusive policies as detailed above. The Operationalization traces are shown as red links in
Fig 4.2. The Operationalization step didn’t break any constraints.

In this example, we note that the modellers decided to distinguish between their un-
certainties, localize each one in a different part of the system, and link each one with its
corresponding DDecisions, in contrast with the PTNs example above, where the modeller
uses one Duncertainty element for all her DDecisions, and localizes it at the Net class high
level. Both ways are correct and supported in Druide. These subjective modelling choices
illustrate the flexibility of Druide.

Besides, in this example and for the sake of structuring, we have presented the modelling
process as a series of big steps organized as follows: modelling all the uncertainties,
localizing them, checking the Localization constraints, expressing and evolving all the
decisions, checking the dependencies constraints, operationalizing all the DPolar decisions
and finally checking the Operationalization constraints. However, we note that there is no
constraint for the modelling process to happen this way, e.g by applying an operation for
all the same elements at once. We also admit that the process we used is not realistic. In
fact, it is perfectly natural to model an uncertainty, operationlize a decision and then refine
another, as the modellers are usually at different evolution stages concerning the different
uncertainties. In other words, the workflow proposed in section 3.3.3 is to be applied per
uncertainty.

After successfully applying Druide on two literature-based examples, and showing
that it satisfies the uncertainty articulation requirements (section 3.1) both on a structural
model (the PTNs example) and a behavioural model (the Peer-to-peer example), we can
answer RQ1.

RQ1 results: Druide is a language-independent modelling language and a methodol-
ogy that can adequately articulate uncertainty when modelling, given the stated criteria.

4.2.3. UMLet Bug example

In this section, we present Druide evaluation over the UMLet Bug example. The purpose
of this example is to :
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(1) Illustrate the articulation and elaboration of uncertainty, Thus, we omit the mega-
model and the traces and only present the Druide uncertainty model.

(2) Highlight some of Druide limitations.
(3) Show the usefulness of the constraints.

In this example, we look at the bug report Bug #10 1 of UMLet, an open-source Java-
based UML drawing tool. In UMLet, the elements are placed on a canvas that has several
layers. An element’s "z-order priority" indicates what layer of the canvas it is on. As discussed
in [15], the bug concerns the design of the copy-paste feature of UMLet. Specifically, the
copy-paste feature creates a new copy but does not give it higher z-order priority.

In order to fix the bug, the modeller creates a positioner object that has a method
moveToTop that places the new copy on top of others, thus giving it higher z-order priority.
The fix is shown encircled by a dashed line in Fig 4.3.

Fig. 4.3. Fragment of the sequence diagram of the UMLet paste function [15]

However, this fix creates additional problems as it violates two consistency rules: Class-
lessInstance (the positioner object is not associated with a class ) andDanglingOperation
(the method moveToTop is not in the receiving object class, e.g, it is not in the positioner
class, because it has no class.) [15].

So, the modeller uses an automated technique to generate alternative model repairs. The
technique proposes the following repair strategies:

• Repair strategies to fix the ClasslessInstance consistency rule:
1Bug #10 available here: https://github.com/umlet/umlet/issues/10. URL accessed on September
13th, 2020.
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– Remove the object
– Replace the object with an existing object with a class
– Assign the object to an existing class
– Assign the object to a new class

• Repair strategies to fix the DanglingOperation consistency rule:
– Put the operation into the receiving object’s class
– Change the operation to another one already in the receiving object class
– Remove the message

The modeller is uncertain about which repair to use. She tries to model her uncertainties
with Druide. Fig 4.4 shows the resulting Druide model.

The modeller expresses her uncertainty about fixing the model using the DUncertainty
element DU1. She then models the DDecisions she needs to make: DD1 and DD2. Since the
modeller has already several possible alternatives, she specifies their types as DClosedEnded.

The modeller refines the first DDecision DD1 into four DDecisions; DD3, DD4, DD5 and
DD6, that correspond to the four repair strategies to fix the ClasslessInstance consistency
rule specified above. Since these strategies are mutually exclusive, the modeller uses the
DExcludes dependencies to express this.

Similarly, the modeller refines DD2 using the DRephrasingDependency DR2 into the
three potential fixes for the DanglingOperation consistency rule listed above. She also adds
severalDExcludes dependencies to denote the fact that these solutions are mutually exclusive.

When modelling, the modeller notices that removing the object fix (DD3 ) implicitly
implies removing the message fix (DD9 ). The modeller uses the DRequires dependency
DRe1 to express this.

The DDecisions DD4, DD5 and DD8 can’t be modeled as DPolar because they can’t
be operationalized yet. In fact, they change based on some variables. For instance, in the
case of DD4 : Should we replace the object with an existing object with a class?, this decision
depends on which object among the existing objects the modeller will choose. Thus, the
modeller models it as a DClosedEnded DDecision as it can be rephrased to a set of decisions,
with each of the possible values of the existing objects as a separate DPolar decision. For
example, if we have N existing objects in the model each identified by a number from 1..N ,
DD4 will be rephrased into N DPolar decisions of this form: Should we replace the object
with the existing object Obj_i, with 1 < i < N .

Although the refinement is mainly supposed to evolve the DDecisions types (section
3.2), there is no strict constraint in Druide about this. In this case, DR1 evolves the
DClosedEnded DDecision DD1 into a set of DDecisions of the same type (DD4 and DD5 )
and a set of DPolar DDecisions (DD3 and DD6 ). This example shows Druide flexibility
and ability to support the articulation of uncertainty as the decisions evolve.
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Fig. 4.4. The Druide model representing the modeller’s uncertainties
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Besides, the concept of DClosedEnded decisions is broad enough in Druide that it can
capture simple variable changes, like in this scenario, or significantly different design decisions
like in the Peer-to-peer scenario. This is another illustration that Druide concepts are
general enough to capture a variety of scenarios, and thus Druide has good support for the
articulation of uncertainty at different granularity levels.

Similarly to DD4, the modeller specifies DD5 and DD8 as DClosedEnded DDecisions
as well. DD5 changes based on the choice of a class among the existing ones, while DD8
changes based on two variables: the choice of the receiving object class, then the choice of
the operation among the operations available in that class. So, if M is the total number
of all existing operations in the model, DD8 can be rephrased into M DPolar DDecisions.
Besides, for each decision, there should be a set of dependencies to correlate it with the
correct class choice, e.g, the choice of the operation should be consistent with the choice of
the receiving object class.

Although this example is feasible with Druide, and would be very simple if the system
model only has a small number of classes and operations, this is not the case of the rather
large system presented in [15]. In fact, the Druide model will be too big and not practical
to use. Besides, it will become very annoying and time-consuming for the modeller to oper-
ationalize each DPolar decision. We conclude that, although Druide supports expressing
uncertainty at different levels of granularity, using it to express very simple model variances
can be an overkill. We will discuss more Druide limitations in Chapter 7.

When thinking about her model, the modeller notices something: although DD7 is a
DPolar decision, it cannot be operationalized yet because it depends on the choice of the
class of the receiving object. Thus, the modeller investigates the use of the DInformation-
RequirementDependency with one source (DD7 ) and three targets (DD4, DD5 and DD6 ).
Mainly, she considers the constraints related to it.

The Operationalization operation has a constraint concerning the DInformationRequire-
mentDependency (Table 3.2) that specifies: The source DPolar decisions of a DInforma-
tionRequirementDependency can’t be operationalized if one of its targets is still unresolved.
In our case, the targets DD4, DD5 and DD6 are unresolved, so the constraint makes perfect
sense and conforms to the fact that the modeller couldn’t operationalize DD7 yet. This is
another illustration of the usefulness of the constraints, as they ensure the well formedness
and consistency of the resulting uncertainty model as well as the good usage of the operators.

After successfully applying Druide on three literature-based examples (the PTNs, the
Peer-to-peer and the UMLet Bug examples), we can answer RQ2-1.

RQ2-1 results: Druide is expressive enough for in-lab scenarios.
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In this chapter, we only presented the lab-based evaluation and addressed two research
questions. In the next chapter, we present the rest of the evaluation and answer the remaining
research questions.
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Chapter 5

Field-based evaluation of Druide Model and
Approach

In this chapter, we address the rest of the research questions by presenting our real-life
case study and post-study questionnaire. Finally, we enumerate the threats related to this
evaluation.

5.1. Case study context
In order to evaluate our proposal outside the laboratory, assess the usability of our work

in a real context and receive modellers feedback and insights about Druide, we proceeded
to a collaborative practical evaluation by identifying a case study from real life. In fact, our
evaluation case study is related to the uncertainty produced by the COVID-19 pandemic.

For this part, we invited three researchers from the Grubb-Lab1 at Smith College2, USA.
to collaborate with us. The Grubb-lab’s main research focus is goal modelling. The three
researchers have different modelling experiences; they are two students with little modelling
experience less than five years, and a professor with an important experience in modelling
of more than five years.

This collaboration happened over the course of three months, in the form of bi-weekly
virtual meetings. The first meetings were to introduce Druide and agree on the case study.
We chose one that combines two heterogeneous models, one of them is a goal model. Then,
we divided the work and started modelling our uncertainties using Druide on our separate
parts.

For the goal model part, the three Smith researches chose to each work alone, then
gather their Druide models into one. The modelling process happened incrementally and
1The Grubb lab is the software engineering lab in the Department of Computer Science at Smith College. The
lab research work focuses on goal modelling, and how stakeholders can effectively use models in collaboration.
Website: https://amgrubb.github.io/grubb-lab/. URL accessed on September 13th, 2020.
2Website: https://www.smith.edu/. URL accessed on September 13th, 2020.
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iteratively as we constantly discussed with them and gave them feedback about Druide
usage and concepts. This collaboration has been proven beneficial as it was the main reason
the DInformationRequirementDependency was added to Druide.

Afterwards, we merged both our models together, and discussed the potential inter-model
uncertainties. At the end of this modelling experience, we asked our three participants to
answer a post-study questionnaire to collect their feedback and insights about Druide.

In the next sections, we start by presenting the necessary background for the case study,
then we present the outcomes of this evaluation.

5.2. Case study background
In this section, we present necessary background knowledge for our case study. First, we

introduce goal models, then we explain Bayesian Belief networks.

5.2.1. Goal models

Goal models are a way to capture and refine stakeholders intentions to generate functional
and non-functional requirements, thus goal modelling is closely related to the requirements
engineering (RE) field [25]. Generally, goal models are used in the early phases of projects in
order to evaluate tradeoffs with stakeholders. Fig 5.1 presents the meta-model of the Tropos
goal model [3] used in our case study.

Fig. 5.1. Tropos meta-model

Tropos goal models consist of three types of elements: actors, intentions and dependen-
cies. Actors represent stakeholders. Each actor is associated with a set of intentions. An
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intention can be a goal, a soft-goal, a task or a resource. The intentions are connected with
labeled dependencies, also called relationships or contribution links. There are several types
of contribution links such as ‘++’, ’+’, ‘–’, or ‘OR’. Each labeled relationship has a differ-
ent meaning. For instance, the ’+’ contribution link means that the source intention helps
the satisfaction of the target intention, whereas the ’-’ dependency means that the source
intention hurts the satisfaction of the target intention.

