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Résumé

Le Modèle Standard de la physique des particules (MS) est une théorie fondamentale

de la nature dont la validité a été largement établie par diverses expériences. Par contre,

quelques problèmes théoriques et expérimentaux subsistent, ce qui motive la recherche

de théories alternatives. La Supersymétrie (SUSY), famille de théories dans laquelle une

nouvelle particule est associée à chaque particules du MS, est une des théories ayant les

meilleures motivations pour étendre la portée du modèle. Par exemple, plusieurs théories

supersymétriques prédisent de nouvelles particules stables et interagissant seulement par

la force faible, ce qui pourrait expliquer les observations astronomiques de la matière

sombre. La découverte de SUSY représenterait aussi une importante étape dans le chemin

vers une théorie unifiée de l’univers. Les recherches de supersymétrie sont au coeur

du programme expérimental de la collaboration ATLAS, qui exploite un détecteur de

particules installé au Grand Collisioneur de Hadrons (LHC) au CERN à Genève, mais à

ce jours aucune preuve en faveur de la supersymétrie n’a été enregistrée par les présentes

analyses, largement basées sur des techniques simples et bien comprises.

Cette thèse documente l’implémentation d’une nouvelle approche à la recherche de

particules basée sur l’apprentissage profond, utilisant seulement les quadri-impulsions

comme variables discriminatoires; cette analyse utilise l’ensemble complet de données

d’ATLAS enregistré en 2015–2018. Les problèmes de la naturalité du MS et de la matière

sombre orientent la recherche vers les partenaires supersymétriques du gluon (le gluino),

des quarks de troisième génération (stop et sbottom), ainsi que des bosons de gauge (le

neutralino). Plusieurs techniques récentes sont employées, telles que l’utilisation directe

des quadri-impulsions reconstruites à partir des données enregistrées par le détecteur

ATLAS ainsi que la paramétrisation d’un réseau de neurone avec les masses des par-

ticules recherchées, ce qui permet d’atteindre une performance optimale quelle que soit

l’hypothèse de masses. Cette méthode améliore la signification statistique par un facteur

85 par rapport au dernier résultat d’ATLAS pour certaines hypothèses de masses, et ce

avec la même luminosité.

Aucun excès signifif au-delà du Modèle Standard n’est observé. Les masses du gluino

en deçà de 2.45 TeV et du neutralino en deça de 1.7 TeV sont exclues à un niveau de

confiance de 95%, ce qui étend largement les limites précédentes sur deuxmodèles de pro-

ductions de paires de gluinos faisant intervenir des stops et des sbottoms, respectivement.

Mots-clés: Physique des particules, Supersymétrie, LHC, ATLAS, Apprentissage ma-

chine, Apprentissage profond, Réseaux de neurones.

4



Abstract

The Standard Model of particle physics (SM) is a fundamental theory of nature whose

validity has been extensively confirmed by experiments. However, some theoretical and

experimental problems subsist, which motivates searches for alternative theories to super-

sede it. Supersymmetry (SUSY), which associate new fundamental particles to each SM

particle, is one of the best-motivated such theory and could solve some of the biggest out-

standing problems with the SM. For example, many SUSY scenarios predict stable neutral

particles that could explain observations of dark matter in the universe. The discovery of

SUSY would also represent a huge step towards a unified theory of the universe. Searches

for SUSY are at the heart of the experimental program of the ATLAS collaboration, which

exploits a state-of-the-art particle detector installed at the Large Hadron Collider (LHC)

at CERN in Geneva. The probability to observe many supersymmetric particles went

up when the LHC ramped up its collision energy to 13 TeV, the highest ever achieved in

laboratory, but so far no evidence for SUSY has been recorded by current searches, which

are mostly based on well-known simple techniques such as counting experiments.

This thesis documents the implementation of a novel deep learning-based approach

using only the four-momenta of selected physics objects, and its application to the search

for supersymmetric particles using the full ATLAS 2015–2018

√
B = 13 TeV dataset. Moti-

vated by naturalness considerations as well as by the problem of dark matter, the search

focuses on finding evidence for supersymmetric partners of the gluon (the gluino), third

generation quarks (the stop and the sbottom), and gauge bosons (the neutralino). Many

recently introduced physics-specific machine learning developments are employed, such

as directly using detector-recorded energies and momenta of produced particles instead

of first deriving a restricted set of physically motivated variables and parametrizing the

classification model with the masses of the particles searched for, which allows optimal

sensitivity for all mass hypothesis. This method improves the statistical significance of the

search by up to 85 times that of the previous ATLAS analysis for some mass hypotheses,

after accounting for the luminosity difference.

No significant excesses above the SM background are recorded. Gluino masses below

2.45 TeV and neutralino masses below 1.7 TeV are excluded at the 95% confidence level,

greatly increasing the previous limit on two simplified models of gluino pair production

with off-shell stops and sbottoms, respectively.

Keywords: Particle physics, Supersymmetry, LHC, ATLAS, Machine learning, Deep

learning, Neural networks.
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Introduction

In the year 2020, it seems that the field of particle physics is in very good shape. The

Standard Model of particle physics, an elegant and very successful fundamental theory

of nature, is theoretically complete since the 70s, and all its constituent fundamental

particles have been observed in various experiments, from the discovery of the electron

in the late 19th century [1] to the recent observation of the Higgs boson [2, 3] by the

ATLAS [4] and CMS [5] collaborations at the LHC [6]. And yet, searches for so-called

Beyond-the-Standard-Model physics are still ongoing in full force; there are even serious

discussions about building bigger andmore powerful particle accelerators to carry out this

work in the future. Beyond the need to validate the Standard Model with high-precision

measurements, which might still uncover flaws in the theory, there is still a number of

theoretical problems with the Standard Model that motivate this state of affairs. For

instance, the model does not explain astronomical observations of dark matter; nor does

it explain the huge energy difference between the characteristic scale of weak interactions

and that of gravitational phenomena. In fact, the Standard Model does not even try to

describe gravity, instead positing that a new model is needed for energy scales above the

Plank mass.

Supersymmetry, an extension of the fundamental space–time symmetries that asso-

ciates new bosons to Standard Model fermions and vice-versa, was sometimes touted in

pre-LHC times as an easy and elegant way to fix such problems. Indeed, the projected

cross-sections for a large class of supersymmetric processes would lead to clear effects at

the LHC if realized in nature; to this date, no clear and unambiguous sign of such effects

have been detected by any of the LHC collaborations, or by any other experiments. Faced

with this situation, we then have, at least, three paths moving forward. Firstly, we could

simply abandon altogether supersymmetry searches and focus on alternate Beyond-the-

Standard-Model theories. Secondly, we could also just note that after its seconddata-taking

run, the LHC has only produced about five percent of its eventual final dataset and be

patient, hoping that supersymmetry lurks right around the corner and that more data

will clarify the situation. The third option, which is not mutually exclusive to the second



one, is to improve existing search methodology or to implement new search strategies to

maximize the discovery potential given the data that we have right now.

Recent developments in the field of artificial intelligence, most notably the so-called

deep learning revolution [7], have pushed the boundaries of machine learning techniques

further than would have been thought possible a few decades ago. Granted, machine

learning has already been in extensive usage throughout the field of high-energy physics

for already quite some time, but the recent renaissance of the field of neural network

research has lead to many new possibilities. The reasons are many: the existence of well-

understood models such as deep neural networks along with enough data to train them;

ubiquity of accelerated hardware in the form of graphical processing units (GPU); and

the availability of high-quality free-software libraries enabling researchers to tap into the

power of modern AI without reinventing the wheel.

With these reasons in mind, this thesis will apply deep learning techniques to the

problem of the search for supersymmetry at the LHC, using data recorded by the ATLAS

detector. It will build upon previous work by the ATLAS collaboration in which super-

symmetric partners of the gluon, third generation quarks, and gauge bosons are searched

for in events with a significant amount of missing transverse energy and many b-jets [8,

9]. More specifically, a single neural network is trained to classify events as originating

from a supersymmetric signal or from a Standard Model background, using low-level

(four-momenta) inputs reconstructed from ATLAS detector data.

In Chapter 1.1, the theoretical underpinnings of the Standard Model are briefly re-

viewed, including a discussion of some of the aforementioned problems, before presenting

in Chapter 2 the proposed solution, supersymmetry. The LHC and the ATLAS detector

are presented in Chapter 3. In Chapter 4, the theory of neural networks is presented, along

with an example application in the context of track reconstruction. Finally, the search itself

is presented in Chapter 5, before concluding.
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Chapter 1

The Standard Model

1.1 SU(3) ××× SU(2) ×××U(1): Theoretical overview

Note: unless otherwise noted, this section is based on References [10–13]

Modern particle physics is formulated within a framework known as Quantum Field
Theory, or QFT. In this framework, pretty much everything is unsurprisingly described in

terms of quantum fields; what we call particles are really just excitations of fundamental

quantum fields away from their ground states [14]. There are two basic classes of fields,

distinguished by the nature of the spins of the particles they carry. Fermionicfields allow for

half-integer spin states, while bosonic fields allow integer spin states. What we commonly

refer to as matter are excitations in fermionic fields with spin = 1/2. What we think of

as forces are due to excitations in the bosonic fields; local interactions arise due to the

exchange of force carrying gauge bosons that have unit spin. Another important field is the

spinless bosonic field, which describes scalar bosons; it enters the theory as the Higgs field.

But how is the StandardModel built from these ingredients? The basic recipe is to start

with non-interacting matter only, and requiring something called local gauge invariance,
which implies the existence of the force carrying gauge bosons. In Section 1.1.1, we review

the fundamental concept of local gauge invariance, and take a look at how it can give

rise to a realistic theory: Quantum Electrodynamics, or QED. We then follow the same

blueprint to build the Standard Model of particle physics (SM) itself: starting with the

SM fermions, we use gauge theory to describe the two sub-theories of the SM; Quantum

Chromodynamics (QCD) in Section 1.1.2 and the electroweak model in Section 1.1.3.



1.1.1 Local gauge invariance

“[Local gauge invariance] is the essential concept out of which the Standard Model is
built: a concept that has all the features of a fundamental principle of nature.”

– Gian Guidice [15]

As promised, we start from one of the simplest possible situations: a single free fermion

with mass <. For familiarity let’s call it an electron. From QFT, we know that we need to

use the Dirac Lagrangian to derive the equation of motion of spin-1/2 fermions. In the

position basis:

ℒ = #(8 /% − <)#, (1.1)

inwhichwe used the “Feynman slash notation”, �D%D ≡ /%, to contract the four-momentum

with the Dirac matrices ��. Using the Euler-Lagrange equations, we obtain the Dirac

equation:

(8 /% − <)# = 0, (1.2)

which is a differential equation with a plane wave solution of the form:

# =
∑
?

$(?)4 8?�G� , (1.3)

where the $(?) terms are the normalization coefficients for each momentum mode.

Let’s now try a first gauge transformation, that of the global unitary group of order

one, *(1). This group describes phase transformations of the wave-function without any

change in normalization such that unitarity is preserved. Applying this to a wave with a

single momentum mode:

#→ 4 8�# = $?4 8?�G
�+� , (1.4)

which is still a solution of theDirac equation. Let’s consider the effect of the transformation

on the Lagrangian:
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ℒ = #(8 /% − <)#→ #4−8�(8 /% − <)4 8�# = ℒ′. (1.5)

Since this is a global transformation, 4 8� is constant; thus, the contributions from # and

# cancel out and ℒ = ℒ′. Such transformations that leave the Lagrangian unchanged are

called global gauge symmetries, and are symptomatic of fundamental redundancies in the

mathematical description of the system.

This doesn’t seem very important or interesting. We simply pick the most convenient

representation for the task at hand from the gauge grouponce and for all; the choice doesn’t

fundamentally matter, since all these representations are exactly equivalent. But if indeed

they are, it’s not a big stretch to wonder why we have to pick only one representation

for all space-time; it might be logically or aesthetically pleasing to be able to smoothly

interpolate between different representations throughout space-time. In other words,

it’s almost unavoidable that we would ask ourselves what happens when we use a local
transformation group rather than a global one:

#→ Θ(G)# = 4 8@�(G)#. (1.6)

An explicit scale factor @ for the phase transformation was introduced, for reasons that

will soon become apparent. The dependence on space-time makes the Lagrangian non-

invariant under the transformation, since we get an extra termwhen taking the derivative:

%�#→ %(Θ#) = (%Θ)# + Θ%#, (1.7)

=⇒ ℒ → ℒ − #@ /%�(G)#. (1.8)

In plain English: the theory of the free electron does not satisfy local gauge invariance.

To make it so, the model needs to be extended; let’s start by introducing a gauge boson,

��, which we will call the photon, for familiarity. Our first task is to incorporate it in the

Lagrangian:

ℒ = #(8 /% − @ /� − <)#. (1.9)

Our second and final task is to modify the transformation to simultaneously act on both
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the electron and the photon:


# → 4 8@�(G)#,

�� → �� − %�(G).
(1.10)

Clearly, the extra−%�(G) term from the transformation of the photon cancels the unwanted

term in Eq. (1.8). Thus, the Lagrangian of Eq. (1.9) is invariant under the local gauge

transformation of Eq. (1.10). After having done so, the theory is no longer free since the

following term appeared in the Lagrangian:

8@ /�##, (1.11)

which is an interaction term between electrons and the force-carrying photon, with overall

strength governed by @, which we can call the electric charge, for familiarity.

In summary, we’ve started from the theory of the free electron, and we’ve seen that

requiring local gauge invariance forced us to introduce the photon in the theory. As a con-

sequence, there appeared an unavoidable interaction between electrons, which also gained

a charge. The resulting theory is called Quantum Electrodynamics [16–21], or QED, and it

is sufficient to accurately describe all electromagnetic phenomena. It is without a doubt

one of the most successful physical theories ever devised; for instance, the experimental

measurement of the electron’s magnetic moment matches the theoretical prediction up to

a 10−7% deviation [22]!

In the next few sections we follow the same simple procedure to derive the Standard

Model itself, in which QED is embedded.

1.1.2 SU(3): Quantum Chromodynamics

We’ve just seen how we can derive a realistic theory by starting from a free electron

and requiring invariance under the *(1) local gauge group. Let’s now try something a

little different – starting from free quarks [23], we’ll require invariance under local gauge

transformations described by the special unitary group of order 3, (*(3).
Instead of a single �(G) scalar term, the transformations corresponding to (*(3) are

generated by a basis of eight1 3 × 3matrices:

13 × 3 = 9, so why not nine parts? What makes this gauge group “special” is that the transformation

matrix has unit determinant, which removes one degree of freedom.
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( = �1)1 + �2)2 . . .�8)8. (1.12)

Here, the � terms are the Gell-Mann matrices. Let’s write the transformation a little more

explicitly for the :-th of the eight components in exponential form:

#→ (:# = 4
−8@�:):#. (1.13)

We already know what will happen, since it is analogous to Eq. 1.8; the free fermionic

Lagrangian acquires an extra term:

ℒ → ℒ − 8@#/%(�:):)#. (1.14)

We know what to do. First, add a gauge boson Λ: and obtain:

ℒ = #(8 /% − 8@�/Λ: − <)#. (1.15)

Then, add the Λ: transformation term, which takes care of the extra term. Are we done

now? If so, then the situation is quite similar to the QED case, with eight new bosons

instead of a single one. There is, however, one final piece missing. When we derived

QED, we obtained the Lagrangian of Eq. 1.9, but it is incomplete; it is missing the part

for the free boson, ��� = %��� − %���
. This was of no great consequence for this term

is trivially gauge invariant, but the situation is different in the SU(3) case. There are now

eight gauge bosons, each represented by a generator matrix; since matrix multiplication is

not commutative, the new free Lagrangian has a mixed terms that forbids us to think of

each of the eight transformations in purely separate terms:

�
��
:
= %�Λ�

:
− %�Λ�

:
− 2@

8∑
8 , 9=1

5:89Λ
�
8
Λ�
9 , (1.16)

where 5:89 are the structure constants of SU(3). The gauge transformation must account

for this extra term, and we end up with:
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Figure 1.1 –Color-changing interaction via gluon exchange. In the basis of the left diagram,

the gluon is in a superposition of color states, 6 = 1√
2
(1A + A1) [11].


# → 4 8@�:):#,

Λ
�
:
→ Λ

�
:
− %): − 2@

∑8
8 , 9=1 5:89)8Λ9 .

(1.17)

The implications are rich. First, since the (*(3) transformations are represented by 3×3
matrices, thewave-function#must have a three-component part that represents the charge

of the interaction (much like the electron became electrically charged when we added-in

the photons). The three components of the charge (*(3) charge basis are labeled red,

green, and blue; the resulting theory is called Quantum Chromodynamics [24–26], or QCD.

Particles that carry such charges are colored particles, and colored fermions are precisely

the three Standard Model quarks. Each color has to be represented, and since each quark

has single unit of color, there actually are three “copies” of each quark, one for each charge.

The theory gained eight bosons: the gluons, which form a color octet and allow for color

changing interactions as seen in Figure 1.1. Moreover, the appearance of terms involving

the (*(3) structure constant imply that gluons are self-coupled, that is, there exist 3- and

4-gluon interactions.

The full QCD Lagrangian is:

ℒQCD =

∑
@,2

#@,2(8 /% − <@)#@,2 (1.18)

−
∑
@,2,2′,:

#@,2B�:22′ /Λ:#@,2′ (1.19)

− 1

4
�:,���

��
:
, (1.20)

where @ indexes the quark flavor (6 in total), 2 and 2′ are color indices and : is the gluon
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Figure 1.2 – Through the renormalization procedure, a sum of a number of diagrams

involving the bare QCD coupling constant is replaced by a single diagramwith an energy-

dependent coupling [11].

index. The second term represent the quark-quark-gluon color-changing interactionswhile

the third term allows three- and four-gluon interactions, with the definition of the � term

given by Eq. 1.16. The B factor is the strong coupling constant, scaling the overall strength

of the interaction.

Taking B to be the QCD coupling constant is, however, misleading. This constant

enters mathematical expressions corresponding to individual Feynman diagrams (one

power of B for each vertex), but many such diagrams have the same initial and final states

and must be summed together when computing the amplitude for the corresponding

process. Moreover, diagrams with many vertices only contribute significantly when there

is enough energy to distribute between all its branches, and so the number of diagrams

that have to be considered in a computation is dependent on the momentum transfer &

of an interaction. This behavior can instead be absorbed in the definition of the coupling

constant through the renormalization procedure [27], in which the sum of all diagramswith

fixed couplings is replaced with a single diagram but with an energy dependent running
coupling, as can be seen in Figure 1.2.

This behavior is exhibited by all of the forces in the Standard Model, but the depen-

dence of B on the energy scale, shown in Figure 1.3, is a bit peculiar: as the energy

scale increases, the strong interaction amplitude decreases – a behavior termed asymptotic
freedom. In natural units, lengths are equivalent to Energy

-1
, and so high energy scales are

equivalent to small length scales. The implication for color interactions is that they are

very weak over small length scales; for instance, colored particles do not interact much

within the proton nucleus. Towards the low-energy limit, the behavior is reversed: as

the energy (length) scale decreases (increases), the color interaction amplitude increases.

Correspondingly, as colored particles radiate out of an interaction point, they tend to ex-

change gluons and sprout quark–antiquark pairs, and ultimately form colorless hadrons
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Figure 1.3 – Dependence of the strong coupling constant B on the energy scale of the

interaction, exhibiting the peculiar behavior of the strong force known as asymptotic

freedom: the strong force actually gets weaker and weaker as the energy scale of the

interaction increases [28].

through the color confinement hypothesis; this process is known as hadronization and

can be seen in Figure 1.4. The resulting collections of hadronic cascades, called jets, are
hallmarks of hadronic colliders. Their phenomenology is a bit problematic however, since

at energy scales characteristic of hadronization, B can become ' 1 and consequently

perturbative expansions cannot be used; instead, parameterized models such as the Lund
string model [29] must be used. Nevertheless, predictions based on such models have been

extensively studied at the LHC with satisfactory results; see, for example, Figure 1.5.

Another important consequence of confinement is that collisions between initial state

hadrons such as protons can give rise to interactions between gluons and quarks or an-

tiquarks beyond the valence quark content. In order to take this into account in theoret-

ical computations, a non-perturbative part must be factored out of the computation and

into experimentally-determined parton distribution functions, or PDFs, which describe the

quark/gluon densities as a function of the parton’s momentum fraction of the parton and

the energy scale of the interaction; see Figure 1.6 for an example.

1.1.3 SU(2) ×××U(1): The electroweak model

At this point in our journey, we have two forces: the Strong force of QCD, or the (*(3) part
of the SM, and the electrical force of QED, which needs to be incorporated into the SM. By
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Figure 1.4 – Hadronization via gluon exchange [11].
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Figure 1.5 – (a) Comparison of the detector-level jet ?T spectrum from different generators

and LHCdata for an inclusive jet sample in the |�| < 2.1 region. (b) Average transversemo-

mentum fraction � = ?particle
T

/?jet
T
, after unfolding to particle-level. Both plots show a good

agreement between data and simulation, confirming the soundness of the hadronization

model [30].
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Figure 1.6 – Graphical representation of the NNPDF3.0 proton parton distribution func-

tion [31], measured at two different energy scales (�2
), as a function of an individual

parton’s fraction of the overall proton momentum (G) [28]. Interestingly, the valance quark

content of the proton (two up-quarks and one down-quark) only dominates at large G,

while the gluon is by far the most abundant at low G.
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construction, QCD and QED are remarkably similar; pretty much the same procedure was

followed in both cases, with two different gauge groups. In these two models, interaction

vertices enter amplitude computations as vector currents proportional to #1�
�#2. As a

consequence, these interactions are parity invariant, meaning that they proceed in exactly

the same way under a sign change of the spatial coordinates. This seems almost trivially

true; and yet:

The physics community was stunned to learn in the 1950s that some events, unlike
billiard ball collisions, follow different rules in their mirror-image versions. [32]

This quotation refers to the 1957 experiment on �-decay performed by C.S. Wu et al [33],
which showed that parity isn’t always conserved. This discovery has a big implication for

particle physics: since both QED and QCD are structurally constrained to be transparent

to parity, then there must be another kind of interaction that doesn’t have this limitation.

In order to stay as close as possible to our previous path, we still want to proceed via

exchange of vector bosons, customarily called the,s. To break parity invariance, the new

interaction needs to have an axial-vector part, that is, ∝ #1�
��5#2, since axial-vectors do

not change sign under parity transformations. Experimentally, the structure is determined

to be “Vector minus Axial”, or V-A:

�� − ���5 = ��(1 − �5). (1.21)

In this expression, we find the left-handed chirality projection operator:

%! ≡
1

2
(1 − �5). (1.22)

This means that the , boson will only couple to left-handed particles (or right-handed

anti-particles): the Standard Model is a chiral theory.
The , is observed to couple together particles differing by a unit of electric charge;

therefore, there are really two such bosons, the ,+ and ,− ≡ ,±. The particles they

couple to are grouped in left-handed “doublets”, )!. Members of a given doublet have the

same value of weak isospin, �, , the charge governing this interaction, and consequently the

term “isospin doublet” is sometimes used. Doublets are formed either by lepton–neutrino

pairs or by different-flavor quark pairs; it is the only SM interaction that allows such

couplings, allowing phenomena such as charged pion decay to leptons and neutrinos, or

top decay to a bottom quark, as seen in Figure 1.7.
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(a) (b)

Figure 1.7 – (a) Charged pion and (b) top quark decays via the charged weak interaction.

Analogously to QED and QCD, we can derive the existence of the ,± bosons by

writing a Lagrangian for free isospin doublets and requiring local gauge invariance under

the (*(2) local gauge group. The derivation is very similar to the (*(3) case; the main

difference, of course, is that there are three generators instead of eight: ,1,,2,,3. Since

these bosons act on the doublet )!, they don’t correspond directly to the physical bosons,

which couples to actual particles; the physical bosons are actually linear combinations of

,1,2,3 that pick out particles from the doublets. Following Thomson [11]:

1√
2
(�1 + 8�2) =

√
2

(
0 1

0 0

)
, (1.23)

1√
2
(�1 − 8�2) =

√
2

(
0 0

1 0

)
. (1.24)

And so the two corresponding currents will pick out particles from the doublets:

9
�
+ ∝ (�! 4!)��

(
0 1

0 0

) (
�!
4!

)
= �!�

�4! = ���%! 4 , (1.25)

9
�
− ∝ (�! 4!)��

(
0 0

1 0

) (
�!
4!

)
= 4!�

��! = 4�
�%! �. (1.26)

This is exactly what is needed. Therefore, the physical, bosons are:
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,± =
1√
2
(,1 ∓ 8,2). (1.27)

What about the,3? It cannot account by itself for the experimentally-motivated neutral

current since it needs to also couple to right-handed particles. The solution is simple:

(*(2) → (*(2) ×*(1). . (1.28)

That is, we need yet another *(1) gauge boson, the ��. It can’t just be the QED photon

since experiments pointed to a massive neutral boson (as for the ,±), hence the . suffix

appended to the gauge group in the equation below which stands for the hypercharge, the
charge governing the neutral part of the electroweak model.

Amazingly, by including this boson, the need for QED as a standalone theory is com-

pletely removed. The price to pay for this electroweak unification is to introduce a new free

parameter in the model, the weak mixing angle, �W. Then,

(
��

/�

)
=

(
cos�W sin�W

− sin�W cos�W

) (
��

,3,�

)
, (1.29)

where �� is the photon and /� is the required neutral weak boson.

There is, however, one thing that needs to be taken care of before calling it a day. We’ve

mentioned how the weak gauge bosons are massive, and that they entered the theory via

local gauge invariance, as they should. This poses a great problem: local gauge invariance

forbids such massive force carriers. It even forbids fermion masses, and we know for sure

that electrons are massive! Do we get rid of the local gauge principle, then? We don’t need

to; we simply add the missing piece, which takes us from a locally gauge invariant model

to the real world : the Higgs mechanism [34–36].

In the Higgs mechanism, two scalar fields, one charged and one neutral, enter the

theory in a single complex doublet )ℎ . Analogously to what we did before, we start with

the Lagrangian for a non-interacting Higgs:

ℒh = (%�)h)(%�)h)† −+()h). (1.30)

It is customary to work in the unitary gauge, in which the charged Higgs and the imaginary
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Figure 1.8 – Higgs field potential, for different �2
regimes. The �2 < 1 case is realized in

nature, and the resulting potential exhibits a so-called “Mexican hat” shape, which implies

a non-zero vacuum expectation value of the Higgs field.

part of the neutral Higgs are absorbed as longitudinal polarization modes of the W and Z

bosons:

)h =
1√
2

(
0

)0(G)

)
, )0(G) ∈ R. (1.31)

The potential +()0) has the form:

+()0) = �2))† + �())†)2. (1.32)

As seen in Figure 1.8, this potential potential has minima away from zero for the �2 < 0

case, which is realized in nature:
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〈0|)0
ℎ |0〉 = E. (1.33)

Thismotivates a changeof variable of theHiggs as aperturbation away from thisminimum:

)0 = E + ℎ(G). (1.34)

Therefore, any particle that couples to the Higgs field then acquires a mass proportional

to the vacuum expectation value. For a vector boson +�
this would look like:

1

2
)ℎ(G)+�+� =

1

2
E+�+

� + 1

2
ℎ(G)+�+�. (1.35)

Indeed, the first term on the right is a kinetic energy term with mass <+ = E.

Let’s see how thisworks out in ourmodel. First, the,1,2,3 and �� bosons are introduced

in the Higgs Lagrangian such that the whole thing is locally gauge invariant. Using the

covariant derivative notation:

ℒℎ → (��)ℎ)(��)ℎ)† −+()ℎ), (1.36)

�� ≡ %� + 8 6w

�8 ·,�
8

2
+ 8 6′.

