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Résumé 

Les proprotéines convertases (PCs) sont responsables de la maturation de plusieurs 

protéines précurseurs et sont impliquées dans divers processus biologiques importants. Durant 

les 30 dernières années, plusieurs études sur les PCs se sont traduites en succès cliniques, 

toutefois les fonctions spécifiques de PC7 demeurent obscures. Afin de comprendre PC7 et 

d’identifier de nouveaux substrats, nous avons généré une analyse protéomique des protéines 

sécrétées dans les cellules HuH7. Cette analyse nous a permis d’identifier deux protéines 

transmembranaires de fonctions inconnues: CASC4 et GPP130/GOLIM4. Au cours de cette thèse, 

nous nous sommes aussi intéressé au rôle de PC7 dans les troubles comportementaux, grâce à 

un substrat connu, BDNF. 

Dans le chapitre premier, je présenterai une revue de la littérature portant entre autres 

sur les PCs. Dans le chapitre II, l’étude de CASC4 nous a permis de démontrer que cette protéine 

est clivée au site KR66↓NS par PC7 et Furin dans des compartiments cellulaires acides. Comme 

CASC4 a été rapporté dans des études de cancer du sein, nous avons généré des cellules MDA-

MB-231 exprimant CASC4 de type sauvage et avons démontré une diminution significative de la 

migration et de l’invasion cellulaire. Ce phénotype est causé notamment par une augmentation 

du nombre de complexes d’adhésion focale et peut être contrecarré par la surexpression d’une 

protéine CASC4 mutante ayant un site de clivage optimale par PC7/Furin ou encore en exprimant 

une protéine contenant uniquement le domaine clivé N-terminal. Finalement, des résultats 

provenant de base de données de patients atteint de cancer du sein ont démontrés que 
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l’expression élevé des gènes CASC4 et PCSK7 corrélaient à un mauvais prognostique, tandis 

qu’une expression élevée de CASC4 mais faible de PCSK7 était associée un meilleur prognostique.  

Dans le chapitre III, nous avons démontré que GPP130 est aussi clivé par PC7 et Furin mais 

au niveau des motifs H67RSRLEK73↓SL et K274PTR277↓EV dans les endosomes/TGN ou à la 

membrane plasmique. Récemment, GPP130 a été rapporté comme étant impliqué dans la 

prolifération cellulaire de cancers de la tête et du cou. Nos analyses provenant de la banque de 

données cBioPortal ont montré que le gène GPP130/GOLIM4 était surexprimé dans 35% des cas 

de cancer du poumon. Nous avons aussi montré qu’une réduction de GPP130 dans les cellules de 

cancer de poumon A549 augmente légèrement la prolifération cellulaire. Nous étudions 

actuellement l’hypothèse que GPP130 transporterait des cargos qui pourraient influencer la 

prolifération cellulaire.  

Finalement, durant le chapitre IV de cette thèse, nous avons poursuivi les études 

comportementales chez les souris PC7 KO afin d’investiguer si ces souris seraient protégées d’un 

effet anxiogène causé par l’obésité induite par l’alimentation. Nous avons montré que les souris 

PC7 KO ont une tendance à être moins affectées par la diète riche en gras saturé. Nous avons 

aussi montré que les souris PC7 ont une réponse déficiente face au stress.  

En conclusion, nos travaux de recherche ont permis d’identifier de nouveaux substrats de 

PC7 afin de mieux comprendre son rôle biologique, mais aussi de soulevé l’importance de PC7 

dans les troubles comportementaux.  

 

Mots-clés : Protéolyse fonctionnelle, proprotéine convertase, modification post-traductionnelle, 

CASC4, GPP130, cancer, BDNF, comportement, anxiété, stress  
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Abstract 

The proprotein convertases (PCs) are responsible for the maturation of precursor proteins and 

are involved in multiple biological processes. Over the past 30 years, the PCs have had great 

translational achievements, but the physiological roles of PC7, the seventh member of the family, 

are still obscure. Searching for new PC7 substrates, a quantitative proteomics screen for selective 

enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two type-

II transmembrane-proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) 

and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). The chapters II and III of this thesis will 

focus on the investigation of CASC4 and GPP130 shedding by PC7 and Furin, and their 

corresponding physiological functions. In chapter IV we pursued the PC7 KO mice behavior 

phenotyping.  

Concentrating on CASC4 in chapter II, its mutagenesis characterized the PC7/Furin-shedding site 

to occur at KR66↓NS, in HEK293 cells. We further defined PC7 and Furin activity and 

demonstrated that CASC4 shedding occurs in acidic endosomes and/or trans-Golgi Network. 

Since CASC4 has been reported in breast cancer studies, we generated MDA-MB-231 cells stably 

expressing CASC4 WT and we showed a significant reduction of migration and invasion, caused 

by an increased number of paxillin-positive focal adhesions. This phenotype was reversed in cells 

overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of CASC4 

N-terminal domain. In accord, breast cancer patients’ datasets show that high CASC4 and PCSK7 

expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 

levels.  
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In chapter III, we demonstrated that GPP130 is also cleaved by PC7 and Furin at similar and 

distinct motifs (H67RSRLEK73↓SL and K274PTR277↓EV) within acidic endosomes or at the TGN. 

GPP130 is predicted to be trafficking cargos and is responsible for the binding and retrograde 

trafficking of the Shiga toxin. In addition, GPP130 was recently reported to be implicated in cell 

proliferation in head and neck cancer cells. Our analysis from cBioPortal for Cancer Genomics has 

shown that the GPP130/GOLIM4 gene is amplified in up to 35% of the patients with lung cancer. 

During this chapter we also showed that GPP130 knockdown in A549 cells slightly increases cell 

proliferation. We are currently investigating that GPP130 transports important cargos that would 

influence cell proliferation. 

Finally, during the chapter IV of this thesis we have pursued the characterization of the PC7 KO 

mice anxiolytic phenotype that was previously described, and we investigated a possible 

protection from diet-induced obesity anxiety-like behavior. Interestingly, we have shown that 

the PC7 KO mice have a tendency to be less affected by the saturated high-fat anxiogenic diet. 

Also, we showed that the PC7 KO mice have an impaired stress-coping response that will need 

further investigations. 

In conclusion, we identified new PC7 substrates to better understand its biology but we also 

investigated more deeply known substrates, such as BDNF in the PC7 KO mice to fully grasp the 

physiological functions of this enigmatic proprotein convertase. 

Keywords Proteolysis, proprotein convertase, post-translational modifications, CASC4, GPP130, 

cancer, cell migration, BDNF, anxiety, stress. 
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1.1 General introduction  

The secretory proprotein convertases (PCs) consist of a family of 9 serine proteases (PC1, PC2, 

Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P and PCSK9) responsible for the maturation of a wide 

variety of precursor proteins and therefore enable their activation, inactivation and sometimes 

generate peptide fragments endowed with novel functions. To better understand the biological 

functions of the 7th member PC7, we have generated a proteomics screen to identify new PC7 

substrates. In this thesis, we have investigated the biological roles of novel PC7 and Furin 

substrates as well as pursued the analysis of the PC7 knockout (KO) mice phenotypes.  

To have a better appreciation of the proprotein convertases’ relevance in biology and before 

diving into the experimental chapters, important definitions, mechanisms of action and key 

examples of proteolysis will be discussed. Finally, since the main goals of this thesis led to the 

identification of two Golgi proteins as novel substrates, a brief introduction to the Golgi structure, 

Golgi-resident proteins and their role in maintaining cellular homeostasis will be presented. 

1.1.1 Post-translational modifications  

The proteome in a living cell is vastly more elaborate than the number of proteins predicted by 

the known coding genes. Encoding a restricted number of genes and modulating the nascent 

transcribed mRNA or translated proteins are not only adding layers of complexity, but also allow 

for a more diverse genome and genome products. Diversity is the ability to adjust the genome 

and inherently protein functions in order to adapt and face different intracellular and 

extracellular stimuli and environment changes.  

Amongst the ~20 000 genes in the human genome, it is estimated that there are about 4000 

secretory proteins that traffic through the lumen of the endoplasmic reticulum (ER) to reach their 

final destination (1). It is therefore not surprising to find quality control enzymes in the secretory 

pathway in addition to enzymes responsible for a wide variety of post-translational modifications 

(PTMs) (2). PTMs govern protein outcomes by influencing not only their conformation but also 

their localization, interactions, and activities (3). This highlights the capacity of the cells to 

generate various end products from the same backbone in order to satisfy cellular acute needs 
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and maintain homeostasis. Tremendous amount of work has been done over the past decades 

to understand the biological mechanisms generated by the ≈ 200 PTMs estimated. These PTMs 

include: phosphorylation (serine, threonine or tyrosine), glycosylation (asparagine, 

serine/threonine); tyrosine sulphation, protein lipidation and/or prenylation; serine/threonine 

octanoylation; amino-terminal acetylation; N-terminal pyroglutamate formation; histone 

modifications such as lysine methylation, ubiquitylation; protein sumoylation, protein 

palmitoylation, proteolysis and carboxy-terminal amidation (4). Reversible and irreversible PTMs 

are key to adapt and control multiple cellular events such as modulating chromatin architecture, 

receptor tyrosine kinase signaling cascade and protein localization.  

1.1.1.1 Post-translational modifications as biomarkers 

The functional consequences of many aberrant protein modifications in multiple diseases has led 

to a rising interest in clinical and pharmaceutical research to target the PTMs machinery (5). It is 

now evident that PTMs are not only a fascinating fundamental research field but also provide 

evident examples of clinical importance, as discussed below (6). Many of the above listed PTMs 

are very dynamic and can widely vary between healthy and disease states. Phosphorylation is 

one of the most abundant PTM and according to the phosphosite database, there are over 350 

proteins with modified PTMs in diseases state (5). Indeed, dysregulation of many proteins, such 

as Tau or α-synuclein have been highlighted since the 1980’s to be important in 

neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, respectively. 

Modified patterns of phosphorylation has also been reported in other diseases ranging from 

acute myeloid leukaemia in bone marrow cells (AML) (7) to cardiovascular diseases (8). New tools 

to quantitively study profiles or patterns of PTMs by mass spectrometry are being developed and 

are rapidly emerging such as glycoproteomics. Glycosylation is the addition of oliogosaccharides 

to proteins (asparagine (N-glycans) or serine and/or threonine (O-monosaccharides and O-

glycans). Adequate glycosylation is necessary for proper folding of proteins, stability and their 

function (2, 9). Because the addition of oligosaccharides is a multi-step procedure, many diseases 

have been described caused by mutations along the pathway. Accordingly, important defects in 

N-glycosylation are observed in a disease called Congenital disorders of glycosylation (CDG) and 

leads to mental and psychomotor retardation. Understanding glycobiology is relevant in many 
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physiological contexts, it can be used for instance in screening for glycated haemoglobin in 

diabetes (10), or can influence breast cancer progression (11). Finally, Table 1.1 is depicting 

examples of common reversible and irreversible PTMs in different clinically relevant settings that 

could represent critical biomarkers (5). 

Table 1.1 Examples of reversible and irreversible PTMs considered for biomarkers in clinic 

PTM Protein example Disease Reference 

Phosphorylation 

Tau Alzheimer's disease (12) 

X box-binding protein 1 (NFX1) Breast cancer (13) 

α-synuclein Parkinson's disease (14) 

N-Glycosylation 

GP73 
Hepatocellular 
carcinomas (15) 

prostaglandin-H2 D-isomerase 
(PTGDS) Prostate cancer (16) 

CD59 Glucose handling (17) 

Multiple aberrant N-glycosylation 
profiles Schizophrenia (18, 19) 

Ubiquitinylation 
UPS unique profiles Leukemia (20) 

 Alzheimer's disease (21) 

 

1.2 Proteolysis: More than just trash bin enzymes 

In biological chemistry, proteolysis can be simply defined as the enzymatic hydrolysis of a peptide 

bond by enzymes called proteases (22). As the chemistry suggests, this PTM is an irreversible 

mechanism. By its very irremediable nature, proteolysis is sometimes referred to as a deleterious 

mechanism (i.e. protein degradation by ubiquitin-proteasome system (23)), but it is in fact a 

ubiquitous PTMs responsible for the generation of diverse protein fragments that influences 

proteins biological function, localization and stability (24).  

1.2.1 Learning from the bakers’ yeast 

The mechanistic understanding of proteolysis catalytic activity in mammalian cells was originally 

performed in the unicellular eukaryote Saccharomyces cerevisiae (the bakers’ yeast). The seminal 

work by the Thorner group in yeast in the early 1980s have explained the protein maturation 

processes that were suggested during the characterization of proinsulin but where low 
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abundance of endogenous proteins rendered research technically difficult. The main conclusions 

from work on the α-mating factor in yeast originated from the deduction that the actual 

sequence of the gene was longer than the secreted bioactive polypeptide (25, 26). Accordingly, 

primary observations in the protein structure revealed that precursor genes had specific 

sequences referred to as "space segments" which will later be described as recognition 

motifs/cleavage motifs. Also, precursor proteins trafficking through the secretory pathway that 

were blocked in different organelles with specific inhibitors shown different molecular weight 

(27), suggesting that a certain maturation or processing was happening. They elegantly 

demonstrated that yeast ste13 (dipeptidyl aminopeptidase) deficient strains were generating 

intermediate protein molecules in size and in biological activity (25). These original observations 

led to the conclusions that the precursor proteins were not processed correctly, hence the ste13 

mutants were interfering with the aminopeptidase enzymatic activity. They further 

demonstrated other functional consequences from this aberrant protein maturation by 

rationalizing that Kex2 mutants were incapable to process the prepro-α-mating factor needed for 

mating which thereby explained the sterile phenotype observed in the yeast Kex2 mutant (28). 

This way, they identified the enzymes responsible for the processing of the yeast prepro-α-factor; 

kex2 (25) and discovered the yeast homologue of the proprotein convertase Furin, one of the 

most studied protease with many biological functions and clinical applications (29).  

1.2.2 The prohormone theory 

Almost 20 years before Kex2 was identified for its role in processing precursors in yeast, Chrétien 

et al. introduced the prohormone theory (30). This theory stipulates that a biologically active 

peptide hormone comes from a larger polypeptide precursor. This statement was based on the 

observation that β-lipotropin (β-LPH) and γ-lipotropin (γ-LPH) contained a segment of identical 

sequence to β-melanocyte-stimulating hormone (β-MSH), a shorter peptide identified in 1955 

(31). In support for the theory, they soon demonstrated that the β-MSH had the lipolytic and 

melanophore-stimulating activities (32). It took 24 years of sequencing to put all the pieces 

together to finally elucidate the Pro-Opiomelanocortin (POMC)-related peptides, which will soon 

become the model of prohormones (32). This ground-breaking achievement was done at a time 

where sequencing techniques were just starting (33, 34). Many other examples came to further 
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corroborate the theory when cloning and sequencing of neurohormones showed that active 

peptides seemed "contained" in bigger polypeptides and flanked by basic residues (35). Hence 

reinforcing that for a limited number of genes, many more bioactive peptides could be 

generated. 

1.2.3 Proinsulin characterization 

It is impossible to discuss the prohormone theory without acknowledging the work done on pro-

insulin around the same period when the prohormone theory was enunciated. During the 1950’s, 

it was a subject of active debate to understand and demonstrate how insulin is synthesized. 

Speculations such as that active insulin comes from two separate genes "glued" by disulfide 

bonds post-transcriptionally were proposed. Nevertheless, the mystery of the origin of insulin, 

first sequenced by Sanger in 1959 (33), was solved almost a decade later when Chance and 

Steiner published the characterization of the maturation of proinsulin. It was thus shown that 

proinsulin, the precursor of insulin,  is processed into bio-active insulin following endoproteolysis 

at pairs of basic residues (36, 37). Steiner further demonstrated that proinsulin has very low 

biological activity but can be converted into active insulin after incubation with trypsin in vitro 

(38, 39). A timeline from the first gene sequenced (β-MSH) to the discovery of proprotein 

convertases and PCSK9 in 2003 by the laboratory of Dr Seidah is depicted on Figure 1.1. To 

conclude, insulin maturation is another pioneer example of precursor protein maturation and 

really paved the way for many more processing enzymes and substrates to be discovered. Indeed, 

many aspects of proteolysis such as enzyme classifications, substrate recognition and specificity 

emerged from these early studies on the α-mating factor, the prohormone theory and proinsulin 

characterization. 
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Figure 1.1. Timeline of selected proteases discovery. 

Representation of the discovery of the first gene sequenced (β-MSH) in 1955 in a sequential order 

until the discovery of PCSK9 in 2003. 

 

1.2.4 Proteases classifications and substrates' specificity 

In humans, there are approximately 588 genes coding for proteases (24, 40) and based on the 

nature of their catalytic sites, they can be classified into 5 distinct groups: aspartic, metallo, 

cysteine, serine and threonine proteases, Figure 1.2. The first two classes of enzymes use a water 

molecule as a nucleophile in the peptide bond cleavage reaction, but the three remaining classes 

use a nucleophile catalytic amino-acid residue (i.e. Serine, Cysteine or Threonine) present in their 

active sites (40). Interestingly, metalloproteases and serine proteases have the most members in 

their family, and the threonine and aspartic proteases have the lowest number of members 

probably due to their high degree of specialization (40). These five different classes of proteases 

can also be grouped according to their sequence homologies and/or to the similarities between 

their three-dimensional (3D) folding (22).  
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Figure 1.2. Proteases classification based on their catalytic domain. 

Family tree is based on the homology of their catalytic domain. Adapted from Seidah and 

Chrétien 1999. 

 

Substrates recognition and specificity have evolved in a way that enzymes are capable of 

targeting a wide variety of different substrates, hence allowing for a greater diversity of biological 

outcomes (41). A persevering area of research in the field of proteolysis is to understand a 

protease substrates’ specificity. It is a very active area of investigation because a better 

understanding of the specialization of an enzyme for its target substrates will not only help to 

understand the protease biological functions, but it will also help in designing more specific 

enzymatic inhibitors. A great amount of information can be found looking at the crystal structure 

of an enzyme. For instance, the differences in substrates specificity between the proprotein 

convertase Furin, its yeast homolog  kexin and subtilisin serine proteases have been highlighted 

when the crystal structures were solved (29) and has served as a good example to understand 

substrates specificity. Indeed the comparison between the structures allow us to observe 

differences in the substrates recognition pockets, rendering unique recognition properties (29). 

In fact, a closer look at the catalytic subunit of the crystal structures confirms a strong specificity 

for arginine in P1 in Furin and Kex2 but not for subtilisin. Components of the enzymatic fold such 

as the shape and the distance accessible for the substrates, as well as specific contacts possible 

between the enzyme and the substrates side chains dictates a protease preference for substrates 

(29). Also, the specificity for the different residues around the substrate’s cleavage site comes 
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from availability of the catalytic subunits grooves and different types of interactions, either 

elaborate machinery or looser interactions (29, 42).  

The nomenclature P1-, P1’-, and S1-, S1’- originates from studies investigating the active site of 

the protease papain in relationship to its substrate, and can be appreciated in Figure 1.3 (43, 44). 

In the original work from Schechter and Berger, the authors described the residues around the 

enzyme catalytic active site as "subsites" grooves, hence the reference to S1, S2, S3 (…) and S1’, 

S2’, S3’ since they started counting the residues from both sides of the catalytic site. The binding 

site on the substrates where hydrolysis occurs is referred to as the ‘point of cleavage’ therefore 

the P1, P2, P3 (…) and P1’, P2’, P3’ (…) nomenclature, which it still currently used today. 

 

 

 

 

 

 

Figure 1.3. Nomenclature of the protease-substrate complex. 

Design of the suggested nomenclature P3- P3' for the substrate side chain, and S4-S3' of the 

catalytic subunit of the enzyme. C: Catalytic subunit. Adapted from Schechter et al., 1967 (44). 

 

Specificity for different substrates can also be appreciated in vitro, by performing kinetics 

analysis. Diverse tools used to screen for proteases substrates specificity, such as artificial 

peptide mapping have made it possible to decipher optimal substrate recognition sequences for 

processing enzymes. In search for the best way to characterize a protease substrates' specificity, 

many techniques have been developed and can be grouped into two categories: proteomic 

approaches and chemical tools (45). Those two broad categories are composed of multiple ways 

to identify not only the cleavage sites, which is critical, but has also led to identification of new 
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substrates. A very interesting approach for the identification of novel protease substrates with 

broad or unknown cleavage site specificity is the recently developed terminal amine isotopic 

labeling of substrates (TAILS) strategy. It is based on the idea that distinguishing the N-termini of 

a full length protein from a N-termini generated from a cleavage product, with differential 

isotope labelling, should give information not only on the substrates cleaved but also the 

cleavage sites (46). This strategy thus allows the identification of new substrates and/or their 

predicted cleavage sites without having to manually annotate the identified peptides for cleavage 

consensus motifs, which is a great technique for proteases without known cleavage motifs.  

In conclusion, because of its irreversible nature, peptide-bond proteolysis needs to be tightly 

controlled in order to avoid derailed protein maturation. It is now evident that proteases 

biological functions go way beyond protein degradation to generated backbone material for 

novel protein synthesis (47). There is a wide spectrum of biological processes where proteolysis 

is essential to maintain cellular integrity, and sometimes this regulation happens is a not-so-

convenient place as inside the lipid bilayer of the cell membrane. 

 1.2.5 Regulated intramembrane proteolysis and proteolytic ectodomain 

shedding  

The idea that a protease trapped inside a lipid bilayer is able to recognize and cleave specific 

substrates is quite extraordinary, yet regulated intramembrane proteolysis of membrane 

proteins is a key mechanism in cell biology (48, 49). For example, the rhomboids are the most 

well understood intramembrane proteases and are actually the most prevalent membrane 

proteins across all living organism (50). The physiological roles of the rhomboids have been linked 

to multiple fields of biology, from development to diabetes (51), but understanding how a 

membrane-trapped enzyme is regulated and coordinates processing of specific substrates 

remains a challenging area of research. Also, many cases of intramembrane proteolysis is 

preceded by an ectodomain shedding often realized by members of the ADAM (a 

desintegrin/metalloprotease) family or aspartyl proteases (BACE1, BACE2), which subsequently 

allows the transmembrane domain to be accessible for an intramembrane protease (52). One of 

the most studied examples is the amyloid precursor protein (APP) because of its connection to 
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Alzheimer’s disease. Interestingly, the role of the full-length APP is still not fully understood but 

its shedding is one of the most studied shedding events because of the generation of neurotoxic 

amyloid-β (Aβ) aggregates in the brain (53). To summarize the shedding event leading to 

deleterious Aβ formation, the first step is the shedding in the N-terminal region of APP by a β-

secretase (BACE1 or BACE2/aspartyl protease). Following this cleavage, the transmembrane 

domain is now accessible for a second cleavage by γ-secretase within its transmembrane domain. 

This leads to the formation of heterogenous Aβ entities of different sizes, ranging from 37 to 43 

amino acids (aa) with the major product being Aβ40 and the minor being Aβ42 (52). Albeit being 

the minor form, this Aβ42 product is thought to be one of the causative fragments of Alzheimer’s 

disease (52). The remaining APP intracellular domain is then released into the cytosol to be 

degraded but signalling functions of this entities are subject of ongoing debates. Indeed, both 

the cleaved form and the membrane bound form of the intracellular domain have been shown 

to retrotranslocate into the nucleus to have transcriptional activity (54, 55). On the other hand, 

the α-secretase (ADAM10, ADAM17) shedding of APP prevents the formation of the pathogenic 

Aβ, and the ectodomain released from the α-secretase shedding was also demonstrated to have 

neuroprotective effects (56, 57). Accordingly, a recent report has demonstrated that the shed 

APP binds the sushi domain of the gamma-aminobutyric acid type B receptor subunit 1a 

(GABAB1a receptor) in hippocampal synapses which leads to suppressed synaptic transmission 

and enhances short-term facilitation (58). Finally, APP mutations around or in the cleavage sites 

are associated with rare familial forms of Alzheimer’s disease (52). This sequential cleavage 

events of APP and the demonstrated roles (either detrimental or protective) of the different 

specific cleavage products is a great demonstration that proteolysis has drastic consequences 

and needs to be regulated. 

Previously portrayed as a means for the cell to adapt to extracellular stimuli by adjusting 

the levels of membrane proteins available at a given time, proteolytic ectodomain shedding is 

also controlling the activity of multiple membrane proteins (59). The definition of shedding is the 

cleavage of a transmembrane protein (either single pass, GPI-anchored and/or multiple 

transmembrane domains) by a protease (called sheddases in this case)(59). The cleavage on the 

juxtamembrane (the region next to its transmembrane domain) typically occurs within 10-35 aa 
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of the transmembrane domain or even within the transmembrane domain, but more distant 

shedding is also possible (59). This shedding results in two distinct entities, one soluble 

extracellular domain (ectodomain), and a membrane-bound fragment (60-62). Contrary to what 

shedding was previously referred to, that ectodomain shedding is occurring solely at the plasma 

membrane (62), it is now becoming clear that shedding can occur in many cellular compartments 

of the secretory pathway, hence influencing protein functions at different levels (59). Indeed, the 

functional consequences of this shedding can be grouped in three different categories; The first 

mechanism is shedding of a full-length transmembrane protein that will inactivate its function. 

This mechanism will not only lead to cleaved protein fragments that will be directly targeted for 

degradation, in some cases the released fragment can act as a decoy receptor, which can also 

dampen signaling (i.e. B cell maturation antigens) (63). The second mechanism is the activation 

of membrane proteins, via release of a biologically active fragment from the parent protein. It is 

also interesting to note that in some cases the full length and the shed products have opposite 

roles in signaling events. Finally, the third mechanism is shedding that allows subsequent 

cleavage by regulated intramembrane proteolysis. One typical example, other than APP, is the 

Notch receptor where Notch is endocytosed with its ligand allowing for ADAM10 first cleavage 

and is followed by a γ-secretase second processing, which releases a small intracellular domain 

fragment (NICD) that can now act as a transcriptional activator (64). Figure 1.4 is a schematic 

representation of the three mechanistic consequences of shedding.  

 

Figure 1.4. Consequences of proteolytic ectodomain shedding. 

A) Shedding inactivates the function. B) Shedding generates biologically active molecules.  

C) Shedding allows subsequent cleavage. Adapted from Lichtenthaler et al., 2018. 
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1.3 Serine proteases: Evolutionary blockbusters  

1.3.1 Classification: 

Before presenting the proprotein convertases, it would first be necessary to address the catalytic 

activity of this class of enzymes, as well as other well-known examples of serine proteases. Serine 

proteases represent one third of known proteases (~175 members), most of them are secreted 

(i.e. thrombin) but a fraction of them are membrane-bound (type-I , type-II or via GPI-anchorage) 

(65, 66). Serine proteases can be classified into six different families; chymotrypsin/trypsin, 

subtilisin-like, carboxypeptidase C, D-Ala-D-Ala peptidase A, repressor Lexa and the ATP-

dependent serine peptidase, based on their substrates specificity and organization of their 

catalytic subunits (43, 67). Within these families, the two largest groups are: proteases related to 

trypsin/chymotrypsin and those similar to bacterial subtilisin (called subtilases) (43). Trypsin-like 

proteases (such as tryptases, matriptases, kallikreins and granzymes) cleave proteins at arginines 

or lysines (68). Chymotrypsin-like proteases cleave proteins at the C-terminus of phenylalanine, 

tyrosine, Leucine or tryptophan (69). For the subtilisin group, bacterial subtilases cleave after 

multiple residues, but the Kexin-like members of the subtilase family are more specific to basic 

residues as they only cleave after monobasic/dibasic/multiple basic residues (70, 71).  

1.3.2 Catalytic mechanism 

The catalytic mechanism of serine proteases is based on an evolutionary conserved catalytic 

triad, which coordinates a nucleophilic attack on the substrates carbonyl atom (72). In brief, the 

serine residue is bringing the nucleophilic hydroxyl to attack the scissile bon, the histidine acts as 

the catalytic base when deprotonation of the nucleophilic serine, with the help of the aspartate 

that stabilizes the positive charge on the histidine (73). The scissile bond attack generates a build-

up of negative charges on the carbonyl oxygen, this situation is stabilized by an "oxyanion hole", 

giving hydrogen bond donors to the carbonyl oxygen. From this, the substrate is bound to the 

enzyme and the first step of catalysis (acylation) can happen. Following this first step, a product 

is released from the substrate which then leaves the serine covalently linked, as an ester, to the 

polypeptide chain and is referred to acyl enzyme intermediate. This intermediate is then 

deacylated by a water molecule, hence generating the N-terminal cleavage product (73). 
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Interestingly, this catalytic triad is found in four different protein folds, thereby showcasing an 

important evolutionary pressure that happened in four different independent situations (74). The 

Figure 1.5 is depicting catalytic mechanisms within four different enzymatic groups to compare 

endopeptidase mechanisms (75). 

 

Figure 1.5. Endopeptidase catalytic activity. 

A) Serine proteases cleave peptide bonds by forming an acyl enzyme intermediate. The active-

site serine bonds temporarily with the amino-terminal fragment of the cleaved protein.                      

B) Cysteine proteases use a similar mechanism to serine proteases but use active-site cysteines. 

C) Aspartic proteases have two active-site aspartic acids that hydrolysis the substrate protein.     

D) Metalloproteases use metal ions (Zn2+) to hydrolyze their substrates. Different pH 

requirements for adequate enzymatic activity is also depicted. From Clark et al., 2016 (75). 
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1.3.3 Serine proteases in health and diseases 

It is now well established that serine proteases are important in many fields of biology such as 

digestion, blood coagulation, apoptosis, immunity and fertilisation (76). Many serine proteases 

are involved to maintain homeostasis in healthy individuals such as in the hemostasis cascade, 

namely thrombin and factor X (77). In fact, almost all the hemostatic enzymes are serine 

proteases (77). Another well known serine protease is trypsin, which is secreted by the pancreas 

and helps in digestion by cleaving larger polypeptides after arginine or lysine into smaller 

fragments (78, 79). Many serine proteases are also widely studied in immune regulation and 

infectious diseases (69). Regarding immune regulation, serine proteases are implicated in 

inflammation, pathogen clearance and apoptosis (80). For example, both the cytotoxic T 

lymphocytes and natural killer cells in human secrete five types (A, B, H, K, M) of the serine 

protease granzymes, which help in the killing of infected and/or tumour cells (81).  

Also, since they are responsible for the activation of numerous growth factor ligands and 

receptors (82), promoting epithelial to mesenchymal transition (EMT) (82) and activating 

extracellular matrix metalloproteinase remodeling proteins (i.e MMP14 (83)), serine proteases 

have been extensively studied in the context of cancer. Overexpression of many membrane-

bound serine proteases have been found in different types of cancers (82). Type-II serine 

proteases such as matriptases, hepsin and prostatin have been studied extensively in various 

cancers such as breast cancer and head and neck cancers (84).  

One of the well-known proteases studied in cancer, other than the proprotein convertases, which 

will be discussed below, are the kallikrein serine proteases (chymotrypsin-like) (85). The kallikrein 

(KLK) family of genes is the most abundant proteases group of the human genome with 15 

members (KLK1-KLK15) (86). In normal physiology, kallikreins function in harmony in diverse 

physiological systems, e.g. skin epidermis. However, loss-of-function of an important natural 

inhibitor of these enzymes, the lympho-epithelial Kazal-type inhibitor (LEKTI), results in dramatic 

consequences that are found in a genetic disease known as Netherton syndrome, where the 

patients have impaired keratinisation and aberrant skin barriers (85), likely due to derailed 

proteases activity. Another clinically important area of research related to the kallikrein enzymes 
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is in ovarian cancer (87-91). The clinical relevance of the kallikrein enzymes in ovarian cancer is 

very diverse, where KLK5-7 high expression seems to be providing unfavorable outcomes, but 

KLK11 and KLK14 increased expression seems to be favorable (85). Overall, various expression 

levels of the different kallikreins in ovarian cancer illustrates the complexity of studying a rich 

proteolytic network in a disease context. Further studies will be needed in order to better 

understand the physiological relevance of these enzymes and their targeted substrates in hope 

of finding novel diagnostic tools and treatment strategies.  

1.4 The proprotein convertases  

1.4.1 Putting all the pieces to the puzzle together 

The first proprotein convertases (PCs) were identified and characterized in a quest to find the 

enzymes responsible for transforming or converting, precursor proteins into bioactive peptides 

(92). The idea was incubating in the minds of many international scientists since the mid 1960s 

in response to the pro-hormone theory developed around these years (31,33,38). Multiple 

discoveries paved the way to the identification of the nine members of the proprotein convertase 

family, an adventure that lasted 23 years.  

As mentioned before, it is really the identification of the archetypical serine proteinase Kex2 in 

yeast, which reported that this enzyme is related to bacterial subtilases, and not to the trypsin-

chemotrypsin fold (93, 94), that really kicked-off the race to identify other proteolytic enzymes. 

Previous failed attempts at identification of the mammalian members using degenerate primers 

derived from bacterial serine proteases of the chymotrypsin-trypsin catalytic active site were 

suddenly explained. Further evidences came from the demonstration that many precursor 

proteins were matured into their bioactive entities when overexpressing the yeast kexin (i.e. 

adrenocorticotropic hormone (ACTH)) (95), but not all of the substrates (i.e. pro-somatostatin) 

(96), which pointed towards potential mammalian homologues that could have similar but 

somewhat different substrate specificities. From there on, the identification of a mammalian 

homologue of the yeast kexin, called Furin, (97) was really a breakthrough and was accompanied 

by the simultaneous discovery of two neuroendocrine PCs, namely PC1 and PC2 (94, 98-100). 
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Over the next 13 years a total of nine subtilisin-like secretory serine proprotein convertases were 

identified, with the first seven being basic-amino acid specific convertases: PC1, PC2, Furin, PC4, 

PC5A/B, PACE4 and PC7; while the 8th member (site-1 protease or SKI-1) (101), is a pyrolysin-like 

homologue of subtilisin. The last member PCSK9 was characterized in Dr Seidah’s laboratory in 

2003 (102), has no other catalytic activity than the autocatalytic cleavage of its pro-segment in 

the endoplasmic reticulum (ER). 