5.2.2. Bayesian Belief Networks

Bayesian belief networks have been extensively used in artificial intelligence research for
reasoning under uncertainty [11]. Bayesian Networks are acyclic directed graphs. The nodes
represent variables on domains composing of discrete mutually exclusive values. The edges
represent causal influence. Each edge is associated with a probabilities matrix that indicates

Fig. 5.2. The evolution of the bayesian network of a sneezing example as new evidence is
introduced. [26]
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beliefs in how each value of the cause variable affects the probability of each value of the
effect variable. These matrices are either estimated by experts or deduced from statistical
studies. The probabilities are updated each time a new evidence comes. Those probabilities
can then be used to determine the most likely causes of some events (diagnostic reasoning)
or to predict the results of some tests (predictive reasoning) [26].

Fig 5.2 shows the evolution of the parameters of a sneezing example bayesian model as
new evidence is introduced [26]. This example represents a diagnostic model, intended to
help some person find out whether he is sneezing because of a cold or due to rhinitis caused
by an allergic reaction [26]. The example contains six Boolean variables and the causal
relationships between them. Fig. 5.2-a shows the initial state, Fig. 5.2-b shows the model’s
updated state when the sneezing evidence has been introduced, and Fig. 5.2-c shows the
model’s updated state when the scratching evidence has been introduced. A live demo of
another bayesian network can be found here3.

5.3. COVID-19 Case study
In this evaluation, we focus on evaluating tradeoffs of individual decisions in the context of

the COVID-19 pandemic. Specifically, we consider Emma, a persona representing a Quebec
resident who wants to have dinner during the COVID-19 pandemic, without getting or
transmitting the virus. Emma has some options for dinner and she wants to choose the
safest option. In order to help her make the correct decision, we propose to use real COVID-
19 Quebec related data that we fit to an artificial intelligence reasoning algorithm. When
modelling, this case study revealed several uncertainties, which makes it is a great real
example to evaluate our proposal on.

Specifically, we address this problem in three steps: first, we use goal models to model
Emma’s decisions and concerns (section 5.3.1). Second, we use Bayesian Belief Networks to
represent the COVID-19 epidemiological model in Quebec (section 5.3.2). Third, we propose
a linkage of both models that helps Emma make the safest choice (section 5.3.3). In each of
the previous steps, we use Druide to articulate our uncertainties and potential modelling
decisions.

The purpose of this case study is mainly to :
(1) Show the applicability of Druide in real-life scenarios.
(2) Show Druide’s ability to express inter-model uncertainties.
(3) Prepare the foundation for a post-study questionnaire to collect practitioners insights

about Druide.
Besides, since we have already shown the usefulness of the constraints and illustrated their
usage in the previous chapter, we will not explicitly focus on them in this chapter. Instead,

3https://www.bayesserver.com/examples/networks/asia. URL accessed on September 13th, 2020.
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we will be informally enforcing them throughout the case study. Finally, in the rest of this
chapter, the blue links are used to denote the localization traces in the figures, while the red
links represent the operationalization traces.

5.3.1. Emma’s Goal Model

The work presented in this section was conducted mainly by the Smith researchers4.
Specifically, they use a goal model to evaluate the tradeoffs decisions for Emma’s goal, which
is to have dinner without getting or transmitting the virus. Their model is presented in Fig
5.3.

The model has two actors: Emma and Society. Emma has two goals; to have dinner,
and to not get or transmit COVID-19. Emma considers two potential tasks that can allow
her to reach her first goal: pick up takeout or cook at home. The cook at home task has a
positive relationship with the practice social distancing soft goal. The Society has three soft
goals: minimize economic impact, minimize exposure to essential workers and minimize the
spread of COVID-19. The second goal contributes positively to the third goal.

Fig. 5.3. Tropos goal model of Emma’s decisions

Finally, there are relationships between Emma’s intentions and the society’s intentions.
Specifically, the pick up takeout contributes positively to the minimize economic impact soft
4They have written a brief description of this collaboration on the Grubb Lab website. It can be found here:
https://amgrubb.github.io/posts/2020-08-20-covid-uncertainties. URL accessed on September
13th, 2020.
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goal, and negatively to theminimize exposure to essential workers soft goal. Besides, Emma’s
second goal, to not get or transmit COVID-19 contributes positively to the minimize the
spread of COVID-19 soft goal.

The Smith researchers have several uncertainties concerning how to finish modelling the
above goal model. They use Druide to describe these modelling uncertainties. The resulting
model is presented in Fig 5.4.

First, the Smith modellers are not sure what is the relationship between the pick up
takeout task and the practice social distancing soft goal. They model it as the DUncertainty
E-DU1. This uncertainty resulted from the fact that they do not know to what extent does
picking up takeout helps practice social distancing, since there is not a precise information
that states it. Thus, they characterize the DIndeterminacySource E-DI1 nature as Insuffi-
cientResolution. Since there is only a set of possible relationships in goal modelling, this is
a ScenarioUncertainty. The modellers localize E-DU1 using the blue Localization traces as
shown in Fig 5.4.

To resolve this uncertainty, the modellers suggest decomposing the pick up takeout task
into two tasks: pick up takeout with contact and pick up takeout with No contact. They
model this as the DPolar decision E-DD1. However, this decomposition would result in the
addition of some contribution links. The modellers thus need to decide what contributions
links should be added if they decide to decompose E-DD2. Since they didn’t make their
decision about decomposing yet, and since E-DD2 depends on the output of E-DD1, the
modellers use the DInformationRequirementDependency to express this.

Second, the modellers are wondering if there exists a relationship between the practice
social distancing soft goal and the not get or transmit COVID-19 goal. Specifically, they are
unsure if this preventive measure helps reduce the spread of the virus, has no effect at all,
or in the contrary, it makes matters worse. In the absence of this information, the modellers
cannot decide. Thus, they express this using the DUncertainty E-DU2 and characterize the
DInderminacySource E-DI2 by specifying its level to RecognizedIgnorance and its nature to
MissingInformation. Then, they localize it using the blue Localization traces.

Afterwards, the modellers articulate their decisions. Initially, they need to decide if a
relationship exists (E-DD3 ). They operationalize this decision by the introduction of a link
between the practice social distancing soft goal and the not get or transmit COVID-19 goal.
This link is connected to E-DD3 by an Operationalization trace shown in red Fig 5.4. The
modellers also need to decide which contribution link to use on this relationship, so they
model the DClosedEnded decision E-DD4. Similarly, since the modellers didn’t make their
decision about the existence of the link yet, and since E-DD4 depends on the output of
E-DD3, the modellers use a DInformationRequirementDependency to express this.
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Fig. 5.4. The resulting mega-model after expressing the modelling uncertainties with
Druide on Emma’s goal model
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Third, the Smith researchers are uncertain about the behaviour of the fresh groceries
resource. They model their uncertainty (E-DU3 ), localize it, characterize its DIndetermina-
cySource (E-DI3 ), articulate their decisions (E-DD5, E-DD6 and E-DD7 ) and express the
dependencies between them (E-DR3 and E-DR4 ).

Forth, the modellers are having second thoughts about the goal not get or transmit
COVID-19. In fact, they are not sure that the factors that may prevent a person from
getting the virus, are as well efficient for preventing it from transmitting it. Besides, it is
possible that not transmitting the virus contributes differently in reducing the spread of
COVID-19, from the contribution of not getting the virus. Intuitively, it may contribute
more strongly. However, there is no official information yet that clarifies this difference. For
all these reasons, the modellers consider decomposing the goal not get or transmit COVID-19
into two goals not get COVID-19 and not transmit COVID-19. They express this using the
objects E-DU4, E-DI4 and E-DD8

Fifth, the modellers are uncertain about how to model the impact of wearing a mask
(E-DU5 ). Specifically, they are uncertain about how to represent wearing a mask. Since
there is only a limited number of possible deigns for wearing a mask (constrained by the
number of possible elements in a goal model), this is a ScenarioUncertainty (E-DI5 ). The
researchers localize this uncertainty at different parts of the model, as shown by the multiple
Localization traces connected to E-DU5 and represented in blue in Fig 5.4.

Afterwards, the modellers start articulating their decisions in order to resolve the un-
certainty. Initially, they consider adding an intention for wearing masks (E-DD9 ). If they
choose to do so, they need to decide what type of intention to use (E-DD10 ). Once that
figured out, they need to decide the relationships that should to be connected to this inten-
tion, in order to represent the impacts of wearing a mask (E-DD11 ). In order to express
this chain of dependencies, the modellers use the DInformationRequirementDependency.

Sixth, the researchers are unsure about how to evaluate the soft goal minimize the spread
of COVID-19. Thus, they elaborate their uncertainty (E-DU6 ) and articulate their decision
concerning this (E-DD12 ).

To conclude, using Druide, the Smith researchers were able to model their inherent
uncertainties concerning the Emma model, and concretize them into decisions that can be
acted on. Specifically, they were able to describe the uncertainty about the model, as opposed
to the uncertainty the actors may have about their decisions. Also, we note that there is no
much Operationalization done. This is mainly because the Smith researchers struggled with
that concept. We will detail this later in section 5.4.
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5.3.2. Quebec’s COVID-19 epidemiological model

In this real-life case evaluation, we use the report entitled Epidemiology and modelling of
the evolution of COVID-19 in Quebec published by the Government of Quebec5. We focus
on pages 29-33 and try to model a Bayesian Network capable of capturing the impact of
respecting the lock-down measures on the probabilities of exposure to the virus, hospital-
ization and death. Based on the report, we are able to model the following portion of the
model, presented in Fig 5.5.

Fig. 5.5. Bayesian Network of the Quebec COVID-19 Epidemiological model

The model in 5.5 presents five Boolean variables that represent the possible health states
of an individual during the pandemic: Susceptible, Exposed. Symptomatic, Hospitalized and
Dead. The transition from one state to another is estimated based on conditional probabilities
shown in matrices next to the edges in the figure. We deduced these probabilities from
the report. For instance, the probability of a person to be hospitalized known that he is
5Available here: http://www.marc-brisson.net/covid19-response/Epidemiologie-et-modelisation-
evolution-COVID-19-au-Quebec_7-mai.pdf. URL accessed on September 13th, 2020.
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symptomatic is equal to 0.07. The report also specifies the Symptomatic probabilities based
on the age of a person. Thus, we add the age variable and the corresponding conditional
probabilities in our model.

When modelling, we faced several uncertainties. We used Druide to express them. The
resulting model is presented in Fig 5.6.

First, the report does not specify what is the probability of being exposed to the virus. We
model this as the DUncertainty DU1 with an indeterminacy source (DI1 ) of type MissingIn-
formation. Then, we localize it at the Exposed/Susceptible conditional probabilities matrix.