2
��. (1.37)

Expanding this Lagrangian, we get the following kinetic term for,1,2:

E2

8
62
F

(
,1 ,2

) (
1 0

0 1

) (
,1

,2

)
=

1

2

(
,+ ,−

) (
<2
,

0

0 <2
,

) (
,+

,−

)
. (1.38)

And so:

<, =
1

2
6wE. (1.39)

A similar procedure for,3 and � yields:
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<Z =
1

2
E

√
62

w + 6′2. (1.40)

Thus, through electroweak symmetry breaking by the Higgs mechanism, the, and / bosons

are permitted to have a mass, but the Lagrangian of Eq. 1.36 is still locally gauge invariant2.
Comparing Equations 1.39 and 1.40:

<Z = <W

√
62

w + 6′2
6w

≡ <W

cos�W
. (1.41)

Here, �W is the same “weak mixing angle” than that of Eq. 1.29; it allows the electromag-

netic coupling and charge of QED to be expressed in terms of the electroweak parameters:

4 = 6w sin�W = 6′ cos�W , (1.42)

@ =
.

2
+ �, . (1.43)

Let’s briefly recap. Left-handed fermions of the Standard Model were placed in left-

handeddoublets; requiring that thesedoublets’ Lagrangians be invariant under(*(2) local
gauge transformation, wededuced the existence of the,1,2,3 bosons. Correspondingly, the

model gained a charge: weak isospin, �F . Another gauge group,*(1). , was used to imply

the existence of the �� bosons, which mixes with the,3 to give rise to the / boson and the

photon. Another charge appeared, the hypercharge.. Local gauge invariance of theHiggs

field under (*(2) ×*(1). was then required, which explains the origin of masses, and the

breaking of the (*(2) ×*(1) sector into weak charged, weak neutral, and electromagnetic

interactions. This is the Electroweakmodel [38–40]; the physical Higgs boson was observed

in 2012 by the ATLAS and CMS collaborations [2, 3], finally confirming its validity.

1.1.4 Summary: The complete Standard Model

We are now ready to write the full standard model Lagrangian. Schematically, we can

break it down into the following constituent parts:

ℒSM = ℒmatter + ℒQCD + ℒEWK + ℒHiggs. (1.44)

2“The global minimum of the theory defines the ground state, and spontaneous symmetry breaking implies that
there is a (global and/or local) symmetry of the system that is not respected by the ground state.” [37]
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The first part, ℒmatter, is the kinetic term for all Standard Model fermions:

ℒmatter =

∑
5 ∈SM

#(8 /% − < 5 )#. (1.45)

Here, the sum runs over all fermions. Their masses are generated by interactions with

the Higgs field, as is the case for the electroweak bosons; however, the SM does not

provide prediction for their observed values and so they enter themodel as free parameters

constrained by experiment: three for the charged leptons (electron, 4; muon, �; tau, �) and

six for the quarks (up, D; down, 3; strange, B; charm, 2; bottom, 1; top, C). The SM also

includes an anti-particle for each fermion, differing by one unit of electric charge – both

constituent of particle–antiparticle pairs have the same mass. Similarly, there are three

color-differing copies of each quark with the same mass. In the vanilla Standard Model,

the three neutrinos (�4 , �� and ��) are assumed to be massless3. The SM fermions can be

grouped into three generations ordered by increasing mass, separately for the leptons and

the quarks: (
4−

�4

)
,

(
�−

��

)
,

(
�−

��

)
, (1.46)(

D

3

)
,

(
2

B

)
,

(
C

1

)
. (1.47)

The ℒQCD term describes color-changing interaction via gluon exchange:

ℒQCD = −
∑
@,2,2′,:

#@,2B�:22′ /Λ:#@,2′ −
1

4
�:,���

��
:
. (1.48)

The sum runs over quarks (@), color (2 and 2′) and gluons (:). This term contains another

free parameter: B , which governs the strength of the strong interaction; the gluon itself

remains massless.

The ℒEWK term represents the electroweak interaction before gauge symmetry break-

ing:

3Of course, they are known to be massive. The actual values are under-constrained, but they are known

to be extremely small; therefore, in collider physics it is of no great consequence to ignore this complication.
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ℒEWK = −
6w

2

∑
)!

)!(�1,2,3 ·,1,2,3;�))! −
6′

2

∑
5

# 5 (.,��)# 5 . (1.49)

Here we have the remaining two free parameters associated to gauge couplings, 6w and 6′.

The part involving the W bosons couple together “left-handed doublets” and is the chiral

part of the model. Flavor-changing interactions involving quark doublets are under-

constrained, and four additional parameters are needed to describe them through the

CKMmatrix [41, 42].

Finally, we have the Higgs sector:

ℒHiggs = (�))(�))† − �2))† + �())†)2, (1.50)

� ≡ % + 8 6w
�8 ·,8

2
+ 8 6′.

2
��. (1.51)

We find here the remaining SM parameters – The Higgs parameter, �2
, which sets the

“bare” (non-renormalized) mass of the Higgs, <
(0)
ℎ
=

√
2�2

. The observed mass of the

Higgs, which differs from the bare value due to higher-order loop diagrams, is our last

parameter of interest, <ℎ .

So there we have it, the StandardModel in all its glory: 15 fermions, eight gluons, three

electroweak gauge bosons and one Higgs boson, interacting together through the chromo-

dynamic, electroweak, and Higgs sectors. Its gauge-theory based theoretical structure is

parameterizedby 18 free variables4. This theoryhas passed a large number of experimental

tests with great success, as can be seen for example in Figure 1.9.

1.2 Problems with the Standard Model

In the previous few sections, we’ve seen how the StandardModel is a theoretically sophis-

ticated and experimentally successful theory of nature. However, it is not perfect; there

are a some problems that still subsist. To name a few:

• The energy gap between the Plank andweak scales,"% and", , is very large, which

4There is an additional parameter, the “QCD vacuum angle” (�QCD), which in principle allows for CP-

violation from QCD interactions; this parameter is experimentally constrained to be ≈ 0. There are also

further parameters describing non-zero neutrino masses (grouped into the the PMNS matrix), which do

not arise out-of-the-box in the Standard Model but are needed to explain phenomena such as neutrino

oscillations. These topics are out of the scope of this thesis.
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Figure 1.9 – Summary of several ATLAS Standard Model total production cross section

measurements, corrected for branching fractions, compared to the corresponding theoret-

ical expectations and ratio with respect to best prediction. [43].
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implies an unnatural fine-tuning of the Higgs mass;

• Astronomical observations of Dark Matter and Dark Energy are not accounted for;

• Gravity is not accounted for;

• The theory is not completely unified, as the electroweak model and QCD require

separate descriptions;

• Thematter–antimatter asymmetryobserved inouruniverse require additional sources

of �% violation beyond the SM mechanisms;

• Neutrino masses are not accounted for;

• The energy gap between the SM vacuum expectation value and the observed cos-

mological constant Λ0 is extremely large, implying an unnatural fine-tuning of Λ0 to

120 orders of magnitude.

For this thesis however, we only need to look into the first two problems in details.

The hierarchy problem and the closely related Higgs fine-tuning problem and numerical

naturalness principle are discussed in Section 1.2.1, and the subject of Dark Matter is

treated in Section 1.2.2.

1.2.1 Naturalness

Let’s first define the concept of numerical naturalness, as it relates the the construction of

physical theories. In his 1985 paper “Naturalness in theoretical physics” [44], PhilipNelson

states the problem:

“ (...) we have a strong naturalness problem whenever the set of theories which
even remotely resemble our world is a tiny subset of all the acceptable theories. We
must cure the problem by slicing the latter class down to size. This entails finding
some new principle which renders most of its members unacceptable, leaving only a few
— including of course at least one of the desired theories. In this way, theorists often
permit the introduction of new structures into their theories, even when they are not
strictly called for by observation. ”

For example, remember the QCDmodel introduced in Section 1.1.2. We could have just

started by positing the existence of the eight gluons and not bother with local gauge sym-

metry – this principle has no direct phenomenological consequence after the appearance

of the gauge fields and the subsequent gauge symmetry breaking. However, this leaves us
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with a little too much freedom: the resulting equations still need to have the same exact

form for the theory to match observations, but there is no underlying principle to help

us understand why these are the right equations. Different versions of these equations,

with different numbers of gluons for example, might lead to universes very different from

our own, which means that we live in a very specific realization. Why this one instead

of another? Requiring that QCD be an (*(3) local gauge theory allowed us to start with

less assumptions, and automatically exclude a lot of competing theories, even if this is not

strictly needed after we have obtained the Lagrangian. It makes the theory more natural

in the sense that the appearance of exactly the right eight gluons is unavoidable once we

require invariance under the right gauge group.

However, there is at least one area of themodel that suffers from a naturalness problem.

It is related to what is known as the hierarchy problem [45–47], that is, the extremely large

energy gap between the Planck and weak energy scales. Since the Standard Model is an

effective theory, it is only valid up to its ultraviolet cutoff, ΛUV. Above this energy, there

needs to be a new theory in which the SM is embedded; However, as Stephen Martin

explains, the Higgs potential exhibits “a disturbing sensitivity to new physics in almost

any imaginable extension of the Standard Model” [48].

Let’s make this more concrete. The expression of the Higgs mass can be schematically

broken into two parts, corresponding to the bare mass and the radiative corrections due

to the higher-order diagrams [49]:

<2
h = <

2
h,0 + ��<

2
h (1.52)

At one-loop level, the radiative contribution to the Higgs boson mass from a massive

fermion has the following form [48]:

�<2
h = −

|� 5 |2

8�2
Λ2
*+ + O

(
<2
5 log

ΛUV

< 5

)
, (1.53)

where � 5 is the strength of the Yukawa coupling between the fermion and the Higgs.

Gravity, as described rather successfully by general relativity [50], is not compatible

with the Standard Model [51]. This means that ΛUV is at most in the vicinity of the re-

duced Planck mass,"? ≈ 1018
GeV5,at which gravitational effects become non-negligible.

Consequently, based solely on Eq. 1.53 we should a priori expect the Higgs mass to be

5In natural units, 2 = ℏ = 1, and therefore masses are quantified in units of energy.
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proportional to the reduced Planck mass:

<� ∝ "? . (1.54)

However, the observed Higgs boson mass is at the level of the weak scale, a posteriori
leading us to posit:

<� ∝ �−1/2
�

, (1.55)

where �� is the Fermi constant, which quantifies the electroweak scale. If equation 1.54 is

the right relation, the constant of proportionality (� in Eq. 1.52) has to be incredibly small,

in the order of (
√
��"%)−1 ≈ 10−16

! Why this one, instead of another6?.

There are a few proposed solutions to this problem, the first of which is basically to

ignore it. In that case, we simply accept that the low- and high-energy sectors of the SM do

not decouple when computing the Higgs mass, in contrast to the rest of the model, which

is unaffected by ultraviolet parameters [52, 53]. However, a successful theory would still

need to explain why that is, or equivalently why is the �
−1/2
�
/"% ratio so large [15]. For

example, the anthropic principle states that if the ratio was anything other than something

close to 10−16
, it would be very unlikely for the universe to sustain life, at least in a form

that we can recognize; the equation has to be exactly this way for us to even exist and

write it down. To side-step problem of naturalness, we can posit the existence of many

different parallel universe, contained in a multiverse. Each of these universes is allowed to

have different values of fundamental constants, and by definition we happen to live in a

universe that has the right conditions for emergence of large-scale structures and complex

life [49].

Actually fixing the problem comes a hefty price: new physics has to be introduced

somewhere between the weak and the Planck scale in order to somehow tame the Λ2
UV

term. Let’s make this explicit and assume that there exists a mechanism to cancel it

out. What about the remaining O
(
<2
5
log(ΛUV/< 5 )

)
contribution from Equation 1.53?

Because of the <2
5
dependency, the biggest contribution of this form comes from the top

quark whose mass, like the Higgs, is at the level of the weak scale. The induced correction

6In the words of Gian Giudice: “Just to get a feeling of the level of parameter tuning required, let me make a
simple analogy. Balancing on a table a pencil on its tip is a subtle art that requires patience and a steady hand. It is a
matter of fine tuning the position of the pencil such that its center of mass falls within the surface of its tip. If R is the
length of the pencil and r the radius of the tip surface, the needed accuracy is of the order of A2/'2 . Let us now compare
this with the fine tuning in �. The necessary accuracy to reproduce [(

√
��"%)−1] is equal to the accuracy needed to

balance a pencil as long as the solar system on a tip a millimeter wide! (. . . ) This has led to a widespread belief among
particle physicists that such an apparently fantastic coincidence must have some hidden reason.” [49].
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is, roughly,

�<2
ℎ

<ℎ
∝
<2
C

<ℎ
log

ΛUV

<C
. (1.56)

With<C and<ℎ at the weak scale ≈ 102
GeV andΛUV ≈ 1018

GeV, a simple Fermi estimate7

yields:

�<ℎ

<ℎ
≈ 10. (1.57)

In other words, if we can make the O(Λ2
*+
) term disappear, the observed mass of the Higgs

boson is approximately within an order of magnitude from what is expected from the

mass computation, which would mean that the observed relationship equation 1.55 is the

right one.

What can be said about the mechanisms that could solves the Λ2
UV

problem? One

solution would be to push down ΛUV nearer to the weak scale; this is what happens in

extra-dimensions models, in which the characteristic energy scale of gravity is O(TeV) but
appears much larger because it is diffused in these extra dimensions, which are invisible

to the other forces [54]. There are also hypothetical models of composite Higgs [55] in which

the Higgs mass is dynamically generated by its constituents and no fine-tuning problem

arises.

Another, perhaps more elegant solution is to protect the Higgs mass from large higher-

order corrections by introducing a new symmetry. The idea is not far-fetched; for instance,

large corrections to fermion masses via self-energy diagrams involving photons are for-

bidden by the chiral symmetry of QED [52]. For now, let’s just note that the contribution

to the Higgs mass from a new heavy scalar particle ( would take the form [48]:

�<2
ℎ =

�(
16�2

Λ2
*+ + O

(
<2
( log

ΛUV

<(

)
. (1.58)

Notice the sign difference relative to equation 1.53:

�<2
ℎ = −

|� 5 |2

8�2
Λ2
*+ + O

(
<2
5 log

ΛUV

< 5

)
, (1.59)

As we shall see in Chapter 2, such expressions arise in the context of supersymmetric

extensions of the Standard Model.

7https://en.wikipedia.org/wiki/Fermi_problem
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1.2.2 Dark Matter

Dark Matter is a term encompassing a family of hypothetical massive particles whose

presence in the universe is hinted at by many supporting observations that show a large

amount of massive, non-luminous matter that is unaccounted for in the Standard Model.

Galactic rotation curves

One of the better known supporting evidence for this “missing” matter is found in the

study of the orbital velocity of light-emitting bodies in spiral galaxies. Indeed, there is

a relationship between the rotational speed of an object at a distance A from the galactic

center and the galaxy’s mass distribution <(A) due to Kepler’s third law:

E(A) ∝
√
<(A)
A

. (1.60)

Fromobservation of light emitted fromgalaxies and through the use ofmass-to-luminosity

ratios, it was long thought that most of the spiral galaxies’s mass is distributed near their

center. Within this region, the totalmass enclosedwithin an orbit growswith the volume it

encloses while outside of this massive center, the remaining mass due to luminous matter

can be neglected and the enclosed mass is approximately constant [56]. Thus:

E(A) ∝

A near the galaxy’s center,

1/
√
A out of the center.

(1.61)

The advent of radio-wave astronomy in the second part of the 20th century allowed scien-

tists to measure these rotational curves by studying the Doppler shifts of electromagnetic

radiation emitted by stars and gas at well-defined wavelengths. The results from such

observations are at odds with the behavior prescribed by Eq. (1.61): the measured rotation

curves show a roughly constant velocity out of the galaxy’s center as seen in Figure 1.10.

This implies that a large portion of the mass of spiral galaxies is due to non-luminous,

“dark” matter [57, 58].

Gravitational lensing and the bullet cluster

The phenomenon of gravitational lensing is without a doubt one of the most startling

implications of general relativity; it states that even though light is massless, its path is
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Figure 1.10 – Rotational curve for the NGC 2998 galaxy in Ursa Major, measured from its

hydrogen-alpha emission spectrum [59].

still affected and can be bent by gravity. One important implication is that by analyzing

data from distant light sources from the universe, one can infer the mass distribution in

between the sources and the observation point. Such techniques have been used to study

the Bullet cluster, which consists of two merging (or colliding) clusters of galaxies. As

seen in Figure 1.11, the luminous matter distribution is peaked at the center of the system,

roughly at the collision point, while the mass distribution inferred from gravitational

lensing has two peaks on either sides of the collision area. These non-luminous matter

peaks are thought to be a strong hint of presence of the darkmatter in the colliding clusters;

since dark matter does not interact strongly or electromagnetically, it is more or less free

to pass straight through the collision center, as opposed to luminous matter that is seen to

stay in the center of the system [60].

The Cosmic Microwave Background and the The Λ��" model

Another piece of evidence in favor of dark matter comes from measurements of the

anisotropy of the cosmic microwave background (CMB). This microwave background

originates from the the early universe, at a time at which its density had decreased enough

through expansion that photons started escaping from the plasma originating from the

Big Bang – the era of last scattering. Since photons were previously confined to areas of

high density, by measuring temperature fluctuations in the CMB we obtain a map of the

baryonic structures present in the early universe. In practice, the scales of these structures

is inferred by measuring the temperature of the CMB in a multipole expansion. In a uni-

verse only containing baryonicmatter, the energy at highermultipolemoments tends to be

diffused, since electromagnetic interactions before the recombination of baryonic matter
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Figure 1.11 –Overlay of themass contours inferred from graviational lensing and (a) amap

of visible light and (b) a map of x-ray spectrum radiation from the Bullet cluster, showing

that the mass distribution has peaks on either sides of the center [60].

in neutral atoms exerts too much outward pressure at small length scales. However, mea-

sures of the CMB by various satellites show clear peaks at these higher-order moments,

which indicates presence of neutral (“dark”) massive particles that allowed formation of

such structures by gravitational pull [56], as seen in Fig. 1.12a.

This is epitomized in the Λ��" model, sometimes called the “Standard Model of cos-

mology”. This model describes very successfully the structure of the CMB by including

non-charged matter with velocity� 2; hence the name of “Cold Dark Matter”8. Surpris-

ingly, according to Λ��" , baryonic matter accounts for about only 26.6% of all matter

in the universe, the rest being made up of cold dark matter for which science has yet to

experimentally observe a live specimen [63].

WIMP dark matter candidates

The prime candidate for particle darkmatter9 is a “WIMP”, or “Weakly InteractingMassive

Particle” [66]. Naively, it may seem that the SM neutrinos would be good such candidates:

8Models allowing relativistic dark matter generally fail to correctly describe how matter clusters at

different scales in the universe.

9There are other possible ways of accounting for observations of dark matter. An obvious solution would

be that of modifying the mathematical description gravity; this is the “MOdified Newtonian Dynamics”

(MOND) solution [64]. However, such models have historically been much less experimentally successful

than the Λ��" model, which assumes existence of particle dark matter [65].
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(a)
(b)

Figure 1.12 – (a) WMAP seven-year data [61] overlaid with various predictions showing

how the baryon and dark matter fractions, Ω1 and Ω3< , affect the CMB anisotropy [56].

(b) Power spectrum measured from the Planck 2018 results, which are used to compute

the current values of Ω1 and Ω3< [62].

they only interact weakly, and their masses, while still under-constrained by experiments,

are known to be non-zero. However the very small upper bound on the neutrino masses

implies that they are always relativistic and thus not viable cold dark matter candidates.

Thus, a WIMP solution to the dark matter problem implies beyond-the-Standard-Model

(BSM) physics. As we will see in Section 2.1.1, such particles naturally arise in just the

right amount in many R-parity conserving supersymmetric extensions of the SM.

1.3 Conclusion

In this foundational chapter, we have first seen how the Standard Model arises in a sur-

prisingly simple and elegant manner from its (*(3) × (*(2) ×*(1) local gauge structure.
Conceptually, it contains two sub-theories, Chromodynamics and the Electroweak model,

which have both been extensively validated by experiments. Nonetheless, we’ve also seen

that some important problems remain, and we’ve discussed in some details two of them:

the hierarchy and the dark matter problems. In the next chapter, we’ll review a well-

known framework that could be used to extend the Standard Model and solve the two

aforementioned problems: supersymmetry.
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Chapter 2

Supersymmetry

Supersymmetry (SUSY) [67–72] is an extension of the space-time symmetries that trans-

forms bosons into fermions, and vice-versa. The idea of such an operation originated in

the late 60s and early 70s independently in the Western world and in the Soviet Union [73]

but, as seen in Figure 2.1, the idea really took off in the early 80s, concurrently with the

realization that this new kind of symmetry could solve the naturalness problem of the

Higgs sector [74, 75], discussed in Section 1.2.1.

Figure 2.1 – Number of published papers about supersymmetry and supergravity (a

locally-invariant version of SUSY) per year in the 70s and 80s [73].

We start with a theoretical overview in Sec. 2.1, motivating the search for supersym-

metric partners of the gluon and third generation quarks, followed by a status review of

the experimental search for such particles in Sec. 2.2.



2.1 Theoretical overview

Note: unless otherwise noted, this section is based on References [48, 52, 76–78]

Supersymmetry is not an actual theory, but simply the idea of a symmetry operation

relating bosons and fermions. To obtain a properly supersymmetric theory, we must

construct a Lagrangian in which this symmetry is manifest.

Analogously to the chiral multiplets introduced when discussing the electroweak

model (Section 1.1.3), particles related by a supersymmetric transformation are arranged

in supermultiplets. These must possess the following properties, among others:

1. Within a supermultiplet, particles must have the same basic properties except for

spins, which must differ by 1/2 between the fermions and the bosons;

2. When a spin-1 boson and a spin-1/2 fermion are together in a supermultiplet, both

chiral components of the fermion transform under the same gauge group as the

boson;

3. Within a supermultiplet, the number of fermionic and bosonic degrees of freedom

must be equal.

The first property has an important consequence: it effectively forbids supermultiplets

populated by SM particles only. Therefore, SUSY requires BSM physics. The second and

third properties allow us to decide how to place SM particles in supermultiplets – let’s

begin with the case of SM fermions. Since they exhibit chiral behavior, by property two

they can only form multiplets with scalar bosons. Again, since they are chiral objects, by

property three the simplest possible supermultiplet involving an SM fermion additionally

contains two scalar fields (or a single complex field) and is called a chiral supermultiplet.
A single free chiral supermultiplet consisting of a fermion,#, and two scalar bosons, )1

and )2, is already enough to build a basic supersymmetric theory, called theWess-Zumino

model [69]1:

ℒWZ =
1

2

(
8#/%# + (%�)1)2 + (%�)2)2

)
. (2.1)

A supersymmetric transformation mixes the scalar bosons and fermions:

1To simplify, here we are ignoring the complications due to “auxiliary fields”, which do not correspond

to physical degrees of freedom.
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#→ # + /%)1 + 8 /%)2, (2.2)

)1→ )1 + 8�5#, (2.3)

)2→ )2 − #, (2.4)

where  is a spacetime-independent anti-commuting spinor that ensures that various

terms have consistent dimensionality and which parameterizes the transformation. The

Lagrangian of Eq. 2.1 gains an extra term, which fortunately disappears after applying the

Euler-Lagrange equation. Therefore, the theory is invariant under this specific supersym-

metric transformation.

StandardModel vector bosons are placed in supermultiplets with their spin-1/2 super-
partners2, called gauginos, to obtain vector supermultiplets. An example of a supersymmetric

Lagrangian involving a such a supermultiplet would be

ℒE = −
1

4
�0���

0,�� + 8�0,†��(%��0 + 6
∑
1,2

5 012�1��
2), (2.5)

where �� is the vector boson with kinetic term ���, � is the gaugino, �� is an anti-

commuting spinor (again to ensure the right dimensions between the different terms) and

the 0, 1 and 2 indices run over all the generators of the appropriate gauge group. A

supersymmetric transformation for this supermultiplet mixes the vector bosons and the

fermions:

�0�→ �0� −
1√
2
(&†���0 + �0,†��&), (2.6)

�0 → �0 + 8

2
√
2
(����&)�0�� . (2.7)

The & factor parametrizes the transformation. Both transformation “mix” the SM bosons

and the gauginos, and again we have a supersymmetric Lagrangian.

2The spin=3/2 case makes the theory non-renormalizable
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2.1.1 The Minimal Supersymmetric Standard Model

We’ve just seen how it’s possible to create supersymmetric Lagrangians by placing an

SM fermion in a chiral supermultiplet with two new scalar fields, and by placing an SM

boson into a vector supermultiplet with a fermionic gaugino. Moreover, the supersym-

metric Lagrangians of Equations 2.1 and 2.5 are built from the same components as the

full Standard Model (Section 1.1); therefore, we only need to construct chiral and vector

supermultiplets involving SM particles to obtain the Minimal Supersymmetric Standard

Model, or MSSM [79, 80].

As explained in the previous section, each StandardModel fermion is put into a super-

multiplet with two scalar fields. These supersymmetric particles are named by prefixing

the name of their SM partner with the letter “s” (for “scalar”), and are symbolized by a

tilde. For examples, the superpartners of the top (C) and bottom (1) quarks are the stops

(C̃', C̃!) and the sbottoms (1̃', 1̃!), respectively. Each chiral component gets its own super-

partner, but in general the mass eigenstates will be linear combinations; these are denoted

by a numeric index ordered by mass (for example, the C̃' and C̃! can mix to form C̃1 and C̃2,

with the first one being lightest).

The supersymmetric partner of an SM boson is named by appending the suffix “-ino”

to their partner’s name. Therefore, the gluon is associated to the gluino (6̃). The situation
is a little more complicated for the electroweak sector: the gauge bosons are associated

to the gauginos, namely, the Winos (,̃1,2,3) and the Bino (�̃); the Higgs sector has to be

enlarged to avoid gauge anomalies [81], and consist of two complex Higgs doublets and

their superpartners, theHiggsinos. As a consequence of (*(2) ×*(1) symmetry breaking,

the Higgsinos and gauginos mix into charged and neutral states, the charginos "̃±
8
and

neutralinos "̃0
8
, whose indices are also mass-ordered.

In total, the MSSM adds a whopping 105 free parameters to the 18 parameters of

the Standard Model: 36 parameters expressing the mixing of supersymmetric particles

(often called “sparticles”), intomass eigenstates; seven parameters governing CP-violation

in the extended electroweak sector; 40 parameters governing CP-violation in sfermionic

interactions; and 21masses. All the SM particles alongwith their respective superpartners

are shown in Figure 2.2

Supersymmetry breaking

Earlier in this chapter, we mentioned how all particles in a supermultiplet must have the

same properties save for their spin. This effectively constrains supersymmetric particles

to have the same masses as their SM partners. This is a problem, since if that were the
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Figure 2.2 – Standard model particles along with their supersymmetric partners [82].

(Hidden sector)
(Visible sector)

Supersymmetry

breaking origin
     MSSMFlavor-blind

interactions

Figure 2.3 –Hypothesized Supersymmetry breakingmechanisms usually involve a hidden

sector, which couples only to the supersymmetric sector of the MSSM [48].
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case the universe would probably be a very different place than it appears now; at the

very least, superpartners of stable SM particles would have been observed already, which

is manifestly not the case. The implication is clear: either SUSY is not realized in nature,

or it is a broken symmetry.

Since the exact breaking mechanism is unknown, the masses and the mixing parame-

ters of supersymmetric particles cannot be predicted out-of-the-box in the MSSM, which

explains why we need what seems like an absurd amount of additional free parameters.

There are a few hypothesis as to what a viable SUSY breaking mechanismmight look like,

and they all reduce the number of additional parameters to less than a dozen. Most break-

ing mechanism split the MSSM into a visible sector, which includes the SM, and a hidden

sector, which is completely decoupled from the SM but not from the supersymmetric part

of the visible sector, as can be seen in Figure 2.3; these hidden–visible couplings effectively

raise the sparticle masses beyond that of their SM partners. For example, the hidden sector

might be an additional gauge sector, as in the “GMSB” model [83–85], or can be related to

gravity, such as in the minimal SuperGravity (mSUGRA) model [86–88].

