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“Je suis de ceux qui pensent que la science est d’une grande beauté. Un scientifique dans son 
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Abstract 

Crohn’s disease (CD) and ulcerative colitis (UC), the two forms of inflammatory bowel diseases 

(IBD), are associated with dysregulated immune response in the intestinal tissue. It is mediated 

by mononuclear phagocytes (MNPs) that dialogue via the cytokine they produce with innate 

and adaptive immune cells. In mice, MNPs are stratified into conventional dendritic cells (DCs), 

macrophages (M) and monocyte-derived cells that regroup tissue monocyte-derived DCs, 

monocyte-derived M and monocytes-like cells. However, the phenotypic, molecular and 

functional diversity of MNPs and their plasticity remain to be elucidated in IBD patients. 

Therapies in IBD employ antibodies that block IL12 and IL23, thus control Th17 pathogenicity 

and plasticity and decrease intestinal inflammation. However, no cure exist nowadays for the 

treatment of IBD. In-depth study of T cell plasticity and the tissue where it occurs remain to be 

investigated. 

 

In the first chapter, we revealed the existence of two distinct CD14+ MNP subsets in colon of 

UC patients. Only, CD163-CD64+ inflammatory monocyte-like cells (P3) but not anti-

inflammatory CD163+CD64+ M (P4) accumulate in inflamed UC colon. Our findings further 

established a link between monocyte-like CD14hiCD172α+ CD163- MNPs, IL12, IL1β and the 

detection of colonic memory Th17 cells that produce IFN and IL8, which might all contribute 

to UC pathogenesis. Two CD14+ MNP subsets, resembling their counterparts in UC mucosa at 

the functional and molecular level, were also detected in CD colon. 

 

In contrast, in the second chapter, we provide evidence that Slan+ monocyte subset may 

contribute to CD but not UC immunopathogenesis. Frequency, phenotype, and function of Slan+ 

cells were examined in blood, colon, and mesenteric lymph nodes (MLN) of patients with IBD. 

We showed that pro-inflammatory CD14hiCD172α+Slan+ cells are a distinguishing feature 

between CD and UC, as they only accumulate in MLNs and colonic mucosa of CD patients.  

 

In the third chapter, we showed that MLNs of CD and UC, tissues that were hard to access for 

research use, can also be distinguished by frequencies of CXCR3−CCR6+ Th17 effector memory 

T cells (TEM) and their molecular profile. Our data further suggested that Th17 plasticity is 



ii 

 

taking place in MLN, before T cell homing to gut tissues. This investigation has clear 

implications in furthering our understanding of the disease. 

 

Finally, it has been demonstrated that monocytes are continuously recruited into murine gut 

mucosa and progressively differentiate into macrophages under homeostatic conditions, a 

maturation process interrupted in the context of inflammation. However, the environmental 

cues that regulate tissue inflammatory monocyte “waterfall” remain to be investigated in 

humans. In the fourth chapter we recapitulated in vitro human monocyte differentiation cascade, 

from CD163- inflammatory monocyte-like cells (P3) towards anti-inflammatory CD163+ 

macrophages (P4) and showed their molecular similarities to tissue CD14+ MNPs. Manipulating 

this pathway might open therapeutic avenues to restore tissue homeostasis.  

 

In conclusion, a better understanding of MNP subsets, function and plasticity in IBD 

pathogenesis would help identify novel therapeutic targets and shed light for the development 

of personalized treatments. 

 

Key words: Macrophages, Monocytes, Th17 cells, Plasticity, Slan cells, Crohn’s disease, 

Ulcerative colitis, Culture, Pathogenicity. 
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Résumé 

La maladie de Crohn (Crohn’s disease; CD) et la colite ulcéreuse (Ulcerative colitis ;CU) 

représentent deux formes distinctes de maladies inflammatoires chroniques de l’intestin (MICI), 

qui sont associées à une réponse immunitaire aberrante des tissus intestinaux  à la flore intestinale.  

Les phagocytes mononucléés (MNPs) qui dialoguent, via les cytokines qu'ils produisent, avec les 

cellules immunitaires innées et adaptatives sont impliqués dans l’induction, la perpétuation et le 

maintien de la réponse inflammatoire des MICI.  Chez la souris, les MNPs sont stratifiées en 

cellules dendritiques conventionnelles (cDCs), macrophages (M) et cellules dérivées de 

monocytes, une entité qui regroupe dans le tissu des cellules dendritiques dérivées de monocytes 

(Mo-DC),  des M dérivés de monocytes et des « monocyte-like ».  Toutefois, la diversité 

phénotypique, moléculaire et fonctionnelle des monocytes et des MNPs ainsi que la plasticité des 

monocytes restent à élucider dans les MICI.  Les anticorps bloquant les cytokines IL12 et IL23 

contrôlent la pathogénicité et la plasticité des cellules Th17, réduisant l'inflammation intestinale 

chez les patients atteints de MII. Cependant, il n’existe à ce jour aucun traitement curatif. L’étude 

approfondie de la plasticité des cellules T et du site tissulaire où elle pourrait se produire ne sont 

toujours pas clarifiés. 

 Dans le premier chapitre, nous avons révélé l’existence de deux sous-populations 

distinctes de CD14+MNPs dans le colon de patients atteints de CU. Les cellules de type 

« inflammatory monocyte-like » CD14+CD163-CD64+ (P3) à l’opposé des CD14+CD163+CD64+ 

M (P4) s'accumulent dans le côlon inflammatoire. Nos résultats ont de plus établi un lien entre 

les P3 MNPs, l’IL12, l’IL1β et la détection de cellules Th17 mémoires produisant de l'IFN et de 

l'IL8, qui contribueraient collectivement à la pathogenèse de la CU. De plus, deux sous-
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populations CD14+ MNPs similaires sur le plan fonctionnel et moléculaire a ceux trouvés en CU, 

ont été détectées dans le côlon de patients atteints de CD. 

 En revanche, dans le deuxième chapitre, nous fournissons des évidences que la sous-

population monocytaire Slan+ pourrait contribuer à l’immunopathogenèse de la CD, mais pas à 

celle de la CU.  La fréquence, le phénotype et la fonction des cellules Slan+ ont été examinés dans 

le sang, les ganglions mésentériques (MLN) et le côlon de patients atteints de MICI. Nous 

proposons que les cellules pro-inflammatoires CD14hiCD172α+Slan+ discriminent les tissus de CD 

et CU. En effet, elles ne s'accumulent que dans les MLNs et la muqueuse colique des patients 

atteints de CD. 

 Dans le troisième chapitre, nous avons montré que les MLNs de CD et de CU, qui sont 

des tissus difficiles d'accès pour leur étude fonctionnelle en recherche, peuvent également être 

distingués par la distribution et le profil moléculaire des cellules T mémoire effectrices CXCR3-

CCR6+ (Th17TEM).  Nos données suggèrent également que la plasticité de Th17 se produit dans 

les MLNs avant leur migration vers l'intestin. Cette étude pourrait avoir des implications pour 

améliorer notre compréhension de la maladie. 

 Enfin, il a été démontré qu’à l’homéostasie chez la souris, les monocytes sont 

continuellement recrutés dans la muqueuse intestinale où ils se différencient progressivement 

en M  anti-inflammatoires. Ce processus de maturation est interrompu dans le contexte d'une 

inflammation. Les signaux environnementaux qui régulent la « cascade » de maturation d’un 

monocyte classique tissulaire demeurent inconnus chez l'homme. Dans le quatrième chapitre, 

nous avons récapitulé in vitro la cascade de différenciation des monocytes humains de «CD163- 

P3-like» en  «CD163+P4-like» et avons montré leurs similitudes moléculaires avec les CD14+ 
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MNP tissulaires.  La manipulation de cette voie de différentiation pourrait ouvrir des pistes 

thérapeutiques pour restaurer l'homéostasie intestinale dans les MICI. 

 En conclusion, une meilleure compréhension des sous-populations de MNPs,  leurs 

fonction et plasticité dans la pathogenèse des MICI aidera à identifier des nouvelles cibles 

thérapeutiques et contribuera à augmenter les connaissances pour la mise au point de traitements 

personnalisés. 

 

Mots-clés: Macrophages, Monocytes, Th17 cells, Plasticité, Slan+ cells, Crohn’s disease, 

Ulcerative colitis, Culture, Pathogenicité. 
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1.1  Inflammatory Bowel Disease (IBD) 

Inflammatory bowel disease (IBD) is a worldwide health problem as its incidence is constantly 

increasing (de Souza and Fiocchi, 2016; Kaplan, 2015; Malik, 2015). It encompasses a spectrum 

of disabling, chronic, gastrointestinal (GI) inflammatory disorders including, Crohn’s disease 

(CD) and ulcerative colitis (UC).  

 

1.1.1 CLINICAL DESCRIPTION : CD VERSUS UC 

CD and UC are relapsing inflammatory disorders with distinct clinical and pathological features 

(Zhang and Li, 2014). First, CD involvement extends to the entire GI tract from mouth to anus, 

but most commonly affect the terminal ileum and colon (Baumgart and Sandborn, 2012). It is 

characterized by patchy and discontinuous inflammation that penetrates the intestinal wall.  

Histological appearance include thickened submucosa with granulomas and deep fissuring 

ulcerations. Macroscopically, “creeping fat” and mesenteric fat hypertrophy are characteristics 

of CD, but not UC (Bertin et al., 2010). Inflammation in UC is continuous and involves the 

colon and rectal mucosa (Ordas et al., 2012). It is superficial and restricted to the mucosal and 

submucosal layers. Histologically, UC presents with distorted crypt architecture and crypt 

granulomas.  

 

CD and UC are debilitating conditions. Patients suffer from a variety of symptoms related to 

gut inflammation, including abdominal pain, diarrhea, vomiting, weight loss, fatigue, fever and 

rectal bleeding. Also, CD patients might present with complications, such as fistulas between 

the GI tract and the skin, anus or vagina, or intestinal blockage due to strictures. There is still 

no cure for IBD, but symptoms are controlled via immunosuppressants or anti-inflammatory 
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steroids that decrease inflammation, changes in diet that reduce environmental triggers, and 

surgery in extreme cases to remove injured sections of the GI tract (Baumgart and Sandborn, 

2007). Another complication faced by IBD patients is the significantly higher risk of developing 

colorectal cancer (Herszenyi et al., 2015). The constant inflammation may lead to non-

neoplastic inflammatory epithelium that progresses to dysplasia, leading to carcinoma. In 

addition, long use of immunosuppressive therapies contribute to cancer development (Yashiro, 

2015).  

 

1.1.2 EPIDEMIOLOGY AND ECONOMIC BURDEN 

Since the middle of the twentieth century, IBD has become a growing problem in industrialized 

countries including Canada. The incidence of CD and UC steadily increased in North America, 

Europe, Australia and New Zealand, to reach a plateau in the twenty-first century. It is presently 

up to 0.5% of the general population in the Western world (Molodecky et al., 2012). The last 

few decades observed a rapid increase in IBD incidence rate in countries that are adopting a 

more western lifestyle (Loftus, 2004). In fact, emergence of IBD has been documented in 

recently industrialized countries in Asia, Middle East and South America; although the 

incidence is still significantly lower than in Western countries (Kaplan, 2015). Hence, IBD is a 

global concern.  

 

The direct and indirect financial burden for managing IBD in the Western world is considerable. 

For instance in Canada, 200,000 people are estimated to have IBD and the direct medical cost 

is over 1.2 billion Canadian dollars yearly, including ambulatory care, hospitalizations, surgery 

and pharmaceuticals (Rocchi et al., 2012). The treatment of IBD has drastically evolved in the 
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last two decades with the introduction of biologics that decreased the need for surgeries (Frolkis 

et al., 2013). Unfortunately, the increased use of biologic agents considerably augmented health 

care costs, as the annual cost per patient is estimated at more than 25,000 United States dollars 

(Marchetti and Liberato, 2014). Furthermore, an indirect cost is due to loss in work productivity, 

which adds on the cost of managing IBD: it is estimated at 1.6 billion Canadian dollars annually 

(Rocchi et al., 2012). Finally, the reduced quality of life for patients and their families comes 

at an unmeasurable cost. This growing global IBD burden needs to be met with equivalent 

studies to better understand and manage both the cause and disease progression.  

 

1.1.3 CAUSES OF IBD 

The exact cause of IBD is not completely clear. It is suggested to involve an abnormal immune-

mediated inflammatory response against host microbiome in genetically susceptible individuals 

(de Souza and Fiocchi, 2016; Zhang and Li, 2014).   

 

The progress seen in the understanding of IBD genetics relays two key messages regarding 

genetics and its role in IBD pathogenesis (Zhang and Li, 2014). On the one hand, the increasing 

number of susceptibility genes identified in IBD supports a critical role of genetics in IBD 

development. On the other hand, susceptibility genes account for about 25% of IBD heritability 

(Zuk et al., 2012), reinforcing the idea that IBD is a polygenetic and complex disease.  

 

These complex, multi-factorial interactions have been the subject of a multitude of studies over 

the past 20 years, and will be briefly discussed below. 
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1.1.3.1 Genetics 

The contribution of genetics to IBD came from early epidemiological studies that demonstrated 

familial clustering in CD and UC, as they noted high sibling risk ratios. Furthermore, twin 

studies that compared disease concordance rates between monozygotic and dizygotic twins that 

share the same environment have supported the role of genetics in IBD (Halme et al., 2006). 

Linkage studies tried to identify the specific gene responsible for IBD. The genetic risk, 

however, is not a single locus, but spread through the genome as with other complex disorders 

(de Lange and Barrett, 2015); thus, more in-depth genetic studies were needed.  

 

The last two decades have seen technological improvements in RNA/DNA sequencing and 

analysis, which lead to major advancement in our knowledge of the genetic contributions to 

IBD (McGovern et al., 2015). Indeed, genome-wide association studies (GWAS) have 

identified single nucleotide polymorphisms (SNPs) in IBD. The number of IBD-gene loci are 

currently at more than 200, most are shared between CD and UC (Jostins et al., 2012; Liu et al., 

2015).  

 

The first CD susceptibility gene identified was NOD2 (nucleotide-binding oligomerization 

domain-containing protein 2) (Ogura et al., 2001). NOD2, a member of the NOD-like receptor 

(NLR) family, codes for the intracellular receptor of muramyl dipeptide (MDP), a motif found 

in peptidoglycan of Gram-positive and Gram-negative bacteria that is crucial for bacterial 

recognition (Inohara et al., 2003). Pathogenicity of NOD2 in CD stems in part from impairment 

of bacterial clearance that results in increased inflammation. Moreover, NOD2 is a negative 

regulator of TLR2 stimulation; defects in NOD2 lead to increased Th1 response (Watanabe et 
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al., 2004), and suppression of transcription of the anti-inflammatory cytokine IL10 (Noguchi et 

al., 2009). These are only a few of the many effects on innate and adaptive immunity observed 

with NOD2 defects (de Souza and Fiocchi, 2016).  

 

The role of autophagy in IBD pathogenesis has been confirmed by the identification of 

ATG16L1 and IRGM variants in IBD patients (Hampe et al., 2007; McCarroll et al., 2008). 

Autophagy is implicated in housekeeping duties via the removal of damaged organelles and 

misfolded proteins that help maintain cellular homeostasis. Dysregulation in the unfolded 

protein response leads to endoplasmic reticulum stress that has also been linked to IBD 

pathogenesis (Kaser and Blumberg, 2011). In addition, autophagy is essential for host defense 

against intracellular pathogens (Deretic and Levine, 2009). Noteworthy, ATG16L1 and IRGM 

have been shown to act together in CD development (Hoefkens et al., 2013). Furthermore, 

stimulation of NOD2 in epithelial cells activates ATG16L1-dependent autophagy and bacterial 

killing, a mechanism impaired in CD patients (Homer et al., 2010). Hence, gene variant 

interactions are implicated in IBD and fit perfectly in its complexity.  

 

GWAS also permitted the identification of another significant association between CD, UC, 

and the IL23R gene (Duerr et al., 2006). The latter codes for the receptor of the pro-

inflammatory cytokine IL23, implicated in the generation and maintenance of T helper cell 17 

(Th17). Noteworthy, one of the IL23R variant accords a two to three-fold protection against 

IBD development (Duerr et al., 2006), that is higher in CD than UC (Jostins et al., 2012). This 

loss-of-function allele causes a decrease in the number of IL17-producing CD4+ and CD8+ T 

cells (Sarin et al., 2011), in addition to a decrease in IL17 production and STAT3 
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phosphorylation (Di Meglio et al., 2011; Pidasheva et al., 2011). Other gain-of-function IL23R 

variants have been described in IBD (Duerr et al., 2006; Kim et al., 2011b; Newman et al., 

2009). Furthermore, variants in IL12B, encoding the p40 subunit of IL12 and IL23, have been 

associated with CD and UC (Zhang and Li, 2014). The Th17-IL23 axis plays an important role 

in the pathogenesis of IBD and will be further discussed in this thesis.  

 

1.1.3.2 Environment 

Traditionally, IBD affected people living in the Western world. This notion was challenged by 

epidemiological studies that ruled out ancestry and ethnicity as risk factors of IBD, and instead 

implicated the environment that we live in. Indeed, people of all ethnic groups, living in the 

Western world for many generations, have been affected by IBD (Afzali and Cross, 2016). 

Furthermore, in Western countries, first generation descendants of immigrants from developing 

countries with a low prevalence of IBD, have similar risks as the base population for IBD 

development. In fact, pediatric patients with IBD in western countries are culturally diverse 

(Afzali and Cross, 2016; Benchimol et al., 2015a; Benchimol et al., 2015b). This suggests that 

as developing countries adapt a western mode of life, rates of IBD will escalate similar to 

western countries (Kaplan, 2015). 

 

Multiple environmental factors are involved in IBD pathogenesis including diet,  smoking and 

antibiotic use (Zhang and Li, 2014). As discussed earlier, adaptation of a westernized diet, high 

in meat, saturated fat, and carbohydrates but low in vegetables, has been associated with an 

increased incidence of IBD (Malik, 2015). Vitamin D deficiency has also been associated with 

an increased risk for IBD (Leslie et al., 2008). Interestingly, smoking has been shown to have 
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protective effect in UC, but not CD, patients by decreasing relapse rate (Lakatos et al., 2007). 

Finally, the use of antibiotics has been linked with pediatric IBD development; actually, 

children diagnosed with IBD were more likely to have taken antibiotics in the first year of life 

compared to controls (Shaw et al., 2010). Thus, environmental factors affect IBD development.  

 

1.1.3.3 Microbiota 

The healthy human gut microbiota is composed of four major phyla: Firmicutes and Bacteroidetes 

phyla dominate, followed by Proteobacteria and Actinobacteria phyla that are rare.  

 

The link between IBD pathogenesis and microbial dysbiosis has been well established (Somineni 

and Kugathasan, 2019). First, the gut flora in CD and UC have a significantly reduced biodiversity 

and richness in fecal microbiome when compared to healthy controls (Frank et al., 2007; Gevers 

et al., 2014; Joossens et al., 2011), mainly due to a decline in Firmicutes diversity (Matsuoka and 

Kanai, 2015).  Second, a shift in the equilibrium between commensal and pathogenic microbial 

populations has been seen in IBD. While Firmicutes and Bacteroidetes phyla predominate in 

healthy intestine, they are under-represented in CD and UC. An increase in enterobacteria and 

Proteobacteria have been reported in IBD patients (Martinez et al., 2008). Interestingly, healthy 

family relatives of IBD patients showed the same alterations in their microbiota and have a higher 

risk than the general population of developing IBD (Joossens et al., 2011; Varela et al., 2013). 

Noteworthy, dysbiosis in IBD is not restricted to bacterial populations only, it includes viruses, 

bacteriophages and fungi (Somineni and Kugathasan, 2019).  
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IBD patients have a faulty epithelial barrier leading to augmented intestinal permeability to 

commensal and pathogenic bacterial populations in the intestinal lumen (Martini et al., 2017). The 

first physical barrier encountered by intestinal microorganisms is the mucous layer, secreted by 

goblet cells to cover the epithelium. The mucus layer is normally composed of two layers. The 

outer layer, with its loose composition, favors bacterial growth, whereas the inner layer is tightly 

adherent and sterile. In IBD, however, the inner adherent mucosal layer has a marked increase in 

bacterial populations (Johansson et al., 2008; Ott et al., 2004). The second line of defense against 

bacterial invasion is the intestinal epithelial layer, composed of enterocytes and specialized 

epithelial cells (goblet cells and Paneth cells). Epithelial cells secrete various anti-microbial 

peptides to ensure protection from invading pathogenic microbes. Patients with CD have a 

dysfunctional expression of anti-microbial peptides (Wehkamp et al., 2003). 

 

Microbial dysbiosis leads to disturbance in functional processes that contribute to IBD 

establishment. For example, IBD patients have lower frequencies of butyrate-producing 

bacteria, belonging to the Firmicutes phylum. The lower levels of the short chain fatty acid 

(SFCA) butyrate have been well documented in IBD (Sokol et al., 2008; Sokol et al., 2009; 

Takaishi et al., 2008).  Butyrate plays an important role in intestinal homeostasis (Somineni and 

Kugathasan, 2019) through inhibition of NFκB activation. Also, it maintains epithelial health 

by serving as an energy source for colonic epithelial cells and increasing the expression of tight 

junction proteins, thus ensuring intestinal epithelial impermeability. On the contrary, higher 

frequencies of sulfate-reducing bacteria have been observed in IBD patients, leading to higher 

levels of hydrogen sulfide (H2S). The latter has been shown to cause DNA damage and reduce 

disulfide bridges of the mucus layer compromising the integrity of the mucosal barrier and 
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making it more permeable to bacterial growth (Ijssennagger et al., 2015). Collectively, these 

data suggest that gut microbiome manipulation could be a therapeutic avenue in IBD patients.   

 

1.1.3.4 Immune cells 

The study of IBD pathogenesis examines mucosal immunity. It is established that an erroneous 

innate and adaptive immune response to the commensal flora contributes to intestinal 

inflammation in IBD patients (de Souza and Fiocchi, 2016). Recent, immunological studies 

examining the role of mucosal innate immune cells implicate them in maintenance of epithelial 

barrier integrity, microbial sensing, phagocytosis, and autophagy. 

 

The innate immune response is the first line of defense against invading pathogens. It is not specific 

to antigens, and thus quick, allowing the body to respond within minutes or hours to stimuli. The 

innate immune response implicates epithelial cells, granulocytes (basophils, neutrophils, 

eosinophils, and mast cell), mononuclear phagocytes (monocytes, macrophages and dendritic cells 

(DCs)), innate lymphoid cells (ILC1, ILC2 and ILC3) and natural killer (NK) cells. Innate cells 

are specialized in recognition of microbial antigens via their cell surface receptors known as pattern 

recognition receptors (PRRs) and include toll-like receptors (TLRs), as well as cytoplasmic 

receptors known as NOD-like receptors (NLRs) (Abreu et al., 2005). Studies demonstrated 

abnormal behavior of cells mediating innate immunity upon stimulation of TLRs and NOD 

proteins in individuals with IBD (Abreu et al., 2005). On the other hand, adaptive immunity is 

specific for the antigen and takes several days to establish; it involves B and T cells (de Souza and 

Fiocchi, 2016).  
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Humoral homeostasis is disturbed in IBD patients (Uzzan et al., 2016). More specifically, an 

impaired production of the non-inflammatory immunoglobulin A (IgA) has been noted. IgA 

antibodies have a role in maintaining intestinal homeostasis by coating commensal bacteria that 

translocate across the epithelial barrier. Furthermore, IBD patients have an increased production 

of pro-inflammatory IgG antibodies, and their B cells have a higher secretion of the pro-

inflammatory cytokine IL8/CXCL8 (Brandtzaeg et al., 2006; Noronha et al., 2009). Finally, a 

higher frequency of plasma cells is well-documented in the intestinal lamina propria of IBD 

patients (Uzzan et al., 2016).   

 

Work in the last two decades has focused primarily on the role of T cell-mediated immune 

responses in IBD pathogenesis, which led to the view that CD is driven by a helper type 1 (Th1) 

response, based on elevated levels of IL12 and IFNγ, whereas UC by a helper type 2 (Th2) 

response due to the enhanced production of IL5 and IL13 (Zhang and Li, 2014). The discovery of 

IL17-producing Th17 cells required the revision of the Th1-Th2 paradigm to include the interplay 

between Th1, Th2, Th17, and also regulatory T cells (Treg) (Ueno et al., 2018). 

 

In this thesis work we will specifically explore Th cells, mononuclear phagocytic cells, their 

interactions, and also the potential role they play in IBD pathogenesis. 
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1.2 Monocyte’s journey from the bone marrow to the blood 

Monocytes along with macrophages and dendritic cells (DCs) make up the mononuclear 

phagocyte system (MPS) (Guilliams et al., 2018). In humans, CD14 and CD16 expression in 

the HLA-DR+ population identifies the classical CD14+CD16-, non-classical CD14lowCD16+ 

and intermediate CD14+CD16+ monocyte populations. The mice equivalent of classical and 

non-classical monocyte subsets have been identified as Ly6ChighCX3CR1int and 

Ly6ClowCX3CR1high, respectively. Thus far, no murine counterpart has been established for the 

human intermediate phenotype; a potential equivalent was suggested by Mildner et al. as 

Ly6CintMHCII+ (Mildner et al., 2017).  

 

Although this thesis focuses on human IBD, most of the data presented in this section stems 

from murine studies, reflecting its abundance in the literature. Furthermore, it is more feasible 

to investigate cell ontogeny in murine models. Human studies will be specifically mentioned.  

  

1.2.1 GENERATION OF MONOCYTES IN THE BONE MARROW  

After weaning, monocytes develop in the bone marrow starting from the oligopotent 

hematopoietic stem cell (HSC) in a process known as monopoiesis. In this hierarchical model, 

progenitor cells gradually become more restricted and ultimately give rise to various types of 

circulating cells, a phenomenon studied mainly in mice (Figure 1-1A) (Ginhoux and Jung, 

2014; Guilliams et al., 2018). 
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Figure 1-1: Development of murine monocytes under physiological conditions. 

 (A) The classical hierarchical model of hematopoiesis in the murine bone marrow.  

(B) The updated model of hematopoiesis proved by single-cell RNA sequencing technologies.  

In this model, HSC multiply and fill the multi-potent progenitor (MPP) pool, with subsets 

primed to a cellular lineage. Downstream precursor populations are a heterogenous mix of 

committed cells. The rectangles correspond to the precursors represented in panel A. 

* Dress et al. recently showed that pDCs do not develop from the CDPs (Dress et al., 2019). 

(Adapted from (Guilliams et al., 2018), authorization code: 4550280688908). 

In this classic tree-model, the multi-potent progenitors (MPP) sub-divide into the 

myeloerythroid or lymphoid lineage through the common myeloid or lymphoid progenitor 

(CMP or CLP), respectively. The CMP differentiates into the granulocyte and macrophage 

progenitor (GMP) that generates the granulocytic lineage - which includes neutrophils, 

eosinophils and basophils - or further divides into the bipotent monocyte-macrophage/dendritic 

cell precursors (MDP). The later splits into either the common DC precursor (CDP), or the 

common monocyte progenitor (cMoP) that gives rise to Ly6Chi and Ly6Clo monocytes in in 

vitro cultures and adoptive transfer models (Hettinger et al., 2013). Studies of cMoP biology, 
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expressing Ly6C in mice and CD14 in humans, revealed its high proliferative abilities (Chong 

et al., 2016; Hettinger et al., 2013; Kawamura et al., 2017). cMoP transition to a CXCR4-

expressing pre-monocyte stage before differentiating in the bone marrow, within 24 hours, into 

mature Ly6C+CXCR4-CCR2+ monocytes (Chong et al., 2016).  

 

Conventional dendritic cell (cDC) populations, cDC1 and cDC2, arise from a distinct precursor, 

the CDP (Murphy et al., 2016). B, T, and NK cells as well as ILCs arise from a separate 

oligopotent precursor, the CLP, early in the differentiation process (Rothenberg, 2014). 

Plasmacytoid dendritic cells (pDCs) were originally thought to have a myeloid or lymphoid 

developmental pathway, arising from a B cell precursor (Shortman et al., 2013). However, 

Dress et al. recently demonstrated using a combination of transcriptomic studies, as well as in 

vivo and in vitro assays, that pDCs develop from the lymphoid progenitor, independent of the 

cDC lineage (Dress et al., 2019).  

 

Recent single cell RNA sequencing studies on both human and mice bone marrow cells made 

it clear that the tree-like hierarchical structure for hematopoiesis is an oversimplification. First, 

the circles, defined by expression of a few markers, do not represent homogenous populations. 

In fact, heterogeneity within the “oligopotent” HSC compartment has been observed, with cells 

pre-committed to the lymphoid, myeloid and megakaryocyte lineage (Dykstra et al., 2007; 

Notta et al., 2016; Sanjuan-Pla et al., 2013; Velten et al., 2017). Second, the tree implies limited 

potential transitions between various circles, an underestimation of the differentiation in vivo 

(Laurenti and Gottgens, 2018). Indeed, unipotent progenitors can either emerge through 

intermediate bipotent populations (classical model) or directly emerge from HSC (Naik et al., 
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2013; Velten et al., 2017). Moreover, monocyte transcriptional profile was already expressed 

in some CMPs and GMPs (Paul et al., 2015). Thus, a new model was proposed that is mapped 

over the classical tree-model (Figure 1-1B). It highlights the heterogeneity within the precursor 

populations, the early lineage commitment, as well as the diversity in routes taken (Guilliams 

et al., 2018; Laurenti and Gottgens, 2018) 

 

Monocyte lineage commitment is ensured by growth and transcriptional factors. Indeed, 

deletion of PU.1, IRF8 and KLF4 (Alder et al., 2008; Feinberg et al., 2007; Kurotaki et al., 

2013) reduces the frequency of Ly6Chi monocytes. Some studies also report lower levels of 

non-classical monocytes, as it is believed that they arise, in part, from Ly6C+ monocytes 

(Sunderkotter et al., 2004). In humans, an autosomal recessive IRF8 mutation was associated 

with anti-mycobacterial immunity as the infant lacked circulating monocytes and DCs 

(Hambleton et al., 2011). Moreover, a human GATA2 deficiency is associated with a 

progressive loss of monocytes and DCs (Bigley et al., 2011; Collin et al., 2015; Dickinson et 

al., 2011). On the other hand, Bach2 negatively regulates monocyte development as Bach2-/- 

mice have higher Ly6C+ counts (Kurotaki et al., 2018). 

 

1.2.2 MONOCYTE SUBSETS IN THE BLOOD 

Like other leukocyte populations, circulating monocytes are heterogeneous at the phenotypic 

and functional level.  

 

Flow cytometry development allowed the identification of FcRIII/CD16-expressing monocyte 

subsets (Passlick et al., 1989), starting a new chapter in understanding monocyte biology in 
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humans. A novel monocyte nomenclature was proposed based on the combination of CD14 and 

CD16 expression on HLA-DR+ cells: “classical” CD14+CD16- monocytes, representing 80–

90% of the circulating monocyte pool, and the remaining 10–20% distributed between 

CD14+CD16+ intermediate and CD14loCD16+  “non-classical” monocytes (Ziegler-Heitbrock 

and Hofer, 2013).  

 

Monocyte classification in mice evolved with the generation of CX3CR1-GFP mice (Jung et 

al., 2000). It allowed the identification of two CD11b+CD115+ monocyte populations: 

Ly6ChiCX3CR1intCCR2+CD62L+CD43lo and Ly6ClowCX3CR1hiCCR2loCD62L-CD43+ 

(Geissmann et al., 2003; Jakubzick et al., 2013; Jung et al., 2000; Palframan et al., 2001) . As 

was pointed out earlier, Ly6Chi monocytes associated with human “classical” CD14+CD16-, and 

Ly6Clow with “non-classical” CD14lowCD16+ monocytes. However, genetic and phenotypic 

differences are noted. For instance, HLA-DR expression is used for monocyte identification in 

humans, while MHCII expression is seen only on a fraction of murine monocytes. Moreover, 

murine, but not human, monocytes express PPAR signature and have a differential expression 

of phagocytic genes (Cros et al., 2010; Ingersoll et al., 2010). Finally, classical to non-classical 

monocyte ratio is different in humans and mice; whereas classical monocytes are favored in 

humans, both subsets are equally represented in mice (Guilliams et al., 2018). 

 

Classical monocytes have been shown to transition to non-classical monocytes in mice 

(Sunderkotter et al., 2004; Tacke et al., 2006; Thomas et al., 2016; Varol et al., 2007; Yona et 

al., 2013), and recently in humans (Patel et al., 2017). Deuterium labeling analysis in humans 

recapitulated what was seen in mice studies, and revealed a sequential labeling of circulating 
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monocyte subpopulations (Patel et al., 2017). First, classical monocytes develop from 

precursors in the bone marrow; they enter the circulation where they either differentiate into 

intermediate monocytes, extravasate into tissues or die. Analogously, intermediate monocytes 

differentiate into either non-classical monocytes or die (Figure 1-2). The relationship between 

intermediate and non-classical monocyte subsets in human was further suggested by their 

proximity at the molecular level (Wong et al., 2011). Plus, a time course study in patients with 

skin infection observed that an upsurge in CD14+CD16+ intermediate monocytes was followed 

by an increase in the frequency of CD14loCD16+ non-classical monocytes  (Ziegler-Heitbrock 

and Hofer, 2013).  

 

 

Figure 1-2: The sequential model of monocyte kinetics at steady state in humans. 

Patel et al. demonstrated, using deuterium labeling and a mathematical model, the sequential 

development of the various monocyte subsets. Progenitor cells in the bone marrow (purple) 

proliferate and differentiate into classical monocytes. They stay in the bone marrow for 1.6 
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days, before entering the circulation. 99% of circulating classical monocytes (CD14+CD16-

) will leave the circulation (due to death or migration into tissues), and 1% will differentiate 

into intermediate monocytes (CD14+CD16+) that in turn will mature into non-classical 

monocytes (CD14loCD16+). Black bold text represents the lifespan, in days, of each subset. 

(Adapted from (Patel et al., 2017); authorization code: 4601400556234). 

 

The human intermediate monocyte population is less characterized. While classical and non-

classical monocyte subsets were homogenous, the intermediate population (CD14+CD16+ in 

humans, Ly6Cint in mice) was heterogenous as demonstrated by unbiased single cell RNA 

sequencing studies (Mildner et al., 2017; Villani et al., 2017). Two populations formed the 

murine Ly6Cint monocytes: CD209a+MHCII+Ly6Chi-int and the “real” intermediate population 

that had a transitional transcriptional profile between Ly6Chi and Ly6Clo populations (Mildner 

et al., 2017). Under pathological conditions CD209a+MHCII+Ly6Chi-int population develop into 

monocyte-derived cells (Menezes et al., 2016). Similarly, Villani et al., showed heterogeneity 

within the CD14+CD16+ monocyte compartment (Villani et al., 2017), identified by higher HLA 

expression (Guilliams et al., 2018). A fraction of the CD14+CD16+ gate spread across the 

classical and non-classical monocyte clusters. The remaining cells were found in two clusters; 

Mono3 expressing cell cycle and differentiation genes, and Mono4 with cytotoxic gene 

signature (Villani et al., 2017). The equivalent to the Mono4 subset was absent in mice. New 

correlation studies are required to find equivalents of the newly identified monocyte populations 

in mice and humans. 

 

Thus, in the circulation, classical monocytes’ function is limited to their conversion into non-

classical monocytes 
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1.2.2.1 Monocyte function in the vasculature 

Murine and human non-classical monocytes display “patrolling” function at steady state as they 

crawl on the luminal surface of vascular endothelium (Auffray et al., 2007; Carlin et al., 2013). 

Moreover, they phagocytose necrotic endothelial cellular debris (Carlin et al., 2013). Thus, an 

endothelial surface sensing and scanning function is implied for Ly6C - monocytes. Upon TLR7 

stimulation, the latter secrete inflammatory cytokines and chemokines to recruit neutrophils for 

triggering endothelial necrosis (Carlin et al., 2013). In humans, CD14loCD16+ monocytes have 

a similar TLR7/TLR8-dependent patrolling activity (Cros et al., 2010). Noteworthy, non-

classical monocytes respond poorly to bacterial lipopolysaccharide (LPS) (Cros et al., 2010).  

 

Human non-classical monocytes comprise a population expressing slan, a carbohydrate 

modification of P-selectin glycoprotein ligand 1 (PSGL-1) (Cros et al., 2010; Hofer et al., 2015; 

Schakel et al., 2002). The latter is targeted by the IgM monoclonal antibody M-DC8 that was 

generated by Schakel et al. via immunization of Balb/c mice with mononuclear cells depleted 

of lymphocytes and monocytes from human blood (Schakel et al., 2002; Schakel et al., 1998). 

Slan+ cells with a modified PSGL-1 failed to bind either P- or E- selectins (Schakel et al., 2002); 

this raises the question of whether slan control cell migration into specific tissues. Of note, the 

slan ligand remains unknown (Ahmad et al., 2019).  

 

Slan+Class II+ cells were originally thought to delineate the major circulating DC subset in the 

blood of healthy individuals; the current consensus is that they cluster with non-classical 

monocytes (Hofer et al., 2015). At homeostasis, slan+ cells are implicated in anti-viral response 

(Cros et al., 2010). In the context of pathology, these cells produce pro-inflammatory cytokines 
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that include IL1β, IL6, IL12, IL23, and TNF, and promote Th1/Th17 cell responses (Gunther 

et al., 2013; Hansel et al., 2011). Histologic analysis revealed the presence of slan+ cells in 

patients with psoriasis, rheumatoid arthritis, systemic lupus erythematosus (SLE), multiple 

sclerosis (MS), cancer and CD (Costantini et al., 2011; Hansel et al., 2011; Schakel et al., 2006; 

Thomas et al., 2014). However, they were not compared between CD and UC patients, nor was 

their function assessed in IBD. Consequently, in this thesis work, we have investigated the 

differential accumulation of slan+ cells in blood, lymphoid tissues, and colonic mucosa of CD 

and UC patients, and also evaluated their phenotype and function. 

 

Circulating monocytes serve as an “emergency squad” capable of mobilizing rapidly and in 

great numbers from the bone marrow to site of inflammation, where they contribute to defence 

or resolution of inflammation. In fact, in humans, classical monocytes are held in the bone 

marrow for 38 hours for a post-mitotic maturation phase, forming a “reservoir” (Patel et al., 

2017). Noteworthy, the spleen is a peripheral reservoir of both Ly6C+ and Ly6C- monocyte 

populations (Swirski et al., 2009). Under inflammatory conditions, the reserve population is 

quickly released into circulation. Let us follow monocyte’s journey to the intestine, where 

classical monocyte function in the tissue will be further discussed. 
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1.3 Monocyte’s journey from the blood to the intestine 

In contrast to non-classical monocytes, classical monocytes exert their protective function 

outside the vasculature, at sites of injury or infection. Hence, monocyte trafficking and 

migration into tissues is fundamental, followed by monocyte differentiation into macrophages  

or DCs (Guilliams et al., 2018).  

 

1.3.1 MONOCYTE ARRIVAL TO THE INTESTINE 

1.3.1.1 Signals for the recruitment of monocytes 

Much of the work on monocyte trafficking has come from studies in heart and skin diseases 

that established different homing mechanisms for classical and non-classical monocytes in both 

humans and mice. CCR2+CX3CR1- classical monocytes employ mainly CCR2/CCL2 and L-

selectin/CD62L for trafficking (Ancuta et al., 2009; Geissmann et al., 2003; Weber et al., 2000). 

Conversely, CX3CR1+CXCR4+CCR2-CD62L- non-classical monocytes undergo trans-

endothelial migration upon binding to CXCL12, as well as soluble or membrane-bound 

CX3CL1 (neurotactin in mice, fractalkine in humans) expressed on endothelial cells and tissues  

(Ancuta et al., 2009; Ancuta et al., 2003; Auffray et al., 2007; Geissmann et al., 2003; Weber 

et al., 2000).  

 

The role of CCR2/CCL2 axis in monocyte homing was confirmed for gut homing (Allers et al., 

2014). In fact, deletion of CCR2 or its ligands, CCL2 and CCL7, result in reduced circulating 

monocytes in mice (Serbina and Pamer, 2006; Tsou et al., 2007). Even though the main cellular 

source of CCL2 in the intestine remains elusive, CX3CR1+ resident macrophages express CCL2 

and CCL7 (Takada et al., 2010; Zigmond et al., 2012), and thus, regulate their own maintenance 



22 

 

by recruiting CCR2+ monocytes to the tissue. Other molecules have also been described in 

monocyte trafficking to the small and large intestine and these include CCR9 (Bernardo et al., 

2013; Linton et al., 2012) and integrin α4β7, respectively. They are implicated in non-classical 

monocyte homing to the gut to mediate intestinal healing (Schleier et al., 2019).  

 

1.3.1.2 Monocyte extravasation 

In response to chemokine signals, monocytes exit the circulation in a process known as 

diapedesis. 

 

Monocyte diapedesis through the endothelium follows the closely regulated, multi-step cascade 

initially described for neutrophils involving a series of interactions with endothelial cells 

(Gerhardt and Ley, 2015; Kolaczkowska and Kubes, 2013). Leukocyte recruitment cascade in 

most tissues follows these steps: (1) tethering (2) rolling (3) adhesion (4) crawling (5) 

transmigration (Figure 1-3). 

 

 

Figure 1-3: The monocyte adhesion cascade. 

Activated endothelial cells express adhesion molecules (ICAM-1, VCAM-1), selectins (P and 

E) and chemokines that interact with monocyte ligands. A multi-step cascade for the 
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transendothelial migration of monocytes. Monocyte transmigration can follow either a 

paracellular or transcellular migration mechanism. 

(PECAM-1, platelet endothelial cell adhesion molecule-1) 

(Taken from (Gerhardt and Ley, 2015); authorization code: 4602550940193). 

 

Upon receiving inflammatory signals, endothelial cells upregulate the expression of 

intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E- 

and P-selectins as well as CCL5 and CXCL8/IL8 (referred to as IL8 throughout this thesis) 

chemokines on the luminal surface of the endothelium (Gerhardt and Ley, 2015; Imhof and 

Aurrand-Lions, 2004).  First, E- and P- selectins interact with glycoprotein ligands, more 

specifically the O-glycosylated carbohydrate ligand on PSGL-1 expressed on all monocytes, 

permitting a weak binding or tethering to endothelial cells and initiation of adhesion cascade. 

Noteworthy, PSGL-1 is more highly expressed by classical Ly6C+ monocytes when compared 

to Ly6C- monocytes, which explains their higher recruitment into tissues (An et al., 2008). 

Second, VLA-4 on monocytes binds to VCAM-1 and mediates slow rolling on the endothelium 

in the direction of blood flow. It requires fast adhesive bond forming and breaking 

(Ramachandran et al., 2004). Third, monocytes’ firm attachment to the endothelium is ensured 

by CCL2, IL8 and VLA-4 adhesion (Gerszten et al., 1999; Huo et al., 2001). Fourth, monocytes 

crawl on the intraluminal side of the endothelium, and send protrusions in order to find a site 

for extravasation into tissues (Carman et al., 2007; Gerhardt and Ley, 2015; Schenkel et al., 

2004).   This depends on the interaction of CD11a/CD18 (LFA-1) and CD11b/CD18 (MAC-1) 

integrins expressed on monocytes with ICAM-1 and ICAM-2 on endothelial cells (Schenkel et 

al., 2004). Finally, in order to exit the vasculature, monocytes must cross the endothelium and 

basement membrane which is an irreversible process (Gerhardt and Ley, 2015; Kolaczkowska 

and Kubes, 2013). Transmigration necessitates the involvement of cell adhesion molecules, 
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integrins and junctional proteins (CD31 (also known as PECAM1), CD99 and ECAM), as well 

as other endothelial cell molecules. Passage through the endothelium occurs predominantly 

paracellularly, i.e., between endothelial cells through the junctions and requires junctional 

remodeling. In 10-30% of cases, monocytes travel directly through the endothelial cells, 

transcellularly, by fusing vesicles in the endothelial cell cytoplasm (Carman and Springer, 2004; 

Ferreira et al., 2005; Hashimoto et al., 2012; Woodfin et al., 2011); consequently arriving in the 

tissue. Noteworthy, the process of diapedesis provokes phenotypic and genetic modifications 

in monocytes that could vary from one location to the other (Jakubzick et al., 2013).  

 

1.3.2 MONOCYTE’S FATE IN STEADY STATE INTESTINE 

Under homeostasis, classical monocytes traffic to tissues, including the intestine, to patrol 

tissues as monocyte-like cells or re-populate the anergic macrophage pool. 

 

1.3.2.1 Tissue-patrolling classical monocytes 

Classical monocyte function under physiological conditions remains poorly understood. As was 

mentioned earlier, classical monocytes convert in blood to non-classical monocytes. Another 

function was suggested for murine Ly6C+ monocytes that enter non-lymphoid tissues without 

differentiating into either macrophages or DCs (Jakubzick et al., 2013). They upregulate a 

limited number of genes, including MHCII, co-stimulatory molecules and CCR7, induced by 

endothelium interaction during diapedesis, proposing a tissue surveying function. 

Subsequently, monocytes can exit the tissue and re-circulate through the lymph to the lymph 

nodes where they present antigen to T cells. Thus, classical monocytes are also classified as 

effector cells and labeled “tissue monocytes” (Jakubzick et al., 2013). Classical monocytes can 
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enter the lymph node directly from blood via the high endothelial venules (HEV) in a CD62L-

dependent manner (Cheong et al., 2010; Leon and Ardavin, 2008).  

 

1.3.2.2 Intestinal macrophages 

Macrophages are stationary cells abundant in the various layers of the small and large intestine 

(Figure 1-4) (Mowat et al., 2017). The primary population is found in the lamina propria, 

generally directly below the epithelial layer. Other macrophage populations are found in the 

muscularis externa and serosa, where they connect with the enteric nervous system (Joeris et 

al., 2017). These macrophages are distinct from those in the lamina propria, and not the focus 

of this thesis as we do not capture them with our tissue processing protocol which mainly allows 

the isolation of lamina propria cells. 