1.4.2 Conserved structure and zymogen activation 

The PCs share remarkable similarity in their primary structure, especially in the subtilisin-like 

catalytic domain containing the catalytic triad (Asp, His and Ser, and the Asn of the oxyanion hole) 

(4). Indeed, based on over 150 proprotein convertase sequences aligned and analyzed from 

different species, the sequences of the active sites are 95% conserved (103). The first seven PCs 

cleave (↓) precursor proteins at specific single or paired basic aa within the motif (R/K)-(2X)n-

(R/K)↓, where n = 0-3 spacer aa (4). Other common PC features include a signal peptide that 

allows entry of the proteins in the secretory pathway, a prosegment that is necessary for proper 

folding and can act as a inhibitor, a P-domain that stabilizes the catalytic pocket and also regulates 

the enzyme calcium dependence as well as the pH sensitivity, and a C-terminal domain that 

contains unique information dictating the trafficking route and localization of the protein (4, 

104).  

The zymogen processing of the secretory PCs begins in the ER, following removal of the signal 

peptide by the signal peptide peptidase (4). The next step is the protein folding, which is 

regulated by the N-terminal pro-segment (intramolecular chaperone and inhibitor) and results in 

the autocatalytic cleavage of the pro-segment. These events will release from the ER the PCs in 

an active conformation that remain attached to their inhibitory prosegments, as a controlled 

inhibitory mechanism until the cognate subcellular localization is achieved (4). In fact, different 

PCs will lose their inhibitory prosegments in different target organelles, in order to maintain 

limited proteolysis of substrates. The sections bellow will discuss distinct maturation 

mechanisms, trafficking properties, specific substrates and associated biological roles of the nine 

proprotein convertases, with a deliberate emphasis on Furin and PC7, which are the focus of this 
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thesis. Figure 1.6 depicts selected major physiological contributions of the nine proprotein 

convertase in humans. 

 

Figure 1.6. Proprotein convertases in health and diseases. 

Schematic representation of selected proprotein convertases' roles in health and disease states. 

1.4.3 PC1 and PC2: The neuroendocrine enzymes  

ProPC2 is the only convertase that is activated by the removal of an inhibitory chaperone called 

7B2. Indeed, proPC2 remains bound to its chaperone 7B2 (105) until it reaches immature 

secretory granules and can then get autocatalytically activated (106, 107). PC1 and PC2 are found 

in immature and dense-core granules of neural and neuroendocrine cells, which explains why 

they are responsible for the maturation of most prohormones in the regulated secretory pathway 

(108, 109). The regulated secretory pathway, as opposed to the constitutive secretory pathway, 

is composed of secretory granules that store bioactive hormones, which are secreted in response 

to various stimuli (110). The localization of PC1 and PC2 in the endocrine and neural granules 

helped to decipher their functions. In the brain, they are highly expressed in hypothalamus (111), 

but are also found in cerebral cortex, hippocampus and cerebellum (112-114). Whereas in the 

peripheral tissues, PC1/2 are mainly localized in adrenal medulla, pituitary, thyroid gland, 
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pancreas (β-cells) and small intestine (109, 115-117). From earlier studies in mice, it was 

established that PC1 was responsible for a wide range of precursor prohormones, from POMC to 

proinsulin. Interestingly, PC1 is capable of processing independently precursor proteins into a 

bioactive entity such as the generation of ACTH from POMC (118), but sometimes it requires the 

subsequent activity of PC2 (e.g. in the case of proinsulin and thyrotropin-releasing hormone 

(TRH)) (4, 119, 120).  

The physiological relevance of PC1/PC2 was predictable from their tissue localization (i.e. neural 

and endocrine cells) and was confirmed in multiple knockout (KO) models in mice. The 

remarkable phenotypes of PC1 KO mice were: severe dwarfism  likely due to impaired growth 

hormone releasing hormone (GHRH) (121), proopiomelanocortin, proinsulin and proglucagon 

processing. The PC2 KO mice displayed chronic fasting hypoglycaemia and lower circulating 

glucagon (122, 123). Patients with mutations in the PCSK1 or PCSK2 genes have multiple 

phenotypes that are anticipated from the mice studies. Indeed, the first patient with a 

heterozygous mutation in PCSK1 exhibited severe hypoglycaemia, impaired adrenal and thyroid 

functions, hypogonadotropic hypogonadism and severe obesity (124). Accordingly, the clinical 

phenotypes of PC1 deficiency also include polyuria/polydipsia, malabsorptive diarrhea, 

hypotyroism and hypocortisolism (125) and obesity (126, 127).  

1.4.4 PC4 and the male contraceptive speculations 

Like the other proprotein convertases PC4 is synthesized as a zymogen but unlike the other 

convertases PC4 is trapped in the ER via interaction with the chaperone glucose-regulated 

protein 78/immunoglobulin heavy chain binding protein (GRP78/BiP) in somatic cells (128). This 

binding leads to an impossibility to activate proPC4 to PC4 in non-germline cells, suggesting highly 

specialized biological functions in gonadal tissues. Also different from the other PCs, after the 

first autocatalytic cleavage of its prosegment, PC4 does not need a secondary cleavage, since no 

apparent second cleavage site is detected. Hence, the prosegment might be separated early in 

the secretory pathway like PC7 (129). 

The confined tissue localisation of PC4 to gonads limits its cellular targets and therefore its 

biological functions in vivo. Indeed, being solely expressed in the testicular germ line pachytene 
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spermatocytes and round spermatids cells in males (130, 131), and in the placenta and ovaries in 

females (132), its contribution to fertility were anticipated. Accordingly, PCSK4-deficient male 

mice showed subfertility, and it was suggested to be caused by egg-binding lower capacity, 

accelerated capacitation and precocious acrosomal reaction (131). Albeit these drastic 

phenotypes observed in mice and their related consequences to the comprehension of fertility, 

very little is known about endogenous PC4 substrates within the testis or placenta. Nevertheless, 

in vitro analysis demonstrated that PC4 was capable of cleaving proIGF-1/-2 as well as 

propituitary adenylate cyclase activating polypeptide (proPACAP) (133). Also, a more recent 

report suggested that the infertility phenotype observed in the PCSK4-null mice were in part due 

to the lower maturation of ADAM2, a protein implicated in the sperm-egg plasma membrane 

interaction (134-136).  

1.4.5 PC5A, PC5B  

The PCSK5 gene is broadly expressed, with enriched tissues such as the adrenal cortex, intestine, 

kidneys and ovaries (137, 138). Unlike the other PCs, the PCSK5 gene encodes two alternatively 

spliced mRNAs, which results in two very distinct products, one being a widely expressed 913 

amino acid soluble protein (PC5A) that can be located at the plasma membrane by its interaction 

with heparan sulphate proteoglycans (HSPGs) (139) and a type-I transmembrane of 1860 amino 

acid protein mostly found in gut (140, 141). 

The PCSK5 KO mice have also been very informative in the characterization of the physiological 

functions and related substrates. Indeed, PCSK5 KO mice die at birth and show a drastic 

phenotype of considerable defects in anteroposterior axis such as extrathoracic and lumbar 

vertebrae, and they are also missing kidneys and their tails (142). Interestingly, the connection 

between the Gdf11 KO mice, that also lack their tails (143), led to the demonstration that GDF11 

is a PC5 substrate (136) and is possibly causing the anteroposterior patterning gross defects 

(144). In humans, intronic PCSK5 SNPs have been associated with low circulating levels of high-

density lipoproteins (145). In addition, PC5, as well as Furin, are found in atherosclerotic lesions 

in humans and are up-regulated after vascular injuries in animal models (146). Interestingly, PC5 

is believed to have some protective role in intestine-related adenocarcinomas, as mice lacking 
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PC5 in enterocytes displayed more tumours (147). Also, recent reports have demonstrated a role 

for PC5 in bone, as it is was shown to be responsible for osteopontin cleavage. Osteopontin has 

a role in bone mineralization, cell adhesion and migration, and accordingly PCSK5 epiblast-

specific conditional knockout mice displayed smaller bone size and delayed ossification (148). 

Finally, the specific function(s) of PC5B in the gut where it is most abundant is still obscure. 

1.4.6 PACE4 

PACE4 is secreted, and like PC5 (139), it is widely expressed and binds HSPGs at the cell surface 

of the cells and in the extracellular matrix (149) by its cysteine-rich domain (150). A few 

substrates have been demonstrated for PACE4 in vivo, such as nodal and lefty, two TGFβ-like 

proteins important during development, and are also substrates redundant with Furin (151). 

Other  known substrates are ADAMTS-4 (152) , angiopoietin-like 3 (153) and the accessory viral 

protein of HIV-1 Vpr (154). Similar to PC5, the PCSK6 (the PACE4 gene) KO mice display growth 

defect, but contrary to PC5, the PCSK6 KO mice die embryonically at day 14 in 25% of the cases 

and have cardiac malformations, as well as bone morphogenetic defects (155). 

Unsurprisingly, PACE4 has also been extensively studied in the context of cancer development, 

more precisely in prostate cancer. As mentioned above, it is now well understood that PCs play 

an important role at different levels of cancer progression, and the clinical relevance of PACE4 

inhibition in therapeutic avenues is a good example. Original works from the group of Dr Robert 

Day demonstrated that amongst all the PCs, PACE4/PCSK6 is a unique PC overexpressed at mRNA 

levels in prostate cancer (156). This study elegantly demonstrated for the first time that 

specifically inhibiting PACE4 in DU145 prostate cancer cells significantly reduced proliferation in 

vitro and in xenograft mouse models (156). This seminal work was deemed extremely promising 

for patients and led to rapidly evolving endeavors aiming to develop PACE4 inhibitors. Further 

studies have also demonstrated that PACE4 is also critical during cancer progression via the 

generation of very oncogenic alternatively spliced isoforms occurring in prostate cancer cells, 

which is referred to as an oncogenic "switch" and was suggested to also occur in other cancers 

(157).  
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1.4.7 Furin 

1.4.7.1 Trafficking 

Furin is a ubiquitously expressed enzyme, which is activated by removal of its prodomain in the 

trans-Golgi network (TGN) (158), and can be shed from the majority of the cells (159). Because 

Furin is implicated in a multitude of physiological processes, from development to viral infection, 

it is crucial to properly understand its activation. In that sense, a lot of work has been done to 

map its trafficking and binding partners. Being localized in the TGN at steady-state, a central hub 

for sorting proteins to many destinations (i.e. cell surface, endosomes and lysosomes) (160), its 

trafficking/ zymogen activation needs to be tightly controlled (161). Furin localization in the TGN 

is regulated by its cytoplasmic tail, more precisely a bipartite motif composed of a 

(EECPpSDpSEEDE) casein kinase 2 (CK2)-phosphorylated acidic residue cluster and two 

hydrophobic motifs (YKGL and LI) (162-164). Importantly, this bipartite motif is responsible for 

two different trafficking movements. The hydrophobic motifs (YKGL and LI) are needed for Furin 

budding from TGN to endosome, via binding to the adaptor protein AP-1 (165), but the YKGL 

motif is also responsible for its endocytosis by binding the µ2 subunit of the adaptor protein AP-

2 (165) . On the other hand, the phosphorylated acidic cluster is recognized by the sorting protein 

PACS-1 and therefore is important in the retrieval from endosome back to the TGN (166). Overall, 

Furin is in the TGN at steady state, but can move to the plasma membrane (PM) and recycle back 

to the TGN following its endocytosis from the PM, thus encountering multiple substrates along 

the way, explaining why it is involved in a wide range of processing and physiological activities at 

the TGN, cell surface and endosomes (158).  

1.4.7.2 Substrates/Biological functions: Development 

Emphasising its requirement in multiple biological processes, Furin KO mice are embryonically 

lethal at day 11, likely due to haemo-dynamic insufficiency and cardiac defects (167). In brief, 

different steps of extra-embryonic tissue development as well as cardiogenic mesoderm 

formation requires Furin to generate adequate vascularisation, ventral closure, heart-looping 

and axial rotation (167). The defects observed in aberrant symmetry in the embryos are due to a 

reduction in Furin-activated growth factors nodal and lefty (167, 168). Other growth factors are 
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processed by Furin, such as TGFβ, which will be discussed below in the cancer-related section, as 

well as bone morphogenetic protein-4 (BMP-4) (169). The cardiac defects in Furin KO mice are 

associated with loss of bone morphogenic protein 10 (BMP10) processing (170). Another 

important step of embryogenesis involving Furin is the formation of adequate synaptic 

complexes. Accordingly, Furin was shown to be the main protease activating the archetypical 

neurotrophin pro-β-nerve growth factor (pro-β-NGF) (161). Interestingly, neurotrophins are 

synthesized as proproteins, and accumulating evidences are demonstrating that the pro-form 

and the mature form of these proteins have opposite signaling consequences namely neural 

growth or cell death (171). Another interesting regulation mediated by Furin activation is the first 

cleavage event in Notch signaling (172). Furin cleavage of Notch transmembrane domain leads 

to its second cleavage by γ-secretase and the release of an intramembrane fragment that will act 

a as transcriptional regulator for C-promoter binding factor/Suppressor of hairless/LAG-1 (CSL), 

leading to gene transcription implicated in cell to cell communication during development (173). 

This contrast with the function of uncleaved Notch that inhibits cell differentiation (174). In 

addition, many important Furin physiological functions were highlighted from studies in mice 

using the Mx1-Cre transgene systems to generated Furin knockdowns (KDs) in specific tissues. 

Analysis from these mice, especially the liver-Knockdown mice were the first evidences that Furin 

had redundant functions with other PCs (175). 

In addition to mice studies, mutations within cleavage motifs of different substrates have been 

found in patients and are suggested to have clinical consequences. An interesting example is the 

cleavage and inactivation by Furin of phosphate-regulating hormone fibroblast growth factor 23 

(FGF23), a protein secreted from osteoblasts and osteocytes that regulates the reabsorption of 

phosphate and catabolism of 1,25-dihydroxyvitamin D3 in the kidneys (176). Furin inactivates 

FGF23 by cleavage at the motif R176HTR179S180 AE182. Gain-of-function (GOF) mutations in FGF23 

have been identified in patients with autosomal dominant hypophosphatemic rickets (ADHR), 

where the arginine residues within the cleavage motif are mutated, thereby resulting in an 

uncleavable and more stable hormone (177). Also, the threonine 178 within the above cleavage 

motif can also be O-glycosylated, which blocks the Furin cleavage, and results in a more 

biologically active hormone. Accordingly, inactivating mutations in the N-
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acetylgalactosaminyltransferase 3 (GalNAcT3) prevents FGF23 O-glycosylation and increases 

Furin cleavage of FGF23 at Arg179 (178). In addition, it was recently demonstrated that the serine 

180 could also be phosphorylated by the secretory kinase FAM20C (179), which in turn blocks 

the O-glycosylation and makes the cleavage by Furin more favorable and therefore inactivates 

FGF23 (180). This former example reveals the complexity of the post translational network in 

order to finely regulate precursor protein functions. 

1.4.7.3 Substrates/Biological functions: Cancer 

Overexpression of Furin in multiple cancers have led to detailed investigations of Furin activity 

and targeted substrates susceptible to modulate cancer progression (83). Furin is mainly 

responsible for the activation of matrix metalloproteases (MMPs), a group of proteins 

responsible for the degradation of extracellular matrix, thereby facilitating cell invasion and 

migration, but also growth factors, cell-adhesion molecules and angiogenic and lyphangiogenic 

factors. Table 1.2 summarizes how Furin overexpression impacts a variety of cancers, with the 

associated phenotypes and the candidate substrates. One of the archetypical examples of Furin’s 

role in cancer, is its regulation of TGFβ. The transforming growth factors (TGFs) were originally 

identified as potent molecules capable of inducing the anchorage-independent growth 

transformation of rat fibroblasts in 1981 (181). Since then, the subject of TGFβ in cell 

proliferation, cell adhesion, organization and programmed cell death has been well documented 

(182), but its involvement in cancer progression still remains controversial. Indeed, opposite 

results can be found in the literature about the direct roles of TGFβ. This cytokine acts as a 

suppressor in pre-malignant state, but helps in tumour growth and metastasis in later stages 

(183). It was also demonstrated that Furin activates TGFβ and that active TGFβ is promoting the 

expression of metalloproteinases and integrins (184). Other Furin substrates that are 

contributing to cancer include the well-known metalloproteases ADAM10 and ADAM17, two 

proteases with important roles both in development and cancer (185). Another key example is 

the Furin-activation of MMP-14, a proteases that once activated is capable of cleaving collagen 1 

(186) and is also important in the first step of maturation of another MMP, MMP-2 (187). Finally, 

Furin also plays a role in activating cell-adhesion molecules such as N-cadherin and E-cadherin, 

important proteins in cell to cell interactions but that can also mediate signaling (188). 
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Interestingly, while Furin activates N-cadherin, PC5A inactivates it by cleavage at an alternative 

site (188). 

Table 1.2. Selected Furin implication in various cancers and the related substrates 

Cancer types Phenotypes Furin substrates References 

Lung Carcinomas, non small cells, lung 
squamous cell carcinomas, 
adenocarcinomas 

Invasive potential IGF-1R (189) 

Head and neck squamous carcinomas Aggressiveness MMP14 (190) 

Head and neck squamous carcinomas Cell proliferation, 
tumorigenicity invasiveness 

TGFβ, MMP14, 
IGF1R, VEGF-C 

(191) 

Squamous cell carcinomas of the oral 
cavity and oesophagus and laryngeal 

Invasiveness VEGF-C, MMP14 (192, 193) 

Breast oestrogen dependency 
oestrogen resistance 
invasiveness 

MMP14, MMP2, 
MMP9, PDGF-A, 
IGF1R 

(194-196) 

Endometrial, cervical and ovarian Motility, tumour growth - (197) 

Gastro-intestinal track Invasiveness, tumour growth, 
vascularization metastasis, 
proliferation 

IGF1R, PDGF-A, 
PTHrP 

(195) 

Sarcomas Motility, invasiveness tumour 
growth,  

IGF1R, MMP14,  (198) 

Brain and central nervous system Malignancy, proliferation 
invasiveness, tumour size 

IR, TGFβ, MMP14 (199) 

Skin SCC formation - (200) 

Hepatocellular carcinomas  Glypican-3 (201) 

 

1.4.7.4 Substrates/Biological functions: Viral infection  

In order to invade host cells, virus need to fuse at the plasma membrane and to do so, proper 

maturation of viral surface glycoproteins is needed, a step that is often realized by the proprotein 

convertases. In addition, many studies have highlighted that Furin and PC7 are the PCs mostly 

involved in this process (202). This maturation step not only allows the virion to fuse but also 

activates the virus and is therefore a virulence-activating step (203). Interestingly, in situations 

promoting viral infections, Furin and PC7 expression have been demonstrated to be upregulated 

(204). As a particularly relevant example of the PCs implication in viral entry, the wild-type H5N1 

avian influenza virus is pathogenic for chickens, but not for humans, although the emergence of 

a mutant form with a RERR insertion in the gene sequence had transformed the virus in a highly 
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pathogenic form for both humans and chickens. The insertion revealed a ~5 fold increase in 

cleavage efficiency and is suggested to be responsible for the high infectivity of the virus (202). 

Although other PCs can mature viral proteins, Furin is the well-known PC able to mature viral 

glycoproteins (203). Indeed, during human immunodeficiency virus type 1 (HIV-1) viral infection 

the glycoprotein gp160 needs to be processed into gp120 and gp41 by Furin, and also PC7 but to 

a lesser extent (205, 206). Other than HIV-1 glycoproteins, Furin and other PCs have been studied 

in the context of many more viruses such as Ebola (207), Marburg (208) and the influenza virus 

(209). Very recently, Furin has been proposed to possibly play a major role in the activation of 

the cell surface protein-S of the highly pathogenic SARS-CoV-2 implicated in the COVID-19 

pandemic (210). 

1.4.7.5 Furin Inhibitors 

Because Furin cleavage and maturation activities can be pathogenic in cancer and in viral entry, 

targeting Furin with different inhibition strategies is an active area of research. Table 1.3 

summarizes different inhibitor strategies exploited over the years. They fall into five broad 

categories: 1) protein-based, 2) peptide-based, 3) peptidomimetic Furin inhibitors, 4) natural 

inhibitors, and 5) Furin siRNA on patients-derived cells (211). For the protein-based category, one 

of the most important inhibitors is the artificial α-1 antitrypsin Portland (α-PDX), and the strategy 

is based on the natural serum protease inhibitor (α-1 antitrypsin). Adding a RIPR site into the 

AIPM sequence generates an inhibitor that forms a tetrahedral adduct with the Furin active site’s 

serine (212). The peptide-based inhibitors were developed following an amidated and acetylated 

synthetic L- and D-hexapeptide combinatorial libraries screen and are usually referred to as the 

polybasic peptides or polyarginines (213). For the peptidomimetic Furin inhibitors, a 

chloromethylketone (CMK) moiety was added to a multibasic substrate, which create a peptide 

that interact with the active site Ser, and blocks its activity (214). The natural inhibitors are 

proteins that have been demonstrated to inhibit Furin, namely PAR1, GBP2 and GBP5. The 

protease activated receptor 1 (PAR1), inhibit Furin’s cleavage of HIV-1 gp160 into gp120/gp41 by 

retaining Furin in the TGN in an inactive state (215). The cytosolic restriction factors induced by 

interferon (GBP2 and GBP5) also inhibit Furin by retaining it in an inactive form in the early Golgi 

compartments and thereby inhibit the processing of multiple viral and cancer related proteins 
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Table 1.3. Furin inhibitors 

  Abbreviation Applications References 

Peptide-based 
inhibitors 

α-1-PDX 

Inhibition of processing of gp160 and measles 
virus-fo  (212) 

limits joint inflammation US0127396 

(PD-1) repression +cytotoxic T lymphocytes 
exhaustion (216) 

Acyclic mini-PDX N/A (217) 

Cyclic mini-PDX N/A (217) 

OMTKY3 (variant A15R, 
T17K, L18R) N/A (218) 

6R 

gp160 processing inhibition  (213, 219) 

supress HIV infection of T-cells and macrophages (219) 

inhibits latent TGFβ activation in vitro (219) 

D6R protective effect against anthrax toxemia  (220) 

  blocks activation of PEA (220) 

D9R protective effect against anthrax toxemia  (220, 221) 

  reduction of P.aeruginosa ocular infection (221, 222) 

H5N1 derived peptide 

PA83 cleavage inhibition WO023306 

protective effect against anthrax toxemia  WO023306 

blocks activation of PEA WO023306 

Ac-RXXT-NH2 
blocks hemagglutinin-mediated fusogenicity (223) 

protects from Shiga toxin (223) 

H2N-C8-RXXT protective effect against anthrax toxemia  (224) 

  name Applications   

Protein natural 
inhibitors 

PAR1 reduced processing of gp160 (204) 

GBP2/5 
  
  

inhibition of processing of avian influenza and 
HIV glycoproteins (225) 

inhibition of processing of Zika virus, measles and 
Marburg virus  (225) 

inhibition of processing of GPC3 and MMP14 (225) 

  Abbreviation Applications References 

Autologous 
cancer cell 

vaccine 

FANG vaccine 
  
  

double lifespan survival of colorectal, melanoma 
and ovarian cancer patients 
  
  

(226) 
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 (such as MMP14) (225). Interestingly, these natural inhibitors have in common that they seem 

to sequester Furin away from their substrates. But other possible mechanisms are also reported 

for GBP2/5 Furin inhibition such as interfering with Furin expression itself (225). Lastly, the 

autologous tumour-based FANG vaccine combines Furin-knockdown and granulocyte-

macrophage colony-stimulating factor (GM-CSF) overexpression in patient-derived cancer cells 

and the infusion of the modified cells into the patients in order to boost their immune system 

(226). It is a dual strategy; on one hand the goal is to block the immunosuppressive effects of 

mature TGBβ activated by Furin by using an siRNA approach targeting Furin. On the other hand 

the strategy is to boost the immune response using GM-CSF overexpression (which primes T-cells 

and increases the recruitment of dendritic cells) resulting in an increase in anti-tumoral response 

(226). 

1.4.8 PC7/PCSK7: Identification and structure 

In 1996, a few years after the identification of the first mammalian proprotein processing 

enzymes, the PCSK7 gene was discovered in a chromosomal translocation breakpoint t(1 

l;14(q23;q32)) occurring in a high grade lymphoma (227). In previous studies aiming to identify 

new gene targets of chromosome translocation occurring during acute leukemia, the 

chromosome 11q23 was reported to have high incidence of abnormalities, especially in Hodgkin’s 

disease (228, 229). The authors concluded that this region, the chromosome 11q23, coincidently 

the PCSK7 chromosome, have consistent degree of abnormalities occurring in lymphomas (227). 

Using the genomic sequencing tools available at the time, a potential coding sequence was 

identified from germline cosmid (cos6) around a chromosomal breakpoint. Using that sequence 

cDNA as a probe to screen a library from Jurkat cell line, several cDNAs were identified with 

promising open reading frames encoding a sequence for a new convertase member with 

homology with Furin. Hence, the identification of the seventh member of the proprotein 

convertase family originated from a genetic rearrangement occurring in human lymphoma, 

therefore PC7 has been referred to as Lymphoma Proprotein Convertase (LPC) in its early days. 

This latter study also highlighted a very interesting and still understudied matter regarding the 

PCSK7 gene, which is the duplication of exons 13 to 17, 60 Kb downstream of PCSK7 coding 

region. Indeed, the exons 13-17 are reversed and duplicated, but no detailed investigations as of 
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now have demonstrated the possible transcriptional regulation roles of the duplicated region of 

the gene. Nevertheless, preliminary studies are suggesting that this duplication could act as a 

microRNA to regulate the PCSK7 gene in cis, and possibly other genes, in trans, but these are just 

speculations for now. 

Independently, the complete cDNA sequence of PC7 was simultaneously identified by Seidah et 

al. using RT- PCR on RNA isolated from rat pituitary extracts and screening rat spleen and PC12 

cells Agtll cDNA libraries (230). The data from this original study revealed multiple key 

characteristics of rat PC7; that it is a type-I membrane-bound protein, has a signal peptide and a 

pro domain involved in the zymogen activation with an autocatalytic cleavage site Arg-Ala-Lys-

Arg104↓ similar to the other PCs. The deduced protein sequence also highlighted the catalytic 

site (His191, Ser369, Asp150 and Asn292) and even predicted four N-glycosylation sites (Asn130, Asn138, 

Asn204, and Asn474), and a Tyr sulfation at Tyr621. Investigations looking more closely at the 

cytosolic tail of PC7 will demonstrate that some residues, often conserved in different species, 

are critical for its trafficking and therefore its activity and will be discussed below. Finally, 

phylogenic analysis also represented PC7 as structurally the closest member of the mammalian 

PCs to yeast kexin and as the most ancient and highly conserved member of the PC-family (4).  

1.4.8.1 Tissue distribution 

Like other members of the convertase family, PC7 mRNA and protein levels are found 

ubiquitously throughout the body (4). Also, Northern blots from different rat, mouse and human 

cell lines revealed that the levels of PC7 are the highest in gonadotrophs (αT3-1), corticortroph 

(AtT20) and somatomammotroph (GH4C1) cell lines, pointing towards biological relevance in 

pituitary-related substrates/hormones (4). Other cell lines had significant levels of PC7 such as 

insulinomas cells (Rim5F and βTC-3), the adrenal cortex (Y1), pheochromocytoma-derived 

(PC12), the fibroblasts (Ltk) and the colon carcinoma cell line (LoVo) (230). In vivo analysis in rats 

showed that PC7 mRNAs is rich in the liver, thymus, colon, kidney, testis and in the brain (e.g. 

hippocampus, amygdala and pituitary)  (230). 



30 

1.4.8.2 Trafficking  

PC7 was discovered almost 25 years ago but a lot is left to learn about its specific trafficking and 

zymogen activation. In recent years, multiple studies have attempted to unravel the PC7-specific 

trafficking route in the hope of understanding how this convertase is different from Furin and the 

other PCs. These studies would potentially direct to specific substrate recognition and novel 

biological roles. One key feature that makes PC7 different from the other PCs is its zymogen 

activation. Indeed, like PC4, it does not require a second cleavage for the removal of its inhibitory 

prosegment after the first autocatalytic cleavage at RRAKR141 (in human PC7) in the ER (129). 

Following its first cleavage, the prosegment remains attached non-covalently, as a heterodimer 

consisting of the inhibitory prosegment with mature PC7 (prosegment-PC7), as evidenced by co-

immunoprecipitation (129). The prosegment was also detected in the media (129), suggesting 

that PC7 prosegment is secreted and could have a function in the media. In addition, in vitro 

experiments demonstrated that the optimal pH for its activity is neutral (6-7) and that calcium is 

necessary and acts as a cofactor for the reaction, like the other PCs. 

Multiple evidences have shown that PC7 accumulates in the ER and the TGN on its way to the 

plasma membrane, where a small fraction is found at steady state (~10%) (129, 231). An 

unconventional route has also been suggested since PC7 was found at the plasma membrane 

after brefeldin A treatment (129), which blocks protein transport from the ER to the Golgi. Also, 

swapping the transmembrane domain (TM) of Furin with the one of PC7 directs Furin to plasma 

membrane via an unconventional pathway, indicating that important information is contained 

specifically in the TM of PC7 for its trafficking to the plasma membrane but further investigations 

of this pathway have not been fully characterized yet (129, 232). Elucidating PC7 trafficking in the 

secretory pathway still contain missing pieces, but different motifs are emerging to better define 

and distinguish this enzyme from the other PCs. Figure 1.7 is a schematic representation 

comparing the trafficking pathways used by PC7 and Furin. As mentioned above, PC7 cytosolic 

tail contains specific information for its targeting to its final destinations. Amongst those features, 

the cytosolic tail of PC7 contains two cysteines palmitoylations, Cys699 and Cys704, which may be 

important for enrichment in PM microdomains important for Anthrax toxin activation (233) but 

not for most other substrates (234, 235). These two potential palmitoylated-cysteine did not 



31 

show importance in PC7 trafficking to the TGN if mutated alone (236), but they were shown 

recently to be important, in combination with a novel basic cluster H708RSRKAK714 for endosome 

to TGN transport (237). It was also demonstrated that internalization from the plasma membrane 

to the endosomes is dependant on clathrin-coated vesicles via the internalization motifs PLC726 

in PC7’s cytosolic tail. However, the association of these motifs with adaptor proteins or 

regulators of endocytosis have not been fully characterized (231, 237, 238). Lastly, works by our 

group have also shown that in addition to the PLC motif and the basic cluster, the motif ExExxxL725 

in PC7 cytosolic tail is not only required for its internalization but also its activity to cleave and 

shed the type-II membrane bound human transferrin receptor (hTfR1). Indeed, we have showed 

that the ExxExxxL725 motif binds the cytosolic adaptor protein AP-2 (239), which is a main actor 

in the trafficking of endocytic vesicles from the plasma membrane to the endosomes (240). The 

PC7-AP-2 binding is abrogated when PC7 is mutated at the ExxExxxL725 motif, more precisely 

when changed into AxAxxxA725. Different point mutations in the former motifs also cause PC7 to 

accumulate at the plasma membrane and have significant decreases in enzymatic activity, 

reported by the decrease in the cleavage of hTfR1 (239). We believe that the ExxExxxL725 motif 

best represents the endocytosis function previously attributed to the PLC726 motif.   

 

  

Figure 1.7. Comparison between Furin and PC7 trafficking signatures.  

PC7 or Furin proteins are depicted in dark red. Relevant Furin or PC7 motifs are written in black, 

important trafficking binding partners are within pink circles. 

Furin PC7 
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Finally, the previous studies have investigated PC7 trafficking under conditions where PC7 is 

overexpressed to facilitate wild type (WT) and mutant PC7 immunofluorescence detection or to 

analyze the maturation of overexpressed substrates. It is necessary to mention that trafficking of 

proteins can be affected by over-abundant quantities of exogenous proteins and could lead to 

mislocalization (241). Indeed, it was reported by Ginefra et al., 2018 that subcellular localization 

and related endoproteolytic activity results may vary when using the overexpression strategy 

(238). Therefore, using overexpression is necessary for dissecting the protein domains and 

motifs, but whether it is completely translatable in vivo on endogenous levels of a convertase 

remains to be proven. Taken together, these observations demonstrated that PC7 is ubiquitously 

expressed, but it’s distinct trafficking signature likely suggests specific protein interactions and 

physiological functions.  

