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Résumé

Le choix de portefeuille optimal d’actifs a été depuis longtemps et continue d’être un
sujet d’intérêt majeur dans le domaine de la finance. L’objectif principal étant de
trouver la meilleure façon d’allouer les ressources financières dans un ensemble d’actifs
disponibles sur le marché financier afin de réduire les risques de fluctuation du portefeuille
et d’atteindre des rendements élevés. Néanmoins, la littérature de choix de portefeuille
a connu une avancée considérable à partir du 20ieme siècle avec l’apparition de nom-
breuses stratégies motivées essentiellement par le travail pionnier de Markowitz (1952)
qui offre une base solide à l’analyse de portefeuille sur le marché financier. Cette thèse,
divisée en trois chapitres, contribue à cette vaste littérature en proposant divers outils
économétriques pour améliorer le processus de sélection de portefeuilles sur le marché
financier afin d’aider les intervenants de ce marché.

Le premier chapitre, qui est un papier joint avec Marine Carrasco, aborde un prob-
lème de sélection de portefeuille avec coûts de transaction sur le marché financier. Plus
précisément, nous développons une procédure de test simple basée sur une estimation
de type GMM pour évaluer l’effet des coûts de transaction dans l’économie, quelle que
soit la forme présumée des coûts de transaction dans le modèle. En fait, la plupart des
études dans la littérature sur l’effet des coûts de transaction dépendent largement de
la forme supposée pour ces frictions dans le modèle comme cela a été montré à travers
de nombreuses études (Dumas and Luciano (1991), Lynch and Balduzzi (1999), Lynch
and Balduzzi (2000), Liu and Loewenstein (2002), Liu (2004), Lesmond et al. (2004),
Buss et al. (2011), Gârleanu and Pedersen (2013), Heaton and Lucas (1996)). Ainsi,
pour résoudre ce problème, nous développons une procédure statistique, dont le résultat
est indépendant de la forme des coûts de transaction, pour tester la significativité de
ces coûts dans le processus d’investissement sur le marché financier. Cette procédure de
test repose sur l’hypothèse que le modèle estimé par la méthode des moments généraliés
(GMM) est correctement spécifié. Un test commun utilisé pour évaluer cette hypothèse
est le J-test proposé par Hansen (1982). Cependant, lorsque le paramètre d’intérêt se
trouve au bord de l’espace paramétrique, le J-test standard souffre d’un rejet excessif.
De ce fait, nous proposons une procédure en deux étapes pour tester la sur-identification
lorsque le paramètre d’intérêt est au bord de l’espace paramètrique. Empiriquement,
nous appliquons nos procédures de test à la classe des anomalies utilisées par Novy-Marx
and Velikov (2016). Nous montrons que les coûts de transaction ont un effet significatif
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sur le comportement des investisseurs pour la plupart de ces anomalies. Par conséquent,
les investisseurs améliorent considérablement les performances hors échantillon en tenant
compte des coûts de transaction dans le processus d’investissement.

Le deuxième chapitre aborde un problème dynamique de sélection de portefeuille de
grande taille. Avec une fonction d’utilité exponentielle, la solution optimale se révèle être
une fonction de l’inverse de la matrice de covariance des rendements des actifs. Cepen-
dant, lorsque le nombre d’actifs augmente, cet inverse devient peu fiable, générant ainsi
une solution qui s’éloigne du portefeuille optimal avec de mauvaises performances. Nous
proposons deux solutions à ce problème. Premièrement, nous pénalisons la norme des
poids du portefeuille optimal dans le problème dynamique et montrons que la stratégie
sélectionnée est asymptotiquement efficace. Cependant, cette méthode contrôle seule-
ment en partie l’erreur d’estimation dans la solution optimale car elle ignore l’erreur
d’estimation du rendement moyen des actifs, qui peut également être importante lorsque
le nombre d’actifs sur le marché financier augmente considérablement. Nous proposons
une méthode alternative qui consiste à pénaliser la norme de la différence de pondérations
successives du portefeuille dans le problème dynamique pour garantir que la composi-
tion optimale du portefeuille ne fluctue pas énormément entre les périodes. Nous mon-
trons que, sous des conditions de régularité appropriées, nous maîtrisons mieux l’erreur
d’estimation dans le portefeuille optimal avec cette nouvelle procédure. Cette deuxième
méthode aide les investisseurs à éviter des coûts de transaction élevés sur le marché
financier en sélectionnant des stratégies stables dans le temps. Des simulations ainsi
qu’une analyse empirique confirment que nos procédures améliorent considérablement la
performance du portefeuille dynamique.

Dans le troisième chapitre, nous utilisons différentes techniques de régularisation (ou
stabilisation) empruntées à la littérature sur les problèmes inverses pour estimer le porte-
feuille diversifié tel que définie par Choueifaty (2011). En effet, le portefeuille diversifié
dépend du vecteur de volatilité des actifs et de l’inverse de la matrice de covariance du
rendement des actifs. En pratique, ces deux quantités doivent être remplacées par leurs
contrepartie empirique. Cela génère une erreur d’estimation amplifiée par le fait que la
matrice de covariance empirique est proche d’une matrice singulière pour un portefeuille
de grande taille, dégradant ainsi les performances du portefeuille sélectionné. Pour ré-
soudre ce problème, nous étudions trois techniques de régularisation, qui sont les plus
utilisées : le rigde qui consiste à ajouter une matrice diagonale à la matrice de covariance,
la coupure spectrale qui consiste à exclure les vecteurs propres associés aux plus petites
valeurs propres, et Landweber Fridman qui est une méthode itérative, pour stabiliser
l’inverse de matrice de covariance dans le processus d’estimation du portefeuille diversi-
fié. Ces méthodes de régularisation impliquent un paramètre de régularisation qui doit
être choisi. Nous proposons donc une méthode basée sur les données pour sélectionner le
paramètre de stabilisation de manière optimale. Les solutions obtenues sont comparées
à plusieurs stratégies telles que le portefeuille le plus diversifié, le portefeuille cible, le
portefeuille de variance minimale et la stratégie naïve 1 / N à l’aide du ratio de Sharpe
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dans l’échantillon et hors échantillon.
Mots-clés: Sélection de portefeuille, test d’évaluation de l’effet des coûts de transac-

tion, test de sur-identification, utilité récursive, choix de portefeuille dynamique, marché
de grand taille, efficacité asymptotique, régularisation, diversification maximale.
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Abstract

The optimal portfolio selection problem has been and continues to be a subject of interest
in finance. The main objective is to find the best way to allocate the financial resources
in a set of assets available on the financial market in order to reduce the portfolio fluc-
tuation risks and achieve high returns. Nonetheless, there has been a strong advance
in the literature of the optimal allocation of financial resources since the 20th century
with the proposal of several strategies for portfolio selection essentially motivated by the
pioneering work of Markowitz (1952) which provides a solid basis for portfolio analysis
on the financial market. This thesis, divided into three chapters, contributes to this
vast literature by proposing various economic tools to improve the process of selecting
portfolios on the financial market in order to help stakeholders in this market.

The first chapter, a joint paper with Marine Carrasco, addresses a portfolio selec-
tion problem with trading costs on stock market. More precisely, we develop a simple
GMM-based test procedure to test the significance of trading costs effect in the economy
regardless of the form of the transaction cost. In fact, most of the studies in the liter-
ature about trading costs effect depend largely on the form of the frictions assumed in
the model (Dumas and Luciano (1991), Lynch and Balduzzi (1999), Lynch and Balduzzi
(2000), Liu and Loewenstein (2002), Liu (2004), Lesmond et al. (2004), Buss et al. (2011),
Gârleanu and Pedersen (2013), Heaton and Lucas (1996)). To overcome this problem,
we develop a simple test procedure which allows us to test the significance of trading
costs effect on a given asset in the economy without any assumption about the form of
these frictions. Our test procedure relies on the assumption that the model estimated
by GMM is correctly specified. A common test used to evaluate this assumption is the
standard J-test proposed by Hansen (1982). However, when the true parameter is close
to the boundary of the parameter space, the standard J-test based on the χ2 critical value
suffers from overrejection. To overcome this problem, we propose a two-step procedure
to test overidentifying restrictions when the the parameter of interest approaches the
boundary of the parameter space. In an empirical analysis, we apply our test procedures
to the class of anomalies used in Novy-Marx and Velikov (2016). We show that trans-
action costs have a significant effect on investors’ behavior for most anomalies. In that
case, investors significantly improve out-of-sample performance by accounting for trading
costs.

The second chapter addresses a multi-period portfolio selection problem when the
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number of assets in the financial market is large. Using an exponential utility function, the
optimal solution is shown to be a function of the inverse of the covariance matrix of asset
returns. Nonetheless, when the number of assets grows, this inverse becomes unreliable,
yielding a selected portfolio that is far from the optimal one. We propose two solutions to
this problem. First, we penalize the norm of the portfolio weights in the dynamic problem
and show that the selected strategy is asymptotically efficient. However, this method
partially controls the estimation error in the optimal solution because it ignores the
estimation error in the expected return, which may also be important when the number
of assets in the financial market increases considerably. We propose an alternative method
that consists of penalizing the norm of the difference of successive portfolio weights in the
dynamic problem to guarantee that the optimal portfolio composition does not fluctuate
widely between periods. We show, under appropriate regularity conditions, that we better
control the estimation error in the optimal portfolio with this new procedure. This second
method helps investors to avoid high trading costs in the financial market by selecting
stable strategies over time. Extensive simulations and empirical results confirm that our
procedures considerably improve the performance of the dynamic portfolio.

In the third chapter, we use various regularization (or stabilization) techniques bor-
rowed from the literature on inverse problems to estimate the maximum diversification as
defined by Choueifaty (2011). In fact, the maximum diversification portfolio depends on
the vector of asset volatilities and the inverse of the covariance matrix of assets distribu-
tion. In practice, these two quantities need to be replaced by their sample counterparts.
This results in estimation error which is amplified by the fact that the sample covariance
matrix may be close to a singular matrix in a large financial market, yielding a selected
portfolio far from the optimal one with very poor performance. To address this problem,
we investigate three regularization techniques, such as the ridge, the spectral cut-off, and
the Landweber-Fridman, to stabilize the inverse of the covariance matrix in the invest-
ment process. These regularization schemes involve a tuning parameter that needs to be
chosen. So, we propose a data-driven method for selecting the tuning parameter in an
optimal way. The resulting regularized rules are compared to several strategies such as
the most diversified portfolio, the target portfolio, the global minimum variance portfolio,
and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio.

Keywords: Portfolio selection, test for trading costs effect, testing overidentifying
restrictions, recursive utility, Dynamic portfolio selection, Large Market, Asymptotic
efficiency, Regularization, Maximum diversification.
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Chapter 1

Test for Trading Costs Effect in a
Portfolio Selection Problem with
Recursive Utility∗

1.1 Introduction
The problem of optimal allocation of economic resources is far from being a recent issue.
It is a problem which already existed in the world before the first century1. Nonetheless,
there has been a strong advances in the literature of the optimal allocation of financial
resources since the 20th century with the proposal of several strategies for portfolio selec-
tion, especially with the seminal work of Markowitz (1952) which offers an essential basis
to portfolio selection in a single period. However, his quadratic form utility function hy-
pothesis has been strongly criticized and many alternative utility functions such as power
utility and exponential utility have emerged in the literature of portfolio optimization.
Moreover, Epstein and Zin (1989, 1991) develop a more flexible version of the basic power
utility model. This new version of utility retains the desirable scale-independence of the
power utility2 but breaks the link between the elasticity of intertemporal substitution and
the coefficient of relative risk aversion. Campani et al. (2015) use a closed-form approxi-
mation solution to a portfolio selection problem to show the importance of disentangling
the intertemporal substitution from the risk aversion. Regarding the large advantages of
this class of preferences and their ability to explain financial variables, we use recursive
utility to characterize investors’ preferences in our economy. Hence, our work is related to

∗This chapter is co-authored with Marine Carrasco. We thank René Garcia and Benoit Perron for
their helpful comments. Carrasco thanks SSHRC for partial financial support.

1For instance, in circa 400 A.D. Rabbi Issac Bar Aha recommended that one should always divide
his wealth equally into three parts: land, merchandise and cash at hand.

2such as the relative risk aversion coefficient and the elasticity of intertemporal substitution are
constant
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the previous literature of portfolio optimization with recursive preferences (see Campbell
and Viceira (2002), Campbell et al. (2004),Campani et al. (2015)). More importantly, all
those studies are carried out in a frictionless framework. Nonetheless, financial frictions
in the form of liquidity costs, taxes, and transaction costs may affect investors’ behavior
on the financial market. For instance, an investor will have an incentive to invest in
a more liquid asset compared to a less liquid asset. Indeed, according to Acharya and
Pedersen (2005) the wealth problem which arises in the financial market due to the low
market return at a given time can be amplified if selling investors hold illiquidity assets
at this time. In fact, the asset illiquidity3 could be seen as the potential loss because
one cannot sell it at the price previously thought at a short notice. Moreover, investors
will tend to have high preference for assets which require less costs to be invested in.
Therefore, one needs to examine the rule played by those frictions in a portfolio selection
problem with recursive preferences. We address this issue in this paper treating trading
costs as the only friction in the financial market since assets illiquidity costs could also
be seen as a certain transaction cost (Acharya and Pedersen (2005)). Our paper is then
related to the vast literature about transaction costs and portfolio selection problems (see
Dumas and Luciano (1991), Lynch and Balduzzi (1999), Lynch and Balduzzi (2000), Liu
and Loewenstein (2002), Liu (2004), Lesmond et al. (2004), Buss et al. (2011), Gârleanu
and Pedersen (2013), Novy-Marx and Velikov (2016) among others). However, most of
the studies in the literature about trading costs effect depend largely on the form of the
frictions assumed in the model. Indeed, with proportional or fixed costs, the optimal in-
vestment policy is shown to be in the form of a no-trade region so that trade occurs only
when the proportion of wealth invested in the risky asset is outside this region (Dumas
and Luciano (1991), Lynch and Balduzzi (1999), Lynch and Balduzzi (2000), Liu and
Loewenstein (2002), Liu (2004), Buss et al. (2011)). Nevertheless, the optimal investment
policy is no longer in the form of a no-trade region with quadratic trading costs since the
investor trades at each period in small quantities (Heaton and Lucas (1996), Gârleanu
and Pedersen (2013)). Moreover, Lynch and Balduzzi (1999) compute the utility cost due
to the presence of these frictions and obtain an utility cost close to 4% with proportional
costs and about 15% when added fixed costs to the proportional one.

In this paper, to overcome this problem, we develop a simple test procedure which
allows us to test the significance of trading costs effect on a given asset in the economy
without any assumption about the form of these frictions. The most interesting property
of this test procedure is that our results do not depend on the form of the trading costs in
our model. To our knowledge, this paper seems to be the first one to propose a statistical
test for trading costs effect in the context of portfolio selection. Our test boils down to
test the nullity of a parameter which is at the boundary of the parameter space under
the null. Its asymptotic distribution is non standard and is derived using results by
Andrews (1999). In the empirical application, we apply our test procedure to the class of

3See Amihud (2002) for a more general definition of the asset illiquidity.
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anomalies used in Novy-Marx and Velikov (2016). We obtain that transaction costs have
significant effect for most of anomalies considered in particular those whose trading costs
exceed 1% of the gross return. Not surprisingly, trading costs do not have a significant
effect when the risky asset is assumed to be the market portfolio.

Our test procedure relies on the assumption that the model is correctly specified.
We wish to test this assumption using Hansen’s J-test for overidentifying restrictions.
However, when the true parameter is close to the boundary of the parameter space, the
standard J-test based on the χ2 critical value suffers from overrejection. To overcome this
problem, we propose a two-step procedure to test overidentifying restrictions when the
the parameter of interest approaches the boundary of the parameter space. This paper
is related to the work of Ketz (2017) who proposes a J-test based on adjusted critical
values and a modified J-test. We find by simulations that our two-step procedure has
good small sample properties.

We measure the economic gain using a proportional trading costs in our model by
comparing the out-of-sample performance to the model which ignores trading costs in
the portfolio selection process. For this purpose we use several statistics such as the
certainty equivalent (CE), the Sharpe ratio (SR) and the portfolio mean. We find that
our model significantly outperforms the null model (in terms of the CE, the SR and the
portfolio mean) for strategies whose trading costs have been shown to have significant
effect according to our test procedure.

The rest of the paper is organized as follows. The model economy and the first order
conditions from optimization problem are presented in Section 1.2. In Section 1.3, we
develop a GMM-based test procedure to test whether trading costs have a significant
effect. A two-step procedure for testing overidentifying restrictions in the GMM estima-
tion is proposed in Section 1.4. Section 1.5 presents the empirical analysis where the
test developed in Section 1.3 is applied to the twenty-three anomalies used in Novy-Marx
and Velikov (2016). In Section 1.6, we evaluate the out-of-sample performance of our
model based on several statistics such as the CE, the SR and the portfolio mean. Our
conclusion and remarks are presented in Section 1.7.

1.2 The model and the first order conditions for the
optimization problem

In this section we will start by the model economy before talking about the optimization
problem.

1.2.1 The model
We consider a simple economy with two assets in which an investor can trade:
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1. One risk-free asset (a bond) with a constant rate Rf . In general Rf will be cali-
brated to be the mean of the one-month Treasury-Bill rate observed in a monthly
data.

2. One risky asset with a gross return Rt+1 assumed to be predictable using a vector
of instrumental variables Dt available at time t.

Novy-Marx and Velikov (2016) argue that the cost of trading in the low-turnover strate-
gies such as the value-weighted strategies is quite low, and generally less than 10 basis
points (bp) per month so that the utility cost associated with ignoring transaction costs
in this case is sometimes negligible (see Lynch and Balduzzi (1999)). However, trading
costs can be significantly higher for strategies that trade disproportionately in high trans-
action costs stocks such as anomalies based on idiosyncratic volatility or distress. In fact,
trading costs on those strategies are more than 20 bp in average and exceed sometimes
1% per month (see Novy-Marx and Velikov (2016)). Since the incentive to find strategies
based on anomalies are high, the risky asset considered here will be a portfolio based
on one of the large array of the well-known anomalies used in Novy-Marx and Velikov
(2016) instead of using only the market portfolio in which trading costs are very small.

An anomaly is defined as a strategy that generates significant positive alpha relative
to a given asset pricing model. Note that the alpha is a measure of the active return on
an investment, the performance of that investment compared to a suitable market index.
It can be shown that in an efficient market, the expected value of the alpha coefficient is
zero in the capital asset pricing model (CAPM) and a positive value of this parameter
implies that the investment has a return in excess of the reward for the assumed risk.

Anomalies considered here are the twenty-three strategies used in Novy-Marx and
Velikov (2016). Table 1.11 in Appendix B provides the list of anomalies considered and
the average monthly trading costs on those strategies as presented by Novy-Marx and
Velikov (2016).

We consider a finite-life horizon investor with recursive preferences as introduced in
Epstein and Zin (1989, 1991).

The investor’s utility function is defined recursively by the following equation:

Ut =
[
(1− β)Cρ

t + β
(
EtU

1−γ
t+1

) ρ
1−γ
] 1
ρ

(1.1)

where β ∈ (0, 1) is the rate of time preferences, γ is the coefficient of relative risk aversion
which controls for investor’s attitude over the states of the economy. Ψ = 1

1−ρ controls
for intertemporal consumption allocation and will be considered as a measure of the
elasticity of intertemporal substitution (EIS). Ut is the utility level at time t which is
a function of the current consumption Ct and the future expected utility given time t
information.

Recursive utilities help us to distinguish the relative risk aversion from the elasticity
of intertemporal substitution. This property of separability of these two parameters is
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very useful when one is interested in a portfolio selection problem (see Campani et al.
(2015)).

Moreover, in a simple numerical analysis of a 10 years horizon investor, we obtain as
in Campani et al. (2015) that:

• Investors tend to take more risk for greater values of the EIS.

• The optimal investment decision is more affected by the EIS than the relative risk
aversion.

These numerical results point out the importance of the property of separability of
the relative risk aversion from the EIS in a portfolio optimization problem and justify
the use of recursive utilities in this framework.

Because investors in general face some frictions such as liquidity costs, taxes, trans-
action costs, which can affect their behavior on financial market, it is important to
incorporate these frictions when one is interested in a portfolio selection problem. For
instance, Dumas and Luciano (1991), Lynch and Balduzzi (1999), Lynch and Balduzzi
(2000), Liu and Loewenstein (2002), Liu (2004) show that realistic proportional or fixed
costs cause optimal portfolio rebalancing frequency to decline considerably. Lesmond et
al. (2004) also argue that the large gross spreads observed on momentum trades creates
an ”illusion of profit opportunity when in fact, none exists” because of the presence of
trading costs. The same argument has been pointed out by Novy-Marx and Velikov
(2016) who show that with trading costs in financial market, a strategy can have a sig-
nificant positive alpha relative to the explanatory assets without significantly improving
the investment opportunity set. Therefore, it is important not to ignore trading costs
when one is particularly interested on investors behavior on financial markets. Hence,
we assume that investors face transaction costs when trading on the risky asset and the
transaction costs are assumed to be the only source of frictions in the financial mar-
ket.Trading costs could be seen as all costs incurred by investors in the process of buying
or selling an asset on the stock market. Hence, trading costs include brokerage fees, cost
of analysis, information cost and any expenses incurred in the process of deciding upon
and placing an order. Delay in execution which cause prices at which one trades to be
different from those at which one planned to trade maybe included as well.

Let denote by yt the proportion of the risky-asset that the investor holds at time t
in the share of portfolio value. yt is constrained to be between 0 and 1 to avoid short
position in the financial market. The short position is a directional trading or investment
strategy where investors sell shares of borrowed stocks in the open market. This is a
realistic assumption since individual investors typically face high costs in taking short
position and institutional investors are often precluded by their clients from taking short
positions (Lynch and Balduzzi, 1999).

A portfolio will be defined as a list of weights yt, 1 − yt that represents the amount
of capital to be invested in the risky asset and the bond respectively.
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If we denote by R̄t+1 the return net of transaction costs on the risky asset in the
optimal portfolio, then the total return on the optimal portfolio is given by:

Rp,t+1 = yt
(
R̄t+1 −Rf

)
+Rf (1.2)

From this equation it follows that in the frictionless economy, the gross return on the
portfolio becomes Rp,t+1 = yt

(
Rt+1 −Rf

)
+Rf .

We also assume that at each period of time the investor consumes a fraction of his
current income. Thus, if At is his income at time t and Ct the consumption level then
we define kt = Ct

At
so that kt varies (is random) as in Lynch and Balduzzi (2000). This

assumption is more realistic than the one in Campbell and Viceira (2002) who assume a
constant consumption-wealth ratio over time Ct

At
= b.

We also assume in our model that the investor does not receive labor income, so he
finances consumption entirely from financial wealth. Indeed, an external source of income
to the financial market could affect investors’ behavior toward risk and biased transaction
costs effect on a portfolio selection problem as well as the result of our test procedure.
Hence, assuming only the financial income in the model is a convenient assumption when
one is interested in trading costs effect.

Therefore, the law of motion of his total wealth is:

At+1 = (At − Ct)Rp,t+1 = At(1− kt)Rp,t+1 (1.3)

where Rp,t+1 is the gross return on the optimal portfolio defined by equation (1.2).

1.2.2 First-order conditions for consumption-investment opti-
mization problem

The agent maximizes his utility defined in (1.1) subject to the constraint (1.3). The
Bellman equation associated with this optimization problem is given as follows:

Jt(At, It) = max
Ct≥0,yt∈[0,1]

{
(1− β)Cρ

t + β
[
EtJt+1(At+1, It+1)λ

] ρ
λ

} 1
ρ

(1.4)

(see Epstein and Zin (1989, 1991)) where It = (Rt, Dt) is a vector of state variables,
Dt is the dividend yield, Jt(At, It) is the value function of the optimization problem,
and λ = 1 − γ. Because we do not model directly the transaction cost in the economy,
investors do not have prior information about those frictions when selecting the optimal
strategy.
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Garlappi and Skoulakis (2010) show that, under the homothetic recursive preferences,
the value function that solves (1.4) is given by:

Jt(At, It) = (1− β)
1
ρ Vt(It)At (1.5)

where

Vt(It) =

1 +
β ( min

yt∈[0,1]
Et
[
Rp,t+1(yt)λVt(It+1)λ

]) ρ
λ


1

1−ρ


1−ρ
ρ

(1.6)

with

VT (IT ) = 1 (1.7)

and the optimal consumption-to-wealth ratio is given by kt = Vt(It)
−ρ
λ with λ = 1 − γ.

Such a decomposition of the value function of the consumption-investment problem proves
that the optimal portfolio and the optimal consumption problems can be solved separately
and makes the numerical resolution easier to implement. The optimal consumption
problem can then be analyzed independently from the portfolio optimization problem.

The first-order condition for the optimal consumption optimization problem as ana-
lyzed by Epstein and Zin (1989, 1991) is given by:

Et

β λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ

p,t+1

 = 1 (1.8)

for t = 1, ..., T − 1 where Rp,t+1 is the gross return on the selected portfolio and given by
equation (1.2). Equation (1.8) gives us a description of the investor’s behavior in terms
of intertemporal consumption allocation as a function of his preference parameters such
as the relative risk aversion coefficient 1− λ, the elasticity of intertemporal substitution

1
1−ρ and the discount factor β. It gives us information about how investors are going to
smooth consumption over their life-cycle. According to this relation, the cost of reducing
consumption today corresponds to the benefice of investing this amount in the available
set of assets in the financial market in order to consume more tomorrow or to smooth
consumption.

For the portfolio optimization, trading costs on the risky asset constrain investors in
their investment decisions since they are obliged to make a trade-off between future gain
and the cost due to the presence of those frictions in the economy. In fact, the expected
gain for reallocating the portfolio may be smaller than the marginal cost due to the
presence of trading costs so that conventional asset pricing relationships are transformed
into inequality conditions (see Luttmer (1999), Brunnermeier et al. (2012)). Hence, the
first-order condition when solving the optimal portfolio selection problem is given by the

7



following relation:

Et

λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1R
p
t+1

 ≤ 0 (1.9)

for t = 1, ..., T−1 where Rp
t+1 = R̄t+1−Rf is the return in excess of the risk-free rate that

the investor expected to obtain when he took some positions in the stock market and faced
transaction costs in this market. It is a form of compensation for investors who tolerate
the extra risk, compared to that of a risk-free asset or a benchmark in a given investment
(it is the risk premium). This quantity becomes

(
Rt+1 −Rf

)
in the frictionless economy

with Rt+1 the gross return observed on the risky asset. The relation in (1.9) describes
investors’ optimal decisions in the financial market as a function of the model parameters.
Because we assume only two assets available in the model, the first order condition in
(1.9) is a non arbitrage condition between the risky asset and the risk-free asset in the
financial market. Without trading costs in the economy, (1.9) becomes the standard
Euler Equation from the portfolio optimization problem as presented in Epstein and Zin
(1991) (see the relation (1.15) for instance). Hence, the expected benefit from investing
only in the risky asset should correspond to the expected gain when one uses only the
risk-free asset in the financial market. Nonetheless, when we account for trading costs,
the non-arbitrage condition given by (1.9) implies that the expected gain from investing
only in the risky asset is less than the expected benefit obtained by investing only in the
risk-free asset because of the cost faced by investors when trading in the risky asset.

The consumption-investment optimization problem also implies the following terminal
condition:

JT (AT , IT ) = (1− β)
1
ρ AT (1.10)

This terminal condition is very useful when one is interested in a numerical solution to
the portfolio selection. It helps us to solve the problem by backward induction.

The system of Euler Equation (1.8) and Inequality (1.9) are going to be used as a set
of moment conditions to estimate the parameters of the model and to construct tests.

1.3 Testing trading cost effect using GMM estima-
tion

Our goal in this section is to develop a GMM-based test procedure which allows us to
test the significance of the transaction costs effect in the economy.
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1.3.1 The GMM procedure to estimate the parameter of inter-
est

Assume that we have the following moment conditions

E [g (Zt, θ)] = 0 (1.11)

where θ is a L× 1 vector of parameters, K =dim(g), and Zt = (wt, xt) where wt contains
model variables and xt is the vector of instruments.

To test if trading costs have a significant effect on a given asset, we first transform
the first order conditions obtained in (1.8) and (1.9) as follows:

Et


[
β
(
Ct+1

Ct

)ρ−1
Rp,t+1

]λ
ρ

− 1

 = 0 (1.12)

Et

λρ
(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1R
p
t+1 + δ

 = 0 (1.13)

where δ ∈ R+ can be seen as a parameter which captures the transaction costs effect
in the economy. This makes sense because in the frictionless case, (1.9) is satisfied with
equality so that δ = 0. Hence, the test procedure we are going to propose in the next
subsection will be about the significance of the parameter δ. Thus, for a given risky
asset in the economy, a significant parameter δ means that investors have to account
for trading costs in this asset when they have to include it in their optimal portfolio.
However, when δ is not statistically significant then trading costs could be ignored in the
portfolio selection process without significant consequences in terms of utility cost.

Let

g(Zt, θ) =


[
β
(
Ct+1
Ct

)ρ−1
Rp,t+1

]λ
ρ

− 1

λ
ρ

(
Ct+1
Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1R
p
t+1 + δ

⊗
(

1
xt

)
(1.14)

where θ = (δ, β, λ/ρ, ρ)
′
, Zt =

{
Ct+1
Ct
, Rp,t+1, R̄t+1, x

′
t

}
where xt is a vector of instruments

(elements of the information set available at time t), Ct the level of consumption at
time t, Rp,t+1 the gross return on the optimal portfolio, and R̄t the gross return net
of trading costs on the risky asset. Then, we use (1.11) with g defined by (1.14) as
the set of moment conditions to estimate θ = (δ, ψ′)′ by a two-step GMM procedure
where ψ = (β, λ/ρ, ρ)′ with β the discount factor, γ = 1 − λ the relative risk aversion
coefficient, and EIS = 1

1−ρ . In our test procedure ψ will be treated as an identified vector
of nuisance parameters. Since we want to estimate θ by a two-step GMM procedure

9



based on (1.11), let GT (θ) = 1
T

∑T
t=1 g(Zt, θ) denote the empirical counterpart of the

moment conditions defined in (1.11) where T is the sample size. Let us also denote
by lT (θ, Ŵ ) = −T

2GT (θ)′ŴGT (θ) the GMM objective function where Ŵ is a random
symmetric positive definite matrix such that Ŵ P→ W with W a non-random symmetric
positive definite matrix.

Let θ̂ denote the two-step GMM estimator of θ using (1.14) as the set of moment
conditions. We obtain this estimator using the following procedure.

In the first step, we estimate θ by GMM using W = I so that we obtain the first step
estimator, θ̂(I) = argmaxθ lT (θ, I).

We then estimate S = E(g(Zt, θ0)g(Zt, θ0)′) by Ŝ = 1
T

∑T
t=1 gt(θ̂(I))gt(θ̂(I))′ where

gt(θ) = g(Zt, θ) so that the second step GMM estimator is given by θ̂ = argmaxθ lT (θ, Ŝ−1).

1.3.2 Testing the significance of the transaction cost effect
Our objective in this part is to propose a procedure to test whether the transaction
costs have a significant effect on investor’s welfare (in terms of utility cost) based on the
two-step GMM estimation presented above.

An interesting property of this test procedure is that our results do not depend on
any form given to trading costs in the model as it has been done in the literature. Indeed,
the conclusions of most of the studies in the literature about trading costs effect depend
largely on the form of frictions assumed in the model. Here, unlike in the previous
literature, only the trading costs computation method could affect our results instead of
the form assumed to the trading costs. Since, we would like to propose a procedure which
allows us to test whether trading costs have a significant effect, we are only interested on
the significance of δ treating ψ as an identified vector of nuisance parameters.

For this purpose we formulate the following hypothesis:

H0 : δ = 0 vs H1 : δ > 0
where δ ∈ R+ is the parameter which informs us about the transaction cost effect in our
economy. Using a compact form, the test hypothesis becomes:

H0 : Hθ = 0 vs H1 : Hθ > 0
where H = (1, 0, 0, 0) and θ = (δ, β, λ/ρ, ρ)

′
the vector of parameters to be estimated by

GMM.
To implement this test, one needs to derive the asymptotic distribution for δ̂ under

the null hypothesis.
Let us first introduce some useful notations.

Notations

Let K be the number of moment conditions, G (θ) = E (g (Zt, θ)) and Γ = ∂G(θ0)
∂θ′

be
the K × 4 matrix of right partial derivatives of G(θ) at θ0.

Let lT (θ) = −TGT (θ)′ Ŝ−1GT (θ) /2 and θ̂ = arg max
θ∈Θ lT (θ).
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To derive asymptotic distributions under the null hypothesis, we also need a set of
assumptions.

Assumption A.

1. Zt =
{
Ct+1
Ct
, Rp,t+1, R̄t+1, x

′
t

}
is a stationary and ergodic process.

2. θ0 ∈ Θ =
{
θ ∈ R4 : θ = (δ, β, λ/ρ, ρ)

′
, δ ≥ 0, 0 ≤ β ≤ 1, ‖θj‖ ≤Mj, j ≤ 4

}
.

3. Identification: G(θ) = 0 if and only if θ = θ0.

4. Dominance: (i) E(supΘ‖g(Zt, θ)‖) <∞
(ii) E(supN‖

∂g(Zt,θ)
∂θ′
‖) <∞ whereN is a neighborhood of θ0 and ∂g(Zt,θ)

∂θ′
denotes

the K × 4 matrix of right partial derivatives of g (Zt, θ) .

5. Ŝ P→ S where S = E (g(Zt, θ0)g(Zt, θ0)′) is a finite positive definite matrix.

6. Γ is full column rank.

Assumption A1 is a standard assumption in macroeconometrics. Assumption A2 pro-
poses a reparametrization of the model so that the resulting moment condition g (Zt, θ) is
continuous in θ, moreover Θ is assumed to be compact which guarantees the consistency
of the GMM estimator. The other assumptions are standard and can be found in text-
books (see for instance Hayashi (2000)) except that g is not assumed to be differentiable
for all θ ∈ Θ but only right differentiable.

A standard and convenient assumption in literature is that the true parameter θ0 is
an interior of the parameter space. Indeed, it allows the use of the mean value theorem
useful to establish the asymptotic normality of θ̂. When the true parameter θ0 is an
interior point of Θ and Assumption A is satisfied, the following results hold (see Hayashi
(2000)):

•
√
T (θ̂ − θ0) L→ N (0, (Γ′S−1Γ)−1).

• Waldstat = T (δ̂−δ0)2

σ̂2
δ

L→ χ2(1), where σ̂2
δ is a consistent estimator of σ2

δ = H (Γ′S−1Γ)−1
H ′.

• J = TGT (θ̂)′Ŝ−1GT (θ̂) L→ χ2(K − 4) where K is the number of moment conditions
and 4 the number of estimated parameters.

However, in our economic application, the true parameter θ0 is not an interior point of
Θ under the null hypothesis H0 : δ = 0. When the true parameter is on the boundary, the
asymptotic distribution of θ̂ is no longer a standard distribution (see Andrews (1999)).

The following proposition establishes the asymptotic distribution of the Wald test
statistic under the null hypothesis.

11



Proposition 1 Let σ̂2
δ denote a consistent estimator of the asymptotic variance of

δ̂. Assume that Assumption A holds and that θ0 is such that δ = 0 and (θ2, θ3, θ4) are
interior points of the parameter space.Then,

W = T δ̂2

σ̂2
δ

L→ 1
2χ

2(0) + 1
2χ

2(1)

where χ2(0) is the Dirac distribution at the origin and χ2(1) is a chi-square distribution
with one degree of freedom.

Remark: A consistent estimator for the asymptotic variance of δ̂ will be obtained
based on a bootstrap method. As noted by Andrews (1999), the standard bootstrap
does not generate consistent estimators of the asymptotic standard errors of extremum
estimator when the true parameter is on the boundary. Hence, we use a version of the
bootstrap procedure in which bootstrap samples of size T1 (< T ) rather than T , are
employed (for more details about this procedure, see Andrews (1999, p.1371)).

The asymptotic distribution of the Wald test under H0 is a mixture of a chi-square
with one degree of freedom and a mass-point at zero. Its critical values are 1.642, 2.706,
and 5.412 for significance level 10%, 5% and 1% respectively, see Carrasco and Gregoir
(2002). When the true parameter is an interior point of the parameter space, the asymp-
totic distribution of the Wald test becomes a chi-square distribution with one degree of
freedom χ2(1) instead of a mixed distribution so that its critical values are given by 2.71,
3.84, and 6.63 for significance levels 10%, 5%, and 1%. We see that the correct critical
values are smaller that those given by the χ2(1), hence using mistakenly the χ2(1) criti-
cal value would yield a test that lacks of power. To prove Proposition 1, we use results
from Lemma 1 in Appendix A1. Its proof given in Appendix A1 draws from results by
Andrews (1999).

This test procedure is based on the GMM estimation of the parameters assuming the
model is correctly specified. To test the validity of the moment conditions, it is customary
to test overidentifying restrictions.