 

 

Figure 1-4: The different layers of the intestinal wall. 

The intestinal wall is composed of multiple layers. The innermost layer is the mucosa that 

includes epithelium, lamina propria and muscularis mucosae. Next, the submucosa is formed 

by dense irregular connective tissue with the smooth muscle layer named muscularis 

propria/externa underneath and the outermost layer called serosa. 

(Taken from from (Balbi and Ciarletta, 2013); authorization code: 11821288). 
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In murine lamina propria, mature macrophages are large cells with abundant vacuoles and 

lysosomes. They express high levels of MHCII and CD11c, also found on DCs, leading to 

ambiguity in discerning between the two cell types (Bain et al., 2013; Cerovic et al., 2014; 

Rivollier et al., 2012; Tamoutounour et al., 2012; Zigmond et al., 2012). Better macrophage 

identification relies on the expression of F4/80, CX3CR1, high affinity IgG receptor CD64 as 

well as molecules associated with phagocytosis and uptake of apoptotic cells such as CD163 

and CD206 (Bain et al., 2013; Schridde et al., 2017; Smith et al.,  2011; Weber et al., 2011; 

Zigmond et al., 2014a). Similarly, human intestinal macrophages express many of these markers 

(Bain et al., 2013). However, unlike in mice, CX3CR1 and MHCII cannot be used to identify 

macrophages in humans (Chakarov et al., 2019). 

 

1.3.2.2.1 Ontogeny of tissue macrophages 

It was long believed that bone marrow-derived monocytes were the sole precursors of tissue-

resident macrophages and continuously replenish the pool. In vitro monocyte differentiation 

studies as well as adoptive transfer experiments of labeled monocytes supported this concept. 

However, irradiation/transplantation and parabiotic mice experiments revealed that Langerhans 

cells, microglia and alveolar macrophages develop independently of bone marrow monocytes 

(Ginhoux and Guilliams, 2016).  

 

The “niche model” explains the developmental origin of macrophages (Figure 1-5), by taking 

into consideration three variables: niche accessibility, availability, as well as precursor 

plasticity (Ginhoux and Guilliams, 2016; Guilliams and Scott, 2017). It suggests that all 

macrophage precursors – yolk sac macrophages, fetal liver monocytes and bone marrow 
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monocytes - compete for a limited number of niches in various tissues. Although some 

precursors are better at colonizing a specific niche, it does not constitute the key factor that 

controls the cellular origin of macrophages, but rather depends on niche accessibility and 

availability. During early embryogenesis, niches are still not completely formed; they are 

created as the organs develop and receive the first wave of embryonic precursors (yolk sac-

derived macrophages). Microglia and Langerhans cells originate from yolk sac-derived 

macrophages. This is not determined by the precursor, as yolk sac-derived macrophages are not 

the sole progenitors; but rather by niche availability before the generation of fetal liver as well 

as bone marrow monocytes (Daneman et al., 2010) (Figure 1-5A). During late embryogenesis 

and as the organs grow, extra niches are made making place for a second wave of embryonic 

precursors, the fetal liver-derived monocytes (Ginhoux and Guilliams, 2016; Guilliams and 

Scott, 2017). As the niche in the lung opens near birth, fetal liver monocytes arrive and 

differentiate into alveolar macrophages. This niche closes in adult mice by the formation of 

lung epithelial barrier thus preventing bone marrow monocyte access.  Further growth during 

the neonatal phase justifies hematopoietic stem cell (HSC)-derived monocyte engraftment in 

neonate animals. As the liver continues to grow till the fourth week of murine life, a few Kupffer 

cells originate from HSC-derived monocytes, while others arise from the two embryonic 

precursors (Figure 1-5) (Fausto et al., 1995; Hoeffel et al., 2015; Scott et al., 2016b). 

Noteworthy, Kupffer cells are endowed with self-maintenance capacities, thus adult monocytes 

barely contribute to the Kupffer cell pool. In contrast, the intestinal macrophage niche is always 

accessible as macrophages continuously perish; so, they are derived mainly from bone marrow 

monocytes (Figure 1-5).  
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Figure 1-5: The niche model explains the developmental origin of macrophages.  

(A) Between embryonic day 8.5 (E8.5) and E10.5, erythro-myeloid progenitors (EMPs) in the 

yolk sac develop into pre-macrophages. The latter seed the embryo head and differentiate 
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into yolk sac macrophages starting from E10.5. The liver, on the other hand, is seeded by 

both EMPs and pre-macrophages, that develop into yolk sac macrophages. At E14.5, the 

EMPs in the fetal liver generate fetal liver monocytes, that fill the available and accessible 

niches in the liver and intestine along with yolk sac macrophages. However, in the brain, the 

blood–brain barrier (BBB) blocks the entry of fetal liver monocytes; thus, only yolk sac 

macrophages, already present in the tissue, seed it. (A and B) With growth, the number of 

available niches augment and get filled by: (1) proliferation of macrophage populations 

already found in the tissue or (2) for open niches, recruitment and differentiation of fetal 

liver or bone marrow monocytes based on timing (prenatally or neonatally, respectively). (B 

and C) In the intestine, niches become constantly available through macrophage death, and 

get repopulated by bone marrow-derived monocytes, from birth and throughout life (B and 

C). (HSC: haematopoietic stem cells). (C) In the adult mice at homeostasis, the brain and 

liver macrophage niches are occupied and self-sustain with no or minimal contribution from 

bone marrow monocytes, respectively.   

(Adapted from (Guilliams and Scott, 2017); authorization code: 4603700140005). 

 

Multiple studies reinforce the concept that intestinal macrophage replenishment relies mainly 

on classical monocyte recruitment. First, intestinal macrophages have been shown to have a 

short half-life of 3-6 weeks (Bain et al., 2014; Jaensson et al., 2008). Second, intestinal 

macrophages do not proliferate (Bain et al., 2013; Smythies et al., 2006). Third, adoptive 

transfer experiments of monocytes into mice with conditional depletion of DCs and 

macrophages established the Ly6C+ monocytic origin of CX3CR1hi macrophages (Bogunovic 

et al., 2009; Varol et al., 2007; Varol et al., 2009). Fourth, disruption of CCL2-CCR2 axis in 

mice lead to significantly lower quantities of colonic macrophages (Bain et al., 2013; 

Kinnebrew et al., 2012; Takada et al., 2010). In wild type (WT):CCR2-/- mixed bone marrow 

chimeric mice, CD64+CX3CR1hi intestinal macrophages were derived solely from WT bone 

marrow (Tamoutounour et al., 2012). The CCR2-CCL2 axis is not only implicated in bone 

marrow egress of monocytes, but also in monocyte entry into the intestinal lamina propria as 

was discussed earlier. In fact, CCR2 expressing Ly6C+ monocytes failed to enter gut mucosa in 

WT:CCL2-/- parabiotic mice (Takada et al., 2010). Noteworthy, CCR2-/- and CCL2-/- mice are 
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not completely devoid of intestinal macrophages (Dyer et al., 2019; Takada et al., 2010). This 

suggests the involvement of other recruiting mechanisms, or the existence of embryonically-

derived macrophages in the intestine. Finally, Bain et al. demonstrated that CD14+ monocytes 

differentiate into macrophages, by downregulation of CD14 and CD11c and upregulation of 

CD209 and CD163 expression, in healthy intestine of humans (Bain et al., 2013). 

 

Importantly, non-classical Ly6C- monocytes do not contribute to the intestinal macrophage 

pool. In fact, they did not migrate into tissues in adoptive transfer experiments (Bain et al., 

2013; Varol et al., 2007; Varol et al., 2009). In addition, the number of intestinal macrophages 

remain stable in CX3CR1-deficient mice that have fewer non-classical monocytes  (Hadis et 

al., 2011; Kim et al., 2011a; Landsman et al., 2009) 

 

Similar to the intestine, dermis, heart and pancreas rely on monocyte input for macrophage 

maintenance (Calderon et al., 2015; Epelman et al., 2014; Molawi et al., 2014; Tamoutounour 

et al., 2013) (Figure 1-6). In these organs, embryonically-derived as well as monocyte-derived 

macrophages are unable to self-maintain, leaving niches continuously available for 

replenishment by circulating monocytes (Guilliams and Scott, 2017; Sieweke and Allen, 2013; 

Tamoutounour et al., 2013). The failure of macrophage self-renewal remains to be fully 

elucidated; possible mechanisms involve the microbiota in intestine but not skin (Bain et al., 

2014; Tamoutounour et al., 2013). In the heart, mechanical stress participated in continuous 

recruitment of monocytes (Lambrecht and Guilliams, 2014).  
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Figure 1-6: Bone marrow monocytes contribute to the resident macrophage pool in heart, 

pancreas, gut and dermis. 

Yolk sac macrophages and fetal liver monocytes do not contribute to the tissue-resident 

macrophage population in the heart, pancreas, gut and dermis, after birth.  These open tissue 

niches require bone marrow-derived monocytes to maintain the macrophage pool. This 

phenomenon follows different kinetics in different tissues.  

(Adapted from (Ginhoux and Guilliams, 2016); authorization code: 4620311400757). 

 

In conclusion, the resident macrophage pool in the lamina propria of intestine relies mainly on 

constant recruitment of classical monocytes in a CCR2-dependent manner. 

 

1.3.2.2.2 Maintenance of intestinal homeostasis 

Macrophages play a crucial role in the maintenance of intestinal homeostasis (Figure 1-7).  
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Figure 1-7: The various functions of lamina propria macrophages in the homeostatic 

intestine. 

Intestinal lamina propria macrophages are involved in maintaining epithelial integrity, 

bacterial sampling and clearance, and aid innate and adaptive immune cells in their function. 

(MMP: matrix metaloproteinases) 

(Taken from (Bain and Schridde, 2018); open access). 

 

The primary function of all macrophages is phagocytosis to clear apoptotic and senescent cells. 

The intestinal epithelium is highly regenerative with rapidly dividing and dying cells; so, the 

high phagocytic activity of intestinal macrophages is perfectly suited for the housekeeping of 

this tissue. Intestinal macrophages express Cd206, Mertk, Gas6, CD36, Axl, Itgav and Itgb5 

genes associated with phagocytosis (Kumawat et al., 2018; Schridde et al., 2017). The 

dimerization of αv and β5 produces a receptor for the uptake of apoptotic cells, known as 

efferocytosis (Kumawat et al., 2018). Indeed, macrophages expressing cytokeratin, an epithelial 

cell antigen, have been found in the intestine at steady state (Nagashima et al., 1996). 

Furthermore, intestinal macrophages secrete tissue remodeling metalloproteinases and TNF 

(Battegay et al., 1995; Pender et al., 2000), and secrete mediators that stimulate intestinal 

epithelial cell proliferation in intestinal crypts, such as prostaglandin E2 (PGE2), Wnt signaling 

ligands and hepatocyte growth factor (HGF) (Chng et al., 2016; Cosin-Roger et al., 2016; 

D'Angelo et al., 2013; Ortiz-Masia et al., 2014). Thereby, intestinal macrophages regulate 

epithelial barrier integrity. 

 

Intestinal macrophages are typically located below the epithelium and are more numerous in 

the colon relative to the small intestine (Mowat and Agace, 2014), thus they are perfectly 

localized to uptake and eliminate microbes invading the epithelium. Indeed, murine studies 

showed that CX3CR1+ macrophages sample luminal bacteria by extending processes across the 
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epithelium, known as transepithelial dendrites (TED) without disturbing tight junctions, in a 

CX3CL1-dependent manner (Chieppa et al., 2006; Kim et al., 2011a; Niess et al., 2005). Also, 

CCR2-dependent macrophages have recently been shown to induce, through IL1β secretion, a 

Th17 cell response to segmentated filamentous bacteria (SFB) at steady state (Panea et al., 

2015; Shaw et al., 2012). The bactericidal function of macrophages in the intestine at steady 

state does not lead to an overt inflammatory response in neither humans nor mice (Bain et al., 

2013; Bernardo et al., 2018; Bujko et al., 2018b; Kumawat et al., 2018); this is due to TGFβ 

exposure during differentiation, which activates SMAD signaling and inhibits NF-κB signaling 

(Smythies et al., 2010). Indeed, bacteria ingestion by intestinal macrophages does not lead to 

respiratory burst, nor generation of nitric oxide (Roberts et al., 2001; Rugtveit et al., 1995). 

Also, TLR stimulation does not enhance the secretion of inflammatory cytokines (IL1, IL6, 

TNF), despite normal expression of pattern recognition receptors (such as TLRs) (Smythies et 

al., 2005). 

 

Intestinal macrophages are implicated in the survival and maintenance of both adaptive and 

innate immune cells. First, macrophage-derived IL1β sustains Th17 cells in the mucosa (Shaw 

et al., 2012). Lamina propria macrophages have also been indirectly implicated in the induction 

of naïve T cell priming. In fact, lamina propria CX3CR1+ macrophages pass the captured 

luminal antigen (orally administered protein or bacteria) to migratory CD103+ cDC, thus 

indirectly contributing to priming of mucosal immunity (Mazzini et al., 2014; Rossini et al., 

2014). Also, in response to the microbiota, lamina propria macrophages secrete IL1β that pushes 

the production of CSF-2 from ILC3, which drives cDC development (Mortha et al., 2014). 

Moreover, macrophages regulate their own replenishment via the secretion of monocyte-
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recruiting chemokines (CCL2, CCL7 and CXCL16) (Takada et al., 2010; Zigmond et al., 2012). 

Finally, through the production of IL10, intestinal macrophages facilitate expansion of Treg 

primed in the mesenteric lymph nodes (MLN) and involved in oral tolerance (Hadis et al., 

2011). Although macrophages in the colonic lamina propria constitutively produce large 

amounts of IL10 (Bain et al., 2013), it is not the key factor in maintaining homeostasis. In fact, 

deletion of IL10R, but not IL10 itself, in macrophages causes spontaneous colitis in murine 

models (Zigmond et al., 2014a). Accordingly, maintenance of tolerance to microbiota seems to 

require IL10R signaling on macrophages, and IL10 produced by CD4+ Treg (Imbratta et al., 

2019; Shouval et al., 2016; Zigmond et al., 2014a).  

 

1.3.2.2.3 Monocyte differentiation into macrophages 

Upon their arrival to the lamina propria, Ly6Chi monocytes go through a differentiation course 

that results in mature macrophage generation (Figure 1-8) (Bain et al., 2013; Tamoutounour et 

al., 2012). This process known as the “monocyte waterfall” (Tamoutounour et al., 2012) refers 

to the sequential differentiation of monocyte at the phenotypical, molecular, morphological and 

functional level (Bain et al., 2013; Kumawat et al., 2018; Tamoutounour et al., 2012). It 

involves short-lived CXC3CR1int intermediaries that first acquire MHCII, before losing Ly6C 

expression, and finally upregulating CX3CR1 expression to become CX3CR1hiLy6C-MHCIIhi 

mature macrophages (Bain et al., 2013; Smythies et al., 2010; Tamoutounour et al., 2012). 

Within 5-6 days, monocytes display the phenotype (F4/80hiCD64+MHCII+CD11c+CX3CR1hi) 

and functional properties of resident intestinal macrophages by acquiring scavenger receptors, 

enhancing phagocytic activities, increasing IL10 production, and developing hypo-

responsiveness to TLR stimulation (Bain et al., 2013; Smythies et al., 2010; Tamoutounour et 



35 

 

al., 2012). A similar process can be suggested in normal human intestine with the presence of 

CD14hi monocytes, intermediate populations, and CD14loCD163+CD206+ macrophages (Bain 

et al., 2013; Scott et al., 2016a). 

 

 

Figure 1-8: Monocyte “waterfall” in steady state intestine. 

Ly6Chi monocytes are continuously recruited to the adult intestine at steady state in a CCR2-

dependent manner. Upon arrival to the mucosa they differentiate through a series of 

intermediaries to finally develop into mature macrophages. It is guided by factors specific to 

the intestinal microenvironment, with the last step requiring TGFβ. 

 

This developmental process is determined by multiple environmental factors specific to the 

intestinal mucosa. CSF1 is implicated in differentiation and survival of intestinal macrophage 

development. Indeed, Csf1op/op mice have reduced numbers of intestinal macrophages, despite 

normal level of monocytes in the bone marrow (Dai et al., 2004). Additionally, in WT:CSF1R-

/- mixed bone marrow chimeric experiments macrophages are derived largely from WT (Ryan 

et al., 2001), and anti-CSF1R antibody treatments depleted intestinal macrophages (MacDonald 
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et al., 2010). Furthermore, IFNR signaling has been associated with MHCII upregulation on 

macrophages, a key feature in the intestine (Steimle et al., 1994) Moreover, global 

transcriptomic and epigenetic analysis revealed that TGFβR plays an indispensable role in 

macrophage maturation in the intestine  (Schridde et al., 2017). Furthermore, TGFβ has been 

described to increase CX3CR1 expression on microglia (Chen et al., 2002),  and Klf10 deletion 

in mice, a transcription factor crucial for TGFβR signaling, results in decreased numbers of 

CX3CR1hi intestinal macrophages. Moreover, a unique feature of intestinal macrophages is 

RUNX3 expression, involved in the regulation of TGFβ signaling (Lavin et al., 2014). TGFβ 

does not play a role in the first stages of monocyte maturation in the tissue, rather in the final 

stages (Joeris et al., 2017). 

 

The IL10-IL10R axis plays an important role in conditioning intestinal macrophage behavior. 

Disruption of the IL10-IL10R axis, either in myeloid cells or globally, results in a heightened 

response to TLR stimulation in murine colonic macrophages, such as increased expression of 

iNOS, IL23 and IL12, leading to the development of spontaneous colitis (Girard-Madoux et al., 

2016; Kuhn et al., 1993; Shouval et al., 2016; Takeda et al., 1999; Zigmond et al., 2014a) . In 

humans, non-functional mutations in IL10 or IL10R signaling lead to very early onset IBD 

(Glocker et al., 2009). In fact, macrophages from IBD patients with IL10RA and IL10RB 

polymorphisms respond to in vitro stimulation with LPS and adenosine triphosphate via the 

secretion of IL1β (Shouval et al., 2016).  

 

The acquisition of CX3CR1high expression by murine intestinal macrophages as well as their 

localization below the CX3CL1-producing epithelial cells implies a role of CX3CL1-CX3CR1 
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axis in macrophage differentiation. CX3CR1 is crucial for TED formation and thus sampling 

of luminal antigens (Chieppa et al., 2006; Kim et al., 2011a). Also, IL10 production is reduced 

in CX3CR1-deficient macrophages suggesting a role in the promotion of anti-inflammatory 

feature of murine intestinal macrophages. Importantly, and as quoted above, CX3CR1 is not 

expressed on human intestinal macrophages (Chakarov et al., 2019).  

 

Finally, microbiota greatly influences macrophage development. First, monocyte recruitment, 

and thus, turnover of macrophage population is largely driven by microbiota (Bain et al., 2014; 

Niess et al., 2005; Shaw et al., 2018). The latter is required for IL1β and IL10 production (Kim 

et al., 2018; Ueda et al., 2010; Zigmond et al., 2014a). The microbiota may have a direct effect 

on macrophages via the secretion of short chain fatty acids or polysaccharides, as described for 

Helicobacter hepaticus (Correa-Oliveira et al., 2016; Danne and Powrie, 2018). Short chain 

fatty acids have various effects on macrophages, for example, butyrate suppresses Nos2 and 

Il12b expression and increases oxidative phosphorylation (Chang et al., 2014; Scott et al., 

2018), and propionate diminishes in vitro activation of macrophages (Ciarlo et al., 2016).  

 

Taken together, several environmental factors control the differentiation and function of anti-

inflammatory macrophages in the intestinal lamina propria at steady state.  

 

1.3.3 MONOCYTE’S FATE IN INTESTINAL INFLAMMATION 

Inflammation in the intestinal mucosa is generally caused by pathogenic microbes, injury to the 

protective epithelial layer leading to more contact with commensal bacteria, or defects in the 
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anergic macrophage populations. Under these inflammatory conditions the composition of the 

intestinal mononuclear phagocyte (MNP) pool changes.  

 

1.3.3.1 Interruption of the monocyte “waterfall” 

Various murine models of intestinal inflammation have been developed to better understand the 

inflammatory process; these include but are not limited to DSS-induced colitis, T cell transfer 

model of experimental colitis, and H. hepaticus-induced colitis. In these models, Ly6Chi 

classical monocytes flood the intestine, and contrary to steady state, do not fully mature into 

anti-inflammatory CX3CR1hi macrophages leading to an accumulation of CX3CR1int 

populations (Arnold et al., 2016; Bain et al., 2018; Bain et al., 2013; Platt et al., 2010; Rivollier 

et al., 2012; Tamoutounour et al., 2012; Weber et al., 2011; Zigmond et al., 2012). The latter 

display pro-inflammatory characteristics: they secrete high levels of pro-inflammatory 

cytokines such as IL1β, IL6, IL12, IL23 and TNF, as well as reactive oxygen intermediates 

(ROI), and express high levels of TREM1 (Bain et al., 2013; Rivollier et al., 2012; 

Tamoutounour et al., 2012; Varol et al., 2009; Weber et al., 2011; Zigmond et al., 2012). During 

inflammation, monocyte recruitment involves CCR1 and its ligand CCL3 in addition to the 

classic CCR2-CCL2 axis governing its recruitment at steady state (Schulthess et al., 2012).  

 

Similarly, inflammatory mucosa from patients with CD and UC present with an altered 

monocyte/macrophage compartment. Indeed, the accumulation of a unique, cytokine-producing 

CD14hi monocyte-like population was noted in inflamed intestinal mucosa that outnumbered 

CD14loCD64+ resident macrophages (Bain et al., 2013; Grimm et al., 1995; Kamada et al., 2008; 

Rugtveit et al., 1997; Thiesen et al., 2014).  
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The reason why monocytes do not complete their maturation process in the inflamed mucosa 

remains elusive. Multiple factors may be involved in the interruption of the differentiation 

process during inflammation. For instance, the loss of anti-inflammatory signals promoting 

macrophage differentiation, as well as increased levels of pro-inflammatory cytokines block 

monocyte differentiation “waterfall.” The re-establishment of the normal monocyte course in 

the inflamed intestine could prove to be a therapeutic route in IBD patients. In this thesis work, 

we aimed to better characterize CD14+ MNP subsets in mucosa from IBD patients and 

investigate their generation and plasticity from monocytes. 

 

1.3.3.2 Monocyte-derived dendritic cells 

Monocytes arriving to the inflamed intestinal mucosa can also differentiate into DCs (Tang-

Huau and Segura, 2019). This concept was described in peritoneal ascites from cancer patients 

and in synovial fluid from rheumatoid arthritis patients (Segura et al., 2013).  These in vivo 

differentiated monocyte -derived DCs are referred to as “inflammatory DCs” since they develop 

mainly during inflammation. Although inflammatory DCs are morphologically and functionally 

similar to DCs, with their dendrites and ability to stimulate naïve T cells (Segura et al., 2013), 

transcriptional studies segregated them from cDC populations; they were found to closely 

resemble classical monocytes, (Goudot et al., 2017; Segura et al., 2013) thereby suggesting that 

inflammatory DCs are monocyte-derived.  

 

CD103+CX3CR1int DCs from murine intestine have been shown to travel to MLN, and activate, 

prime, and imprint naïve T cells to return to the gut but contrary to CD103+ DC they induce 
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IL17 and IFN production by effector T cells (Cerovic et al., 2013). They secrete pro-

inflammatory cytokines such as IL1β, IL6, IL12p70, IL23, and TNF upon ex vivo stimulation 

(Liao et al., 2017; Segura et al., 2013). Consistent with their IL23-secreting abilities, 

inflammatory monocyte-derived DCs from psoriatic skin, tumor ascites and synovial fluid of 

rheumatoid arthritis are strong inducers of Th17 polarization ex vivo (Segura et al., 2013; Zaba 

et al., 2009).  

 

The term “inflammatory DCs” employed to describe monocyte derived-DCs can be misleading 

as it suggests that these cells are intrinsically inflammatory. Indeed, a DC subset identified as 

CD103-CCR2+SIRPα+ has been described in healthy intestine of humans, and is believed to 

have monocytic origins (Richter et al., 2018; Scott et al., 2015; Watchmaker et al., 2014). 

Recently, Richter et al. demonstrated by examining the phenotype and transcriptional profile 

of human non-inflammatory intestinal SIRPα+ DCs that monocytes contribute substantially to 

that heterogenous compartment (Richter et al., 2018). Transcriptional analysis related CD103-

SIRPα+ DCs with circulating monocytes and functional characteristics were shared with mouse 

monocyte-derived CD103−CX3CR1int inflammatory DCs (Watchmaker et al., 2014). Finally, 

during inflammation associated with CD, an accumulation of the CD103-SIRPα+ DC population 

in the colon and MLN has been noted (Baba et al., 2013). 

 

Collectively, monocytes arriving to the inflammatory intestinal mucosa are able to differentiate 

into inflammatory DCs, which are different from conventional DCs, in situ. 
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1.4 Monocyte differentiation in vitro 

In order to better understand the function, differentiation, and plasticity of macrophages and 

monocyte-derived inflammatory DCs, several in vitro differentiation culture conditions have 

been developed starting from human circulating monocytes.  

 

1.4.1 CLASSIC MONOCYTE-DERIVED DENDRITIC CELLS  

Upon exposure to GM-CSF and IL4, monocytes from bone marrow of mice, or peripheral blood 

of humans or mice differentiate in vitro into DCs, referred to as monocyte-derived DCs 

(MoDCs) (Chow et al., 2017; Sallusto and Lanzavecchia, 1994). Indeed, the latter have 

dendrites and high expression of MHC and co-stimulatory molecules that are characteristic of 

DCs. Treatment with LPS, TNF, IFN or CD40L induced further maturation of MoDCs that 

upregulated their DC functional capacities: antigen processing and presentation, migration, and 

modulation of T cell responses (Leon et al., 2005). Noteworthy, mass cytometry analysis 

revealed multiple activation states within the in vitro-generated MoDCs (Helft et al., 2015; 

Sander et al., 2017). 

 

In vitro MoDCs have been long considered surrogates of MoDC populations in tissue. Although 

it is now established that these in vitro-generated CD14- DCs do not resemble MoDCs in tissue; 

this in vitro model laid the ground for much of the current knowledge on MoDCs. For instance, 

they introduced the concept of DC maturation, with immature DCs requiring an extra cytokine 

signal to upregulate MHCII and co-stimulatory molecules, and reach their full functional 

capacities (Leon et al., 2005). The nature of the signal they receive confers variable functions 

to the DC population (Banchereau and Palucka, 2005). Furthermore, in vitro MoDCs were used 
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in anti-tumour vaccination trials (Banchereau and Palucka, 2005). Unfortunately, the tumour 

antigen loaded GM-CSF+IL4-derived DCs were unable to reach the draining lymph node and 

generate a strong adaptive response towards the tumour antigen (Guilliams and Malissen, 2015; 

Wimmers et al., 2014). Therefore, in vitro derived MoDCs helped better understand the function 

of MoDCs. 

  

1.4.2 MONOCYTE-DERIVED MACROPHAGES 

Macrophage polarization and plasticity takes place under distinct cytokine contexts that leads 

to macrophages capable of responding to their specific environmental milieu. Functional 

diversity is the key feature of macrophages. In this section, I will summarize what is currently 

known regarding macrophage polarization and the generation of classically activated 

macrophages (M1) and alternative activated macrophages (M2). 

 

1.4.2.1 M1 versus M2 macrophages 

In the 1980s, Nathan et al. recognized that the intracellular pathogen killing function of 

macrophages is promoted by IFN (Nathan et al., 1983). In direct contrast, IL4 induced a 

different gene expression program on macrophages as compared to IFN (Stein et al., 1992). 

The M1/M2 macrophage nomenclature was established by Mills et al. in 2000, founded on 

macrophage activation experiments using T lymphocytes from two mouse strains (Mills et al., 

2000). In fact, upon LPS stimulation, T lymphocytes from C57BL/6J mice mainly secreted IFN 

and activated nitric oxide (NO) production from arginine by the so-called M1 macrophages, 

whereas T cells from Balb/c mice secreted IL4 and activated ornithine production from arginine 
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by the so-called M2 macrophages. It was not until 2014 that experimental guidelines for M1 

and M2 in vitro generation were proposed for data reproducibility (Murray et al., 2014).  

 

The classically activated M1 macrophages secrete pro-inflammatory cytokines and have potent 

microbicidal abilities. The classical activation is induced by IFN or the gram-negative bacterial 

component LPS or GM-CSF (CSF-2) (Chavez-Galan et al., 2015; Italiani and Boraschi, 2014; 

Martinez and Gordon, 2014; Orecchioni et al., 2019). M1 macrophages are characterized at the 

phenotypical level by expression of CD68, MHCII, and the co-stimulatory molecules CD80 and 

CD86. Furthermore, M1 macrophages are IL12hiIL23hiIL10lo and secrete IL1β, TNF and IL6, 

thus they induce efficient Th1 and Th17 responses in an IRF5-dependent manner (Hoeve et al., 

2006; Krausgruber et al., 2011; Verreck et al., 2006). M1 macrophages express an intracellular 

protein SOCS3 and activate iNOS to generate NO from arginine; thus, they aggravate the 

inflammatory response (Arnold et al., 2014; Zeidler et al., 2004). However, M1 macrophages 

play a protective role in the context of pathogen invasion with their aptitude to phagocyte large 

numbers of pathogens and kill intracellular bacteria via NO synthesis, iron and nutrient 

restriction as well as phagosome acidification (Andrade et al., 2012; Nairz et al., 2013; 

Podinovskaia et al., 2013).   

 

Alternatively activated M2 macrophages are generated upon exposure to M-CSF (CSF1) with 

IL4, IL10, IL13, TGFβ, helminth or fungal infections (Chavez-Galan et al., 2015; Italiani and 

Boraschi, 2014; Martinez and Gordon, 2014; Orecchioni et al., 2019). They play a protective 

role in parasite infection and are involved in tissue remodeling and repair. M2 macrophages are 

identified by the expression of CD200R and CD163 in combination with the expression of the 
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transcription factor CMAF (Barros et al., 2013). Although the mannose receptor (CD206) was 

previously a marker for M2, Jaguin et al. observed no difference in its expression between M1 

and M2 macrophages (Jaguin et al., 2013). In addition, M2 polarization under M-CSF and IL4 

stimulation involves RGC-32, a cell cycle regulator whose expression is increased by M2 

macrophages, and could be considered a marker for this population (Zhao et al., 2015). 

Moreover, the production of arginase 1, upon exposure to type 2 cytokines (IL4 and IL13), is a 

hallmark of alternatively activated M2 macrophages (Pauleau et al., 2004). It protects the host 

from parasite infections such as intestinal nematode parasites (Anthony et al., 2006). The tissue 

repair function of M2 macrophages is ensured in part by ornithine since it promotes cell 

proliferation and repair via polyamines, glutamate and collagen synthesis (Morris, 2007). 

Finally, M2 macrophages are IL10hiTGFβhiIL12loIL23lo, and thus, contribute to 

immunoregulation.  

 

Although T cell cytokine production was employed to promote M1 and M2 macrophage 

polarization, it is now clear that their polarization can occur without lymphocytes (Italiani and 

Boraschi, 2014; Mills, 2012). In fact, microbial molecules such as LPS and inflammatory 

cytokines such as TNFα and IFN activate the M1 differentiation/functional program. 

Conversely, in vitro  M2 polarization is observed  in response to anti-inflammatory cytokines 

such as IL4, IL10, IL13 or TGFβ, as well as glucocorticoids, immune complexes or concomitant 

activation of Fcγ receptors and TLR (Chavez-Galan et al., 2015; El-Behi et al., 2011; Italiani 

and Boraschi, 2014; Martinez and Gordon, 2014; Orecchioni et al., 2019).  These different 

stimuli lead to a variety of functional programs in macrophages (Figure 1-9), thus three types 

of M2 macrophages were described: M2a (activated with IL4 and IL13), M2b (activated with 
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immune complexes or simultaneous FcγR and TLR triggering), and M2c (activated by IL10, 

TGFβ, glucocorticoids) (Mantovani and Marchesi, 2014). In particular, M2a macrophages 

secrete chemokines for the recruitment of Th2 cells, basophils and eosinophils and drive a type 

II response. M2b macrophages recruit Treg and therefore, play a role in immunoregulation. 

Finally, M2c are implicated more for tissue remodeling.  

 

 

Figure 1-9: The M1 – M2 model proposed by Mantovani et al.  

Montovani et al. proposed a model that dissects the in vitro differentiated M2 macrophages 

based on the stimuli they receive: IL4 and IL13 lead to M2a, immune complexes or TLR with 

FcR ligands lead to M2b, and finally IL10 or TGFβ lead to M2c. 

(DTH: delayed type hypersensitivity; MR: mannose receptor; RNI: reactive nitrogen 

intermediates). 

(Taken from from (Mantovani and Marchesi, 2014); authorization code: 4623251232702). 

 

Taken together, in vitro macrophage activation/differentiation state depends on the various 

stimuli they receive, including cytokines, microbial products, and other factors. 
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1.4.2.2 The spectrum of macrophages 

Until very recently, macrophage complexity and plasticity were explained by sub-dividing them 

into two functionally discrete M1 and M2 subsets. However, studies over the last few years 

proved that this dichotomous notion is too simplistic since macrophages are highly 

heterogeneous and can respond to most changes in the tissue environment (Guilliams and van 

de Laar, 2015; Italiani and Boraschi, 2014; Martinez and Gordon, 2014; Nahrendorf and 

Swirski, 2016; Natoli and Monticelli, 2014; Xue et al., 2014). Furthermore, M1 and M2 

macrophages were defined in the era where a few phenotypic markers were sufficient to 

properly distinguish two populations. Transcriptomic and proteomic analyses in tissues from 

healthy and diseased individuals revealed that the picture is far more complex, thus challenging 

the current nomenclature (Figure 1-10).  

 

Macrophages modulate their functional phenotypes based on the changing tissue environment. 

Therefore, the M1/M2 discrete polarization model simplifies the continuum of the various 

functional states observed within tissues. Noteworthy, M1 and M2 macrophages are not 

ontogenically defined in vivo subsets, they are however the two extremes of in vitro derived 

macrophages under different culture conditions (Martinez and Gordon, 2014; Mosser and 

Edwards, 2008; Sica and Mantovani, 2012). In 2008, Mosser and Edwards reclassified the 

M1/M2 macrophages into three population based on their function in host defense, wound 

healing and immune regulation; a spectrum of macrophages was suggested in between (Fleming 

and Mosser, 2011; Mosser and Edwards, 2008) . Later, Xue et al. reinforced this notion by 

differentiating human monocyte derived cells using a combination of 28 different stimuli 
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leading to a wide variety of transcriptionally distinct macrophage populations (Natoli and 

Monticelli, 2014; Xue et al., 2014), thus portraying a high level of macrophage diversity.  

 

 

Figure 1-10: The color wheel spectrum of macrophage activation. 

Replacement of the (A) polarized M1 and M2 model by (B) the color wheel of macrophage 

activation defined by three distinct macrophage populations (Mosser and Edwards, 2008), 

leading to (C) the modular spectrum model. 

(Adapted from (Guilliams and van de Laar, 2015) and (Fleming and Mosser, 2011)). 
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Although this work advanced our understanding of macrophage activation, yet it is only the tip 

of the iceberg since it does not account for macrophage plasticity. The latter is a key 

characteristic of macrophages that has been demonstrated in vitro (Italiani and Boraschi, 2014); 

whether and how it occurs in vivo remains questionable, and will be further discussed in this 

thesis work.   
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1.5 Journey of antigen presenting cells from intestinal mucosa 

to mesenteric lymph nodes 

The establishment of an antigen-specific adaptive immune response involves the migration of 

professional antigen presenting cells (APCs), such as DCs, and to a lesser extent, monocytes to 

the MLN for antigen presentation to naïve T cells.  

 

1.5.1 INTESTINAL ANTIGEN ARRIVAL TO MLN 

The antigen follows one of two mechanisms to reach the LN: it can either drain through the 

lymph or be carried by professional APCs.  

 

The former mechanism requires that the antigen (of specific diameter <200nm) is present at 

high dose at the site of infection (Bachmann and Jennings, 2010). The antigen reaches the LN 

through the lymph and travels to the marginal sinus where LN resident macrophages and DCs 

sample it. Bacterial translocation to the LN, detected by bacterial messenger RNA (mRNA) 

presence in the lymphoid tissue, has been reported in patients with either CD or UC (Kiely et 

al., 2018; Kiernan et al., 2019; O'Brien et al., 2014). The diversity and abundance of the 

identified bacterial populations were analogous in the intestinal mucosa and MLN of the same 

patient, suggesting the gut origin of LN detected bacteria (Kiely et al., 2018). In fact, Kiernan 

et al. recently reported apparent differences in MLN microbiome of CD and UC patients 

reflecting further the differential microbiome composition in the mucosa (Kiernan et al., 2019). 

 

The second mechanism involves migratory DCs that first capture the luminal antigens that could 

be accomplished by several mechanisms (Figure 1-11). In the epithelial layer overlying the 
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lymphoid follicles (Peyer’s patches, (PP) and isolate lymphoid follicles, (ILFs)), microfold (M) 

cells transport microbes and particles to DCs that lie in the M cells’ basolateral membrane , or 

the underlying sub-epithelium dome (Pabst and Mowat, 2012). Antigen access through the 

villus epithelium can involve the rare M cells, described outside PP, or direct transportation 

across enterocytes (Jang et al., 2004). The latter may also transport antigen-antibody complexes 

by transcytosis in a neonatal IgG receptor (FcRn)-dependent manner to FcRN+ DCs below the 

epithelial layer (Yoshida et al., 2004). Furthermore, goblet cells have been described as an 

antigen conduit across the epithelial layer to the underlying CD103+ DCs, a mechanism 

essential for oral tolerance (McDole et al., 2012). Intestinal CD103+ DCs are actually equipped 

to extend dendrites across the epithelial layer and capture bacteria (Farache et al., 2013). 

CX3CR1+ macrophages are also capable of extending processes to sample antigen from the 

lumen (Chieppa et al., 2006; Niess et al., 2005). As macrophages do not migrate to the MLN, 

the antigen gets transferred via connexin 43-dependent gap junction to CD103+ DCs (Mazzini 

et al., 2014) that travel to the lymphoid tissue. 
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Figure 1-11: Antigen acquisition by dendritic cells in the intestine for the induction of 

tolerance. 

DCs utilize several mechanisms to gain access to antigens in the intestinal lumen at steady 

state by positioning under the epithelium and sampling antigens that cross the epithelial layer 

(1) non-specifically, (2) by transcytosis in an FcRn-dependent manner, (3) through goblet 

cells. Finally, (4) CX3CR1+ macrophages transfer the captured antigen to intestinal CD103+ 

via connexin 43. 

(Adapted from (Mowat, 2018); authorization code: 4624370245227 and (Mazzini et al., 

2014); authorization code: 4624831142050). 

 

The antigen-loaded migratory DC travel from the intestinal lamina propria, through the 

lymphatic vessels, to the MLN guided by CCR7 and sphingosine 1-phosphate (S1P). Migratory 
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DCs have the option of presenting the antigen to T cells in the T cell zone or transfer it to MLN-

resident DCs or B cells (Allan et al., 2006).  

 

1.5.2 PRESENTATION OF ANTIGEN BY ANTIGEN PRESENTING CELLS TO 

NAÏVE T CELLS AND POLARIZATION OF THE IMMUNE RESPONSE 

The initiation of a T cell response involves the encounter of an activated APC displaying the 

proper peptide-MHC ligand with a naïve CD4+ or CD8+ T cell in the T cell zone of the LN. It 

leads to naïve T cell proliferation and differentiation into various types of effector and memory 

cells. 

 

In order to guarantee an immune response against pathogens, large number of naïve T cells with 

unique T cell receptors (TCRs) must be confined to a limited physical space, such as the T cell 

zone in the LN. With age-related thymus atrophy, naïve T cell pool in humans is maintained by 

peripheral T cell proliferation (den Braber et al., 2012).  The survival and proliferation of the 

naive T cell compartment in the periphery under steady state conditions is upheld by IL7 and 

self-peptide MHC complexes (Takada and Jameson, 2009).  

 

CD4+ naive T cell priming involves three signals: the first derives from the specific interaction 

of TCR with the right peptide:MHC complex. Although TCR engagement is essential for naïve 

T cell activation, induction of T cell proliferation and differentiation necessitates two other 

signals delivered by the same APC. In fact, the second signal is delivered by co-stimulatory 

molecules, such as CD80 and CD86 (B7 molecules), specifically expressed on the surface of 

APCs. They bind to CD28 and induce naïve T cell expansion. Finally, the third signal is dictated 
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by the cytokines secreted by APCs, and instruct the differentiation of functionally specific 

effector T cell (Teff) subsets.  

 

1.5.3 GENERATION OF EFFECTOR T CELLS 

Following cognate antigen recognition by TCR, activated CD4+ T cells differentiate into Treg 

or effector helper T cells (Th) depending on the cytokine milieu. These cells orchestrate immune 

responses via the cytokines they secrete. 

 

1.5.3.1 The classics: Th1 and Th2 cells  

 Under inflammatory conditions, naïve T cells differentiate into helper T cells, including Th1 

and Th2 cells. Mosmann et al. reported in 1986 that naïve CD4+ T cells differentiated into two 

functionally different cells based on their cytokine production profile, the classic Th1 and Th2 

effector cells (Mosmann et al., 1986). Th1 cells play a vital role against intracellular bacteria 

and viruses, and have been described in autoimmune diseases. They differentiate in the presence 

of IL12 and IL18, which phosphorylates STAT4 and STAT1, causing T-bet upregulation, the 

key Th1 transcription factor. T-bet, encoded by TBX21 gene, targets Th1 signature genes 

CXCR3 and IFNG. In contrast, Th2 cells control, via IL5 and IL13 secretion, helminth 

infections, and have been associated with allergic diseases. Th2 cell differentiation is guided 

by IL4 and IL5 which activates STAT6, and therefore, upregulates GATA3 transcription 

(Stadhouders et al., 2018). This dichotomous Th1/Th2 division is further reinforced by the fact 

that T-bet, IL12 and IFNγ antagonize Th2 polarization by inhibiting GATA3 , whereas Th1 

differentiation is repressed by the IL4-GATA3 axis (Szabo et al., 2003). This notion of mutually 
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exclusive, terminally differentiated Th subsets was challenged by the discovery of a hybrid 

Th1/Th2 cell co-expressing IL4 and IFNγ (Peine et al., 2013).  

 

1.5.3.2 The new Th17/Treg paradigm  

The classical Th1/Th2 paradigm shifted during the last two decades to the Th17/T reg paradigm, 

which helped shed light on T cell-mediated immune disorders including IBD.  

 

1.5.3.2.1 Th17 cells 

Identified in 2005, Th17 cells (Harrington et al., 2005; Park et al., 2005) are mainly found in 

mucosal tissues such as the gastrointestinal tract. They express the Th17 marker CCR6 and lack 

CXCR3 expression, the Th1 marker (Annunziato et al., 2007). Th17 lineage differentiation 

requires the transcription factor RAR-related Orphan Receptor gamma (RORγ) that is 

stimulated by STAT3 phosphorylation under the influence of IL1β, IL6 and TGFβ in mice. 

Although previously perceived as a main Th17 inducer, IL23 is only needed for Th17 expansion 

and maintenance (Zhou et al., 2007). The master transcription factor ROR, along with the 

STAT3, IRF4, PLZF and BATF, control the expression of Th17 specific genes including 

CD161, IL23R, IL17A and IL17F (Singh et al., 2015; Sun et al., 2017) (Veldhoen et al., 2009; 

Veldhoen et al., 2008). Indeed, Th17 cells secrete IL17A, IL17F, IL21, IL22 and GM-CSF, 

which mediate mucosal homeostasis and protection against bacterial and fungal pathogens. 

Noteworthy, GM-CSF has a dual role as T cell-derived GM-CSF has been implicated in 

intestinal inflammation development in a colitis model (Pearson et al., 2016). 
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Until recently, CD was labeled a Th1 disease due to the high levels of IL12 and IFNγ, whereas 

UC had higher production of IL5 and IL13 and was designated a Th2 disease. However, both 

diseases are now considered Th17 diseases.  

 

1.5.3.2.2 Regulatory T cells 

The generation of Treg involves TGFβ and the up-regulation of the transcription factor FoxP3 

(Russler-Germain et al., 2017). FoxP3+ Treg are either generated in the thymus (tTreg), or induced 

by TGFβ in peripheral sites (pTreg). This heterogenous CD4+ T cell population is endowed with 

suppressive functions, maintained by IL10 and surface expression of CTLA4 that prevents 

CD28 binding to its ligands on APCs, thus preventing T cell co-stimulation (Liu et al., 2001). 

Moreover, Helios expression, an Ikaros transcription factor (TF) family member, is required for 

the stable inhibitory activities of FoxP3+ Treg (Kim et al., 2015a). 

 

1.5.3.2.3 Maintenance of intestinal homeostasis by regulatory T cells  

The intestinal mucosa is constantly exposed to exogenous antigens from food and microbiota. 

It is crucial that the intestinal immune system hypo-respond to the foreign antigens it encounters 

on a daily basis, a process referred to as oral tolerance (Mowat, 2018). It is mediated in part by 

CD103+ DCs that acquire and process intestinal antigens, present it to naïve T cells in the MLN 

and induce the generation of Tregs expressing gut homing molecules (Jaensson et al., 2008; Sun 

et al., 2007). The latter engage the ability of CD103+ DCs to metabolize retinoic acid (RA) from 

dietary vitamin A. In fact, CD103+ DC-derived RA, along with TGFβ, mediate naïve Treg 

differentiation (Sun et al., 2007). Additionally, in vitro RA is sufficient to upregulate CCR9 and 

integrin α4β7 gut-homing molecules on activated T cells, and thus, facilitate their return to the 
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gut tissue. Indeed, blockade of RA synthesis or its signaling inhibit gut-homing molecule 

induction by CD103+ DCs (Iwata et al., 2004), and thus, induction of oral tolerance. 