The Higgs mass in the MSSM

We’ve seen in section 1.2.1 how in the Standard Model the Higgs boson mass receives

large contributions at one-loop level proportional to the square of the ultraviolet cutoff

from massive fermions:

�<2
h, 5 = −

|� 5 |2

8�2
Λ2

UV + O
(
<2
5 log

Λ*+

< 5

)
. (2.8)

In the MSSM, each of the associated scalars in the chiral supermultiplet containing the

fermion also contributes:

�<2
h,B =

�(
16�2

Λ2
UV + O

(
<2
( log

Λ*+

<(

)
. (2.9)

Two things are worth noting about the O(Λ2
*+
) terms of these two equations: their signs

are opposite, and they differ by a factor 2 if �B = |�2
5
|3. Each chiral supermultiplet will

contribute two additional diagrams beyond the top contributions, as seen in Figure 2.4,

and the three O(Λ2
*+
) terms will sum to zero. This procedure is not ad-hoc; it’s a direct

consequence of the new symmetry introduced in the MSSM and therefore the result holds

for all fermions and at all perturbative orders. Because of supersymmetry breaking,

3This relationship always holds in unbroken SUSY, and is also valid when SUSY is broken by a hidden

sector.
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Figure 2.4 – One-loop contributions to the Higgs mass from the top quark supermulti-

plet [48].

Figure 2.5 – Gluino contribution to the Higgs mass at two-loop level [89].

the magnitude of the remaining correction is then dominated by the scalar’s mass, which

shouldn’t be too far above the electroweak scale if thefine-tuning is to bekept at aminimum.

The highest mass fermions being the top and bottom quarks at ≈ 175GeV and ≈ 4GeV,

respectively, the stops and the sbottoms cause the largest remaining corrections to theHiggs

mass. It is also worth noting that the stop and sbottom masses themselves get important

corrections from the gluino and consequently so does the Higgs, once the computation

accounts for two-loop effects as seen in Figure 2.5. Therefore, if the fine-tuning problem

is to be solved in the MSSM, these three supersymmetric particles must have masses not

too far above the electroweak scale and as a consequence would be likely to be produced

at TeV-scale colliders such as the LHC.

It is possible to quantify the amount of fine-tuning introducedby aparticular realization

of the MSSM mass parameters, by using the Barbieri-Giudice measure [90, 91]:

Δ ≈ max
"∈MSSM

�����"2

<2
h

%<2
h

%"2

����� , (2.10)

where " stands for any MSSM mass parameters. This measure probe the sensitivity of

the Higgs mass to perturbation of ". Figure 2.6 shows an example of the use of this

measure in the stop–gluino mass plane, using precision computations for the sparticles

contributions to the Higgs mass; it shows that a sizable part of this phase-space can lead
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Λ=�� ���

(a) SUSY breaking scale Λ = 20 TeV

Λ=��� ���

(b) SUSY breaking scale Λ = 100 TeV

Figure 2.6 – Higgs mass fine-tuning introduced by the gluino and stop masses ("3 and

"&3) estimated with the Barbieri-Giudice measure (Eq. 2.10) with two different values of

the SUSY breaking scale [91].

to minimally fine-tuned models even with TeV-scale masses.

The “Electroweak measure”, Δ�, , is an alternative way of quantifying the amount of

fine tuning which defines a minimally fine-tuned model as one where all SUSY contribu-

tions to the Higgs scalar potential +()) are of order <2
/
/2 [92–94]:

ΔEW = max
�

����� �

<2
Z
/2

����� . (2.11)

Here, the � terms are individual SUSY contribution terms involved in the <2
/
/2 compu-

tation. If some terms contribute substantially more than <2
/
/2, then the / mass becomes

fine-tuned. The study performed in Ref.[94] attempts to probe the fine-tuning introduced

by many different realizations of SUSY breaking models using both measures. As seen in

Figure 2.7, there are still many unexcluded models with low fine-tuning and which are

consistent with the currently observed bounds on the dark matter relic density.

R-parity conservation and dark matter

The lightest neutralino, "̃0
1, is of particular interest because of the principle of R-parity

conservation [96]. Every particles of the MSSM has an R-parity number constructed from

its baryon and lepton numbers, � and !, and its spin (:
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Figure 2.7 – Fine-tuning versus the physical dark matter density parameter Ωℎ2
for real-

izations of the pMSSM-GUT [95] SUSY breaking scenario. Red crosses indicate models

already excluded by Higgs mass considerations, LHC experiments, dark matter direct

detection (DMDD) experiments, and flavor physics measurements. The circles represent

not-yet-excluded models that could be constrained by various DMDD experiments. The

shaded band corresponds to the Λ��" value of Ωℎ2
. [94]

' = (−1)3(�−!)+2( . (2.12)

Requiring that R-parity be multiplicatively conserved at each interaction vertex effectively

forbids proton decay. In the SM, there is no renormalizable interaction that could lead

to such an event, but the extended Lagrangian of the MSSM has no such constraint; The

proton is known to be extremely stable, with a lifetime of at least 2.1 × 1029
years[10],

and so requiring that it be absolutely stable in the MSSM is likely to be at least a good

approximation. R-parity has at two very important consequences beyond proton stability,

both owing to the fact that SMparticles all have an R-parity of+1while their superpartners

have an R-parity of −1:

• Supersymmetric particles are always pair-produced if there are only SM particles in

the initial state, as is the case in particle colliders;

• Supersymmetric decay chains must end with an even number of the lightest super-

symmetric particle, or LSP.

If the neutralino is the lightest supersymmetric particle, then by the latter statement it will
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be stable. Moreover, since it is formed by mixing superpartners of massive gauge bosons,

it also has a mass; and by construction it only interacts via the weak interaction and is

electrically neutral. Therefore, if R-parity is conserved then the lightest neutralino, "̃0
1, is

a perfect WIMP dark matter candidate [97, 98]. Indeed, a large part of phase-space of the

MSSM parameters lead to "̃0
1 cross-sections in the early universe that are compatible with

the observed dark matter relic density.

2.2 Experimental status

With 105 free parameters beyond that of the SM, theMSSMphase-space is simply too large

to be considered in its entirety4, and some cleverness is needed to organize the searches and

interpret the constraints that they set. In this section, we consider two different paradigms:

the pMSSM (Section 2.2.1), and simplified models (Section 2.2.2).

2.2.1 The pMSSM

As just mentioned, the MSSM phase-space is extremely huge. Fortunately, its overwhelm-

ing majority is already ruled-out by experiment. For example, many models arising from

the MSSM lead to an excess of dark matter and/or CP-violation with respect to current

observations. Using experimental considerations such as these, it is possible to project the

105 parameter MSSM into 19 or so parameters; the resulting model is referred to as the

phenomenological MSSM, or pMSSM [99, 100]. The resulting phase-space is still enormous;

however, since all model points in the pMSSM are, by design, phenomenologically viable,

it’s possible to estimate the constraints imposed by searches by sampling from the allowed

phase-space and performing statistical tests on the resulting models to gauge how many

of them are conclusively excluded. The results can then be visualized in many different

planes, such as in Figure 2.8, which show the impact of ATLAS

√
B = 8 TeV SUSY searches

in the sbottom/stop–neutralino mass plane. Comparing this with Figure 2.6, we see that

the first ATLAS data-taking run has not ruled out natural supersymmetry.

Since the pMSSM takes the dark matter relic density into account, it provides a natural

framework in which to assess the impact of searches on the viability of SUSY as a solution

to the dark matter problem. In Figure 2.9, the conclusion is similar as before: the first

ATLAS data-taking run has not ruled out this particular motivation.

4To give an idea of just how so, discretizing each parameter axis into two halves each would still leave us

with 2105 ≈ 4 × 1031 combinations to consider. Assuming you could do an hypothesis test in just a single

nanosecond, it would take more than one million years to fully cover this crude binning using a computer

with a million cores.
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Figure 2.8 – Impact of ATLAS search on the pMSSM in the (a)sbottom–neutralino and

(b)stop–neutralino planes, quantified by the fraction of pMSSMmodels with the required

masses that are excluded by ATLAS analyses. [101].

(a) Before ATLAS Run 1 (b) After ATLAS Run 1

Figure 2.9 – Impact of ATLAS Run 1 searches on the amount of dark matter generated

in the pMSSM, for three different LSP mixing scenarios (Wino-, Bino-, or Higgsino-

dominated) [101].
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2.2.2 Simplified SUSY models

The pMSSM approach outlined in the last section is very useful, but the process of sam-

pling parameters, generating datasets and performing statistical tests is quite resource-

intensive5. Therefore, a simpler approach isusually employed toguide individual searches:

the simplified model paradigm [102–104]. In such models, only a few parameters of interest

are considered – usually the masses of the sparticles being searched for – and the rest are

decoupled. This allows setting limits based on specific final states, without reference to

the underlying MSSM parameters that might have produced them. In this way, the phase

space is reduced to a very manageable set of parameters (usually two or three) that can

be comprehensively covered. For example, the model in Figure 2.10a has three free pa-

rameters corresponding to the gluino, stop, and neutralino masses. Since limits are better

visualized in less than three dimensions, some parameters can be removed by assuming

that some of the intervening particles are off-shell, such as in Figures 2.10b and 2.10c

in which the gluino decays are modeled as three body decays, yielding the Gtt and Gbb
models; these are the main benchmark models considered in this thesis and searched for

in Chapter 5. Such models, which have two free parameters, are sometimes called “grids”

since the parameter space can be visualized in a two-dimensional plane.

Events from these models have very striking topologies, and thus contain a lot of

information that can be exploited to recognize them among the SM background. Both

models start with each gluino of the pair decaying to pairs of third-generation quarks and

a neutralino:

6̃ → 1 + 1 + "̃0
1 (Gbb), (2.13)

6̃ → C + C + "̃0
1 (Gtt). (2.14)

At this stage, the four 1-quarks from a Gbb event will form jets that will contain 1-

hadrons and thus can be recognized by 1-tagging algorithms (Section 5.2.3). In Gtt events,

the four top quarks overwhelmingly decay to a 1-quark and a, boson, which itself can

decay to quarks or leptons:

C → 1 +,, (2.15)

5For this reason, the pMSSM sampling procedure outlined above is only performed by the collaboration

after data taking runs of several years.
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followed by:

, → @ + @′ or , → ℓ + �. (2.16)

Therefore, a fully-hadronic Gtt event will have twelve jets originating from the inter-

action, four of which are 1-jets, while maximally leptonic events have four leptons and

four associated neutrinos as well as four 1-jets. A large amount of missing transverse

energy, �miss
T

(Section 5.2.6), is also expected since in both grids the two neutralinos and

the potential neutrinos deposit no energy in the detector.

The mass splitting, defined as the difference between the gluino and neutralino mass,

has a large impact on the kinematics of the final states. Schematically, we can define two

important regions in this phase-space:

• The boosted region: < 6̃ � <"̃0
1
;

• The compressed region: < 6̃ ≈ <"̃0
1
.

In the boosted region, final state particles typically havemoremomentum than events from

the compressed phase-space and are thus easier to distinguish from the SM background.

Figure 2.11 shows the leading small-radius jet ?T (Section 5.2.2) and �miss
T

distributions in

different mass splitting regimes of the Gbb and Gtt models.

Figure 2.12 compares the bounds on these models obtained by ATLAS and CMS run 2

searches. For an approximately massless neutralino, gluino masses of ' 2.2 TeV are not

excluded and so natural SUSY is not ruled out by these searches.

In these models, it has been tacitly assumed that the stop and sbottom masses plays

no large part in the resulting phenomenology. Figure 2.13 shows that this is a good

approximation in the Gtt model; the limits are only significantly different when the stop

is approximately mass degenerate with the gluino or the neutralino, in which case the

available kinematic phase-space is reduced.

Stop and sbottom masses are somewhat less constrained by direct searches, as seen in

Figure 2.14, with the most stringent lower bounds being approximately 1.2 TeV in both

cases; natural SUSY is not ruled out by these searches either.

2.3 Conclusion

In this second and last theoretical chapter, we have learned about a family of theories

that extend the usual spacetime symmetries to include exchange of bosons and fermions,

called supersymmetry. By considering the basic Wess-Zumino model, we’ve seen how
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Figure 2.10 – Simplified models of pair-produced gluinos decaying to (a)top quarks via

stop quarks and (b,c)top or bottom quarks and neutralinos via off-shell squarks.
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Figure 2.11 – (a,b) Leading jet ?T and (c,d) �miss
T

distributions for different mass points of

the (a,c) Gbb and (b,d) Gtt models, showing how the events become less energetic as the

mass splitting decreases.
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building supersymmetrical Lagrangian is quite simple, and that all Standard Model par-

ticles can be grouped with their beyond-the-standard-model superpartners into chiral or

vector supermultiplets. We’ve then discussed the MSSM model, which makes the SM

supersymmetric; in this extended theory, the hierarchy and dark matter problems that

were discussed in the previous chapter are potentially solvable. Moreover, by considering

the phenomenological MSSM (pMSSM) as well as simplified SUSY models, we’ve seen

that viable supersymmetric extensions of the SM are not yet ruled out by experiment.

With all of this in mind, it is now time to switch our focus to experimental consid-

erations, starting with a description of the current most powerful particle accelerator:

the Large Hadron Collider, or LHC, a machine that could very well lead to laboratory

observations of supersymmetric particles.
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Chapter 3

The Large Hadron Collider and the
ATLAS detector

3.1 The Large Hadron Collider

Note: unless otherwise noted, this section is based on Reference [6].

The Large Hadron Collider (LHC) [6], is a 27 km particle accelerator situated at the Eu-

ropean Organization for Nuclear Research (CERN) along the France/Switzerland border

near Geneva. Its tunnel was bored in the 80s to house the Large Electron-Positron Collider

(LEP) [105], which finished operations in the year 2000 to allow construction of the LHC.

The LHC is a hadron collider primarily used to collide beams of protons. It has also

seen special runs of proton–lead, lead–lead, and xenon–xenon collisions; this thesis is

chiefly concerned with proton–proton (?–?) collisions. The LHC’s second data taking run,

colloquially identified as “Run 2”, took place from 2015 to 2018 and collided two 6.5 TeV

proton beams for a center-of-mass energy of 13 TeV, the largest ever achieved in laboratory.

The LHC is designed to accelerate protons from an initial energy of 450 GeV. Further-

more, single protons are found within hydrogen-1 atoms, which are electrically neutral

and cannot be electromagnetically accelerated. Consequently, a few preparation stages are

needed upstream of injection into the LHC’s rings.

The adventure starts by opening the valve on a small gas bottle that feeds hydrogen-1

atoms into a duoplasmatron; this device subjects the hydrogen gas to an electrical field

strong enough to produce a plasma, allowing the electrons to be collected by a cathode

and the protons to undergo a small initial electrostatic acceleration in the direction of an

anode with a small central aperture, thereby forming a beam.

This beam is then transferred to the first proper accelerator in the chain: Linac 2 [106],



(a)

(b)

Figure 3.1 – (a)CERN accelerator complex [114] and (b)LHC layout [115].

a linear accelerator inaugurated in 1978, which raise the protons’s energy up to 50 MeV, a

regime suitable for injection into a circular accelerator1. The beam is then transferred to the

Proton–Synchrotron (PS) complex [107, 108], comprising the Proton–Synchrotron Booster

(PSB, 1972) and the PS itself (1959), which accelerates the protons up to 1.4 GeV and 25GeV,

respectively. Finally the beam is circulated in the Super Proton–Synchrotron [109] (SPS,

1976), the accelerator that famously enabled the discovery of the , and / bosons (Sec-

tion 1.1.3) in 1983 [110–113]. This last machine in the pre-LHC acceleration chain energizes

the beam to 450 GeV before handing it over to the LHC where it will be collided. The

whole accelerator chain, as well as a depiction of the LHC’s ring, can be seen in Figure 3.1.

3.1.1 The recipe for high energy

Let’s take a fewmoments and consider just how the LHC is able to achieve a record center-

of-mass energy of 13 TeV. There are two basic ingredients to this feat: radio-frequency (RF)

cavities and dipole magnets, both of which are enabled by superconducting technology.

Radio-frequency cavities

The accelerating sector of the LHC and its upstream chain are made of series of closely-

spaced hollow resonant cavities, made of niobium sputtering on copper, joined by an

insulating beam-pipe. Each cavity is subject to an electromagnetic wave to build up a

resonant electric field on the inside, producingmuch larger gradients than is possible with

1A new machine, Linac 4, is slated to replace Linac 2 starting from the LHC’s third data-taking run.
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electrostatic or inductive acceleration. However, since the field is oscillating, the protons

have to be arranged into bunches and timed such that they enter the cavity when the field

points in their direction of motion. This requires the following relationship between the

spacing between cavities !, the proton’s velocity E and the standing wave frequency 5 :

5 =
E

2!
. (3.1)

At a fixed frequency, an in-phase protonwill tend to settle at the velocity E since any further

acceleration will make it fall out of phase and decelerate. Therefore, the beam energy is

largely dependent on the frequency of the standing wave inside the cavities [116].

The field oscillation can be exploited to minimize the longitudinal spread of a bunch

by having it enter the cavity slightly early. In such cases, protons lagging behind the

bunch center will be nearer to the cavity’s center when the field peaks and they get a

correspondingly bigger acceleration, while protons going too fast are more de-phased

than the rest of the bunch and are accelerated less.

The LHC has a total of 16 such cavities (eight per beam) housed in four separate

cryomodules, which cool the apparatus to as low as 4.5 K. They are all situated in the same

octant of the LHC ring (see Figure 3.1b).

Dipole magnets

The dipole magnets’ purpose is to keep both proton beams on a circular trajectory in the

center of the LHC’s beam pipes. There is a direct relationship between the beam energy

�beam (in GeV) and the required magnetic field � (in Teslas) to bend it around a given

radius of curvature ' (in meters) [117]:

� =
�beam

0.3'
, �beam � <proton. (3.2)

For a beam energy of 6.5 TeV and a radius of 2.6 km2, the required B-field is an ex-

treme 8.33 T. This field is created by a correspondingly intense electric current of about

11.85 kA. The only viable way to operate in this regime is by employing superconducting

technology; the LHC’s dipole use niobium-tin (NbTi) coils cooled to 1.4 K by super-fluid

helium.

2An astute reader might notice that 2� × 2.6 ≈ 16 km; this is because the LHC ring has many straight

sections, wherever there are no dipoles, which raise the effective radius for a total circumference of 27 km.
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(a) [6] (b) [118]

Figure 3.2 – (a) Cross-section and (b) magnetic field of the LHC dipole system.

Owing to the two counter-rotating proton beams, the dipole system comprises two

beam-pipes subject to opposite magnetic fields to steer the beams in the right directions,

as can be visualized in Figure 3.2.

3.1.2 The recipe for high luminosity

By analogy with the brightness of a light source being defined by the amount of outgoing

photons, the luminosity at one of the LHC’s interaction point (IP) is a controllable parameter

that defines the expected amount of outgoing particles. For two identical and symmetrical

beams, the instantaneous luminosity is

!inst = 5coll
=2

4��2
× ℱ , (3.3)

where 5coll is the bunch collision frequency (25 ns
-1
at the LHC), = is the number of protons

per bunch, � is the transverse beam spread and ℱ is a correction factor accounting for

various higher-order effects such the bunch-crossing angle and the longitudinal bunch

length. For a physical process with cross-section �, recorded for a length of time ):

#exp = �

∫ )

0
!inst(C)3C. (3.4)
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The three most important ingredients required to achieve a high luminosity are a very

high collision rate, a large bunch density, and a small transverse beam spread. These first

two design goals ruled out from the outset the attractive idea of having one of the beam be

composed of anti-protons, like at the Tevatron collider at Fermilab in the USA and at the

S??S at CERN; such beams have several advantages such as allowing very precise mea-

surements of CP-violating processes [119] and allowing a simpler dipole magnet design,

but anti-protons must be produced by first colliding a proton beam with a fixed target, a

process that is not fully efficient. This makes it more difficult to obtain enough particles to

sustain a high collision rate and to raise the bunch density with a reasonable turnaround

time3. In fact, the Tevatron operated with ≈ 6 bunches/km, while the LHC is nominally

designed to have ≈ 70 bunches/km, an order of magnitude more [120].

The transverse beam spread is defined by two further parameters, the transverse emit-
tance, &, and the value of the � function at the interaction point, �∗. Along one of the

transverse axis:

� =
√
&�∗. (3.5)

The emittance is the primary beam quality parameter; it measures the spread of parti-

cles in the G–ΔG phase space, where G is the particle position and ΔG ≡ 3G
3B is the particle

deviation from the nominal path B. It can be numerically defined as the area of the ellipse

encompassing all protons in this plane, as seen in Figure 3.3.

In ideal conditions, the emittance is a conserved quantity for the entirety of the beam’s

lifetime. However, this, assumes a perfectly linear magnetic field that is perfectly known

all along the trajectory, a condition not realized in the real world. For example, mismatch

between the optics at injection lead to emittance growth, and non-linearity in the bending

and focusing magnetic fields can lead to fluctuations in ΔG known as betatron oscillations,
causing the emittance to grow over time. To counteract these effects, the LHC has a trans-

verse feedback system known as the ADT, which corrects the beam orbit by recording its

deviation and applying a correcting electric field at a latter point along the trajectory [122],

as seen in Figure 3.4.

Emittance growth is synonymous with a loss of beam quality, since it comes with a

corresponding drop in luminosity beyond the inevitable losses due to ?–? interactions.

Since the turnaround timeof theLHC is not prohibitively long, the beam is usually dumped

3A viable turnaround time was achieved at the Tevatron by the usage of a storage ring to build-up the ?
beam ahead of time.
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Figure 3.3 – The emittance & is defined as the area of the ellipse encompassing all of the

beam’s constituent particles in the G–ΔG plane, divided by � [121].

after about 12 hours solely based on luminosity considerations4.

The � function value is related to the width of the emittance ellipse along the positional

axis, as visualized in Figure 3.5. The use of quadruple magnets for focusing do not reduce

the emittance, as stated earlier, but rotates the beam in the G–ΔG phase space. The � value

at the interaction point (IP), �∗, has to be very low to obtain a high luminosity; this is

achieved at the expense of a temporarily higher spread in ΔG . Out of the IP, the beam is

de-focused to keep the orbit as stable as possible.

3.1.3 The LHC experiments

There are currently eight experiments installed along the LHC ring. Four of these are

situated at the interaction points (see Figure 3.1b):

• ATLAS [4], a general-purpose detector used for this thesis, described in detail in the

next section;

• CMS [5], a general-purpose detector similar to ATLAS;

• LHCb [124]: a special-purpose detector optimized for �-meson physics;

• ALICE [125]: a special-purpose detector optimized for heavy ion physics.

4The maximum beam lifetime is, however, much longer. For instance, due to a scheduled maintenance

stop of the PS accelerator the LHC fill no. 4947 on 2016/05/21 was kept going for 35h28m [123].
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Figure 3.4 – Overview of the LHC’s transverse feedback system (ADT) [122].

Figure 3.5 – � is related to the width of the emittance ellipse along the positional axis:

� =,2/& [121].
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There are also three smaller detectors installed on the beam-line near some of these

detectors and their interaction points:

• LHCf [126], installed near the ATLAS detector cavern to measure the energy spec-

trum of particles produced at very small opening angles;

• TOTEM [127], installed on the beamline near the CMS detector cavern to study the

total ?–? cross-section as well as the proton structure;

• MoEDAL [128], installed near LHCb to look for magnetic monopoles;

• FASER [129], installed near ATLAS to search for long-lived exotic particles.

3.2 The ATLAS detector

Note: unless otherwise noted, this section is based on Reference [4].

The ATLAS5 detector (Figure 3.6) is a huge general-purpose particle detector with a

25 × 44 m cylindrical shape, installed around LHC interaction point no. 1 (IP1). It can be

decomposed in three main subsystems: the inner detector (ID, Section 3.2.2), the calorime-

ters (Section 3.2.3), and the muon spectrometer (Section 3.2.4). These subsystems produce

a staggering amount of information about each collisions, and therefore a sophisticated

data acquisition system is implemented (Section 3.2.5).

3.2.1 Standard ATLAS coordinate system

The coordinate system commonly used to describe the ATLAS detector has its origin at

the interaction point. The I axis is longitudinal to the beam, while the G and H axes point

to the center of the LHC ring and up towards the sky, respectively. The transverse plane,

G–H, is particularly useful since the initial momentum around the I axis is approximately

null. The azimuthal angle in this plane (around the I axis) is denoted by ).

Massive objects can be localized in the longitudinal direction by their rapidity, Υ:

Υ =
1

2
log

(
� + ?I
� − ?I

)
. (3.6)

When the object’s mass is small compared to it’s energy,

5ATLAS ≡ A Toroidal LHC ApparatuS
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Figure 3.6 – The ATLAS detector [130].

� � < =⇒ � ≈ |−→? | =⇒ ?I ≈ � cos�, (3.7)

where � is the angle of the three-momentum vector with respect the I axis. In such cases,

Υ can be approximated by considering the � angle only:

Υ ≈ � = − log (tan(0.5�)) , (3.8)

The � variable is known as the pseudo-rapidity; it is visualized in the H–I plane in Fig-

ure 3.7. Distance between objects in the detector are often quantified in �–) space by the

dimensionless Δ' variable:

Δ' =

√
Δ�2 + Δ)2. (3.9)

3.2.2 The inner detector

The ATLAS inner detector (Figure 3.8) is an array of three sub-detectors installed closest to

the beam-line; its primaryusage is toprovide accurate chargedparticle track reconstruction
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Figure 3.7 – Pseudorapidity (�) contours in the transverse–longitudinal (H–I) plane. The

� = 2.5 and � = 4.9 lines define the limit of the inner detector and calorimeter acceptances,

respectively.

(a)
(b)

Figure 3.8 – (a) Longitudinal and (b) radial cross-sections of theATLAS inner detector [131].

Note that there is now an additional pixel layer, the IBL, installed nearest to the beam in

2014 (this figure was made in 2008).

82



in the |�| < 2.5 region. Thewhole ID is enclosed in a solenoidproviding a 2T axialmagnetic

field and so charged particles moving away from the interaction point follow an helical

trajectory with a radius of curvature in the plane transverse to the beam proportional to

their momenta [117]:

' ∝
? cos�

�
, (3.10)

where � is the magnetic field strength, R is the radius of curvature and � is the angle of the

helical trajectory, measured from the axis normal to the beam. Consequently, to obtain a

measure of charged particle’s momenta, an accurate measure of the track’s curvature must

be obtained. The error on the curvature measurement, �curv can be decomposed into two

terms [117]:

�curv =

√
�2

ms + �2
res, (3.11)

where �ms is the error due tomultiple scattering of the particle inside the tracker’smaterial,

and �res is the error proportional to the finite precision &meas of the trackposition’s sampling

when it crosses an active layer of the tracker. The error due tomultiple scattering is roughly

proportional to the inverse of the momentum, therefore in high energy collisions the

resolution error usually dominates the multiple scattering contribution. For an idealized

tracker with many uniformly-spaced active layers, this error is estimated by:

�res ≈
&meas

!

√
720

# + 4 , (3.12)

where ! is the track’s length in the bending plane and N is the number of recorded hits

along the trajectory.

Equation 3.12 implies that it’s possible to obtain a good momentum resolution by

maximizing the number of samplings, by obtaining very precise position measurements,

or by maximizing the tracker’s extent in the bending plane. The ATLAS ID implements all

three of these solutions in order to achieve state-of-the-art momentum measurements:

• A four-layer silicon pixel detector (Section 3.2.2) is installed as close as possible to the

beam-line, providing up to four very-high-precision measurements and maximizing

the tracker’s extent in the inward direction;
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Figure 3.9 – Cut-out view of the ATLAS Pixel detector [133].

• A four-layer silicon strip detector (SCT, Section 3.2.2) is installed around the pixel

detector, providing a further eight samplings, which are grouped into four high-

precision measurements;

• An array of drift tubes, the transition radiation tracker (TRT, Section 3.2.2) is installed

around the SCT, providing more than 30 less-precise measurements per tracks, max-

imizing both the number of measurements and the tracker’s extent in the outward

direction.