1.4 Testing overidentifying restrictions
In this section we are going to propose a two-step procedure which helps us to test
overidentifying restrictions when one component of the parameter of interest may be at
the boundary of its parameter space. Nonetheless, we start by a simulation exercise which
shows that the standard J-test performs poorly when a component of the parameter of
interest is near or at the boundary of its parameter space.
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1.4.1 J-test when the true parameter is near or at the boundary
of the parameter space

When the number of moment conditions exceeds the number of unknown parameters
to be estimated by GMM, one can test the model validity by testing overidentifying
restrictions before any inference in the resulting estimation. A common test used for this
purpose is the J-test proposed by Hansen (1982) and one of the assumptions underlying
this test is that the true parameter is an interior point of the parameter space. In this
situation, Hansen’s J-statistic satisfies J = TGT (θ̂)′Ŝ−1GT (θ̂) L→ χ2(K − L) where K is
the number of moment conditions and L the number of estimated parameters. However,
when the true parameter is on the boundary of the parameter space, Ketz (2017) shows
that the standard J-test suffers from overrejection since J L→ χ2(K − L) − λ̂

′Υλ̂ (see
Ketz (2017) for details). Moreover, this test statistic suffers from the same problem near
the boundary of the parameter space. A simple way to control the nominal size of the
J-test in such a situation is to use an adjusted critical value. Ketz (2017) also proposes
a modified J-statistic which has the same asymptotic distribution as the standard J-test
under the null hypothesis. However, the J-test implemented with the adjusted critical
value tends to outperform the modified J-test when we are too close to the boundary
of the parameter space. Therefore, we propose a simple two step procedure to test
overidentifying restrictions.

Let’s start by a simple simulation exercise to understand how the J-test behaves
nearly or at the boundary of the parameter space.

The simulation model is specified as follows:

yi = ψ + δxi + ui

with E(ui) = 0. xi is assumed to be the only endogenous regressor and is specified by
the following equation:

xi = π0 + π1z1i + π2z2i + vi

where E(vizi) = 0, zi = (1, z1i, z2i)
′ is the vector of instruments used to estimate θ =

(δ, ψ)′ by the standard GMM estimation method where ψ ∈ R. We assume that δ ∈ R+,
this implies that when δ = 0, we are at the boundary of the parameter space so that the
standard asymptotic theory fails (see Andrews (1997)).

The data are generated using the following assumption
ui
vi
z1i

z2i

 ∼ N



0
0
0
0

 ,


1 0.5 σ1 σ2

0.5 1 0 0
σ1 0 1 0.2
σ2 0 0.2 1




with ψ = π0 = π1 = π2 = 1 for several values of δ so that depending on the chosen value
of δ, we could be close to the boundary of the parameter space or not. These different
values for δ help us to make a power analysis of the test procedure when δ approaches
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the boundary of the parameter space. σ1 and σ2 are the correlations between u and z1

and z2 respectively. We set σ1 = 0 and generate data for different values of σ2 so that
we obtain several alternative hypotheses for overidentifying restrictions test. The sample
size is chosen to be 250 as in Ketz (2017) and we replicate the procedure 100,000 times.

Table 1.1 gives us the rejection frequency of the null hypothesis for testing the overi-
dentifying restrictions in the standard GMM estimation (under the null hypothesis of
J-test, here that means σ2 = 0), using the J-statistic for different critical values at the
significant level 5% when δ = 0. The column 2 gives the rejection frequency under the null
hypothesis when we use the standard critical value (from χ2(1)) and the column 3 gives
the same quantity using the adjusted critical value (from 0.5χ2(1) + 0.5χ2(2) obtained
by Ketz (2017)).This result shows that at the boundary of the parameter space, the J-
statistic using the χ2(K −L) distribution as the asymptotic distribution over-rejects the
null hypothesis of the J-test. Hence, one needs to adjust the critical value of the standard
J-statistic in this context in order to control the size. Nonetheless, what happen with
the J-test when the true parameter is not at the boundary but near to the boundary?

Table 1.1: Simulation results for two critical values at the significant level 5%
J-stat J-stat1

Critical values (5%) χ2(1) 0.5χ2(1) + 0.5χ2(2)
Empirical size 0.1015 0.0547

Table 1.14 gives us the same result as in Table 1.1 for several values of the parameter
δ. Those results inform us about the ability of the J-test to control the size when δ

approaches the boundary of the parameter space4. We can notice through our simulation
results in Table 1.14 that the J-test overrejects the null hypothesis for values of δ close
to the boundary of the parameter space when using the standard critical value. In
fact, Andrews (1997) argues that asymptotic theories about the estimated parameter
θ̂ fail when we are close to the boundary of the parameter space so that asymptotic
distributions of several test statistics including the J-statistic become non standard. On
the other hand, the J-statistic based on the adjusted critical value has better empirical
size than the standard J-test as observed in Tables 1.14. Nonetheless, when the parameter
δ becomes large enough, the standard J-test starts to control the empirical size which
is not the case of the J-test based on the adjusted critical value (see Table 1.14). The
same results can be observed in Figure 1.1 which gives the rejection frequency of the
J-test based on the adjusted critical value and the standard one. The adjusted J-test
controls the nominal size of the J-test only when the true value of the parameter δ is
very close to the boundary of the parameter space and the standard J-test overrejects
the null hypothesis in that case.

4based on both the standard critical value and the adjusted critical value
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Hence, there seems to exist a certain value of the parameter δ starting from which
(δ = 0.04 in this simulation exercise) the standard J-test controls the empirical size when
testing overidentifying restrictions. Therefore, the standard J-test will be used for values
of δ greater than this threshold and we will use the adjusted critical value for the J-test
otherwise. However, because this threshold is unknown, we don’t know when to use the
standard critical value and when to use the adjusted critical value in practice.

In the next subsection, we propose a simple procedure to test overidentifying restric-
tions.

Figure 1.1: The null rejection probability of the J-test for two critical values at the
significance level 5%

1.4.2 A two-step procedure to test overidentifying restrictions
In this part of our analysis, we are going to propose a two-step method for testing
overidentifying restrictions in our GMM estimation procedure. In the first step we will
test the significance of δ based on a first step estimation. In the second step, we will
use this information to decide whether to use the standard critical value or the adjusted
critical value of Ketz (2017) to implement the J-test.

Nonetheless, to implement the test about the nuisance parameter in the first step,
we need to have a first step consistent estimator of the parameter δ. So, we need some
assumptions about the set of moment conditions used in our GMM estimation procedure.

Let g =
(
g1

g2

)
where E [g(Zt, θ)] = 0 is the set of moment conditions to be used in

our estimation process, g1 is a k1 × 1 vector and g2 a k2 × 1 vector. Hence, we obtain
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that
E [g(Zt, θ)] = E

(
g1(Zt, θ)
g2(Zt, θ)

)
=
(
E [g1 (Zt, θ)]
E [g2(Zt, θ)]

)

To implement correctly our procedure, let us start by the following assumption.

Assumption B. E [g1(Zt, θ)] = 0 if θ = θ0 with k1 ≥ L where L is the number of
parameters to be estimated by GMM.

Assumption B implies that there is a subset of moment conditions which are correctly
specified in order to identify the parameter θ so that we can obtain a consistent first step
estimator of θ denoted by θ̃ based only on E [g1(Zt, θ)]. Moreover, the criticism raised
by Guggenberger and Kumar (2012) in the standard GMM setting does not apply to
our two step procedure because we do not use the J-test as pretest. Using these two
assumptions, we describe our procedure as follows:

Step 1: Test the following hypothesis about the unknown nuisance parameter δ:
H0: δ = 0 vs H1: δ > 0 at the significance level α1 ∈ (0, 1). The test of this step is

implemented based on the assumption B so that we can obtain a consistent estimator of
θ using only E [g1(Zt, θ)] = 0 as the set of moment conditions in the GMM process. The
test statistic used to test the null hypothesis in this situation is the Wald test statistic
given by:

W = T δ̃2

σ̃2
δ

where σ̃2
δ is a consistent estimator of the asymptotic variance of δ̃ and T is the number

of observations used in the estimation process. Using the result of Proposition 1 under
assumption A, we obtain that under the null hypothesis

W
L→ 1

2χ
2(0) + 1

2χ
2(1)

where critical values have been given in Carrasco and Gregoir (2002) by 1.642, 2.706,
and 5.412 for significant level 10%, 5%, and 1% respectively. We also simulate critical
values for several significant level and the results of this simulation are in Table 1.13 in
Appendix B.

Step 2: In this step we use the J-test to test overidentifying restrictions in our
GMM estimation based on the entire available set of moment conditions g(Zt, θ) at the
significance level α2 ∈ (0, 1). In fact, as mentioned before when one element of the vector
of parameters to be estimated by GMM is close to the boundary of its parameter space,
the asymptotic distribution of the J-statistic could be different from the standard one
depending on the value of this unknown nuisance parameter. Therefore, information
obtained at the first step about the unknown nuisance parameter will be used to decide
if we have to use the standard critical value or the adjusted critical value. Hence, if
we denote by cα1 the critical value of the test implemented in the first step then in the
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second step the J-test is implemented as follows:

• If W > cα1 then the critical value of the J-test is the standard one χ2
α2(K − L)

• IfW ≤ cα1 then the critical value of the J-test is (0.5χ2(K−L)+0.5χ2(K−L+1))α2

However, to well implement the J-test based on a two-step procedure, we need first
to answer two important questions in order to have good results from our method.

Firstly, how to choose the nominal size α2 given α1 in order to control the global
size α of the J-test implemented using a two-step procedure? To implement the J-test
in the second step of our procedure, we use a Bonferroni-type correction as in Romano
et al. (2014) to account for the fact that with some probability α1 ∈ [0, 1) the unknown
nuisance parameter may not lie in the critical region, where α1 is the nominal size of the
test at the first step. In other words, we need to adjust the critical value of the second
step by using a nominal size different from the usual nominal size of the J-test (the
global size of the J-test α) see also Dufour and Kiviet (1996) for the same adjustment in
a two-step test procedure. More precisely, if we denote by α the global size of the J-test,
then the correct size of the test in the second step in order to control the global size
of the J-test implemented using our two step procedure is given by α2 = α − α1 where
α1 ∈ [0, α).

Secondly, how to choose also the nominal size of the first step α1 in order to have good
results in terms of power analysis of the two-step J-test? Romano et al. (2014) argue
that large values of the nominal size in the first step leads to somewhat reduced average
power but lower values of α1 do not make a noticeable differences in terms of average
power of the two-step procedure. Moreover, in their simulation exercise, the nominal
size in the first step is chosen to be 0.5%. In our simulation exercise, several values of
α1 will be used including 0.5%. Nonetheless, since we do not propose a specific way for
selecting the nominal size of the first step, it may be important in future research to find
a consistent way to choose this nominal size to improve the power of the two-step J-test.

Now we are going to use the same theoretical model as in Ketz (2017) to make a
simulation exercise for our two step procedure of the J-test. We assume that σ1 = 0 so
that the data is generated only for different value of σ2 which is, as mentioned before,
the correlation coefficient between u and z1. σ1 = 0 implies that E(uz1) = 0 so that we
have a subset of moment conditions (E(uz1) = E(u) = 0) correctly specified which could
help us to consistently estimate θ = (δ, ψ)′ by GMM without using the third moment
condition (E(uz2) = 0).

Let θ̃ be the estimator of θ obtained using only E(uz1) = 0 and E(u) = 0. This
estimation using a subset of moment conditions will be used to test the nullity of the
parameter δ in the first step of our procedure at the significance level α1 with α1 ∈ [0, α)
where α is the global size of the J-test.
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The first simulation exercise we did is a power analysis of the J-test implemented
in one step procedure based on two different critical values. We did this analysis for a
global significance level of α = 5% across several values of σ2.

The second simulation exercise is also about a power analysis of the J-test imple-
mented in a two step procedure for the same significant levels across several values of σ2.
We use several values of the nominal size α1 ∈ [0, α) of the first step of our procedure to
see how it could affect the power of the J-test implemented in a two-step procedure and
its ability to control the empirical size.

We did our simulations for two different values of the parameter δ, δ = 0 and δ = 0.04.
The results of these simulations are summarized in Tables 1.2 and 1.3 where columns 2
and 3 give us the results of the J-test implemented using the standard critical value and
the adjusted critical value respectively. Column 4 contains the result about the modified
J-test proposed by Ketz (2017) and columns 5, 6, 7, and 8 give the simulation results
of the J-test implemented using a two-step procedure for several values of α1. This
simulations are done with 100,000 replications.

Table 1.2: Empirical rejection rate for δ = 0 and α = 5%

σ2 J-stat J-stat1 Modified
J-test

J-stat2
α1 = 0.5%

J-stat2
α1 = 1%

J-stat2
α1 = 1.5%

J-stat2
α1 = 2%

0.0 0.1024 0.0543 0.0504 0.0503 0.0448 0.0420 0.0346
-0.3 0.9997 0.9980 0.9489 0.9981 0.9990 0.9980 0.9970
-0.2 0.9324 0.8860 0.7021 0.9218 0.8623 0.8512 0.8304
-0.1 0.4790 0.3663 0.3204 0.4500 0.33210 0.3050 0.3206
0.1 0.2623 0.1932 0.2615 0.2620 0.1704 0.1528 0.1808
0.2 0.7519 0.6602 0.7362 0.7379 0.6282 0.6209 0.6120
0.3 0.9842 0.9686 0.9780 0.9871 0.9764 0.9567 0.9531

Table 1.3: Empirical rejection rate for δ = 0.04 and α = 5%

σ2 J-stat J-stat1 Modified
J-test

J-stat2
α1 = 0.5%

J-stat2
α1 = 1%

J-stat2
α1 = 1.5%

J-stat2
α1 = 2%

0.0 0.0560 0.0305 0.0504 0.0509 0.0457 0.0400 0.0165
-0.3 0.9932 0.9870 0.9489 0.9925 0.9897 0.9902 0.9870
-0.2 0.8259 0.7395 0.7021 0.8105 0.7967 0.7835 0.6589
-0.1 0.2945 0.2077 0.3204 0.3189 0.2560 0.2435 0.2269
0.1 0.2525 0.1770 0.2615 0.2597 0.1947 0.1919 0.1880
0.2 0.7470 0.6548 0.7362 0.7279 0.6789 0.6787 0.6707
0.3 0.9812 0.9650 0.9780 0.9805 0.9785 0.9760 0.9447

The first important thing we can notice from Tables 1.2 and 1.3 is that our two-step
procedure out-performs the J-test based on the adjusted critical value for a wide choice of
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the nominal size of the first step of the two-step procedure. For instance with α1 = 0.5%
as in Romano et al. (2014), the two-step test outperforms the adjusted J-test at the
boundary or near to the boundary of parameter space. This result holds for the set of
alternatives considered in the simulation exercise. However, the choice of the nominal
size of the first step procedure is an important element to have good properties for the
two-step procedure. In particular we can notice in general that the two-step procedure
tends to have poor results in terms of power analysis for greater values of α1. This result
has been pointed out by Romano et al. (2014).

The second thing we can notice from our simulation results is that the power of our
two-step J-test declines with the value of σ2 in absolute value. We can also notice through
this simulation result that our two-step procedure gives similar results as the modified
J-test in terms of power analysis near the boundary of the parameter space. Nonetheless,
our procedure outperforms the modified J-test at the boundary of the parameter space.

In the next section we are going to apply our test procedures to a problem of portfolio
selection with trading costs.

1.5 Empirical Analysis
In this section we are going to apply empirically the test procedures described in Sections
1.3 and 1.4 in a context of portfolio selection with trading costs.

1.5.1 Data and data sources
In our empirical analysis, we use monthly data from July 1973 to December 2013. The
monthly rate of the return on the value-weighted NYSE index is used as a proxy for
the return on the market portfolio. The one-month Treasury-Bill (T-Bill) rate is used
as a proxy for the risk-free rate and Rf is calibrated to be the mean of the one-month
Treasury-Bill rate observed in the data. The consumption Ct is taken to be the U.S.
real per capita consumption of nondurable goods and services, and is constructed using
data from the Federal Reserve Bank of St Louis database. The monthly CPI inflation
corresponding to the definition of the consumption adopted is also used to deflate the
stock return and the risk-free rate. The return on the market portfolio and the interest
rate are from the Fama-French database and the CPI are from the Federal Reserve Bank
of St. Louis database. The returns on the risky assets (here anomalies) are from Robert
Novy-Marx Data Library.

1.5.2 Descriptive statistics about assets returns
In this analysis we use two measures of per capita consumption. The first one is the
expenditure on nondurable goods and the second one is the expenditure on nondurable
goods and services. All the nominal variables such as nominal asset returns and nominal
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consumption are converted into real variables using the CPI inflation index corresponding
to the definition of consumption adopted. The real consumptions are put into per capita
terms using total civilian population from the Federal Reserve Bank of St. Louis database.

Figure 1.2 gives us the estimated trading costs on a specific anomaly namely the
industry relative reversals from July 1973 to December 2013 based on data from Novy-
Marx. Those trading costs are expressed as a percentage of the gross return. The average
trading costs in this strategy is about 1.86% of the gross return with strong fluctuations
between 1973 and 2013. As we can see it from the graph, these frictions represent an
important part of the gross return. So, one should not ignore trading costs when we are
interested in a portfolio selection problem including this asset.

Figure 1.2: Trading costs in the portfolio based on the Industry relative reversals

We compute some statistics such as the empirical mean and standard deviations on
some variables of interest used in the estimation process. Table 1.4 summarizes those
statistics. Columns 2 and 3 of this table contain the empirical mean of each variable
in column 1. Quantities in brackets are empirical standard deviation. The difference
between columns 2 and 3 comes from the measure of CPI index (which changes with
the measure of per capita consumption) used to transform nominal variables into real
variables. Note that Mt is the real return on the market portfolio and ct+1/ct is the real
consumption growth. For anomalies, we use the real returns net of transaction costs for
assets whose trading costs exceed 0.50% of the gross return (see Table 1.11 in Appendix
B).

The first thing we can notice from those descriptive statistics is that returns on stock
market are substantially more volatile than the consumption growth and the bond market
is not very volatile. The second interesting thing about the Table 1.4 is that real returns
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Table 1.4: Descriptive statistics

Variables Mean
Nondurable and services

Mean
Nondurable

ct+1/ct
1.0009
(0.0039)

1.0006
(0.0072)

Mt
1.0082
(0.0488)

1.0149
(0.0811)

Bonds 1.0043
(0.0039)

1.0074
(0.0060)

Failure probability 0.9997
(0.0767)

1.0007
(0.1274)

Idiosyncratic volatility 0.9986
(0.0663)

0.9985
(0.1153)

Momentum 1.0046
(0.0643)

1.0080
(0.111)

PEAD (CAR3) 1.0035
(0.0283)

1.0059
(0.0486)

Industry momentum 0.9961
(0.0534)

0.9923
(0.0938)

Industry relative reversals 0.9948
(0.0424)

0.9892
(0.0718)

High frequency combo 1.0028
(0.033)

1.0031
(0.0578)

Short run reversals 0.9905
(0.0505)

0.9820
(0.0870)

Seasonality 0.9938
(0.0403)

0.9890
(0.0670)

Industry Relative Reversals
(Low volatility)

1.0029
(0.0359)

1.0037
(0.0591)

appear to be relatively stable when services are added to consumption measure indicating
that the inflation index does not differ much across these measures of consumption.

1.5.3 Estimation results and testing
Our goal in this subsection is to estimate θ = (δ, ψ′)′ by the two-step GMM procedure
developed in Section 1.3 in order to test the significance of the transaction costs effect in
the economy. To test whether trading costs in a given strategy have a significant effect,
we use the result of Proposition 1 to test whether the parameter δ is significant or not.
We estimate the parameter θ using the set of moment conditions obtained through the
first order conditions (see (1.12)-(1.13)) of the optimal consumption-investment selection
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problem.
The gross return on the optimal portfolio Rp,t+1 which appears in the set of moment

conditions is approximated by the gross return on the market portfolio Mt+1 as it has
been done by Epstein and Zin (1991).

The risk premium Rp
t+1 in the relation (1.9) has been approximated by Rt+1 − Rf

in Epstein and Zin (1991) where Rt+1 is the gross return in the risky asset without
accounting for trading costs. In this situation, the relation in (1.9) becomes as follows

Et

(Ct+1

Ct

)λ
ρ

(ρ−1)
M

λ
ρ
−1

t+1 (Rt+1 −Rf )
 = 0 (1.15)

It implies that the parameter δ in the relation (1.13) which informs us about the effect
of the trading costs in the economy is equal to zero. However, because we account for
trading costs in the economy, instead of using Rt+1−Rf to approximate the risk premium
Rp
t+1, we use R̄t+1 − Rf as a proxy of this variable where R̄t+1 is the gross return net of

trading costs in the risky asset. For comparison purposes, we also estimate our model
using Rt+1−Rf as a proxy of the risk premium (Epstein and Zin, 1991). We expect from
this estimation that the parameter δ to be non-significant in this case.

The set of instruments used in our estimation procedure is given by:
xtl = (1, ct

ct−1
, ..., ct−l

ct−l−1
,Mt, ...,Mt−l) with l ∈ N∗ and xtl ⊂ Ft where Ft is investors’

information set. We estimate models for several sets of instruments that means for several
values of l ∈ N∗ across the consumption and the risk premium measures. Several models
have been estimated depending on the strategy used for the risky asset. Because the main
objective through this paper is to test whether trading costs have a significant effect, we
only report the estimation results about the trading cost parameter δ. The first panel
in Table 1.5 contains our estimation results when the consumption is measured by the
nondurable goods. The second panel in Table 1.6 provides results when the consumption
is measured by the nondurable goods and services. The results of these two panels are
obtained using xt2 (l = 2) as the set of instruments in our estimation process. We also
estimate models with a second set of instruments xt3 (l = 3) and the results of this
estimation are given in Tables 1.15 and 1.16 in Appendix B.

To test overidentifying restrictions in our estimation procedure, we use the two-step
procedure proposed in Section 1.4 because there is an unknown nuisance parameter (the
trading costs parameter) which could be at the boundary of its parameter space. In
fact, as we saw in Section 1.4 (by simulations), when the true parameter is close to the
boundary of the parameter space, the standard J-test proposed by Hansen (1982) over-
rejects. An adjusted critical value has been used to overcome this problem. However,
this procedure out-performs only when the nuisance parameter (which is unknown) is
close to its parameter space. So, because the nuisance parameter is unknown, we use a
two step procedure to implement the J-test. To implement the J-test using our two-step
procedure we need to have a first step consistent estimator based on a subset of the
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moment conditions as pointed out in Section 1.4. In the first step, we estimate θ by
GMM using the following moment conditions:

E [g1(Zt, θ)] = 0

with

g1(Zt, θ) =


[
β
(
Ct+1
Ct

)ρ−1
Rp,t+1

]λ
ρ

− 1

λ
ρ

(
Ct+1
Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1R
p
t+1 + δ

⊗ wtp
where wtp is a set of instruments given by wtp = (1, ct

ct−1
, ..., ct−p

ct−p−1
,Mt, ...,Mt−p)

′ with
p = 1. The results of this first estimation are given in Tables 1.17 and 1.18 in Appendix
B. This first estimation will be used to test H0 : δ = 0 vs H1 : δ > 0 at the significance
level α1 ∈ [0, α) based on Proposition 1 given in Section 1.3 where α is the global size
of the J-test. The critical values used to implement the first step test procedure are
given in Table 1.13 depending on the nominal size of this test α1. Information about the
trading costs parameter from the first step estimation will be used in the second step to
implement the J-test based on all moment conditions available. An important thing to
notice is that the size of the J-test implemented in the second step is α2 = α − α1 to
control the global size of the two-step J-test.

Columns 2 and 4 in Tables 1.5 and 1.6 provide the estimate results of the parameter δ
across consumption measures and the risk premium. Quantities in brackets are statistics
used to test whether δ is significant or not. Those quantities are computed using the
following formula T δ̂2

σ̂2
δ
where δ̂ is from the two-step GMM estimation and σ̂2

δ a consistent
estimator of the asymptotic variance of δ̂. These statistics are compared for significance
levels 10%, 5%, and 1% respectively to 1.642, 2.706, and 5.412 (see Carrasco and Gregoir
(2002)) based on the result of Proposition 1. Finally, columns 3 and 5 in Tables 1.5 and
1.6 summarize results on two-step J-statistics used to test overidentifying restrictions in
our GMM procedure. Here, values in brackets are p-values associated with statistics.
If the first step test gives us a significant value of the trading costs parameter, we test
overidentifying restrictions by comparing the p-value to the nominal size α2 instead of
α. Here the nominal size of the first-step α1 is chosen to be 0.5% with the global size of
the J-test implemented using a two step procedure given by α = 5%. The choice of the
nominal size of the first step of 0.5% was motivated by the simulation of Section 1.4.

The first thing we can notice is that the trading costs parameter δ is not significant for
the strategy based on the market portfolio. This result has been obtained using several
set of instruments and for different measures of the consumption and the risk premium
(see Tables 1.5-1.6 and 1.15-1.16). Hence, trading costs have no effect when the risky
asset in the economy is assumed to be the market portfolio. We could explain this result
essentially by the fact that trading costs on the market portfolio are quite low so that the
utility cost becomes negligible as well as the effect in the optimal portfolio. Therefore, if
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Table 1.5: GMM estimation result for testing trading costs effect
Nondurable goods (l = 2)

Strategy Net return Gross return
δ̂ J test δ̂ J test

Market Portfolio 1.3664e-05
(9.7245e-06)

9.028
(0.172)

1.0428e-05
(5.6759e-06)

9.057
(0.1704)

Size 0.0064013∗
(1.6657)

25.28+

(0.0003033)
0.0054747
(1.2442)

25.28+

(0.0003035)

Gross Profitability 0.0051534∗
(1.769)

4.775
(0.573)

0.0045914
(1.6171)

5.346
(0.5003)

Asset growth 3.5763e-13
(9.5228e-21)

7.674
(0.263)

5.1455e-13
(1.75e-20)

8.531
(0.2017)

Piotroski’s F-score 0.0064663∗
(2.1903)

17.21+

(0.008531)
0.0042506
(0.97976)

17.41+

(0.007879)

PEAD (SUE) 0.0041693∗
(1.6842)

7.182
(0.3043)

6.5098e-13
(3.3749e-20)

9.515
(0.1466)

Industry Momentum 0.016371∗∗
(4.3862)

6.811
(0.3387)

1.3407e-14
(4.4593e-24)

10.35
(0.1106)

Industry Relative Reversals 0.029408∗∗
(5.312)

5.274
(0.5092)

3.2885e-13
(1.1809e-21)

1.827
(0.9349)

High Frequency Combo 0.0089251∗∗
(3.0787)

5.34
(0.501)

4.4611e-12
(3.4795e-19)

42.58
(1.413e-07)

Short-run reversals 0.038244∗∗∗
(5.8189)

5.787
(0.4475)

0.0041816
(0.55006)

6.299
(0.3906)

Seasonality 0.024196∗∗∗
(10.0722)

12.43
(0.05295)

5.6079e-12
(2.0994e-18)

13.23+

(0.03953)
Industry Relative Reversals

(Low volatility)
0.0090724∗∗
(3.7962)

3.284
(0.1936)

8.5873e-13
(3.272e-20)

23.09+

(0.0007676)
∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at 4.5%

the market portfolio is used as the risky asset in our economy, the relation defined in (1.9)
is satisfied with equality as in a frictionless setting even if we account for trading costs.
In fact, the optimal investment policy with the market portfolio becomes very close to
that we obtain in the frictionless setting in such a way that the utility cost due to the
presence of trading costs becomes negligible. For instance, in a simple numerical analysis
on a 10-years horizon investor who faces quadratic transaction costs, we find the following
result when the market portfolio is assumed to be the risky asset in the economy. The
average optimal investment policy in the risky asset is about 39.86% which is very close
to the same quantity obtained in the frictionless setting (about 40.40%). These quantities
have been obtained using the numerical procedure developed in Appendix A3. Moreover,
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Table 1.6: GMM estimation result for testing trading costs effect (continued)
Nondurable goods and services (l = 2)

Strategy Net return Gross return
δ̂ J test δ̂ J test

Market Portfolio 1.0897e-12
(1.8736e-19)

10.16
(0.1181)

1.8e-12
(5.5e-19)

10.57
(0.1026)

Size 0.0028094
(1.1089)

18.46+

(0.00519)
0.0023344
(0.78437)

18.46+

(0.005173)

Gross Profitability 0.0028013
(1.3623)

5.574
(0.4726)

0.002528
(0.86494)

3.914
(0.6883)

Asset growth 0.0002716
(0.019201)

9.161
(0.1647)

6.9036e-13
(1.0931e-19)

9.387
(0.1529)

Piotroski’s F-score 0.0036007∗
(2.1995)

16.83+

(0.009932)
0.0023875
(1.0298)

16.91+

(0.009616)

PEAD (SUE) 0.0025953∗
(1.9174)

6.897
(0.3305)

2.0229e-14
(9.8233e-23)

8.932
(0.1774)

Industry Momentum 0.0090454∗∗∗
(5.6283)

10.48
(0.1057)

4.6873e-12
(1.7489e-18)

11.11
(0.08514)

Industry Relative Reversals 0.014861∗∗
(4.3446)

5.8
(0.446)

5.0304e-12
(3.7817e-18)

14.74+

(0.02239)

High Frequency Combo 0.0042342∗∗
(3.5827)

9.251
(0.1599)

7.6272e-12
(2.3702e-18)

48.91+

(7.757e-09)

Short-run reversals 0.020137∗
(1.8545)

2.385
(0.8811)

0.0018176
(0.41066)

8.809
(0.1846)

Seasonality 0.0124∗∗∗
(8.0757)

11.9
(0.06428)

5.4295e-12
(5.9229e-18)

16.62+

(0.0108)
Industry Relative Reversals

(Low volatility)
0.0039186∗
(1.8283)

5.975
(0.426)

2.0517e-13
(4.5296e-21)

26.92+

(0.0001496)
∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at 4.5%

when trading costs have no effect for a given strategy, the second Euler equation in (1.9)
could be rewritten as in (1.15) so that one can combine (1.8) and (1.15) to obtain the
following set of equations:

Et

β λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1Rjt+1

 = 1 (1.16)

for j = 1, 2. Rjt+1 is the gross return of the asset j where j = 1 is the risk-free asset with
R1t+1 = Rf and j = 2 corresponds to the risky asset in the economy with R2t+1 = Rt+1

(see Appendix A2 for more details about (1.16)).
The second thing we can notice from Tables 1.5 and 1.6 (column ”gross return”) is
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that the parameter δ is not significant for any model when the risk premium Rp
t+1 is

measured by Rt+1 − Rf where Rt+1 the gross return on the risky asset. In fact, when
Rt+1 − Rf is used to measure the risk premium, this implies that we do not account for
trading costs in our economy model. Hence, the non-arbitrage condition in the financial
market given by the relation (1.9) is satisfied with equality so that the parameter δ which
appears in the second moment condition defined in (1.13) is zero.

Nonetheless, using R̄t+1−Rf to measure the risk premium in the estimation process,
we account for trading costs in the economy model so that the parameter δ could be
different from zero in the relation (1.13). We can notice for example that trading costs
have a significant effect for most of strategies whose trading costs exceed 30 bp (0.03%
of the gross return) in particular all anomalies with trading costs more than 1% of their
gross return have a significant trading costs effect (see Tables 1.5-1.6 and 1.15-1.16).
Hence, for each of those strategies, the relation defined in (1.9) is satisfied with a strict
inequality. In this situation the expected benefit by investing in the risky asset only is less
than the benefit in the portfolio based on the risk-free asset because of the costs incurred
by investors when taking positions on the risky asset. In fact, trading costs considerably
reduce the selected portfolio profitability due to their negative effect on investors risk
premium. Therefore, we record an important loss in consumers’ income so that investors
are obliged to reduce their consumption, this in turn creates a utility loss. Moreover,
we also find through a simple numerical analysis that trading costs substantially reduce
the optimal holdings in the risky asset. With trading costs in the economy, the relation
in (1.16) does not hold for all assets and we obtain the following results about the first
order conditions (see Appendix A2):

Et

β λ
ρ
λ

ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1Rjt+1

 = λ

ρ
+ δωitβ

λ
ρ (1.17)

for i, j = 1, 2 with i 6= j where δ is a positive parameter which shows us the effect of
trading costs in the economy, ω1t = yt, ω2t = 1 − yt, R1t+1 = Rf , R2t+1 = Rt+1. If δ is
not significant, Equation (1.17) becomes (1.16) and the analytical solution to the optimal
portfolio in this case is close to the one we have in the frictionless setting. However, when
δ is significant, the analytical solution obtained using (1.16) is not the optimal one in
the presence of trading costs. So, one needs to care about such a friction in the portfolio
selection problem.

Most models which exhibit a significant trading cost effect when the consumption
is measured by the nondurable good have also significant trading costs effect with non-
durable goods and services. Nonetheless, the intensity of the effect differs across these
two measures of the consumption. Moreover, the number of models with significant
trading cost effect tends to increase with the number of instruments. In fact, when the
number of instruments increases, estimation variance becomes smaller in such a way that
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the results of the tests become more accurate even if estimation bias could increase. But
we can notice that estimation results are very similar across the set of instruments used
in the estimation process. Hence, our results seem robust to the number of instruments
used in the estimation process.

According to the results in Tables 1.5-1.6 about the two-step J-test, we reject only
for two models when the transaction costs are included in the model. However, when the
transaction costs are ignored in the model, the two-step J-test rejects our estimation for
several models in particular when the services are adding to nondurable goods.

1.5.4 Comparison with the literature
The parameter δ in the relation (1.13) help us to test for a given asset if trading costs
have a significant effect on investors’ behavior. In fact, a significant δ helps us through
the relation (1.17) to see how inefficient will be the analytical solution of the portfolio
selection problem obtained based on the relation (1.16). In such a situation ignoring
trading costs could have disaster consequences.

The parameter δ could be seen as the average adjustment to bring to the net return
of trading costs so that the relation (1.9) will be satisfied with equality. In this context,
this parameter could be considered as a proxy for the trading costs faced by investors
in the financial market. Using δ as a proxy of trading costs simplified inferences about
trading costs effect in terms of utility costs based on Proposition 1.

Table 1.19 contains in column 3 the estimates of the trading costs parameter obtained
by our GMM estimation. We also report in the column 2 the average trading costs
on these strategies provided by Novy-Marx and Velikov (2016). We notice that our
estimation for these strategies are quite close to the average trading costs obtained by
Novy-Marx and Velikov (2016) using different estimation methods.

Indeed, Novy-Marx and Velikov (2016) evaluate trading costs on anomalies using a
Bayesian Gibbs Sampler on a generalized Roll (1984) model of stocks price dynamics.
While we did our estimation based on a standard GMM procedure using the return net of
trading costs obtained by Novy-Marx and Velikov (2016). In addition to the computation
of trading costs, our estimation procedure allows us to test whether such costs have a
significant effect on investors’ actions in the financial market.

1.6 Economic benefits from accounting for trading
costs

In this section we are going to measure the economic gain an investor can obtain when
he accounts for trading costs in the portfolio selection process. This analysis will be
done by comparing the out-of-sample performance of portfolio from our model (with
trading costs) to the null model which ignores trading costs in the investment process.
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So, assumed that we have monthly data-set of size T1. We also consider a finite life
horizon (T2 months with T2 < T1) investor who reallocates his portfolio at the end of
each month of his life cycle. Then we use the first T1 − T2 information on the data-set
to estimate unknown parameters about the vector of state variables in the optimization
problem. Those estimations will help us to be able to implement the numerical procedure
developed in Appendix A3 in order to obtain the portfolio rule at each period of time.
Hence, at each time period of his life cycle (t = T1 − T2 + 1, ..., T1), our investor finds
portfolio weights to maximize the expected utility. The investor then holds those assets
for a given period (a month), realizes gains and losses and recomputes optimal portfolio
weights for the next period. This procedure is repeated for each time period through
the investor’s life cycle generating a time series of out-of-sample portfolio returns to
evaluate the performance of the models. We compute optimal portfolios for two different
models one with trading costs and the other one which ignores the trading costs. For
this purpose, we need to assume a given form to the transaction cost in our model. A
standard way to parametrize those frictions is to model them as proportional to the
amount of rebalancing.

Let ft denote the transaction cost per dollar of portfolio value. Then, we model ft as
follows:

ft = φp | yt − ŷt |

where ŷt is the proportion of the risky asset inherited from the previous period and given
by:

ŷt = yt−1(1− kt−1)At−1(1− ft−1)Rt

At
= yt−1Rt

yt−1(Rt −Rf ) +Rf

kt is the fraction of the current income allocated to the consumption at time t and φp is
the proportional cost parameter associated with the risky asset (see Lynch and Balduzzi
(2000) for more details). At is the investor’s income at time t defined according to the law
of motion in Equation (1.3) with Rp,t+1 such that Rp,t+1 = (1− ft)

[
yt(Rt+1 −Rf ) +Rf

]
instead of (1.2) to account for the transaction cost. We still assume that the risky asset
is one of the anomalies used in Novy-Marx and Velikov (2016) so that the parameter
φp is given in Table 1.11 for each strategy. For example, when the risky asset in the
economy is taken to be the industry-relative reversals (IRR) (one of the anomalies used
in Novy-Marx and Velikov (2016)), the proportional cost parameter φp is 1.78% with a
significant trading cost effect according to our empirical results obtained in Section 1.5.