 

Once in the mucosa, Treg cells expand and are maintained by IL10 produced by CX3CR1hi 

macrophages, thus sustaining an inhibitory environment (Hadis et al., 2011; Murai et al., 2009).  

 

Tregs employ several mechanisms for suppression of the inflammatory response (Whibley et al., 

2019). First, Tregs express CTLA-4, an inhibitory receptor that controls intestinal inflammation, 

more specifically the type 2 response (Ohnmacht et al., 2015; Read et al., 2000). Indeed, patients 

treated with anti-CTLA-4 antibody developed colitis (Gupta et al., 2015). Second, Tregs 

immunosuppressive role in the gut implicate TGFβ1 and IL10. Actually, genetic mutations in 

TGFβ1 and IL10 receptors (TGFBR1, TGFBR2, IL10RA, IL10RB) lead to the development of 

severe, early-onset IBD (Barnes and Powrie, 2009; Uhlig and Powrie, 2018). Third, intestinal 

Helios+GATA3+ Tregs express ST2 and amphiregulin, and thus, might play a role in tissue repair 

(Schiering et al., 2014; Sefik et al., 2015; Wohlfert et al., 2011). Finally, Tregs in the mucosa 

play an important role in promoting a Th17 response. Depletion of Tregs in mice increases 

susceptibility to Citrobacter rodentium infection, normally linked with Th17 cells (Wang et al., 

2014). The exact mechanism used by Tregs in vivo remains poorly understood. 

 

1.5.3.2.4 Maintenance of intestinal homeostasis by Th17 cells  

Th17 cells in the intestinal mucosa depend on gut microbiota, more specifically by the presence 

of the Gram-positive commensal SFB (Gaboriau-Routhiau et al., 2009; Ivanov et al., 2009). 

Indeed, colonization of germ-free mice with SFB generates Th17, but not Th1, cells that home 
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to small and large intestine lamina propria (Ivanov et al., 2009); reciprocally, Th17 cells 

regulate SFB levels. Moreover, deletion of IL17R expression in enteric epithelium causes a 

decrease in α-defensins, NADPH oxidase 1 expression and polymeric immunoglobulin receptor 

required for secretory IgA transcytosis; thus, leading to SFB dysbiosis (Kumar et al., 2016). 

Generation of Th17 cells by SFB is mainly rendered by the recognition of microbe adhesion to 

the intestinal epithelial cells (Atarashi et al., 2015). Interestingly, the latter also promote 

intestinal IgA+ cells (Atarashi et al., 2015). IgA is mostly secreted across the intestinal mucosal 

surface and play an important role in maintaining homeostasis towards the microbiota, 

especially in the small intestine (Macpherson et al., 2018). This is accomplished through IgA’s 

diverse functions, such as blocking bacterial adherence and translocation across the epithelial 

layer, neutralizing viruses and toxins, sampling of luminal antigens, as well as removing 

immune complexes at the epithelial surface. IgA can also exert its function by altering bacterial 

gene expression and limiting their effect on the intestinal mucosa. Therefore, IgA plays an 

important role in preserving equilibrium with microbiota.  

 

The protective function of Th17 cells at the barrier is achieved by IL17 and IL22, which induce 

the regenerating islet-derived 3 (REG3) anti-microbial proteins REG3β and REG3γ (Kolls et 

al., 2008). Moreover, IL17 modulates tight junction protein expression in epithelial cells. In 

fact, it increases claudin (Kinugasa et al., 2000) and regulates occludin expression during 

epithelial injury in a DSS-induced colitis model, thus reducing gut permeability (Lee et al., 

2015). Moreover, IL17 mediates the expression of neutrophil recruiting signals (CXCL1 and 

CXCL5), important for protection against bacterial and fungal infections (Conti and Gaffen, 

2015). IL17-secretion is not restricted to Th17 cells. However, in the intestine they are the main 
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source (Hirota et al., 2011), whereas ILC3 contribute mainly to intestinal IL22 (Ahlfors et al., 

2014). The latter is essential in tissue repair, and prevention of pathogen attachment and tissue 

dissemination (Zheng et al., 2008). IL22 also regulates goblet cells differentiation and mucin 2 

expression (Birchenough et al., 2015).  

 

1.5.3.3 The other Th cells and their role in IBD 

Polarized Th states including Th9, Th22 and follicular helper T (TFH) cells have also been 

described in IBD. Each population is characterized by a transcription factor network and a 

cytokine secretion pattern.  

 

In addition to promoting Tregs and non-pathogenic Th17 differentiation, TGFβ plays a role along 

with IL4 in the development of Th9, an IL9-expressing Th subset. Although originally thought 

of as a Th2 population, it is now clear that the GATA3- population represents a population on 

its own (Dardalhon et al., 2008). In fact, TGFβ, through Sox4 transcription factor, suppressed 

GATA3 induction (Kuwahara et al., 2012). In addition to its protective role in helminth 

infections, Th9 cells have been shown to induce inflammation and exacerbate inflammatory 

disease such as IBD (Vyas and Goswami, 2018). In fact, it is observed that Th9 cell transfer to 

RAG-deficient mice aggravated gut mucosa inflammation (Gerlach et al., 2014). Furthermore, 

a positive correlation is noted between IL9 mRNA levels and the inflammation score in colonic 

biopsies from UC patients (Nalleweg et al., 2015). These data suggest a crucial role for Th9 in 

IBD progression.  
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Another Th subset described to play a role in IBD pathogenesis is Th22 cells. These CCR6+ 

CD4+ T cells are related to Th17 cells but have low expression of RORγ. Th22 development is 

induced by TNF and IL6, which promote STAT3 and aryl hydrocarbon receptor (AHR) 

expression, leading to the secretion of IL22. The latter is a member of the IL10 cytokine family. 

IL22 plays an important role in epithelium healing, and defence against invading pathogens at 

epithelial surfaces as IL22 receptor is only found on epithelial cells in the gut (Azizi et al., 2015; 

Basu et al., 2012). In fact, a decline in IL22+IL17- CD4+ cells was noted in the inflamed colonic 

mucosa of UC, but not CD, patients relative to healthy controls. This inhibition was thought to 

be due to an up-regulation of TGFβ expression (Leung et al., 2014). In fact, high levels of IL22 

have been associated with the development of colorectal cancer (Kryczek et al., 2014)  

 

Finally, TFH cells exist in germinal centers and help B cell proliferation, differentiation and 

immunoglobulin class switch. Generation of the CXCR5+PD-1+ TFH IL21-producing cells was 

recently shown to implicate both cDC2 and CD14+ macrophages in the tonsils (Durand et al., 

2019), as well as regulatory TFH (known as TFR), residing at the T-B border in the MLN (Sayin 

et al., 2018). It involves the transcription factor BCL6, and IRF4, TCF-1, c-MAF and STAT3 

signaling molecules. TFH cells play an important role in the control of commensal microbiota 

through T cell dependent IgA production control (Crotty, 2014; Jogdand et al., 2016). A recent 

study observed an upregulation of TFH signature genes (IL21, CXCR5, ICOS, PD1 and BCL6) 

in colonic tissues of CD patients, and mice with colitis when compared to normal controls 

(Zhang et al., 2019). Furthermore, in the intestinal lamina propria of CD patients the fraction 

of IL21 secreting TFH cells was higher than in UC patients and healthy controls (Sarra et al., 

2010). Thus, dysregulation of TFH cells has been described in CD pathogenesis.   
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1.5.4 RECALLING ANTIGENS: MEMORY T CELLS 

T cell antigen exposure is recalled by memory T cells that offer long-term protection against 

pathogens. Studies of mouse models have documented that in a primary immune response 

antigen-specific CD4+ or CD8+ naïve T cells encounter antigen-bearing APCs, become 

activated, undergo expansion, and differentiate, through a continuum, into short-lived Teff cells 

(Figure 1-12). This differentiation process involves the up or down regulation of several 

chemokine receptors and adhesion molecules involved in T cell trafficking which will be 

explored in a later section. Effector T cells comprise the precursors of antigen-specific memory 

T cells. This heterogeneous population persists in different locations in vivo and orchestrates a 

protective immune response upon pathogen re-encounter. Memory T cells are endowed with 

key properties including tissue residence/trafficking, effector function and long-life (Jameson 

and Masopust, 2018).  
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Figure 1-12: Progressive T cell differentiation to generate short-lived Teff. 

During an immune response, APCs prime naïve T cells and induce T cell proliferation 

culminating in the generation of Teff. This process depends on the strength and quality of the 

signal. In fact, when antigenic stimuli cease, some primed T cells enter the pool of memory 

cells depending on the signal strength received. Other models for memory T cell generation 

have been proposed as well. The table describes the phenotype of naïve and memory T cell 

subsets. 

(KLRG1: killer cell lectin-like receptor)  

(Adapted from (Gattinoni et al., 2012); authorization code: 4624961295462). 

 

1.5.4.1 Heterogeneity within the T cell memory compartment 

T cell subset diversity results from antigenic and environmental stimuli received during T cell 

priming and subsequent recall responses. 
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In humans, memory T cells are classically identified by CD45RO expression and lack of 

CD45RA. The heterogeneity of the CD45RO+CD45RA- memory T cell population was first 

described in human peripheral blood by Sallusto based on the expression of a LN homing 

molecule CCR7. While the CCR7+ central memory T cells (TCM) traffic through lymphoid 

tissues, the CCR7- effector memory T cells (TEM) migrate to peripheral tissues (Sallusto et al., 

1999). Despite the name, effector capacity is not limited to TEM cells. Actually, effector 

cytokine production in response to antigen stimulation has been noted in both TCM and TEM 

cells, but TCM cells have higher proliferative capacity (Mahnke et al., 2013; Sallusto et al., 

1999).   

 

Human peripheral blood memory T cells have been further subdivided based on the expression 

of additional surface markers. Expression of the prototypic death receptor CD95 as well as 

CD122 defined the stem cell memory T (TSCM) in humans. This naïve-like population, which 

arises following antigen stimulation, is CD45RA+CD45RO– and expresses the co-stimulatory 

receptors CD27 and CD28, as well as CD62L and CCR7. TSCM are endowed with high 

proliferative and self-renewing capacities, combined with multipotency to differentiate into 

TCM, TEM and Teff cells, thus, defining their ‘stem cell-like’ properties  (Gattinoni et al., 2012; 

Gattinoni et al., 2011). 

 

Peripheral blood does not show the full heterogeneity within memory T cells. Murine studies 

established that memory CD4+ and CD8+ T cells populate tissues and persist after viral or 

antigen clearance (Masopust et al., 2001; Reinhardt et al., 2001). In fact, in human intestinal 

and lung explants, CCR7- TEM were the principal memory T cell subset, whereas tonsils 
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included TCM and TEM populations (Campbell et al., 2001b). A further look at memory T cells 

within mouse tissues recognized the existence of a new tissue-resident memory T (TRM) cell 

subset that resides in peripheral tissues and induces a rapid protective response  in situ upon re-

exposure to antigen. TRM are discriminated from splenic and circulating memory T cells by 

expression of the early activation marker CD69 that retains them in tissue as well as CD103 

(Gebhardt et al., 2018).  

 

1.5.4.2 Models of memory T cell generation   

The pathways that govern an activated T cell fate have been extensively studied in mice. Yet 

the stage during which a T cell decides whether to become a long-lived memory cell or die 

remains very controversial. After experimentally dismissing the idea that different naïve T cell  

clones give rise to short-lived effector and long-lived memory cells (Gerlach et al., 2013; 

Stemberger et al., 2007), the field is left with two strong models (Figure 1-13). In the first 

model, T cell fate is determined early in the immune response during the first asymmetric cell 

division that gives rise to a daughter memory cell and a short-lived effector cell. The second 

model proposes that following activated T cell proliferation a “fate-decision” is made (Farber 

et al., 2014; Jameson and Masopust, 2018). Evidence supporting the two models are compelling 

but there is no definitive answer to settle the conflict.  
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The “early decision model” has been validated by recent single-cell gene expression studies 

that explored CD8+ T cells isolated hours or days after viral infection, i.e., cells undergoing the 

first division towards effector or memory populations. Interestingly, gene expression patterns 

differed between cells at the first-division stage, effector and memory cells. Computational 

models determined that during the first cell division “pre-effector” or “pre-memory” gene-

expression patterns are already present (Arsenio et al., 2014; Kakaradov et al., 2017). Arsenio 

et al. added that cells with “pre-effector” trait can still have a long-life as a population 

resembling TEM, whereas “pre-memory” daughter cells give rise to classic TCM and TEM 

cells (Arsenio et al., 2014). In contrast, a common differentiation program for effector and 

memory cells is supported by the fact that memory CD8+ T cells possess effector-

characteristics, for example transcriptional expression of granzyme B (Bannard et al., 2009). 

Furthermore, epigenetic studies showed that effector and memory precursor cells had similar 

DNA methylation patterns (Youngblood et al., 2017), thus suggesting a common differentiation 

program. Thus, evidence in support of both the “early-decision” and “common-differentiation” 

 

 

Figure 1-13: The two models recognized for memory T cell differentiation. 

The “early-decision model” involves an asymmetric division generating effector or memory 

cells, whereas the “late-decision model” involves a linear progression. 

(Adapted from (Espinosa et al., 2016); authorization code: 4625001273486). 
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models are remarkably resilient; the field awaits resolution of the mechanism and timing of T 

cell fate determination. 

 

In this thesis work, we have examined TEM cells in the tissue and MLN of IBD patients, and 

their interaction with MNPs. 
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1.6 Journey of T cells from mesenteric lymph node to intestinal 

mucosa 

An effective immune response depends on the organized localization and migration of memory 

and effector T cell subsets into different tissues, more specifically into the tissue 

microenvironment. The LN environment of T cells dictate the specific homing capacity of 

activated T cells to peripheral tissues.  For instance, T cells activated in intestinal SLOs, such 

as PP and MLNs, have a greater ability to migrate to intestinal tissues compared to, for example, 

T cells activated in the skin (Agace, 2010). In this section, I will review T cell migration and 

trafficking to the gut, as well as Th17 cell fate in the inflamed intestinal lamina propria. 

 

1.6.1 T CELL LOCALIZATION AND TRAFFICKING: CRUCIAL FOR AN 

EFFECTIVE IMMUNE RESPONSE 

The key feature of immunological memory is the generation of a quick and effective immune 

response upon antigen re-encounter. This proves simpler in humoral immunity with the 

extensive tissue access by antibodies. However, T cells need to act locally and move to the 

infection site to control the pathogen, thus their localization and migration patterns are crucial 

for the generation of a fast immune response (Figure 1-14) (Masopust and Schenkel, 2013).  
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Figure 1-14: Memory T cell migration patterns and location dictate the rapidity of an 

immune response upon antigen re-encounter. 

Since T cells need to act locally and fast to eliminate pathogens, they adapt different 

circulation patterns or reside in non-lymphoid tissues (NLT) to intercept the antigen quickly 

and initiate a response to contain it. (A) Naïve and memory T cells adopt different migration 

patterns. Naïve T cells and TCM focus on the surveillance of secondary lymphoid organs 

(SLOs) that include Peyer’s patches, lymph nodes and white pulp of spleen. A rare fraction 

of TEM circulate through NLT and transiently pass through SLOs. Finally, and as their name 

imply, tissue-resident memory T cells (TRM) are retained and survey NLTs.  (B) The position 

of TRM and TEM at the front line for antigen encounter allows them to initiate a small, in 

situ, antigen-specific response, while antigen-bearing cDC2 reach the TCM in SLO. Upon 

antigen encounter, TCM will proliferate and differentiate in SLOs, and generate the second 

wave of effector cells that will migrate to the site of infection. The latter process takes several 

days.  

(Adapted from (Masopust and Schenkel, 2013); authorization code: 4625050452934 and 

(Rosato et al., 2017); authorization code 4625020974585). 
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In order to immediately intercept pathogens, T cells circulate through the body between SLOs 

and peripheral tissue. In fact, while TCM cells oversee the lymphoid tissues, TEM cells travel 

through the blood and non-lymphoid tissues inspecting for infections. Another tissue 

surveillance tactic involves implanting TRM cells long-term in tissues, especially at barrier 

sites. This allows local surveillance and an immediate response upon pathogen tissue entry 

(Jameson and Masopust, 2018; Masopust and Schenkel, 2013; Rosato et al., 2017). 

 

1.6.1.1 Naïve T cell trafficking 

Following positive and negative selection in the thymus, naïve T cells (CD45RA+CD45RO-) 

circulate in the lymphatic system between SLOs, which include spleen, tonsils, LN, PP, and 

mucosa associated lymphoid tissues (MALT), guided by lymphoid-homing receptor expression 

CCR7 and CD62L.  

 

Naïve T cell trafficking has been recently extended to include non-lymphoid tissues such as the 

gut lamina propria (Lewis et al., 2008; Thome et al., 2016a; Thome et al., 2016b). In fact, 

CD45RA+CCR7+ naïve T cell frequencies reached 60% of the tissue-resident T cells in the 

colon of young children (0-2 years). In adults, naïve T cell proportion was lower in blood, 

spleen, LN and mucosal tissues (20-30% for CD4+ and 30-40% for CD8+ naïve T cells) (Thome 

et al., 2016a; Thome et al., 2016b). Almost 20% of tissue-isolated naïve T cells from adult 

humans, up-regulated their expression of the tissue-resident marker CD69, proposed to be 

necessary for their long-term maintenance, leading to their retention in LN and mucosal tissues 

(Thome et al., 2016a). 
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1.6.1.2 Memory T cell trafficking  

TEM cells are positioned to immediately intercept pathogens at site of infections, where they 

immediately generate effector cells for protection (Figure 1-14B). In direct contrast, TCM 

localization in SLOs that drain the infection site allows them to induce large numbers of effector 

cells, a process that requires several days (Jameson and Masopust, 2018; Masopust and 

Schenkel, 2013; Rosato et al., 2017).  

 

The regulation of memory cell migration pattern is largely unknown. The egress factor 

sphingosine 1-phosphate receptor type 1 (S1PR1) seems to play a central role for naive T cell 

recirculation and the ability of Teff cells to exit lymphoid tissues following activation. This G-

protein coupled receptor binds S1P, which is highly concentrated in blood and lymph, and 

facilitates the egress of lymphocytes from tissues to the circulation (Schwab and Cyster, 2007). 

S1PR1 expression is controlled directly at the gene level during T cell differentiation by KLF2 

(Carlson et al., 2006) or indirectly via CD69 expression. CD69 binds S1PR1 and inhibits its 

expression on the cell surface (Shiow et al., 2006). Both mechanisms have been proven useful 

in stopping tissue T cells from entering the vessels (Mackay et al., 2015). Noteworthy, 

diminished S1PR1 expression seems necessary for residency of CD8+ T cells in non-lymphoid 

tissues (Skon et al., 2013), and CD4+ T cells in SLOs (Durand et al., 2018).  

 

Another factor that seems to dictate whether T cells remain in lymphoid tissue is the strength 

of TCR stimulation. Although weak TCR-ligand interactions are enough to induce T cell 

proliferation and generate effector and memory cells, the strength of the interaction dictates 

lymphoid organ exit and immune response contraction. For instance, encounter with a low 
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affinity ligand moves CD8+ T cells to the blood earlier and reduces T cell expansion but does 

not affect  memory cell generation (Zehn et al., 2009).  

 

1.6.1.3 TRM: “Immigrants that Mediate Border Security” (Jameson and Masopust, 

2018) 

CD4+ and CD8+ memory T cells residing in non-lymphoid tissues, the TRMs,  are anatomically 

prepared for immediate antigen detection and infection control by their enhanced effector-like 

properties (Masopust et al., 2001; Reinhardt et al., 2001; Schenkel et al., 2014).  

 

Little is known about TRM differentiation in peripheral sites. In the intestine, TRMs are not 

seeded by circulating memory T cells (Klonowski et al., 2004) but rather by activated T cells 

expressing intestinal homing molecules during the primary immune response (Masopust et al., 

2010). Their retention in non-lymphoid tissues is assured by the upregulation of CD69 

expression upon T cell arrival to the tissue, and thus, preventing their exit (Mackay et al., 2013; 

Skon et al., 2013). Noteworthy, the fidelity of CD69 in labeling TRMs in non-lymphoid tissues 

has been recently questioned as CD69 does not seem to distinguish re-circulating cells from 

TRM at steady state in the pancreas, salivary glands and thymus (Park et al., 2016; Steinert et 

al., 2015). CD103-E-Cadherin interaction has also been shown to play a role in maintaining T 

cells in tissues. CD103 integrin expression has been noted on CD8+ and a fraction of CD4+ 

TRMs (Schenkel and Masopust, 2014). The combination of CD69 and CD103 expression has 

also been used to identify TRMs in the gut (de Vries et al., 2019b; Senda et al., 2019). CD103 

expression is fundamental to maintain TRM in intestinal epithelium (Casey et al., 2012). 
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Finally, TRM localization is reflected at the molecular level by the downregulation of S1PR1 

and CCR7 that seem to enforce tissue retention (Mackay and Kallies, 2017).   

 

In addition to their strategic localization in non-lymphoid tissues, TRMs assure fast protection 

upon antigen re-encounter by their frequency and enhanced effector-like properties. First, the 

numbers of TRM cells in non-lymphoid tissues has been recently reassessed by quantitative 

immunofluorescence microscopy that resulted in higher numbers in non-lymphoid tissues, 

including the small and large intestine, than previously thought (Steinert et al., 2015). Second, 

TRM cells have the capacity to amplify local immune response by sending an innate-like alarm 

signal leading to the recruitment and activation of DCs, classical monocytes, NK, B and T cells 

(Glennie et al., 2017; Glennie et al., 2015; Schenkel et al., 2014; Schenkel et al., 2013). In the 

intestinal mucosa, various studies demonstrated the accelerated abilities of CD4+ and CD8+ 

TRM cells in protection from bacterial and parasitic reinfections (Sheridan et al., 2014; 

Steinfelder et al., 2017).  Although the majority of work on TRMs focused on their role in 

protection against pathogens, their self-regulating capacities play a role in T cell driven 

autoimmune diseases such as psoriasis (Park and Kupper, 2015). This is only the tip of the 

iceberg in our understanding of TRM biology. TRM site specific elimination could be 

considered in therapies for autoimmune diseases such as IBD.  

 

1.6.2 HOMING TO THE INTESTINAL LAMINA PROPRIA: SMALL INTESTINE 

OR COLON? 

T cell entry into peripheral mucosal tissues, such as the intestine, is accomplished by the 

interaction of cell adhesion receptors, found on the surface of circulating effector cells, with 
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their ligands expressed on the vascular endothelium. The latter expresses different adhesion 

receptor ligands in distinct peripheral tissues, which is considerably influenced by 

inflammation. Thus, the entry of a circulating effector T cell subset into a specific peripheral 

tissue is determined by their expression of receptors for these ligands. T cell priming and 

activation in the GALT upregulates integrin and chemokine receptor expression that directs 

them to the small intestine or colonic LP (Agace, 2010; Campbell et al., 2001a).  

 

Small intestine homing is dictated mainly by Teff cell surface expression of integrin α4β7 and 

CCR9. Intestinal lamina propria venules express MAdCAM-1, the receptor for integrin α4β7 

(Berlin et al., 1993). Its expression is increased upon lymphocyte activation by RA-producing 

CD103+ DCs in MLN (Agace and Persson, 2012). Adoptive cell transfer studies verified the 

requirement of α4β7 and MAdCAM-1 in small and large intestinal lamina propria, but not 

spleen, for T cell binding to small intestine microvessels (Fujimori et al., 2002). Furthermore, 

CCR9 and its ligand CCL25 have been shown to localize effector T cells to the small intestine 

(Svensson et al., 2002). In fact, CCL25 is constitutively produced by the epithelium (Briskin et 

al., 1997) in varying amounts throughout the length of the small intestine. In fact, its expression 

in the small intestine of mice is highest in the proximal part and lowest in the distal region 

(Stenstad et al., 2007). Thus, CCR9-independent T cell homing mechanisms to the distal small 

intestine exist (Stenstad et al., 2006). In the colon, CCR9 is not required for T cell homing with 

few T cells expressing CCR9 in the colon of mouse and human (Kunkel et al., 2000; Papadakis 

et al., 2001). Furthermore, colonic epithelial cells secrete little CCL25 (Kunkel et al., 2000; 

Papadakis et al., 2000), but they produce the chemokine CCL28. The latter binds CCR10 

expressed on IgA-producing plasma cells recruited to the colon (Hieshima et al., 2004), but it 
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does not seem to play a role in T cell recruitment to the colon as few T cells are CCR10+ 

(Lazarus et al., 2003).  

 

The orphan G-protein-coupled receptor 15 (GPR15) plays a role in T cell homing to the colonic 

mucosa. In fact, CD4+ T cells isolated from the large intestine of mice have a 40-fold higher 

GPR15 expression compared to CD4+ T cells from the small intestine (Houston et al., 2016). 

Its colonic homing capacity is noted for FoxP3+ Treg and TEM localization in mice (Kim et al., 

2013; Nguyen et al., 2015). However, in humans, only CD4+ TEM are guided by GPR15 to the 

colon (Nguyen et al., 2015). Recent work identified GPR15L as the ligand for GPR15. This 

chemokine is secreted by skin and gastrointestinal epithelial cells.  Expression of GPR15L is 

constitutive in the colon, from early development, and is slightly affected by inflammation 

(Ocon et al., 2017). Due to its role in TEM localization to the colon, GPR15/GPR15L axis plays 

a role in colitis in mice and humans. First, GPR15 induces colitis in the CD45RBhi T cell model 

requiring effector T cell homing to the colon. Furthermore, GPR15 expression was higher on 

Th2 cells isolated from the colon of UC patients when compared to controls. Thus, GPR15 plays 

a role in Teff, more specifically Th2, recruitment to the colon of UC (Nguyen et al., 2015), and 

warrants further investigation. Noteworthy, the role of GPR15 in Treg recruitment was 

demonstrated in mice but not humans (Adamczyk et al., 2017). 

 

Other chemokines have also been implicated in T cell localization to the intestine, such as 

CCL20 and its receptor CCR6. CCL20 is normally secreted by epithelial cells coating the PP 

under inflammatory settings (Wang et al., 2009). The CCR6/CCL20 axis contributes to T cell 

recruitment to small and large intestinal mucosa only under inflammatory conditions (Oyama 
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et al., 2007). In fact, CCL20 expression is higher in inflamed compared to non-inflamed colonic 

mucosa of IBD patients (Kaser et al., 2004) and mice with DSS-induced colitis (Teramoto et 

al., 2005). Also, blockade of CCR6 and CCL20 attenuates DSS-induced T cell recruitment 

(Teramoto et al., 2005). Finally, CCR6+ Th17 cells are recruited by CCL20 to the intestinal 

lamina propria of mice, especially in inflammation (Wang et al., 2009). These results indicate 

that CCR6 and CCL20 localize T cells to the small intestine and colonic mucosa during 

inflammation.  

 

1.6.3 FATE OF TH17 CELLS IN IBD 

The protective role of Th17 cells in maintenance of intestinal homeostasis, described earlier, 

seems to contradict its involvement in IBD. However, the role of Th17 in IBD development has 

been well established. It is unclear whether it is due to differentiation of new pro-inflammatory 

Th17 cells or if these cells shift to an inflammatory phenotype (Stockinger and Omenetti, 2017). 

Th17 cells are controlled by a unique master transcription factor that controls the transcription 

of only a few Th17 associated genes. Contrary to GATA3 and T-bet, RORγ expression is not 

maintained by a positive feedback loop, but is rather influenced by environmental signals 

rendering Th17 unstable and plastic (Ciofani et al., 2012). 

 

1.6.3.1 Non-pathogenic Th17 cells 

Th17 plasticity is not only involved in pathogenicity, it can have beneficial functions in the 

mucosa. First, Th17 cells, under TGFβ and AHR signaling, trans-differentiate into IL10-

producing regulatory T cells, known as T regulatory type 1 (TR1)-like cells, that contribute to 

resolution of intestinal inflammation (Gagliani et al., 2015). The generation of RORγ+FoxP3+ 
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T cells is inhibited in germ-free conditions (Lochner et al., 2011; Yang et al., 2016). Indeed, 

Clostridium species induced colonic RORγ-expressing, over GATA3-expressing, FoxP3+ Treg 

cells (Ohnmacht et al., 2015). Therefore, intestinal bacteria play a role in balancing Th17 

immune responses at mucosal surface. Second, in PP plastic Th17 cells adopted a TFH profile 

and induced the development of IgA-producing B cells in germinal centers. Under these 

conditions, IL23 does not contribute to Th17 survival or plasticity. In fact, in Il23-/- mice, the 

intestine Th17 cells count is normal, and they equivalently convert to a TFH phenotype (Hirota 

et al., 2013). Accordingly, the balance between pathogenic versus beneficial Th17 cell 

responses depend in part on IL23 in the intestinal mucosa.   

 

1.6.3.2 Pathogenic Th17 cells 

First, pathogenic Th17 cells were identified in an in vitro model in the presence of different 

cytokine combinations (Ghoreschi et al., 2010; McGeachy et al., 2007). Whereas IL6 and 

TGFβ1 generate non-pathogenic IL10-producing Th17 cells unable to induce experimental 

autoimmune encephalitis (EAE) following adoptive transfer, the combination of IL6, IL1β and 

IL23 gave rise to EAE-inducing pathogenic Th17 cells (Lee et al., 2012). Further 

characterization of non-pathogenic versus pathogenic Th17 cells relied on transcriptome 

analysis of in vitro generated cells that varied in their pathogenicity signatures, echoing their 

differentiation conditions. In fact, a high pathogenicity score was associated with 

IL6+IL1β+IL23 derived IL17-secreting cells; while IL6+TGFβ1 derived IL17+ cells correlated 

with regulatory cytokines such as IL10. Interestingly and given the importance of IL23 

signaling in CD development, IL23R-/- cells differentiated with IL6+IL1β+IL23 cytokine 
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combination correlated with the non-pathogenic cells, substantiating the role of IL23 pathway 

in pathogenicity (Gaublomme et al., 2015).  

 

The plasticity of Th17 cells has been shown to be a common feature under pathogenic 

conditions. In fact, a subset of Th17 cells co-expressing IFNγ was identified in the gut of CD 

patients and delineated as Th17/Th1 cells (Annunziato et al., 2007); the latter could lose IL17 

expression under inflammatory condition and become non-classic Th1, also known as  Th1* or 

ex-Th17, cells (Lee et al., 2009b). The gain of IFNγ production in Th17 cells has been noted in 

intestinal infections with C. rodentium (Ahlfors et al., 2014) and H. hepaticus (Morrison et al., 

2013) as well as in a Th17  transfer model of colitis (Harbour et al., 2015). Moreover, Th1 cells 

were previously associated with CD (de Souza and Fiocchi, 2016). Thus, the predisposition of 

Th17 cells to adopt a Th1-like profile suggests that inflammation in CD is mainly powered by 

the plastic Th17 cells.  

 

IL12 and IL23 play an important role in driving Th17 plasticity. In fact, IL12 and IL23 signaling 

promote IFNγ while suppressing IL17 expression in a STAT4/T-bet dependent pathway (Lee 

et al., 2009a). Furthermore, the expression of pro-inflammatory IFNγ and GM-CSF by Th17 

cells is halted in the absence of IL23 (Hirota et al., 2011). The latter mediates its function 

through induction of the transcription factor BLIMP1 expression that, along with Th17 

transcription factors (RORγ, STAT3), enhance the expression of IL23r, IL17a/f and Gmcsf  

(Jain et al., 2016).  Moreover, IL23 fuels intestinal inflammation by the emergence of 

IFNγ+Tbet+ pathogenic Th17 cells (Krausgruber et al., 2016) in parallel to restraining Treg 

activity (Izcue et al., 2008). This is consistent with GWAS identification of IL23R as an IBD 
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gene (Duerr et al., 2006). Much of the work on Th17 shift to Th17/Th1 cells in the inflamed 

mucosa has been described in CD patients. Although IL12 have been shown to augment IFNγ 

secretion in the culture supernatant (CSN) of CD3+CD28 stimulated LPMC from CD and UC 

patients (Kobayashi et al., 2008), the regulation of mucosal Th17, Th17/Th1 and Th1 responses 

remain to be fully investigated in UC.  

 

Exploring Th17 cell plasticity in the mucosa of UC patients is a subject of my thesis. 

Furthermore, no study compared Th17 cells in the MLN of CD and UC patients. Consequently, 

in this thesis work, we will investigate the frequencies of Th17 cells and their molecular profile 

in colon-draining MLN of CD and UC patients. 
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Given that IBD pathogenicity is mediated in part by MNPs that dialogue via the cytokine they 

produce with innate and adaptive immune cells. A better understanding of MNP phenotypic, 

molecular and functional diversity as well as plasticity will shed light on IBD pathophysiology, 

and would help identify novel therapeutic targets for the development of personalized 

treatments. Therefore, understanding the phenotypic and functional diversity of CD14+MNPs 

and the monocyte subset (Slan+ cells) in UC and CD is the first objective of our present work 

(Chapters 2 and 3). Moreover, comprehending the environmental cues that regulate “tissue 

inflammatory monocytes” maturation into anti-inflammatory macrophages in humans might 

open therapeutic avenues to restore tissue homeostasis. Thus, examining in vitro the plasticity 

of monocytes and their progressive differentiation from monocyte-like cells 

(CD14+CD64+CD163-) to macrophages (CD14+CD64+CD163+) resembling functionally and 

molecularly tissue CD14+MNP subsets is the second objective of this thesis (Chapter 5).  

 

Therapies in IBD employ antibodies that block MNP-derived IL12 and IL23, thus control Th17 

pathogenicity and plasticity and decrease intestinal inflammation. Consequently, the third 

objective aims at studying the link between colonic CD14+ MNP subset, the cytokines they 

produce and intestinal effector CD4+ T cell profile (Chapter 2). Finally, we will evaluate Th17 

pathogenicity and plasticity under the influence of MNP-derived cytokines in UC and CD 

(Chapter 4).  
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Chapter 2 :  
 

IL-12 and mucosal CD14+ monocyte-like cells 

induce IL-8 in colonic memory CD4+ T cells 

of patients with ulcerative colitis but not 

Crohn’s disease  
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2.1 Abstract  

Background and Aims. CD14+ mononuclear phagocytes (MNPs) and T cells infiltrate colon 

in ulcerative colitis (UC). We here investigated how CD14+MNPs and cytokines they produce, 

shape colonic effector T cell profile.  

Methods. Colonic or mesenteric lymph node (mLNs) CD4+T cells isolated from UC or Crohn’s 

disease (CD) were stimulated with cytokines or autologous CD14+ MNPs. Cytokine expression 

was assessed by intracytoplasmic staining and multiplex ELISA. Unsupervised phenotypic 

multicolor analysis of colonic CD14+ MNPs was performed using FlowSOM algorithm. 

Results. Among CD14+CD64+HLA-DR+SIRPα+MNPs, only the pro-inflammatory cytokine-

producing CD163- subpopulation accumulated in inflamed UC colon and promoted mucosal 

IL-1β-dependent Th17, Th17/Th1, Th17/Th22 but not Th1 responses. Unsupervised phenotypic 

analysis of CD14+CD64+MNPs segregated CD163- monocyte-like cells and CD163+ 

macrophages. Unexpectedly, IL-12, IL-1β and CD163-, but not CD163+, cells induced IL-8 

expression in colonic CD4+T cells, which co-expressed IFN-γ and/or IL-17 in UC and not CD. 

The CD163- monocyte-like cells increased the frequency of IL-8+IL-17+/-IFN-γ+/- T cells 

through IL-1β and IL-12. Finally, colonic IL-8+ T cells co-expressed GM-CSF, TNF- and IL-

6 were detected ex vivo and, promoted by IL-12 in the mucosa and mLNs in UC only.  

Conclusions. Our findings established a link between monocyte-like CD163-MNPs, IL-12, IL-

1β and the detection of colonic memory IL-8-producing CD4+T cells, which might all contribute 

to UC pathogenesis. 
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2.2 Article  

2.2.1 INTRODUCTION  

Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. Epithelial cells  that 

produce mucus, the microbiota as well as innate and adaptive immune cells, all contribute to 

the pathophysiology of the disease (Ungaro et al., 2017). UC was first considered a Th2 disease 

since elevated levels of IL-5 and IL-13 were detected in the colonic mucosa of patients (Fuss 

et al., 2004; Heller et al., 2005). Nonetheless, the view that UC is a type 2 disease distinct from 

Th1-associated Crohn’s disease (CD) - the other common form of inflammatory bowel diseases 

(IBD)- has been challenged in the last few years (Christophi et al., 2012; Neurath et al., 2002). 

Firstly, some studies did not note the increased IL-5 and IL-13 expression in the mucosa of UC 

patients (Biancheri et al., 2014), while others proposed a protective role for IL-13 in pediatric 

patients with UC (Rosen et al., 2017). Also, two anti-IL-13 monoclonal antibodies failed in 

improving the outcome of UC patients (Danese et al., 2015; Reinisch et al., 2015). Secondly, 

the discovery of IL-17-secreting CD4+T cells (Th17) brought new insights into the 

pathophysiology of UC. IL-17 and IFN-γ mRNA is elevated in biopsies from UC mucosa when 

compared to normal controls (Bogaert et al., 2010; Granlund et al., 2013; Kobayashi et al., 

2008). Furthermore,  Th17 and IL-17+IFN-γ+CD4+ T cells (Th17/Th1) are observed in inflamed 

mucosa of patients with UC (Globig et al., 2014; Kryczek et al., 2011; Li et al., 2016; Rovedatti 

et al., 2009). However, Th17 cell fate towards Th17/Th1 profile is much less studied in UC than 

CD. In inflamed CD mucosa, IL-17+IFN-γ+ T cells accumulate in lesional sites and participate 

in the mucosal inflammatory process (Annunziato et al., 2007; Globig et al., 2014; Ramesh et 

al., 2014). The cytokines that drive the shift from Th17 towards Th17/Th1 cells have been 

described in CD. CD161+CD4+ T cells isolated from patients with CD express IL-23R, and 
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produce IL-17 and IFN-γ under IL-23 stimulation (Kleinschek et al., 2009). Moreover, Ramesh 

et al showed that IL-23 increased the percentage of IFN-γ+IL-17+CD4+ T cells, particularly in 

MDR1+IL-23R+ Th17/Th1 population isolated from the blood of healthy donors (Ramesh et al., 

2014). Recombinant IL-12, that shares a common IL-12p40 chain with IL-23, increases IFN-γ 

expression while decreasing IL-17 in Th17 clones isolated from the mucosa of patients with 

CD (Annunziato et al., 2007). Although IL-12 augments IFN-γ secretion in the culture 

supernatant (CSN) of CD3 and CD28 stimulated lamina propria mononuclear cells (LPMC) 

from CD and UC patients (Kobayashi et al., 2008), the regulation of mucosal Th17, Th17/Th1 

and Th1 responses remain to be fully investigated in UC. 

IL-23 and IL-12 are pro-inflammatory cytokines, which are produced by mononuclear 

phagocytes (MNPs). Currently, MNPs are classified as dendritic cells (DCs), macrophages 

(Mɸ), inflammatory monocytes and/or monocyte-derived cells (Guilliams and van de Laar, 

2015). In the mucosa of patients with UC, a population expressing the monocyte marker CD14 

has been reported (Kamada et al., 2008); they are considered as Mɸ or monocyte-derived cells 

(Baba et al., 2013; Thiesen et al., 2014). Also, Magnusson et al described the accumulation of 

a HLA-DRdimCD64+ subset in the inflamed mucosa of UC patients compared to normal controls 

(Magnusson et al., 2016). These mucosal MNPs secrete pro-inflammatory cytokine including 

TNF-α, IL-23, IL-1β and IL-6 (Kamada et al., 2008). However, the impact of mucosal CD14+ 

MNPs on effector memory CD4+T cell response remains to be investigated in UC.   

In the present study, we examined whether and how CD14+ MNPs that infiltrate the mucosa of 

patients with UC control autologous memory colonic Th response. We showed that the pro-

inflammatory CD14+ monocyte-like subpopulation, that did not express CD163, accumulated 

in inflamed colonic UC mucosa and favored Th17, Th17/Th1 but not Th1 responses. A few 
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reports have shown that circulating T cells isolated from healthy adults and cord blood secrete 

IL-8 (Akhade and Qadri, 2015; Gasch et al., 2014; Gibbons et al., 2014). This  chemokine plays 

a key role in UC pathogenesis (Beck et al., 2016; Bennike et al., 2015; Mitsuyama et al., 1994). 

Unexpectedly, our data further revealed that CD163 - but not CD163+ MNPs augmented IL-8 

expression in colonic memory CD4+ T cells in UC but not CD. 
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2.2.2 MATERIALS AND METHODS 

2.2.2.1 Human clinical samples 

All participants signed an informed consent form that has been approved by the Institutional 

Ethics Research Committee of the Centre Hospitalier de l’Université de Montréal (CHUM). 

This study includes 83 patients with UC (median age 42), 19 patients with CD (median age 37) 

and 6 patients undergoing a screening colonoscopy (non IBD) (median age 60) (Table 2-1). 

IBD patient recruitment was based on clinical, endoscopic activity and histological criteria.  UC 

patients presented with bloody stools, diarrhea, and abdominal pain. Endoscopically, they 

presented a continuous inflammation, extending from the rectum to the colon. CD patients 

presented with diarrhea, weight loss or abdominal pain. Endoscopically, the mucosa was eroded 

and exhibited patchy inflammation, deep ulcers and/or strictures. Histologically, the 

architecture of the crypts was disturbed; the mucosa was infiltrated by mono or polynuclear 

cells, with or without pathognomonic granuloma in the case of CD patients. No histological 

data or bacteriological infections suggested a differential diagnosis. An endoscopic score (Mayo 

or SES-CD) was not available for most of the IBD patients since it is not performed routinely 

by gastroenterologists at CHUM. Disease remission was assessed on the basis of endoscopic 

criteria. Non-inflamed and inflamed colonic tissues (from the same patient), non IBD (control) 

colonic tissue and mesenteric lymph nodes (mLNs) from UC patients only, were acquired from 

endoscopic biopsies or surgical resections, respectively.  

 

2.2.2.2 Cell purification 

Intestinal mucosa, from biopsies or surgical samples, was first processed by enzymatic 

digestion with DNase I (Roche, Basel, Switzerland) and Collagenase D (Roche, Basel, 
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Switzerland) followed by mechanical digestion with gentle MACS (Miltenyi Biotec, Bergisch 

Gladbach, Germany) to isolate lamina propria mononuclear cells (LPMC). MLNs were digested 

mechanically to obtain cellular suspensions (Baba et al., 2013). 

 

2.2.2.3 Cell staining 

LPMC were stained using monoclonal antibodies listed in Table 2-S1, and analyses were 

performed with FCS Express 6 (De novo software) or FlowJo v10.5.3. Unsupervised analyses 

were performed using plugins available (t-SNE (t-Distributed Stochastic Neighbor Embedding) 

and FlowSOM (Flow self-organizing map) (R Core Team, 2016; Van Gassen et al., 2015), in 

FlowJo. The data were manually gated on single viable CD45+HLADR+SIPRα+CD14+CD64+ 

cells, and all gated cells were subjected to analysis. The cells were assigned to a self-organizing 

map, automatically segregating cells into 5 clusters and visualizing data in four ways: a) cell 

affiliation in 5 clusters visualized in t-SNE plot; b) surface markers expression level visualized 

by histograms; c) relative mean intensities depicted according color gradient in heatmap; d) 

assignment of cells to the self-organizing map with a 5x5 grid, resulting in 25 nodes, depicted 

as a minimal spanning tree, built to visualize similar nodes in branches. Concatenated file from 

4 UC patients as well as each individual file were analyzed separately with t-SNE and 

FlowSOM algorithm. FlowSOM algorithm was run 5 times to insure reproducibility of the 

results.  

 

2.2.2.4 Cell sorting  

Human CD4+CD8-CD45RA-CD25- mucosal T cells and HLA-DR+SIRPα+CD14+CD64+ MNPs 

co-expressing or not CD163 were sorted at the same time to perform co-culture experiments. 
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HLA-DR+SIRPα+CD14+CD64+ MNPs co-expressing or not CD163 were also sorted to analyze 

cell morphology. MLN CD4+CD45RO+CD62LlowCD8-CD45RA-CD25-
 effector memory T 

cells (TEM) were stratified into CCR6+CXCR3- (Th17 TEM) and CCR6-CXCR3+ (Th1 TEM) and 

sorted for culture with either IL-1β or IL-12, and ex vivo PMA ionomycin stimulation. Sorting 

were performed using FACS Aria II cell sorter and data were analyzed using FACS Diva 6 (BD 

Biosciences, San Diego, CA, USA). 

 

2.2.2.5 In vitro MNP/T cell co-cultures 

Total CD4+T cells, depleted in CD8+ T cells, CD25+regulatory T cells and CD45RA+naïve T 

cells were purified from inflamed colon. T cells were stimulated with anti-CD3/CD28 coated 

beads (Miltenyi Biotec), and either a) cultured with or without IL-1β (10ng/ml, R&D system), 

IL-12 (20ng/ml, R&D system) or IL-23 (10ng/ml, R&D system) for 6 days; or b) co-cultured 

with autologous MNP subsets purified from inflamed colonic mucosa, at a 10:1 ratio for 6 days, 

in the presence of PGN (10μg/ml). For some experiments, anti-IL-1β receptor (10μg/ml), anti-

IL-1β (10μg/ml) or anti-IL12p70 (10μg/ml, R&D system) mAbs were added to the co-cultures.  

Total CD4+CD8-CD45RA-CD25- T cells, Th17 TEM, and  Th1 TEM, purified from mLNs were 

co-cultured in the presence of anti-CD3/CD28 coated beads, with or without IL-1β (10ng/ml) 

or IL-12 (20ng/ml) for 6 days. 

