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Résumé

Cette thèse est un recueil de trois articles sur la théorie microéconomique. Les deux
premiers traitent de la question de la course vers le bas lorsque les gouvernements se
livrent à la concurrence pour certains facteurs mobiles. Le troisième article propose une
extension du problème d’appariement plusieurs-à-un en y introduisant des agents de
tailles différentes.

Dans le premier article, nous montrons comment le résultat standard de course
vers le bas (race-to-the-bottom) peut être évité en introduisant du bien public dans
un modèle de compétition fiscale. Notre économie comporte deux juridictions peuplées
par de la main-d’œuvre parfaitement mobile répartie en deux catégories : qualifiée
et non-qualifiée. Les gouvernements, en poursuivant un objectif Rawlsien (max-min),
annoncent simultanément leur projet d’investissement en bien public avant d’adopter
une politique de taxation non-linéaire du revenu. Les travailleurs, après avoir observé la
politique de taxation des différents gouvernements et leurs promesses d’investissement
en bien publique, choisissent chacun un lieu de résidence et une offre de travail. Ainsi,
les gouvernements atteignent leurs objectifs de redistribution en cherchant à attirer de la
main-d’œuvre productive à travers la fourniture de bien public en plus d’une politique de
taxation favorable. Nous montrons qu’il existe des équilibres où les travailleurs qualifiés
paient une taxe strictement positive. En outre, lorsque l’information sur le type des
travailleurs est privée, il existe, pour certaines valeurs des paramètres, des équilibres où
la main-d’œuvre non-qualifiée bénéficie d’un transfert net (ou subvention) de la part du
gouvernement.

Dans le second article, nous étudions comment le modèle standard de compétition
des prix à la Bertrand avec des produits différenciés pourrait fournir des informations
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utiles pour les programmes de citoyenneté par investissement dans les Caraïbes. Nous
montrons que lorsque les pays peuvent être classés en deux types en fonction de la taille
de leur demande, l’imposition d’un prix minimum uniforme et d’un quota maximum
appropriés amène les pays à un résultat efficace qui Pareto domine l’équilibre de Nash
non coopératif.

Enfin, le troisième article explore une extension du problème standard d’appariement
plusieurs-à-un en y incorporant des agents de tailles différentes (familles de réfugiés) d’un
côté, à assigner à des foyers de capacités différentes de l’autre. La taille d’une famille de
réfugiés représente le nombre de membres qui la compose. Une caractéristique spécifique
à ce modèle est qu’il n’autorise pas de répartir les membres d’une même famille entre
différents foyers. Il est bien connu que, dans ces conditions, bon nombre de propriétés
désirables des règles d’appariement s’effondrent. Nous faisons donc l’hypothèse des
priorités croissantes avec la taille pour chaque foyer, c’est-à-dire qu’une famille d’accueil
préférerait toujours un plus grand nombre de réfugiés tant que la capacité de son foyer
le permet. Nous montrons qu’un appariement stable par paire existe toujours sous cette
hypothèse et nous proposons un mécanisme pour le trouver. Nous montrons que notre
mécanisme est non-manipulable du point de vue des réfugiés : aucun groupe de réfugiés
ne pourrait tirer profit d’une déclaration truquée de leurs préférences. Notre mécanisme
est également optimal pour les réfugiés en ce sens qu’il n’existe aucun autre mécanisme
stable par paire qui serait plus profitable à tous les réfugiés.
Mots-clés : Concurrence en matière d’impôt sur le revenu, Mobilité de la main-d’œuvre,
Imposition optimale des revenus, Course vers le bas, Bien public, Concurrence des prix
à la Bertrand, Prix minimum, Quota maximum, Efficacité au sens de Pareto, Agents
de talles différentes, Correspondance plusieurs-à-un, Stabilité par paire, Monotonie par
taille
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Abstract

This thesis is a collection of three articles on microeconomic theory. The first two
articles are concerned with the issue of race-to-the-bottom when governments engage
in competition for some mobile factor. The third article proposes an extension for the
many-to-one matching problem by introducing different-size agents.

In the first article, we show how the standard race-to-the-bottom result can be
avoided by introducing public good into a tax competition model. Our economy has
two jurisdictions populated by perfectly mobile workers divided into two categories:
skilled and unskilled. Governments, in pursuit of a Rawlsian objective (max-min),
simultaneously announce their plans for investing in public good before deploying a
nonlinear income tax schedule. After observing the tax schedules of the governments
and their promises to invest in public good, each worker chooses a place of residence
and a supply of labour. Thus, governments achieve their redistribution objectives by
seeking to attract productive labour through the provision of public goods in addition to
favorable taxation policy. We show that there exist equilibria where skilled workers pay
a strictly positive tax. In addition, when information on the type of workers is private,
there are equilibria for certain parameter values in which unqualified workers receive a
net transfer (or subsidy) from the government.

In the second article, we investigate how the Bertrand standard price competition
with differentiated products could provide useful insight for Citizenship By Investment
programs in the Caribbean. We show that when countries can be classified into two
types according to the size of their demand, imposing appropriate uniform minimum
price and maximum quota brings countries to an efficient outcome that Pareto dominates
the Non-Cooperative Nash Equilibrium.
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Finally. in the third article, we explore an extension of the standard many-to-one
matching problem by incorporating different-size agents (refugee families) on the many
side of the market, to be assigned to entities (homes) with different capacities on the
other side. A specific feature of this model is that it does not allow refugee families to
be split between several homes. It is well known that many of the desirable properties of
matching rules are unachievable in this framework. We introduce size-monotonic priority
ranking over refugee families for each home, that is, a host family (home) would always
prefer a greater number of members of refugee families until its capacity constraint
binds. We show that a pairwise stable matching always exists under this assumption
and we propose a mechanism to find it. We show that our mechanism is strategy-proof
for refugees: no refugee family could benefit from misrepresenting his preferences. Our
mechanism is also refugees optimal pairwise stable in the sense that there is no other
pairwise stable mechanism that would be more profitable to all refugees.
Keywords: Income tax competition, Labor mobility, Optimal income taxation, Race-
to-the-bottom, Public good, Bertrand price competition, Minimum Price, Maximum
quota, Pareto efficiency, Sized agents, Many-to-one matching, Pairwise stability, size-
monotonicity
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First Article.

Should we subsidize the poor
when labour is perfectly
mobile? Tax Competition

with Public Good
by

Abdoul Karim Sidibé1

(1) C. P. 6128, succursale Centre-ville
Université de Montréal

This article is in preparation for submission to Games and Economic Behavior.

1. Introduction
Globalization has improved capital mobility and migration through the emergence of

international trade, the formation of economic unions and the development of transport.



This global socioeconomic progress has made low-tax regions more attractive not only
to investors but also to workers and, thereby, made redistributive policy harder to
implement. In fact, migration reduces the possibility of redistribution in two different
ways. First, high tax payers, which are typically wealthy and skilled people, are
incentivized to migrate towards lower tax regions. Second, low wage workers, which
are typically low skilled agents, are encouraged to move to areas where poor people
are subsidized or where they could pay fewer taxes. Therefore, competition between
jurisdictions for rich people not only entails a decrease in the tax liability for the top
earners but also results in a decline in the subsequent subsidies to the poor. These
effects are well described in the standard literature of tax competition for labour 1 and
are getting more significant as migration costs decline throughout our modern societies. 2

The literature on nonlinear tax competition for mobile labour has mainly been
focused on the possibility of redistribution when public good provision is not considered.
In this standard framework, we know from Bierbrauer et al. (2013) that, in the absence
of mobility costs, there is no equilibrium in which the lowest skill workers are subsidized
when governments pursue a utilitarian objective. This so-called race-to-the-bottom result
is observed in perfect labour mobility tax competition models even if governments use a
maximin criterium which is the most redistributive social welfare function. Nevertheless,
redistribution become harder in the case of utilitarian objective as shown by Bierbrauer
et al. They show that, there does not exist an equilibrium where the highest skill pay a
positive tax, and more interestingly the highest skill may even be subsidized for some
values of the parameters.

However, the provision of public goods is a determining factor in the choice of
individuals location (see Bretschger and Hettich (2002)). This paper diverges from
the standard framework by allowing governments to confront the trade-off between
public good provision (financed by tax revenue) and tax incentives to achieve their
redistributive goal. In our setting, workers decide on their place of residence by taking
into account both the taxation policy adopted in each jurisdiction and the distribution of
public goods throughout the whole economy. Governments then compete for high-income

1. See Wilson (1999), for a review of the literature on tax competition for labour.
2. For instance, in 2019, France experienced severe social protests against Macron’s administration’s

fiscal policy which started in 2018 with the suppression of the Solidarity Tax on Wealth and ended up
with an increase in fuel tax that affects both poor people and wealthy people.
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earners by providing an attracting level of public good in addition to tax incentives. We
find that the provision of public good reduces the effect of tax competition by creating
an additional incentive for taxpayers to immigrate (or not to emigrate) and then allows
for more redistribution.

Specifically, the model we are interested in is an extension of the discrete-skill setting
of Stiglitz (1982) in which agents have either low productivity or high productivity. The
economy consists of two regions, and regional governments simultaneously announce a
level of public good provision before deploying simultaneously a nonlinear income tax
schedule over its residents. Workers, then choose their locations and every non-empty
region provides the announced level of public good financed by the tax revenue. In
order to restaure the possibility of redistribution we assume that governments pursuit a
Rawlsian criterium (maximin). When information is symmetric governments observe
the productivity of agents, but when information is asymmetric, only the before-tax
income and the place of residence are observed by the policymakers.

Poitevin and Gravel (2016) provide a first insight on this subject by proposing a model
of tax competition with finitely many productivity levels for individuals who receive
an exogenous income and are perfectly mobile. They show that if the information on
individuals’ income is public, then introducing public good in an income tax competition
model increases the possibility of income redistribution by competing governments
significantly. And if the information on individual income is private, then chances
for redistributions are more limited. Nonetheless, the authors pointed out the empty
community problem, as identified before by Wilson (1999), caused by the presence of a
public good.

Indeed, an increase in public good provision attracts taxpayers, which in turn
increases tax revenue and allows the government to provide more public good. This
mechanism creates a snowball effect making an area increasingly more attractive and
results in the gathering of all individuals in a single region. We avoid this problem by
proposing a game where the decision to provide public good and the choice of a tax
schedule are made sequentially. By allowing the governments to decide on a level of
public good provision before deploying a nonlinear income tax schedules, we characterize
pooling (all agents choose the same place of residence) subgame perfect equilibria. We
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also give sufficient conditions for the existence of separating (poor and rich agents choose
different places of residence) subgame perfect equilibria.

In contrast with the models of tax competition without public good, we find that,
when information is symmetric, all individuals pay a non-negative tax in equilibrium and
the tax paid by the high skill could be higher than that paid by the low skill which is an
indirect redistribution (through public good). In fact, in those equilibria, the tax paid by
a high skill agent is greater than the average tax liabilities throughout the region. When
information is asymmetric, however, the high skill earn a higher utility than the low skill
but pay a non-negative tax. Under some specific conditions the low skill may even be
subsidized in the case of asymmetric information. Furthermore, pooling equilibria are
always possible, that is, all types of agents choose the same place of residence. Under
some specific conditions, we find that, unlike the model of Poitevin and Gravel (2016),
separating equilibrium may also occur, that is, agents of different types decide to live in
different regions.

In practice, these results suggest that in the absence of a supranational redistributive
entity, a better fiscal strategy would be to attract investors by announcing large public
spending such as plans to build new cities. This strategy helps to avoid race to the
bottom as funds are levied from the residents in exchange for a provision of public good.
We have seen in the last decade projects of this nature emerge such as the construction
of a new Egyptian capital. This project requiring an investment of 52 billion euros was
announced by the Egyptian government in 2014 and is highly dependent on foreign
investment. We can also cite the example of the hatching of many artificial islands
in Dubai and that of the new Senegalese city Diamiadio. These projects are largely
financed by the sale of land and therefore constitute an effective means of attracting
resources to the national territory. Even though this example concerns an indirect
taxation by the sales of expensive lands it ensures redistribution through investment
in public good as our model predicts. The realization of these large-scale projects, in
addition to their obvious socio-demographic objectives, have a direct (multiplication
of public infrastructures) and indirect (creation of new jobs) economic interest for the
most disadvantaged.

Section 2 review some closely related literature on the topic. Section 3 presents
the model and describes the relevant equilibrium concept. We analyse the outcome
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of the tax competition subgame for all given distribution of public goods in Section 4.
Section 5 analyses pooling and separating Subgame-Perfect equilibria with symmetric
information and asymmetric information. We conclude in section 5.

2. Related Literature
The literature on tax competition can be subdivided into two categories depending

on whether the mobile factor is labor or capital. 3 It should be noted that competition
for labor is in itself an indirect competition for capital and vice versa because workers
migrate not only with their labor power but often with their financial capacity too.
However, our review of the literature will focus exclusively on the competition for
labor and the optimal taxation of Mirrlees-type income which is directly related to this
paper. These models, for the most part, do not take into account the potential power of
redistribution generated by government spending on public goods.

One of the first attempts to study the optimal (non-linear) taxation of income in
an open economy with free movement of labor is due to Piaser (2007). Considering
Rawlsian governments, quasi-linear utility and two types of workers in a strategic tax
competition model with asymmetric information, Piaser (2007) finds that the mobility of
unskilled has no influence on the equilibrium income tax. He also shows that possibilities
for redistribution are reduced by the tax competition. By supposing, in contrast, that
the low type agent is also mobile in our model, we allow governments to compete for
both types of agents. We show that the introduction of public good into the model of
Piaser makes the equilibrium income tax dependent on the mobility of the unskilled.
This is an immediate consequence for the possibility of separating equilibrium in our
model.

Lipatov and Weichenrieder (2015) analyse a symmetric subgame perfect Nash equi-
librium in a tax competition model for imperfectly mobile high skilled and immobile
low skilled. They study Rawlsian, Utilitarian and Levianthan social welfare functions
and find, in all cases, that tax competition lowers taxes on the high skilled whether
information is symmetric or not. Considering Levianthan governments, they find that

3. There is a fairly large literature on tax competition for foreign direct investment in which the
mobile factor is one or more firms that choose their location based on the tax incentives offered by
governments (see, for instance, Krautheim and Schmidt-Eisenlohr (2011), Haaland and Wooton (1999)).
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tax competition increases employment for the low skilled and reduces the distortion
from informational asymmetry. Lipatov and Weichenrieder mitigate the tax competition
by assuming that the low skill is immobile and by adding a constraint that makes it
impossible for governments to set the utility of the workers to an arbitrarily low level.
Unlike Lipatov and Weichenrieder (2015), we assume that both types of agents are
perfectly mobile and value the public good financed by taxation. We also find that tax
competition lower taxes on the high skilled in pooling equilibrium for a given level of
public goods. However, there is still a room for subsidies to the poor when governments
compete for mobile labor in our framework.

Bierbrauer et al. (2013) use a nonlinear income tax competition model in which
governments maximize the average utility of the residents. They find that there is no
equilibria in which the lowest skilled agents are subsidized or the highest productive
agent pays a positive tax to one country whose utility is larger than the average utility
in the other country. In some special cases, they show that it is even possible that the
most highly skilled receive a net transfer funded by taxes on lower skilled individuals in
equilibrium. By introducing a public good provision, unlike Bierbrauer et al. (2013) we
find that redistribution occurs in some equilibrium and positive tax could be paid by
highly skilled agents even though their utility is greater than the average utility in the
other region.

Lehmann et al. (2014) introduce mobility cost in an optimal nonlinear income tax
competition model for Rawlsian government with infinitely many productivity levels and
quasilinear preferences. They find a dependance between the shape of the tax schedule
and the slope of the semi-elasticity of migration (defined as the percentage change in
the mass of taxpayers of a given skill level when their consumption is increased by one
unit). This framework is very closed to our model but they do not take the provision of
public goods into account. They find that «marginal tax rates may be negative if the
semi-elasticity of migration is increasing along the skill distribution» even for the top
earners. However, in our paper, most of the results are expressed in terms of total tax
liability instead of marginal tax rates and more interestingly there exists no equilibrium
in which the top earners pays a negative total tax. In our model, even if there is no
direct migration cost, one could imagine that the presence of public goods in different
quantities across regions induces an indirect cost of migration. This indirect cost is
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nothing other than the difference in total benefit derived from the public good between
the region of destination and the region of departure. Unlike the model of Lehmann
et al. (2014), this implicit cost is determined by the strategic behavior of governments
through their policy of public good provision and applies uniformly to all agents residing
in the same region.

Our model differs from the one proposed by Poitevin and Gravel (2016) in two
respects. First, as opposed to exogenous income, we suppose that the income level of
each type of agent is endogenously determined by a trade-of between labour and leisure.
Second, in order to avoid the empty community problem, we consider a multi-stage
game in which governments decide simultaneously on a level of public goods in the first
stage and, after observing the levels of public goods in the economy, each government
choose a nonlinear tax schedule.

3. General framework
The model

The economy consists of two regions (jurisdictions) A and B populated by agents
with identical preferences over consumption, labor and public good. Here, we describe
how interactions take place in the economy.

First, we present the behavior of agents. The utility function of an agent is given by

u(c, l, G) = c− v(l) + h(G)

where l ≥ 0 denotes the quantity of labor supplied by the agent, G ≥ 0 is the amount of
public goods available in his region of residence and c ∈ R represents his consumption
which can be negative or positive. 4

We assume that h and v are strictly increasing functions and h is strictly concave
while v is strictly convex. Both h and v are twice continuously differentiable (h′ > 0, h′′ <
0, v′ > 0, v′′ > 0), with v(0) = h(0) = 0. We also assume that the Inada conditions are

4. Restricting consumption to only positive value would unnecessarily make the model less trackable.
One could equivalently assume that the income is big enough so that consumption remain positive for
all relevant level of taxes.
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satisfied :
lim
l→0

v′(l) = 0 and lim
l→+∞

v′(l) = +∞

lim
G→0

h′(G) = +∞ and lim
G→+∞

h′(G) = 0.

These conditions ensure the existence of a unique interior solution to the consumer’s
problem. A quasilinear utility function is used to ensure the tractability of the model.
Moreover, the separability between l and G ensures that the level of public goods affects
only the extensive margin (the choice of the region of residence) as opposed to the
intensive margin (the level of labour supply). Furthermore, agents are assumed to
be perfectly mobile between the two regions, that is, they can choose their region of
residence without cost. 5 The birthplace of the agents is, therefore, irrelevant.

We adopt an extension of the discrete-skill setting of Stiglitz (1982) in which there
are nL low skilled agents with a low productivity wL and nH high skilled agents with
a high productivity wH where 0 < wL < wH . As it is usual in the nonlinear optimal
tax setup initially proposed by Mirrlees (1971), the market of labor is assumed to be
perfectly competitive so that the wage of each agent equates her (marginal) productivity
of labour. The agent i ∈ {L,H} before-tax income is, therefore, yi = wili, and his utility
if he lives in region j can be expressed in terms of his gross-income, yi, his consumption
level, ci, and the public good provision of the region he lives in, Gj:

Ui(ci, yi, Gj) = ci − v(yi/wi) + h(Gj). (3.1)

Second, we present the behavior of governments. We assume that governments can
use one unit of the consumption good (or income) to produce at most one unit of public
good. So, in each region, a government levies taxes (which may be negative) on the
income of agents who reside on its territory to maximize the social welfare through
investment in public good and/or direct redistribution. We assume that Governments’
objective is Rawlsian, that is, the social welfare function of each government is the
minimum of the utilities of agents who live within its borders. This is the most
redistributive social welfare function because it supposes an infinite aversion for wealth
inequality. We adopt the resident criterion (Simula and Trannoy, 2012) meaning that

5. Nevertheless, there is an implicit cost from moving from one region to another. Everything
being equal, moving from B to A would cost h(GA)− h(GB) which can be positive or negative. This
endogenous cost is conjointly determined by the level of public goods provided by both region.
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governments care only about the well-being of the individuals living on their territory at
the end of the game. Governments observe agents’ location and their before-tax income
y = wil. We distinguish symmetric and asymmetric information situations.

When information is symmetric, the government of each region j ∈ {A,B} also
observe agents’ productivity and deploy a type-specific tax schedule T j = (tjL, t

j
H) which

requires all i-type agents living in region j to pay tji regardless of their income. Then,
the budget constraint of an i-type agent who lives in region j is

ci ≤ yi − tji . (3.2)

The consumer’s problem consists of chosing the consumption-income bundle (c∗i , y∗i )
that maximizes (3.1) under (3.2). Its First Order Conditions give the optimal levels of
consumption c∗i and income y∗i independently of Gj 6:

c∗i = y∗i − t
j
i

v′
(
y∗i
wi

)
= wi.

Therefore, the utility of an i-type agent who decides to reside in region j ∈ {A,B} is:

U j
i = v∗i − t

j
i + h(Gj)

where v∗i ≡ y∗i − v (y∗i /wi) is the before-tax utility of agent i due to consumption and
labor. From the perspective of governments, when information is symmetric, a type-
specific tax schedule T j = (tjL, t

j
H) can be achieved by two type-specific bundles of

consumption-income (cjL, y
j
L) and (cjH , y

j
H) where yjL = y∗L, y

j
H = y∗H , c

j
L = y∗L − t

j
L and

cjH = y∗H − t
j
H .

On the other hand, when information is asymmetric, agents’ productivities are
private but governments still know the distribution of productivities in the economy.
Then, governments deploy a nonlinear income tax schedule T j(y) only for agents who
decide to live within their borders. The budget constraint of a type-i agent who lives in

6. y∗i is a strictly dominant income level for every individual of type i ∈ {L, H} regardless of his
region of residence, public good level and taxes (here taxes imply no distorsions because they are type
specific «head taxes»). And since v′ is strictly increasing (because v is convex) we get y∗H

wH
>

y∗L
wL

and
then y∗H > y∗L.
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region j ∈ {A,B} is therefore:
ci ≤ yi − T j(yi). (3.3)

According to the revelation principle, the government of region j may implement the tax
schedule T j(.) through an indirect mechanism by proposing two bundles of consumption-
income (cjL, y

j
L) and (cjH , y

j
H) such that type-L consumers prefer the first bundle and

type-H consumers prefer the second one. 7 Whether information is asymmetric or not,
the tax schedule deployed by government j is entirely defined by a 4-dimensional vector
τj = (cjL, y

j
L, c

j
H , y

j
H). Most importantly, in the case of asymmetric information, τj must

satisfy the incentive compatibility constraints within region j:

cji − v
(
yji
wi

)
≥ max

i′∈{L,H}

{
cji′ − v

(
yji′

wi

)}
, ∀i ∈ {L,H}. (3.4)

This assumption garanties the existence of a function T j(y) such that the bundle of
consumption-income (cji , y

j
i ) maximise the utility of the i-type at (3.1) under the budget

constraint (3.3).
Now we describe how the game proceeds. Governments and agents engage in a

three-stage game described as follow. First, each government j ∈ {A,B} announces a
level of public good provision Gj ∈ [0, G] where G is the highest level of public goods
such that the total benefit of acquiring it is equal to its cost, i.e., (nL + nH)h(G) = G

with G > 0. 8 After observing the distribution of public goods announced in the economy,
both governments deploy a tax schedule τj = (cjL, y

j
L, c

j
H , y

j
H) where (cji , y

j
i ) ∈ R× R+.