1.4.8.3 Substrates and biological functions 

The only specific PC7 substrate is the human transferrin receptor 1 (hTfR1) (235), a protein 

reported from a genome-wide association study (GWAS) that was interested in finding genes 

associated with iron metabolism and that directly linked the levels of soluble transferrin receptor 

with the PCSK7 gene locus (242). It was one of the first human mutations or SNPs associated with 

PC7 function in humans, but it was just the tip of the iceberg as other genomics studies revealed 

PC7 functions that will be discussed in a section below. To summarize the hTfR1 conclusions, PC7 

is responsible for the shedding of the receptor at the KTECER100↓LA, this cleavage occurs at 12 

amino acids from the C-terminus of the transmembrane domain, which is a typical shedding 

architecture (59). Therefore PC7-shedding of the transferrin receptor 1 will influence the 

bioavailability of the full-length receptor at the cell surface of enterocytes, hence modulate iron 

entry (235). Accordingly, it was demonstrated that removing iron from the media of a 

hepatocellular cell line resulted in a down-regulation of PCSK7 at the mRNA levels (235). For 

almost 25 years, PC7 was considered to have substrate redundancies with other enzymes 

because no specific substrate was identified, but the study on the transferrin receptor 1 was 

really an important step which suggested that PC7 could have its own physiological functions by 

cleaving specific substrates. In addition, recent reports demonstrating that PC7 has a unique 
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trafficking signature and a different cell compartmentalization suggested that PC7 could interact 

with different proteins than the other PCs depending on the cell type or the cellular context. 

Taken these data together and considering that PC7 is well conserved and broadly expressed in 

many tissues, these evidences would support that PC7 could have other PC7-specfic substrates, 

and possibly acts as a more general sheddase. This hypothesis and its validation are the basis of 

the first part of this thesis (see Chapter II) which aims to identify new specific PC7 substrates shed 

into the media.  

Albeit having identified only one specific substrate so far, other PC7 substrates have been 

reported in vitro and in vivo, but these proteins can also be cleaved by other proprotein 

convertases (redundancy) or other proteases. Based on over 100 peptide cleavages, the 

consensus substrate cleavage motif is depicted at Figure 1.8. PC7 known substrates have been 

demonstrated experimentally from cultured human cell lines, mouse, rat or zebrafish models and 

like Furin they fall in three broad categories: development, immunity/inflammation and cancer.  

 

 

 

 

Figure 1.8. PC7 cleavage site preference. 

Cleavage site pattern is represented based on 116 substrate cleavages. The cleavage site logo 

was generated from the MEROPS peptidases database (22). 

4.3.8.4 Substrates and biological functions: Development 

As it will be discussed below, the PC7 KO mice are viable and do not harbour any growth defects, 

hence PC7 role in development could seem secondary. Yet, studies in Xenopus and zebrafish have 

highlighted unique roles for PC7 in embryogenesis and early development. Accordingly, PCSK7 is 

expressed in early development in zebrafish and when inhibited, using antisense morpholino 

oligonucleotides, apparent growth defects were shown in different organs such as the brain, eyes 

and auditory vesicles which led to embryonic death within 7 days post-fertilization (243). These 
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developmental defects in the PCSK7 morphants were attributed to aberrant processing of the 

growth factor TGFβ, hence demonstrating a non-redundant function for PC7 in the development 

of the zebrafish. Similarly, inhibiting PCSK7 in xenopus at the 2-4 cell stage during development 

is also generating severe developmental defects such as disruption of head and eye formation 

(244). The associated phenotypes in xenopus were rationalized by a reduction in multiple bone 

morphogenetic protein (BMP) family members such as Sox2, Pax6 and Opsin, which are known 

to be targeted by PC7 (244). Other precursor proteins that are relevant in development such as 

the Vascular endothelial growth factor-C (VEGF-C) (245), platelet-derived growth factor (PDGF) 

(246), parathyroid hormone precursor (247), cholecystokinin (CCK) (248), Notch1 (172), E-

cadherin (249), proEGF (234) and Angiopoietin-like protein 4 (ANGPTL4) (250) have been 

reported to be cleaved by PC7 but are also cleaved by other PCs. 

1.4.8.5 Substrates and biological functions: Cancer  

Similar to Furin’s role in cancer progression, PC7 is also implicated in the maturation and 

activation of multiple growth factors and matrix metalloproteases such as disintegrin 

metalloproteinase domain-containing protein 10 precursor (ADAM10) (251). As the critical 

importance of such maturation in cancer progression was discussed above, it will not be 

discussed further in this section. Nevertheless, shRNA specifically against PCSK7 in prostate 

cancer cells have shown significant growth inhibition in vitro (252). Also, in colorectal cancer, it 

was shown that overexpression of the general PC-inhibitor 1-PDX led to a significant reduction 

of metastatic potential of human colorectal tumor cells (253).  

1.4.8.6 Substrates and biological functions: Immunity/Inflammation  

When rat PC7 sequence and tissue distribution was identified in 1996, one of the most abundant 

tissue expressing PC7 mRNA was the thymus (230), hence potentially uncovering important 

physiological roles in the immune system. Indeed, it was recently demonstrated that PC7 and 

Furin are significantly expressed in lymphocyte T regulators (Treg) and T effectors (Tefs), and that 

they cleave Foxp3, a transcription factor essential for the Treg function (254). Taken together, 

these investigations point towards a possible role for PC7 in autoimmune, inflammatory or in 

infection diseases, but further investigations are clearly needed. Lastly, as mentioned above for 
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Furin, PC7 is also involved in the processing of viral surface proteins and their activation such as 

the Chikungunya virus (CHIKV) E2 glycoprotein (255), SARS corona virus S-protein (256), SARS-

CoV (257) and HIV-gp160 (258).  

1.4.8.7 PC7 KO mice 

As discussed for the other PCs, the generation of KO mice have often allowed the identification 

of their physiological functions. The majority of the proprotein convertases mice models with 

reduced levels or knockout gene expressions displayed apparent phenotypes, which have given 

strong clues to identify the substrates responsible for the phenotypes. Some of the best examples 

consist of Furin in development via aberrant growth factors activation, or the obesity and 

hypoglycaemia phenotype observed in the PCSK2 KO mice via maturation defects of insulin and 

glucagon. On the other hand, finding PC7 specific substrates is a laborious task since the knockout 

mice are viable, with no gross physical malformations. Hence, PC7 has been categorized as an 

enzyme that shares substrates with other PCs, especially Furin. While those redundancies can be 

appreciated as a strong evolutionary survival mechanism, considering that PCs regulate many 

essential biological processes, the idea of studying the activity of a redundant protein can be 

somewhat unappealing. This was the case, until our group ventured into the characterization of 

the PC7 KO mice more thoroughly and performed behavioural assays. The results from these 

tests revealed that the PC7 KO mice are healthy but display an anxiolytic phenotype and episodic 

memory defects (259). These phenotypes are thought to be caused by a reduction in the 

maturation of proBrain-Derived-Neurotrophic-Factor (proBDNF) into mature(mBDNF) in various 

regions of the brain, such as hypothalamus and amygdala. proBNDF and mBDNF have different 

signalling pathways in the central nervous system by binding different receptors (Figure 1.9) 

(260). MatureBDNF was originally believed to be the only bioactive entity, but it was shown that 

proBDNF also had signaling properties via p75NTR and sortilin which could induce apoptosis (171, 

261). The proportion of mBDNF and proBDNF needs to be balanced for proper neuronal growth 

and synapse plasticity (260). Hence, it is proposed that in the PC7 KO mice the observed ~40-45% 

decrease in the maturation of proBDNF may have led to an aberrant and imbalanced signaling at 

the synapses (259) through impaired signaling from the tyrosine kinase beta receptor (TrkB). 

Accordingly, the PC7 KO phenotypes were rescued by using injections 1h before the behavior 
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tests of a brain-penetrable BDNF receptor (TrkB) agonist 7,8-dihydroxyflavone (DHF). 

Importantly, PC7 is not the only enzyme that can process proBDNF, as it is also cleaved by Furin 

and PC1 at the same motif RVRR130↓ (262-264), possibly explaining why the mice are viable. 

Interestingly, recent work has shown that diet-induced obesity is inducing anxiety-like behavior 

in mice, in part by the increased maturation of BDNF and other signaling molecules, such as p-

CREB and ΔFos, in the reward circuit of the brain (265).The demonstration of a link between 

mood disorders and PC7 is not a surprise considering the observation of PCSK7 mRNA expression 

in different regions of the brain (230) but also, is coherent with previous results from the 

zebrafish (243) and Xenopus (244) where silencing the PCSK7 gene in early development led to 

severe brain and eye defects and lethality. While the conclusions from the behavioral assays were 

promising, future work will be needed to better understand how the PCSK7 gene can affect 

mood, anxiety and possibly other cognitive performance. The investigation of PCSK7 SNPs in 

humans could also reveal potential susceptibility genes for mood disorders and/or candidate 

treatments for patients in the future. 

 

Figure 1.9. Differential signaling of proBDNF and mBDNF. 

Both proBDNF and mBDNF are biologically active. Functional consequences of the different 

signaling are depicted. Adapted from Deinhardt et al., 2014. 

1.4.8.7.1 Diet and mood disorders  

It is well established that undernutrition have severe consequences on health, but overcomption 

of food in our contemporary societies is generating different types of health issues. There is more 

and more evidences supporting a role for the diet in the modulation of psychological, metabolic 
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and emotional health (266).  Indeed, there is an increase of ~25% in the odds of developing mood 

and anxiety disorders in obese individuals (267). Also, the consumption of appetizing high-fat and 

high-sugar content foods is stimulating the reward circuit in the brain and leads to rearrangement 

of the neural circuits which can be similar to drug consumption (265). To better understand the 

intimate relationship between diet, mood and behavior it is important to consider the 

composition of the diet, the dietary habits and the related consequences on mood and behavior.  

The multiple types of dietary fats available can be regrouped in three broad categories, saturated, 

monounsaturated and polyunsaturated fatty acids (PUFA). Briefly, typical Western diet is rich in 

saturated fats, such as palm oil, and its consumption have higher incidence of depression (268). 

On the other hand, consumption of unsaturated fats such as in the Mediteranean diet shows 

lower incidence of depression (269). Also, reduced comsomption of PUFA, such as fish oil, is 

associated with higher risk of depression (270). In addition, there is a positive correlation 

between depressive symptoms and saturated fats consumption, and a negative correlation with 

monounsaturated fats consumption (271). 

It is a complex interplay of neuronal signals that governs food intake in response to both 

physiological cues and supraphysiological cues within the reward system, see figure 1.10. Briefly, 

the arcuate nucleus (ARC) and the lateral  hypothalamic area (LHA) of the hypothalamus are the 

primary neurons integrating information about energy balance and coordinating the signals from 

the anorexigenic αMSH/CART neurons and orexigenic NPY/AgRP neuropeptides (272). The LHA 

is consolidating the energy deficiency cues and signals to the mesolimbic reward pathway to 

stimulate feeding behavior (273). On the other hand, sensory inputs such as olfactory or visual 

can trigger food consumption independantly of energy requirements. Indeed, these sensory 

inputs from palatable foods are related to the insula wich with the orbitofrontal cortex (OFC), 

anterior cingulate cortex (ACC) and amygdala will assess the reward value and drive food 

consumption. This mechanism also relies on the connections with the nucleus accumbens (NAc) 

and the ventral tegmental area (VTA) of the mesolimbic reward circuit (273). The mesolimbic 

reward circuit is therefore responsible for motivation and feeding behaviors and is composed of 

domapine (DA) neurons which transmit signals related to food seeking and eating (273).  The 

mechanisms by which the different types of dietary fats influence mood disorders and 
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particularly anxiety and depression is related to neuroadaptations in the reward circuit in part 

via changes in dopamine signaling (274) and particularly in the nucleus accumbens (275). 

Accordingly, dopamine receptor regulating inhibitory mechanisms within the reward circuit is 

decreased in obese rodents, which contributes to the vulnerability of diet-induced compulsive 

eating (276). These compulsive behaviors are also observed in humans and the deficit in 

inhibitory signals of mesolimbic dopamine system is suggested to compensate its desensitization 

(277, 278).  

 

Figure 1.10. Interplay of neuronal signals driving food intake. 

In purple are depicted supraphysiological feeding and mesolimbic reward pathway, in green is 
depicted the physiological feeding pathway. PFC: prefrontal cortex, NAc: Nucleus accumbens, 
VTA: Ventral tegmental area, OFC: orbitofrontal cortex, ACC: anterior cingulate cortex. ARC: 
arcuate nucleus of the hypothalamus, LHA: lateral hypothalamic area. Adapted from Leigh S.J. et 
al., 2018 (273). 
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In addition, low-grade persistent inflammation in obese individuals results in high levels of 

circulating inflammatory cytokines and inflammatory markers such as C-reactive protein which 

correlates with higher prevelence of depression symptoms in humans (279-281).  In rodents, HFD 

consumption is also activating an immune reaction in the hypothalamus and hippocampus (282-

284). Lasty, it was recently showed that the chronic consumption (12 weeks) of saturated fat 

(from palm oil) and monounsaturated fat (from olive oil) both resulted in obesity in mice, but 

only the saturated fat diet generated increased inflammation in the nucleus accumbens 

accompanied by anxiodepressive behavior (268).  

Of note, the duration of consumption of these HFDs is critical, as short-term consumption can 

have opposite results as a chronic consumption, as reported by opposing results in the litterature 

(266). Indeed, an earlier study reported that high-fat diet feeding during only 1 week was 

inducing an anxiolytic phenotype  in mice (285). Conversly, high-fat diet feeding has been 

reported multiple times to be anxiogenic in mice (266) and a time-dependant opposite effect of 

the HFD on anxiety-like behavior was demonstrated recently (286). Indeed, it was shown that a 

‘short-term’ HFD feeding during 5 weeks was anxiolytic as observed by the mice spending 

significantly more time in the open arms of the elevated-plus maze (EPM) test (286). During the 

same study, a 8-week HFD feeding was not showing any-behavioral changes, likely due to a 

moderate increased in body weight gain. Lastly, the 15-week high-fat diet was shown to generate 

diet-induced obesity anxietly-like behavior in mice as they had a significant decrease in time 

spent in the center of the open-field test (OFT) (286). 

Importantly, high-sugar diet is also contributing to mood disorders in mice, as it was 

demonstrated that high sucrose diet feeding to mice led to decrease time in the light chamber 

during the light/dark box behavior assay (287). High-sugar diet consequences have been 

particularly studied following its withdrawal, and the associated anxiety phenotypes were similar 

to those observed when withdrawal of addictive drugs (288). Finaly, the combination of high fat 

and high sugar diet in the so called ‘Western-style diet’ is also influencing mood disorders and 

learning abilities (289). Indeed, mice fed a high fat high sugar diet for only 3 weeks showed 

increased anxiety behavior in the Barnes maze, and was correlated with increased in 

hyppocampal BDNF (289). In line with this, feeding of a high-fat and high-sugar diet in mice for a 
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short period of time (5 to 20 days) impairs hippocampal-dependant memory, even prior to body 

weight gain (290). Accordingly, Beilharz et al. demonstrated that the memory deficit were 

associated with an increase in hippocampal inflammation markers TNF-α and IL-1β as well as an 

oxidative stress marker NRF1 (290). In addition, longer exposure (60 weeks) to high-fat high-sugar 

diet also impairs short-term memorry, as demonstrated by a lower percentage of alternations 

during the Y-maze behavior test (291). Finaly, coherent with the pre-clinical litterature, memory 

impairment were also observed in humans fed high-fat high-sugar diets, as observed by a 

decrease in hippocampal-dependent learning and memory tests (292).  

Mood disorders and obesity are two major public health concerns. To better understand the 

neural circuit rearrangements in the diet-induced obesity phenotypes (265) as well as the 

interplay between proBDNF and matureBDNF in the PC7 KO mice, we have undertaken a study 

interested in the possible protective effect in the PC7 KO mice from anxiety-like behavior when 

challenged with a high fat diet. The background information, project layout and results are 

discussed in Chapter IV of this thesis. 

1.4.8.8. Human mutations, GWAS and SNPs 

The unique PC7-specific substrate was identified following a GWAS study which helped to 

connect PC7 to iron metabolism. Therefore, the idea of identifying other biological functions from 

human genomic analyses is very possible. Indeed, when studying the literature, we can find 

publications that have linked the PCSK7 gene locus to insulin resistance, triglycerides and non-

alcoholic fatty liver disease (NAFLD). Indeed, because of its previous link to iron metabolism, the 

variant rs236918 in the PCSK7 gene was analysed in a meta-analysis for liver cirrhosis and fibrosis 

and was positively associated as a risk factor for cirrhosis in hereditary hemochromatosis patients 

with a HFE C282Y mutation (293). Other metabolic diseases have been linked to this PCSK7 

rs236918 variant, such as a GWAS investigating the effect of a weight-loss diet on insulin 

resistance. In this weight-loss trial, the PCSK7 rs236918 G allele was significantly associated with 

a decrease in fasting insulin in the high dietary CHO-intake group, reporting for the first time a 

link between PCSK7 genotype and insulin sensitivity in white Americans (294). A second GWAS 

have linked two other PCSK7 SNPs (possibly resulting in a PC7 gain-of-function or higher levels), 



41 

the rs508487 and rs236911 with increased triglycerides and sdLDL (295). Also, recent data from 

a study aiming at identifying genes linked with coronary heart diseases have correlated the PCSK7 

gene with the levels of high-density lipoproteins (HDL) and triglycerides (TGs). In this study, the 

variant R504H (rs142953140) has been associated with a significant increase (40%) of HDL and a 

decrease (30%) of TG (296). Interestingly, the R504H mutation does not affect the enzymatic 

activity of PC7 on TfR1 (297). Also, some previously reported mutations in the PCSK7 gene 

(D186G, R316C, and L506P) as well as the rs508487 variants were all proven to be loss-of-function 

mutations, at least regarding the shedding of TfR1 (297). Finally, the coronary heart disease study 

(296) highlighted the PCSK7 gene locus in close proximity to the apolipoprotein locus (Figure 

1.11). These original observations suggested a possible association between PC7 and the 

apolipoproteins, which resulted in the discovery of a novel PC7 non-enzymatic function by our 

group.  

 

Figure 1.11. The PCSK7 gene locus is in close proximity to the apolipoproteins. 

Depicted is the chromosome 11 and the reported genes surrounding PCSK7. 

 

1.4.8.9 Non-enzymatic functions: Apoa5 and HIF-1α  

The proximity of the apolipoproteins locus to the PCSK7 gene, as well as the linkage 

disequilibrium with the apolipoprotein A-V (apoA-V) promoter variant rs662799 (295) which was 

previously associated with elevated TG-levels, gave us confidence that PC7 could be involved in 

lipid metabolism. The first hypothesis was that PC7 might cleave apoA-V and therefore modulate 

its activity as an activator of lipoprotein lipase (LpL) (298). This first hypothesis turned out to be 
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incorrect. Surprisingly, instead of generating a cleaved fragment, PC7 overexpression led to 

reduced apoA-V protein levels (299). From this first observation and subsequent work in mice, 

our group have identified one of the first non-enzymatic functions of PC7 implicated with lipid 

metabolism. Indeed, we demonstrated in HuH7 cells that in a bafilomycin A1-dependent 

pathway, PC7 binds apoA-V in an acidic compartment, which leads to its degradation in 

lysosomes. Hence, this novel mechanism regulates the levels of cellular and secreted apoA-V and 

was further confirmed in mice fed a high fat diet (HFD), where plasma apoA-V levels and adipose 

LpL-activity are increased compared to WT mice (299). In addition, the adipocytes from these 

mice displayed a tendency for hypertrophy with enhanced TG content (299). In conclusion from 

this study, we demonstrated a first mechanistic link between PC7 and lipid metabolism via its 

activity on regulating apoA-V levels which corroborates previous reported genomic associations. 

Related work from our lab have also shown that the PC7 KO mice on normal diet have high TG 

levels and decreased apolipoprotein B (apoB) levels in the plasma, unpublished data. Preliminary 

results of this ongoing work show that PC7 interacts with apoB and could act as a chaperone to 

maintain its proper folding before its secretion from the liver. In conclusion, with our 

demonstration of PC7 implication in lipid metabolism, we are strongly interested in investigating 

therapeutic avenues for TG lowering and cirrhosis using the PC7 KO mice model.  

Another non-enzymatic PC7 function was demonstrated a few years before our observations of 

the link between PC7 and the apolipoprotein locus and is related to the interplay between PCs 

and the hypoxia-inducible factor 1α (HIF-1α). It is well established that hypoxia-inducible factor-

1α is induced in hypoxic intratumoral conditions (300). One of the many transcriptional targets 

of HIF1-α is Furin, which in response to hypoxia has been demonstrated to translocated from 

endosome to the plasma membrane (301, 302). In line with these observations, it was shown 

that Furin mRNA was upregulated in oxygen-deficient cells (301, 303). Reciprocally, it was 

recently demonstrated that both Furin and PCSK7 siRNAs were increasing HIF-1α protein via 

activation of its translation, which in turn increase the production of VEGF-A, possibly highlighting 

another non-enzymatic PC7 and Furin activity (304). 
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1.4.9 Subtilisin kexin isozyme-1 (SKI-1)   

SKI-1 is like the other convertases in its zymogen activation, it needs a second cleavage in the ER 

in order to be released as an active enzyme, after a primarily cleavage at three internal sites 

within its prosegment (101, 305, 306). Like many of the other convertases, SK1-1 is ubiquitously 

expressed (4, 307) and is located intracellularly in the cis and medial Golgi, but can also be found 

in endosomes or lysosomes (308). Unlike the first seventh PCs, SKI-1 cleaves precursor proteins 

at the C-terminal end of the motif: RX(L/V/I)X↓, where X is any amino acids, except proline or 

cysteine (309, 310). Some of SKI-1 well characterized substrates are the SREBPs, ATF6 and CREBS 

transcription factors (311, 312), pointing towards a relevance for this enzyme in cholesterol 

regulation. In fact, the suggested phenotypes from these substrate were confirmed in mice 

lacking ~80% SKI-1 in the liver, were they displayed a ~50% decrease in circulating triglycerides 

and cholesterol, explained by a significant decrease of the nuclear levels SREPBs and their target 

gene expressions (313). Like Furin, PC5 and PACE4; SKI-1 KO mice die embryonically, but in 25% 

of the cases at the blastocyte stage from a malformation in the epiblast (314). Other known SKI-

1 substrates are BDNF (251), Glc-NAc-phosphotransferase and viral glycoproteins (e.g., lassa and 

Crimean Congo hemorrhagic fever virus) (309, 315, 316).  

1.4.10 PCSK9: from bench to bedside 

As mentioned in the introduction of this section on the proprotein convertases, PCSK9 has no 

other substrates than itself and importantly following its autocatalytic cleavage, PCSK9 remains 

as an inactive protease (317). Interestingly, before PCSK9 earned its fame from being an excellent 

drug target for lowering plasma LDL-cholesterol, it was called neural apoptosis regulated 

convertase 1, or NARC1 for short. Searching the patent literature revealed that the same gene 

was identified in a screen for genes upregulated during induced neural apoptosis (Millenum 

patent no. WO 01/57081 A2; and Eli Lilly, LP251 patent no. WO 02/14358 A2). But the work from 

Dr Seidah’s laboratory have clearly identified and characterized this new enzyme as the last 

member of the proprotein convertase family, hence its name PCSK9 (102). The original work on 

PCSK9 demonstrated that this enzyme was rich in the hepatocytes, kidneys, intestinal ileum, 

colon epithelia and in the embryonic brain neurons in mice (102). The authors referred PCSK9 as 
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important in proliferating and differentiating cells. Rapidly, the discovery of patients with 

autosomal dominant hypercholesterolemia with missense mutation in the PCSK9 gene (318) led 

to a shift from neural development investigations to LDL-cholesterol metabolism. Indeed, PCSK9 

is now the third gene locus associated with autosomal dominant hypercholesterolemia, along 

with the low-density lipoprotein receptor (LDLR) and apoB (318). Briefly, PCSK9 is mainly 

expressed and secreted by the liver, binds LDLR and targets it for degradation, resulting in 

increase concentration of LDL in circulation which causes atherosclerosis plaque accumulations 

(319). Therefore, strategies aiming at blocking PCSK9 activity will increase the bio-disponibility of 

the LDLR at the cell surface hence decreasing the LDL in circulation (LDL-C) and decreasing the 

atherosclerosis plaque formation. The strategy has been working extremely well as multiple 

clinical studies have successfully shown a significant reduction of cardiovascular accidents in 

patients treated with PCSK9 monoclonal antibodies (320). Indeed, evolocumab and alirocumab 

are two monoclonal antibodies against PCSK9 commercially available and subcutaneous 

injections in patients every 2-4 weeks have shown a decrease in ~60% of LDL-C and a 15-20% 

decrease in cardiovascular events (320). Pharmaceutical companies have soon jumped into the 

field, and now PCSK9-targeting strategies is a multi-billion-dollar industry and they have 

diversified their approaches ranging from monoclonal antibodies, antisense oligonucleotides 

(ASOs), to vaccines and more (321). PCSK9 targeting therapies have been extensively studied for 

the past 10-years (320) and the different approaches and the long term repercussions of 

inhibiting PCSK9 on patients (e.g. the emerging concerns related to diabetes mellitus or the role 

of PCSK9 in other tissue than the liver) go beyond the scope of this introduction and will not be 

discussed further.  

1.5. Identification of new PC7 substrates: Mass spectrometry identifies 

two new proteins shed by PC7  

As mentioned in the previous section on proprotein convertases, multiple PC-specific substrates 

have been identified and their related biological consequences have been well characterized. 

Some therapies involving PCs have even reached translational success in the clinic. One main 

issue regarding the biological roles of the seventh member of the family, PC7, is that we lack 
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information about specific substrates, we therefore aimed at identifying new substrates using a 

N-glycoproteome enrichment mass spectrometry approach. In this section, the interest of 

investigating N-glycoproteins and the strategies available for enrichment will be addressed. Also, 

the structure, trafficking and potential biological functions of two new PC7 substrates identified 

with this screen will be discussed. Other members of their gene family will also be discussed as it 

might shed light into the identification of the biological functions of the novel substrates. Before 

reviewing the literature on the two new substrates that we identified, a brief description of the 

method used by mass spectrometry to identify the substrates, the rationale behind it, as well as 

other available options and their advantages/disadvantages will be addressed. 

1.5.1 Techniques for glycoprotein enrichment and analysis  

Analysing and quantifying the repertoire of proteins and their associated post-translational 

modifications in a dynamic system is key to our understanding of a protein function or its 

involvement in a disease state (322). To do so, many tools and strategies have been developed 

over the years. The most common proteomics approach is the bottom-up (or shotgun) 

proteomics (323, 324). This technique is an indirect measurement of peptides from proteolytic 

digestion of proteins, often using trypsin because of its Arg & Lys cleavage specificity (325), but 

sometimes endoproteinase Lys-C, endoproteinase Glu-C or elastase can be used. The digested 

peptide solution is then analysed by liquid chromatography coupled to a tandem mass 

spectrometer detector (LC-MS/MS) (322). To do the proper quantification, the samples are 

usually compared by relative quantification between non labeling and labelled samples, (i.e. 

isotope-labeled vs label-free). 

The interest of studying protein N-glycosylation is growing both from a fundamental and a clinal 

perspective. As mentioned above, N-glycosylation is a very important and ubiquitous PTMs in 

normal state but also play a major role in various diseases such as cancer and inflammatory 

diseases (326). Better methods to analyze the N-glycoproteome will improve the detection in 

various disease states since it will enhance the quantification of secreted proteins, which is in line 

with our own interests for finding new PC substrates. Indeed, the N-glycosyltransferases and 

sugar trimming enzymes are located in the ER and in the Golgi and will therefore attach their 
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complex series of glycan on this motif sequence N-X-[S/T] (where X represents any amino acid 

except Pro or Cys) to proteins trafficking through the secretory pathway such as: secreted 

proteins, luminal domain of membrane bound proteins or the extracellular part of plasma 

membrane proteins (327). Liquid chromatography coupled to high-resolution mass spectrometry 

(LC-MS) technologies have been used profusely throughout the past years for large scale 

screening of N-glycosylated proteins but inherent issues such as the chemistry complexity of the 

oligosaccharides attached and the low expression of multiple N-glycoproteins makes the analysis 

very difficult (327, 328). To circumvent the low abundant nature of glyco-proteomics analysis 

caused by the poor ionization capacity due to the highly hydrophilic characteristics of glycans, 

enrichment techniques have been developed. In addition, the MS/MS fragmentation is often 

used sequentially to assess information on both the peptides backbone as well as the 

glycosylation sites (322).  

The different glycopeptides enrichment techniques available are based on the following 

methods: lectin affinity chromatographic, covalent hydrazide chemistry, immunoprecipitation, 

hydrophilic interaction liquid chromatography, click chemistry, covalent boronic acid chemistry 

and electrostatic repulsion interaction chromatography. For the lectin affinity chromatographic 

enrichment, different lectins will bind specifically glycans via hydrogen bonds and hydrophilic 

interactions with sugars (329). One important drawback from lectin affinity enrichment is that 

lectins binds specifically a unique type of glycopeptides hence only a specific saccharide will be 

purified, hence to overcome this a combination of different lectins is often used in the 

experiment (322). The covalent hydrazide chemistry consists of first oxidizing the glycopeptides 

to form aldehydes, which will then be bound covalently to a solid hydrazide support. This step 

will allow glycopeptides to stay on the support while non-glycopeptides will be washed-off after 

a tryptic digestion. Albeit an efficient purification strategy, using this technique will provide 

information only about the sites of the glycosylated residues and not the glycan structures (330). 

Immunoprecipitation enrichment necessitates the use of specific antibodies that recognize 

specific glycopeptides, hence is a more expensive technique (331). The hydrophilic interaction 

liquid chromatography enrichment technique is similar to the hydrazide enrichment because it is 

using the hydroxyl group formed on the glycans to bind a cellulose stationary phase via 
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hydrophilic interactions. One of the positive sides of this technique is that it successfully remove 

non-specific peptides from the samples (322). Click chemistry has been around for over 20 years 

(332), and as the name suggests, the chemical reactions referred to as ‘click chemistry’ are fast, 

easy to perform, reaction products are easy to purify and should produce a high yield. In brief, 

there is a first step of metabolic labelling were glycan residues are modified to azides and inserted 

into the cell membranes. The click chemistry (copper-catalyzed azide-alkyne cycloaddition) will 

allow the glycoproteins to be bound to the membranes, so after the cytosolic proteins removal, 

the glycoproteins should be enriched/purified (332). Boronic acid chemistry enrichment uses the 

boronic acid to bind covalently 1–2 and 1–3 cis-diol groups of peptides which creates a cyclic 

bronate ester. The wash step will remove all the non-covalently bond peptides (330). The last 

strategy is the electrostatic repulsion hydrophilic interaction chromatography, which is using a 

silica-based stationary phase composed of different positive functional groups. Negative charges 

on the sialic acid will be attracted and retained to the positive stationary phase, and in addition 

a hydrophilic reaction will happen between the glycan and the functional group (333).  

1.5.1.1 Our strategy 

In line with the challenges raised previously, we have developed a technique to analyse only 

secreted and membrane N-glycoproteins to circumvent the low abundance of glycosylated 

proteins. The technique we used is based on the hydrazide chemistry with an optimized protein 

solubilization protocol using high concentration of detergent (Sodium dodecyl sulfate (SDS) and 

Triton X-100). The high concentration of detergent helps in dissolving hydrophobic membrane 

proteins and increases the yield of membrane proteins (334, 335). In addition, the selective 

isolation of N-glycosylated proteins was performed using the hydrophilic interaction 

chromatography solid phase interaction (HILIC SPE) which has the additional benefits of removing 

the detergents and allows the site-specific glycan compositions (335). Following N-glycosylation 

purification, the captured glycoproteins were denatured, alkylated and trypsin-digested on beads 

releasing the non-glycosylated peptides first, following by elution with Peptide-N4-(N-acetyl-

beta-glucosaminyl) asparagine amidase (PNGase F). The digested peptides were then labeled 

with light and heavy demethylation reagents, mixed and analyzed by RP-HPLC coupled to a high 

resolution LTQ-Orbitrap mass spectrometer. 



48 

1.5.2 The substrates identified: Golgi phosphoprotein of 130 kDa 

(GPP130/GOLIM4) and Cancer susceptibility candidate 4 (CASC4) 

From our N-glycosylated enrichment screen, we found 645 and 867 glycosylated peptides 

enriched from the media of HEK293 and HuH7 respectively. We then compared secreted proteins 

that were quantitatively enriched in cells overexpressing PC7 to those of the empty vector control 

expressing cells. We have narrowed our analysis to proteins harboring consensus PC cleavage 

motifs (R/K)-Xn-(R/K) ↓ and found 18 and 10 proteins identified as enriched in our samples with 

potential cleavage sites in HEK293 and HuH7 respectively. In our analysis, we detected positive 

controls such as human transferrin receptor 1 (235, 239), ADAM17 (336) and sortilin (259), and 

also two novel potential substrates: GPP130 and CASC4. These two proteins are interesting 

because they are both type-II transmembrane proteins (similar to TfR1), located in the secretory 

pathway and have unknown biological functions. Interestingly, they are also part of a group of 

proteins from the GOLM1 family, Golgi-resident proteins that are believed to be carrying cargos 

along the secretory pathway. Before reviewing the literature about GPP130 and CASC4, the 

structure and function of the Golgi will be presented, in hope of shedding light on potential 

functions for these two poorly characterized proteins in this highly organized organelle. 