For all cultures: a) RPMI 1640 medium with 10% FCS, 1% Penicillin/Streptomycin was used; 

b) for intracytoplasmic staining, cells were re-stimulated after culture, with PMA and 

ionomycin for 6 hours in the presence of brefeldin A for the last 3 hours, then fixed and stained 

with mAbs (CD3, IL-17, IFN-γ, IL-8, IL-22, IL-6, TNF-α, GM-CSF, as listed in Table 2-S1); 
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c) IL-17, IFN-, IL-6, TNF-α, GM-CSF, IL-8 release were measured by multiplex assay (Eve 

Technologies, Calgary, AB, Canada) in the culture supernatants.  

 

2.2.2.6 Cytokine expression 

Ex vivo isolated LPMC were immediately stained for CD45, HLA-DR, CD172α (SIRPα), CD64 

and CD163, in the absence of BrefeldinA, then fixed/permeabilized and stained for 

intracytoplasmic cytokine expression (IL-1β, IL-10, IL-12p40 and IL-23).  

Freshly isolated LPMC were cultured with PMA and ionomycin for 4 hours, in the presence of 

brefeldin A, then fixed and stained for CD45, CD3, CD4, CD8 and CD25. Intra-cytoplasmic 

expression of Foxp3, IL-8, IL-17A, TNF-α, IFN-γ, IL-6, GM-CSF was evaluated after 

permeabilization. Co-expression of IL-17A, TNF-α, IFN-γ, IL-6, GM-CSF was evaluated in 

CD3+CD4+CD8-CD25-Foxp3-IL-8+ cells. 

Freshly purified Th1 TEM and Th17 TEM were stimulated with phorbol 12-myristate 13-acetate 

(PMA) and ionomycin for 4 hours, in the presence of brefeldin A, then stained for 

intracytoplasmic IFN-γ and IL-17 expression.  

 

2.2.2.7 Morphology  

For morphological studies, FACS-sorted MNPs were cytospun and stained according to the 

Wright Stain procedure. Leica DM4000B microscope, equipped with Leica DFC300FX camera 

was used to visualize cells. 
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2.2.2.8 Statistical analysis 

Statistical analysis was performed with GraphPad Prism version 6 (GraphPad Software, La 

Jolla, CA, USA). Data were checked for normality using Shapiro-Wilk test and then the 

appropriate test was applied as indicated in figure legends. Two-tailed Wilcoxon signed rank 

test (represented by *) and Mann Whitney test (represented by §) were used. Friedman test was 

employed followed by Dunn’s test (represented by Ω). Threshold for significance was adjusted 

when indicated to account for test multiplicity. Kruskal-Wallis test was employed followed by 

Dunn’s test (represented by #). Repeated measure one-way Anova was employed followed by 

Bonferroni test (represented by ¤). For all tests, 1 symbol means p<0.05; 2 symbols mean 

p<0.01; 3 symbols mean p<0.001. Bar graph data are shown as mean ± s.e.m.  
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2.2.3 RESULTS 

2.2.3.1 IL-1β promotes Th17 and Th17/Th1 responses in CD4+T cells isolated from 

inflamed colon of UC patients. 

IL-23 and IL-12 are key cytokines in Th17/Th1-associated CD pathogenesis (Annunziato et al., 

2007; Kleinschek et al., 2009; Ramesh et al., 2014). Here, we first evaluated how IL-23 and IL-

12 regulated the Th17, Th17/Th1 and Th1 profile of CD4+T cells isolated from inflamed colon 

of UC patients. As expected, IL-12 augmented the frequency of single IFN-γ-producing CD4+T 

cells (Th1) (p<0.002) and decreased the frequency of single IL-17-producing CD4+T cells 

(Th17) (p<0.006). However, the percentages of Th17 and double IL-17/IFN-γ-producing 

CD4+T cells (Th17/Th1) were not modulated by IL-23 (Figure 2-1). As recently reported in 

CD (Chapuy et al., 2019a), IL-1β significantly increased Th17 (p<0.0002) and Th17/Th1 

(p<0.0002), but not Th1 responses in all UC patients examined (Figure 2-1).  

Thus, IL-1β, but not IL-23 or IL-12, promotes a Th17 and Th17/Th1 profile in mucosal CD4+T 

cells in UC.  

 

2.2.3.2 HLA-DR+SIRPα+CD14+CD64+CD163- cells selectively accumulate in inflamed 

UC mucosa. 

CD14+MNPs are a cellular source of IL-1β, IL-12 and IL-23 in inflamed gut mucosa (Kamada 

et al., 2008). A previous report showed that HLA-DR+SIRPα+ MNPs accumulate in inflamed 

compared to non-inflamed colonic mucosa of patients with CD (Baba et al., 2013). We here 

examined whether MNPs with a similar phenotype infiltrated the UC mucosa. The frequencies 

of HLA-DR+SIRPα+ MNPs were higher in inflamed relative to paired non-inflamed colonic 

mucosa (n=31), as well as to colon of UC patients in remission (n=8) and non-IBD control (n=6) 
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(p<0.0007, p<0.007, p<0.009, respectively; Figure 2-2a). In inflamed UC mucosa, more than 

95% of HLA-DR+SIRPα+ MNPs expressed CD14 (Figure 2-2b). To assess heterogeneity of the 

HLA-DR+SIRPα+CD14+ population, these cells were further stratified according to expression 

of CD64 (the Fc-gamma receptor 1) and scavenger receptor CD163, expressed on human gut 

Mɸ (Jakubzick et al., 2017; Segura and Amigorena, 2013). CD14+CD64+ cells were subdivided 

according to the intensity of CD163 expression (Figure 2-2c). Data revealed that CD163-, but 

not CD163dim or CD163+, cells accumulated in inflamed when compared to paired non-inflamed 

UC colon (p<0.0001), and were detected in low frequencies in healed mucosa of UC patients 

in endoscopic remission and control patients (p<0.01 and p<0.008 respectively; Figure 2-2d).  

In conclusion, CD163- cells are the predominant HLA-DR+SIRPα+CD14+CD64+ MNP 

subpopulation that infiltrates inflamed UC mucosa.  

 

2.2.3.3 Mucosal CD163- and CD163+ MNPs express similar amounts of pro-

inflammatory cytokines but CD163+ cells produce more IL-10 relative to CD163- cells. 

Next, we analyzed cytokine expression in colonic CD163+ or CD163- subpopulations. The 

frequencies of IL-1β, IL-12p40 and IL-23-producing cells were augmented in inflamed relative 

to paired non-inflamed UC mucosa in CD163- (p<0.008, p<0.004, p<0.5, respectively) and 

CD163+ cells (p<0.04; p<0.02, p<0.03) (Figure 2-3a). Furthermore, the amount of pro-

inflammatory cytokine expression per cell (MFI) was similar in CD163 - and CD163+ cells in 

both non-inflamed and inflamed tissues (Figure 2-3b). Since colonic CD163+ macrophages are 

known to produce IL-10 (Gonzalez-Dominguez et al., 2015; Ogino et al., 2013), we further 

examined IL-10 expression in CD163- and CD163+ cells (Figure 2-3c). Unlike pro-

inflammatory cytokine secretion, the amount of IL-10 per cell was higher in CD163+ relative 
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to CD163- cells in inflamed and non-inflamed mucosa (p<0.002 and p<0.005) while the 

percentage of IL-10-producing cells was higher in CD163+ when compared to CD163- cells in 

non-inflamed mucosa only (p<0.04) (Figure 2-3c).  

Overall, both CD163- and CD163+ cells produce IL-1β, IL-12p40 and IL-23. However, 

considering the relative distribution of these 2 cell subpopulations, with increased proportion 

of CD163- relative to CD163+ cells within CD14+CD64+ MNPs (Figure 2-3a, middle panel), 

the former is the major contributor to pro-inflammatory cytokine production in the inflamed 

mucosa. In contrast, CD163+ cells produce more IL-10 relative to CD163- cells. 

 

2.2.3.4 Mucosal CD163- but not CD163+ MNPs favor autologous Th17/Th1 and 

Th17/Th22 responses in an IL-1β-dependent manner in inflamed UC colon. 

We next asked whether and how CD163- and CD163+ MNPs from inflamed tissue regulate 

autologous memory Th17, Th17/Th1 and Th1 responses. To this end, we simultaneously 

purified CD4+ T cells, CD163- and CD163+ MNPs from colonic biopsies, thus excluding the 

intermediate CD163dim cells and co-cultured the cells for 6 days (Figure 2-S1). Remarkably, 

CD163-, but not CD163+, MNPs favored the emergence of Th17 (p<0.0001) and Th17/Th1 

(p<0.0001), but not Th1 cells (Figure 2-4a). Noteworthy, CD14+CD64+CD163- MNPs were not 

able to induce naïve T cell proliferation and drive their differentiation into Th effector subsets, 

while the minor CD14-CD64-CD163- cells, which are enriched in DCs (Chapuy et al., 2019a),  

primed naïve T cells and induced polarization towards Th1 effectors (data not shown). 

We further explored the mechanisms underlying the facilitating activity of colonic CD163 - cells 

on Th17 and Th17/Th1 responses. The frequencies of IL-17+IFN-γ- and IL-17+IFN-γ+ T cells 

were decreased, by adding a monoclonal antibody (mAb) that neutralizes IL-1β function to the 
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CD163- plus CD4+ T cells co-cultures (p<0.05 and p<0.01, respectively, Figure 2-4b). CD163- 

MNPs and IL-1 appeared to favor the selective expansion of Th17 and Th17/Th1 cells, while 

proliferation of Th1 cell population seems unaltered (data not shown). However, the Th17 and 

Th17/Th1 responses were not influenced by anti-IL-12p70 mAb that selectively blocked IL-12 

(Figure 2-4b). Similarly, elevated frequencies of IL-17+IL-22- (p<0.0001) and IL-17+IL-22+ 

(p<0.002) cells observed in CD4+ T cells co-cultured with CD163- cells, were reduced when 

neutralizing IL-1β function (p<0.05 and p<0.01 respectively; Figure 2-4c and Figure 2-4d).  

These data indicate that only CD163- MNPs promote a Th17, Th17/Th1 or Th17/Th22 profile 

in an IL-1β-dependent manner, corroborating our observations with recombinant IL-1β-

stimulated CD4+ T cells cultures (Figure 2-1). 

 

2.2.3.5 Mucosal CD4+ T cells produce IL-8 in UC patients.  

Next, we examined how IL-1β and IL-12 regulates the expression of pro-inflammatory 

cytokines in the culture supernatant of in vitro activated colonic CD4+ T cells. In agreement 

with the data of intracellular IL-17 and IFN-γ expression, IL-17 production was significantly 

increased (p<0.004) by IL-1β, while IL-12, but not IL-23 augmented IFN-γ (p<0.004) (Figure 

2-5a). Furthermore, IL-12 but not IL-1β increased TNF-α, GM-CSF and IL-6 secretion (p<0.04; 

p<0.004; p<0.02 respectively), suggesting that IL-12 drives a potential pathogenic CD4+ T cell 

profile in colon (Figure 2-5b). By serendipity, the multiplex cytokine assay revealed that 

mucosal CD4+ T cells produced IL-8 in response to IL-12 (p<0.004) and IL-1β (p<0.004) but 

not IL-23 (Figure 2-5c). We therefore verified IL-8 expression at the single cell level using 

intra-cytoplasmic staining and observed that both IL-12 and IL-1β augmented the frequency of 

IL-8+CD4+ T cells in UC (p<0.002 and p<0.007 respectively) (Figure 2-5d).  Since IL-8 
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produced by activated Th17 clones, which were generated from IBD mucosa, promotes 

neutrophil migration (Pelletier et al., 2010), we explored whether IL-8 secreted by IL-1  or IL-

12-activated colonic CD4+T cells attracted neutrophils. Unfortunately, we did not succeed in 

showing IL-8-mediated chemotactic activity in the culture supernatant of activated primary 

mucosal CD4+ T cells (data not shown). Phenotypic analysis of IL-8+CD4+ T cells in UC 

patients further showed that the majority of these cells expressed α4, while β7 and CD103 

expression was barely detectable in all culture conditions (Figure 2-S2a). CCR6, a Th17 

associated surface marker, as well as CD69, a surface marker expressed by activated T cells or 

tissue resident memory T cells, but not the Th1-associated surface marker CXCR3, were 

expressed on IL-8-producing T cells (Figure 2-S2b). IL-12 significantly decreased the 

proportion of CCR6 and CD69 positive cells in IL-8+CD4+ T cells (n=4, p<0.01 and p<0.04 

respectively) while the percentage of IL-8+ cells expressing CCR6 augmented in the presence 

of IL-1β (n=4, p<0.04).  

We further examined ex vivo IL-8 expression in colonic CD4+ T cells using freshly isolated 

cells from inflamed mucosa (Figure 2-5e). A significant proportion (40%) of the IL-8-

producing cells co-expressed pro-inflammatory cytokines. Specifically, IL-8+ cells co-produced 

GM-CSF (14%), TNF-α (20.2%), IL-6 (8.6%), IFN-γ (2.1%) and IL-17 (4.7%). Noteworthy, 

IL-8 could not be detected in significant proportions in CD4+CD25+Foxp3+ regulatory T cells 

(Figure 2-S3).  

Taken together, IL-8+CD4+ T cells co-producing GM-CSF, TNF-, IL-6 and IFN- are detected 

ex vivo in inflamed UC colon and this IL-8 pathogenic profile is further augmented by IL-12 

but not IL-1β in vitro.  
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2.2.3.6 IL-12 promotes IL-8 and IFN-γ expression whereas IL-1β favors IL-17 and IL-

8 in colon of UC patients. 

We further showed that  frequencies of IL-8+IL-17+ (p<0.002) but not IL-8+IL-22+ CD4+ T cells 

were increased by IL-1β while IL-12 augmented IL-8+IFN-γ+ CD4+ T cells (p<0.003) (Figure 

2-6a). More precisely, IL-1β augmented the proportion IL-8+IL-17+IFN-γ- and IL-8+IL-17+IFN-

γ+ cells (p<0.004 and p<0.009, respectively; Figure 2-6b). The frequency of IL-8+IFN-γ+IL-17- 

(named hereafter Th8/Th1) cells was increased by IL-12 (p<0.0002; Figure 2-6b).  

Taken together, IL-1β favored the emergence of IL-8+IL-17+IFN-γ-/+ CD4+ T cells whereas IL-

12 promoted IL-8+IFN-γ+IL-17-/+ CD4+ T cells in UC colon. 

 

2.2.3.7 IL-12 promotes IL-8 expression in effector memory Th17 cells from mesenteric 

lymph nodes of UC patients.  

Since mucosal CD4+T cells emigrate from mesenteric lymph nodes (mLNs) to gut tissue, we 

also examined the ability of IL-12 and IL-1β to regulate IL-8 expression in mLNs before their 

recruitment to colon. Similar to mucosal CD4+ T cells, IL-1β augmented the frequencies of IL-

8+IL-17+IFN-γ- (p<0.05) and IL-8+IL-17+IFN-γ+ CD4+ T cells (p<0.05), while IL-12 increased 

IL-8+ IFN-γ+IL-17- (p<0.03) and IL-8+IL-17+IFN-γ+ CD4+ T cells (p<0.05) in mLNs (Figure 2-

7a and Figure 2-7b). To further examine the contribution of Th17 and Th1 cells to the increased 

IL-8 production in response to IL-1β or IL-12, we purified effector memory (CD62Llow) CD4+ 

T cells according to CCR6+CXCR3- and CCR6-CXCR3+ expression, which displayed a Th17 

TEM and Th1 TEM cytokine profile, respectively (Figure 2-7a). In cultures with Only Th17 TEM, 

but not Th1 TEM, was increased IL-8 expression observed under the influence of IL-1β or IL-

12 (p<0.007 and p<0.008 respectively) (Figure 2-7c). Finally, similar to its effect on mucosal 
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CD4+ T cells (Figure 2-5), IL-12 favored a pathogenic IL-8 profile in mLN Th17 TEM as shown 

by co-expression of pro-inflammatory cytokines (p<0.05; Figure 2-7d). 

 

2.2.3.8 Mucosal CD163-, but not CD163+, MNPs augment IL-8 expression in colonic 

CD4+ T cells of UC but not CD patients.   

Finally, we examined the ability of CD163- cells to regulate IL-8 expression. CD163- cells 

increased the frequency of IL-8-producing CD4+ T cells (p<0.0009; Figure 2-8a). Interestingly, 

the enhanced IL-8 expression appeared to be restricted to UC since it was not observed in co-

cultures of autologous colonic CD163- and CD4+ T cells isolated from CD patients (Figure 2-

8a). Notably, IL-8 expression was not detected ex vivo in colonic CD4+ T cells isolated from 

CD patients nor was it increased in co-cultures with autologous colonic CD163- MNPs, or in 

response to either IL-1β or IL-12 (Figure 2-S4a, Figure 2-S4b and Figure 2-S4c). 

Furthermore, CD163- but not CD163+ cells increased the frequency of IL-8+IL-17+ and IL-

8+IFN-γ+ CD4+ T cells in UC patients (p<0.0004 and p<0.0009 respectively; Figure 2-8b). 

Also, the frequencies of IL-8+IL-17+IFN-γ-  (p<0.02), IL-8+IL-17+IFN-γ+ (p<0.0007) and IL-

8+IFN-γ+IL-17-(p<0.02) CD4+ T cells were augmented by CD163-cells (Figure 2-8c, left 

panels). Finally, we explored some of the mechanisms that governed the ability of CD163 - cells 

to increase IL-8 expression in mucosal CD4+T cells in UC. When IL-1β function was 

neutralized, the proportion of IL-8+IL-17+IFN-γ- and IL-8+IL-17+IFN-γ+ CD4+T cells were not 

augmented by CD163- cells (Figure 2-8c, right panels). Combined IL-1β and IL-12 blockade 

significantly decreased the frequencies of IL-8+IFN-γ+IL-17-(p<0.02) and IL-8+IL-17+IFN-γ+ 

CD4+T cells (p<0.009), which were not reduced by adding anti-IL-12p70 mAb alone (Figure 

2-8c, right panels).  
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Taken collectively, mucosal CD163- MNPs augment IL-8 expression by colonic CD4+ T cells 

in UC but not CD mucosa, and further promote IL-8 and IL-17 co-expression through their 

secretion of IL-1β, and IL-8 and IFN-γ co-expression via IL-1β and IL-12 production.  

 

2.2.3.9 Unsupervised multi-color flow cytometry analysis reveals that CD163- and 

CD163+ MNPs form distinct clusters related to monocyte-like and macrophage cell 

populations respectively.  

The heterogeneity of CD14+CD64+ MNPs was further assessed using multi-color FACS 

analysis (inflamed mucosa n=4 UC patients) (Figure 2-9a). Feature t-SNE plots of CD163, 

CD16, CD206 and CD209 expression identified a cluster, which was distinct from the CD163 -

/dim cluster best defined by CD11b, CCR2 expression and low FSC-cell size. Noteworthy, 

feature plot of CLEC5-A expression appeared to cluster with a minor fraction of CD11b-

expressing cells. To evaluate which markers were driving the CD163 - and CD163+ cell-specific 

signature, the flow cytometry data was next analyzed using an unsupervised self -organizing 

map (FlowSOM) method (Figure 2-9b, Figure 2-9c, Figure 2-9d and Figure 2-9e). The five 

clusters identified using FlowSOM were overlaid in the t-SNE plot of concatenated HLA-

DR+SIRPα+CD14+CD64+ cells (Figure 2-9b). Two CD163- clusters were best identified using 

CD11b and CD206 expression marker with the major one (blue: 47.7%) expressing CD11b at 

the highest and CD206 at the lowest intensity, and vice versa for the minor one (green: 6%), 

relative to the other three clusters. The CD163dim clusters were defined as CD209dimCD206dim 

(purple: 11.1%)) or CLEC5Abright TREM-1+ (red: 3.5%) cells. Elevated relative expression of 

CD14, CD64, MERTK, CD209, CD206 and CD16 but low CD11b expression identified the 

CD163+ cluster (yellow: 31.6%). Heatmap and FlowSOM minimal spanning tree, with star 
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charts displaying different intensities of co-expressed surface markers, further characterized 

CD163+ population (yellow) that clustered apart from CD163-/dim populations (Figure 2-9c and 

Figure 2-d). Noteworthy, analysis of a second panel of surface markers that included 3 

additional markers (CD169, TIM4 and CD4) and 12 common markers revealed that CD163+ 

cells were further subdivided into CD11b-CD169+TIM4+CD4+ and CD11bdimCD169- and TIM4- 

cells (Figure 2-9e). 

The CD14+CD64+ MNPs were next purified at the extreme ends of the spectrum of CD163 

expression, according to the gating strategy that was originally selected to quantify CD163 - and 

CD163+ subsets in the UC mucosa in Figure 2-2d, to assess their morphology (Figure 2-S5). 

CD163- cells displayed a kidney-shaped nucleus while CD163+ cells resembled typical M with 

vacuoles and a large cell size, corroborating our multi-color FACS analysis. 

Collectively, the CD14+CD64+ MNP subpopulation that predominates in inflamed UC mucosa 

is best defined as CD163-CD206-CD209-MERTK-CLEC5-A-TREM-1dimHLA-DRdimCCR2+ 

CD11bbright monocyte-like pro-inflammatory cells, while the minor CD163+ cells are 

CD209+CD206+ MERTK+ M. 
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2.2.4 DISCUSSION  

The novel and unexpected finding of the present study is that IL-8-expressing T cells 

represented a minor CD4+ T population, which was detected in inflamed colon of UC but not 

CD patients. As such, these cells might be implicated in the development and/or perpetuation 

of UC. UC shares several genetic, clinical, histological and immunologic features with CD 

(Ungaro et al., 2017), which are both T cell-mediated diseases (Globig et al., 2014; Li et al., 

2016). Nonetheless, these two IBD represent distinct entities (Christophi et al., 2012; Haberman 

et al., 2014; Iboshi et al., 2014), as highlighted in our present study. Firstly, mucosal CD4+ T 

cells isolated from UC colon did not increase their IL-17 or IFN-γ secretion in response to IL-

23, while we and others reported that IL-23 increased mucosal Th17 and Th17/Th1 responses 

in CD (Ramesh et al., 2014). The absence of IL-23 response in UC could not be attributed to 

the loss of IL-23 receptor (IL-23R) on the surface of mucosal CD4+T cells, since Kobayashi et 

al demonstrated that colonic CD4+T cells express IL23R mRNA in both UC and CD (Chapuy 

et al., 2019a; Kobayashi et al., 2008). Secondly, IL-8 expression was detected ex vivo in colonic 

CD4+ T cells, and augmented by IL-12, IL-1 and CD163- but not CD163+ MNPs in UC only. 

Thirdly, IL-12 and IL-1 differentially regulated TNF-α, GM-CSF and IL-6 production by 

colonic CD4+ T cells in CD (Chapuy et al., 2019a) and , as shown here in UC. These three 

cytokines were augmented by IL-12 but not IL-1 in UC only and, by IL-1 but not IL-12 in 

CD only. We therefore propose that the distinct IL-8 responses observed between UC and CD 

likely result from disease-specific differences in T cells rather than a difference intrinsic to 

CD163- cell function, which might be clinically relevant with regard to UC and CD 

pathogenesis.  
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MNPs play a critical role in the maintenance of gut homeostasis, orchestrating the dialogue 

between innate and adaptive immunity (Grainger and Konkel, 2017). Morphology and 

phenotypic studies of CD163- and CD163+ cells attempted to relate the nature of these two 

functionally distinct CD14+CD64+ subpopulations to intestinal CD14+ MNPs and their murine 

counterparts previously identified under inflammatory or homeostatic conditions (Bain et al., 

2013).  Human CD163- cells displayed a monocyte-like shape, and thus could not be considered 

as M. These cells resemble tissue Ly6C+CD64+ inflammatory monocytes in murine colon 

(Grainger et al., 2013). In colitic mice and ileal CD, extravasated inflammatory monocyte-

derived cells (P1), best defined as CD11c-/dimCD11bdim/+CD14+CD64low SIRP+MHC classII- 

cells progressively develop into mature CD11c++CD11b+CD14++CD64++, SIRP+MHC 

classII+++ (P4) M, unless the maturation process is interrupted under inflammatory conditions 

(Bain et al., 2013).  

We hypothesize that recruited HLA-DRdimCD14+ monocytes (CD206-CD209-MERTK- TREM-

1 dimCCR2+CD11bbrightCD163- cells) progressively acquired CD163, MERTK, CD209, CD206 

and down-regulated CD11b and CCR2. In that regard, in inflamed CD colon, we recently 

characterized two CD14+ populations using single cell RNA profiling and demonstrated that 

inflammatory monocyte-like (TREM-1+CD206-CD209-CD163-) are distinct from TREM-1-

CD206+CD209+MERTK+CD163+ M. Like in UC, CD163- and not CD163+ cells accumulate 

in inflamed CD colon (Chapuy et al., 2019a). Furthermore, CD163- cells might be related but 

still distinct from CD14+CLEC5-A+CD209-CD11b+CD11c+ cells, which are potential drivers of 

chronic intestinal inflammatory response (Gonzalez-Dominguez et al., 2015). In fact, CD163- 

cells clustered apart from CLEC5-AbrightTREM-1+ cells, which together with 

CD209dimCD206dim cells might represent transitioning CD163dim cells. The latter were excluded 
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for our functional studies. Regarding CD163+ cells, they displayed a M morphology and thus 

resemble M3 or M4 subsets that are also derived from recruited monocytes in human jejunum 

at homeostasis (Bujko et al., 2018a). As opposed to M1 or M2 precursors that expressed 

CD11c in healthy small intestine, M3 or M4 are not CD11c+ (Bujko et al., 2018a). However, 

CD11c expression was not a discriminative surface marker between CD163 - and CD163+ cells 

in inflamed UC mucosa since it was expressed at high intensity in both subsets, corroborating 

the phenotype of CD14+ MNPs in human inflamed colon (Bernardo et al., 2018; Gonzalez-

Dominguez et al., 2015). The CD16+CD163+ M did not accumulate in inflamed UC colon or 

regulate IL-8 expression, Th17, Th17/Th1 responses in colonic CD4+ T cells. In fact, 

inflammatory CD16+ M do not regulate memory T cell responses in ascites of cancer patients  

(Segura et al., 2013). Finally, CD163+ M  also included a subset of TIM4+CD4+ cells, which 

were not yet reported in humans, but recently defined as tissue resident M in mice (De 

Schepper et al., 2018; Shaw and Houston, 2018). The TIM4+CD4+CD163+ M subpopulation 

co-expressed CD169; CD169+ M phenotype contribute to monocyte recruitment in mice 

(Asano et al., 2015).  

Overall, we propose to refer to CD163- inflammatory monocyte-like cells as “monocytes-

derived effector cells (MDEC)”. Conversely, the CD163+ cells might be considered anti-

inflammatory, regulatory M and/or “post-inflammatory” M since these cells produced more 

IL-10 while expressing similar amount of pro-inflammatory cytokines as compared to MDEC 

(CD163- cells). Although the interpretation of these data should be taken cautiously, human 

colonic CD163- cells that accumulate in inflamed UC mucosa could represent a functionally 

distinct CD14+ monocyte-like subpopulation endowed with plastic capacities.  
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IL-8 is a potent chemoattractant for neutrophils (Bruno et al., 2015; Fonseca-Camarillo and 

Yamamoto-Furusho, 2013; Mitsuyama et al., 1994), which plays an important role in the 

pathophysiology of UC. Increased IL8 mRNA expression has been detected in the inflamed 

mucosa of IBD patients and levels of IL-8 expression correlate with endoscopic severity in UC 

(Mitsuyama et al., 1994). After multiple rounds of expansion and activation, mucosal Th17 

clones, which were generated from IBD or colorectal cancer,  secrete IL-8 that attracts 

neutrophils (Amicarella et al., 2017; Pelletier et al., 2010). Both studies highlight the biological 

relevance of IL-8 produced by mucosal Th17 cells. However, the limitation of the present study 

was the inability to demonstrate IL-8-induced neutrophil chemotaxis using primary colonic 

CD4+ T cells of UC patients. Furthermore, IL-8 is abundantly expressed by a variety of cells in 

the gut mucosa, notably by neutrophils, endothelial and epithelial cells as well as monocytes, 

Mɸ, fibroblasts and possibly T cells (Beck et al., 2016; Brandt et al., 2000). We showed here 

that a minor colonic CD4+ T population expressed IL-8 in UC, but not CD mucosa. Some studies 

demonstrate IL-8 production by circulating T cells isolated from healthy adults and cord blood, 

suggesting that T cell priming has occurred in utero (Akhade and Qadri, 2015; Gasch et al., 

2014; Gibbons et al., 2014). However, polarizing conditions to differentiate naïve T cells into 

single IL-8-producing cells (“Th8”) remain unknown. IL-8 itself might induce IL-8 in human 

CD4+ T cells (Gesser et al., 1995). Furthermore, addition of flagellin, which is abundantly 

detected in the colon, increases the percentage of IL-8+ cells in circulating TCR-stimulated 

CD4+ T cells (Gibbons et al., 2014). In a rat model of colitis, IL-8 levels increase before the 

influx of neutrophils (Harada et al., 1994), supporting the concept that IL-8-producing T cells 

could be implicated at the early phase of  disease. However, IL-8 is also detected in CD3+ cells 
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in chronic lesions using immunofluorescence technique, arguing for a role for T cell derived-

IL-8 in the perpetuation of the disease (Brandt et al., 2000).  

It is unclear whether IL-8-producing T cells play a protective or pro-inflammatory role in UC 

mucosa. In that regard, circulating IL-8+Foxp3+CD25+ T cells, with a dual suppressive and 

inflammatory phenotype, that promote pro-inflammatory cytokine production and neutrophil 

attraction, are also reported in UC inflamed mucosa (Kryczek et al., 2016). Since we could not 

detect ex vivo IL-8 expression in Foxp3+CD25+ T cells in inflamed UC mucosa, these T cells 

were excluded from our gating strategy that exclusively analyzed CD4+CD25- T cells. A 

protective function might be attributed to colonic IL-8+CD4+ T cell population, due to their GM-

CSF production. GM-CSF ameliorates colitis in mice via its effect on monocytes that led to 

bacterial clearance and epithelial healing (Dabritz et al., 2015). Furthermore, human circulating 

activated Th17 clones directly attract neutrophils through IL-8 release while Th17/Th1 clones 

increase neutrophil activity via GM-CSF (Pelletier et al., 2010). In contrast, both innate 

lymphoid cells type 3 and T cell-derived GM-CSF contribute to intestinal inflammation in 

experimental colitis (Pearson et al., 2016). IL-8-producing T cells that co-expressed GM-CSF, 

IL-6, TNF- and IFN- ex vivo might therefore lead to an early destruction of epithelial barrier.  

Our data further revealed that IL-12 biased Th17 TEM towards IL-8+IFN-+ CD4+ T cells that 

expressed TNF-α and GM-CSF in mLNs, highlighting the potential pathogenicity of IL-8+ T 

cells in disease tissue.  Noteworthy, IL-12 but not IL-1  significantly augmented IL-8+IFN--

IL-17-IL-22-  CD4+ T cells in UC mucosa, and concomitantly reduced the proportion of IL-

22+IL-8-CD4+ T cells, which might further contribute to epithelial cell destruction  (Figure 2-

S6a).  Furthermore, IL-12, IL-1 and CD163- MNPs augmented the percentages of IL-8+IFN-

+IL-17- or IL-8+L-17+IFN+ T cells, irrespective of IL-22 co-expression, while the frequencies 
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of  IL-8+IL-17+IFN-- T cells not co-expressing IL-22 were augmented only by IL-1 or CD163- 

MNPs (Figure 2-S6b). CD163- MNPs, through IL-1 production, amplified colonic 

inflammatory Th17 and Th17/Th1 responses in both UC and CD (Chapuy et al., 2019a),  while 

IL-1-dependent increased frequencies of  IL-8+IL-17+ CD4+ T cells was observed in UC only.  

In that regard, IL-1β correlates with IL-8 levels in UC mucosa (Mitsuyama et al., 1994) and 

promotes the survival of Th17 cells in murine IBD (Coccia et al., 2012).   

Currently approved therapeutic approaches using anti-TNF-α or anti-IL-12p40 mAbs and 

ongoing clinical trials using anti-47 or E7 integrin mAbs in UC patients, are aimed toward 

impairment of cell recruitment, function and/or retention to inflamed mucosa (Feagan et al., 

2013; Zundler et al., 2017). Unlike Th17, Th17/Th1 and Th9 cells (Zundler et al., 2017), colonic 

IL-8+ T cells appeared to be 47 or E7 negative since these cells expressed 4 but not 7 

integrin, suggesting that intestinal inflammatory IL-8+ T cells might utilize 1 for their tissue 

recruitment (Rivera-Nieves et al., 2005). Expression of CD69, but not CD103, by colonic IL-

8+ CD4 T cells suggested that they are not related to recently described tissue resident memory 

CD4+ T cells in CD mucosa (Bishu et al., 2019; Zundler et al., 2019b). 

In conclusion, colonic CD14+CD163- MDECs producing IL-1β and IL-12p40, and their 

propensity to augment IL-8 expression in tissue T cells, might all be implicated in the regulation 

of gut inflammation in UC. Nevertheless, the potential role of colonic effector T cells producing 

IL-8 in vivo and its clinical relevance in UC but not CD warrants further investigations to better 

understand potentially distinct disease pathogenesis. 
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2.2.6 FIGURES AND TABLES 

 

Figure 2-1: IL-1β increases Th17 and Th17/Th1 responses in UC patients.  

Representative dot plots and percentages of mucosal CD4+ T cells expressing IL-17 and/or IFN-

γ after 6 days culture with either recombinant IL-12 (n=20), IL-1 (n=18) or IL-23 (n=7). 

Wilcoxon signed rank test, p<0.01 threshold for significance to account for test multiplicity . 
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Figure 2-2: HLA-DR+SIRPα+CD14+CD64+CD163- MNPs accumulate in inflamed UC 

mucosa 

a) Percentage of HLA-DR+SIRPα+ cells among CD45+ intestinal lamina propria mononuclear 

cells (LPMC): cell distribution in non-IBD control (n=6), UC in remission (n=8) and paired 
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non-inflamed and inflamed UC patients (n=31). b) CD14 expression on HLA-DR+SIRPα+ cells. 

c) HLA-DR+SIRPα+CD14+ MNPs subdivided according to CD64 and CD163 expression. d) 

Frequencies of CD163-, CD163+, CD163dim cells among CD45+LPMC in non-IBD control 

(n=6), UC in remission (n=8), and paired non-inflamed and inflamed UC patients (n=31). a 

and d, Wilcoxon signed rank test, Mann-Whitney test and Friedman test with Dunn ’s post test. 

p<0.01 threshold for significance to account for test multiplicity. 
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Figure 2-3: Mucosal CD163- and CD163+ MNPs express similar amounts of pro-

inflammatory cytokines but CD163+ cells produce more IL-10 relative to CD163- cells. 

a) Frequencies and b) MFI of IL-1ß (n=10), IL-12p40 (n=10) and IL-23p19 (n=10) producing 

cells among CD163- and CD163+ MNPs in non-inflamed and inflamed UC. Pie displays the 

relative frequency of CD163- and CD163+ cells  among CD14+CD64+ in inflamed UC mucosa. 

c) Frequencies and MFI of IL-10 (n=12) producing cells among CD163- and CD163+ MNPs in 

non-inflamed and inflamed UC mucosa. a to c, Wilcoxon signed rank test. 
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Figure 2-4: CD163- but not CD163+ MNPs promote Th17, Th17/Th1 and Th17/Th22 

responses in an IL-1-dependent manner in UC patients. 

CD4+ T cells isolated from inflamed UC colon were co-cultured with or without autologous 

mucosal CD163+ (n=9) or CD163- (n=27) cells, in the absence or presence of αIL-1R (n=6), 

αIL-1 (n=5) or αIL-12p70 mAbs (n=8), then stained for intracytoplasmic a and b, IL-17/IFN-

γ, as well as c and d, IL-17/IL-22 expression. a and c, Wilcoxon signed rank test; b and d, 

Repeated measures ANOVA with Bonferroni's multiple comparison post test. 
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Figure 2-5: Mucosal CD4+ T cells produce IL-8 in UC patients. 

UC mucosal CD4+ T cells were cultured with recombinant IL-12 (n=9), IL-1 (n=9) or IL-23 

(n=4 to 6) for 6 days. a) IL-17 and IFN-γ, b) TNF-a, GM-CSF, IL-6 and c) IL-8 secretion were 

measured in the culture supernatant. d) Percentage of IL-8+CD4+ T cells after culture of UC 

mucosal CD4+T cells with recombinant IL-12 (n=10) and IL-1 (n=8) for 6 days. e) Ex vivo 

stimulation of LPMC with PMA-ionomycin in the presence of brefeldin A for 4 hours (n=6), left 

panel, Percentage of IL-17, IFN-γ, GM-CSF, TNF-α, IL-6 positive cells among CD4+CD25-



119 

 

Foxp3-IL-8+ T cells; right panel, Pie chart depicting the co-expression of IL-17, IFN-γ, GM-

CSF, TNF-α and IL-6 in CD4+CD25-Foxp3-IL-8+ T cells. a to d, Wilcoxon signed rank test; for 

a and c, p<0.01 threshold for significance to account for test multiplicity. 
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Figure 2-6: IL-12 promotes IL-8 and IFN- expression whereas IL-1β favors IL-17 and IL-

8 in colon of UC patients. 

UC mucosal CD4+T cells were cultured for 6 days with recombinant IL-1  (n=9) or IL-12 

(n=12), a) Representative dot plots , percentage of IL-8+IL17+, IL-8+IL-22+, IL-8+IFN-γ+ T 

cells, and b) Percentages of IL-8+/-IFN-γ+/-IL17+/-T cells a, Kruskal-Wallis test with Dunn's post 

test; b, Wilcoxon signed rank test. 
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Figure 2-7: IL-1β and IL-12 favor IL-8 responses in Th17 cells isolated from mLNs of UC 

patients.   

 a) Gating strategy for sorting CD4+ T cells, Th17 TEM (CD62LlowCCR6+CXCR3-) and Th1 TEM 

(CD62LlowCCR6-CXCR3+) cells from mLNs of UC patients. Ex vivo intracytoplasmic staining 

for IFN-γ and IL-17 expression after PMA-ionomycin stimulation in the presence of brefeldin 
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A for 4 hours. b-c) Percentages of IL-8+IL-17+/-IFN-γ+/- after 6 days culture of b) total CD4+T 

cells with recombinant IL-1 (n=5) or IL-12 (n=6). c) Th17 or Th1 TEM with recombinant IL-

1  (n=8) or IL-12 (n=8). d) Percentages of GM-CSF+, TNF-α+ and IL-6+ T cells among IL-8+ 

T cells after 6 days culture of Th17 TEM with recombinant IL-12 (n=4). a to d, Wilcoxon signed 

rank test. 
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Figure 2-8: CD163- MNPs increase IL-8 expression in colonic CD4+T cells in UC but not CD 

patients. 
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CD4+ T cells isolated from inflamed UC or CD colons were co-cultured with or without a) 

autologous mucosal CD163- cells (n=17 UC, n=14 CD) and stained for IL-8 intracytoplasmic 

expression, b) autologous mucosal CD163+ (n=4) or CD163- cells (n=17) and stained for IL-

8, IL-17 and IFN-γ intracytoplasmic expression; c) autologous CD163- cells (n=17), in the 

absence or presence of αIL-1  (n=4) and/or αIL-12p70 mAbs (n=4), and stained for IL-8, IL-

17 and IFN-γ intracytoplasmic expression. a, b, c (left panel), Wilcoxon signed rank test; for 

b, p<0.01 threshold for significance to account for test multiplicity. c (right panel), Repeated 

measures Anova with Bonferroni's multiple comparison post test. 
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Figure 2-9: Unsupervised analysis of the phenotype of HLA-DR+SIRPα+CD14+CD64+ MNPs 

in inflamed UC mucosa. 

LPMC from 4 UC patients were stained with a panel of 15 surface markers. Concatenated file 

from the 4 patients were subjected to unsupervised clustering analysis. a) Expression feature 

plot of the depicted surface markers in HLADR+SIRPα+CD14+CD64+ cells, using t-SNE 

algorithm. b to d) FlowSOM analysis of HLADR+SIRPα+CD14+CD64+ cells based on 

expression data; b) affiliation of cells to 5 clusters identified in FlowSOM, indicated by color 
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coding and visualized in t-SNE plot; surface marker expression levels depicted by histograms; 

c) heatmap of mean surface marker expression of the 5 individual clusters; d) cells were 

clustered into 25 nodes and depicted as a minimal spanning tree, with color coding indicating 

the 5 identifed clusters. Circle size are proportional to the number of cells represented in each 

node and triangle size in star charts depicts the mean intensities of each marker for all cells 

assigned to the node (color legend on the left). e) LPMC from the same 4 UC patients were 

stained with another panel of 15 surface markers, only differing for CD169, TIM4 and CD4. 

Concatenated file of HLA-DR+SIRPa+CD14+CD64+ cells from the 4 UC patients were 

subjected to FlowSOM analysis. Affiliation of cells to 3 out of 5 clusters identified in FlowSOM 

indicated by color coding and visualized in t-SNE plot; surface marker expression levels 

depicted by histograms.  
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Table 2-1: Patient’s characteristics 

  UC CD Non IBD 

N 83 19 6 

Females, n(%) 47 (56.6) 11 (63.1) 3 (50) 

Age, median (range) 42 (18-80) 37 (21-80) 60 (36-76) 

    

Age at diagnosis     

      < 16 6 3  

     17-40 52 11  

     > 40 25 5  

    

Treatment    

     None 15 8  

     5-ASA alone 38 1  

     Thiopurine or methotrexate 14 6  

     TNFα inhibitor 9 4  

     Corticosteroid 21 2  

    

Disease location – UC    

     Proctitis 15   

     Left side colitis 39   

     Pancolitis 26   

    Proximal colitis 3   

    

Disease location – CD    

     Terminal ileum  0  

     Colon  15  

     Ileocolonic  4  

     Upper GI tract  0  

    

Disease behavior     

     Non stricturing - Non penetrating   15  

     Stricturing  3  

     Penetrating  1  

     Perianal disease  3  

    

Diagnosis – Control    

    Screening colonoscopy   6 
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2.2.7 SUPPLEMENTARY INFORMATION 

 

Figure 2-S1: Gating strategy for sorting CD163- and CD163+ MNPs and CD4+ T cells in 

inflamed UC mucosa. 
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Figure 2-S2: Phenotype of IL-8-expressing CD4+ T cells. 

Representative dot plots of a) IL-8, α4, ß7, CD103 and b) IL-8, CCR6, CXCR3 and CD69 co-

expression on UC colonic CD4+ T cells after 6 days culture with or without IL-12 or IL-1ß 

(n=4).   
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Figure 2-S3: IL-8 expression by colonic CD4+CD25+/-Foxp3+/- T cells. 

Intra-cytoplasmic IL-8 expression in colonic CD4+CD25+/-Foxp3+/- T cells after stimulation 

with PMA-ionomycin in the presence of brefeldin A for 4 hours (representative dot plot of 6 UC 

patients). 
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Figure 2-S4: CD163- MNPs did not increase IL-8 expression by CD4+ T cells in the colon of 

CD patients. 

a) LPMC from inflamed UC and CD mucosa were stimulated for 4 hours with PMA-ionomycin 

in the presence of Brefeldin A, then stained for IL-8 expression (representative dot plot of 6 UC  

and 4 CD patients). b) CD4+ T cells and CD163- cells were purified from inflamed CD colon 

(n=14) according to the gating strategy depicted in figure 2-S2. CD4+ T cells and MNPs were 

co-cultured for 6 days and stained for IL-8, IL-17 and IFN-γ expression. Wilcoxon signed rank 

test. c) CD4+ T cells purified from inflamed CD colon were cultured for 6 days with or without 

IL-1β (n=7) or IL-12 (n=7) and stained for IL-8 expression. Wilcoxon signed rank test. 
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Figure 2-S5: Morphology of CD163- and CD163+ cells. 