Several statistics such as the mean of the portfolio return (Mean) and its standard
deviation (SD), the Sharpe Ratio (SR) will be used to evaluate the out-of-sample perfor-
mance of our portfolio selection process. The SR is obtained using the following relation:

SR = E(Portfolio)−Rf

σPortfolio

Because E(Portfolio) and σPortfolio are unknown, we estimate those quantities by their
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empirical counterpart from the sample of the optimal portfolio returns.
We report these statistics in Tables 1.7 and 1.8 (for a 10 years horizon investor with

T=120) for two different anomalies. More importantly, we obtain Table 1.7 by using
the parameter calibrated on the industry-relative reversals as the risky asset (φp=1.78%)
and Table 1.8 with the parameter calibrated on the asset growth (φp=0.11%). The
Panel A of those two tables gives statistics when we account for trading costs in the
portfolio selection problem and the panel B contains the same statistics for the null
model. Moreover, we compute those statistics for two different values of the EIS (see
column 1 of each table) when the relative risk aversion is set to γ = 6. We report the
out-of-sample mean of the optimal portfolio in column 2, the out-of-sample volatility
given by the standard deviation in column 3 and the out-of-sample excess return per
unit of deviation in column 4.

Table 1.7: Out-of-sample performance analysis for the Industry-relative reversals with
γ = 6

EIS Mean SD SR
Panel A: With trading costs in the model

0.8 0.16 0.0105 0.1349
2 0.09 0.0107 0.0715

Panel B: Ignoring trading costs in the model
0.8 0.08 0.010 0.0487
2 0.03 0.0127 0.0231

The first thing we can notice from Table 1.7 is that our model outperforms the null
model in terms of the portfolio mean and the Sharpe ratio. For instance, we can see
that the Sharpe ratio obtained in our model when the EIS = 0.8 is 0.1349, about 2.76
times the Sharpe ratio of the null model. A similar result is obtained with EIS = 2.
According to the SR there is a large economic gain from accounting for trading costs
in the investment process when the risky asset is the IRR. In other words accounting
for the trading costs in the investment process helps investors to increase their portfolio
performance in terms of the SR. This finding is consistent with the result of the empirical
analysis about the effect of trading costs for this strategy. Indeed, we found empirically
that the trading costs have a significant effect when the risky asset is assumed to the
IRR. Thus, investors have to care about trading costs in such a situation in order to
optimally behave in the financial market.

The second finding is that the effect of ignoring trading costs on the portfolio perfor-
mance is more important for EIS = 2 than for EIS = 0.8. In fact, the effect of ignoring
transaction costs is amplified by the fact that investors with EIS > 1 tend to be more
aggressive on the financial market. More precisely, when EIS < 1, consumers’ income
effect is larger than their substitution effect so that investors prefer to consume more
today and participate less to the financial market. In this situation, the effect of the
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transaction costs on the portfolio performance is attenuated by the fact that investors
do not want to take risks in the financial market. However, EIS > 1 implies that the
substitution effect is stronger than the income effect and investors prefer participation to
the financial market in order to smooth the consumption in the future. This will amplify
the effect of the trading costs on the the optimal portfolio performance.

Table 1.8: Out-of-sample performance analysis for the Asset growth with γ = 6
EIS Mean SD SR
Panel A: With trading costs in the model

0.8 0.33 0.0110 0.3029
2 0.39 0.0114 0.3400

Panel B: Ignoring trading costs in the model
0.8 0.31 0.0101 0.2974
2 0.38 0.0116 0.3254

When the risky asset in the economy is assumed to be the asset growth (Ag) (as in
Table 1.8) the proportional cost parameter φp is 0.11%. We found through the empir-
ical analysis that trading costs on this strategy do not have a significant effect on the
investment decision according to the test procedure developed in Section 1.3.

We can notice from Table 1.8 that no significant difference in terms of out-of-sample
performance exists between our model and the null model. In fact, as we saw it in Section
1.5, trading costs have no effect on the investment decision for this strategy. Thus, the
optimal investment policies from our model become very close to those of the null model
in such a way that no significant difference exists between these two models.

The results of Tables 1.7 and 1.8 imply that if trading costs have no effect on invest-
ment decision according to our test procedure of Section 1.3, using trading costs in the
portfolio selection process does not significantly improve the out-of-sample performance
(see Table 1.8). In this context investors could ignore those frictions in their investment
process to simplify their optimization problem. However, when a significant trading cost
effect is obtained through the test procedure of Section 1.3, investors need to account
for trading costs in the portfolio selection process in order to improve the out-of-sample
performance of the optimal portfolio (see Table 1.7).

We also use an utility based statistic which is the certainty equivalent (CE) return.
This is the most relevant metric to set up the out-of-sample performance since it quantifies
benefits based on investors’ preferences. Here the CE represents the annualized risk-free
return that gives the investor the same utility as the portfolio obtained without trading
costs in the model. It is a form of compensation which makes the investor indifferent
between the portfolios from our model and those of the null model. When the CE > 0
investors ask a certain compensation to be added to the null model in order to obtain the
same utility as in the model with trading costs. This implies that there is a gain from
accounting for trading costs in the investment process. However, when the CE ∼= 0, we
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conclude that there is no significant economic gain from accounting for trading costs in
the portfolio selection process.

Table 1.9: The Certainty Equivalent for two models with γ = 6
EIS The industry relative reversals The Asset Growth
0.8 0.0300 0.00367
2 0.0700 0.00524

Table 1.9 reports the CE as defined above for two models across two different values
of the EIS. We can notice through this table that the CE is very close to zero when the
risky asset in the economy is assumed to be the Ag. Hence, the transaction cost does not
improve significantly the investor’s utility compared to his utility provided in a frictionless
setting. This result is due to the fact that trading costs have no effect on investment
decision for this strategy as we saw it from our empirical results given in Tables 1.5 and
1.6. However, we obtain an important CE for the model with the IRR. According to this
statistic, investors have to take into account trading costs in their investment process in
order to improve the out-of-sample performance of the optimal portfolio in terms of the
CE.

We also observe that the CE is larger for EIS = 2 compared to what we obtain for
EIS = 0.8. This result means that investors with large EIS (for instance EIS > 1) ask
more compensation in order to be indifferent between our model and the null one. Thus,
as observed for the SR, the trading costs effect on the portfolio performance seems to be
important for greater values of the EIS. This analysis about the trading cost effect on
the portfolio performance also justifies the importance of distinguishing the relative risk
aversion from the EIS.

1.7 Conclusion
In this paper we analyze a portfolio optimization problem of a recursive preference in-
vestor who faces trading costs on stock market. In this context, we consider a simple
economy with two assets including a risky asset and a risk-free asset.

We develop a simple test procedure based on a two-step GMM estimation which
allows us to test whether trading costs have a significant effect on investors welfare in the
economy. An interesting property of this test procedure is that the results do not depend
on the form of the trading costs assumed in the model. We also propose a two-step
procedure to test overidentifying restrictions when one component of the parameter of
interest could be at the boundary of its parameter space. We find through a simulation
exercise that our two-step procedure has good properties for a wide choice of the nominal
size of the first step of the procedure. Our procedure outperforms the J-test based on
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the adjusted critical value and the modified J-test proposed by Ketz (2017) when the
nominal size of the first step is taken to be α1 = 0.5%.

In an empirical analysis we apply our test procedures to the class of anomalies used in
Novy-Marx and Velikov (2016). Not surprisingly, we find that trading costs have no effect
when the risky asset is assumed to be the market portfolio. Nonetheless, trading costs
have a significant effect in terms of utility costs for most of anomalies from Novy-Marx
and Velikov (2016) in particular those whose trading costs exceed 1% of the gross return.
Thus, it is important not to ignore such a friction when making investment decisions.

We measure the economic gain using a proportional trading costs in our model by
comparing the out-of-sample performance to the model which ignores trading costs in the
portfolio selection process. For this purpose we use several statistics such as mean, SD,
SR, and the CE. We obtain through this analysis that the investor significantly improves
the out-of-sample performance only when a significant trading costs effect is obtained
according to our test procedure of Section 1.3.

1.8 Appendix A

1.8.1 Appendix A1: Proof of Proposition 1
Proposition 1 is a corollary from Lemma 1 below.

Lemma 1. Assume that Assumption A holds and that θ0 is such that δ = 0 and
(θ2, θ3, θ4) are interior points of the parameter space. Then, the following results hold:

1. θ̂ is a consistent estimator of θ0, i.e. θ̂ = θ0 + op (1) .

2. lT (θ) admits a quadratic expansion in θ given by:

lT (θ) = lT (θ0) + 1
2X

′
TIXT −

1
2qT

(√
T (θ − θ0)

)
+RT (θ)

where I = Γ′S−1Γ, XT = I−1Γ′S−1
√
TGT (θ0) , qT (λ) = (λ−XT )′ I (λ−XT ),

λ ∈ R4 and for all γT → 0, supθ∈Θ,‖θ−θ0‖≤γT

[
|RT (θ)|

(1+‖√T (θ−θ0)‖)2

]
= op(1).

3. Let Λ = R+ × R3. Let λ̂T = infλ∈Λ qT (λ). Then,
√
T (θ̂ − θ0) = λ̂T + op(1).

4. Let qδ (λδ) = (λδ − Zδ)2 / (HI−1H ′) where Zδ ∼ N (0, HI−1H ′) and qδ
(
λ̂δ
)

=
infλδ≥0 qδ (λδ). Then,

√
T δ̂

d→ λ̂δ.

5.
√
T δ̂

d→ λ̂δ = ZδI(Zδ ≥ 0) so that δ̂ has a half-normal asymptotic distribution.

Proof of Lemma 1
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1. Proof of consistency: As g (Zt, θ) is continuous in θ and Θ is compact, the minimum
θ̂ exists. Moreover, {g (Zt, θ0)} is continuous in Zt and hence is stationary ergodic by
Assumption A1. GT (θ) satisfies a uniform law of large numbers by Assumption A4(i)
(see for instance Hayashi (2000)). Therefore, θ̂ is a consistent estimator of θ0.

2. We need to check the conditions GMM1*, GMM2, and GMM3 of Andrews (1997).
GMM1*:
GMM1*(a) requires that GMM1(a), GMM1(C), and GMM1(e) hold. GMM1(a) holds

because GT (θ) satisfies the law of large numbers, hence GT (θ) P→ G (θ) .
GMM1(c), namely G (θ0) = 0, is satisfied by Assumption A3.
GMM1(e) follows from the fact that Ŝ does not depend on θ and Ŝ is a consistent

estimator of S by Assumption A5.
GMM1*(b) and (c) hold because the domain of G (θ) includes a set Θ+ that satisfies

conditions (i) and (ii) of Assumption 1*(a). Moreover, each element of the K vector val-
ued function GT (θ) has continuous right derivatives of order one on Θ+ with probability
1.

GMM1*(d) holds because ∂GT (θ) /∂θ converges in probability to ∂G (θ) /∂θ uni-
formly in θ on N by Assumption A4(ii).

GMM1∗(e) holds because under Assumption A, ∂GT (θ0) /∂θ′ P→ ∂G (θ0) /∂θ′ = Γ.
GMM2:
Because {g (Zt, θ0)} is a martingale difference sequence (see Equations (12) and (13))

and the existence of S, we have a central limit theorem:
√
TGT (θ0) d→ N (0, S) ,

hence
√
TGT (θ0) = Op (1) and GMM2 holds.

GMM3 is the same as our assumption A6.
By Theorem 7 of Andrews (1997), the expansion of lT (θ) given in point 2 holds.
3. Point 3 follows from Theorem 3(a) of Andrews (1999). We need to check As-

sumptions 2 to 6 of Andrews (1999). By Theorem 7 of Andrews (1997), Assumptions
GMM1, GMM2, and GMM3 imply Assumptions 1-3 of Andrews (1999). Assumption
4 (consistency) of Andrews (1999) follows from the point 1. Assumption 5 of Andrews
(1999) holds with BT = bT =

√
T and Λ = R+ × R3. Assumption 6 of Andrews (1999)

holds because the cone Λ is convex.
4. Point 4 follows from Theorem 4 and Corollary 1 of Andrews (1999).
5. Point 5 follows from the minimization of qδ (λ) .

Appendix A2: Justification of Equations (1.16) and (1.17).
In a frictionless economy (1.9) becomes
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Et

(Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1 (Rt+1 −Rf )
 = 0. (1.18)

So by multiplying (1.18) by yt (the weight of the risky asset in the optimal portfolio), we
have that

Et

(Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1yt (Rt+1 −Rf )
 = 0 (1.19)

and using the fact that yt (Rt+1 −Rf ) = Rp,t+1 −Rf , (1.19) becomes

Et

(Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1 (Rp,t+1 −Rf )
 = 0 (1.20)

which gives that

Et

(Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ

p,t+1

 = Et

(Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1Rf

 . (1.21)

After substituting (1.21) in (1.8) we obtain the following result

Et

β λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1Rf

 = 1. (1.22)

Moreover, by multiplying (1.18) by 1 − yt (the weight of the risk-free asset in the
optimal portfolio) and using the same technique as before, we obtain that

Et

β λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1Rt+1

 = 1. (1.23)

Therefore, (1.22) and (1.23) imply (1.16).
When we include transaction costs in the model, we have that

Et

λ
ρ

(
Ct+1

Ct

)λ
ρ

(ρ−1)
R

λ
ρ
−1

p,t+1 (Rt+1 −Rf )
 = −δ. (1.24)
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So (1.17) is obtained by replacing (1.18) by (1.24) and by using the same procedure
as before.

1.8.2 Appendix A3: The numerical procedure.
The results of Section 1.6 are obtained using the same numerical procedure as in Lynch
and Balduzzi (1999) and Lynch and Balduzzi (2000). Here, we explain how the opti-
mization problem defined in (1.6) and (1.7) can be numerically solved. First, we need to
discretize all the state variables in this optimization problem.

Discrete approximation of the set of state variables
Because the proportion of the portfolio in the risky asset yt is assumed to be in [0, 1] for

t = 1, ..., T , we need to discretize this set into a grid of points. Thus, as in Lynch and Bal-
duzzi (1999) and Lynch and Balduzzi (2000), the following grid of points on the interval
[0,1] will be used to discetize yt for all t = 1, ..., T : y = {0.00, 0.02, 0.04, ..., 0.96, 0.98, 1.00}
so that we obtain 50 discrete points for this variable.

Let dt = log(1 + Dt), rt = log(1 + Rt) with Dt the dividend yield and Rt the risky
asset return. We assume that the vector of state variables Qt = (rt, dt)

′ follows a VAR
model:

Qt+1 = b+ AQt + εt+1

where b = (b1, b2)′ , εt = (e1t, e2t)
′ ∼ iid N (0,Σ), and A =

(
a11 a12

a21 a22

)
. We also assume

that dt is the only state variable in the VAR model that means : aj1 = 0, j = 1, 2. This
last assumption about the investment opportunity set implies that the dividend yield
is sufficient to well predict the risky-asset return (Fama and French (1988), Lynch and
Balduzzi (1999) and Lynch and Balduzzi (2000)). Hence, the VAR model becomes:{

rt+1 = b1 + a12dt + e1,t+1

dt+1 = b2 + a22dt + e2,t+1

and this model will be estimated by OLS using data from U.S financial market.
But, since dt depends on asset prices at the end of period t, the value of that regressor

at the end of period t + 1 reflects changes in asset prices during t + 1 as does rt+1

so E (e1,t+1|dt+1, dt) 6= 0 (see Stambaugh (1999)). Consequently, OLS estimators of
coefficients of the first equation in the VAR model although consistent are biased and
have sampling distributions that differ from those in the standard setting. Stambaugh
(1999) shows that this bias is given by:

E (â12 − a12) = σe1e2
σ2
e2

E (â22 − a22)

It is a positive bias since the bias in â22 is negative and that the unexpected return e1,t+1
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is negatively correlated with the innovation in the dividend yield e2,t+1. Empirically the
value of σe1e2

σ2
e2

is in the order of 10 to 20 so that the magnitude of the positive bias in
â12 is many times the negative bias in â22. A bias-corrected OLS estimator has been
proposed in the literature in particular by Stambaugh (1999) using a Bayesian approach.
However, Lewellen (2004) shows that this correction can substantially understate, in some
circumstances, dividend yield’s predictive ability since this approach implicitly discards
any information we have about â22 − a22. Hence, using the fact that the slope in a
predictive regression is strongly correlated with the dividend yield’s auto-correlation,
Lewellen (2004) proposes the following bias-adjusted estimator:

â12adj = â12 −
σe1e2
σ2
e2

(â22 − a22)

Because the dividend yield is a persistent variable, even if we do not know â22 − a22, a
lower bound can be put on it using a22 ≈ 1 which gives us an upper bound on the bias
in â12.

Based on those estimations, the following procedure is used to have a discrete ap-
proximation for Qt. First, the dividend yield is discretized as a first order autoregressive
process (Tauchen and Hussey, 1991) to obtain a discrete process of nineteen points. For
the return on the risky asset, we use the fact that the VAR model implies the following
expression for the stock returns:

rt+1 = b1 + a12dt + νe2,t+1 + ut+1

where ν is the regression coefficient from regressing e1 on e2 and u is an i.i.d. normally
distributed random variable with 0 mean and unknown variance σ2

u, and assumed to be
uncorrelated with e2. The quadrature method is used to have a discrete distribution for
u (with three points) calibrating σ2

u by an estimator which is given by:

σ̂2
u = 1

T − 1

T∑
t=1

ût
2 = 1

T − 1

T∑
t=1

(e1t − ê1t)2

Then, we can have a discrete distribution for rt+1 for each {dt, dt+1} since e2,t+1 = dt+1−
b2− a22dt, so rt+1 = b1 + a12dt + ν (dt+1 − b2 − a22dt) + ut+1. Hence, we obtain a discrete
process for the asset return distribution with 19 × 19 × 3 = 1083 which will be used to
implement our numerical procedure. More details about this numerical method can be
found in Lynch and Balduzzi (1999) and Lynch and Balduzzi (2000).

The estimation is done using data from the Federal Reserve Bank of St. Louis
database. The VAR model gives us the following results in Table 1.10.

The result from regressing e1 on e2 provides ν̂ = −11.9831 with a standard error of
0.9298 and the unknown variance σ2

u is calibrated by σ̂2
u so that we obtain 0.0064.

σe1e2
σ2
e2

is calibrated to be −11.98 using data so that â12adj is given by 0.2607.
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Table 1.10: The VAR model estimation results
Estimation results a. b. Adjusted R2

rt+1
0.3191
(0.0719)

-0.0240
(0.0082) 0.025

dt+1
0.9951
(0.0025)

3.88e-4
(2.87e-4) 0.9925

We can now compute the investor’s optimal investment strategy by solving the op-
timization problem for some values of the preferences parameters and transaction costs
parameter.
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1.9 Appendix B

Table 1.11: The list of anomalies and average transaction costs on each anomaly
Anomalies Average trading costs (%) Signal

Size 0.04 Market equity
Gross profitability 0.03 Gross profitability

Value 0.05 Book-to-market equity

ValProf
combo

0.06 Sum of firms’ ranks in univariate
sorts on book-to-market
and gross profitability

Accrusals 0.09 Accruals
Asset growth 0.11 Asset growth
Investment 0.10 Investment

Piotroski’s F-score 0.11 Piotroski’s F-score
Net issuance 0.20 Net stock issuance

Return-on-book equity 0.38 Return-on-book equity
Failure probability 0.61 Failure probability

ValMomProf
combo

0.43 Sum of firms’ ranks in univariate
sorts on book-to-market,gross
profitability, and momentum

ValMom
combo

0.41 Sum of firms’ ranks in univariate
sorts on book-to-market

and momentum

Idiosyncratic
volatility

0.52 Idiosyncratic volatility, measured as
the residuals of regressions of
their past three months’ daily

returns on the daily returns of the
Fama-French three factors

Momentum 0.65 Prior year’s stock performance
excluding the most recent month

PEAD
(SUE)

0.46 Standardized unexpected earnings
(SUE)

PEAD
(CAR3)

0.57 Cumulative three-day abnormal
return around announcement

(days minus one to one)
Industry momentum 1.22 Industry past month’s return

Source: from Novy-Marx and Velikov (2016)
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Table 1.12: List of anomalies and average transaction costs on each anomaly (Continued
)

Anomalies Average trading costs (%) Signal
Industry-
relative
reversals

1.78 Difference between a firm’s prior
month’s return and the prior

month’s return of their industry
High-
frequency
combo

1.45 Sum of firms’ ranks in the univariate
sorts on industry relative reversals

and industry momentum
Short-run reversals 1.65 Prior month’s returns

Seasonality 1.46 Average return in the calendar month
over the preceding five years

Industry-
relative-
reversals
(Low
volatility)

1.06 Industry relative reversals, restricted
to stocks with idiosyncratic

volatility lower than the NYSE
median for the month

Source: from Novy-Marx and Velikov (2016)

Table 1.13: Critical values for Proposition 1 with several significant levels
Significant
level (%) 0.5 1.5 2 2.5 3 3.5 4 4.5 6 6.5

Critical
value 6.6262 4.709 4.223 3.844 3.545 3.292 3.068 2.878 2.416 2.293
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Table 1.14: The empirical size for different value of δ and α = 5%
δ J-stat J-stat1

0.001 0.0988 0.0539
0.002 0.0963 0.0535
0.003 0.0934 0.0521
0.004 0.0916 0.0522
0.005 0.0875 0.0467
0.006 0.0859 0.0474
0.007 0.0886 0.0483
0.008 0.0847 0.0473
0.009 0.0783 0.0428
0.010 0.0853 0.0451
0.020 0.0670 0.0347
0.030 0.0592 0.0316
0.040 0.0562 0.0296
0.050 0.0557 0.0281
0.060 0.0493 0.0272
0.070 0.0488 0.0265
0.080 0.0538 0.0270
0.090 0.0495 0.0259
0.100 0.0470 0.0236
0.200 0.0502 0.0255
0.300 0.0529 0.0279
0.400 0.0491 0.0265
0.500 0.0475 0.0249
0.600 0.0493 0.0260
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Table 1.15: GMM estimation result for testing trading costs effect

Nondurable goods (l = 3)

Strategy Net return Gross return
δ̂ J test δ̂ J test

Market Portfolio 1.1202e-5
(6.9561e-6)

11.31
(0.3339)

7.4085e-6
(3.0402e-6)

11.31
(0.3339)

Size 0.006213∗
(1.9759)

28.19+

(0.001682)
0.0053058
(1.4745)

28.2+

(0.001678)

Gross Profitability 0.0060357∗∗
(2.8466)

8.569
(0.5734)

0.0054511
(2.4264)

8.492
(0.5809)

Asset growth 0.00075158
(0.054149)

9.813
(0.4571)

2.7102e-11
(6.6775e-17)

10.19
(0.4243)

Piotroski’s F-score 0.006984∗
(2.6078)

19.43+

(0.03516)
0.0047469
(1.2549)

19.63+

(0.03292)

PEAD (SUE) 0.0050633∗
(2.6548)

8.428
(0.5871)

4.8668e-14
(2.6289e-22)

10.26
(0.4181)

Industry Momentum 0.015866∗∗∗
(6.1015)

12.3
(0.2653)

8.9095e-12
(2.3689e-18)

13.13
(0.2166)

Industry Relative Reversals 0.029084∗∗∗
(6.0485)

8.48
(0.5821)

3.3939e-12
(8.1042e-19)

15.87
(0.1033)

High Frequency Combo 0.0090193∗∗
(4.6537)

10.57
(0.392)

2.9413e-14
(1.7572e-23)

44.6+

(2.565e-16)

Short-run reversals 0.037915∗∗∗
(7.1833)

9.867
(0.4523)

0.0042125
(0.6927)

11.57
(0.3147)

Seasonality 0.023264∗∗∗
(10.7918)

13.58
(0.193)

4.4464e-13
(1.3648e-20)

15.84
(0.1043)

Industry Relative Reversals
(Low volatility)

0.0084407∗∗
(4.5955)

10.9
(0.3651)

6.7388e-12
(2.2958e-19)

28.12+

(0.001724)
∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at 4.5%
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Table 1.16: GMM estimation result for testing trading costs effect

Nondurable goods and services (l = 3)

Strategy Net return Gross return
δ̂ J test δ̂ J test

Market Portfolio 1.5086e-11
(4.1184e-17)

13.03
(0.2219)

1.761e-12
(5.6067e-19)

13.03
(0.2218)

Size 0.003591∗
(2.1682)

20.89+

(0.02184)
0.0031195
(1.6788)

20.94+

(0.02153)

Gross Profitability 0.0035227∗
(2.2638)

7.147
(0.7115)

0.0032024
(2.2041)

7.96
(0.6327)

Asset growth 0.000987
(0.31822)

11.93
(0.29)

1.9722e-12
(1.2802e-18)

12.21
(0.2712)

Piotroski’s F-score 0.0038143∗
(2.5751)

19.48+

(0.0346)
0.0025587
(1.2394)

19.6+

(0.03325)

PEAD (SUE) 0.0025297∗
(2.0475)

9.248
(0.5088)

1.5506e-12
(7.7305e-19)

11.45
(0.3238)

Industry Momentum 0.009534∗∗∗
(5.6769)

10.04
(0.4369)

2.9285e-12
(8.9548e-19)

12.22
(0.2755)

Industry Relative Reversals 0.01484∗∗∗
(5.7915)

7.521
(0.6756)

2.1991e-14
(8.4784e-23)

17.59
(0.0623)

High Frequency Combo 0.0043807∗∗
(3.9421)

9.754
(0.4623)

2.7008e-12
(4.1934e-19)

49.04
(4.003e-7)

Short-run reversals 0.019843∗∗∗
(6.0628)

7.331
(0.6939)

0.0012486
(0.17565)

8.172
(0.06121)

Seasonality 0.01262∗∗∗
(9.2385)

13.53
(0.1954)

9.8411e-13
(2.2143e-19)

19.34+

(0.03619)
Industry Relative Reversals

(Low volatility)
0.0041517∗∗
(3.6257)

8.837
(0.5477)

1.9125e-12
(4.7762e-19)

28.15+

(0.001709)
∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at 4.5%
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Table 1.17: GMM estimation result for testing trading costs effect

Nondurable goods (l = 1)

Strategy Net return Gross return
δ̂ J test δ̂ J test

Market Portfolio 0.002353
(0.17381)

6.29+

(0.04306)
0.0023659
(0.16608)

5.85
(0.05366)

Size 0.0073
(1.543)

22.75+

(0.0002)
0.0063348
(1.1955)

22.74+

(1.153e-05)

Gross Profitability 0.0056
(1.280)

2.128
(0.345)

0.0050697
(1.1253)

2.155
(0.3405)

Asset growth 3.7017e-12
(6.712e-19)

3.805
(0.1492)

1.64e-13
(9.8206e-22)

5.283
(0.07125)

Piotroski’s F-score 0.0047834
(1.1356)

13.14+

(0.001402)
0.0025528+

(0.32826)
13.34

(0.00127)

PEAD (SUE) 0.0033
(0.9505)

3.765
(0.1522)

2.2118e-14
(2.4805e-23)

6.916+

(0.03149)

Industry Momentum 0.0134∗∗
(3.224)

4.563
(0.1021)

6.3617e-14
(5.2885e-23)

7.294+

(0.02607)

Industry Relative Reversals 0.0303∗
(2.4073)

1.97
(0.3735)

3.0753e-13
(4.9125e-21)

6.493+

(0.03891)

High Frequency Combo 0.008∗∗
(2.858)

4.342
(0.114)

1.0676e-12
(1.1622e-20)

41.16+

(1.154e-09)

Short-run reversals 0.041∗
(2.299)

1.6
(0.4494)

0.0061406
(0.7371)

2.767
(0.2507)

Seasonality 0.025∗∗∗
(8.525)

10.48+

(0.0053)
2.7857e-12
(4.8852e-19)

10.83+

(0.004442)
Industry Relative Reversals

(Low volatility)
0.01∗
(2.043)

3.284
(0.1936)

1.5166e-12
(6.6958e-20)

17.99+

(0.0001243)
∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at 5%
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Table 1.18: GMM estimation result for testing trading costs effect

Nondurable goods and services (l = 1)

Strategy Net return Gross return
δ̂ J test δ̂ J test

Market Portfolio 3.2804e-12
(1.6485e-18)

6.77+

(0.03387)
3.23e-12

(1.7249e-18)
7.657+

(0.02174)

Size 0.00273
(0.64431)

10.7+

(0.00474)
0.0022781
(0.63711)

14.59+

(0.0006783)

Gross Profitability 0.00344
(0.79065)

1.4
(0.4966)

0.0031298
(0.71032)

1.405
(0.4954)

Asset growth 0.0012
(0.3975)

5.379
(0.06791)

1.4792e-13
(3.4053e-21)

4.112
(0.128)

Piotroski’s F-score 0.0035
(1.41)

7.395+

(0.02479)
0.0021802
(0.81194)

10.29+

(0.00583)

PEAD (SUE) 0.00256
(1.3346)

2.693
(0.2602)

9.2752e-13
(1.445e-19)

4.594
(0.1006)

Industry Momentum 0.00795∗∗
(3.064)

4.42
(0.1097)

1.0147e-12
(4.3657e-20)

6.958+

(0.03084)

Industry Relative Reversals 0.0149∗
(1.96)

2.367
(0.3061)

4.2774e-13
(1.7953e-20)

11.02+

(0.004038)

High Frequency Combo 0.00357∗
(1.672)

3.406
(0.1822)

4.7894e-13
(6.0685e-21)

48.09+

(3.615e-11)

Short-run reversals 0.021∗
(1.8231)

1.986
(0.3705)

0.0019814
(0.27817)

2.665
(0.2638)

Seasonality 0.0131∗∗∗
(7.0885)

9.598+

(0.00824)
9.7158e-13
(1.7835e-19)

13.23+

(0.001341)
Industry Relative Reversals

(Low volatility)
0.0041
(1.609)

3.572
(0.1676)

2.3293e-12
(4.2284e-19)

22.66+

(1.198e-05)
∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%, + rejected at 5%
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Table 1.19: Comparison of trading costs
Anomalies Average trading costs Our estimate trading costs

Size 0.04 0.27
Gross profitability 0.03 0.34

Asset growth 0.11 0.12
Piotroski’s F-score 0.11 0.35

PEAD (SUE) 0.46 0.33
Industry momentum 1.12 1.34

Industry relative reversals 1.78 1.49
High-frequency combo 1.45 1.0
Short-run reversals 1.65 2.1

Seasonality 1.46 1.31
Industry Relative Reversals

(Low volatility) 1.06 1.0
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Chapter 2

A Multi-Period Portfolio Selection
in a Large Financial Market∗

2.1 Introduction
Understanding investors’ behavior in a dynamic setting is very important for preventing
losses from unexpected market downturns in the financial market. Therefore, several
papers1 have been interested in the multi-period portfolio selection problem since the
seminal work of Markowitz (1959), who extends the mean-variance paradigm to the
dynamic setting. In this paper, we also address a multi-period portfolio selection problem
by developing a novel econometric method to consistently estimate the optimal solution of
this dynamic problem. We use exponential utility functions as did Bodnar et al. (2015b)
and Bauder et al. (2020), who derive a closed form solution to the dynamic portfolio
problem. This optimal solution is shown to be a function of the inverse of the covariance
matrix and the expected return, which are unknown and need to be estimated. When
the number of assets grows, the inverse of the covariance matrix becomes unreliable,
yielding a selected portfolio that is far from the optimal one. This problem is amplified
by estimation errors in the financial market2.

Hence, this paper proposes two solutions to stabilize the inverse of the covariance
matrix in the optimal solution. These methods are particularly useful when the number

∗I am greatly indebted to Marine Carrasco for her invaluable guidance. I am grateful to Benoit Perron,
Georges Dionne, Louphou Coulibaly, Lucienne Papite Talba, Zerbo Souleymane, and the members of
the atelier de discussion des doctorants en économie de l’Université de Montréal, CIREQ PhD Students
2018 in Montréal, the Marcel Dagenais Econometrics Seminar 2019, and the SCSE 2019 conference for
their helpful comments.

1See, for instance, the studies by Merton (1969), Samuelson (1975), Elton and Gruber (1974), Brandt
and Santa-Clara (2006), Basak and Chabakauri (2010), Li and Ng (2000), Bodnar et al. (2015a), Penev
et al. (2019), Ma et al. (2019) among others

2The estimation error in the expected return might be important, especially in a large financial
market. Stein (1956) and Brown et al. (2012) even argue that the usual estimator of the expected return
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of assets in the financial market increases considerably compared with the estimation
window.

First, we penalize the norm of the portfolio weights in the dynamic problem and
derive a closed-form solution to this new optimization problem. This optimal solution is
closely related to a Ridge regularization, which consists of adding a diagonal matrix to the
volatility’s matrix to reduce estimation errors. Under appropriate regularity conditions,
we show the consistency of the selected strategy by this procedure3. More importantly,
we demonstrate that this regularized portfolio is asymptotically efficient in terms of the
Sharpe ratio. However, this method partially controls the estimation error in the optimal
solution because it ignores the estimation error in the expected return, which may also
be important when the number of assets in the financial market increases considerably.

Second, we propose an alternative method that consists of penalizing the norm of
the difference of successive portfolio weights in the dynamic problem to guarantee that
the optimal portfolio composition does not fluctuate widely between periods. We show,
under appropriate regularity conditions, that we better control the estimation error in
the optimal portfolio with this new procedure. In fact, this procedure introduces a
second level of regularization to control for the estimation error in the expected return.
Moreover, this second method helps investors to avoid high trading costs in the financial
market by selecting stable strategies over time.

Each strategy involves an unknown tuning parameter that needs to be selected in an
optimal way at each time point. We propose, for each method, a data-driven method for
selecting this parameter.

To evaluate the performance of our procedures, we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that by imposing an appropriate constraint on the dynamic problem
we significantly improve the performance of the selected strategy with respect to the
Sharpe ratio, the turnover that can be seen as a measure of transaction costs, the ability
to predict the default probability and the dynamic of the optimal wealth. Moreover, our
methods outperform the Bayesian procedure proposed by Bauder et al. (2020) in the large
financial market. To confirm our simulations, we do an empirical analysis using Kenneth
R. French’s 30 industry portfolios and 100 portfolios formed on size and book-to-market.
We considerably reduce the turnover as a measure of transaction costs by imposing a
temporal stability constraint on the dynamic portfolio selection problem.

This paper is related to the large literature on high dimensional estimation problems
in the financial market. Ledoit and Wolf (2003, 2004) propose to replace the covariance
matrix by a weighted average of the sample covariance matrix and some structured
matrix. Brodie et al. (2009) use the lasso method which consists of imposing a constraint
on the sum of the absolute value of the portfolio weights. DeMiguel et al. (2009) propose a
general framework in terms of a norm-constrained minimum-variance portfolio. Brandt et

3With respect to the norm induced by the inner product in RN .
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al. (2009) and DeMiguel et al. (2020) model the portfolio weights directly as a function
of the assets’ characteristics to avoid the difficulties in the estimation of asset return
moments. Carrasco et al. (2019) investigate various regularization techniques found in
the inverse problem literature to stabilize the inverse of the sample covariance matrix.
Other procedures have been proposed by Touloumis (2015), and Bodnar et al. (2016) to
estimate the asset volatility matrix. Jorion (1986) and Bodnar et al. (2019) propose to
use a shrinkage estimation for the expected return, which seems to be more appropriate
than the sample mean. Moreover, in a recent paper, Bauder et al. (2020) propose a
Bayesian method to estimate a multi-period portfolio but their method is not designed
to handle a large number of assets. Our contribution to this literature is to provide a
new method to consistently select the optimal portfolio in a dynamic setting with many
assets.

Our work is also related to the vast literature on linear inverse problems. Carrasco et
al. (2007), and Carrasco et al. (2014) use various regularization techniques for estimation
issues in linear inverse problems. Carrasco (2012), and Carrasco and Tchuente (2015)
handle the many instruments problem in linear models by regularization. Instead of using
regularization, we propose a new way to stabilize the inverse of the covariance matrix
by penalizing the norm of the difference of successive portfolio weights in the dynamic
portfolio selection problem.

The rest of the paper is organized as follows. Section 2.2 presents the economy and
shows that the dynamic portfolio selection problem can be seen as a linear inverse prob-
lem. Section 2.3 imposes a constraint on the portfolio weights in the dynamic problem
and derives a closed-form solution to this new problem. In Section 2.4, we impose a
temporal stability constraint on the dynamic portfolio optimization. Section 2.5 gives
some asymptotic properties of the selected strategy and proposes data-driven methods
to select the optimal tuning parameter. Section 2.6 presents some simulation results and
an empirical study. Section 2.7 concludes the paper.

2.2 The model and an empirical fact

2.2.1 The economic environment
We consider a simple economy with N risky assets with random returns vector R̄t+1 and
a risk-free asset where N is assumed to be large. We assume that the return on the
risk-free asset is constant over the investment horizon. Let Rf denote the gross return
on this risk-free asset. Empirically, with monthly data, Rf will be calibrated to be the
mean of the one-month Treasury-Bill (T-B) rate observed in the data.

Let rt+1 = R̄t+1 − Rf1N be the vector of excess returns on the set of risky assets in
the economy with 1N the N -dimensional vector of ones.

We assume that the excess returns are independent over time with the mean and

48



the covariance matrix given by µt and Σt respectively. This conditional distribution is
assumed to be a normal distribution as in Croessmann (2017) and Bauder et al. (2020).
This means that rt ∼ N (µt,Σt). Let us assume also that the population covariance
matrix Σ is positive definite such that the true and unknown optimal solutions are well
defined.

We consider an investor with a finite life horizon (T ) who can trade on a basket of
assets available in the financial market. The investor has an initial wealth given by A0.
Without loss of generality we assume that A0 = 1.

Let ωt = (ωt,1, ..., ωt,N)′ be the vector of portfolio weights determined at the time
point t.