1.5.3 The Golgi apparatus  

1.5.3.1 Structure and function 

The Golgi apparatus is a very busy and elaborate organelle, it is where many PTMs occurs, 

proteins traffic and are being sorted to their final destinations (337). During protein trafficking 

from the cis-Golgi to the TGN, proteins will undergo glycan remodeling, complex oligosaccharide 

synthesis and finally packaging and transport to final destinations (338, 339). The Golgi apparatus 

is composed of different stacks of flattened cisternae interconnected with tubular structures 

consisting of the cis, medial, trans and trans-Golgi Network (TGN) (340, 341). In addition to these, 

the ER-Golgi intermediate compartment (ERGIC) is a structure localized between the ER and the 

Golgi. To define the different Golgi cisternae’s it is traditionally stipulated that the separation 

occurs according to the composition of the set of enzymes within each cisternae (342). Each Golgi 

cisternae’s have distinct functions and inherently, they have different structure and composition. 
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Accordingly, experimental evidences performed by density gradient fractionation and 

immunolocalization have demonstrated that specific enzymes locate preferentially to specific 

cisternae (343). For example, first steps of glycosylation enzymes are located on the cis side of 

the Golgi such as α1,2 mannosidase I , whereas the beta 1,2 N-acetylglucosaminyltransferase I 

(NAGT I) and α 1,3-1,6 mannosidase II (Mann II) only reside in the medial and trans cisternae 

(344). Hence the concentration gradient of enzymes and their specific localization offer 

biochemical evidences of the distinct functions occurring in the four different cisternaes, but on 

the other hand this definition does not offer a clear and precise organelle physical separation. In 

accord with this argument, a recent view is instead separating the different cisternaes according 

to the type of trafficking mechanism used for importing and exporting proteins (343).  

1.5.3.2 Golgi trafficking  

The theories regarding protein transport through the Golgi is still a subject of active debate (345, 

346). The two theories are the cisternal maturation model (347, 348), vs the vesicular transport 

model (349, 350). In the cisternal maturation model, the cargos do not leave the lumen of the 

cisternaes but instead the cisternaes  progressively mature from the cis to trans direction, 

consequently, the resident proteins, such as glycosyltransferases are then retrieved by 

retrograde trafficking (351). On the other hand, the vesicular model stipulates that the Golgi 

cisternae are stable but that the cargos traffic via budding from one cisternae to another (350). 

Vesicular trafficking is a mechanism that relies on the coordination of multiple elements: a coat 

complex for sorting and vesicle formation, Rab GTPases, adaptor proteins, tethering proteins and 

SNARE complex (352). Briefly for the coat proteins, COPII vesicles are carrying cargos from the ER 

to the cis-Golgi and are also critical in the fusion of the ERGIC compartment (353, 354). In 

contrast, the COPI vesicles transport cargos from the cis-Golgi to the ER, but they also act 

between different Golgi cisternaes (354). The clathrin-coated vesicles are responsible for the 

transport from the TGN to endosomes and lysosomes/vacuoles, as well as for the recycling of 

proteins from old to nascent TGN cisternae (355). Also, clathrin-coated vesicles are necessary for 

endocytosis at the plasma membrane (356). 
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The Rab GTPases are considered to be the master regulators of vesicular trafficking. There are 

~60 Rabs in human, and about 1/3 are located at the Golgi membranes. These include but is not 

limited to: Rab1, Rab2, Rab8, Rab18, Rab43, Rab6/41 and Rab30 (357). Rab proteins cycle 

between nucleotide-bound membrane-associated and free states. Once activated they will target 

different effector proteins depending on the location and the pathways (357). They regulate the 

activity of many downstream effectors implicated in tethering complexes and scaffolding (357).  

In addition to the golgins mentioned previously (358), another important group of proteins 

involved in tethering is the Conserved Oligomeric Complex (COG complex) (359, 360). These 

proteins can interact with SNARES, Rabs, coil-coil tethers and coat proteins and are important for 

vesicle formation during retrograde trafficking within the Golgi (359, 360). Interestingly in 

humans, the COG-congenital disorder of glycosylation (COG-CDG) is a severe disease that affects 

a multitude of systems (359). It was recently rationalized that patients with COG-CDG have 

underglycosylated proteins causing a plethora of defects in multiple pathways, but also these 

patients have trafficking defects caused by aberrant COG complex function, leading to problems 

in Golgi structure and protein secretion (359). 

SNARE proteins are responsible for the fusion of vesicle, the last step in vesicle movement (361). 

It is proposed that the v-SNARE on the vesicle side is interacting with the t-SNARE on the target 

membrane compartment and forms a complex called trans-SNARE which generates a driving 

force to fuse two lipid bilayers together (361, 362). 

The GGAs, or Golgi-localized, γ-ear-containing ADP ribosylation factor (Arf)-binding proteins, are 

a family of three monomeric clathrin adaptor proteins implicated in the traffic of proteins from 

TGN to endosomes (363, 364). The GGAs have four domains, VHS (Vps27, Hrs and STAM), GAT 

(GGA and TOM1), a flexible hinge-like domain and a ear region homologous to AP-1γ-1 ear 

domain (365). Accordingly, the different domains have been shown to bind different targets, for 

example the VHS domain was demonstrated to be recognizing dileucine acidic-cluster sorting 

signals on MPRs and sortilin (366, 367). The GAT domain is binding the GTPase Arf1 which helps 

in the GGAs recruitment to the TGN membranes (368) and the hinge-like domain is necessary for 

clathrin recruitment (369).  
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The adaptor protein complexes (AP-1 to AP-5) are heterotetrameric complexes consisting of two 

large subunits (either β1-5, or α, γ, δ, ε, ζ), one µ(1-5) subunit and a small σ(1-5) subunit (370). 

They are responsible for the trafficking of proteins along the secretory and endocytic pathway by 

recognition via their μ and σ subunits of specific motifs on the cytosolic tails of targeted proteins.  

AP-1 is localized to the TGN and to recycling endosomes and is involved in bidirectional transport 

as well as basolateral sorting in polarized cells. AP-2 is responsible for clathrin-dependant 

internalization from the plasma membrane into endocytic compartments. AP-3 is in the 

TGN/early endosomes and is responsible for transport to late endosome/lysosomes. AP-4 is in 

the TGN and is responsible for transport to the endosomes. Finally, AP-5 is a more recently 

described adaptor protein and its trafficking is still unclear, although it was recently 

demonstrated to be involved in late endosome/lysosome homeostasis (371, 372). 

1.5.3.3 Golgi matrix proteins: The Golgi Reassembly Stacking Proteins (GRASPs) 

Many investigations have led to a better understanding of the unique architecture and dynamic 

organization of the Golgi. Indeed, keeping the Golgi’s integrity is important for proper 

maturation, traffic and sorting of proteins. The Golgi Reassembly Stacking Proteins (GRASPs) are 

Golgi matrix proteins implicated in the structure formation and stacking of Golgi cisternae (373). 

They are located on the periphery of the Golgi and form trans oligomers via their GRASP domains 

which thereby glues the cisternae together into stacks and stacks into ribbon  (373). The best 

characterized GRAPs proteins are GRASP55 and GRASP65 for their roles in Golgi stacking (374), 

ribbon-linking (375), cargo transportation (376), cell cycle regulation (377), but even autophagy 

(378) and apoptosis (379). For example, GRASP55 and GRASP65 were showed to be implicated 

in Golgi disassembly and reassembly during mitosis (380, 381). Indeed, a sequential order of 

signaling events during mitosis leads to unlinking and partitioning of the Golgi stacks in order to 

divide into daughter cells (380, 381). As mentioned above, the GRASP activities go beyond Golgi 

stacking, as a study by Xiang et al. showed that silencing either one or multiple GRAPS proteins 

leads to faster protein trafficking which in turn impair protein glycosylation and sorting (382). 

Therefore, GRASPs are Golgi stacking proteins but are also required for the proper transport of 

cargos to final destinations. Figure 1.12 is a schematic representation showing that deficient 

GRASPs proteins impairs not only the structure of the Golgi but also protein glycosylation (383). 
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Other roles have been identified for these Golgi resident proteins such as unconventional protein 

secretion (384). Finally, the regulation to maintain Golgi stacks connected also involves 

components of the Golgi nucleated-microtubules and the centrosome (385).  

 

 

Figure 1.12. Regulated trafficking in the Golgi is essential for proper protein 

glycosylation. 

A) GRASP proteins are needed for maintaining proper environment for glycosylation enzymes, 

ensuring proper cargo trafficking through the Golgi stacks and restricting vesicle budding to Golgi 

borders. B) Impaired protein glycosylation as a consequence of GRASP disruption. From Zhang X. 

et al., 2016.  (386) 

 

1.5.3.4 Golgi matrix proteins: Golgins 

Golgins are a family of Golgi matrix proteins implicated in maintenance of the Golgi structure and 

vesicle tethering (387). It is a group of proteins that are Golgi-bound either by direct anchoring 

of their transmembrane domain or via binding to a GTPase at the Golgi such as Arf1 or Rab6 

(388). The golgins harbour long coil-coil cytoplasmic domains which are projected into the 

surrounding cytoplasm and are well suited to capture/tether membranes or cytoskeletal 

elements (389). Accordingly, golgins are defined as tethering proteins, hence they are involved 
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in vesicle trafficking, Golgi architecture and positioning (358). Amongst the well-known golgins 

are GM130, giantin and Golgin-97 (389). The golgins are also described to bind specific GRASP 

proteins, i.e. GM130 binding to GRASP65 in the cis Golgi is necessary for proper glycosylation and 

enzymes distribution (383). Other important golgin members are the GRIP domain proteins, they 

localize to the TGN via their GRIP domain and are implicated in Golgi organization, i.e.GCC185 is 

a protein that when depleted causes cis and trans Golgi fragmentation (390, 391). Interestingly, 

GCC185 was recently described to be involved in actin-dependant Golgi ribbon dispersal via the 

protein ITSN-1, a guanine nucleotide exchange factor of Cdc42 (392). 

1.5.3.3 Golgi structure and function in diseases: 

1.5.3.3.1 Alzheimer’s disease 

Alzheimer’s disease is a neurodegenerative disease that is described as a progressive loss of 

cognition and memory (393). Like mentioned previously, amyloid beta precursor (APP) is cleaved 

and its end products (Aβ) aggregates are one of the causes of Alzheimer’s disease (53). 

Interestingly, these Aβ aggregates are likely to cause Golgi fragmentation (394), a clinical 

occurrence observed in the neurons of early stages of the disease (395). The Golgi fragmentation 

is a result of GRASP65 Golgi stacking and ribbon formation inhibition caused by cdk5 

phosphorylation of GRASP65 (394). These results suggested that inhibiting GRAPS65 

phosphorylation could block Golgi fragmentation in AD patients (396), as a potential therapeutic 

avenue.  

1.5.3.3.2 Parkinson’s disease  

Parkinson’s disease is described as a progressive mid-brain dopamine neurons loss and α-

synuclein aggregates within Lewis bodies (397, 398). α-synuclein aggregates correlates with Golgi 

fragmentation in early stages of Parkinson’s disease (399). It was suggested that the α-synuclein 

aggregates are causing a ER to Golgi transport inhibition (400) which can cause neuronal 

degeneration .  



54 

1.5.3.3.3 Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic Lateral sclerosis is a neurodegenerative disease targeting the motor neurons where 

fragmented Golgi has been reported. Multiple proteins have been linked to aberrant sorting and 

secretory trafficking leading to Golgi fragmentation such as SOD1, TDP-43 and FUS (401). Indeed, 

it was demonstrated that SOD1 is causing Golgi fragmentation in part by inhibiting the ER to Golgi 

v-SNARES GS15 and GS28 (402) within motor neurons. 

1.5.3.3.4 Cancer 

Golgi integrity and polarized secretion is necessary for directional migration (403) and evidences 

demonstrating that the Golgi is a signaling hub regulating cell migration in cancer cells are 

accumulating. Accordingly, Golgi resident proteins have been shown to be involved in multiple 

steps during cancer progression. Two interesting examples are the golgins GM130 and GOLPH3. 

About GM130, its role in cancer cell migration have been reported because of its binding to the 

small GTPase Cdc42, a regulator of cytoskeleton organization and cell polarity. It was shown that 

inhibition of GM130 led to the decrease of the Golgi-localized Cdc42 (404). Importantly, active 

Cdc42 at the Golgi is necessary for proper cell polarity and inherently directional cell migration 

(405). GOLPH3 was one of the first peripheral Golgi protein to be identified for its role in cancer 

(406). Indeed, it is located to the Golgi via binding to the Golgi membrane lipid 

phosphatidylinositol-4-phosphate (PtdIns(4)P). GOLPH3 was also shown to bind myosin MYO18A 

and to act as a mediator between the Golgi membrane lipids and the actin structure, see Figure 

1.13, which favors vesicle budding, trafficking and consequently protein secretion (407, 408). It 

is now well established that GOLPH3 is a main actor in cancer by increasing directional secretion 

(409), but subsequent studies have also connected GOLPH3 to DNA damage (410). Another well 

known protein that was reported to have a crucial role in directional migration is golgin-160, this 

protein was demonstrated to be inducing Golgi apparatus dispersal when silenced and was one 

of the first evidence for Golgi positioning in directed secretion, cell polarity, and directional 

migration (411). In line with this original observation, a recent publication confirmed the role of 

golgin-160 in gliomas cell lines U251, where using lentivirus to decrease golgin-160 severely 

impaired migration and invasion of these cells (412).  
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Figure 1.13. GOLPH3 bridges phosphatidylinositol-4-phosphate and actin to reorient the 

Golgi and promote directional migration. 

Overexpression of GOLPH3 is driving Golgi reorientation towards the leading edge, increases the 

protein traffic from the Golgi to the plasma membrane and specifically towards the cell front. 

Adapted from Xing M. et al., 2016 (408). 

1.5.3.3.5 Cell migration  

As mention in the previous section, it is becoming more and more clear that Golgi proteins have 

an important role to play in cell polarity and cell migration, which when dysregulated can lead to 

derailed cell migration and metastasis in cancer. To better appreciate the chapter II of this thesis, 

which is regarding cell migration, a few mechanisms will be presented in this section, with a 

particular focus on the Golgi apparatus and the cytoskeleton interplay during migration.  

The force generate for migration comes mostly from the actin cytoskeleton, and more precisely 

the actin filaments (340). Cell motility is possible because of repeated cycles of protrusion 

attachments at the cell front combined with retraction and detachment at the rear (340). In 

migrating cells, stronger traction and adhesion at the front in comparison to the rear is needed 

for cell movement (342). Important structures composing the cytoskeleton are mechanosensitive 

such as stress fibers which are actin bundles associated with myosin II, α-actinin and cytoskeletal 
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proteins (342) that are connecting the extracellular matrix to focal adhesions (343). Focal 

adhesions are complexes localized at the plasma membrane that associate on one hand 

extracellular matrix via integrin binding, and on the other hand connect with the actin 

cytoskeleton via focal adhesions associated proteins such as paxillin (344), Figure 1.14. Paxillin is 

an adaptor protein localized at the focal adhesion complex and is required for focal adhesion 

turnover on the leading edge of the cell during migration (345). Paxillin is also capable of 

regulating actin remodeling and focal adhesion turnovers by acting on RhoA- and Rac1-GTPase 

signaling, which drastically influences cell migration (346). Importantly, too many stress fibers 

and focal adhesions assembly can also impede cell movement by generating stronger adhesion. 

 

Figure 1.14. Focal adhesions are complex structures that connect the actin cytoskeleton 

to the extracellular matrix. 

Depicted are main components of focal adhesions such as paxillin, talin, src and integrins linking 

the extracellular matrix with the actin cytoskeleton. Adapted from Deakin N. et al., 2008 (413). 

 

In conclusion for this part, the Golgi resident proteins have been highlighted at multiple occasions 

for important roles during cancer progression. These observations have inspired our group to 

further study the two uncharacterized Golgi proteins identified in our screen and highlight novel 

protein functions with relevance to cancer.  
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1.5.4 Cancer Susceptibility Candidate (CASC4) 

1.5.4.1 Structure and function 

CASC4 is an uncharacterized protein, it was identified in a cDNA library screen for new candidate 

gene overexpressed along with the oncogenic receptor HER2+ (414). Like the transferrin receptor 

1 and GPP130, CASC4 is a type-II transmembrane domain protein, has a short 13 aa cytosolic tail, 

a 20 aa transmembrane domain and a luminal domain, Figure 1.15 It is predicted to be Golgi 

localized, but no publications have addressed its specific localization, or biological functions yet. 

The only available information about CASC4 is related to its aberrant splicing events in breast 

cancer and in glioblastomas (415, 416). Indeed, a study investigating the splicing factor SRSF1 

identified CASC4 as a downstream target of the SRSF1 splicing machinery, leading to the inclusion 

of the exon 9 in the protein which corresponds to the full-length isoform (415). Additionally, short 

isoforms were also observed in patient-derived glioblastoma cells, compared to control cells 

(416). It is noteworthy to mention that in the glioblastoma study, two other candidate genes 

were significantly aberrantly spliced; p53 and APP, two well known proteins with undisputable 

biological roles in cancer (417, 418). 

 

Figure 1.15. Schematic representation of CASC4 structure. 

Depicted are the cytosolic tail (CT), the transmembrane domain (TM) and the luminal domain. 

The blue circles are depicting potential N-glycosylation sites and the white circles are depicting 

potential O-glycosylation sites. 
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1.5.5 Golgi phosphoprotein of 130 kDa (GPP130/GOLIM4) 

1.5.5.1 Structure and trafficking 

GPP130 is a type-II transmembrane domain with a small cytosolic tail (12 aa), a 20 aa long 

transmembrane domain and a luminal domain containing endosomal and Golgi-retrieval 

determinants (241, 419). As mentioned in the previous section, Golgi resident proteins that traffic 

through the secretory pathway and leave the Golgi need a particular signature to allow retrieval 

back to the Golgi, their home location (419). Accordingly, investigations of GPP130 luminal 

domain have demonstrated, using different deletion constructs and pH disrupting drugs such as 

monensin, that the coil-coil domain in the juxtamembrane region is necessary and sufficient for 

pH-sensitive Golgi localization as well as endosome to Golgi retrieval (419). More specifically, two 

amino acid stretches  (aa 176-248 and 38-107) on the luminal domain were shown to be involved 

in Golgi localization, and another stretch (aa 80-175) is needed for endosome localization (419). 

Interestingly, for Golgi exit, many signals on the cytosolic tail of transmembrane proteins are 

known, but for the Golgi retrieval, proteins tend to rely on short sequences in their 

transmembrane domain (i.e. glycosyltransferases) (420), as for GPP130 it depends on key luminal 

domains. Figure 1.16 represents a cartoon of the GPP130 structure with its associated localization 

determinants. GPP130 is also different from other Golgi resident proteins because upon pH 

disruption it relocalizes from endosomes and plasma membrane, and cycles back to the Golgi via 

the late endosome independent TGN38/46 bypass pathway (421). The TGN38/46 pathway is a 

trafficking route from the plasma membrane to endosomes that bypasses late endosomal 

compartments, hence avoids possible degradation, and trafficking back to the Golgi (422). 
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Figure 1.16 Schematic representation of GPP130 structure. 

Depicted are the cytosolic tail (CT), the transmembrane domain (TM) and the luminal domain. 

The blue circle is depicting a potential N-glycosylation site. 

 

1.5.5.2 Shiga Toxin and manganese  

Toxins have been reported to use the bypass pathway as a mean to enter the cell, traffic to the 

ER and deploy their cytotoxic effects while escaping degradation in acidic endosomes/lysosomes 

(423, 424). It was hypothesised that GPP130, which was demonstrated to traffic through the 

bypass pathway, could influence the Shiga toxin sorting from early endosomes. Accordingly, 

inhibition of GPP130 led to Shiga toxin endosome-retrieval blockage (423). Further studies have 

confirmed the GPP130 and Shiga toxin interaction, as well as the trafficking mechanism. In brief, 

Shiga-like toxins consist of a monomeric A-subunit that is bound to a homopentameric B-subunit 

(425). The A-subunit is responsible for its toxic effects, as it contains the enzymatic activity (426), 

whereas the B-subunit bind the glycolipid globotriaosylceramide at the plasma membrane to 

enable its internalization (427-429). Following its internalization, the B-subunit of the toxin binds 

GPP130 in early endosomes specifically on the residues 46 to 55 (sequence VALKYQQ) in the 

juxtamembrane region of GPP130 (430). Interestingly, it was further demonstrated that 

treatment with manganese (Mn2+) induces the oligomerization of GPP130 and its localization to 

multivesicular bodies before being rerouted to degradation in lysosomes (431). As it was 

demonstrated for its subcellular localization determinants, its luminal domain is required for the 

Mn2+ sensitivity but not its cytosolic tail (431). Moreover, it was further demonstrated that the 

Mn2+-induced GPP130 oligomerization redistribution is clathrin and GGA1-dependent (432). 

Additionally, the sorting of oligomerized GPP130 into clathrin and GGAs vesicles from the Golgi 

towards lysosomes also requires the membrane-spanning receptor sortilin (433), which is a 

sorting receptor that is known to bind cargos on its luminal domain and also bind GGA1 and 
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clathrin on its cytoplasmic domain (434). Finally, it was recently suggested that the adaptor 

protein AP-5 ζ is involved in GPP130 endosome to Golgi retrieval via binding to sortilin (372). In 

this study, they used a CRISPR-Cas9 to knockout the AP-5 ζ subunit and observed aberrant 

relocalization of proteins retrieval from endosome back to Golgi, including GPP130 and cation-

independent mannose 6-phosphate receptor (CIMPR) (372). In conclusion, in the past 10 years, 

the dissection of GPP130 domains and cluster residues, as well as its sensitivity to Mn2+ exposure 

have led to a better understanding of the trafficking of this Golgi protein. 

1.5.5.3 Biological functions; Cancer 

Because of its role during infection by Escherichia coli-produced Shiga toxin and its interesting 

trafficking route, most of the work on GPP130 is related to its retrograde trafficking in the context 

of toxin degradation. However, it was recently reported that GPP130 can influence cell survival 

and proliferation in vitro in head and neck cancer cell lines. Indeed, using a siRNA knockdown 

approach, it was demonstrated that silencing of GPP130 significantly reduces cell proliferation, 

causes a cell cycle arrest and  induces apoptosis (435). It is also suggested that knockdown of 

GPP130 decreases the expression of cell cycle genes such as MDM2 and CDK6. In that sense, it is 

not surprising that the GPP130/GOLIM4 gene can be amplified until almost 35% in lung cancer 

patients analysed in clinical cancer genomics studies, see Figure 1.17.  
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Figure 1.17. GPP130/GOLIM4 gene expression in different cancers. 

Summary of clinical data from cBioPortal for Cancer Genomics. 

 

Other Golgi resident proteins have been previously linked to cancer as mentioned previously, 

another interesting example is GP73, which is structurally similar to GPP130 and is used as a 

biomarker in the clinic for multiple liver diseases (436, 437). Indeed, GP73 has attracted a lot of 

attention in the past because of its increased expression and associated abundance in the plasma 

in diverse liver disease states establishing a good monitoring tool in the clinic (438). Nevertheless, 

GP73 biological functions are still poorly characterized, only a few publications have addressed 

its potential role in disease progression, mainly in the context of hepatocellular carcinomas. 

Interestingly, it was recently demonstrated that GP73 could carry the metalloprotease MMP-7 as 

a cargo, and would facilitate its secretion, hence favouring cell invasion in hepatocellular 

carcinoma cells (439). 
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In conclusion, the work on proprotein convertases from the past 30 years have highlighted a 

family of enzymes regulating physiological functions from embryogenesis to viral entry. Both in 

health and in disease states, investigating the mechanisms of action of these converting enzymes 

and their specific substrates enabled a better understanding of these secretory proteases. This 

thesis project will now try to elucidate the biological roles of CASC4 and GPP130, two poorly 

characterized Golgi-resident proteins, and to define how their maturation by PC7 and Furin will 

modulate their functions.  
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1.6. Hypotheses and Objectives 

Chapter II & III 

Hypothesis: The proprotein convertases have been well characterized in health and diseases. The 

identification of new PC7 substrates will help the discovery of new physiological functions. 

 

Chapter II. Cancer Susceptibility Candidate 4 (CASC4) Processing by PC7 and Furin Reveals a 

Novel Secretory Protein Implicated in Cancer Progression 

Objective 1. Identification of PC7 new substrates by mass spectrometry and validation of the 

candidates. 

Objective 2. Investigate CASC4 shedding by PC7 and Furin in the secretory pathway.  

Objective 3. Since CASC4 was identified as a candidate gene in cancer (breast and glioblastoma), 

we aim to elucidate its functions in cancer progression. 

Objective 4. Investigate how is the shedding by convertases modulating CASC4 activity. 

Chapter III. Shedding of GPP130 by PC7 and Furin sheds light on a Golgi-resident protein with 

a unique trafficking pathway 

Objective 1. Investigate GPP130 shedding by PC7 and Furin in the secretory pathway. 

Objective 2. Investigate how is the shedding by convertases modulating GPP130 activity. 

Objective 3. Shed light on an uncharacterized Golgi protein with gene amplifications in multiple 

cancers. 

 

Chapter IV. Are PC7 KO mice protected from diet-induced obesity anxiety-like behavior? 

Hypothesis: PC7 participates in proBDNF processing and diet-induced obesity anxiety-like 

behaviors increases BDNF in the reward circuit: PC7 KO mice should be protected from diet-

induced obesity anxiety-like behavior. 

Objectives 1. Perform behavioral assays on WT and PC7 KO mice chronically exposed to a 

saturated high-fat diet. 

Objective 2. Investigate the maturation of BDNF in different areas of the mice brain.



 

Chapter II 

Shedding of Cancer Susceptibility Candidate 4 (CASC4) by the 

Convertases PC7/Furin Unravels a Novel Secretory Protein 

Implicated in Cancer Progression 

(Manuscript accepted for Cell Death & Disease, July 2020) 

 

 

 

 

 

 



65 

2.1 Résumé:  

Durant ce deuxième chapitre nous nous intéresserons à l’étude de CASC4, un premier substrat 

de PC7 identifié dans notre analyse protéomique. Nous avons démontré que cette protéine est 

clivée au site KR66↓NS par PC7 et Furin dans des compartiments cellulaires acides. Comme CASC4 

a été rapporté dans des études de cancer du sein, nous avons généré des cellules MDA-MB-231 

exprimant CASC4 de type sauvage et avons démontré une diminution significative de la migration 

et de l’invasion cellulaire. Ce phénotype est causé notamment par une augmentation du nombre 

de complexes d’adhésion focale et peut être contrecarré par la surexpression d’une protéine 

CASC4 mutante ayant un site de clivage optimale par PC7/Furin ou encore en exprimant une 

protéine contenant uniquement le domaine clivé N-terminal. Finalement, des résultats 

provenant de base de données de patients atteint de cancer du sein ont démontrés que 

l’expression élevé des gènes CASC4 et PCSK7 corrélaient à un mauvais prognostique, tandis 

qu’une expression élevée de CASC4 mais faible de PCSK7 était associée un meilleur prognostique. 
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Result analysis: Stéphanie Duval, Jean-François Côté and Nabil G. Seidah 
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Supervision: Nabil G. Seidah 
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2.3.1 Abstract  

The proprotein convertases (PCs) are responsible for the maturation of precursor proteins and 

are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had 

great translational achievements, but the physiological roles of PC7, the seventh member of the 

family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen 

for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells 

identified two human type-II transmembrane-proteins of unknown function(s): Cancer 

Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). 

Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at 

KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity and demonstrated 

that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network, respectively. 

Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous 

CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 

resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 

cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained 

by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective 

role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, 

or upon overexpression of the N-terminally convertase-generated membrane-bound segment. 

This phenotype was associated with increased formation of podosome-like structures, especially 

evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients’ 

datasets show that high CASC4 and PCSK7 expression levels predict a significantly worse 

prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only 

disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that 

drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and 

invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients. 
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2.3.2 Introduction  

The proprotein convertases (PCs) constitute a family of nine serine secretory proteases that 

regulate  diverse biological processes in both health and disease states (440). By irreversible 

proteolysis, PCs are responsible for the activation or inactivation of a variety of precursor 

proteins, such as growth factors, hormones, receptors and adhesion molecules (440). Such 

cleavage or shedding events may also result in the generation of cleaved entities with distinct 

novel functions. The first seven PCs cleave (↓) precursor proteins at specific single or paired basic 

amino acid (aa) within the motif (R/K)-(2X)n-(R/K)↓, where n = 0-3 spacer aa (441). Because of 

their roles in the processing of many critical secretory substrates, e.g. activation of TGF-β (442) 

and matrix metalloproteases (443), PCs, such as Furin, PC5, PACE4 and PC7 were implicated in 

cancer/metastasis (444-446). 

The seventh member of the family (PC7; gene PCSK7) is a ubiquitously expressed protease that 

often shares substrates with other PCs, especially Furin (440, 447). Recent work by our group 

identified the type-II transmembrane human transferrin receptor 1 (TfR1) as the first PC7-specific 

substrate (235). In contrast to Furin (448), following PC7 internalization from the cell-surface 

(449), it primarily cleaves substrates in early endosomes (450). To better understand the PC7 

biology and pathophysiology we undertook an unbiased quantitative proteomics screen of N-

glycosylated secreted products from hepatic HuH7 cells overexpressing PC7. This screen led us 

to identify two shed type-II transmembrane-proteins of unknown biological functions: Cancer 

Susceptibility Candidate 4 (CASC4) (451), and Golgi Phosphoprotein of 130 kDa 

(GPP130/GOLIM4) (241). CASC4 was originally identified in a breast cancer screen in the context 

of HER2+ overexpression (451). More recently, CASC4 was also shown to be aberrantly spliced in 

breast cancer (452) and glioblastoma (416), however, the functional consequences of the spliced 

isoforms were not defined. In addition, a significant increase in secreted (shed) sCASC4 was found 

upon analysis of the N-glycosylated secretome from highly metastatic breast cancer cell lines 

(453). 

In this study, we demonstrated that PC7 and Furin specifically shed CASC4 in post-ER acidic 

compartments, generating an N-terminal membrane-bound domain (NTD) and a secreted C-
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terminal fragment. Using triple negative breast cancer MDA-MB-231 cells stably expressing 

CASC4 or its selected mutants, we demonstrated that wild type (WT) CASC4 enhances cell 

adhesion by increasing the number of focal adhesions (FA) and actin stress fibers, and that its 

shedding by PC7/Furin abrogates this phenotype. We then showed that the PC7/Furin-generated 

NTD induced the formation of podosome-like structures, implicated in invasion (454, 455). These 

results provide a novel unique mechanistic rationale for the functions of CASC4 and its shedding 

by PCs, which impact cellular migration and invasion.  

2.3.3 Materials and methods  

2.3.3.1 Glyco-proteomic analysis of secretome from HEK293 and HuH7 cells 

overexpressing PC7 

Transient transfection: HEK293 cells (obtained from ATCC) and HuH7 (obtained from the JCRB) 

were maintained in 5% CO2 at 37°C were seeded at 6X105 cells in 6-well plates and grown to 80% 

confluency in Dulbecco’s modified Eagle medium (DMEM; Invitrogen) supplemented with 10% 

(v/v) fetal bovine serum (FBS; Invitrogen), 1 mm sodium pyruvate (Life Technologies) and 28 

g/ml gentamycin (Millipore-Sigma). Cells were transiently transfected with plasmid pIRES2 

containing cDNA encoding human PC7 at 2ug and as control pIRES2 empty vector. Transfections 

were carried out following Lipofectamine 3000 (Invitrogen) recommended protocols with a 

1g:1l ratio of DNA to Lipofectamine reagent in OPTI-MEM media (Invitrogen) for HEK293 cells 

and 1:4 for HuH7 cells. Six hours post transfection, media was replaced by 2 mL of fresh OPTI-

MEM media. At 24h post media change, spent media was collected, centrifuged at 16,000 Xg for 

2 min to remove cellular debris and supernatants stored at -80C. 

Enrichment of secreted glycoproteome: Spent media from transient transfections of PC7 and 

empty vector were concentrated and equilibrated in 8M urea by ultracentrifugation using 

Amicon Ultra-15 centrifugal filter units (3 kDa cut-off, MilliporeSigma). A total of 500 ug of 

proteins were used for glycoprotein enrichment. Proteins were digested with trypsin as described 

in (335). Briefly, proteins were reduced with 10 mM dithiothreitol (DTT) at 56°C for 45 min, 

alkylated with 20 mM iodoacetamide (IAA) at room temperature for 1h and digested with trypsin 

at a 1:50 ratio at 37°C overnight. Glycopeptides were enriched by hydrophilic interaction 
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chromatography solid phase extraction (HILIC-SPE) as described in (335). Following capture, and 

washes to remove non-glycosylated peptides, the enriched glycopeptides were eluted from 

column and dried by vacuum centrifugation. The enriched fraction was deglycosylated using 50 

units of PNGaseF (New England Biolabs) in 50 l 100 mM ammonium bicarbonate at 37°C 

overnight. 

LC-MS/MS Analysis and Database Search: Deglycosylated peptides were analyzed with an HPLC-

MS/MS as per (335), using Q Exactive mass spectrometer (ThermoFisher Scientific Inc.) 

(ThermoFisher). The instrument method consisted of one full MS scan from 300 to 1800 m/z 

followed by data-dependent MS/MS scan of the 12 most intense ions, a dynamic exclusion repeat 

count of 2, and repeat exclusion duration of 30. Data files were processed with MaxQuant 

(1.2.2.5). The resulting precursor masses were matched to the IPI human database (version 3.68, 

87,061 entries), and included the standard MaxQuant contaminant database. Mass tolerances 

were 6 ppm and 0.05 Da for the precursor and fragment, respectively. Enzyme specificity was set 

as KR/P, and a maximum of two missed cleavages was allowed. Cysteine residue was set as a 

static modification of 57.0215 Da, and the methionine oxidation and asparagine deamination 

were set as a variable modification of 15.9949 Da and 0.9840 Da, respectively. The false discovery 

rate cut-offs for both peptides and proteins were set at 1%. The protein group file was imported 

into Perseus (version 1.2.0.17) where identifications from contaminants and reversed databases 

were removed. Label free quantification was carried out and significant changes in proteins were 

determined by two-sided T-tests. 