Gating strategy for sorting CD163- and CD163+ cells, cell size and morphology (bar=20µm). 
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Figure 2-S6: IL-12, IL-1β and CD163- MNPs regulate frequencies of IL-8+CD4+ T cells co-

expressing or not IL-17, IFN-γ or IL-22 while IL-12 but not IL-1β decreases IL-22+IL-8- 

CD4+ T cells in the colon of UC patients. 

a and b) mucosal CD4+ T cells from UC patients were cultured with recombinant IL-12 (n=11), 

IL-1β  (n=8) or CD163- cells (n=17).  After 6 days culture, cells were stained for IL-8, IL-17, 

IFN-γ, and IL-22 intracytoplasmic expression. Percentages of IL-8+/-IL-17+/-IFN-γ+/-IL-22+/- T 

cells. Wilcoxon signed rank test. 
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Table 2-S1: Anti-human antibodies 

Antibody Conjugate Clone Company 

Anti-HLADR APC L243 BioLegend 

Anti-HLADR AF700 L243 BioLegend 

Anti-HLADR BV510 L243 BioLegend 

Anti-CD3 BV510 UCHT1 BioLegend 

Anti-CD3 BV496 UCHT1 BD Biosciences 

Anti-CD4 BV510 RPA-T4 BioLegend 

Anti-CD4 BV785 OKT4 Biolegend 

Anti-CD8a APC RPA-T8 BioLegend 

Anti-CD8a BV787 SK1 BD Biosciences  

Anti-CD11b BV510 D12 BD Biosciences 

Anti-CD11c BV711 B.Ly6 BD Biosciences 

Anti-CD14 APC M5E2 BioLegend 

Anti-CD14 Pacific blue HCD14 BioLegend 

Anti-CD14 BUV737 M5E2 BD Biosciences 

Anti-CD16 BUV496 3G8 BD Biosciences 

Anti-CD25 APC M-A251 BD Biosciences 

Anti-CD25 BV510 M-A521 BD Biosciences 

Anti-CD45 APC-H7 2D1 BD Biosciences 

Anti-CD45RA Alexa fluor 488 HI100 BioLegend 

Anti-CD49d PeCy7 TS217 BioLegend 

Anti-CD62L PeCy7 DREG-56 Biolegend 

Anti-CD64 FITC 10.1 BioLegend 

Anti-CD69 APC IVA91 Biolegend 

Anti-CD103 FITC Be-ACT8 BD Biosciences  

Anti-CD163 PerCP/Cy5.5 GHI/61 BioLegend 

Anti-CD169 APC 7.239 BioLegend 

Anti-CD172α PE-Cy7 SE5A5 BioLegend 

Anti-CD183 (CXCR3) AlexaFluor 488 G025H7 BioLegend 

Anti-CD196 (CCR6) PE G034E3 BioLegend 

Anti-CD192 (CCR2) BV650 LS132.1D9 BD Biosciences 

Anti-CD206 BUV395 19.2 BD Biosciences 

Anti-CD209 Pacific-Blue/BV421 DCN46 BD Biosciences 

Anti-CLEC5A PE 283834 R&D 

Anti-CX3CR1 PE 2A9-1 BioLegend 

Anti-MERTK APC-Cy7 590H11G1E3 BioLegend  

Anti-MERTK BV421 590H11G1E3 BioLegend  
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Anti-TIM-4 PE 9F4 BioLegend 

Anti-TREM APC 193015 R&D 

Anti-β7 APC Fib504 BD Biosciences 

Anti-FoxP3 APC PCH101 eBiosciences 

Anti-GMCSF PerCP/Cy5.5 BVD2-21C11 BioLegend 

Anti-TNFα Alexa Fluor-700 Mab11 Biolegend 

Anti-INF PerCP/Cy5.5 4S.B3 BioLegend 

Anti-INF AF700 4S.B3 BioLegend 

Anti-INF BV711 4S.B3 BioLegend 

Anti-IL-1β PE 8516 R&D 

Anti-IL-6 Pacific Blue MQ2.13A5 Biolegend 

Anti-IL-8 FITC E8N1 Biolegend 

Anti-IL12p40 PE C8.6 eBiosciences 

Anti-IL-17A Alexa 647 BL168 BioLegend 

Anti-IL-17A PE-Cy7 BL168 BioLegend 
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3.1 Abstract  

Human 6-sulfo LacNac dendritic cells (Slan DCs) have been studied in patients with psoriasis, 

rheumatoid arthritis, cancer and autoimmune diseases. In this study we investigated the 

frequency, phenotype and function of Slan DCs in blood, colon as well as mesenteric lymph 

nodes (mLNs) of patients with inflammatory bowel disease. We first show that the frequency 

of circulating CD14dullSlan DCs was reduced in Crohn’s disease (CD) patients refractory to 

immunosuppressive drugs or TNFα blockers relative to untreated CD, ulcerative colitis (UC) 

and healthy subjects. In blood of CD patients, Slan DCs expressed CD172a, as detected by 

CD47 fusion protein binding, when compared to its lack of expression in control subjects. Next, 

we demonstrate that CD172a+Slan DCs that produced IL1β and TNFα accumulated in mLNs 

and colons of CD patients. The CD172a+Slan DCs up-regulated their expression of CD14 in 

CD tissues and the pro-inflammatory cytokines were produced in CD14brightCD172a+Slan DCs. 

By contrast, no difference was noted in the frequency of Slan DCs between inflamed, non-

inflamed colonic mucosa of UC patients and control non-IBD donors. Finally, the percentage 

of cytokine-producing Slan DCs also augmented in response to TLR2 and NOD2 in vitro 

stimulation in PBMC of CD, but not UC, patients. In conclusion, we propose that pro-

inflammatory CD14brightCD172a+Slan DCs are a distinguishing feature between CD and UC 

since these cells uniquely accumulate in mLNs and colonic mucosa of CD patients. Thus, Slan 

DCs may contribute to CD immunopathogenesis. 
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3.2 Article  

3.2.1 INTRODUCTION 

Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis 

(UC), are common chronic relapsing disorders of the gastrointestinal tract. CD and UC are 

distinct entities that share clinical characteristics. CD is characterized by patchy inflammatory 

lesions that can be transmural and affect the entire gastrointestinal tract; whereas inflammation 

in UC is continuous, superficial and restricted to the colon (Kaser et al., 2010). 

The pathogenesis of IBD is a complex interplay between the immune system, genetic and 

environmental factors (MacDonald et al., 2011; Maloy and Powrie, 2011).  The altered immune 

response to intestinal microbiota leads to chronic inflammation of gut mucosa. This abnormal 

immune response implicates innate immune cells, which include dendritic cells (DCs) and 

macrophages, T cells as well as pro-inflammatory cytokines. Studies have provided evidence 

that 6-sulfo LacNAc (Slan) expression on MHC ClassII+ cells delineates the major circulating 

DC subset in the blood of healthy individuals, while other reports indicated that these cells 

clustered with CD14dull monocytes (Cros et al., 2010; Schakel et al., 2006). However, 

ClassII+CD14-/dullCD16+ Slan DCs are distinct from conventional CD1c+ DCs, plasmacytoid 

DCs and classic CD14bright monocytes in blood (Schakel et al., 2002). Slan DCs are unique to 

humans because their counterpart in mice has not been identified. However, Cros et al. 

considered Slan DCs as part of the CD16+CD14dull monocyte population that display several 

genetic similarities to murine Ly6CloCX3CR1hi monocyte population. The latter patrols 

lymphatic vessels and exert a protective role by attracting neutrophils and clearing debris in 

response to environmental insults (Cros et al., 2010). Furthermore, Slan DCs have been 

implicated in anti-viral responses (Cros et al., 2010). However, in context of pathology these 
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cells produce pro-inflammatory cytokines that include IL1β, IL6, IL12, IL23 and TNFα and 

promote Th1/Th17 cell responses (Gunther et al., 2013; Hansel et al., 2011). Histological 

analysis revealed the presence of Slan DCs in patients with psoriasis, rheumatoid arthritis, CD, 

systemic lupus erythematosus, multiple sclerosis and cancer (Costantini et al., 2011; de Baey 

et al., 2003; Hansel et al., 2011; Schakel et al., 2006; Thomas et al., 2014; Vermi et al., 2014) .  

In the present report, we investigated the differential accumulation of Slan DCs in blood, 

lymphoid tissues and colonic mucosa of CD and UC patients and evaluated their phenotype and 

function. 
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3.2.2 MATERIALS AND METHODS 

3.2.2.1 Human clinical samples 

All human subjects signed informed consent forms that have been approved by the Institutional 

Ethics Research Committee of the Centre Hospitalier de l’Université de Montréal. Patients were 

recruited based on clinical, endoscopic and histological criteria (Table 3-1). CD patients 

presented with abdominal pain, diarrhea or weight loss and endoscopically with patchy 

inflammation, eroded mucosa, deep ulcers and/or strictures. Histologically, the architecture of 

the crypts was disturbed; the mucosa was infiltrated by mono- or polynuclear cells with or 

without pathognomonic granuloma. Transmural inflammation was confirmed on surgical 

samples. UC patients presented with abdominal pain, diarrhea and bleeding, with a continuous 

and circumferential inflammation of the mucosa. The mucosa was eroded, granular and friable. 

Histologically, the architecture of the crypts was disturbed, with mucus depletion and diffuse 

infiltrate of mono- or polynuclear cells to the mucosa and crypts. No histological or 

bacteriological infections suggested a differential diagnosis.  

Blood was collected from healthy subjects (control; n=44) and IBD patients (CD=48 and 

UC=14) in tubes coated with heparin. MLNs were obtained from CD patients and control non-

IBD donors (n=20) during surgical resection. Colonic samples were obtained during an 

endoscopy (n=13) or a surgical resection (n=10) of IBD patients. Macroscopically non-inflamed 

and inflamed mucosa were taken from the same IBD patient. In patients with ileo-colonic CD, 

only biopsies from the colon were taken for our study.  
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3.2.2.2 Cell purification 

Peripheral blood cells (PBMC) were obtained by density gradient centrifugation of heparinized 

peripheral blood. The intestinal mucosa, from biopsies or surgical samples, was first processed 

by enzymatic digestion with DNase I (Roche, Basel, Switzerland) and Collagenase D (Roche, 

Basel, Switzerland) followed by mechanical digestion with gentle MACS (Miltenyi Biotec, 

Bergisch Gladbach, Germany) to isolate lamina propria mononuclear cells (LPMC). mLNs, 

gathered from surgical samples, were digested mechanically to get mLN cell suspensions (Baba 

et al., 2013). 

 

3.2.2.3 Flow cytometry analysis and cell sorting  

PBMC, mLN and LPMC were stained using monoclonal antibodies to CD14, CD172b (clone 

B4B6), CD172ab (clone SE5A5), HLA-DR, IL1β, TNFα (BioLegend, San Diego, CA, USA), 

CD16, CD45, (BD Biosciences, San Jose, CA, USA), IL12/23p40, IL23p19 (eBiosciences Inc., 

San Diego, CA, USA), Slan (Miltenyi Biotec, Bergisch Gladbach, Germany), MHC class II (ID 

Labs, London, ON, Canada) and Alexa Fluor 647-conjugated CD47Var-1 (Novartis, Basel, 

Switzerland). Isotype-matched control monoclonal antibodies (mAbs) were used. Data were 

analyzed with FACS Diva (BD Biosciences, San Diego, CA, USA).  

 

3.2.2.4 Immunohistochemistry (IHC) 

Intestinal and mLN tissue sections from CD patients and control donors were treated according 

to well-established FFPE (formalin-fixed paraffin embedded) methods. 4µm tissue sections 

were stained with the Benchmark XT autostainer (Ventana Medical System Inc., Tucson, AZ, 

USA). Antigen retrieval was obtained using Cell Conditioning 1 (Ventana Medical System Inc., 
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Tucson, AZ, USA) for 60 minutes. Pre-diluted DD2 (clone DD2, kindly provided by Dr. K. 

Schäkel, University Hospital Heidelberg, Germany) antibody (1:50) was manually added to the 

slides and incubated at 37˚C for 20 minutes. Reactions were performed using the UltraView 

Alkaline Phosphatase Red detection kit (Ventana Medical System Inc., Tucson, AZ, USA). 

Counterstaining was achieved with hematoxylin and bluing reagent (Ventana Medical System 

Inc., Tucson, AZ, USA). Leica DM4000B microscope, equipped with Leica DFC300FX camera 

was used to visualize the tissue sections. 

 

3.2.2.5 Pro-inflammatory cytokine expression  

PBMC (1 x 106/mL) were cultured for 24 hours in the presence of muramyl dipeptide (MDP, 

1µg/mL, Invivogen, San Diego, CA, USA) and Pam3Csk4 (1µg/mL, Invivogen, San Diego, 

CA, USA). For the last 3 hours of culture, BrefeldinA (Calbiochem, Billerica, MA, USA) was 

added. RPMI 1640 medium (Wisent Inc., St Bruno, QC, CA) with 10% fetal bovine serum 

(Wisent Inc., St Bruno, QC, CA) and 1% penicillin-streptavidin (Wisent Inc., St Bruno, QC, 

CA) was used for all cultures. The cells were then fixed for intracytoplasmic staining with anti-

IL1β, IL23p19, IL12/23p40 and TNFα or isotype-matched control mAbs. Ex vivo isolated mLN 

cell suspensions and LPMC were immediately stained for CD45, ClassII, CD14, Slan, 

CD47Var-1 in the absence of BrefeldinA, then fixed/permeabilized and stained for 

intracytoplasmic cytokine expression. 

3.2.2.6 Statistical analysis 

Statistical analysis was performed with GraphPad Prism version 6. Paired and Unpaired Student 

t test or Mann-Whitney test or Wilcoxon signed rank tests were used. Data are shown as mean 

± s.e.m.  
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3.2.3 RESULTS 

3.2.3.1 Frequency and phenotype of Slan DCs in the blood of IBD patients 

We first quantified Slan DCs in the blood of IBD patients and compared their frequency to that 

of healthy subjects (control). As expected, Class II+ Slan DCs were characterized as bona fide 

CD16+ cells, while CD14 monocytes included CD14+CD16- and CD14+CD16+ subsets (Figure 

3-1A).  No difference was seen in the percentage of Slan DCs between control donors and 

untreated CD patients (Figure 3-1B, left panel). Remarkably, in CD patients with therapeutic 

failure to immunosuppressive agents and TNFα blockers, the percentage of circulating Slan 

DCs was significantly decreased. Notably, CD patients refractory to treatment had a moderate-

to-severe disease. In untreated and refractory UC patients, the percentage of circulating Slan 

DCs was unchanged compared to control donors (Figure 3-S1). Treatment with 5-ASA had no 

impact on the frequency of Slan DCs in CD patients (Figure 3-1B, left panel). Conversely, 5-

ASA, but not immunosuppressive drugs nor anti-TNFα mAb, significantly reduced the 

percentage of CD14bright monocytes in the same cohort of CD patients (Figure 3-1B, right 

panel). 

Signal regulatory protein alpha and beta (SIRPαβ/CD172ab) is expressed on circulating 

monocytes and DCs with the exception of the minor CD141+ DC population (Baba et al., 2013; 

Watchmaker et al., 2014). We therefore examined CD172ab expression, using an anti-CD172ab 

mAb (SE5A5) that recognizes the 2 isoforms of CD172, on Slan DCs in the blood of CD 

patients.  As depicted in Figure 3-2A and Figure 3-2B, Slan DCs that were clearly defined as 

CD172abdull clustered with the CD14dull cell population while, CD172abbrightSlan- cells 

corresponded to the CD14bright monocyte population, confirming our previous report (Baba et 

al., 2013). We found that the expression of CD172ab was significantly lower on Slan DCs 
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compared to monocytes in both untreated and refractory cohorts of CD patients as well as 

control subjects (Figure 3-2C and data not shown). Next, we asked whether the difference in 

intensity of CD172ab expression observed between Slan DCs and monocytes results from their 

differential expression of CD172a and CD172b.  To this end, we used CD47Var-1, an avidity 

improved CD47 fusion protein that binds CD172a but not CD172b; and anti-CD172b mAb, 

which selectively identifies CD172b (Baba et al., 2013). The CD172b expression was 

significantly lower on Slan DCs compared to the CD14bright monocyte population as depicted 

by the mean fluorescent intensity (MFI) with no difference in the level of expression between 

CD and control donors (Figure 3-2D). As previously reported, CD47Var-1 binding was up-

regulated on CD14bright monocytes (p=0.02) in CD patients relative to control donors but 

CD47Var-1 failed to bind circulating Slan DCs in healthy donors (Baba et al., 2013). By 

contrast, binding to CD47Var-1, thus CD172a expression, was significantly detected on Slan 

DCs in CD patients (p=0.03) (Figure 3-2D).  

We conclude that Slan DCs express CD172a in the blood of CD patients and decrease in 

frequency in CD, but not UC, patients refractory to immunosuppressive agents and TNFα 

blockers.  

 

3.2.3.2 CD14brightCD47Var-1+ Slan DCs accumulate in the mLNs of CD patients and 

produce IL1β and TNFα 

Vermi et al. recently reported an accumulation of Slan DCs in the metastatic tumor-draining 

lymph nodes of carcinoma patients (Vermi et al., 2014). However, these cells were undetectable 

in lymph nodes showing non-specific lymphadenitis. Although technically challenging to 

access, we searched for and detected, for the first time, Slan DCs by immunohistochemistry 
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(IHC) in inflamed mLNs of CD patients (Figure 3-3A). By contrast, they were rarely observed 

in mLNs of control non-IBD donors that included cold diverticulitis patients. In CD patients, 

Slan DCs had a stellate shape and were scattered in the T and B cell areas of the disorganized 

mLN (data not shown). Next, we quantified ClassII+Slan DCs by flow cytometry in mLNs 

freshly collected from CD and non-IBD patients undergoing surgery (Table 3-1). Surgical 

samples were obtained from CD patients refractory to drug therapy (8 out of 10). We found a 

significant increase in the percentage of Slan DCs in CD when compared to control patients 

group, which included carcinoma as well as cold diverticulitis non-IBD donors (Figure 3-3B). 

Next, we gated on CD45+ClassII+ cells and determined CD47Var-1 binding on Slan DCs in CD 

mLNs. Slan DCs were identified as CD47Var-1+cells that are CD14bright and CD47Var-1- cells 

that have a low expression of CD14 (Figure 3-3C). The frequency of CD47Var-1+Slan DCs 

was significantly augmented in the mLNs of CD compared to control non-IBD donors (Figure 

3-3D). Notably, the CD14dull/-CD47Var-1-Slan+ population predominated in mLN from control 

patients (Figure 3-S2A). These data indicate that CD14brightCD47Var-1+Slan DCs accumulate 

in the mLN of CD patients. Finally, cytokine production was examined ex vivo in 6 CD versus 

5 non-IBD mLNs. The frequency of IL1β and TNFα-producing Slan DCs was significantly 

higher in CD than in control patients (Figure 3-3E). Notably, the large majority of cytokine 

producing Slan DCs were CD14bright, thus CD47Var-1+, compared to the IL1β- or TNFα- Slan 

DCs that were mainly CD47Var-1- CD14dull cells (Figure 3-3C and Figure 3-3E).  

Taken collectively, IL1β and TNFα-producing CD14brightCD172a+ Slan DCs accumulate in 

mLNs of CD patients. 
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3.2.3.3 CD14brightCD47Var-1+ Slan DCs accumulate in the inflamed colonic tissue of 

CD, but not UC, patients and produce IL1β and TNFα. 

Next, we quantified Slan DCs in CD and UC patients by flow cytometry; inflamed and non-

inflamed colonic mucosa from the same patient were compared. A significant increase in the 

percentage of Slan DCs was detected in inflamed compared to non-inflamed tissue of CD (n=4 

biopsies, n=7surgery), but not UC (n=5 biopsies, n=1surgery), patients (Figure 3-4A).  Since 

no difference in the frequency of Slan DCs was noted in colonic mucosa of UC, we focused on 

colonic data obtained from CD patients only. First, we confirmed the presence of Slan DCs 

using IHC in the inflamed colonic mucosa of CD (Figure 3-4B, lower panel), corroborating 

earlier reports (Costantini et al., 2011; de Baey et al., 2003). We showed an accumulation of 

Slan DCs in the apical part of villi in inflamed CD tissue. These cells were seen infiltrating the 

deeper layers of inflamed mucosa. In control tissue, Slan DCs were sometimes detected in 

isolated lymphoid follicles (data not shown) but were virtually absent from the mucosa itself 

(Figure 3-4B, upper panel).  

Next, we examined the expression of CD14 and CD172a on Slan DCs in CD45+ClassII+ cell 

population. Similar to our mLN data, we found two populations of Slan DCs in inflamed CD 

mucosa: CD14brightCD47Var-1+ and CD14-/dullCD47Var-1- cells (Figure 3-4C). Note that the 

CD14brightCD47Var-1+Slan+ population was also detected in non-inflamed CD colons (Figure 

3-S2B). As a consequence, the frequency of CD47Var-1+Slan DCs (Figure 3-4D) as well as 

CD14brightSlan DCs (Figure 3-4E) was significantly increased in inflamed CD colon compared 

to colonic mucosa of control non-IBD donors but not non-inflamed colon of CD patients. These 

data indicate that, as in mLNs, Slan DCs expressed CD172a and the frequency of CD14brightSlan 

DCs increased in the colon of CD patients.  



148 

 

The accumulation of Slan DCs seen in the inflamed CD mucosa was associated, like in mLNs, 

with a spontaneous increase in their pro-inflammatory cytokine production (Figure 3-4F). In 

fact, ex vivo examination of LPMC from CD showed a significant increase in the percentage of 

IL1β+Slan DCs in inflamed relative to non-inflamed tissue. Furthermore, the frequency of 

TNFα-producing Slan DCs also showed a trend towards an increase. In fact, whenever patients 

treated with anti-TNFα mAb (red symbols) are excluded from the cohort analysis, the increase 

in percentage of TNFα+Slan DCs was significant in inflamed CD mucosa. Similar to mLNs, the 

cytokine producing Slan DCs were CD14bright. 

In CD patients, Slan DCs that accumulate in the colonic tissue resemble those found in mLNs 

of CD patients in terms of their phenotype and cytokine profile.  

 

3.2.3.4 Increased frequency of cytokine-producing Slan DCs, but not CD14bright 

monocytes, in in vitro-stimulated PBMC of CD patients. 

Slan DCs produce pro-inflammatory cytokines ex vivo in colon and lymph nodes from CD 

patients. We also investigated the function of circulating Slan DCs in IBD patients versus 

healthy subjects in response to NOD2 and TLR2 in vitro stimulation. To this end, PBMC from 

CD, UC and control donors were stimulated with muramyl dipeptide (MDP) and Pam3Csk4, 

and the production of various cytokines was assessed among Slan DCs by intracytoplasmic 

staining. MDP and Pam3Csk4 are NOD2 and TLR2 stimuli respectively that are known to 

mimic colonic microbiota (Brain et al., 2013). The overall cytokine production in Slan DCs was 

higher in response to the combined stimuli than when MDP and Pam3Csk4 were added 

separately (data not shown). In vitro stimulation increased the percentage of IL1β+ and TNFα+ 

Slan DCs in CD as well as UC patients (Figure 3-5A). As depicted in Figure 3-5B, the 
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frequency of TNFα, IL23p19 and IL12/23p40-producing Slan DCs was significantly higher in 

CD compared to UC patients and control donors reflecting the increase in the percentage of 

Slan DCs that produce cytokines seen in stimulated PBMC. The percentage of IL1β+Slan+ cells 

tended to augment in CD compared to control and UC patients. Similar to data in mLN and 

colonic mucosa, the cytokine producing Slan DCs have a higher expression of CD14 (Figure 

3-S3). Finally, this differential cytokine production between IBD and control donors was not 

noted for the CD14bright monocyte population (Figure 3-5C).  

Taken together, the frequency of circulating pro-inflammatory cytokine-producing Slan DCs in 

response to in vitro stimulation with TLR2 and NOD2 agonists is higher in CD relative to UC 

patients. 
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3.2.4 DISCUSSION 

Our present study revealed an increased frequency of IL1β- and TNFα- producing Slan DCs in 

the mLNs of CD patients relative to mLNs of non-IBD donors. Furthermore, pro-inflammatory 

Slan DCs accumulated in inflamed colons of CD, but not UC, patients. The accumulation of 

Slan DCs in peripheral tissues was associated with a significant reduction in the frequency of 

circulating Slan DCs in CD patients refractory to immunosuppressive agents or TNFα blockers 

treatment, relative to untreated CD, UC or healthy subjects. These data suggest that Slan DCs 

have been recruited to inflamed CD, but not UC, tissues and thus may contribute to the local 

inflammatory process in CD.  

The accumulation of Slan DCs in inflammatory or autoimmune diseases provokes the 

hypothesis that these cells are implicated in disease immunopathogenesis. Quantification by 

IHC revealed an increased frequency of Slan DCs in the dermis of SLE patients (Hansel et al., 

2013) as well as in inflammatory demyelinating brain lesions and cerebrospinal fluid of patients 

with multiple sclerosis (MS) (Thomas et al., 2014). As observed in CD patients, Slan DCs 

accumulated in highly active lesions when compared to less inflamed tissues in SLE and MS 

patients. However, similar percentage of circulating Slan DCs was observed between untreated 

SLE and MS patients and healthy subjects, in agreement with our data in untreated IBD patients. 

These observations suggest that disease severity is better correlated with the frequency of Slan 

DCs in tissue rather than in blood, with the exception of psoriatic disease in which the number 

of Slan DCs are increased in both active plaques and blood (Hansel et al., 2011).  

Furthermore, impact of therapeutic drugs on the frequency of circulating Slan DCs does not 

necessarily reflect the clinical outcomes of the patients. Administration of anti -TNFα mAb 

(Adalimumab) in psoriasis patients improves disease and decreases the numbers of Slan DCs 
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in dermis as well as in blood with no induction of Slan DC apoptosis (Brunner et al., 2013). By 

contrast, successful treatment of psoriatic patients with soluble TNFα receptor (Etanercept) 

reduces the number of Slan DCs in resolved lesions while augmenting their frequency in blood, 

suggesting an impaired migratory activity of Slan DCs to tissue in responder patients (Gunther 

et al., 2013). Finally, long-term therapy with IFNβ, but not with natalizumab (anti-α4β1), 

significantly reduced the frequency of circulating Slan DCs in MS patients with remitting 

relapsing stable disease (Thomas et al., 2014). Our present study established that the percentage 

of Slan DCs significantly decreased in the blood, but accumulated in inflamed colonic mucosa 

and mLNs of CD patients refractory to treatment. The latter further highlights the importance 

of examining, whenever feasible, tissues rather than PBMC to evaluate the potential 

contribution of cells to disease process and the impact of drug therapy.  

Using flow cytometry, we detected and quantified for the first time Slan DCs in mLN of CD 

patients. Slan DCs were rarely observed in non-inflamed mLN of non-IBD donors, 

corroborating their paucity in LN and spleen using IHC (de Baey et al., 2003). Their increased 

percentage in LN relates to their previously reported functions: priming of naïve T cells and 

induction of Th17/Th1 response (Hansel et al., 2011), a hallmark of CD pathogenesis (Kaser et 

al., 2010). Slan DCs are endowed with reverse migratory properties suggesting that they travel 

from the tissue, where they are in contact with the antigen, to LN to encounter naïve T cell 

population (Randolph et al., 2002). However, Slan DCs could also make their journey to the 

mLN arriving directly from the blood. This is strongly suggested in carcinoma patients where 

Slan DCs were not present within the primary carcinomas, but an increase in their frequency 

was noted in the metastatic tumor draining LN (Vermi et al., 2014). C5a, CXCL12 and CX3CL1 

are involved in the migration of Slan DCs to psoriatic plaques and possibly to metastatic LN 
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(Hansel et al., 2011). Furthermore, CD16 expression provides Slan DCs with the capacity to 

handle immune complexes (Dobel et al., 2013) and the latter are shown to promote CCR7-

dependent DC migration to LN in mice (Clatworthy et al., 2014). However, the mechanisms 

that govern the selective accumulation of Slan DCs to inflamed CD mLNs as well as in colon 

of CD, but not UC, patients warrant further investigation. 

Two opposite functions are attributed to Slan DCs. These cells display either protective or pro-

inflammatory properties. Pro-inflammatory cytokine production of circulating Slan DCs was 

established in psoriatic and SLE patients, following stimulation with ligands that bind to toll 

like receptors 2, 4, 7 and 8 (Gunther et al., 2012; Hansel et al., 2013; Hansel et al., 2011). In 

the present study, we evaluated the pro-inflammatory properties of Slan DCs in IBD patients. 

On one hand, Slan DCs that spontaneously secrete IL1β and TNFα after ex vivo isolation 

significantly accumulated in mLNs as well as in inflamed colons of CD patients. On the other 

hand, the percentage of IL1β, TNFα as well as IL23p19 and IL12/23p40 cytokine-producing 

Slan DCs in response to in vitro stimulation was highest in blood of CD patients, compared to 

that of UC and healthy subjects. In fact, the augmentation of cytokine production observed in 

Slan DCs largely results from an increase in the percentage of cytokine-producing cells and not 

in the cytokine producing capacity of each cell (data not shown). Notably, the clinical response 

to Etanercept in psoriasis appears to be more related to a reduction in the percentage of 

cytokine-producing Slan DCs in the dermis than to the decreased ability of these cells to secrete 

TNFα or IL23p19 (Gunther et al., 2013).  

Pro-inflammatory cytokines were mainly produced in Slan DCs that expressed CD172a and had 

up-regulated CD14 expression in blood, mLN and colon, i.e. the CD14brightCD172a+ Slan DCs. 

Our previous study revealed that pro-inflammatory cytokine production is restricted to the 
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CD47Var-1+ cells in mLNs as well as colonic mucosa of CD patients (Baba et al., 2013).  This 

CD47Var-1+ cells in CD colon is a heterogeneous population that comprises the minor Slan 

DCs and other DCs as well as macrophage subsets, that remain to be further characterized. 

Although Slan expression was described on CD14+CD163+ and CD14+CD163dull APC subsets 

in normal colonic mucosa of colorectal cancer patients (Ogino et al., 2013), Slan DCs were 

CD11c+CD163- in inflamed CD colons (data not shown), in agreement with their phenotype 

reported in skin (Gunther et al., 2012). Notably, exposure of inflamed colonic tissue explants 

to CD47Var-1 suppresses the release of pro-inflammatory cytokines that include IL1β, TNFα, 

IL12 and IL23 (Baba et al., 2013). Also, administration of CD47-Fc fusion protein in mice 

prevents the relapse of experimental colitis, which correlated with impaired DC recruitment to 

mLNs as well as decreased pro-inflammatory cytokine expression in tissues (Fortin et al., 2009; 

Van et al., 2006). As such, targeting CD172a using CD47-Fc might alter both the cytokine 

producing capacity as well as recruitment of Slan DCs into tissues in CD patients.  

In conclusion, we demonstrate that pro-inflammatory CD14brightCD172a+Slan DCs accumulate 

in mLNs and colons of CD. Since our data did not reveal a role for Slan DCs in UC, we propose 

that Slan DCs may uniquely contribute to CD immunopathogenesis.  
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3.2.6 FIGURES AND TABLES 

 

Figure 3-1: Slan DCs decrease in frequency in the blood of CD patients refractory to 

treatment. 

PBMC isolated from CD and healthy subjects (control) were stained for CD14, CD16, MHC 

class II and Slan. (A) Representative flow cytometry plot of CD16 expression in ClassII+Slan+ 

cells (left panels) and ClasII+CD14bright cells (right panels). (B) Percentage of Slan DCs (left 

panel) and CD14bright monocytes (right panel) in healthy (control) subjects (n=44), untreated 

CD patients (n=14), as well as refractory CD patients to immunosuppressors (n=9), TNFα 

blockers (n=8) and 5-ASA (n=5) treatment. Data are represented as mean ± s.e.m. Mann-

Whitney test was used to assess significance. 
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Figure 3-2: ClassII+Slan+ express CD172a in peripheral blood of CD patients. 

PBMC isolated from CD patients and healthy subjects (control) were stained for CD172ab, 

CD172a, CD172b, CD14, MHC class II and Slan. (A) Representative flow cytometry plot of 

CD172ab expression in relation to Slan on ClassII+ gated cells. (B) Representative flow 

cytometry histogram of CD14 expression on the CD172abdullClassII+Slan+ (grey dashed line), 

CD172abbrightClassII+Slan- (black line) and CD172ab-ClassII+Slan- (filled histograms). (C) 

Mean MFI of CD172ab (control n=33 and CD n=36). (D) Mean MFI of CD47Var-1 (control 

n=25; CD n=21) and CD172b (control n=16; CD n=13) on Slan+ and CD14bright cells. Data 

are represented as mean ± s.e.m. Paired as well as Unpaired Student t test and Mann-Whitney 

test were used to assess significance.  
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Figure 3-3: CD14brightCD172a+ Slan DCs accumulate in the mLNs of CD patients and 

produce IL1β and TNFα. 

(A) DD2+ Slan cells are detected in the mLN of CD (right panel) but not non-IBD (left panel) 

patients. One representative staining out of 5 is shown. (B-E) Freshly isolated mLN from CD 
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patients and non-IBD control donors were stained for CD47Var-1, CD14, CD45, MHC class II 

and Slan. (B) Percentage of ClassII+Slan+ among CD45+ cells (n=6 non-IBD control patients 

and n=10 CD patients). (C) Representative gating strategy showing CD47Var-1+and- Slan+ 

population among ClassII+CD45+ cells in mLN of CD patient. The expression of CD14 is 

represented on Slan+ populations. (D) Percentage of CD47Var-1+ClassII+Slan DCs (n=5 non-

IBD control patients and n=11 CD patients). (E) Freshly isolated mLN were stained 

intracytoplasmically for IL1β and TNFα. Percentage of IL1β+Slan+ and TNFα+Slan+ cells in 

control (n=5) versus CD patients (n=6). Flow cytometry histogram of CD14 staining on the 

Slan+Cytokine- (purple dashed-line), Slan+Cytokine+ (blue line) and CD14-Cyokine- (grey 

filled) populations. Data are represented as mean ± s.e.m. Mann-Whitney test was used to 

assess significance. 
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Figure 3-4: CD14brightCD172a+ Slan DCs accumulate in the inflamed colonic tissue of CD, 

but not UC, patients and produce IL1β and TNFα. 

LPMC were isolated from the inflamed and non-inflamed colonic mucosa of CD (n=11, which 

included 4 biopsies) and UC (n=6, which included 5 biopsies) patients and compared to non-

IBD (control) patients (n=6). (A) Frequency of ClassII+Slan DCs among CD45+ cells. (B) 
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DD2+ Slan cells are concentrated at the apical part of villi in CD colonic sections. One 

representative staining out of 5 is shown. (C) Freshly isolated LPMC from non-inflamed and 

inflamed CD patients and healthy control donors were stained for CD47Var-1, CD14, CD45, 

MHC class II and Slan. Representative flow cytometry plot depicting the CD47Var-1+and-Slan+ 

population among ClassII+CD45+ cells in inflamed LPMC of CD patients. The expression of 

CD14 is depicted on Slan+ populations. (D) Percentage of CD47Var-1+ClassII+Slan DCs (n=5 

non-IBD control patients and n=7 CD patients).  (E) Percentage of CD14brightClassII+Slan DCs 

(n=5 non-IBD control patients and n=7 CD patients).  (F) Freshly isolated LPMC were stained 

ex vivo for IL1β and TNFα by intracytoplasmic staining. The percentage of cytokine producing 

Slan+ cells in inflamed versus non-inflamed tissue of CD patients (n=8) is depicted. Patients 

undergoing anti-TNFα treatment at the time of sample collection are represented by red 

symbols. Flow cytometry histogram of CD14 staining on the Slan+Cytokine- (purple dashed-

line), Slan+Cytokine+ (blue line) and CD14- Cytokine- (grey filled) populations. Data are 

represented as mean ± s.e.m. Paired and Unpaired Student t tests, Mann-Whitney and Wilcoxon 

signed rank tests were used to assess significance.  
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Figure 3-5: Increased frequency of cytokine-producing Slan DCs, but not CD14bright 

monocytes, in in vitro-stimulated PBMC of CD patients. 

PBMC were stimulated for 24 hours with MDP and Pam3Csk4. BrefeldinA was added for the 

last 3 hours. (A) Representative flow cytometry dot plot showing the Slan+IL1β+ and 

Slan+TNFα+ among PBMC. Flow cytometry histogram of IL1β and TNFα (black line) and their 

respective isotype controls (grey filled) on the Slan+ population. Percentage of IL1β and TNFα 

producing Slan DCs in PBMC of CD (n=6) and UC (n=5) patients in MDP+Pam3Csk4 

(triangle symbol) versus medium (circle symbol) conditions. (B) Percentage of IL1β+, TNFα+, 

IL23p19+ and IL12/23p40+ Slan DCs in stimulated PBMC of CD (n=6), UC (n=5) patients and 
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healthy subjects (n=4 control). (C) Percentage of IL1β+, TNFα+, IL23p19+ and IL12/23p40+ 

CD14bright monocytes in stimulated PBMC of CD (n=6), UC (n=5) patients and healthy subjects 

(n=4 control). Data are represented as mean ± s.e.m. Mann-Whitney and Wilcoxon signed rank 

tests were used to assess significance.  
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Table 3-1 Study participant information 

Variable CD UC Non‐IBD 

n 48 14 20 

Females, n (%) 29 (60.4) 7 (50) 9 (45) 

Age, median (range) 45 (21–76) 39 (17–62) 54 (22–88) 

Age at diagnosis 
   

 <16 5 0 
 

 17–40 32 5 
 

 >40 11 9 
 

Treatment 
   

 None 17 7 
 

 5‐ASA alone 6 5 
 

 Thiopurine or 

methotrexate 

14 2 
 

 TNF‐α inhibitor 7 1 
 

 Corticosteroid 11 0 
 

Disease location—CD 
   

 Terminal ileum 0 
  

 Colon 14 
  

 Ileocolonic 34 
  

 Upper GI tract 0 
  

Disease location—UC 
   

 Proctitis 
 

2 
 

 Left‐sided colitis 
 

9 
 

 Pancolitis 
 

3 
 

 Proximal colitis 
 

0 
 

Disease behavior—CD 
   

 Nonstricturing–

Nonpenetrating 

30 
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Variable CD UC Non‐IBD 

 Stricturing 13 
  

 Penetrating 5 
  

 Perianal disease 4 
  

Diagnosis–control 
   

 Colonic neoplasia 
  

7 

 Cold diverticulitis 
  

4 

 Screening colonoscopy 
  

9 
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3.2.7 SUPPLEMENTAL INFORMATION 

 

Figure 3-S1: Percentage of circulating Slan DCs. 

Percentage of Slan DCs in healthy (control) subjects (n=44), untreated UC patients (n=7), as 

well as refractory UC patients (n=7). Data are represented as mean ± s.e.m. Mann-Whitney 

test was used to assess significance. 
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Figure 3-S2: Gating strategy of Slan+ cells in mLN. 

Representative gating strategy showing CD47Var-1+and Slan+ population among 

ClassII+CD45+ cells in mLN of non-IBD patient (A) and non-inflamed mucosa of CD patient 

(B). The expression of CD14 is represented on Slan+ populations. 
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Figure 3-S3: Phenotype of cytokine-producing Slan+ cells. 

PBMC were stimulated for 24 hours with MDP and Pam3Csk4. BrefeldinA was added for the 

last 3 hours. Flow cytometry histogram of CD14 staining on the Slan+Cytokine+ (blue line), 

Slan+Cytokine- (purple dashed line) and CD14-Cytokine- (grey filled) populations. 
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4.1 Abstract  

The drug targets IL23 and IL12 regulate pathogenicity and plasticity of intestinal Th17 cells in 

Crohn’s disease (CD) and ulcerative colitis (UC), the two most common inflammatory bowel 

diseases (IBD). However, studies examining Th17 dysregulation in mesenteric lymph nodes 

(mLNs) of these patients are rare. We showed that in mLNs, CD could be distinguished from 

UC by increased frequencies of CCR6+CXCR3-ROR+Tbet-CD4+ (Th17) memory T cells 

enriched in CD62Llow effector memory T cells (TEM), and their differentially expressed 

molecular profile. Th17 TEM cells (expressing IL17A, IL17F, RORC and STAT3) displayed a 

higher pathogenic/cytotoxic (IL23R, IL18RAP, and GZMB, CD160, PRF1) gene signature in 

CD relative to UC, while non-pathogenic/regulatory genes (IL9, FOXP3, CTLA4) were more 

elevated in UC. In both CD and UC, IL12 but not IL23, augmented IFN expression in Th17 

TEM and switched their molecular profile towards an ex-Th17 (Th1*)-biased transcriptomic 

signature (increased IFNG, and decreased TCF7, IL17A), suggesting that Th17 plasticity occurs 

in mLNs before their recruitment to inflamed colon. We propose that differences observed 

between Th17 cell frequencies and their molecular profile in CD and UC might have 

implications in understanding disease pathogenesis, and thus, therapeutic management of 

patients with IBD.  
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4.2 Article  

4.2.1 INTRODUCTION 

Lymph nodes (LNs) are the key sites to initiate an effector response and generate memory T 

cells. However, human lymphoid tissue samples available for research use is quite limited. 

Recent studies examined several organs of deceased healthy donors, which expanded our 

knowledge on T cell compartmentalization throughout the body under homeostatic conditions 

(Kumar et al., 2018; Thome et al., 2016b). Naïve versus memory CD4+ T cell balance shifts 

with age, with memory cells gaining numbers in adulthood in mucosal and lymphoid tissues 

(Senda et al., 2018). Mesenteric lymph nodes (mLNs)  home gut migratory DCs that dictate the 

type of helper T (Th) responses by driving naive T cell polarization towards Th1, Th2, Th9, 

Th17, T follicular helper (Tfh) or regulatory T (Treg) cells, each specialized in immunogenic or 

tolerogenic immune responses (Stadhouders et al., 2018). Migratory DCs further induce the 

expression of gut homing receptors such as CCR9 or α4β7 on antigen-specific T cells, which 

enable their return to the intestine (Iwata et al., 2004). MLNs are thus considered a primary site 

for generation of mucosal Th responses, including Th17 cells that are important contributors to 

gut homeostasis. Indeed, an essential role was demonstrated for murine mLNs in the generation 

of pro-inflammatory IL17A+CD4+ T cells that are found in the small intestine (Kawabe et al., 

2016). However, Takebayashi et al. found that absence of mLNs did not affect IL17 cytokine 

production by CD4+ T cells isolated from the colonic lamina propria in murine IBD models 

(Takebayashi et al., 2011). Furthermore, it is proposed that Th17 cells are generated in the gut 

and rarely observed in mLNs and Peyer’s patches (Atarashi et al., 2008).  Studies investigating 

Th cells in mLNs of patients with inflammatory bowel diseases (IBD) remain scarce (Baba et 

al., 2013; Chapuy et al., 2014; Sakuraba et al., 2009; Saruta et al., 2007). 
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Crohn’s disease (CD) and ulcerative colitis (UC) are the two most frequent chronic, remitting 

and relapsing IBD forms (Zhang and Li, 2014). Both diseases share common features but are 

distinct entities with CD developing in the entire gastrointestinal tract and UC in colon and 

rectum. The immune mechanisms that govern UC and CD disease process include the 

recruitment of pathogenic Th17 cells in the gut. Pathogenicity of mucosal Th17 cells is not 

defined by IL17 secretion per se but rather by their plastic nature, a hallmark of IBD (Stockinger 

and Omenetti, 2017). Th17 conversion to ex-Th17 (Th1*) is predominantly controlled by two 

pro-inflammatory cytokines IL12 and IL23 that share a common p40 chain (Oppmann et al., 

2000). Yet, the potential contribution of mLNs to the generation of pre-committed pathogenic 

Th17 cells during intestinal inflammation in CD and UC remains to be investigated.  In the 

present study, we examined the distribution of memory Th17 cells in the mLNs of UC and CD 

patients, their molecular characteristics, and determined their plasticity in response to IL12 and 

IL23.  
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4.2.2 MATERIALS AND METHODS 

4.2.2.1 Human clinical samples 

MLNs were collected from surgical resections. This study included 25 patients with CD and 9 

patients with UC (clinical information is shown in Table 4-S1). No histological data or bacterial 

infections suggested a differential diagnosis. 

 

4.2.2.2 Cell purification and analysis 

MLNs were digested mechanically to obtain cellular suspensions  (Baba et al., 2013). 

Antibodies used for flow cytometry are listed in Table 4-S2. Their respective Fluorescence 

minus one (FMO) or isotype controls are shown in Figure 4-S1. FCS Express 6 (DeNovo 

Software) or t-SNE (t-Distributed Stochastic Neighbor Embedding) plugin available in FlowJo 

version 10.5.3 (FlowJo, LLC) (Quinn et al., 2015) were used for data analysis.  

 

4.2.2.3 Cell sorting and culture 

CD62LlowCD45RO+CD45RA-CD25-CD8-CD4+ T cell subsets: CCR6+CXCR3-, 

CCR6+CXCR3+, and CCR6-CXCR3+ were FACS sorted for functional studies according to the 

gating strategy depicted in Figure 4-2A. Transcriptomic studies examined sorted 

CCR6+CXCR3-CD62LlowCD45RO+CD45RA-CD25-CD8-CD4+ T cells treated in the absence or 

presence of IL12. Cell isolation was performed using FACS Aria II cell sorter and data were 

analyzed using FACS Diva 6 (BD Biosciences). 

The three purified CD4+ T cell subsets were stimulated with anti-CD3/CD28 beads (Miltenyi 

Biotec) and cultured with or without IL12 (20 ng/ml, R&D system) or IL23 (10 ng/ml, R&D 

system) for 6 days. Cultures were performed in RPMI 1640 medium supplemented with 10% 
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fetal calf serum and 1% penicillin/streptomycin; 20 000 – 50 000 cells per well.  For 

intracytoplasmic staining, PMA-ionomycin was added for 6 hours in cell cultures and Brefeldin 

A for the last 3 hours, cells were then fixed and stained with CD3 monoclonal antibody followed 

by intracytoplasmic staining for IL17 and IFNγ. 

 

4.2.2.4 NanoString 

NanoString was performed at the LDI Molecular Pathology Research Core. RNA was isolated 

using the NucleoSpin RNA extraction protocol followed by nCounter Low RNA Input 

Amplification Protocol (nanoString).   

Differential gene expression was assessed using the NanoString Human Immunology v2 panel 

according to the manufacturer’s specifications.  In brief, amplified RNA was used for Sample 

Preparation. The samples were then processed with the nCounter Preparation Station to purify 

the hybridized targets and affix them to the cartridge for imaging using the nCounter Digital 

Analyzer (CCD camera). Barcodes were counted for each target molecule at High Resolution. 

 

4.2.2.5 NanoString statistical analysis 

The mRNA expression matrix for 583 genes was normalized using a list of house-keeping genes 

including ABCF1, ALAS1, EEF1G, G6PD, GUSB, HTPRT1, HTPRT1, OAZ1, POLR2A, PPIA, 

PPIA, RPL19, TBP, TUBB. However, it excluded GAPDH for having a high expression SD in 

our dataset. Subsequent PCA analysis revealed that the house-keeping normalized data was 

primarily clustered by diseases (UC and CD) which is of biological significance. In order to 

validate the inclusion of a patient covariable in the association model, we performed 
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normalization using the R program (R Core Team, 2016): R limma (Ritchie et al., 2015) and 

EdgeR (McCarthy et al., 2012; Robinson et al., 2010) library that removed the effect of the 

patient identity on the PCA expression pattern. The resulting PCA analysis graph showed the 

samples being clustered by conditions (control and IL12) for which we want to analyze the 

expression. 