Finally, agents decide on their region of residence (extensive margin) and their bundle
of consumption-income (intensive margin).

A strategy of a region j is a fiscal policy Sj = (Gj, τj(·, ·)) consisting of an an-
nouncement of public good provision Gj and a contingent tax schedule τj(·, ·) =
(cjL(·, ·), yjL(·, ·), cjH(·, ·), yjH(·, ·)) which is a function of the public goods announced by
the two governments, (GA, GB). Given a pair of fiscal policy SA and SB, denote
by U j

i (SA, SB) the utility of an i-type agent who decides to live in region j and let
nji (SA, SB) ∈ N be the number of such an agent. If information is symmetric, each agent

7. The type-i agent must prefer (cj
i , yj

i ) to every other bundle available throughout both regions. A
more precise definition of the incentive constraints will be given later.

8. If Gj > G, then government j would rather not invest in public good and would pursue a purely
redistributive policy.
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living in region j will choose the bundle of consumption-income intended to him in his
region of residence. Therefore, his utility is given by

U j
i (SA, SB) = cji (GA, GB)− v

(
yji (GA, GB)

wi

)
+ h(Gj). (3.5)

In the remainder of the paper, the arguments (SA, SB) and (GA, GB) will be omitted
from U j

i (SA, SB), nji (SA, SB) and cji (GA, GB), yji (GA, GB) if there is no risk of confusion.
However, if information is asymmetric, agents could a priori choose any bundle

of consumption-income available in both regions. An i-type agent chooses the bundle
(cji , y

j
i ) intended to him in region j only if his self-selection constraint is satisfied, that

is, ∀i ∈ {L,H} such that nji > 0,

cji − v
(
yji
wi

)
+ h(Gj) ≥ max

(i′,j′)∈{L,H}×{A,B}

cj′i′ − v
yj′i′
wi

+ h(Gj′)

 , (3.6)

and then the utility of an i-type living in region j is also given by (3.5). We assume
that, when information is asymmetric, governments can only deploy a tax schedule
τj = (cjL, y

j
L, c

j
H , y

j
H) that is incentive-compatible, given the announced level of public

good in its jurisdiction, that is, τj must satisfy (3.4).
Let SWF j(SA, SB, njL, n

j
H) be the resulting social welfare in region j. The social

welfare of a region depends only on the number of residents and their utilities that
depend on the fiscal policies in both regions We assume that regions have extreme
aversion for emptiness and budget deficit, that is, SWF j = −∞ if region j is empty
(njL = njH = 0) or its budget constraint (njL(yjL− c

j
L) + njH(yjH − c

j
H) ≥ Gj) is violated. If

the budget constraint is satisfied in an non-empty region, say j, then its payoff is given
by

SWF j(SA, SB, njL, n
j
H) =



min{U j
L, U

j
H} if njL > 0 and njH > 0

U j
L if njL > 0 and njH = 0

U j
H if njH > 0 and njL = 0.
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Equilibrium concept

We are interested in finding the subgame perfect Nash equilibria of the game that
are feasible, that is, such that the government budget constraint is satisfied in every
non-empty region. Doing so, we will avoid trivial equilibria where governments propose
an exorbitant level of consumption to agents while violating their budget constraints.
To define an equilibrium, it will be important to define in any subset a distribution
of agents in which the agents maximize their utility. So, we summarize the optimal
reaction of agents to any pair of fiscal policies by the following definition.

Definition 1. A distribution of agents (nji )ij is compatible with a pair of fiscal
policies (SA, SB) if agents behave rationally by deciding to live in the region where
they find the bundle that maximizes their utility.

In other terms, a distribution of agents is compatible with (SA, SB), if agents migrate
optimally, that is,

1) UA
i > UB

i ⇒ (nAi = ni and nBi = 0),

2) UA
i < UB

i ⇒ (nAi = 0 and nBi = ni),

3) UA
i = UB

i ⇒ nAi + nBi = ni.

It is also convenient to distinguish separating distribution where agents with different
types decide to live in different regions, from pooling distribution where all types of
agent decide to live in the same region. Note that only the amount of public good
proposed by each government (GA, GB) and the corresponding taxation policy deployed
by those governments (τA(GA, GB), τB(GA, GB)) are necessary for characterizing the
agent’s optimal migration decision. Now, we are ready to define an equilibrium concept
for the game.

Definition 2. Let P̃ = (S̃A, S̃B) be a pair of fiscal policies where S̃j = (G̃j, τ̃j(·, ·))
with G̃j ≥ 0 and τ̃j(·, ·) = (c̃jL(·, ·), ỹjL(·, ·), c̃jH(·, ·), ỹjH(·, ·)) a contingent tax schedule.
P̃ is an equilibrium if there is a distribution of agents (ñji )ij compatible with P̃ such
that for all j = A,B and −j 6= j,
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(1) if region j is non-empty then its government’s budget constraint is satisfied,
that is, ñjL(ỹjL − c̃

j
L) + ñjH(ỹjH − c̃

j
H) ≥ G̃j ;

(2) S̃j is government j’s best response to S̃−j, that is, for all fiscal policy Ŝj,
there exists a distribution of agents (n̂ji )ij compatible with (Ŝj, S̃−j) such that
SWF j(Ŝj, S̃−j, n̂jL, n̂

j
H) ≤ SWF j(S̃A, S̃B, ñjL, ñ

j
H).

(3) for all subgame defined by (GA, GB) ∈ [0, G]2, there exists a distribution of
agents (nji )ij compatible with (SA, SB) where Sj = (Gj, τ̃j(·, ·)), such that
(a) the budget constraint associated with (nji )ij is satisfied in every non-

empty region for (GA, GB),
(b) and, τ̃j(GA, GB) is government j’s best response to τ̃−j(GA, GB),

that is, for all contingent tax schedule τ̂j(·, ·), there exist a dis-
tribution of agents (n̂ji )ij compatible with ((Gj, τ̂(·)), S−j) such that
SWF j((Gj, τ̂(·)), S−j, n̂jL, n̂

j
H) ≤ SWF j(SA, SB, njL, n

j
H).

And, then we say that P̃ is an equilibrium supported by the distribution of agents
(ñji )ij.

Definition 2 concerns both cases of symmetric and asymmetric information. The
first condition requires that governments keep their promise of public good provision
announced in the first stage. However if region j is empty, no promise needs to be kept.
The second condition states that there is no profitable deviation for any region j, that is,
there is no fiscal policy Ŝj such that, SWF j(Ŝj, S̃−j, n̂jL, n̂

j
H) > SWF j(S̃A, S̃B, ñjL, ñ

j
H),

for all distribution of agents (n̂ji )ij compatible with (Ŝj, S̃−j). Otherwise, no credible
threat from agents could prevent government j from deviating from S̃j. Similarly, the
third condition makes sure, that government j has no profitable deviation from the
contingent tax schedule τ̃j(·, ·). In other words (S̃A, S̃B) induces a (Feasible) Nash
Equilibrium in every subgame defined by some (GA, GB) ∈ [0, G]2. In the case of
asymmetric information, any deviation τ̂j(·) is required to be incentive compatible in
order to be implementable by a non linear tax schedule T̂ j(y) as a function of the
before-tax income y. Thus, Definition 2 defines pure strategy subgame perfect Nash
equilibria in which public good provision promises are kept in non-empty regions.

All equilibria can be found using the standard backward induction algorithm and
considering only the outcomes of the algorithm for which the budget contraint is satisfied
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in non-empty regions for all subgames. The first stage of the algorithm consists in
finding, for all subgames defined by some (GA, GB) ∈ R2

+, a (feasible) equilibrium
(τ̃A(GA, GB), τ̃B(GA, GB)) determined in such a way that no profitable deviation exists
for either government, meaning that the third condition in Definition 2 is met for each
region.

4. Equilibrium tax schedules
In this section we consider a subgame defined by a given distribution of public good

(GA, GB) ∈ [0, G] and we propose some key properties of feasible equilibria within this
subgame.

Remark 1. If information is symmetric, then for all subgame defined by some
(GA, GB) ∈ [0, G]2, taxes are positive in equilibrium.

Proof: Suppose, by contradiction, that a negative tax is paid by i-type agents in region
j at an equilibrium for a subgame defined by some (GA, GB) ∈ [0, G]2. By definition
of the social welfare function, the utility of agents of type −i with −i 6= i is greater
or equal to SWF j. Since −i-type agents are subsidizing i-type agents, in addition to
funding the public good, social welfare could be improved in region j by lowering the
tax paid by the −i-type and getting rid of the i-type agents by imposing a high enough
tax on them. Since information is symmetric it is possible to impose an arbitrarily high
tax specifically on the i-type agent to get rid of them. 9 That would be a profitable
deviation even if this deviation could attract more −i-type in region j. �

Remark 1 states that subsidies are impossible when information is symmetric. This
result contrasts with the findings of Poitevin and Gravel (2016) who assume that the
taxe schedules and the amount of public good are chosen simultaneously by governments.
Indeed, tax competition becomes fiercer when the level of public good is fixed because
governments are, in this case, constrained to compete only with the fiscal instrument. As
we it is shown later in the paper, Remark 1 does not hold if information is asymmetric.

9. If information is asymmetric, getting rid of the i-type with high enough taxes may not be possible
because that move could violate the incentive constraints for the i-type.
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Remark 2. For all subgame defined by some (GA, GB) ∈ [0, G]2, the government’s
budget constraint is binding in equilibrium for all non-empty region.

Proof: Suppose, by contradiction, that in a subgame defined by some (GA, GB) ∈ [0, G]2

government j’s budget constraint does not bind in some equilibrium. If all agents pay
non-negative taxes in j then government j could slightly reduce taxes for all agents in
such a way that the budget and the incentive constraints still hold. When information
is asymmetric, this deviation could be done by slightly increasing the consumption of
each agent in region j without changing their labor supply which would not violate the
incentive constraints. This move would increase the utility of every single agent in the
region and, thus, increase the social welfare which is defined as the minimum utility in
the region. Note that this deviation would be profitable to region j even though it may
attract more agents into that region. In particular, if there is a type of agents who pays
zero tax at the equilibrium, then, slightly reducing their tax would be tantamount to
granting them a small subsidy. In this case, this subsidy should be low enough so that
the government’s budget constraint is not violated even if all agents of this type migrate
toward region j in order to benefit from it.

If at this equilibrium some agents, say i-type, pay negative taxes in j, then two
cases need to be distinguished. First, if no i-type agents live abroad, then, as before,
a profitable deviation would be to reduce taxes for all agents in such a way that the
budget and the incentive constraints still hold. However, if some i-type agents live
abroad (which could happen only if they are indifferent between living in region j and
living abroad), then slightly increasing the preexisting subsidy for the i-type could be
detrimental to the government as more agents of that type could flee in the region.
Indeed, such a deviation might attract so much i-type agents into the region that the
government would run out of money to subsidize all of them. In that case, a profitable
deviation for government j would instead consist of getting rid of the i-type by increasing
their tax to the same non-negative tax that −i-type would need to pay if they were
the only resident of the region, Gj/n−i. That deviation is incentive compatible since it
requires every agent to pay the same amount of tax. Furthermore, it is profitable to
region j because it would increase the utility of the −i-type while chasing the i-type
out of the region. That would increase the social welfare in region j since the utility
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of every remaining resident of region j would have increased. Therefore, in all cases,
whenever the constraint budget does not bind in some non-empty region, a profitable
deviation exists. �

Remark 2 is not trivial. In fact, the budget constraint may not be binding in region
A if we suppose that agents are not perfectly mobile in which case their birthplaces
matter. Budget surplus could appear if we assume, for instance, that agents born in
region A are perfectly immobile while those born in region B are perfectly mobile. In
that case, If the L-type are subsidized in A the budget constraint may not need to
be binding in region A in equilibrium, that is, the H-type agents living in A could be
paying more than what is needed to finance the public good GA and the subsidies, say
−tAL , to the Ls. Further assume that all H-type agents are born in region A and some
(perfectly mobile) L-type agents live in region B. It could then be the case that the
government of region A cannot afford to pay the same subsidy −tAL to all the Ls in the
economy without reducing the region’s social welfare. In this scenario, the government
could excessively tax the H-type without reducing the social welfare as long as the
budget surplus is not redistributed to the L-type.

It is important to consider the special case of zero public good, as this case coincide
with the standard tax competition model. The following proposition gives some key
insight about equilibrium tax schedules and the distribution of agents when public good
provision is not allowed.

Proposition 1. Equilibria in the subgame defined by GA = GB = 0 exhibit the
following properties:

(1) no tax (or subsidy) is paid, and

(2) all L-type agents live in the same region.

Proof: See Appendix. �

Proposition 1 is, in part, in line with the findings of Bierbrauer et al. (2013): in the
absence of a public good, there is no equilibrium in which the H-type pay a positive
tax. However, unlike Bierbrauer et al. (2013), there does not exist an equilibrium
in which the H-type receives subsidies either. This difference is due to the Rawlsian
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criterion that we have adopted which is infinitely more redistributive than the utilitarian
criterion used by Bierbrauer et al. (2013). Indeed, if information is asymmetric, then the
incentive constraints imply that the H-type agents earn higher utility than the L-type.
Therefore, trying to subsidize the poor through a positive tax on the rich would push the
latter the flee out of the country where there would pay no tax. Reciprocally, since the
governments care only about the well-being of the least fortunate, there is no point in
getting the rich financed by the poor in order to keep them in the region. This argument
applies also when information is symmetric.In fact, a government that finances its public
good and subsidizes the H-type would create high inequalities between the H-type and
the L-type with the latter getting the least utility. It could get rid of the H-type and
keep financing the same amount of public good with lower taxes on the L-type. That
would be the best thing to do since only the well-being of the poor matters.

When zero tax is paid, there is no point in distorting the labour supply of the
residents. The H-type agents would therefore be the most fortunate with a utility of
v∗H . So, when there is no public good provision, government would compete by trying
to keep the H-type inside their region and the L-type outside. As a result of this
competition, one country will end up with all the poor while the other country will get
some (possibility all or none) of the rich.

Figure 1 illustrates the equilibrium when public good provision is zero in both region.
The pair of tax schedules (τA, τB), with τA = (cAL , yAL , y∗H , y∗H) and τB = (y∗L, y∗L, cBH , yBH),
is depicted on the figure. uji denotes the utility of i-type agents who live in region j if any.
(τA, τB) is an equilibrium (whether information is symmetric or not) that is compatible
with a distribution of agents (nji )ij such that nAH = nH and nBL = nL. No taxes are paid
and production/income is efficient for each type so none of them would benefit from
fleeing abroad: v∗L > uAL and v∗H > uBH . Moreover, τA and τB are incentive compatible.
If B offers more to Hs than v∗H , B needs to subsidize Hs via a positive tax on the Ls.
B would then end up with a lower social welfare. In particular, if (cBH , yBH) = (y∗H , y∗H),
then (τA, τB) is an equilibrium supported by any repartition of agents where all the Ls
live in region B. Thus, an equilibrium with some rich people living in both region would
then be possible. However, according to Proposition 2, this kind of agent distribution is
impossible if the public good provision is non-zero in at least one region.
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Figure 1. Equilibrium with zero public good
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Proposition 2. For all subgame defined by some (GA, GB) ∈ [0, G]2 \ (0, 0), there
does not exist a type of agents living in both regions in equilibrium.

Proof: See Appendix. �

A crucial assumption underlying Proposition 2 is the lack of congestion in the use
of public goods. Thus, the individual benefit of a public good does not diminish when
the government accept more taxpayers. So, whenever possible, it is always profitable for
a government to get more agents which belong to a type that pays a positive tax or to
get rid of a type of agents that pay negative tax. If an agent type is present in both
regions, then a slight modification of their tax liabilities in one region could make them
all flee out or come in. If we further assume that public good provision is non-zero in at
least one region, some agents would have to pay positive tax in that region. Also, note
that this proposition would not hold if agents of the same type have different tastes for
public good, that is, if h is specific to agents.
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Proposition 2 allows us to focus only on a very specific range of Nash equilibria
which are: separating equilibrium where agents with different types decide to live in
different regions and pooling equilibrium where all types of agents decide to live in
the same region. Note that the use of terms «separating equilibrium» and «pooling
equilibrium» is non-standard. In this paper, these terms apply even in the case of
symmetric information, and rather refer to the choice of agents on the extensive margin.
So, a pooling equilibrium occurs if all types of agents choose the same region of residence
in equilibrium regardless of whether they select the same consumption-income bundle or
not. Similarly, an equilibrium is separating if agents of different types choose different
regions of residence. Proposition 3 and 4 give necessary and sufficient conditions for the
existence of both types of equilibrium.

Proposition 3. For all subgame defined by some (GA, GB) ∈ [0, G]2, a pooling
equilibrium always exists. Agents pool in region j = A,B, such that

(nL + nH)h(Gj)−Gj ≥ (nL + nH)h(G−j)−G−j, (4.1)

with −j 6= j.

Proof: See Appendix. �

The expression (nL + nH)h(Gj)−Gj represents the total net benefit of the public
good provided in region j if it is home to all types of agents. Proposition 3 states
that a pooling equilibrium always exists, and it only exists in the region that has the
highest potential total net benefit of public good. The existence of a Nash equilibrium
in all subgames is a crucial result because it allows us to design subgame perfect Nash
equilibria using backward induction. Indeed, no subgame perfect Nash equilibria would
exist if there exists one subgame that does not admit an equilibrium.

If information is asymmetric, it is convenient to represent tax schedule in the
space utility-income (ujL, u

j
H , y

j
L, y

j
H) where uji = cji − v(yji /wi). Consider a pooling

equilibrium where agents pool in region A. That region plays the best incentive
compatible allocation (uAL , uAH , yAL , yAH) subject to the self-selection constraints. Char-
acterizing a pooling equilibria requires, therefore, that we consider the problem of
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Boadway and Keen (1993) that gives the maximum social welfare in such an equilib-
rium, uAL = uL(uBH − (h(GA) − h(GB)), GA), where the function uL is defined for all
(uH , G) ∈ R× R+ by:

uL(uH , G) = max
(cL,yL,cH ,yH)

cL − v(yL/wL)

s.t.



nL(yL − cL) + nH(yH − cH) ≥ G (BC)

cL − v(yL/wL) ≥ cH − v(yH/wL) (ICL)

cH − v(yH/wH) ≥ cL − v(yL/wH) (ICH)

cH − v(yH/wH) ≥ uH (PC)

(4.2)

In equation 4.2, (BC) represents the budget constraint. (ICL) and (ICH) are the
incentives constraint respectively for the Ls and the Hs. (PC) is the participation
constraint for H that require the utility of the Hs to be greater than the utility they
would get if they flee abroad. It is important to note that, in a pooling equilibrium, the
participation constraint for the L must also be satisfied: uAL ≥ uBL − (h(GA)− h(GB)).
We assume that uL(uH , G) =∞, if uH is so high that the constraints of the Boadway
and Keen’s problem define the empty set.

Let uMH (G) be the lowest level of uH for which the constraint (PC) is binding and
define uML (G) by the corresponding utility level: uML (G) ≡ uL(uMH (G), G). 10 In every
feasible pooling equilibrium the utility of H-type in A must be at least equal to uMH (GA),
so that, the government could grant the best incentive compatible utility level for type-L
agent. As it will be clearer in the next section, a vast range of pooling equilibria may
exist in a subgame. When information is asymmetric, the maximum utility uML (Gj)
that the L could get in a pooling equilirium in region j is found by solving the Mirrlees’

10. uM
L (G) and uM

H (G) are the highest incentive-compatible utility levels for type L and H respectively
that can be implemented in autarky if their numbers are nL and nH respectively. We have :

uM
L (G) =

nLvM
L +nH v∗H +nH [v(

yM
L

wH
)−v(

yM
L

wL
)]−G

nL+nH
and uM

H (G) =
nL[yL−v(

yM
L

wH
)]+nH v∗H−G

nL+nH

where vM
L = yM

L − v( yM
L

wL
) and yM

L ∈]0, y∗L[ is defined by 1
wL

v′( yM
L

wL
) = nL

nL+nH
+ nH

nL+nH
× 1

wH
v′( yM

L

wH
).
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optimal taxation problem in a closed economy:

uML (Gj) = max
(cL,yL,cH ,yH)

cL − v(yL/wL)

s.t.



nL(yL − cL) + nH(yH − cH) ≥ Gj (BC)

cL − v(yL/wL) ≥ cH − v(yH/wL) (ICL)

cH − v(yH/wH) ≥ cL − v(yL/wH) (ICH).

(4.3)

Figure 2 illustrates the solution (cML , yML , cMH , yMH ) for (4.3). Proposition 4 gives necessary
and sufficient conditions for the existence of a separating equilibrium.

Figure 2. Mirrlees’ optimal taxation problem in a closed economy.

y∗L

cFBL

y∗H

cFBH

O

•

•

y

c

v∗H

v∗L

45◦

45◦

45◦

yML

cML

yMH = y∗H

cMH

O

•

•

y

c

uMH

uML

45◦

45◦

a) Symmetric information b) Asymmetric information

Proposition 4. If information is symmetric (resp. asymmetric), then for all
subgames defined by some (GA, GB) ∈ [0, G]2, for j = A,B, a separating equilibrium
supported by njL = 0 and njH = nH exists if and only if

U j
H ≥ max{v∗L + h(Gj), v∗H + h(G−j)} (4.4)
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(resp. U j
H ≥ max{uML (Gj) + h(Gj), v∗H − δ + h(G−j)} and (4.5)

v(y∗L/wL)− v(y∗L/wH) ≤ ∆v+ ∆h+GB/nL−GA/nH ≤ v(y∗H/wL)− v(y∗H/wH)), (4.6)

where U j
H = v∗H −

Gj

nH
+ h(Gj) and δ = v∗H − u−1

L (v∗L − G−j

nL
;G−j) ≥ 0.

Proof: See Appendix. �

In a separating equilibrium supported by njL = 0 and njH = nH , the utility of Ls and
Hs are, respectively,

U−jL = v∗L −
G−j

nL
+ h(G−j)

U j
H = v∗H −

Gj

nH
+ h(Gj).

Proposition 4 states that in a separation equilibrium the utility of the H-type U j
H

must be not only greater than the maximum utility that they could have within a
pooling distribution of agents in −j, but also, higher than the maximum utility which
Ls could have within a pooling distribution of agents in j. Equations (4.4) and (4.5)
are respectively equivalent to

Gj

nH
≤ min{h(Gj)− h(G−j), v∗H − v∗L} (4.7)

and, G
j

nH
≤ min{h(Gj)− h(G−j) + δ, v∗H − uML (Gj)}. (4.8)

If information is symmetric, Equation (4.7) makes it clear that, in all separating
equilibrium, the H-type agents live in the region with the highest provision of public
good. Furthermore, the utility of type-L agents cannot be greater than that of agents
of type H since (4.7) implies

Gj

nH
≤ h(Gj)− h(G−j) + v∗H − v∗L + G−j

nL

which is equivalent to U−jL ≤ U j
H . In addition, if there exists a separating equilibrium

where the H-type agents live in region j, then there also exists a pooling equilibrium in
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region j because
Gj

nH
≤ h(Gj)− h(G−j)⇒ (nL + nH)h(Gj)−Gj ≥ (nL + nH)h(G−j)−G−j.