The Pixel Detector

The pixel detector (Figure 3.9) comprises four coaxial barrel-shaped layers with three disk-

shaped layers on either end. Its silicon sensors are read out in 2-D regions called pixels

(by analogy with a camera) that are defined by bump-bonds linking the silicon slab with

dedicated channels of the readout electronics. In the three disks and the three outer

barrel layers the nominal pixel sizes are of 50 and 400 �m in the bending and longitudinal

planes while the first layer (the Insertable B-Layer [132], or IBL, whose installation in 2014

is pictured in Figure 3.10) has smaller 50 × 250 �m pixels. However, charged particles

passing through a silicon sensor typically deposit energy in more than one pixel, and

shape analysis techniques (Section 4) can achieve an intrinsic accuracy of 10 �m in the

bending plane and of 115 �m in the longitudinal (barrels) or radial direction (disks).

The high luminosity attained inLHCcollisions (Section 3.1.2) requires the pixel detector

to be exceptionally radiation-hard, and since the performance of many ATLAS analyses is

strongly dependent on track reconstruction efficiency and momentum resolution, it must

remain so for the entirety of its useful life6. This motivates the use of non-conventional

wafers made up of an =-type silicon bulk with ? and =+ implants on either side. This

6The whole inner detector is slated to be replaced by a new all-silicon inner tracker, the ITk, in time for

the fourth LHC run starting around 2027.
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Figure 3.10 – Installation of the Insertable B-Layer in 2014 [134].

particular choice allows the sensors to remain operational even after type inversion of the

bulk due to radiation damage. Furthermore, the silicon is highly oxygenated to delay the

inevitable accumulation of radiation damage.

The Semi-Conducting Tracker

The semiconductor tracker, or SCT, is installed around the pixel detector and has a similar

barrel–disk geometry with four layers. It employs more conventional and widely used

silicon strip sensors, which are cheaper to produce7. Unlike pixel sensors, individual

strips only produce a measurement in a single direction; to provide hit information in two

dimensions, strip sensor modules are assembled in pairs laid out on top of each-other and

misaligned by a 40 mrad angle as can be seen in Figure 3.11. Its intrinsic precision is of

17�min the bendingplane andof 580�min the longitudinal direction. Thesemeasures are

less precise than that of the pixel detector, but the four additional measurements at a much

lower cost than that of a pixel detector of similar volume represent a good cost–benefit

compromise.

The Transition Radiation Tracker

The inner detector is completed by an array of drift tubes know as the transition radiation

tracker, or TRT. The tube structure is defined by a 4 mm polyimide wall whose aluminum-

coated inner surface acts as a cathode, while the axial anodewire ismade-up of gold-plated

tungsten; a large voltage of 1.53 kV is applied between anode and cathode. The tubes are

filled with a mixture of carbon-dioxide, oxygen, and either xenon or argon. Again, this

7While individual silicon strip sensors are cheaper to produce per unit area, the sheer volume of the SCT

makes it one of the most expensive sub-detector within ATLAS.
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Figure 3.11 – (left) Image and (right) schematic of an SCT barrel module, showing the

40 mrad angle between both sensors [4].

sub-detector has a barrel-like part made up of tubes parallel to the beam, and disk sections

with radial tubes. Charged particles intersecting a wire set off a cascade of electrons and

ions that are picked up by the anode and the cathode. By analyzing the resulting signal’s

shape, the position of the cascade’s origin between the anode and the cathode can be

estimated (with a suitable calibration) with an intrinsic accuracy of 130 �m in the bending

plane.

This sub-detector gets its name from the electromagnetic radiation produced by a

charged particle crossing a boundary betweenmaterials with different dielectric constants.

This effect is exploited to enhance the identification of electrons crossing a drift tube

boundary, since the interaction of the transition radiation with the gas within the tube will

set-off a potentially more energetic cascade than that due to the electron itself. Since the

magnitude of this effect depends on the � = �/< factor of the incident particle, by tuning

a high threshold, discrimination between electrons and, for example, charged pions can be

achieved as can be seen in Figure 3.12. This technique works best when the tubes are filled

with a xenon mixture. However, xenon is a rare gas and thus extremely costly to acquire

in significant quantities, and high occurrences of leaks lead the collaboration to fill many

sectors of the TRT with argon instead.

3.2.3 The Calorimeters

The ATLAS inner detector provides very precise estimations of charged particle’s mo-

menta, but it does not provide enough information for particle identification. Moreover,

it is not sensitive to the passage of neutral hadronic bound states; a different paradigm
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Figure 3.12 – Different � = �/< factors for charged pions and electrons, due to the electron

being much lighter, lead to different amounts of transition radiation when crossing a drift

tube boundary, which can be exploited to enhance electron identification.

Figure 3.13 – Cut-away view of the ATLAS calorimetry system [135].
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Figure 3.14 – Section of the ATLAS electromagnetic lead/liquid-argon calorimeter, show-

ing its accordion-like geometry [136].

is needed to accurately measure the energy content of such particles, and to provide the

needed information to perform accurate particle identification. To do so, a technique

known as sampling calorimetry is employed, in which a decay chain is initiated by a

particle that passes through dense, “passive” layers; the energy of this decay chain is

then sampled in “active” layers. ATLAS employs two types of sampling calorimeters (see

Figure 3.13), according to the nature of the particle or bound state being measured: a

lead/liquid-argon electromagnetic calorimeter (Section 3.2.3), and a hadronic calorime-

ter comprising steel/scintillator, copper/liquid-argon, and copper-tungsten/liquid-argon

subsystems (Section 3.2.3).

Electromagnetic Calorimeter

As in the case of the inner detector subsystems, the ATLAS electromagnetic calorimeter

is arranged in a central barrel and two disk sections, providing energy measurement in

the |�| < 3.2 region. It comprises alternating layers of lead (passive material) and liquid

argon (active material) with kapton electrodes, arranged in a accordion-like geometry (as

can be seen in Figure 3.14), which allows hermetic coverage around the azimuthal ) angle.

The |�| < 2.5 region is more finely segmented than the outer regions, allowing precision

measurement of high-?T processes.

The energy resolution of a sampling calorimeter can be decomposed in a stochastic (�()

term due to unavoidable fluctuations in energy deposits and to the presence of passive

layers and dead material, a noise term (�# ) accounting for electronic and pile-up effects,

and a constant term (��) due to non-uniformities and finite performance of energy recon-
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Figure 3.15 – Impact of the LAr pre-sampler on the electron energy resolution as a function

of �, estimated by a GEANT4 simulation. [138].

struction algorithms [137]:

��
�
=

√(
�(√
�

)2

+
(�#
�

)2

+ �2
�
. (3.13)

In order to minimize the stochastic error term, a thin pre-sampling liquid argon layer

covering the |�| < 1.8 region is installed in front of the calorimeter and accounts for

upstream energy losses; its effect on the energy resolution can be seen in Figure 3.15. The

total energy resolution of the ATLAS electromagnetic calorimeter is of about

10%/
√
� ⊕ 0.3%/� ⊕ 0.4% [117].

Hadronic Calorimeter

The hadronic calorimeter is again separated into different parts: a steel/scintillator bar-

rel (known as the “Tile calorimeter”, 0 ≤ |�| < 1.7), copper/liquid-argon end-caps (1.5

≤ |�| < 3.2), and copper-tungsten/liquid-argon forward calorimeters (3.1 ≤ |�| < 4.9)

installed at the center of the hadronic end-cap cylinders. The steel/scintillator barrel has

an extended part that wraps around the end-caps. Together, these subsystems provide

energy measurements of hadronic cascades in the |�| < 4.9 region.

The density and thickness of the passive layers are motivated by the fact that some
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hadronic bound states, such as neutrons, are electrically neutral and must interact with

the medium to develop a shower that can be measured. Hadronic calorimeters typically

have worse energy resolution than electromagnetic calorimeters since hadronic cascades

are more complex entities than single incident charged particles: for instance, part of the

energy of a cascade, such as nuclear binding energy, cannot be measured; a cascade typi-

cally develops both an electromagnetic component in addition to the hadronic component,

with a ratio that varies non-linearly and stochastically as a function of the initial particle’s

energy; and the sensitivity of a hadronic calorimeter to both of these component is not

equal and also varies non-linearly as a function of energy. The resolution is limited to

�/� ' 50%/
√
� for non-compensating8 hadronic calorimeters in general [11].

3.2.4 The Muon spectrometer

The energy lost by a charged particle passing through a certain medium is estimated

by the stopping power ≡ 〈−3�/3G〉 as a function of the medium’s atomic density and

the particle’s �� = ?/< factor. In a given medium, the stopping power has, roughly,

three regimes: starting at a local maximum at low ��, the stopping power falls with

increasing momentum to reach the minimum of ionization before rising again at high ��

due to relativistic effects. As can be seen in Figure 3.16, a muon passing through a dense

medium such as copper will be at its minimum ionization when its energy is in the GeV

range, which is typical of muons produced in the decay of massive particles such as

the W/Z bosons and top quarks. Most other particles are stopped in the calorimeters

and therefore almost only muons will make it through, losing a minimal amount of

energy in the process. Taking advantage of this fact, the ATLAS detector is completed

by a second tracking detector designed specifically to measure the muon momentum, the

muon spectrometer, installed around the hadronic calorimeters. It is embedded in an

array of three huge toroidal magnets (one barrel and two end-caps), which bend the muon

trajectories in the longitudinal plane.

Monitored drift tubes (MDT) cover the |�| < 2.7 range. The ≈ 30 mm diameter alu-

minum tubes are filledwith an argon/carbon-dioxidemixture and each have a gold-plated

tungsten-rhenium axial wire serving as the anode. Each tube has an intrinsic resolution

of 80 �m; they are arranged in chambers in groups of three to eight, for an intrinsic res-

olution of 35 �m per chamber. Additional requirement for a higher rate capacity in the

forward (2 < |�| < 2.7) region lead to the use of Cathode Strip Chambers (CSC), which are

multi-wire proportional chambers; these have a resolution of 40 �m in the bending plane

8A compensating calorimeter keeps the hadronic and electromagnetic responses ratio ℎ/4 equal to unity

and will have a resulting better resolution.
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Figure 3.16 – Stopping power ≡ 〈−3�/3G〉 for a muon in copper [139]. Muons produced

in the decay of massive particles such as W and Z bosons and top quarks typically have

energy in the GeV range and thus are near the minimum of ionization, explaining why

they can travel much farther than other ionizing particles in the detector.
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Figure 3.17 – Structure of the cathode strip chambers (CSC), (left) looking down and (right)

across the wires, in the bending plane [4].

and of 5mm in the transverse directions. Their basic layout is shown in Figure 3.17.

The muon spectrometer also includes two subsystems dedicated to triggering readout

of events (Section 3.2.5) based on the presence of muons. Resistive plate chambers (RPC)

cover the central |�| < 2.4 range, while thin gap chambers (TGC) cover the endcap region.

The orientation of both of these two subsystems can be seen in Figure 3.18

3.2.5 The Trigger and Data Acquisition System

The LHC delivers one bunch crossing each 25 nanoseconds, corresponding to an event

rate of 40 MHz and a data rate of about 60 TB/s. Such an astronomical readout rate is

ruled out by bandwidth and storage considerations, and so a triggering system has to be

implemented to bring down it down to an acceptable level.

The ATLAS trigger and data acquisition (TDAQ) system, shown in Figure 3.19, has two

trigger levels: the level 1 (L1), implemented in hardware, identifies “Regions of Interest”

(RoI) in �–) spaces using limited information to bring down the event and data rates to

about 100 kHz and≈160 GB/s, respectively. The information from these RoIs are then sent

on to the high-level trigger (HLT) farm, an array of computers situated near the detector

that perform more complete event analysis and bring down the rates to acceptable levels

for permanent readout: ≈ 1.5 kHz and 1.5 GB/s.

We’ve discussed in Section 3.1.2 how the instantaneous luminosity is not constant

within a given LHC fill, but will gradually drop down due to collision losses and beam

quality degradation. This is reflected in the ATLAS trigger and data rates, as seen in

Figure 3.20. At the beginning of a fill, the raw rate for some triggers is often too high

for the buffering system to deal with leading to “dead time”, during which events are

indiscriminately lost. To mitigate the problem, some triggers are initially pre-scaled; a
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Figure 3.18 – Schematic of the muon trigger subsystem, showing the Resistive Plate Cham-

bers (RPC) covering the central |�| < 2.4 region and theThinGapChambers (TGC) covering

the endcap region [4].
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Figure 3.19 – Functional diagram of the ATLAS Trigger and Data Acquisition system in

Run 2 showing expected peak event and data rates through each component [140].

pre-scaled trigger will drop a fraction of its accepted events at a rate corresponding to its

pre-scale factor that gradually reduces down to zero during single fills.

Both L1- and HLT-level triggers select events based on signatures typical of physics

processes of interests for ATLAS analyses. For example, there are triggers based on sin-

gle, high-?T leptons or jets, or energetic photons. Triggers based on missing transverse

momentum (�miss
T

) are of particular interest in the context of the search for R-parity con-

serving (RPC) supersymmetry. Since in LHC collisions the transverse momentum of

incoming partons is initially approximately null, by conservation of energy the vector sum

of momenta around the beam axis should sum to approximately zero and only gains a

non-zeromagnitude in the StandardModel due to neutrinos and experimental effects such

as mismeasured jets. As discussed in Section 2.1.1, RPC SUSY cascades usually end with

a pair of WIMP-like neutralinos, for which the detector is completely transparent. Since

neutralinos are hypothesized to be much heavier than neutrinos, their presence can lead

to unusually large amounts of �<8BB
)

, a fact that can be exploited to trigger the read-out of

such events. Figure 3.21 shows typical efficiency curves for different �<8BB
)

trigger chains;

they are all close to 100% efficient for events with more than 200 GeV of �miss
T

.
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(a)

(b)

Figure 3.20 –HLT (a) trigger and (b) data rateswithin a single LHCfill. The luminositydrop

due to beam losses and quality degradation can clearly be seen, as well as discontinuities

corresponding to changes in trigger pre-scale factors.
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trigger efficiency in 8 TeV data for three different trigger chains [141].

3.3 Conclusion

In this chapter, we have seen how the LHC achieves a very high instantaneous luminosity

and a record center-of-mass energy of 13 TeV, enabled by the use of superconducting

magnets and radio-frequency cavities. We’ve then moved on to discuss one of the eight

LHCdetectors, namely theATLASdetector, used for this thesis: it is composedof a tracking

detector (the inner detector) that records charged particle trajectories, enabling estimation

of momenta and reconstruction of interaction vertices; an array of electromagnetic and

hadronic calorimeters, which measures particle energies; a muon spectrometer, which

provides dedicated triggering and estimation of muon momenta; and a sophisticated

trigger and data acquisition system that reduces the data and event rates to manageable

levels.

In the next chapter, we take a little detour to explore in more depth one aspect of

track reconstruction in the ATLAS pixel detector, tracking in dense environments, where

the average distance between particles become comparable to the pixel detector sensor

resolution. In this context, we will discuss the theory of neural networks, which will be

used to carry out a search for supersymmetric particles in Chapter 5.
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Chapter 4

Tracking In Dense Environments

The unprecedented center-of-mass (CoM) energy of collisions at the LHC lead to signifi-

cant production of high-?T objects such as jets, as seen in Figure 4.1a. Due to the nature

of Lorentz transformations, the decay products of highly boosted particles are very colli-

mated, which creates areas of high occupancy in the inner detector (Section 3.2.2) as can be

seen in Figure 4.1b. Such areas, referred to as dense environments, are especially challeng-

ing from a track reconstruction point of view. For instance, when charged particles pass

through silicon pixel sensors, multiple pixels are usually illuminated due to the incident

angle of the trajectory, charge diffusion, charge drift caused by the axial magnetic field

of the ID, or �-rays1. In dense environments, the resulting charge clusters can merge, as

visualized in Figure 4.2, and the track reconstruction algorithms must implement addi-

tional machinery to recover optimal performance in such cases. This section starts with a

brief review of track reconstruction in ATLAS (Section 4.1). In Section 4.2, the theory of

neural networks is briefly reviewed before describing the ATLAS pixel clustering neural

networks in Section 4.3.

4.1 Track Reconstruction in ATLAS

The task of track reconstruction consists of grouping charged particle energy deposits

from the pixel, SCT and TRT subdetectors into proper trajectories from which the impact

parameters2 and angles with respect to the beamline and particle momenta (from the

curvature) can be reconstructed. The end goal is to attain a maximum recall, that is,
finding tracks accounting for all particles in an event, while also keeping the precision, or

1�-rays correspond to electrons ejected from their orbits by an incident charged particle.

2The transverse and longitudinal impact parameters define the perpendicular distance of the closest point

between a track and the interaction point.
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Figure 4.1 – (a) Inclusive cross section for anti-:C ' = 0.4 jets (see Section 5.2.2) as a function

of ?T in different absolute rapidity (|H |) ranges, showing non-negligible production of very

boosted (?T ' 1 TeV) jets [142]. (b) Track density per unit angular area as a function of the

angular distance from the jet axis in different ?T ranges [143].

(a) (b)

Figure 4.2 – (a) Resolved and (b)merged charge clusters in a pixel sensor [143]. The particle

trajectories are represented by arrows, while energy deposits from different particles are

shown in different colors.
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Figure 4.3 – Schematic view of track reconstruction in the (a) bending and (b) longitudinal

planes [11].

the fraction of tracks really corresponding to a particle, very high. A schematic view of

track reconstruction can be seen in Figure 4.3

The ATLAS track reconstruction chain can be separated into two main stages [143].

The first stage, that of “Track Finding”, aims to have maximum recall at the expense

of potentially low precision. The second stage, that of “ambiguity solving”, aims to

restore high precision while keeping a high recall by scoring all tracks and rejecting a low

scoring subset that, in the optimal limit, consists only of fake tracks, that is, tracks not

corresponding to a particle in the event.

Track finding starts by the identification of space points. These are simply 3D coordinates

of all the recorded intersection of charge particle trajectories with ID sensor elements.

Space points from the two innermost tracking detectors, the pixel and the SCT, are then

arranged in sets of three, each defining a track seed. To minimize the amount of tracks to

be processed downstream, a certain number of criteria are imposed on the seeds, such

as ?T and impact parameter requirements. A combinatorial Kalman Filter [144] (KF) is

then used to build a full set of track candidates. Starting from a seed, the KF iteratively

estimates a probability distribution over the position of space points belonging to the

track on the closest unincorporated layer, and adds matching hits to its current estimate.

Whenever there are more than a single compatible space-point to be added, additional

track candidates are created.

In the ambiguity solving stage [143], a score is assigned to each track according to

a number of metrics, disfavoring low-?) tracks as well as tracks with low fit quality.

Notably, the ambiguity solver also penalizes tracks that share some clusters with other

tracks in order to reduce the amount of duplicates, a strategy motivated by the usually
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low probability of having intersecting trajectories. However, as previously discussed, this

assumption breaks down in dense environments where the separation between particles

is often comparable to the pixel dimensions.

In ATLAS, this problem is fixed with a neural network algorithm; before describing it

in depth in Sections 4.3, the theory of neural networks is briefly reviewed in Section 4.2.

4.2 Neural Networks

The method of simplifying the expression of mathematical functions using an assembling

of simpler terms is well known to physicists. For example, the :-th order Taylor expansion

of a function 5 (G) approximates it by using the function’s derivatives around a known

point 0:

5 (G) =
:∑
==0

(G − 0)=
=!

3=

3G
5 (G)|G=0 + O(|G − 0 |:). (4.1)

The error term has two important implications: the approximation is valid only in the

local neighborhood of 0, and therefore knowledge of the function at different points in

its domain is needed to ensure good approximation everywhere; also, knowledge of a

sufficient number of derivatives of the function is necessary to keep the error small. The

latter implication can be particularly limiting: what if we only have access to input/output

pairs, and have no knowledge of the derivatives?

Neural networks [7, 145, 146] are a popular class of approximation models that can

lift this restriction by expressing the function in a generic form that assumes almost no
knowledge of the analytical form. The suitability of such networks is guaranteed by the

universal approximation theorem [147–149]:

Universal Approximation Theorem: Let 5 : R< ↦→ R= be a continuous function defined

on a closed and bounded subset of R, � be an element-wise non-polynomial non-constant

function, and & be a non-negative, non-zero real number. Then, there exists matrices,
(1)
<×ℎ

and,
(2)
ℎ×= as well as vectors 1

(1)
ℎ×1

and 1
(2)
=×1 such that:

5̃ (G) =, (2) · �(, (1)G + 1(1)) + 1(2), (4.2)

| 5̃ (G) − 5 (G)| < &, ∀G. (4.3)
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(a) Real neuron [150] (b) Artificial neuron [151]

Figure 4.4 – Analogy between (a) real and (b) artificial neurons: the dendrites carry an

electrical signal proportional to that received from upstream neurons, analogously to the

artificial neuron’s weighted inputs; the outgoing electrical current is a non-linear function

of the total signal carried by all the dendrites, analogously to the artificial neuron’s non-

linear activation.

In plain English: there always exists a parametrization of the model that reaches the

required precision level. The basic building block of this model is an artificial neuron,

�(Σ8F8G8 + 1), hence the name; the analogy with an anatomical neuron is shown in Fig-

ure 4.4.

Although in principle any non-polynomial function could be used, common choices

for the � function (usually called an activation, again by analogywith real neurons) are the

sigmoid function, �(G) = 1/(1 + 4−G), or the rectifying linear unit ReLU(G) = max (0, G),
both element-wise functions of the input vector G; they are shown in Figure 4.5. When

a classification problem is being solved, it is customary to include a sigmoidal activation

on the output layer since it maps all real numbers to the (0, 1) interval as required for

a probability. In multi-class situations, the softmax function, a generalization of the

sigmoid3, is often used:

((G)8 =
�(G8)∑
9 �(G 9)

. (4.4)

The universal approximation theorem stated above is only concerned with networks

having a single hidden layer, that is, a single intermediate level of representation between

the inputs and the outputs. However, it is possible to stack arbitrarily many hidden

layers; the resulting models are often referred to as deep networks, which can be up to

exponentially more efficient in term of information encoding than single-layer shallow

3While such output functions ensure the correct properties for probabilities, the network’s output is not
guaranteed to be a probability distribution in the Bayesian sense.
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Figure 4.5 – Example of sigmoid and ReLU activations in the (−5, 5) range.

networks [152–155]. Moreover, there is a growing body of evidence asserting that the

efficiency gain stems in part from the resulting hierarchy of features, which also enables

efficient representation of functions of lower-level (i.e., less feature-engineered) inputs4.

The use of deep networks trained to construct a hierarchy of features starting from a

low-level representation is a textbook example of the deep learning paradigm [146].

4.2.1 The training procedure

Wehave established that neural networksprovide away to efficiently express a large class of

functions using very simple arithmetic operations. However, the universal approximation

theorem only tells us that this is possible and does not provide a way to obtain the

required parameters5. To overcome this difficulty, first notice that the network’s equation

(Eq 4.2) is fully differentiable. Given a network whose full set of parameters we represent

by � = (, (1), 1(1), . . . ,, (#ℎ), 1(#ℎ)) where #ℎ is the number of layers in the network, a

set of input output pairs -,. = (G1, H1), . . . , (G# , H# ), and a differentiable Loss function
!(-,., �) that quantifies the approximation error, it is possible to iteratively update the

parameters using gradient descent. The parameter update from a state � to the next state

� + 1 is performed using the following equation:

4The intuition is that since a shallow network cannot build a hierarchy of features, its single hidden layer

would have to be very wide to account for all possibilities if it operates only on low-level features.

5In contrast to Taylor’s theorem, the universal approximation theorem doesn’t say anything about the

size of the remaining error, just that it can be made arbitrarily small.
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��+1 = �� − �%��!(-,., ��). (4.5)

The initial parameter vector, �0, is usually randomly sampled [156]. The %��! term is

computable using recursive application of the chain rule, a procedure known as backpropa-
gation [157], and the � user-supplied parameter, called the learning rate, scales the updates.

It is customary to estimate the gradient repeatedly on subsets of the datasets, usually called

mini-batches (or simply batches) rather than on the whole, and to repeat in many passes

(epochs) over the whole dataset. The resulting algorithm is known as stochastic gradient
descent (SGD), which usually converges faster and produces better parametrizations than

when computing the gradient on the whole dataset [156]6.

When the parameter set � is very large, the gradient %��! has correspondingly many

dimensions and therefore has many saddle points that can slow down or stall the gradient

descent [158, 159]. To overcome this, it is customary to extend the SGD algorithm to

include a momentum term:

��+1 = �� − �%��! + %��−1!. (4.6)

Thus, the update equation now includes an exponentially decaying average of the past

gradients, scaled by the  user-supplied momentum parameter, which allow the path in

�-space to avoid getting stuck7.

Another, more ambitious variant of SGD is the Adaptive Moment (ADAM) algo-

rithm [161]. ADAM also includes a momentum term (the first moment, <(1)) but also

accounts for the curvature (the second moment, <(2)) of the path in parameter-space,

the intuition being that the learning rate should be lower when in the vicinity of a local

minimum to avoid overshooting it. The accumulated estimates of these moments are

computed with exponentially-decaying averages scaled by the �1 and �2 constants, and

are also corrected for potential bias in the early stages of training:

6This is because the gradients computed on partial datasets have more variance, which helps avoiding

overfitting, and the network weights are updated more than once per pass over the whole dataset.

7The momentum term also influences the training dynamics in other, less obvious ways; see Refer-

ence [160].
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<
(1)
� = �1<

(1)
�−1 + (1 − �1)%��!, (4.7)

<
(2)
� = �2<

(2)
�−1 + (1 − �2)(%��!)2, (4.8)

��+1 = �� − �
<(1)

1 − ��1

(
<
(2)
�

1 − ��2

)−1/2

, (4.9)

A few more tricks are usually employed in order to speed up the convergence of the

training procedure. For example, “standardizing” the input variables to zero mean and

unit variance remove the need for the network to learn the characteristic scale of each

variable [156]. A related, more sophisticated technique, batch normalization [162], re-scales

all mini-batches:

G → �
G − E[G]√
Var[G]

+ �. (4.10)

In contrast to standardization, this procedure is usually implemented independently at

activation level in each hidden layer of the network rather than only at input level. The

neural network equation is still fully differentiable after such substitutions; thus, � and �

are learned at training-time and are part of the � parameter vector.

While the universal approximation theorem guarantees that parametrizations exist for
a wide range of functions, there is no guarantee that the SGD algorithm or any of its

variant can find them. In fact, the aptly-named “No Free Lunch” theorem states that

all optimization algorithms have the same performance when averaged over all possible

problems [163]. Inpractice however, deepnetworks trainedwith SGDor related algorithms

have historically been extremely successful in a wide range of applications [7].

There is a final caveatwith respect to the training procedure: it only tries to find definite

values for the trainable� parameters; all parameters that are not included therein are called

hyperparameters and are user-supplied. This includes, for instance, the dimensions of the

parameter matrices in �, and the scaling parameters �, , �1, �2, . . . of SGD and related

algorithms. A simple solution to this conundrum is to perform a random search over all

included hyperparameters, a procedure that can be exponentially more efficient than a

grid scan over all of phase-space [164]. The resulting randomly-generated models must

be compared on a held-out dataset or with cross-validation in order to avoid introducing

bias at the model selection stage [165, 166]
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Figure 4.6 – Bias–variance decomposition as a function of model complexity [165]. The

faint blue (red) curves show the training (test) set performance as a function of model

complexity for many different samplings, and the bold curves show the averaged values.

In this figure, the complexity is quantified by the number of degrees of freedom, but the

same behavior would be seen if model capacity were considered instead. In the training

set, both bias and variance drop significantly as a function of model complexity while in

the test set, the variance grows with complexity but the bias drops and then rises again

once the model enters the overfitting regime.