Definition. In our economy a portfolio is defined as a list of weights ωt and 1−ω′t1N
that represent the amount of the capital to be invested in the risky assets and the risk-free
asset respectively.

Short-selling is allowed in the financial market, i.e. the optimal weights could also be
negative or could contain negative weights for some assets.

The return on the optimal portfolio is given by

Rp,t+1 = ω
′

tR̄t+1 +Rf

(
1− ω′t1N

)
= Rf + ω

′

trt+1. (2.1)

We assume in our model that the investor does not receive other sources of income.
Hence, the law of motion of the investor’s total wealth is given by

At+1 = AtRp,t+1 = At(Rf + ω
′

trt+1) (2.2)

for t = 0, ..., T − 1 with A0 = 1.
Moreover, let us assume that Rf > 1. This assumption implies that at each time

point t we have that At ≥ 0.
The investor has to select a sequence of portfolio weights {ωs}T−1

0 in order to maximize
the expected utility of final wealth, i.e. E0(U(AT )). Here we choose U(x) = − exp(−γx)
to be an exponential utility function with γ > 0, which represents the CARA and de-
termines the investor’s attitude towards risk. Note that the normality of the excess
return could be abandoned in favor of a quadratic utility function, which seems to be
less adapted than the exponential utility (which uses normality to find the closed-form
solution) in a portfolio selection framework. In fact, according to Pratt (1964), the co-
efficient of absolute risk aversion (ARA) should decrease or at least should not increase
with wealth. Therefore, because the quadratic utility function implies that the ARA is
increasing in wealth, the exponential utility function (with a constant ARA) becomes
a better choice than the quadratic utility function in the portfolio selection problem.
Hence, there is a certain trade-off between using a less adapted utility function without
the normality assumption and using an exponential utility function combined with the
normality of the excess return.
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The investor’s optimization problem is then given by

V (0, A0) = max
{ωs}T−1

0

E0(U(AT )), (2.3)

where V (0, A0) represents the value function. The solution of this problem is obtained
recursively starting from the last period using the following Bellman equation associated
with the optimization problem:

V (t, At) = max
ωt

Et {V (t, At+1)} = max
ωt

Et
{
V (t+ 1, At(Rf

t + rt+1ω
′

t))
}
, (2.4)

t = 0, ..., T−1 with the following terminal condition V (T,AT ) = − exp(−γAT ). Following
Bauder et al. (2020) the solution of the optimization problem in Equation (2.4) is given
by

ωt = γtΣ−1
t µt, (2.5)

with γt =
(
γAtR

T−t−1
f

)−1
for t = 0, ..., T − 1, which can be seen as adjusted risk aversion

used to capture the effect of previous actions on the selected portfolio.
This optimal portfolio is very close to Markowitz’s strategy. The only difference

comes from the constant γt. Hence, the relative share of the risky assets in the optimal
portfolio is the same as in Markowitz’s portfolio but the part allocated to the risk-free
asset is different. In fact, if the investment horizon is reduced to a single period, the
solution coincides with the mean-variance portfolio given by

ω = 1
γ

Σ−1µ.

Hence, the investor’s preferences enter in the solution only through the scalar term 1/γ.
Investors differ only in the overall scale of their risky asset position, not in the composition
of that position. Therefore, conservative investors (with a high γ) hold more of the risk-
free asset and less of all risky assets but they do not change the relative proportions of
their risky assets determined by Σ−1µ. This is the mutual fund theorem of Tobin (1958).
However, when the investment horizon covers more than one period, the solution also
depends on a time-varying factor

(
AtR

T−t−1
f

)−1
, which is specific to each investor. The

mutual fund theorem of Tobin (1958) is no longer verified in the dynamic setting.
Equation (2.5) shows that the optimal portfolio cannot be directly computed in prac-

tice since it depends on unknown parameters (Σt and µt) of the excess return distribution.
As a result, these two quantities have to be estimated before we obtain an estimation of
the optimal portfolio.

The standard way to estimate the optimal portfolio consists of estimating Σt and µt
by their sample counterpart at each period after updating information. More precisely,
let rt−n+1, ..., rt be the observations of the excess returns that are considered realizations
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of the corresponding random vector until the time point t. Then, the mean vector and
the covariance matrix at time t are estimated traditionally by µ̂t = 1

n

∑t
i=t−n+1 ri and

Σ̂t = 1
n

∑t
i=t−n+1(ri − µ̂t)(ri − µ̂t)

′ respectively. The estimated portfolio at period t is
obtained as follows ω̂t = γ̂tΣ̂−1

t µ̂t where γ̂t = 1/
(
γÂtR

T−t−1
f

)
. In fact, γt is also an

unknown parameter because it depends on At which is obtained as a function of {ωs}t−1
s=0.

Hence, γt should be estimated from an estimation of the sequence {ωs}t−1
s=0. Using the

traditional approach for estimating the optimal weights at time t, we obtain that

ω̂t = F
(
γ,Rf , {µ̂s}ts=0 ,

{
Σ̂s

}t
s=0

)
. (2.6)

However, the choice of the sequence of sample covariance matrices
{

Σ̂s

}t
s=0

to form the
optimal strategy may not be appropriate. Indeed, the sample covariance matrices may
be nearly singular. Inverting them may amplify the estimation errors and affect the
performance of the selected strategy. Moreover, the estimation errors in the expected
return might be also important, especially when the number of assets in the financial
market is large.

2.2.2 The multi-period problem as a sequence of linear ill-posed
problems

At each period t, the optimal portfolio weights are given by the relation (2.5) or equiva-
lently by the following equation

Σtωt = γtµt. (2.7)

Equation (2.7) can be seen as an inverse problem because it can be written as follows

Σtωt = ηt, (2.8)

where ηt = γtµt. Equation (2.8) is said to be well-posed if it admits a unique and
stable4 solution ωt. When one of these conditions, such as the existence of a solution, its
uniqueness and its stability, is not satisfied, the problem is said to be ill-posed. If the
population covariance matrix is not invertible, the relation defined in Equation (2.7) does
not admit a unique solution. To ensure the uniqueness of the solution of Equation (2.7)
at each period, it has been assumed in the previous section that the true and unknown
covariance matrix is not singular. More importantly, when the number of assets in
the financial market grows, even if Σt is not singular, it is likely to be ill-conditioned5.
Therefore, the inverse of this matrix becomes unreliable yielding a selected portfolio far

4The solution of this problem is stable in the sense that it is continuous in ηt. In other words ωt is
stable with respect to a small change in ηt.

5The ratio of the largest eigenvalue over the smallest is large.
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from optimal. Moreover, Σt and ηt are unknown and need to be estimated before solving
the linear inverse problem. Any estimation error in Σ̂t and η̂t amplifies the error in
the selected strategy. Hence, the sequence of portfolio weights {ωt} can be seen as the
solution of a sequence of ill-posed linear problems {Σtωt = ηt} over the investor’s life
cycle.

According to Carrasco et al. (2007) an interesting way to solve this problem is to
regularize Equation (2.8) by dampening the explosive effect of the inversion of the singular
values of Σ̂t. It consists in replacing the sequence {1/λj} of explosive inverse singular
values by a sequence {q(α, λj)/λj} where the damping function q(α, λ) is chosen such
that

1. q(α, λ)/λ remains bounded when λ→ 0,

2. for any λ, limα→0 q(α, λ) = 1

where α is the regularization parameter. The damping function is specific to each regu-
larization.

2.2.3 Empirical case to motivate our procedure
Assume that we have an economy with a professional investment management firm that
administers a hedge fund. A hedge fund is an investment fund that pools capital from
accredited investors or institutional investors and invests it in a variety of assets, often
with complex portfolio construction and risk management techniques. Let us also assume
that our investor is willing to invest capital in one of the following industry portfolios from
the US financial market: the 5-industry portfolios, 10-industry portfolios, 17-industry
portfolios, and 30-industry portfolios. An industry portfolio provides information about
the evolution of the shares of companies that compose a given sector based on a composite
index. Hence, each sector included in the portfolio will be considered an asset in the
financial market. For instance, the 5-industry portfolios contain information on 5 sectors
(see Table 2.2 for more details) which may be considered five risky assets and the Kenneth
French data library provides information about the returns of those assets.

We estimate Equation (2.5) for each industry portfolio using the following procedures:
the traditional method, which is based on both the sample covariance and the sample
mean of asset returns, and the Bayesian method introduced by Bauder et al. (2020).
We also consider a benchmark portfolio obtained by calibrating the covariance matrix
of asset returns and the expected return using monthly data from July 1980 to January
2019. This benchmark will be considered as the true optimal solution. We will then
evaluate the performance of the selected portfolio using the return per unit of risk and
the turnover. Tables 2.3 and 2.4 present the results of this empirical analysis.

Note that the Bauder et al. (2020)’s procedure gives very nice results for the 5-and
10-industry portfolios with respect to several statistics, particularly the return per unit
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of risk. However, this method performs poorly for the 17-and 30-industry portfolios.
This is due to the fact that their estimator involves the inverse of the sample covariance
matrix and hence is not appropriate to handle a large number of assets.

Below we propose two methods to consistently estimate the optimal solution of the
dynamic problem in order to improve the performance of the selected strategy.

2.3 Imposing a constraint on the portfolio weights
In this section, we impose a constraint on the portfolio weights when solving the dynamic
problem. This new constraint may help improve the performance of the selected portfolio.
In fact, portfolios constructed using sample moments generally involve taking extreme
long and short positions, which may overestimate the optimal risk and negatively affect
the performance of the selected strategy. However, imposing such a constraint is equiv-
alent to shrinking the covariance matrix (toward the identity matrix) in order to avoid
extreme positions in the selected portfolio and reduce, for instance, the risk in estimating
the optimal strategy. More precisely, we impose the following constraint

‖ωt‖2
2 =

N∑
j=1

ω2
j,t ≤ dt

for t = 0, ..., T − 1 where dt is a non-random positive parameter. Hence, the new opti-
mization problem we have to solve becomes

V (0, A0) = max
{ωs:‖ωs‖22≤ds}T−1

0

E0(U(AT )) (2.9)

In the following subsection, we show that solving this problem is equivalent to solving
a simple non-constrained dynamic problem.

2.3.1 From a constrained portfolio problem to a non-constrained
problem

We transform the constrained problem into a non-constrained optimization problem and
derive a closed-form solution.

In the recursive form the optimization problem in (2.9) is given by

V (t, At) = max
{ωt:‖ωt‖22≤dt}

Et {V (t+ 1, At+1)} = max
{ωt:‖ωt‖22≤dt}

Et
{
V (t+ 1, At(Rf + ω

′

trt+1))
}
(2.10)

We then obtain the following result for this optimization problem.

Proposition 1. Under the assumptions about the economy stated in Section 2.2.1,
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the solution of (2.10) can be obtained by solving the following unconstrained problem

max
{ωt}

{
exp

(
λt ‖ωt‖2

)
Et
[
V
(
t+ 1, At

(
Rf + ω

′

trt+1
))]}

(2.11)

for t = 0, ..., T − 1 with the terminal condition V (T,AT ) = − exp(−γAT ) and λt the
Lagrange multiplier associated with the constraint. Moreover, the portfolio weights that
solve (2.11) can be written as follows

ω∗t =
(
γAtR

T−t−1
f

)−1
(Σt + αtIN)−1 µt (2.12)

where αt ∈ (0, 1) is a smoothing parameter used to stabilize the optimal portfolio.

Proof. In Appendix.

The quantity
(
exp

(
λt ‖ωt‖2

))
in Equation (2.11) is an additional term to the original

portfolio selection problem that materializes the cost the investor has to pay in order to
eliminate the constraint we impose in the optimization problem. This non-constrained
problem is obtained by penalizing the objective function of the non-constrained portfolio
problem in (2.4) with a penalty term that can be considered the additional cost the
investor has to pay in order to reach a stable portfolio. αt in Proposition 1 is related
to the Lagrange multiplier associated with the constraint through the relation λt =
αt
2

(
γRT−t−1

f

)T−t
A2
t . This implies that to obtain λt we need only select αt. αt can

be seen as a smoothing parameter which helps us solve the problem of ill-posedness
when estimating (2.5). αt

2

(
γRT−t−1

f

)T−t
At ‖ωt‖2 can be interpreted as the trading cost

associated with the optimal selected portfolio. It is, in fact, a quadratic trading cost, as
Gârleanu and Pedersen (2013) assumed.

The resolution of the optimization problem is done assuming that αt is given. How-
ever, since the portfolio depends on this parameter, we must select it in an optimal
way. The main idea behind (2.12) is that with an appropriate constraint on the port-
folio weights, we solve the problem of ill-posedness that arises when trying to estimate
(2.5). Imposing such a constraint may thus improve the performance of the estimated
portfolio. The solution of this corollary is in fact a particular regularized version (the
Ridge regularization) of the optimal solution obtained in (2.5). It consists of adding to
the covariance matrix a diagonal matrix in order to solve the problem of ill-posedness
induced by the traditional method. Adding such a diagonal matrix may be helpful to
stabilize the inverse of the covariance matrix that appears in the optimal solution.

However, the optimal solution obtained in (2.12) is unknown because it depends on
the unknown parameters of the excess return distribution, and needs to be estimated
in practice. We can easily estimate this solution by replacing the volatility matrix by
the sample covariance and the expected return by the sample mean. More precisely, the
estimated portfolio is given by
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ω̂RdgPαt = γ̂t
(
Σ̂t + αtIN

)−1
µ̂t (2.13)

2.3.2 Comments on the result of the first procedure
The first thing to note about this method is that the selected strategy in (2.12) is closely
related to a Ridge regularization. The general idea behind this procedure is to control
the effect of asset volatility on the investment decision by stabilizing the inverse of the
covariance matrix of asset returns. In fact, ridge regularization was first used in regres-
sions in the context where there are too many regressors or when multicollinearity occurs
(see Hoerl (1962), Hoerl and Kennard (1970), Mason and Brown (1975)). In this context,
the ordinary least squares estimator is unbiased, but its variance is large, so it may be far
from the true value. Hence, by adding a small bias to the regression estimates (replacing
X
′
X by X ′X +αI where I is the identity matrix), ridge regression reduces the standard

errors. More precisely, assume that we want to estimate a parameter θ from the following
multiple linear regression model y = Xθ+ ε then the standard OLS version of θ is given
by θ̂ols =

(
X
′
X
)−1

X
′
y and Ridge regularized version of θ is θ̂ridge =

(
X
′
X + αI

)−1
X
′
y.

The Ridge regression, as well as our procedure, involves an unknown regularization pa-
rameter αt which needs to converge to zero with the sample size at a certain rate for the
solution to converge. Moreover, a fixed αt would result in a loss of efficiency. Hence, we
need to optimally select this parameter based on a certain selection criterion.

More importantly, this procedure only controls for the estimation error in the co-
variance matrix of the asset returns through Ridge regularization and ignores estimation
errors in the expected returns, which may also be important especially when the number
of assets in the financial market increases. Nonetheless, a successful investment strategy
is also based on investors’ ability to well estimate the expected return.

In the next section, we propose an alternative method which imposes the temporal
stability in the investment process and helps to control for the estimation error in the
expected return.

2.4 Imposing a temporal stability constraint in the
dynamic problem

In this section, instead of imposing a constraint on the optimal portfolio weights in the
dynamic problem, we impose a temporal stability constraint. It consists of controlling
the distance between two consecutive investment strategies. Hence, imposing such a
constraint guarantees that the optimal portfolio composition remains stable over time.
This new constraint will be very useful in the sense that it helps investors to avoid high
transaction costs in their investment process. Moreover, with this second procedure, we
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introduce a second level of regularization to the sample expected return which helps to
control for the estimation error in the expected return. We propose two different temporal
stability constraints in this paper.

2.4.1 Imposing a L2 temporal stability constraint
We impose the following L2 stability constraint in our dynamic problem

‖ωt − ωt−1‖2
2 =

N∑
i=1

(ωi,t − ωi,t−1)2 ≤ dt

for t = 0, ..., T − 1 with ω−1 = 0N and dt a positive and non-random constant.
By imposing such a constraint at each period, the investor’s new optimization problem

becomes

V (0, A0) = max
{ωs:‖ωs−ωs−1‖22≤ds}T−1

0

E0(U(AT )). (2.14)

In the recursive form we have that

V (t, At) = max
{ωt:‖ωt−ωt−1‖22≤dt}

Et
{
V (t+ 1, At(Rf + ω

′

trt+1))
}

(2.15)

with the terminal condition V (T,AT ) = − exp(−γAT ). Solving this dynamic problem
we obtain the following first order condition

γ−1
t (Σt + αtIN)ωt = µt + αtωt−1. (2.16)

This equation gives the dynamics of the optimal portfolio over the investor’s life cycle as
a function of volatility and the expected return.

The following proposition provides an interesting way to estimate the optimal solution
through (2.16).

Proposition 2. The optimal solution of the optimization problem in (2.15) can be
estimated as follows

ω̂L2TSP
αt = γ̂tΣ̂−1

αt µ̃t

for t = 1, ..., T − 1 with ω̂α0 = Σ̂−1
α0 µ̂0 where Σ̂αt = Σ̂t + αtIN , and

µ̃t = µ̂t +
t−1∑
j=0

t−1∏
i=j

γ̂iαi+1Σ̂−1
αi

 µ̂j
is a shrinkage estimation for µ at the time point t. The sample mean µ̂j and the sample
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covariance Σ̂j are obtained by rolling windows.

Proof. In Appendix.
This result implies that, instead of applying the usual estimator for the expected re-

turn to form the optimal portfolio, we propose to use a shrinkage estimator, which may
be more appropriate than the standard one. In fact, according to Merton (1980), the
expected stock returns are very hard to estimate and the estimated values differ strongly
from the true value when using the sample mean. Therefore, the resulting estimation er-
rors may induce a suboptimal portfolio composition with very poor performance. Hence,
using a shrinkage estimation pioneered by Stein (1956) and James and Stein (1961) can
be helpful to handle the error in estimating the expected return, and hence improve the
performance of the estimated portfolio.

According to Proposition 2, our selected strategy depends on an unknown tuning
parameter which need to be selected. We discuss the selection of this tuning parameter
in Section 2.5.5.

2.4.2 Imposing an L1 temporal stability constraint in the dy-
namic problem

Although the L2 temporal stability constraint is helpful to better estimate the expected
return through a shrinkage estimation, it does not guarantee that asset allocation remain
stable over time (even if the tuning parameter is close to 1). In fact, this temporal
stability constraint is equivalent to assuming a quadratic trading cost in our model such
that investors trade in small quantities in each period. Moreover, as with the Ridge
method, the L2 temporal stability procedure does not have a sparsity property, which
may be particularly useful to eliminate irrelevant assets in the selected portfolio when
N > n.

Instead of using a L2 stability constraint in the dynamic problem, we could use the
following L1 temporal stability constraint

‖ωt − ωt−1‖1 =
N∑
i=1
|ωi,t − ωi,t−1| ≤ dt

for t = 0, ..., T − 1 with ω−1 = 0N and dt a positive and non-random constant.
This new constraint may be appropriate in particular if investors want to hold port-

folios with a few active positions. With this L1 penalty, we will have a subset Nc ⊆ N

where ωjt = ωjt−1 ∀j ∈ Nc. The new optimization problem in such a situation becomes

V (t, At) = max
{ωt:‖ωt−ωt−1‖1≤dt}

Et
{
V (t+ 1, At(Rf + ω

′

trt+1))
}
. (2.17)

Note that, unlike what we obtained in Subsection 2.4.1, there is no closed-form solu-
tion to this optimization problem. Hence, we need to solve it numerically. However, since
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we are in a large dimensional setting, it will be very difficult to solve this problem numer-
ically in practice. Hence, in practice, we decide to use an approximation that helps us
to relate this optimization problem to a constrained OLS estimation. More precisely, let
n denote the rolling window which is the number of observations on assets returns used
at each period to estimate the unknown parameters before solving the dynamic problem.
At each period t let us denote by ri for i = t− n+ 1, ..., t the observations on the vector
of excess returns of the n previous periods. Rt is a n×N matrix with the ith row given
by r′i. Let us also denote Ωt = E

(
R
′
tRt

)
/n, and θt = Ω−1

t µt = E
(
R
′
tRt

)−1
E
(
R
′
t1n
)
.

With this notation we can easily compute the optimal portfolio in (2.5 as follows)

ωt = γt
θt

1− µ′tθt
(2.18)

This decomposition of the optimal portfolio has been obtained in Carrasco et al. (2019).
θt can be obtained through the following OLS model 1n = Rtθt + ut for ∀ t. We show in
Lemma 2 in Appendix that E

(
R
′
tut
)

= 0.
A good way to estimate the optimal solution of the L1 temporal stability portfolio is

by solving the following optimization problem

θ̂αt = argmin
θt

1
n
‖1n −Rtθt‖2

2 + αt ‖θt − θt−1‖1 (2.19)

with αt ∈ (0, 1) and θt from 1n = Rtθt + ut.
Hence, this solution also depends on an unknown tuning parameter which needs to

be selected reasonably in order to obtain a solution with good properties. In fact, when
the αt chosen is too large, the estimated solution may perform poorly. Moreover, if αt
is too close to zero, the estimated solution may be close to the standard sample-based
portfolio, which is known to perform very poorly.

We can also use a generalization of this L1 penalty to include a Lasso penalty in our
optimization problem. This penalty is, in fact, a variant of the fused Lasso proposed by
Tibshirani et al. (2005) and it consists of penalizing the L1-norm of both the portfolio
weights and their successive changes over time. This procedure encourages sparse and
stable portfolios and it may be particularly useful when N >> n to eliminate irrelevant
assets in the selected portfolio at each time point. With the fused Lasso method, the
dynamic portfolio problem is given by

V (t, At) = max
{ωt:‖ωt‖1≤d1t,‖ωt−ωt−1‖1≤d2t}

Et
{
V (t+ 1, At(Rf + ω

′

trt+1))
}
. (2.20)

2.5 Asymptotic properties of the selected portfolio
In this section, we derive some asymptotic properties of the selected strategy obtained
with our procedures. Several asymptotic properties will be examined, such as consistency,
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efficiency and asymptotic distribution.
We denote by RdgP the selected strategy with an L2 norm on the portfolio weights,

L2TSP the selected portfolio when imposing an L2 temporal stability constraint in the
dynamic problem and by L1TSP the optimal selected strategy with an L1 temporal
stability constraint. We will also need the notation in Subsection 2.4.2 to easily derive
our asymptotic properties.

2.5.1 Consistency for L2 penalty
To obtain the consistency of the selected portfolio, we need to impose some regularity
conditions.

Assumption A

A(i) For some τt > 0, we have that

∑
j

< θt, φjt >
2

λ2τt
jt

< +∞

where φjt and λ2
jt denote the eigenvectors and eigenvalues of Ωt

N
.

A(ii) Σt
N

and Ωt
N

are Hilbert-Schmidt operators
The regularity conditions in assumption A can be found in Carrasco et al. (2007) and

Carrasco (2012). Moreover, Carrasco et al. (2019) show that assumption A hold if the
returns are generated by a factor model. Assumption A is used to derive the rate of
convergence of the mean squared error in the OLS estimator of θt. These two assump-
tions imply in particular that ‖θt‖2 < +∞ such that we have the following relations
‖θt − θαt‖

2 = Op(αmin(τt,2)
t ). Note that θαt = Ω−1

αt µt with Ωαt = Ωt + αtIN the Ridge
regularized version of the covariance matrix Ωt, and αt the tuning parameter used to
stabilize the inversion of the covariance matrix at the period t.

Let us denote by Ft the set of information at the time point t before the investor
selects the optimal portfolio for period t. Using assumption A, we obtain the following
result about the consistency of the estimated portfolio.

Proposition 3. Given the set of information Ft and under assumption A, we have
the following result ∥∥∥ω̂RdgPαt − ωt

∥∥∥ = op (1) (2.21)

if max0≤j≤t−1

{
N3/2

αj
√
n

+
√
Nα

min(
τj
2 ,1)

j

}
→ 0,

√
Nα

min( τt2 ,1)
t → 0 and N

αt
√
n
→ 0 as n → ∞

where ω̂RdgPαt is the estimated version of the selected portfolio obtained by imposing the L2
norm on the portfolio weights.

Proof. In the appendix.
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√
Nα

min( τt2 ,1)
t → 0 implies that αt goes to zero faster than

√
N goes to infinity.

Proposition 3 implies the consistency of the estimated portfolio at each period with
respect to ‖.‖ under some regularity conditions. Here ‖.‖ is the norm induced by the
inner product in RN . In fact, according to this proposition, by imposing an appropriate
constraint on the dynamic portfolio selection problem, we obtain a feasible strategy
very close to the optimal portfolio if the estimation window is large enough and under
reasonable regularity conditions.

2.5.2 Efficiency with respect to the Sharpe ratio for L2 penalty
Let us, now look at the asymptotic property of the Sharpe ratio associated with the
selected portfolio. The Sharpe ratio measures the excess return (or the risk premium)
per unit of deviation for a given trading strategy. It is a way to examine the performance
of an investment by adjusting for its risk. The Sharpe ratio of a given portfolio allocation
ωt is expressed as follows:

st (ωt) = µ
′
tωt(

ω
′
tΣtωt

)1/2

The Sharpe ratio of the optimal portfolio at period t as defined in Equation (2.5) is thus
given by

st (ωopt,t) =
(
µ
′

tΣtµt
)1/2

.

However, as mentioned in Section 2.2, investors cannot reach the optimal portfolio in
practice since neither µt nor Σt is known in advance. Because the optimal portfolio is
estimated, the actual Sharpe ratio associated with this strategy may be different from the
theoretical one. Hence, this paper aims to provide the investor with a feasible strategy
whose Sharpe ratio is as close as possible to the theoretical and unknown Sharpe ratio.

The following proposition presents information about the asymptotic property of the
Sharpe ratio associated with the selected portfolio.

Proposition 4. Given the set of information Ft and under assumption A we have
that

st (ω̂αt)
2 = st (ωt)2 +Op

[(
N

αt
√
n

+ ‖θt − θαt‖
)]

, (2.22)

for the RdgP and the L2TSP if N
αt
√
n
→ 0 as n goes to infinity where ωt is the optimal

portfolio at the time point t given by the equation (2.5) with ‖θt − θαt‖
2 = Op(αmin(τt,2)

t ).

Proof. In Appendix.

The regularity condition behind Proposition 4 implies several things. First, it implies
that αt

√
n → ∞, which means that the estimation window should go to infinity faster
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than the optimal tuning parameter goes to zero. Second, αt
√
n may go to infinity faster

than the number of assets in the financial market. Therefore, the number of assets may be
limited asymptotically compared with the estimation window. More importantly, under
the regularity condition N

αt
√
n
→ 0 the result of Proposition 4 can be rewritten as follows

st (ω̂αt)
2 = st (ωt)2 + op (1) (2.23)

since, ‖θt − θαt‖
2 = O

(
α

min(τt,2)
t

)
by assumption A, and using the fact that αt goes to

zero as n goes to infinity. Hence, Proposition 4 shows that the estimated portfolio is
asymptotically efficient in terms of the Sharpe ratio for a wide choice of tuning param-
eters. Consequently, even if the optimal portfolio at the time point t is not practically
available (due to the fact that µt and Σt are unknown) there exists a feasible portfolio
(obtained by imposing an appropriate constraint on the dynamic problem) capable of
reaching similar levels of performance in terms of the Sharpe ratio for a large estimation
window and a wide choice of the regularization parameter. A similar result has been
found by Chen and Yuan (2016) in a static mean-variance portfolio selection problem
assuming that assets returns follow a K-factor model.

To show the consistency and the efficiency of the selected portfolio with a L1 temporal
stability constraint we need an additional assumption (see Assumption B in the next
subsection).

2.5.3 Mean squared error
The aim of this subsection is to see if we can better control the estimation error by
imposing a temporal stability constraint in the portfolio selection problem over investors’
life cycle. For this purpose, we derive an approximation to the estimation error in the
optimal portfolio at each period in order to understand if it could vanish asymptotically
under less restrictive regularity conditions.

Here we define the mean squared error of the selected strategy as follows

MSE (ω̂αt) = 1
Nn

E
[∥∥∥Σ̂t (ω̂αt − ωt)

∥∥∥2

2

]
(2.24)

Under Assumption A we obtain the following result about the mean squared error of
the L2 temporal stability portfolio.

Proposition 5.1 Given the set of information Ft and under assumptions A we have
the following result about the estimation error of the selected portfolio

MSE
(
ω̂L2TSP
αt

)
∼ N2

n2α2
t

+ N

n
α

min(τt,2)
t (2.25)
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which is minimized for αt of order
(
N
n

) 1
τt+2 . Moreover, we have that

MSE
(
ω̂L2TSP
αt

)
≤MSE

(
ω̂RdgPαt

)
(2.26)

if max0≤j≤t−1

{
N3/2

αj
√
n

+
√
Nα

min(
τj
2 ,1)

j

}
→ 0,

√
Nα

min( τt2 ,1)
t → 0 as n → ∞, where we

denote by ω̂RdgPαt the optimal strategy obtained by Ridge regularization and ω̂L2TSP
αt the

solution obtained with the L2 temporal stability constraint.

Proof. In Appendix.
The first point of this proposition implies that under appropriate regularity condi-

tions, the estimation error of the selected strategy by imposing a L2 temporal stability
constraint vanishes asymptotically. The second fact to notice about this proposition is
that we better control the estimation error when imposing an L2 temporal stability con-
straint compared with the Ridge regularization procedure. Intuitively, this result can be
explained by the fact that the RdgP method ignores estimation errors in the expected
return while the L2TSP introduces a second level of regularization in the sample mean
to control for estimation errors in the expected return.

To obtain a good approximation of the MSE of the selected portfolio obtained with a
L1 temporal stability constraint, we need additional assumptions. Let us first start with
the following useful notations. For each time point t

St = {j ∈ {1, ..., N} : θjt 6= θjt−1}

with st = |St|. θt can be obtained through the following OLS model 1n = Rtθt+ut for ∀ t
with E

(
R
′
tut
)

= 0 by Lemma 2 in Appendix. St will be called the active set at the time
point t, which contains elements of θt different from their level of the previous period,
and N−st will be called the time stability index of θt. In fact, the main assumption that
underlies our L1 procedure is that only a few of θt changes compared with their level
of t − 1. Hence, our L1 procedure may help investors to select a more stable portfolio
over time in order to avoid high trading costs induced by continuous re-balancing in
the optimal portfolio at each period. Moreover, we need the following assumption to
obtain a nice result about the mean square error of the selected strategy using the L1
temporal stability constraint. In particular, with this assumption we can easily show
the consistency of the L1 strategy. The following notations will also be used in this
assumption: θSt is a vector with zeros outside the set St and coincides with θt on St. In
other words the jth element of this vector is given by:

θSt,j = θjt1 {j ∈ St}
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Moreover, θSct is a vector that coincides with θt outside St. It implies that

θSct ,j = θjt1 {j /∈ St}

and θt = θSt + θSct

Assumption B.

B(i) At each time point t there is a positive constant α0
t with 2α0

t ≤ αt such that we
have,

max1≤j≤N
{

2
∣∣∣u′tRj

t

∣∣∣ /n} ≤ α0
t where αt is the smoothing parameter in (2.19).

B(ii) For some ξΩt > 0 and for all θt satisfying
∥∥∥θSct ∥∥∥1

≤ κt ‖θSt − θt−1‖1 for κt > 1,
we have that
‖θSt − θt−1‖2

1 ≤
(
θ
′
tΩtθt

)
st/ξ

2
Ωt

The assumption B(i) can be found in the study by Bühlmann and Van De Geer (2011).
B(ii) can be seen as a modified version of the compatibility condition in Bühlmann and
Van De Geer (2011) with ξ2

Ωt being the compatibility constant of the matrix Ωt. This
assumption is useful to obtain the consistency of the L1 strategy. According to Bühlmann
and Van De Geer (2011) is that if two matrices Σ0 and Σ1 are close to each other, the
Σ0- compatibility condition implies the Σ1- compatibility condition. This property will
be useful when Σ0 is the population covariance and Σ1 its sample variance. For more
detail about Assumption B see Bühlmann and Van De Geer (2011).

We obtain the following result about the estimation error of the L1 temporal stability
strategy under assumptions A and B.

Proposition 5.2 Given the set of information Ft and under assumptions A and B
we have the following result about the estimation error of the selected portfolio

MSE
(
ω̂L1TSP
αt

)
∼ Nα2

t

(
st/ξ

2
Ωt

)
+Nαt ‖θt − θt−1‖ (2.27)

Proof. In Appendix.

This proposition also implies that under appropriate regularity conditions, the estima-
tion error of the selected strategy by imposing a L1 temporal stability constraint vanishes
asymptotically. In other words, under appropriate regularity conditions we have that

MSE (ω̂αt)→ 0

for L1TSP and L2TSP which implies that we asymptotically control the MSE for strate-
gies obtained by imposing a temporal stability constraint.
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2.5.4 Asymptotic distributions
In this subsection, we derive the asymptotic distribution of a certain linear combination
of the estimated version of the Ridge regularized portfolio. With this asymptotic distri-
bution, we could easily construct a confidence interval for that linear combination. In
particular, we could construct a confidence set for a given asset in the optimal selected
portfolio based on this asymptotic distribution. We need the following assumption to
find the asymptotic distribution.

Assumption C for any given N × 1 vector δ with ‖δ‖ = O (1), we have that

C(i)
∥∥∥Ê (R′t1n)− Ω̂tθt

∥∥∥2
= Op

(
1
n

)
with Ω̂t = RtR

′
t/n.

C(ii) rt ∼ N (µ,Σ)

C(iii) δ′riui is independent and identically distributed with E
[
δ
′
riui

]
= 0. Moreover

E
[
δ
′
rir
′
iu

2
i δ
]
<∞

Using this assumption combined with assumption A, we obtain the following result
about the asymptotic distribution of δ′ω̂αt .

Proposition 6 Given the set of information Ft and under assumptions A and C we
have the following result

〈
√
n [ω̂αt − ωt] , δ〉∥∥∥∥(E [δ′rir′iu2

i δ
])1/2

Ω̂−1
αt

∥∥∥∥ →d N
(

0, γ2
t

(1− µ′θt)2

)

if max0≤j≤t−1

{
N3/2

αj
√
n

+
√
Nα

min(
τj
2 ,1)

j

}
→ 0, max

(√
N,αt

√
n√
N

)
α

min( τt2 ,1)
t → 0, and N5/2

αtn
+

N3/2
√
n

+N3/2α
min( τt2 ,1)
t → 0 as n goes to infinity.

Proof. In Appendix.

The result of Proposition 6 implies that under appropriate regularity conditions, the
selected portfolio by Ridge regularization is asymptotically normal. This result can then
be used in order to construct a confidence interval for δ′ωt or for any component of ωt.
More precisely, a confidence interval for δ′ωt can be obtained as follows:

Iδ′ωt =
[
δ
′
ω̂αt −

σ̂t√
n
zϕ/2; δ′ω̂αt + σ̂t√

n
zϕ/2

]

where

σ̂t =

∥∥∥∥(Ê [δ′rir′iu2
i δ
])1/2

Ω̂−1
αt

∥∥∥∥
1− µ̂′tθ̂αt

γ̂t

because 1 − µ̂′tθ̂αt > 0. zϕ/2 is the quantile 1 − ϕ/2 of the standard normal distribution
with ϕ ∈ (0, 1).
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2.5.5 Data-driven Method for Selecting the Tuning Parameter
Sections 2.3 and 2.4 illustrate that the selected portfolio depends on a certain smooth-
ing parameter αt ∈ (0, 1). We have derived some asymptotic properties of the selected
portfolio assuming that this tuning parameter is given. However, in practice, the regu-
larization parameter is unknown and needs to be selected in an optimal way. Hence, for
each method, we propose a data-driven selection procedure to obtain an approximation
of this parameter.

Tuning parameter for the Ridge regularization

In a static mean-variance framework, Carrasco et al. (2019) propose a data-driven method
to optimally select this parameter. This method is based on a cross-validation approxi-
mation of a loss function of the estimated portfolio.

In the dynamic setting, we base our procedure on a cross-validation approximation of
the mean square error (MSE) of the estimated portfolio. The aim is to find an optimal
αt that minimizes the approximation MSE of µ′ω̂t. This type of data-driven method
for selecting the tuning parameter based on the MSE of a certain linear combination of
the estimated parameter has been used by Carrasco (2012) and Carrasco and Tchuente
(2015) for an arbitrary linear combination of the estimated parameter. Here, we select
αt, for which the following expected MSE E

[(
µ
′ (ω̂t − ωt)

)′ (
µ
′ (ω̂t − ωt)

)]
is as small as

possible. The idea behind this procedure is to select the value of αt, which minimizes the
distance between the expected return on the optimal portfolio and the return obtained
with the regularized portfolio.

The following result gives us a very nice equivalent of the objective function. We
can easily apply a cross-validation approximation procedure on this expression of the
objective function.

Proposition 7 Given the set of information Ft and under assumption A, we obtain
the following result

(
1− µ′βt

)4
γ−2
t E

[(
µ
′ (ω̂t − ωt)

)′ (
µ
′ (ω̂t − ωt)

)]
∼ 1
n
E
[∥∥∥1′nRt

(
θ̂t − θt

)∥∥∥2
]

(2.28)

if max0≤j≤t−1

{
N3/2

αj
√
n

+
√
Nα

min(
τj
2 ,1)

j

}
→ 0 as n→∞

The proof of this proposition can be found in the Appendix.