Second, in order to map the epidemiological model to the Bayesian Network semantics,
we gathered the mutually exclusive health states as the possible values for one variable. For
instance, in the report, they distinguish between Symptomatic and Asymptomatic. In our
bayesian model, we used only the Symptomatic variable with two values: True and False.
When the value is False, the probabilities express the state Asymptomatic. Similarly, the
epidemiological model has two states: Death and Recovered. In our bayesian model, we use
Death variable with True and False values. The False value refers to the Recovered state.
However, since we do not know what should the bayesian model emphasize, we are not sure
which variable is better to use: Death or Recovered, Symptomatic or Asymptomatic. We
model this uncertainty as the DUncertainty DU2. Then, we characterize its indeterminacy
source. Specifically, we have two alternatives for each variable, so we are at the Scenari-
oUncertainty level (DI2 ). Besides, although we know that the purpose of this model is to
help Emma make the safest decision, we don’t know how this will be done yet. So, we don’t
precisely know what the model should emphasize and what variables should be used. We
characterize this situation as InsufficientResolution (DI2 ). Afterwards, we localize DU2 in
the Symptomatic and Death variables as shown using the blue lines connected to DU2 in the
figure.

After that, we elaborate on our uncertainty and express two concrete DClosedEnded de-
sign decisions: DD1 and DD2. Since, the articulation of DD1 is similar to DD2, we only
articulate DD2 to reduce visual clutter. Specifically, we refine DD2 into two mutually exclu-
sive DPolar decisions (DD3 and DD4 ). Then, we operationalize each of them. For example,
the Operationalization of DD3 resulted in the addition of the Recovered variable, the edge
linking the Hospitalization state to the Recovered state and the Recovered/Hospitalization
matrix. These elements are connected to DD3 using the Operationalization red traces.

Third, we are not sure how to model the fact of respecting preventive measures. The
report distinguishes between two measures: Reduce contacts and Isolation if symptomatic.
We are uncertain whether we should gather both of them as one variable, or distinguish
between the two. So, similarly, we model this as an uncertainty (DU3 ), we characterize its
indeterminacy source (DI3 ), then we articulate and evolve its related decisions (DD5, DD6
and DD7 ). Finally, we operationlize the DPolar ones (DD6 and DD7 ).
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Fig. 5.6. The resulting mega-model after applying Druide on the Bayesian Network of
Quebec’s COVID-19 epidemiological model
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Finally, in both scenarios, the report didn’t include the impact of respecting the
preventive measures on being exposed to the virus. Thus, we express and localize this
uncertainty (DU4 ).

In this example, we have shown that, thanks to Druide, we were able to articulate all
of our uncertainties. It is also worth noting that Fig 5.6 depicts uncertainty at two different
levels: the bayesian belief network describes the uncertainty contained inside the model,
while Druide is used to articulate uncertainty about the model.

After successfully applying Druide on two real-life evaluation scenarios (Emma’s goal
model and the bayesian network model of the Quebec COVID-19 epidemiological model),
we can answer RQ2-2.

RQ2-2 results: Druide is suitable for real-life scenarios.

Besides, after successfully applying Druide on five intra-model uncertainties (two
real-life evaluation scenarios and three literature-based evaluation examples), we can answer
RQ2-3.

RQ2-3 results: Druide can express intra-model uncertainties.

In the next section, we address RQ2-4.

5.3.3. Linking Emma’s model with Quebec’s epidemiological model

After finishing modelling Emma’s goal model and the Quebec’s epidemiological model
separately, we try to link both pieces of the case study together to have the complete picture.
In fact, in order to help Emma make the right choice, we consider the potential impact of
her decisions on the Bayesian network variables. Specifically, we map the goal model tasks
to the corresponding evaluation of the Bayesian variables they might impact. For instance,
when Emma chooses to cook at home, it is logical to stay that she will be respecting the
preventive measures by reducing contact. In other words, in case Emma chooses to cook at
home, it will be similar as evaluating the Bayesian variables Reduce contacts and Respect of
Preventing Measures to True. We use the two dark purple links linked to the Cook at home
task to denote this mapping as shown in Fig 5.7. We also note that we omit several Druide
elements to reduce visual clutter in Fig 5.7.

We emphasize the fact that these lines do not correspond to any objects, classes or
models. Instead, they only refer to some background mechanism that assigns a specific value
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Fig. 5.7. Druide on the mapping
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to a variable, whenever a certain a task has been made, thus triggering the update of the
bayesian network algorithm.

When we try to map the other task, pick up takeout, to the corresponding variables values,
we are faced with uncertainty; Does picking up a takeout break the preventive measures, or
does it respect them? Does it help reducing the contacts, or not? Intuitively, it is definitely
better than eating outside, for example, at a restaurant, but it is riskier than cooking at
home. Thus, we are uncertain if we should consider it as a preventive measure, or as a
non-preventive measure.

Since we are unsure about the mapping, we use Druide to represent this uncertainty
(DI5, DU5 ) and articulate its corresponding decisions (DD8, DD9, DD10 ). We operational-
ize each of the alternatives as follows. DD10 means we consider picking up a takeout as a
non-preventive measure, and thus it is mapped to the False values of the Reduce contacts
and Respect of Preventing Measures variables (Two bright pink links linked to the pick up
takeout task in Fig 5.7). On the other side, operationalizing DD9 results in mapping the
pick up takeout task to the True values of the Reduce contacts and Respect of Preventing
Measures variables (Two dark purple links linked to the pick up takeout task in Fig 5.7). In
the latter case, it is the same evaluation as for the cook at home task. This means, that in
case we choose to make DD9 and consider that picking a takeout is a preventive measure,
the bayesian network will indicate that both tasks are equivalent. In fact, the probability of
exposure will be the same, meaning that both tasks will result in the same risk.

When merging both models into one, we noted similar uncertainties. Specifically, the
E-DU2 uncertainty that concerns the relationship between practicing social distancing
and not getting or transmitting the virus in Emma goal model, is the same as the DU-4
uncertainty that concerns the impact of respecting preventive measures on the probability
of exposure to the virus in the bayesian network. Although rephrased differently (since they
have been articulated by different modellers), they both refer to the same uncertainty, which
is the effectiveness of the preventive measures on reducing the spread of the virus. Similarly,
the E-DU1 uncertainty that concerns the relationship between picking up a takeout and
practicing social distancing in Emma’s goal model, refers to the DU5 mapping uncertainty
explained above. These are illustrations of how the same uncertainty can appear in different
models.

Finally, we note that the merge of the two models, partly presented in Fig 5.7, depicts
three different types of uncertainties:

• Emma uncertainty concerning her decision to have dinner captured by the goal model.
• The uncertainty concerning the Quebec COVID-19 epidemiological model expressed
using the Bayesian network probabilities.
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• The uncertainty concerning the models and the relationships between them articu-
lated using Druide.

Thus, this case study clearly illustrates that different uncertainty types require different
modelling approaches and different treatments. Existing modelling notations, like Bayesian
networks or goal models, are suitable for representing uncertainty inside the system, however
they do not cover the uncertainty about the design of the system. Druide, on the other
side, covers exactly that type of uncertainty.

The main purpose of this part was to evaluate Druide ability to express inter-model
uncertainties. We have demonstrated this ability using the simple representative case intro-
duced above from two perspectives:

(1) Uncertainty can appear in the relationships between models. We have already suc-
cessfully used Druide to articulate uncertainties concerning the relationships be-
tween two different models.

(2) The same uncertainty can appear in different models. We have already noted similar
uncertainties above. In Druide, these can be easily merged into one, and have
associated decisions in different models.

Thus, we can answer RQ2-4.

RQ2-4 results: Druide can express inter-model uncertainties.

To conclude, after conducting both the lab-based evaluation and the case study, we can
answer RQ2.

RQ2 results: Druide is expressive enough for representing both intra-model and
inter-model uncertainties, for both in-lab and real-life scenarios.

In the next section, we address RQ3.

5.4. Post-study questionnaire
In order to collect the opinions of our three participants on Druide after their modelling

experience, and to answer RQ3 concerning the usability of Druide, we used a post-study
questionnaire. The questionnaire we proposed contains four questions as listed below:

• Q1: To what extent do you find Druide adequate for uncertainty-aware modelling?
• Q2: Describe your experience when modelling your uncertainties about the Emma
example using Druide. Was it expressive enough for you? Were there any uncer-
tainties that you could not model with Druide?
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• Q3: Describe your process of learning Druide. Explain the challenges you faced. Do
you think that the time needed was reasonable, with respect to the benefits? Were
there any concepts particularly hard to understand? If yes, please name them. Did
you need additional resources in order to be able to use Druide adequately? If yes,
please discuss them and say how they helped you.
• Q4: After one modelling experience, to what extent do you think you can use Druide
concepts, without any assistance or doubts? According to you, how much time or
modelling experience is approximately needed to master Druide concepts?

The first question Q1 concerns the first research question RQ1: Adequacy, while the
second one Q2 relates to the second research question RQ2: Expressiveness. Finally, we
asked the third and forth questions; Q3 and Q4, to evaluate the third research question
RQ3: Usability. The rest of this section is structured by research question. In each
subsection, we present the participants responses and comment on them.

5.4.1. RQ1: Adequacy.

In this subsection, we focus on the answers we received from the participants concerning
the first question Q1. The three answers are listed below.

• Student1: Uncertainty plays a large role in modelling and I think its failure to be
articulated adds a barrier to real-world utility. Uncertainty-aware modelling addresses
this barrier and I think it’s more truthful and brings the model closer to the real-life
situation. I see it (Druide) as highly adequate for those reasons.
• Student2: I found Druide adequate for the modelling that I did. (...)
• Professor: I found Druide completely adequate for uncertainty-aware modelling.
Once the additional dependency was added (the DInformationRequirementDepen-
dency), I was able to connect elements with appropriate dependency links.

Although the first answer showed the utility of any uncertainty-aware modelling language
in general, the second two insisted on Druide adequacy for uncertainty-aware modelling.

RQ1 results: The participants answers confirm the evaluation results.

5.4.2. RQ2: Expressiveness.

In this subsection, we focus on the answers we received from the participants concerning
the second question Q2. The three answers are listed below.
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• Student1: I think every uncertainty we had with Emma could be articulated in some
form using Druide (...). The Druide modelling process itself also helped discover
more uncertainties in the model because of the mindset it provokes.
• Student2: Because any uncertainty could be expressed as a DUncertintanty, I had
no issue modelling all uncertainties in Druide. (...)
• Professor: We started by creating the base goal model of Emma. Then we brain-
stormed about the uncertainties we experienced while modelling. (...) All the uncer-
tainties that we brainstormed, we were able to model in some form. Upon review,
Mouna corrected our InformationRequirementsDependency. (...)

The three participants agreed that they were able to express all of their uncertainties
concerning Emma’s goal model using Druide.

RQ2 results: The participants answers confirm the evaluation results.

5.4.3. RQ3: Usability.

In this subsection, we focus on the answers we received from the participants concerning
the third and forth questions Q3 and Q4. The three answers for Q3 are listed below.