4.2.2 Generalization

The optimization procedure outlined in the previous section only ensures that the model

will performwell on the dataset it was trained on. What about the performance on unseen

data, which is the end-goal of most applications? In more precise terminology, in addition

to obtaining a good parametrization on the training set, the difference in performance

between seen and unseen data, called the generalization error, must also be minimized.

Provided the training and test sets are sampled from the same distribution, this error can

be decomposed in three components [165]:

Generalization Error = Irreducible + Bias2 + Variance. (4.11)

The irreducible component, also known as the Bayes error rate, is caused by ambiguities

fundamental to the task at hand and represent the floor of the generalization error. The

relative importance of the last two terms, or the Bias–Variance trade-off, is related to the

concept of capacity, that is, the size of the function space that can be represented by a given
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model as can be seen in Figure 4.6. On the bias-dominated end of the trade-off we find

low-capacity models, which can approximate a relatively small amount of functions; their

average performance is not optimal, but it does not vary much when used on unseen data.

On the variance-dominated end of the trade-off, we find high capacity models, which

can represent a large amount of functions and thus run the risk of learning statistical

fluctuations in the training dataset; therefore, their performance will tend to vary much

more when the data is changed.

In the case of neural networks, model capacity scales with the number of trainable

parameters as well as the total number of gradient updates performed in training. This

points to three differentways of controlling the bias–variance trade-off: restrict the amount

of trainable parameters, restrict the possible values that these parameters can take, or

restrict the training time. The first method runs the risk of being too restrictive since it

caps the “storage space” of the model, and the minimal amount of information needed to

solve a given problem is usually not known beforehand. The second technique attempts

to restrict solution-space in a dynamical way, for example penalizing large weight values

by modifying the loss function:

!→ ! + �1 |� | + �2 |� |2. (4.12)

Theweight decay�1,2 variables are additional hyperparameters8 that penalize largeweights

by an amount proportional to their absolute and squared values, respectively.

The third technique, known as early-stopping, keeps an estimate of the generalization

error during the training by holding-out a fraction of the training dataset; the training is

simply stopped when the generalization error stops improving. This deceptively simple

technique is extremely powerful and partially negates overfitting introduced in other parts

of the model, most of the time obviating the need for fine-tuning of many hyperparame-

ters [167].

While in practice, these regularization methods generally succeeds at minimizing the

amount of overfitting, there is still no free lunch; a well regularized model can still have

a large generalization error if the training data is of poor quality [168] or if it is sampled

from a significantly different distribution than the test data.

8The weight decay variables have to be hyperparameters, else the training procedure would always set

them to zero.
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4.3 Pixel Clustering Neural Networks

As previously mentionned, the problems caused by merged charge clusters in the ATLAS

pixel detector are solved by a neural network algorithm. More precisely, three different

sets of neural networks are implemented [169], each operating on single charge clusters:

• The “number” network, a single neural network that classifies clusters as having

been produced by one, two, or three or more particles;

• The “position” networks, a set of three neural networks (one for each number class)

that estimate the positions of the intersection points in the silicon sensor. The po-

sitions are measured in a frame of reference local to the pixel sensor considered, in

which the local G and H directions correspond to the transverse and longitudinal

directions with respect to the beam line, respectively;

• The “error” networks, a set of six networks (one for each number class for each

coordinate) that estimates the uncertainty on the previous measurement.

The simulated trainingdataset is composedofmultĳet events generatedusingPythia8.186 [170]

with theA14 set of tuned parameters [171] and theNNPDF2.3LO parton distribution func-

tion set [31]. In order to obtain a large fraction of high-?T jets and a consequently large

amount of merged clusters, a filter keeping only truth-level jets with 1.8 ≤ ?T < 2.5 TeV is

applied before handing over to a detailed GEANT4-based simulation of the ATLAS detec-

tor [172, 173].

12 (5) million clusters are retained to train (validate) each of the ten neural networks.

For the number network, the training dataset is sampled such that the fraction of 1–, 2–

and 3-or-more particle clusters are of 22%, 26%, and 52%, respectively.

Inspired by the deep learning paradigm, the input set is fairly low-level:

• A 7×7 matrix9 with entries corresponding to individual pixels (see Figure 4.2), with

the charge centroid in the middle;

• A length-7 vector of pixel dimensions in the local H direction, since a fraction of each

pixel module’s columns are read-out in the same channel, thereby increasing the

effective size of the pixels for those merged columns;

• A binary variable encoding the inner detector region (endcap or barrel);

9The end goal being estimating positions of particles in the inner detector, this is in principle a three

dimensional problem; however, the radial position is completely determined by the coordinates of the

silicon sensor’s surface, which are precisely known.
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• An integer variable representing the cylinder (barrel) or disc (endcap) number;

• Angles of incidence of the track candidate being scored;

• (Error networks only) Hit position estimates for the current cluster.

The two angles of incidence significantly improve the performance of these neural

networks, since they help recognize large clusters due to many particles from large single-

particle clusters due to high incident angles [169]. To decouple the pixel clustering neural

network training from the rest of the track reconstruction chain, the true angle of incidence

of the MC-generated particle is currently used as a proxy for the actual track-based mea-

surements. This is believed to be safe since the neural network’s performance has been

observed to be robust with respect to small perturbations of these angles [174].

The hyperparameters used are listed in Table 4.1. An optimization pass using a random

search over hyperparameter combinations [164] has shown that these relatively small,

shallow networks are a good trade-off between runtime and performance.

Hyperparameter Number Position Error

Structure (60)-25-20-(3) (60)-40-20-(2/4/6) (62/64/66)-15-10-(30/50/60)

Hidden activation Sigmoid Sigmoid Sigmoid

Output activation Sigmoid Identity Sigmoid

Learning rate (η) 0.08 0.04 0.3

weight decay (λ2) 10−7 10−7 10−6

Momentum (α) 0.4 0.3 0.7

Minibatch size 60 30 50

Loss function cross-entropy mean squared error cross-entropy

Table 4.1 –Hyperparameters used to train the three sets of neural networks. In the Structure

row, the numbers in parenthesis denote the input and output layer sizes (expressed in

number of neurons), with numbers separated by slashes corresponding to different sizes

in datasets with 1, 2 or 3 particles per cluster, respectively, while the numbers in-between

represent the hidden layer sizes.

4.3.1 Number network

The number network is trained to classify charge clusters as comprising one, two, or three

or more particles. Since it is a classification task, its performance is better visualized by

considering receiver-operating-characteristic (ROC) curves [175]. The network outputs

three probabilities for each cluster, and the only constraint is that these must sum to

unity. Therefore, there are two output degrees of freedom for each cluster and there is
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no one-to-one correspondence between any two given probability bin, in contrast to a

two-class scenario [176]. This means that the 2 × 3 = 6 ROC curves of Figure 4.7 must be

considered to fully determine the performance. In these figures, we see that the number

network performs very well in recognizing single-particle clusters from multiple-particle

clusters, which is the most important case with respect to tracking performance; it has

more difficulty disambiguating the two- vs three-or-more particle cases.

In the ATLAS track reconstruction algorithm, the output probability scores for the two-

or three-or-more particle classes, %2 and %3, are turned into actual classifications via the

following decision rule:

• If %2 < 60% and %3 < 20%: classify as 1-particle cluster

• If %2 > 60% and %3 < 20%: classify as 2-particles cluster

• If %3 > 20%: classify as ≥ 3-particles cluster

This rule was tuned with a grid scan over all possible combinations, attempting to

optimize the trade-off between maximizing the efficiency of reconstructing real tracks

inside jets [178] and minimizing the production of fake tracks from shared clusters.

4.3.2 Position networks

After application of the number network, the three position-estimating networks, one

for each of the three particle multiplicity classes, implement a solution to a regression

problem; they output a 2-dimensional position value for each particle in a given cluster.

Thus, their performances are better visualized in Figure 4.8, which show the distribution

of the difference between the true and estimated positions, or residuals, in test sets of five

million clusters each. In an ideal setting, the errors would be correctly described by single-

mode Gaussian distributions. However some cases follow different distributions than the

rest, such as 1-particle clusters comprising a single illuminatedpixel (Figures 4.8a and 4.8b),

leading to non-normally distributed residuals. A first estimation of the position resolution

can still be obtained by considering the full width at half-maximum (FWHM) of these

distributions, showing that the model yields about three times the intrinsic resolutions

(10 �m and 115 �m in local G and H, respectively) in the most difficult case (≥3-particle
clusters).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7 – Pairwise receiver operating characteristic (ROC) curves for the network used

to estimate the particle multiplicity. (a) 1-particle vs 2-particles clusters. (b) 1-particle vs

≥ 3-particle clusters. (c) 2-particles vs 1-particle clusters. (d) 2-particles vs ≥ 3-particle

clusters. (e) ≥ 3-particle vs 1-particle clusters. (f) ≥ 3-particle vs 2-particles clusters. In

these figures, curves nearer to the top-left corner represent better performances, and the

small-dashed lines correspond to a random classifier with variable bias and constitutes a

universal baseline [177].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8 – Difference between the neural network position estimation and the true hit

position in the (left) local x and (right) local y directions for true (a), (b) 1-particle, (c), (d)

2-particles and (e), (f) 3-particles clusters. All sample means have negligible uncertainties

while the full width at half minimum values have relative uncertainties of less than 5%.

The different G axis ranges are due to the differing pixel sizes of 50 �mand 400 �m (250 �m
in the IBL) in the local G and H directions, respectively [177].
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4.3.3 Error networks

The position estimation networks only furnishes a point estimate of the position of each

particle within a cluster while the ATLAS tracking algorithms needs estimates of the posi-

tion’s variance in each direction in order to perform "2
fits of a particle’s trajectory. Since

these quantities are undetermined, the networks try to reconstruct a binned probability

distribution over possible residuals for each particles in a given cluster in a given direction;

point estimates of the variance are then obtained by taking the root-mean-square (rms)

of the resulting distributions. Since the position estimation only yields point estimates of

the residual distributions, which are then used to learn the full distributions, this is an

instance of semi-supervised learning. An example of the error estimation task is shown in

Figure 4.9

The error network’s performance is best visualized in the so-called pull distributions

of Figure 4.10, which show the distribution of the residual divided by the estimated

error in each number/direction pair. If the residuals were perfectly Gaussian and the

error perfectly estimated, such pull distributions would always have zero mean and unit

variance, which is not always the case in practice. To improve this, theATLAS collaboration

is considering replacing the position and error networks by Mixture Density Networks

(MDN) [179, 180], which use a mixture-of-Gaussian probability densities as a learning

objective, allowing for modeling of arbitrary distributions [151].

4.4 Conclusion

In this chapter, we’ve explored in detail a particular aspect of track reconstruction in AT-

LAS, that of accurately recognizing charge clusters in the pixel detector as being produced

by one, two or three or more particles, and of estimating the contributing particle’s posi-

tionswithin these clusters. This is done by three sets of neural networks, which exemplifies

the power and versatility of such machine learning models.

In the next section, we finally move on to discussing a search for supersymmetric

particles in ATLAS data in which neural networks play a central part: that of actually

labeling events as containing certain kinds of supersymmetric particles or not.
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Figure 4.9 – Example use case of the neural network used to estimate the uncertainty for

a 1-particle IBL cluster. (a) 1-particle cluster with true hit position marked by the full

square and hit position estimated by the neural network marked by the open circle. The

cluster is fed to the two neural networks that estimate the probability distribution of this

cluster’s residual in the (b) local G and (c) H directions, respectively. The neural networks

output node are directly mapped to bins of the residual distributions, and the rms of these
distributions are used as point estimates of the uncertainties. In order to compare the

performance in both directions, the residuals and rms values are divided by the pitches

(50 �m and 250 �m in the local G and H directions, respectively) [177].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10 – Difference between the neural network position estimation and the true

hit position divided by the estimated uncertainty in the (left) local x and (right) local y

directions for true (a), (b) 1-particle, (c), (d) 2-particles and (e), (f) 3-particles clusters.

The means and standard deviations are estimated with truncated Gaussian fits, which

are represented as dashed lines. All means and standard deviations have negligible

uncertainties [177].
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Chapter 5

Search for supersymmetry in events with
many b-jets and significant missing
transverse momentum

In this chapter, we use all the theoretical knowledge accrued so far in this thesis to

perform an actual search for hypothesized supersymmetric particles. Let’s take a moment

and briefly review the motivations for this particular search. In Chapter 1, we’ve touched

upon two unsolved problems with the Standard Model; namely, the Higgs mass-related

naturalness problem, and dark matter. In Chapter 2 however, we’ve seen that a solution

to both problems arise in '-parity conserving supersymmetric extensions of the SM.

Now, which sparticles exactly do we want to search for? The neutralino, "̃0
1, is an

obvious candidate since it provides a perfect WIMP dark matter candidate. Higgs mass

considerations lead us to also pay close attention to the gluino and to third-generation

squarks. Moreover, to ease the interpretation of results, we want to limit our benchmark

models to two free parameters, and cross-section considerations, as shown in Figure 5.1,

lead us to consider the gluino as our other primary target, with the sbottom and stop

quarks being considered as off-shell; these simplified models, referred to as the Gbb and

Gtt models, can be visualized in Figure 5.2.

Asmentioned in Section 2.2.2, events from thesemodels lead to final stateswith striking

signatures in the detector. For instance, all-hadronic Gtt events will have 12 jets, four of

which originate from 1-quarks, while leptonic events can have up to four lepton/neutrino

pairs. Boosted , bosons or top quarks can be reconstructed as single large-radius jets,

as seen in Figure 5.3. In both grids, the two neutralinos and the potential neutrinos from

the, decays in each event are significant sources of missing transverse momentum. The

mass splitting has a significant effect on the final state kinematics; areas of the grids where

< 6̃ � <"̃0
1
are characterized by more boosted particles and more �miss

T
, since the large
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Figure 5.1 – Cross-sections for various scenarios of SUSY particle pair production, showing

that gluino pair production is a more luminous search target than, for instance, direct

squark production [181].

splitting translates to high available kinematic energy for the decay products, and are

generally easier to search for than the compressed regions, where < 6̃ ≈ <"̃0
1
. For instance,

in this regime the neutralinos are produced nearly at rest and so the �miss
T

distribution is

more SM-like.

Details on the generated signal samples as well as Standard Model backgrounds and

the ATLAS data used in this search are presented in Section 5.1, while the reconstruction

of these data into meaningful physics objects is reviewed in Section 5.2. Inspired by the

neural networks discussion of Chapter 4, we detail how to train such models to recognize

SUSY events from the SM bulk in Section 5.4. Finally, the statistical data analysis and its

result are presented in Sections 5.5 and 5.6, respectively.

5.1 Signals, backgrounds, and ATLAS data

Samples produced by Monte Carlo particle collision generators [183] are used to optimize

the search strategy and provide the result hypotheses. The generation of signal samples

proceeds in two steps. First, matrix elements for ? + ? → 6̃ + 6̃ events are computed

using version 2.3.3 of the MadGraph5_aMC@NLO package [184] and the NNPDF 2.3 parton

distribution function set [185]; gluino decays to top or bottom quark pairs and a neutralino

are subsequently handled by the Pythia version 8.212 program [186, 187], considering
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Figure 5.2 – Simplified models of pair-produced gluinos decaying to (a) bottom or (b) top

quarks and neutralinos via off-shell stops or sbottoms, colloquially known as the Gbb and

Gtt models, respectively.

Figure 5.3 – The decay products of the top quark become very collimated in the laboratory

frame when its rest frame has a large Lorentz boost [182]. In such cases, the top decay can

be reconstructed in a single large-radius jet.
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only the kinematic phase-space. The latter stage also includes modeling of soft processes

such as hadronization and the underlying event1. The two stages are matched at the scale

of a quarter of the gluino’s mass, using the CKKW-L prescription [188]. In total, nearly 300

distinct samples corresponding to different 6̃ , "̃0
1 mass pair hypothesis are generated: 152

samples with gluinos decaying to top pairs (the Gtt grid), and 144 samples where gluinos

decay to bottom quarks instead (the Gbb grid). In both cases, the gluinomasses range from

1.1 TeV to 2.8 TeV, and the lower bound on the neutralino mass is 1 GeV (the ≈ massless

limit). The upper bound on the neutralino mass depends on the available kinematic phase

space: < 6̃ − 2<bottom for the Gbb grid, and < 6̃ − 2<top for Gtt grid.

The most important SM background process with respect to the Gtt and Gbb signals is

the strong production of top–anti-top quark pairs with additional high-energy jets arising

from initial or final state radiation, henceforth referred to as the CC background. Matrix

elements for this process are computed by Powheg-Box v2 [189, 190] with the NNPDF 3.0

PDF set; heavy-flavor hadrons are subsequentlydecayedby EVTGEN v1.6.0 [191]while soft

processes are handled by Pythia 8.230. Additional background sources estimated from

MC simulations come from production of single top-quarks, CC production associatedwith

vector or scalar bosons, vector boson production with additional high-energy jets, and di-

boson processes. The software versions for all MC samples is summarized in table 5.1

In events with no leptons, multĳet production is a small but potentially non-negligible

background, and the MC samples for such processes usually fail to reproduce the ob-

served data in a reliable way in the kinematic phase-space pertinent for this analysis.

Consequently, the contribution from these processes are estimated with the data-driven

technique of Ref. [208], in which a template fit to the Δ)
49

min (Sec. 5.2.7) distribution is

performed in a statistically-independent region (Δ)
49

min < 0.1) and extrapolated to the

phase-space targeted by the analysis regions (Δ)
49

min ≥ 0.4).

The full 2015–2018 ATLAS

√
B = 13 TeV ?–? dataset is used, for a total integrated

luminosity of 139.0 fb
−1

after the application of beam, detector and data-quality require-

ments [209]. In particular, data-taking runs in which the IBL (Section 3.2.2) is off are not

included given the impact on 1-jet identification performance.

1The underlying event describes the effects due to the proton remnants, initial and final state radiation,

as well as multiple parton interactions.
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Process Generator Tune PDF set Cross-section

+ hadronization order

Gbb/Gtt MadGraph5_aMC@NLO v2.3.3 [184] A14 [171] NNPDF2.3 [185] NNLOapprox+NNLL [192–200]

+ Pythia v8.212 [187]

tt Powheg-Box v2 [189, 190] A14 NNPDF3.0 (ME) [31] NNLO+NNLL [201]

+ Pythia v8.230 NNPDF2.3 (UE)

Single top Powheg-Box v2 A14 NNPDF3.0 (ME) NLO [202] (C/B-channel)
+ Pythia v8.230 NNPDF2.3 (UE) NLO+NNLL [203] (,C)

ttW /ttZ MadGraph5_aMC@NLO v2.3.3 A14 NNPDF3.0 (ME) NLO

+ Pythia v8.210 NNPDF2.3 (UE)

4-tops MadGraph5_aMC@NLO v2.2.2 A14 NNPDF2.3 NLO

+ Pythia v8.186 [170]

tth Powheg-Box v2 A14 NNPDF3.0 (ME) NLO [204]

+ Pythia v8.230 NNPDF2.3 (UE)

W /Z+jets Sherpa v2.2.1 [205, 206] Default NNPDF3.0 NNLO [207]

WW ,WZ, ZZ Sherpa v2.2.1 Default NNPDF3.0 NLO

Table 5.1 – Software configurations used to produce various signal and backgroundMonte

Carlo samples, detailing the generator, the set of of tuned parameters used for modeling

of soft processes, the parton distribution function set, and the order of the cross-section

used to normalize the samples. Separate references are given for this latter computation

when they differ from that of the generator.

5.2 Physics objects and reconstruction

5.2.1 Trigger

As discussed in Section 3.2.5, the two neutralinos in each signal event, as well as poten-

tial neutrinos from the , boson decays, motivate the use of triggers based on missing

transverse momentum (�miss
T

). This analysis employs the lowest available unprescaled

such trigger specific to each data-taking period, which are fully efficient in the offline

�miss
T
≥ 200 GeV regime.

5.2.2 Small-radius jets

The reconstruction of hadronic jets begins with three-dimensional clustering of energy

deposits measured by calorimeter cells into topological clusters (“topoclusters”), a proce-

dure that resolves the energy and the direction of single hadrons [210]. However, partons
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created in the hard scattering process will undergo hadronization and so the final state jet

comprises many hadrons; therefore, the topoclusters are subsequently used as input to the

anti-:t sequential recombination algorithm [211, 212] with a radius of ' = 0.4. The energy

of the resulting jets is calibrated to account for experimental effects using a combination

of MC-based and in situ techniques [213].

5.2.3 b-jets

Because of the high b-quark multiplicities stemming from the Gbb and Gtt (via C →, + 1)
signals, robust 1-jet identification is required for this analysis. A number of low-level

algorithms have been implemented for this task in ATLAS [214]:

• IP3D, a log-likelihood ratio (LLR) classifier based on the transverse and longitudinal

impact parameter of tracks matched to a given jet, taking advantage of the relatively

long lifetimes of the lightest 1-mesons and 1-baryons, which will be present inside a

1-quark-initiated jet;

• SV1, another LLR classifier also taking advantage of the 1-hadron lifetime but by

trying to recognized jets originating from a displaced interaction vertex;

• JetFitter, a Kalman Filter-based algorithm trying to reconstruct the decay chain of 1-

and 2-hadrons.

These algorithms are then combined with additional kinematic information using a

Boosted Decision Tree (BDT) classifier, resulting in the MV2 algorithm2. A working point

corresponding to a nominal efficiency of 77% is employed; its identification and rejection

performance can be seen in Figure 5.4.

5.2.4 Large-radius jets

Given the large hypothesized mass of the gluino and the potentially large difference in

mass between the gluino and the neutralino, boosted , bosons and top quarks from

the gluino decay can subsequently create decay chains so collimated that the individual

constituents are not well resolved by the anti-:T ' = 0.4 algorithm, as exemplified in

Figure 5.3.

One way to deal with such objects is to go back to the topoclusters and reconstruct

another set of jets starting using a larger reconstruction radius. This analysis makes use

2Another alternate combination using neural network, the DL1 algorithm, is available but not used in

this analysis.
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Figure 5.4 – (a) light-flavor jet rejection, (b) 2-jet rejection, and (c) 1-jet identification

efficiency as a function of jet ?T for the different ATLAS b-tagging algorithms at their

nominally 77% efficient working point [214].
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of an alternate strategy, instead using the ' = 0.4 jets themselves as input to another

iteration of the anti-:t algorithm but with a radius of ' = 0.8. This technique, known as jet
re-clustering, allows for easy propagation of calibrations and uncertainties from the input

jet collection [215, 216]. Such large-radius jets can properly reconstruct the, boson and

top quark masses.

5.2.5 Leptons

Electrons are reconstructed with two different algorithms with differing efficiency and

rejection factors. So-called baseline electron candidates are reconstructed using a high-

efficiency, low-rejection set of criteria using information from the tracker and the electro-

magnetic calorimeters in the ?T > 20 GeV, |�| < 2.47 range; they and are used to veto

leptonic events in order to define an all-hadronic channel. Signal electrons are used to

define the leptonic channels, and are defined by a set of additional criteria on top of

the baseline identification, resulting in a lower-efficiency but higher-rejection operating

point [217]. The same paradigm is used for identification for muons [218]. No attempt is

made to reconstruct �-leptons; because of their large mass they tend to decay to hadrons,

in which case they get reconstructed as jets [11].

Leptons useful for this analysis are qualified as being prompt, that is, they arise from

the hard scattering interaction. However, there can be other sources of lepton production,

which lead to some ambiguity and potential double-counting of energy contributions; this

problem is avoided by the implementation of an overlap removal procedure similar to that

of Ref. [9].

First, electrons arising frommuon bremsstrahlung are avoided by discarding electrons

that share an inner detector track with a muon. Contributions from jets arising from

hadrons coming from prompt electron decay are avoided by removing any jet whose

axis lies within Δ' =
√
ΔΥ2 + Δ)2 < 0.2 of an electron. Conversely, contributions from

electrons produced in hadronic cascades are removed by discarding electrons with �T <

50 GeV that are within Δ' < 0.4 of a jet. A slightly more complex strategy is employed

for higher energy electrons, discarding them if they are within Δ'(?T) < min(0.4, 0.04 +
10/?T) of a jet’s axis, to increase acceptance in boosted scenarios. Jets arising from muon

bremsstrahlung are avoided by removing jets with fewer than three matching ID tracks

that contain a muon within Δ' < 0.2 of its axis, and the remaining ambiguity from muon

created in hadronic cascades is handled in the same way as for electrons.
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5.2.6 Missing transverse energy

The missing transverse momentum is a two-vector in the '–) plane, defined by the

negative of the vector sum of the transverse momenta of all physics objects described

above. To account for contributions from particles not matched to any selected objects, a

so-called “soft term” is computed with unused inner detector tracks that are matched to

the primary vertex. The magnitude of the resulting missing transverse momentum vector

is referred to as missing transverse energy, �miss
T

[219, 220].

As mentioned earlier, this analysis is mainly concerned with the �miss
T
≥ 200 GeV

regime, for which the selected online �miss
T

triggers are fully efficient.

5.2.7 Kinematic variables

Beyond the direct usage of the four-momenta of the physics objects described above, a

few event-level kinematic input variable are built from the four-vectors and are useful in

various aspects of the analysis:

• #jet, the number of small-R jets;

• #1 , the number of b-tagged small-R jets at the 77%MV2 operating point;

• #
signal
;

and #baseline
;

, the number of signal and baseline candidate leptons;

• <eff , the effective mass, which correlates to the mass scale of sparticles produced in

the hard scattering interaction:

<eff =

#jet∑
9=1

?
9

T
+

#;∑
;=1

? ;T + �
miss
T ; (5.1)

• "Σ
�
, the sum of the four leading large-radius jet masses, sensitive to the presence of

boosted, bosons or top quarks;

• Δ)
49

min, the minimum distance in ) between �miss
T

and the leading four small-R jets,

useful to recognize events with large �miss
T

due to mismeasured jets:

Δ)
49

<8=
= min(|)1 − )�miss

T
|, ..., |)4 − )�miss

T
|). (5.2)
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5.3 Data–Monte Carlo agreement

In order to be sure that any potential excess observed above the Standard Model is not

caused by imperfect simulations, it is crucial to verify the data andMonte Carlo agreement

after application of a set of loose criteria. In these so-called pre-selection regions, the

background cross-section is still expected to be much higher than that of the Gtt and Gbb

signals, and thus any large mismodelling not due to these models can be easily spotted

and corrected, if need be.

A common pre-selection is first performed:

• �miss
T

trigger

• Offline �miss
T
≥ 200 GeV

• #jet ≥ 4

• #1 ≥ 3

Then, to ease interpretation, two different channels are defined:

• 0-lepton channel:

– #baseline
;

= 0

– Δ)49

min ≥ 0.4

• 1-lepton channel:

– #
signal
;

≥ 1

As in previous iterations of this analysis [8, 9], a data–Monte Carlo discrepancy is

observed in the 1-lepton channel, for instance in the high-<eff regime.3 Consequently, a

set of normalization factors are derived in dedicated control regions for the CC and,+jets
backgrounds in the <eff–#94C plane, and for the single-top and /+jets backgrounds in the

<eff distribution. All ≥ 1-lepton plots are shown with the resulting weights applied; the

distribution of these weights can be found in Appendix A.

Figures 5.5 to 5.10 show the level of agreement for a few of the variables used in this

analysis, taking the statistical uncertainty into account; no large discrepancy is present at

pre-selection level.

3This is observed by several ATLAS analyses, and the cause is still not fully understood. One hypothesis is

that it is caused by quantum interference between different top-related processes which is not yet accounted

for in the Monte Carlo simulations.
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Figure 5.5 – Data/MC comparison for the leading small-radius jet ?T in the (a) 0-lepton

and (b) ≥ 1-lepton channels.
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Figure 5.7 – Data/MC comparison for the leading large-radius jet ?T in the (a) 0-lepton

and (b) ≥ 1-lepton channels.
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Figure 5.8 – Data/MC comparison for the leading large-radius jet mass in the (a) 0-lepton

and (b) ≥ 1-lepton channels.
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Figure 5.9 – Data/MC comparison for �miss
T

in the (a) 0-lepton and (b) ≥ 1-lepton channels.
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Figure 5.10 – Data/MC comparison for the leading lepton ?T in the ≥ 1-lepton channel.
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5.4 Neural network for event selection

Traditionally, high-energy physics searches use physically-motivated hand-crafted vari-

ables such as invariant or transverse masses, which are easily interpreted by humans.