However, this implication does not hold in the case of asymmetric information.
Equation (4.6) guarantees that the self-selection constraints are satisfied in the case

of asymmetric information. In addition, when information is asymmetric, due to the
incentive and the self-selection constraints, H-type agents earn more utility that L-type
in all equilibria. However, in this case, even if U−jL ≤ U j

H , the Hs could live in the region
with the lowest public good provision in some separating equilibria. For instance, if
Gj = 0, then equation (4.8) becomes

0 ≤ min{−h(G−j) + δ, v∗H − uML (0)}. (4.9)

h could be defined is such a way that δ > h(G−j) and since v∗H > uML (0), equation (4.9)
would be satisfied. Figure 3 illustrate how δ is determined. δ is the difference between
v∗H and u−1

L (v∗L − G−j

nL
;G−j). The latter represents the maximal pre-public-good utility

that a government spending Gj can grant to the Hs if it is required to ensure at least a
pre-public-good utility of v∗L − G−j

nL
to the Ls.

In what follows, we examine feasible subgame perfect Nash equilibria in both cases
of symmetric and asymmetric information.

5. Subgame-Perfect Nash Equilibria
The previous section has presented necessary and sufficient conditions for the exis-

tence of an equilibrium in all subgames defined by a distribution of public good. Here,
we study the existence of a subgame perfect equilibrium in the full game. The results
are quite different depending on whether information is symmetric or asymmetric. We
study both cases separately.

We may also need a benchmark to assess the impact of tax competition on the level of
public good provision, the distribution of agents and the amount of redistribution (taxes).
A natural benchmark consists of the solution of the problem of an inter-regional central
benevolent planner who pursues a Rawlsian objective. The central planner would chose
a pooling distribution of agents because for any allocation of public goods and agents
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Figure 3. Illustation of δ = v∗H − u−1
L (v∗L − G−j

nL
;G−j).
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between regions, merging the public goods provided by the two regions together and
pooling agents in a single region without changing their tax liabilities is always a better
feasible allocation. So, the optimal level of public good in the absence of tax competition
according to the Samuelson condition is G∗LH , defined by h′(G∗LH) = 1/(nL + nH).

Efficiency is achieved when the Mirrlees’ solution is implemented (see figure 2 at
page 39). In the case of asymmetric information the utility of the L-type and the H-type
would be respectively uML (G∗LH) + h(GLH)∗ and uMH (G∗LH) + h(G∗LH). When information
is symmetric, the planner’s problem boils down to

(cFBL , yFBL , cFBH , yFBH ) = arg max
(cL,yL,cH ,yH)

min{cL − v(yL/wL), cH − v(yH/wH)}

s.t.
{
nL(yL − cL) + nH(yH − cH) ≥ G∗LH .

(5.1)
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Therefore, yFBi = y∗i ,∀i ∈ {L,H} and (cFBL , cFBH ) is determined by the system,
nL(y∗L − cFBL ) + nH(y∗H − cFBH ) = G∗LH

cFBL − v(y∗L/wL) = cFBH − v(y∗H/wH).
(5.2)

This benchmark is therefore identical to a closed economy consisting of all the Ls
and the Hs governed by a social planner using a max-min criterion.

5.1. Symmetric information

Here, we suppose that governments can observe agents’ productivities. The sole
relevant constraint faced by each government is its budget constraint:

njLt
j
L + njHt

j
H ≥ Gj, ∀j ∈ {A,B}

where tji ≡ yji − c
j
i is a type i agent’s tax liability if he decides to be a resident of region j.

The pair of type-specific taxes (tjL, t
j
H) completely defines the tax schedule of government

j. Since information is symmetric, governments can impose a lump-sum type-specific tax.
This implies that labour supply is efficient, and hence, yji = y∗i for all i ∈ {L,H} and
j ∈ {A,B}. A strategy of each government j is a choice of a level of public good provision
Gj in the first stage and a type-specific tax liability (tjL(GA, GB), tjH(GA, GB)) contingent
on the distribution of public good in the second stage. We are interested in the subgame
perfect equilibria of this game. Define ∆v ≡ v∗H − v∗L and ∆h ≡ h(GA)− h(GB). 11

Lemma 1 (Maximal taxes in pooling equilibria). Let (GA, GB) ∈ [0, G]2 define a
subgame and j ∈ {A,B} such that (nL + nH)h(Gj)−Gj ≥ (nL + nH)h(G−j)−G−j.
If information is symmetric, for all tax schedule (tjL, t

j
H) such that nLtjL+nHt

j
H = Gj,

there exists a tax schedule (t−jL , t−jH ) such that (tjL, t
j
H , t

−j
L , t−jH ) is a pooling equilibrium

of the subgame (GA, GB), if and only if :

tji ≤ min{G
j

ni
,
G−j

ni
+ ∆h}, ∀i ∈ {L,H}. (5.3)

11. While ∆h could be positive or negative, ∆v is strictly positive because ∀y ≥ 0, v∗H ≥ y−v( y

wH
) >

y − v( y

wL
), and, specifically, v∗H > y∗L − v( y∗L

wL
) = v∗L.
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For instance, t−ji = tji −∆h for all i ∈ {L,H}.

Proof: See Appendix. �

By Lemma 1, for all pairs (GA, GB) ∈ [0, G]2, if GA ≤ GB + (nL + nH)∆h then the
maximal amount of tax that can be paid by an i-type agent and his minimal utility in a
pooling equilibrium are respectively :

ti(GA, GB) ≡ min{G
A

ni
,
GB

ni
+ ∆h}, ∀i ∈ {L,H}

and
ui(GA, GB) = v∗i + h(GA)− ti(GA, GB), ∀i ∈ {L,H}.

For all i ∈ {L,H}, define G∗i by h′(G∗i ) ≡ 1/ni, that is, the Samuelson optimal quantity
of public good in a separating equilibrium. For each type i ∈ {L,H}, we have

ui(GA, GB) = max{v∗i + h(GA)−GA/ni, v
∗
i + h(GA)−GB/ni − h(GA) + h(GB)}

= max{v∗i + h(GA)−GA/ni, v
∗
i + h(GB)−GB/ni}

≤ v∗i + h(G∗i )−G∗i /ni

Then min{uL(GA, GB), uH(GA, GB)} ≤ v∗i +h(G∗i )−G∗i /ni, for all i ∈ {L,H}. Thus,
the worst possible social welfare in a pooling equilibrium is not better than the social
welfare in a separating equilibrium in each region when the Samuelson optimal quantities
are implemented. Therefore a strategic profile can be constructed in such a way that
region A and B end up respectively with social welfares v∗H + h(G∗H) − G∗H/nH and
v∗L +h(G∗L)−G∗L/nL if they do not deviate from their respective strategy in a separating
equilibrium. And for all deviation from (G∗H , G∗L) in the first stage, taxes are chosen in
the second stage such that the social welfare reached by the regions is at most

min{uL(GA, GB), uH(GA, GB)},

that is, the worst possible social welfare in a pooling equilibrium for a given pair of
(GA, GB) which is less than v∗i + h(G∗i )−G∗i /ni for all i ∈ {L,H}.
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Proposition 5. A separating subgame perfect Nash equilibrium with symmetric
information exists if:

G∗H
nH
≤ min{∆v, h(G∗H)− h(G∗L)}. (5.4)

Proof: See Appendix. �

Proposition 5 gives a sufficient condition for the existence of a separating subgame
perfect equilibrium. This result contrasts with that of Poitevin and Gravel (2016) in
which only pooling equilibria exist. Indeed, allowing governments to chose their public
good provision before deploying a tax schedule gives room to less fierce tax competition.
Note that condition (5.4) is not satisfied if nL > nH which imply h(G∗H)− h(G∗L) < 0.
According to Proposition 4, if information is symmetric, (5.4) is also a necessary condition
for the existence of a separating subgame perfect equilibrium in which efficient level
of public good is used in every region. Taxes paid by the Hs and the Ls in such an
equilibrium are respectively

tH = G∗H
nH

and tL = G∗L
nL

.

However, sub-optimal level of public good may also be played in a separating subgame
perfect equilibrium under some conditions, even if nL > nH . The following proposition
entirely characterizes taxes that could be paid in a subgame perfect pooling equilibrium.

Proposition 6. If information is symmetric, a pair of taxes t̃L are t̃H are paid,
respectively by the L-type and the H-type, in a subgame perfect pooling equilibrium if
and only if

— t̃L are t̃H are both non-negative, and

— nLt̃L + nH t̃H = G∗LH .

Proof: See Appendix. �

This proposition states that the empty region may exercise a credible threat that
would prevent the other region from deviating from any non-negative pair of taxes that
is big enough to finance G∗LH when information is symmetric. Therefore, Proposition 6
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allows for a wide range of pooling subgame perfect equilibria. If ∆v is sufficiently low,
taxes on the H-type agents could be so high that they would end up with lower utility
than the L-type. This situation is not possible when information is asymmetric.

5.2. Asymmetric information

We now assume that governments cannot observe agents’ productivity. Therefore,
in addition to the budget constraint, governments face incentive constraints. Con-
sider a given distribution of public good provision (GA, GB) ∈ [0, G]2. The strategy
of the government of region j in the second stage can be represented by a 4-tuple
(ujL, u

j
H , y

j
L, y

j
H) ∈ R2 × R2

+ where

uji = cji − v( y
j
i

wi
).

The following lemma gives, for each type, the minimal utility that can be generated
in a pooling equilibrium with asymmetric information.

Lemma 2 (Minimal utilities in pooling equilibria). Let (uAL , uAH) be a pair of utilities
such that uL(uAH , GA) = uAL and uAH ≥ uMH (GA). There exists two levels of positive
income (yAL , yAH) ∈ R2

+ such that (uAL , uAH , yAL , yAH) is played by A in a feasible pooling
nash Equilibrium in A with asymmetric Information in the subgame defined by
(GA, GB) ∈ [0, G]2, if and only if

uAH ≥ v∗H −GB/nH −∆h

uAL ≥ v∗L −min
{
GA/nL, G

B/nL + ∆h
}
.

Proof: See Appendix. �

Denote by τAL the difference between the utility that a type-L agent would have if
he does not pay any tax, all things being equal, and his actual utility: τAL = v∗L − uAL .
This difference can be considered as the tax burden borne by an agent of type L in a
Nash equilibrium. It can be broken down into a real component tAL collected by the
government and a fictitious component v∗L− (yAL − v(yAL/wL)) representing the distortion
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generated by the fiscal policy:

τAL = tAL + v∗L −
(
yAL − v(yAL/wL)

)
.

Lemma 2 states that the tax burden for a L-type agent cannot exceed
min{GA/nL, G

B/nL + ∆h} in a feasible pooling Nash equilibrium. This is analogous
to the result presented in Lemma 1 for the case of symmetric information where the
fictitious tax is zero. Since uAL ≥ v∗L−GA/nL and uL(uAH , GA) = uAL implies yAH− cAH ≥ 0,
a direct consequence of Lemma 2 is that no negative tax is paid by an H-type
agent in a feasible pooling Nash equilibrium. However, in some cases, especially if
v∗H −GA/nH > uAH ≥ max

{
uMH (GA), v∗H −GB/nH −∆h

}
, L-type agents are subsidized.

Lemma 2, states, in particular, that when GA = GB = 0, no distorsion occurs in a
feasible pooling equilibrium, that is, uAi = v∗i for all i. This result is consistent with
the no-tax policy for zero public good provision stated in Proposition 1 and also with
the one found in the model of Piaser (2007) when transportation costs are low enough.
However, as Bierbrauer et al. (2013) showed through an example, if governments use
rather a utilitarian objective, that is, they seek to maximize the average utility of their
residents, redistribution may occur even if there is no investment in public good. Notice
that, here, migration costs are given by ∆h and are zero when GA = GB. Lemma 2
will be useful for finding both separating and pooling subgame perfect equilibria with
asymmetric information.

From Lemma 2, the minimal level of Social Welfare that can be reached in a feasible
pooling equilibrium in A is:

SWFA = v∗L −min{GA

nL
, G

B

nL
+ ∆h}+ h(GA)

= v∗L + max{h(GA)− GA

nL
, h(GB)− GB

nL
}

= max{v∗L + h(GA)− GA

nL
, v∗L + h(GB)− GB

nL
.}

Then,
SWFA ≤ v∗L + h(G∗L)− G∗L

nL
≤ v∗H + h(G∗H)− G∗H

nH
.

Therefore, it is possible to built a feasible subgame perfect separating Nash equi-
librium where regions’ payoffs are v∗L + h(G∗L) − G∗L

nL
and v∗H + h(G∗H) − G∗H

nH
and any
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deviation from the equilibrium path is punished by a payoff of SWFA. Therefore,
following proposition immediately follows from Proposition 4.

Proposition 7. A feasible subgame perfect separating equilibrium with asymmetric
information exists if

G∗H
nH
≤ min{h(G∗H)− h(G∗L) + δ∗, v∗H − uML (G∗H)}

v( y
∗
L

wL
)− v( y

∗
L

wH
) ≤ ∆v + ∆h∗ + G∗L

nL
− G∗H
nH
≤ v(y

∗
H

wL
)− v( y

∗
H

wH
)

where ∆h∗ = h(G∗H)− h(G∗L) and δ∗ = v∗H − u−1
L (v∗L −

G∗L
nL

;G∗L) ≥ 0.

It is clear from Proposition 7 that a feasible subgame perfect separating equilibrium
may not exist if, for instance, ∆h∗ is too high. According to Proposition 4, the equilibrium
utility of the Hs, ŨH , satisfies

ŨH ≥ max{uML (G∗H) + h(G∗H), v∗H − δ∗ + h(G∗L)}. (5.5)

The next proposition presents our main result. It characterizes utilities for both types
in a pooling subgame perfect equilibrium.

Proposition 8. If information is asymmetric, there always exists a subgame perfect
pooling equilibrium with a pair of utilities ŨL and ŨH are earned by the L-type and
the H-type respectively, such that,

ŨL = uL

(
ŨH − h(G∗LH), G∗LH

)
+ h(G∗LH), (5.6)

ŨL ≥ v∗L −
G∗LH
nL

+ h(G∗LH), (5.7)

and ŨH ≥ uMH (G∗LH) + h(G∗LH). (5.8)

Proof: See Appendix. �

A feasible pooling subgame perfect Equilibrium exists also in the case of asymmetric
information. For instance, since uL

(
uMH (G∗LH), G∗LH

)
= uML (G∗LH) > v∗L −

G∗LH

nL
the

solution to the Mirrlees’s problem is sustainable in Equilibrium. Unlike the case of
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symmetric information, for some values of the parameters, the L-type may be subsidized.
This could happen especially when v∗H −

G∗LH
nH

> uMH (G∗LH). Indeed, if information is
asymmetric, the government may not be able to get rid of the L-type agents even though
they pay negative tax. In fact the amount of tax that is necessary to get rid of them
could be so high that it would violate their incentive constraint. So, this would prevent
the government from any deviation from the negative tax upon the L-type agents.

Furtermore, (5.8) shows that the utility of the H-type agents in a pooling equilibrium
is higher than the utility that they would earn in autarky for the same level of public
good. Loosely speaking redistribution becomes harder under tax competition even
though in some case the L-type may be subsidized. In other words, the L-type cannot
receive more subsidies (or pay less taxes) under tax competition than they would in
autarky. Therefore, tax competition lower taxes on the high skilled in pooling equilibrium
compared to an autarky that have the same level of public spending. Loosely speaking
asymmetric information makes tax competition less fierce.

Unsurprisingly, as compared to the benchmark, tax competition curbs redistribution
efforts since in all equilibrium the scale of possible redistribution is always less or equal to
what can be achieved in autarky. However, the introduction of public good increases the
possibility of redistribution. Moreover, when public good provision can be announced
before the tax scheduled the empty community problem may be avoided, under some
conditions, by the existence of separating equilibrium. Table 1 summarizes the possible
taxes in equilibrium depending on whether information is symmetric or asymmetric and
whether public good provision is allowed or not.

Table 1. Possible taxes in equilibrium when Rawlsian governments compete

Without public good With public good

Symmetric information no tax is paid non-negative taxes are paid

Asymmetric information no tax is paid L-type may be subsidized
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6. Conclusion
Perfect labor mobility fatally undermines efforts to redistribute from the rich to the

poor as pointed out by Bierbrauer et al. (2013). In order to circumvent the perverse effects
of the free movement of people, this paper introduces into a model of tax competition
the possibility for each government to attract productive agents by using public goods
in addition to tax incentives. This has the effect of mitigating the race-to-the-bottom
thanks to the appearance of an implicit cost of migration due to the differential of
public good between the regions. As a result, in order to maximize a social welfare
function, governments’ strategy consists in announcing a level of investment in public
infrastructure before deploying a policy of redistribution of wealth which includes the
financing of government spending. Thus, we have been able to show that no negative tax
can be paid by the most productive agents. What is more, a negative tax can be levied
by the least productive agents when information is asymmetric. Thus, redistribution
becomes possible directly through subsidies and indirectly via the provision of public
good.

Different extensions of the model are possible. In fact, in our framework, only
two configurations are possible at equilibrium whenever the quantity of public good
available in the regions is not uniformly zero: the separating equilibrium and the pooling
equilibrium (see Proposition 2). In order to allow richer classes of equilibria, one could
modify the model either by introducing congestion in the public good, or by introducing
a heterogeneity of agents as regards their preferences for the public good. In the event of
congestion, adding a user would lower the benefit to all agents who use the public good.
Each type of agent would therefore continue to migrate to the region that offers the
best fiscal policy until the fall in the benefit of the public good following the addition of
an agent becomes so high that migration is no longer profitable between the reigions. A
wide variety of mixed equilibria would therefore be possible and, depending on the nature
of the congestion, the possibility for redistribution from skilled workers to unskilled
workers could be preserved.

On the other hand, if agents of the same type value differently the public good,
then for any pair of fiscal policies adopted in the different regions, people of the same
type may not be willing to live in the same region. The studied model would therefore
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be analogous to the model of fiscal competition with heterogeneity of migration costs
presented by Lehmann et al. (2014). Here, for each migrant, the difference between
the benefit they would derive from the public good of the destination region and the
benefit they would derive from the public good in the departure region would represent
the implicit cost of migration. A difference, however, would exist between our model
and that of Lehmann et al. (2014) since this implicit cost of migration is endogenous,
and determined by the joint strategic actions of the two governments. The existence of
mixed equilibrium in this context therefore seems "natural". This same result could be
obtained by introducing heterogeneity in preferences for work or consumption, which
would amount to considering more than two types of worker.
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1. Introduction
Citizenship By Investment (hereafter CBI) programs are a major economic policy

tool for the Caribbean. 12 Through these programs, Caribbean countries attract wealthy
people coming from all over the world (mainly from China and Russia) by offering to
them a citizenship in exchange for a significant donation, substantial investment in real
estate or relatively large purchases of government bonds. Applicants to these programs
seek, among other things, to obtain a second passport allowing them to travel to a higher
number of countries without a visa. 5 out of 6 of the Eastern Caribbean Currency Union
(hereafter ECCU) member states have a CBI program and the price for new citizenship
in these states has been steadily declining in recent years (see Figure 4) suggesting a
race-to-the-bottom in the CBI market as Trevor and al. pointed out in 2017.

In fact, the ECCU member states seem to be undercutting each other revenue from
CBI programs by lowering their prices as we can notice in Figure 4. St. Kitts and Nevis
has the most extended history in running a CBI program and had its revenues from
this program increasing until other states of the union entered the market. St. Kitts
and Nevis’ revenue fell drastically after Dominica introduced a $200,000 Real Estate
Investment option in 2015 13 and kept decreasing after Antigua and Barbuda reduced the
required investment amount in National Development Fund (hereafter NDF) by 50%. 14

However, the CBI revenues of St. Kitts and Nevis took over, and those of Dominica
dropped after the government of St. Kitts and Nevis also introduced a $200,000 Real
Estate Investment option in 2018. 15 Consequently, the overall revenue in the union from
this market stopped rising since 2015 (see the total CBI Revenue in Figure 4).

Competition for Foreign Direct Investment (FDI) in the Caribbean through CBI
programs can be thought of as a Bertrand price competition for differentiated products

12. For instance, in 2013, CBI revenues reached 26% of total GDP in St. Kitts and Nevis while it
peaked at 32% of total GDP of Dominica in 2016 (National authorities and IMF staff calculations).
13. Until then, Dominica had only one option available in its CBI program, which is an economic

contribution (donation) to the country under the government’s investor visa program.
14. Now, applicants to Antigua and Barbuda’s CBI programs can choose to contribute only $100,000

to NDF.
15. In 2018, St. Kitts and Nevis introduced a $200,000 Real Estate Investment resalable after 7 years

option in addition to the existing $400,000 Real Estate Investment resalable after 5 years option.
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where countries use the amount of required investment as strategic variable, 16 which is
perceived by applicants as the price for new citizenship. The conventional wisdom is that
price competition leads competitors to a suboptimal outcome and a coordination policy
could improve their joint revenues. 17 If countries are identical, then countries’ revenue
from CBI programs could improve either by a suitable minimum price or (equivalently)
by an appropriate cap on the number of new citizens per country. 18 However, if
countries face asymmetric demands for CBI, a minimum price and a maximum quota
limits produce different effects. In this case, countries would benefit from using the right
combination of both instruments for policy coordination.

In the CBI market, the demand in each country highly depends on the attractiveness
of its passport, which is closely related to the number of other countries to which it
grants visa-free access or visa-on-arrival access to its holder. The Score of Diversity of
Travel Freedom has been converging in the ECCU member states during the current
decade but, a notable difference persists between these states (see Figure 5), which can
be grouped into two categories. The high Travel Freedom category consists of St. Kitts
and Nevis and Antigua and Barbuda while Dominica, Grenada and St. Lucia steadily
present a lower Score of Diversity of Travel Freedom.

To fix ideas, we consider n countries which can be classified into two groups according
to their demand: the low-demand countries (L) and the high-demand countries (H).
Countries are assumed to be identical within each category, and the former face less
demand than the latter but they have symmetric elasticities with respect to prices and
produce CBI at an identical constant marginal cost, which represents the administrative
cost for applications’ treatment.

In an unconstrained equilibrium, H-type countries charge a higher price and grant
a greater number of new citizenships than L-type countries do. So, while imposing

16. In practice, the criteria for admission to these programs are more complex than a simple amount
of investment required. The conditions may vary according to the number of relatives accompanying
the applicant, the age of those relatives, the area of investment (real estate, National Development
Fund, etc.) and the required duration before an eventual resale of the investment.
17. Deneckere and Davidson (1985) shows that, when firms face symmetric demands, coalition

increases the aggregate profit of firms while increasing the selling price. However, when countries do
not face symmetric demands, a coalition that maximizes the overall revenue could reduce the individual
profit of those facing a relatively weaker demand.
18. The Pacific island countries’ agreement on tuna fishing daily price and annual quota is a real

world example of price/quantity coordination.
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Figure 4. Citizenship By Investment Revenues in the ECCU member states

Sources: National Authorities and IMF staff calculations

a minimum price would be more biding to the Ls, a maximum quota limit on new
citizenships would be more restrictive to the Hs. Therefore, using a combination
of both instruments seems to be the right way to carry all countries to a «fairer»
outcome. Nevertheless, the degree of freedom provided by these two instruments is quite
limited. Indeed, most Pareto efficient price distributions could never be achieved by a
coordination policy that uses only a uniform minimum price and a uniform maximum
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Figure 5. Score of Diversity of Travel Freedom in ECCU member states∗

Sources: Henley & Partners - Kochenov Quality of Nationality Index database.
∗ Data on St. Vincent and the Grenadines has been omitted because it has no CBI program.

quota. Moreover, even though such policies could achieve some Pareto efficient allocation,
it could be the case that this allocation leaves some countries with less revenue than the
unconstrained situation. We show that there exist a minimum price and a maximum
quota such that if they were uniformly imposed to all countries would bring them to an
efficient outcome that Pareto dominates the unconstrained Nash equilibrium.