• Student1: When initially modelling with Druide, it was difficult to know where to
start with no prior experience, and felt a bit intimidating. I was especially confused on
identifying the DIndeterminacyNature and still struggle with that component. (...)
• Student2: I learned Druide in several short bursts, while working on the Emma
case study. The basics of adding uncertainties was not very hard, but there were some
fundamental misunderstandings that my modelling team had, which went uncorrected
until we met with more experienced modellers. (...)
• Professor:We reviewed the meta-model, it was very helpful with the explanation pro-
vided by Mouna/Michalis. (...) We had difficulty with the attributes of the Inde-
terminacySource object, as well as allowedPartiality in the Decision object. . . .and
the operationalization. The time needed to understand the concepts was reasonable.
It would also be helpful to explain the difference between uncertainty in the model
and uncertainty about the model. Once we got this idea straight it was easier to use
Druide and learn the concepts.

The three researchers agreed that using Druide was not intuitive at first, that it needed
time and that some concepts were harder to master than others.

The three answers for Q4 are listed below.
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• Student1: After one modelling experience, I feel familiar with Druide concepts.
While I think I could interpret a Druide model somewhat comfortably if presented to
me, I would struggle with adding Druide on top of a model myself, especially without
a guide. Mastering Druide is definitely a matter of practice, and I would estimate
at least five more guided modelling activities are needed for mastery.
• Student2: After this experience, I feel like I understand Druide on a surface level,
and enough to use it in another similar situation, but I would not be able to go closer.
I think I could easily add DUncertainties to a model and localize them, and would
probably be able to add some DDescisions and DIndeterminancySources but there
would be errors in those additions. I would probably have to work on one project
at this level and at least one more advanced modelling project to be fully versed in
Druide concepts.
• Professor: I think I could use the main Druide concepts without any help, but I
still need help on allowedPartiality in the DDecision object and the operationalization.
I think this is more trial and error. I think I would require another afternoon of
modelling to master Druide concepts.

The three researchers agreed that one modelling experience is not enough to master
Druide concepts, and that more practice is needed.

After conducting the post-study questionnaire and analyzing the participants answers
regarding questions Q3 and Q4, we can answer RQ3.

RQ3 results: Druide is usable but mastering it requires time and practice.

Finally, we asked the Smith researchers about their feedback concerning the usage of the
Draw.IO tool6 that we used to create the object diagrams presented above. The answers we
received were:

(1) It did feel a bit repetitive after articulating a few uncertainties, but that could mainly
be attributed to using Draw.IO, and having to manually add links/etc.

(2) We found the numbering (identification) of elements very tedious and it was difficult
to make sure that we didn’t double use the numbers.

In order to overcome Draw.Io’s usage inconveniences, we propose a tool that supports
Druide in the next chapter.

6Draw.IO is a tool for drawing diagrams. It can be downloaded from here: https://github.com/jgraph/
drawio-desktop/releases. URL accessed on September 13th, 2020.
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5.5. Threats to validity
In this section, we present the threats to validity of our evaluation. Internal validity

is concerned with our choice of evaluation systems. In fact, the three worked examples
from the literature as well as the COVID-19 real-world case study can be considered as
extremely suitable cases, with characteristics perfectly tailored for our language. Another
internal threat is the maturation threat, that potentially happened as a result of the natural
maturation of the Smith modellers as they were learning Druide.

External validity refers to the generalizeability of our findings. Our evaluation concerned
a limited number of systems (3 from the literature and 1 from real life) and involved a total of
3 participants. Thus, we cannot assert that our results can be generalized to other systems,
and other modellers. Therefore, more evaluation is necessary to confirm our findings. Finally,
there is a possible threat due to experimenter bias in the post-questionnaire answers as the
subjects had prior contact with the researchers.

Construct validity is concerned with the relationship between theory and what is
observed. Our evaluation might be assessing the modellers ability to express and articulate
their uncertainties, rather than Druide ability to model the real uncertainties. Besides,
another construct validity threat concerns the subjective understanding of Druide concepts.

In this chapter, we presented the field-based evaluation of Druide. In the next chapter,
we show Druide feasibility by introducing a tool that supports our language, implements
our operators and encodes our constraints.
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Chapter 6

Tool Support

In this chapter, we report the two approaches we have investigated in order to provide
tool support for our proposed language and methodology, The first one, which was our
initial attempt, is based on meta-model evolution, while the second one is grounded on
native support for mega-models. We also discuss the limitations of both tools.

6.1. The AddUncertainty Workflow
In this section, we present and discuss our proposed tool to create an automated meta-

model based approach that transforms any modelling language to an uncertainty-aware ver-
sion. This is a prerequisite for the creation of tooling that allows modellers to express their
uncertainties and corresponding design decisions.

We focus specifically on the feasibility of providing tool support for graphical domain-
specific languages (DSL) by implementing a prototype based on AToMPM, a web-based
modelling environment [37]. Therefore, we only consider a simplified uncertainty meta-
model. The meta-model is illustrated in Figure 6.1. It consists of an Uncertainty element
to which is related a set of design Decisions. Our tool, the AddUncertainty workflow, au-
tomatically extends a given meta-model and modelling environment with that simplified
uncertainty meta-model and the traces meta-model (Fig 3.3).

Fig. 6.1. Simplified uncertainty meta-model

To implement our approach, we use the AToMPM workflow engine [19]. Specifically,
we propose an automated workflow, shown in Figure 6.2, that takes as input any graphical
DSL and produces as output the DSL extended with uncertainty. The resulting language
incorporates the input language and our uncertainty sub-language. Model transformations in



AToMPM are capable to connect elements from different meta-models. We use this technique
to add the Localization and Operationalization traces as two possible associations between
the input language classes and our uncertainty language classes, in the resulting meta-model.

Fig. 6.2. AddUncertainty workflow in AToMPM

More specifically, the workflow takes the input meta-model and inserts our sub-language
next to it. It then runs the AddUncertainty transformation to create the traces associa-
tions between the two models. The result of the transformation is afterwards saved as the
new "Uncertain Meta-model", which corresponds to the new language’s abstract syntax. In
AToMPM, in order to use a language, we need to compile both its abstract and concrete
syntaxes. This is exactly what the workflow does simultaneously. For the abstract syntax, it
simply compiles it. Concerning the concrete syntax, it starts by putting the original meta-
model concrete syntax, our sub-language concrete syntax and the traces concrete syntax side
by side, then it saves the whole as the "Uncertain Meta-model" concrete syntax. After that,
it compiles it. Once both the abstract and concrete syntaxes are compiled, the workflow
loads the new language’s toolbar enabling the user to model his system.

In order to highlight better the impact of our automated tool on the modelling environ-
ment, we re-consider the Peer-to-peer example, presented in section 4.2.2. We assume the
modellers are using a simplified state machine meta-model provided in the AToMPM mod-
elling tool to model the behaviour of the peer-to-peer system. Figure 6.3 shows the current
state of modelling.

The yellow-framed palette at the top left of Figure 6.3 exposes to the modeller the
available modelling concepts from the original state machine meta-model. When modelling
the peer-to-peer system, the engineers can only model a State, a Transition, an Action, and
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Fig. 6.3. The unfinished model of the peer-to-peer system modeled in AToMPM.

the permitted associations between them as defined in the original state machine meta-model:
in other words, they do not have at their disposal any facilities to express their uncertainty.

Applying the AddUncertainty workflow on the state machine meta-model updates the
language to a new one that includes the initial state machines meta-model, as well as the
uncertainty meta-model and the traces. The result of the workflow can be seen in the yellow-
framed menu at the top right of Figure 6.4, which now also exposes modelling concepts from
the uncertainty sub-language. Thus, the modellers of the peer-to-peer example are now able
to express their uncertainties and model their decisions.

In Figure 6.4, the modellers’ expressions of uncertainty are shown as orange boxes and
their decisions as pink ovals. Specifically, the modellers have expressed their uncertainties
about the behaviour of the system as two Uncertainty elements. They also represented
the decisions D1-D3 (section 4.2.2) as Decision elements linking them to the corresponding
Uncertainty elements.

Furthermore, the modellers were able to localize their uncertainties in the corresponding
parts of the system. In Figure 6.4, the Localization traces are shown as green links. For
instance, the Uncertainty element “uncertainty about the seeding state” is localized in the
Seeding state. The modellers also used the Operationalization traces, shown as blue links,
to show how the elicited design decisions affect the model. In the example, the modellers
chose to operationalize the first and second design decisions by adding two transitions with
the respective actions share() and restart(), as explained in section 4.2.2.
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/cancel()

Uncertainty about the seeding state

Leeching

Can users restart downloads?

What happens when a download is complete ?

/cancel()

/share()

Idle

/start()

Can users start Seeding?

Seeding

Uncertainty about the downloading state

/restart()

Fig. 6.4. Articulation of design uncertainty for the peer-to-peer example using the
uncertainty-aware modelling language for state machines generated with the addUncertainty
workflow.

This prototype exposed AToMPM’s limitations; mainly in terms of support for meta-
model co-evolution and for mega-modelling.

First, the language extension performed by the AddUncertainty workflow does not alter
the classes and associations defined in the input meta-model. It simply inserts the uncertainty
sub-language and connects the corresponding classes with the appropriate associations. So,
in its current form, the workflow does not affect the original meta-model and its constraints.
Thus, in principle, the resulting meta-model can be used to type instances conforming to the
original meta-model, i.e., instances of the original meta-model are also instances of the new
meta-model. However, in practice, due to technical limitations of AToMPM, this is not the
case in our current implementation. For instance, we have to copy the original meta-model
which changes the namespace of the classes.

Second, since AToMPM does not provide explicit support for mega-models and traces, we
introduced a couple of workarounds (adding attributes, transformations, abstracts classes...)
in order to make its concepts fit our purposes. For instance, we adapted our approach so that
all three meta-models (original meta-model, uncertainty meta-model and the traces meta-
model) are merged into one. Thus, practically, we are no longer dealing with a mega-model,
but rather simply only one meta-model and instances of it.

For these reasons, we abandoned AToMPM and investigated another tool that naturally
supports mega-modelling. We detail this in the next section.
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6.2. D-Mmint
In this section, we present D-Mmint, a tool that supports modelling in the presence of

design-time uncertainty. D-Mmint is based on Mmint ("Model Management INTeractive")1,
which is an Eclipse-based graphical tool for interactive model management [8].

We have chosen Mmint among the available model management tools for several reasons.
First, we wanted to develop our approach in the Eclipse software ecosystem. Second, Mmint
natively supports mega-modelling at various meta-levels, which provides a natural way for
language extension that guarantees reuse of model management operators. Third, unlike the
other tools that provide programming capabilities for model management, Mmint provides
an interactive graphical user environment that allows users to perform automatically assisted
model management tasks [8]. Forth, Mmint has an integrated querying engine [7] that we
need in order to implement the constraints. Finally, Mmint has previously been extended to
support uncertainty modelling using partial models [13], which aligns with our future work,
as we will detail later in section 8.2.1.