It follows from Proposition 7 that minimizing E
[(
µ
′ (ω̂t − ωt)

)′ (
µ
′ (ω̂t − ωt)

)]
with

respect to αt is also equivalent to minimizing 1
n
E
[∥∥∥1′nRt

(
θ̂t − θt

)∥∥∥2
]
with respect to αt.

However, this new expression of the objective function is not feasible because it depends
on βt which is unknown. Hence, following Li (1986, 1987), we investigate the following
cross-validation approximation techniques for 1

n
E
[∥∥∥1′nRt

(
θ̂t − θt

)∥∥∥2
]

:
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(i) The generalized cross-validation (GCV) where:

α̂t = arg min
αt∈Hn

n−1 ‖(In −Mt,n (αt)) 1n‖2

(1− tr (Mt,n (αt)) /n)2

(ii) Mallow’s CL where:

α̂t = arg min
αt∈Hn

n−1 ‖(In −Mt,n (αt)) 1n‖2 + 2σ2
un
−1tr (Mt,n (αt))

with,

Mt,n (αt) v =
n∑
j=1

q(αt, λ2
jt)
(
v
′
ψjt
n

)
ψjt

for any n-dimensional vector v and tr (Mt,n (αt)) = ∑n
j=1 q(αt, λ2

jt) and ψjt the eigenvec-
tors of RtR

′
t/n.

The optimality of this data-driven procedure can be obtained following the same
techniques as in the study by Carrasco et al. (2019).

Tuning parameter for the temporal stability constraint

A good way to approximate the optimal solution of the temporal stability portfolio
consists of solving the following optimization problem

θ̂αt = argmin
θt

1
n
‖1n −Rtθt‖2

2 + αtC (θt, θt−1) (2.29)

where

C (θt, θt−1) =
{
‖θt − θt−1‖2

2 for L2TSP
‖θt − θt−1‖1 for L1TSP

with αt ∈ (0, 1) and θt from 1n = Rtθt + ut. To select the tuning parameter, the first
thing is to transform this optimization as follows (see proof of Lemma 4 for more details)

ˆ̃θαt = argmin
θ̃t

1
n

∥∥∥yt −Rtθ̃t
∥∥∥2

2
+ αtC

(
θ̃t
)

(2.30)

where

C
(
θ̃t
)

=


∥∥∥θ̃t∥∥∥2

2
for L2TSP∥∥∥θ̃t∥∥∥1
for L1TSP

yt = 1n−Rtθt−1, y0 = 1n for the first period. The tuning parameter αt ∈ (0, 1) at period
t can then be selected by applying a cross validation procedure to a Ridge-type regression
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in (2.30) for the L2TSP and to a Lasso-type regression for the L1TSP. In practice, at
each period t, we will use the following estimator ŷαt−1 = 1n −Rtθ̂αt−1 for yt in the OLS
model in (2.30).

2.6 Simulations and empirical study
We start this section by a simulation exercise to set up the performance of our procedure
and compare our result to the existing methods. In particular, we compare our method
to the Bayesian procedures proposed by Bauder et al. (2020). More precisely, in this
section, we focus our attention on how our procedure performs in terms of the Sharpe
ratio and the default probability. Moreover, we are interested in how our procedure can
perform in terms of minimizing the rebalancing cost at a given period. The rebalancing
cost at the time point t can be naturally measured by

Costt =
N∑
j=1
|ωt,j − ωt−1,j|

This measure of the trading cost is, in fact, the turnover. The transaction cost can be
measured using the turnover in the sense that these costs are positively related to the
turnover. Therefore, in the rest of the paper the turnover will be called transaction costs.
The average trading cost over the investment horizon is given by

TradingCost = 1
T

T−1∑
t=0

Costt

This quantity can be interpreted as the average percentage of wealth traded at each
period. It can be assimilated to the transaction costs faced by the investor at a given
period, who takes some positions in the financial market. By definition trading costs
could be seen as all costs incurred by investors in the process of buying or selling an
asset in the financial market. In other words trading costs include brokerage fees, cost
of analysis, information cost and any expense incurred in the process of deciding upon
and placing an order. Delay in execution, which causes prices at which one trades to be
different from those at which one planned to trade, may be included as well.

We also analyze the out-of-sample performance of the selected portfolio from each
procedure we have proposed.

2.6.1 Simulations
We implement a simple simulation exercise to set up the performance of our procedure
and compare it with the existing procedures. This comparison will be done using several
statistics such as the actual Sharpe ratio, the default probability, and the rebalancing cost.
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Let us consider for this purpose a simple economy with N ∈ {10, 20, 40, 60, 80, 90, 100}
risky assets and a risk-free asset. We use several values of N to see how the size of the
financial market (defined by the number of assets in the economy) could affect the perfor-
mance of the selected strategy. We also consider a finite life (T = 12, which corresponds
to one year or 12 months) investors who reallocate their portfolio monthly over their life
cycle by maximizing an exponential utility function with the CARA parameter γ = 3.
Let n be the rolling window used at each period to estimate, in particular, the covariance
matrix of assets returns. So, at each simulation step, we have to generate n + T excess
returns and use them to form the dynamic portfolio over the last T periods of the data
set. To form the optimal portfolio at the first period (which is n + 1), we use the first
n generated observations to estimate unknown parameters that appear in the optimal
portfolio given in (2.5). For the second period (n + 2), we also use the last n data from
t = 2, ..., n + 1 to estimate unknown parameters, and so on. Following Chen and Yuan
(2016) and Carrasco et al. (2019), we simulate the excess returns at each simulation step
from the following three-factor model for i = 1, ..., N and t = 1, ..., n+ T

rit = bi1f1t + bi2f2t + bi3f3t + εit (2.31)

ft = (f1t, f2t, f3t)
′ is the vector of common factors, bi = (bi1, bi2, bi3)′ is the vector of

factor loading associated with the i-th asset and εit is the idiosyncratic component of rit
satisfying E (εit|ft) = 0. We assume that ft ∼ N (µf ,Σf ) where µf and Σf are calibrated
on the monthly data of the market portfolio, the Fama-French size and the book-to-
market portfolio from July 1980 to June 2016. Moreover, we assume that bi ∼ N (µb,Σb)
with µb and Σb calibrated using data of 30 industry portfolios from July 1980 to June
2016. Idiosyncratic terms εit are supposed to be normally distributed. The covariance
matrix of the residual vector is assumed to be diagonal and given by Σε=diag(σ2

1, ..., σ
2
N)

with the diagonal elements drawn from a uniform distribution between 0.10 and 0.30 to
yield an average cross-sectional volatility of 20%.

In the compact form (2.31) can be written as follows:

R = BF + ε (2.32)

where B is a N × 3 matrix whose ith row is b′i. The covariance matrix of the vector of
excess return rt is given by

Σ = BΣfB
′ + Σε

The mean of the excess return is given by µ = Bµf . The return on the risk-free asset
Rf is calibrated to be the mean of the one-month Treasury-Bill (T-Bill) observed in the
data from July 1980 to June 2016. The calibrated parameters used in our simulation
process are given in Table 2.1. The gross return on the risk-free asset calibrated on the
data is given by Rf = 1.0036. Once generated, the factor loadings are kept fixed over
replications, while the factors differ from simulations and are drawn from a trivariate
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normal distribution.

Table 2.1: Calibrated parameters
Parameters for factors loadings Parameters for factors returns
µb Σb µf Σf

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 -0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 -0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 -0.0004 -0.0003 0.0009

Let SR(ωt) be the Sharpe ratio associated with the optimal portfolio ωt, then SR(ωt)
is given as follows

SR(ωt) =
[
µ
′Σµ

]1/2
To set up the performance of our procedure in terms of the Sharpe ratio, we focus our

attention on the actual Sharpe ratio associated with the selected portfolio. The actual
Sharpe ratio at time point t is given by

SR(ω̂t) = ω̂
′
tµ[

ω̂
′
tΣω̂

′
t

]1/2
We also analyze the ability of our procedure to predict the default probability at

each time point of the investment horizon. This default probability is defined as the
probability of the event giving negative wealth. In fact, there is default at time point t if
At < 0. Let DP (t) denote the default probability at time point t. So, if B is the number
of draws in our simulation, we have that

DP (t) = 1
B

B∑
j

I (At(j) ≤ 0)

where At(j) is the wealth obtained at step j of our procedure. As we saw it in Section 2.2,
we have N risky assets and a risk-free asset with a constant gross return calibrated by
Rf = 1.0036. Since, A0 = 1 and Rf > 1 then DP (t) ≈ 0 ∀ t. Hence, a procedure is said
to perform well in terms of the default probability if the estimated default probability
obtained using this procedure is close to zero, which is the theoretical default probability.
The estimated default probability is given by

D̂P (t) = 1
B

B∑
j

I
(
Ât(j) ≤ 0

)

with Ât(j) being the estimated wealth obtained at time point t and step j of our proce-
dure.
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Moreover, in this simulation we assess the performance of our procedure in terms of
minimizing the rebalancing cost. The rebalancing cost at a given period t is estimated
as follows:

ˆCostt = 1
B

B∑
i=1

 N∑
j=1
|ω̂t,j (i)− ω̂t−1,j (i)|


Our procedures are compared with the Bayesian procedure introduced by Bauder et

al. (2020). We consider the following portfolio selection procedures: the sample-based
portfolio (SbP), the naive portfolio (XoNP) which allocates a constant amount 1/N in
each asset, the Ridge regularized portfolio (RdgP) obtained by penalizing the portfolio
weights, the temporal stability L2 Norm portfolio (L2TSP), the temporal stability L1
Norm portfolio (L1TSP) obtained in Section 2.4 and the Bayesian portfolio (BP) proposed
by Bauder et al. (2020).

In this analysis, we measure the degree of ill-posedness in our optimization problem
by the condition number and the relative condition number defined as the ratio of the
empirical condition number to the theoretical condition number. Tables 2.5 and 2.6 give
the results of this analysis as a function of the number of risky assets in the financial
market over several periods. Note that the higher the condition number, the more ill-
posed our dynamic problem. As we can see from Tables 2.5 and 2.6, the condition number
increases substantially when N exceeds 20, hence the sample-based strategy may not be
appropriate to estimate the optimal solution which involves the inverse of the covariance
matrix.

Therefore, we propose a way to improve the performance of the selected strategy in
such a situation. We perform 1000 simulations and estimate our statistics over replica-
tions.

The result for the average monthly actual Sharpe ratio is given in Table 2.7. Several
facts can be observed from these results. Indeed, the SbP performs poorly in terms
of the actual Sharpe ratio when the number of assets in the financial market exceeds
10. For instance, we obtain an average bias in the actual Sharpe ratio of -0.0735, -
0.1029, -0.1460, -0.1709, -0.1843, and -0.1965 for respectively 10, 20, 40, 60, 90, and
100 risky assets in the economy. In fact, when the number of assets in the financial
market increases considerably compared with the estimation window, the estimation
error resulting in the estimation of the optimal solution is amplified for several reasons.
In particular, the sample covariance matrix used to form the SbP is close to a singular
matrix. Hence, inverting such a matrix may increase the estimation error drastically such
that the selected portfolio deviates strongly from the true one. Moreover, DeMiguel et
al. (2007) show by simulation that the estimation window needed for the sample-based
mean-variance strategy and its extensions to outperform the 1/N benchmark is around
3000 months for a portfolio with 25 assets, and about 6000 months for a portfolio with
50 assets. However, finding such historical data seems to be unrealistic in an empirical
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analysis. Hence, we propose a new way to improve the performance of the selected
portfolio. The results in Table 2.7 show that by imposing an appropriate constraint on
the dynamic problem we significantly improve the performance of the selected strategy
compared with the SbP and Bauder et al. (2020)’s portfolio. The performance of those
procedures seems to be independent of the size of the financial market (see Table 2.8,
which contains the bias in the actual Sharpe ratio). In fact, with a reasonable choice of
the tuning parameter, each of those methods can achieve satisfactory performance even
if the number of assets in the economy is large. Moreover, our procedures outperform
the 1/N portfolio, which is known to be a standard benchmark in the literature. More
importantly, the L2TSP outperforms the RdgP. To explain this result, note that the
RdgP is obtained by a simple Ridge regularization on the sample covariance matrix.
However, in addition to this Ridge regularization of the sample covariance, the L2TSP
introduces a shrinkage estimator for the expected returns. Hence, the fact that the
shrinkage estimator is well known in the literature to reduce errors in estimating the
expected returns can explain why the L2TSP outperforms the RdgP in terms of the
Sharpe ratio. This result implies that a second level of regularization applied to the
expected returns may be useful in some cases to improve the performance of the selected
strategy. Similar results are obtained with the L1TSP.

We compute the Sharpe ratio as a function of the tuning parameter for the RdgP.
The result of this simulation for N = 60 is given in Figure 2.1. The first interesting
thing we can notice from this figure is that there is an optimal choice of the tuning
parameter for which the actual Sharpe ratio is as close as possible to the theoretical and
unknown Sharpe ratio. This implies that in a large financial market setting, this strategy
can help investors to significantly improve the performance of the selected portfolio by
selecting a reasonable tuning parameter. The second thing to point out from this graph
is that the Sharpe ratio decreases faster as the tuning parameter approaches zero. In
fact, the sample-based portfolio could be seen as a particular case of the ridge portfolio
with α = 0. Therefore, as α approaches zero, the ridge portfolio approaches the SbP and
may perform poorly as mentioned. Moreover, the Sharpe ratio also decreases when the
tuning parameter is large enough. Hence, investors should select a reasonable value of
this smoothing parameter in order to obtain a performance that is as close as possible to
the performance of the optimal strategy. Therefore, we propose a data-driven procedure
based on cross-validation approximation of the mean square error to help investors to
select the tuning parameter of the RdgP portfolio. The idea behind this procedure is
to select the value of the regularization parameter that minimizes the distance between
the return of the optimal portfolio and the return obtained with the RdgP portfolio. We
show by simulations that the objective function used for this purpose is a convex function
over the set of the regularization parameters. This property of convexity of the objective
function ensures that there is a unique optimal choice of the tuning parameter that
minimizes this function over the set of regularization parameters. The results of the cross-
validation approximation analysis for N = 60 are given in Figure 2.2. More importantly,
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the cross-validation criterion increases drastically when the tuning parameter approaches
zero. This result is plausible in the sense that the ridge procedure converges to the sample-
based portfolio as α approaches zero. And since the number of assets in the economy
is large, inverting the sample covariance amplifies the estimation error which creates a
strong deviation of the selected portfolio from the true one. The ridge procedure is also
known to perform poorly in such a situation (see Figure 2.1). This feature of the RdgP
portfolio observed in Figure 2.2 gives us a new argument about the bad properties of the
sample-based portfolio when the market size is large.

We analyze the ability of each strategy to predict the default probability over the
investor’s life cycle. For this purpose, we compute by simulation the average monthly
default probability for each strategy. The result of this analysis can be found in Table
2.9. A strategy will be said to perform in terms of predicting the default probability if
the default probability obtained with this strategy is as close as possible to the theo-
retical one. Note that the theoretical default probability is equal to zero. According to
our simulations, the SbP and the Bayesian strategy give good results in terms of pre-
dicting the default probability only when the number of assets in the economy does not
exceed 20. However, those procedures perform poorly when N exceeds 20. The Bayesian
method does not perform well for large N because the number of hyper-parameters to
be estimated with this procedure substantially increases when N is large (for N ≥ 20).
Nonetheless, by imposing an appropriate constraint in the dynamic problem, we obtain
very nice results about investors’ ability to predict the default probability. Indeed, the
default probability obtained with those strategies is very close to the theoretical one.
Moreover, this feature seems to be independent to the number of assets in the financial
market.

Other interesting statistic is the monthly re-balancing cost. We show by simulations
(see Table 2.10) that our procedures strongly reduce the re-balancing faced by investors
over their life cycle compared with the sample-based portfolio and the Bayesian strategy.
Using an appropriate constraint in the portfolio selection process, we obtain a more stable
portfolio over time so that investors avoid several re-balancing costs. Our procedures may
be appropriate for investors who want to take positions in the financial market in the
sense that those strategies help them to avoid high trading costs on the selected portfolio
with very good performance.

We also compute in Figure 2.3 the average transaction costs faced by investors as a
function of the tuning parameter for the L1TSP and the L2TSP. This graph is obtained
using 20 risky assets, an estimation window of 120 and a one-year investment horizon
(T = 12). The first thing to notice about this result is that trading costs investors faced
decrease as the tuning parameter approaches 1 for both the L1TSP and the L2TSP.
α can be seen as the importance of the temporal stability constraint in the dynamic
portfolio selection problem. It is, in fact, the additional cost the investor is willing to
pay to change the composition of the portfolio between two consecutive time periods.
Hence, as α increases, investors become less inclined to change their optimal portfolio to
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avoid large adjustment costs. The optimal investment policy becomes more stable over
time as the tuning parameter increases. Moreover, the trading costs obtained using the
L1TSP are always less than what we obtain with the L2TSP for each tuning parameter.
This is essentially due to the fact that the L1TSP has a sparsity property that obliges
investors to hold portfolios with few active positions. This result implies in particular
that investors who fundamentally care about minimizing trading costs in the financial
market should select strategies based on the L1TSP technique. Moreover, the rebalancing
cost increases as the regularization parameter approaches zero for both the L1TSP and
the L2TSP. This result is plausible in the sense that the temporal stability portfolio
converges to the SbP as the tuning parameter goes to zero. However, the SbP generally
involves taking extreme long and short positions, which may considerably increase the
rebalancing cost of this strategy.

In Figure 2.4, we plot the evolution of the average stability rate as a function of the
tuning parameter. Not surprisingly, the L2TSP is always non-stable over time for any α
∈ (0, 1). In fact, this method is equivalent to assuming a quadratic trading cost in the
dynamic portfolio problem in such a way that investors trade at each period in small
quantities (see Heaton and Lucas (1996), Gârleanu and Pedersen (2013)).

We also estimate the dynamics of the optimal wealth with our procedures and compute
the bias in the optimal wealth. The results from this simulation exercise are given in
Tables 2.11, 2.12 and 2.13. The bias in the optimal wealth at each period t is defined as
follows

Bias(At) = 1
B

B∑
j

Ât(j)− At(j)
At(j)

The absolute value of this bias can be seen as the loss incurred in a dollar invested in the
financial market by selecting a given strategy instead of the true one. Once again our
procedures perform very well in terms of predicting the optimal wealth over investors’
life cycle compared with the Bayesian method as well as the sample based portfolio. For
instance, with 10 risky assets in the economy, we observe an average loss of 0.0422, 0.0132,
0.0104 and 0.0106 respectively for BP, RdgP, L2TSP, and L1TSP. In other words, for
a billion dollars of investment in the financial market, the investor gains about 29, 31.8
and 31.6 million of dollars by using the RdgP, L2TSP and L1TSP strategies respectively
instead of the Bayesian procedure. Similar results are obtained with 20 and 40 risky
assets in the financial market.

Table 2.14 contains some results about the average bias in the actual Sharpe ratio
obtained with several estimation windows for ridge regularization. The bias in the actual
Sharpe ratio approaches 0 when the estimation window increases. For instance the bias
is -0.0295 and -0.0098 for n = 120 and n = 1000 respectively. This result implies that
the actual Sharpe ratio obtained using the ridge procedure approaches the true one as
the estimation window increases. In other words, the ridge strategy is asymptotically
efficient with respect to the actual Sharpe ratio, as mentioned in Section 2.5.
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Our procedures involve some smoothing parameters selected using a data driven
method. For each strategy, this tuning parameter is used to reduce the effect of the
sample estimation errors on the selected portfolio performance. Table 2.15 and Figure
2.5 provide information about the optimal selected tuning parameter for each method.
An interesting thing to point out is that the tuning parameter tends to increase over time
for each strategy in order to mitigate the negative effect of previous estimation errors on
the performance of the actual optimal selected portfolio. In fact, to obtain an estimation
of the optimal portfolio in (2.5), we also have to estimate γt, whose accuracy depends on
the previous estimation errors. Hence, an adjustment on the regularization parameter
could help investors to reduce the effect of these estimation errors on the properties of
the selected portfolio.

We do a comparative analysis between the RdgP and the L2TSP using the evolution
of the mean squared error over the investment horizon. This analysis is done with 20 risky
assets and an estimation window of 120 over 24 months. The results of this simulation
exercise are given in Figure 2.6. The MSE of the selected portfolio is relatively stable
for those two methods, with a slight increase over the investment horizon. Moreover, we
observe an important gap between the MSE of the RdgP portfolio and the MSE of the
L2TSP over the life cycle. Intuitively, this gap is plausible in the sense that the L2TSP
introduces a second level of regularization in the expected return instead of using the
sample mean used by the RdgP. Hence, this procedure also controls the estimation error
in the expected return. This is why the global estimation error of the selected strategy
is better controlled.

2.6.2 Empirical study
In this subsection, we investigate the performance of our procedures empirically. We
apply our method to several sets of portfolios from Kenneth French’s website: the monthly
30-industry portfolios and the monthly 100 portfolios formed on size and book-to-market.
We allow investors to re-balance their portfolios every year, as did Barberis (2000).
This implies that the optimal portfolio is constructed at the end of June every year for
a given estimation window n by maximizing the expected utility. The investor holds
this optimal portfolio for one year, realizes gains and losses, updates information and
then recomputes optimal portfolio weights for the next period using the same estimation
window. According to Brodie et al. (2009) this approach can be seen as an investment
exercise to evaluate the effectiveness of investors who base their strategy on the last n
periods. This procedure is repeated each year, generating a time series of out-of-sample
returns. Given a data set of size T ∗ and an estimation window of size n, we obtain a
set of T ∗ − n/12 out-of-sample returns, each generated recursively using the n previous
returns. This time series can then be used to analyze the out-of-sample performance of
each strategy based on several statistics such as the out-of-sample Sharpe ratio and the
rebalancing cost. For this purpose, we use data from July 1980 to June 2018. Therefore,
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if we choose the estimation window to be 108 and 120 then the first portfolio will be
formed in June 1990 and June 1989 respectively and the last one in June 2017.

Table 2.16 contains some results of the out-of-sample analysis in terms of the Sharpe
ratio for two different data sets: the FF30 and the FF100. For each data set, we compute
the out-of-sample Sharpe ratio for two different rolling windows. We observe that the
sample-based portfolio performs poorly in terms of the out-of-sample Sharpe ratio for
both the FF30 and the FF100. The bad out-of-sample properties of this strategy are
essentially due to errors in estimating the covariance matrix and the expected return.
Moreover, this estimation error is amplified by the fact that one needs to invert the
sample covariance matrix, which may be close to a singular matrix. Nonetheless, the
estimation error could be limited using a large historical data set to estimate the unknown
parameters. In fact, as seen in Tables 2.17 and 2.18, the condition number of the sample
covariance matrix decreases when the rolling window increases from n = 60 to n = 120
and from n = 120 to n = 240 for the FF30 and FF100 respectively. Therefore, by
improving the condition number we partly solve the problem of inversion of the sample
covariance matrix of asset returns such that the estimation error is reduced significantly.
However, to obtain a reasonable performance with this procedure, we need a very large
historical data set in order to estimate the unknown parameters, which may be non-
realistic in practice. For a portfolio with only 25 risky assets DeMiguel et al. (2007) show
that one needs about 3000 months of historical data for the sample portfolio to achieve
a similar performance to that of the 1/N benchmark. We cannot obtain such a rolling
window in an empirical setting. Hence, to help investors to well allocate their resources,
we focus on two ways to select the optimal portfolio over the life cycle. Each of those
procedures significantly outperforms the SbP in terms of the Sharpe ratio. Nonetheless,
the L2TSP and the L1TSP outperform the ridge portfolio for both the FF30 and the
FF100, for each rolling window. As mentioned before, when the rolling window increases,
we are able to estimate the unknown parameters more efficiently. Hence, for a given
data set our procedures also tend to perform well for large estimation windows. We
also compute in Table 2.16 the out-of-sample Sharpe ratio for Bauder et al. (2020)’s
procedure. Our methods outperform this procedure for each data set.

We obtain similar results in terms of the out-of-sample analysis of the trading cost
(see Table 2.19). More importantly, we obtain very nice results with the L1TSP for
each data set across estimation windows. Those results imply that this procedure (the
L1TSP) helps investors to select more stable portfolios over their life cycle (in order to
avoid high trading costs) with very interesting performance compared with most existing
procedures.

In Figure 2.7, we plot the dynamic of the estimated wealth obtained with our proce-
dures from 1990 to 2017. This graph is obtained using the 30 industry portfolios with
an estimation window of 120. The evolution of this graph between 1990 and 2017 for
each procedure reveals the existence of a period (from 2004 to 2009) with lower financial
wealth, showing the negative effect of the financial crisis of 2007-2008 on the investment
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decision. This graph shows that imposing a temporal stability constraint improves the
wealth. Similar results for the trading costs faced by the investor are obtained in Figure
2.8.

2.7 Conclusion
This paper addresses a dynamic portfolio selection problem in a large financial market
by proposing two procedures for selecting the optimal strategy. First, we penalize the
norm of the portfolio weights in the dynamic problem and derive a closed-form solution
to this new optimization problem. This optimal solution is closely related to a Ridge reg-
ularization, which consists of adding to the volatility matrix a diagonal matrix to reduce
estimation errors in the covariance matrix. Under appropriate regularity conditions, we
show the consistency of the selected strategy and its efficiency in terms of the Sharpe ra-
tio. This method partially controls the estimation errors in the optimal solution because
it ignores estimation errors in the expected return which may also be important when
the number of assets in the financial market increases considerably. Hence, we propose
an alternative method that consists of penalizing the norm of the difference of successive
portfolio weights in the dynamic problem to guarantee that the optimal portfolio compo-
sition does not fluctuate widely between periods. We show, under appropriate regularity
conditions, that we better control estimation errors in the optimal portfolio with this new
procedure. In fact, this procedure introduces a second level of regularization to control
for the estimation error in the expected return. Moreover, this second method helps
investors avoid high trading costs in the financial market by selecting stable strategies
over time.

Each strategy involves an unknown tuning parameter that needs to be selected in
an optimal way at each time point. Hence, for each strategy we propose a data-driven
method for selecting this parameter.

To evaluate the performance of our procedures we implement a simulation exercise
based on a three-factor model calibrated on the real data from US financial market.
Simulations show that by imposing an appropriate constraint on the dynamic problem
we significantly improve the performance of the selected strategy in terms of the Sharpe
ratio, the trading cost, the ability to predict the default probability and the dynamic
of the optimal wealth. To confirm our simulations, we do an empirical analysis using
Kenneth R. French’s 30 industry portfolios and 100 portfolios formed on size and book-
to-market. We considerably reduce the transaction cost by imposing a temporal stability
constraint on the dynamic portfolio selection problem.

Therefore, our procedures are highly recommended for investors in the dynamic set-
ting in the sense that those procedures help to avoid high trading costs in the financial
market by selecting stable strategies that are very effective over time.
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2.8 Proofs
Lemma 2 We have that E(R′tut) = 0 in the following ols estimation model

1n = Rtθt + ut.

Proof of Lemma 2

E
(
R
′

tut
)

= E
[
R
′

t (1n −Rtθt)
]

= E
[
R
′

t1n
]
− E

[
R
′

tRtθt
]

= E
[
R
′

t1n
]
− E

[
R
′

tRt

]
θt

= E
[
R
′

t1n
]
− E

[
R
′

tRt

]
E
[
R
′

tRt

]−1
E
[
R
′

t1n
]

= E
[
R
′

t1n
]
− E

[
R
′

t1n
]

= 0.

Lemma 4 The optimization problem in (2.29) is equivalent to the optimization prob-
lem in (2.30) for the L2 norm.

Proof of Lemma 4 The first order condition of (2.29) is given as follows

FOC2.29 = 2
n
R
′

t (1n −Rtθt) + 2αt (θt − θt−1) = 0

= 1
n
R
′

t (1n −Rtθt) + αt (θt − θt−1) = 0.

The first order condition of (2.30) is

FOC2.30 = 2
n
R
′

t

(
yt −Rtθ̃t

)
+ 2αtθ̃t = 0

= 1
n
R
′

t {1n −Rtθt −Rt (θt − θt−1)}+ αt (θt − θt−1) = 0

= 1
n
R
′

t (1n −Rtθt) + αt (θt − θt−1) = FOC2.29.

Definition We denote Xn = Op(Yn) for positive sequence {Xn} and {Yn} if the
sequence

{
Xn
Yn

}
is bounded in probability. More precisely, it means that for all ε > 0 there

exists a constant Bε > 0 and an integer Nε such that P
[
Xn
Yn
≤ Bε

]
≥ 1− ε ∀n ≥ Nε.
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2.8.1 Proof of Proposition 1

Let’s first look at a one period problem. Using the same assumptions as in Section 2.2,
the optimal selection problem will be given as follows

max
{ω:‖ω‖2≤d}

E (− exp(−γA1)) = max
{ω:‖ω‖2≤d}

E (V1) . (2.33)

Since A1 = A0 (Rf + ω′r1), we have that

E (V1) = E (− exp(−γA1))
= − exp(−A0γRf )E (exp(−γA0ω

′r1))

= − exp(−A0γRf ) exp
[
−γA0

(
ω′µ− A0γ

2 ω′Σω
)]

= − exp
[
−γA0

(
Rf + ω′µ− A0γ

2 ω′Σω
)]
.

where the third equality follows from the normality of r1. Hence, (2.33) becomes as
follows

max
{ω:‖ω‖2≤d}

{
− exp

[
−γA0

(
Rf + ω′µ− A0γ

2 ω′Σω
)]}

(2.34)

which is equivalent of solving the following problem

max
{ω:‖ω‖2≤d}

{
γA0

(
Rf + ω′µ− A0γ

2 ω′Σω
)}

(2.35)

or equivalently,

max
{ω}

{
γA0

(
Rf + ω′µ− A0γ

2 ω′Σω
)
− λ ‖ω‖2

}
(2.36)

because γA0 ≥ 0 by assumption, with λ > 0 the Lagrange multiplier associated with
‖ω‖2 ≤ d. Let α be the positive constant solution of λ = α

2γ
2A2

0, then (2.36) becomes as
follows

max
{ω}

{
γA0

(
Rf + ω′µ− α

2 γA0 ‖ω‖2
)
− (A0γ)2

2 ω′Σω
}
. (2.37)

The solution of this problem can be obtained by solving the following optimization
problem

max
{ω}

E0

[
− exp

(
−γA0

(
Rf + ω′r1 −

α

2 γA0 ‖ω‖2
))]

= max
{ω}

{
exp

(
α

2 γ
2A2

0 ‖ω‖
2
)
E0 [V1]

}
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where Rf + ω′r1 − α
2γA0 ‖ω‖2 can be seen as the gross return on the optimal portfolio

net of the trading cost with α
2γA0 ‖ω‖2 the transaction cost associated with the selected

strategy. When solving this problem, we obtain that

ω = (γA0)−1 (Σ + αIN)−1 µ.

Let’s now consider a two periods portfolio selection problem. At each period t = 0, 1
we solve the following constrained optimization problem starting from the last period
with a terminal condition given in Section 2.2

V (t, At) = max
{ωt:‖ωt‖2≤dt}

Et {V (t+ 1, At+1)} = max
{ωt:‖ωt‖2≤dt}

Et
{
V (t+ 1, At(Rf + ω

′

trt+1))
}
.(2.38)

Hence,

V (1, A1) = max
{ω1:‖ω1‖2≤d1}

E1 {V (2, A2)} = max
{ω1:‖ω1‖2≤d1}

E1
{
V
(
2, A1

(
Rf + ω

′

1r2
))}

.

And it follows from the one period problem that the solution of this optimization problem
can be found by solving the following unconstrained problem

max
{ω1}

{
exp

(
α1

2 γ
2A2

1 ‖ω1‖2
)
E1 [V (2, A2)]

}
= max
{ω1}

E1

[
− exp

{
−γA1

(
Rf + ω

′

1r2
)

+ α1

2 γ
2A2

1 ‖ω1‖2
}]

= max
{ω1}

E1

[
− exp

{
−γA1

(
Rf + ω

′

1r2 −
α1

2 γA1 ‖ω1‖2
)}]

= max
{ω1}

{
exp

(
α1

2 γ
2A2

1 ‖ω1‖2
)
E1
[
− exp

{
−γA1

(
Rf + ω

′

1r2
)}]}

= max
{ω1}

{
exp

(
α1

2 γ
2A2

1 ‖ω1‖2
) [
− exp

{
−γA1

(
Rf + ω

′

1µ−
γA1

2 ω
′Σω

)}]}
= max
{ω1}

{
− exp

(
α1

2 γ
2A2

1 ‖ω1‖2 − γA1

(
Rf + ω

′

1µ−
γA1

2 ω
′Σω

))}
= max
{ω1}

{
− exp

(
−γA1

[
Rf + ω

′

1µ−
γA1

2 ω
′

1Σω1 −
α1

2 γA1 ‖ω1‖2
])}

where α1 is a positive and non random parameter selected in such a way that the Lagrange
multiplier λ1 associated with the constraint ‖ω1‖2 ≤ d1 is given by λ1 = α1

2 γ
2A2

1.
Rf + ω

′
1r2 − α1

2 γA1 ‖ω1‖2 could be seen as the gross return net of the transaction cost
on the optimal selected portfolio at t = 1 where α1

2 γA1 ‖ω1‖2 is in fact the trading cost
associated with the optimal selected strategy of this period. Since γA1 ≥ 0, solving this
problem is equivalent of solving the following optimization problem

max
{ω1}

{
Rf + ω

′

1µ−
γA1

2 ω
′

1Σω1 −
α1

2 γA1 ‖ω1‖2
}
.
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The first order condition associated with this optimization is given by

µ− γA1Σω1 − α1γA1ω1 = 0.

Therefore, the solution of this problem is given by

ω∗1 = (γA1)−1 (Σ + α1IN)−1 µ.

Now look at the problem at t = 0

V (0, A0) = max
{ω0:‖ω0‖2≤d0}

E0 {V (1, A1)}

= max
{ω0:‖ω0‖2≤d0}

E0
{
V (1, A0(Rf + ω

′

0r1))
}

= max
{ω0}

{
exp

(
λ0 ‖ω0‖2

)
E0
[
V
(
1, A0

(
Rf + ω

′

0r1
))]}

.

meaning that solving the problem at t = 0 is equivalent of solving

max
{ω0}

{
exp

(
λ0 ‖ω0‖2

)
E0
[
V
(
1, A0

(
Rf + ω

′

0r1
))]}

.

with λ0 the Lagrange multiplier associated with the constraint at this period.
Moreover, we have that

E1
[
− exp

{
−γA1

(
Rf + ω

′

1r2
)}]

= − exp {−γA1Rf}E1
[
− exp
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−γA1ω
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−γA1

(
Rf + ω

′

1µ−
γA1

2 ω
′

1Σω1

)}
.

Therefore,

V ∗(1, A1) = − exp
{
−γA1

(
Rf + (ω∗1)

′
µ− γA1

2 (ω∗1)
′
Σω∗1

)}
= − exp

{
−γA1Rf − µ

′ (Σ + α1IN)−1 µ+ 1
2µ
′ (Σ + α1IN)−1 Σ (Σ + α1IN)−1 µ

}
= − exp {−γA1Rf + f1 (µ,Σ, γ, Rf , α1)}

where

f1 (µ,Σ, γ, Rf , α1) = −µ′ (Σ + α1IN)−1 µ+ 1
2µ
′ (Σ + α1IN)−1 Σ (Σ + α1IN)−1 µ
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We obtain the following problem at t = 0 given what is obtained at t = 1

V (0, A0) = max
{ω0:‖ω0‖2≤d0}

E0 {V ∗(1, A1)}

= max
{ω0:‖ω0‖2≤d0}

E0 {− exp {−γA1Rf + f1 (µ,Σ, γ, Rf , α1)}}

= max
{ω0:‖ω0‖2≤d0}

{− exp {f1 (µ,Σ, γ, Rf , α1)}E0 {exp {−γA1Rf}}}

= max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)} exp

(
λ0 ‖ω0‖2

)
E0 {exp {−γA1Rf}}

}
= max

{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)}E0

{
exp

{
−γA0Rf

(
Rf + ω

′

0r1 −
λ0

γRfA0
‖ω0‖2

)}}}

where Rf + ω
′
0r1 − λ0

γRfA0
‖ω0‖2 can be interpreted as the gross return on the optimal

portfolio at t = 0 net of the transaction cost.

V (0, A0) = max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)}E0

{
exp

{
−γA0Rf

(
Rf + ω

′

0r1 −
λ0

γRfA0
‖ω0‖2

)}}}

= max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)} exp

{
−γA0Rf

(
Rf −

λ0

γRfA0
‖ω0‖2

)}
∗Rest

}
Rest = E0

{
exp

{
−γA0Rfω

′

0r1
}}

Rest = exp
{
−γA0Rf

(
ω
′

0µ−
γRfA0

2 ω
′

0Σω0

)}

V (0, A0) = max
{ω0}

{
− exp

{
f1 (µ,Σ, γ, Rf , α1)− γA0Rf

(
Rf −

λ0

γRfA0
‖ω0‖2 + ω

′

0µ−
γRfA0

2 ω
′

0Σω0

)}}

Solving this optimization problem is equivalent to solving

max
{ω0}

{
Rf −

λ0

γRfA0
‖ω0‖2 + ω

′

0µ−
γRfA0

2 ω
′

0Σω0

}

The first order conditions are given by

2 λ0

γRfA0
ω0 + γRfA0Σω0 = µ

Hence, by choosing λ0 = (γRf)2
A2

0α0

2 , we obtain that

ω∗0 = (γA0Rf )−1 (Σ + α0IN)−1 µ.