2.3.3.2 Plasmids  

Human GPP130 WT (Thermo Scientific, Open Bioscience), CASC4 WT (Thermo Scientific, Open 

Bioscience) and its mutants (R60A, R62A, K65A, R66A, AA65/66, NTD, SP-ΔTM-CASC4 and 5REL) 

were subcloned, with a V5 tag at the C-terminus into pIRES2-EGFP vector (Clontech). All 

constructions (human transferrin receptor 1, human Furin, mouse PC5A, mouse PC5B, human 

PACE4, full-length human PC7, soluble rat PC7, soluble human PC7 and Sar1P-(H79G) were cloned 

in pIRES2-EGFP vector (Clontech).  
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2.3.3.3 Cell Culture, Transfections, and Cell Treatments  

HEK293 cells were grown in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) with 10% 

fetal bovine serum (FBS, Invitrogen), CHO-ldlD cells were grown in DMEM/F12 medium with 10% 

FBS, MDA-MB-231 cells were grown in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) 

with 10% fetal bovine serum (FBS, Invitrogen), MCF10a cells were grown in MEGM Mammary 

Epithelial Cell Growth Medium BulletKit from Lonza (Catalog #: CC-3150) + 5% horse serum. All 

cells were maintained at 37°C under 5% CO. HEK293 cells were co-transfected with equimolar 

quantities (0,5μg) of each plasmid using Jetprime Polyplus, CHO-ldlD cells were transfected with 

equimolar quantities (1,0μg) of each plasmid using FuGene HD, using manufacturer's 

instructions. MDA-MB-231 cells were transfected using GenJetTM In Vitro DNA Transfection 

Reagent for MDA-MB231 Cells (SignaGen Laboratories) with equimolar quantities of plasmids 

(1.5-2 μg) using manufacturer’s instructions. At 24h post-transfection, cells were washed in 

serum-free medium followed by an additional 20h alone or in incubation with 2.5 μg/mL 

brefeldin A (BFA; Calbiochem) or 20mM ammonium chloride (NH4Cl; Sigma). For Endo H and 

PGNase F treatments, cell lysates were incubated with endoglycosidase H (endoH) or Peptide-N-

Glycosidase F (PGNase F) for 1h at 37°C (New England Biolabs), cells and media were collected 

for western blot analysis.   

2.3.3.4 siRNAs and quantitative RT-qPCR 

A pool of four siRNAs against human CASC4 and a scrambled siRNA (Dharmacon; siGENOME 

SMARTpool) were transfected with a final 100 nM concentration, using DhamaFECT4 transfection 

reagent (Dharmacon), using the manufacturer’s protocol. Total RNA extraction was performed 

using 1 mL Trizol reagent (Invitrogen) according to the manufacturer’s instructions. Real-time 

PCR was carried out using Viia7 System (Applied Biosystems). Reactions were run in duplicate for 

each independent experiment. Human TATA-box binding protein (hTBP) gene was used as an 

internal control to normalize the variability in expression levels. Supplemental Table 2.3 

summaries oligonucleotide sequences used for human CASC4, human PCSK7 and human Furin. 
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2.3.3.5 Affinity-precipitation of GTP-Rho/Cdc42 

MDA-MB-231 cells were washed with ice-cold Phosphate-buffered saline and lysed in 

Cytoskeleton Lysis Buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 0.5 M NaCl, and 2% Igepal). Cell 

lysates were clarified by centrifugation at 10 000 g at 4°C for 1 min, and equal protein 

concentrations from the different cell lysates were incubated with GST–RBD (25 µg) or GST-PAK 

(10 µg) beads at 4°C for 60 min. The beads were washed two times with washing buffer (25 mM 

Tris pH 7.5, 30 mM MgCl2, 40 mM NaCl). Bound Rho/Cdc42 proteins were detected by Western 

blotting using a monoclonal antibody against RhoA/Cdc42 (Cytoskeleton). Densitometry analysis 

was performed using Image J software (National Institutes of Health). The amount of RBD-bound 

Rho was normalized to the total amount of Rho/Cdc42 in cell lysates for the comparison of Rho 

activity (level of GTPbound Rho/Cdc42) in the different samples. 

2.3.3.6 Western blot analysis and antibodies  

Cells were lysed in cold Radio-Immunoprecipitation Assay (RIPA) buffer (100mM Tris-HCL pH 8, 

300mM NaCl, 0,2% SDS, 2% NP-40, 1% Na deoxycholate) containing protease inhibitors (Roche 

Applied Bioscience). Proteins were analysed by SDS-PAGE on 8-12% Tris-Glycine and transferred 

on a nitrocellulose membrane (GE Healthcare Life Science, No. 10600003) followed by 1h 

blocking in Li-Cor blocking buffer (Li-Cor) or in 5% milk in TBST-T. Membranes were then 

incubated with primary antibody overnight. Proteins were visualized using mouse anti-V5 

(1/2000, Invitrogen), rabbit anti-PC7 (1:10,000, homemade or 1:5000 Cell Signaling 

Technologies), Furin (1:5000, Invitrogen), rabbit anti β-actin (1:5,000, Sigma-Aldrich), p-

paxillin(Y118) (ThermoFisher), paxillin (Transduction laboratories), CASC4 (1:500, Abcam), Cdc42 

(1:250, Cytoskeleton), RhoA (1:500, Cytoskeleton), or a horseradish peroxidase (HRP)-conjugated 

mAb V5 (1:10,000, Sigma-Aldrich), or anti-Flag M2 HRP (1:3000) (Sigma-Aldrich. Bound primary 

antibodies were detected with corresponding species-specific fluorescent anti-mouse antibody 

680 (Mandel) (1:10 000) or anti-rabbit Ab 800 (Mandel), and revealed using LiCor Bioscience, or 

with corresponding species-specific HRP-labelled secondary antibodies (1:10,000, Invitrogen) 

and revealed by enhanced chemiluminescence (ECL; Amersham). Quantifications were done 

using Image Studio Lite v.4.0 and Image J software (National Institutes of Health). 
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2.3.3.7 Boyden Migration and Invasion Assays 

For migration assays, 1x105 cells were seeded into a transwell (6.5mm, Polycarbonate membrane 

0.8µM, VWR) and allowed to migrate towards 10% FBS DMEM medium into the lower chamber 

as a chemoattractant during 6h. For invasion, 5x104 cells were seeded into a Matrigel matrix 

(Corning) and allowed to invade during 16h towards 10% FBS DMEM medium into the lower 

chamber. After migration/invasion, cells were aspirated from the transwell and the membranes 

were washed before fixation by paraformaldehyde (4%) (Thermo Scientific) for 10 min. Following 

fixation, membranes were washed 3 times and mounted onto a microscope slide (Fisher 

Scientific) with ProLong Gold antifade with DAPI (Invitrogen) to stain for nucleus. The fixed 

membranes were analyzed by a DMRB microscope at 20X, 10 pictures were taken per conditions 

and counted for nucleus. 

2.3.3.8 Wound Healing Assay  

Confluent monolayer of cells was scratched with a 200µl-pipette tip to generate a scratch wound. 

To evaluate the distance travelled by the cells, pictures were taken with a Leica microscope at 6h 

and 12h post-scratch. Images were analyzed using Image J software (National Institutes of 

Health). 

2.3.3.9 Microscopy Analysis and Antibodies 

For F-actin staining, cells were seeded on Fibronectin (Sigma) coated (20µg/ml) glass coverslip 

into 24 well plates and grown for 48h. Cells were then fixed with warm paraformaldehyde (4%) 

for 20 min and permeabilized with PBS 1X + Triton 0.1%. Followed permeabilization, cells were 

stained for primary antibodies: paxillin (Transduction laboratories), anti-LDLR (R&D systems), 

anti-Golgin 97 (Santa Cruz Biotechnology), V5 (Invitrogen), TKS5 (MilliporeSigma) for 1 hour 

followed by fluorescent corresponding secondary antibodies or fluorescent coupled 555-

Phalloidin to stain for F-actin for 30 minutes. Coverslips were then mounted on microscope slide 

(Fisher Scientific) with ProLong Gold antifade with DAPI (Invitrogen) to stain for nucleus. Co-

localization of fluorescently labeled protein was quantified with IMARIS analysis software (8.2.1) 

along with aXTension script named Colocalize Spots. We used the same approach as mentioned 

in Rajan et al. (456). Positive signals were found using the Imaris function spots from each 
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fluorescent marker images. The spot diameter used was 1.2 μm with the same quality factor for 

each image. The Colocalize Spots script considers co-localization between two spots when their 

center to center distance is equal of inferior to 0.8 μm. Focal adhesion quantifications were done 

using Image J software (National Institutes of Health) with a program previously described (457). 

2.3.3.10 Clinical data analysis 

METABRIC (458, 459) and TCGA (460) datasets were accessed through the cBioPortal online 

platform (461, 462). To investigate the correlation between the CASC4 and PCSK7 mRNA levels, 

the plot tool was used. To correlate the association of CASC4 and PCSK7 mRNA expression levels 

with the survival rate in the METABRIC dataset, the expression level values of both genes (in z-

scores) were downloaded for the whole dataset. Threshold of z-score =/higher than 1 is used to 

identify patients with high expression of PCSK7 or CASC4 and threshold of z-score =/lower than -

1 is used to identify patients with low expression of PCSK7.  All raw data (with samples IDs) used 

in generating these analyses are in Supplemental Figure 2.2. 

2.3.4 Results 

2.3.4.1 Mass spectrometry identifies two novel type-II transmembrane proteins cleaved 

by PC7 

To identify novel PC7 specific substrates, we used a mass spectrometry approach that analyses 

affinity purified N-glycoproteins secreted in the media (Figure 2.1A). Analysis of secreted N-

glycosylated products by this procedure avoids the limitations of the low concentrations of 

proteins of interest, high abundance of non-glycosylated plasma proteins in the incubation 

medium, or contamination by cytosolic proteins released from broken cells (463). Indeed, we 

selectively enriched samples for N-glycosylated peptides using hydrophilic interaction 

chromatography solid phase micro-extraction (HILIC SPE), before analyzing them by HPLC-ESI-

MSMS (Figure 2.1A). Accordingly, we compared the quantitative changes of 645 and 867 enriched 

glycosylated tryptic peptides from the spent media of human embryonic kidney cells (HEK293) 

and human hepatic (HuH7) cells, both endogenously expressing TfR1, overexpressing either 

human PC7 or an empty vector (EV) control, respectively (Figure 2.1B). From HEK293 spent media 

with PC7, 19 glycopeptides had significantly enhanced levels, 18 of which exhibited potential PC-
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cleavage sites (K/R)-(2Xn)-(K/R)( Table 2.1) (440). From the HuH7 spent media with PC7, 33 

glycopeptides had significantly enhanced levels and an additional 12 glycopeptides were only 

observed with PC7 expression (Table 2.2). Of these, only 10 parent glycoproteins exhibited 

potential PC-cleavage sites. These results allowed us to confirm previously known PC7 substrates, 

such as ADAM17 (336), Sortilin (447) and human TFR1 (235), as well the identification of two 

novel substrates, the type-II transmembrane proteins CASC4 and GPP130/GOLIM4 

(Supplemental Tables 2.1 and 2.2 and Figure 2.1C).  

In order to confirm that CASC4 and GPP130 were cleaved by PC7, we co-expressed in HEK293 

cells cDNAs coding for V5-tagged TfR1, CASC4 or GPP130 with those encoding PC7 or an empty 

vector control (Figure 2.1D). Compared to control conditions, Western blot (WB) analyses 

revealed the presence of secreted products (sCASC4 and sGPP130, or as control sTFR1) from cells 

co-expressing PC7, confirming that the membrane bound CASC4 and GPP130 are shed by PC7, 

similarly to TfR1. In view of the connection of CASC4 to cancer (see later), in this study, we 

concentrated on the consequences of the shedding and functional modulation of CASC4 by PCs 

in details. 

2.3.4.2 CASC4 is shed by PC7 and Furin 

To assess if CASC4 shedding is specific to PC7, in HEK293 cells we co-expressed CASC4 with all the 

basic amino acid specific PCs (Furin, PC5A, PC5B, PACE4 and PC7) (440), or with an empty vector 

control. WB analysis revealed the presence of a fragment released only in the media of cells 

expressing PC7 or Furin, but not from cells overexpressing the other PCs (Figure 2.1E). 

Interestingly, the molecular sizes of the PC7 and Furin shed products are similar (Figure 2.1E), 

suggesting that they cleave CASC4 at, or close to, the same site. To further characterize the 

difference between the observed ~66 kDa and ~75 kDa CASC4 cellular proteins (Figures 2.1D, E), 

we treated the cell lysates with endoglycosidase H (endo H) that cleaves immature, mannose-

rich sugars which are added on proteins as a post-translational modifications early in the 

secretory pathway (464), or with PNGase F, which cleaves both immature and mature N-linked 

oligosaccharides which are modified on proteins in post endoplasmic reticulum (ER) 

compartments (465) (Figure 2.1F). The data demonstrated that the ~66 kDa CASC4 is likely to 
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reside in the ER, since its apparent molecular size is reduced to ~61 kDa (*; ER-CASC4) when 

treated with endo H. We also noticed the presence of a residual amount of ~66 kDa CASC4 after 

endo H digestion, suggesting the presence of an O-glycosylated form that is not N-glycosylated. 

Indeed, the mature ~75 kDa CASC4 protein (#; mat-CASC4) is insensitive to endoH, suggesting it 

has exited the ER, but its size is reduced to both ~61 and ~66 kDa upon PGNase F digestion. As 

expected from the zymogen activation of Furin in the trans-Golgi network (TGN) (238, 466) and 

that of PC7 occurring in early endosomes (235, 450), only the ~75 kDa mat-CASC4 is processed 

by either PC7 or Furin (Figures 2.1D, E). 

Immunofluorescence staining of HeLa cells revealed that CASC4 co-localizes with the TGN marker 

Golgin-97 (yellow arrows, Figure 2.1G). When cells were stained under non-permeabilized 

conditions, CASC4 is only detected at the cell-surface, co-localizing with the cell-surface marker 

low-density-lipoprotein-receptor (LDLR) (yellow arrows, Figure 2.1H). Interestingly, we observed 

a change in cell morphology upon CASC4 expression, providing a clue to elucidate a novel 

biological function of CASC4. 
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Figure 2.1. Mass Spectrometry Identifies two type-II transmembrane proteins shed by PC7 and 
Furin.  
A) Schematic representation of the mass spectrometry strategy. The media from HEK or HuH7 
cells overexpressing PC7 or empty vector were analyzed by LC-ESI-MS/MS and screened for 
quantitative changes in N-glycosylated soluble proteins. B) Quantitative changes of 645 and 867 
enriched glycosylated tryptic peptides from the spent media of HEK293 and HuH7 cells. C) 
Schematic representation of human transferrin receptor 1 (TfR1), Golgi Phosphoprotein of 130 
kDa (GPP130), and Cancer Susceptibility Candidate 4 (CASC4) identified in the analysis. Depicted 
are the cytosolic tail (CT), the transmembrane domain (TM), the luminal domain and the C-
terminal V5-tag. The blue circles are depicting potential N-glycosylation sites and the white circles 
are depicting potential O-glycosylation sites. D) Western blot analysis of cell lysates and media 
from HEK293 cells expressing TfR1-V5, GPP130-V5 or CASC4-V5, with either empty pIRES-empty 
vector or hPC7. E) Western blot analysis of cell lysates and media from HEK293 cells expressing 
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CASC4-V5 with all the basic aa PCs. F) Western blot analysis of cell lysates from HEK293 expressing 
CASC4-V5 treated with endo H or PNGase F. G) Immunofluorescence analysis of permeabilized 
HeLa cells overexpressing CASC4-V5 colocalizing (yellow arrows) with Golgin-97, or in non-
permeabilized cells with LDLR (H). These results are representative of three independent 
experiments. Scale: 10µm. 
 

2.3.4.3 CASC4 cleavage by PC7 and Furin occurs at Arg66↓ 

Because PC7 and Furin cleave substrates after single or paired basic amino acids (aa) (440), we 

mutated the basic aa in the proposed P1-P2 (467) dibasic motif KR66↓, as well as the putative P5 

R60  and P7 R62 sites into alanine (Figures 2.2A, B). WB analyses of HEK293 cells co-expressing PC7 

or Furin with WT CASC4 or its Ala-mutants R60A, R62A, K65A or R66A, demonstrated that the 

K65A and especially R66A variants are resistant to shedding by PC7 and Furin (Figure 2.2B), while 

the other mutants did not affect shedding. To further emphasize that KR66↓ is the shedding site, 

we generated CASC4 mutant proteins harboring an optimized PC-site RRRRR66EL (440, 468) 

(called 5REL), or a PC-non-cleavable AA65/66 site. Accordingly, in HEK293 cells, processing of the 

CASC4-AA65/66 mutant protein was impaired compared to WT (Figures 2.2C, D). Expression of the 

5REL mutant generated a soluble fragment, even when overexpressed with an empty vector 

control (Figures 2.2C, D), with an apparent molecular size similar to the PC7/Furin-cleaved form 

of WT-CASC4, supporting that KR66↓ is the shedding site. To demonstrate that the heterogeneity 

of the secreted forms of CASC4 is due to O-glycosylation (Figure 2.2C), we co-expressed CASC4-

WT and its mutants 5REL and AA65/66 in CHO-ldlD cells, which are deficient in UDP-N-

acetylgalactosamine (469), and therefore cannot O-glycosylate proteins. As expected, the 

secreted sCASC4 now migrates as a sharp protein band (~61 kDa), confirming the O-glycosylation 

of CASC4 (Figure 2.2E). Taken together, these data confirm that CASC4 cleavage occurs at 

KR66NS, which generates a secreted luminal domain and a short N-terminal domain (NTD) 

composed of the cytosolic tail and transmembrane domain. 
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Figure 2.2. CASC4 Cleavage by PC7 and Furin occurs after Arg66↓ in acidic compartment.  
A) Schematic representation of the predicted cleavage site KR66↓ generating a N-terminal 
fragment and a luminal domain. The grey circles are depicting potential N-glycosylation sites and 
the white circles are depicting O-glycosylation sites. B) Western blot analysis of cell lysates and 
media from HEK293 cells overexpressing CASC4-V5 WT and different point mutation (R60A, 
R62A, K65A or R66A) co-expressed with either pIRES-empty vector or with hPC7 or hFurin. C-D) 
Western blot analysis and quantifications of cell lysates and media from HEK293 cells 
overexpressing CASC4-V5 WT, CASC4 5REL optimally cleaved mutant or a PC-non-cleavable 
AA65/66 site, co-expressed with either pIRES-empty vector or with hPC7 or hFurin. E) Western blot 
analysis of cell lysates and media from CHO ldlD cells overexpressing CASC4-V5 WT, CASC4 5REL 
optimally cleaved mutant or a PC-non-cleavable AA65/66 site, co-expressed with either pIRES-
empty vector or with hPC7 or hFurin. F) Western blot analysis of cells lysates and media from 
HEK293 cells overexpressing CASC4-V5 WT, pIRES-empty vector, and hPC7 or hFurin treated with 
Brefeldin A (2.5µg/mL) or Nh4Cl (20mM) (G). H) Western blot analysis of cell lysates and media 
from HEK293 cells overexpressing CASC4-V5 WT, pIRES-empty vector, dominant negative Sar1P-
(H79G), and/or with hPC7 or hFurin. These results are representative of three independent 
experiments. Error bars indicate averaged values ± standard error of the mean (SEM). P values: 
*, p ≤ 0.05, **, p <0.01, (Student’s t-test). 
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2.3.4.4 Shedding occurs in acidic compartments of the secretory pathway  

Shedding of CASC4 by PC7 and Furin occurs in a post-ER compartment, since it was abrogated 

when HEK293 cells were incubated with Brefeldin A (Figure 2.2F), which blocks the transport of 

proteins from the ER to the TGN (470). The same conclusion was reached upon expression of the 

dominant-negative Sar1p-(H79G) (Figure 2.2G), a GTP-restricted mutant that blocks COP-II 

vesicle formation [21]. Hence, proper COP-II vesicle formation and trafficking from the ER to the 

Golgi is necessary for PC7 and Furin to shed CASC4. We next used the alkalizing agent ammonium 

chloride (NH4Cl), to block the acidification of intracellular compartments and demonstrated that 

shedding of CASC4 was also impaired (Figure 2.2H), suggesting that that CASC4 shedding occurs 

in an acidic post-ER compartment(s), likely in endosomes and/or the TGN, as described for the 

shedding of hTfR1 by PC7 (235, 450), and for Furin-substrates (238, 448).  

2.3.4.5 CASC4 is expressed in metastatic breast cancer cells and its association with PC7 

predicts poor prognosis in breast cancer patients.  

CASC4 is an uncharacterized protein reported to be associated with a potentially bad prognosis 

in breast cancer (451), and its gene is aberrantly spliced in breast cancer cells (452). In addition, 

metastatic MDA-MB-453 triple negative breast cancer cells exhibit increased levels of secreted 

sCASC4 compared to non-cancerous breast cell lines (453). This motivated us to investigate the 

potential biological role of the PC7-CASC4 association in the context of breast cancer. First, we 

interrogated the METABRIC clinical dataset, the largest breast cancer dataset encompassing 

genomic data from ~2500 samples. Although CASC4 mRNA levels showed a significant negative 

correlation with those of PCSK7 (Figure 2.3A), the expression levels of the latter could 

differentiate the survival rate of the patients with high CASC4 levels (Figure 2.3B). Indeed, 

patients with high CASC4 and high PCSK7 expression levels had a significantly worse prognosis 

that those with high CASC4 but low PCSK7 mRNA levels (Figure 2.3B).  

Second, we analyzed the expression levels of CASC4, PCSK7 and Furin mRNA levels in MCF10a 

(human non-cancerous breast epithelial cell line) versus MDA-MB-231 (highly metastatic triple 

negative breast cancer cell line) cells by qPCR. The three genes are ~2-2.5-fold more expressed 

in MCF10a versus MDA-MB-231 (Figure 2.3C). However, at the protein level, WB analysis revealed 
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that while CASC4 is similarly expressed in both cell lines, its shedding into the media was mostly 

observed in MDA-MB-231 cells (Figure 2.3D). In addition, the protein expression levels of PC7 

and Furin were similar in both cells (Figure 2.3D). We suggest that the TGN localization of CASC4 

(Figure 2.1G) and that of the active form of its processing enzymes (450) may provide a favorable 

environment to allow its shedding in MDA-MB-231 cells compared to MCF10a cells. Altogether 

these data suggest that the PC7-CASC4 association and specifically the PC7-mediated shedding 

of CASC4 might have functional consequences in terms of breast cancer aggressiveness (i.e., 

metastasis).  

 

Figure 2.3. CASC4 association with PC7 predicts poor prognosis in breast cancer patients. 
A) Correlation of CASC4 and PCSK7 mRNA expression levels (in z-scores) in the METABRIC 
patients’ dataset. B) Association of the expression levels of CASC4 and PCSK7 genes with the 
survival patients’ rate. C) qPCR analysis of hCASC4, hPCSK7 and hFurin in MCF10a and MDA-MB-
231 cells. D) Western blot analysis and quantifications of cell lysates from MCF10a or MDA-MB-
231 cells. P values: **, p <0.01, n.s. : not significant (Student’s t-test). 
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2.3.4.6 CASC4 modulates cell migration and invasion  

The cytoskeletal extensions observed upon overexpression of CASC4 in Hela cells (Figure 2.1G), 

and the correlation between PCSK7-CASC4 mRNA levels with breast cancer patients’ survival 

(Figures 2.3A, B) suggested that CASC4 may impact cell migration and invasion, two essential 

steps of the metastatic process. We thus investigated whether siRNA knockdown of CASC4 alters 

cell migration and invasion in MDA-MB-231 cells. The siRNA-induced silencing was efficient since 

it reduced by ≥80% endogenous CASC4 protein, as observed by WB (Figure 2.4A) and 

immunofluorescence (Figure 2.4B). Depletion of CASC4 resulted in a significant increase in cell 

migration (+30%) and invasion (+60%) as assessed by Boyden Migration and Invasion Assays, 

respectively (Figures 2.4C-F). These results suggest that expression of CASC4 in MDA-MB-231 

cells reduces their cell migration and invasion potential. 

 

Figure 2.4. CASC4 knockdown increases migration and invasion in MDA-MB-231 metastatic 
breast cancer cells. 
A) Western blot analysis and quantification of cell lysates from MDA-MB-231 cells after 48h siRNA 
knockdown of endogenous CASC4. B) Immunofluorescence analysis of MDA-MB-231 cells after 
48h siRNA knockdown of endogenous CASC4 stained for CASC4 (white labeling), phalloidin (red 
labeling) and nucleus stained with DAPI (blue labeling). The ability of MDA-MB-231 cells, after 
48h siRNA knockdown of endogenous CASC4 to migrate (6h) (C-D) or invade (16h) (E-F) was 
assessed by counting the number of cells stained with DAPI on the underside of a polycarbonate 
membrane under a phase contrast microscope (20x). These results are representative of at least 
three independent experiments. Error bars indicate averaged values ± standard error of the mean 
(SEM). P values: **, p <0.01, ***, p ≤ 0.001, (Student’s t-test). Scale: 10µm.  
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Accordingly, we generated MDA-MB-231 cells stably expressing CASC4-WT, CASC4-5REL (with 

the constitutively PC-cleaved RRRRR66EL motif), or an empty vector control (Figure 2.5A). We 

confirmed the protein expression in these cells by WB analysis (Figure 2.5B). Since the lack of 

CASC4 expression resulted in enhanced migration and invasion (Figures 2.4C-F), we evaluated 

the migration potential of the stable cell lines first by using a wound healing assay. Compared to 

control or cells expressing CASC4-5REL, only expression of CASC4-WT resulted in significant 

inhibition of wound closure post-scratching, especially evident after 12h (Figures 2.5C, D). In 

complementary Boyden Migration and Invasion Assays (Figures 5E-H), CASC4-WT overexpression 

significantly reduced cell migration (-50%) and invasion (-70%), supporting a role of CASC4 as a 

negative regulator of cellular movement. Although overexpression of CASC4-5REL did not show 

a significant migration phenotype (Figures 2.5E, F), its effect on invasion was intermediate 

between WT and control (Figures 2.5G, H). Taken together, these data suggest that CASC4 

represses cellular migration, possibly by acting on key players orchestrating the cellular 

architecture, and that CASC4 shedding by PCs largely prevents this effect. 
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Figure 2.5. CASC4 overexpression decreases cell migration and invasion. 
A) Schematic representation of CASC4 WT and amino acid mutations used for the generation 
MDA-MB-231 stable cells. B) Western blot analysis of lysates from MDA-MB-231 stable cells 
expressing pIRES-empty vector, CASC4 WT-V5 or CASC4 5REL-V5. C-D) Wound healing assay 
images and quantifications after 6h, 12h post cell monolayer scratching in MDA-MB-231 stable 
cell lines. E-H) The ability of MDA-MB-231 stable cells to migrate (6h) (E-F) or invade (16h) (G-H) 
was assessed by counting the number of cells stained with DAPI on the underside of a 
polycarbonate membrane under a phase contrast microscope (20x). These results are 
representative of at least three independent experiments. Error bars indicate averaged values ± 
standard error of the mean (SEM). P values: *, p ≤ 0.05, ***, p ≤ 0.001, n.s. : not significant 
(Student’s t-test).  
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2.3.4.7 CASC4 enhances the number of focal adhesion (FA) formation and impairs Cdc42 

activation 

To investigate how CASC4 interferes with cellular migration/invasion, we analyzed the actin 

architecture and focal adhesions by immunofluorescence for phalloidin- and paxillin-staining, 

respectively. Interestingly, CASC4-WT cells exhibited a higher number and a trend for larger 

paxillin-positive focal adhesion complexes (Figures 2.6A, B), as well as ~3-fold more Tyr118-

phosphorylated paxillin (Figure 2.6C). In addition, the overall architecture of CASC4-WT cells was 

severely impaired, as evidenced by the induction of actin stress fibers at the expense of cortical 

actin (Figure 2.6A). This architectural cellular phenotype could explain the observed reduced 

migration observed in CASC4-WT cells (Figures 2.5 C-H). The actin architecture in cells expressing 

CASC4-REL, while also severely disrupted, exhibited a very different phenotype with a completely 

disorganized paxillin staining (Figure 2.6A).  

We next characterized in our stable cell lines the activation/inactivation of Rho GTPases, which 

are molecular switches that control actin cytoskeleton and focal adhesion dynamics (471),(472). 

The levels of the active forms of the Rho GTPases Cdc42 and RhoA implicated in focal adhesion 

turnover (473, 474) were quantified by specific GST pull-downs. The data revealed a significant 

decrease in the levels of active Cdc42 in cells overexpressing CASC4-WT, compared to empty 

vector and CASC4-5REL, whereas those of active RhoA remained unchanged (Figure 2.6D). This 

suggests that CASC4-WT, but not CASC4-5REL, blunts the activation of Cdc42, resulting in 

increased assembly of focal adhesion and stress fibers (Figure 2.6A).  
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Figure 2.6. CASC4 enhances focal adhesions and perturbs actin architecture. 
A) Immunofluorescence analysis of stable MDA-MB-231 cell lines expressing pIRES-empty vector, 
CASC4 WT or CASC4 5REL stained for focal adhesion marker (Paxillin; red labeling), phalloidin (F-
actin; white labeling), and V5 (green labeling). Yellow arrows are highlighting round actin circles 
generated in cells expressing CASC4 5REL. B) Quantifications of focal adhesions (Paxillin positive 
areas) number and size. C) Western blot analysis and quantifications of cell lysates from MDA-
MB-231 stable cells showing endogenous paxillin and p-paxillin (Y118). D) Western blot analysis 
and quantification of cells lysates from MDA-MB-231 stable cells incubated with the indicated 
GST-fusion proteins bound to Glutathione beads. The precipitated proteins were detected by 
immunoblotting with anti-cdc42 or anti-RhoA antibodies. TCL: total cell lysate. These results are 
representative of at least three independent experiments. Error bars indicate averaged values ± 
standard error of the mean (SEM). P values: *, p ≤ 0.05 **, p <0.01, n.s: not significant (Student’s 
t-test). Scale: 10µm. 
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2.3.4.8 CASC4 N-terminal domain (NTD) impairs actin organization and induces 

invadopodia-like structures 

Notably, cells expressing CASC4-5REL presented round actin rings (depicted with yellow arrows) 

(Figure 2.6A). These structures are reminiscent of circular dorsal ruffles, actin structures present 

on the dorsal surface of cells in response to stimuli (i.e., EGF, PDGF) (475), and/or invadosomes 

(invadopodias/podosomes) structures implicated in actin remodeling and invasion in both 

cancerous (invadopodias) and non-cancerous cells (podosomes) (454, 455). Since co-localization 

of F-actin with protein tyrosine kinase substrate 5 (Tks5) and extracellular matrix degradation can 

define invadosomes (455), we characterized these structures by immunofluorescence staining 

for F-actin and Tks5. The data showed that Tks5 staining co-localizes (yellow arrows) with the F-

actin structures in CASC4 5REL cells (Figures 2.7A, B), suggesting that these actin structures were 

invadopodias/podosomes. We next investigated whether the NTD or the C-terminal luminal 

fragment generated by PC7/Furin is/are implicated in invadopodias induction. Thus, we 

generated two constructs, one with a stop codon at 11-residues after the shedding site (aa 1-77, 

likely processed at Arg66), to create an artificial NTD fragment, and another secretory protein 

mimicking the luminal shed domain with an N-terminal  PCSK9 signal peptide (SP) (476) fused to 

Asn67 following the shedding site at Arg66 (SP-TM) (Figure 2.7C). We confirmed the expression 

of these constructs in MDA-MB-231 cells by WB analyses (Figure 2.7D) and immunocytochemistry 

(Supplemental Figure 2.1). We next assessed the presence of the actin rings structures in cells 

expressing the different constructs by immunofluorescence (Figure 2.7E). Cells expressing the 

5REL and especially the membrane bound NTD constructs exhibit the presence of round actin 

structures co-localizing with Tks5 (yellow arrows). To test the NTD role in inducing invadopodias 

formation, likely influencing migration/invasion, we transiently expressed all constructs in MDA-

MB-231 cells and performed Boyden Invasion and Migration assays. First, we showed that the 

double Ala-mutant of the shedding site (CASC4 AA65/66, Figure 2.2C) is ~2-fold more active in 

reducing invasion than the WT-CASC4 (Figures 2.7H, I), supporting the protective role of full 

length CASC4. In contrast, expression of the NTD significantly enhanced migration/invasion, 

whereas expression of the SP-TM mutant had no effect (Figures 2.7F-I). Thus, the N-terminal 
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fragment generated upon shedding of CASC4 is mainly responsible for the cytoskeletal disruption 

observed in the CASC4-5REL cells. 
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Figure 2.7. CASC4 N-terminal domain (NTD) induces podosome-like structures. 
(A-B) Immunofluorescence analysis and quantification of MDA-MB-231 stable cells stained for 
phalloidin (F-actin; white labeling) or tyrosine kinase substrate 5 (TKS5; green labeling). C) 
Schematic representation of CASC4 truncated mutant (NTD) with a 3Xflag in N-terminal and SP-
ΔTM-CASC4 with a V5 in C-terminal. The blue circles are depicting potential N-glycosylation sites 
and the white circles are depicting O-glycosylation sites. D) Western blot analysis of cell lysates 
and media from MDA-MB-231 cells transiently transfected with different CASC4 constructs. E) 
Immunofluorescence analysis of transiently transfected MDA-MB-231 cells stained for phalloidin 
(F-actin; white labeling), tyrosine kinase substrate 5 TKS5 (green labeling) and nucleus stained 
with DAPI (blue labeling). Yellow arrows represent colocalization between F-actin and TKS5. The 
ability of transiently transfected MDA-MB-231 cells to migrate (6h) (E-F) or invade (16h) (G-H) was 
assessed by counting the number of cells stained with DAPI on the underside of a polycarbonate 
membrane under a phase contrast microscope (20x).These results are representative of at least 
three independent experiments. Error bars indicate averaged values ± standard error of the mean 
(SEM). P values: *, p ≤ 0.05, **, p <0.01, ***, p ≤ 0.001 n.s : not significant (Student’s t-test). 
Scale: 10µm. 
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Figure 2.8. Schematic representation of CASC4 biological functions along the secretory 
pathway. 
Depicted are full-length CASC4 WT in the early secretory pathway interfering with the Rho 
GTPase Cdc42-GTP activation. The decrease in Cdc42 activation results in increased paxillin 
positive staining focal adhesions which slows down migration (left panel). The dual roles for 
CASC4 5REL functions are depicted as the protein remain full-length (CASC4 WT) in the early 
secretory pathway, but is shed trafficking along the secretory pathway which generates 
membrane-bound N-terminal domain (NTD) which induces the formation of podosome-like 
structures (right panel) and increases migration, which results in an intermediate migratory 
phenotype. 
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Table 2.1: Glycopeptides significantly enriched from the spent media of HEK293 cells 

overexpressing human proprotein convertase 7. 