The remainder of this document is organized as follows. The theoretical framework is
described in Section 2, which provides the relevant definitions and show the existence of a
unique constrained Nash equilibrium for any values of the parameters. Section 3 analyses
efficiency in our framework and presents our main results. We study a generalized
version of the model in Section 4 consisting of multiple coalitions of countries competing
with one another. Finally, we give some concluding remarks in Section 5.
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2. General framework
There exists n ≥ 2 independent countries (or states) in the economy. Each country

j ∈ {1, 2, ..., n} sets a price for its CBI program and faces a demand 19 for CBI that
depends negatively on its own price and positively on those of others. Countries can be
classified into two types, L or H according to the size of the demand they are facing.
L-type countries face a lower demand than H-type countries do. For each i ∈ {L,H},
let ni ≥ 1 be the number of i-type countries, so that, nL + nH = n. A price distribution
is an n-dimensional vector p̃ = (p1

L, p
2
L, ...p

nL
L , p1

H , p
2
H , ...p

nH
H ) ∈ Rn

+, where p
j
i is the price

charged by the j-th i-type country (assuming that i-type countries are numbered from 1
to ni) with i ∈ {L,H} and j ∈ {1, 2, . . . , ni}. For all p̃ ∈ Rn

+, let q
j
i (p̃) be the demand

to the j-th i-type country, that is, the number of applicants for CBI in that country. As
in Deneckere and Davidson (1985), we assume that demand functions can be expressed
in the following linear 20 form

qji (p̃) = vi − pji − δ(p
j
i − p)

where δ > 0 is a substitutability parameter, p is the average price level in the economy
(p = (p1

L + p2
L + · · ·+ pnL

L + p1
H + p2

H + · · ·+ pnH
H )/n) and vH > vL > 0. We assume vL to

be large enough, so that, qji (p̃) is always positive.
Note that the entire distribution of prices is not necessary for the determination of

the demand in any given country. Only the country’s own price pji and the average price
p matter. This feature of the demand function is not crucial for our main results but
helps to find closed form solutions. If δ approaches 0 then CBI programs are strategically
independent. The larger is δ the more homogenous are CBI programs.

We assume that the total cost for providing citizenships is zero. 21 Each type
i ∈ {L,H} country aims to set a price level as to maximize its revenue from CBI
program defined by

19. The demand side of the market is not described explicitly as we will focus on the benefit from
coalition from the point of view of suppliers.
20. This assumption is relaxed in the appendix and our main results are proved under a fairly general

set of assumptions. Here, we use linear demand functions for their tractability. Martin (2009) and
Fanti and Gori (2011) provide sound micro-foundations for linear Marshallian demand.
21. We can find same results with constant marginal cost (see appendix)
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Rj
i (p̃) = pjiq

j
i (p̃)

Definition 1. A price distribution p̃ ∈ Rn
+ is Pareto efficient if there exists no price

distribution p̃′ ∈ Rn
+ such that for all i ∈ {L,H} and all j-th i-type country

Rj
i (p̃) ≤ Rj

i (p̃′)

with at least one strict inequality.

It is worth noting that this definition of Pareto efficiency concerns only agents on the
supply side of the market (countries) and not the well-being of agents on the demand
side, which are not explicitly described in the model.

Countries are supposed to compete in prices, that is, they use prices as strategic
variables and try to maximize their respective payoffs in a single-period game. Countries,
therefore, engage in a Bertrand competition with differentiated products. It is also
worth noticing that this is a supermodular game, meaning that a country’s best response
to an increase in prices in other countries is to increase its own price since the second
cross derivatives ∂2Rj

i

∂pj
i∂p

j′
i′

= δ
n
with {i, j} 6= {i′, j′}, are positive.

In what follows, we define two types of equilibrium: the (unconstrained) Nash
equilibrium and the constrained Nash equilibrium. For notational ease, assume that all
countries (both types included) are numbered from 1 to n. For all price distribution
p̃ ∈ Rn, all country k ∈ {1, 2, ..., n}, and all price level pk ∈ R, define (pk, p̃−k) by the
n-dimensional vector obtained by replacing the k-th component of p̃ by pk without
changing the order of the remaining components.

Definition 2. An (unconstrained) Nash equilibrium is a price distribution pN =
(pN1 , pN2 , ..., pNn ) such that for all countries k ∈ {1, 2, ..., n}, if k is the j-th i-type
country then

pNk ∈ arg max
pk∈R

Rj
i (pk, pN−k). (2.1)

unconstrained Nash equilibria are price distributions that correspond to situations
where no country could increase its revenue through a unilateral deviation. If pN is an
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unconstrained Nash equilibrium, then the first-order condition for (2.1) is

vi − 2pNk − δ
(

2pNk − pN −
pNk
n

)
= 0,

which implies that

pNk = vi + δpN

2 + δ(2− 1
n
) .

So, in an unconstrained Nash equilibrium, countries of the same type charge the same
price. Denote by pNL and pNH the equilibrium price charged by the L-types and the
H-types respectively:

pNL ≡
vL + δpN

2 + δ(2− 1
n
) , pNH ≡

vH + δpN

2 + δ(2− 1
n
) . (2.2)

Equation (2.2) implicitly defines pNL and pNH as functions of the average price level
given by pN = (nLpNL + nHp

N
H)/n. An explicit expression of the equilibrium prices can

be found by solving (2.2) for (pNL , pNH) after substituting the expression of the average
price into the equation. Then we get

pNL = δnHp
N
H + nvL

−δ + 2n+ 2δn− δnL
, pNH = δnLp

N
L + nvH

−δ + 2n+ 2δn− δnH
. (2.3)

Equation (2.3) uniquely defines the unconstrained Nash equilibrium price levels by
pNL = n(δnHvH + 2nvL − δ(1− 2n+ nH)vL)

(−δ + 2(1 + δ)n)(2n+ δ(−1 + n))

pNH = n(δnLvL + 2nvH − δ(1− 2n+ nL)vH)
(−δ + 2(1 + δ)n)(2n+ δ(−1 + n)) .

We can easily verify that
pNH > pNL and qNH > qNL

where qNi denotes the unconstrained Nash equilibrium quantity for i-type countries. In
other words, in an unconstrained equilibrium, high-demand countries charge a higher
price and grant a greater number of new citizenships than low-demand countries do.

We know that the unique unconstrained Nash equilibrium is Pareto inefficient. 22

Now, suppose that countries can cooperate in order to increase their individual revenue.
Assume that they can commit to a uniform lower bound for prices (minimum price) pmin

22. See for instance, Friedman (1983) and Friedman (1977).
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and a uniform upper limit (maximum quota) qmax for the number of new applicants
(quantities), that is, countries are no longer allowed to set their price below pmin or to
provide citizenships to more than qmax applicants.

Definition 3. A pmin-qmax-constrained Nash equilibrium is a price distribution
pC = (pC1 , pC2 , ..., pCn ) such that for all k ∈ {1, 2, ..., n} if k is the j-th i-type country,
then

pCk = arg max
pk

Rj
i (pk, pC−k)

s.t.


pk ≥ pmin

qji (pk, pC−k) ≤ qmax

(2.4)

This equilibrium will simply be called a constrained Nash equilibrium if there is
no risque of confusion about pmin and qmax. In a constrained Nash equilibrium each
country plays its best response to the strategies of others under the minimum price and
the maximum quota constraints. While the best response of an individual country to
the strategy of all the others is easily defined, the definition of the best response of one
type of countries, say i, to the strategies of the other type, say −i, deserves some special
considerations. Denote by P̃ (p−i) a price distribution where p−i is the average price
charged by the −i-type countries and for all countries k, if k is the j-th i-type country,
then the price charged by k, say Pk(p−i), satisfy

Pk(p−i) = arg max
pk

Rj
i (pk, P−j(p−i))

s.t.


pk ≥ pmin

qji (pk, P−k(p−i)) ≤ qmax

(2.5)

Equation (2.5) defines the price distribution P̃ (p−i) such that each i-type country
plays its best response to the strategies of all the other countries. As in Equation (2.2),
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the unconstrained solution of (2.5) would be

P 0
i (p−i) ≡

nvi + δp−in−i
2n+ δ[n+ n−i − 1]

for every i-type country. However, since qji (pk, P−k(p−i)) is a decreasing function of pk,
the maximum quota constraint also requires pk to be greater than some price level, say
P quota
i (p−i) with

qji (P
quota
i (p−i), P−k(p−i)) = qmax.

Therefore, since Rj
i (pk, P−k(p−i)) is concave in pk,

Pk(p−i) = max
{
pmin, P

0
i (p−i), P quota

i (p−i)
}
. (2.6)

Note that Pk(p−i) is independent of k. Countries of the same type i independently
charge the same price as a response to an average price level p−i set by the other type.
For convenience, we can replace the index k by i in the notation of the best response of
i-type Pk(p−i) = Pi(p−i).

After some algebra, P quota
i (p−i) can be explicitly defined by:

P quota
i (p−i) = n(vi − qmax) + δp−in−i

n+ δn−i
. (2.7)

P quota
i (p−i) increases with vi meaning that H-type countries are «more likely» to be

affected by the quota limit and «less likely» to have a binding minimum price constraint
while the L-types are more likely to have their best response distorted by the minimum
price.

A constrained Nash equilibrium is entirely defined by a couple of price levels (pCL , pCH)
such that 23

PL(pCH) = pCL and PH(pCL) = pCH .

Therefore, pCL is the equilibrium price of the L-type countries if and only if PL(PH(pCL)) =
pCL . Thus, the search for constrained Nash equilibria boils down to finding the fixed
points of the composed function PL(PH(·)).

23. (pC
L , pC

H) depend on parameters pmin and qmax, which are omitted for notational ease whenever
there is no risk of confusion.
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Proposition 1. For every minimum price pmin > 0 and maximum quota qmax > 0
there exists a unique pmin-qmax-constrained Nash equilibrium.

Proof . Consider an auxiliary function F defined on R+ by F (p) = PL(PH(p))−p. Now,
we need to search for the zeros of F .

First, note that F is continuous on R+ and differentiable almost everywhere. F is a
decreasing function because for every p where F is differentiable, we have

F ′(p) = P ′H(p)× P ′L(PH(p))− 1

≤ max{P ′H(p)} ×max{P ′L(p)} − 1

≤ δnL
n+ δnL

× δnH
n+ δnH

− 1 < 0.

(2.8)

Second, since Pi(p) > pmin,∀p > 0, i ∈ {L,H}, we get

F (0) ≥ pmin > 0. (2.9)

Furthermore, for high enough values of p, Pi(p) = P quota
i (p) because P quota

i increases
at a higher rate than P 0

i and both of then are linear. So

lim
p→+∞

= lim
p→+∞

F (p)

= lim
p→+∞

PL(PH(p))− p

= lim
p→+∞

(
PL(PH(p))

p
− 1

)
p

= lim
p→+∞

(
δnL

n+ δnL
× δnH
n+ δnH

− 1
)
p

= −∞

(2.10)

From (2.8), (2.9) et (2.10) and according to the intermediate value theorem there
exists a unique price level pCL > 0 such that, F (pCL) = 0. So, for any given pmin and
qmax, there is a unique constrained Nash equilibrium (pCL , pCH) where pCH ≡ PH(pCL). �

In particular, the unconstrained Nash equilibrium (pNL , pNH) can be reached by any
constrained Nash equilibrium where the minimum price is smaller that pNL and that
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maximum quota is bigger than qNH . Figure 6 shows how a Pareto improvement of the
unconstrained Nash equilibrium can be achieved through a cooperative one. Indeed,
the constrained Nash equilibrium prices are determined by the intersection of the best
response functions of L-types and H-types under cooperation. The dashed blue (resp.
green) line represents the iso-revenue curve for L-types (resp. H-types) that corresponds
to their unconstrained Nash equilibrium revenue level. Any point located above the
dashed blue line (resp. to right of the dashed green line) represents a combination of
prices, which will generate a higher CBI revenue for the L-types (resp. H-types) than
the one produced by the unconstrained Nash equilibrium. Therefore, the purple area of
the graph represents the sets of price distribution that generate more revenue to both
countries as compared to the unconstrained scenario.

3. Efficiency and constrained Nash equilibrium
In this section, we study how Pareto efficient price distributions can be achieved

by a constrained Nash equilibrium. First note that, Pareto efficiency does not require
that countries of the same type charge the same price. However, since constrained Nash
equilibrium requires prices to be identical for same type countries we will consider only
Pareto efficient price distributions that have this feature. Price distributions for which
same type countries charge same prices are entirely defined by a couple (pL, pH) ∈ R2

where pi is charged by the i-type countries. For all i ∈ {L,H}, define by qi and Ri

the two-variable functions naturally induced, respectively by qji and Rj
i when the price

distribution is (pL, pH).
Pareto efficient price distributions under which the same prices are charged by same

type countries are all the couples (pEL , pEH) characterized by:

(pEL , pEH) = arg max
pL,pH

RH(pL, pH)

s.t. RL(pL, pH) ≥ rL.

(3.1)

where rL = RL(pEL , pEH). Therefore, Pareto efficiency can be characterized by the equality
of the Marginal Rates of Substitution (MRS) between the two types:

MRSL(pEL , pEH) = MRSH(pEL , pEH)
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Figure 6. A Pareto improvement of the unconstrained Nash equilibrium through a
constrained one

where MRSi(pL, pH) = −∂Ri

∂pL
/ ∂Ri

∂pH
is the MRS of pH for pL and provided that the second

order condition is satisfed.
Figure 7 represents the set of Pareto efficient allocations. There is an infinite mass

continuum of efficient price distributions, and only a small fraction (i.e. a finite mass
continuum) of which dominates the unconstrained Nash equilibrium. The efficient
allocation curve never intersects the unconstrained best response functions meaning
that, without a coordination policy, every country has an incentive to deviate from any
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efficient price distribution by lowering its own price. In fact, for all i ∈ {L,H},

pEi = arg max
pi

Ri(pi, pE−i)

s.t. R−i(pE−i, pi) ≥ r−i.

Since R−i(pE−i, pi) increases with pi, the constraint R−i(pE−i, pi) ≥ r−i requires pi to be
greater than a certain level. So, pEi ≥ arg maxpi

Ri(pi, pE−i), and because the constraint
binds in a Pareto’s problem, we get the following with strict inequality

pEi > P 0
i (pE−i). (3.2)

Lemma 1 (Implementability condition). A Pareto efficient price distribution
(pEL , pEH) with corresponding quantities (qEL , qEH) is achievable by a constrained Nash
equilibrium with an appropriate minimum price pmin and maximum quota qmax if
and only if countries with larger quantities charge higher prices. And then, we have
qmax = max{qEL , qEH} and pmin = min{pEL , pEH}.

Proof . First, if there is a country type, say ı̂, such that ı̂ has the lowest quantity and the
highest price compared to the other type, say −ı̂, that is, qEı̂ < q−ı̂ and pEı̂ > pE−ı̂, then
for any constrained Nash equilibrium that reach (pEL , pEH) the minimum price constraint
and the maximum quota constraint would not be binding for the ı̂-type. It could then
benefit from deviating from PE

ı̂ according to (3.2).
Now, suppose that countries with the largest quantity charge the highest price and

set qmax = max{qEL , qEH} and pmin = min{pEL , pEH}. Countries with the lowest price
(resp. largest quantity) would like to lower their price but could not because of the
minimum price (resp. maximum quota) constraint. And, then we get a constrained
Nash equilibrium. �

For any price distribution (pL, pH) and corresponding quantity (qL, qH), define ∆p ≡
pH − pL and ∆q ≡ qH − qL. We have
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Figure 7. Efficient price distributions and unconstrained best response functions

∆q∆p ≥ 0 ⇔



∆q ≥ 0 and ∆p ≥ 0

or

∆q ≤ 0 and ∆p ≤ 0

⇔



vH − vL − (1 + δ)∆p ≥ 0 and ∆p ≥ 0

or

vH − vL − (1 + δ)∆p ≤ 0 and ∆p ≤ 0

⇔



∆p ≤ vH − vL
1 + δ

and ∆p ≥ 0

or

∆p ≥ vH − vL
1 + δ

and ∆p ≤ 0
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Thus, since vH − vL > 0, ∆q∆p ≥ 0 is equivalent to

0 ≤ pH − pL ≤
vH − vL

1 + δ
. (3.3)

So, according to Lemma 1, a Pareto efficient price distribution (pEL , pEH) can be reached
by a constrained Nash equilibrium if and only if (pEL , pEH) satisfies (3.3).

Countries will be willing to cooperate for a Pareto efficient outcome only if it
provides them with a higher revenue than the unconstrained situation. So, we need to
find out whether it is possible to achieve, through out a constrained Nash equilibrium,
a Pareto efficient allocation that is welfare improving for both types as compared to the
unconstrained scenario.

For this purpose, define by (p̂L, p̂H) a price distribution that provides each coun-
try with the same revenue as the unconstrained Nash equilibrium with (p̂L, p̂H) 6=
(pNL , pNH). (p̂L, p̂H) exists and is unique 24 and MRSL(p̂L, p̂H) > MRSH(p̂L, p̂H) since
MRSL(pNL , pNH) < MRSH(pNL , pNH) (see Figure 7). Now consider, the Pareto efficient
price distribution (p̂EL , p̂EH) defined as a convex combination of (p̂L, p̂H) and (pNL , pNH),
that is,

(p̂EL , p̂EH) = α(pNL , pNH) + (1− α)(p̂L, p̂H)

where α ∈ (0, 1) is uniquely defined by MRSL(p̂EL , p̂EH) = MRSH(p̂EL , p̂EH). Clearly,
(p̂EL , p̂EH) is a Pareto improvement of the unconstrained equilibrium. Moreover, we know
that the unconstrained equilibrium price (pNL , pNH) satisfies (3.3). So, the efficient price
distribution (p̂EL , p̂EH) can be achieved by a constrained Nash equilibrium if (p̂L, p̂H)
satisfies (3.3).

Lemma 2. H-type countries benefit more (or lose less) from an increase in a
common price, while they benefit less (or lose more) from a decrease in a common
quantity, i.e,

∂RL(p, p)
∂p

<
∂RH(p, p)

∂p
and ∂RL(pL(p), p)

∂p
>
∂RH(pL(p), p)

∂p

24. The existence of (p̂L, p̂H) is guaranteed by

lim
pL→∞

MRSL(pL, pH) = lim
pL→∞

2∂qL/∂pL

∂qL/∂pH
> lim

pL→∞

∂qH/∂pL

2∂qH/∂pH
= lim

pL→∞
MRSH(pL, pH).

(p̂L, p̂H) is unique because L’s iso-revenue curve is convex while the H’s is concave.
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where pL(p) is defined by qL(pL(p), p) = qH(pL(p), p).

Proof . The first inequality is easily derivable from the definition of RL(pL, pH) and
RH(pL, pH):

dRH(p, p)
dp

= vH − 2p > vL − 2p = dRL(p, p)
dp

.

To show the second inequality, we first derive an expression for pL(p) from
qL(pL(p), p) = qH(pL(p), p), which is pL(p) = p − vH−vL

1+δ . And after some algebra
we get

dRL(p− vH−vL

1+δ ), p
dp

−
dRH(p− vH−vL

1+δ , p)
dp

= vH − vL
1 + δ

> 0.

�

Now we are ready to present our main result.

Proposition 2. There exist pmin ≥ 0 and qmax ≥ 0 such that the pmin-qmax-
constrained Nash equilibrium is Pareto efficient and provides all countries with
higher revenues than the unconstrained Nash.

Proof . See Appendix �

A simple graphical argument could help understand the rationale behind this result.
Consider Figure 8 and notice that any point that lay between the blue line and the green
line can be achieved by setting a combination of a minimum price and a maximum quota.
Now, observe that the green line always passes above (p̂L, p̂H) because otherwise, they
would exist a maximum quota level for which high-demand countries would earn more
revenue as compared to their revenue in an unconstrained equilibrium while low-demand
countries would earn less, which is impossible. Analogously, the blue line always lay
below (p̂L, p̂H). Now, since the set of efficient price distributions (black line on the
graph) always passes through the purple area (representing feasible Pareto-improvements
of the unconstrained equilibrium), it always exists an efficient distribution of prices
profitable to all types that lay between the green line and the blue line. Therefore,
the right combination of a minimum price and a maximum quota would guarantee an
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Figure 8. Efficient Pareto improvement of the unconstrained Nash equilibrium

efficient outcome that is more beneficial to every type of country than the unconstrained
equilibrium.

The problem with a minimum price requirement alone is that it profits more to the
H-type countries than it does to the L-type. More precisely, the marginal revenue from
a minimum price requirement is always higher for the H-type, that is, each additional
unit to the minimum price generates more revenue (or erodes less revenue) in the H-type
countries than the L-type countries. That is because either L-type countries are the
only ones that would face a binding minimum price constraint or both types would face
a binding minimum price constraints.

When the minimum price is low, its marginal benefit is positive in all countries.
However, when the minimum price is high enough, at some point, its marginal benefit
becomes negative in the L-type countries while it remains positive in theH-type countries.
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Pareto efficiency is achieved through a minimum price policy when the revenue generated
in the H-type countries due to an additional unit to the minimum price is equal to
the resulting loss of revenue in the L-type countries. So, if the discrepancies between
the two types are high, it could take too much loss of revenue in L-type countries
before we get to a Pareto efficient outcome. Therefore, Pareto efficiency with only a
minimum price requirement would not benefit to the L-type countries (as compared to
the unconstrained scenario) if the difference between the demands is too high.

The same reasoning goes for the maximum quota. The marginal benefit from a
maximum quota requirement is higher for the L-type countries. In that case, Pareto
efficiency is achieved when the revenue generated in the L-type countries due to a
unitary decrease in the maximum quota is equal to the resulting loss of revenue in the
H-type countries. Therefore, the Pareto efficient outcome achieved with such a policy
may not dominate the unconstrained equilibrium. The reason is that Pareto efficiency
through maximum quota requirement solely could require too much loss of revenue in
the H-type countries when the two types are too different in their demand sizes.

Both instruments are needed to ensure a «fair» distribution of the additional revenue
from cooperation and if rightly chosen they always guarantee an efficient outcome that
is more profitable to both types as compared to the unconstrained equilibrium.