However, which high-level variables are better suited to the task at hand is not always

obvious, and important but more subtle information may be discarded in the transition

away from the lower-level objects. Using neural networks (Section 4.2) for event selection

in high energy physics is by no means a new idea [221–224], and analyses using such

methods also generally use a restricted set of hand-crafted variables; however, the recent

deep learning revolution in machine learning [7] has motivated the use of neural networks

performing event selection starting from low-level inputs such as the four-momenta of

selected objects [225, 226], potentially allowing more relevant information to be retained.

For the present analysis, a neural network is trained to recognize events from the Gtt

and Gbb signals against the Standard Model background (Table 5.1) using the following

low-level input set, designed to cover all possible decay topologies of a Gtt event (see

Figure 5.2b):

• The four-momenta (?T, �, ), <) of the 10 leading small-R jets, and a set of binary

variables indicating which jets are b-tagged (MV2, 77% WP);

• The four-momenta of the four leading large-R jets;

• The four-momenta of the four leading leptons (4 or �);

• The �miss
T

vector.

The simplest way use such a network with parameterized signal grids such as Gbb and

Gttwouldbe to train a specific classifier for eachmasspoint. However, in order tomaximize

the training set statistics for a single training, a parameterized learning method [227] is

used instead, allowing for amore efficient use of computational resources and a potentially

more robust classifier, since adding training data is one of the most powerful ways to

reduce the generalization error [146]. To further improve the statistics, events with �miss
T
∈

(100, 200) GeV as well as events with #1 = 2 are also used, albeit for training only.

The goal of the parameterized learning method is to obtain a single classifier that is

optimal for every (< 6̃ , <"̃0
1
) mass hypothesis across both signal grids. To do so, the neural

network uses a further three non-discriminating inputs4, or parameters:

• A binary variable, �Gtt, identifying the event as coming from the Gtt or Gbb grids;

4Non-discriminating in the sense that they will be fixed at test time, thus completely removing their

discriminating power from the equation.
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• The gluino mass, " 6̃ 5;

• The neutralino mass, ""̃0
1
.

The first parameter allows the network to learn different strategies to recognize for

Gtt and Gbb events from the SM background, since here the two grids are taken to be

mutually exclusive6; the last two parameters allow the strategy to be modulated according

to the masses of the particles searched for. These parameters are only meaningful for

signal events; background events get their parameter values by sampling randomly from

the signal distribution, which also removes the correlation of the first parameter with the

network’s output.

The neural network does not simply output a single signal or background probability

score, but also tries to discriminate between different background classes. In total, there

are eight softmax output scores:

• Two signal probability scores, one for each signal grid: %(Gtt) and %(Gbb);7

• Six background probability scores, one for eachMonte Carlo-estimated background:

%(CC), %(single-top), %(CC + -), %(, + jets), %(/ + jets) and %(diboson).

To ensure that no bias is introduced by the training and hyperparameter selection

procedures, the whole dataset is split into three statistically independent subsets:

• The training set (30%), used to train all hyperparameter samplings;

• The model selection set (35%), used to pick the best hyperparameters;

• The test set (35%), used to produce the final performance estimate.

The training set comprises about 1.09M and 2.25M signal and background events, respec-

tively. The signal cross-section being much smaller than that of the background processes

precludes using the physical cross-sections for training; using unweighted events from

signal and background samples with the statistics listed above upweights the signal con-

tribution significantly for training. In the model selection and test sets, the events are

always weighted to the physical cross-sections. To select the optimal hyperparameters, a

simple random search [228] was performed on the Compute-Canada GPU cluster Béluga8;

5An uppercase " is used here to differentiate from the neural network input parameter from <, the

physical mass for a given grid point.

6A straightforward extension of this method would consider signals with mixed gluino decay, with this

binary parameter being replaced by branching ratios to different final states.

7Since in this work the Gbb and Gtt grids are taken to be mutually exclusive, this could be reduced to a

single signal probability score.

8https://docs.computecanada.ca/wiki/B%C3%A9luga/en
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Hyperparameter Searched range Selected Value

Hidden layers 1–4 3

Hidden units 50–1000 737

Learning rate 10−5
–10−1 1.30 × 10−5

Batch 25
–210

128

Dropout (input) Yes or No No

Dropout (hidden) Yes or No No

BatchNorm Yes or No Yes

L1 (hidden) 0 or 10−7
–10−2 1.57 × 10−5

L1 (output) 0 or 10−7
–10−2

0

L2 (hidden) 0 or 10−7
–10−2 2.31 × 10−7

L2 (output) 0 or 10−7
–10−2

0

Early-stop Cross-entropy loss or f-score Cross-entropy loss

Table 5.2 – Configuration and result of the hyperparameter optimization.

the searched range as well as the optimal configuration are listed in Table 5.2. In all cases,

the ADAM algorithm (Section 4.2.1) is used to tune the weights.

After training, first the �Gtt, " 6̃ and ""̃0
1
parameters are set to definite values corre-

sponding to a specific mass hypothesis in a specific grid, the same for all background,

signal, and data samples, which removes the discriminating power of these variables; this

allows using the neural network to construct a set of output variables amenable to simple

counting experiments in signal regions (SR), which are scrupulously kept blinded until the
very end of the analysis, in order to avoid introducing biases in the SR definitions. To fully

explore the discovery and exclusion potential of such regions, the following procedure is

followed:

1. Select a signal (Gbb or Gtt), which determines the value of �Gtt, and a mass point

(< 6̃ , <"̃0
1
);

2. Evaluate %(Signal|�Gtt, " 6̃ = < 6̃ , ""̃0
1
= <"̃0

1
) for the signal sample and all back-

ground samples;

3. Tune a decision threshold on the resulting variable, subject to the following require-

ments:

• Maximize the expected statistical significance, which is the magnitude of a

statistical fluctuation (measured in standard deviations) above the background-

only hypothesis that would explain the yield that is expected under the sig-

nal+background hypothesis;9;

9During optimization, the NumberCountingUtils::BinomialExpZ formula from the RooStats library is
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• Obtain ≥ 0.5 expected background events;

• Obtain ≤ 30% Poisson statistical uncertainty on the CC background yield;

4. Repeat for all mass pairs in both signal grids.

This procedure yields about 300 signal regions, one per grid point. To select the best

hyperparameters, this procedure is carried-out using the model selection dataset for all

different trainings and the best model is defined as that which has the largest number of

grid points with statistical significance ≥ 1.64, corresponding to a one-sided confidence

level (CL) of 95%. For the final performance estimate however, such a high number

of signal regions is unreasonable as the discovery potential is weakened by the Look-

Elsewhere Effect (LEE) [229], according to which the probability of observing a signal-like

statistical fluctuation of the background increases with number of counting-experiments

performed. Therefore, after obtaining all these regions on the test set with the final model,

we need to find aminimal set that canmaximize the exclusion reach and the sensitivity for

both grids. This is equivalent to the set cover problem10, for which a simple solution exists:

iteratively select regions from the full set until exclusion and sensitivity stops improving.

Following this strategy, optimality is attainable with only four signal regions per grid, for

a grand total of eight; their definitions can be found in Tables 5.3 and 5.4.

One signal region is assigned to each grid points of bothmodels; the resulting coverage

is shown in Figure 5.11. Although the mass splitting is not taken into account while

performing the assignment, the various signal regions end up being assigned to specific

< 6̃ − <"̃0
1
ranges.

As can be seen in figure 5.12, the neural network is much more powerful than the

simple cut-and-count analysis (CCA) performed in Ref. [9], even after accounting for the

luminosity difference. In fact, the neural network regions reach a signal efficiency11 some-

times two or three times higher than that of the CCA regions, while having only one-half

to one-tenth of the corresponding background efficiency; this translates to improvements

in statistical significance by up to a factor 85 for some mass hypotheses. In such cases,

the cut-and-count analysis would need to accumulate roughly 7000× more data to attain

an equivalent performance level in single regions12 13. This increased performance also

used to compute it, while the profile likelihood fit of Section 5.5 is used for the final results.

10https://en.wikipedia.org/wiki/Set_cover_problem
11The signal (background) efficiency of a signal region is defined as the fraction of events from a signal

(background) sample that are accepted into the region.

12The statistical significance of a single region can be approximated by Z = (/
√
�. Therefore, scaling the

yields by a factor ! only improves the significance by

√
!.

13To be completely fair, the previous CCA strategy was optimized for 79.9 fb
−1
, and the 0 ℓ and ≥ 1ℓ

channels were statistically combined. The single-region results have been recomputed with the present
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Figure 5.11 – Signal region coverage for the (a) Gbb and (b) Gtt signal grids. In both cases,

the regions are numbered in the order in which they are listed in Tables 5.3 and 5.4. The

empty squares represent mass pairs for which no signal samples were produced.

simplifies the analysis by removing the need to perform a statistical combination of many

orthogonal regions.

In order to verify and correct potential mis-modeling, each SR has an associated or-

thogonal control region (CR), in which background-only fits (Section 5.5) are performed to

estimate data/MC normalization factors used to correct the normalization of the leading

background, CC. Sets of validation regions (VR), orthogonal to both the SR and CR, are also

implemented to verify the remaining mismodelling after application of the normalization

factor derived in the CR [230].

While the signal regions are defined only in terms of a decision threshold on the neural

network output, the CRs and VRs have additional requirements. For instance, thresholds

or ranges in <eff and "Σ
�
are applied in some regions to keep them kinetically close to

the SRs as the neural network output requirement is loosened, and to reduce the signal

contamination to acceptable levels (≤ 20(10)% in VR(CR)). To ensure that the derived CC

normalization factors are meaningful, a lower threshold on %(CC) is added to the CRs to

maximise the CC purity. In the results that follows, two kinds of validation regions are

implemented for the Gtt regions:

• VR1, which are primarily defined by intermediate cuts on the signal probability

(i.e., between the CRs and SRs) and allow to verify the level of agreement after the

application of the CC normalization factors. These regions do not have any cuts on

%(CC) in order to keep the region definition as similar as possible to that of the SRs;

luminosity to calculate the numbers shown here.
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Figure 5.12 – (a,b) Signal and (c,d) background efficiencies as well as (e,f) statistical sig-

nificance of the neural network regions divided by that of the best cut-and-count (CCA)

discovery regions of Ref [9] for each mass pair, for the Gbb and Gtt models.
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• VR2, which are defined by inverting the %(CC) in the CRs.

The Gbb SRs are usually dominated by the irreducible /+jets background, primarily

because of / → �� events; this background can be more efficiently suppressed in the

Gtt SRs because of the higher jet multiplicities due to four top quark decays, for instance.

Designing control regions pure enough to derive normalization factors with acceptable

uncertainties for the /+jets background is unfeasible; fortunately, it is possible to define

additional validation regions for which the purity requirement is less crucial. This is done

by requiring lower thresholds on %(/ + jets) to enhance the fraction of this background,

allowing to check for potential mismodeling. Each Gbb SR/CR pair therefore have three

associated validation regions:

• VR1, again defined by intermediate cuts on the signal probability but with an upper

limit on the /+jets probability;

• VR2, again defined by inverting the %(CC) in the CRs;

• VR3, defined like VR1 but with a lower limit on the /+jets probability instead, to

check the modeling of this background.

The basic layout of the three types of regions can be seen in Figure 5.13. Region defi-

nitions are listed in Tables 5.3 and 5.4 for Gbb and Gtt, respectively; expected background

yields and composition can be seen in Figures 5.14 and 5.15. The Gtt control regions

achieve 70% to 80% CC purity, while the Gbb regions achieve about 50% to 80% purity; the

/+jets purity in the Gbb VR3 set range from 20% to 50%. One can also see in these figures

the very stringent nature of the SRs, which typically have / 1 expected background event.

While the CR and the VRs assigned to a given SR are orthogonal to each other (and to

the SR), different SR/VRs/CR triplets are not necessarily orthogonal to other triplets, and

the overlap of background events between different regions is shown in Figure 5.16.

The Data–Monte Carlo agreement after the pre-selections described in Section 5.3 for

relevant neural network output variables are shown in Figures 5.17–5.23. The signal

probabilities (Figures 5.17 and 5.21) are generally well modeled. The %(CC) distributions
(Figures 5.18 and 5.23) show some disagreement at high values, which is the range that

is corrected by the CC–enriched control regions via fitted normalization factors. Such

normalization differences are considered normal even though the control regions have

negligible expected signal yields, because of the large extrapolation from the bulk of the

CC sample (' 100M events) to a small number of events in the CRs (/ 100 events). The

/+jets probabilities (Figure 5.19) show the same tendency, but there is no dedicated control
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(a) (b)

Figure 5.13 – Signal, validation and control region strategy for (a) Gbb and (b) Gtt regions.

Region P(Gtt) log10 P(CC) <eff "Σ
�

SR-Gtt-2100-1 ≥ 0.9998 - - -

VR1-Gtt-2100-1 ∈ (0.85, 0.9998( - ≥ 1800 -

VR2-Gtt-2100-1 ∈ (0.7, 0.85( <-0.9 ≥ 1200 -

CR-Gtt-2100-1 ∈ (0.7, 0.85( ≥-0.9 ≥ 1200 -

SR-Gtt-1800-1 ≥ 0.9997 - - -

VR1-Gtt-1800-1 ∈ (0.85, 0.9997( - ≥ 1600 -

VR2-Gtt-1800-1 ∈ (0.76, 0.85( <-1.0 ≥ 1200 -

CR-Gtt-1800-1 ∈ (0.76, 0.85( ≥-1.0 ≥ 1200 -

SR-Gtt-2300-1200 ≥ 0.9997 - - -

VR1-Gtt-2300-1200 ∈ (0.81, 0.9997( - ≥ 1500 -

VR2-Gtt-2300-1200 ∈ (0.74, 0.81( <-1.0 ≥ 1200 -

CR-Gtt-2300-1200 ∈ (0.74, 0.81( ≥-1.0 ≥ 1200 -

SR-Gtt-1900-1400 ≥ 0.9996 - - -

VR1-Gtt-1900-1400 ∈ (0.89, 0.9996( - ≥ 600 < 500
VR2-Gtt-1900-1400 ∈ (0.87, 0.89( <-1.6 ≥ 600 < 500
CR-Gtt-1900-1400 ∈ (0.87, 0.89( ≥-1.6 ≥ 600 < 500

Table 5.4 – Gtt region definitions.
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Figure 5.14 – Pre-fit expected background (a,c,e) yields and (b,d,f) compositions in the Gbb

regions.
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Figure 5.15 – Pre-fit expected background (a,c,e) yields and (b,d,f) compositions in the Gtt

regions.
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Figure 5.16 – Overlap of background events in the (a,c,e) Gbb and (b,d,f) Gtt regions. Each

cell quantifies the fraction of events in the signal region of the G axis that are also in the

signal region of the H axis.
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Figure 5.17 – Data/MC comparison for the %(Gbb) variables used for the Gbb regions, in

the 0-lepton channel defined in Section 5.3.

regions to correct these distributions; this range is instead selected by the Z+jets–enriched

validation regions and so any mismodelling due to this background can be identified.

5.5 Profile likelihood fits

The statistical analysis of results follows a two-step strategy, both implemented using the

HistFitter package v0.63 [230]. Firstly, a background-only fit is performed separately in

each control region in order to derive the �CC normalization factors; These per-region nor-

malization factors are extrapolated to their respective SRs before unblinding these regions

and quantifying any potential excess. If there is a significant excess, then a discovery can

be claimed; if none is observed, we move on to exclusion fits, performed in both the CRs
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Figure 5.18 – Data/MC comparison for the %(CC) variables used for the Gbb regions, in the

0-lepton channel defined in Section 5.3.
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Figure 5.19 – Data/MC comparison for the %(/ + jets) variables used for the Gbb regions,

in the 0-lepton channel defined in Section 5.3.
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Figure 5.20 – Data/MC comparison for the %(Gtt) variables used for the Gtt regions, in

the 0-lepton channel defined in Section 5.3.
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Figure 5.21 – Data/MC comparison for the %(Gtt) variables used for the Gtt regions, in

the ≥ 1-lepton channel defined in Section 5.3.
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Figure 5.22 – Data/MC comparison for the %(CC) variables used for the Gtt regions, in the

0-lepton channel defined in Section 5.3.
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Figure 5.23 – Data/MC comparison for the %(CC) variables used for the Gtt regions, in the

≥ 1-lepton channel defined in Section 5.3.
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and the SRs simultaneously and used as input to likelihood-ratio tests aiming to probe

which parts of the Gbb and Gtt grids are excluded by the analysis.

The likelihood function used for the background-only fit is the following:

! =
∏
CR

PCR × �syst. (5.3)

The probability densities PCR are Poisson distributions:

PCR = Poisson(=obs
CR |=

exp
CR
). (5.4)

The expression for the expected number of events, =
4G?

CR
, is nominally taken from theMonte

Carlo background estimate:

=
exp
CR

= (�CC=CCCR + =
other
CR ). (5.5)

The nominal expected yields can get scaled up or down depending on the effect of sys-

tematic uncertainties:

=exp→ =exp(1 + �88 + . . .). (5.6)

Here, the �88 terms encompass the effects of nuisance parameters: �8 is equal to the

impact on the yield of a one-sigma fluctuation in the 8 nuisance parameter. The values

for the 8 parameters are set by the fit procedure and constrained by the �syst term:

�syst =

∏
8

N(0|8 , 1). (5.7)

This technique is known as profiling [231], and allows expressing the likelihood as a

function of the parameters of interests only, the nuisance parameters settling to their most

probable values given the observed data.

As mentioned earlier, if no significant excesses are observed after the background-only

fit, an exclusion fit is performed this time taking into account the signal regions:
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! =
∏
SR

PSR

∏
CR

PCR × �syst. (5.8)

Again, a profile likelihood fit is performed to remove the dependency on parameters other

than �sig, the signal strength. Following the Neyman-Pearson lemma [232], likelihood

ratio tests are then performed for each mass hypothesis with the @�sig variable [233]:

@�sig = −2 log
!̂(�sig)
!̂

. (5.9)

Here, !̂(�sig) is the result of a profiling fit with a fixed �sig value, and !̂ lets �sig float as

well to fully maximize the likelihood. Results of these hypothesis tests are finally used to

produce 95% confidence level (CL) exclusion contours in the < 6̃–<"̃0
1
plane using the CLs

prescription [234].

5.6 Results

Background-only fit results are found in Figures 5.24–5.26. Figure 5.24 show the result of

the fits in the control regions for the Gbb and Gtt regions, including the �CC normalization

factors, which range from 0.8 to 1.7, depending on the region. The data–Monte Carlo

agreement after application of these normalization factors in the validation regions can be

found in Figures 5.25. These show no significant disagreement, which means that the �CC
scale factors are reasonable. The fit results in the signal regions are found in Figures 5.26,

showing no significant deviation from the Standard Model background. The expected

and observed event yields in the signal regions are summarized in Table 5.5; the full yield

tables for all regions can be found in Appendix B.

Systematic uncertainties affect the analysis if they impact the expected background

yields (the normalization factors in the case of CC), or the signal yields, which are used

to compute the exclusion limits. The systematic uncertainties taken into account can

be mostly separated into two categories, experimental and theoretical; the experimental

uncertainties affect the reconstruction and identification efficiencies and the energy reso-

lutions of all the physics objects used in the analysis, while the theoretical uncertainties

affect the simulation of the various Standard Model backgrounds as well as the SUSY sig-

nals, and include variations of the renormalization and factorisation scales, parton density

functions, and the amount of QCD radiation. The leading sources of experimental system-
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atic uncertainties are due to the weights correcting the data–Monte Carlo discrepancy in

the 1-lepton channel, jet energy resolution and scale (JER/JES), and b-tagging. Dedicated

terms accounting for the generator, radiation and parton shower theoretical uncertain-

ties are computed in all regions for the CC, single-top, and V+jets backgrounds. Dummy,

uncorrelated 50% uncertainty terms are included on the yields of all other backgrounds

except QCD to account for the lack of dedicated estimation; the QCD term has a larger,

100% uncertainty, since this background is not estimated from a dedicated sample but

with a procedure involving the rest of the Monte Carlo backgrounds. A term accounting

for luminosity uncertainty is also included in the fit. The uncertainties in the regions

SR-Gbb-2800-1400 and SR-Gbb-2300-1000 are dominated by the Z+jets theory uncertainty,

which can reach up to 70%; this is expected since the selected kinematic phase-space

(highly energetic events with many particles) in the SRs represent a very small fraction of

the whole sample and therefore are highly sensitive to variations in theory parameters.

The two other Gbb signal regions and the Gtt signal-regions are statistically limited. A

summary of of the statistical and systematic uncertainties in the various signal regions can

be found in Table 5.6, while the full breakdown of the uncertainties in all regions can be

found in Appendix C.

As discussed in the previous section, since no excesses are seen after the background-

only fits, the data is used to set limits in the< 6̃–<"̃0
1
plane for both the Gbb andGttmodels.

The results of the model-dependent exclusion fits are shown in Figure 5.27. In the Gbb

model, gluino masses below 2.3 TeV are excluded at 95% CL in the massless neutralino

case; the highest excluded neutralinomass is of approximately 1.7 TeV, for a 2.3 TeV gluino.

In the Gtt model, gluinos with less than 2.45 TeV of mass are excluded in the massless

neutralino case, while the highest limit on the neutralino mass is of 1.65 TeV, for a 2.1 TeV

gluino.
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Figure 5.24 – Top pannel: Number of observed events in 139 fb
−1

of 13 TeV ATLAS data,

shown as points, and the corresponding number of expected background events, shown

as histograms, in each of the (a) Gbb and (b) Gtt control regions. Bottom pannel: fitted CC

normalization factors in each signal regions.
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Figure 5.25 – Top pannel: Number of observed events in 139 fb
−1

of 13 TeV ATLAS data,

shown as points, and the corresponding number of expected background events, shown

as histograms, in each of the (a) Gbb and (b) Gtt validation regions. Bottom pannel: pulls

in each validation regions.

151



SR-Gbb-2800-1400 SR-Gbb-2300-1000 SR-Gbb-2100-1600 SR-Gbb-2000-1800

1

10

210

3
10

410

E
v
e
n
ts

data Total bkgd.
tt single top
 + Xtt W+jets

Z+jets diboson
multijet

-1=13 TeV, 139.0 fbs

SR-Gbb-2800-1400 SR-Gbb-2300-1000 SR-Gbb-2100-1600 SR-Gbb-2000-1800

2−

0

2

to
t

σ
) 

/ 
p
re

d
 -

 n
o
b
s

(n

(a)

SR-Gtt-2100-1 SR-Gtt-1800-1 SR-Gtt-2300-1200 SR-Gtt-1900-1400

1

10

210

3
10

410

E
v
e
n
ts

data Total bkgd.
tt single top
 + Xtt W+jets

Z+jets diboson
multijet

-1=13 TeV, 139.0 fbs

SR-Gtt-2100-1 SR-Gtt-1800-1 SR-Gtt-2300-1200 SR-Gtt-1900-1400

2−

0

2

to
t

σ
) 

/ 
p
re

d
 -

 n
o
b
s

(n

(b)

Figure 5.26 – Top pannel: Number of observed events in 139 fb
−1

of 13 TeV ATLAS data,

shown as points, and the corresponding number of expected background events, shown

as histograms, in each of the (a) Gbb and (b) Gtt signal regions. Bottom pannel: pulls in

each signal regions.
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SR Gbb-2800-1400 Gbb-2300-1000 Gbb-2100-1600 Gbb-2000-1800

Observed events 1 1 0 1

Fitted background 0.8 ± 0.7 0.8 ± 0.8 1.9 ± 1.8 1.7 ± 2.6

CC 0.14 ± 0.14 0.09 ± 0.10 0.40 ± 0.31 0.7 ± 1.6

Single-top 0.21 ± 0.16 0.25 ± 0.21 0.37 ± 0.26 0.03 ± 0.04

CC + - 0.00 ± 0.05 0.00 ± 0.04 0.09 ± 0.07 0.05 ± 0.08

/+jets 0.3 ± 0.6 0.3 ± 0.8 0.8 ± 1.7 0.6 ± 0.6

,+jets - - 0.00+0.17
−0.00 0.2 ± 1.1

Diboson - - 0.15 ± 0.09 0.14 ± 0.17

Multĳet 0.08 ± 0.09 0.10 ± 0.11 0.13 ± 0.14 0.00 ± 0.08

MC-only background 0.8 ± 0.7 0.8 ± 0.8 1.7 ± 1.8 1.6 ± 2.3

(a)

SR Gtt-2100-1 Gtt-1800-1 Gtt-2300-1200 Gtt-1900-1400

Observed events 0 0 1 2

Fitted background 0.5 ± 0.5 1.1 ± 0.8 0.7 ± 0.7 0.8 ± 1.2

CC 0.20 ± 0.25 0.3 ± 0.4 0.4 ± 0.5 0.7 ± 1.1

Single-top 0.15 ± 0.17 0.19 ± 0.23 0.06 ± 0.08 0.01 ± 0.05

CC + - 0.15 ± 0.21 0.3 ± 0.4 0.2 ± 0.4 0.15 ± 0.30

/+jets 0.04 ± 0.13 0.05 ± 0.13 0.06 ± 0.23 -

,+jets - 0.21 ± 0.35 - -

Diboson - - - -

Multĳet 0.00+0.09
−0.00 0.00+0.09

−0.00 0.00+0.09
−0.00 0.00+0.10

−0.00

MC-only background 0.5 ± 0.4 1.1 ± 0.9 0.6 ± 0.6 1.0 ± 1.3

(b)

Table 5.5 – Summary of the expected and observed event counts in the (a) Gbb and (b) Gtt

signal regions. The MC-only background represents the nominally expected background

level before the profile likelihood fit, while the background-specific counts are post-fit.
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SR Gbb-2800-1400 Gbb-2300-1000 Gbb-2100-1600 Gbb-2000-1800

Background expectation 0.76 0.75 1.91 1.75
Statistical uncertainty ±0.87 ±0.87 ±1.38 ±1.32
Systematic uncertainty ±0.70 ±0.79 ±1.76 ±1.30

(a)

SR Gtt-2100-1 Gtt-1800-1 Gtt-2300-1200 Gtt-1900-1400

Background expectation 0.54 1.07 0.74 0.84
Statistical uncertainty ±0.73 ±1.03 ±0.86 ±0.92
Systematic uncertainty ±0.23 ±0.41 ±0.36 ±0.58

(b)

Table 5.6 – Summary of the absolute statistical and systematic uncertainties on the expected

event counts in the (a) Gbb and (b) Gtt signal regions.
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Figure 5.27 – 95% CL exclusion contours in the < 6̃–<"̃0
1
plane for the (a) Gbb and (b) Gtt

signals.
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These results represent a substantial improvement over the previous ATLAS limits

for these models, which were based on statistical combinations of many simple cut-and-

count regions [9]. For massless neutralinos, the upper limit on the gluino mass is moved

by 100 GeV and 200 GeV for the Gbb and Gtt models, respectively; this is a significant

improvement even when taking into account the luminosity increase, considering that the

gluino pair production cross-section falls rapidly with increasing gluino mass as seen in

Figure 5.1. Moreover, the neural network results allow to set world-leading limits in the

compressed mass-splitting regime, where the improvement relative to cut-based analyses

is particularly significant; in this difficult regime, the neural network moves the upper

limit on the neutralino mass by about 500 GeV and 400 GeV in the Gbb and Gtt models,

respectively.
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Conclusion

This thesis has presented the implementation of a novel deep learning-based approach to

the search for supersymmetry, using only the four-momenta of selected physics objects.

We’ve begun this journey by considering the current status of the Standard Model, an

extremely successful theory of fundamental interactions, including a few of its problems.