 

NFEV: Glycopeptide not identified from HEK293 spent media transfected with empty vector as 

control and significantly different from media from PC7 expressing cells. Significance defined as 

p<0.05 by Student’s t-Test. 

 

Protein ID Gene ID Protein Name Ratio glycopeptide intensity PC7/EV N-linked glycopeptide

identified

P02786 TFRC Transferrin receptor protein 1 52.81106 KDFEDLYTPVNGSIVIVR

P02786 TFRC Transferrin receptor protein 1 29.93287 KQNNGAFNETLFR

Q13433 SLC39A6 Zinc transporter ZIP6 7.908147 YGENNSLSVEGFR

Q13433 SLC39A6 Zinc transporter ZIP6 2.976814 KTNESVSEPR

Q16549 PCSK7 Proprotein convertase subtilisin/kexin type 7 NFEVS CAGEIAAVPNNSFCAVGVAYGSR

Q16549 PCSK7 Proprotein convertase subtilisin/kexin type 7 NFEVS DINVTGVWERNVTGR

Q16549 PCSK7 Proprotein convertase subtilisin/kexin type 7 NFEVS DINVTGVWERNVTGR

P49641 MAN2A2 Alpha-mannosidase 2x 12.52052 NLGFNCTTSQGK

P55268 LAMB2 Laminin subunit beta-2 4.758911 NTSAASTAQLVEATEELRR

A2RU67 KIAA1467 Uncharacterized protein KIAA1467 15.38932 APDSNCSNLLITTR

Q96MM7 HS6ST2 Heparan-sulfate 6-O-sulfotransferase 2 3.47587 YNFTRGDLLR

Q9UK76 HN1 Hematological and neurological expressed 1 protein NFEVS GVDPNSRNSSR

Q9UK76 HN1 Hematological and neurological expressed 1 protein NFEVS VLRPPGGGSNFSLGFDEPTEQPVRK

Q8WXG9 GPR98 G-protein coupled receptor 98 0.125277 ISEENTTAR

P10253 GAA Lysosomal alpha-glucosidase 3.670205 NNTIVNELVR

O75976 CPD Carboxypeptidase D 7.709885 NNSNNFDLNR

Q9H8M5 CNNM2 Metal transporter CNNM2 11.78985 VYGQNINNETWSR

Q6P4E1 CASC4 Protein CASC4 9.046698 QEDQLQDYRKNNTYLVK

P18850 ATF6 Cyclic AMP-dependent transcription factor ATF-6 alpha NFEVS DHLLLPATTHNKTTRPK
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Table 2.2: Glycopeptides significantly enriched from the spent media of HuH7 cells 

overexpressing human proprotein convertase 7.

 

NFEV: Glycopeptide not identified from HuH7 spent media transfected with empty vector as 

control. NFEVS: Not found in EV and significant from PC7 spent media. Significance defined as 

p<0.05 by Student’s t-Test 

 
 
 
 
 
 
 

Protein ID Gene ID Protein Name Ratio glyco-peptide intensity PC7/EV N-linked glycopeptides

identified

P78536 ADAM17 Disintegrin and metalloproteinase domain-containing protein 17 4.92 SEDIKNVSR

Q15758 ASCT2 Sodium-dependent neutral amino acid transporter type 2 5.79 SYSTTYEERNITGTR

Q15904 ATP6AP1 Protein XAP-3 5.54 EIKINASIPAIIIIR

Q8NBJ4 C9orf155 Golgi membrane protein 1 2.04 IYQDEKAVIVNNITTGER

G5E934 CASC4 Cancer susceptibility candidate gene 4 protein NFEVS QEDQIQDYRKNNTYIVK

Q9UBG0 CLEC13E C-type lectin domain family 13 member E 0.69 WNDSPCNQSIPSICK

O75976 CPD Carboxypeptidase D 2.9 IINTTDVYIIPSINPDGFER

O75976 CPD Carboxypeptidase D 2.2 GYNPVTKNVTVK

A9R9N7 DADB-123D8.3-002Major histocompatibility complex, class I, A 3.25 GYYNQSEAGSHTVQR

O43909 EXTL1L Exostosin-like 3 NFEVS KSDTQNIIYNVSTGR

Q06828 FM Collagen-binding 59 kDa protein 0.68 IYIDHNNITR

P10253 GAA 70 kDa lysosomal alpha-glucosidase 2.29 GVFITNETGQPIIGK

Q99988 GDF15 Growth/differentiation factor 15 1.21 IRANQSWEDSNTDIVPAPAVR

F6S8M0 GNS Glucosamine-6-sulfatase NFEVS ASIITGKYPHNHHVVNNTIEGNCSSK

Q9Y4L1 GRP170 150 kDa oxygen-regulated protein NFEVS DKNGTRAEPPINASASDQGEK

E9PDY5 HS6ST2 Heparan-sulfate 6-O-sulfotransferase 2 NFEVS FVPRYNFTRGDIIR

P10809 HSP60 60 kDa chaperonin NFEVS VTDAINATR

Q92626 KIAA0230 Melanoma-associated antigen MG50 13.04 QGEHISNSTSAFSTR

P11047 LAMB2 Laminin B2 chain 0.03 IQRVNNTISSQISR

Q13433 LIV1 Estrogen-regulated protein LIV-1 NFEVS KTNESVSEPR

Q9H9K5 LP9056 Uncharacterized protein LP9056 0.86 AIINISK

Q16549 PCSK7 Subtilisin/kexin-like protease PC7 NFEVS DINVTGVWER

Q16549 PCSK7 Subtilisin/kexin-like protease PC7 NFEVS RSPGRDINVTGVWER

Q16549 PCSK7 Subtilisin/kexin-like protease PC7 NFEVS SPGRDINVTGVWERNVTGR

Q16549 PCSK7 Subtilisin/kexin-like protease PC7 NFEVS SPGRDINVTGVWER

P78395 MAPE Melanoma antigen preferentially expressed in tumors 28.07 IPTIAKFSPYIGQMINIR

P08195-4 MDU1 4F2 cell-surface antigen heavy chain 5.08 DIENIKDASSFIAEWQNITK

P54802 NAGLU Alpha-N-acetylglucosaminidase 0.68 SVYNCSGEACR

P47972 NPTX2 Neuronal pentraxin II 9.26 KVAEIEDEKSIIHNETSAHR

P02787 PRO1400 Beta-1 metal-binding globulin 2.82 IIRQQQHIFGSNVTDCSGNFCIFR

Q99523 SORT1 100 kDa NT receptor NFEVS DITDIINNTFIR

P02786 TFRC Transferrin receptor protein 1 35.88 KQNNGAFNETIFR

P02786 TFRC Transferrin receptor protein 1 NFEVS DFEDIYTPVNGSIVIVR

P51884 LDC Keratan sulfate proteoglycan lumican NFEV KLHINHNNLTESVGPLPK

P02786 TFRC Transferrin receptor protein 1 NFEV KDFEDLYTPVNGSIVIVR

P18850 ATF6 Activating transcription factor 6 alpha NFEV DHLLLPATTHNKTTRPK

Q9H8M5 ACDP2 Ancient conserved domain-containing protein 2 NFEV VYGQNINNETWSR

Q96TA2 FTSH1 ATP-dependent metalloprotease FtsH1 NFEV SVEIDNKNK

Q96J84-2 KIRREL Kin of irregular chiasm-like protein 1 NFEV IDGGPVILLQAGTPHNLTCR

O00461 GPP130 Golgi-localized phosphoprotein of 130 kDa NFEV KPDPAEQQNVTQVAHSPQGYNTAR

/GIMPC

E7ETH0 CFI C3B/C4B inactivator NFEV SIPACVPWSPYIFQPNDTCIVSGWGR

G5E934 CASC4 Cancer susceptibility candidate gene 4 protein NFEV KNNTYLVK

P02787 PRO1400 Beta-1 metal-binding globulin NFEV CGLVPVLAENYNKSDNCEDTPEAGYFAIAVVK

P02786 TFRC Transferrin receptor protein 1 NFEV QNNGAFNETLFR

P23142-4 CTA-941F9.7-002Fibulin 1 NFEV CATPHGDNASIEATFVK
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Supplemental Figure 2.1. CASC4-NTD and SP-ΔTM-CASC4 are well expressed in MDA-MB-231 
cells. 
Immunofluorescence analysis of transiently transfected   MDA-MB-231 cells stained for 
phalloidin (F-actin; white labeling), CASC4  (V5 or Flag tags) (green labeling) and nucleus stained 
with DAPI (blue labeling). Scale: 10µm 

 

 
 
 
 
 



96 

  
 
Supplemental Figure 2.2. METABRIC and TCGA patients’ raw data.  
Raw data (with samples IDs) used to investigate the correlation between CASC4 mRNA levels in 
METABRIC and TCGA patients’ datasets.  PR=Progesterone receptor, ER=Estrogen receptor. 
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Supplemental Figure 2.3. Cancer locus PCSK7.   
Map of the chromosome 11 with different cancer incidence, where PC7 is highlighted in ovarian, 
breast and uterine cancer and is located in close proximity with the apolipoprotein locus. 

 
Supplemental Table 2.1. Oligonucleotides for RT-quantitative PCR.
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2.3.5 Discussion 

The proprotein convertases play key roles in both health and disease states by cleavage of 

precursor proteins (440), which results in the bioactivation of proteins, but sometimes may also 

generate cleaved products endowed with novel functions (59, 477). While the roles of Furin in 

proliferative and infectious diseases have been extensively characterized (83, 210, 216, 448, 478), 

those of PC7 are barely defined (235, 447, 450). One of the specific functions of PC7 is the 

shedding of the human type-II TfR1 (235), resulting in the secretion of a circulating sTfR1 that 

correlates with iron deficiency (479). These data and those of the present study suggest that PC7 

may shed several type-II transmembrane-proteins, and would not represent a rare phenomenon, 

but rather provide a mechanism to modulate their functions and possibly generate new ones. 

A proteomic screen from the media of HuH7 cells identified three shed type-II transmembrane-

proteins, TfR1, as well as CASC4 and GPP130. We demonstrated that only PC7 and Furin can shed 

CASC4 at Arg66 and GPP130 (not shown) in post-ER acidic compartments. This CASC4 cleavage 

generates an N-terminal membrane-bound fragment (NTD; aa 2-65) and a secreted C-terminal 

fragment starting at Asn67. The only available information on CASC4 is its association with HER2+ 

overexpression and its differential splicing in breast cancer (451, 452) and glioblastoma (416). 

Our METABRIC data indicated that patients with high PCSK7 and high CASC4 had significantly 

worse prognosis than those with high CASC4 but low PCSK7. In addition, we demonstrated that 

endogenous shedding of CASC4 is only observed in triple negative breast cancer cells MDA-MB-

231. We thus hypothesized that CASC4 and its shedding are relevant in breast cancer 

aggressiveness/metastasis. Initial evidence revealed that knockdown of CASC4 mRNA 

significantly increased cell migration and invasion, suggesting a protective role of CASC4. 

To explore the functional consequences of CASC4 shedding, we generated three cells lines 

expressing either a control empty vector, CASC4-WT or CASC4-5REL. The data revealed that 

overexpressed CASC4 enhanced the number of focal adhesions, in part by blunting the activation 

of the Rho GTPase Cdc42, supporting its effect on the reduced migratory potential of these cells. 

It is not surprising that Cdc42 activity could be modulated by Golgi-localized CASC4 since Cdc42 
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localizes to the Golgi apparatus and interacts with regulators of cytoskeleton remodeling and 

centrosome organization (480). We further demonstrated that shedding of CASC4 into sCASC4 is 

a critical event that transforms the protective function of CASC4-WT into a pathogenic one due 

to the generation of the NTD (Figure 2.8).  Since shedding likely occurs in the TGN (Furin) or 

endosomes (PC7), CASC4-5REL would remain as full length until it reaches these intracellular 

destinations, and would partially participate in reducing invasion in early Golgi compartments 

(Figure 2.8), like CASC4-WT. This may rationalize the intermediate invasion phenotype observed 

in cells expressing CASC4-5REL, which when shed later along the secretory pathway would 

generate an NTD that rather increases podosome formation, known to be associated with 

enhanced invasion (454, 455). More detailed studies are needed to define the underlying 

mechanism behind the activity of the NTD in enhancing the formation of podosome-like 

structures. Since we do not know the physiological function of CASC4, future work will also be 

needed to investigate the function of the luminal domain of this protein. Similar to other 

members of the GOLM1 family, CASC4 may act as a co-receptor, as reported for GOLM1/GP73 

for the EGF receptor (481). 

The fact that experimental expression of different forms of CASC4 (WT, AA65/66 or 5REL) leads to 

different/opposing biological consequences in the context of breast cancer, suggests that this 

protein might have dual actions depending on the associated activity of PC7/Furin. Breast cancer 

can be categorized pathologically into three main categories: Estrogen/progesterone receptor 

(ER/PR) positive, HER2+, or Triple-Negative Breast Cancer (TNBC). Interestingly, in two different 

clinical breast cancer datasets, METABRIC and TCGA, we found that CASC4 expression positively 

correlates with the ER/PR status (Supplemental Figure 2.2). Correlating the CASC4 mRNA levels 

to the different molecular subtypes of breast cancer by the PAM50 classification showed similarly 

that luminal tumors, that are usually ER/PR positive and have best prognosis, express the highest 

levels of CASC4 (Supplemental Figure 2.2). These evidences strongly pinpoint the significance of 

exploring the dual roles of CASC4 and its PC7/Furin-shed form in order to better understand the 

role of CASC4 in different breast cancer subtypes.  

Interestingly, analysis of the genes implicated in cancer on chromosome 11, revealed that the 

locus 11q23.3 is associated with a high incidence of ovarian, breast and uterine cancer (human 
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cancer proteome database http://canprovar2.zhang-lab.org/chr/chr11.php). Coincidentally, this is 

the locus of PCSK7 that resides close to the gene-cluster APOA5/APOA4/APOC3/APOA1, a region 

implicated in the regulation of lipoprotein metabolism (Supplemental Figure 2.3) (299). 

In conclusion, our results provide a framework for deciphering the biological functions of CASC4 

and more importantly suggest that inhibitors of Furin/PC7 may find clinical applications in breast 

and ovarian cancers (216, 440, 444).  
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3.1 Résumé: 

Durant ce troisième chapitre nous nous intéresserons à l’étude de GPP130, un deuxième substrat 

de PC7 identifié dans notre analyse protéomique. Nous avons démontré que GPP130 est aussi 

clivé par PC7 et Furin mais au niveau des motifs H67RSRLEK73↓SL et K274PTR277↓EV dans les 

endosomes/TGN ou à la membrane plasmique. Récemment, GPP130 a été rapporté comme étant 

impliqué dans la prolifération cellulaire de cancers de la tête et du cou. Nos analyses provenant 

de la banque de données cBioPortal ont montré que le gène GPP130/GOLIM4 était surexprimé 

dans 35% des cas de cancer du poumon. Nous avons aussi montré qu’une réduction de GPP130 

dans les cellules de cancer de poumon A549 augmente légèrement la prolifération cellulaire. 

Nous étudions actuellement l’hypothèse que GPP130 transporterait des cargos qui pourraient 

influencer la prolifération cellulaire.  
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3.3 Manuscript #2 

Shedding of GPP130 by PC7 and Furin sheds light on a Golgi-resident 

protein with a unique trafficking pathway 

Stéphanie Duval1 and Nabil G. Seidah1 

1-Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, 

Canada. 

 

3.3.1 Abstract:  

GPP130, or Golgi phosphoprotein of 130 kDa, is a protein that was identified as a potential PC7 

substrate from a proteomics screen performed previously. GPP130 is a type-II transmembrane 

protein with a luminal domain containing endosomal and Golgi-retrieval determinants enabling 

a unique trafficking route. GPP130 is predicted to be trafficking cargos, and most of the previous 

work is related to its binding and retrograde trafficking of the Shiga toxin. GPP130 was also 

recently reported to be implicated in cell cycle progression and cell proliferation in head and neck 

cancer cells. Our analysis from cBioPortal for Cancer Genomics has shown that the 

GPP130/GOLIM4 gene is amplified in up to 35% of the patients with lung cancer. These first 

observations led us to use the A549 lung cancer cell lines to investigate GPP130 functions and to 

analyze how is the shedding by PC7/Furin affecting these functions. We first validated that 

GPP130 is indeed cleaved by PC7 and Furin at two different shedding sites on its luminal domain, 

at a first site within the motif H67RSRLEK73↓SL and at a second site K274PTR277↓EV, specific for 

Furin. We further showed that the shedding requires the formation of COPII-coated vesicles and 

occurs in acidic endosomes/trans-Golgi Network (TGN) and at the plasma membrane. 

Furthermore, we have preliminary results showing that GPP130 knockdown in A549 cells slightly 

increases cell proliferation. We have also showed proliferation disadvantage using different 

GPP130 mutant constructs. We are currently investigating the possibility of GPP130 to be 

carrying important cargos that would influence cell proliferation. In conclusion, our analysis from 

this new PC7 and Furin substrate is shedding light on a Golgi-resident protein with unknown 
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biological functions. Future work will help to decipher its involvement in diseases’ progression, 

and how the shedding by PCs modulate its functions.  

3.3.2 Introduction: 

The proprotein convertases (PCs) are a family of nine serine secretory proteases implicated in 

multiple biological mechanisms, from development to viral infections (4). PCs are responsible for 

the cleavage and maturation of a wide variety of precursor proteins (4). The first seven PCs cleave 

(↓) precursor proteins at specific single or paired basic amino acid (aa) within the motif (R/K)-

(2X)n-(R/K)↓, where n = 0, 1, 2, or 3 spacer aa (4). In the clinic, therapies targeting the PCs have 

had multiple success (i.e. PCSK9 antibodies (320) or the FANG vaccine (226)), but the physiological 

roles of PC7, the seventh member of the family, are still obscure. Searching for new PC7 

substrates, a quantitative proteomics screen for selective enrichment of N-glycosylated 

polypeptides secreted from hepatic HuH7 cells performed recently (482) have identified another 

interesting type-II transmembrane protein as potential PC7 substrate; Golgi Phosphoprotein of 

130 kDa (GPP130/GOLIM4).  

GPP130 is a Golgi protein that has a small cytosolic tail, a 20 amino acids (aa) transmembrane 

domain and a luminal domain containing features that dictate its trafficking route (241, 423). It 

was demonstrated that GPP130 is trafficking from the cis-Golgi to the plasma membrane and 

back to the  cis-Golgi via the TGN38/46 bypass pathway (419, 421). Further investigations have 

demonstrated that GPP130 is binding the Shiga toxin in early endosomes and help the toxin to 

traffic back to the endoplasmic reticulum to exert its cytotoxic effect (430). In addition, 

manganese treatment was also shown to induce GPP130 oligomerization which in turn reroute 

GPP130 into multivesicular bodies (MVBs) before trafficking to lysosomes for degradation (431). 

Therefore, GPP130 have been described has a Golgi protein with a unique trafficking route that 

carries cargos within the secretory pathway. Recently, the GPP130/GOLIM4 gene was connected 

to head and neck cancer in a study investigating downstream targets of stromal interaction 

molecule 1 (STM1), a calcium channel protein member of the Store-operated calcium entry 

(SOCE), a pathway activated upon reduction in intracellular endoplasmic reticulum Ca2+ (483). In 

this former study, GPP130 expression was shown to be higher in head and neck cancer cells and 
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it was suggested as a potential downstream target of STM1 (435). Also, Bai et al. showed that 

GPP130 is implicated in cell cycle progression and cell proliferation, by modulating the expression 

levels of MDM2 and CDK6, in head and neck cancer cells (435). In line with these observations, 

our analysis from cBioPortal for Cancer Genomics database have shown that the GPP130 gene is 

amplified in up to 35% of the patients with lung cancer and ~10% in head and neck cancer 

patients.  

We have first investigated the cleavage of GPP130 by PCs in HEK293 cells, where we showed that 

both PC7 and Furin are cleaving GPP130 at two distinct cleavage sites H67RSRLEK73↓SL and at a 

second site K274PTR277↓EV, specific for Furin on its luminal domain, releasing two different 

molecular weight fragments into the media. Also, we characterized the intracellular localization 

of the cleavage and identified the PC7/Furin cleavage site to be in acidic endosome or TGN, and 

the Furin-specific site to possibly be at the plasma membrane. Finally, we tested for cell 

proliferation as shown previously in head and neck cancer cells and we showed a moderate 

increase in cell proliferation when silencing GPP130 in lung cancer cells. Also, we investigated the 

consequences of GPP130 cleavage on cell proliferation and showed that the generation of 

GPP130 secreted luminal domain is inducing a proliferation disadvantage in A549 lung cancer 

cells. 

In conclusion, we showed that GPP130 is a Golgi-localized protein that is cleaved and shed by 

two proprotein convertases PC7 and Furin in acidic compartments and possibly at the plasma 

membrane. GPP130’s cleavage by PCs could have consequences on cargo binding and 

consequently be beneficial or detrimental during cancer progression and needs to be further 

investigated. 

3.3.3 Results  

3.3.3.1 GPP130 is cleaved and shed by PC7 and Furin 

Using a mass spectrometry approach consisting of selective enrichment of N-glycosylated 

secreted polypeptides performed previously to define novel PC7 substrates  (482) our group 

recently identified a type-II transmembrane protein, GPP130 (Figure 3.1A) as a potential 
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candidate. In this current study, we are investigating the functional relevance of GPP130 

shedding by PC7. To do so, we first validated that GPP130 is processed by PC7 in HEK293 cells 

overexpressing cDNAs coding for GPP130 with a V5 tag on its C-terminal (Figure 3.1A), PC7, or an 

empty vector control plasmid (Figure 3.1B). Western blot (WB) analyses revealed that GPP130 is 

cleaved and shed in the media by PC7 since we observed the release of a ~ 100 kDa fragment in 

the media in presence of PC7 when using an antibody targeting the V5 tag on its luminal domain, 

but not in the control cells expressing cDNAs coding for empty vector (Figure 3.1B). In addition, 

overexpression in HEK293 cells of cDNAs coding for GPP130 with all the basic aa specific PCs 

(Furin, PC5A, PC5B, PACE4 and PC7), or empty vector control revealed that not only PC7, but also 

Furin is able to cleave and shed GPP130 into the media (Figure 3.1C). Interestingly, Furin is 

cleaving GPP130 at two different sites within its luminal domain, since two distinct fragments of 

different molecular weights ~ 100 kDa and ~75 kDa are detectable in the media (Figure 3.1C).  

 

Figure 3.1. PC7 and Furin cleave GPP130.  
A) Schematic representation of human transferrin receptor 1 (TfR1) and Golgi Phosphoprotein of 
130 kDa (GPP130) identified in the mass spectrometry analysis. Depicted are the cytosolic tail 
(CT), the transmembrane domain (TM), the luminal domain and the C-terminal V5-tag. The blue 
circle is depicting a potential N-glycosylation site. B) Western blot analysis of cell lysates and 
media from HEK293 cells expressing TfR1-V5, GPP130-V5 or CASC4-V5, with either pIRES-empty 
vector (EV) or human PC7. C) Western blot analysis of cell lysates and media from HEK293 cells 
expressing GPP130-V5 with all the basic aa PCs or pIRES-empty vector. These results are 
representative of three independent experiments.  
 
 
To better understand the trafficking of GPP130, by immunofluorescence analysis we 

demonstrated that GPP130 colocalizes mainly within the TGN marker Golgin-97, and to a smaller 

proportion colocalizes with early endosome antigen 1 marker (EEA1), the endoplasmic reticulum 
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marker calnexin and the plasma membrane marker low density lipoprotein receptor (LDLR) 

(Figure 3.2), when overexpressed in HeLa cells. These results are coherent with previous 

publications demonstrating that PC7 and Furin activities are mostly occurring in the TGN and/or 

endosomal-like structures (235, 238, 239).   

 

Figure 3.2. GPP130 is localized primarily in the TGN when overexpressed in HeLa cells. 
Immunofluorescence analysis of permeabilized HeLa cells overexpressing human GPP130-V5 
colocalizing (white arrows) with TGN marker (Golgin-97), early endosome marker (EEA1), 
endoplasmic reticulum marker (calnexin) and plasma membrane marker low density lipoprotein 
receptor (LDLR) (non-permeabilized condition). These results are representative of three 
independent experiments. Scale: 10µm 

3.3.3.2 Identification of GPP130 shedding sites by PC7 and Furin 

To identify GPP130 cleavage sites we replaced arginines or lysines by alanines within potential 

consensus cleavage motifs (R/K)-Xn-(R/K)↓ using site-directed mutagenesis and assessed the 
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cleavage activity of GPP130 by analysing its release in the media. Western blot analysis of HEK293 

cells overexpressing cDNAs coding for GPP130 WT, its mutant forms (H67A, R68A, R70A, K73A, 

R148A, K274A or R277A) or an empty vector control, we demonstrated that the R68A and R70A 

mutants are resistant for PC7 shedding and that residues from H67A to K73A are resistant to 

Furin shedding within the first motif H67RSRLEK73 (s1-site) (Figures 3.3A-B). Also, while the other 

mutants did not affect PC7 shedding, the mutants K274A and R277A were resistant for Furin 

second shedding (s2-site) (Figures 3.3A, B). These results demonstrated that GPP130 is cleaved 

at HRSR70↓ by both PC7 and Furin, but only Furin cleaves GPP130 at the KPTR277↓EV site (Figure 

3.3B). To further emphasis that these are the cleavage sites, we generated mutant proteins 

harboring an optimized PC recognition site (440) RRRR70EL (called 4REL). WB analysis 

demonstrated that this motif is indeed the cleavage site because the expression in HEK293 cells 

of cDNAs coding for the GPP130-4REL mutant generated a soluble form of the protein in the 

media, even when coexpressed with empty vector control, at the same molecular weight then 

the WT construct coexpressed with PC7 or Furin (Figure 3.3C). Accordingly, the expression of the 

R70A mutant generated the shedding at only the second site (the Furin cleavage s2 site) in the 

media when overexpressed with either PC7 or Furin (Figures 3.3B, C). 
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Figure 3.3. GPP130 cleavage by PC7 and Furin occurs at HRSR70↓LE and solely at KPTR277↓EV 
for Furin. 
A) Schematic representation of GPP130 cleavage motifs and released fragments. B) Western blot 
analysis of cell lysates and media from HEK293 cells overexpressing GPP130-V5 WT and different 
point mutation (H67A, R68A, R70A, K73A, R148A, K274A or R277A), with human PC7, human 
Furin or with pIRES-empty vector (EV). C) Western blot analysis and quantifications of cell lysates 
and media from HEK293 cells overexpressing GPP130-V5 WT, GPP130 4REL (an optimally cleaved 
mutant) or GPP130 R70A (a PC non-cleavable mutant) coexpressed with human PC7, human Furin 
or with pIRES-empty vector. These results are representative of three independent experiments.  
 

3.3.3.3 GPP130 is cleaved in post-ER acidic compartment 

In order to determine in which cellular compartments GPP130 is cleaved by PC7 and Furin, we 

took advantage of different inhibitors and mutant proteins. In HEK293 cells, WB analysis showed 

that the shedding of GPP130 by PC7 and Furin was abrogated when treated with Brefeldin A (BFA) 

(Figure 3.4A), an inhibitor that blocks the transport of proteins from the ER to the cis-Golgi (470). 

Shedding was also inhibited when we overexpressed PC7 or Furin in combination with cDNAS 

coding for the dominant negative Sar1p (H79G) mutant protein (Figure 3.4B), a GTP-restricted 

mutant that blocks COPII vesicles formation (484). It is interesting to note that GPP130 

intracellular levels are affected by both BFA treatment and the coexpression of the Sar1p (H79G) 

mutant. Indeed, we can observe an increase in intracellular protein levels in these two conditions 

(Figures 3.4A-B), suggesting that these conditions are blocking the ‘normal’ degradative route 

taken by GPP130 when overexpressed in cells. We next used the alkalizing agent ammonium 

chloride (NH4Cl) which blocks the acidification of intracellular compartments to test if the 
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shedding was occurring in acidic pH compartments as previously described (235). Accordingly, 

treatment of HEK293 cells with NH4Cl prevented GPP130 shedding (on the first shedding site s1) 

by PC7 and Furin of into the media (Figure 3.4C), suggesting that the first shedding site occurs in 

TGN or endosomes and that the second cleavage site is possibly occurring at the plasma 

membrane. Accordingly, to investigate possible cleavage at the plasma membrane, and because 

Furin (158, 238) and PC7 (129, 239) also traffic to the plasma membrane, we used the cell 

permeable pan-PC general inhibitor RVKR-cmk, and the non cell-permeable inhibitor 

hexapeptide (D-Arg)6 (D6R). The data demonstrated that treatment with RVKR-cmk abolished 

almost completely the first shedding site by both PC7 and Furin (Figure 3.4D), emphasising that 

the processing is PC-specific. On the other hand, D6R treatment failed in preventing the first 

shedding but reduced the cleavage efficiency of the second site by Furin (Figure 3.4D), suggesting 

that Furin sheds GPP130 at the plasma membrane. Taken together these data suggest that 

GPP130 is cleaved in post-ER compartments, acidic TGN or endosomes, and at the plasma 

membrane for Furin second cleavage site (s2). 
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Figure 3.4. GPP130 is cleaved in acidic compartments by both PC7 and Furin, and at the plasma 
membrane by Furin only. 
A) Western blot analysis of cell lysates and media from HEK293 cells overexpressing GPP130-V5 
WT with human PC7, human Furin or with pIRES-empty vector (Vector) and treated with Brefeldin 
A (BFA) (2.5µg/mL). B) Western blot analysis of cell lysates and media from HEK293 cells 
overexpressing GPP130-V5 WT, pIRES-empty vector or Sar1P-(H79G) with human PC7 or human 
Furin. C) Western blot analysis of cells lysates and media from HEK293 cells overexpressing 
GPP130-V5 WT, with human PC7, human Furin or with pIRES-empty vector treated with NH4Cl 
(20mM). D) Western blot analysis of cells lysates and media from HEK293 cells overexpressing 
GPP130-V5 WT, with human PC7, human Furin or with pIRES-empty vector treated with RVKR-
cmk (75µM) or D6R (10µM). Means +/- S.E.M. are represented. These results are representative 
of three independent experiments. *, p <0.1 **, p < 0.01; ***, p < 0.001 (Student’s t test). 
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3.3.3.4 GPP130 rerouting to multivesicular bodies (MVB)/lysosomes with manganese 

abrogates s1 cleavage and induces differential cleavages by PC7 and Furin 

Manganese treatment induces GPP130 oligomerization, rerouting to MVBs and subsequent 

degradation in lysosomes (431). We next sought to investigate if manganese treatment would 

hamper subcellular localization of GPP130 with PC7 and Furin and therefore interfere with its 

shedding. In HEK293 cells overexpressing cDNA coding for GPP130 and empty vector, we showed 

that manganese treatment for 18 hours induces GPP130 degradation (Figure 3.5), in line with 

previous observations (431). We also showed that the s1 cleavage for both PC7 and Furin is 

impaired when treated with manganese (Figure 3.5), as we no longer detect the s1 cleavage 

fragment in the media when overexpressing cDNAs coding for GPP130, PC7 and Furin and 

followed by a manganese treatment for 18 hours. Surprisingly, manganese treatment also led to 

the release of shed GPP130 of different molecular weights that were not previously observed 

when overexpressed with PC7 or Furin (Figure 3.1) and in a more prominent manner in cells 

expressing cDNAs coding for PC7 (Figure 3.5). Indeed, we observed the generation of a ~75kDa 

in cells coexpressing GPP130 and PC7 when treated with manganese, a cleaved fragment not 

observed in untreated cells (Figure 3.5). We also observed the generation of smaller fragments 

in cells overexpressing Furin and treated with manganese (Figure 3.5), taken together these 

results indicate a possible rerouting of GPP130 into a cellular compartment more favorable for 

GPP130 shedding by PCs, and leading to other possible cleavages.  
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Figure 3.5. Treatment with manganese alters GPP130 s1 cleavage by PCs.  
A) Western blot analysis of cell lysates and media from HEK293 cells overexpressing GPP130-v5 
WT with human PC7, human Furin or with pIRES-empty vector (Vector) and treated with 
manganese (Mn2+) (250 µM). These results are representative of three independent 
experiments.  
 