The set of all price distribution (pEL , pEH) is achievable by an efficient constrained
Nash equilibrium that Pareto dominates the unconstrained Nash equilibrium is defined
by 

MRSL(pL, pH) = MRSH(pL, pH)

RL(pL, pH) ≥ RN
L

RH(pL, pH) ≥ RN
H

0 ≤ pH − pL ≤
vH − vL

1 + δ

where RN
L and RN

H are the Nash equilibrium level of revenue for the L-types and the
H-types respectively.
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4. Inter-regional compétition for CBI
The CBI market is large and extends beyond the ECCU member countries. Eu-

ropean countries like Cyprus, Malta, Moldova, etc. have also engaged in the race
for foreign investment through CBI programs. 25 Other countries like Canada, United
States and France have indirect CBI programs with high standard including high net
worth requirement. However, some countries like Vanuatu and Portugal, which offer
investment options starting at $130,000 for the former and $350,000 for the latter, are
now establishing themselves as real competitors for the Caribbean countries.

In this section, we study the influence of the rest of the world on a group of countries
that decide to coordinate their CBI policy. Let N be the set of all (L-type and H-type)
countries of the economy and let P be a partition of these countries. A coalition is an
element of P . In this section, we assume that there can be transfers between countries
belonging to the same coalition. The objective of each coalition will therefore be to
maximize the sum of the revenues of its member countries. Transfert can then be done
ex post to ensure that each country get a higher revenu that it would in an unconstrained
equilibrium.

However, coalitions have limited power over the individual strategy of the countries
that make it up. They can only compel member countries to respect a minimum price
and a maximum quantity not to exceed. The minimum price and the maximum quantity
are imposed uniformly on the countries of the same coalition, but these thresholds can
vary from one coalition to another. Thus, coalitions exert an externality on each other
when they decide on these two instruments. As before, due to the substitutability of the
goods sold, any increase in prices within a coalition positively influences the demand
for other coalitions. And conversely, any drop in prices within a coalition negatively
affects the demand of others. This situation of strategic interaction can be modeled in
the form of a multi-stage game which we call the P-General CBI Competition Game.

This game can be described as follows. In the first stage, coalitions simultaneously
choose a minimum price and a maximum quantity. Then, in a second stage, countries
observe these thresholds and simultaneously choose their individual prices while respect-
ing the constraints imposed by the coalition to which they belong. We are interested in

25. However, it should be noted that these countries generally have far higher tariffs than those of
the ECCU countries given their very large attractiveness.
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the subgame-perfect equilibrium of this two-stage game. We use backward induction to
analyse the strategies of each country and each coalition in such an equilibrium.

Let P be a set of K coalitions S1, S2,..., SK , that is, P = {S1, S2, ..., SK} where
Sk ∩Sl = ∅,∀l, k ∈ {1, ..., K} with l 6= k and S1 ∪S2 ∪ · · · ∪SK = N . Denote by nki the
number of i-type countries that belong to Sk. Let pkmin and qkmax denote the respective
price and quantity thresholds imposed by the coalition Sk on its member countries. The
best response of a country of type i belonging to the coalition Sk, say pki , depends not
only on pkmin and qkmax but also on the price vector of the other countries within and
without Sk:

pki = arg max
pk

i

pki (vi − pki − δ(pki − p))

s.t.


pki ≥ pkmin

vi − pki − δ(pki − p) ≤ qkmax

(4.1)

This best response function only depends on the minimum price and the maximum
quota enacted by the other coalitions through the prices actually charged by their
member countries. In addition, it should be noted that all countries of the same type
belonging to the same coalition will have the same best response function, P k

i , entirely
defined by Equation 4.1. Indeed, as shown above, this equation uniquely defined P k

i by:

P k
i ((p−ik; pkmin, qkmax)) = max

{
pmin, P

0
ik(p−ik), P

quota
ik (p−ik; qkmax)

}
(4.2)

where p−ik is the average price charged by all countries except the i-type of coalition
Sk, P 0

ik(p−ik) is the unconstrained solution of 4.1 and P quota
ik (p−ik; qkmax) is the maximal

price that can be charge by the i-type of coalition Sk under the maximum quota qmax.
P 0
ik(p−ik) and P quota

ik (p−ik; qkmax) are explicitly obtained by

P 0
ik(p−ik) = δn−ikp−ik + nvi

2n+ δ(−1 + n+ n−ik)
(4.3)

P quota
ik (p−ik; qkmax) = δn−ikp−ik − n(qkmax − vi)

n+ δn−ik
(4.4)

where n−ik = n− nki .
For all k ∈ {1, . . . , K} and all i ∈ {L,H}, the derivative of P k

i with respect to any
pk
′
i′ is less than δ

n+δ < 1. The function that maps each p̃ = (p1
L, p

1
H , . . . , p

K
L , p

K
H) ∈ Rn to

73



(P 1
L(p−1L; p1

min, q
1
max), P 1

H(p−1H ; p1
min, q

1
max), . . . , PK

L (p−LK ; pKmin, qKmax), PK
H (p−HK ; pKmin, qKmax))

is, therefore, a contraction. The contraction mapping theorem ensures the existence and
the uniqueness of a Nash equilibrium price for every country P k,N

i (p̃min, q̃max) in every
node defined by (p̃min, q̃max) where p̃min = (p1

min, . . . , p
K
min) and q̃max = (q1

max, . . . , q
K
max).

The problem of the coalition Sk is to choose pkmin and qkmax as to maximize its total
revenue

(P k
min(p̃min, q̃max), Qk

max(p̃min, q̃max)) = arg max
pk

min,q
k
max

∑
i∈{L,H}

nki p
k
i × (vi − pki − δ(pki − p))

s.t. pki = P k,N
i (p̃min, q̃max), ∀i, k.

(4.5)
Actually, P k

min and Qk
max do not depend on pkmin and qkmax. However, for notational ease,

we write P k
min(p̃min, q̃max) and Qk

max(p̃min, q̃max). Equation (4.5) gives the best response
of coalition k to the strategy of the other coalitions.

Proposition 3. For every partition P of the countries there exists a subgame-perfect
Nash equilibrium in the P-General CBI Competition Game.

Proof . Denote by p̃ = (p1
L, p

1
H , . . . , p

K
L , p

K
H) the 2K-dimensional vector such that pki

is the price of the i-type countries belonging to the coalition k. Denote by qki (p̃)
the demand of coalition k’s i-type countries and by A the set of the 2K-dimensional
price vectors p̃ for which each country receives a positive demand, i.e. A = {p̃ ∈
R2K

+ | qki (p̃) ≥ 0,∀i ∈ {L,H}, k ∈ {1, ..., K}}. A is the set of all relevant prices that
need to be considered. First, we show that A is bounded, that is there exists a price
vector p̃max = (p1,max

L , p1,max
H , . . . , pK,maxL , pK,maxH ) ∈ Rn such that p̃ ∈ A if and only if

0 ≤ p̃ ≤ p̃max.
Note that qki (p̃) ≥ 0 is equivalent to pki ≤ lki (p̃) where

lki (p̃) ≡
vi + δn−ikp−ik
n+ δ(n− nik)

.

The function that maps each p̃ = (p1
L, p

1
H , . . . , p

K
L , p

K
H) to (l1L(p̃), l1H(p̃), . . . , lKL (p̃), lKH (p̃))

is a contraction because the derivative of lki with respect to pk′i′ is less than δ
n+δ . The

contraction mapping theorem ensures the existence of a unique price vector p̃max =
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(p1,max
L , p1,max

H , . . . , pK,maxL , pK,maxH ) ∈ R2K such that qki (pmax) = 0, for all i, k. Therefore,
if for some p̃ ∈ R2K

+ , there exists (i, k) ∈ {L,H} × {1, 2, ..., K} such that pki > pk,maxi ,
then p̃ /∈ A. Furthermore, if for all (i, k), pki ≤ pk,maxi , then p̃ ∈ A. So, p̃ ∈ A if and only
if 0 ≤ p̃ ≤ p̃max.

Now, consider for all k ∈ {1, . . . , K}, the function F k : RK
+ × RK

− → RK
+ × RK

− that
maps each (p̃min,−q̃max) to the 2K-dimensional vector obtained from (p̃min,−q̃max) by
replacing pkmin and −qkmax by P k

min(p̃min,−q̃max) and −Qk
max(p̃min,−q̃max), respectively.

F k is a non-decreasing function because the best response for each country is to increase
its price when other countries increase their own (strategic complementarity). This
result immediately follows from (4.5) by the envelop theorem since P k,N

i (p̃min, q̃max)
increases in p̃min and decreases in q̃max. Therefore, a coalition would not benefit from
relaxing its constraint whenever prices increase in the rest of the word.

Let F : RK
+ × RK

− → RK
+ × RK

− be the function defined by F ≡ F 1 ◦ F 2 ◦ · · · ◦ FK .
By definition, the fix points of F are the subgame-perfect Nash equilibrium for the
General CBI Competition Game. So, we need to show that F has a unique fixed point.
Consider the sequence (xn)n∈N defined by xn+1 = F (xn) and x0 = (0K ,−q̃0) where
0K = (0, 0, ..., 0) ∈ RK

+ and q̃0 ∈ RK
+ is big enough so that the quota constraints do

not bind for any country. (xn)n∈N is a non decreasing sequence bounded by (p̃max, 0K),
therefore converges toward some (p̃l, q̃l) ∈ RK × RK . Since F is a continuous function
F (p̃l, q̃l) = (p̃l, q̃l). �

The intuition behind this proposition is that coalitions behave as if they were engaged
in a supermodular game with two instruments: the minimum price and the maximum
quota. For any coalition, the best response to an increase in a minimum price or a
decrease in the maximum quota elsewhere is either to increase its own minimum price or
to decrease the maximum quota (or keep them constant). As in standard supermodular
games, the existence of a Nash equilibrium is guaranteed. From proposition 2, this
Nash equilibrium is Pareto efficient, if the partition P is a singleton, that is, P = {N}.
Furthermore, because prices are strategic complements, if P 6= {{c}, c ∈ N}, then prices
are higher in the subgame-perfect equilibrium of the P-General CBI Competition Game
than those charged in an unconstrained equilibrium. Moreover, since every country
benefits from an increase in prices in the others, such a subgame-perfect equilibrium
will be better for everyone than the unconstrained Nash equilibrium.
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5. Conclusion
We show in this paper, through theoretical analysis, that the ECCU member states

would benefit from coordinating their CBI programs. This coordination policy would
lead them to an efficient outcome that benefits all countries if it imposes to them an
appropriate uniform minimum required investment and a maximum number of new
citizenships by country. In practice, countries will need to harmonized the admission
criteria in details and keep competing on the qualitative aspects of the program, like
accelerating the application process, building sound resilience program against natural
disasters, etc. This strategy will lead them to a race-to-the-top and make them more
competitive as compared to the rest of the Caribbean.

It is well-known in Bertrand competition models that coalition formation within a
subgroup of countries is beneficial both to the subgroup and to the outsiders. Moreover,
outsiders usually earn more from the coalition than the insiders, which jeopardizes the
stability of the group. Thus, the coordination policy proposed in this paper is not
self-enforcing; that is, every country has an incentive to deviate from it unilaterally.
Therefore, it could take the form of a contract enforced by a supranational entity like
the ECCU and would be rather difficult to extend to all the Caribbean. Then, any
deviation from the harmonized policy may be punished by a dissuasive monetary transfer.
Nevertheless, an efficient allocation could also be self-enforced in a repeated game if the
future discount factor, which is a combination of a measure of countries’ patience and
the probability that the game keeps going, is high enough.

The reputational costs that a country would incur for granting its citizenship based
on low-selective criteria could be detrimental. For instance, in 2014, Canada has enacted
a visa requirement for St. Kitts and Nevis citizens due to concerns related to their CBI
program. Therefore, another potential benefit from coordination in the CBI market is
that it prevents the damaging impact of these programs on the Caribbean citizenships’
reputation. Further analysis that would take the reputational costs into account could
demonstrate even higher benefits from coordination in the CBI market.

Our model can be extended in several ways. First, the case of more than two
types of countries could also be considered. It would probably require some restrictive
assumption for the existence of an efficient allocation that dominates the unconstrained
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Nash equilibrium. Second, from an empirical standpoint, further analysis is needed to
determine the optimal uniform admission criteria for CBI programs and the efficient
corresponding maximum number of successful applicants per country by period. The
resulting revenue surplus could then be estimated for each country.
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1. Introduction
In the standard literature of many-to-one matching models, agents (usually students)

on the many side of the market have to be assigned to entities (usually colleges) on the
other side (Gale and Shapley (1962), Roth (1982), Abdulkadiroglu and Sönmez (2003)).
The term many-to-one means that several agents may be assigned to the same entity



but it is impossible to assign the same agent to more than one entity. For each entity,
there is a priority order over groups of agents and an outside option which is being
unmatched. Similarly, each agent have preferences over entities and being unmatched.
Moreover, each entity has a capacity, say q, which means that it can be assigned to
at most q different agents. Therefore, in this standard framework, every agents are
implicitly supposed to have the same unit size.

However, many real-life matching problems involve different-size agents. The assign-
ment of teaching assistants (entities) with different limited working hours 26 (capacities)
to several classes (agents) which require different amounts of time (sizes); a centralized
recruitment process where workers (agents) have different salary requirements (sizes)
and firms (entities) announce their budgets (capacities) for job compensation; 27 the
assignment of refugees (individuals or families) to landlords are some few practical
examples. In the reminder of the paper our running example will concern the assignment
of refugee families to homes (landlords).

According to the United Nations High Commissioner for Refugees (UNHCR), the
world is «witnessing the highest level of displacement in record» with 68.5 million people
forcibly displaced among which 25.4 million refugees and 3.1 million asylum seekers in
2017 28. Community hosting network such as Positive Action in Housing have registered
up to 7,100 host families in 2018 and in US where the hosting programme is still in
development, 2,000 hosts are still waiting to be matched 29. The need for a matching
market design for refugee resettlement has already been pointed out by, among others,
Moraga and Rapoport (2014), Delacrétaz et al. (2016) and Anderson and Ehlers (2016).
This paper proposes a simple framework to address this issue.

26. For instance, in Quebec, in particular, teaching assistants are generally PhD students, most of
whom can not work beyond a certain amount of time (20 hours per week for international students
during regular study sessions according to the law in force) . Other teaching assistants have family or
professional constraints limiting the number of hours they would be willing to give to their job on the
campus.
27. In this example, it is assumed that firms value their ressource only to the extend that it can be

used to recruit workers and that no firm is allowed to propose to a worker a higher salary than the
one announced. These assumptions make sense in the case of public services where the salary of each
worker is fixed by the law in force in the country. See Abizada (2016) and Karakaya and Koray (2003)
for cases where the salary of workers is endogenous.
28. UNHCR/ 19 June 2018
29. Positive Action in Housing, http://www.paih.org/host-a-refugee/, 14 February 2019.
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In what follows we designate by landlord a person who possesses a home 30 and who
is willing to host some refugee(s). The term «refugee» is used to designate either an
individual or a family. So, the size of a refugee would be either one (if it is an individual)
or the number of family members (if it concerns a family). Landlords are invited to
submit to a centralized clearing house their preferences over groups of refugees and
to declare the maximum number of people they are willing to host. For simplicity,
we assume that landlords preferences define for each home a strict priority order over
groups of refugees. As it is usual in matching theory, we assume that these priority
orders over groups of refugees are responsive to the priority over refugees. 31 On the
other hand, refugees have strict preferences over homes that are also submitted to the
centralized clearing house. We call a problem the collection of (i) the set of refugee
families with their respective preferences and sizes, (ii) the set of homes with their
respective capacities (maximal numbers of people landlords desire to accommodate) and
the priority order over groups of refugees for each home.

A matching is the complete specification, for a given problem, of which refugee
(individual or family) is to be assigned to which home (or remained unmatched) without
exceeding homes’ capacities or splitting a refugee family between several homes. A
mechanism is a systematic rule that precisely suggests a unique matching for any given
problem. A mechanism is said to be pairwise stable when it suggests, for any problem,
a pairwise stable matching, that is, (i) no refugee (resp. no landlords) prefers been
unmatched to the home (resp. to the group of refugees) he is assigned to and (ii) no
landlord could benefit from replacing a group of refugees that is currently assigned to
him by a refugee who prefers that landlord to his current match.

It is well known that many of the desirable properties of matching rules are un-
achievable in this framework (Delacrétaz (2014)). No pairwise stable mechanism exists
and a problem may admit several Pareto-undominated pairwise stable matchings. And,

30. Even if a landlord may possess more than one home in real life there is no loss of generality from
associating each landlords to a single home.
31. Responsiveness of priorities (or preference) is a pretty common requirement in the matching

literature. It means that (i) adding an acceptable refugee to any group of refugees, provided this does
not result in exceeding its capacity, increases the priority of the group, and (ii) adding one refugee to
any group of refugees is at least as desirable as adding another refugee to the same group of refugees if
and only if the priority of the first student is higher than the one of the second.
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inconveniently, the famous Gale and Shapley (1962) Refugees-proposing Deferred Ac-
ceptance algorithm fails sometimes to produce a pairwise stable matching even when it
exists. The existence of a pairwise stable mechanism requires the priorities of refugees
for homes to be size-monotonic, that is, the priority order are set in such a way that the
bigger a group of refugees is the highest is their priority.

We show that a pairwise stable matching exists whenever the priority order of
refugees for homes is size-monotonic and propose a mechanism to find it. We call
this mechanism the Downward Sequential Greedy Correcting (DSGC) algorithm. This
mechanism is strategy-proof for refugees: no refugee could benefit from misrepresenting
his preferences. We know from Roth (1982) that there is no Pareto-efficient mechanism
that is pairwise stable. Nevertheless, the DSGC is also a Pareto-undominated pairwise
stable mechanism in the sense that there is no other pairwise stable mechanism that
would be more profitable to every refugee.

Our methodology is based on an adapted version of the Sequential Greedy Correcting
procedure initially introduce by Blum and Rothblum (2002) for the stable mariage
problem. 32

The rest of the paper is organized as follows. In Section 2, we present the related
literature. Section 3 defines the model of the many-to-one matching with sized agents.
Our main results are presented in Sections 4, 5 and 6. And finally Section 7 presents
some concluding remarks.

2. Related Literature
The literature on many-to-one matching problems has been initiated by Gale and

Shapley (1962) and many other contributions have been done since then.
The most closely related papers are probably Delacrétaz (2014) and Delacrétaz et al.

(2016). The former proposes a many-to-one matching model where the size of agents can
be one or two and find an algorithm that produces a pairwise stable matching whenever
it exists. And the later proposes a generalization of this algorithm that extends to
agents of any size. However, these algorithms do not converge in polynomial time in
general which renders the problem computationally intractable when thousands of host

32. The stable mariage problem refers to the case where all refugees have a unit-size and all homes
have a unit capacity.
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families and millions of refugees are involved. Therefore, they also introduce the concept
of size-stability which is a weaker version of stability that allows multiple size agents to
envy agents of lower size and propose a mechanism that satisfy this requirement. In this
paper, we, instead, assume that the priority for homes is size-monotonic and propose a
mechanism that run in a polynomial number of iterations to achieve a pairwise stable
mechanism.

Anderson and Ehlers (2016) and Anderson et al. (2018) propose a one-to-one matching
problem with sized agents for refugees and landlords where preferences are correlated in
some sense: landlords are indifferent between two refugee families of the same size who
speak the same language that the concerned landlord finds acceptable. Furthermore, as
we do, they assume that preferences of landlords are size-monotonic: a larger refugee
family is preferred by landlords to a smaller one. They find that stable maximum
matching exists for any problem and they propose an algorithm that produces it. Our
paper diverges from that framework by allowing landlords to host several refugee families
to the extend of their home capacity.

The school choice models with budget constraint is also closely related to our
framework. In these models (see Abizada (2016), Abizada (2017), Karakaya and Koray
(2003)), colleges use stipends in order to get more and better students enrolled and
students have quasi-linear preferences over colleges and monetary transfer. A matching
specifies not only the assignment of students to colleges but also the required monetary
transfer that makes it possible. Whereas colleges have fixed budget constraints, the
monetary transfer to students is endogenously determined by the matching. They show
that a pairwise stable mechanism exists in this framework. In contrast, agents’ sizes are
given in our model and cannot be modified. This detail makes huge analytical difference
between the two framework.

The mechanism proposed in this paper is a version of the Sequential Greedy Cor-
recting (SCG) procedure [Blum et al., 1997; Blum and Rothblum, 2002]. Blum and
Rothblum (2002) consider a two-sided matching market where agents arrive sequentially
and the «natural greedy procedure» 33 is applied to retrieve stability. Using a one-to-one

33. Blum and Rothblum (2002) shows that by matching blocking pairs (that involved newcomers
or not) together sequentially in a specific way we regain stability after a finite number of iterations.
However, if the blocking pairs are chosen arbitrary the procedure may not converge (Knuth, 1976).
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matching framework, they show that the last agent to enter in the market gets his best
possible outcome in a stable matching. Our model differs from the one studied by Blum
and Rothblum (2002) by allowing different sizes for refugees. We show that the SCG
procedure, with some slight adaptation, is still applicable in our framework.

3. The model
We consider an economy consisting of a finite, non-empty set of homes H and a

finite non-empty set of refugees (families) R. Each refugee r ∈ R has an exogenous
size l(r) > 0 which represents the number of members of the family and has a reflexive
and anti-symmetric preferences <r over H ∪ {r}. Denote by �r the strict component
associated with <r. Similarly, each home H ∈ H has a capacity qH > 0 and strict
preferences �H over groups of refugees P(R), that is, the power set of R. For each
home H, we also define the reflexive extension <H of �H by a <H b if and only if a = b

or a �H b. Denote by ∅ the empty set. For each group of refugees R ⊂ R, ∅ �H R

means that R is unacceptable for the home H, that is, the group of refugees R cannot
be hosted in the home H. For each home H the priority order over group of refugees is
responsive to the priority over refugees, that is, for all R ⊂ R and r, r′ ∈ R \ R such
that R ∪ {r} and R ∪ {r′} are both acceptable for H, (i) {r} <H {r′} if and only if
R ∪ {r} <H R ∪ {r′} and (ii) {r} <H ∅ if and only if R ∪ {r} <H R.

For every home H ∈ H, r �r H means that home H is unacceptable for refugee r,
that is, H is not allowed to host r. For each group of refugees R ⊂ R, denote by l(R)
the number of refugee families’ members who belong to R, that is, l(R) ≡ ∑r∈R l(r) and
l(∅) = 0. This economy is entirely defined by a quintuple (H,R, l, (qH)H∈H, (�i)i∈H∪R)
where l = (l(r))r∈R. Denote by P the set of all such economies. A problem P is an
instance of this economy, i.e, P ∈P.

For any given problem, a matching specifies which refugee is to be assigned to
which home without exceeding the capacity of homes. Technically, a matching is a
correspondence µ : H∪R → H∪R such that (i) for all r ∈ R, µ(r) is a singleton with
µ(r) ⊂ H or µ(r) = {r}, (ii) for all H ∈ H, µ(H) ⊂ R such that l(µ(H)) ≤ qH and
(iii) ∀H ∈ H, ∀r ∈ R, r ∈ µ(H) if and only if µ(r) = {H}. In what follows, we write H
or r instead of {H} and {r}, when there is no risk of confusion. Denote byM(P ) the
set of matchings admitted by the problem P andM = ∪P∈PM(P ). A mechanism is
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a function M that specifies a matching for any problem, i.e., M : P →M such that
∀P ∈P,M(P ) ∈M(P ).