A differential expression analysis was done with the R limma package with three contrast 

matrices: 

1. ContUC vs ContCD (Differential expression analysis between Control samples from UC 

and CD) 

2. IL12CD vs ContCD (Different expression analysis between IL12 stimulated cell versus 

control for CD) 

3. IL12UC vs ContUC (Different expression analysis between IL12 stimulated cell versus 

control for UC) 

The association model included the contrast sample condition plus a covariate for the patient 

identity to reflect what was detected on the PCA analysis. 

Graphics and visualization of the differential expression analysis metrics where done using the 

gplots, ggplot2 and beanplot libraries. 

 

4.2.2.6 Statistical analysis 

Statistical analysis was performed with Prism version 6 (GraphPad Software). Data were 

checked for normality using Shapiro-Wilk test and then the appropriate test was applied as 

indicated. For all tests, 1 symbol means P< 0.05, 2 symbols mean P< 0.01, and 3 symbols mean 

P<0.001. Bar graphs are shown as mean ± SEM. 
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4.2.2.7 Study approval 

This study was approved by the Institutional Ethics Research Committee of the Centre 

Hospitalier de l’Université de Montréal (CER-CHUM). The patients provided written consent 

to the study protocol. 
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4.2.3 RESULTS 

4.2.3.1 Predominance of CCR6+CXCR3-CD4+ T cells in mLNs of CD when compared 

to UC patients  

The human T cell compartment is heterogeneous with variable distribution in different mucosal 

and lymphoid tissues (Senda et al., 2018) that is further altered upon inflammation. We 

investigated whether the distribution of CD4+ T cell subsets in inflamed mLNs distinguished 

CD from UC. The percentage of CD4+ T cells and memory CD45RA-CD4+ T cells was similar 

in both diseases (Figure 4-1A). Memory CD4+ T cells were next stratified using CCR6 and 

CXCR3 which are Th17 and Th1-associated markers respectively (Figure 4-1B) (Annunziato 

et al., 2007). Accordingly, CCR6+CXCR3-CD4+ T cells expressed RORγ but not Tbet, and 

conversely, CCR6-CXCR3+CD4+ T cells expressed Tbet but not RORγ (Figure 4-1C). 

CCR6+CXCR3+CD4+ T cells co-expressed ROR and Tbet. Interestingly, the percentage of 

memory CCR6+CXCR3-CD4+ T cells was significantly higher in CD relative to UC, and 

additionally, it predominated over both CCR6-CXCR3+ and CCR6+CXCR3+ CD4+ T cell 

subsets in CD only (Figure 4-1D). However, there were no differences between CD and UC in 

the frequencies of CCR6-CXCR3+ or CCR6+CXCR3+ CD4+ T cells (Figure 4-1D). Memory Th 

cell subsets were further subdivided into CD62L low effector memory (TEM) and CD62Lhigh 

central memory (TCM) T cells. As expected, inflamed mLNs comprised more TEM than TCM cells 

among all Th subsets examined (Figure 4-1E). However, only in CD the frequencies of 

CCR6+CXCR3- TEM cells were significantly higher than CCR6-CXCR3+ TEM cells.  

 

Noteworthy, mLN CD4+ T cells also comprised minor T subpopulations that were equally 

distributed in CD and UC, they included Treg (CD25+Foxp3+), and invariant T cells (Figure 4-
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S2A). The latter comprised MAIT (93-97%) (TCRVα7.2+TCRVα4.24-), δ T (1.5-3%) 

(TCRƍ+TCRVα7.2-) and iNKT (1.5-3%) (TCRVα7.2-TCRVα4.24+) cells. Treg and invariant T 

cell subpopulations were more represented in the CD4+ compared to CD8+ compartment 

(Figure 4-S2A-C). Within these invariant subpopulations, only 20% of cells expressed CCR6 

(Figure 4-S2D). Furthermore, T follicular helper cells (Tfh) were detected as rare 

ICOS+CXCR5+Ki-67+cells in both diseases (Figure 4-S2E). 

Taken together, CD mLNs comprised more CCR6+CXCR3-CD4+ T cells relative to UC and TEM 

cells predominated over TCM population.  

 

4.2.3.2 MLN Th17 TEM cells differentially expressed a pathogenic/cytotoxic molecular 

profile in CD relative to UC  

Next, we thought to compare the cytokine and molecular profile of CCR6+CXCR3- 

CD62LlowCD4+ T cells (Th17 TEM) in mLNs of UC and CD patients. To this end, mLN Th17 

TEM, purified as depicted in Figure 4-2A, expressed high IL17 and low IFN while 

CCR6+CXCR3+ CD62LlowCD4+ T cells (Th17/Th1 TEM) produced both, and CCR6-

CXCR3+CD62LlowCD4+ T (Th1 TEM) cells secreted IFN only (Figure 4-2B). However, unlike 

with unfractionated CD4+ T cells (Sakuraba et al., 2009), no significant differences were noted 

in the frequencies of IL17 or IFN  -producing cells in purified Th TEM subsets between CD and 

UC patients. Th17 TEM identity was further confirmed at the molecular level by equally elevated 

expression of IL17A, IL17F, RORC, STAT3 and CCL20 in CD and UC (Figure 4-2C) 

(Stadhouders et al., 2018; Stockinger and Omenetti, 2017; Uniken Venema et al., 2019).  
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Unexpectedly, mLN Th17 TEM subset in CD was distinguished by a set of differentially 

expressed genes when compared to UC (Figure 4-2D (FDR< 0.005) and Table 4-S3). In fact, 

IL23R, CCL3, IL22, DPP4, GZMB and IL18RAP, reported to be associated with a pathogenic 

Th17 signature in humans and mice (Bengsch et al., 2012; Ramesh et al., 2014; Wang et al., 

2015), were over-expressed in Th17 TEM from CD relative to UC (Figure 4-2E). GZMB and 

IL18RAP along with PRF1, CSF1, CD160, CXCR6, CD3E, KLRB1 further delineated a pro-

inflammatory/cytotoxic Th profile in CD relative to UC (Figure 4-2D and Figure 4-2E and 

Table 4-S3) (Patil et al., 2018; Uniken Venema et al., 2019). In contrast, Th17 TEM in UC, when 

compared to CD, had a greater expression of IL9, IL10, IL1RN, CTLA4 and FOXP3, genes that 

are considered non-pathogenic or regulatory (Lee et al., 2012; Ramesh et al., 2014; Wang et al., 

2015). Interestingly, augmented IL9 along with low CD96 and DPP4 expression (Figure 4-2D) 

observed in UC relative to CD mimics a Th9 pro-inflammatory profile associated with chronic 

intestinal inflammation in mice (Gerlach et al., 2014; Stanko et al., 2018). Moreover, a Th9-

biased profile has also been reported in UC mucosa (Nalleweg et al., 2015).  

In conclusion, Th17 TEM cells are associated with a pathogenic/cytotoxic molecular profile in 

CD and a non-pathogenic/regulatory profile in UC. 

 

4.2.3.3 IL12 shifts mLN Th17 TEM cells towards ex-Th17 (Th1*) in CD and UC  

IL23 favors Th17 effector function while IL12 down-regulates IL17 and promotes IFNγ 

expression in circulating and intestinal Th17 cells (Annunziato et al., 2007; Kleinschek et al., 

2009; Kobayashi et al., 2008; Ramesh et al., 2014).  Furthermore, mucosal pathogenic Th17 

cells that contribute to IBD pathogenesis are best defined by their ability to acquire IFNγ and 

thus, ultimately switch to Th1* (Ramesh et al., 2014). We therefore asked whether Th17 TEM 
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in mLNs could be shifted towards Th1*. Th17 TEM exposure to IL12 increased the percentage 

of IL17-IFN+ cells as well as IFNγ production per cell, as measured by the mean fluorescence 

intensity (MFI), in both CD and UC (Figure 4-3A). Frequencies of IL17+IFN- cells were 

significantly reduced by IL12 in CD only, further demonstrating a shift of Th17 TEM cells to 

Th1*. In addition, we noticed that IL12 augmented frequencies of IL17+IFN+ cells in 7 out of 

9 CD, and 6 out of 8 UC samples. In contrast, IFN and IL17 expression was not significantly 

modified by IL12 in Th17/Th1 TEM, and, IFN expression was marginally increased in Th1 TEM 

in UC only (Figure 4-S3A).   

 

Furthermore, Th17 conversion to Th1* under the influence of IL12 was associated with IL17A, 

TCF7 and IL9 downregulation while pro-inflammatory and cytotoxic gene expression (IFNG, 

IL21, GNLY, DPP4, GZMB) increased in both CD and UC (Figure 4-3B and Figure 4-3C). 

TCF7 downregulation was consistent with the emergence of IL17 -IFN+ (Th1*) cells and 

increase of Th1 genes (Muranski et al., 2011; Oestreich et al., 2011).  IFNG and HAVCR2 gene 

expression, which were augmented, best defined Th1-like T cells in colorectal cancer (Zhang 

et al., 2018), while PDCD1, an immune checkpoint inhibitor, was decreased. The gene encoding 

IL17F, that promotes colitis in mice (Tang et al., 2018), was not inhibited upon IL12 

stimulation; reinforcing the concept that IL12 induces the generation of pathogenic Th1* cells 

in inflamed mLNs. IL12 is likely contributed by mature DCs that accumulate in mLNs of CD 

(Jaensson et al., 2008); these cells also produce IL23 along with IL12 (Sakuraba et al., 2009). 

Unlike exposure to IL12, modulation of IL17 and IFN expression was unchanged in Th17, 

Th17/Th1 and Th1 TEM cells in response to IL23 (Figure 4-S3B). Failure of IL23 to augment 
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IL17 or IFN in Th17 TEM cells was not attributed to absence of IL23 receptor since IL23R was 

expressed in CD, and at higher levels relative to UC (Figure 4-2D). 

 

Taken together, IL12 but not IL23 promotes plasticity of mLN Th17 TEM cells. 
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4.2.4 DISCUSSION 

It is established that mucosal Th cells regulate gut homeostasis and inflammation, but few 

reports examined mLNs of IBD patients. Overall, the present study revealed that CD and UC 

could be distinguished by examining the frequencies and molecular profile of Th17 cells in 

mLNs.  MLNs in CD were characterized by a predominant Th17 TEM population displaying a 

pathogenic/cytotoxic gene signature relative to Th17 TEM cells in UC that expressed a profile 

biased towards regulatory genes. Under IL12 exposure, mLN Th17 TEM cells from both CD and 

UC shifted towards a Th1* cytokine and molecular profile, suggesting that Th17 plasticity is 

taking place in this inductive site before T cell homing to gut tissues.  

 

A previous study indicated that frequencies of IL-17+ cells are augmented in CD when 

compared to UC using plastic-coated CD3/CD28 activated unfractionated mLN CD4+ T cells 

(Sakuraba et al., 2009).  We showed here that the proportion of IL17+ cells was similar in both 

diseases using anti-CD3/CD28 beads activated CCR6+CXCR3- effector memory CD4+ T cells 

while the expression of IL17 per cell (MFI IL17) tended to augment in CD.   

 

Pathogenicity of Th17 cells is best defined by their capacity to elicit disease after in vivo 

adoptive transfer, their selected gene expression profile and their plastic nature (Ahern et al., 

2010; Ramesh et al., 2014; Wang et al., 2015). In mice, Th17 cells gradually progress to a pre-

Th1 effector phenotype in the LN and, to a Th17/Th1-like effector phenotype in non-lymphoid 

tissues (Gaublomme et al., 2015), suggesting that Th17 conversion is already initiated in LN. 

Indeed in CD mLN, Th17 TEM cells displaying a pathogenic, “pre-Th1” inflammatory gene 

(IFNG, HAVCR2, CD26) profile (Bengsch et al., 2012)  corroborate the progression observed 
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in mice LN. Furthermore, Th17 TEM cells isolated from the mLN of IBD patients converted to 

Th1* under the influence of IL12. Th17 program inhibition by IL12, as shown here by decreased 

TCF7 expression (Oestreich et al., 2011), also depends on Eomes up-regulation that inhibits 

RORC2 and IL17A expression while maintaining IFNG (Mazzoni et al., 2019). Interestingly, 

Eomes-expressing Th1* and Th1 cells have a more stable phenotype and do not up-regulate 

IL17 under the influence of IL1β, IL6, IL23 and TGFβ Th17-polarizing cytokines (Geginat et 

al., 2016; Mazzoni et al., 2019), consistent with a lack of modulation of IL17 and IFNγ 

expression observed in CD and UC Th1 TEM cells. The limitation of our study is that Eomes 

was not part of the nanostring expression matrix. 

 

IL23 expression is required on T cells to trigger colitis, which is associated with IFNγ and IL17 

co-expression (Ahern et al., 2010). Furthermore, administration of anti-IL23p19 monoclonal 

antibody attenuates development of colitis in Abcb1a-/- mice (Ahern et al., 2010; Maxwell et 

al., 2015). However, Th17 TEM cells from IBD mLNs did not modulate IL17 and IFN 

expression in response to IL23, differing from increased Th17 responses to IL23 observed in 

human colonic CD4+ T cells from CD patients (Chapuy et al., 2019b). Failure of IL23 to 

augment IL17 or IFNγ in mLN Th17 TEM cells was not attributed to absence of IL23 receptor 

since IL23R was expressed in CD, and at higher levels relative to UC. These data suggest that 

tissue-dependent IL23 responsiveness requires additional signals provided by the cytokine 

milieu and/or environment, which might be absent or low in mLNs. In fact, serum amyloid A 

proteins 1 and 2 (SAA1/2), secreted by epithelial cells, have been shown to promote robust 

IL17A production in RORγ+ T cells in the mucosa (Sano et al., 2015). Moreover, a recent study 

demonstrates that induction of severe chronic remitting/relapsing UC-like colitis in 
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immunocompetent mice requires not only IL23 and pathogenic CD4+ T cells in mLNs and 

colon, but also intestinal dysbiosis (Chen et al., 2018).  

   

Owing to the importance of IL23/Th17 axis in IBD pathogenesis, it is not surprising that these 

cells are deemed to be therapeutic targets. However, their inherent plasticity adds difficulty in 

targeting them directly in inflammatory settings.  Antibodies that block IL12 might be suitable 

targets, as IL12 promotes Th17 plasticity towards pathogenic Th1* in mucosa (Annunziato et 

al., 2007), and as shown here in mLNs of CD and UC. In fact, anti-IL12p40 drugs are part of 

the therapeutic arsenal of CD, and clinical trials are ongoing in UC patients (Allocca et al., 

2018). However, therapeutic efficacy of both anti-IL12p40 and anti-IL23p19 in ameliorating 

CD argues for a predominant role for IL23 in disease pathogenesis. Hence, anti-IL23p19 is also 

in clinical trials for UC (Allocca et al., 2018). Collectively, studying the role of immune cells 

in IBD mLNs warrants further investigation to better understand differences between CD and 

UC pathogenesis, and thus, open avenues for personalized medicine.   
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4.2.5 CONTRIBUTION TO THE FIELD 

While being extensively studied in the mucosa, few studies examined helper T cell subsets in 

the mesenteric lymph nodes (mLNs) of Crohn’s disease (CD) and ulcerative colitis (UC) 

patients. Lymph nodes are the key sites to initiate an effector response and generate memory T 

cells, emphasizing the need to investigate immune cells in these lymphoid tissues.  

Briefly, we showed that mLNs of CD and UC can be distinguished by frequencies of CXCR3-

CCR6+ Th17 memory T cells, enriched in CD62Llow effector memory T cells (TEM), and 

differentially expressed Th17 TEM molecular profile. Drug targets IL23 and IL12 regulate the 

pathogenicity and plasticity of intestinal Th17 cells in IBD. Our data further revealed that IL12, 

but not IL23, shifted mLN Th17 TEM towards a pathogenic Th1* cytokine and molecular profile 

in both CD and UC, suggesting that Th17 plasticity is taking place in this inductive site before 

T cell homing to gut tissues. 

Therefore, investigation of CD4+ helper T cell subsets in the IBD mLNs, which are not easily 

accessible for research use, has clear implications in further understanding disease pathogenesis 

and thus, open avenues for personalized medicine. 
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4.2.7 Figures 

 

Figure 4-1: Predominance of CCR6+CXCR3-CD4+ T cells in mLNs of CD when compared to 

UC patients. 

(A) CD3+ T cells isolated from mLNs of CD and UC patients were concatenated for t-SNE 

analysis. Feature plots of the indicated antigens (left panels). Frequencies of CD4+ and memory 

CD45RA- T cells (right panels). (B) Representative dot plots of CCR6+CXCR3-, CCR6+CXCR3+ 

and CCR6-CXCR3+ CD4+ subsets, (C) their expression of ROR and Tbet, and (D) frequencies 

of indicated Th subsets. (E) Representative dot plots and frequencies of TEM (CD62L low) and 

TCM (CD62Lhigh) among Th subsets. Unpaired t-test (+), Friedmann test followed by Dunn's 

test (*) and repeated measures one-way ANOVA followed by Tukey's test (#). 1 symbol means 

P< 0.05, 2 symbols mean P< 0.01, and 3 symbols mean P<0.001. 
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Figure 4-2: MLN Th17 TEM cells of CD differentially express a pathogenic/cytotoxic 

molecular profile relative to UC. 

 (A) Gating strategy for sorting CCR6+/-CXCR3+/- TEM subsets in mLN. Cells were activated 

with anti-CD3/anti-CD28-beads for 6 days. On the last day, PMA-ionomycin was added for 6 

hours and Brefeldin A for the last 3 hours. (B) Frequencies of IL17 and IFNγ-expressing cells 

by intracytoplasmic staining in sorted Th TEM subsets. (C-E) Cells were activated with anti-

CD3/anti-CD28-beads for 6 days. Molecular profiling of mLN Th17 TEM cells in CD (n=3) 

and UC (n=3) by Nanostring. (C) Expression of key Th17 genes in CD versus UC. (D) Heatmap 

of differentially expressed genes in CD relative to UC (FDR<0.005). (E) Fold change of Th17-

associated pathogenic and non-pathogenic genes. Friedmann test followed by Dunn's test (*) 
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and one-way ANOVA followed by Tukey's test (×). 1 symbol means P< 0.05, 2 symbols mean 

P< 0.01, and 3 symbols mean P<0.001.  
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Figure 4-3: IL12 shifts Th17 TEM cells towards Th1* in mLNs of CD and UC. 

Sorted mLN Th17 TEM cells were cultured with or without IL12 for 6 days. PMA-ionomycin 

was added for 6 hours and Brefeldin A for the last 3 hours. (A) Representative dot plots, 

frequencies and  mean fluorescence intensity (MFI) of IL17 and IFNγ. (B-C) Molecular 

profiling of mLN Th17 TEM cells treated with medium or IL12 from CD (n=3) and UC (n=3) 

by Nanostring. (B) Quadrant analysis for differentially expressed genes in Th17 TEM, with 

IL12 treatment relative to medium, in CD versus UC. (C) Violin plots illustrating relative 

expression of indicated genes. Paired t-test (§) or Wilcoxon signed rank test (¤). 1 symbol means 

P< 0.05, 2 symbols mean P< 0.01, and 3 symbols mean P<0.001. 
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4.2.8 SUPPLEMENTAL INFORMATION 

 

 

Figure 4-S1: Fluorescence minus one (FMO) and isotype-matched control antibodies. 

(A and C) Surface staining on mLN from IBD patients.  

(B) Intra-nuclear staining on mLN of IBD patients.  

(D) CCR6+CXCR3+ TEM cells from CD donor were culture for 6 days with anti-CD3/CD28 

beads. On the last day, PMA-ionomycin was added for 6 hours and Brefeldin A for the last 3 

hours. 
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Figure 4-S2: Tfh, Treg and invariant T cell populations in mLNs of IBD patients. 

(A) Representative dot plots for identifying Treg (CD25+Foxp3+), MAIT (TCR Vα7.2+TCR 

Vα4.24-), iNKT (TCR Vα7.2-TCR Vα4.24+) and γδ T (TCRγδ+TCR Vα7.2-) cells among CD3+ 

T cells. (B) Representative dot plots showing CD4 and CD8 expression on various T cell 

subpopulations. (C) Pie chart representing the proportion of T cell subsets among CD3+ T 
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cells. (D) Representative dot plots showing CCR6 expression on invariant T cell  populations. 

(E) CD3+ T cells were concatenated for t-SNE analysis. Feature plots of the indicated 

antigens.   
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Figure 4-S3: Effect of IL12 and IL23 on Th17, Th17/Th1 and Th1 cells in mLNs of IBD 

patients. 
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Th TEM cell subsets in mLNs of CD and UC were sorted according to the gating strategy 

shown in Figure 4-2A. Th TEM cell subsets cultured with or without (A) IL12 or (B) IL23. 

Representative dot plots and frequencies of IL17 and IFNg expression. Paired t-test (§).   
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Table 4-S1: Clinical information. 

  CD UC  

N 24 9  

Females, n (%) 16 (66.7) 5 (55.5)  

Age, median (range) 39 (24-67) 33 (18-80)  

    

Age at diagnosis     

      < 16 5 2  

     17-40 17 4  

     > 40 2 3  

    

Treatment    

     None 4 1  

     Thiopurine or methotrexate 14 3  

     TNFα inhibitor 10 2  

     Anti-IL-12p40 0 0  

     Anti-α4β7 integrin 1 2  

     5-ASA 2 1  

     Corticosteroid 7 7  

    

Disease location - CD    

     Terminal ileum 1   

     Colon 8   

     Ileocolonic 15   

     Perianal 7   

    

Disease behavior - CD    

     Non-stricturing - Non-

penetrating  
0 

 
 

     Stricturing 15   

     Fistula 16   

     Abscess 8   

    

Disease location - UC    

     Proctitis  1  

     Left side colitis  1  

     Pancolitis  7  

    Proximal colitis  0  
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Table 4-S2: List of antibodies. 

Antibody Conjuguate Clone Company 

CCR6 (CD196) PE G034E3 Biolegend 

CD25 APC 

M-A251 BD 

biosciences 

CD25 BV605 BC96 Biolegend 

CD3 BV510 UCHT1 Biolegend 

CD3 BUV496 

UCHT1 BD 

biosciences 

CD4 BV510 RPA-T4 Biolegend 

CD4 BV785 OKT4 Biolegend 

CD45RA APC HI100 Biolegend 

CD45RA APC FIRE HI100 Biolegend 

CD45RO PerCP/Cy5.5 UCHL1 Biolegend 

CD62L PeCy7 DREG-56 Biolegend 

CD62L BV421 DREG-56 Biolegend 

CD8 APC RPA-T8 Biolegend 

CD8 BUV737 

SK1 BD 

biosciences 

CXCR3 

Alexa Fluor 

488 

G025H7 

Biolegend 

CXCR3 BUV395 

1C6 BD 

biosciences 

FoxP3 APC PCH101 e-bioscience 

ICOS (CD278) BV421 C398.4A Biolegend 

IFNg PerCP/Cy5.5 4S.B3 Biolegend 

IFNg BV711 4S.B3 Biolegend 

IFNg BV421 4S.B3 Biolegend 

IFNg AF700 4S.B3 Biolegend 

IL17A 

Alexa Fluor 

647 

BL168 

Biolegend 

IL17A AF700 BL168 Biolegend 

IL17A BV421 BL168 Biolegend 

Ki67 BV711 Ki-67 Biolegend 

TCR Vα4.24 APC 6B11 Biolegend 

TCR Vα7.2 PerCP/Cy5.5 3C10 Biolegend 

TCR gd FITC B1 Biolegend 

RORg APC AFKJS-9 e-bioscience 

Tbet FITC 4B10 e-bioscience 
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Table 4-S3: Genes differentially expressed between activated Th17 cells from CD and UC 

(FDR value between 0.005 and 0.05). 

Higher in CD Higher in UC 

APP AHR 

ARHGDIB BATF 

BCL2 CTNNB1 

CD163 EBI3 

CD3E ICOS 

CD40LG IFNGR1 

CD5 IL1A 

CD53 IL1R1 

CD9 IL4R 

CSF1 LIF 

CXCR6 MX1 

DEFB4A PTK2 

ETS1 SELL 

FCGR3A/B SLAMF1 

GFI1 TIGIT 

HLA−DRB3   

ICOSLG   

IL16   

IL26   

IRAK2   

ITGA5   

ITGAX   

LCP2   

MBP   

MCL1   

PML   

PTPRC_all   

STAT5B   

TNFRSF4   
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5.1 Abstract 

Monocyte maturation program into macrophages (MΦ) is well-defined in murine gut under 

homeostatic or inflammatory conditions. Obviously, in vivo tracking of monocytes in inflamed 

tissues remains difficult in humans. Furthermore, in vitro models fall short in generating the 

surrogates of transient extravasated tissue inflammatory monocytes. Here, we aimed to unravel 

environmental cues that replicated the human monocyte “waterfall” process in vitro by first, 

generating tissue-like inflammatory monocytes, which were then shifted towards MΦ. Purified 

CD14+CD16- monocytes, cultured with granulocyte-macrophage colony-stimulating factor 

(GM-CSF), IFN and IL23, differentiated into CD14+CD163- cells that displayed a monocyte-

like morphology. In vitro generated inflammatory CD14+CD163- (Infl mo-like) cells promoted 

IL-1-dependent memory Th17 and Th17/Th1 responses, like the CD14+CD163- mo-like cells 

that accumulate in inflamed colon of Crohn’s disease patients. Next, in vitro generated Infl mo-

like cells converted to functional CD163+ MΦ following exposure to TGF and IL10.  Gene set 

enrichment analysis further revealed a shared molecular signature between converted CD163+ 

MΦ and MΦ detected in various inflamed non-lymphoid and lymphoid diseased tissues. Our 

findings propose a two-step in vitro culture that recapitulates human monocyte maturation 

cascade in inflamed tissue. Manipulation of this process might open therapeutic avenues for 

chronic inflammatory disorders. 

  

 

  



207 

 

5.2 Article  

5.2.1 INTRODUCTION 

Mononuclear phagocyte (MNP) populations, which encompass monocyte-derived cells, 

macrophages (MΦ) and conventional dendritic cells (DCs), play an important role in the 

maintenance of tissue homeostasis (Joeris et al., 2017). Intestinal mucosa is home to one of the 

largest MΦ  populations in the body (Lee et al., 1985). Several studies have uncovered the 

ontogeny of murine intestinal MNPs by in vivo tracking of monocyte fate at steady state and 

during inflammation (Bain et al., 2014; Desalegn and Pabst, 2019). Intestinal MΦ are initially 

embryo-derived but from the time of weaning originate almost entirely from circulating 

Ly6Chigh monocytes (Bain et al., 2014; Bain et al., 2013; Liu et al., 2019; Tamoutounour et al., 

2012). At steady state, classical monocytes, which arrive from circulation into tissue, 

differentiate through a series of short-lived CX3CR1int intermediate cells into mature 

CX3CR1highCD11b+CD11c+MHCII+ MΦ (Bain et al., 2013; Smythies et al., 2010; 

Tamoutounour et al., 2012). This process begins shortly after monocyte arrival to the gut 

mucosa (Bain et al., 2013; Schridde et al., 2017). At each stage within the differentiation 

cascade, cells are imprinted by the gut environment, and thus, become distinct from their dermal 

or lung counterparts derived from the same precursor (Schridde et al., 2017; Tamoutounour et 

al., 2012). This monocyte differentiation cascade is interrupted during inflammation, leading to 

a buildup of intermediate CX3CR1intLy6C+CD64+ pro-inflammatory population (Bain et al., 

2013; Platt et al., 2010; Rivollier et al., 2012; Tamoutounour et al., 2012; Zigmond et al., 2012) .  

 

In vivo tracking of monocytes in patients with inflammatory bowel diseases (IBD) is obviously 

difficult. Nonetheless, in 1995, Grimm et al. provided direct evidence of monocyte recruitment 
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to inflamed mucosa in IBD patients using radiolabeled circulating autologous CD14+ 

monocytes that were re-infused in Crohn’s disease (CD) patients and traced to the inflamed gut 

mucosa as CD14+ MΦ-like cells (Grimm et al., 1995). Recently in the context of tissue 

transplantation, Bujko et al. has shed light on the ontogeny of macrophage populations in human 

small intestine by identifying four CD14+ MΦ subsets at steady state (Bujko et al., 2018b).  

Therefore, most studies have been limited to phenotypic characterization of CD14+ cells in gut 

mucosa of IBD patients using a combination of biomarkers (Baba et al., 2013; Kamada et al., 

2008). A CD14+ MΦ-like population that secretes IL1, IL23, IL6, TNF and IL10 was 

identified in inflamed mucosa of IBD patients (Kamada et al., 2008). Recently, two 

HLADR+SIRP+CD64+CD14+ subsets, distinct from conventional CD14- DCs, were 

molecularly and functionally characterized in inflamed colon of CD patients (Chapuy et al., 

2019a). Specifically, CD14+CD64+CD163- (P3) monocyte-like (mo-like), but not 

CD14+CD64+CD163+ (P4) MΦ, subpopulation was shown to accumulate in inflamed colon of 

CD patients, in proportions that are positively correlated with endoscopic disease severity 

(Chapuy et al., 2019a). However, the environmental conditions that drive the potential plasticity 

of recruited monocytes into inflammatory cells which give rise to anti-inflammatory MΦ 

warrant full elucidation in humans. Hence, attempts to replicate conversion of  tissue-like 

inflammatory monocytes into MΦ in vitro are key for studying their respective functions.  

 

Human monocytes differentiate into either DCs or MΦ following exposure to granulocyte-

macrophage colony-stimulating factor (GM-CSF) and IL4 (MoDC), or macrophage colony-

stimulating factor (M-CSF) respectively (Chow et al., 2017; Mills et al., 2000; Murray et al., 

2014; Orecchioni et al., 2019; Sallusto and Lanzavecchia, 1994). Furthermore, classically 
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activated (M1) MΦ and alternatively activated (M2) MΦ are two well-studied, functionally 

distinct populations (Italiani and Boraschi, 2014). The M1 MΦ display a pro-inflammatory 

profile and are generated following  in vitro monocyte exposure to M-CSF and IFN or 

lipopolysaccharide (LPS) stimulation in vivo (Mills et al., 2000). On the other hand, M2 MΦ 

generation requires M-CSF plus stimuli such as IL4, IL10 and IL13 (Italiani and Boraschi, 

2014; Orecchioni et al., 2019). M1 and M2 MΦ are highly plastic resulting in M1 conversion 

into M2 and vice versa (Das et al., 2015; Stout et al., 2005). However, MΦ complexity and 

plasticity observed in tissue is oversimplified by the M1/M2 functional paradigm; M1 and M2 

represent two extremes with a wheel of MΦ activation states in between (Sica and Mantovani, 

2012). Indeed, Xue et al. described a wide spectrum of human MΦ activation, with different 

transcriptional clusters associated with different stimuli, portraying a higher level of MΦ 

diversity (Xue et al., 2014). Whether M1 and M2 MΦ are part of the monocyte differentiation 

cascade remains unclear. 

 

In the present report, we first aimed to generate the surrogates of murine extravasated 

monocytes in vitro, which share morphological, phenotypic and functional features with 

human CD14+CD64+CD163- mo-like cells detected in chronically inflamed colonic tissue but 

are distinct from MoDC. Next, we elicited the maturation process of in vitro generated 

inflammatory CD14+CD64+CD163- (Infl mo-like) cells towards prototypical tissue 

CD14+CD64+CD163+ MΦ.   
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5.2.2 MATERIALS AND METHODS 

5.2.2.1 Human clinical samples 

All participants signed an informed consent form that had been approved by the Institutional 

Ethics Research Committee of the Centre Hospitalier de l’Université de Montréal (CER -

CHUM).  Blood was obtained from healthy donors or cord blood. CD patient recruitment was 

based on clinical and histological criteria. Inflamed colonic tissue was obtained from 

endoscopic biopsies and MLN from surgical resections.   

 

5.2.2.2 MLN and colonic lamina propria mononuclear cells purification and sorting 

The colonic mucosa was first processed by enzymatic digestion with DNase I (Roche) and 

Collagenase D (Roche) followed by mechanical digestion with gentle MACS (Miltenyi Biotec) 

to isolate lamina propria mononuclear cells (LPMC) (Baba et al., 2013). MLN were 

mechanically digested to obtain cellular suspension (Baba et al., 2013). LPMC and MLN were 

stained with CD14, CD64, CD163, CD172α, HLADR monoclonal antibodies (mAb) and sorted 

with FACS Aria II (BD Biosciences) to purify CD163 -CD14+CD64+CD172α+HLADR+ (P3), 

CD163+CD14+CD64+CD172α+HLADR+ (P4), and CD163-CD14-CD64-CD172α+HLADR+  

populations. 

 

5.2.2.3 Peripheral blood mononuclear cell purification and sorting 

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient centrifugation 

of heparinized peripheral or cord blood. PBMC were stained with CD14, CD16 and HLADR 

mAb and sorted with FACS Aria II to purify CD14+CD16-HLADR+ classical monocytes. 

CD45RO-CD45RA+CD4+CD8- naïve T cells (from cord blood) and CD62L-CD25-
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CD45RO+CD45RA-CD4+CD8- effector memory T cells (TEM) (from adult peripheral blood) 

were also sorted for functional studies. 

 

5.2.2.4 Cell culture and sorting 

CD14+CD16- classical monocytes were cultured in RPMI 1640 medium with 10% fetal calf 

serum (FCS) and 1% Penicillin-Streptomycin for 6 days. They were differentiated in the 

presence of cytokines: GM-CSF (2.5 ng/mL, R & D systems), IL4 (40 ng/mL, R & D systems), 

IL23 (10 ng/mL, R & D systems) and IFNγ (50 ng/mL, R & D systems). All cytokines were 

replenished at days 2 and 4. MoDCs were generated by culturing monocytes with GM-

CSF+IL4. 

 

Following 6 days culture with GM-CSF+IFNγ+IL23 (Gγ23), TGFβ (1 ng/mL, R & D systems) 

and IL10 (10 ng/mL, Peprotech) were added for another 6 days. TGFβ and IL10 were 

replenished at days 8 and 10. 

Cultured cells were sorted at days 6 and 12 for morphological, functional and molecular studies. 

 

5.2.2.5 Flow cytometry 

In vitro differentiated cells were stained for surface markers, then fixed, permeabilized, and 

stained for intracytoplasmic cytokines expression using mAb listed in Table 5-S5, in adherence 

with the guidelines for the use of flow cytometry and cell sorting in immunological studies 

(Cossarizza et al., 2019). Data were analyzed with FCS Express 6 (DeNovo Software). 
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5.2.2.6 Co-culture with T cells 

Carboxyfluorescein succinimidyl ester (CFSE) (Bioprobe) labeled naïve CD4+ T cells (105 

cells) were co-cultured with a 1:2 serial dilution of FACS sorted MoDC or Infl mo-like cells, 

starting with 30 000 cells in the presence of anti-CD3 (1μg/mL; Biolegend) and Staphylococcus 

aureus Cowan1 (SAC; Calbiochem at 1/10000 dilution for 6 days. CFSE labeled naïve CD4+ T 

cells (105 cells) were co-cultured at a 1:10 ratio with FACS sorted CD163 -

CD14+CD64+CD172α+HLA-DR+ (P3), CD163+CD14+CD64+CD172α+HLA-DR+ (P4), or 

CD163-CD14-CD64-CD172α+HLA-DR+ cells from the inflamed mucosa of CD patients in the 

presence of human IgG1 and SAC (1/10000 dilution) for 6 days. 

 

TEM (35x103 cells) were co-cultured with FACS sorted Infl mo-like, at a 1:7 ratio for 6 days. 

They were cultured in the presence of soluble anti-CD3 (1μg/mL; Biolegend), human IgG1 (10 

μg/mL, Biolegend) and peptidoglycan from Staphylococcus aureus (PGN) (10 μg/mL; Sigma-

Aldrich) or muramyl dipeptide (MDP, 1 mg/mL; InvivoGen) and Pam3Csk4 (PAM, 1mg/mL; 

InvivoGen). Anti-IL1β receptor (10 μg/mL), anti-IL-12p40 (10 μg/mL) or IgG1 (10 μg/mL) 

was added to some co-cultures. At day 6, cells were re-stimulated with phorbol 12-myristate 

13−acetate (PMA, 5ng/ml; Sigma-Aldrich) and ionomycin (500ng/ml; Calbiochem-Behring) 

for 6 hours and with brefeldin A (1 μg/mL; Calbiochem-Behring) for the last 3 hours. Next, 

cells were stained with CD3, fixed and permeabilized (Invitrogen) for IL17 and IFNγ 

intracytoplasmic cytokine staining, using mAb listed in Table 5-S5.  

For all cultures, RPMI 1640 medium with 10% FCS and 1% Penicillin-Streptomycin was used.   
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5.2.2.7 Phagocytosis assay 

FACS sorted Infl mo-like and MΦ-like cells were cultured with or without 1/100 FITC-labeled 

latex beads (Cayman Chemical Company) in 96 well plates for 1 hour. Samples were quenched 

with trypan blue for 2 minutes. Cells were analyzed by flow cytometry.  

 

5.2.2.8 Quantitative reverse transcriptase-PCR 

RNA was extracted using Nucleospin® RNA XS kit (Macherey-Nagel) according to the 

manufacturer’s instruction from sorted classical monocytes, and monocytes d ifferentiated in 

vitro with GM-CSF+IFN for 2, 4 or 6 days. TaqMan IL23R probe and GAPDH (housekeeping 

gene) were purchased from Thermo Fisher.  

 

5.2.2.9 Morphology 

For morphological studies, FACS sorted MNPs were cytospun and stained according to Wright 

Stain procedure. Leica DM4000B microscope, equipped with Leica DFC300FX camera was 

used to visualize cells. 

 

5.2.2.10 Whole-Transcript Expression Analysis 

Total RNA was quantified using a NanoDrop Spectrophotometer ND-1000 (NanoDrop 

Technologies, Inc.) and its integrity was assessed using a 2100 Bioanalyzer (Agilent 

Technologies).  Sense-strand cDNA was synthesized from 9 ng of total RNA, and 

fragmentation and labeling were performed to produce ssDNA with the GeneChip® WT 

PicoTerminal Labeling Kit according to manufacturer’s instructions (Thermo Fisher 

Scientific). After fragmentation and labeling, 5 µg DNA target was hybridized on 
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GeneChip® Clariom™ D human (Thermo Fisher Scientific) and incubated at 45°C in the 

Genechip® Hybridization oven 640 (Affymetrix) for 17 hours at 60 rpm. GeneChips were then 

washed in a GeneChips® Fluidics Station 450 (ThermoFisher) using GeneChip Hybridization 

Wash and Stain kit according to the manufacturer’s instructions (ThermoFisher). The 

microarrays were finally scanned on a GeneChip® scanner 3000 (ThermoFisher).  

The data are available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149722, 

GSE149722. 

 

5.2.2.11 Gene expression data analysis 

5.2.2.11.1 Microarrays: 

The preprocessing of the microarray data was done in R (R Core team, 2017) and its derived 

library for genomic data analysis, Bioconductor (Huber et al., 2015).  Bioconductor package 

oligo was used to load the CEL files in R environment and the rma function implemented in 

oligo for background subtraction, normalization and log2 transformation. Quality control was 

performed by inspecting various diagnostic plots of the intensity distribution.  

 

5.2.2.11.2 Differential gene expression: 

Differential gene expression analysis was done using Bioconductor package limma. A linear 

model was fit to each gene separately and a moderated t-test, comparing paired populations 

(CD163- d6 versus CD163+ d12, CD163- d6 versus CD163- d12, and CD163- d12 versus 

CD163+ d12) was derived. P-values were adjusted using Benjamini-Hochberg (Benjamini  

and Hochberg, 1995) method for multiple test correction.  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149722
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5.2.2.11.3 Gene Set Enrichment Analysis (GSEA): 

GSEA was performed to assess whether a known biological pathway or sets of individual genes 

were significantly enriched among the genes ranked by the moderated t-test following the 

differential gene expression analysis between CD163+ d12 and CD163- d6 groups. We tested 

gene sets from the Molecular signature Database (MsigDB, 

http://www.broad.mit.edu/gsea/msigdb), Hallmark collection (h.all.v5.0.symbols.gmt), and C5 

(C5.all.v6.2.symbols.gmt) collections. We also tested two distinct CD14+ genes clusters 

(Chapuy et al., 2019a) identified in inflamed CD colon recently using  scRNA sequencing,  a 

gene expression signature of MΦ (Mo-Mac) and inflammatory DC (Mo-DC) (Goudot et al., 

2017), inflammatory MΦ (Inf MΦ) and inflammatory DCs (Inf DC) gene expression signature 

(Sander et al., 2017), as well as monocyte/macrophage like cells (Mono/M-like) (Chapuy et 

al., 2020a). The GSEA was performed using the Bioconductor’s package fgsea (Korotkevich et 

al., 2019). The p-values associated to the pathways were adjusted for multiple test correction 

with a False Discovery Rate cut-off of 0.05.  

 

5.2.2.11.4 Enrichment Map Analysis: 

Gene sets within GSEA are often overlapping and represent the same biological process. The 

Enrichment Map (Merico et al., 2010) was used to reduce redundancy and to organize the gene-

set enrichment analysis results into networks. Highly connected gene-sets are grouped together 

as clusters of functionally related pathways. Nodes represent gene-sets and edges represent the 

gene overlap that exists between two gene sets. A and B as measured by the Jaccard Coefficient 

http://www.broad.mit.edu/gsea/msigdb
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defined as: size of (A intersect B) / (size of (A union B)).  A Jaccard Thresholds of 0.3 was used 

in this study and a False Discovery Rate cut-off of 0.05.  

Enrichment Map Analysis and networks visualization were performed using Cytoscape 

(Shannon et al., 2003), a network data analysis and visualization software.  

 

5.2.2.12 Statistical analysis 

Statistical analysis was performed with GraphPad Prism version 6 (GraphPad Software). Data 

were checked for normality using Shapiro-Wilk test and then the appropriate test was applied 

as indicated. For multiple unpaired samples, one-way ANOVA was applied followed by 

Tukey’s test (represented by ¤) or Kruskal-Wallis test followed by Dunn’s test (represented by 

#). For paired two columns comparison, paired t-test (represented by *) or Wilcoxon signed 

rank test (represented by +) were used. For all tests, 1 symbol means P-value < 0.05, 2 symbols 

mean P-value < 0.01, and 3 symbols mean P-value < 0.001. Bar graph data are shown as mean 

± SEM.  
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5.2.3 RESULTS 

5.2.3.1 In vitro generation of CD14+CD64+CD163- cells with monocyte morphology 

using GM-CSF, IFN and IL23 

Circulating CD14+CD16- classical monocytes were purified following the gating strategy 

depicted in Figure 5-1A and cultured for 6 days in the presence of GM-CSF+IL4. Classical 

monocytes differentiated into CD14-CD64-CD163- cells (Figure 5-1B), and thus were not 

considered surrogates for tissue CD14+CD64+CD163- mo-like (P3) cells that accumulated in 

inflamed colon of IBD patients (Chapuy et al., 2020b; Chapuy et al., 2019a). We, therefore, 

thought to develop culture conditions that mimicked gut inflammatory milieu. Replacing IL4 

by IL23 maintained CD14 expression but generated CD14+CD64-CD163dim cells, while 

substituting IL4 with IFN allowed the differentiation of monocytes into CD14+CD64+CD163- 

cells (Figure 5-1B). However, GM-CSF+IFN monocyte-derived cells appeared to express 

CD14 at lower intensity when compared to GM-CSF+IL23. Furthermore, since we noticed that 

GM-CSF+IFN up-regulated IL23R mRNA levels on monocytes after 2 days of culture (Figure 

5-1C), purified monocytes were cultured with the three cytokines: GM-CSF, IFN and IL23 

(G23). This cytokine cocktail reproducibly generated a large population of 

HLADR+CD64+CD163-cells (>80%) (Figure 5-1D) that expressed CD14, TREM-1, CD89, 

CD172 and CD172 (Figure 5-S1). When purified, G23 monocyte-derived 

CD14+CD64+CD163- cells showed a kidney-shaped nucleus and very few dendrites (Figure 5-

1E) and, unlike in vitro GM-CSF+IL4 monocyte-derived DCs (MoDC), did not induce naïve 

CD4+ T cell proliferation (Figure 5-1F). Similarly, CD14+CD64+CD163- mo-like (P3) cells 

isolated from inflamed colon of CD patients, in contrast to CD14 -CD64-CD163- DCs, did not 

display antigen-presenting function (Figure 5-S2). 
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Thus, classical monocytes cultured with G23 differentiate into CD14+CD64+CD163- cells that 

are distinct from MoDC but share some phenotypic and functional characteristics with colonic 

CD14+CD64+CD163- mo-like (P3) cells.  

 

5.2.3.2 CD163- mo-like cells promote IL1β- and IL12p40- dependent Th17 and 

Th17/Th1 responses 

CD163- mo-like (P3) cells isolated from inflamed colon of IBD patients, but not CD163+ MΦ 

(P), augmented intestinal Th17 and Th17/Th1 responses in an IL1-dependent manner 

(Chapuy et al., 2020b; Chapuy et al., 2019a). We, therefore, examined how in vitro G23 

monocyte-derived CD14+CD64+CD163- cells regulated the function of effector memory T cells 

(TEM) isolated from PBMC. These cells augmented the percentage of IFN+IL17-, IFN+IL17+ 

and IFN-IL17+ cells in both autologous or allogeneic TEM using PGN or MDP and PAM 

(Figure 5-2A). Furthermore, IL1 and IL12p40 blockade inhibited the generation of 

IFN+IL17+ and IFN-IL17+ TEM cells only, sparing IFN+IL17- cells (Figure 5-2B). The 

amount of IL17 and IFN expression per cell (mean fluorescence intensity, MFI) were reduced 

by anti-IL1 and anti-IL12p40, respectively (Figure 5-2B).  