The D-Mmint tool supports our language, implements our operators and encodes our
constraints. In the rest of this section, we will explain this and illustrate D-Mmint usage
by considering the peer-to-peer example presented in section 4.2.2.

D-Mmint simply extends the Mmint type-level mega-model with our Druide model,
by the installation of the Druide Eclipse plugin2. In order to extend a given meta-model
with Druide, we have to define the Localization and Operationalization operations as two
binary model relationship types between them, at the type-level. Figure 6.5 presents a screen
shot of the part of the type mega-model in Mmint that shows the Druide model, the State
Machines model and the Localization and Operationalization relationships between them.

Fig. 6.5. A screen shot of a fragment of the type mega-model in D-Mmint that shows
Druide model, the State Machine model and the Localization and Operationalization rela-
tionships between them.

Figures 6.6 and 6.7 respectively show the definitions of the above binary model relation-
ships; DLocalisationInStateMachine and DOperationalisationInStateMachine, at the type

1Available at: https://github.com/adisandro/MMINT. URL accessed on September 13th, 2020.
2The Eclipse Update Site project is Available at: https://udemontreal-my.sharepoint.com/:f:/g/perso
nal/mouna_dhaouadi_umontreal_ca/Et0UQSEL_m9Eu2HXC0diogMBNz1oftCoxCdNlSz3cmpJaA?e=oF6Egm.
URL accessed on September 13th, 2020.
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level. The figures show how the relationships are defined in terms of possible mappings
between the models elements.

Fig. 6.6. Definition of the DLocalisationInStateMachine relationship at the type level.

Fig. 6.7. Definition of the DOperationalisationInStateMachine relationship at the type
level

At the instance level, we are now able to model the peer-to-peer example, as well as
our uncertainties and decisions, as we explained in section 4.2.2. Figures 6.8 - 6.12 show
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respectively the peer-to-peer example, its corresponding Druide model, the mega-model
that links both of them, the Localization traces, and the Operationalization traces in D-
Mmint. In other terms, these figures represent D-Mmint implementation of the object
diagram presented in Fig 4.2.

Fig. 6.8. A screen shot of the Peer-to-Peer example modeled in D-Mmint

Fig. 6.9. A screen shot of the Druide model concerning the peer-to-peer example modeled
in D-Mmint
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Fig. 6.10. A screen shot of the mega-model of the peer-to-peer example with the Druide
model in D-Mmint

Fig. 6.11. A screen shot of the Localization traces of the peer-to-peer example in D-Mmint

Fig. 6.12. A screen shot of the Operationalization traces of the peer-to-peer example in
D-Mmint
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Concerning the constraints implementation in Mmint, we have chosen Eclipse-OCL3.
Eclipse-OCL can evaluate OCL constraints and queries on Ecore models. Besides, it is
already supported in Mmint [7]. Fig 6.13 shows a fragment of the OCL file that implements
the constraints. The full file with all the OCL constraints can be found in Appendix A.
Figures 6.14 - 6.16 present the procedure of verifying an OCL constraint that holds over the
peer-to-peer example in D-Mmint. Figures 6.18 - 6.19 present the result of checking an
OCL constraint on a counter example model that breaks it.

Fig. 6.13. Some of the constraints implemented in OCL

Using D-Mmint, we were able to model all of the examples presented earlier in this
thesis. Specifically, we were also able to implement the case study evaluation, as presented
in Fig 6.21. Besides, D-Mmint allowed us to add the inter-model uncertainties on the
mappings as sketched in Fig 5.7. Figures 6.22 - 6.25 show how this was done in D-Mmint.
3https://projects.eclipse.org/projects/modeling.mdt.ocl. URL accessed on September 13th, 2020.
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Fig. 6.14. Step 1 - Select the Evaluate Query option from the MMINT menu

Fig. 6.15. Step 2 - Specify the constraint name and click OK

Fig. 6.16. Step 3 - Get the Evaluation result

Fig. 6.17. The steps to verify an OCL constraint
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Fig. 6.18. Specify the constraint name and click OK

Fig. 6.19. Get the Evaluation result

Fig. 6.20. The result of checking an OCL constraint on a counter example peer-to-peer
model that breaks it.

Fig. 6.21. Implementation of the case study in D-Mmint
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Fig. 6.22. At the type level, creating a RelUncertainty relationship between Druide model
and the MID model

Fig. 6.23. Definition of the RelUncertainty at the type level

Fig. 6.24. At the instance level, creating an instance of the RelUncertainty between the
Druide model of the mapping uncertainties and the MID of the case study (Fig 6.21)

Fig. 6.25. At the instance level, localizing the mapping uncertainty and operationalizing
the mapping decisions

Fig. 6.26. The inter-model mapping uncertainties implemented in D-Mmint
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Although D-Mmint has proven to be more adequate than our initially proposed
ATOMPM-based workflow (section 6.1), it still imposed some usage restrictions.

First, the Operationalization and Localization relationships are not part of the Druide
Eclipse plugin. This means that the user should define these two relationships at the type
level, every time he wants to express some design-time uncertainty on a model. This entails
that the user has previous knowledge of Druide concepts and methodology, and that he
will respect them. For instance, the user will respect that uncertainties are localized, while
decisions are operationalized, and not the other way around, or, he will not introduce other
types of traces. On the other hand, this is beneficial because the user has explicit control
on specifying which model elements can the uncertainty be localized in, and which model
elements can be the result of an operationalization operation.

Second, the concept of mappings in Mmint is used to create model transformations4. In
our case, we are considering the Mmint mappings as simple traces, without any semantics.

Finally, the cross-language OCL constraints we implemented are not generic. In fact,
they are written specifically for the State Machines meta-model. In order to make them
generic and applicable to any model, we would have to either, alter the Druide Ecore model
and make the DUncertainty and DDecision elements incorporate references to the objects
that respectively localize or operationalize them, which means giving up the traces objects
and stepping out of the mega-modelling mindset; or writing the constraints at a higher level
of abstraction, which will significantly increase the complexity of their implementation.

In this chapter, we presented the current state of our investigation to provide tool support
for our work. In the next chapter, we discuss Druide model and approach by highlighting
its benefits as well as its limitations.

4Examples of such transformations, and of the correct usage of the mappings can be found here: https:
//www.youtube.com/watch?v=zXFKuP7qYpA. URL accessed on September 13th, 2020.
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Chapter 7

Discussion

In this chapter, we discuss our work. We start by stating the benefits of Druide, then
we expose its limitations. We also mention some potential ideas for future work.

7.1. Benefits
In order to highlight the benefits of our work, we start by showing its relevance, then, we

compare it to existing work on modelling uncertainty. Afterwards, we highlight its usefulness
regarding the DeTUM framework (section 2.3.3). Finally, we mention the benefits of having
tool support for the articulation of uncertainty.

7.1.1. Relevance of our work

Uncertainty is intrinsic in the software modelling process. Thus, uncertainty-aware mod-
elling is more truthful and more realistic than the usual modelling. That’s why, uncertainty
modelling has been getting a lot of attention in the recent years [44, 15, 12, 32].

Besides, given the current situation and the uncertainty caused by the onset of the
COVID-19 pandemic, we believe that the need for a language and a tool for modelling in
the presence of uncertainty has become even more important and urgent.

As part of our future work, we are planning on empirically validating the need for
uncertainty-aware modelling approaches by conducting a large scale survey.

7.1.2. Comparaison with the state of the art

In order to highlight better the benefits of our work, we compare it to existing work on
modelling uncertainty.

In [17], Famelis et al. proposed MAV-Vis, a notation for partial models based on MAVO
(sections 2.2 and 2.3.2). Similar to our work, MAV-Vis can always be used with abstract
syntax, since Class Diagrams are used to express any model in its abstract syntax. Different
from our work, MAV-Vis cannot annotate arbitrary concrete syntaxes. Finally, MAV-Vis



does not address the OW partiality, that is expressed at the model level. On the other
side, Druide with its combination with the D-Mmint tooling, is based on mega-modelling.
Thus, it supports multiple abstraction layers, and can express intra-model and inter-model
partiality.

In [41], the authors suggest that uncertainty is a three dimensional concept defined by
its nature, its level and its location and propose a matrix to characterize it (sections 2.2 and
2.2.1). The matrix they propose constitutes a snapshot of the uncertainties in a system at a
particular point in time. So, they do not provide support to express the articulation of the
evolution of uncertainty. Moreover, their tool requires the use of a separate artifact, besides
the model.

In [44], Zhang et al. propose U-Model: a conceptual model for uncertainty specifically
designed for Cyber-Physical Systems (CPSs) (section 2.2.2). Similar to our work, they
propose a model for uncertainty, different from our work, they keep it separate from the
CPS model. In another work [46], the same authors propose the U-RUCM methodology and
tool to identify and specify uncertainty as part of system requirements. Since their work only
considers uncertainty in the scope of use-case modelling, it differs from the generic approach
we propose in this thesis.

In [47], the authors propose a mathematically sound technique for modelling uncertainty
based on Bayesian belief networks (section 5.2.2), and they demonstrate its applicability to
model uncertainty in the context of a software engineering situation. The main limitation
of this work is that it is based on probabilities, and thus its application use cases are very
limited. Besides, this probabilities-based technique fails to express the modellers thoughts
or represent their doubts.

To conclude, considering the limitations of the above works, we argue that we are propos-
ing a more complete and more expressive uncertainty-aware modelling language than the ones
proposed in the literature.

7.1.3. Adding support to the articulation stage of the DeTUM
model

In this section, we present the usefulness of our work by grounding it on existing work
on modelling uncertainty. Specifically, Druide can be seen as a way of adding support for
the evolution of the articulation stage of the uncertainty in the DeTUM framework (section
2.3.3). We will explain this below.

The main limitation of the DeTUM model and of partial models in general (section 2.3),
is that the authors introduce and tackle design-time uncertainty as a pre-defined existing
set of alternative possible designs. The authors assume that the developers have already
identified the design uncertainties, articulated the corresponding candidate solutions, elicited
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how each one is implemented, and somehow deduced the partial model that compactly yet
precisely encodes the entire set of all alternative possible designs [15].

Specifically, the DeTUM model starts-off with a finite set of design alternatives, that are
merged into one partial model with several Maybe-annotated elements and a May formula
that captures the allowable configurations of the Maybe elements. Thus, partial models
only allow modellers to distinguish between the Maybe elements and the True elements, and
to consider different design possibilities. They do not answer questions like: Why is that
element Maybe-annotated?, How did we come to annotate that element as Maybe?.

On the other hand, the work we propose in this thesis fills this gap as it provides a
language and an approach to explicitly express, evolve and elicit the candidate solutions.
Specifically, the result of the Operationalization operation is Druide annotates the system
elements asMaybe. Thus, Druide models allow modellers to answer the above questions. Fig
7.1 schematically shows Druide impact (orange inclined line) on the DeTUM articulation
stage.