Before we define pairwise stability which is a central concept in matching theory, it is
convenient to define individual rationality and blocking pair. A matching µ is individually
rational if: (i) for all H ∈ H, µ(H) <H φ and (ii) for all r ∈ R, µ(r) <r r. For each pair
of home and refugee (H, r) ∈ H×R, we say that a matching µ is blocked by (H, r) or r
has a (µ-)justified envy for H if: (i) H �r µ(r) and (ii) ({r} ∪ (µ(H) \R)) �H µ(H)
for some R ⊂ µ(H) such that qH ≥ l(r) + l(µ(H))− l(R). 34 A matching µ is pairwise
stable if µ is not blocked by any pair of home and refugee and µ is individually rational.
A mechanism is pairwise stable if it specifies a pairwise stable matching for any problem.

Group stability is a stronger notion of stability. A matching µ is (group) stable if
there exists no coalition (H , R) ∈ P(H)×P(R) of homes and refugees for which there
exists some matching µ′ such that: (i) H = µ′(R), (ii) ∀r ∈ R, µ′(r) <r µ(r), with at
least one strict ordering and (iii) ∀H ∈H , µ′(H) <H µ(H). A mechanism is (group)
stable if it specifies a group stable matching for any problem.

As we are interested in finding matchings that meet some desirable properties, 35 the
priority order for any consumer H ∈ H may be restricted to groups of refugees which
size is below the capacity of H, i.e, {R ∈ P(R) : qH ≥ l(R)}. For simplicity, we make
the following assumption.

Assumption 1. A group of refugees R ⊂ R is unacceptable for a home H if and
only if qH < l(R) or there is r ∈ R such that ∅ �H {r}.

Remark 1. Let R,R′ ⊂ X be two groups of refugees such that R ( R′. If both R
and R′ are acceptable for a home H then R′ �H R.

Proof . Consider {r1, r2, ..., rk} ≡ R′ \ R. Since R′ is not unacceptable, Assumption
1 insures that r1, r2, ..., rk are all acceptable, that is for κ ∈ {1, ..., k}, {rκ} �H ∅.
Then, by using responsiveness, iteratively we can obtain R′ �H R by induction. �

34. Note that R may be the empty set, in which case home H does not achieve its full capacity and
it is desirable to assign an additional refugee r with a small enough size to H.
35. We will define precisely some desirable properties of matchings later.
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This model is an extension of School Choice (Abdulkadiroglu and Sönmez, 2003). 36

In fact, if we suppose that every refugees has the same size which can therefore be
normalized to one (∀r ∈ R, l(r) = 1), then the model becomes identical to School Choice
where refugees stand for Students and homes represent Colleges.

In the case where every refugee has a unit size, by using the Gale and Shapley
(1962) refugees-proposing Deferred Acceptance (DA) algorithm, it is possible to find the
refugee-optimal stable matching, that is, a stable matching that is at least as good as
any other stable matching for each refugee. This algorithm adapted to our framework
goes as follows.

At the first step, each refugee is proposed for his favorite home. For each home H
the highest priority group of refugees R, among those who have been proposed for H,
such that l(R) ≤ qH is temporarily assigned to H. The rest of refugees are rejected.

In general, at the kth step, each refugee who has been rejected at step k − 1 is
proposed for his next favorite home. For each home H the highest priority group of
refugees R, among those who have been proposed for H at this step and the ones who
has been assigned to H at step k− 1, such that l(R) ≤ qH is temporarily assigned to H.
The rest of refugees are rejected.

The algorithm terminates when no refugee is rejected and each refugee is matched
to the home that he is temporarily assigned to if any.

But if we allow for differently-sized refugees, we know from Delacrétaz (2014)
that no pairwise stable mechanism exists and a problem may admit several Pareto-
undominated pairwise stable matchings. He also points out that Refugees-proposing
Deferred Acceptance algorithm fails sometimes to produce a pairwise stable matching
even when it exists. We make the following assumption in other to guarantee the
existence of a pairwise stable mechanism as we will show it in our Theorem 1 later.

36. It can also be seen as an extension of the House Allocation (Abdulkadiroglu and Sönmez, 1999)
and House Exchange (Shapley and Scarf (1973)) if we relax the assumption of strict priorities by
allowing indifferences in priorities and assume that homes and agents have unit capacities and unit
sizes. Indeed, if we suppose that agents have same priorities, that is, for all r, r′ ∈ R, r ∼H r′,∀H ∈ H,
then we get the standard House Allocation model. Moreover, if there is the same number of homes
as refugees and each refugee owns exactly one home, we get the House Exchange model by defining
priorities by: ∀H ∈ H, the refugee to whom belongs H has the highest priority for it and all other
refugees have the same priorities for H.
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Assumption 2 (size-monotonicity). For each home H ∈H , and for every groups
of refugees R, R′ that are acceptable for H, if l(R) > l(R′) then R �H R′.

This assumption is crucial for the remaining of our analysis. 37 It states that a larger
group of refugees has higher priority than a smaller one, regardless of which refugees
are in the groups, if the both groups are acceptable. 38 A version of Assumption 2 can
be found in Anderson and Ehlers (2016).

4. Group stability and pairwise stability
Here, we show that some standard results about stability in many-to-one matching

models does not hold if we allow for different-size agents. The following example will be
useful to fix ideas on some non-standard properties of this environment.

Example 1. Consider a problem consisting of 3 refugees r1, r2 and r3 and two
homes H1 and H2 whose capacities are respectively qH1 = 2 and qH2 = 1. Refugees
have priorities overs homes, respectively �H1 and �H2, defined by:

H1 H2

{r1, r2} {r1}

{r3} {r2}

{r1}

{r2}
The sizes of the refugees are l(r1) = l(r2) = 1 and l(r3) = 2 and their preferences

over homes are defined by :

r1 r2 r3

H1 H2 H1

H2 H1 H2.

37. Without Assumption 2 the search of pairwise stable matching becomes NP-hard (Delacrétaz
et al., 2016), i.e. one of the hardest computational problem (like the multiple knapsack problem).
38. For more on size-monotonicity, see Pàpai (2000).
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Remark 2. Group stability implies pairwise stability but the converse is not true.

Proof . Suppose µ is blocked by (H, r). Then, ∃R′ ⊂ µ(H) such that H �r r and
{r}∪ (µ(H) \R′) �H µ−1(H) with qH ≥ l(r) + l(µ(H))− l(R′). Consider such a R′ and
define R ≡ {r} ∪ (µ(H) \R′), H ≡ {H} and the matching µ′ by:

∀r ∈ R, µ′(r) = H

∀r /∈ R, µ′(r) = r

From this definition, it is clear that:

(1) µ′(R) = H .

(2) ∀r ∈ R, µ′(r) �r µ(r), or µ′(r) = µ(r) (with at least one strict ordering)

(3) ∀H ∈H , µ′(H) �H µ(H), or µ′(H) = µ(H) (with at least one strict ordering).

Therefore, µ is not group stable. We conclude that if µ is group stable then it is also
pairwise stable.

Now, we show that the converse is not true. Consider Example 1 and consider the
matching µ defined by:

µ =

 R1 R2

r3 r1


The pair (R1, r1) does not block µ because H1 would not be better off either by replacing
r3 by r1 or by adding r1 to r3 since {r1, r3} is unacceptable. The same remark goes for
the pair (H1, r2). On the other hand, H2 is matched to r1 by µ which is his best choice
so there exist no r ∈ {r1, r2, r3} such that µ is blocked by (H2, r). Therefore, it is clear
that µ is pairwise stable.

However, µ is blocked by the coalition ({r1, r2}, {H1}). So, µ is not group stable. �

Remark 3. Group stable matching may not exist.
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Proof . Consider, the problem described in Example 1. The only pairwise stable
matching for this problem is the matching µ defined by:

µ =

H1 H2

r3 r1


since the three other feasible matching

µ =

H1 H2

r1r2 ∅

 , µ =

H1 H2

r1 r2

 , µ =

H1 H2

r2 r1

 ,
are blocked by (H2, r2) for the first one and (H1, r3) for the others. Therefore, this
problem does not admit any group stable matching, since µ is blocked by the coalition
(H1, {r1, r2}). �

Now, before we present Theorem 1, it is convenient to introduce some definitions that
will be essential for Lemma 1.

Definition 1. Let µ′ and µ be two matchings. We say that µ has higher priority
than µ′, and we write µ′ � µ, if

∃Ĥ ∈ H such that µ′(Ĥ) �
Ĥ
µ(Ĥ)

∀H ∈ H, µ′(H) <H µ(H)

The transitivity and the acyclicity of � are straightforward.

Definition 2. A matching µ is quasi-stable if µ is individually rational and no
matched refugee has a justified envy.

It is worth noting that Definition 2 diverges from the definition of woman-quasi-stable
matching proposed in Blum and Rothblum (2002) and Blum et al. (1997). We adopt this
definition because it helps to make the point more easily. Note that pairwise stability
implies quasi-stability. The following example show that the converse is not true.
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Example 2. Consider the problem for which the set of homes is H = {H1, H2} and
the capacities of homes are qH1 = 1, qH2 = 2; the set of refugees is R = {r1, r

′
1, r2}

and their sizes are l(r1) = l(r′1) = 1 and l(r2) = 2.

H1 H2

{r1} {r1, r
′
1}

{r′1} {r2}

{r1}

{r′1}

r1 r′1 r2

H2 H1 H2

H1 H2 H1.

It is easy to see that µ ≡

H1 H2

r′1 r1

 is quasi-stable but µ is not pairwise stable since

it is blocked by (H2, r2) and µ(r2) = r2.

The next definition is crucial to our argument.

Definition 3. Let µ be a quasi-stable matching such that there exists an unmatched
refugee r̂ who has a µ-justified envy. Let Ĥ be refugee r̂’s most-preferred home for
which he has a µ-justified envy. We say that µ′ is obtained from µ by satisfying the
justified envy of r̂ if,

µ′(H) = µ(H),∀H 6= Ĥ and µ′(Ĥ) = max
{r̂}∪µ(Ĥ)

�
Ĥ

where max
{r̂}∪µ(Ĥ)

�
Ĥ

is Ĥ’s most preferred group of refugee in {r̂} ∪ µ(Ĥ).

A variant of Definition 3 is found in Blum and Rothblum (2002) for the stable
mariage problem. It is clear from Definition 3 that since µ is individually rational µ′ is
also individually rational. Moreover, since µ′(Ĥ) �

Ĥ
µ(Ĥ) and µ′(H) = µ(H),∀H 6= Ĥ

then µ′ has higher priority than µ. The following Lemma is a generalization of Blum
and Rothblum (2002) Lemma 2.1.
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Lemma 1. Let µ be a quasi-stable matching such that there exists an unmatched
refugee r̂ who has a µ-justified envy. The matching µ′ obtained from µ by satisfying
the justified envy of r̂ is quasi-stable.

Proof . See Appendix �

In other words, the matching µ′ inherits the quasi-stability of µ while improving
the priority level of assigned refugees. This interesting property allows to introduce
the Sequential Greedy Correcting (SGC) algorithm initially proposed by Blum and
Rothblum (2002) for the stable mariage problem. Let σ : R → {1, 2, · · · , |R|} be a one-
to-one correspondence that specifies a unique index for each refugee. The σ-Sequential
Greedy Correcting (σ-SGC) is defined as follows.

Round 0: Number all the refugees from 1 to |R| according to σ.

Round k: Identify (if any) the refugee, say r, with the smallest index among those who
have a justified envy for some home but are not temporarily assigned to any.
If no such refugee exists, end the algorithm and match each refugee to the
home that he is temporarily assigned to (if any). Otherwise, temporarily
assign r to his favorite home, say H, that he has a justified envy for and
reject (unassign) from H the lowest priority group of refugees necessary to
fulfill the capacity requirement.

Theorem 1. The outcome of a σ-SGC algorithm is a pairwise stable matching.

Proof . Consider the σ-SGC algorithm and denote by µk the temporarily matching
obtained at the end of Round k (in particular, µ0 is defined by µ0(r) = r,∀r ∈ R). Note
that for all k > 0, µk is obtained from µk−1 by satisfying the justified envy of some
unmatched refugee. Since, µ0 is clearly a quasi-stable matching, Lemma 1 guarantees
that, by induction, every µk is quasi-stable. Furthermore, for all k > 0, µk � µk−1. So,
the algorithm converges since � is acyclical and the set of all matchings for a given
problemM(P ) is finite. Therefore, the algorithm ends up with a quasi-stable matching
for which there is no unmatched refugee that has a justified envy, that is, a pairwise
stable matching. �
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5. Pareto-efficiency and Strategyproofness
There is a well-documented trade-off between efficiency and stability in matching

theory [Roth, 1982; Kesten, 2010; Che and Tercieux, 2015] . Here, we consider two weaker
versions of efficiency. First, a Pareto-undominated pairwise stable matching is a pairwise
stable matching µ that is not Pareto dominated by any other pairwise stable matching,
that is, for all pairwise stable matching µ′, if µ′(r) �r µ(r),∀r ∈ R then µ′ = µ. A
Pareto-undominated pairwise stable mechanism specifies a Pareto-undominated pairwise
stable matching of every problem. Second, a matching µ is refugee optimal stable if it
provides for each refugee the best possible outcome in a stable matching, that is, for all
stable matching µ′ and for all refugee r ∈ R, µ(r) �r µ′(r). A refugee optimal stable
mechanism specifies a refugee optimal stable matching of every problem.

Example 3. The outcome of a σ-SGC is not Pareto-undominated in general. Con-
sider a problem consisting of 4 refugees r1, r′1, r2 and r′2 and two homes H2 and H ′2
whose capacities are qH2 = qH′2 = 2. Refugees have priorities over homes defined by:

H2 H ′2

{r1, r
′
1} {r1, r

′
1}

{r′2} {r′2}

{r2}

{r1}

{r′1}
The sizes of the refugees are l(r1) = l(r′1) = 1 and l(r2) = l(r′2) = 2 and their

preferences over homes are defined by :

r1 r′1 r2 r′2

H2 H2 H2 H ′2

H ′2 H ′2 H2.
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If σ is define by σ(r2) = 1, σ(r1) = 2, σ(r′1) = 3 and σ(r′2) = 4 then µσSGC =H2 H ′2

r′2 r1r
′
1

 which is Pareto dominated by the pariwise stable matching

H2 H ′2

r1r
′
1 r′2

.

We know from Blum and Rothblum (2002) that the σ-SGC produces the refugee
optimal stable matching if l(r) = 1,∀r ∈ R and qH = 1, ∀H ∈ H. The following
proposition extends this result.

Proposition 1. If all refugees have the same size then the σ-SGC is a refugee
optimal stable mechanism.

Proof . Here, for the sake of convenience, we introduce a fictitious home that is the
least preferred home for every refugee and which capacity is large enough to contain
all refugees (the priorities for this fictitious home can be set arbitrarily). Clearly, the
presence of this additional home does not change the outcome of the σ-SGC algorithm
except for the fact that every refugee that remained unmatched at the end of the
algorithm in the regular problem will now be matched to the fictitious home.

Now, let µ be a stable matching. Suppose that all refugees have the same size and
suppose, by contradiction, that there is a refugee that has been matched by µ to a home
that he prefers to the one to which he is assigned under σ-SGC. Therefore, there must
be some round k, of the algorithm, in which a refugee, say r, has been temporarily
assigned to a home, µk(r), such that µ(r) �r µk(r), for the first time, where µk is the
matching representing the temporal assignment in round k. From Lemma 1 we know
that µk is fair. For simplicity, denote by H the home to whom r is matched by µ, that
is, H ≡ µ(r).

Therefore, every refugee that is temporarily assigned to H at round k has higher
priority for H than r, that is, ∀r′ ∈ µk(H), r′ �H r, otherwise r would have not been
assigned temporarily to a least preferred home, µk(r), at this round. Moreover, since r
is the first refugee that is temporarily assigned to a home that is less desirable for him
than the home to which it is assigned under µ, we must have ∀r′ ∈ µk(H), H �r′ µ(r′).
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But, if ∀r′ ∈ µk(H), µ(r′) = H then µk(H) ⊂ µ(H)\{r} and then, by responsiveness,
µk(H) ∪ {r} �H µk(H), which contradicts the fairness of µk because H �r µk(r).
Therefore, there exists at least one good r′ ∈ µk(H) such that H �r′ µ(r′) and then,
since r′ �H r and l(r) = l(r′), the pair (H, r′) blocks µ which contradicts its stability.

Therefore, if all refugees have the same size then there is a no refugee that has been
matched by µ to a home that he prefers to the one to which he is assigned under σ-SGC,
that is, σ-SGC is a refugee optimal stable mechanism. �

Several interesting remarks follows from Lemma 1. First, we know from Abdulkadiroglu
and Sönmez (2003) that, when refugees have the same size, the refugees-proposing DA
algorithm outcome is the unique (pairwise) stable matching that assigns to each refugees
the home that is at least as good has any other home that he can possibly been matched
to in a (pairwise) stable matching. Therefore, from Proposition 1, the σ-SGC algorithm
is output equivalent to the refugees-proposing DA algorithm when refugees have the
same size.

Therefore, by uniqueness of the refugee optimal stable matching, we deduce that
the outcome of the σ-SGC is independent of the ranking order chosen in Round 0 when
refugees have the same size. Generally, the outcome of the σ-SGC depends on the
ranking order chosen at Round 0, σ.

Definition 4. The Downward Sequential Greedy Correcting (DSGC) is the
σ-SGC for which the refugees are ranked from the biggest to the smallest in
Round 0. The Upward SGC (USGC) is the σ-SGC for which the refugees are
ranked from the smallest to the biggest in Round 0.

Interestingly, when the refugees’ sizes may differ from one another DSGC is still a
well-defined 39 mechanism which outcome can be obtained by consecutively running the
refugees-proposing DA algorithm in the following way.

Round 1: Run the refugees-proposing DA algorithm only on the refugees that have
the highest size. Then, match the highest-size refugees to homes as it is

39. The outcome of the DSGC does not depend on the specific ranking order chosen in Round 0 for
refugees that have the same size.
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suggested by the DA and redefine the capacity of each home by reducing it
by the total size of the refugees that have been matched to it.

Round k: Run the refugees-proposing DA algorithm only on the refugees that have
the kth highest size by considering the capacity of homes as it is defined in
Round k − 1. Then, match the kth-highest-size refugees to homes as it is
suggested by the DA and redefine the capacity of each home by reducing it
again by the total size of the refugees that have been matched to it at this
round. Stop the algorithm if there is no kth-highest-size refugee.

This Consecutive Deferred Acceptance (CDA) algorithm stops in n rounds if n is
the number of different refugees’ size levels.

In fact, due to preference monotonicity no refugee of smaller size can "kick" a refugee
of a bigger size out in a pairwise improvement. Therefore, a pairwise improvement that
involve a refugee of a smaller size does affect the assignment of refugees of bigger size
in a fair matching. And since the DSGC algorithm for identical-size refugees is output
equivalent to the DA algorithm, running the DA consecutively on agents from to biggest
to the smallest give the same result as the DSGC. This remark shows that the DSGC
run in a polynomial time since the DA algorithm does.

Theorem 2. DSGC is a Pareto-undominated pairwise stable mechanism.

Proof . We prove Theorem 2 by strong induction. Let µDSGC be the outcome of the
DSGC algorithm and µ a pairwise stable matching such that µ(r) �r µIOA(r), for all
r ∈ R. We know that DSGC is output equivalent to CDA. And, at the first round of
the CDA procedure, every highest-size refugee has its best possible match in a stable
matching, that is, for all r ∈ arg maxr′∈R l(r′), µ(r) = µDSGC(r).

Let n be the number of different refugees’ size levels and suppose that for a given
1 ≤ k < n and for all r ∈ R such that l(r) is greater or equal to the kth highest
refugees’size, we have µ(r) = µDSGC(r).

Now, we prove that for any good r such that l(r) is the (k+1)-th highest refugees’size,
one must have µ(r) = µDSGC(r). Suppose, by contradiction, that for a (k+1)-th highest-
size refugee µ(r) �r µDSGC(r), that will mean that the outcome of the DA algorithm
run at Round k + 1 is not refugee optimal stable which contradicts Proposition 1.
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Therefore the outcome of the DSGC is not dominated by another pairwise stable
matching. �

In particular, the outcome of the USGC is not necessarily Pareto undominated.

Example 4. They may exist some Pareto undominated pairwise stable matching
that cannot be reached by any σ-SGC.

Consider a problem consisting of 4 refugees r1, r3, r3 and r4 and two homes H5

and H6 whose capacities are qH5 = 5 and qH6 = 6. Refugees have priorities over
homes defined by:

H5 H6

{r1, r4} {r3, r
′
3}

{r4} {r1, r4}

{r1, r3} {r1, r3}

{r1, r
′
3} {r1, r

′
3}

{r3} {r3}

{r′3} {r′3}

{r1} {r1}
The sizes of the refugees are l(r1) = 1 and l(r3) = l(r′3) = 3 and l(r4) = 4 their

preferences over homes are defined by:

r1 r3 r′3 r4

H6 H5 H5 H6

H5 H6 H6 H5.H5 H6

r3r
′
3 r1r4

 is a Pareto-undominated pairwise stable matching that cannot be

reached by any σ-SGC.
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Now, we study strategic behavior of agent in a direct revelation mechanism were
refugees submit their preferences to a centralized clearing house. Informations about
the mechanism used by the clearing house is common knowledge. Define by Π the set of
strict preferences over homes H and by Π|R| the set of preference profile of refugees. We
assume that the sets of refugees and homes (R and H), the capacity profile q, the sizes
of refugees l and their priorities for homes (�H)H∈H are fixed. Then a problem P is
entirely defined by the preference profile of refugees over homes, i.e, P = (�r)r∈R ∈ Π|R|.

A mechanismM is strategy-proof if no refugee can get better off by misrepresenting
his preferences, that is, ∀P ∈ Π|R|,∀r ∈ R and ∀P ′r ∈ Π,M(P )(r) �r M(P−r, P ′r)(r)
where (P−r, P ′r) is the preference profile obtained by replacing from P the preferences of
refugee r by P ′r, the rest remaining unchanged.

Now, consider the procedure of CDA which is output equivalent to DSGC. Suppose
that the preferences of some kth-highest-size refugee, say r is misreported. The procedure
of the CDA remain unchanged until Round k. At this round, since the refugees-proposing
DA is strategy-proof for refugees, then the outcome for refugee r would not be better.
Theorem 3 follows immediately from this remark.

Theorem 3. The DSGC is group strategy-proof for refugees.

Example 5. A σ-SGC is not strategy proof in general
Consider a problem consisting of 4 refugees r1, r′1, r′′1 and r2 and two homes H1

and H2 whose capacities are qH1 = 1 and qH2 = 2. Refugees have priorities over
homes defined by:

H1 H2

{r′′1} {r1, r
′
1}

{r1} {r2}

{r1}

{r′1}
The sizes of the refugees are l(r1) = l(r′1) = l(r′′) = 1 and l(r2) = 2 and their

preferences over homes are defined by :
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r1 r′1 r′′1 r2

H1 H2 H1 H2

H2 H1 H2 H1.
Consider a ranking σ défini par σ(r1) = 1, σ(r′1) = 2, σ(r2) = 3 and σ(r′′1) = 4.

We have µσSGC =

H1 H2

r′′1 r2

. Notice that Refugee r1 is unmatched by µσSGC . However,

r1 could misrepresent his preferences by submitting H2 �r1 H1 and then get matched
to H2 by σ-SGC.