(2.10) will be solved recursively starting from t = T − 1 and using the following
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terminal condition V (T,AT ) = − exp(−γAT ). More precisely,

V (T − 1, AT−1) = max
{ωT−1:‖ωT−1‖2≤δT−1}

ET−1 {V (T,AT )}

= max
{ωT−1:‖ωT−1‖2≤δT−1}

ET−1
{
V (T,AT−1(Rf + ω

′

T−1rT ))
}
.

Since V (T,AT ) = − exp(−γAT ), we have that

ET−1
{
V (T,AT−1(Rf + ω

′

T−1rT ))
}

= ET−1
{
− exp

[
−γAT−1

(
Rf − ω

′

T−1rT
)]}

= − exp (−γAT−1Rf )ET−1
{

exp
[
−γAT−1ω

′

T−1rT
]}

= − exp (−γAT−1Rf ) exp
[
−γ

(
AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1

)]

= − exp
{
−γ

(
AT−1Rf + AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1

)}
.

Hence,

V (T − 1, AT−1) = max
{ωT−1:‖ωT−1‖2≤δT−1}

{
− exp

{
−γ

(
AT−1Rf + AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1

)}}
.(2.39)

Since γ > 0, this optimization problem is also equivalent of solving the following problem

max
{ωT−1:‖ωT−1‖2≤δT−1}

{
AT−1Rf + AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1

}
. (2.40)

If we denote by λT−1 the Lagrange multiplier associated with ‖ωT−1‖2 ≤ δT−1, we have
that, solving (2.40) with respect to ωT−1 is equivalent of solving the following uncon-
strained problem by assuming that λT−1 is given

max
ωT−1

{
AT−1Rf + AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1 − λT−1 ‖ωT−1‖2
}
. (2.41)

Moreover, solving (2.41) with respect to ωT−1 is also equivalent of solving the following
unconstrained problem with respect to ωT−1

max
ωT−1

{
− exp

(
−γ

(
AT−1Rf + AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1 −
λT−1

γ
‖ωT−1‖2

))}

= max
ωT−1

{
exp

(
λT−1 ‖ωT−1‖2

){
− exp

(
−γ

(
AT−1Rf + AT−1ω

′

T−1µ−
γA2

T−1
2 ω

′

T−1ΣωT−1

))}}
= max

ωT−1

{{
exp

(
λT−1 ‖ωT−1‖2

)
ET−1 {V (T,AT )}

}}
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with V (T,AT ) = − exp(−γAT ).
Therefore, the solution of

V (T − 1, AT−1) = max
{ωT−1:‖ωT−1‖2≤δT−1}

ET−1 {V (T,AT )} (2.42)

can be obtained by solving the following non-constrained problem

max
ωT−1

{{
exp

(
λT−1 ‖ωT−1‖2

)
ET−1 {V (T,AT )}

}}
First order conditions of the optimization problem in (2.41) with respect to ωT−1 are
given by

AT−1µ− γA2
T−1ΣωT−1 − 2λT−1ωT−1 = 0.

Hence, we obtain the following closed form to the solution at this time point

ω∗T−1 = (γAT−1)−1 (Σ + αT−1IN)−1 µ

by choosing λT−1 = γA2
T−1αT−1

2 with αT−1 a smoothing parameter ∈ (0, 1) .
Let’s look at now the problem at T −2. At this period, we have to solve the following

optimization problem

V (T − 2, AT−2) = max
{ωT−2:‖ωT−2‖2≤δT−2}

ET−2 {V ∗ (T − 1, AT−1)}

with

V ∗ (T − 1, AT−1) = ET−1 {− exp (−γAT )}︸ ︷︷ ︸
ωT−1=ω∗T−1

= − exp
{
−γAT−1Rf − γ

(
AT−1

(
ω∗T−1

)′
µ−

γA2
T−1
2

(
ω∗T−1

)′
Σω∗T−1

)}

= − exp
{
−γAT−1Rf − γ

(
1
γ
µ
′ (Σ + αT−1IN)−1 µ− 1

γ
µ
′ (Σ + αT−1IN)−1 Σ (Σ + αT−1IN)−1 µ

)}
= − exp {−γAT−1Rf + fT−1 (µ,Σ, γ, Rf , αT−1)}

with

fT−1 (µ,Σ, γ, Rf , αT−1) = −γ
(

1
γ
µ
′ (Σ + αT−1IN)−1 µ− 1

γ
µ
′ (Σ + αT−1IN)−1 Σ (Σ + αT−1IN)−1 µ

)

V (T − 2, AT−2) = max
{ωT−2:‖ωT−2‖2≤δT−2}

ET−2 {− exp {−γAT−1Rf + fT−1 (µ,Σ, γ, Rf , αT−1)}} .
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Solving this problem with respect to ωT−2 is also equivalent to solve the following opti-
mization problem ( obtained using the same procedure as in the case with t = T − 1)
with respect to ωT−2 by also assuming that the Lagrange multiplier is given.

max
ωT−2

{
exp

(
λT−2 ‖ωT−2‖2

)
ET−2 {− exp {−γAT−1Rf + fT−1 (µ,Σ, γ, Rf , αT−1)}}

}
= max

ωT−2

{
exp

(
λT−2 ‖ωT−2‖2

)
ET−2 {V (T − 1, AT−1)}

}
.

Hence, since

ET−2 {V (T − 1, AT−1)} = − exp {fT−1 (µ,Σ, γ, Rf , α̃T−1)}ET−2 {exp {−γAT−1Rf}}
= − exp {fT−1 (µ,Σ, γ, Rf , α̃T−1)}ET−2

{
exp

{
−γAT−2Rf

(
Rf + ω

′

T−2rT−1
)}}

= − exp
{
fT−1 (µ,Σ, γ, Rf , α̃T−1)− γAT−2R

2
f

}
ET−2

{
exp

{
−γAT−2Rfω

′

T−2rT−1
}}

= − exp
{
fT−1 (µ,Σ, γ, Rf , αT−1)− γAT−2R

2
f

}
exp

[
−γAT−2Rf

(
ω
′

T−2µ−
γAT−2Rf

2 ω
′

T−2ΣωT−2

)]
= − exp

{
fT−1 (µ,Σ, γ, Rf , α̃T−1)− γAT−2R

2
f − γAT−2Rf

(
ω
′

T−2µ−
γAT−2Rf

2 ω
′

T−2ΣωT−2

)}

max
ωT−2

{
exp

(
λT−2 ‖ωT−2‖2

)
ET−2 {V (T − 1, AT−1)}

}
= − exp

{
fT−1 − γAT−2R

2
f − γAT−2Rf

(
ω
′

T−2µ−
γAT−2Rf

2 ω
′

T−2ΣωT−2

)
+ λT−2 ‖ωT−2‖2

}
.

We then have that the first order conditions of the portfolio selection problem at this
time point are given as follows

γRfAT−2µ− (γRf )2A2
T−1ΣωT−2 − 2λT−2ωT−2 = 0

which implies that

ω∗T−2 = (γAT−2)−1R−1
f (Σ + αT−2IN)−1 µ

with λT−2 = (γRf)2
A2
T−2αT−2

2 .
This procedure holds at each period for t = 0, ..., T − 1.
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2.8.2 Proof of Proposition 2
Using the same procedure as in the proof of Proposition 1, one can easily show that
solving (2.15) is equivalent to solving the following non-constrained problem

max
{ωt}

exp
(
λt ‖ωt − ωt−1‖2

)
︸ ︷︷ ︸

B

Et
[
V
(
t+ 1, At

(
Rf + ω

′

trt+1
))] (2.43)

for t = 0, ..., T − 1 with the following terminal condition V (T,AT ) = − exp(−γAT ). And
solving (2.43) at each period from T − 1 one can easily obtain the following first order
condition

Atγ (Σ + αtIN)ωt = µ+ αtωt−1 (2.44)

for t = 1, ..., T − 1 with

A0γ (Σ + α0IN)ω0 = µ. (2.45)

Hence, to obtain a reasonable estimation for the optimal solution, we are going to
apply a sequential estimation method. More precisely, at t = 0 ω0 will be estimated as
follows

ω̂0 = γ̂0Σ̂−1
α0 µ̂0. (2.46)

At the t = 1 by combining (2.44) and (2.46) we obtain that

γ̂−1
1 Σ̂α1ω̂1 = µ̂1 + α1ω̂0

which implies that

ω̂1 = γ̂1Σ̂−1
α1

[
µ̂1 + α1γ̂0Σ̂−1

α0 µ̂0
]
. (2.47)

Using the same procedure at t = 2 we obtain that

ω̂2 = γ̂2Σ̂−1
α2

[
µ̂2 + α2γ̂1Σ̂−1

α1 µ̂1 + α1α2γ̂0γ̂1Σ̂−1
α0 Σ̂−1

α1 µ̂0
]
. (2.48)

Therefore, we have that

ω̂t = γ̂tΣ̂−1
αt µ̃t (2.49)

for t = 1, ..., T − 1 where

Σ̂αt = Σ̂t + αtIN (2.50)
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and

µ̃t = µ̂t +
t−1∑
j=0

t−1∏
i=j

γ̂iαi+1Σ̂−1
αi

 µ̂j (2.51)

2.8.3 Proof of Proposition 3
To prove this result we need first to show the following preliminary results. Let’s recall
that θt is from the following OLS estimation model 1n = Rtθt + ut. θ̂αt is the regularized
version of θt.

Lemma 1 Under assumption A the following results hold∥∥∥θ̂αt − θt∥∥∥ = op (1) (2.52)

∥∥∥µ′ (θ̂αt − θt)∥∥∥ = op (1) (2.53)

if
√
Nα

min( τt2 ,1)
t → 0 and N

αt
√
n
→ 0 as n→∞

Proof of Lemma 1

∥∥∥θ̂αt − θt∥∥∥ =
∥∥∥θ̂αt − θαt + θαt − θt

∥∥∥ (2.54)

where θαt = Ω−1
αt µt. By (2.54), we have that∥∥∥θ̂αt − θt∥∥∥ ≤ ∥∥∥θ̂αt − θαt∥∥∥︸ ︷︷ ︸

(A)

+ ‖θαt − θt‖︸ ︷︷ ︸
(B)

. (2.55)

The first term on the right side of this inequality is the bias corresponding to the esti-
mation of the regularized solution and the second term corresponds to the regularization
bias.

θ̂αt − θαt =
(
Ω̂αt

)−1
µ̂t − (Ωαt)

−1 µt

=
(
Ω̂αt

)−1
µ̂t −

(
Ω̂αt

)−1
µt +

(
Ω̂αt

)−1
µt − (Ωαt)

−1 µt

=
(
Ω̂αt

)−1
[µ̂t − µt] +

[(
Ω̂αt

)−1
− (Ωαt)

−1
]
µt

θt = Ω−1
t µt, this implies that µt = Ωtθt

θ̂αt − θαt =
(
Ω̂αt

)−1
[µ̂t − µt] +

[(
Ω̂αt

)−1
− (Ωαt)

−1
]

Ωtθt
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‖µ̂t − µt‖2 = Op

(
N
n

)
and

∥∥∥∥(Ω̂αt

)−1
∥∥∥∥2

=
√
λmax

[(
Ω̂αt

)−2
]

= sup
j

q̂2
jt

λ̂4
jt

= Op

(
1
α2
t

)
.

Then,
∥∥∥∥(Ω̂αt

)−1
[µ̂t − µt]

∥∥∥∥2
= Op

(
N

nα2
t

)

[(
Ω̂αt

)−1
− (Ωαt)

−1
]

Ωtθt =
(
Ω̂αt

)−1 [
Ωαt − Ω̂αt

]
(Ωαt)

−1 Ωtθt.

Moreover, by assumption A, we have that
∥∥∥Ωαt − Ω̂αt

∥∥∥ = Op

(
N2

n

)
and

∥∥∥(Ωαt)
−1 Ωtθt

∥∥∥ ≤
‖θt‖ = O (1). Hence, we obtain the following relation

∥∥∥∥[(Ω̂αt

)−1
− (Ωαt)

−1
]

Ωtθt

∥∥∥∥ = Op

(
N

αt
√
n

)

∥∥∥θ̂αt − θαt∥∥∥ = Op

( √
N

αt
√
n

+ N

αt
√
n

)
= Op

(
N

αt
√
n

)
.

Hence, we have that

∥∥∥θ̂αt − θt∥∥∥ = Op

(
N

αt
√
n

+ ‖θαt − θt‖
)

where

‖θαt − θt‖
2 = O

(
α
min(τt,2)
t

)
.

Therefore if N
αt
√
n
→ 0 as n→∞ since αt → 0, we obtain that

∥∥∥θ̂αt − θt∥∥∥→ 0

The proof of the second part of this lemma can be obtained using the same procedure
as in Lemma 4 of Carrasco et al. (2019). We need also the following result

Lemma 3 Under assumption A the following results hold∥∥∥γ̂−1
t − γ−1

t

∥∥∥ = op (1) (2.56)

if max0≤j≤t−1

{
N3/2

αj
√
n

+
√
Nα

min(
τj
2 ,1)

j

}
→ 0 as n→∞
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Proof of Lemma 3

By definition we have that

γ−1
t = γRT−t−1

f At

Hence,

γ̂−1
t − γ−1

t = γRT−t−1
f

(
Ât − At

)
We will show this result by induction. Let’s consider the following statement

P (t) :
∥∥∥γ̂−1

t − γ−1
t

∥∥∥ = op (1)

This statement is trivially true for t = 0. If fact, at t = 0, γ−1
0 = γRT−1

f A0 which is
known. Therefore, P (0) holds.

We will now look at the statement at t = 1. γ−1
1 = γRT−1

f A1 = γRT−1
f A0

(
Rf + ω

′
0r1
)
.

So,

γ̂−1
1 − γ−1

1 = γRT−2
f

(
Â1 − A1

)
= γRT−2

f A0 (ω̂0 − ω0)
′
r1

The quantity γRT−2
f A0 is known. As in Carrasco et al. (2019) γ−1

0 (ω̂0 − ω0) can be
written as follows

γ−1
0 (ω̂0 − ω0) = θ̂0

1− µ̂′0θ̂0
− θ0

1− µ′θ0

= θ̂0 − θ0(
1− µ̂′0θ̂0

)
(1− µ′θ0)

−

[
θ̂0
(
µ
′
0θ0
)
− θ0

(
µ̂
′
0θ̂0
)]

(
1− µ̂′0θ̂0

) (
1− µ′0θ0

) .
Using the proof of Proposition 1 in Carrasco et al. (2019) combined with the proof of the
first part of Lemma 1, we can easily obtain that

∥∥∥γ−1
0 (ω̂0 − ω0)

∥∥∥ = Op

(∥∥∥θ̂0 − θ0

∥∥∥+
√
N

n

)

= Op

(
N

α0
√
n

+ α
min( τ02 ,1)
0 +

√
N√
n

)
.
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Hence,

∥∥∥γ̂−1
1 − γ−1

1

∥∥∥ = Op

(
N3/2

α0
√
n

+
√
Nα

min( τ02 ,1)
0 + N√

n

)

Therefore, if N3/2

α0
√
n

+
√
Nα

min( τ02 ,1)
0 → 0, P (1) is true.

Let’s assume that P (t) is true for t ≥ 1. This implies that
∥∥∥γ̂−1

t − γ−1
t

∥∥∥ = op (1). We
need now to show that if P (t) is true, then P (t+ 1) is also true.

γ̂−1
t+1 − γ−1

t+1 = γRT−t−2
f

(
Ât+1 − At+1

)
= γRT−t−2

f

[
Ât
(
ω̂
′

trt+1 +Rf

)
− At

(
ω
′

trt+1 +Rf

)]
By using the fact that the statement P (t) is true, we will have that

γ̂−1
t+1 − γ−1

t+1 ≈ γRT−t−2
f At [ω̂t − ωt]

′
rt+1

∥∥∥γ̂−1
t+1 − γ−1

t+1

∥∥∥ ≈ ∥∥∥γRT−t−2
f At [ω̂t − ωt]

′
rt+1

∥∥∥
≤

∥∥∥γRT−t−2
f At

∥∥∥ ‖ω̂t − ωt‖ ‖rt+1‖ .

By using the proof of Proposition 1 in Carrasco et al. (2019) combined with the proof of
the first part of Lemma 1, we can also obtain that

‖ω̂t − ωt‖ = Op

(
N

αt
√
n

+ α
min( τt2 ,1)
t +

√
N√
n

)
.

Hence,

∥∥∥γ̂−1
t+1 − γ−1

t+1

∥∥∥ = Op

(
N3/2

αt
√
n

+
√
Nα

min( τt2 ,1)
t + N√

n

)

Therefore, if N3/2

αt
√
n

+
√
Nα

min( τt2 ,1)
t → 0, P (t+ 1) is true.

The rest of the proof of Proposition 3
Using a decomposition similar to that of Carrasco et al. (2019), we obtain that

A = γ̂−1
t ω̂t − γ−1

t ωt = θ̂t

1− µ̂′tθ̂t
− θt

1− µ′θt

A = θ̂t − θt(
1− µ̂′tθ̂t

)
(1− µ′θt)︸ ︷︷ ︸
a

−

[
θ̂t
(
µ
′
θt
)
− θt

(
µ̂
′
tθ̂t
)]

(
1− µ̂′tθ̂t

)
(1− µ′θt)︸ ︷︷ ︸
b

. (2.57)
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Note that 0 < µ′θt < 1 by construction. In fact, since Σ and Ωt are positive definite
matrices, Σ−1 and Ω−1

t are also two positive definite matrices. Therefore, µ′Σ−1µ > 0
and µ′Ω−1

t µ > 0. Hence, µ′Σ−1µ > 0 implies that µ
′Ω−1
t µ

1−µ′Ω−1
t µ

> 0. Since µ′Ω−1
t µ > 0 and

µ
′Σ−1µ > 0, we have that 1 − µ

′Ω−1
t µ > 0 which means that 0 < µ

′Ω−1
t µ < 1 with

µ
′Ω−1

t µ = µ
′
θt.

Therefore, we can apply the Taylor expansion on 1
1−µ̂′tθ̂t

. Hence, we obtain that

1
1− µ̂′tθ̂t

= 1
1− µ′θt

+
µ
′
(
θ̂t − θt

)
(1− µ′θt)2 + o

(
µ
′ (
θ̂t − θt

))

θ̂t − θt(
1− µ̂′tθ̂t

)
(1− µ′θt)

= θ̂t − θt
(1− µ′θt)2 +Op

((
θ̂t − θt

)
µ
′ (
θ̂t − θt

))
. (2.58)

The second terms in (2.57) can be developed according to Carrasco et al. (2019) as follows

θ̂t
(
µ
′
θt
)
− θt

(
µ̂
′
tθ̂t
)

(
1− µ̂′tθ̂t

)
(1− µ′θt)

=

(
θ̂t − θt

)
µ
′
θt − θt (µ̂t − µ)

′ (
θ̂t − θt

)
− θt (µ̂t − µ)

′
θt − θtµ

′
(
θ̂t − θt

)
(
1− µ̂′tθ̂t

)
(1− µ′θt)

.(2.59)

By (2.58) and because
∣∣∣µ′θt∣∣∣ < 1, we have that

(
θ̂t − θt

)
µ
′
θt(

1− µ̂′tθ̂t
)

(1− µ′θt)
=

(
θ̂t − θt

)
µ
′
θt

(1− µ′θt)2 +Op

((
θ̂t − θt

)
µ
′ (
θ̂t − θt

))
(2.60)

θtµ
′
(
θ̂t − θt

)
(
1− µ̂′tθ̂t

)
(1− µ′θt)

=
θtµ

′
(
θ̂t − θt

)
(1− µ′θt)2 +Op

((
θ̂t − θt

)
µ
′ (
θ̂t − θt

))
(2.61)

∣∣∣(µ̂t − µ)
′ (
θ̂t − θt

)∣∣∣2 ≤ ‖µ̂t − µ‖2
∥∥∥θ̂t − θt∥∥∥2∣∣∣(µ̂t − µ)

′
θt
∣∣∣2 ≤ ‖µ̂t − µ‖2 ‖θt‖2

θ̂t
(
µ
′
θt
)
− θt

(
µ̂
′
tθ̂t
)

(
1− µ̂′tθ̂t

)
(1− µ′θt)

=

(
θ̂t − θt

)
µ
′
θt

(1− µ′θt)2 −
θtµ

′
(
θ̂t − θt

)
(1− µ′θt)2 +Op

((
θ̂t − θt

)
µ
′ (
θ̂t − θt

))
(2.62)

+Op

(1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n

(2.63)
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Hence, by assumption A, we obtain that

A = θ̂t − θt
(1− µ′θt)

+
θtµ

′
(
θ̂t − θt

)
(1− µ′θt)2 +Op

((
θ̂t − θt

)
µ
′ (
θ̂t − θt

))
+ op (1) (2.64)

Therefore, using the result of Lemma 3, we obtain that

γtA ≈ (ω̂t − ωt) =
γt
(
θ̂t − θt

)
(1− µ′θt)

+
γtθtµ

′
(
θ̂t − θt

)
(1− µ′θt)2 + op (1) (2.65)

‖ω̂t − ωt‖ ≤

∥∥∥∥∥∥
γt
(
θ̂t − θt

)
(1− µ′θt)

∥∥∥∥∥∥+

∥∥∥∥∥∥
γtθtµ

′
(
θ̂t − θt

)
(1− µ′θt)2

∥∥∥∥∥∥+ op (1) (2.66)

∥∥∥∥∥∥
γt
(
θ̂t − θt

)
(1− µ′θt)

∥∥∥∥∥∥+

∥∥∥∥∥∥
γtθtµ

′
(
θ̂t − θt

)
(1− µ′θt)2

∥∥∥∥∥∥ = γt
(1− µ′θt)

∥∥∥θ̂t − θt∥∥∥+ γt

(1− µ′θt)2

∥∥∥θtµ′ (θ̂t − θt)∥∥∥(2.67)
≤ γt

(1− µ′θt)
∥∥∥θ̂t − θt∥∥∥+ γt

(1− µ′θt)2 ‖θt‖
∥∥∥µ′ (θ̂t − θt)∥∥∥ .(2.68)

Because ‖θt‖ < ∞ by assumption A,
∥∥∥θ̂t − θt∥∥∥ = op (1) and

∥∥∥µ′ (θ̂t − θt)∥∥∥ = op (1) by
Lemma 1, we obtain that

‖ω̂t − ωt‖ = op (1) . (2.69)

2.8.4 Proof of Proposition 4
The actual Sharpe ratio associated with the estimated portfolio is given by

s (ω̂αt) = µ
′
θ̂t(

θ̂
′
tΣθ̂t

)1/2 . (2.70)

(1) What about µ′ θ̂t?
Let us notice that, we have,∥∥∥µ′ (θ̂αt − θt)∥∥∥ ≤ ‖µ‖ ∥∥∥θ̂αt − θt∥∥∥

∥∥∥θ̂αt − θt∥∥∥ ≤ ∥∥∥θ̂αt − θαt∥∥∥+ ‖θαt − θt‖ .
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Then, ∥∥∥µ′ (θ̂αt − θt)∥∥∥ ≤ ‖µ‖ [∥∥∥θ̂αt − θαt∥∥∥+ ‖θαt − θt‖
]

θ̂αt − θαt =
(
Ω̂αt

)−1
µ̂t − (Ωαt)

−1 µ

=
(
Ω̂αt

)−1
µ̂t −

(
Ω̂αt

)−1
µ+

(
Ω̂αt

)−1
µ− (Ωαt)

−1 µ

=
(
Ω̂αt

)−1
[µ̂t − µ] +

[(
Ω̂αt

)−1
− (Ωαt)

−1
]
µ

=
(
Ω̂αt

)−1
[µ̂t − µ] +

[(
Ω̂αt

)−1
− (Ωαt)

−1
]

Ωtθt.

This implies that
∥∥∥θ̂αt − θαt∥∥∥ ≤ ∥∥∥∥(Ω̂αt

)−1
[µ̂t − µ]

∥∥∥∥+
∥∥∥∥[(Ω̂αt

)−1
− (Ωαt)

−1
]

Ωtθt

∥∥∥∥ .
Therefore,

∥∥∥θ̂αt − θαt∥∥∥ = Op

( √
N

αt
√
n

+ N

αt
√
n

)
= Op

(
N

αt
√
n

)
.

Since ‖µ‖2 = O (N), we have that

∥∥∥µ′ (θ̂αt − θt)∥∥∥ = Op

 N
3
2

αt
√
n

+
√
N ‖θαt − θt‖


which implies that

µ
′
θ̂αt = µ

′
θt +Op

[√
N

(
N

αt
√
n

+ ‖θαt − θt‖
)]

. (2.71)

(2) What about θ̂′tΣθ̂t?
We know that

θ̂t = θ̂t − θt + θt
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then,

θ̂
′

tΣθ̂t =
(
θ̂t − θt + θt

)′
Σ
(
θ̂t − θt + θt

)
=

(
θ̂t − θt

)′
Σ
(
θ̂t − θt

)
+
(
θ̂t − θt

)′
Σθt + θ

′

tΣ
(
θ̂t − θt

)
+ θ

′

tΣθt

=
(
θ̂t − θt

)′
Σ
(
θ̂t − θt

)
+ 2

(
θ̂t − θt

)′
Σθt + θ

′

tΣθt

θ̂
′

tΣθ̂t − θ
′

tΣθt =
(
θ̂t − θt

)′
Σ
(
θ̂t − θt

)
+ 2

(
θ̂t − θt

)′
Σθt

(
θ̂t − θt

)′
Σ
(
θ̂t − θt

)
≤ ‖Σ‖

∥∥∥θ̂t − θt∥∥∥2
.

By assumption A we have that ‖Σ‖ = O (N). Moreover, we have that,

∥∥∥θ̂αt − θt∥∥∥ = Op

(
N

αt
√
n

+ ‖θαt − θt‖
)
.

Hence,

(
θ̂t − θt

)′
Σ
(
θ̂t − θt

)
= Op

N (
N

αt
√
n

+ ‖θαt − θt‖
)2


∥∥∥∥(θ̂t − θt)′ Σθt∥∥∥∥ ≤ ‖θt‖ ‖Σ‖ ∥∥∥θ̂t − θt∥∥∥ .
Hence, by assumption A we obtain that

∥∥∥∥(θ̂t − θt)′ Σθt∥∥∥∥ = Op

[
N

(
N

αt
√
n

+ ‖θαt − θt‖
)]

.

If N
αt
√
n

+ ‖θαt − θt‖ → 0 then we have that

Op

N (
N

αt
√
n

+ ‖θαt − θt‖
)2
 = Op

[
N

(
N

αt
√
n

+ ‖θαt − θt‖
)]

.

Therefore,

θ̂
′

tΣθ̂t = θ
′

tΣθt +Op

[
N

(
N

αt
√
n

+ ‖θαt − θt‖
)]

. (2.72)
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Combining (2.71) and (2.72) we obtain that,

s (ω̂αt)
2 =

(
µ
′
θ̂t
)2

θ̂
′
tΣθ̂t

=

(
µ
′
θt
)2

θ
′
tΣθt

+Op

[(
N

αt
√
n

+ ‖θαt − θt‖
)]

(2.73)

= s (ωt)2 +Op

[(
N

αt
√
n

+ ‖θαt − θt‖
)]

(2.74)

2.8.5 Proof of Proposition 5.1

ω̂αt − ωt = (ω̂αt − ωαt) + (ωαt − ωt)

where ωαt = γtΣ−1
αt µ.

ω̂αt − ωαt = γ̂tΣ̂−1
αt µ̃t − γtΣ

−1
αt µ.

Using the fact that Σ̂−1
αt = Σ̂−1

αt − Σ−1
αt + Σ−1

αt , µ̃t = µ̃t − µ+ µ we obtain that

ω̂αt − ωαt = γ̂t
(
Σ̂−1
αt − Σ−1

αt

)
µ̃t + γ̂tΣ−1

αt µ̃t − γtΣ
−1
αt µ

= γ̂t
(
Σ̂−1
αt − Σ−1

αt

)
(µ̃t − µ) + γ̂t

(
Σ̂−1
αt − Σ−1

αt

)
µ+ γ̂tΣ−1

αt µ̃t − γtΣ
−1
αt µ.

Moreover, using Lemma 3 we obtain that

ω̂αt − ωαt ≈ γt
(
Σ̂−1
αt − Σ−1

αt

)
(µ̃t − µ) + γt

(
Σ̂−1
αt − Σ−1

αt

)
µ+ γtΣ−1

αt µ̃t − γtΣ
−1
αt µ

≈ γt
(
Σ̂−1
αt − Σ−1

αt

)
(µ̃t − µ) + γt

(
Σ̂−1
αt − Σ−1

αt

)
µ+ γtΣ−1

αt (µ̃t − µ) .

Using the following identity B−1 − C−1 = B−1 (C −B)C−1, we have that

ω̂αt − ωαt ≈ γtΣ̂−1
αt

(
Σ− Σ̂t

)
Σ−1
αt (µ̃t − µ) + γtΣ̂−1

αt

(
Σ− Σ̂t

)
Σ−1
αt µ+ γtΣ−1

αt (µ̃t − µ)

Σ̂t (ω̂αt − ωαt) ≈ γtΣ̂tΣ̂−1
αt

(
Σ− Σ̂t

)
Σ−1
αt (µ̃t − µ) + γtΣ̂tΣ̂−1

αt

(
Σ− Σ̂t

)
Σ−1
αt µ+ γtΣ̂tΣ−1

αt (µ̃t − µ)

∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥

2
≤
∥∥∥γtΣ̂tΣ̂−1

αt

(
Σ− Σ̂t

)
Σ−1
αt (µ̃t − µ)

∥∥∥
2

+
∥∥∥γtΣ̂tΣ̂−1

αt

(
Σ− Σ̂t

)
Σ−1
αt µ

∥∥∥
2

+
∥∥∥γtΣ̂tΣ−1

αt (µ̃t − µ)
∥∥∥

2
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∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥

2
≤ γt

∥∥∥Σ̂tΣ̂−1
αt

∥∥∥
2

∥∥∥Σ− Σ̂t

∥∥∥
2

∥∥∥Σ−1
αt

∥∥∥
2
‖µ̃t − µ‖2 + γt

∥∥∥Σ̂tΣ̂−1
αt

∥∥∥
2

∥∥∥Σ− Σ̂t

∥∥∥
2

∥∥∥Σ−1
αt µ

∥∥∥
2

+γt
∥∥∥Σ̂tΣ−1

αt

∥∥∥
2
‖µ̃t − µ‖2 .

Since
∥∥∥Σ̂tΣ̂−1

αt

∥∥∥
2
≤ 1, we have that

∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥

2
≤ γt

∥∥∥Σ− Σ̂t

∥∥∥
2

∥∥∥Σ−1
αt

∥∥∥
2
‖µ̃t − µ‖2 + γt

∥∥∥Σ− Σ̂t

∥∥∥
2

∥∥∥Σ−1
αt µ

∥∥∥
2

+ γt ‖µ̃t − µ‖2

‖µ‖ = O
(√

N
)
,
∥∥∥Σ̂−1

αt

∥∥∥ = Op

(
1
αt

)
, ‖µ̃t − µ‖2 = Op

(√
N
n

)
,
∥∥∥Σ− Σ̂t

∥∥∥
2

= Op

(
N√
n

)
by

Assumption A. Hence, we obtain that

∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥

2
= Op

γt N√
n
.

√
N

n
.

1
αt

+ γt.
N√
n
.

1
αt
.
√
N + γt.

√
N

n


= Op

(
N3/2

αt
√
n

)
.

∥∥∥Σ̂t (ωt − ωαt)
∥∥∥

2
≤ γt

∥∥∥Σ̂t

∥∥∥ ∥∥∥Σ−1µ− Σ−1
αt µ

∥∥∥
2

since
∥∥∥Σ−1µ− Σ−1

αt µ
∥∥∥

2
= O

(
α

min( τt2 ,1)
t

)
hence,

∥∥∥Σ̂t (ωt − ωαt)
∥∥∥

2
= Op

(
Nα

min( τt2 ,1)
t

)
.

Let’s now recall the prediction error

MSE (ω̂αt) = 1
Nn

E
[∥∥∥Σ̂t (ω̂αt − ωt)

∥∥∥2

2

]
.

Using this definition of the prediction error, we obtain that

MSE (ω̂αt) ∼
N2

n2α2
t

+ N

n
α

min(τt,2)
t

2.8.6 Proof of Proposition 5.2
Let’s first start with a simple example that verifies B(ii).

Example: Let us consider the following case where N = 2 with θ1t = θ1t−1 6= 0 and
θ2t 6= θ2t−2

Ωt =
(
σ2 ρ

ρ σ2

)
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∥∥∥θSct ∥∥∥1
= |θ1t| = |θ1t−1|

‖θSt − θt−1‖1 = |θ2t − θ2t−1|+ |θ1t−1|

Hence, we have that
∥∥∥θSct ∥∥∥1

≤ ‖θSt − θt−1‖1 for any θt which implies that for any positive
constant κt > 1

∥∥∥θSct ∥∥∥1
≤ κt ‖θSt − θt−1‖1.

‖θSt − θt−1‖2
1 = [|θ2t − θ2t−1|+ |θ1t−1|]2

= (θ2t − θ2t−1)2 + θ2
1t−1 + 2 |θ1t−1 (θ2t − θ2t−1)|

= θ2
2t + θ2

2t−1 + θ2
1t−1 − 2θ2tθ2t−1 + 2 |θ1t−1 (θ2t − θ2t−1)|

= θ2
2t + θ2

2t−1 + θ2
1t−1 − 2θ2tθ2t−1 + 2θ1t−1θ2t − 2θ1t−1θ2t−1

θ
′

tΩtθt = σ2
(
θ2

1t + θ2
2t

)
+ 2ρθ1tθ2t

Let us now select ξ2
Ωt to be as follow

ξ2
Ωt =

det(Ωt)
σ2 θ2

1t−1

Ξ2 + θ2
2t−1 + θ2

1t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1
> 0

where Ξ is a positive constant selected in such a way that |θ2t| ≤ Ξ. In fact, it may be
possible to find such a positive constant which verifies |θ2t| ≤ Ξ because the assumption
A implies in particular that ‖θt‖ < +∞.

(
θ
′

tΩtθt
)
st/ξ

2
Ωt = Ξ2 + θ2

2t−1 + θ2
1t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1

det(Ωt)
σ2 θ2

1t−1
θ
′

tΩtθt

= θ
′
tΩtθt

det(Ωt)
σ2 θ2

1t−1

(
Ξ2 + θ2

2t−1 + θ2
1t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1

)

Moreover, since det(Ωt)
σ2 θ2

1t−1 ≤ θ
′
tΩtθt,

θ
′
tΩtθt

det(Ωt)
σ2 θ2

1t−1
≥ 1

Hence,(
θ
′

tΩtθt
)
st/ξ

2
Ωt ≥ Ξ2 + θ2

2t−1 + θ2
1t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1

Therefore, (
θ
′

tΩtθt
)
st/ξ

2
Ωt ≥ ‖θSt − θt−1‖2

1
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because, ‖θSt − θt−1‖2
1 ≤ Ξ2 + θ2

2t−1 + θ2
1t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1.

Now we are going to look at the MSE of the selected portfolio by imposing a L1
temporal stability constraint.

Σ̂t (ω̂αt − ωt) =
R′tRt

n
− R

′
t1n
n

(
R
′
t1n
n

)′ (ω̂αt − ωt)

= R
′

t

(
In
n
− 1n1′n

n2

)
Rt (ω̂αt − ωt)

∥∥∥Σ̂t (ω̂αt − ωt)
∥∥∥ =

∥∥∥∥∥R′t
(
In
n
− 1n1′n

n2

)
Rt (ω̂αt − ωt)

∥∥∥∥∥
≤

∥∥∥∥∥R′t
(
In
n
− 1n1′n

n2

)∥∥∥∥∥ ‖Rt (ω̂αt − ωt)‖

∥∥∥∥∥R′t
(
In
n
− 1n1′n

n2

)∥∥∥∥∥ ≤ ∥∥∥R′t∥∥∥
∥∥∥∥∥Inn − 1n1′n

n2

∥∥∥∥∥
≤

∥∥∥R′t∥∥∥
(∥∥∥∥Inn

∥∥∥∥+
∥∥∥∥∥1n1′n
n2

∥∥∥∥∥
)

≤ 2
n

∥∥∥R′t∥∥∥ = 2
n
Op (nN) = Op (N)

The last quantity is obtained using the same matrix norm definition as in Carrasco and
Rossi (2016). Moreover, under appropriate regularity conditions we have that

Rt (ω̂αt − ωt) = RtΨt

(
θ̂αt − θt

)
+ op(1)

where

Ψt = γt

 IN
1− µ′tθt

+ θtµ
′
t(

1− µ′tθt
)2


Hence,

‖Rt (ω̂αt − ωt)‖ ∼
∥∥∥RtΨt

(
θ̂αt − θt

)∥∥∥
≤ ‖Ψt‖

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
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Moreover,

‖Ψt‖ ≤
∥∥∥∥∥ γtIN

1− µ′tθt

∥∥∥∥∥+

∥∥∥∥∥∥∥
γtθtµ

′
t(

1− µ′tθt
)2

∥∥∥∥∥∥∥
≤ γt

1− µ′tθt
‖IN‖+ γt(

1− µ′tθt
)2

∥∥∥θtµ′t∥∥∥
≤ γt

1− µ′tθt
+ γt(

1− µ′tθt
)2 = πt = O(1)

‖Rt (ω̂αt − ωt)‖ ≤ πt
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
1
nN

E
[
‖Rt (ω̂αt − ωt)‖

2
]
≤ π2

t

nN
E
[∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2
]

Let us now look at 1
nN
E
[∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2
]
.