Fig. 7.1. Druide as a support for the evolution of the articulation stage of the DeTUM
model

The unrealistic assumption of the DeTUM framework (the assumption that modellers
would start-off with a finite set of design alternatives) have hindered its applicability in real
life. We envision that semantically grounding Druide on DeTUM can make the DeTUM
framework applicable and accessible in real-life scenarios. We will detail our vision to do this
later in Chapter 8.

7.1.4. Tool support benefits

In this section, we present the benefits of having tool support for uncertainty-aware
modelling.

Leveraging an uncertainty-aware modelling tool, modellers would no longer have to stop
working, switch modelling environments, or maintain a separate log of their uncertainty and
decisions. Instead, they would be able to perform their modelling tasks while expressing and
localizing their uncertainty, and modelling and operationalizing the corresponding decisions,
all within the same modelling environment. Intuitively, this would have a positive impact
on their productivity.
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As part of our future work, we are planning on empirically validating the impact of using
an uncertainty-aware modelling tool on the performance of the modellers.

7.2. Limitations
In this section, we enumerate and discuss the limitations of our work and we give pointers

for future improvements.
First, we have only considered the May partiality type in the context of this thesis. In

the future, we envision considering other partiality types.
Second, we believe that the model-related constraints we presented in Chapter 3 are

not enough. The constraints presented in Table 3.1 are all dependency related constraints.
We believe that we need to consider other constraints, for instance, in relation with other
partiality types, or regarding the allowed compositions between the uncertainty levels and
natures.

Third, we find the decomposition approach regarding the evolution of the decisions that
we propose in this work; e.g, from DOpenEnded to DClosedEnded to Boolean decisions,
rather simplistic. In the future, we plan to investigate other decomposition approaches.
Moreover, we want to investigate the potential relationship between the evolution of the
decisions types during this decomposition, and the possible evolution of the corresponding
uncertainty level.

Besides, the logical dependency formula is currently typed as a simple String (Fig 3.1).
As an optimization, we are looking into using more sophisticated representations that are
better suited for propositional logic.

Finally, as we deduced after evaluating Druide on the UMLetBug example (section
4.2.3), Druide can complicate simple scenarios that concern small model variances. Thus,
as part of our future work, we aim to clearly frame Druide’s most suitable use cases.

In this chapter, we highlighted Druide benefits and exposed its limitations. In the next
chapter, we conclude this thesis and present our work in progress concerning our near-future
research directions.
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Chapter 8

Conclusion and Next steps

In this chapter, we conclude this thesis, then we outline our future work.

8.1. Summary
In this thesis, we presented our proposal, Druide, an uncertainty-aware modelling lan-

guage and approach, and illustrated it on a worked example. Besides, we evaluated our
work not only on two worked software engineering scenarios, but also on a real case study
based on the COVID-19 pandemic. We also conducted a post-study questionnaire with the
three researchers who participated in the case study. In order to prove the feasibility of our
approach, we provided two tool supports and discussed them. Finally, we highlighted both
the benefits and the limitations of our work.

8.2. Next steps
In this section, we present our next steps.

8.2.1. Druide Semantics

The next step in this project consists of introducing Druide semantics. In fact, we
want to create a semantic mapping of Druide operators that is grounded on existing work
on representing uncertainty; partial models (presented in section 2.3). We note that for
this part, we are also only considering MAY partiality. Creating this kind of semantic
mapping requires three steps: (a) studying the semantics of partial models, (b) defining
the appropriate Druide operators, and (c) introducing a semantic mapping between them.
We describe these steps below, and focus on the resolving uncertainty operators to give an
example.

8.2.1.1. Partial models formal specification. We have been finalizing the formal spec-
ification of design-time uncertainty with partial models, over the DeTUM life cycle (section



2.3.3). In the rest of this section, we briefly report the refinement operators for working
with partial models. Specifically, we focus on the manual refinement that involves manually
changing the annotations of the partial models elements and the May formula to decrease
the level of uncertainty.

In partial models, performing manual decision-making is accomplished by using two
atomic partial model operators, named Keep and Drop. Invoking Keep for a partial model
element amounts to making a decision that the element should be present in the model.
Conversely, invoking Drop for a partial model element amounts to deciding that it should
not be part of the model.

8.2.1.2. Druide Concretization operators. We are investigating the introduction of
Concretization operators in Druide. The Concretization operators will be used to resolve
uncertainty by making the decision of existence or not of the Maybe-annotated system ele-
ments that operationalize some DPolar decision. Our initial plan is to distinguish between
two types of Concretization operators:

• Adopt : Adopting a DPolar design-decision means the modellers decided to make
that decision. Thus, all the Maybe-annotated elements that elicit it should become
True elements.
• Discard: Discarding a DPolar design-decision means the modellers decided not
to opt for that decision in the system’s design. Therefore, all the Maybe-annotated
elements that elicit it should be removed from the model.

8.2.1.3. The semantic mapping. Roughly, we intend to semantically map the Adopt
and the Discard operators respectively with the Keep and Drop operators. In other words,
we plan to define Druide Concretization operators semantics in terms of partial models
refinement operators semantics, and evaluate the correctness of this mapping.

Finally, we note that the above refinement operators are just provided for illustration
purposes, and are not the only operators we are planning to map. In fact, we are also inves-
tigating that the semantic mapping from Druide to partial models would provide automated
support for the DeTUM high level uncertainty articulation operators. Specifically, we are
considering representing each element of the model under construction by a logical preposi-
tion. Then, transforming the DPolar Boolean decisions that have been operationalized by
the modellers, into logical prepositions that represent a conjunction of all the prepositions of
the system elements that operationalize them. Since an uncertainty can have several DPolar
design decisions that are related using only logical dependencies (The rationale behind the
5th constraint in Table 3.1), we estimate that we can generate an uncertainty-level formula
that encodes all the different designs and the dependencies between them. Afterwards, we
can compact all these formulas into a model-level prepositional formula. We envision this as
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a process of automating the generation of partial models with their May formulas. This, in
turn, will allow modellers to take advantage of approaches that leverage partial models for
reasoning [12], refinement [33], and transformations [16].

8.2.2. Automation-supported modelling

Our future work includes proposing an automation-supported uncertainty modelling ap-
proach. In fact, we aim to provide a framework that mines artifacts containing developers
and stakeholders interactions, and automatically generates Druide models and traces them
to the system models.

As a first step in this research direction, we started by investigating the Mining Software
Repositories (MSR) field. This field analyzes and cross-links the collaborative repositories
data to uncover interesting and actionable information about software systems [21]. As part
of our early investigation, we elaborated a literature review of several software engineering
tasks that made use of the MSR activities. In the rest of this section, we report some
potential kick-off ideas, structured by software engineering application domain.

• Emotion mining relates to the identification of the presence of human emotions
from artifacts produced by humans.
We plan to introduce the confusion emotion, and mine it as a potential indicator for
the presence of design uncertainty.
• Concept locationmaps concepts expressed in natural language by the programmers
to the relevant parts of the source code.
We envision proposing a similar approach to automatically localize the uncertainty
in the corresponding parts of the model.
• Requirements clarification refers to the process in which requirements evolve from
initial ideas to the implementation of a stable requirement.
We plan to propose a similar approach to trace and gradually model the evolution of
the design decisions from high-level OpenEndend questions to implementable DPolar
design decisions.
• Requirements tracing is used to verify that all the requirements have been imple-
mented at the end. The main idea is to map elements of high-level artifacts such as
requirements, to elements of low-level artifacts such as design.
We want to investigate the possibility to use such mappings to automatically create
operationalization traces that link DPolar design decisions with their corresponding
elicitations in the system elements.
• Argument mining is the task of identifying argumentative contents and components
in natural language texts.
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Our initial idea is to use the argumentation identification to detect persuasion be-
tween modellers, and check if the result of that persuasion is the resolving of some
design uncertainty.
• Mining software design information aims to capture and communicate the latent
and distributed design information.
Intuitively, we think that finding and extracting design information from discussions
with stakeholders can help resolve the modellers uncertainties [40].

Mining developers interactions for uncertainty modelling will be the focus of my PhD
research.
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Appendix A

OCL constraints



1   import 'http://se.cs.toronto.edu/mmint/MID'
2   import 'http://se.cs.toronto.edu/modelepedia/StateMachine'
3   import 'http://geodes.iro.umontreal.ca/duide'
4   
5   
6   context mid::MID
7   
8   
9   ----Some examples:

10   
11   -------ToKnow OCL TYPE of something
12   --directLocalizedUncertainDecisions->oclType()
13   
14   -- return first ModelElement OCL Type
15   --def: e : ModelElement =
16   ---ModelElement.allInstances()->asOrderedSet()->first()->oclType()
17   
18   
19   -- -- -- -- -- -- -- Helper OCL Queries:
20   
21   
22   ------------MMINT Helper Queries
23   
24   -- return all Model Instances (in our case, Uncertainty & Peer2Peer & 

operationalization & localization)
25   def: getAllModels : Collection(Model) =
26   Model.allInstances()
27   
28   
29   -- return all BinaryModelRel                   
30   def: getAllBinaryModelRel :Collection (relationship::BinaryModelRel)=
31   Model.allInstances()
32   ->select(oclIsTypeOf(relationship::BinaryModelRel))
33   ->collect(oclAsType(relationship::BinaryModelRel))
34   ->asSet()
35   
36   
37   -- return all Connected ModelElements Instances ( not clear, an extra DUncertainty ) 
38   def: getConnectedModelElements : Collection(ModelElement) =
39   ModelElement.allInstances()
40   
41   
42   ------------StateMachine Helper Queries
43   
44   -- return all ModelElements Instances of type StateMachine
45   def: getStateMachines :Collection(statemachine::StateMachine) = Model.allInstances()
46   ->collect(EMFInstanceRoot)
47   

->select(oclIsTypeOf(statemachine::StateMachine)
)

48   ->collect(oclAsType(statemachine::StateMachine))
49   
50   
51   ----return all states
52   def: getStates : Collection (statemachine::State) =
53   let stateMachines = Model.allInstances()
54   ->collect(EMFInstanceRoot)
55   ->select(oclIsTypeOf(statemachine::StateMachine))
56   ->collect(oclAsType(statemachine::StateMachine)) in
57   stateMachines->collect(states)
58   
59   
60   ----return all transitions
61   def: getTransitions : Collection(statemachine::Transition) =
62   let stateMachines = Model.allInstances()
63   ->collect(EMFInstanceRoot)
64   ->select(oclIsTypeOf(statemachine::StateMachine))



65   ->collect(oclAsType(statemachine::StateMachine)) in
66   stateMachines->collect(transitions)
67   ->asSet()
68   
69   
70   ------------Duide Helper Queries
71   
72   -- return all ModelElements Instances of type 