6. Maximality
A well-known result in matching theory is the Roth (1986) Rural Hospitals Theorem

which states that when all refugees have unit sizes the set of unmatched refugees remain
the same in any pairwise stable matching. This result no longer holds in our environment
as it is shown in the following example.

Example 6. The problem consists of three homes H1, H2 and H3 with respective
capacities qH1 = 4, qH2 = 2 and qH3 = 2 and four refugees r1, r2, r3 and r4 with
respective sizes l(r1) = 1, l(r2) = 2, l(r3) = 2 and l(r4) = 3. The priorities of
refugees for the two homes are given by

H1 H2 H3

{r1, r4} {r2} {r3}

{r2, r3} {r3} {r2}
... {r1} {r1}

{r4}
...

and the preferences of refugees over homes are given by
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r1 r2 r3 r4

H2 H1 H1 H1

H3 H2 H3
...

H1
... ...

The two following matching are pairwise stable (they are also group stable).

µDSGC =

H1 H2 H3

r2r3 r1 ∅

 , µUSCG =

H1 H2 H3

r1r4 r2 r3

 .
It is clear that the number of unmatched refugees differs from one pairwise matching
to the other and also the total size of unmatched refugees is different. Note also that
µUSGC has higher priority than µDSGC.

For a given problem, a matching µ is said maximal if there is no matching µ′ such
that

l({r ∈ R/µ′(r) ∈ H}) > l({r ∈ R/µ(r) ∈ H}),

that is, a matching that guarantees that the maximal number of refugee families’
members are matched. For instance, the matching µUSGC in Example 6 is maximal
whereas µDSGC is not. Anderson and Ehlers (2016) points out that maximality, stability
and Pareto-efficiency are independent in the sens that none of these properties implies
one of the others. And, ultimately, a maximal matching exists for any given problem P

since the set of matchingsM(P ) is finite.

7. Conclusion
This paper investigates an extension of the standard many-to-one matching model

that involve different-size agents (refugees) having size-monotonic preferences over objects
(homes) with different quotas (capacities). We show that a pairwise stable matching exits
in this framework and we propose an adaptation of the Sequential Greedy Correcting
algorithm to spot it. Our mechanism is strategy-proof and Pareto-undominated from
the point of view of refugees and converge in a polynomial time. Nevertheless, this
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algorithm does not necessarily yield a maximal matching. Further study could reveal
how to find matches that are both pairwise stable and maximal.
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Chapitre A

Annexes

Proofs from Article 1

Proof for Proposition 1. Suppose that GA = GB = 0. First we show that no tax
is paid in an equilibrium. Suppose, by contradiction, that non zero tax is paid in
some region j. Since government j’s budget constraint binds (see Remark 2), there
exists in that region a type of agents, say i, that pay positive taxes which are used
by the government to finance subsidies to the other type −i. Two cases need two be
distinguished. First, If some −i-type agents live also in region −j, with −j 6= j, then
they must receive the same subsidy from that government financed by some i-type living
there. The government of region −j could therefore increase the social welfare of its
region by getting rid of the −i-type using a zero tax policy. Indeed, if no tax is paid
in region −j the −i-type agent will all migrate toward region j and the utility of the
i-type will increase resulting in an increase in social welfare in −j. Second, if no −i-type
agents live in region −j, its government could attract all the i-type agent with a zero
tax policy which would increase the social welfare in −j by increasing the utility of
the i-type. In both cases, a zero tax policy, which trivially is incentive compatible, is a
profitable deviation for −j. Therefore, zero tax is paid by both types in any equilibrium.

Now it becomes easy to show that all L-type agents live in the same region in
the subgame defined by GA = GB = 0. If L-type agents live in both region at some
equilibrium, from what precedes, they must pay zero tax in both region. Since the



H-type agents also pay zero tax, it is possible for the government of the region where
reside some H-type agents to impose a small incentive compatible positive tax on the
L-type. Doing so, all the L-type agents would flee out to the other region and, thus,
leave alone the H-type agents with a higher social welfare. �

Proof for Proposition 2. Suppose that the public good provision is non-zero in at
least one region, that is, GA > 0 and GA ≥ GB ≥ 0, without loss of generality. Further
suppose, by contradiction, that there exists some type i ∈ {L,H} such that agents of
type i are present in both regions, which implies UA

i = UB
i . First, suppose that i-type

agents pay negative tax in at least one region say j. In this case, a profitable deviation
for government j would instead consist of getting rid of the i-type by increasing their
tax to the same non-negative tax that −i-type would need to pay if they were the only
resident of the region, Gj

n−i
. That deviation is incentive compatible since it requires every

agent to pay the same amount of tax. Therefore it must be the case that i-type agents
pay non-negative tax in both region.

It must also be the case that i-type agents pay zero tax in both regions, otherwise
the region who charges strictly positive taxes, for i-type agents could have more agents
of this type by reducing slightly their tax liabilities by some ε > 0. This reduction can
be made in such a way that i-type agents still pay a positive tax that will generate
a budget surplus. That surplus could eventually be used to increase the utility of
the other type in such a way that the incentive constraint remains satisfied. More
precisely, suppose, by contradiction, that region j’s equilibrium tax schedule is given
by (cji , y

j
i , c

j
−i, y

j
−i) with tji = yji − cji > 0. From what precedes we also have tj−i =

yj−i− c
j
−i ≥ 0. According to Remark 2, the budget constraint is binding in region j, that

is, nji (y
j
i − c

j
i ) + nj−i(y

j
−i − c

j
−i) = Gj. Now, consider a deviation (ĉji , y

j
i , ĉ

j
−i, y

j
−i) where

ĉji = cji + ε and ĉj−i = cj−i + ε, with ε > 0. It is clear that this deviation is incentive
compatible since (cji , y

j
i , c

j
−i, y

j
−i) is. So, if this deviation satisfies the budget constraint,

ni(yji − ĉ
j
i ) + n̂j−i(y

j
−i − ĉ

j
−i) ≥ Gj, (A.1)

where n̂j−i is the resulting number of −i-type agents in region j, then it would be
profitable for j since it increases consumption for everyone. Note that n̂j−i is equal to
n−i or nj−i depending on whether the deviation attracts the −i-type into region j or not.
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Equation (A.1) is equivalent to ni(yji − c
j
i ) + n̂j−i(y

j
−i − c

j
−i) ≥ Gj + (ni + n̂j−i)ε which is

true if and only if

(ni − nji )t
j
i + (n̂j−i − n

j
−i)t

j
−i ≥ (ni + n̂j−i)ε. (A.2)

By hypothesis, (ni − nji )t
j
i > 0. Since (n̂j−i − n

j
−i)t

j
−i ≥ 0, therefore (A.2) is satisfied for

some small enough value of ε which implies that (ĉji , y
j
i , ĉ

j
−i, y

j
−i) is actually a profitable

deviation for j. So, i-type agents pay zero tax in both regions.
Since GA > 0, it must also be the case that −i-type agents, with −i 6= i, pay

some positive tax in region A. Therefore, no such agent reside in region B otherwise
government A could reduce slightly taxes for −i-type agents and, by doing so, attract
those who live in B. A budget surplus will be generated thanks to the contribution of
the news arrival and that surplus could finance a subsidy for the i-type who initially
paid zero tax. So, for the budget constraint in region B to hold it must be the case that
GB = 0, since there is no −i-type to finance the public good and as the i-type agents
pay zero tax.

Now, we have h(GA) > h(GB) = 0. It is possible for region A to deploy a tax
schedule that would attract the i-type agents while charging them with a positive tax.
The budget surplus generated by this tax could be used to increase the utility of the
other type living in A in such a way that the tax schedule remains incentive-compatible.
Consider, for instance, the following tax schedule defined T̂A(y) for a small ε > 0 as a
function of the before-tax income :

T̂A(y) =



GA

nL + nH
− ε if y = y∗i

GA

nL + nH
+ ni
n−i

ε if y = y∗−i

M otherwise.

where M > 0 is a so big that it is optimal for each type to chose either y∗i or y∗−i. If ε
is small enough i-type and −i-type agents would choose respectively y∗i or y∗−i. First,
since GA ≤ G we have (nL + nH)h(GA) ≥ GA, and then the utility of the i-type agents
would be higher than their equilibrium utility UB

i for all ε > 0 :

v∗i + h(GA)− GA

nL + nH
+ ε > v∗i ≥ UB

i = UA
i .
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Second if ε is small enough, the utility of the i-type also would be higher than their
equilibrium utility UA

−i

v∗−i + h(GA)− GA

nL + nH
− ni
n−i

ε > v∗−i + h(GA)− GA

n−i
≥ UA

−i.

Finally, the government budget contraint would still hold in region A because niT̂A(y∗i )+
n−iT̂

A(y∗−i) = GA. Therefore, the tax schedule T̂A would induce a higher utility for both
type in region A and then would be a profitable deviation for government A whether
information is symmetric or not. That contradicts the conditions for an equilibrium and,
therefore, no type of agent could be present in both regions. �

Proof for Proposition 3. First, we show that a pooling equilibrium always exists
under condition (4.1). Without loss of generality, suppose that

(nL + nH)h(GA)−GA ≥ (nL + nH)h(GB)−GB, (A.3)

and consider the pair of tax schedules TA(y) and TB(y) defined as a function of the
before-tax income y by

TA(y) = GA

nL + nH
, TB(y) = GA

nL + nH
− (h(GA)− h(GB)).

Now, we show that (TA(·), TB(·)) is a pooling equilibrium supported by nAL = nL and
nAH = nH . Note that, since TA(·) and TB(·) are uniform tax schedules, both agents will
choose an efficient income level wherever they live. In other words, these tax schedules
are not distortionary, that is, they also induce an efficient level of production/income,
y∗i , for each type wherever they live. Note also that a pooling distribution of agents is
compatible with (TA(·), TB(·)) since it induces the same utility for each type in both
regions. Denote by U j

i the utility induce by (TA(·), TB(·)) for an i-type who lives in
region j.

It follows that government A has no profitable deviation because it cannot increase
the utility of one type without reducing that of the other type which will push them to
flee out to region B. The former type would therefore be left in region A with a higher
tax burden so that the budget constraint still holds. This will push them to leave region
A in turn.
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There is no profitable deviation for region B either. To see why, note that i-type
agents receive UA

i = v∗i + h(GA)− GA

nL+nH
in region A where v∗i represent the maximum

before-tax utility that i-type agents could get from consomption and labor. For all
profitable deviation from B designed to attract both types by granting them ÛB

i ,
there exist two tax levels T̂BL and T̂BH that would satisfy the budget constraint in B

nLT̂
B
L + nH T̂

B
H ≥ GB such that

UA
L < ÛB

L ≤ v∗L − T̂BL + h(GB) (A.4)

UA
H < ÛB

H ≤ v∗H − T̂BH + h(GB). (A.5)

Adding Equations (A.4) and (A.5) together after multiplying them by nL and nH ,
respectively, gives

nLU
A
L + nHU

A
H < nL(v∗L − T̂BL + h(GB)) + nH(v∗H − T̂BH + h(GB)).

It follows that (nL + nH)h(GA) − GA < (nL + nH)h(GB) − GB which contradicts
(A.3). Similarly, any deviation from government B that aims to attract only one type
of agents, say i, would have to grant them a utility level ÛB

i such that ÛB
i > UA

i

while imposing to them a tax requirement not smaller than GB/ni. However, we have
UA
i ≥ v∗i +h(GB)− GB

nL+nH
> v∗i +h(GB)− GB

ni
≥ ÛB

i which is a contradiction. Therefore,
(TA(·), TB(·)) is a pooling equilibrium.

Now, we show that if (4.1) is false, then there does not exist a pooling equilibrium in
j. Assume (nL+nH)h(Gj)−Gj < (nL+nH)h(G−j)−G−j , and suppose, by contradiction,
that the tax schedule τj = (cL, yL, cH , yH) is deployed by region j in a pooling equilibrium
supported by njL = nL and njH = nH . Consider the following possible deviation for
region −j :

τ̂−j = (cjL + Gj −G−j

nL + nH
, yjL, c

j
H + Gj −G−j

nL + nH
, yjH).
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First, τ̂−j is more profitable for each type than τj , because it induces for an i-type agent
a utility Û−ji such that

Û−ji = cji + Gj −G−j

nL + nH
− v(yji /wi) + h(G−j)

= cji − v(yji /wi) + h(Gj) + Gj −G−j

nL + nH
+ h(G−j)− h(Gj)

> cji − v(yji /wi) + h(Gj).

(A.6)

Moreover, if information is asymmetric, τ̂−j would be incentive compatible because τj

would, and for all i,−i ∈ {L,H}, cji − v(yji /wi) ≥ cj−i − v(yj−i/wi) implies

cji + Gj −G−j

nL + nH
− v(yji /wi)) ≥ cj−i + Gj −G−j

nL + nH
− v(yj−i/wi).

Finally, the budget constraint of government −j would not be violated if all agents flee
to region −j because

nL

(
yL − cL −

Gj −G−j

nL + nH

)
+ nH

(
yH − cH −

Gj −G−j

nL + nH

)
= nLtL + nHtH −Gj +G−j

≥ G−j,

(A.7)

where ti = yi − ci,∀i ∈ {L,H}. Therefore, τ̂−j is a profitable deviation for −j, so there
does not exist a pooling equilibrium in j if (4.1) is false and that ends the proof.

�

Proof for Proposition 4. We prove the result for j = A and −j = B without loss of
generality. Let (GA, GB) define a subgame and consider a tax schedule profile (τA, τB)
compatible with the following separating distribution of agents : nAH = nH and nBL = nL,
in that subgame. For each region there exists only three conceivable deviations that
could potentially be profitable for that region ; (i) the government could change its fiscal
policy so as to maximise its social welfare without changing the distribution of agents
throughout the regions ; (ii) the government could also deploy a tax schedule that aims
to substitute its current residents for the other type ; (iii) the government could design
a tax schedule to bring all agents together in its region. (τA, τB) is an equilibrium in
the subgame if none of these deviations is profitable for either region.
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First, the kind of deviations described in (i) are not profitable if and only if in each
region, every agent provides an efficient labour and the budget constraint is satisfied.
So, the utility of the H-types UA

H and the L-type UB
L should be :

UA
H = v∗H −

GA

nH
+ h(GA)

UB
L = v∗L −

GB

nL
+ h(GB).

Second, if (iii) is not profitable then (ii) is not either. In fact, if a government, say j,
could be better off by replacing its current residents, say i-type agents, by the other
type of agents, say −i, then it must be the case that the −i-type agents would rather
pay Gj

n−i
instead of living in the region −j, with −j 6= j. Government j could then also

keep both types via the uniform tax schedule T̂ j(y) = Gj

nL+nH
,∀y ≥ 0 because T̂ j(y)

would be preferable not only for its current residents but also for the other type since
Gj

nL+nH
< Gj

ni
,∀i ∈ {L,H}.

Therefore, if information is symmetric, then there is no profitable deviation for either
region if and only if the government of one region cannot improve its social welfare by
attracting the agents residing in the other region with any positive tax liability. That is,

v∗L − t̂AL + h(GA) ≤ max{UB
L , U

A
H}, ∀t̂AL ≥ 0 (A.8)

and v∗H − t̂BH + h(GB) ≤ max{UB
L , U

A
H}, ∀t̂BH ≥ 0 (A.9)

which is equivalent to

v∗L + h(GA) ≤ max{UB
L , U

A
H}, (A.10)

and v∗H + h(GB) ≤ max{UB
L , U

A
H}. (A.11)

Note that (A.11) is equivalent to v∗H + h(GB) ≤ UA
H since UB

H ≥ v∗H + h(GB).
Therefore, equations (A.11) and (A.10) are equivalent to
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min

{
GA

nH
− (v∗H − v∗L), G

B

nL
+ h(GA)− h(GB)

}
≤ 0

0 ≤ GA

nH
≤ h(GA)− h(GB)

(A.12)

Since 0 ≤ h(GA)−h(GB), then G
B

nL
+h(GA)−h(GB) ≥ 0. In addition, GB

nL
+h(GA)−

h(GB) = 0 if and only if GA = GB = 0, so

min
{
GA

nH
− (v∗H − v∗L), G

B

nL
+ h(GA)− h(GB)

}
≤ 0⇔ GA

nH
≤ v∗H − v∗L.

Therefore, Equation (A.12) is equivalent to GA

nH
≤ min{v∗H − v∗L, h(GA) − h(GB)}

which, in turn, is equivalent to UA
H ≥ max{v∗L + h(GA), v∗H + h(GB)}. The tax schedules

(τA, τB) can, therefore, be defined by tAL = GA/nH , tBH = GB/nL, tAL and tBH where tAL
and tBH are so low that (τA, τB) is compatible with a separating distribution of agents.
This proves the first equation of the proposition.

On the other hand, if information is asymmetric, gathering all agents in one region
is not profitable to region A if and only if the resulting social welfare is not greater than
UA
H whenever it is possible for the government of A to propose an attractive contract to

the type-L agents :
max{UA

H , U
B
L } ≥ uML (GA) + h(GA). (A.13)

The incentive constraint in region B and the self-selection contraints for H-type imply
UA
H ≥ UB

H > UB
L . Equation (A.13) is, therefore, equivalent to

UA
H ≥ uML (GA) + h(GA).

Similarly, a profitable deviation for B consisting of gathering all agents in region B
does not exist if and only if any fiscal policy that guarantees at least an utility level
greater than uAH +h(GA)−h(GB) for type-H agents would decrease the utility of type-L
agents :

v∗L −
GB

nL
≥ uL(UA

H − h(GB), GB). (A.14)

Equation (A.14) is equivalent to

UA
H ≥ v∗H − δ + h(GB) (A.15)
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where δ = v∗H − u−1
L (v∗L − GB

nL
;GB). Note that δ ≥ 0 because otherwise it would be

possible for government B to provide a utility level of v∗L − GB

nL
to the Ls while granting

to the Hs a utility higher than v∗H .
Now we need to define the tax schedules deployed by the governments as to make

them compatible with a pooling distribution of agents when information is asymmetric.
This tax schedule can be defined by (τA, τB) =

(
(uAL , uAH , yAL , yAH), (uBL , uBH , yBL , yBH)

)
,

where uji = cji − v(yji /wi). if (τA, τB) is a feasible separating Nash equilibrium with the
H-type agents in region A and L-type agents in region B then it must be the case that
the government of each region proposes the highest utility level to its residents given its
budget constraint, that is,

(yAH , yBL ) = (y∗H , y∗L) and (uAH , uBL ) = (v∗H −GA/nH , v
∗
L −

GB

nL
) (A.16)

and then uAL and uBH are set low enough so that the incentive constraints are satisfied in
each region. Moreover the self-selection constraints require that the utility of a type-L
(resp. type-H) agent is greater when he lives in region B (resp. region A), that is,

uAH + h(GA) ≥ yBL − v(yBL /wH) + h(GB)−GB/nL (A.17)

uBL + h(GB) ≥ yAH − v(yAH/wL) + h(GA)−GA/nH . (A.18)

which yields the following equation, given (A.16).

v(y∗L/wL)− v(y∗L/wH) ≤ ∆v + ∆h+GB/nL −GA/nH ≤ v(y∗H/wL)− v(y∗H/wH).
(A.19)

Thus, (A.13), (A.14) and (A.19) are sufficient and necessary conditions for a separating
equilibrium. �

Lemma 0. Let (GA, GB) ∈ [0, G]2 define a subgame. For all strategy profile compa-
tible with a pooling distribution in j that satisfies the budget constraint in j and the
self-selection constraints, there is no pooling profitable deviation for B if :

(nL + nH)h(Gj)−Gj ≥ (nL + nH)h(G−j)−G−j. (A.20)
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Proof for Lemma 0. Because profitable deviation in the case of asymmetric informa-
tion requires additional constraints to be satisfied (namely the incentive constraints), it is
obvious that if there is no profitable deviation in the case of symmetric information, then
there cannot be one when information is asymmetric. Therefore, this proof addresses only
the case of symmetric information. We prove the lemma for j = A. Consider a couple
of tax schedules (τA, τB) compatible with a pooling distribution of agents in region A
that satisfies the budget constraint and the self-selection constraints. Since information
is symmetric, τj is entirely defined by a couple (tjL, t

j
H) where tji is a lump-sum tax on

i-type agents in region j. We have

nLt
A
L + nHt

A
H = GA (A.21)

tBi ≥ tAi −∆h, ∀i ∈ {L,H} (A.22)

where ∆h = h(GA) − h(GB). A tax schedule (t̂BL , t̂BH) designed to attract both types
from A (i.e. t̂Bi < tAi − ∆h,∀i) is a profitable deviation for region B if and only if
nLt̂

B
L + nH t̂

B
H ≥ GB. Such a profitable deviation exists for B if and only if

nL(tAL −∆h) + nH(tAL −∆h) > GB,

that is, GA > GB + (nL + nH)∆h, since the budget constraint is binding in region A.
Therefore, there is no profitable deviation that ends up with a pooling distribution of
agents in B if :

GA ≤ GB + (nL + nH)∆h

which proves the lemma.
�

Proof of Lemma 1 . Let ((tAL , tAH), (tBL , tBH)) be a strategy profile compatible with a
pooling distribution in region A such that nLtAL + nHt

A
H = GA. Lemma 0 guarantees

that there is no profitable deviation that ends up with a pooling distribution of agents
in B. Moreover, there is no separating profitable deviation for region B if and only if

∀i ∈ {L,H}, v∗i − tAi + h(GA) ≥ v∗i −
GB

ni
+ h(GB). (A.23)
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Similarly, no separating profitable deviation exists for region A if and only if

∀i ∈ {L,H}, v∗i − tAi ≥ v∗i −
GA

ni
(A.24)

Finally, if (A.23) and (A.24) are satisfied, by setting tBi to tAi − ∆h, so that the
self-selection constraints are binding, we prevent region A from every pooling profitable
deviation since its budget constraint is binding. Therefore, (A.23) and (A.24) which are
equivalent to

tAi ≤ min{G
A

ni
,
GB

ni
+ ∆h}, ∀i ∈ {L,H}. (A.25)

are necessary and sufficient conditions for (tAL , tAH) to be played in a pooling NE. �

Proof of Proposition 5. Suppose G∗H
nH
≤ min{∆v, h(G∗H)− h(G∗L)} and consider the

strategy profile (SA, SB) defined by :
SA : Region A’s strategy

— First stage
Play GA = G∗H

— Second stage

— if (GA, GB) = (G∗H , G∗L) then tAH = G∗H
nH

and tAL ≥
G∗L
nL

+ h(G∗H)− h(G∗L)

— if (GA, GB) 6= (G∗H , G∗L) and GA ≤ GB + (nL + nH)∆h then
tAH = tH(GA, GB) and tAL is defined by nLtAL + nHt

A
H = GA

— if (GA, GB) 6= (G∗H , G∗L) and GA > GB + (nL + nH)∆h then
tAL = tL(GA, GB) and tAH is defined by nLtAL + nHt

A
H = GB − (nL + nH)∆h

SB : Region B’s strategy

— First stage
Play GB = G∗L

— Second stage

— if (GA, GB) = (G∗H , G∗L) then tBL = G∗L
nL

and tBH ≥
G∗H
nL
− (h(G∗H)− h(G∗L))

— if (GA, GB) 6= (G∗H , G∗L) and GA ≤ GB + (nL + nH)∆h then
tBH = tH(GB, GA) and tBL is defined by nLtBL + nHt

B
H = GA + (nL + nH)∆h
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— if (GA, GB) 6= (G∗H , G∗L) and GA > GB + (nL + nH)∆h then
tBL = tL(GB, GA) and tBH is defined by nLtBL + nHt

B
H = GB

First, we show that for all (GA, GB) ∈ R2
+ the restriction of (SA, SB) to the subgame

defined by (GA, GB) is an equilibrium.
If (GA, GB) = (G∗H , G∗L), Lemma 1 implies that

(
(tAL , tAH), (tBL , tBH)

)
is Nash equili-

brium since tAH = G∗H
nH

, tAL ≥
G∗L
nL

+h(G∗H)−h(G∗L), tBL = G∗L
nL

and tBH ≥
G∗H
nL
−(h(G∗H)−h(G∗L))

with
SWFA = v∗H + h(G∗H)− G∗H

nH
and SWFB = v∗L + h(G∗L)− G∗L

nL
If (GA, GB) 6= (G∗H , G∗L) and GA ≤ GB + (nL + nH)∆h then nLt

A
L + nHt

A
H = GA,

tBi = tAi −∆h and tAi ≤ ∆h for all i ∈ {L,H}. Lemma 1 implies that
(
(tAL , tAH), (tBL , tBH)

)
is a pooling Nash equilibrium with

SWFA ≤ v∗H + h(G∗H)− G∗H
nH

and SWFB = −∞

By analogy, if (GA, GB) 6= (G∗H , G∗L) and GA > GB + (nL + nH)∆h then(
(tAL , tAH), (tBL , tBH)

)
is a pooling Nash equilibrium with

SWFA = −∞ and SWFB ≤ v∗L + h(G∗L)− G∗L
nL

Finally, we remark through the values of the Social Welfare Functions in the different
subgames, that no deviation from (G∗H , G∗L) is profitable for either region. �

Proof for Proposition 6. ⇒
Suppose that the pair of taxes t̃L are t̃H are paid, respectively by the L-type and the

H-type, in a perfect subgame pooling equilibrium in j. First, we know from Lemma 1
that negative taxes are not paid in pooling equilibria, so t̃L ≥ 0 and t̃H ≥ 0. Now,
notice that G∗LH is played by government j in every subgame perfect pooling equilibrium
in j. Indeed, if ((GA, τA(·, ·)), (GB, τB(·, ·)) is a perfect subgame pooling equilibrium
in j, then the payoffs for the two regions satisfy SWF j > 0 and SWJ−j = −∞. If
Gj 6= G∗LH , then government −j could deviate G−j to G∗LH in the first stage. Since
(nL + nH)h(G∗LH) − G∗LH > (nL + nH)h(Gj) − Gj no pooling equilibrium could occur
in j in the second stage. Therefore, the payoffs of region −j would be greater than
−∞ whatever the equilibrium is in the second stage. That would then be a profitable
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deviation for B. Therefore, nLt̃L + nH t̃H = G∗LH because the budget constraint must be
binding according to Remark 2.
⇐
Now, consider a set of positive tax t̃L are t̃H that satisfied : nLt̃L +nH t̃H = G∗LH . We

construct a a perfect subgame pooling equilibrium where (t̃L, t̃H) are played by A on
the equilibrium path. Consider the strategy profile (S̃A, S̃B) that has the two following
properties :

— G∗LH is played by both governments in the first stage.