We want first to show the following inequality.∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤

2u′tRt

(
θ̂αt − θt

)
n

+ αt ‖θt − θt−1‖1 (2.75)

We have that∥∥∥Rtθ̂αt −Rtθt
∥∥∥2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 2
n
u
′

t

(
Rtθ̂αt −Rtθt

)
+ αt ‖θt − θt−1‖1 ⇔

∥∥∥Rtθ̂αt −Rtθt − ut + ut
∥∥∥2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 2
n
u
′

t

(
Rtθ̂αt −Rtθt − ut + ut

)
+ αt ‖θt − θt−1‖1 ⇔

∥∥∥1n −Rtθ̂αt − ut
∥∥∥2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 2
n
u
′

t

(
Rtθ̂αt − 1n + ut

)
+ αt ‖θt − θt−1‖1 ⇔

∥∥∥1n −Rtθ̂αt
∥∥∥2

n
+ ‖ut‖

2

n
− 2
n
u
′

t

(
1n −Rtθ̂αt

)
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ − 2

n
u
′

t

(
1n −Rtθ̂αt

)
+ 2
n
u
′

tut

+ αt ‖θt − θt−1‖1 ⇔

∥∥∥1n −Rtθ̂αt
∥∥∥2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ u

′
tut
n

+ αt ‖θt − θt−1‖1
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and using the fact that ut = 1n−Rtθt, we obtain that u
′
tut
n

+αt ‖θt − θt−1‖1 = ‖1n−Rtθt‖2
n

+
αt ‖θt − θt−1‖1, hence,∥∥∥1n −Rtθ̂αt

∥∥∥2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ ‖1n −Rtθt‖2

n
+ αt ‖θt − θt−1‖1 (2.76)

which is always true because we have that

θ̂αt = arg min
θt

‖1n −Rtθt‖2

n
+ αt ‖θt − θt−1‖1

Therefore, (2.75) and (2.76) are equivalent. Then, using (2.75), we have that
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤

2u′tRt

(
θ̂αt − θt

)
n

+ αt
[
‖θt − θt−1‖1 −

∥∥∥θ̂αt − θt−1

∥∥∥
1

]
Since, ‖θt − θt−1‖1 −

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤
∣∣∣‖θt − θt−1‖1 −

∥∥∥θ̂αt − θt−1

∥∥∥
1

∣∣∣ ≤ ∥∥∥θ̂αt − θt∥∥∥1
we have

that, ∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤

2u′tRt

(
θ̂αt − θt

)
n

+ αt
∥∥∥θ̂αt − θt∥∥∥1

≤
{

max
1≤j≤N

2
∣∣∣u′jR(j)

t

∣∣∣ /n} ∥∥∥θ̂αt − θt∥∥∥1
+ αt

∥∥∥θ̂αt − θt∥∥∥1

≤
[

max
1≤j≤N

2
∣∣∣u′jR(j)

t

∣∣∣ /n+ αt

] ∥∥∥θ̂αt − θt∥∥∥1
.

And using B(i), we obtain that
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤ 3

2αt
∥∥∥θ̂αt − θt∥∥∥1

.

Let’s now look at
∥∥∥θ̂αt − θt∥∥∥1

.
∥∥∥θ̂αt − θt∥∥∥1

=
∥∥∥θ̂αt − θt−1 + θt−1 − θt

∥∥∥
1∥∥∥θ̂αt − θt∥∥∥1

≤
∥∥∥θ̂αt − θt−1

∥∥∥
1

+ ‖θt − θt−1‖1

by triangular inequality. Hence,∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤ 3

2αt
∥∥∥θ̂αt − θt−1

∥∥∥
1

+ 3
2αt ‖θt − θt−1‖1 .
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Moreover, we have that θ̂αt = θ̂Stαt + θ̂
Sct
αt which implies that∥∥∥θ̂αt − θt−1

∥∥∥
1

=
∥∥∥θ̂Stαt + θ̂S

c
t
αt − θt−1

∥∥∥
1
≤
∥∥∥θ̂Stαt − θt−1

∥∥∥
1

+
∥∥∥θ̂Sctαt ∥∥∥1

by triangular inequality. And using Assumption B(ii) we obtain that∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ κ̃t

∥∥∥θ̂Stαt − θt−1

∥∥∥
1

≤ κ̃t

√
st

ξΩ̂t

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
√
n

see Bühlmann and Van De Geer (2011) p.105-106 for more details about the last inequal-
ity. Therefore,

3
2αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 3

2αtκ̃t
√
st

ξΩ̂t

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
√
n

.

Using the fact that 4uv ≤ u2 + 4v2, we have that,

3
2αtκ̃t

√
st

ξΩ̂t

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
√
n

≤ 1
4

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
+ 9

4α
2
t κ̃

2
t

st
ξ2

Ω̂t

which implies,∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤ 1

4

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
+ 9

4α
2
t κ̃

2
t

st
ξ2

Ω̂t

+ 3
2αt ‖θt − θt−1‖1 ⇒

3
4

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤ 9

4α
2
t κ̃

2
t

st
ξ2

Ω̂t

+ 3
2αt ‖θt − θt−1‖1 ⇒

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2

n
≤ 3α2

t κ̃
2
t

st
ξ2

Ω̂t

+ 2αt ‖θt − θt−1‖1 .

Therefore,

1
n
E
[∥∥∥Rt

(
θ̂αt − θt

)∥∥∥2
]

= O
[
α2
t

(
st/ξ

2
Ωt

)
+ αt ‖θt − θt−1‖1

]
.⇒

1
nN

E
[∥∥∥Σ̂t (ω̂αt − ωt)

∥∥∥2

2

]
= O

[
Nα2

t

(
st/ξ

2
Ωt

)
+Nαt ‖θt − θt−1‖1

]
.
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2.8.7 Proof of proposition 6
We need some intermediate results to show this proposition.

Proposition 6.1 Given the set of information Ft and under assumptions A, and B,
we have the following result

√
nδ
′ (ω̂αt − ωt) =

γt
√
nδ
′
(
θ̂αt − θt

)
(1− µ′θt)

+Op

[
√
n

(
N

αt
√
n

+ ‖θαt − θt‖
)(

N2

αtn
+ N√

n

)]

if max0≤j≤t−1

{
N3/2

αj
√
n

+
√
Nα

min(
τj
2 ,1)

j

}
→ 0 as n→∞

Proposition 6.1 implies that under some regularity conditions δ′ω̂αt and
γtδ
′
θ̂αt

(1−µ′θt) may
have the same asymptotic distribution. Hence, in this situation, we need only to derive
the asymptotic distribution of γtδ

′
θ̂αt

(1−µ′θt) which depends only on the asymptotic distribution

of δ′ θ̂αt .

Proof of proposition 6.1

B = γ̂−1
t δ

′
ω̂t − γ−1

t δ
′
ωt = δ

′
θ̂t

1− µ̂′tθ̂t
− δ

′
θt

1− µ′θt

1(
1− µ̂′tθ̂αt

) ≡ 1
1− β̂

' 1
1− β + 1

(1− β)2

(
β − β̂

)

= 1
1− µ′θt

−
µ′
(
θ̂αt − θt

)
(1− µ′θt)2 + o

(
µ′
(
θ̂αt − θt

))

since µ′θt ∈ (0, 1). We then obtain that

B = δ
′
θ̂αt − δ

′
θt

1− µ′θt
−
δ
′
θ̂αtµ

′
(
θ̂αt − θt

)
(1− µ′θt)2 +Op

[
δ
′
θ̂αtµ

′
(
θ̂αt − θt

)]

= δ
′
θ̂αt − δ

′
θt

1− µ′θt
+Op

[
δ
′ (
θ̂αt − θt

)
µ′
(
θ̂αt − θt

)]
.

Since we assume that ‖δ‖ = O (1)∥∥∥δ′ (θ̂αt − θt)∥∥∥ = O
(∥∥∥θ̂αt − θt∥∥∥) .
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Because,

∥∥∥θ̂αt − θt∥∥∥ = Op

(
N

αt
√
n

+ ‖θαt − θt‖
)

we have that,

∥∥∥δ′ (θ̂αt − θt)∥∥∥ = Op

(
N

αt
√
n

+ ‖θαt − θt‖
)
.

Using Proof of Lemma 1, we have the following result

∥∥∥µ′ (θ̂αt − θαt)∥∥∥ = Op

N3/2

αtn
+
√
N

n
+ N2

αtn
+ N√

n


= Op

(
N2

αtn
+ N√

n

)
.

Hence, using those two relations we obtain that

Op

[
δ
′ (
θ̂αt − θt

)
µ′
(
θ̂αt − θt

)]
= Op

[(
N

αt
√
n

+ ‖θαt − θt‖
)(

N2

αtn
+ N√

n

)]

Using Lemma 3 we obtain that

γt
√
nB ≈

√
nδ
′ (ω̂αt − ωt) =

γt
√
nδ
′
(
θ̂αt − βt

)
(1− µ′θt)

+Op

[
√
n

(
N

αt
√
n

+ ‖θαt − θt‖
)(

N2

αtn
+ N√

n

)]
.

Using assumption C, we obtain the following Lemma based on the standard central
limit theorem.

Lemma 4 Under assumption C, we have the following result〈√
n
[
Ê
(
R
′

t1n
)
− Ω̂tθt

]
, δ
〉
→d N

(
0, E

[
δ
′
rir
′

iu
2
i δ
])

Proof of Lemma 4

In fact, Ê
(
R
′
t1n
)

= R
′
t1n
n

with 1n = Rtθt + ut. This implies that,

Ê
(
R
′

t1n
)

= R
′
t

n
(Rtθt + ut)

= R
′
tRt

n
θt + R

′
tut
n

= Ω̂tθt + R
′
tut
n
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Hence,

〈√
n
[
Ê
(
R
′

t1n
)
− Ω̂tθt

]
, δ
〉

=
〈
R
′
tut√
n
, δ

〉

= 1√
n

n∑
i=1

δ
′
riui.

Therefore, using assumption C, the standard central limit theorem can be applied to
obtain the result of lemma 4.

Proposition 6.2 Given the set of information Ft and under assumptions A and C,
we have the following result〈√

n
[
θ̂αt − θt

]
, δ
〉

∥∥∥∥(E [δ′rir′iu2
i δ
])1/2

Ω̂−1
αt

∥∥∥∥ →d N (0, 1)

if max
(√

N,αt
√
n√
N

)
α

min( τt2 ,1)
t → 0 as n goes to infinity.

Proof of proposition 6.2

θ̂αt − θt = θ̂αt − θαt + θαt − θt

=
(
Ω̂αt

)−1 R
′
n1n
n
− Ω−1

αt Ωtθt + θαt − θt

=
(
Ω̂αt

)−1 R
′
n1n
n
−
(
Ω̂αt

)−1
Ω̂tθt +

(
Ω̂αt

)−1
Ω̂tθt − Ω−1

αt Ωtθt + θαt − θt

=
(
Ω̂αt

)−1
[
R
′
n1n
n
− Ω̂tθt

]
+
[(

Ω̂αt

)−1
Ω̂t − Ω−1

αt Ωt

]
θt + θαt − θt

δ
′ (
θ̂αt − θt

)
= δ

′ (Ω̂αt

)−1
[
R
′
n1n
n
− Ω̂tθt

]
+ δ

′
[(

Ω̂αt

)−1
Ω̂t − Ω−1

αt Ωt

]
θt + δ

′ (θαt − θt)

[(
Ω̂αt

)−1
Ω̂t − Ω−1

αt Ωt

]
θt =

(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

[(
Ω̂αt

)−1
− Ω−1

αt

]
Ωtθt

=
(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

(
Ω̂αt

)−1 [
Ωαt − Ω̂αt

]
Ω−1
αt Ωtθt︸ ︷︷ ︸
θαt

=
(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

(
Ω̂αt

)−1 [
Ωαt − Ω̂αt

]
θαt

=
(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
θαt

=
(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt)
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δ
′ (
θ̂αt − θt

)
= δ

′ (Ω̂αt

)−1
[
R
′
n1n
n
− Ω̂tθt

]
+ δ

′ (Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt) + δ

′ (θαt − θt)

√
nδ
′ (
θ̂αt − θt

)
=
√
nδ
′ (Ω̂αt

)−1
[
R
′
n1n
n
− Ω̂tθt

]
+
√
nδ
′ (Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt) +

√
nδ
′ (θαt − θt)

√
nδ
′
(
θ̂αt − θt

)
∥∥∥∥(E [δ′rir′iu2

i δ
])1/2

Ω̂−1
αt

∥∥∥∥ =

√
nδ
′
(
Ω̂αt

)−1
[
R
′
n1n
n
− Ω̂tθt

]
∥∥∥∥(E [δ′rir′iu2

i δ
])1/2

Ω̂−1
αt

∥∥∥∥︸ ︷︷ ︸
(a)

+
√
nδ
′
(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt)∥∥∥∥(E [δ′rir′iu2

i δ
])1/2

Ω̂−1
αt

∥∥∥∥︸ ︷︷ ︸
(b)

+
√
nδ
′ (θαt − θt)∥∥∥∥(E [δ′rir′iu2

i δ
])1/2

Ω̂−1
αt

∥∥∥∥︸ ︷︷ ︸
(c)

.

By assumption C and using Lemma 4, we have that,

(a)→d N (0, 1)

‖(b)‖ = 1∥∥∥∥(E [δ′rir′iu2
i δ
])1/2

Ω̂−1
αt

∥∥∥∥
∥∥∥∥√nδ′ (Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt)

∥∥∥∥
∥∥∥∥√nδ′ (Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt)

∥∥∥∥ = Op

(√
n

∥∥∥∥(Ω̂αt

)−1
∥∥∥∥ ∥∥∥Ωt − Ω̂t

∥∥∥ ‖θαt − θt‖)

‖(b)‖ = Op


√
n
∥∥∥Ωt − Ω̂t

∥∥∥ ‖θαt − θt‖(
E
[
δ′rir

′
iu

2
i δ
])1/2

 .

Since,
(
E
[
δ
′
rir
′
iu

2
i δ
])1/2

is of order of N1/2 then,

‖(b)‖ = Op

(√
Nα

min( τt2 ,1)
t

)
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‖(c)‖ = Op

(
αt

√
n√
N
α

min( τt2 ,1)
t

)
.

Therefore, if max
(√

N,αt
√
n√
N

)
α

min( τt2 ,1)
t → 0, we obtain the result of proposition 6.2.

Combining the result of lemma 4 with proposition 6.1 and 6.2, we obtain the asymp-
totic distribution of δ′ω̂αt .

2.8.8 Proof of Proposition 7
We start by the fact that

ω̂t − ωt =
γt
(
θ̂t − θt

)
(1− µ′θt)

+
γtθtµ

′
(
θ̂t − θt

)
(1− µ′θt)2 +Op

[(
θ̂t − θt

)′
µ
′ (
θ̂t − θt

)]
+Op

(1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n

 .
This result is obtained using a similar decomposition as in Carrasco et al. (2019) combined
with Lemma 3. Hence, we obtain that

(ω̂t − ωt)
′
µµ
′ (ω̂t − ωt) =

γ2
t

(
θ̂t − θt

)′
µµ
′
(
θ̂t − θt

)
(1− µ′θt)2 +

γ2
t

(
θ̂t − θt

)′
µθ
′
tµµ

′
θtµ

′
(
θ̂t − θt

)
(1− µ′θt)4

+ 2
γ2
t

(
θ̂t − θt

)′
µµ
′
θtµ

′
(
θ̂t − θt

)
(1− µ′θt)3 +Op

(θ̂t − θt)′ µµ′ (1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n


+ Op

[(
θ̂t − θt

)′
µµ
′ (
θ̂t − θt

)′
µ
′ (
θ̂t − θt

)]
.

We know that µ′θt = θ
′
µ and using the assumption A, we obtain that

(ω̂t − ωt)
′
µµ
′ (ω̂t − ωt) =

γ2
t

(
θ̂t − θt

)′
µµ
′
(
θ̂t − θt

)
(1− µ′θt)2 +

γ2
t

(
µ
′
θt
)2 (

θ̂t − θt
)′
µµ
′
(
θ̂t − θt

)
(1− µ′θt)4

+ 2
γ2
t

(
µ
′
θt
) (
θ̂t − θt

)′
µµ
′
(
θ̂t − θt

)
(1− µ′θt)3 + rest (αt)

where

rest (αt) = Op

(θ̂t − θt)′ µµ′ (1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n

+Op

[(
θ̂t − θt

)′
µµ
′ (
θ̂t − θt

)′
µ
′ (
θ̂t − θt

)]

(ω̂t − ωt)
′
µµ
′ (ω̂t − ωt) = Pt

(
θ̂t − θt

)′
µµ
′ (
θ̂t − θt

)
+ rest (αt)
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with

Pt = γ2
t

 1
(1− µ′θt)2 +

2
(
µ
′
θt
)

(1− µ′θt)3 +

(
µ
′
θt
)2

(1− µ′θt)4


= γ2

t

(1− µ′θt)4

[(
1− µ′θt

)2
+ 2

(
µ
′
θt
) (

1− µ′θt
)

+
(
µ
′
θt
)2
]

= γ2
t

(1− µ′θt)4 .

Hence,

(ω̂t − ωt)
′
µµ
′ (ω̂t − ωt) = γ2

t

(1− µ′θt)4

(
θ̂t − θt

)′
µµ
′ (
θ̂t − θt

)
+ rest (αt)

= γ2
t

(1− µ′θt)4

∥∥∥µ′ (θ̂t − θt)∥∥∥2
+ rest (αt)(

1− µ′θt
)4

γ2
t

(ω̂t − ωt)
′
µµ
′ (ω̂t − ωt) =

∥∥∥µ′ (θ̂t − θt)∥∥∥2
+ rest (αt)

= 1
n

∥∥∥1′nRt

(
θ̂t − θt

)∥∥∥2
+ rest (αt) .

Therefore,
(
1− µ′θt
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γ−2
t E

[
(ω̂t − ωt)

′
µµ
′ (ω̂t − ωt)

]
= 1
n
E
[∥∥∥1′nRt

(
θ̂t − θt

)∥∥∥2
]

+ rest (αt)

Let’s now look at the properties of rest (αt). Recall that

rest (αt) = Op

(θ̂t − θt)′ µµ′ (1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n


︸ ︷︷ ︸

(k1)

+Op

[(
θ̂t − θt

)′
µµ
′ (
θ̂t − θt

)′
µ
′ (
θ̂t − θt

)]
︸ ︷︷ ︸

(k2)

.

(k2) = Op

(∥∥∥µ′ (θ̂αt − θt)∥∥∥3
)

= Op

(
N2

αtn
+ N√

n
+
√
Nα

min( τt2 ,1)
t

)
.

The last quantity is obtained using the proof of Lemma 4 in Carrasco et al. (2019).
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(k1) = Op

(θ̂t − θt)′ µµ′ (1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n


= Op

∥∥∥µ′ (θ̂αt − θt)∥∥∥ ‖µ‖ (1 +
∥∥∥θ̂t − θt∥∥∥)

√
N

n

 .
‖µ‖ = O

(√
N
)
. Moreover, in the proof of Lemma 1, we obtain that

∥∥∥θ̂t − θt∥∥∥ = Op

(
N

αt
√
n

+ α
min( τt2 ,1)
t

)
.

Hence,

(k1) = Op

√N
n

(
N2

αtn
+ N√

n
+
√
Nα

min( τt2 ,1)
t

)(
1 + N

αt
√
n

+ α
min( τt2 ,1)
t

) .
Under the assumption that N

αt
√
n
→ 0, (k1) becomes as follows

(k1) = Op

[
N5/2

αtn3/2 + N3/2

n
+ N√

n
α
min( τt2 ,1)
t

]
.

Therefore,

rest (αt) = Op

[
N5/2

αtn3/2 + N3/2

n
+ N√

n
α
min( τt2 ,1)
t + N2

αtn
+ N√

n
+
√
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min( τt2 ,1)
t

]
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[
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+ N√

n
+ N3/2

n
+
(√

N + N√
n

)
α
min( τt2 ,1)
t

]
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2.9 Tables and Figures

Table 2.2: Information about the 5 industry portfolios
Code Composition of the sector

Cnsmr
Consumer Durables, NonDurables,

Wholesale, Retail, and Some Services
(Laundries, Repair Shops)

Manuf Manufacturing, Energy, and Utilities

Hitec Business Equipment, Telephone and
Television Transmission

Hlth Healthcare, Medical Equipment, and Drugs

Other Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance

Table 2.3: Out-of sample performance with an estimation window of 120 for 5 and 10
industry portfolios

5 Industry Portfolios 10 Industry Portfolios

Risk Return per
unit of risk Turnover Risk Return per

unit of risk Turnover

Sample based
strategy 0.0509 0.0936 2.4937 0.0515 0.0747 2.7224

Bauder et al
bayesian strategy 0.0451 0.1177 1.0866 0.0465 0.1107 1.2841

Approximation of
the true solution 0.0441 0.1276 0.9812 0.0417 0.1765 1.0034
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Table 2.4: Out-of sample performance with an estimation window of 120 for 17 and 30
industry portfolios

17 Industry Portfolios 30 Industry Portfolios

Risk Return per
unit of risk Turnover Risk Return per

unit of risk Turnover

Sample based
strategy 0.5332 0.0462 15.2736 0.2703 0.0620 21.2963

Bauder et al
bayesian strategy 0.0552 0.1089 2.3971 0.0726 0.0822 4.4491

Approximation of
the true solution 0.0410 0.3152 0.9402 0.0501 0.3536 0.9168

Table 2.5: The condition number of the sample covariance matrix as a function of the
number of assets in the economy. The sample size is given by n = 120 over 1000 replica-
tions. The investment horizon is T = 12. Standard errors of those statistics are given in
bracket.

period/N λ̂max/λ̂min
10 20 40 60 80 90 100

0 219.3835
(29.1304)

622.9837
(76.1754)

1629.7
(202.0158)

3346.2
(461.6792)

15842
(3019.2)

27065
(6250.2)

72148
(21181)

2 220.8378
(29.3274)

616.1889
(73.7110)

1629.6
(199.8609)

3376.7
(459.1104)

15545
(2896.0)

25885
(5797.1)

72336
(21344)

5 221.7853
(29.3883)

627.2623
(75.0828)

1621.9
(200.7195)

3382.3
(466.2505)

15233
(2844.9)

26193
(5791.3)

69306
(19456)

7 222.2615
(29.3190)

641.9389
(75.9786)

1621.8
(202.5438)

3260.8
(457.5931)

15043
(2836.5)

26714
(5720.8)

68237
(19483)

9 220.6481
(29.0634)

632.5309
(74.0857)

1628.0
(200.7087)

3271.2
(461.0739)

14895
(2773.8)

26274
(5662.3)

66849
(19114)

11 218.7989
(29.1129)

626.0016
(73.3732)

1602.1
(193.5361)

3266.8
(461.2739)

15451
(2840.9)

26382
(5790.8)

66520
(18701)
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Table 2.6: The relative condition number of the sample covariance matrix as a function
of the number of assets in the economy. The sample size is given by n = 120 over 1000
replications. The investment horizon is T = 12. Standard errors of those statistics are
given in bracket.

Period/N
(
λ̂max/λ̂min

)
/ (λmax/λmin)

10 20 40 60 80 90 100

0 1.1479
(0.1524)

1.6661
(0.2037)

2.4038
(0.2980)

2.9609
(0.4085)

9.8419
(1.8757)

16.4828
(3.8064)

37.7055
(11.0693)

2 1.1555
(0.1534)

1.16479
(0.1971)

2.0437
(0.2948)

2.9879
(0.4062)

9.6575
(1.7991)

15.7643
(3.5305)

37.8039
(11.1548)

5 1.1604
(0.1538)

1.6775
(0.2008)

2.3923
(0.2961)

2.9928
(0.4126)

9.4638
(1.7674)

15.9516
(3.5269)

36.2205
(10.1681)

7 1.1629
(0.1534)

1.7168
(0.2032)

2.3922
(0.2988)

2.8853
(0.4049)

9.3455
(1.7622)

16.2693
(3.4840)

35.6716
(10.1819)

9 1.1545
(0.1521)

1.6916
(0.1981)

2.4012
(0.2960)

2.8946
(0.4080)

9.2538
(1.7232)

16.0013
(3.4484)

34.9365
(9.9892)

11 1.1448
(0.1523)

1.6741
(0.1962)

2.3630
(0.2855)

2.8906
(0.4082)

9.5993
(1.7649)

16.0667
(3.5266)

34.7646
(9.7735)

Table 2.7: The average monthly Actual Sharpe ratio from optimal strategies using a
three-factor model as a function of the number of assets in the economy with the sample
size n = 120, the investment horizon given by T = 12 over 1000 replications. TSR is the
true actual Sharpe ratio.
Strategy/N 10 20 40 60 80 90 100

SbP 0.1218 0.0878 0.0568 0.0341 0.0346 0.0213 0.0093
XoNP 0.1509 0.1554 0.1652 0.1559 0.1638 0.1639 0.1591
RdgP 0.1517 0.1777 0.1626 0.1736 0.1668 0.1800 0.1763
L2TSP 0.1625 0.1830 0.1742 0.1779 0.1706 0.1832 0.1769
L1TSP 0.1640 0.1791 0.1729 0.1838 0.1735 0.1817 0.1789
BP 0.1575 0.1195 0.0816 0.0769 0.0368 0.0266 0.0113
TSR 0.1953 0.1907 0.2028 0.2050 0.2052 0.2056 0.2058
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Table 2.8: The average monthly bias in the Actual Sharpe ratio from optimal strategies
using a three-factor model as a function of the number of assets in the economy with the
sample size n = 120, the investment horizon given by T = 12 over 1000 replications.

Strategies Number of risky assets
10 20 40 60 80 90 100

SbP -0.0735 -0.1029 -0.1460 -0.1709 -0.1706 -0.1843 -0.1965
XoNP -0.0444 -0.0353 -0.0376 -0.0491 -0.0417 -0.0417 -0.0467
RdgP -0.0436 -0.013 -0.0402 -0.0314 -0.0384 -0.0256 -0.0295
L2TSP -0.0313 -0.0077 -0.0286 -0.0271 -0.0346 -0.0224 -0.0289
L1TSP -0.0313 -0.0116 -0.0299 -0.0212 -0.0317 -0.0239 -0.0269
BP -0.0378 -0.0712 -0.1212 -0.1281 -0.1684 -0.1790 -0.1945

Table 2.9: The average monthly default probability from optimal strategies using a three-
factor model as a function of the number of assets in the economy with the sample size
n = 120, the investment horizon given by T = 12 over 1000 replications.
Strategy/N 10 20 40 60 80 90 100

SbP 0.0617 0.0763 0.1255 0.0816 0.1283 0.1291 0.1525
RdgP 0.0008 0.0001 0.0082 0.0065 0.0056 0.0000 0.0000
L2TSP 0.0002 0.0030 0.0036 0.0047 0.0065 0.0001 0.0000
L1TSP 0.0001 0.0025 0.0013 0.002 0.0011 0.0000 0.0000
BP 0.0000 0.0111 0.0631 0.0881 0.1133 0.1005 0.1232

Table 2.10: The average monthly Turnover from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 120,
the investment horizon given by T = 12 over 1000 replications.
Strategy/N 10 20 40 60 80 90 100

SbP 8.4517 11.5957 11.7088 13.0296 13.5274 18.9334 21.3356
RdgP 0.3532 0.6689 0.7919 0.1067 0.9140 0.1317 0.1249
L2TSP 0.8539 0.556 0.5350 0.1192 0.940 0.1845 0.1352
L1TSP 0.9648 0.5237 0.604 0.0774 0.0943 0.0668 0.0874
BP 0.4161 3.8001 6.1319 6.4807 7.0534 9.0807 9.3808
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Table 2.11: The absolute bias in the optimal wealth using a three-factor model with the
sample size n = 120, the investment horizon given by T = 12 over 1000 replications when
N = 10.

Periods Strategies
SbP BP RdgP L2TSP L1TSP

0 0.1538 0.0207 0.0043 0.0093 0.0007
2 0.12830 0.0129 0.0026 0.0031 0.0038
4 1.0379 0.0116 0.0154 0.0226 0.0284
6 0.3918 0.0180 0.0279 0.0246 0.0267
8 4.7723 0.0255 0.0199 0.0100 0.0052
10 9.9473 0.0753 0.0093 0.0010 0.0014
11 22.9089 0.1311 0.0130 0.0021 0.0082

Table 2.12: The absolute bias in the optimal wealth using a three-factor model with the
sample size n = 120, the investment horizon given by T = 12 over 1000 replications when
N = 20.

Periods Strategies
SbP BP RdgP L2TSP L1TSP

0 0.0251 0.0237 0.0024 0.0017 0.0141
2 1.8049 0.3319 0.0071 0.0030 0.0153
4 2.9541 0.8699 0.0561 0.0145 0.0191
6 8.7675 3.0255 0.8404 0.6176 0.4716
8 10.4564 3.7632 0.8057 0.9080 0.7161
10 12.5781 6.9093 1.0164 0.8796 0.7369
11 31.0841 8.6879 1.0744 0.9373 0.8380

112



Table 2.13: The absolute bias in the optimal wealth using a three-factor model with the
sample size n = 120, the investment horizon given by T = 12 over 1000 replications when
N = 40.

Periods Strategies
SbP BP RdgP L2TSP L1TSP

0 0.0588 0.0299 0.0185 0.0105 0.0077
2 32.5544 0.5531 0.0330 0.0263 0.0199
4 38.8939 1.3677 0.0463 0.0289 0.0679
6 38.5641 2.8210 0.0569 0.0569 0.006
8 57.8871 36.9814 0.0782 0.0625 0.0271
10 65.7681 47.7400 0.0983 0.0639 0.0127
11 153.7881 94.3946 0.1441 0.1181 0.0619

Table 2.14: The average bias in the actual Sharpe ratio and the average deviation between
the true and the estimated portfolio for several sample sizes.

Sample size
120 300 1000 2000

Average bias in the
actual Sharpe ratio -0.0295 -0.0259 -0.0098 -0.0084

Deviation between the
estimated strategy and the true one 3.0303 2.9496 2.8107 2.8103

Table 2.15: The average tuning parameter using a three-factor model with the sample size
n = 120, the investment horizon given by T = 12 over 1000 replications when N = 40.

Periods Strategies
RdgP L2TSP L1TSP

0 0.0160
(0.0123)

0.0188
(0.0082)

0.0070
(0.0026)

4 0.0168
(0.0125)

0.0170
(0.0083)

0.0198
(0.0074)

8 0.0215
(0.0120)

0.0178
(0.0081)

0.0205
(0.0071)

11 0.0249
(0.0104)

0.0183
(0.0079)

0.0205
(0.0074)
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Table 2.16: Out-of-sample performance in terms of Sharpe ratio applied on the 30 indus-
try portfolios (FF30) and the 100 portfolios formed on size and book-to-market (FF100)
for two different rolling windows.

Portfolios Estimation
Window

Strategies
SbP BP RdgP L2TSP L1TSP

FF30 60 0.0195 0.05195 0.0767 0.0963 0.1836
120 0.0496 0.0822 0.1715 0.1878 0.1876

FF100 120 0.0569 0.1025 0.1697 0.1996 0.2424
240 0.0973 0.1550 0.2050 0.2637 0.2837

Table 2.17: Some statistics on eigenvalues and condition number of the sample covariance
matrix of the 30 industry portfolios for two different rolling windows.

Rolling
window Statistics λmin λmax λmax/λmin

60
mean 5.6976E-05 0.0707 1.4073E+03
std 2.5506E-05 0.0329 813.5847

median 5.0329E-05 0.0636 1.2490E+03

120
mean 1.5189E-04 0.0696 510.4563
std 4.553E-05 0.0174 217.2946

median 1.2842E-04 0.0689 544.0167

Table 2.18: Some statistics on eigenvalues and condition number of the sample covariance
matrix of the 100 industry portfolios for two different rolling windows.

Rolling
window Statistics λmin λmax λmax/λmin

120
mean 3.3854E-06 0.2636 8.3722E+04
std 9.4620E-07 0.0534 2.7365E+04

median 3.2609E-06 0.2635 8.2893E+04

240
mean 4.4466E-05 0.2551 5.7491E+03
std 3.6914E-06 0.0253 497.8610

median 4.4371E-05 0.2522 5.7621E+03
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Table 2.19: Out-of-sample performance in terms of re-balancing cost (turnover) applied
on the 30 industry portfolios (FF30) and the 100 portfolios formed on size and book-to-
market (FF100) for two different rolling windows.

Portfolios Estimation
Window

Strategies
SbP BP RdgP L2TSP L1TSP

FF30 60 4.6060 3.6181 1.9035 1.5590 0.2747
120 2.1302 2.0560 1.770 1.2700 0.1916

FF100 120 7.9407 5.9596 3.9402 1.4065 0.6456
240 5.6427 3.9562 2.7195 1.2516 0.5744

Figure 2.1: The Sharpe ratio as a function of the tuning parameter for the Ridge. We
obtain this figure using a single sample when N = 60 and N = 100 and n = 120.
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Figure 2.2: The GCV criterion as a function of the tuning parameter for the Ridge
regularization using a single sample when N = 60 and n = 120.

Figure 2.3: The transaction cost as a function of the tuning parameter for the L1TSP
and L2TSP. We obtain this figure for N = 20, T = 12 with an estimation window of
n = 120.
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Figure 2.4: The average stability rate as a function of the tuning parameter for the L1TSP
and L2TSP. We obtain this figure for N = 20, T = 12 with an estimation window of
n = 120.

Figure 2.5: The Average Optimal selected tuning parameter for the RdgP, the L2TSP
and the L1TSP over the life cycle when N = 60 and n = 120.
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Figure 2.6: The Mean Squared Error of the selected strategy over the life cycle for the
RdgP and the L2TSP with N = 20, T = 24 month and an estimation window of n = 120.

Figure 2.7: The optimal wealth over the life cycle for our procedures. We obtain this
figure using the 30 industry portfolios with an estimation window of n = 120.
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Figure 2.8: The re-balancing cost over the life cycle. We obtain this figure using the 30
industry portfolios with an estimation window of n = 120.
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Chapter 3

Regularized Maximum
Diversification Investment Strategy∗

3.1 Introduction
Since the seminal work of Markowitz (1952) which offers an essential basis to portfolio
selection, diversification issues have been in the center of many problems in the financial
market. According to Markowitz’s portfolio theory, a portfolio is diversified if its variance
could not be reduced any further at the same level of the expected return.The funda-
mental objective of this diversification is to construct a portfolio with various assets that
earns the highest return for the least volatility which may be a good alternative to the
market cap-weighted portfolios. In fact, there is evidence that market portfolios are not
as efficient as assumed by Sharpe (1964) in the Capital Asset Price Model (CAPM). The
CAPM model as introduced by Sharpe (1964) implies that the tangency portfolio is the
only efficient one and should produce the greatest returns relative to risk. Nonetheless,
several empirical studies have shown that investing in the minimum variance portfolio
yields better out-of-sample results than does an investment in the tangency portfolio (for
instance see Haugen and Baker (1991), Choueifaty et al. (2013), Lohre et al. (2014)).

Even if these surprising results seem to be due to the high estimation risk associated
with the expected returns (according to Kempf and Memmel (2006)), the efficiency of the
market capitalization weighted index has been questioned motivating numerous invest-
ment alternatives (see Arnott et al. (2005)), Clarke et al. (2006), Maillard et al. (2010)).
Subsequently, Choueifaty (2011) introduced the concept of maximum diversification, via
a formal definition of portfolio diversification: the diversification ratio (DR) and claimed
that portfolios with maximal DRs were maximally diversified and provided an efficient
alternative to market cap-weighted portfolios.

This optimal maximum diversification portfolio is shown to be a function of the in-
∗I am greatly indebted to Marine Carrasco for her invaluable guidance. I am grateful to Georges

Dionne for his helpful comments.
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verse of the covariance matrix of asset returns (see Theron and Van Vuuren (2018)),
which is unknown and need to be estimated. So, solving for the maximum diversification
portfolio leads to estimate the covariance matrix of returns and take its inverse. This
results in estimation error, amplified by the fact that the number of securities is typically
very high in the selected diversified portfolio, and these security returns are highly corre-
lated in general. The resulting estimation errors may affect negatively the performance
of the maximum diversification selected portfolio. Therefore, Choueifaty et al. (2013)
propose the most diversified portfolio (MDP) by imposing a non-negative constraint on
the maximum diversification problem1. However, this ad hoc constraint suggests that
the MDP is unlikely to represent the final word of diversification. Without the ability to
short securities it may be impossible to unlock the full range of uncorrelated risk sources
present in the market (see Maguire et al. (2014)). In this paper we propose a more
general method to control for estimation error in the covariance matrix of asset returns
without restricting the ability to short sell in the financial market. This method is fun-
damentally based on different ways to stabilize the inverse of the covariance matrix in
the selected portfolio and is particularly useful when the number of assets in the financial
market increases considerably compared with the estimation window. More precisely, as
in Carrasco (2012) and Carrasco and Tchuente (2015) we investigate three regularization
techniques such as the spectral cut-off, the Tikhonov and the Landweber Fridman to sta-
bilize the inverse of the covariance matrix. This procedure has been used by Carrasco et
al. (2019) to stabilize the inverse of the covariance matrix in the mean-variance portfolio.