DuideModel                      
73   def: getDuideModels :Collection(Model) = Model.allInstances()
74   ->collect(EMFInstanceRoot)
75   ->select(oclIsTypeOf(duide::DruideModel))
76   ->collect(oclAsType(duide::DruideModel))
77   
78   
79   -- return all dDecisions Instances --                      
80   def: getDecisions :Collection(duide::DDecision) =
81   
82   let duideModels = Model.allInstances()
83   ->collect(EMFInstanceRoot)
84   ->select(oclIsTypeOf(duide::DruideModel))
85   ->collect(oclAsType(duide::DruideModel)) in
86   
87   duideModels->collect(dDecisions)
88   
89   
90   -- return all Uncertainty Instances -- 
91   def: getUncertainties :Collection(duide::DUncertainty) =
92   
93   let duideModels = Model.allInstances()
94   ->collect(EMFInstanceRoot)
95   ->select(oclIsTypeOf(duide::DruideModel))
96   ->collect(oclAsType(duide::DruideModel)) in
97   
98   duideModels->collect(dUncertainties)
99   --  ->select(e | 

e.description.toLower().matches('.*know.*'))->oclType() --works
100   
101   
102   -- return all dDependency Instances -- 
103   def: getAllDependencies :Collection(duide::DDependency) =
104   
105   let duideModels = Model.allInstances()
106   ->collect(EMFInstanceRoot)
107   ->select(oclIsTypeOf(duide::DruideModel))
108   ->collect(oclAsType(duide::DruideModel)) in
109   
110   duideModels->collect(dDependencies)
111   
112   
113   -- return DRephrasing dependencies
114   def: getDRephrasingDependencies: Collection(duide::DRephrasingDependency) = -- TODO: 

change to Collection(duide::DDependency) + test where used
115   getAllDependencies->select(oclIsTypeOf(duide::DRephrasingDependency))
116   
117   
118   -- return DLogicalDependencies dependencies
119   def: getDLogicalDependencies: Collection(duide::DLogicalDependency) =
120   -- OclIsKindOf() Returns true if the type of self corresponds to the type or 

supertype of typespec, false otherwise.
121   getAllDependencies->select(oclIsKindOf(duide::DLogicalDependency))
122   
123   
124   
125   ------------Traces Helper Queries
126   
127   -- return LocalizationTraces  



128   def: getLocalizationTraces :Collection (relationship::BinaryModelRel)=
129   getAllBinaryModelRel ->select(e |

e.metatypeUri.matches('http://se.cs.toronto.edu/mmint/DLocalisationInStateMac
hine'))

130   
131   
132   -- return LocalizationTraces mappings                       
133   def: getLocalizationMappings:Collection(ModelElement) =
134   getLocalizationTraces->collect(mappings)
135   
136   
137   -- return OperationalizationTraces  
138   def: getOperationalizationTraces :Collection (relationship::BinaryModelRel)=
139   getAllBinaryModelRel ->select(e |

e.metatypeUri.matches('http://se.cs.toronto.edu/mmint/DOperationalisationInSt
ateMachine'))

140   
141   
142   -- return OperationalizationTraces mappings                       
143   def: getOperationalizationMappings:Collection(ModelElement) =
144   getOperationalizationTraces->collect(mappings)
145   
146   
147   -- return LocalizationTraces mappings  Endpoints   that are of type 

DUncertainty                
148   def: getLocalizationMappings_DUncertaintyEndpoints:Collection(ModelEndpoint) =
149   getLocalizationTraces->collect(mappings)
150   ->collect(modelElemEndpoints)
151   ->collect(target.oclAsType(ModelElement))
152   ->select(e|

e.metatypeUri.matches('http://geodes.iro.umontreal.ca/duid
e#//DUncertainty'))

153   --      ->select(e | e.name.toLower().matches('.*users.*')) 
--works

154   
155   
156   -- return LocalizationTraces mappings  Endpoints   that are of type 

DUncertainty                
157   def: getOperationalizationMappings_DDecisionEndpoints:Collection(ModelElement) =
158   getOperationalizationTraces->collect(mappings)
159   ->collect(modelElemEndpoints)
160   ->collect(target.oclAsType(ModelElement))
161   ->select(e|

e.metatypeUri.matches('http://geodes.iro.umontreal.ca/duid
e#//DDecision'))

162   -- ->collect(getEMFTypeObject()) -- dont work
163   --      ->select(e | e.name.toLower().matches('.*users.*')) 

--works
164   
165   
166   
167   -- return LocalizationTraces mappings  inAbstractStates
168   def: getLocalizationMappingsInAbstractState:Collection(ModelElement) =
169   getLocalizationMappings->select(e |

e.metatypeUri.matches('http://se.cs.toronto.edu/mmint/DLocalisationInStateMachine/D
LocalisationInAbstractState'))

170   
171   
172   -- return LocalizationTraces mappings  in FiringElements   
173   def: getLocalizationMappingsInFiringElement:Set(ModelElement) =
174   getLocalizationMappings->select(e | e.metatypeUri.matches(''))
175   ->asSet()
176   
177   
178   
179   
180   ------------Transitive closure Examples Queries



181   
182   
183   def: TransitiveClosure : Collection(duide::DDecision)=
184   --closure includes the element itself, so I do the closure of the direct dependents 
185   getDecisions ->select(d | d.question.matches('.*Compromise.*') ).dependsOn.target

->closure( dependsOn.target )
186   
187   
188   def: TransitiveClosureOfASpecificType: Boolean =
189   
190   getDecisions ->select(d | d.question.matches('.*Compromise.*') )
191   .dependsOn
192   

->select(oclIsTypeOf(duide::D
Excludes))

193   ->collect(target)
194   
195   ->closure( dependsOn

->select(oclIsTypeOf(duide::DExcludes)).target )
196   
197   
198   
199   --based on statemachine.ecore  
200   def: StatesTransitiveClosureOfASpecificState : Collection(statemachine::State) =
201   let s = getStates ->select(name.matches('.*Seeding.*'))in
202   s ->closure(transitionsAsSource.target)
203   -- ->union( s-> closure(transitionsAsTarget.source)) I chose to take the 

closure in just one direction
204   
205   --based on statemachine.ecore  
206   def: TransitionsTransitiveClosureOfASpecificTransition :

Collection(statemachine::Transition) =
207   let t = getTransitions ->select(action.matches('.*share.*'))in -- name should be 

unique
208   t ->closure(target.transitionsAsSource)
209   -- ->union( t-> closure(source.transitionsAsTarget))
210   
211   
212   
213   
214   -- *************************************************    CONSTRAINTS     

********************************************* 
215   
216   --  *******************  Test  CONSTRAINT
217   
218   
219   -- only 1 stateMachine in MID of type StateMachine
220   def: oneStateMachine() : Boolean = Model.allInstances() ->collect(EMFInstanceRoot)
221   

->select(oclIsTypeOf(statemachine::StateMachine)
)

222   ->collect(oclAsType(statemachine::StateMachine))
223   ->size() =1
224   
225   
226   --  *******************  LOCALIZATION  CONSTRAINTS
227   
228   -- 1.All uncertainties should be localized (e.g should at least have one localization 

trace).         --tested  --done
229   def: allUncertaintiesAreLocalized() : Boolean =
230   --are all element of getUncertainties included in 

getLocalizationMappings_DUncertaintyEndpoints
231   
232   getUncertainties->forAll(
233   
234   getLocalizationMappings_DUncertaintyEndpoints->exists( name = 'DUncertainty '+

description )



235   )
236   
237   
238   
239   --2. An uncertainty can’t have two localization traces with the same target element,
240   --Two Localization traces  can't have same source & target
241   -- (mappings in MMINT language; not the modelRel level ); 
242   def: NoTwoLocalizationMappingsWithTheSameSourceAndTarget: Boolean

= --tested  --done
243   
244   not getLocalizationTraces->collect(mappings)
245   ->exists(
246   -- = Returns true if self contains the same objects as 

*bag* in the same quantities.
247   --target -asBag should have 2 element (DUncertainty + 

modelElem)
248   l1,l2 | (l1.modelElemEndpoints.target->asBag() =

l2.modelElemEndpoints.target->asBag())
249   and l1 <> l2
250   )
251   
252   
253   
254   --  *******************  OPERATIONALIZATION  CONSTRAINTS
255   
256   --- 1. A decision that is not resolved should be related to an 

uncertainty.                           --tested  --done
257   def: AllNotResolvedDecisionsAreRelatedToAnUncertainty: Boolean =
258   getDecisions->forAll(
259   (resolved = false) implies (dUncertainty->size()>0 )
260   )
261   
262   
263   --- 2.A DRephrasing Dependency only links (sources +  targets) DDecisions with the 

same DUncertainty  --tested  --done
264   def: SameUncertaintyForDRephrasing: Boolean =
265   
266   getDRephrasingDependencies->forAll(
267   
268   --target.dUncertainty.size() = 3
269   --asOrderedSet() removes duplicates + orders 
270   (target.dUncertainty->asOrderedSet()->size() = 1 ) and

(source.dUncertainty->asOrderedSet()->size() = 1)
271   and( target.dUncertainty->asOrderedSet()->first() =

source.dUncertainty->asOrderedSet()->first() )
272   )
273   
274   
275   
276   -- 3. Only DPolar (boolean)  decisions, with MAY partiality, can be 

operationalized.                  --tested  --done
277   def: OnlyDPloarMayDecisionCanBeOperationalized: Boolean =
278   
279   --all operationalization mapping endpoints of type decision, 
280   --(=> operationalized decisions) should have May + DPOLar
281   
282   getDecisions->select(d |
283   getOperationalizationMappings_DDecisionEndpoints->exists( name= 'DDecision '+

d.question ) --LINK EMF TO Elem
284   )
285   ->forAll(
286   dType.oclIsTypeOf(duide::DPolar) and allowedPartiality->includes(DPartiality::MAY)
287   )
288   
289   
290   -- 4.A DPolar decision can’t have two operationalization traces with the same target 

element, 



291   --no operationalization trace with same source and target. 
292   --in MMINT mapping level not modelRel level 
293   def: NoTwoOperationalizationMappingsWithTheSameSourceAndTarget: Boolean

= --tested  --done
294   
295   not getOperationalizationTraces->collect(mappings)
296   ->exists(
297   -- = Returns true if self contains the same objects as 

*bag* in the same quantities.
298   --target -asBag should have 2 element (DUncertainty + 

modelElem)
299   op1,op2 | (op1.modelElemEndpoints.target->asBag() =

op2.modelElemEndpoints.target->asBag())
300   and op1 <> op2
301   )
302   
303   
304   -- 5.Every operationalization trace target should be linked to at least one of the 

uncertainty 
305   --  localization traces’ target elements. 
306   -- e.g, each operationalization trace target should be in the transitive closure 

elements 
307   -- of the uncertainty localization traces’ target
308   
309   
310   --------------Test Example1 
311   def : getLocalizationTraceTargetsInStatesOfACertainUncertainty: Collection

(ModelElement) =
312   
313   let targetNames =
314   getLocalizationTraces->collect(mappings)
315   
316   --selects specific mappings related to the same 

uncertainty
317   -> select(
318   modelElemEndpoints
319   ->collect(target.oclAsType(ModelElement))
320   ->select(e|

e.metatypeUri.matches('http://geodes.iro.umontrea
l.ca/duide#//DUncertainty'))