3.3.3.5 GPP130 influences cell proliferation in lung cancer cells 

The GOLIM4/GPP130 gene was recently demonstrated to be important in cell proliferation via 

the modulation of key regulators of the  cell cycle in head and neck cancer cells (435). We 

therefore wanted to investigate if GPP130 shedding reported in this current study could also 

influence cell proliferation. We have assessed the genomics database (cBioPortal for Cancer 

Genomics) and noted that the GOLIM4/GPP130 gene is amplified up to ~35% in the lung cancer 

patients and up to ~10% in head and neck cancer patients (Figure 3.6A). In accord with this 

observation we decided to continue our analysis using the lung cancer cells A549 to perform cell 

proliferation assay and cellular apoptosis analysis. Our results showed that GPP130 silencing 

using siRNA against GPP130 is increasing proliferation of lung cancer cells, although not 

significantly (Figure 3.6B). On the other hand, we cannot exclude possible off-target effects 

caused by the siRNAs targeting GPP130, therefore proper control such as a rescue experiment, 

where GPP130 would be re-introduced, would demonstrate that this effect is due specifically to 

the GPP130 silencing. Coherent with the previous observation, we showed a reduction of ~50% 

of cell death, marked by a decrease in Annexin V/propidium iodide double positive staining in 

cells silenced for GPP130 (Figure 3.6C). We next wanted to assess if the shedding by PCs could 

affect cell proliferation so we coexpressed cDNAs coding for GPP130 WT, a mutant uncleavable 
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GPP130 R70A (at the s1 site), an optimally cleaved mutant GPP130 4REL, or a secreted luminal 

domain protein SP-ΔTM-GPP130 containing a PCSK9 signal peptide (102) to mimic the secreted 

fragment generated by PC7 and Furin shedding (Figure 3.7A), and confirmed the transfection 

efficiency (Figure 3.7B). Our results showed that the secreted SP-ΔTM-GPP130 and the non-

cleavable form GPP130 R70A are decreasing cell proliferation (Figure 3.7C) when overexpressed 

in A549 cells.  

 

Figure 3.6. Knockdown of GPP130 increases cell proliferation and reduces apoptosis in lung 
cancer cells.  
A) cBioPortal for Cancer Genomics analysis of patients’ data with altered expression and reported 
mutations in the GPP130/GOLIM4 gene. B) Growth curve of proliferating A549 lung cancer cells 
following siRNA for GPP130 or Scramble control over a 3-day period. C) Representative graphs of 
cell death by flow cytometry analysis after Annexin-V/ Propidium iodide (PI) dual staining. 
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Figure 3.7. GPP130 shedding influences cell proliferation in lung cancer cells. 

A) Schematic representation of various GPP130 mutant proteins. Depicted are the cytosolic tail 
(CT), the transmembrane domain (TM), the luminal domain, the signal peptide (SP) and the C-
terminal V5-tag. The blue circle is depicting a potential N-glycosylation site. B) Western blot 
analyses of cell lysates from A549 cells not transfected (NT) or overexpressing GPP130 WT, 
GPP130 4REL (an optimally cleaved mutant), GPP130 R70A (a PC non-cleavable mutant), GPP130 
ΔTM (a secreted luminal domain protein), or with pIRES-empty vector. C) Growth curve of 
proliferating A549 lung cancer cells (normalized) following overexpression with various mutant 
constructs over a 3-day period. These results are representative of three independent 
experiments.  
 

Taken together, these results suggest that GPP130 may interfere with cell proliferation and that 

overexpression of some of its mutant (i.e. the luminal domain) is promoting a proliferative 

disadvantage. Investigating GPP130 cargos binding on its luminal domain will help to decipher 

GPP130’s biological function. 

3.3.4 Discussion 

GPP130 is a Golgi resident protein with a unique trafficking pathway. Most of the literature 

covering GPP130 is related to its role in transporting the Shiga toxin intracellularly (485). In 

addition, investigations aiming at targeting GPP130 trafficking for therapeutic uses in the context 

of Shiga toxin infections have demonstrated that this protein is sensitive to manganese and can 

be rerouted for degradation following manganese treatments (431). Previous studies have 

therefore dissected its trafficking route and have demonstrated that GPP130’s endosome to 



116 

lysosome trafficking is dependant on sortilin, a well characterized sorting protein (367) and the 

adaptor protein AP-5, a newly described adaptor protein (372, 433). These recent studies suggest 

that GPP130 is capable of trafficking cargos along the secretory pathway and possibly regulate 

cargo protein rerouting for degradation, but its biological roles and defined cargos remain 

unknown. Notably, a group interested in Ca2+ signaling during cancer formation has recently 

highlighted GPP130 as important during cell cycle progression and showed that knockdown of 

GPP130 severely impacts cell proliferation in head and neck cancer cells.  

In this current study we demonstrated that GPP130 is shed by PC7 and Furin in acidic 

compartments, at two distinct sites on its luminal domain, which could have dramatic 

consequences on the efficient binding and transport of the Shiga toxin. Also, we demonstrated 

that treatment with manganese is promoting GPP130 degradation and blocks the first cleavage 

by PC7 and Furin in acidic compartments. We also showed that manganese treatment possibly 

allows GPP130 localization within endocytic compartments where it can encounter different 

active enzymes (maybe in MVBs) and be cleaved to generate multiple cleaved fragments of 

unknown biological impacts. Lastly, we have further investigated GPP130’s role in cancer 

progression and we demonstrated that the shedding of GPP130 and its luminal domain secretion 

decreases cell proliferation in lung cancer cells. We suggest that future work should investigate 

GPP130 cargos, to better define how its knockdown or overexpression would influence signaling 

molecules or downstream targets. In line with this, recent reports investigating the role of GP73, 

a Golgi resident protein overexpressed in hepatocellular carcinomas (15), have shown that GP73 

is trafficking a matrix metalloprotease (MMP-7) and helps in its secretion which increases the 

invasion potential in hepatocellular carcinoma cells (439). We thus hypothesize that GPP130 

could be having similar types of cargos and that the shedding by PCs could interfere with cargo 

binding. Also, it is noteworthy to mention that GPP130 was originally identified in head and neck 

cancer as a protein downstream of a calcium channel protein STM1 (435), therefore its role in 

calcium and manganese homeostasis should be investigated. It would not be surprising to 

identify calcium or manganese transporters as potential GPP130 cargos which would be in line 

with GPP130 overexpression in various cancers and the known roles of calcium signaling in 

tumour formation (483, 486). 
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In conclusion, we showed for the first time that GPP130 is cleaved by PC7 and Furin, in a similar 

way than a very oncogenic protein GP73 (15, 438), and that this shedding could lead to the 

release of an ectodomain fragment which impedes cell proliferation. This original work is 

shedding light on a poorly characterized Golgi-resident protein and future work will help to 

elucidate its biological role, binding partners and how the PCs modulate its functions. 

3.3.5 Material and methods 

3.3.5.1 Plasmids 

Human CASC4 WT (Thermo Scientific, Open Bioscience), GPP130 WT (Thermo Scientific, Open 

Bioscience) and its mutants (H67A, R68A, R70A, K73A, R148A, K274A or R277A, SP-GPP130ΔTM 

and 4REL) were subcloned, with a V5 tag at the C-terminus into pIRES2-EGFP vector (Clontech). 

All constructions (human transferrin receptor 1, human Furin, mouse PC5A, mouse PC5B, human 

PACE4, full-length human PC7, soluble rat PC7, soluble human PC7 and Sar1P-(H79G) were cloned 

in pIRES2-EGFP vector (Clontech).  

3.3.5.2 Cell Culture, Transfections, and Cell Treatments  

HEK293 cells were grown in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) with 10% 

fetal bovine serum (FBS, Invitrogen), MDA-MB-231 cells were grown in Dulbecco's modified 

Eagle's medium (DMEM, Invitrogen) with 10% fetal bovine serum (FBS, Invitrogen), A549 cells 

were grown in Kaighn's Modification of Ham's F-12 Medium (F12K, Invitrogen) supplemented 

with 10% FBS, Invitrogen. All cells were maintained at 37°C under 5% CO. HEK293 cells were 

cotransfected with equimolar quantities (0,5μg) of each plasmid using Jetprime Polyplus, A549 

cells were transfected with equimolar quantities (1,0μg) of each plasmid using FuGene HD, using 

manufacturer's instructions. MDA-MB-231 cells were transfected using GenJetTM In Vitro DNA 

Transfection Reagent for MDA-MB231 Cells (SignaGen Laboratories) with equimolar quantities 

of plasmids (1.5-2μg) using manufacturer’s instructions. At 24 hours post transfection, cells were 

washed in serum-free medium followed by an additional 20 hours alone or in incubation with 

2,5μg/mL brefeldin A (BFA; Cabiochem), 20mM ammonium chloride (NH4Cl; Sigma), or 

manganese (250µM, Baker Analyzed® ACS, J.T), cells and media were collected for western blot 

analysis.  
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3.3.5.3 Western blot analysis and antibodies  

Cells were lysed in cold Radio-Immunoprecipitation Assay (RIPA) buffer (100mM Tris-HCL pH 8, 

300mM NaCl, 0,2% SDS, 2% NP-40, 1% Na deoxycholate) containing protease inhibitors (Roche 

Applied Bioscience). Proteins were analysed by SDS-PAGE on 8-12% Tris-Glycine and transferred 

on a nitrocellulose membrane (GE Healthcare Life Science, No. 10600003) followed by 1h 

blocking in Li-Cor blocking buffer (Li-Cor) or in 5% milk in TBST-T. Membranes were then 

incubated with primary antibodies overnight. Proteins were visualized using mouse anti-V5 

(1/2000, Invitrogen), rabbit anti-PC7 (1:10,000, homemade or 1:5000 Cell Signaling 

Technologies), Furin (1:5000, Invitrogen), rabbit anti β-actin (1:5,000, Sigma-Aldrich), or a 

horseradish peroxidase (HRP)-conjugated mAb V5 (1:10,000, Sigma-Aldrich). Bound primary 

antibodies were detected with corresponding species-specific fluorescent anti-mouse antibody 

680 (Mandel) (1:10 000) or anti-rabbit Ab 800 (Mandel), and revealed using LiCor Bioscience, or 

with corresponding species-specific HRP-labelled secondary antibodies (1:10,000, Invitrogen) 

and revealed by enhanced chemiluminescence (ECL; Amersham). Quantifications were done 

using Image Studio Lite v.4.0 and Image J software (National Institutes of Health). 

3.3.5.4 Microscopy Analysis and Antibodies 

Cells were grown on coverslips and fixed with warm paraformaldehyde (4%) for 10 min and 

permeabilized with PBS 1X + Triton 0.1%. Followed permeabilization or PBS incubation, cells were 

stained for primary antibodies: anti EEA1 (Abcam), anti-Golgin 97 (Santa Cruz Biotechnology), 

anti-LDLR (R&D Systems), anti-calnexin (Abcam), or anti-V5 (Invitrogen) for 1 hour followed by 

incubation with fluorescent corresponding secondary antibodies for 1 hour in the dark. Coverslips 

were then mounted on microscope slide (Fisher Scientific) with ProLong Gold antifade with DAPI 

(Invitrogen) to stain for nucleus. Co-localization of fluorescently labeled protein was quantified 

with IMARIS analysis software (8.2.1) along with aXTension script named Colocalize Spots. We 

used the same approach as mention in Rajan et al. (456). Positive signals were found using the 

Imaris function spots from each fluorescent marker images. The spot diameter used was 1.2 μm 

with the same quality factor for each image. The Colocalize Spots script considers colocalization 

between two spots when their center to center distance is equal of inferior to 0.8 μm.  
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3.3.5.5 Cell proliferation and cell cycle analysis 

For cell proliferation assays, cells were seeded into 6 well plate (Greiner) at low cellular density 

(200 000 cell/well) and place into the Incucyte imager for up to 72 hours. Images were taken 

every 2 hours to generate cellular density (% of confluence) and results were graphed over time. 

For cell cycle analysis, after 2 days in culture cells were washed with 1X PBS, fixed and 

permeabilized with ethanol 70% for 2h at room temperature. Following fixation, cells were 

treated with 2mg of ribonuclease-A (RNase-A; Sigma-Aldrich) in 900 μL of DPBS for 2 h at 37 °C. 

Finally, cells were stained with 100 μL of propidium iodide (PI) 0.2 mg/mL (Sigma-Aldrich), 

analysed with a FACScalibur system (BD Biosciences) and data were analyzed and calculated using 

FlowJo software. 

3.3.5.6 Cell apoptosis analysis 

Cell apoptosis was evaluated by Annexin V Apoptosis Detection Kit APC (88-8007, BD Bioscience). 

Cells were grown in culture for 2 days before they were harvested and stained according to 

manufacturer’s protocol. Data acquisition and analysis were performed in a FACScalibur system 

(BD Biosciences) and data were analyzed using FlowJo software. 
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Chapter IV 

Are PC7 KO mice protected from diet-induced obesity anxiety-

like behavior? 

(Manuscript in preparation) 
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4.1 Résumé: 

Durant le chapitre 4 de cette thèse nous avons poursuivi la caractérisation des souris PC7 

KO dans le but de mieux comprendre les rôles physiologiques de PC7. Nous avons fait la 

connexion avec des études récentes montrant un effet anxiogène d’une alimentation riche en 

gras saturé chez la souris. Comme les souris PC7 KO ont précédemment montré un phénotype 

marqué par la diminution de l’anxiété, nous avons émis l’hypothèse que ces souris seraient 

protégées d’un effet anxiogène causé par l’obésité induite par l’alimentation. Nous avons montré 

que les souris PC7 KO ont une tendance à être moins affectées par la diète riche en gras saturé. 

Nous avons aussi montré que les souris PC7 ont une réponse déficiente face au stress.  
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Are PC7 KO mice protected from diet-induced obesity anxiety-like 

behavior? 

Duval S.1, Décarie-Spain L.2, Fulton S.2, Prat A.1, and Seidah NG.1 
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4.3.1 Abstract  

In contrast to other proprotein convertases knockout (KO) mice that result in gross physical 

abnormalities and/or embryonical death, the PC7 KO mice are viable and do not present any 

flagrant physical defects, therefore making it challenging to define specific function. However, by 

performing behavioral phenotyping to further analyze the PC7 KO mice, our group have 

previously observed impaired episodic memory as well as an anxiolytic phenotype which were 

caused by the aberrant maturation of brain-derived neurotrophic factor (BDNF) in the amygdala 

and hippocampus. Of particular interest, increased levels of BDNF in brain regions (nucleus 

accumbens, ventral tegmental area, amygdala and dorsolateral striatum) was shown to promote 

anxiety- and depression-like behavior in mice chronically fed a high fat diet (HFD). We thus 

suggest that the PC7 KO mice should be protected from diet-induced obesity (DIO) anxiety-like 

behavior. We have placed WT and PC7 KO mice on a saturated HFD (palm oil) and a control diet 

for 12 weeks and then proceed with behavioral phenotyping. The mice were also subjected to 

restraint stress to evaluate their basal levels and post-stress corticosterone levels. Different brain 

areas were also dissected for protein extractions and quantification of mature BDNF by western 

blot analysis. In our analysis, we have observed a trend for protection of the anxiety-like 

phenotype induced by the HFD in some of the behavioral tests in the PC7 KO mice. We also 

observed a significant increase in marble burying and in immobility time during the force swim 

test in the PC7 KO mice on ND. Interestingly, these abnormal behaviors can be associated with 
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obsessive-compulsive disorder (OCD). In addition, we have also observed a blunt in the 

corticosterone secretion after restraint stress in the PC7 KO mice fed a HFD, suggesting aberrant 

stress response, but to confirm these observations as well as the behavioral observations more 

mice experiments are needed. Finally, this study provided more information on the development 

of anxiety- and depression-like symptoms when consuming a saturated high-fat diet in the PC7 

KO mice. Future work should aim to define the PC7 KO mice OCD-like phenotype in relationship 

to BDNF processing and possibly other neuropeptide substrates in various regions of the brain. 

4.3.2 Introduction 

The prevalence of obesity is escalating rapidly and is a major public health concern. Obesity can 

be defined as a medical condition where global health is compromised due to the accumulation 

of excess lipid (487). Many elements influence body weight gain such as inherited biological traits, 

life experiences, behavior, environmental and social factors (488). The consequences of being 

overweight or obese are affecting a wide spectrum of health issues such as increased risk of 

metabolic syndrome, type 2 diabetes, cardiovascular disease, developing certain types of 

cancers, respiratory conditions, fatty liver disease, depression and mood disorders (489, 490).  

The availability, the constant exposure and the palatable qualities of high fat/high sugar foods 

are increasing the consumption of such foods in absence of nutriment requirement, which is a 

main driver of obesity. Accordingly, high-fat and high-sugar foods have been demonstrated to 

modulate the brain motivation and reward circuit (265, 274, 491, 492). The neural connections 

responsible for motivation and reward are composed of dopamine (DA) neurons and these 

connections are transmitting sensory, cognitive and emotional information related to searching 

and consuming food (493). DA signaling, which regulates inhibitory mechanisms within the 

reward system, is often impaired or deficient in obese humans which leads to increase food 

consumption to compensate for desensitization of these pathways (494). The signaling mediated 

by DA neurons modulates BDNF, pCREB and ΔFosB (a truncated splice variant) in the reward 

circuit. Interestingly, accumulation of ΔFosB in the nucleus accumbens also increases sensitivity 

of the rewarding responses mediated by cocaine (495, 496). These mechanistic neural 

modifications lead to increase the effects of drugs and natural rewards which consequently 
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perpetuate compulsive usage (495, 496). In addition, feeding a high-fat diet for 12 weeks in mice 

was shown to cause DIO anxiety- and depressive-like behaviors that is accompanied by a 

significant increase in BDNF, ΔFosB and pCREB in the nucleus accumbens, ventral tegmental area 

and dorsolateral striatum. Chronic feeding of a saturated HFD for 12 weeks in mice have also 

shown an increase in circulating corticosterone at basal levels and following restraint stress (265). 

These results are demonstrating that DIO is inducing anxiety-like behavior caused by neuronal 

changes in the reward circuit, promoting negative emotional state (265). 

Our group has recently reported that the PC7 KO mice displayed impaired episodic memory, as 

well as an anxiolytic phenotype (259). These phenotypes were rationalized by the demonstration 

of a significant decrease in mature BDNF signaling in the amygdala and the hippocampus and was 

rescued using a tyrosine receptor kinase B (TrkB) agonist (7,8-dihydroxyflavone) prior to 

behavioral testing (259). In this current study we thus hypothesised that the PC7 KO mice should 

be protected from diet-induced obesity anxiety-like behavior. In this current study, we aimed at 

understanding the impact of diet-induced obesity in our PC7 KO mice model to better understand 

the intimate relationship between obesity and increased risk of depression and anxiety. We have 

undertaken a series of behavior testing to analyse the cognitive performance of the PC7 KO mice 

when fed a saturated HFD. We were also interested in the corticosterone secretion levels 

following a restraint stress in our PC7 KO mice, and finally we dissected different brain regions 

for investigation of BDNF maturation.  

Taken together, in this study we have reproduced in our wild-type (WT) animals the behavior 

phenotypes previously observed when fed a HFD for 12 weeks (265), although more mice are 

needed to clearly demonstrate that there is a protective effect in the PC7 KO on a HFD. Finally, 

we have preliminary results suggesting potential obsessive-compulsive behavior in the PC7 KO 

mice that needs to be investigated further with more behavior testing and biochemical analysis.  
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4.3.3 Results 

4.3.3.1 Body weight and caloric intake  

We first assessed the changes in body weights within our different cohorts. Comparing WT mice 

to PC7 KO mice on a normal diet (ND) throughout the 12-week diet, we observed that the PC7 

KO mice are smaller and maintain the body weight difference throughout the study on the ND, 

Figure 4.1A. Mice on a HFD gained more weight independently of the genotypes which was 

expected from the consumption of a high-fat foods, but a small reduction of the body weight gain 

is noticed in the HFD PC7 KO mice, Figures 4.1A-B. To evaluate the palatability between the two 

diets and the food consumption between the genotypes, cumulative food intake was analyzed 

and we observed an increase in food intake both in WT and PC7 KO mice on the HFD starting 

around 5 week of consumption, Figure 4.1C. Interestingly, the PC7 KO mice have a tendency to 

consume less food on ND, Figure 4.1C and this trend can also be observed in the HFD PC7 KO 

mice.  

 

Figure 4.1. Body weight gain and cumulative food intake of WT and PC7 KO mice on a ND and 
a HFD.  
A) Increase in body weight (g) for the 12-week period of feeding. B) Associated body weight gain 
(%). C) Cumulative food intake (kcal) between ND and HFD through the 12-week period. n= 4-6 
mice/group. Means ± s.e.m. 
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4.3.3.2 Body fat mass and lean mass composition 

To further characterize the body mass composition of the WT and PC7 KO mice on the two 

different diets, we analyzed the lean mass and fat mass by echoMRI. No changes were observed 

in lean mass (g) between diets or genotypes after the 12-week ND, Figure 4.2A. A significant and 

anticipated change was observed in mice fed a HFD, as we observed a ~2 fold increase in the fat 

mass (g) of HFD mice both in the WT and KO mice, Figure 4.2B. This is further corroborated with 

an increase in % of fat mass in HFD mice in both genotypes, Figure 4.2C.  

 

Figure 4.2. Lean and fat mass composition between WT and PC7 KO mice on a ND and a HFD. 
A) lean mass and B) Fat mass and in grams (g). C) Percentage (%) of fat composition of each mice 
at the end of the 12-week period relative to their total body weight. n= 4-6 mice/group. Means 
± s.e.m. 
 

4.3.3.3 Energy balance 

We next investigated the metabolic changes in these mice by placing the mice in metabolic cages 

for 2 days and measured locomotion, energy expenditure and respiratory exchange rate. First, 

the locomotion during dark phase shown no significant changes between WT and PC7 KO, 

although the PC7 KO mice have a slight trend for increase locomotion compared to WT and is 

also appreciable during light phase, on ND. As for differences between diets, a decrease is 

observed in locomotion for both WT and PC7 KO in HFD mice with a significant decrease for the 

PC7 KO mice, during dark phase, Figures 4.3A-B. The respiratory exchange rate confirmed in the 

WT and PC7 KO mice chronically exposed to a HFD a greater utilisation of lipids by having a 

significant decrease in the respiratory exchange rate ratio, Figures 4.3C-D. Interestingly, the PC7 

KO mice on ND have a significant increase in respiratory exchange rate, Figures 4.3C-D. The 

analysis for energy expenditure showed that under both ND and HFD, the PC7 KO mice have a 
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significant decrease in energy expenditure during the dark phase, but this decrease is only 

significant on the HFD during the light phase. Lastly, there is a significant increase in energy 

expenditure in the WT and PC7 KO mice on a HFD compared to mice on a ND, Figures 4.3E-F. 

  
Figure 4.3. Energy balance in WT and PC7 KO mice on a ND and a HFD. 

A) Beam breaks measured over dark and light phases show a HFD decrease in locomotion in both 
WT and KO mice. B) Beam breaks quantifications. C-D) Respiratory exchange rate was decreased 
in HFD relative to LFD consistent with greater lipid utilization, in both WT and PC7 KO mice during 
dark phase. Increase in RER during light phase in the PC7 KO mice under ND. E-F) HFD increases 
energy expenditure in both WT and PC7 KO mice. n =4-6 mice/group. Means ± s.e.m. 

 

4.3.3.4 Diet-induced obesity (DIO) anxiety-like and depressive-like behavior 

We next determined the consequences of diet-induced obesity on anxiety- and depressive-like 

behaviors in the WT and PC7 KO mice using different tests, such as the elevated-plus maze (EPM), 

the open field test (OFT), the force swim test (FST) and the marble burying test (MBT). Our results 

have shown that like previously described in WT mice, DIO is not affecting the number of entries 
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in the EPM, neither the distance travelled Figures 4.4A-B, but decreases the percentage ( %) of 

time spent in the open arms, Figure 4.4C. Consistent with the previously described anxiolytic 

phenotype, the PC7 KO mice on a ND have a trend for spending more time in the open arms, in 

comparison with the WT mice, Figure 4.4C. Interestingly, the PC7 KO mice on the HFD shown an 

increase in time spent in the open arms compared to WT mice on HFD, Figure 4.4C, suggesting a 

protective effect in the PC7 KO mice when chronically exposed to a HFD. The results from the 

OFT have shown that the PC7 KO mice on a ND had a significant increase in distance travelled in 

comparison to the WT mice on a ND, Figure 4.5A. No changes in the number of entries or % of 

time spent in the center was observed in the OFT for the PC7 KO mice, Figures 4.5B-C. On the 

other hand, WT mice on a HFD had no changes in entries or distance travelled, Figures 4.5A-B, 

but have shown a reduction in time spent in the center of the OFT, Figure 4.5C, coherent with 

previous observations (265). We have also performed marble burying test, an experimental 

method based on the interpretation that mice will burry any harmful objects in their 

environment, Figure 4.6A. The data showed that WT mice buried significantly more marbles 

when on a HFD compared to mice on a ND, Figure 4.6B, which can suggest an anxiogenic 

phenotype, consistent with previous results (265). Surprisingly, the PC7 KO mice have also shown 

a significant increase in marble burying on a ND in comparison to WT mice, Figure 4.6B, which 

can appear to be in opposition with the previously described anxiolytic phenotype in the PC7 KO 

mice when based on our interpretations of the marble burying results in WT mice on HFD. 

However, recognizing that data interpretation in the marble burying test can be very complex 

and that many publications have associated an increase in marble burying in mice with obsessive-

compulsive disorder (497), we are suggesting that the increase in marble burying observed in the 

PC7 KO mice could be indicative of a possible obsessive-compulsive behavior when analysed in 

combination with other behavior results presented in this manuscript. 
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Figure 4.4. PC7 KO mice are protected from DIO anxiogenic behavior in the elevated plus maze 
(EPM). 
A) Similar number of entries between WT and KO mice fed a ND and a HFD into the open arms. 
B) Similar distance travelled during the experiment between the WT and KO mice fed a ND and 
HFD C) HFD decreases % time spent in the open arms in WT mice, but KO mice are mildly 
protected. n=4-6 mice/group. Means ± s.e.m. 

 

 
Figure 4.5. PC7 KO mice on a ND show a significant increase in distance travelled in open field 
test (OFT). 
A) Increase distance travelled (cm) during OFT in PC7 KO mice compared to WT mice. B) Similar 
% of entries into the center of the arena in OFT between the diets and the genotypes. C) Decrease 
time in center (%) in the OFT in the PC7 KO mice, both on ND and HFD. n= 4-6 mice/group. Means 
± s.e.m. 
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Figure 4.6. PC7 KO mice have repetitive behavior in the marble burying test.  
A) Schematic representation of the experimental design. B) PC7 KO mice present an obsessive 
behavior by burying more marbles in both diets. n=4-6 mice/group. Means ± s.e.m.  
 

To test for depressive-like behavior in our cohorts we performed FST and measured immobility 

time. The results showed that WT mice on a HFD had a significant increase in immobility time (%) 

in comparison with WT mice fed a ND, Figure 4.7A, consistent with what was previously 

demonstrated that DIO increases behavioural despair (265). Interestingly, the PC7 KO mice on a 

ND seems to also have a trend for increased immobility compared to WT mice even when fed a 

ND, and this trend is not exacerbated in PC7 KO mice fed a HFD, Figure 4.7A. This immobility was 

not caused by a deficit in swimming abilities since there was not change in swim velocity between 

the genotypes in the different diets, Figure 4.7B.  
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Figure 4.7. PC7 KO mice present self-destructive behavior in the force swim test (FST). 
A) PC7 KO mice engaged in self destructive behavior during the FST when fed ND and HFD. WT 
mice on a HFD are showing depressive-like behavior. B) These observations are not due to 
modulation of the mice velocity capacity. n=4-6 mice/group. Means ± s.e.m.  
 

4.3.3.5 HFD potentiate stress response in WT mice but the PC7 KO mice on a HFD have a 

blunted stress response 

It was previously reported that a saturated HFD consumption in WT mice increases the basal level 

of corticosterone secretion and that this effect is potentiated after restraint stress (265). We 

therefore tested if the PC7 KO mice when chronically exposed to a HFD would have a variation in 

corticosterone secretion at basal level and after restraint stress, Figure 4.8A. We have validated 

in our experiments that the WT mice on a HFD had an increase in corticosterone levels both at 

basal levels as well as post 15 min of restraint stress, Figures 4.8B-D. Interestingly, the PC7 KO 

mice on a ND had a slight increase in corticosterone secreted at basal levels, but the levels of 

corticosterone did not change after the stress restraint, Figures 4.8B-D. This blunt effect observed 

in the PC7 KO mice in comparison with the WT mice on a HFD is suggesting that the PC7 KO mice 

are defective in stress-coping following dual combination of chronic consumption of a saturated 

HFD and exposed to stress restraint. 
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Figure 4.8. PC7 KO mice on HFD show a blunted corticosterone response after restraint stress.  
A) Schematic representation of experimental design. B) Corticosterone measurements before 
experiment. C) Corticosterone measurement after 15-minute restraint stress experiment. D) 
Ratio of post vs basal corticosterone levels show a blunt response in PC7 KO mice fed a HFD. n=4-
6 mice/group. Means ± s.e.m. 
 

4.3.3.6 Novel object recognition memory (NORM) 

We have previously observed in the PC7 KO mice a deficit in episodic memory caused by aberrant 

processing of BDNF in the amygdala, a brain area responsible for memory plasticity (498). We 

therefore aimed to further investigate the effect of DIO on the cognitive performance in these 

mice. We subjected the mice to Novel Object Recognition Memory tests (NORM) in which the 

mice were presented, in the same arena used for the open field test, with two objects. One hour 

later (short-term memory: STM) or 24 hour later (long-term memory: LTM) mice were presented 

with the same familiar object, and a novel object. The time spent investigating the novel object 

was quantified, and the more time spent with the novel object is suggesting that the mice 

recognize the old one. Our results showed that the PC7 KO mice had a reduced preference for 

the novel object in the STM test in comparison with WT mice on ND Figure 4.9A, consistent with 

previous results, but not in the LTM test, Figure 4.9B. The HFD WT mice had lower preference for 

the novel object in the STM test, Figure 4.9A. Interestingly, the HFD WT mice had a slight increase 



133 

in their preference for the novel object in the LTM test, Figure 4.9B, in comparison to ND WT 

mice. These results were not related to a reduced or increased exploration of the objects, as both 

genotypes explored for the same duration in each diet (Figure Supplemental 1).  

 

Figure 4.9. PC7 KO mice show impaired STM. 
A) Preference scores for novel object in the NORM test at 1-hour post exploration. B) Preference 
scores for the novel object in the NORM test at 24-hour post exploration. n=4-6 mice/group. 
Means ± s.e.m. 
 

4.3.3.7 proBDNF maturation 

As previously demonstrated (259), we observed a reduction of BDNF maturation in the nucleus 

accumbens of the PC7 KO mice on a ND, Figure 4.10A. Surprisingly, no significant decrease was 

observed in the amygdala of these mice, Figure 4.10B. No significant changes were observed in 

the maturation of BDNF in the amygdala sections in both genotypes on HFD, although a trend is 

observed similar to the nucleus accumbens sections, Figure 4.10B. Also, we have reproduced the 

previous observations showing that chronic exposure to a saturated HFD increases the 

maturation of BDNF in the nucleus accumbens in the WT mice and also demonstrated that this 

increase is moderate in the PC7 KO mice on a HFD, Figure 4.10A.  
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Figure 4.10. PC7 KO mice show impaired processing of BDNF in the nucleus accumbens.  
A) Western blot analysis of WT and PC7 KO mice brain section (nucleus accumbens) extracts. B) 
Western blot analysis of WT and PC7 KO mice brain section (amygdala) extracts. n=3 mice/group. 
Means ± s.e.m. 
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Supplemental Figure 4.1. Baseline preference and exploration in WT and PC7 KO mice.  
A) NOR baseline preference measured in time spent (%) with each object. B) Frequency with each 
object (%) after 1h. C) Time spent (s). D) Frequency with each object (%) after 24h. 
 

4.3.4 Discussion 

As obesity and mood disorders have become public health concerns, we aimed to elucidate brain 

reward circuitry in relationship to diet-induced obesity and the maturation of neuropeptides. Our 

laboratory is interested in the maturation of precursor proteins and previous publications have 

highlighted the role for PC7 in the maturation of BDNF and related cognitive impairments (259, 

499).  