Collectively, G23 culture condition differentiates classical monocytes into functional CD163 - 

inflammatory mo-like (Infl mo-like) cells that promote IL1β and IL12p40-dependent memory 

Th17 and Th17/Th1 responses.  
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5.2.3.3 In vitro generated CD163- Infl mo-like cells shift to CD163+ MΦ in response to 

TGF  plus IL10  

Next, we thought to define the in vitro culture conditions that replicate the monocyte “waterfall” 

in human inflamed tissue and result in the generation of MΦ For that purpose, following the 

first step with G23, culture medium was supplemented at day 6 with TGF, IL10 or TGF 

combined with IL10 for another 6 days (Figure 5-3A). CD163 expression could not be 

upregulated with the addition of increasing amounts of TGF while 10 ng/ml of IL10 was 

sufficient to induce up to 5% of CD64+CD163+cells (Figure 5-3B). Only the anti-inflammatory 

cocktail (TGF+IL10) generated a large population of CD64+CD163+ cells (Figure 5-3C), 

expressing MERTK and CD16 (Figure 5-3D). High CD14 expression on CD163+ cells at day 

12 relative to CD163- Infl mo-like cells at day 6 was reminiscent of  the phenotype of CD163+ 

MΦ (P4)  versus CD163- mo-like (P3) cells observed in IBD colon (Bain et al., 2013; Chapuy 

et al., 2019a). Indeed, in vitro generated CD14+CD64+CD163+ cells displayed a typical MΦ 

morphology at day 12 (Figure 5-3E). Furthermore, these CD163+ cells efficiently phagocytosed 

latex beads when compared to CD163- Infl mo-like cells at day 6 (Figure 5-3F), reinforcing 

their MΦ nature.  

Taken together, monocytes cultured with G23 first differentiate into CD14+CD64+CD163- Infl 

mo-like enriched cells (CD163- d6), which under the combined effect of TGF and IL10 

progress towards CD14+CD64+CD163+ MΦ (CD163+ d12), thus replicating in vitro the tissue 

monocyte maturation cascade seen in vivo in mice.  
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5.2.3.4 CD163- Infl mo-like cells and shifted CD163+ MΦ express distinct molecular 

profile  

We next determined the molecular profile of highly purified CD163 - d6 and CD163+ d12 cells 

(Figure 5-4A). Notably, monocytes that were first exposed to G23, and then TGF+IL10 also 

generated CD64+CD163- cells at d12 (CD163- d12) that displayed low CD14, CD16 and 

MERTK expression compared to CD163+ d12 (Figure 5-S3). 

Differential gene expression analysis resulted in 1796 differentially expressed genes (DEGs) 

between CD163- d6 and CD163+ d12 (Table 5-S1A), 1115 DEGs between CD163- d6 and 

CD163- d12 (Table 5-S1B), and 1 DEG between CD163- d12 and CD163+ d12 at a 5% false 

discovery rate (FDR) and a fold change absolute value higher than 1.3. We next compared 

CD163- d12 and CD163+ d12 populations at 1% nominal (non-FDR adjusted) p-value using the 

same fold change cut off, it resulted in 696 DEGs (Table 5-S1C). Figure 5-4B shows a gene 

expression heatmap of a supervised hierarchical clustering analysis combining the three sets of 

DEGs: CD163- d6 versus CD163+ d12 (1796), CD163- d6 versus CD163- d12 (1115), and 

CD163- d12 versus CD163+ d12 (696). The clustering shows that CD163- d6 population is 

segregating apart from CD163- d12 and CD163+ d12 populations, that have a high 

transcriptional similarity. Similar observations were also made from an unsupervised analysis 

using the top 500 most varying probes across all samples (Figure 5-S4A). Elevated expression 

of CD14, CD163, MERTK, MARCO, MS4A4A and FCGR3A was noted in CD163+ d12 relative 

to CD163- d6. CD163- d12 cells expressed a transcriptomic profile closely related to CD163+ 

d12 with an intermediate expression of CD163, MARCO and FCGR3A (Figure 5-S4B). 

MAFB versus IRF4 transcription factors regulate monocyte cell fate to MΦ (Mo-Mac) or 

inflammatory DC (Mo-DC), defined by Goudot et al. using bulk RNAseq, respectively (Goudot 
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et al., 2017). In fact, CD163+ d12 expressed MAFB at higher intensity relative to CD163- d6, 

and vice versa for IRF4 as well as BATF3 expression (Figure 5-4C). Unexpectedly, AHR 

expression, which reportedly impaired M-CSF treated monocyte differentiation into Mo-

Mac (Goudot et al., 2017) was more expressed in CD163+ d12 than in CD163- d6 cells. NCOR2 

that controls differentiation into inflammatory DCs (Inf DC) and not inflammatory MΦ (Inf 

MΦ) defined by Sander et al. (Sander et al., 2017), was expressed at similar intensity in all 

three in vitro generated cell populations. Gene set enrichment analysis (GSEA) revealed that 

CD163+ d12, when compared to CD163- d6, had a significant enrichment of Mo-Mac or Inf MΦ 

gene set, whereas CD163- d6, when compared to CD163+ d12, had an overrepresentation of 

Mo-DC or Inf DC genes (FDR adjusted p-value<0.005) (Figure 5-4D and Table 5-S2A to 

Table 5-S2E).  Furthermore, CD163+ d12 were enriched, when compared to CD163- d6, in 

genes differentially expressed in CD14+CD163+ Mono/MΦ-like cells isolated from mesenteric 

lymph nodes (MLN) of IBD patients (Chapuy et al., 2020a)  (FDR adjusted p-value<0.005) 

(Figure 5-4E and Table 5-S2A and Table 5-S2F). 

 

Taken together, CD163- d6 shares a gene expression signature with Mo-DC/Inf DC detected in 

synovial fluid and tumor ascites, while CD163+ d12 cells express a common transcriptomic 

profile with Mo-Mac/Inf MΦ/Mono/MΦ-like cells detected in inflamed non-lymphoid and 

lymphoid tissue. 

 

5.2.3.5 Shifted CD163+ MΦ display functional repair and resolving gene signatures  

To gain further insight into the potential function of CD163+ MΦ, we next performed GSEA 

using the MsigDB’s Hallmark database and identified up- and down- regulated pathways in 
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CD163+ d12 versus CD163- d6 cells. TGFβ+IL10 up-regulated functional pathways involved in 

complement (C1QC, C1QA, C2, C3), coagulation (FN1, SPARC), and TGF signaling (SMAD6, 

ID3) in CD163+ d12 when compared to CD163- d6 (Figure 5-5A and Table 5-S3). Genes 

implicated in inflammatory response (IL6, IL18), IL6 signaling (IL6, PIM1), IFN response 

genes (CCL5) or associated with tryptophan to kynurenine pathway best characterized by IDO1 

(Smillie et al., 2019), were downregulated in CD163+ M (Figure 5-5A and Table 5-S3).  

Further analysis of CD163+ MΦ transcriptomic profile corroborated a MΦ function best 

characterized by up-regulation of Gene-Ontology (GO) pathways for phagocytosis, apoptotic 

clearance and wound healing processes in CD163+ d12 cells (Figure 5-5B, Table 5-S4 and 

Figure 5-S5A). Moreover, TGFβ+IL10 up-regulated GO categories involved in TGFβ 

signaling, IL10 response and “response to bacterial compounds” (Figure 5-5C and Figure 5-

5D, Table 5-S4 and Figure 5-S5B). 

Overall, these complementary analyses define CD163+ d12 cells as prototypical MΦ detected 

in inflamed tissue and endowed with functional repair and resolving gene signature.  

 

5.2.3.6 In vitro converted CD163+ MΦ share a molecular signature with colonic 

CD14+CD163+ MΦ in CD patients 

 

We next tested if the gene signature of the two distinct CD14+ clusters, CD163- mo-like cells 

(P3; cluster E) and CD163+ MΦ  (P4; cluster F) identified in inflamed CD colon using scRNA 

sequencing (Chapuy et al., 2019a), were also enriched in in vitro generated CD163- d6 and 

CD163+ d12 cells respectively. As depicted in Figure 5-6A, in vitro shifted CD163+ d12 cells 

shared a transcriptional profile with P4-enriched cluster F in CD colon, which was best 
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represented by C1Q family members and MΦ gene signature (CD163L1, OLFML2B, MERTK, 

SLCO2B1, STAB1) (FDR adjusted p-value<0.005) (Figure 5-6A and Table 5-S2A and Table 

5-S2G). Noteworthy, CD163- d6 cells had a higher expression of several genes associated with 

CD163- mo-like cells P3-enriched cluster E of CD patients, including IL1RN, PLAUR, CCRL2, 

APOBEC3A, FCN1 and SLC2A3, when compared to CD163+ d12 (Figure 5-S6) but the 

Normalized Enrichment Score (NES) did not reach statistical significance (Table 5-S2A).  

Finally, in order to demonstrate the plasticity of CD163 - d6 cells into CD163+ MΦ in vitro, the 

CD163- Infl mo-like cells were first sorted at day 6 by applying the gating strategy depicted in 

Figure 5-1E, and then cultured in the presence of TGF and IL10 until day 12. As shown in 

Figure 5-6B, converted CD163+ MΦ phenotypically and morphologically resembled purified 

colonic as well as MLN CD14+CD163+ MΦ isolated from CD patients (Chapuy et al., 2020a; 

Chapuy et al., 2019a). 

 

As depicted in the schematic model (Figure 5-6C), G23 monocyte-derived CD14+CD163- 

cells overexpressed IL23R and its associated transcription factor JAK2 as well as pro-

inflammatory cytokines including IL6 and IL18. As CD163- Infl mo-like cells progressed 

towards CD163+ MΦ in response to an anti-inflammatory milieu, TGF and IL10, the cells 

upregulated IL10, IL10RB and TGFR2 expression, together with a MΦ gene signature 

associated with apoptotic clearance and resolving function.  
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5.2.4 DISCUSSION  

The in vitro environmental factors that control monocyte fate into surrogates of extravasated 

inflammatory tissue monocytes which progressively mature towards anti-inflammatory MΦ are 

not well understood in humans. Using functional and molecular studies, we have defined a two-

step culture condition that could mimic the journey of monocytes which arrive in inflammatory 

tissue and progress towards MΦ. We first showed that in vitro G23 monocyte-derived 

CD14+CD64+CD163- cells shared morphology and functional properties but not their molecular 

signature with CD163- mo-like (P3; cluster E) cells  that accumulate in inflamed IBD tissue 

(Chapuy et al., 2019a). These in vitro G23 generated CD163- cells are distinct from in vitro 

GM-CSF+IL4 MoDCs. Next, the data revealed that following exposure to TGF plus IL10, 

G23 monocyte-derived CD14+CD64+CD163- cells switched to large CD14+CD64+CD163+ 

cells that displayed morphology and phagocytic function of MΦ. Converted CD163+ MΦ 

robustly expressed genes associated with MΦ detected in inflamed colon of CD patients, 

rheumatoid arthritis synovial fluid and tumor ascites (Chapuy et al., 2019a; Goudot et al., 2017; 

Segura et al., 2013).  

 

GM-CSF, IFN and IL23 expression is significantly elevated in inflamed intestinal tissues of 

CD patients (Noguchi et al., 2001; Sasaki et al., 1992; Schmidt et al., 2005). Gut epithelial and 

T cells secrete GM-CSF, natural killer T and T helper cells produce IFN and CD11c+ 

monocytes and MΦ are the main sources of IL23 during inflammation (Kamada et al., 2008; 

Longman et al., 2014). We showed here that exposure to GM-CSF and IFN upregulated IL23R 

mRNA expression on circulating monocytes, suggesting that they respond to IL23. These 

observations corroborated earlier studies using IL23 receptor green fluorescent reporter mice 
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showing that myeloid cells express IL23R, and secrete IL23 and IL6 (Awasthi et al., 2009). 

Moreover, an autocrine/paracrine IL23 amplification of pro-inflammatory cytokine production 

was recently reported in human intestinal myeloid cells (Sun et al., 2019).  In vitro G23 

generated CD163- cells, like their potential in vivo counterpart in inflamed colon of CD and 

ulcerative colitis patients, did not induce naïve T cell proliferation but promoted  IL1  and 

IL12p40 -dependent memory Th17 and Th17/Th1 responses, a hallmark of IBD (Chapuy et al., 

2020b; Chapuy et al., 2019a).  

 

Murine Ly6Chigh monocytes differentiate through a sequence of intermediary populations to 

generate CX3CR1high MΦ in gut (Bain et al., 2014; Bain et al., 2013; Tamoutounour et al., 

2012), a maturation program defined as tissue monocyte waterfall. Here, we demonstrated that 

TGF plus IL10 shifted G23 monocyte-derived CD163- Infl mo-like cells towards CD163+ 

MΦ without supplementing the culture medium with M-CSF. Noteworthy, G23 monocyte-

derived CD163- Infl mo-like cells expressed more CSF1 than CD163+ MΦ. Moreover, our 

unpublished observations indicated that monocytes exposed for 12 days to only G23 remained 

CD163- and did not differentiate into MΦ, suggesting that monocyte differentiation into 

CD163+ MΦ is not a default pathway. A recent study favors the concept of monocyte plasticity 

by showing that monocytes modulate their nature in response to M-CSF or GM-CSF present in 

the environment, with cross-talk between these two pathways (Rodriguez et al., 2019).  CD163+ 

MΦ displayed a suppressed inflammatory gene signature and expressed genes associated with 

regulatory and repair functions, and apoptotic cell clearance. Morphological and molecular 

analyses further revealed that in vitro converted CD163+ MΦ were closely related to colonic or 

MLN CD163+ MΦ  from CD patients (Chapuy et al., 2019a).   
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We also generated a significant proportion of CD64+CD163- cells after exposure of Infl mo-

like cells at day 6 to TGF+IL10. Whether these cells at day 12 resemble the intermediate 

CD14+CD64+CD163dim population which did not accumulate in the inflamed mucosa of IBD 

patients, remains to be investigated (Chapuy et al., 2019a) , remains to be investigated. Taken 

collectively, we postulate that in IBD colon, and similar to what has been observed in mice in 

the context of inflammation, a single and highly plastic monocyte population differentiates into 

pro-inflammatory monocyte-like cells, and progress from transitioning cells to give rise to low 

numbers of protective MΦ.  

 

G23 monocyte-derived CD163- Infl mo-like cells and ex vivo isolated colonic CD163- mo-like 

cells (P3) in IBD patients showed a monocyte-like morphology, and thus, were not considered 

type 1 MΦ (M).  Generation of M or M2 MΦ have been extensively investigated in vitro 

(Chavez-Galan et al., 2015; Italiani and Boraschi, 2014; Martinez and Gordon, 2014; 

Orecchioni et al., 2019). Nonetheless, in vitro models of human monocyte differentiation into 

MΦ fall short in first generating the surrogates of transient extravasated tissue inflammatory 

monocytes that can be subsequently shifted to MΦ.  

 

In vitro converted CD163+  highly expressed IL10R and TGFR2. The respective role of 

IL10 or TGF in the generation of gut anti-inflammatory MΦ and protection from colitis stems 

from several in vivo studies in mice and humans (Girard-Madoux et al., 2016; Krause et al., 

2015; Kuhn et al., 1993; Rivollier et al., 2012; Schridde et al., 2017; Shouval et al., 2014; Xiao 

et al., 2019; Zigmond et al., 2014a). High levels of IL10 released under homeostatic conditions 
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retain intestinal MΦ  in a “post-inflammatory anergy” state (Smythies et al., 2005). The critical 

role of IL10 in maintaining gut homeostasis is revealed in IL10R deficient patients who develop 

very early onset IBD (Glocker et al., 2009; Moran et al., 2013), associated with uncontrolled 

IL1 production by IL10R-deficient MΦ (Shouval et al., 2016). IL10 secreted by MΦ in the 

large intestine is important in limiting excessive inflammation (Krause et al., 2015). However, 

MΦ production of IL10 is not fundamental in maintaining gut homeostasis (Shouval et al., 

2016), it is rather the failure of MΦ  to respond to paracrine IL10 that leads to the development 

of spontaneous colitis (Shouval et al., 2014). The role of TGF signaling in generating anti-

inflammatory MΦ during homeostasis is less clear. At steady sate, TGFR1 signaling controls 

colonic monocyte accumulation (Schridde et al., 2017). Recent studies demonstrate that 

TGFTGFR2 is key for the development of embryonically-derived alveolar lung  but also 

appears to contribute to the replenishment of the pool of resident MΦ during inflammation (Yu 

et al., 2017). Here, we provided evidence that TGF was essential but not sufficient to convert 

CD163- Infl mo-like cells into CD163+ MΦ. Finally, lipid mediators and metabolic factors are 

additional molecular components that alter MΦ differentiation, and are therefore involved in 

the resolution of chronic inflammatory response (Na et al., 2019; Xue et al., 2014). In that 

regard, in vitro converted CD163+ MΦ expressed some genes associated with butyrate-treated 

MΦ (Schulthess et al., 2019).  

 

Collectively, understanding the molecular pathways implicated in the monocyte waterfall and 

change from pro-inflammatory to anti-inflammatory function in tissue might open therapeutic 

avenues in patients with chronic inflammatory disorders. Individual augmentation of IL10 or 

TGF by administration of recombinant IL10 or smad7 inhibitor respectively,  has not proven 
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clinically efficacious (Giuffrida et al., 2019). Thus, combined therapeutic approaches warrant 

further investigations to induce and/or sustain remission in chronic inflammatory diseases.   
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5.2.6 FIGURES  

 

Figure 5-1: In vitro generation of CD14+CD64+CD163- cells with monocyte-like morphology 

using GM-CSF, IFN and IL23. 

(A and B) Human monocytes were sorted (A) and cultured with GM-CSF and either IL4, IL23 

or IFNγ for 6 days (B). CD14, CD64 and CD163 Mean fluorescent intensity (MFI) was 

examined by flow cytometry (one representative experiment out of 4, with one donor per 

experiment) (C) Relative expression of IL23R as compared to GAPDH by real time-qPCR on 
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freshly isolated, sorted classical monocytes and monocytes cultured in the presence of GM-

CSF+IFNγ for 2, 4 or 6 days (mean ±SEM of 5 experiments, with one donor per experiment). 

(D-F) Classical monocytes were cultured with GM-CSF+IFNγ+IL23 (Gγ23) for 6 days. The 

expression of CD64 and CD163 on HLADR+ cells delineated 3 subpopulations (D). The major 

CD64+CD163-CD14+ population generated in Gγ23 culture condition was sorted and examined 

morphologically in comparison to GM-CSF+IL4 (MoDC) (n=3 experiments, with one donor 

per experiment) (E). Dose response curve with 105 CSFE-labeled CD45RO-CD45RA+CD8-

CD4+ naïve T cells and 1:2 serial dilution of CD64+CD163-CD14+ cells or MoDC, starting 

with 2x104 MNP in the presence of anti-CD3 and SAC (one representative experiment out of 4, 

with one donor per experiment) (F). Kruskall-Wallis (#) and ANOVA (¤), ¤,# P-value<0.05, ¤¤,## 

P-value<0.01, and ¤¤¤¤ P-value<0.0001. 
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Figure 5-2: In vitro generated CD163- mo-like cells favor IL1β- and IL12p40- dependent Th17 

and Th17/Th1 responses. 

(A and B) Following 6 days culture with Gγ23, CD64+CD163-CD14+HLADR+ cells were sorted 

and co-cultured with CD62L-CD25-CD45RO+CD45RA-CD4+CD8- effector memory T (TEM) 

cells at a 1:7 ratio in the presence of PGN, or MDP+PAM for 6 days without (mean ± SEM of 

26 experiments, with one donor per experiment) (A)  or with anti-IL1R (n=6 experiments, with 

one donor per experiment) or anti-IL12p40 (n=6 experiments, with one donor per experiment) 

antibodies (B). On the last day, PMA-ionomycin was added for 6 hours and brefeldin A for the 

last 3 hours. Frequencies and MFI of IL17 and IFNγ in IFNγ+IL17-, IFNγ+IL17+ and IFNγ-

IL17+ TEM cells are represented. (A) Wilcoxon, ++++ P-value<0.0001 and (B) Wilcoxon (+) and 

paired t-test (*), P-value <0.05. 
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Figure 5-3: In vitro generated CD163- Infl mo-like cells shift to CD163+ MΦ in response to 

TGFβ plus IL10. 

(A-D) Following 6 days culture with Gγ23, TGFβ, IL10 or TGFβ+IL10 were added for another 

6 days. CD64 and CD163 expression was examined on HLADR+ cells at day 12 (one 

representative experiment out of 4) (A).  Varying concentrations of IL10 and TGFβ added at 

day 6 and % of CD64+CD163+ cells was examined at day 12 (mean ± SEM of 4 experiments, 

with one donor per experiment) (B). Frequency of CD64+CD163+ cells before (day 6) or after 
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adding TGFβ+IL10 (day 12) (C). Phenotype of CD64+CD163- cells at day 6, and 

CD64+CD163+ cells at day 12 (one representative out of 4 experiments, with one donor per 

experiment) (D). (E and F) Sorted CD14+CD64+CD163- (Gγ23, day 6) and 

CD64+CD14+CD163+ (TGFβ+IL10, day 12) cells were examined morphologically (E) and 

cultured for 1h with latex beads to examine phagocytosis function (F). (E and F) One 

representative experiment of 5 is shown, with one donor per experiment. (C) paired t-test **** 

P-value <0.0001. 
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Figure 5-4: CD163- Infl mo-like cells and shifted CD163+MΦ express distinct molecular 

profile. 
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(A) CD14+CD64+CD163- (Gγ23, day 6), CD14+CD64+CD163- (TGFβ+IL10, day 12) and 

CD14+CD64+CD163+ (TGFβ+IL10, day 12) populations were sorted for microarray analysis 

(n=3 experiments, with one donor per experiment). (B) Heat map representing the genes 

significantly different between CD163- d6 and CD163+ d12, and CD163- d6 and CD163- d12 

(FDR adjusted p-value <0.05 and fold change >1.3), as well as CD163 - d12 and CD163+ d12 

(nominal p-value <0.01 and fold change >1.3). (C) Violin plots illustrating gene expression 

levels of key genes. P-value <0.05 represented by § (D-E) Gene set enrichment plots for Mo-

Mac and Mo-DC (Goudot et al., 2017), Inf MΦ and Inf DC (Sander et al., 2017) (D), and 

Mono/MΦ-like  (Chapuy et al., 2020a)(E) gene signatures (left panels). Strength of enrichment 

is represented by normalized enrichment score (NES). Heat map of differently expressed genes 

(right panels). Significance of enrichment is shown in Table 5-S2A-F (FDR< 0.05). 

 

 



242 

 

 

Figure 5-5: Shifted CD163+ MΦ display functional repair and resolving gene signatures. 

(A) Enriched MsigDB’s Hallmark categories up-(green) or down-(purple) regulated in 

CD163+d12 versus CD163-d6 cells (FDR <0.05).  (B) Selected examples of GO pathways 

upregulated in CD163+ d12 versus CD163- d6 cells (FDR <0.05).  (C) Network-based 

visualization of GO pathways overexpressed in CD163+ d12 versus CD163- d6 cells (FDR 

<0.05) illustrating the emergence of IL10, TGFβ response and complement activation in 

CD163+ d12 macrophages. (E) Violin plots illustrating gene expression levels of key genes. 3 

experiments were performed, with one donor per experiment. P-value <0.05 for all genes 

presented. 
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Figure 5-6: In vitro converted CD163+ MΦ molecularly resemble colonic CD14+CD163+ MΦ 

in CD patients. 

(A) Gene set enrichment plot for macrophages (cluster F enriched in colonic CD163+ (P4) 

cells) (Chapuy et al., 2019a) (left panel). Strength of enrichment is represented by NES. Heat 

map of differently expressed genes (right panel) (n=3 experiments, with one donor per 
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experiment). Significance of enrichment is shown in Table 5-S2A and G (FDR <0.05). (B) 

Following 6 days culture with Gγ23, CD163- d6 cells were sorted and cultured with TGFβ+IL10 

for another 6 days generating CD163+ d12 cells (upper panels; n=6 experiments, with one 

donor per experiment). Representative dot plot of CD163+ MΦ isolated from inflamed colon 

(P4) (middle panels; n=10 experiments, with one donor per experiment) or mesenteric lymph 

nodes (lower panels; n=10 experiments, with one donor per experiment) of CD patients. 

Morphology of in vitro converted and ex vivo tissue CD163+ MΦ sorted populations (one 

representative out of 3). (C) Schematic model of G23 monocyte-derived CD163-CD14+ cells 

and their progression, under the influence of TGFβ+IL10, towards CD163+ MΦ expressing 

MΦ markers. 
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5.2.7 SUPPLEMENTARY INFORMATION 

 

Figure 5-S1:. Phenotype of CD64-CD163- and CD64+CD163- day 6 populations. 

Sorted human monocytes were cultured with GM-CSF+IFNγ+IL23 for 6 days. Mean 

fluorescent intensity (MFI) of CD14 (one representative experiment out of 30), and TREM1, 

CD89, CD172α and CD172β (one representative experiment out of 4) on CD64+CD163- d6 and 

CD64-CD163- d6 populations are represented. 
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Figure 5-S2: Antigen presentation capacity of ex vivo MNP from inflamed mucosa of CD 

patients. 

Naïve T cells (CD45RO-CD45RA+CD8-CD4+, 105) were sorted from blood of healthy donors 

and co-cultured at a ratio of 1:10 with either CD64-CD163-CD14- or CD64+CD163+CD14+ or 

CD64+CD163-CD14+ cells, isolated from inflamed mucosa of CD patients, in the presence of 

SAC for 6 days. 
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Figure 5-S3: Phenotype of CD163- d12 and CD163+ d12 populations. 

Following 6 days culture with Gγ23, TGFβ and IL10 were added for another 6 days. Mean 

fluorescent intensity (MFI) of CD14, CD16 and MERTK on indicated populations. paired t-test 

*P-value< 0.05, **P-value0.01, **** P-value<0.0001. 
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Figure 5-S4: Differentially expressed genes across CD163- d6, CD163- d12 and CD163+ d12 

populations. 

(A) Heat map of the top 500 genes differentially expressed across CD163- d6, CD163+ d12 and 

CD163- d12 cells. (B) Violin plots illustrating gene expression levels of key genes. P-value 

<0.05 represented by §. 
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Figure 5-S5: CD163+d12 cells have a higher expression of apoptotic clearance and anti-

microbial gene signatures. 

(A-B) Violin plots illustrating gene expression levels of key genes. P-value < 0.05 for all 

genes presented. 
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Figure 5-S6: CD163- d6 cells have a higher expression of genes associated with cluster E. 

Violin plots illustrating gene expression levels of key genes. P-value < 0.05 for all genes 

presented. 
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Table 5-S1: Database of differentially expressed genes (DEG) between in vitro generated 

cells.  

Available at https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555 

 

Table 5-S2: GSEA of selected pathways in CD163+ d12 versus CD163- d6 populations.  

Available at https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555 

 

Table 5-S3: GSEA on MsigDB’s Hallmark pathways in CD163+ d12 versus CD163- d6 

populations. 

Available at https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555 

 

Table 5-S4: GSEA of GO pathways in CD163+ d12 versus CD163- d6 populations. 

Available at https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555 

 

Table 5-S5: Antibodies for flow cytometry 

Antibody Conjugate Clone Company 

Anti-HLADR APC L243 BioLegend 

Anti-HLADR AF700 L243 BioLegend 

Anti-HLADR BV510 L243 BioLegend 

Anti-CD3 BV510 UCHT1 BioLegend 

Anti-CD3 BV496 UCHT1 
BD 

Biosciences 

Anti-CD4 BV510 RPA-T4 BioLegend 

Anti-CD4 BV785 OKT4 Biolegend 

Anti-CD8a APC RPA-T8 BioLegend 

Anti-CD8a BV787 SK1 
BD 

Biosciences  

Anti-CD14 APC M5E2 BioLegend 

Anti-CD14 APC/H7 MφP9 
BD 

Biosciences 

Anti-CD14 Pacific blue HCD14 BioLegend 

Anti-CD14 BUV737 M5E2 
BD 

Biosciences 

Anti-CD16 PE/Cy7 B73.1 BioLegend 

Anti-CD16 PE B73.1 BioLegend 

Anti-CD25 APC M-A251 
BD 

Biosciences 

Anti-CD25 BV510 M-A521 
BD 

Biosciences 

Anti-CD45 APC-H7 2D1 
BD 

Biosciences 

https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555
https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555
https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555
https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202048555
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Anti-CD45RA 
Alexa fluor 

488 
HI100 BioLegend 

Anti-CD45RO PerCP/Cy5.5 UCHL1 BioLegend 

Anti-CD62L PeCy7 DREG-56 Biolegend 

Anti-CD64 FITC 10.1 BioLegend 

Anti-CD89 APC A59 BioLegend 

Anti-CD163 PerCP/Cy5.5 GHI/61 BioLegend 

Anti-CD172α PE-Cy7 SE5A5 BioLegend 

Anti-CD172β PE B4B6 BioLegend 

Anti-CD183 

(CXCR3) 

AlexaFluor 

488 
G025H7 BioLegend 

Anti-CD196 

(CCR6) 
PE G034E3 BioLegend 

Anti-IFN PerCP/Cy5.5 4S.B3 BioLegend 

Anti-IFN AF700 4S.B3 BioLegend 

Anti-IFN BV711 4S.B3 BioLegend 

Anti-IL-1β PE 8516 R&D 

Anti-MERTK BV421 590H11G1E3 BioLegend 

Anti-TREM1 APC 193015 
R&D 

systems 

Anti-IL-17A Pacific Blue BL168 BioLegend 

Anti-IL-17A Alexa 647 BL168 BioLegend 

Anti-IL-17A PE-Cy7 BL168 BioLegend 
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6.1 Investigating inflammatory intestinal MNP subsets and 

generating their in vitro surrogates 

MNPs play a critical role in the pathogenesis of IBD as they interact, via the cytokines they 

produce, with innate and adaptive immune cells. Genetic studies provided evidence for the 

important role of MNP-derived cytokines in CD and UC. In fact, single nucleotide 

polymorphisms in cytokines and their signaling molecules, such as IL12R, IL23R, STAT3, 

STAT4 and JAK2, have been identified in GWAS (Cleynen et al., 2016; Jostins et al., 2012). 

In addition, antibodies blocking IL12, IL23 and TNF decreased intestinal inflammation in 

numerous mouse models of colitis (Neurath et al., 1995; Uhlig et al., 2006; Yen et al., 2006).  

 

Accordingly, therapies in the treatment of IBD, as well as other inflammatory disorders such as 

rheumatoid arthritis and psoriasis, aimed at impairing the MNP-mediated pro-inflammatory 

immune response. Anti-TNF therapy is the first choice of biologics used in CD and UC patients 

unresponsive to first line therapy (Colombel et al., 2010; Panaccione et al., 2014). Furthermore, 

antibodies targeting IL12 and/or IL23 are approved for CD treatment and have positive clinical 

results in UC patients (Feagan et al., 2016; Sandborn et al., 2012). Therefore, studies 

contributing to this thesis work, examined MNP subsets in inflamed colonic mucosa and MLN 

of IBD patients (Chapter 2 and Annex 1 and 2). It proved to be quite challenging due to 

inherent patient variability, number of cells recovered from the tissue and difficulties in 

accessing samples, especially MLN as frequencies of surgical resection decreased with the 

development of biologics. 
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6.1.1 THE CD14+CD64+CD163- MONOCYTE-LIKE (P3) POPULATION 

We examined the CD172α+HLA-DR+ population, expressing CD11c, previously noted to 

accumulate in CD colonic mucosa and MLN (Baba et al., 2013), and confirmed their presence 

in UC patients (Chapter 2 and Annex 1 and 2).  One of the subpopulations, the 

CD14+CD64+CD163- (referred to as P3), with monocyte-like morphology and molecular 

signature accumulated in inflamed versus paired non-inflamed colonic tissue of IBD patients. 

Noteworthy, it was also observed in the MLN of CD and UC (Annex 2). Morphological, 

phenotypical and molecular analyses of P3 population were reminiscent of the intermediates in 

the intestinal monocyte “waterfall” of extravasated classical monocytes that accumulate during 

inflammation (Bain et al., 2013). The human counterpart of the CX3CR1 intermediate 

populations have recently been described in healthy ileum as CD14hiCCR2+CD11chi (Bujko et 

al., 2018a). This suggests a classical monocyte origin of the CD163-CD206-CD209-MERTK-

TREM1dimHLA-DRdimCCR2+CD11bbright (Chapter 2) monocyte-like pro-inflammatory P3 

population. 

 

The P3 population was the predominant IL1β and IL23 producing CD14+ subset in inflamed 

colon (Chapter 2 and Annex 1), and we believe that it plays a pathogenic role in IBD. P3 cells 

expressed TREM1 known to amplify inflammation in colitis models (Brynjolfsson et al., 2016; 

Kokten et al., 2018; Schenk et al., 2007). More importantly, the percentage of P3 cells positively 

correlated with the simple endoscopic score for CD (SES-CD) severity index. Finally, the 

accumulation of P3 cells observed in inflamed CD mucosa of untreated and refractory patients 

was not noted in patients in remission. Thus, characterizing and understanding the function of 
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monocyte-like CD14+CD64hiCD163− P3 cells might open novel avenues for therapeutic 

intervention in IBD. 

 

6.1.1.1 P3 monocyte-like population are not Slan+ cells 

In the study that contributed to this Ph.D. work, we demonstrated that IL1β and TNF producing 

CD14hiSIRPα+ Slan+ cells accumulated in MLN and inflamed colon of CD but not UC patients 

(Chapter 3). The phenotypic similarities raise the question of whether the accumulated colonic 

P3 population observed is due to an increase in Slan+ cells, especially now that Slan+ cells are 

considered a monocyte subset.  

 

6.1.1.1.1 Slan+ cells: monocytes or DCs? Solved. 

Up until recently, Slan+ cells were considered members of the DC compartment based on their 

antigen presenting capacities and cytokine secretion. Despite that most reports asserted that 

Slan+ cells are DCs, their overlap with the CD16+ monocyte populations was demonstrated early 

on (de Baey et al., 2001; Siedlar et al., 2000). Furthermore, Cros et al. showed that human Slan+ 

cells were closely related to the murine Ly6CloCX3CR1hi monocyte population and considered 

them part of the non-classical monocytes (Cros et al., 2010). Indeed, transcriptional analysis 

clustered Slan+ cells with non-classical monocytes, and away from cDC1 and cDC2 subsets 

(Hofer et al., 2015; van Leeuwen-Kerkhoff et al., 2017).  

 

Furthermore, functional data reinforce Slan+ cells clustering away from cDC populations. First 

and foremost, DCs are defined by their naïve T cell priming capacities (Jakubzick et al., 2017). 

Slan+ cells had inferior antigen presenting capacities when compared with cDC populations 
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consistent with their monocytic identity (van Leeuwen-Kerkhoff et al., 2017). Furthermore, and 

similar to our observations (Chapter 3), their HLA-DR expression paralleled that of monocytes 

and was lower than that of DCs (van Leeuwen-Kerkhoff et al., 2017). Moreover, CD80 and 

CD86 co-stimulatory molecules expression, upon stimulation, was lower on Slan+ cells when 

compared to cDC1 or cDC2. Finally, in allogenic mixed lymphocyte reaction (MLR), inferior 

CD4+ and CD8+ T cell proliferation was noted with Slan+ and classical monocytes as opposed 

to cDC2 (Cros et al., 2010; van Leeuwen-Kerkhoff et al., 2017). Thus, these data support 

segregation of Slan+ cells away from cDC subsets and relatedness to non-classical monocytes.  

 

6.1.1.1.2 Update on function of Slan+ cells 

Identification of Slan+ cells in the tissue of inflammatory or autoimmune diseases such as 

psoriasis, multiple sclerosis, systemic lupus erythematosus and CD (Ahmad et al., 2019) 

rendered them the subject of many studies aimed at understanding their function for therapeutic 

purposes. A deep understanding of the function of this population in tissue has been challenging 

in part due to the absence of a murine counterpart. However, some advances have been made 

in elucidating the role of Slan+ cells’ in inflammatory settings. Since Slan+ cells were not further 

examined in Crohn’s disease, I will speculate on their potential significance in CD tissue based 

on the reported functional role of Slan+ cells, and what we had previously described. 

 

Slan+ cells are potent producers of pro-inflammatory cytokines and are capable of driving naïve 

T cell polarization into Th effectors cells. Firstly, Slan+ cells secrete high levels of IL12 upon 

TLR stimulation (Hansel et al., 2011; Schakel et al., 2006). However, contrary to what was 

previously established, they are not the main producers in the blood, which are cDC2 (Nizzoli 
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et al., 2013; van Leeuwen-Kerkhoff et al., 2017). Upon MDP and Pam3CSk4 stimulation, 

circulating Slan+ cells from CD patients had a higher expression of IL12p40 and IL23p19 

compared to healthy donors (Chapter 3), and thus might play a role in the induction of 

Th17/Th1 and Th1 responses. Secondly, circulating Slan+ cells, as well as classical monocytes, 

are the main producers of IL1β (van Leeuwen-Kerkhoff et al., 2017). This production was 

further increased in Slan+ cells from blood, colonic tissue and MLN of CD patients (Chapter 

3). IL1β was shown to promote Th17/Th1 response in CD4+ T cells from IBD patients (Chapter 

2 and Annex 1). Therefore, Slan+ cells could drive Th17/Th1 response in CD patients, as was 

observed in psoriasis (Hansel et al., 2011). Finally, Slan+ cells were also found to secrete pro-

inflammatory IL6, IL8, IL23 and TNF (Baran et al., 2018; Hansel et al., 2011; van Leeuwen-

Kerkhoff et al., 2017). The presence of IL1β and IL6 induce IL17 production by Tregs, a 

population found in high proportions in IBD patients (Basu et al., 2015; Ueno et al., 2018; Ueno 

et al., 2013).  Collectively, the cytokine secretion profile of Slan+ cells suggests that they play 

a key role in the induction of pro-inflammatory Th17/Th1 subsets, a hallmark of IBD 

pathogenesis.  

 

Slan+ cells play a role in amplifying the innate inflammatory response. They expressed high 

levels of CD16 (Chapter 3), which equips them to bind IgG immune complexes, phagocytose 

and mediate antibody-mediated cellular toxicity (Schmitz et al., 2002). Additionally, Slan+ cells 

are involved in the complement-associated response, a common monocytic function. Indeed, 

they have high expression of complement receptors, secretion of C3a and C5a, and enrichment 

in complement-associated factors at the transcriptional level (van Leeuwen-Kerkhoff et al., 

2017). The complement system is involved in the detection, opsonization and elimination of 
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bacteria, and thus, Slan+ cells play an important role in maintenance of intestinal homeostasis 

(Sina et al., 2018). The localization of Slan+ cells in the apical part of the villi of inflamed 

colonic mucosa of CD patients (Chapter 3) strategically position them to intercept pathogen 

translocation across the epithelium. One could hypothesize that in intestinal inflammation, 

Slan+ cells bind bacterial product through their many TLRs (Hansel et al., 2013), and activate 

the complement system, leading to recruitment of innate immune cells, and thus, further 

amplifying the innate immune response at the intestinal barrier.  

 

Since classical monocytes are the contributors to the intestinal CX3CR1 intermediates observed 

in mice and their human counterpart (Bain et al., 2013), non-classical CD16+Slan+ monocyte 

subset likely does not contribute to the CD16- P3 population (Chapter 2 and Annex 1). More 

importantly, Slan+ cells from inflamed CD mucosa are CD64-CD163-, and thus not part of 

CD64+CD163- P3 cells (Annex 3-Figure 1). Furthermore, contrary to P3 cells, ex vivo Slan+ 

cells from inflamed colonic mucosa of CD patients not undergoing anti-TNF therapy had a 

higher frequency of TNF+ when compared to paired non-inflamed tissue (Chapter 3 and Annex 

1). Collectively, these data support that P3 cells are not the Slan+ cells described in CD mucosa. 

 

6.1.1.2 P3 monocyte-like population are not in vitro macrophage 1 (M1) 

Similar to P3 population, M1 macrophages differentiate under inflammatory conditions (CSF1 

+ IFN), and express abundant quantities of pro-inflammatory cytokines such as IL1, IL6 and 

IL23 (Murray et al., 2014). However, M1 cells possess typical macrophage morphology with 

large size and abundant vacuoles (Annex 3-Figure 2). 
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6.1.1.3 P3 monocyte-like population are not monocyte-derived DCs 

Classical monocytes arriving to the inflamed intestinal mucosa can also differentiate into DCs 

referred to as “inflammatory DCs” (Tang-Huau and Segura, 2019). Phenotypically, they are 

CD11c+HLA-DR+ and express cDC markers (such as CD1c and FcRI). However, they are also 

CD206+CD14+, markers associated with macrophages, but they lack CD16 and CD163 (Segura 

et al., 2013). Furthermore, they express the monocyte tissue-recruiting marker CCR2 (Boring 

et al., 1997), although in the murine intestine a CCR2+ DC population was shown to derive 

from pre-DC (Scott et al., 2015). Moreover, MoDCs from ascites share transcription factors 

expressed by cDC (such as ZBTB46, BATF3 and IRF4) and macrophages (such as EGR1 and 

EGR2) but not MAFB which is only found on macrophages (Segura et al., 2013).  

Transcriptional studies segregated them from cDC populations; they were found to closely 

resemble classical monocytes (Goudot et al., 2017; Segura et al., 2013), strongly suggesting 

their monocyte origin.  Finally, the human inflammatory MoDCs possess the morphology 

(Annex 3-Figure 2) and function of bona fide DCs with their dendrites and ability to stimulate 

naïve T cells (Segura et al., 2013). Therefore, the P3 population cannot be identified as 

inflammatory DCs, and does not resemble the GM-CSF+IL4 in vitro differentiated MoDCs 

(Chapter 5). 

 

Collectively, P3 cells identified in the colonic mucosa of IBD patients are monocyte-like and 

distinct from Slan+ and inflammatory MoDCs. 
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6.1.2 P3 MONOCYTE-LIKE CELLS INTERACT WITH CD4+ T CELLS AND DRIVE 

INFLAMMATION 

P3 monocyte-like cells isolated from the inflamed intestinal mucosa of IBD patients secrete 

cytokines that drive memory CD4+ T cell response. 

 

6.1.2.1 P3-secreted IL1β augment Th17/Th1 response 

IL1β cytokine that is secreted by P3 cells augmented mucosal effector Th17/Th1 cell responses 

in the colonic mucosa, but not MLN, of CD and UC patients (Chapter 2, Annex 1 and Annex 

3-Figure 3). In addition, it promoted a differential pathogenic Th17 phenotype in CD and UC 

that was defined by IFN, GM-CSF, TNF and IL6 secretion in the former, whereas IFN and 

IL8 secretion was observed in UC. IL8 secretion by Th17 and Th17/Th1 cells might play a role 

in attracting neutrophils to UC inflamed mucosa and along with GM-CSF induce epithelial 

barrier destruction (Coccia et al., 2012; Dabritz et al., 2015; Kryczek et al., 2016).  

 

These data suggest a role for IL1β in IBD induction. In fact, IL1β favors the survival of colonic 

Th17 cells in a T cell-dependent model of colitis (Coccia et al., 2012), upregulates IL23R 

expression on pathogenic T cells (Kleinschek et al., 2009), and activates local neutrophils 

(Dinarello, 2011). Moreover, IL1RN genetic variants have been associated with increased 

susceptibility to CD and UC (Carter et al., 2004; Stankovic et al., 2015). Furthermore, IL1β 

levels correlate with disease activity in CD patients (Casini-Raggi et al., 1995) and increases 

prior to disease relapse (Schreiber et al., 1999). Finally, IL1R antagonists, such as anakinra, 

have been used in very early onset IBD patients (Shouval et al., 2016), and are in clinical trials 

for severe manifestations of UC (Thomas et al., 2019).  
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6.1.2.2 IL12 promote Th17 pathogenicity 

IL12 promotes colonic Th17 cells pathogenic signature by inducing the production of pro-

inflammatory cytokines such as IFN, GM-CSF, TNF and IL6 (Chapter 2 and Annex 1). The 

pathogenic role of GM-CSF during inflammation includes triggering hematopoiesis, and thus, 

accumulation of myeloid cells in inflamed organs (Griseri et al., 2012). Furthermore, GM-CSF 

enhances IL23 secretion by APCs in vitro (El-Behi et al., 2011) which might further contribute 

to Th17 cell pathogenicity. It is worth noting the dual role of GM-CSF, as it has been shown to 

ameliorate colitis via its effect on monocytes that led to bacterial clearance and epithelial 

healing (Dabritz et al., 2015). IL6 enhances the survival of pathogenic IL23R-expressing T cells 

and drives the development of colitis-associated colonic carcinoma (Punkenburg et al., 2016). 

Finally, IL12 was also responsible for IL8 induction in colonic CD4+ T cells of UC, but not CD, 

patients (Chapter 2).  

 

6.1.2.3 IL23 promotes a pathogenic Th17 profile 

Following the discovery of IL23 (Oppmann et al., 2000) and the IL23R variant that protects 

from IBD development (Duerr et al., 2006), the positive effect of IL12p40 antagonists were 

studied to better understand the contribution of IL23 in triggering intestinal inflammation. 

Firstly, this cytokine is needed for the maintenance, but not development, of Th17 cells during 

the inflammatory response (Ahern et al., 2010; Langrish et al., 2005; McGeachy et al., 2009). 

Secondly, IL23 drives GM-CSF and IFN secretion by Th17 cells (Griseri et al., 2012). Indeed 

IL23 increased the frequency of IL17+IFN+ cells in CD4+ T cells isolated from CD mucosa 

(Annex 1). Thus, mice with transgenic expression of IL23p19 have severe inflammation in the 

small intestine and colon (Wiekowski et al., 2001). Furthermore, loss or blockade of IL23 
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reduces intestinal inflammation in mice (Elson et al., 2007; Kullberg et al., 2006; Yen et al., 

2006).  