321   ->forAll(e |
322   e.name.matches( ('.*complete.*'))

--specific uncertainty
323   )
324   )
325   
326   --select the endpoints not related to Uncertainty
327   ->collect(modelElemEndpoints)
328   ->collect(target.oclAsType(ModelElement))
329   ->select(not

metatypeUri.matches('http://geodes.iro.umontreal.ca/duide
#//DUncertainty') )

330   ->collect( name) in
331   
332   getStates->select( s | targetNames->exists (e | e = 'State '+ s.name))
333   
334   
335   
336   --------------Test Example2
337   def : getOperationalizationTraceTargetsInFiringElementsOfACertainDecision: Collection

(ModelElement) =
338   
339   let targetNames =
340   getOperationalizationTraces->collect(mappings)
341   
342   --selects specific mappings related to the same 

uncertainty



343   -> select(
344   modelElemEndpoints
345   ->collect(target.oclAsType(ModelElement))
346   ->select(e|

e.metatypeUri.matches('http://geodes.iro.umontrea
l.ca/duide#//DDecision'))

347   ->forAll(e |
348   e.name.matches( ('.*Bene.*'))--specific 

decision
349   )
350   )
351   
352   --select the endpoints not related to DDecision
353   ->collect(modelElemEndpoints)
354   ->collect(target.oclAsType(ModelElement))
355   ->select(not

metatypeUri.matches('http://geodes.iro.umontreal.ca/duide
#//DDecision') )

356   ->collect( name) in
357   
358   getTransitions->select( s | targetNames->exists (e | e = 'Transition '+ s.action))
359   -- getStates->select( s | targetNames->exists (e | e = 'State '+ s.name)) --works
360   
361   
362   --------------Constraint
363   
364   def: OperationalizationRealtedToLocalization: Boolean

= --tested --done
365   
366   -- 1. only consider  operationalized decisions
367   getDecisions->select(d |
368   getOperationalizationMappings_DDecisionEndpoints->exists( name= 'DDecision

'+ d.question ) --LINK EMF TO Elem
369   )
370   --2. for each decision, 
371   ->forAll(
372   
373   --3.  the operationlization links targets 
374   
375   let operationalizationTargetNames =

getOperationalizationTraces->collect(mappings)
376   
377   --selects specific mappings related to the same ddecision
378   -> select(
379   modelElemEndpoints
380   ->collect(target.oclAsType(ModelElement))
381   ->select(e|

e.metatypeUri.matches('http://geodes.iro.umontrea
l.ca/duide#//DDecision'))

382   ->forAll(
383   name = 'DDecision '+ question --specific 

decision
384   )
385   )
386   
387   --select the endpoints not related to DDecision
388   ->collect(modelElemEndpoints)
389   ->collect(target.oclAsType(ModelElement))
390   ->select(not

metatypeUri.matches('http://geodes.iro.umontreal.ca/duide
#//DDecision') )

391   ->collect( name) in
392   
393   --4. Operatioanlization transition targets &  state 

targets 
394   let opTransitionTargets = getTransitions->select( s |

operationalizationTargetNames->exists (e | e = 'Transition '+



s.action))
395   in let opStateTargets = getStates->select( s |

operationalizationTargetNames->exists (e | e = 'State '+ s.name))
396   
397   in
398   
399   --5. the localization link target 
400   let localizationTargetNames =

getLocalizationTraces->collect(mappings)
401   
402   --selects specific mappings related to the same 

uncertainty
403   -> select(
404   modelElemEndpoints
405   ->collect(target.oclAsType(ModelElement))
406   ->select(e|

e.metatypeUri.matches('http://geodes.iro.umontrea
l.ca/duide#//DUncertainty'))

407   ->forAll(e |
408   e.name = 'DUncertainty ' +

dUncertainty.description -- the decision's 
dUncertainty

409   )
410   )
411   
412   --select the endpoints not related to Uncertainty
413   ->collect(modelElemEndpoints)
414   ->collect(target.oclAsType(ModelElement))
415   ->select(not

metatypeUri.matches('http://geodes.iro.umontreal.ca/duide
#//DUncertainty') )

416   ->collect( name) in
417   
418   --6. Localization targets in states and the 

transitions
419   let locStateTargets = getStates->select( s |

localizationTargetNames->exists (e | e = 'State '+ s.name))
420   in let locTransitionTargets = getTransitions->select( t |

localizationTargetNames->exists (e | e = 'Transition '+ t.action))
421   
422   in
423   --7. All op targets should exists in the closure of 

the loc targets
424   
425   --7.1 all opstate targets should exist in the 

closure of locStateTargets 
426   -- or in the closure of the states (source & 

target) of the locTransitionTargets
427   
428   locStateTargets->closure(transitionsAsSource.target)
429   -- I chose to take the closure in one direction
430   --

->union(locStateTargets->closure(transitionsAsTarget.
source))

431   
432   

->union(locTransitionTargets.source->closure(tran
sitionsAsSource.target))

433   --
->union(locTransitionTargets.source->closure(transiti
onsAsTarget.source))

434   
435   

->union(locTransitionTargets.target->closure(tran
sitionsAsSource.target))

436   -- 
->union(locTransitionTargets.target->closure(tran



sitionsAsTarget.source))
437   
438   ->includesAll(opStateTargets)
439   
440   
441   --7.2 all optransition targets should exists 

inclosure of  locTransitionTargets
442   -- or in the closure of the transitions related to 

locStateTargets
443   and
444   
445   locTransitionTargets

->closure(target.transitionsAsSource)
446   ->union(

locStateTargets.transitionsAsSource->closure(target.t
ransitionsAsSource) )

447   ->union(
locStateTargets.transitionsAsTarget->closure(target.t
ransitionsAsSource) )

448   ->includesAll(opTransitionTargets)
449   )
450   
451   
452   
453   --6  The source DPolar decisions of a DInformationRequirementDependency can't be 

operationalized       --tested  --done
454   --if one of its targets is still unresolved 
455   -- Therefore, the source set can't possibly be operationalized unless the target set 

has been already resolved.
456   
457   def: NotOperationalizedSourceWhenTargetUnresolvedForDInformationRequirementDependency:

Boolean =
458   
459   not

getAllDependencies->select(oclIsTypeOf(duide::DInformationRequirementDependency))
460   -> exists( -- there exists a 

DInformationRequirementDependency ..
461   target ->exists( not resolved ) -- with one 

target that has not been resolved yet ..
462   
463   and
464   
465   
466   source ->exists( -- but one of its DPOLAR 

source is operationalized
467   
468   dType.oclIsTypeOf(duide::DPolar) and
469   
470   

getOperationalizationMappings_DDecisionEn
dpoints->exists( name= 'DDecision '+
question ) -- operationalized

471   )
472   
473   )
474   
475   
476   
477   --  *******************  DEPENDENCY  CONSTRAINTS
478   
479   --1. A same set of decisions can not depend on 

itself.                                                --tested  --done
480   def: NotADependencyWithSameSourcesAndSameTargets : Boolean =
481   
482   --getAllDependencies->asOrderedSet()->first().source->asBag()->oclType()
483   getAllDependencies->forAll(
484   -- <> Returns true if self does not contain the same objects as *bag* in 



the same quantities.
485   source->asBag() <> target->asBag()
486   )
487   
488   
489   
490   --2.   No Cycle dependencies of the same type  
491   -- e.g .the same set of decisions can not appear in his dependencies transitive closure 

, of same type
492   
493   --------------Test Example
494   -- No cycle dependencies
495   def: NoCycleDependencies : Boolean

= --tested  --done
496   
497   not getAllDependencies-> exists(
498   
499   source.dependsOn.target ->closure( dependsOn.target )->includesAll(source)
500   )
501   
502   

--------------Constraint

503   
504   def: NoCycleDependenciesOfSameType : Boolean

= --tested  --done
505   
506   NoCycleDependenciesOfDRephrasingType and NoCycleDependenciesOfDRequiresType and

NoCycleDependenciesOfDExcludesType
507   and NoCycleDependenciesOfDInformationRequirementDependencyType
508   
509   
510   
511   def: NoCycleDependenciesOfDInformationRequirementDependencyType : Boolean =
512   
513   not getAllDependencies->select(oclIsTypeOf(duide::DInformationRequirementDependency))
514   -> exists(
515   target
516   ->closure(

dependsOn->select(oclIsTypeOf(duide::DInformationRequ
irementDependency)).target )

517   ->includesAll(source)
518   )
519   
520   
521   def: NoCycleDependenciesOfDExcludesType : Boolean =
522   
523   not getAllDependencies->select(oclIsTypeOf(duide::DExcludes))
524   -> exists(
525   target
526   ->closure(

dependsOn->select(oclIsTypeOf(duide::DExcludes)).targ
et )

527   ->includesAll(source)
528   )
529   
530   
531   def: NoCycleDependenciesOfDRequiresType : Boolean =
532   
533   not getAllDependencies->select(oclIsTypeOf(duide::DRequires))
534   -> exists(
535   target
536   ->closure(

dependsOn->select(oclIsTypeOf(duide::DRequires)).targ
et )

537   ->includesAll(source)
538   )



539   
540   
541   def: NoCycleDependenciesOfDRephrasingType : Boolean =
542   
543   not getAllDependencies->select(oclIsTypeOf(duide::DRephrasingDependency))
544   -> exists(
545   target
546   ->closure(

dependsOn->select(oclIsTypeOf(duide::DRephrasingDepen
dency)).target )

547   ->includesAll(source)
548   )
549   
550   
551   
552   
553   
554   
555   --3. Can’t have more than one dependency between the same two  sets of decisions 
556   def: OneDependencyBetweenSameSets : Boolean

= --tested  --done
557   
558   not getAllDependencies->exists(
559   -- = Returns true if self contains the same objects as *bag* in the 

same quantities.
560   dep1,dep2 | (dep1.source->asBag() = dep2.source->asBag())
561   and (dep1.target->asBag() = dep2.target->asBag() )
562   and dep1 <> dep2
563   )
564   
565   
566   -- 4. A set of only DPolar decisions can’t be rephrased. 
567   def: ASSetOfDPOLARDecisionsCanNotBeRephrased : Boolean

= --tested --done
568   
569   getDRephrasingDependencies->forAll(
570   
571   not source->forAll(
572   
573   dType.oclIsTypeOf(duide::DPolar)
574   )
575   )
576   
577   
578   -- 5. Logical dependencies can only exist between sets of two DPolar decisions. 
579   def: LogicalDependenciesCanOnlyExistBetweenSetsOfDPolarDecisions : Boolean

= --tested --done
580   
581   getDLogicalDependencies->forAll(
582   
583   source ->forAll(
584   dType.oclIsTypeOf(duide::DPolar)
585   )
586   
587   and
588   
589   target ->forAll(
590   dType.oclIsTypeOf(duide::DPolar)
591   )
592   )
593   
594   
595   

596   
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