In this work we have reproduced what was previously described as DIO anxiety-like behavior 

(265) in our WT mice in most of our behavior experiments even with a small number of mice (n 

between 4 and 6 mice). We also confirmed our previously demonstrated anxiolytic phenotype in 

the PC7 KO mice in the EPM experiment and in the OFT in PC7 KO mice on ND. Interestingly, the 

combination of chronic consumption of an anxiogenic saturated HFD and the anxiolytic PC7 KO 

phenotype have shown intermediate phenotypes in some of the behavioral and biochemical 



136 

analyses. Accordingly, during the EPM the decrease in time spent (%) in the open arms for the 

PC7 KO mice is not as severe as the decrease observed for the WT mice on HFD. To further 

validate these observations, we will need to increase the number of mice in our behavior tests 

as well as in the biochemical analysis of BDNF maturation. In addition, we will need to investigate 

other brain sections such as the ventral tegmental area (VTA), the hippocampus and the 

dorsolateral striatum for mature BDNF but also for the dopamine signaling such as ΔFosB and 

pCREB. Dopamine regulates inhibitory signaling in the reward circuit which is often decreased in 

obese rodent models and based on our current observation that PC7 KO mice seem to consume 

less of the palatable foods we suggest that their dopamine signaling could be impaired. In line 

with this, elevation of CREB within the nucleus accumbens in rodents have been shown to induce 

anhedonia-like symptoms and increase immobility time in the FST (500, 501), reinforcing that DA 

signaling in the nucleus accumbens of our mice should be investigated in the future. 

During this current study we have also made some novel observations in our PC7 KO mice. 

Indeed, we have observed abnormal self-destructive behavior in the PC7 KO mice during the FST, 

a behavior that could be both explained by behavioral despair but can also be associated with 

OCD (502). In addition, we have noted that the PC7 KO mice have a significant increase in the 

distance travelled in the OFT on ND, which could suggest a possible perseverative 

hyperlocomotion also observed in OCD (503). Similarly, the observed increase in the number of 

marbles buried in the PC7 KO mice could also be associated with an anxiety-like phenotype but 

based on previous observations (259, 499) and current observations we have connected these 

results to abnormal repetitive behavior in line with the symptoms of OCD previously described 

in mice (497). Of note, it was recently demonstrated that the Galectin-1 (Gal-1) and galectin-3 

(Gal-3) KO mice displayed similar behavior phenotypes (impaired stress-coping and compulsive 

behaviors) accompanied by a decrease in BDNF in the prefrontal cortex (502). We therefore 

suggest that the PC7 KO mice possibly have an obsessive-compulsive disorder, that will need 

further investigations. Other regions of the brain need to be analysed for BDNF processing, such 

as the prefrontal cortex to solidify our conclusions.  

Also, we showed that chronically exposed to a saturated HFD, the PC7 KO have their 

corticosterone response blunted in comparison to WT mice after a second stress. These results 
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are suggesting a possible hypothalamus-pituitary-adrenal (HPA) axis impairment (265) and 

reiterate aberrant stress coping in PC7 KO mice. Indeed, the HPA axis functions are affected by 

both metabolic and mood disorders (504, 505). Accordingly, future work should investigate gene 

expression of stress-related genes in the hypothalamus such as corticotrophin-releasing-

hormone (CRH), a gene implicated in glucocorticoid (GC) negative-feedback. Future work should 

also investigate the mRNA levels of other prohormone processing enzymes, such as PC1/PC2 in 

the pituitary of the PC7 KO mice. The levels of PC1/PC2 could have been increased as a 

compensatory mechanism and could have affected CRH processing leading to HPA axis defects, 

PC2 levels which are also known to be affected by nutrition status (111, 506, 507).  

Lastly, we reported the same episodic memory deficit in the PC7 KO mice (STM) in the NORM 

experiment, but there was no change in the LTM, possibly due to a small number of mice. Taken 

this data together, we confirm that the PC7 KO mice have impaired STM, but that the 

consumption of HFD does not seem to be beneficial or to exacerbate the phenotype in these 

mice. 

In conclusions, in this study we have demonstrated that the chronic consumption of a saturated 

HFD in mice is promoting anxiogenic behavior as previously described in WT mice (265). We have 

also shown that the PC7 KO mice not only have an anxiolytic behavior as previously described 

(259), but also have a severe dampening of corticosterone secretion in situation where the mice 

are exposed to long-term HFD in combination with a second stressor. Finally, the PC7 KO mice on 

normal diet also showed symptoms of OCD-like behaviors in three different experiments and 

should be investigated in future work to better understand the overall aberrant stress-coping 

phenotypes reported here. 

4.3.5 Material and method  

4.3.5.1 Animals and diet: 

All procedures involving the use of animals were approved by the CRCHUM and IRCM Animal 

Care Committee in accordance with Canadian Council on Animal Care guidelines. Eight weeks old 

C57BL/6J male WT mice and PC7 KO mice were single-housed under reverse cycle (lights off at 
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10am) in environmentally controlled rooms (22–24 °C) with ad libitum access to water and food. 

Mice were fed standard chow (ND) or high-fat (HFD) diet, see table 1, as described by Hryhorczuk 

et al., 2016. The amount of food consumed over 24 h was measured right before the onset of the 

dark cycle. All behavioural testing and sacrifices below were carried out in the dark phase of the 

light -- dark cycle. 

Table 4.1 Diet composition 

 

4.3.5.2 Metabolic cages: locomotor activity and energy expenditure 

Mice were habituated to metabolic cages (Comprehensive Lab Animal Monitoring System 

CLAMS, Columbus, OH) for 2 days prior to testing. Locomotor activity (X-Y-Z beambreaks) was 

measured for 12 hours. Body mass composition was also measured using echoMRI.  

 

4.3.5.3 Anxiety: Elevated-plus maze 

In order to assess anxiety-like behaviour following the diets consumption mice were tested in 

both the elevated-plus maze and open field test (below). The EPM apparatus consists of two 

closed arms that oppose two open arms in a plus design (Med Associates, Inc., St Albans, VT, 

USA). Decreased time spent in the open, exposed arm is an indicator of increased anxiety-like 

behaviour. The apparatus is placed 60 cm above the floor and has a video camera fixed overhead. 
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Each mouse was placed in the middle of the maze facing the open arm opposing the 

experimenter. Movement in the maze was recorded and tracked for 5 min by an overhead video 

camera connected to a PC with Ethovision XT software (Med Associates, Inc.). 

 

4.3.5.4 Anxiety: Open field test 

We used the open field test as an additional measure of anxiety-like behaviour. The open field 

test was carried out 1 day before the EPM task. The open field consisted of a Plexiglas box 

(50x50x30 cm) in a brightly lit room. Each mouse was placed in the middle of the arena and 

allowed to explore the field for 5 min. Movement in the field was recorded and tracked by an 

overhead video camera connected to a PC with Ethovision XT software. 

 

4.3.5.5 Depression: Forced swim test  

The FST is widely used to screen and validate antidepressants. In this test, animals display 

‘behavioural despair’ as indicated by increased immobility and less escape-oriented behaviours. 

When forced to swim in a glass cylinder filled with water in which they are confined mice 

eventually cease escape attempts and become immobile. The increasing immobility time reflects 

a state of helplessness and despair. After 12 weeks of HFD or LFD, all the mice were forced to 

swim in a glass cylinder (height, 15 cm; diameter, 12 cm) containing water (23 °C) at a 10-cm 

depth. A video camera located above the apparatus recorded each test. The duration of 

immobility during the last 4 min of the 6-min testing period (2 min habituation) was calculated. 

 

4.3.5.6 Anxiety and obsessive behavior: Marble burying test 

Marble-burying test (MBT) is a tool for assessing a compulsive-like behavior or anxiety behavior. 

The apparatus used were clean plastic cages (28 × 17 × 13 cm) containing approximately 5 cm of 

clean sawdust layer covering its floor. Twenty glass marbles (15 mm diameter) were distributed 

in 4 rows evenly spaced in each cage. The animals were individually placed in the center of the 

marble-containing cage for 15 min, and the number of marbles buried (those with at least two-

thirds under sawdust) was counted afterwards (508, 509). 
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4.3.5.7 Novel Object Recognition Memory test 

Mice are placed for 5 minutes in the same arena then the open field test and presented with two 

identical objects. On day 1 of NORM testing, time spent near each object is measured. One hour 

(STM) and 24 h (LTM) later mice were presented with the now familiar and a novel object (510). 

If mice spend more time (preference score) examining the novel object, it suggests that they 

recognize and remember the old one. Analysis close to 50% indicates no preference. 

 

4.3.5.8 Corticosterone levels  

Both basal and stress-potentiated plasma corticosterone levels were measured. To measure 

basal corticosterone, blood samples were collected 3 days after behavior experiments. Each 

mouse was restrained for 15 min in decapicones (Braintree Scientific Inc., Braintree, MA, USA) 

and blood samples obtained immediately afterwards. Plasma corticosterone was measured by 

an ELISA corticosterone kit (Enzo Life Sciences, Farmingdale, NY, USA). 

 

4.3.5.9 Western blot and antibodies 

Mice were decapitated under isoflurane anaesthesia. Brains were rapidly dissected and stored at 

-80 °C. Frozen brains were sliced into 0.5mm coronal sections using a brain matrix. Coronal 

sections were mounted onto slides and maintained on dry ice. Nuclei were microdissected using 

brain tissue punches (Stoelting, Inc., Wood Dale, IL, USA). Bilateral punches of 0.75mm diameter 

were obtained from the VTA and 1.0mm diameter punches from the nucleus accumbens and 

amygdala. Microdissected tissues were homogenized on ice in 100 ml of cell lysis buffer (20mM 

Tris, pH 7.5; 150mM NaCl; 1mM Na2EDTA; 1mM EGTA; 1% Triton; 2.5mM sodium 

pyrophosphate; 1mM b-glycerophosphate; 1mM Na3VO4; 1mgml-1 leupeptin) with added 

complete protease cocktail inhibitors (Roche) in 1.5 ml tubes. Tubes containing homogenates 

were centrifuged for 15 min at 14 000 g. Protein concentrations were measured using BCA 

protein assay (Pierce Biotechnology, Rockford, IL, USA). Protein samples (20 mg) were separated 

by electrophoresis on a 10% polyacrylamide gel and electrotransferred onto a nitrocellulose 
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membrane (GE Healthcare Life Science, No. 10600003) and blocked for 1 hour in 5% milk in TBS-

T and then incubated with anti-BDNF (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) or 

anti-actin (1:5,000, Sigma-Aldrich). Bound primary antibodies were detected with corresponding 

species-specific HRP-labelled secondary antibodies (1:10,000, Invitrogen) and revealed by 

enhanced chemiluminescence (ECL; Amersham). Quantifications were done using Image J 

software (National Institutes of Health). 

 

4.3.5.10 Statistical analysis 

Data were analysed using GraphPad Prism 5 software (http://www. graphpad.com). A two-way 

analysis of variance with Bonferonni post-tests was used to calculate data collected from food 

intake, body weight, OFT, EPM test, MBT, NORM, plasma corticosterone and western blotting.  
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5.1 Discussion: 

In this PhD thesis, we have presented mechanisms and examples to better appreciate the 

powerful roles of the proprotein convertases in both health and diseases. Since no apparent 

defects were observed in the PC7 KO mice model it has remained a challenge to identify specific 

functions for the seventh member of the proprotein convertases family. Therefore, the original 

objective of this thesis was to define PC7 specific substrates, and here we focused on two type-II 

transmembrane proteins, like the unique PC7 specific substrate TfR1. In the chapters II and III we 

demonstrated that these two substrates, CASC4 and GPP130, are shed not only by PC7, but also 

by Furin, reiterating the functional redundancies between PC7 and its close family member Furin. 

We showed like many other groups that Golgi proteins are crucial in maintaining cellular 

homeostasis but that they can also be driving diseases and should not be overlooked. In chapter 

IV of this thesis we have pursued the work on the PC7 KO mice, since behavior phenotyping 

previously highlighted PC7-specific function in mood disorders, in relationship to proBDNF 

cleavage. In the sections below we will discuss key findings from this thesis as well as avenues for 

future work and significance. Lastly, perspectives regarding PC7 and the ongoing work will be 

presented. 

5.1.1 CASC4 

5.1.1.1 CASC4 full-length protein and cellular architecture 

During the second chapter of this thesis we have investigated the biological functions of CASC4, 

a candidate substrate identified from a N-glycosylated secretome enrichment proteomics screen 

performed to discover new PC7 substrates. Previous publications have highlighted aberrant 

splicing events in the CASC4 gene in breast cancer (415) and in glioblastoma (416), suggesting 

potential roles in cancer progression. Accordingly, we showed that CASC4 is influencing cell 

architecture by blunting the Rho-GTPase Cdc42 activation. This decrease in Cdc42 activation is 

causing perturbations of the focal adhesions, marked by increase paxillin-positive staining and 

decreased cell migration. Cdc42 is a GTPase known to be localized at the Golgi to sustain cell 

polarity (404), it is therefore not surprising to find its activity modulated by the overexpression 

of a Golgi-resident protein. However, how is CASC4 interfering with Cdc42 inactivation still need 
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to be fully characterized. Short term goals should aim at characterizing the relationship between 

CASC4 and Cdc42, to do so we aim to perform live imaging in cells overexpressing CASC4 and 

analyze the focal adhesion turnovers. Also, performing staining’s for both CASC4 and active 

Cdc42 in migrating and non-migrating cells will help to investigate our hypothesis that CASC4 

possibly binds Cdc42 and sequesters it at the Golgi membrane during directional migration. 

CASC4 binding of Cdc42 at the Golgi membrane would retain Cdc42 from activating downstream 

effectors, such as p65PAK or WASp (511) which would normally enhance cell migration. It is 

noteworthy to mention that other Golgi-localized proteins have been demonstrated to be 

relevant in Golgi-reorientation, cell migration and protein trafficking relevant to cancer 

progression, namely Golgin-160, GM130, GOLPH3 and GP73 (15, 404, 407-409, 412, 439, 480, 

512). Indeed, our observations are coherent with what was previously observed by other Golgi 

proteins in other cellular context and add to the appreciation that Golgi-localized proteins are 

important players in cancer progression. 

It is also important to note that we showed the role of full-length CASC4 in actin structure 

remodeling, but we have only assessed the full-length isoform and not the spliced isoforms 

reported (415, 416). As mentioned previously, CASC4 is alternatively spliced in certain types of 

cancer compared to normal cells. Therefore, the increase in CASC4 alternative splicing and the 

relevance of these isoforms regarding their functions and their cleavage efficiency by PCs need 

to be investigated. 

5.1.1.2 CASC4 N-terminal domain and podosome formation 

On the other hand, we also showed that CASC4 cleavage by PC7 and Furin generates a cleaved 

fragment (N-terminal domain) which is endowed with novel function. We demonstrated that this 

N-terminal domain fragment is involved in the generation of podosome-like structures and the 

mechanisms remain to be characterized. Podosomes are actin structures rich in metalloproteases 

that are needed for degradation of the extracellular matrix, thus we hypothesize that CASC4, and 

specifically its N-terminal domain, could help in trafficking proteins such as matrix 

metalloproteases to these protrusions. Therefore, overexpression of CASC4 N-terminal domain 

could exacerbate the formation of podosome structures within the breast cancer cell lines (MDA-
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MB-231 cells). One way to better define the role of CASC4 in the formation of these structures 

could be to identify binding partners using approaches such as BioID (513), to identify cargos 

transported by CASC4 on its cytosolic tail (representing the N-terminal domain). 

We have also shown that only PC7 and not Furin correlates with CASC4 in influencing differential 

survival rates in breast cancer patients, suggesting a PC7-specific regulation of this deleterious 

shedding event. Accordingly, high CASC4 seems to be beneficial for patient’s survival, consistent 

with our observation that CASC4 decreases cell migration but conversely high CASC4 and high 

PCSK7 is detrimental for patient’s survival, reinforcing our hypothesis that PC7 induces a 

detrimental CASC4 shed fragment. We have also observed from the clinical METABRIC data, that 

the CASC4 gene is differentially expressed between normal tissues and patients’ tumours from 

multiple types of cancers, see annexe I. We therefore suggest that CASC4 shedding and 

ectodomain release in the plasma could be detected in the plasma as a diagnostic tool. Long term 

goals and physiological relevance of this work could be to investigate circulating CASC4 as 

potential biomarker for cancers that have poor survival rate, such as ovarian cancers which is 

also difficult to diagnose (514). We are also interested to develop approaches to better detect 

and inhibit the deleterious CASC4 shedding by PC7 early during the disease progression. We 

therefore conclude that the shedding reported here is regulated by complex mechanisms and 

that derailed proteolysis could be involved in the metastases process, but how exactly needs to 

be investigated.  

5.1.2 GPP130 

5.1.2.1 Cleavage and Shiga toxin binding 

In the third chapter of this thesis we have investigated the processing of GPP130, a Golgi resident 

protein with a unique trafficking route. GPP130 is a protein that received most of its attention 

because of its binding in endosomes and retrograde transport of the Shiga toxin. Manganese 

treatments in cells expressing GPP130 and infected with the Shiga toxin were showing protecting 

results since manganese is inducing GPP130 oligomerization and rerouting to the lysosomes for 

degradation with concomitant Shiga toxin degradation (430-432, 515). In line with these 

observations, we showed that PC7 and Furin cleave GPP130 at two different sites on its luminal 
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domain which would release the luminal domain ~20 aa after the binding site necessary for the 

toxin. We thus suggest that increasing GPP130 shedding by the PCs could potentially block the 

infection since GPP130 luminal domain could drastically change its conformation after the 

shedding and it could interfere with the toxin binding, although future work is needed to explore 

this hypothesis. In addition, it is possible that the Shiga toxin is not the only toxin taking 

advantage of the bypass pathway and strategies aiming at rerouting GPP130 as a protective 

mechanism could be relevant for other diseases in the future.     

5.1.2.2 Manganese and calcium homeostasis 

The previous studies on GPP130 and its manganese sensitivity have helped to elucidate GPP130 

trafficking pathways (431, 433, 485, 515) but have also highlighted possible biological functions. 

GPP130 was shown to be rerouted to MVBs and lysosomes when treated with manganese, but it 

will be interesting to investigate if GPP130 could also influence manganese homeostasis inside 

the Golgi lumen. From protein-protein interactions depository (BioGRID) we observed that 

GPP130 could potentially interact with a calcium transporter (ATP2B2) and a potassium channel 

(KCNS3), hence we suggest that manganese transporters could also be binding partners. 

Manganese homeostasis, as well as calcium homeostasis, is crucial for multiple biological 

reactions including protein glycosylation. Indeed, a recent report has highlighted the intimate 

relationship between protein glycosylation defects observed in congenital disorder of 

glycosylation (CDG) and manganese homeostasis (516). Accumulating evidences have shown that 

CDG could also be caused by a deficit of the vesicular transport within the Golgi or by disruption 

of the pH homeostasis (517). As a relevant example, the Golgi transmembrane protein TMEM165 

was recently identified as an important actor of Golgi Mn2+ homeostasis. The data showed that 

TMEM165-deficient cells have abnormal glycosylation patterns caused by reduced levels of Mn2+ 

entry inside the Golgi lumen (516). We can hypothesize that if GPP130 is also implicated in Mn2+ 

homeostasis like TMEM165, it could have similar drastic consequences on protein glycosylation. 

We suggest that identification of GPP130 cargos would greatly help in understanding GPP130’s 

function by defining potential interactions. One strategy would be to isolate different organelles, 

such as endosomes, and identify proteins that are enriched/decreased in absence of GPP130. 

The identification of luminal cargos for protein trafficking along the secretory has remained an 
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important challenge since the luminal environment of the secretory pathway does not allow for 

efficient proximity labeling approaches such as traditional BioID using biotinylation by the BirA 

enzyme (513). However, recent techniques have been shown to be very efficient in biotinylating 

proteins in the endoplasmic reticulum such as TurboID and miniTurbo (518) and could be 

optimized to identify cargo proteins trafficked by GPP130 along the secretory pathway. Also, we 

should investigate glycosylation patterns in cells silenced for GPP130. Lastly, it is important to 

mention that GPP130 was reported in a study interested in calcium homeostasis and was further 

shown to be modulating cell survival in head and neck cancer cells (435). Since it is well 

established that calcium signaling is modulated during cancer progression (483), long-term goals 

should investigate how GPP130 could be related to calcium homeostasis as well. Additionally, 

our CbioPortal for Cancer Genomics analysis have highlighted that the GPP130 gene is amplified 

in up to 35% in lung cancer, potential research avenues should investigate how this amplification 

could be connected to calcium signaling.  

In addition, it was also reported that GPP130 is binding sortilin and AP-5 in order to traffic from 

TGN to lysosomes (433). We suggest that GPP130 sorting and rerouting to lysosomes for 

degradation could also be relevant in protein turnover, a mechanism often altered in 

neurodegenerative diseases (519-521). Indeed, it could be possible that defects observed in AP-

5 knockdown (accumulation of endolysosomes) were also caused by defects in protein targeted 

for degradation by GPP130 (372). 

5.1.2.3 Conclusion chapters CASC4 and GPP130  

Our work demonstrated that PC7 and Furin can cleave and shed two poorly characterized Golgi-

resident proteins and that the interplay between the full-length form and the cleaved form could 

have opposite functional consequences. Also, from that original N-glycoproteome screen, we had 

identified other possible substrates that would be interesting to investigate, see Chapter II Tables 

2.1 and 2.2. Indeed, multiple potential substrates are related to cancer progression, i.e. Fibulin 

and GDF15, hence reiterating that PC7 plays a role during cancer development. Also, one strategy 

that we can use in order to better define potential substrates in the future would be to perform 

siRNA screen instead of PC7 overexpression, to highlight more physiological substrates using 
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different cell types. Lastly, derailed or increased PC activity can lead to cancer development, 

therefore efforts to inhibit PCs in certain types of cancer have led to promising results (156) but 

a better understanding of these newly described proteins could lead to better treatments 

targeting the substrates directly avoiding PC inhibition side effects. 

5.1.3 PC7 KO mice behavior analysis  

5.1.3.1 Protection from DIO anxiety and depression-like behavior 

In the fourth chapter of this thesis we have pursued the behavioral phenotyping of the PC7 KO 

mice. Previous work had demonstrated that the PC7 KO mice displayed impaired episodic 

memory as well as an anxiolytic phenotype (259). To follow-up on these observations, we wanted 

to combine our previous results with the recently described anxiogenic phenotype associated 

with the chronic consumption of a HFD (265) to investigate a possible protection from diet-

induced obesity anxiety-like behavior in our PC7 KO mice. To do so, we have challenged WT and 

PC7 KO mice with a chronic consumption of saturated HFD and have observed in some of the 

behavior tests that the PC7 KO mice would not be impaired as much as the WT mice by the 

anxiogenic effects of the saturated HFD but more mice are needed to validate these observations. 

Indeed, the PC7 KO mice seemed to be protected from the anxiogenic consequences of the HFD 

but only in the force swim test, but since we had a small number of mice and that the 

biochemistry was analysed for BDNF processing only in two brain sections, it is impossible to 

generate solid conclusions for now. In addition, we have confirmed that the WT mice on a HFD 

had short-term memory deficit, and because these deficits were previously explained in part by 

an increase in inflammation markers such as TNF-α and IL-1β (290) in the amygdala and 

hippocampus, it would be interesting to test for these markers in our PC7 KO mice on ND and 

HFD. 

5.1.3.2 OCD-like symptoms 

We have also made some novel observations about the PC7 KO mice that will need to be further 

investigated and will help to decipher new PC7 physiological functions. Indeed, we have shown 

that the PC7 KO mice had abnormal behaviors that could be associated with obsessive and 

compulsive-like disorders (OCD) in the force swim test and the marble burying test. Accordingly, 
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since our previous results showed an anxiolytic phenotype, we were surprised to observe longer 

immobility period in the PC7 KO mice during the force swim test, and similarly with the increase 

in marble burying. These two phenotypes can also be associated with OCD-like symptoms and 

have been described previously as "self-destructive" when observed during the FST, and as 

repetitive movement when observed during the MBT (497). Interestingly, a similar OCD 

phenotype was characterized recently in a different mice model (502) and was explained by a 

decrease in mature BDNF in the pre-frontal cortex. Therefore, to further validate our 

observations, we should investigate in our PC7 KO mice the levels of mature BDNF in the 

prefrontal cortex and perform more behavior testing’s such as tail suspension tests and monitor 

self-grooming.  

5.1.3.3 Impaired stress coping  

We have also observed a severe blunt in corticosterone secretion following restraint stress in the 

PC7 KO mice on a high fat diet. In this context, we suggested that the PC7 KO mice may have an 

impaired hypothalamic-pituitary-adrenal (HPA) signaling. To further investigate this observation 

we should analyze the neuroendocrine peptides present in the hypothalamus, pituitary and 

adrenal gland to possibly identify peptides differentially modulated, in a similar manner as 

performed previously for PC1 and PC2 in the mouse spinal cord (522). In line with this, most of 

our behavior observations have been linked previously to BDNF processing in specific regions of 

the brain, therefore we suggest that the downstream pathways, such as p75NTR and tropomyosin-

related kinase B (TrkB) receptor signaling pathways should be dissected further in the PC7 KO 

mice. Previous studies have also highlighted that pCREB and ΔFos are modulated by saturated 

high-fat diets in the reward circuit in mice (265), therefore a better understanding of the 

modifications within these circuits in the PC7 KO mice is needed. 

proBDNF is also cleaved by other enzymes such as PC1 and Furin.  For future work, it will be 

interesting to generate different mouse models with complete PC7 KO in addition to PC1 and 

Furin conditional KOs in specific region of the brain to reduce the processing of BDNF in the 

reward circuit, or in the pre-frontal cortex and perform behavioral and biochemical analyses. 

Finally, this ongoing work could greatly help developing new therapeutic avenues for mood 



150 

disorders in relationship with diet-induced obesity. For long term goals we are interested in 

identifying patients with SNPs within the PCSK7 gene in association with OCD, anxiety or 

depressive behaviors. 

5.1.4 Perspectives for PC7 

5.1.4.1 Localization of active enzymes in health and diseases 

Proprotein convertases are synthetized as zymogens and inhibitory mechanisms control the 

release of active enzymes when the cognate subcellular compartment is reached (4). Together 

with the trafficking signals on their cytosolic tails, complex mechanisms of regulations are needed 

to limit unwanted proteolysis. In addition, natural inhibitors are being discovered, such as PAR1, 

GBP2 and GBP5 (204, 225), which have been demonstrated to inhibit Furin in various contexts. 

These recently discovered natural inhibitors could explain, in part, why proteases do not always 

cleave the same substrates, especially when a substrate is sharing consensus cleavage motifs 

targeted by multiple enzymes. It suggests that in some contexts Furin, or possibly other 

proteases, are retained in an inactive state by an inhibitory protein. It is a complex orchestration 

between zymogen activation, cellular localization and natural inhibitors balance that will allow a 

substrate to be cleaved or not, but a lot is still to learn. In line with this, during the second chapter 

of this thesis we observed that both PC7 and Furin were expressed in non-cancerous (MCF10a) 

and cancerous triple negative breast cancer cell lines (MDA-MB-231 cells) but that CASC4 was 

only cleaved in triple negative breast cancer cells and not in the non-cancerous cells. We decided 

to analyze for PAR1, GBP2 and GBP5 and found that PAR1 is significantly more expressed, at the 

mRNA levels, in the non-cancerous cells, annexe II. This result suggests a regulatory mechanism 

to inhibit/limit deleterious consequences generated by the PC7/Furin cleavage in the non-

cancerous cell lines and will need to be further analyzed. 

Multiple groups are currently investigating the pathways of activation of proprotein convertases 

(238) or other protease (523) to specifically probe active enzymes in various systems. Better 

defining the sub-cellular localization of active enzymes can also lead to ground-breaking clinical 

application such as the generation of active proteases imaging probes for optical surgical 

guidance (524). Our understanding of the activation and trafficking of PC7 is emerging and recent 
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work by our group (239) have help to better define its unique trafficking pathway in hope of 

answering remaining questions such as 1) how does PC7 traffic to the plasma membrane via the 

unconventional secretory pathway? and 2) where is PC7 loosing its inhibitory prosegment? 

Answering these fundamental questions would help to better understand the biological function 

of this enzyme. 

5.1.4.2 Inflammation 

As mentioned in the introduction, one important feature of PC7 is that it is highly expressed in 

the immune system and specifically in the thymus (230). Nevertheless, the role of PC7 in the 

immune system has not been studied thoroughly apart from one study reporting that Foxp3 is 

cleaved by PC7 and PC1 in activated CD4+ T cells. Foxp3 is a transcription factor important for the 

development and function of regulatory T cells (Tregs) (525). This cleavage was shown to induce 

the activation of downstream Tregs genes such as interleukin-1l (IL-10), an anti-inflammatory and 

immunosuppressive cytokine, which suggests alternate signaling pathways between full-length 

Foxp3 and the C-terminal cleaved form. Similar to PC7, Tregs are expressed in the thymus (526), 

hence physiological relevance of studying the immune responses in PC7 KO mice using various 

immune activation stimuli would be relevant. Importantly, a major concern from this former 

study is the fact that Foxp3 is a cytoplasmic and nuclear transcription factor, and PC7 is a 

transmembrane enzyme localized within the secretory pathway, hence the likelihood of these 

two proteins to interact remain an important question. 

5.1.4.3 Proprotein convertases’ non enzymatic functions 

5.1.4.3.1 Lipid metabolism 

Accumulating evidences have led to the connection of PC7 with lipid metabolism (298), and more 

precisely the apolipoproteins. Coherent with previous genomics associations, our group have 

recently demonstrated that PC7 is responsible for the degradation of apoA-V in an non-enzymatic 

fashion (299). For future work, we are interested in investigating the decrease in circulating apoB 

levels and the reduced triglyceride levels observed in the liver of the PC7 KO mice. Accordingly, 

we are currently studying the impact of high-fat and high-sugar diet on the development of liver 

cirrhosis in WT and PC7 KO mice. Importantly, we want to analyze the recovery from high-fat 
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high-sugar diet withdrawal in our PC7 KO mice as we hypothesize that they should recover faster 

then WT from cirrhosis, as a proof of concept to utilize PC7 inhibition as a therapeutic avenue in 

the clinic for liver cirrhosis. 

5.1.4.3.2 Cancer 

For PC7 in cancer studies it is only the tip of the iceberg as we are only starting to examine PC7 

regulatory mechanisms that could be non-enzymatic, such as the HIF-1α (304). One barely 

studied avenue that should be investigated is the PCSK7 gene duplication. Indeed, as mentioned 

in the introduction, the PCSK7 gene has a duplication in exons 13 to 17, 60 Kb downstream of its 

coding region but the mechanisms of regulation in cis or in trans have not been studied yet. With 

our data showing a relationship between the CASC4 gene and PCSK7, and not Furin, in breast 

cancer patients, it would be interesting to investigate potential regulatory mechanisms between 

CASC4 and PCSK7 in a breast cancer context. Lastly, future work should also investigate the PCSK7 

gene duplication regulation mechanisms in the context of hypoxia since it was previously 

reported to be relevant for PC7 and Furin expression in squamous carcinoma cells (304). 

Non-enzymatic functions for other members of the family like PCSK9 (i.e. LDLR degradation (317)) 

have been described  but those of PC7 are only emerging. Our current knowledge of the PCs is 

mostly revolving around their associated substrates but to discover non-enzymatic functions for 

PC7 is opening up a vast and exciting new area of research which should shed light on this 

enzyme.  

5.1.5 2019-nCoV  

Lastly, as this thesis is being written, the COVID-19 infection has reached a global pandemic. This 

new coronavirus which emerged in China during the fall 2019 has now reached the 3 million 

people infected across 204 countries as of April 2020 and is deadly in the most vulnerable 

members of our societies due to severe respiratory distress (527). No vaccines or antiviral 

treatments are available yet, hence a race for a better understanding of its infectiosity is ongoing.  

Our group has very recently described that the surface spike protein-S contains a Furin-like 

cleavage site close to its maturation site (210), suggesting that the surface viral glycoprotein may 

need cleavage by PCs to infect. Multiple examples of such maturation by PCs in other coronavirus 
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have been reported in the past such as the MERS-CoV (528) and the HKU1 (529) and this 

maturation/cleavage step enables viral fusion with the host cells (530). Even though the focus of 

this thesis was not revolving around viral infection, the knowledge applied to protein cleavage 

and maturation is relevant to this infection and using that information to target PCs with Furin-

like inhibitors could potentially decrease infections in humans at risk (210).  

5.2 Conclusion 

As a general conclusion for this work, throughout the different chapters of this thesis we have 

highlighted novel PC7 and Furin biological functions and demonstrated their resemblance in 

activity but also their uniqueness. Also, we are only starting to define PC7 non-enzymatic 

functions and this area should be further investigated in hope of finding better treatments or 

more specific approaches for diagnostics. Finally, during the PC7 KO mice behavior study we have 

reiterated the anxiolytic behavior phenotypes observed in the PC7 KO mice and discovered novel 

behavior phenotypes relevant to obsessive disorders that remain to be fully characterized. Taking 

advantage of the bioinformatics tools and the genomics data available we can hope to better 

define the PCSK7 gene regulation and identifying specific substrates in human diseases in the 

future. 

Finally, we believe that even if the proprotein convertases are part of the "golden age" of 

biochemistry, their fundamental mechanisms of action are still extremely relevant today and 

many more novel therapeutic applications are still to come. 
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Annexe I: CASC4 expression levels  

 

 

 

CASC4 levels in patients with various cancers compared to normal donors from TCGA database. 
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Annexe II: Natural inhibitors  

 

 

 

 

 

 

 

 

 

PAR1, GBP2 and GBP5 mRNA levels in MCF10a and in MDA-MB-231 cells. n=2/sample, 

represented is the mean +/- s.d. 
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