 

IL23-mediated intestinal tissue injury can be seen in the absence of IL17 and T cells (Izcue et 

al., 2008; Uhlig et al., 2006). In fact, IL23 also modulates the pathogenicity of non-Th17 cells, 

such as natural killer T cells,  T cells and ILC3 (Gaffen et al., 2014; Mizuno et al., 2014; 

Pearson et al., 2016; Qiu et al., 2012). IL23 promotes inflammation by inhibiting intestinal T reg 

response (Izcue et al., 2008). Finally, we also presented a role for IL23, along with GM-CSF 

and IFN, in the in vitro generation of inflammatory monocyte-like cells (Chapter 5).  

 

6.1.3 IN VITRO MODEL FOR THE GENERATION OF TISSUE INFLAMMATORY 

MONOCYTE-LIKE CELLS 

The P3 population isolated from the mucosa of CD and UC patients is monocyte-derived and 

pathogenic, as they promote pathogenic Th17 profile, so they could represent a target in IBD 

therapy. Therefore, a better understanding of their differentiation and function is required. This 

elucidation is however limited by the difficulty in patient recruitment and low cell number 

acquired. Therefore, we hunted for surrogates of these cells, especially since previously 

described culture conditions do not generate monocyte-like cells. Other than the classic MoDC, 

M1 and M2 macrophages, the majority of in vitro work relies on differential activation of M-

CSF macrophages (M0) (Gharib et al., 2019; Goudot et al., 2017; Schulthess et al., 2019; Xue 

et al., 2014). 

 



264 

 

In our in vitro model, we isolated the homogenous CD14+CD16- classical monocytes (Villani 

et al., 2017) from peripheral blood of healthy donors and exposed them to the effect of GM-

CSF, IFN and IL23 (Chapter 5). The abundance of these cytokines in inflamed tissue of CD 

patients (Noguchi et al., 2001; Sasaki et al., 1992; Schmidt et al., 2005) reinforced their 

employment in mimicking the IBD inflammatory milieu. Although an effect of IL23 on 

monocytes is unusual, we showed that exposure to GM-CSF and IFN upregulated IL23R 

mRNA expression on circulating monocytes, suggesting that they can respond to IL23 

(Chapter 5). Furthermore, IL23R expression has been noted on myeloid cells in a study using 

IL23R GFP reporter mice (Awasthi et al., 2009). Finally, recent work on human intestinal 

myeloid cells demonstrated an autocrine/paracrine IL23 amplification of pro-inflammatory 

cytokine production (Sun et al., 2019).  

 

The CD163- cells generated in our in vitro model resembled the P3 monocyte-like cells, and 

therefore, referred to as Infl mo-like cells (Chapter 5). First, Infl mo-like cells displayed a 

monocyte-like morphology and resembled the P3 population found in IBD mucosa. 

Furthermore, like their potential in vivo counterpart, they promoted an IL1β-dependent Th17 

and Th17/Th1 responses, a hallmark of IBD (Chapter 2 and Annex 1). They also expressed 

TREM1, similar to murine tissue Ly6Chigh monocytes and P3 population (Annex 1) (Kokten et 

al., 2018; Schenk et al., 2007). However, in contrast with the later, Infl mo-like cells had a high 

expression of CD209 when compared to macrophages. This discrepancy might be inherent to 

in vitro culture that does not obviously represent all the players in the tissue. For instance, a 

higher concentration of IL4 in the culture medium could upregulate CD209 expression (Teles 

et al., 2010). The higher concentration might be due to lack of IL4R expressing cells in culture 
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during the 6 days-culture, resulting in no consumption of IL4. Noteworthy, the use of circulating 

monocytes from IBD patients did not generate different frequencies of Infl mo-like cells 

following GM-CSF+IFN+IL23 treatment (Annex 3-Figure 4), although an upregulated 

response to IFN has been noted in CD monocytes (Nakanishi et al., 2018). 

 

Collectively, we have identified culture conditions that generate monocyte-like cells resembling 

pathogenic P3 cells isolated from inflamed mucosa of IBD patients.  
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6.2 The second CD14+CD64+ population in IBD mucosa: the 

CD163+ macrophages (P4) 

A second CD14+CD64+ population was identified in the inflamed mucosa of CD and UC 

patients, the CD163+ (referred to as P4) with macrophage morphology and signature, and 

therefore, distinct from P3 cells (Chapter 2 and Annex 1). This population displayed features 

associated with an anti-inflammatory, pro-resolving function in the mucosa. First, they did not 

accumulate in inflamed UC and CD colon, or correlate with SES-CD. Second, they expressed 

high levels of IL10 in inflamed UC mucosa (Chapter 2). IL10 plays a critical role in 

maintaining gut homeostasis since IL10R deficient patients develop very early onset IBD 

(Glocker et al., 2009; Moran et al., 2013) due to uncontrolled IL1β production by IL10R-

deficient macrophages (Shouval et al., 2016), and IL10 knockout mice lack regulation of IL23 

production (Krause et al., 2015). Third, in contrast to the monocyte-like P3, P4 cells expressed 

higher levels of TNF (Annex 1) which has a dual role in intestinal inflammation. Although 

APC-secreted TNF mediates inflammation by promoting T cell survival, low levels contribute 

to the maintenance of epithelial barrier integrity (Billmeier et al., 2016). Fourth, they do not 

drive intestinal Th17, Th17/Th1 responses, or IL8 secretion (Chapter 2 and Annex 1). Finally, 

scRNAseq demonstrated that P4 cells expressed genes associated with mature and/or regulatory 

macrophages such as CD209, MRC1, CD163, CD163L1 and STAB1 (Gonzalez-Dominguez et 

al., 2015). Thereby, it might be an attractive therapeutic avenue to increase the proportion of 

this population in IBD mucosa to favor repair, and consequently remission.  
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6.2.1 P4 MACROPHAGES ARE DISTINCT FROM INTESTINAL RESIDENT 

MACROPHAGES 

Although P4 macrophages possess anti-inflammatory properties, they are distinct from 

macrophages generated during homeostasis. Unlike resident macrophages they had increased 

ex vivo cytokine secretion of IL23 in inflamed tissue (Annex 1). They also expressed genes 

such as IDH1, FOLR2, DNASE2, SLCOB21, DAB2 and VSIG4 reported to be associated with 

tissue inflammatory macrophages (Goudot et al., 2017). Finally, they do not resemble 

macrophages isolated from healthy human small intestine at the phenotypic or molecular level 

(Bujko et al., 2018b). More specifically, CD14hiCD64hi P4 cells are distinct from the two mature 

macrophage populations: the CD14lo Mf3 (as defined by Bujko et al., 2018) and the 

CD14hiCD64lo Mf4 (as defined by in Bujko et al., 2018). The latter is mainly localized in the 

submucosa and muscularis propria; therefore, it is unlikely that we isolated it given our tissue 

processing protocol which excludes these layers (Chapter 2).  

 

Noteworthy, P4 population also included a subset of TIM4+CD4+ cells (Chapter 2) which were 

recently reported in mice as embryonically-derived, self-maintaining, resident macrophages 

(De Schepper et al., 2018; Shaw and Houston, 2018). Generally, embryonically-derived, tissue-

resident macrophages play an important role in resolution of inflammation, as they continuously 

produce anti-inflammatory cytokines, lipid mediators, and engulf dying cells regardless of 

inflammation (Okabe and Medzhitov, 2016; Uderhardt et al., 2012). It would be interesting to 

further examine the P4 population to better understand its function and contribution to the anti-

inflammatory process.  
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6.2.2 P4 MACROPHAGES ARE NOT IN VITRO MACROPHAGE 2 (M2) 

Similar to P4 macrophages, M2 are CD64+CD163+CD209+, and express FOLR2 gene (Annex 

1) (Puig-Kroger et al., 2009). However, M2 macrophages possess an anti-inflammatory 

cytokine profile with a high secretion of IL10 and TGFβ, paralleled  with low production of 

IL12 and IL23 (Italiani and Boraschi, 2014). Furthermore, P4 macrophages do not express the 

IRF5 gene, specific to M2 macrophages (Krausgruber et al., 2011). Finally, arginase 1 

production is a key feature of M2 macrophages (Pauleau et al., 2004) that plays a role in parasite 

infections (Anthony et al., 2006). Arginase 1 mRNA expression was not highlighted in colonic 

P4 population (Annex 1). These data suggest that P4 macrophages do not resemble in vitro M2 

macrophages.  

 

6.2.3 P4 MACROPHAGES DIFFERENTIATE FROM MONOCYTE-LIKE P3 CELLS 

The morphological, phenotypical and molecular analyses of P3 and P4 populations remind the 

intestinal CD14+ MNPs and their murine counterparts identified by Bain et al. during 

homeostasis and inflammation (Bain et al., 2013).  Consequently, we hypothesized that P3 and 

P4 subsets represent two distinct functional phenotypes of a single population displaying a high 

degree of plasticity, with pro-inflammatory P3 converting towards anti-inflammatory P4 

macrophage-like cells, transitioning through a CD14+CD64+CD163dim population (referred to 

as Px). Noteworthy, this intermediate population does not accumulate during inflammation 

(Annex 1). This conversion would be slowed down during inflammation leading to the buildup 

of pro-inflammatory P3 cells in inflamed tissue. Indeed, pseudo-time reconstruction in 

scRNAseq analysis showed that P3 cells progressively acquired CD163, CD14 and MERTK 

while down-regulating TREM1, CD11b and CCR2 (data not shown). Furthermore, an un-
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supervised Monocle analysis, utilizing minimum spanning trees (Ji and Ji, 2016), portrays P3 

transitioning to CD163int Px cells, and finally to P4 subset (data not shown). The environmental 

cues driving monocyte-like P3 cells that potentially give rise to anti-inflammatory P4 

macrophages are still not entirely understood and warrant full elucidation in humans in order to 

increase the number of pro-resolving macrophages.  

 

6.2.4 HYPOTHESIS FOR THE RESOLUTION OF INFLAMMATION 

Plasticity, a key characteristic of macrophages demonstrated in vitro (Italiani and Boraschi, 

2014) could be leveraged for the generation of pro-resolving macrophages. Whether and how 

it occurs in vivo remains questionable, especially since macrophage populations in the tissue 

are observed in snapshots. Several hypotheses attempt to explain this issue. Although M1 and 

M2 macrophage concept is outdated, most of what is known regarding macrophage plasticity 

stems from these in vitro models. 

 

The first hypothesis suggests that the different monocyte or macrophage populations assume 

distinct functional phenotypes. In other words, Ly6C- non-classical monocytes and tissue 

resident macrophages become M2, while Ly6C+ classical monocytes and monocyte-derived 

macrophages become M1. However, it is not completely supported as non-classical monocytes 

could give rise to M2 macrophages and M1 cells could trans-differentiate into M2 macrophages 

(Arnold et al., 2007; Crane et al., 2014; Murray et al., 2014). Notably, we generated Infl mo-

like cells using classical and non-classical monocytes from healthy donors and found similar 

cell distribution (Annex 3-Figure 5). 
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The second hypothesis argues for macrophage trans-differentiation, i.e. switching between the 

polarized macrophages. In vitro studies back up this view as inflammatory M1 macrophages 

mature into M2 repair macrophages upon exposure to specific factors, for example IL4 and 

IL13 cytokines, efferocytosis of apoptotic cells, phospholipase C, the miRNA let-7c, among 

others (Das et al., 2015; Italiani et al., 2014). It was also demonstrated that upon exposure to 

IFN or TLR ligands, M2 macrophages switch to M1 (Mylonas et al., 2009; Stout et al., 2005).  

 

The third hypothesis discusses monocyte recruitment in consecutive waves throughout the 

inflammatory reaction. Thus, depending on the inflammatory stage in which they are recruited, 

monocytes are exposed to different microenvironments that guide their differentiation. In the 

early stage of inflammation, they polarize into M1 macrophages, whereas in the later phase into 

M2 macrophages (Arnold et al., 2007; Nahrendorf et al., 2007). This is supported by the niche 

model during inflammation, creating empty and accessible niches for monocyte recruitment, 

due to macrophage loss and increased leakiness (Guilliams and Scott, 2017). Moreover, 

monocytes exhibit higher plasticity when compared to resident macrophage populations, as 

revealed by fate mapping experiments, irrespective of their origin (Bowman et al., 2016; Lewis 

et al., 2014; Yamasaki et al., 2014; Zigmond et al., 2014b).  

 

Hypotheses two and three are not exclusive and probably have a role at different stages of 

inflammation. For instance, efferocytosis induces the switch of inflammatory macrophages to 

a pro-resolving “M2” phenotype that will contribute to the establishment of a “less -

inflammatory milieu.” Hence, newly recruited monocytes, trying to fill the empty macrophage 
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niches, will develop into anti-inflammatory/resident macrophages further contributing to 

resolution of inflammation (Figure 6-1).  

 

 

Figure 6-1: Hypothesis 2 and 3 explaining intestinal inflammation and its resolution. 

During homeostasis, macrophages in the intestine are mainly derived from classical 

monocytes, except for the newly identified embryonically-derived TIM4+CD4+ macrophages 

in mice that maintain their homeostatic function regardless of inflammation. In inflammatory 

context, macrophage death leads to empty niches that are filled by recruited activated 

monocytes. In the inflammatory milieu, monocytes do not complete their maturation cascade, 

leading to an increase in the number of pro-inflammatory monocyte-like cells in the tissue.  

During the resolution phase, inflammatory monocyte-like cells shift to an anti-inflammatory, 

pro-resolving macrophage phenotype. Furthermore, the empty niches are repopulated by 

newly recruited classical monocytes that arrive into a less/non-inflammatory milieu and 

differentiate into non-inflammatory macrophages, resembling those at steady-state. 

(Influenced by (Guilliams and Scott, 2017)). 

 

6.2.5 IN VITRO MODEL FOR THE GENERATION OF TISSUE MACROPHAGES 

FROM IBD MUCOSA:  

We presented a two-step culture model in this thesis that pushed the in vitro differentiated Infl 

mo-like cells to anti-inflammatory macrophages. For that purpose, after monocyte 
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differentiation for 6 days by exposure to GM-CSF + IFN + IL23, the combination of TGFβ 

and IL10 was added for another 6 days. 

 

CSF1 (or M-CSF) is known to play a vital role in intestinal macrophages differentiation, 

survival and proliferation. The number of intestinal macrophages is markedly decreased in 

CSF1-deficient or mice receiving anti-CSF1 receptor treatment (Arnold et al., 2016; Dai et al., 

2004; MacDonald et al., 2010; Ryan et al., 2001). Indeed, most in vitro models employed it to 

generate macrophages from monocytes before activating them or inducing their plasticity 

(Gharib et al., 2019; Goudot et al., 2017; Schulthess et al., 2019; Xue et al., 2014) . However, 

CSF1 was not employed in our model for the generation of CD163+ macrophages (Chapter 5). 

Nonetheless, CD163- Infl mo-like cells expressed CSF1 at higher intensity when compared to 

CD163+ macrophages which expressed more CSF1R, suggests a potential involvement of CSF1. 

It would be interesting to block CSF1 or its receptor to better understand its role in our model.  

 

As an alternative to CSF1, we used the combination of TGFβ and IL10, as each cytokine was 

not sufficient to induce a significant increase in CD163+ population (Chapter 5). Both 

cytokines have been implicated in macrophage differentiation. TGFβ upregulates the expression 

of Cx3cr1, Il10, and genes encoding αvβ5 integrins, thus imprinting the genetic signature of 

colonic macrophages in mice (Schridde et al., 2017). Moreover, TGFβ inhibit pro-inflammatory 

cytokine secretion, such as IL1β, IL6, IL8 and TNF, aiding in macrophage hypo-responsiveness 

to TLR stimulation (Maheshwari et al., 2011; Smythies et al., 2010). On the other hand, IL10 

and its receptor have a more prominent role in governing macrophage regulatory phenotype. 

For instance, IL10R deficient macrophages exhibited higher expression of iNOS, IL12 and IL23 
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that drive spontaneous colitis (Zigmond et al., 2014a). Moreover, TLR hyper-responsiveness is 

observed when IL10-IL10R signaling is disturbed in mice and early onset IBD patients (Shouval 

et al., 2016; Ueda et al., 2010; Zigmond et al., 2014a).  Thus, the concomitant addition of the 

cytokines should ensure the molecular and functional development of anti-inflammatory 

macrophages.  

 

Indeed, in vitro converted CD163+ cells possess key features of bona fide macrophages, 

including morphology, phagocytic function (Chapter 5), and molecular profile defined by the 

expression of MARCO, MERTK, CD163 and MAFB (Goudot et al., 2017). The macrophage 

identity and the highly significant enrichment in P4 genes support the resemblance of converted 

CD163+ cells with P4 macrophages from the intestine.  

 

As in vitro converted CD163+ macrophages expressed IL10 and TGFβ, we thought of testing 

whether they induce their own differentiation. In fact, we co-cultured CFSE-labeled converted 

macrophages with purified Infl mo-like cells and failed to induce conversion, probably due to 

the low quantity of cytokines secreted. Therefore, we attempted to use culture supernatant of 

LPS-stimulated converted macrophages, but it did not induce CD163 expression on Infl mo-

like cells (data not shown). In fact, Gharib et al. recently reported that repolarization of M1 

macrophages with IL10 induced higher expression of pro-inflammatory cytokines and 

improved efferocytosis upon LPS challenge, as compared to IL4 (Gharib et al., 2019). Another 

possibility is the role of macrophage-derived IL10 in maintenance of homeostasis that is 

secondary to Treg-secreted IL10 (Bain et al., 2013; Zigmond et al., 2014a).  
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A limitation of the study entitled “A two-step human culture system replicates intestinal 

monocyte maturation cascade: conversion of tissue-like inflammatory monocytes into 

macrophages” is the use of gene set enrichment analysis that depends on pre-determined gene 

sets prone to selection bias and limits the extent of the analysis (Chapter 5). Nevertheless, this 

approach has been efficiently employed and its feasibility tested (Gharib et al., 2019; Xue et 

al., 2014). Another weakness is the small sample size used for the molecular study that could 

benefit from further validation.  
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6.3 Therapeutic target: cell plasticity and/or cell recruitment? 

MNPs and more particularly P3 cells, play a critical role in pathogenesis of IBD. In fact, Baillie 

et al.  perceived that several IBD susceptibility loci identified in GWAS coded for promoters 

involved in regulation of monocyte-macrophage differentiation (Baillie et al., 2017). Defects in 

the later have been linked with reduced bacterial clearance (Smith et al., 2009), high cytokine 

secretion (Bain et al., 2013; Bernardo et al., 2018; Kamada et al., 2008; Smythies et al., 2005) , 

and thus, defects in resolution of intestinal inflammation leading to IBD development (Na et 

al., 2019).  Targeting MNPs, their recruitment, differentiation, plasticity as well as their effect 

on T cell plasticity via their cytokine secretion could be a good therapeutic option in the 

treatment of IBD.  

 

6.3.1 IS PLASTICITY A ONE-WAY STREET? AIM FOR THE GOOD! 

Plasticity is a key characteristic of macrophages and Th17 cells that could be exploited to 

increase the number of protective cells, such as pro-resolving macrophages and non-pathogenic 

Th17 subsets in the treatment of IBD. 

6.3.1.1 Macrophage plasticity: P3 to P4? 

The shift of inflammatory monocyte-like P3 phenotype to P4 macrophages might lead to 

resolution of the inflammatory response.  

 

6.3.1.1.1 Role of macrophages in the resolution of inflammation and tissue repair  

The universal components of resolution of inflammation, as discussed by Schett and Neurath  

(Schett and Neurath, 2018) are: (1) blocking influx of neutrophils to the tissue, (2) removing 

apoptotic neutrophils, and (3) switching macrophage function to limit inflammation. Thus, 
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highlighting the role of macrophages, capable of removing bacteria and apoptotic cells, in the 

tightly coordinated resolution phase of inflammation (Fullerton and Gilroy, 2016; Na et al., 

2019). This process is initiated with the clearance of apoptotic neutrophils by macrophages, a 

crucial step to avoid necrosis and further aggravation of inflammation. Macrophages follow the 

“find me” signals (such as sphingosine 1-phosphate and CX3CL1) released by apoptotic 

neutrophils and engulf the cell displaying the “eat me” signal (such as annexin-1 and 

phosphatidylserine). Upon efferocytosis, monocyte-derived macrophages switch their 

metabolic mechanism to adapt an anti-inflammatory phenotype (Gordon and Pluddemann, 

2018; Schett and Neurath, 2018). Defects in efferocytosis, the initiating step of the resolution 

program, contribute to IBD pathogenesis. Indeed, intestinal macrophages bearing apoptotic 

epithelial cells overexpressed genes associated with increased susceptibility to IBD (Cummings 

et al., 2016). 

  

The microbiota is another factor that promotes anergic macrophage function via  the secretion 

SCFA and AhR ligands. For instance, administration of the SCFA butyrate restored homeostasis 

in the intestine by modulating macrophage metabolism and promoting anti -inflammatory 

alternative activation of macrophages (Scott et al., 2018). The microbiota could also induce 

TGFβ release by intestinal epithelium and Treg cells, contributing to anergic macrophages 

(Atarashi et al., 2008; Ishikawa et al., 2008; Smythies et al., 2005). Actually, oral inoculation 

of Clostridium strains increased TGFβ levels in colon supernatant, which was associated with 

inhibited colitis induction by DSS treatment (Atarashi et al., 2011). 
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The pro-resolving function of macrophages is ensured by the production of lipoxin A4 (LXA4) 

that enhances their phagocytic function as it inhibits synthesis of ROS and pro-inflammatory 

cytokines. Furthermore, LXA4 limits neutrophil recruitment, while promoting monocyte 

chemotaxis (Na et al., 2019). Noteworthy, patients with severe UC have defective lipoxin 

synthesis (Mangino et al., 2006). Also, pro-resolving macrophages play a role in epithelial 

barrier repair by supporting epithelial cell proliferation. In fact, TREM2+ macrophages are 

necessary for proliferation of epithelial cells and mucosal healing in murine colonic punch-

biopsy-induced injury (Seno et al., 2009). The CD163+ converted macrophages significantly 

up-regulate their expression of TREM2 (Chapter 5), suggesting that they may play a role in 

promoting epithelial repair.   

 

However, increasing tissue repair is a double edge sword, as it could lead to tissue fibrosis, a 

symptom seen in highly treated IBD patients. In fact, infiltration of macrophages and high TGFβ 

concentration was observed in fibrotic colonic sections from CD patients (Scharl et al., 2015). 

Macrophages are the primary cellular source of IL36 that play an important function in 

intestinal wound healing by increasing proliferation of epithelial cells, and activating 

myofibroblasts (Scheibe et al., 2017). The macrophage-myofibroblast communication is 

essential to the healing of intestinal tissue but could also be pathogenic when aberrant. For 

instance, high production of connective tissue growth factors by macrophages led to constant 

activation of fibroblasts, and thus, fibrosis in a mice model of radiation-induced fibrosis (Yeh 

et al., 2016).  
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6.3.1.1.2 Increasing pro-resolving macrophages in IBD 

Overall, increasing pro-resolving macrophages and tissue repair appears to play an important 

role in IBD therapy. Indirect evidence from currently available therapies in IBD support 

increasing the frequency of pro-resolving monocyte-derived macrophages. First, anti-TNF 

therapy (known as infliximab) induces regulatory macrophages. Anti-TNF responders 

possessed higher frequency of CD68+CD206+ regulatory macrophages (Vos et al., 2012). Of 

note, colonic P4 macrophages expressed CD206, a key feature of M2 macrophages, suggesting 

an anti-inflammatory role for these cells (Annex 1). Moreover, anti-TNF therapy ligates Fc 

receptor, thus inducing alternative macrophage polarization (Vos et al., 2011). The JAK 

inhibitor, tofacitinib, shapes macrophage polarization towards a pro-resolving phenotype, as 

well as increases anti-inflammatory function while decreasing IFN secretion (De Vries et al., 

2019a). Corticosteroids have a wide range of effects on macrophages including promoting 

alternatively activated macrophage differentiation and increasing efferocytosis (Ehrchen et al., 

2007; Giles et al., 2001). Finally, a suggested treatment for IBD involving macrophage 

plasticity is induction of helminth infection (Summers et al., 2005a; Summers et al., 2005b). 

The latter induces a type 2 immune response that contributes to pro-resolving macrophage 

differentiation with tissue repair function (Wynn and Vannella, 2016), and have been shown to 

improve colitis in mice (Smith et al., 2007). Consequently, increasing pro-resolving 

macrophages represents an attractive therapeutic target in IBD. This approach will promote the 

resolution process, rather than dampening the effector/pro-inflammatory pathways currently 

employed in treatment of IBD (Schett and Neurath, 2018).  
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Our in vitro model supports the concomitant increase of TGFβ and IL10 in the mucosa of IBD 

in order to promote anti-inflammatory macrophage maturation (Chapter 5). Although TGFβ1 

is increased in intestinal mucosa of IBD patients (Babyatsky et al., 1996), the levels are 

insufficient to reduce inflammation. More specifically, TGFβ is unable to ensure inhibitory 

effect on target population leading to increased SMAD7 that interacts with TGFβR1 , and thus, 

prevents optimal signaling upon TGFβ1 binding (Abraham et al., 2017; Boirivant et al., 2006). 

Mongersen is an oligonucleotide that block SMAD7 protein, thus increasing cell responsivity 

to TGFβ (Ardizzone et al., 2016). In a recent phase 3 clinical trial, Mongersen showed no 

beneficial results in treatment of active CD resulting in the termination of the trial (Giuffrida et 

al., 2019). 

 

We have previously discussed the role of IL10 in IBD, and therefore, it seemed natural to 

supplement IL10 in CD and UC treatment (Marlow et al., 2013). Tenovil, the IL10 supplement, 

was tested in CD treatment and induced varying results in patients. Marlow et al. attempted to 

explain the inefficacy of Tenovil in CD and suggested that IL10 alone is unable to inhibit all 

the pro-inflammatory mediators in CD. This theory is supported in our model where IL10 

addition induced a low percentage of CD163+ macrophages when compared to the combined 

effect of TGFβ and IL10 (Chapter 5). Thereby, we propose the combined administration of 

Mongersen, and an IL10 supplement with higher mucosal bioavailability such as a 

bioengineered Lactococcus lactis that secretes IL10 (Braat et al., 2006; Steidler et al., 2000). 

Finally, IL10 supplementation can be maintained after treatment of inflammation to prevent 

relapse as suggested by a colitis model in rats (Barbara et al., 2000).   
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While further studies are necessary to fully comprehend the mechanisms of intestinal 

inflammation resolution, pro-resolving macrophages are central to re-establish homeostasis in 

the intestinal environment. Furthermore, research point to a flaw in monocyte transition to 

mature anti-inflammatory macrophages in patients with IBD. Consequently, therapeutic 

strategies that aim to re-educate pro-resolving macrophages are appealing.   

 

6.3.1.2 T cell plasticity 

We present evidence that P3 cells, together with pathogenic Th17 cells, drive intestinal 

inflammation. Pathogenicity of Th17 cells is best defined by their capacity to elicit disease and 

their plastic nature (Ahern et al., 2010; Ramesh et al., 2014; Wang et al., 2015). Several variants 

in the Th17 pathway have been linked to higher risk for IBD, such as IL12B, IL23R, TYK2, 

JAK2, STAT3, CCL20, CCR6 and RORC (Barrett et al., 2008; Jostins et al., 2012).  

 

The extensive infiltration of Th17 cells observed in IBD mucosa evoked the idea of neutralizing 

the main cytokine they produce, IL17A, as it promotes inflammation via the recruitment and 

activation of neutrophils, DCs and macrophages, and concommitant production of 

inflammatory cytokines (Abraham et al., 2017). Contrary to its impressive therapeutic efficacy 

in treatment of psoriasis, IL17A neutralization - by either blocking IL17A (secukinumab) or 

IL17RA (brodalumab) (Argollo et al., 2017; Targan et al., 2016)- was inefficient and sometimes 

even deleterious in IBD patients; thus, a phase 2 clinical trial was halted (Colombel et al., 2013; 

Hueber et al., 2012; Mozaffari et al., 2015). In fact, murine models of colitis reported mixed 

results with IL17 targeting (Maxwell et al., 2015; O'Connor et al., 2009; Ogawa et al., 2004). 

The increased intestinal inflammation observed was due to impaired regulation of the epithelial 
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tight junction protein occludin, decreased anti-microbial proteins as well as blockade of the 

protective IL17A secreted by lamina propria T cells in an IL23 independent manner (Lee et 

al., 2015; Maxwell et al., 2015). Additionally, fungal infections were reported in CD patients 

following IL17 neutralization (Hueber et al., 2012) which is consistent with the role of Th17 in 

protection against fungi and intracellular bacteria at mucosal surfaces (Abraham et al., 2017). 

Taken together, the harmful effects of blocking IL17 prevail over its benefits in treatment of 

intestinal inflammation. 

 

Considering the protective role of Th17 cells, it is important to maintain this population. 

However, Th17 cells present with a range of phenotypes and display plasticity under the 

influence of the environment leading to the pathogenic IL17 and/or IFN secreting Th17  cells, 

referred to as Th17/Th1 and Th1* (Globig et al., 2014; Ramesh et al., 2014). Indeed, in the 

inflamed colonic mucosa of CD patients, we have shown a predominance of Th17/Th1 and Th1 

cells over Th17 cells, suggesting the plasticity of Th17 cell lineage (Annex 1). Therefore, IL12 

and IL23, secreted mainly by monocytes, macrophages and DCs, represent suitable targets as 

they act as a “switch” promoting Th17 plasticity towards the pathogenic Th17 phenotype 

(Figure 6-2). (Hirota et al., 2013; Ramesh et al., 2014).  
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Figure 6-2: Targeting the IL12, IL23 and Th17 cell pathway. 

IL23 plays a crucial role in the maintenance of Th17 cells that contribute to intestinal 

inflammation. The herterodimeric IL23 (p19 and p40) cytokine binds to its receptor (made 

up of IL23R and IL12Rβ1) and activates the JAK2-STAT3 signaling pathway. The latter 

controls the transcription of IL17, IL21 and IL22. In contrast, IL12 is more involved in Th17 

plasticity. It is made up of p35 and p40 subunits, binds to its receptor (composed of IL12Rβ1 

and IL12Rβ2), and utilizes JAK1, JAK2 and STAT4. IL12 contributes to Th1 and Th1* 

generation. Thus, biologics that target the p40 subunit disrupt Th1, Th1* and Th17 cells , 

whereas targeting p19 subunit blocks IL23-dependent regulation of Th17 cells. 

(Adapted from (Moschen et al., 2019); authorization code 4892431277928). 
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IL12 is known to promote plasticity of Th17 cells into Th1* by down-regulating IL17 and 

promoting IFN expression in circulating and intestinal Th17 cells (Annunziato et al., 2007; 

Kleinschek et al., 2009; Kobayashi et al., 2008; Ramesh et al., 2014) (Chapter 2 and Annex 

1).  

 

We have extended the IL12 effect to include Th17 TEM cells isolated from the colon-draining 

MLN of IBD patients (Chapter 4). In mice, Th17 cells gradually progress to a pre-Th1 effector 

phenotype in the LN, and Th17/Th1-like effector phenotype in non-lymphoid tissues 

(Gaublomme et al., 2015), suggesting that Th17 conversion is already initiated in LN. Indeed, 

in CD MLN, Th17 TEM cells displaying a pathogenic, “pre-Th1” inflammatory gene (IFNG, 

HAVCR2, CD26) profile (Bengsch et al., 2012) corroborate the progression observed in mice 

LN. Furthermore, the identification of low percentages of CCR6+CXCR3+ Th17/Th1 and 

CCR6-CXCR3+ IFN-secreting CD4+ T cells in MLN of IBD patients (Chapter 4 and Annex 

1) supports the concept of plasticity of Th17 in LNs. Furthermore, Th17 TEM cells isolated 

from MLN of IBD patients converted to Th1* under the influence of IL12 (Chapter 4). This 

was independent of the differential molecular profile of Th17 TEM cells from CD or UC 

patients. Th17 program inhibition by IL12, as shown by decreased TCF7 expression (Oestreich 

et al., 2011), depends on Eomes up-regulation that inhibits RORC2 and IL17A expression while 

maintaining IFNG (Mazzoni et al., 2019).  

 

Due to the role IL12 plays in promoting colitis, IL12p40 neutralizing antibody was effective in 

decreasing colitis in various mouse models. For example, pro-inflammatory cytokines and 

intestinal inflammation were suppressed in a IL12p40 treated TNBS model (Neurath et al., 
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1995). Supported by extensive research, IL12p40 antagonists were tested in CD patients (Tait 

Wojno et al., 2019). Briakinumab and ustekinumab (targeting IL12p40 subunit) induced 

positive response when compared to placebo (Feagan et al., 2016; Fuss et al., 2006; Mannon et 

al., 2004; Sandborn et al., 2012). IL12p40 neutralization also suppressed other pro-

inflammatory cytokines in mucosa of CD patients (Fuss et al., 2006; Mannon et al., 2004). 

Ustekinumab is FDA-approved for the treatment of CD patients, and in clinical trial for its 

employment in UC treatment (Verstockt et al., 2017).  

 

Since IL23 also mediates pathogenic Th17 cell phenotype, it raises a fundamental question 

regarding treatment of IBD: should we target IL23 alone, or both IL12 and IL23 by neutralizing 

IL12p40? Both cytokines possess complementary functions in the generation of IFN and IL17 

secreting T cells that play a role in protection against fungi and mycobacteria (Martinez-

Barricarte et al., 2018; Zielinski et al., 2012). When Imamura et al. compared the suppression 

of mucosal inflammation in a T cell transfer model of colitis, using neutralizing mAb against 

IL23R, receptor specific for IL23, versus anti-IL12p40, they found comparable improvement 

in colitis and decrease in IL17 (Imamura et al., 2018). However, only IL23R mAb managed to 

decrease IFN expression. Likewise, H. hepaticus-triggered T cell dependent model of colitis 

in p35, p19 or p40 deficient mice demonstrates a role for IL23, rather than IL12, in induction 

of maximal grade of intestinal inflammation by driving IFN and IL17 secretion (Kullberg et 

al., 2006). These results suggest that IL23 and its receptor play a more important role than IL12 

in colitis development (Uhlig and Powrie, 2018).  
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Data from our laboratory support targeting both IL12 and IL23 (Chapters 2 and 4, and Annex 

1) (Figure 6-3), even though murine studies suggest a more prominent role for IL23 in colitis 

induction. First, IL12 induced pathogenic Th17 cells in mucosa and MLN of CD and UC 

patients. Second, IL23 was able to increase IL17+IFN+ in CD4+ T cells from CD mucosa, 

without increasing GM-CSF, IL6 or TNF. Third, Th17 TEM cells from IBD MLNs did not 

modulate IL17 nor IFN expression in response to IL23. The lack of response to IL23 was not 

attributed to the absence of IL23R expression on Th17 cells in MLN, suggesting that tissue-

dependent IL23 responsiveness requires additional signals provided by the cytokine milieu 

and/or environment, which might be absent or low in MLN. These results are consistent with 

clinical studies with risankinumab (targeting IL23p19) that downregulates genes linked with 

the IL23/IL17 axis and Th1 pathway in the mucosa of CD patients (Visvanathan et al., 2018). 

Although risankinumab induced endoscopic remission, it is not as effective as ustekinumab in 

treatment of CD patients (Feagan et al., 2017), suggesting a more advantageous outcome by 

targeting both IL12 and IL23. Anti-IL23p19 is in clinical trials for UC patients (Allocca et al., 

2018); however the lack of response to IL23 we observed in the mucosa and MLN of UC 

patients advocates for anti-IL12p40 antibody. The apparent contradiction with mice studies 

strongly highlights the importance of studying immune response in humans, and more 

particularly in tissues.  
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Figure 6-3: A summary of IL12 and IL23 induction of IFN and IL17 secretion by CD4+ 

T cells in mucosal and lymphatic tissue of IBD patients. 

We have shown that while IL12 increased IFN and decreased IL17 expression in all tissues 

examined; IL23 only promoted Th17 and Th17/Th1 responses in CD mucosal tissue.   

 

Finally, blocking IL23p19 is an attractive therapeutic approach in CD patients resistant to anti-

TNF treatment. CD patients refractory to anti-TNF therapy presented with an upregulation of 

IL23p19 and IL23R expression (Sands et al., 2017; Schmitt et al., 2019), implying a role of 

IL23 in the resistance to TNF blockers. Indeed, a very recent study by Schmitt et al. found a 

buildup of IL17A and IFN expressing TNFR2+IL23R+ T cells in the mucosa of CD patients 

with endoscopic resistance to anti-TNF therapy (Schmitt et al., 2019). IL23 blocked anti-TNF-

induced apoptosis of these Th17/Th1 cells leading to their accumulation. Treatment of these 

patients with MEDI2070, an IL23p19 blocker, proved efficacious as it showed significant 

clinical improvement compared to the placebo group.  
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Collectively, Th17 plasticity could be a valuable target in the treatment of IBD.  

 

6.3.2 TARGETING CELL RECRUITMENT 

Another therapeutic avenue in IBD pathogenesis involves interfering with immune cell 

trafficking between the blood vessel, lymphoid and mucosal tissue, especially T cells. Indeed, 

numerous clinical trials targeting integrins, selectins, immunoglobulin superfamily and 

chemokine receptors have been conducted for IBD (Gerhardt and Ley, 2015; Neurath, 2019; 

Zundler et al., 2019a) (Figure 6-4).  

 

 

Figure 6-4: Targeting T cell and monocyte trafficking in IBD. 

Several therapeutic agents have been developed to target T cell and monocyte recruitment to 

the inflamed intestine in IBD.  
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(Adapted from (Neurath, 2019); authorization code: 4660151258991). 

The integrin α4β7 is key in mediating gut homing via its adhesion to MAdCAM-1 addressin on 

endothelial cells. Blocking the α4 subunit suppressed inflammation in a T cell  transfer model 

of colitis in mice (Sugiura et al., 2013), implying a therapeutic benefit in targeting lymphocyte 

homing. Indeed, natalizumab, an anti-α4 monoclonal antibody, was efficient in CD (Ghosh et 

al., 2003; Sandborn et al., 2005). The anti-α4 antibody targeted the α4β1 integrin as well, which 

binds to the widely expressed VCAM-1 and lead to undesirable side effects and eventual 

discontinuation (Van Assche et al., 2005). Therefore, vedolizumab targeting the α4β7 

heterodimer was developed and FDA-approved for the treatment of CD and UC in 2014 (Feagan 

et al., 2013; Sandborn et al., 2013). It specifically blocks in vivo lymphocyte homing to the gut 

- as MAdCAM-1 expression is mainly gut-specific – resulting in decrease of naïve and TEM 

accumulation and expansion in the gut (Wyant et al., 2015; Zundler et al., 2019a). Additionally, 

vedolizumab interferes with the α4β7-dependent gut homing of monocytes (Schleier et al., 

2019), ILCs (Kim et al., 2015b), and may also hinder with the recruitment of α4β7-expressing 

plasmablasts (Bowman et al., 2002; Schippers et al., 2012). Also, a monoclonal antibody against 

the α4β7 ligand MAdCAM-1 (ontamalimab) is currently under study for the treatment of IBD 

(Sandborn et al., 2018; Vermeire et al., 2017). Other molecules involved in cell trafficking to 

the gut have been tested in the context of IBD such as blockers of CCR9 and ICAM-1,but did 

not give a desirable outcome (Zundler et al., 2019a). Taken together, the α4β7-MAdCAM-1 

axis is pertinent in IBD therapy.  
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Another β7 inhibitor is etrolizumab that blocks α4β7 as well as E-cadherin ligand αEβ7 

(CD103). The latter is expressed on pro-inflammatory Th17, Th17/Th1 and Th9 cells in the 

intestine (Zundler et al., 2017) but CD103 or α4β7 expression was not observed on colonic IL8+ 

T cells in UC, suggesting a differential mode of recruitment (Chapter 2). In addition to 

targeting Th9 cells, CD103 blockade interferes with lymphocyte retention close to the 

epithelium, consequently targeting CD103+CD69+ intestinal TRM shown to play a role in 

chronic intestinal inflammation (Zundler et al., 2019b; Zundler et al., 2017). Thereby, targeting 

cell trafficking and tissue retention represents a therapeutic avenue in IBD.  

 

Interfering with monocyte recruitment to the intestinal tissue may present as an attractive option 

since monocytes and their derivatives play a crucial role in the development of intestinal 

inflammation. Furthermore, inhibition of monocyte recruitment by targeting CCR2, CCL2 or 

CCR5 protected mice from DSS-induced colitis (Bain et al., 2013; Tacke et al., 2007; Zigmond 

et al., 2012). However, these cells also give rise to pro-resolving macrophages that heal the 

tissue and promote an anti-inflammatory response. Therefore, targeting the recruitment of 

monocytes to the inflamed tissue could be double-edged and dependent on the stage of 

inflammation or resolution process.  
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6.4 Conclusion and perspectives  

The research that contributed to this thesis aimed at better understanding the immune-mediated 

pathogenesis of CD and UC by examining MNP subpopulations and CD4+ Th cells in the 

colonic mucosa and MLN of IBD patients, as well as developing a two-step culture model that 

mimiced the intestinal monocyte differentiation cascade. 

 

We identified a monocyte-like CD14+ population (P3) that accumulated in the inflamed mucosa 

of IBD patients in correlation with disease severity. This augmentation was not associated with 

the infiltration of pro-inflammatory CD14+CD16+ Slan+ cells observed in CD mucosa. 

Monocyte-derived P3 cells drive inflammation in part by promoting a pathogenic T cell 

response, distinguished in CD and UC by IL8 production (Chapter 2). This observed difference 

could be related to the differential molecular profile seen in Th17 TEM cells from MLN 

(Chapter 4) that travel to the mucosa and get shaped by the P3 cells. 

A second CD14+ population was observed in inflamed tissue of IBD patients, the anti-

inflammatory P4 macrophages. The latter derive from inflammatory monocyte-like cells under 

the combined influence of TGFβ and IL10, as demonstrated by our in vitro model. 

 

A better understanding of the immunopathology of IBD would help identify novel therapeutic 

targets and shed light for the development of personalized treatments. Although we have shed 

some light on MNPs and Th17 cells in the context of intestinal inflammation, there are still a 

lot of unsolved questions. 
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CD4+ T cell populations have been the main targets in IBD treatments. We have identified a 

few differences in the CD4+ T cell response in CD and UC patients beyond the now outdated 

classical Th1 and Th2 paradigm. Differences were noted in the colonic mucosa and MLN in 

terms of Th distribution, cytokine secretion and molecular signature. Single cell RNA 

sequencing could prove very valuable in better segregating, characterizing and identifying the 

various T cell populations in the mucosa and lymphoid tissues from healthy versus CD versus 

UC patients. The function of the “better defined” T cell subpopulations would require 

verification and plasticity in response to cytokines and APC populations would be assessed. 

Single cell RNA sequencing analysis should also examine the various MNP subsets in CD 

versus UC, in both mucosal and lymphoid tissues. These studies might segregate the treatments 

employed for CD and UC.  

 

Another therapeutic avenue in IBD could be targeting monocyte plasticity “aiming for the 

good” macrophages. The in vitro model developed could be a great tool to test some molecules 

that will push the Infl mo-like cells into the non-pathogenic CD163+ macrophages, such as 

Mongersen, IL10 supplements, JAK inhibitors and monoclonal antibodies available on the 

market. Although the model recapitulates some of the key phenotypic, morphological, 

functional and molecular features observed in the P3 and P4 populations isolated from inflamed 

IBD colonic mucosa, it still lacks the multi-part composition in the tissue environment. Colonic 

organoids starting from healthy, CD or UC biopsies could stimulate one extra layer of the 

complexity found in vivo. Furthermore, this improved model could account for the contribution 

of the microbiota in shaping monocyte development. The in vitro model could also perhaps aid 

in the development of personalized patient treatments. For instance, the model could be 
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developed starting from peripheral blood monocytes, colonic biopsies and microbiota samples 

from the same IBD donor; different molecules could thus be tested for the best patient response.  

 

Monocytes, macrophages, Th17, Th17/Th1 and Th1* cells are only a few players in the complex 

network of innate and adaptive immune cells contributing to IBD pathogenesis, and being 

targeted in IBD therapy. Despite the plethora of treatments, many IBD patients are still 

suffering.  

  

Treatments should be developed with the realization that human beings are not syngeneic mice 

raised in a controlled environment. They are complex resulting in expected “unexpected 

outcomes” that should be tolerated and conceptually dealt with ahead. This understanding will 

require the integration of data using computational and systems approach (Davis et al., 2017) 

that will examine data from colitis models, healthy humans and IBD patients taking into account 

the patient’s genetic background and course of treatment. Eventually, this information will 

advise on the best employment of a particular therapeutic treatment in the management of CD 

and UC. 
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Annex 3.   

Thesis Supplementary Figures 

 

Annex 3-Figure 1: Slan+ cells in mucosa of Crohn’s disease patients are CD64 -CD163-. 
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Annex 3-Figure 2: Morphology of: P3 cells from inflamed CD mucosa. Slan+ T cells from tonsils 

(Micheletti et al., 2016), the inflammatory DC from synovial fluid (Segura et al., 2013), 

authorization code 4661460596861) and in vitro derived MoDC and M1 macrophages.  
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Annex 3-Figure 3: IL17 and IFN secretion by Th17 TEM cells from MLN of CD and UC patients 

following a 6 days culture with 10ng/mL of IL1β and anti-CD3/CD28 beads. PMA/Iono was added 

for the last 6 hours and Brefeldin A for the last 3 hours.  
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Annex 3-Figure 4: Frequency of CD64+/-CD163+/- cells in a 6 days culture with GM-

CSF+IFN+IL23 starting with CD14+CD16- monocytes from blood of healty donors, CD and 

UC patients. 

  



408 

 

 

Annex 3-Figure 5: Frequency of CD64+/-CD163+/- cells in a 6 days culture with GM-

CSF+IFN+IL23 starting with CD14+CD16- classical, CD14+CD16+intermediate and 

CD14loCD16+non-classical monocytes from blood of healthy donors. 

 

 