— In the second stage,

— If (nL + nH)h(GA) ≥ (nL + nH)h(GB)−GB, then a pooling equilibrium
in region A is played. In particular, if GA = GB = G∗LH , then (t̃L, t̃H) is
played by both A and B which is compatible with a pooling equilibrium
in A (see Lemma 1).

— If (nL + nH)h(GA) < (nL + nH)h(GB)−GB, then a pooling equilibrium
in region B is played.

(S̃A, S̃B) is a subgame perfect equilibrium because (i) it induces an equilibrium in
every subgame and, (ii) in the first stage, any deviation by A is sanctioned by a pooling
equilibrium in B and any deviation from B leads to a pooling equilibrium in A. �

Proof of Lemma 2. Let P = ((uAL , uAH , yAL , yAH), (uBL , uBH , yBL , yBH)) be a strategy profile
compatible with a pooling distribution of agents such that uAL = uL(uAH , GA) and
uAH ≥ uMH (GA) and (yAL , yAH) is determined by solving problem (4.2) for uH = uAH . Lemma
0 guarantees that there is no profitable deviation that ends up with a pooling distribution
of agents in B. Moreover, no separating profitable deviation exists for B if and only if :

uAi + h(GA) ≥ v∗i −
GB

ni
+ h(GB), ∀i ∈ {L,H}. (A.26)

In fact, v∗i − GB

ni
+ h(GB) is the greatest utility level that region B could grant to the

i-type agent in a separating profitable deviation. And, if equation (A.26) is violated for
i, then (v∗L − GB

ni
.v∗H − GB

ni
, y∗L, y

∗
H) would be a profitable deviation for B.

Similarly, no Separation Profitable Deviation exists for region A, for the L type if
and only if
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uAL ≥ v∗L −
GA

nL
(A.27)

In fact, v∗L−GA

nL
is the highest utility that can be achieved by the L-type in region A for any

separating distribution, and if equation (A.27) is violated then (v∗L− GA

nL
, v∗H− GA

nL
, y∗L, y

∗
H)

would be a profitable deviation for A.
Finally, If uBL is small enough (i.e., uBL −∆h ≤ min{−GA

nH
, y∗H −

GA
H

nH
− v( y

∗
H

wL
)}) then

no profitable separating deviation in A for the H type is possible. Therefore, if (A.26)
and (A.27) are satisfied, given that uL(uAH , GA) = uAL and uAH ≥ uMH (GA), and by setting
uBL small enough and uBH set to uAH + ∆h, we could construct a feasible pooling NE in
A in which (uAL , uAH , yAL , yAH) is played. Therefore, (A.26) and (A.27) are necessary and
sufficient condition for (uAL , uAH , yAL , yAH) to be played in a feasible pooling NE. �

Proof for Proposition 8. ⇒ First, suppose the pair of utilities ŨL and ŨH are earned
by the L-type and the H-type respectively, in a subgame perfect pooling equilibrium
P = ((GA, τA(·, ·)), (GB, τB(·, ·)). Now suppose P induces a pooling distribution in j
and then we show that G∗LH is played by government j. Indeed, under P , the payoffs for
the two regions satisfy SWF j = ŨL and SWJ−j = −∞. If Gj 6= G∗LH , then government
−j could deviate from G−j to G∗LH in the first stage. Since (nL + nH)h(G∗LH)−G∗LH >

(nL + nH)h(Gj) − Gj no pooling equilibrium could occur in j in the second stage.
Therefore, the payoffs of region −j would be greater than −∞ whatever the equilibrium
is in the second stage. That would then be a profitable deviation for −j. So, Gj = G∗LH .

Therefore, according, to Lemma 2, Equations (5.6) and (5.8) are satisfied and there
exists GB ∈ [0, G] such that

ŨL ≥ v∗L −min
{
G∗LH
nL
− h(G∗LH), G

B

nL
− h(GB)

}
, (A.28)

which implies Equation (5.7).
⇐ Second, let ŨL and ŨH be a pair of utilities that satisfy (5.6), (5.7) and (5.8).

We construct a subgame perfect pooling equilibrium where ŨL and ŨH are earned,
respectively, by the L-type and the H-type in A on the equilibrium path. Define G̃B by

the smallest number that satisfies ŨL = v∗L−
G̃B

nL
+h(G̃B). Note that G̃B. Now, consider

the strategy profile (S̃A, S̃B) that has the two following properties.
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(1) G∗LH and G̃B are played by governments A and B, respectively, in the first stage.

(2) In the second stage,

— If (nL + nH)h(GA) ≥ (nL + nH)h(GB) − GB, then the worst pooling
equilibrium in region A is played and the utility of the L-type would then

be UA
L (GA, GB) = v∗L − min

{
GA

nL
− h(GA), G

B

nL
− h(GB)

}
. In particular,

if GA = G∗LH and GB = G̃B, then the pooling equilibrium that provides
ŨL and ŨH , respectively, to the Ls and the Hs is played. This is possible
because Equations (5.6), (5.7) and (5.8) are satisfied. (see Lemma 1).

— If (nL + nH)h(GA) < (nL + nH)h(GB)−GB, then a pooling equilibrium
in region B is played.

If ĜA is deviation from government A, then two cases can be distinguished. First,
because G̃B < G∗LH , if ĜA < G̃B, then (nL + nH)h(ĜA)− ĜA < (nL + nH)h(G̃B)− G̃B

and a pooling equilibrium in B would be played which would not be profitable for A.
Second, if ĜA ≥ G̃B and (nL +nH)h(ĜA)− ĜA ≥ (nL +nH)h(G̃B)− G̃B, then the worst
pooling equilibrium in A is played and that would not be profitable either because

UA
L (ĜA, G̃B) = v∗L −min

{
ĜA

nL
− h(ĜA), G̃

B

nL
− h(G̃B)

}

= v∗L −
G̃B

nL
+ h(G̃B)

= ŨL.

(A.29)

Finally, if ĜA ≥ G̃B and (nL +nH)h(ĜA)− ĜA < (nL +nH)h(G̃B)− G̃B, then a pooling
equilibrium in B would be played which would not be profitable for A. (S̃A, S̃B) is
subgame perfect equilibrium because (i) it induces an equilibrium in every subgames
and, (ii) in the first stage, any deviation from B leads to a pooling equilibrium in A
and any deviation from A is not profitable either. �

Proofs from Article 2
We show how our results can be extended to a broader class of demand functions

and to the case where CBI are produced with a uniform constant marginal c. Redefine
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the demand to the j-th i-type country by a mapping qji : Rn
+ → R+ and define by

A the set of price distribution for which every country has a positive demand : A =
{p̃ / qji (p̃) > 0, for all country}. Countries of the same type have symmetric demand,
that is, for every couple of countries j, j′, we have qji (p̃) = qj

′

i (σj,j′(p̃)) where σj,j′(p̃) is
the n-dimensional vector obtained from p̃ by permuting the price of countries j and j′.
We make the following standard assumptions (see Friedman (1977), Friedman (1983),
Deneckere and Davidson (1985)).

Assumption 3. A is bounded and convex. qji is twice continuously differentiable on
A with ∂qji /∂p

j
i < 0 and ∂qji /∂p

j′

i′ > 0 where {i, j} 6= {i′, j′}

Assumption 3 ensures that the demand functions are downward slopping and that
CBI programs are gross substitutes. Our analysis can be restricted without loss of
generality to the closure of A, Ā which is convex and compact.

Assumption 4. For some ε > 0, for all i, j, and all S ⊂
(
{L} × {1, 2, . . . , nL}

)
∪(

{H} × {1, 2, . . . , nH}
)
subset of the countries such that (i, j) ∈ S.

∑
(i′,j′)∈S

∂qji (p̃)
∂pj

′

i′

< −ε, ∀p̃ ∈ A.

Assumption 4 states, in particular, that the total effect of an unitary increase in
all prices on demand is negative for all country. Under this assumption, there exists a
price vector pmax = (p1,max

L , p2,max
L , ..., pnL,max

L , p1,max
H , p2,max

H , ..., pnH ,max
H ) ∈ Rn

+ such that
for all p̃ = (p1

L, p
2
L, ..., p

nL
L , p1

H , p
2
H , ..., p

nH
H ) ∈ Rn

+, if p
j
i ≥ pj,maxi , then the demand facing

at least one country is non-positive. Moreover, if each country charge a price pji such
that pji ≥ pj,maxi , except one country, this one country will face a negative demand (see
Friedman (1977), page 55). The strategy set for the j-th i-type country can, therefore,
be restricted to [0, pj,maxi ]. Now, define the revenue function of the j-th i-type country
by Rj

i (p̃) = (pji − c)qji (p̃) and let A∗ be the subset of A where every country gets a
non-negative revenu, that is, A∗ = {p̃ ∈ A / pji ≥ c, for all country}. A∗ is the only
relevant set of strategies that need to be considered.
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Assumption 5. The revenue function is quasi-concave on A∗ and
inf{pji / q

j
i (p

j
i , cIn−1) > 0} > c where In−1 is the (n − 1)-dimensional vector

with all components equal to 1.

It is worth noting that the quasi-concavity of the revenue functions is required for
the convexity of the the best response functions and, therefore, the convexity of the set
of all Pareto-improvement of the Nash Equilibrium.

Assumption 6. For all p̃ in the interior of A∗

∂2Rj
i (p̃)

∂pji
2 <

∑
{i,j}6={i′,j′}

∣∣∣∣∣∂2Rj
i (p̃)

∂pji∂p
j′

i′

∣∣∣∣∣
Assumption 3, 5 and 6 guaranty that the best response functions are contractions

(Friedman, 1977) and then the contraction mapping theorem ensures the existence of a
unique Nash equilibrium for which quantities and profits are positive. We know that
the Nash Equilibrium is inefficient in this framework and its uniqueness implies that
same type countries necessarily charge the same price pNi and get the same quantity qNi .
More generally, for any price level pi uniformly charged by the i-type countries there is
a unique price P 0

−i(pi) such that if charged by every −i-type country, then none of them
would benefit from deviating from it.

We denote by qi(pL, pH) the demand to each individual i-type country, if L-type
countries uniformly charge pL and H-type countries uniformly charge pH , and by
Ri(pL, pH) the corresponding revenue. Using the same argument as in Page 66, it is easy
to see that if (PE

L , P
E
H ) is a Pareto efficient allocation under which same type countries

charge the same price then, PE
i > P 0

i (PE
−i). Lemma 1 follows immediately through the

same proof. However, the following assumption is needed for Lemma 2.

Assumption 7. For all (pL, pH) ∈ R2
+, qH(pL, pH)−qL(pL, pH) = f(pH−pL) where

f : R→ R is a decreasing function with f(0) > 0 and f(∞) < 0.

In particular, Assumption 7 states that if all prices are equal, then H-type countries
face a higher demand than L-type countries do and this difference in quantities decrease
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as the difference in prices becomes higher. Assumption 7 also requires that the difference
in quantities, qH − qL, becomes negative if the difference in prices, pH − pL is too high.
Now, we can provide a general proof for Lemma 2.

Proof for Lemma 2. First, from Assumption 7 we have

qH(p, p)− qL(p, p) = f(0), ∀p. (A.1)

Taking the derivative of (A.1) with respect to p after multiplying it by (p− c) gives
∂RH(p, p)

∂dp
− ∂RL(p, p)

∂dp
= f(0) > 0, ∀p (A.2)

Now, note that following Assumption 7 we have pL(p) = p− f−1(0), meaning that

qH(p− f−1(0), p) = qL(p− f−1(0), p) ∀p (A.3)

Taking the derivative of (A.3) with respect to p after multiplying it by (p− f−1(0)− c)
and using Assumption 4 gives for all p
∂RH(p− f−1(0), p)

∂dp
− ∂RL(p− f−1(0), p)

∂dp
= f−1(0)[∂qL(p− f−1(0), p)

∂pL
+ ∂qL(p− f−1(0), p)

∂pH
]

< −εf−1(0)

< 0
(A.4)

Equations (A.2) and (A.4) prove the Lemma. �

Another consequence of Assumption 7 is that for all (pL, pH) ∈ R2
+, qH(pL, pH) −

qL(pL, pH) > 0 and pH−pL > 0 if and only if 0 < pH−pL < f−1(0). Considering Lemma
1, we immediately deduce that an efficient price distribution (pEH , pEL ) is achievable by a
Cooperative Nash Equilibrium if and only if

0 < pEH − pEL < f−1(0).

Assumption 3 and 5 ensure that the set of the price distributions (pL, pH)
that Pareto improve the Nash Equilibrium,{(pL, pH) ∈ R2

+/RL(pL, pH) ≥
RL(pNL , pNH) and RH(pL, pH) ≥ RH(pNL , pNH)}, is convex and compact which im-
plies that iso-revenue curves must intersect twice. Therefore, there exists a unique price
distribution (p̂L, p̂H) such that RL(pNL , pNH) = RL(p̂L, p̂H) and RH(pNL , pNH) = RH(p̂L, p̂H)
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while MRSL(p̂L, p̂H) > MRSH(p̂L, p̂H). So, an efficient convex combination of
(p̂EL , p̂EH) exists and is charaterized by MRSL(p̂EL , p̂EH) > MRSH(p̂EL , p̂EH) and
(p̂EL , p̂EH) = α(p̂L, p̂H) + (1 − α)(p̂NL , p̂NH) where α ∈ [0, 1]. We need a final special
Assumption before we can get into a proof for Proposition 2.

Assumption 8. At the Non-Cooperative Nash Equilibrium, H-type countries charge
a higher price and get a higher demand than the L-type countries 1 :

qNH > qNL and pNH > pNL

Proof for Proposition 2. One only needs to show that (p̂EL , p̂EH) is achievable by a
Cooperative Nash Equilibrium. Using Assumption 8 and considering Lemma 1 it would
be sufficient to show that

0 < p̂H − p̂L < f−1(0).

First, note that p̂H > P 0
H(p̂L) and p̂L > P 0

L(p̂H) because indifference curves intersect
with the corresponding best response line only once.

Suppose, by contradiction, that p̂H < p̂L. Then

RL(p̂L, p̂L) > RL(pNL , pNH) and RH(p̂L, p̂L) < RH(pNL , pNH).

That is impossible because RL(pNH , pNH) < RL(pNL , pNH) and RH(pNH , pNH) > RH(pNL , pNH)
and RH(p, p) grows faster than RL(p, p) according to Lemma 2. Therefore 0 ≤ p̂H − p̂L.

Now, suppose, by contradiction, that p̂H > p̂L + f−1(0). Therefore,

RH(p̂H − f−1(0), p̂H > RL(pNL , pNH)

RH(p̂H − f−1(0), p̂H) < RH(pNL , pNH)
,

Morevover, it follows from Assumption 8 that pNH < pNL + f−1(0) since qNH > qNL . So,

RL(pNL , pNL + f−1(0)) > RL(pNL , pNH) and RH(pNL , pNL + f−1(0)) < RH(pNL , pHL ),

1. A sufficient condition for Assumption 8 is

∂qj
i (p̃N )
∂pj

i

= ∂qj′

i′ (p̃N )
∂pj′

i′

, (A.5)

where p̃N is the Non-Cooperative Nash Equilibrium price distribution.
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which is impossible because ∂RL(p− f−1(0), p)
∂p

>
∂RH(p− f−1(0), p)

∂p
(see Lemma 2).

So, p̂H − p̂L ≤ f−1(0). �

Proofs from Article 3

Proof for Lemma 1. By definition of µ′, there exists a group of refugees R and a
home Ĥ such that, for all r ∈ R,

µ′(r) =



r if r ∈ R

Ĥ if r = r̂

µ(r) otherwise.

where

— r̂ ∈ R is a refugee such that r̂ forms a blocking pair with some home H and
µ(r̂) = r̂,

— Ĥ is the favorite home of r̂ among all homes H such that µ is blocked by (H, r̂).

— R ⊂ µ(Ĥ) such that q
Ĥ
≥ l(r̂) + l(µ(Ĥ))− l(R) and

(
{r̂} ∪ (µ(Ĥ) \R)

)
�
Ĥ

µ(Ĥ).

Clearly, µ′ is individually rational. We shall show that µ′ is «fair», that is, µ′ is
not blocked by a pair (r,H) such that µ′(r) ∈ H. Let r ∈ R be a refugee such that
µ′(r) ∈ H. We show that there is no H ∈ H that forms a blocking pair with r for µ′.
Suppose, by contradiction, that there is a home H such that(

{r} ∪ (µ′(H) \RH)
)
�H µ′(H) and H �r µ′(r) (A.1)

for some subset RH ⊂ µ′(H).
First, suppose r = r̂. Therefore, µ′(r) = Ĥ which implies H 6= Ĥ and then, by

definition of µ′, µ′(H) = µ(H). It follows, from (A.1), that
(
{r}∪(µ(H)\RH)

)
�H µ(H)

and H �r Ĥ which contradicts the definition of Ĥ.
Now, suppose r 6= r̂. If µ′(r) = Ĥ then µ(r) = Ĥ and it follows, from (A.1), that(

{r} ∪ (µ(H) \ RH)
)
�H µ(H) and H �r µ(r) which contradicts the fairness of µ.

Therefore, there must be some home H ′ 6= Ĥ such that H ′ = µ′(r) = µ(r).
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If H 6= Ĥ then µ′(H) = µ(H) and it follows from (A.1) that
(
{r}∪(µ(H)\RH)

)
�H

µ(H) andH �r µ(r) which, again, contradicts the fairness of µ. ThereforeH = Ĥ, that is,
µ′ is blocked by (Ĥ, r) then it follows from equation (1) that {r}∪

(
µ′(Ĥ)\R

Ĥ

)
�
Ĥ
µ′(Ĥ)

and Ĥ �r µ(r).
Furthermore, since µ′(Ĥ) = {r̂} ∪ (µ(Ĥ) \H) by definition of µ′, we obtain

{x} ∪
((
{r̂} ∪ (µ(Ĥ) \R)

)
\R

Ĥ

)
�
Ĥ
µ′(Ĥ) �

Ĥ
µ(Ĥ). (A.2)

If, in addition, r̂ ∈ R
Ĥ

then
((
{r̂} ∪ (µ(Ĥ) \R)

)
\R

Ĥ

)
= µ(Ĥ) \ (R ∪R

Ĥ
) and then,

it follows from (A.2) that {r} ∪
(
µ(Ĥ) \ (R ∪ R

Ĥ
)
)
�
Ĥ
µ(Ĥ) which contradicts the

fairness of µ since Ĥ �r µ(r). Therefore, r̂ /∈ R
Ĥ

and then R
Ĥ
∈ µ(Ĥ).

Moreover, by responsiveness of �
Ĥ
, we know from (A.1) that {r} �

Ĥ
R
Ĥ
. Therefore,

since (µ(Ĥ) \R
Ĥ

) ∪ {r} �
Ĥ

(µ(Ĥ) \R
Ĥ

) ∪R
Ĥ

would violate the fairness of µ, the set
(µ(Ĥ) \R

Ĥ
) ∪ {r} must be unacceptable for Ĥ, and by Assumption 1, that is :

q
Ĥ
< l(µ(Ĥ))− l(R

Ĥ
) + l(r). (A.3)

But we know from (A.1) that the set {r} ∪
(
µ′(Ĥ) \R

Ĥ

)
is acceptable for Ĥ, and by

Assumption 1, that is : l(µ′(Ĥ))− l(R
Ĥ

) + l(r) ≤ q
Ĥ

and then

l(µ(Ĥ))− l(R) + l(r̂)− l(R
Ĥ

) + l(r) ≤ q
Ĥ

(A.4)

since l(µ′(Ĥ)) = l(µ(Ĥ))− l(R) + l(r̂). Therefore, from (A.3) and (A.4) we get l(r̂) <
l(R). It follows by size-monotonicity of the priorities for Ĥ that R �

Ĥ
r which, by

responsiveness, contradicts, Equation (A.1).
Therefore, there is no blocking pair (H, r) for µ′ with µ′(r) ∈ H, that is, µ′ is fair.

�
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