These regularization schemes involve a tuning parameter which needs to be chosen
efficiently. So, we propose a data-driven method for selecting the tuning parameter in an
optimal way i.e. in order to minimize the distance between the inverse of the estimated
covariance matrix and the inverse of the true covariance matrix.

We show, under appropriate regularity conditions, that the selected strategy by reg-
ularization is asymptotically efficient with respect to the diversification ratio for a wide
choice of the tuning parameter. Meaning that, even if the optimal diversified portfolio is
unknown, there exists a feasible portfolio obtained by regularization capable of reaching
similar level of performance in terms of the diversification ratio.

To evaluate the performance of our procedures we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that our procedure significantly improve the performance of the
proposed strategy with respect to the Sharpe ratio. Moreover, the regularized rules are
compared to several strategies such as the most diversified portfolio, the target portfolio,
the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample
and out-of-sample Sharpe ratio. To confirm our simulations, we do an empirical analysis
using Kenneth R. French’s 30-industry portfolios and 100 portfolios formed on size and

1The objective is to reduce the effect of estimation error on the performance of selected maximum
diversification portfolio
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book-to-market.
The rest of the paper is organized as follows. Section 3.2 presents the economy.

The regularized portfolio is presented in section 3.3. Section 3.4 gives some asymptotic
properties of the selected strategy and proposes data-driven methods to select the optimal
tuning parameter. Section 3.5 presents some simulation results and an empirical study.
Section 3.6 concludes the paper.

3.2 The model
We consider a simple economy with N risky assets with random returns vector Rt+1

where N is assumed to be large and a risk-free asset. Let Rf denote the gross return on
this risk-free asset. Rf empirically with monthly data to be the mean of the one-month
Treasury-Bill (T-B) rate observed in the data.

We assume that the excess returns rt+1 = Rt+1−Rf1N are independent and identically
distributed with the mean and the covariance matrix given by µ and Σ = {σi,j}i,j∈N
respectively. Let ω = (ω1, ..., ωN)′ be the vector of portfolio weights that represents
the amount of the capital to be invested in the risky assets and the remain 1 − ω

′1N
is allocated to the risk-free asset. Short-selling is allowed in the financial market, i.e.
some of the weights ωi could be negative. Let σ = (σ1,1, ..., σN,N)

′
be the vector of asset

volatilities.
According to Choueifaty (2011), the diversification ratio (DR) of any portfolio ω is

given by

DR (ω) = ω
′
σ√

ω′Σω
(3.1)

which is the ratio of weighted average of volatilities divided by the portfolio volatility.
Using the relation in Equation (3.1), the maximum diversification portfolio is obtained

by solving the following optimization problem

max
ω

DR (ω) . (3.2)

Since the DR is invariant by scalar multiplication (for instance see Choueifaty et al.
(2013)), solving the problem in Equation (3.2) is equivalent of solving this new problem
according to Theron and Van Vuuren (2018)

min
ω′σ=1

1
2ω

′Σω. (3.3)
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This new optimization problem is very close to the global minimum variance portfolio.
The only difference is that the constraint ω′1 = 1 in the global minimum variance problem
is replaced by ω′σ = 1. The optimal solution of this new optimization problem is given
by

ω = Σ−1σ

σ′Σ−1σ
. (3.4)

The optimal solution in (3.4) is unknown because it depends on the covariance matrix
of asset returns and the vector of volatilities which are unknown and need to be esti-
mated from available data set. We need in particular to estimate the covariance of matrix
and take its inverse. The sample covariance may not be appropriate because it may be
nearly singular, and sometimes not even invertible. The issue of ill-conditioned covari-
ance matrix must be addressed because inverting such matrix increases dramatically the
estimation error and then makes the maximum diversification portfolio unreliable. Many
techniques have been proposed in the literature to stabilize the inverse of the covariance
matrix in the optimal solution in (3.4). According to Carrasco et al. (2007) an inter-
esting way to stabilize the inverse of the covariance matrix consists of dampening the
explosive effect of the inversion of the singular values of Σ̂. It consists in replacing the
sequence {1/λj} of explosive inverse singular values by a sequence {q(α, λj)/λj} where
the damping function q(α, λ) is chosen such that

1. q(α, λ)/λ remains bounded when λ→ 0

2. for any λ, limα→0 q(α, λ) = 1

where α is the regularization parameter. The damping function is specific to each regu-
larization.

Here, we implement a regularization approach to estimate the optimal solution in
(3.4) using three regularization schemes based on three different ways of inverting the
covariance matrix of asset returns. These regularization techniques are the spectral
cut-off, the Tikhonov and the Landweber Fridman. The spectral cut-off regularization
scheme is based on principal components whereas the Tikhonov’s one is based on Ridge
regression (also called Bayesian shrinkage) and the last one is an iterative method.

3.3 The regularized portfolio
The regularization methods used in this paper are drawn from the literature on inverse
problems (see Kress (1999)). They are designed to stabilize the inverse of Hilbert-Schmidt
operators (operators for which the eigenvalues are square summable). These regulariza-
tion techniques will be applied to the sample covariance matrix of asset returns to stabilize
the inverse of this covariance matrix in the selected strategy.

123



Let λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂N ≥ 0 be the eigenvalues of the sample covariance matrix Σ̂. By
spectral decomposition, we have that Σ̂ = PDP

′ with PP ′ = IN where P is the matrix
of eigenvectors and D the diagonal matrix with eigenvalues λ̂j on the diagonal. Let also
Σ̂α be the regularized inverse of Σ̂.

Σ̂α = PDαP
′

where Dα is the diagonal matrix with elements q(α, λ̂2
j)/λ̂2

j . The positive parameter α
is the regularization parameter, a kind of smoothing parameter which is unknown and
need to be selected efficiently. q(α, λ̂2

j) is the damping function which depends on the
regularization scheme used.

3.3.1 Tikhonov regularization (TH)
This regularization scheme is close to the well known ridge regression used in presence
of multicolinearity to improve properties of OLS estimators. In Tikhonov regularization
scheme, the real function q(α, λ̂2

j) is given by

q(α, λ̂2
j) =

λ̂2
j

λ̂2
j + α

3.3.2 The spectral cut-off (SC)
It consists in selecting the eigenvectors associated with the eigenvalues greater than some
threshold.

q(α, λ̂2
j) = I

{
λ̂2
j ≥ α

}
The explosive influence of the factor 1/λ̂2

j is filtered out by imposing q(α, λ̂2
j) = 0 for

small λ̂2
j , that is λ̂2

j < α. α is a positive regularization parameter such that no bias
is introduced when λ̂2

j exceeds the threshold α. Another version of this regularization
scheme is the Principal Components (PC) which consists in using a certain number of
eigenvectors to compute the inverse of the operator. The PC and the SC are perfectly
equivalent, only the definition of the regularization term α differs. In the PC, α is the
number of principal components. In practice, both methods will give the same estimator.

3.3.3 Landweber Fridman regularization (LF)
In this regularization scheme, Σ̂α is computed by an iterative procedure with the formula
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 Σ̂α
l =

(
IN − cΣ̂α

)
Σ̂l−1 + cΣ̂ for l = 1, 2, ...1/α− 1

Σ̂α
0 = cΣ̂

The constant c must satisfy 0 < c < 1/λ̂2
1. Alternatively, we can compute this

regularized inverse with

q(α, λ̂2
j) = 1−

(
1− cλ̂2

j

) 1
α

The basic idea behind this procedure is similar to spectral cut-off but with a smooth bias
function.

See Carrasco et al. (2007) for more details on these regularization techniques. The
regularized diversified portfolio for a given regularization scheme is

ω̂α = Σ̂ασ̂

σ̂′Σ̂ασ̂
=
(
σ̂
′Σ̂ασ̂

)−1
Σ̂ασ̂. (3.5)

This regularized portfolio depends on an unknown tuning parameter which needs to
be selected in an optimal way.

3.4 Asymptotic properties of the selected portfolio
In this section we will look at the efficiency of the regularized portfolio with respect to
the diversification ratio. We will also propose a data driven method to select the tuning
parameter.

3.4.1 Efficiency of the regularized diversified portfolio
To obtain the efficiency of the selected portfolio, we need to impose some regularity
conditions, in particular we will need the following assumption to show the efficiency.

Assumption A: Σ
N

is a trace class operator.

A a trace class operatorK is a compact operator with a finite trace i.e Tr (K) = O (1).
This assumption is more realistic than assuming that Σ is a Hilbert-Schmidt operator.
Moreover, Carrasco et al. (2019) show that assumption A holds for a standard factor
model.

Under assumption A, the following proposition presents information about the asymp-
totic property of the diversification ratio associated with the selected portfolio.
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Proposition 1. Under assumption A we have that

DR (ω̂α)→p DR (ωt) , (3.6)

if N
α
√
T
→ 0 as T goes to infinity.

Proof. In the appendix.

Comment on proposition 1. The regularity condition behind Proposition 1 im-
plies several things. First, α

√
T → +∞ implies that the estimation window should go

to infinity faster than the optimal tuning parameter goes to zero. Second, N
α
√
T
→ 0

implies that α
√
T should go to infinity faster than the number of assets in the financial

market. Hence, the number of assets should be limited asymptotically compared with
the estimation window. The regularity condition N√

T
→ 0 seems to be more restrictive

than assuming that N
T
→ Constant. One way to avoid this regularity condition will

be to assume that the covariance matrix of assets distribution is a trace class operator.
Proposition 1 shows that the regularized diversified portfolio is asymptotically efficient
in terms of the diversification ratio for a wide choice of the tuning parameter. Meaning
that, even if the optimal diversified portfolio is unknown, there exists a feasible portfolio
obtained by regularization capable of reaching similar level of performance in terms of
the diversification ratio.

3.4.2 Data-driven Method for Selecting the Tuning Parameter
We show in the previous sections that the selected portfolio depends on a certain smooth-
ing parameter α ∈ (0, 1). We have derived the efficiency of the selected portfolio assuming
that this tuning parameter is given. However, in practice, the regularization parameter
is unknown and needs to be selected in an optimal way. Hence, we propose a data-driven
selection procedure to obtain an approximation of this parameter.

Our objective here is to select the tuning parameter which minimizes the distance
between the inverse of the estimated covariance matrix and the inverse of the true co-
variance matrix. According to Ledoit and Wolf (2003), most of the existing shrinkage
estimators from finite-sample statistical decision theory as well as in Frost and Savarino
(1986) break down when N ≥ T because their loss functions involve the inverse of the
sample covariance matrix which is a singular matrix in this situation. Therefore, to avoid
this problem, they propose a loss function that does not depend on this inverse.This loss
function is a quadratic measure of distance between the true and the estimated covariance
matrices based on the Frobenius norm. Unlike in Ledoit and Wolf (2003), we will use a
loss function which depends on the inverse of the covariance matrix under the assump-
tion that the true covariance matrix is invertible. One important thing to notice here is
that the regularized covariance matrix is always invertible even if N ≥ T meaning that
our loss function exists even for N ≥ T . In fact, we know that the optimal diversified
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portfolio as given by Equation (3.4) depends on the inverse of the covariance matrix of
assets distribution. And because our objective is to stabilize the inverse of this covariance
matrix in the estimated portfolio by regularization, we propose here to use a loss function
that minimizes a quadratic distance between the regularized inverse and the theoretical
covariance matrix.

The loss function we consider here is given by

µ
′
[(

Σ̂α − Σ−1
)′

Σ
(
Σ̂α − Σ−1

)]
µ (3.7)

where µ is the expected excess return. The choice of this specific quadratic distance is
useful to obtain a criterion that can easily be approximated by generalized cross validation
approach.

Hence, the objective is to select the tuning parameter which minimizes

E
{
µ
′
[(

Σ̂α − Σ−1
)′

Σ
(
Σ̂α − Σ−1

)]
µ
}

(3.8)

which implies that

α̂ = arg min
α∈HT

E
{
µ
′
[(

Σ̂α − Σ−1
)′

Σ
(
Σ̂α − Σ−1

)]
µ
}

(3.9)

To obtain a better approximation of the tuning parameter based on a generalized
cross-validation criterion, we need additional assumption. So, let start with some useful
notations.

We denote by Ω = E
(
rtr
′
t

)
= E

(
X
′
X
)
/T and β = Ω−1µ = E (X ′X)−1E (X ′1T )

where rt, t = 1, · · · , T are the observations of the excess returns and X the T ×N matrix
with tth row given by r′t.

Assumption B

For some ν > 0, we have that

N∑
j=1

< β, φj >
2

η2ν
j

<∞

where φj and η2
j denote the eigenvectors and eigenvalues of Ω

N
.

The regularity condition in assumption B can be found in Carrasco et al. (2007)
and Carrasco (2012). Moreover, Carrasco et al. (2019) show that assumption B hold
if the returns are generated by a factor model. Assumption B is used combined with
assumption A to derive the rate of convergence of the mean squared error in the OLS
estimator of β. These two assumptions imply in particular that ‖β‖2 < +∞ such that
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we have the following relations

‖β − βα‖2 =

 O (αν+1) for SC,LF
O
(
αmin(ν+1,2)

)
for T

βα is the regularized version of β.
The following result gives us a very nice equivalent of the objective function. We

can easily apply a cross-validation approximation procedure on this expression of the
objective function.

Proposition 2. Under assumptions A and B we have that

E
{
µ
′
[(

Σ̂α − Σ−1
)′

Σ
(
Σ̂α − Σ−1

)]
µ
}

∼ E
{(

Σ̂αµ̂− Σ−1µ
)′

Σ
(
Σ̂αµ̂− Σ−1µ

)}

∼ 1
T
E
∥∥∥X (

β̂α − β
)∥∥∥2

+ (µ′ (βα − β))2

(1− µ′β) .

if 1
α2T
→ 0 and

√
Nαmin( ν2 ,1) → 0 as T goes to infinity.

I will only show the first part of this proposition. The second part comes from
proposition 1 in Carrasco et al. (2019).

Proof. In the appendix.

From proposition 2, it follows that minimizing E
{
µ
′
[(

Σ̂α − Σ−1
)′

Σ
(
Σ̂α − Σ−1

)]
µ
}

is equivalent to minimizing

1
T
E
∥∥∥X (

β̂α − β
)∥∥∥2

(3.10)

+(µ′ (βα − β))2

(1− µ′β) . (3.11)

Terms (3.10) and (3.11) depend on the unknown β and hence need to be approximated.
To approximate (3.10), we use results on cross-validation from Craven and Wahba (1978),
Li (1986, 1987), and Andrews (1991) among others.

The rescaled MSE 1
T
E
[∥∥∥X (

β̂α − β
)∥∥∥2

]
can be approximated by generalized cross validation criterion:

GCV (α) = 1
T

‖(IT −MT (α)) 1T‖2

(1− tr (MT (α)) /T )2 .
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Using the fact that
µ̂′ (βα − β) = 1′T

T
(MT (α)− IT )Xβ,

(3.11) can be estimated by plug-in:
(
1′T (MT (α)− IT )Xβ̂α̃

)2

T 2
(
1− µ̂′β̂α̃

) (3.12)

where β̂α̃ is an estimator of β obtained for some consistent α̃ (α̃ can be obtained by
minimizing GCV (α)).

The optimal value of τ is defined as

α̂ = arg min
τ∈HT

GCV (α) +

(
1′T (MT (α)− IT )Xβ̂α̃

)2

T 2
(
1− µ̂′β̂α̃

)


where HT = {1, 2, ..., T} for spectral cut-off and Landweber Fridman and HT = (0, 1) for
Ridge.

3.5 Simulations and empirical study
We start this section by a simulation exercise to set up the performance of our procedure
and compare our result to the existing methods. In particular, we compare our method
to the most diversified portfolio proposed by Choueifaty and Coignard (2008). More
precisely, in this section, we focus our attention on how our procedure performs in terms
of the Sharpe ratio and the diversification ratio. To end this section, we analyze the out-
of-sample performance of the selected portfolio from each procedure we have proposed.

3.5.1 Data
In our simulations and empirical analysis, various forms of monthly data will be used
from July 1980 to June 2016. The one-month Treasury-Bill (T-Bill) rate is used as
a proxy for the risk-free rate and Rf is calibrated to be the mean of the one-month
Treasury-Bill rate observed in the data. We use monthly returns of Fama-French three
factors and of 30 industry portfolios from the Kenneth R. French data library in order
to calibrate unknown parameters of the simulation model. In the empirical study, we
also use monthly data for the 100 portfolios formed on size and book-to-market from the
Kenneth R. French data Library.
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3.5.2 Simulation
We implement a simple simulation exercise to assess the performance of our procedure
and compare it with the existing procedures. Let us consider for this purpose a simple
economy with N ∈ {10, 20, 40, 60, 80, 90, 100} risky assets. We use several values of N to
see how the size of the financial market (defined by the number of assets in the economy)
could affect the performance of the selected strategy. Let T be the sample size used to
estimate the unknown parameters in the investment process. Following Chen and Yuan
(2016) and Carrasco et al. (2019), we simulate the excess returns at each simulation step
from the following three-factor model for i = 1, ..., N and t = 1, ..., T

rit = bi1f1t + bi2f2t + bi3f3t + εit (3.13)

ft = (f1t, f2t, f3t)
′ is the vector of common factors, bi = (bi1, bi2, bi3)′ is the vector of

factor loadings associated with the ith asset and εit is the idiosyncratic component of rit
satisfying E (εit|ft) = 0. We assume that ft ∼ N (µf ,Σf ) where µf and Σf are calibrated
on the monthly data of the market portfolio, the Fama-French size and the book-to-
market portfolio from July 1980 to June 2016. Moreover, we assume that bi ∼ N (µb,Σb)
with µb and Σb calibrated using data of 30 industry portfolios from July 1980 to June
2016. Idiosyncratic terms εit are supposed to be normally distributed. The covariance
matrix of the residual vector is assumed to be diagonal and given by Σε=diag(σ2

1, ..., σ
2
N)

with the diagonal elements drawn from a uniform distribution between 0.10 and 0.30 to
yield an average cross-sectional volatility of 20%.

In the compact form (3.13) can be written as follows:

R = BF + ε (3.14)

where B is a N × 3 matrix whose ith row is b′i. The covariance matrix of the vector of
excess return rt is given by

Σ = BΣfB
′ + Σε

The mean of the excess return is given by µ = Bµf . The return on the risk-free asset
Rf is calibrated to be the mean of the one-month T-B observed in the data from July
1980 to June 2016. The calibrated parameters used in our simulation process are given
in Table 3.1. The gross return on the risk-free asset calibrated on the data is given by
Rf = 1.0036. Once generated, the factor loadings are kept fixed over replications, while
the factors differ from simulations and are drawn from a trivariate normal distribution.

Let SR(ωt) be the Sharpe ratio associated with the optimal portfolio ωt, then SR(ωt)
is given as follows

SR(ωt) =
[
µ
′Σµ

]1/2
To set up the performance of our procedure in terms of the Sharpe ratio, we focus our

attention on the actual Sharpe ratio associated with the selected portfolio. The actual
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Table 3.1: Calibrated parameters
Parameters for factors loadings Parameters for factors returns
µb Σb µf Σf

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 -0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 -0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 -0.0004 -0.0003 0.0009

Sharpe ratio at time point t is given by

SR(ω̂t) = ω̂
′
tµ[

ω̂
′
tΣω̂

′
t

]1/2
We consider the following portfolio selection procedures: the sample-based diversi-

fied portfolio (SbDP), the most diversified portfolio (MDP) proposed by Choueifaty et
al. (2013), the global minimum variance portfolio (GMVP), the ridge regularized diver-
sified portfolio (RdgDP), the spectral cut regularized diversified portfolio (SCDP), the
Landweber-Fridman regularized diversified portfolio (LFDP), the equal-weighted port-
folio which is also called the naive portfolio (XoNP) which allocates a constant amount
1/N in each asset, and the target (or the maximum Sharpe ratio) portfolio (TgP). We
perform 1000 simulations and estimate our statistics over replications. We obtain the
following result about the actual Sharpe ratio.

Table 3.2: The average monthly Actual Sharpe ratio from optimal strategies using a
three-factor model as a function of the number of assets in the economy with the sample
size n = 120, over 1000 replications. True SR is the true actual Sharpe ratio.

Strategies Number of risky assets
10 20 40 60 80 90 100

SbDP 0.1549 0.0906 0.0889 0.0779 0.0652 0.0719 0.0704
XoNP 0.2604 0.2604 0.2415 0.2525 0.2406 0.2461 0.2467
GMVP 0.2227 0.2338 0.2098 0.2298 0.1710 0.1640 0.1449
MDP 0.2514 0.2545 0.2410 0.2544 0.1778 0.1821 0.1935
TgP 0.2608 0.2818 0.2662 0.2687 0.2026 0.1925 0.1699

RdgDP 0.2587 0.2785 0.2817 0.2907 0.2947 0.2830 0.2991
SCDP 0.2592 0.2872 0.2993 0.2898 0.2746 0.2887 0.2853
LFDP 0.2605 0.2765 0.2840 0.2870 0.2850 0.2912 0.2980
True SR 0.2626 0.2922 0.3393 0.3379 0.3592 0.3477 0.3657

Table 3.2 contains the results about the average monthly Sharpe ratio obtained in the
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simulation process. We can notice that the sample based diversified portfolio performs
very poorly in terms of maximizing the Sharpe ratio in the investment process for large
number of assets in the financial market. This result is essentially due to the fact that the
estimation error from estimating the vector of assets volatilities is amplified by using the
sample covariance matrix of assets distribution which is close to a singular matrix when N
becomes too large compared with the sample size. Hence, even if this strategy is supposed
to be the maximum diversification’s one with the highest Sharpe ratio, we can notice that
the SbDP is dominated by several other strategies such as the GMVP, the XoNP, and
the TgP. Therefore, this strategy cannot be consider as the maximum diversification
strategy in practice. To solve this problem, Choueifaty et al. (2013) proposes the most
diversified portfolio (MDP) which is obtained by maximum the diversification ratio under
a non-negative constraint on the portfolio weights. This additional constraint in the
investment process may help to reduce the effect of estimation error on the performance
of the selected portfolio. The result of the most diversified portfolio can be found in
Table 3.2. By imposing the non-negative constraint, investors considerably improve the
performance of the selected portfolio in terms of the Sharpe ratio. This new strategy
even out-performs the global minimum variance portfolio. However, this procedure is still
dominated by the target portfolio and the equal weighted portfolio meaning that much
remains to be done about finding the maximum diversification strategy in practice. One
explanation to this result is that imposing the non-negative constraint on the portfolio
weight may limit the ability of the selected portfolio to be fully diversified. Hence, one
needs to find a more general estimation procedure for the maximum diversified portfolio
that allows for short selling.

For this purpose, I propose a new way to estimate the optimal diversified portfolio by
stabilizing the inverse of the sample covariance matrix without imposing a non-negative
constraint on the portfolio weights in the investment process. Three different regular-
ization methods are considered in this paper based on three different ways to compute
the inverse of the covariance matrix that appears in the optimal selected portfolio. The
results of these methods can also be found in Table 3.2. The first thing to point out
about these results is that the regularized diversified portfolio out-performs the most
diversified portfolio in terms of maximizing the Sharpe ratio. For instance, we obtain an
average Sharpe ratio of 0.2514, 0.2587, 0.2592, and 0.2605 for the MDP, the RdgDP, the
SCDP, and the LFDP respectively when only 10 assets are considered in the economy.
The difference in terms of the actual Sharpe ratio performance between our procedure
and the most diversified portfolio significantly increases with the number of assets in
the financial market. For example, for 100 assets, the average Sharpe ratio is about
0.1935, 0.2991, 0.2853, and 0.2980 for the MDP, the RdgDP, the SCDP, and the LFDP
respectively. These results may be due to the fact that when the number of assets in the
economy increases, the degree of diversification of the selected strategy may deteriorate
with non-negative constraints on the investment process which may reduce the ability
to find a strategy that performs the Sharpe ratio. Moreover, the regularized diversified
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portfolio out-performs the target strategy and the equal-weighted portfolio when the
number of assets in the financial market exceeds 40. Nonetheless, for 10 assets in the
economy, the target portfolio outperforms the RdgDP and the SCDP but is dominated by
the LFDP. With 20 assets the target portfolio dominates the RdgDP and the LFDP and
is dominated by the SCDP. The equal-weighted portfolio out-performs some regularized
strategies such as the RdgDP and the SCDP only for 10 assets in the financial market.
The fact that the regularized strategies give very interesting results in terms of maximiz-
ing the Sharpe ratio (compared with the existing strategies) for large N is because these
methods are essentially used to address estimation issues in large dimensional problems.

3.5.3 Empirical study
In this subsection, we investigate the performance of our procedures empirically. We
apply our method to several sets of portfolios from Kenneth R. French’s website. In par-
ticular, we apply our procedure to the following portfolios: the 30-industry portfolios and
the 100 portfolios formed on size and book-to-market. We allow investors to re-balance
their portfolios every month. This implies that the optimal portfolio is constructed at the
end of each month for a given estimation window M by maximizing the diversification
ratio. The investor holds this optimal portfolio for one month, realizes gains and losses,
updates information, and then recomputes optimal portfolio weights for the next period
using the same estimation window. This procedure is repeated each month, generating
a time series of out-of-sample returns. This time series can then be used to analyze
the out-of-sample performance of each strategy based on several statistics such as the
out-of-sample Sharpe ratio. For this purpose, we use data from July 1980 to June 2018.

Table 3.3 contains some results of the out-of-sample analysis in terms of the Sharpe
ratio for two different data sets: the FF30 and the FF100. The empirical results in this
table confirm what we have obtained in the simulation part. According to this result, by
stabilizing the inverse of the covariance matrix in the maximum diversification portfolio,
we considerably improve the performance of the selected strategy in terms of maximizing
the Sharpe ratio. Therefore, our regularized strategies outperform the most diversified
strategy, the target portfolio, and the global minimum variance portfolio for each data
set. The most-diversified strategy outperforms the global minimum variance portfolio
but is dominated by the Equal-Weight portfolio for each data set. These results of the
most-diversified portfolio can essentially be explained by the fact that by imposing a
non-negative constraint in the investment process, one cannot fully diversify the optimal
portfolio.

Tables 3.4 and 3.5 contain the Fama-French monthly regression coefficients for the 100
portfolios formed on size and book-to-market and the 30-industry portfolios respectively.
Monthly data are used from July 1990 to June 2018. According to Table 3.4 only the
return on the Equal-Weight portfolio can be explained by the Fama-French three-factor
model for the 100 portfolios formed on size and book-to-market. The return obtained with
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the other strategies such as the regularized portfolios and the most diversified portfolio
can be explained only with the return on the market portfolio (a one-factor model)
through a positive relation. However, the return of the most diversified portfolio and the
global minimum variance portfolio can be explained with a two factors model when the
optimal strategy is obtained using the 30-industry portfolios. The return of the other
strategies such as the regularized portfolios, the Equal-Weight portfolio, and the target
portfolio can be explained by the Fama-French three-factor model.

3.6 Conclusion
This paper addresses the estimation issue that exists in the maximum diversification
portfolio framework in the large financial market. We propose to stabilize the inverse of
the covariance matrix in the optimal diversified portfolio using regularization techniques
from inverse problem literature. These regularization techniques namely the ridge, the
spectral cut-off, and Landweber-Fridman involve a regularization parameter or penalty
term whose optimal value is selected to minimize the expected distance between the in-
verse of the estimated covariance matrix and the inverse of the true covariance matrix.
We show, under appropriate regularity conditions, that the selected strategy by regu-
larization is asymptotically efficient with respect to the diversification ratio for a wide
choice of the tuning parameter. Meaning that, even if the optimal diversified portfolio is
unknown, there exists a feasible portfolio obtained by regularization capable of reaching
a similar level of performance in terms of the diversification ratio.

To evaluate the performance of our procedures we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that our procedure significantly improves the performance of the
selected strategy with respect to the Sharpe ratio. Moreover, the regularized rules are
compared to several strategies such as the most diversified portfolio, the target portfolio,
the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample
and out-of-sample Sharpe ratio. To confirm our simulations, we do an empirical analysis
using Kenneth R. French’s 30-industry portfolios and 100 portfolios formed on size and
book-to-market. According to this empirical result, by stabilizing the inverse of the
covariance matrix in the maximum diversification portfolio, we considerably improve the
performance of the selected strategy in terms of maximizing the Sharpe ratio.

3.7 Proofs

3.7.1 Proof of Proposition 1
By definition we have that
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DR(ω̂α) = ω̂
′
ασ√

ω̂′αΣω̂α
.

Let us first look at ω̂′αΣω̂α

ω̂
′

αΣω̂α = [(ω̂α − ω) + ω]
′
Σ [(ω̂α − ω) + ω]

= ω
′Σω + (ω̂α − ω)

′
Σ (ω̂α − ω)︸ ︷︷ ︸

(a)

+2 (ω̂α − ω)
′
Σω︸ ︷︷ ︸

(b)

.

Now we are going to look at the properties of (a) and (b). We know that

ω̂α =

σ̂′Σ̂ασ̂︸ ︷︷ ︸
(c)


−1

Σ̂ασ̂︸ ︷︷ ︸
(d)

.

(c) = σ
′Σ̂ασ + (σ̂ − σ)

′
Σ̂α (σ̂ − σ) + 2 (σ̂ − σ)

′
Σ̂ασ

Σ̂α =
(
Σ̂α − Σα + Σα

)
.

∥∥∥(σ̂ − σ)
′
Σ̂α (σ̂ − σ)

∥∥∥ =

∥∥∥∥∥∥(σ̂ − σ)
′

√
N

 Σ̂
N

α (σ̂ − σ)√
N

∥∥∥∥∥∥
= Op

(
‖σ̂ − σ‖2

Nα

)

= Op


∥∥∥ σ̂−σ√

N

∥∥∥2

α

 .
By assumption A

∥∥∥ σ√
N

∥∥∥ = O (1). Hence, we obtain that

∥∥∥(σ̂ − σ)
′
Σ̂ασ

∥∥∥ =

∥∥∥∥∥∥(σ̂ − σ)
′

√
N

 Σ̂
N

α σ√
N

∥∥∥∥∥∥
= Op

(
‖σ̂ − σ‖√

Nα

)

= Op


∥∥∥ σ̂−σ√

N

∥∥∥
α

 .
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Using those information combine with the fact that Σ̂α = Σ̂α − Σα + Σα, we have that
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which implies that
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As T →∞ we have that α→ 0 ⇒
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Using the Assumption A combined with Theorem 4 of Carrasco and Florens (2000), we
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Moreover, since
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Under the assumption that 1
α
√
T
→ 0, we have that

ω̂α = ω + op(1). (3.15)

By assumption A we have that ‖Σ‖ = O(N). Therefore, using (3.15), we obtain that
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The proof of the second part of proposition 2 comes from proposition 1 in Carrasco
et al. (2019).
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3.8 Tables

Table 3.3: Out-of-sample performance in terms of the Sharpe ratio applied on the 30
industry portfolios (FF30) and the 100 portfolios formed on size and book-to-market
(FF100) with a rolling window of 120.

Strategies XoNP GMVP MDP TGP RdgP LFP SCP

FF30
Excess return 0.0110 0.01134 0.0121 0.017 0.0149 0.014 0.014
Volatility 0.0540 0.0630 0.058 0.076 0.063 0.057 0.061

Sharpe ratio 0.204 0.180 0.209 0.224 0.237 0.246 0.2295

FF100
Excess return 0.0103 0.0127 0.015 0.0173 0.0200 0.0201 0.0203
Volatility 0.0485 0.075 0.088 0.091 0.0772 0.0770 0.078

Sharpe ratio 0.212 0.1693 0.1705 0.1901 0.2590 0.2610 0.2602

Table 3.4: Fama-French Monthly Regression Coefficients for the 100 portfolios formed
on size and book-to-market from July 1990 to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio 0.9168
(0.000)

0.079
(0.531)

-0.139
(0.302)

0.0075
(0.057)

LF- regularized Portfolio 0.823
(0.000)

0.174
(0.153)

-0.1651
(0.204)

0.0125
(0.001)

SC-regularized Portfolio 1.02
(0.000)

-0.127
(0.177)

-0.133
(0.189)

0.0077
(0.010)

Most-Diversified Portfolio 0.72
(0.000)

0.13
(0.344)

0.098
(0.506)

0.007
(0.002)

Equal-Weight-Portfolio 1.002
(0.000)

0.5104
(0.000)

0.33
(0.000)

0.0001
(0.815)

Global-Minimum-Variance
Portfolio

0.416
(0.000)

-0.125
(0.319)

0.155
(0.247)

0.0094
(0.000)

Target-Portfolio 0.43
(0.000)

0.144
(0.367)

0,207
(0.226)

0.010
(0.000)

140



Table 3.5: Fama-French Monthly Regression Coefficients for the 30-industry portfolios
from July 1990 to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio 1.03
(0.000)

0.24
(0.003)

0.36
(0.000)

0.0007
(0.767)

LF- regularized Portfolio 0.93
(0.000)

0.22
(0.003)

0.25
(0.001)

0.0046
(0.042)

SC-regularized Portfolio 0.86
(0.000)

0.27
(0.000)

0.21
(0.031)

0.0054
(0.053)

Most-Diversified Portfolio 0.46
(0.000)

-0.285
(0.000)

0.070
(0.391)

0.002
(0.001)

Equal-Weight-Portfolio 0.983
(0.000)

0.061
(0.006)

0.265
(0.000)

0.0013
(0.050)

Global-Minimum-Variance
Portfolio

0.46
(0.000)

-0.146
(0.008)

0.077
(0.188)

0.0021
(0.017)

Target-Portfolio 0.54
(0.000)

-0.44
(0.000)

-0.21
(0.019)

0.013
(0.000)
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Conclusion Générale

Dans cette thèse divisée en trois chapitres nous proposons divers outils économétriques
pour améliorer le processus de sélection de portefeuilles sur le marché financier afin d’aider
les intervenants de ce marché.

Dans le premier chapitre nous analysons un problème d’optimisation de portefeuille
dynamique d’un investisseur à préférences récursives faisant face à des coûts de trans-
actions sur le marché boursier. Plus précisément, nous développons dans ce chapitre
une procédure de test simple basée sur une estimation de type GMM pour évaluer l’effet
des coûts de transaction dans le processus d’investissement sans une forme particulière
présumée pour ces frictions dans l’économie. Nous montrons que la distribution asympto-
tique de la statistique de test ne dépend pas d’une forme particulière des coûts de transac-
tions dans le modèle de choix de portefeuille. Une procédure de test implémentée en deux
étapes a été proposée pour évaluer la sur-identification lorsque le paramètre d’intérêt est
au bord de l’espace des paramètres. Empiriquement, nous appliquons nos procédures de
test à la classe d’anomalies considérées par Novy-Marx and Velikov (2016). On obtient
que les coûts de transaction affectent significativement le comportement d’investissement
pour la plupart des anomalies. Par conséquent, les investisseurs améliorent considérable-
ment les performances hors échantillon en tenant compte de ces coûts de transaction dans
la prise de décision sur le marché financier.

Dans le deuxième chapitre, nous analysons un problème dynamique de choix de porte-
feuille de grande taille en développant une nouvelle méthode économétrique pour estimer
la solution optimale. Premièrement, nous pénalisons la norme des poids attribués aux
actifs dans le portefeuille optimal et nous obtenons une forme analytique qui pourrait
être obtenue par une régularisation de type ridge, qui consiste à ajouter une matrice
diagonale à la matrice de covariance. Cependant, cette méthode contrôle partiellement
l’erreur d’estimation dans la solution optimale car elle ignore l’erreur d’estimation du ren-
dement moyen des actifs, qui peut également être importante lorsque le nombre d’actifs
sur le marché financier augmente considérablement. Nous proposons une méthode alter-
native qui consiste à pénaliser la norme de la différence de pondérations successives du
portefeuille dans le problème dynamique pour garantir que la composition optimale du
portefeuille ne fluctue pas énormément entre les périodes. Nous montrons, sous des con-
ditions de régularité appropriées, que nous maîtrisons mieux l’erreur d’estimation dans
le portefeuille optimal avec cette nouvelle procédure. Pour évaluer la performance de nos
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procédures, nous faisons une simulation à l’aide d’un modèle à trois facteurs calibrés sur
les données réelles du marché financier américain. Les simulations sont confirmées par
d’un cas empirique utilisant 30 et 100 portefeuilles d’industries américaine.

Dans le troisième chapitre, nous utilisons diverses techniques de régularisation (ou
stabilisation) empruntées à la littérature sur les problèmes inverses pour estimer le porte-
feuille diversifié tel que défini par Choueifaty (2011). Ici, nous appliquons les trois tech-
niques de régularisation, qui sont les plus utilisées : le ridge qui consiste à ajouter une
matrice diagonale à la matrice de covariance, la coupure spectrale qui consiste à exclure
les vecteurs propres associés aux plus petites valeurs propres, et Landweber Fridman
qui est une méthode itérative, pour stabiliser l’inverse de matrice de covariance dans le
processus d’estimation du portefeuille diversifié. Les solutions obtenues sont comparées
à plusieurs stratégies telles que le portefeuille le plus diversifié, le portefeuille cible, le
portefeuille de variance minimale et la stratégie naïve 1 / N à l’aide du ratio de Sharpe
dans l’échantillon et hors échantillon.
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