We’ve then turned our attention to supersymmetry, an hypothesized SM extension that

could solvemany of the aforementioned problems in an elegant and consistent way. Doing

so, we’ve hopefully convinced ourselves that natural SUSY still hasn’t said its final word,

motivating the need to carry on the search with new and improved methods. We’ve

then discussed the LHC and the ATLAS detector, and we’ve seen the huge amount of

information that is recorded about each collisions by all the subsystems. Consequently,

a lot of work is needed to reconstruct meaningful physics objects from this raw data and

we’ve discussed one area in which I’ve been involved, that of track reconstruction in the

ATLAS inner detector; my contribution consisted of characterizing and optimizing a set

of neural network used to recognize and split overlapping charge clusters in the pixel

detector. In later chapters, we’ve seen how a parameterized neural network operating on

low-level inputs is able to achieve a very high sensitivity to the presence of gluinos and

neutralinos in ATLAS

√
B = 13 TeV data for two different simplified models with off-shell

stops (Gtt) or sbottoms (Gbb).

No significant excess above the SM background is recorded. In the Gbb model, gluino

masses below 2.3 TeV and neutralino masses below 1.7 TeV are excluded at the 95%

confidence level, while in the Gttmodel, gluino and neutralinomasses of less than 2.45 TeV

and 1.65 TeV are ruled out, greatly increasing the previous limit on these two simplified

models. For some mass hypotheses, the sensitivity increase is substantial; for instance,

the (< 6̃ = 1.6 TeV, <"̃0
1
= 1.245 TeV) mass point of the Gtt grid has seen its statistical

significance increase by 85× that of the previous results, after accounting for the difference

in luminosity.

The neural network algorithm implemented for this search has proved to be very effi-

cient and powerful, and can readily be applied to other scenarios in the future, particularly



in cases wheremany related signal models can share a common backgroundmodel, which

amplifies the benefits of the parameterized learning paradigm. Possibleways of improving

future searches based on the present one include performing a shape fit on the neural net-

work output rather than doing a simple counting experiment, and using more advanced

classifiers such as recurrent neural networks (RNN), which can make it easier to use a

larger selection of input physics objects that varies between events. The exclusion results

presented in this thesis still do not decisively rule-out the natural spectrum, but will con-

tribute to put pressure on this particular style of supersymmetric theories; searches such

as this one should ideally be repeated in the future as the ATLAS detector continues to

gather more data to make a discovery or continue pushing the boundary well outside of

the low TeV range.
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Appendices

A Kinematic reweighting in the 1-lepton channel

Note: these plots, and all the work that went into deriving these weights, are due to Egor Antipov.
Many thanks!

Table 7 – Definitions of the control regions used to derive the kinematic reweighting scale-

factors. The #1 requirements ensure these control regions are orthogonal to all signal

regions of the analysis, which include a #1 ≥ 3 requirement. The Z-enriched region uses

a definition of �miss
T

that includes the lepton pair momentum, to simulate /→ �� events.

Criteria common to all regions: #94C ≥ 4, �miss
T
≥ 200 GeV

Control-region #lepton #1 mtb (GeV) "/ (GeV)

CC-enriched = 1 = 2 ≤ 350

single-top-enriched = 1 = 2 > 350

W-enriched = 1 = 0

Z-enriched = 2, opposite charge = 0 ∈ (60,120(
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Figure 28 – Result of the fit to the data/MC distribution for the CC–enriched control region

in four different bins of #94C .
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Figure 29 – Result of the fit to the data/MC distribution for the W–enriched control region

in four different bins of #94C .
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Figure 30 – Result of the fit to the data/MC distribution for the (a) single-top– and (b) Z–

enriched control regions.
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CR_Gbb_2800_1400 VR1 VR2 VR3 SR

Total background expectation 26.98 12.31 7.01 10.40 0.76

Total statistical (
√
#exp) ±5.19 ±3.51 ±2.65 ±3.22 ±0.87

Total background systematic ±5.35 [19.85%] ±4.26 [34.63%] ±4.56 [65.10%] ±4.21 [40.48%] ±0.70 [91.20%]

mu_ttbar_Gbb_2800_1400 ±8.86 [32.8%] ±2.36 [19.2%] ±1.20 [17.1%] ±1.15 [11.0%] ±0.09 [11.9%]
alpha_QCDHundred ±4.90 [18.1%] ±3.26 [26.5%] ±0.95 [13.6%] ±2.28 [21.9%] ±0.08 [10.4%]
alpha_WZ_ckkw_syst ±2.65 [9.8%] ±1.30 [10.6%] ±1.81 [25.9%] ±2.79 [26.8%] ±0.54 [71.2%]
gamma_stat_CR_Gbb_2800_1400_cuts_bin_0 ±2.52 [9.3%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JER1 ±1.52 [5.6%] ±0.66 [5.3%] ±2.23 [31.8%] ±0.66 [6.3%] ±0.00 [0.26%]
alpha_JER0 ±1.21 [4.5%] ±0.23 [1.9%] ±1.34 [19.1%] ±0.16 [1.5%] ±0.01 [1.4%]
alpha_JER2 ±1.11 [4.1%] ±0.24 [2.0%] ±1.20 [17.2%] ±0.58 [5.6%] ±0.05 [6.3%]
alpha_JES0 ±1.06 [3.9%] ±0.05 [0.37%] ±0.05 [0.73%] ±0.35 [3.4%] ±0.04 [5.1%]
alpha_WZ_renorm_syst ±0.98 [3.6%] ±0.90 [7.3%] ±0.55 [7.9%] ±0.87 [8.4%] ±0.04 [5.2%]
alpha_WZ_fac_syst ±0.96 [3.6%] ±0.27 [2.2%] ±0.71 [10.2%] ±1.08 [10.4%] ±0.28 [36.2%]
alpha_JES1 ±0.91 [3.4%] ±0.01 [0.07%] ±0.09 [1.3%] ±0.37 [3.5%] ±0.05 [6.8%]
alpha_JES6 ±0.63 [2.3%] ±0.03 [0.24%] ±0.31 [4.4%] ±0.76 [7.3%] ±0.04 [4.7%]
alpha_topEW_syst_CR_Gbb_2800_1400 ±0.60 [2.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
Lumi ±0.38 [1.4%] ±0.25 [2.0%] ±0.15 [2.1%] ±0.25 [2.4%] ±0.02 [2.3%]
alpha_JER5 ±0.31 [1.1%] ±0.43 [3.5%] ±0.54 [7.7%] ±0.07 [0.69%] ±0.01 [1.9%]
alpha_WZ_qsf_syst ±0.30 [1.1%] ±0.36 [2.9%] ±0.14 [2.0%] ±0.24 [2.3%] ±0.01 [1.7%]
alpha_JER3 ±0.30 [1.1%] ±0.29 [2.3%] ±0.75 [10.7%] ±0.04 [0.42%] ±0.02 [3.1%]
alpha_JER7 ±0.27 [1.0%] ±0.34 [2.8%] ±0.64 [9.1%] ±0.46 [4.4%] ±0.01 [1.2%]
alpha_bTag_C ±0.25 [0.94%] ±0.14 [1.2%] ±0.17 [2.5%] ±0.16 [1.6%] ±0.01 [1.2%]
alpha_bTag_L ±0.23 [0.85%] ±0.39 [3.1%] ±0.13 [1.8%] ±0.21 [2.0%] ±0.03 [4.2%]
alpha_JES5 ±0.19 [0.70%] ±0.01 [0.05%] ±0.00 [0.00%] ±0.01 [0.14%] ±0.00 [0.01%]
alpha_JER4 ±0.17 [0.65%] ±0.44 [3.6%] ±0.65 [9.2%] ±0.23 [2.2%] ±0.03 [3.7%]
alpha_JER6 ±0.16 [0.58%] ±0.36 [2.9%] ±1.47 [21.0%] ±0.04 [0.36%] ±0.04 [5.1%]
alpha_bTag_B ±0.14 [0.52%] ±0.11 [0.91%] ±0.07 [0.97%] ±0.11 [1.0%] ±0.01 [1.9%]
alpha_JES2 ±0.13 [0.48%] ±0.25 [2.0%] ±0.00 [0.01%] ±0.14 [1.3%] ±0.01 [1.1%]
alpha_bTag_extrapol_charm ±0.06 [0.24%] ±0.08 [0.67%] ±0.06 [0.82%] ±0.06 [0.58%] ±0.00 [0.08%]
alpha_diboson_syst_CR_Gbb_2800_1400 ±0.06 [0.20%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JVT ±0.04 [0.14%] ±0.03 [0.23%] ±0.02 [0.30%] ±0.03 [0.26%] ±0.00 [0.16%]
alpha_bTag_extrapol ±0.03 [0.10%] ±0.23 [1.9%] ±0.02 [0.34%] ±0.02 [0.22%] ±0.02 [2.1%]
alpha_JES4 ±0.00 [0.02%] ±0.00 [0.01%] ±0.01 [0.07%] ±0.01 [0.05%] ±0.00 [0.02%]
alpha_JES3 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR3_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.22 [2.1%] ±0.00 [0.00%]
alpha_ttbb_syst ±0.00 [0.00%] ±0.02 [0.13%] ±0.07 [0.95%] ±0.01 [0.06%] ±0.00 [0.33%]
gamma_stat_VR3_Gbb_2800_1400_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±1.70 [16.3%] ±0.00 [0.00%]
alpha_ttbar_syst_VR2_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.94 [13.4%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_SR_Gbb_2800_1400_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.31 [40.7%]
alpha_st_syst_VR2_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.90 [12.9%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR3_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±1.18 [11.3%] ±0.00 [0.00%]
alpha_ttcc_syst ±0.00 [0.00%] ±0.03 [0.26%] ±0.02 [0.35%] ±0.01 [0.14%] ±0.00 [0.27%]
alpha_topEW_syst_VR2_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.22 [3.1%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_diboson_syst_VR3_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.17 [1.6%] ±0.00 [0.00%]
alpha_ttbar_syst_VR1_Gbb_2800_1400 ±0.00 [0.00%] ±1.85 [15.1%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR2_Gbb_2800_1400_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±1.12 [16.0%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_SR_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.11 [13.8%]
alpha_topEW_syst_SR_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.16%]
alpha_kin_RW ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR1_Gbb_2800_1400_cuts_bin_0 ±0.00 [0.00%] ±1.99 [16.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.07 [9.3%]
alpha_topEW_syst_VR1_Gbb_2800_1400 ±0.00 [0.00%] ±0.27 [2.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_VR3_Gbb_2800_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.90 [8.7%] ±0.00 [0.00%]
alpha_diboson_syst_VR1_Gbb_2800_1400 ±0.00 [0.00%] ±0.09 [0.77%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR1_Gbb_2800_1400 ±0.00 [0.00%] ±1.17 [9.5%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]

Table 16 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2800_1400
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CR_Gbb_2300_1000 VR1 VR2 VR3 SR

Total background expectation 29.00 15.57 12.22 8.26 0.75

Total statistical (
√
#exp) ±5.39 ±3.95 ±3.50 ±2.87 ±0.87

Total background systematic ±5.86 [20.21%] ±5.32 [34.19%] ±5.91 [48.36%] ±5.43 [65.69%] ±0.79 [105.18%]

mu_ttbar_Gbb_2300_1000 ±10.97 [37.8%] ±3.29 [21.1%] ±2.83 [23.2%] ±0.29 [3.5%] ±0.08 [10.5%]
alpha_QCDHundred ±6.55 [22.6%] ±3.92 [25.2%] ±1.57 [12.8%] ±0.61 [7.3%] ±0.10 [13.1%]
alpha_WZ_ckkw_syst ±3.48 [12.0%] ±1.75 [11.2%] ±2.60 [21.3%] ±1.82 [22.0%] ±0.44 [58.7%]
gamma_stat_CR_Gbb_2300_1000_cuts_bin_0 ±2.60 [9.0%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JER1 ±1.81 [6.2%] ±1.12 [7.2%] ±1.99 [16.3%] ±3.01 [36.5%] ±0.16 [20.7%]
alpha_JER0 ±1.44 [5.0%] ±0.55 [3.5%] ±1.48 [12.1%] ±0.45 [5.4%] ±0.13 [17.7%]
alpha_WZ_renorm_syst ±1.41 [4.9%] ±1.46 [9.4%] ±0.82 [6.7%] ±2.48 [30.0%] ±0.03 [4.5%]
alpha_JER2 ±1.39 [4.8%] ±0.83 [5.4%] ±1.16 [9.5%] ±0.27 [3.3%] ±0.12 [16.2%]
alpha_WZ_fac_syst ±1.27 [4.4%] ±0.29 [1.8%] ±1.06 [8.7%] ±0.16 [2.0%] ±0.23 [30.9%]
alpha_JES6 ±0.99 [3.4%] ±0.26 [1.7%] ±0.06 [0.48%] ±0.50 [6.1%] ±0.12 [15.5%]
alpha_JES0 ±0.91 [3.1%] ±0.34 [2.2%] ±0.07 [0.58%] ±0.57 [7.0%] ±0.11 [14.8%]
alpha_JER6 ±0.86 [3.0%] ±0.85 [5.5%] ±1.60 [13.1%] ±0.55 [6.7%] ±0.14 [19.1%]
alpha_JES1 ±0.84 [2.9%] ±0.40 [2.5%] ±0.14 [1.1%] ±0.85 [10.2%] ±0.13 [16.8%]
alpha_JER3 ±0.71 [2.4%] ±0.67 [4.3%] ±0.51 [4.2%] ±0.27 [3.3%] ±0.17 [22.8%]
alpha_topEW_syst_CR_Gbb_2300_1000 ±0.68 [2.4%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JER5 ±0.59 [2.0%] ±0.87 [5.6%] ±0.37 [3.1%] ±0.03 [0.32%] ±0.22 [29.6%]
alpha_JES2 ±0.51 [1.8%] ±0.33 [2.1%] ±0.31 [2.6%] ±0.02 [0.29%] ±0.02 [2.5%]
alpha_JER4 ±0.50 [1.7%] ±0.74 [4.8%] ±1.32 [10.8%] ±0.40 [4.9%] ±0.15 [20.4%]
Lumi ±0.46 [1.6%] ±0.34 [2.2%] ±0.26 [2.1%] ±0.23 [2.8%] ±0.02 [2.5%]
alpha_WZ_qsf_syst ±0.44 [1.5%] ±0.60 [3.8%] ±0.21 [1.8%] ±1.07 [12.9%] ±0.01 [1.3%]
alpha_bTag_L ±0.40 [1.4%] ±0.35 [2.3%] ±0.13 [1.1%] ±0.14 [1.7%] ±0.03 [3.7%]
alpha_bTag_C ±0.28 [0.96%] ±0.23 [1.4%] ±0.32 [2.6%] ±0.08 [0.99%] ±0.02 [2.4%]
alpha_JES5 ±0.18 [0.62%] ±0.01 [0.08%] ±0.00 [0.03%] ±0.00 [0.03%] ±0.00 [0.03%]
alpha_bTag_B ±0.17 [0.58%] ±0.17 [1.1%] ±0.12 [1.0%] ±0.05 [0.62%] ±0.01 [2.0%]
alpha_JER7 ±0.17 [0.57%] ±0.13 [0.86%] ±0.98 [8.1%] ±0.44 [5.3%] ±0.16 [21.0%]
alpha_bTag_extrapol_charm ±0.12 [0.42%] ±0.10 [0.61%] ±0.09 [0.76%] ±0.01 [0.12%] ±0.00 [0.37%]
alpha_JVT ±0.05 [0.17%] ±0.04 [0.23%] ±0.04 [0.37%] ±0.04 [0.45%] ±0.00 [0.18%]
alpha_bTag_extrapol ±0.02 [0.06%] ±0.30 [1.9%] ±0.02 [0.15%] ±0.02 [0.26%] ±0.02 [2.3%]
alpha_JES4 ±0.00 [0.02%] ±0.00 [0.01%] ±0.00 [0.00%] ±0.00 [0.03%] ±0.00 [0.00%]
alpha_JES3 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_SR_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.13 [16.7%]
alpha_ttbb_syst ±0.00 [0.00%] ±0.03 [0.21%] ±0.07 [0.53%] ±0.03 [0.31%] ±0.01 [0.83%]
gamma_stat_VR1_Gbb_2300_1000_cuts_bin_0 ±0.00 [0.00%] ±2.06 [13.3%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR1_Gbb_2300_1000 ±0.00 [0.00%] ±1.59 [10.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR3_Gbb_2300_1000_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±2.74 [33.2%] ±0.00 [0.00%]
alpha_diboson_syst_VR3_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.12 [1.4%] ±0.00 [0.00%]
alpha_ttbar_syst_VR3_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.17 [2.1%] ±0.00 [0.00%]
alpha_st_syst_VR3_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.66 [8.0%] ±0.00 [0.00%]
alpha_topEW_syst_SR_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.16%]
alpha_ttcc_syst ±0.00 [0.00%] ±0.04 [0.26%] ±0.03 [0.26%] ±0.02 [0.26%] ±0.01 [0.98%]
alpha_ttbar_syst_SR_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.05 [6.2%]
alpha_ttbar_syst_VR1_Gbb_2300_1000 ±0.00 [0.00%] ±1.95 [12.5%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR3_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.07 [0.85%] ±0.00 [0.00%]
alpha_topEW_syst_VR2_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.36 [2.9%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR2_Gbb_2300_1000_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±1.42 [11.7%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_SR_Gbb_2300_1000_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.33 [43.5%]
alpha_diboson_syst_VR2_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±0.06 [0.51%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_kin_RW ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_VR2_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±1.68 [13.7%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR1_Gbb_2300_1000 ±0.00 [0.00%] ±0.37 [2.4%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR2_Gbb_2300_1000 ±0.00 [0.00%] ±0.00 [0.00%] ±1.54 [12.6%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_diboson_syst_VR1_Gbb_2300_1000 ±0.00 [0.00%] ±0.09 [0.61%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]

Table 17 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2300_1000
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CR_Gbb_2100_1600 VR1 VR2 VR3 SR

Total background expectation 48.07 810.65 33.91 17.07 1.91

Total statistical (
√
#exp) ±6.93 ±28.47 ±5.82 ±4.13 ±1.38

Total background systematic ±7.29 [15.16%] ±329.95 [40.70%]±16.10 [47.49%]±11.18 [65.51%]±1.76 [92.11%]

mu_ttbar_Gbb_2100_1600 ±9.62 [20.0%] ±150.02 [18.5%] ±6.62 [19.5%] ±2.10 [12.3%] ±0.11 [5.5%]
alpha_WZ_ckkw_syst ±4.59 [9.5%] ±75.64 [9.3%] ±1.67 [4.9%] ±4.70 [27.5%] ±1.34 [70.0%]
gamma_stat_CR_Gbb_2100_1600_cuts_bin_0 ±3.64 [7.6%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_QCDHundred ±2.74 [5.7%] ±44.73 [5.5%] ±0.09 [0.27%] ±0.08 [0.48%] ±0.13 [6.9%]
alpha_WZ_fac_syst ±2.01 [4.2%] ±29.71 [3.7%] ±0.24 [0.72%] ±1.98 [11.6%] ±0.71 [37.2%]
alpha_JER1 ±1.67 [3.5%] ±7.57 [0.93%] ±0.84 [2.5%] ±5.03 [29.5%] ±0.11 [5.9%]
alpha_JER4 ±1.67 [3.5%] ±3.24 [0.40%] ±1.69 [5.0%] ±1.93 [11.3%] ±0.02 [1.1%]
alpha_WZ_renorm_syst ±1.21 [2.5%] ±26.17 [3.2%] ±1.32 [3.9%] ±1.39 [8.2%] ±0.10 [5.0%]
alpha_JER0 ±0.95 [2.0%] ±44.81 [5.5%] ±1.04 [3.1%] ±4.32 [25.3%] ±0.35 [18.4%]
alpha_JER3 ±0.93 [1.9%] ±39.12 [4.8%] ±3.73 [11.0%] ±2.70 [15.8%] ±0.11 [5.9%]
alpha_JER7 ±0.88 [1.8%] ±0.80 [0.10%] ±0.36 [1.1%] ±2.71 [15.9%] ±0.11 [5.6%]
alpha_JER5 ±0.87 [1.8%] ±6.62 [0.82%] ±1.16 [3.4%] ±1.92 [11.2%] ±0.02 [0.97%]
alpha_JES0 ±0.74 [1.5%] ±30.65 [3.8%] ±4.09 [12.1%] ±0.68 [4.0%] ±0.18 [9.2%]
alpha_JES1 ±0.56 [1.2%] ±17.40 [2.1%] ±2.06 [6.1%] ±0.24 [1.4%] ±0.13 [7.0%]
alpha_JES6 ±0.42 [0.87%] ±42.44 [5.2%] ±2.84 [8.4%] ±0.25 [1.5%] ±0.05 [2.8%]
alpha_topEW_syst_CR_Gbb_2100_1600 ±0.38 [0.78%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JER2 ±0.35 [0.73%] ±22.64 [2.8%] ±1.14 [3.4%] ±2.78 [16.3%] ±0.36 [18.9%]
Lumi ±0.34 [0.71%] ±7.12 [0.88%] ±0.26 [0.77%] ±0.26 [1.5%] ±0.04 [2.3%]
alpha_WZ_qsf_syst ±0.26 [0.54%] ±7.14 [0.88%] ±0.49 [1.4%] ±0.32 [1.9%] ±0.05 [2.6%]
alpha_bTag_C ±0.24 [0.51%] ±3.95 [0.49%] ±0.16 [0.48%] ±0.05 [0.31%] ±0.05 [2.8%]
alpha_diboson_syst_CR_Gbb_2100_1600 ±0.18 [0.38%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_bTag_L ±0.14 [0.28%] ±8.54 [1.1%] ±0.33 [0.97%] ±0.49 [2.9%] ±0.06 [3.0%]
alpha_bTag_B ±0.13 [0.26%] ±3.11 [0.38%] ±0.18 [0.54%] ±0.11 [0.66%] ±0.01 [0.77%]
alpha_bTag_extrapol_charm ±0.07 [0.15%] ±0.21 [0.03%] ±0.13 [0.40%] ±0.05 [0.31%] ±0.00 [0.20%]
alpha_JER6 ±0.05 [0.10%] ±46.89 [5.8%] ±2.60 [7.7%] ±3.65 [21.4%] ±0.36 [19.0%]
alpha_JVT ±0.04 [0.09%] ±0.89 [0.11%] ±0.08 [0.24%] ±0.04 [0.22%] ±0.01 [0.39%]
alpha_JES5 ±0.04 [0.07%] ±0.84 [0.10%] ±0.22 [0.66%] ±0.01 [0.09%] ±0.02 [0.82%]
alpha_JES4 ±0.03 [0.07%] ±2.65 [0.33%] ±0.10 [0.29%] ±0.07 [0.43%] ±0.00 [0.09%]
alpha_bTag_extrapol ±0.02 [0.05%] ±0.13 [0.02%] ±0.05 [0.15%] ±0.01 [0.07%] ±0.01 [0.47%]
alpha_JES2 ±0.01 [0.02%] ±0.52 [0.06%] ±0.15 [0.46%] ±0.43 [2.5%] ±0.03 [1.4%]
alpha_JES3 ±0.00 [0.00%] ±0.11 [0.01%] ±0.00 [0.01%] ±0.00 [0.01%] ±0.00 [0.01%]
alpha_st_syst_VR1_Gbb_2100_1600 ±0.00 [0.00%] ±33.95 [4.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbb_syst ±0.00 [0.00%] ±7.02 [0.87%] ±0.12 [0.34%] ±0.07 [0.42%] ±0.00 [0.22%]
gamma_stat_VR3_Gbb_2100_1600_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±2.39 [14.0%] ±0.00 [0.00%]
alpha_diboson_syst_VR1_Gbb_2100_1600 ±0.00 [0.00%] ±4.02 [0.50%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR1_Gbb_2100_1600 ±0.00 [0.00%] ±11.62 [1.4%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_VR1_Gbb_2100_1600 ±0.00 [0.00%] ±282.04 [34.8%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttcc_syst ±0.00 [0.00%] ±5.63 [0.69%] ±0.05 [0.14%] ±0.46 [2.7%] ±0.01 [0.34%]
alpha_st_syst_SR_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.19 [9.8%]
alpha_diboson_syst_VR2_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.11 [0.32%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR2_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.76 [2.2%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR2_Gbb_2100_1600_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±2.36 [7.0%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR2_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±1.28 [3.8%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_VR2_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±12.45 [36.7%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_SR_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.04 [2.3%]
alpha_st_syst_VR3_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.71 [4.1%] ±0.00 [0.00%]
alpha_kin_RW ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.20 [10.4%]
alpha_diboson_syst_VR3_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.48 [2.8%] ±0.00 [0.00%]
alpha_diboson_syst_SR_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.07 [3.9%]
gamma_stat_SR_Gbb_2100_1600_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.55 [28.7%]
alpha_topEW_syst_VR3_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.05 [0.30%] ±0.00 [0.00%]
alpha_ttbar_syst_VR3_Gbb_2100_1600 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±3.95 [23.2%] ±0.00 [0.00%]

Table 18 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2100_1600
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CR_Gbb_2000_1800 VR1 VR2 VR3 SR

Total background expectation 29.04 2123.48 119.74 12.90 1.75

Total statistical (
√
#exp) ±5.39 ±46.08 ±10.94 ±3.59 ±1.32

Total background systematic ±5.44 [18.73%] ±1078.83 [50.80%]±61.78 [51.59%]±6.50 [50.39%]±1.30 [74.43%]

mu_ttbar_Gbb_2000_1800 ±6.19 [21.3%] ±452.92 [21.3%] ±25.88 [21.6%] ±1.38 [10.7%] ±0.18 [10.2%]
gamma_stat_CR_Gbb_2000_1800_cuts_bin_0 ±2.22 [7.7%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_WZ_ckkw_syst ±1.29 [4.4%] ±52.25 [2.5%] ±2.90 [2.4%] ±0.86 [6.7%] ±0.06 [3.6%]
alpha_QCDHundred ±0.85 [2.9%] ±15.32 [0.72%] ±0.59 [0.49%] ±0.04 [0.33%] ±0.04 [2.4%]
alpha_JER0 ±0.73 [2.5%] ±109.81 [5.2%] ±6.42 [5.4%] ±2.70 [20.9%] ±0.53 [30.2%]
alpha_WZ_renorm_syst ±0.67 [2.3%] ±17.55 [0.83%] ±0.90 [0.76%] ±0.02 [0.18%] ±0.16 [9.3%]
alpha_JER1 ±0.64 [2.2%] ±73.41 [3.5%] ±2.07 [1.7%] ±3.05 [23.6%] ±0.43 [24.4%]
alpha_JER7 ±0.62 [2.1%] ±81.92 [3.9%] ±3.46 [2.9%] ±1.50 [11.6%] ±0.18 [10.4%]
alpha_JER2 ±0.47 [1.6%] ±46.30 [2.2%] ±1.44 [1.2%] ±2.15 [16.7%] ±0.39 [22.2%]
alpha_JER3 ±0.46 [1.6%] ±157.04 [7.4%] ±9.14 [7.6%] ±0.19 [1.5%] ±0.48 [27.2%]
alpha_JER4 ±0.39 [1.4%] ±199.56 [9.4%] ±11.33 [9.5%] ±0.59 [4.6%] ±0.38 [21.5%]
alpha_WZ_fac_syst ±0.37 [1.3%] ±18.29 [0.86%] ±1.06 [0.89%] ±0.38 [3.0%] ±0.05 [2.6%]
alpha_JES0 ±0.35 [1.2%] ±43.82 [2.1%] ±1.48 [1.2%] ±0.32 [2.5%] ±0.01 [0.75%]
alpha_JER6 ±0.34 [1.2%] ±22.25 [1.0%] ±0.24 [0.20%] ±2.25 [17.4%] ±0.25 [14.2%]
alpha_JES6 ±0.32 [1.1%] ±81.48 [3.8%] ±1.28 [1.1%] ±0.28 [2.2%] ±0.25 [14.3%]
alpha_WZ_qsf_syst ±0.28 [0.98%] ±2.10 [0.10%] ±0.08 [0.07%] ±0.30 [2.3%] ±0.07 [4.3%]
alpha_JER5 ±0.19 [0.67%] ±170.76 [8.0%] ±12.11 [10.1%] ±0.33 [2.6%] ±0.15 [8.5%]
alpha_topEW_syst_CR_Gbb_2000_1800 ±0.15 [0.51%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_bTag_C ±0.13 [0.44%] ±4.52 [0.21%] ±0.38 [0.32%] ±0.08 [0.63%] ±0.04 [2.0%]
alpha_JES2 ±0.13 [0.44%] ±1.62 [0.08%] ±1.93 [1.6%] ±0.13 [1.0%] ±0.22 [12.7%]
Lumi ±0.11 [0.39%] ±8.29 [0.39%] ±0.43 [0.36%] ±0.21 [1.6%] ±0.03 [1.7%]
alpha_bTag_L ±0.04 [0.15%] ±23.74 [1.1%] ±1.01 [0.84%] ±0.31 [2.4%] ±0.02 [1.1%]
alpha_JES1 ±0.04 [0.13%] ±56.08 [2.6%] ±6.92 [5.8%] ±0.17 [1.3%] ±0.02 [0.98%]
alpha_bTag_B ±0.04 [0.12%] ±15.40 [0.72%] ±1.11 [0.93%] ±0.15 [1.2%] ±0.01 [0.51%]
alpha_bTag_extrapol_charm ±0.03 [0.09%] ±7.58 [0.36%] ±0.39 [0.33%] ±0.07 [0.53%] ±0.04 [2.0%]
alpha_JVT ±0.03 [0.09%] ±2.25 [0.11%] ±0.20 [0.17%] ±0.05 [0.35%] ±0.01 [0.84%]
alpha_bTag_extrapol ±0.01 [0.02%] ±3.29 [0.15%] ±0.22 [0.19%] ±0.00 [0.02%] ±0.00 [0.10%]
alpha_JES5 ±0.00 [0.02%] ±11.53 [0.54%] ±0.58 [0.49%] ±0.10 [0.79%] ±0.00 [0.26%]
alpha_JES4 ±0.00 [0.00%] ±6.08 [0.29%] ±0.26 [0.21%] ±0.02 [0.12%] ±0.00 [0.12%]
alpha_JES3 ±0.00 [0.00%] ±0.01 [0.00%] ±0.08 [0.06%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_SR_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.01 [0.85%]
alpha_ttbb_syst ±0.00 [0.00%] ±23.95 [1.1%] ±0.96 [0.80%] ±0.01 [0.06%] ±0.00 [0.04%]
alpha_topEW_syst_SR_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.03 [1.4%]
alpha_ttbar_syst_VR2_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±52.47 [43.8%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR1_Gbb_2000_1800 ±0.00 [0.00%] ±17.14 [0.81%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttcc_syst ±0.00 [0.00%] ±12.52 [0.59%] ±0.79 [0.66%] ±0.28 [2.2%] ±0.05 [3.0%]
alpha_diboson_syst_VR1_Gbb_2000_1800 ±0.00 [0.00%] ±5.57 [0.26%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_SR_Gbb_2000_1800_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.59 [33.6%]
alpha_topEW_syst_VR2_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±1.00 [0.83%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR3_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.56 [4.3%] ±0.00 [0.00%]
alpha_diboson_syst_SR_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.07 [3.9%]
alpha_ttbar_syst_VR3_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±2.79 [21.6%] ±0.00 [0.00%]
gamma_stat_VR3_Gbb_2000_1800_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±2.20 [17.0%] ±0.00 [0.00%]
alpha_kin_RW ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_diboson_syst_VR2_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.25 [0.21%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.36 [20.6%]
alpha_st_syst_VR2_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±2.19 [1.8%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_VR1_Gbb_2000_1800 ±0.00 [0.00%] ±918.21 [43.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR1_Gbb_2000_1800 ±0.00 [0.00%] ±40.02 [1.9%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR3_Gbb_2000_1800 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.05 [0.42%] ±0.00 [0.00%]

Table 19 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gbb_2000_1800
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CR_Gtt_2100_1 VR1 VR2 SR

Total background expectation 35.00 77.61 41.62 0.54

Total statistical (
√
#exp) ±5.92 ±8.81 ±6.45 ±0.73

Total background systematic ±5.92 [16.92%] ±24.41 [31.46%] ±14.45 [34.73%] ±0.23 [42.77%]

mu_ttbar_Gtt_2100_1 ±6.60 [18.9%] ±10.27 [13.2%] ±5.21 [12.5%] ±0.05 [9.5%]
alpha_JES6 ±1.16 [3.3%] ±0.20 [0.26%] ±0.63 [1.5%] ±0.02 [3.4%]
alpha_JES1 ±1.09 [3.1%] ±1.00 [1.3%] ±0.98 [2.4%] ±0.01 [1.8%]
alpha_JES0 ±1.00 [2.9%] ±0.67 [0.87%] ±0.80 [1.9%] ±0.02 [4.5%]
alpha_WZ_renorm_syst ±0.96 [2.7%] ±3.61 [4.7%] ±1.67 [4.0%] ±0.00 [0.74%]
alpha_topEW_syst_CR_Gtt_2100_1 ±0.89 [2.6%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_kin_RW ±0.73 [2.1%] ±1.56 [2.0%] ±2.41 [5.8%] ±0.05 [8.7%]
alpha_WZ_ckkw_syst ±0.59 [1.7%] ±3.98 [5.1%] ±2.98 [7.2%] ±0.06 [10.6%]
alpha_JER7 ±0.58 [1.6%] ±1.22 [1.6%] ±1.37 [3.3%] ±0.02 [3.6%]
alpha_QCDHundred ±0.55 [1.6%] ±2.11 [2.7%] ±0.79 [1.9%] ±0.04 [8.0%]
alpha_JER2 ±0.46 [1.3%] ±0.33 [0.43%] ±2.47 [5.9%] ±0.05 [9.3%]
alpha_bTag_L ±0.44 [1.3%] ±1.38 [1.8%] ±0.86 [2.1%] ±0.02 [4.4%]
alpha_WZ_qsf_syst ±0.43 [1.2%] ±1.55 [2.0%] ±0.62 [1.5%] ±0.00 [0.39%]
alpha_JER1 ±0.39 [1.1%] ±0.25 [0.32%] ±2.66 [6.4%] ±0.05 [10.2%]
alpha_JER6 ±0.35 [0.99%] ±0.61 [0.79%] ±1.66 [4.0%] ±0.02 [4.2%]
alpha_JER4 ±0.34 [0.97%] ±1.29 [1.7%] ±1.32 [3.2%] ±0.02 [3.5%]
alpha_bTag_C ±0.29 [0.83%] ±1.05 [1.3%] ±0.63 [1.5%] ±0.02 [4.0%]
Lumi ±0.27 [0.78%] ±1.09 [1.4%] ±0.62 [1.5%] ±0.01 [1.8%]
alpha_JES2 ±0.24 [0.69%] ±1.13 [1.5%] ±0.23 [0.55%] ±0.00 [0.22%]
alpha_bTag_B ±0.23 [0.66%] ±0.79 [1.0%] ±0.47 [1.1%] ±0.01 [1.2%]
alpha_JES5 ±0.19 [0.53%] ±0.03 [0.04%] ±0.09 [0.21%] ±0.00 [0.03%]
alpha_diboson_syst_CR_Gtt_2100_1 ±0.17 [0.49%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_WZ_fac_syst ±0.13 [0.36%] ±0.51 [0.65%] ±0.86 [2.1%] ±0.03 [5.6%]
alpha_bTag_extrapol_charm ±0.11 [0.32%] ±0.26 [0.33%] ±0.14 [0.33%] ±0.00 [0.69%]
alpha_JER5 ±0.08 [0.24%] ±0.78 [1.0%] ±1.26 [3.0%] ±0.01 [1.7%]
alpha_bTag_extrapol ±0.07 [0.20%] ±0.75 [0.97%] ±0.10 [0.23%] ±0.01 [2.0%]
alpha_JER0 ±0.07 [0.19%] ±0.79 [1.0%] ±3.23 [7.8%] ±0.04 [7.3%]
alpha_JVT ±0.05 [0.13%] ±0.25 [0.32%] ±0.17 [0.40%] ±0.00 [0.28%]
alpha_JES4 ±0.05 [0.13%] ±0.04 [0.05%] ±0.02 [0.04%] ±0.00 [0.01%]
alpha_JER3 ±0.03 [0.09%] ±1.54 [2.0%] ±0.92 [2.2%] ±0.01 [2.3%]
alpha_JES3 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbb_syst ±0.00 [0.00%] ±0.30 [0.39%] ±0.37 [0.90%] ±0.00 [0.77%]
alpha_ttbar_syst_VR1_Gtt_2100_1 ±0.00 [0.00%] ±19.91 [25.7%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.10 [18.4%]
alpha_st_syst_VR2_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±4.53 [10.9%] ±0.00 [0.00%]
alpha_ttcc_syst ±0.00 [0.00%] ±0.04 [0.05%] ±0.17 [0.42%] ±0.01 [1.1%]
alpha_st_syst_SR_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.07 [13.7%]
alpha_topEW_syst_SR_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.07 [13.7%]
gamma_stat_SR_Gtt_2100_1_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.11 [19.8%]
alpha_diboson_syst_VR1_Gtt_2100_1 ±0.00 [0.00%] ±1.29 [1.7%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_VR2_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±10.09 [24.2%] ±0.00 [0.00%]
alpha_st_syst_VR1_Gtt_2100_1 ±0.00 [0.00%] ±7.10 [9.1%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_VR2_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±3.26 [7.8%] ±0.00 [0.00%]
alpha_diboson_syst_VR2_Gtt_2100_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.09 [0.23%] ±0.00 [0.00%]
alpha_topEW_syst_VR1_Gtt_2100_1 ±0.00 [0.00%] ±4.71 [6.1%] ±0.00 [0.00%] ±0.00 [0.00%]

Table 20 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_2100_1
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CR_Gtt_1800_1 VR1 VR2 SR

Total background expectation 31.00 107.44 28.24 1.07

Total statistical (
√
#exp) ±5.57 ±10.37 ±5.31 ±1.03

Total background systematic ±5.57 [17.97%] ±34.76 [32.36%] ±9.35 [33.10%] ±0.41 [38.71%]

mu_ttbar_Gtt_1800_1 ±6.60 [21.3%] ±16.20 [15.1%] ±3.74 [13.3%] ±0.10 [8.9%]
alpha_JER1 ±1.66 [5.4%] ±0.52 [0.48%] ±0.59 [2.1%] ±0.03 [2.9%]
alpha_JER2 ±1.38 [4.4%] ±1.02 [0.95%] ±0.78 [2.8%] ±0.12 [10.9%]
alpha_JER0 ±1.20 [3.9%] ±0.93 [0.87%] ±0.64 [2.3%] ±0.07 [6.6%]
alpha_topEW_syst_CR_Gtt_1800_1 ±1.09 [3.5%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JER6 ±1.00 [3.2%] ±0.22 [0.21%] ±0.64 [2.3%] ±0.05 [4.5%]
alpha_QCDHundred ±0.91 [2.9%] ±2.24 [2.1%] ±0.74 [2.6%] ±0.04 [4.2%]
alpha_kin_RW ±0.74 [2.4%] ±2.78 [2.6%] ±1.60 [5.7%] ±0.07 [6.3%]
alpha_JER3 ±0.74 [2.4%] ±1.77 [1.6%] ±0.60 [2.1%] ±0.00 [0.17%]
alpha_JER7 ±0.73 [2.3%] ±1.52 [1.4%] ±0.42 [1.5%] ±0.01 [0.55%]
alpha_WZ_ckkw_syst ±0.66 [2.1%] ±6.68 [6.2%] ±2.09 [7.4%] ±0.03 [3.2%]
alpha_JER4 ±0.54 [1.7%] ±0.35 [0.33%] ±0.93 [3.3%] ±0.04 [4.2%]
alpha_JER5 ±0.53 [1.7%] ±1.76 [1.6%] ±0.29 [1.0%] ±0.01 [0.61%]
alpha_bTag_L ±0.41 [1.3%] ±1.61 [1.5%] ±0.27 [0.95%] ±0.03 [2.9%]
alpha_JES0 ±0.36 [1.2%] ±2.43 [2.3%] ±0.95 [3.4%] ±0.04 [4.1%]
alpha_WZ_renorm_syst ±0.31 [0.99%] ±4.50 [4.2%] ±1.42 [5.0%] ±0.14 [12.9%]
alpha_bTag_C ±0.27 [0.88%] ±1.48 [1.4%] ±0.57 [2.0%] ±0.03 [2.5%]
Lumi ±0.25 [0.81%] ±1.52 [1.4%] ±0.45 [1.6%] ±0.02 [2.0%]
alpha_bTag_B ±0.24 [0.76%] ±1.09 [1.0%] ±0.31 [1.1%] ±0.01 [1.4%]
alpha_WZ_fac_syst ±0.22 [0.72%] ±1.59 [1.5%] ±0.49 [1.7%] ±0.05 [4.4%]
alpha_JES1 ±0.14 [0.44%] ±2.79 [2.6%] ±0.41 [1.4%] ±0.02 [2.1%]
alpha_bTag_extrapol_charm ±0.13 [0.41%] ±0.35 [0.32%] ±0.14 [0.48%] ±0.00 [0.31%]
alpha_JES2 ±0.12 [0.37%] ±0.91 [0.84%] ±0.36 [1.3%] ±0.03 [3.0%]
alpha_WZ_qsf_syst ±0.11 [0.34%] ±1.80 [1.7%] ±0.56 [2.0%] ±0.06 [5.9%]
alpha_JES6 ±0.08 [0.25%] ±1.89 [1.8%] ±0.54 [1.9%] ±0.01 [1.0%]
alpha_diboson_syst_CR_Gtt_1800_1 ±0.07 [0.24%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JES4 ±0.05 [0.16%] ±0.06 [0.05%] ±0.12 [0.41%] ±0.01 [1.4%]
alpha_bTag_extrapol ±0.05 [0.15%] ±0.61 [0.57%] ±0.05 [0.18%] ±0.01 [1.0%]
alpha_JVT ±0.03 [0.09%] ±0.31 [0.29%] ±0.09 [0.32%] ±0.00 [0.46%]
alpha_JES5 ±0.02 [0.06%] ±0.02 [0.02%] ±0.04 [0.14%] ±0.00 [0.00%]
alpha_JES3 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_VR2_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±3.25 [11.5%] ±0.00 [0.00%]
alpha_ttbb_syst ±0.00 [0.00%] ±0.89 [0.83%] ±0.25 [0.87%] ±0.01 [1.2%]
alpha_diboson_syst_VR1_Gtt_1800_1 ±0.00 [0.00%] ±2.04 [1.9%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.16 [15.1%]
alpha_ttcc_syst ±0.00 [0.00%] ±0.14 [0.13%] ±0.01 [0.04%] ±0.00 [0.41%]
alpha_ttbar_syst_VR2_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±6.34 [22.5%] ±0.00 [0.00%]
alpha_topEW_syst_VR2_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±2.12 [7.5%] ±0.00 [0.00%]
gamma_stat_VR2_Gtt_1800_1_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±1.44 [5.1%] ±0.00 [0.00%]
alpha_ttbar_syst_VR1_Gtt_1800_1 ±0.00 [0.00%] ±27.45 [25.6%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_SR_Gtt_1800_1_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.24 [22.4%]
alpha_st_syst_VR1_Gtt_1800_1 ±0.00 [0.00%] ±9.57 [8.9%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_diboson_syst_VR2_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.34 [1.2%] ±0.00 [0.00%]
alpha_st_syst_SR_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.09 [8.8%]
alpha_topEW_syst_VR1_Gtt_1800_1 ±0.00 [0.00%] ±7.30 [6.8%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_SR_Gtt_1800_1 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.15 [14.1%]

Table 21 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_1800_1
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CR_Gtt_2300_1200 VR1 VR2 SR

Total background expectation 46.04 182.49 30.57 0.74

Total statistical (
√
#exp) ±6.79 ±13.51 ±5.53 ±0.86

Total background systematic ±6.79 [14.74%] ±68.56 [37.57%] ±13.93 [45.55%] ±0.36 [48.73%]

mu_ttbar_Gtt_2300_1200 ±7.19 [15.6%] ±23.51 [12.9%] ±3.73 [12.2%] ±0.07 [10.0%]
alpha_topEW_syst_CR_Gtt_2300_1200 ±1.12 [2.4%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_QCDHundred ±1.06 [2.3%] ±2.23 [1.2%] ±0.42 [1.4%] ±0.04 [5.8%]
alpha_JER1 ±0.73 [1.6%] ±6.43 [3.5%] ±3.69 [12.1%] ±0.10 [13.5%]
alpha_kin_RW ±0.64 [1.4%] ±4.38 [2.4%] ±1.28 [4.2%] ±0.03 [4.7%]
alpha_WZ_ckkw_syst ±0.56 [1.2%] ±8.03 [4.4%] ±1.35 [4.4%] ±0.10 [13.2%]
alpha_JER0 ±0.50 [1.1%] ±4.03 [2.2%] ±2.88 [9.4%] ±0.03 [4.4%]
alpha_bTag_L ±0.46 [1.0%] ±3.24 [1.8%] ±0.43 [1.4%] ±0.06 [7.9%]
alpha_JER4 ±0.45 [0.99%] ±1.79 [0.98%] ±3.11 [10.2%] ±0.04 [5.4%]
alpha_WZ_renorm_syst ±0.44 [0.96%] ±4.73 [2.6%] ±1.14 [3.7%] ±0.01 [0.94%]
alpha_JER6 ±0.44 [0.95%] ±1.61 [0.88%] ±2.89 [9.5%] ±0.03 [3.8%]
alpha_JER3 ±0.35 [0.77%] ±3.88 [2.1%] ±3.48 [11.4%] ±0.05 [6.8%]
alpha_JER2 ±0.29 [0.63%] ±1.54 [0.84%] ±1.99 [6.5%] ±0.11 [15.1%]
alpha_JER7 ±0.29 [0.63%] ±2.06 [1.1%] ±0.24 [0.78%] ±0.03 [3.7%]
alpha_bTag_B ±0.26 [0.56%] ±1.17 [0.64%] ±0.21 [0.70%] ±0.01 [1.1%]
Lumi ±0.26 [0.56%] ±1.76 [0.96%] ±0.33 [1.1%] ±0.01 [1.4%]
alpha_bTag_C ±0.24 [0.52%] ±1.40 [0.77%] ±0.57 [1.9%] ±0.01 [1.7%]
alpha_WZ_qsf_syst ±0.20 [0.44%] ±2.09 [1.1%] ±0.51 [1.7%] ±0.00 [0.07%]
alpha_JER5 ±0.18 [0.39%] ±1.90 [1.0%] ±2.53 [8.3%] ±0.03 [3.9%]
alpha_JES0 ±0.14 [0.31%] ±4.08 [2.2%] ±1.01 [3.3%] ±0.01 [1.7%]
alpha_WZ_fac_syst ±0.11 [0.23%] ±2.30 [1.3%] ±0.22 [0.73%] ±0.05 [7.0%]
alpha_JES5 ±0.10 [0.21%] ±0.15 [0.08%] ±0.11 [0.37%] ±0.00 [0.27%]
alpha_JES2 ±0.09 [0.19%] ±0.25 [0.14%] ±0.30 [0.98%] ±0.00 [0.62%]
alpha_bTag_extrapol_charm ±0.07 [0.16%] ±0.51 [0.28%] ±0.11 [0.36%] ±0.00 [0.19%]
alpha_JES6 ±0.07 [0.15%] ±1.66 [0.91%] ±0.27 [0.87%] ±0.01 [1.0%]
alpha_bTag_extrapol ±0.06 [0.12%] ±0.30 [0.16%] ±0.07 [0.23%] ±0.00 [0.18%]
alpha_JVT ±0.05 [0.10%] ±0.45 [0.24%] ±0.12 [0.38%] ±0.00 [0.45%]
alpha_JES4 ±0.03 [0.07%] ±0.41 [0.22%] ±0.07 [0.24%] ±0.00 [0.55%]
alpha_JES1 ±0.01 [0.02%] ±2.20 [1.2%] ±1.34 [4.4%] ±0.01 [2.0%]
alpha_JES3 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR2_Gtt_2300_1200_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±1.83 [6.0%] ±0.00 [0.00%]
alpha_ttbb_syst ±0.00 [0.00%] ±1.49 [0.81%] ±0.12 [0.39%] ±0.01 [0.75%]
alpha_diboson_syst_VR2_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±0.09 [0.30%] ±0.00 [0.00%]
alpha_st_syst_VR2_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±2.38 [7.8%] ±0.00 [0.00%]
alpha_ttcc_syst ±0.00 [0.00%] ±1.46 [0.80%] ±0.06 [0.19%] ±0.01 [1.1%]
alpha_st_syst_VR1_Gtt_2300_1200 ±0.00 [0.00%] ±11.39 [6.2%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_diboson_syst_VR1_Gtt_2300_1200 ±0.00 [0.00%] ±1.89 [1.0%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_SR_Gtt_2300_1200_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.17 [22.3%]
alpha_st_syst_SR_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.03 [4.4%]
alpha_topEW_syst_VR2_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±1.39 [4.6%] ±0.00 [0.00%]
alpha_ttbar_syst_VR2_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±9.66 [31.6%] ±0.00 [0.00%]
alpha_topEW_syst_VR1_Gtt_2300_1200 ±0.00 [0.00%] ±9.61 [5.3%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_SR_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.12 [15.8%]
alpha_ttbar_syst_VR1_Gtt_2300_1200 ±0.00 [0.00%] ±60.79 [33.3%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gtt_2300_1200 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.19 [25.8%]

Table 22 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_2300_1200
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CR_Gtt_1900_1400 VR1 VR2 SR

Total background expectation 25.99 427.93 40.55 0.84

Total statistical (
√
#exp) ±5.10 ±20.69 ±6.37 ±0.92

Total background systematic ±5.11 [19.66%] ±204.03 [47.68%] ±20.27 [50.00%] ±0.58 [69.24%]

mu_ttbar_Gtt_1900_1400 ±5.63 [21.7%] ±87.20 [20.4%] ±8.69 [21.4%] ±0.17 [20.7%]
gamma_stat_CR_Gtt_1900_1400_cuts_bin_0 ±1.44 [5.5%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_topEW_syst_CR_Gtt_1900_1400 ±0.83 [3.2%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JER4 ±0.80 [3.1%] ±16.79 [3.9%] ±3.05 [7.5%] ±0.11 [12.6%]
alpha_JER6 ±0.71 [2.7%] ±11.17 [2.6%] ±0.43 [1.1%] ±0.07 [7.7%]
alpha_QCDHundred ±0.62 [2.4%] ±0.83 [0.19%] ±0.05 [0.12%] ±0.05 [5.6%]
alpha_JER1 ±0.54 [2.1%] ±22.43 [5.2%] ±3.86 [9.5%] ±0.23 [26.9%]
alpha_WZ_ckkw_syst ±0.52 [2.0%] ±9.99 [2.3%] ±1.53 [3.8%] ±0.00 [0.00%]
alpha_JER0 ±0.46 [1.8%] ±0.36 [0.08%] ±2.64 [6.5%] ±0.05 [5.8%]
alpha_JER3 ±0.41 [1.6%] ±4.35 [1.0%] ±2.56 [6.3%] ±0.09 [10.5%]
alpha_JER2 ±0.36 [1.4%] ±28.85 [6.7%] ±0.39 [0.96%] ±0.13 [15.1%]
alpha_JER5 ±0.31 [1.2%] ±19.38 [4.5%] ±0.93 [2.3%] ±0.02 [2.8%]
alpha_JER7 ±0.30 [1.2%] ±14.13 [3.3%] ±1.62 [4.0%] ±0.09 [10.3%]
alpha_JES1 ±0.30 [1.1%] ±29.64 [6.9%] ±3.08 [7.6%] ±0.09 [11.2%]
alpha_kin_RW ±0.28 [1.1%] ±6.88 [1.6%] ±0.67 [1.6%] ±0.03 [3.0%]
alpha_WZ_fac_syst ±0.24 [0.93%] ±2.39 [0.56%] ±0.71 [1.8%] ±0.00 [0.00%]
alpha_JES4 ±0.15 [0.57%] ±1.32 [0.31%] ±0.23 [0.57%] ±0.00 [0.53%]
Lumi ±0.12 [0.44%] ±2.52 [0.59%] ±0.19 [0.47%] ±0.00 [0.55%]
alpha_JES2 ±0.10 [0.39%] ±4.54 [1.1%] ±0.90 [2.2%] ±0.02 [2.6%]
alpha_WZ_renorm_syst ±0.10 [0.37%] ±6.44 [1.5%] ±0.26 [0.64%] ±0.00 [0.00%]
alpha_bTag_C ±0.09 [0.36%] ±1.13 [0.26%] ±0.16 [0.38%] ±0.02 [2.5%]
alpha_bTag_L ±0.09 [0.33%] ±1.60 [0.37%] ±0.40 [0.99%] ±0.03 [3.8%]
alpha_bTag_B ±0.07 [0.28%] ±1.28 [0.30%] ±0.16 [0.39%] ±0.00 [0.08%]
alpha_JES6 ±0.03 [0.11%] ±7.26 [1.7%] ±1.55 [3.8%] ±0.00 [0.42%]
alpha_JVT ±0.02 [0.09%] ±1.33 [0.31%] ±0.12 [0.29%] ±0.00 [0.47%]
alpha_JES0 ±0.02 [0.08%] ±19.29 [4.5%] ±2.37 [5.8%] ±0.12 [14.1%]
alpha_bTag_extrapol_charm ±0.01 [0.04%] ±1.94 [0.45%] ±0.35 [0.86%] ±0.01 [1.4%]
alpha_WZ_qsf_syst ±0.01 [0.04%] ±1.88 [0.44%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_JES5 ±0.01 [0.03%] ±0.10 [0.02%] ±0.03 [0.08%] ±0.00 [0.01%]
alpha_bTag_extrapol ±0.01 [0.03%] ±0.56 [0.13%] ±0.06 [0.15%] ±0.00 [0.27%]
alpha_JES3 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_st_syst_SR_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.45%]
alpha_ttbb_syst ±0.00 [0.00%] ±1.23 [0.29%] ±0.44 [1.1%] ±0.04 [4.3%]
alpha_topEW_syst_VR2_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±1.45 [3.6%] ±0.00 [0.00%]
alpha_topEW_syst_SR_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.08 [9.0%]
alpha_st_syst_VR1_Gtt_1900_1400 ±0.00 [0.00%] ±11.53 [2.7%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttcc_syst ±0.00 [0.00%] ±5.81 [1.4%] ±1.34 [3.3%] ±0.03 [3.3%]
alpha_ttbar_syst_VR2_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±16.96 [41.8%] ±0.00 [0.00%]
alpha_diboson_syst_VR1_Gtt_1900_1400 ±0.00 [0.00%] ±1.71 [0.40%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha_ttbar_syst_SR_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.34 [40.5%]
alpha_st_syst_VR2_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±1.11 [2.7%] ±0.00 [0.00%]
alpha_diboson_syst_VR2_Gtt_1900_1400 ±0.00 [0.00%] ±0.00 [0.00%] ±0.05 [0.12%] ±0.00 [0.00%]
alpha_topEW_syst_VR1_Gtt_1900_1400 ±0.00 [0.00%] ±17.93 [4.2%] ±0.00 [0.00%] ±0.00 [0.00%]
gamma_stat_VR2_Gtt_1900_1400_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±2.15 [5.3%] ±0.00 [0.00%]
gamma_stat_SR_Gtt_1900_1400_cuts_bin_0 ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.23 [27.3%]
alpha_ttbar_syst_VR1_Gtt_1900_1400 ±0.00 [0.00%] ±170.25 [39.8%] ±0.00 [0.00%] ±0.00 [0.00%]

Table 23 – Breakdown of the dominant systematic uncertainties on background estimates

for region Gtt_1900_1400
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