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Sommaire

Parmi les douzaines d’expériences qui visent à découvrir la matière sombre, l’expérience

de détection directe PICO utilise des détecteurs à liquide surchauffé comme moyen pour

s’y prendre. La chambre à bulle PICO-40L remplie de C3F8, présentement située dans le

laboratoire sous-terrain SNOLAB, est en cours de test en vue d’une recherche aveugle de

WIMP (Weakly Interacting Massive Particle) d’une durée de 1 an. Pour assurer la stabilité

du détecteur pendant les périodes de préparation et pendant l’acquisition de données, un

logiciel de surveillance a été écrit. Un moyen fiable de surveiller les paramètres importants du

détecteur et d’envoyer des alarmes en cas d’urgence joue un rôle important à non seulement

au succès de PICO-40L, mais aussi au développement du futur détecteur PICO-500.

Située à l’Université de Montréal, la chambre à bulle PICO-0.1 a été conçue afin de

calibrer les nombreux événements de fond qui se présentent dans ce type de détecteur. De

plus, cette chambre à bulle a été utilisée comme première tentative au monde de mesurer

la diffusion Thomson sur un noyau d’atome en exposant le détecteur rempli de C3F8 à une

source de gamma produite par la réaction 19F(p,αγ)16O à l’aide d’un faisceau de protons crée

par l’accélérateur de particules de l’Université de Montréal. Ce type d’interaction s’avérera à

un événement de fond important pour les expériences de détection directe de matière sombre

à bas seuil.

Mots-clés: matière sombre, WIMP, chambre à bulles, PICO, DAQ, diffusion

Thomson
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Summary

Amongst the dozens of experiments aiming to be the first to claim a dark matter signal,

PICO is a direct dark matter detection experiment that utilizes superheated liquid detectors

as a means of doing so. The latest C3F8 filled PICO-40L bubble chamber currently located

in the SNOLAB underground laboratory is under testing to prepare for a 1 live-year blinded

WIMP (Weakly Interacting Massive Particle) search. To ensure the stability of the detector

during both the testing and the data acquisition phases, a monitoring software was coded. A

reliable way to monitor all the parameters and to send alerts accordingly plays an important

role in not only the success of PICO-40L, but also the development of the future larger-scale

PICO-500 detector.

PICO-0.1 is a test bubble chamber located at the University of Montreal that was built

to calibrate for the numerous background events that can occur in this kind of technology.

This test chamber was also used as a world’s first attempt to measure the coherent (Thom-

son) photon scattering onto a nucleus by exposing the C3F8 filled detector to a gamma

source produced by the 19F(p,αγ)16O reaction using a proton beam created by the Univer-

sity of Montreal particle accelerator. This kind of interaction will prove to be a significant

background for future sub-keV direct dark matter detection experiments.

Keywords: dark matter, WIMP, bubble chamber, PICO, DAQ, Thomson

scattering
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Introduction

Ever since the first evidence of dark matter in 1933, many theoretical models are proposed

to describe this elusive matter. A likely candidate, the WIMP (Weakly Interacting Massive

Particle) model suggests that dark matter would only interact at the energy scale of the weak

interaction and that these particles would have a mass of up to a couple of TeVs. These kinds

of models are pursued by dark matter experiments through different methods such as direct

detection, indirect detection, and production with the ultimate goal of recording a dark

matter signal within their detectors. As more and more experiments cover larger ranges of

dark matter mass and cross section, the current challenge is to increase the sensitivity of

future detectors to explore new regions of this parameter space.

The use of superheated liquid detectors is one of the direct detection methods adopted

by the PICASSO, COUPP, and the merger between both experiments, PICO collaborations.

PICASSO operated multiple detectors with C4F10 droplets spread inside a water-saturated

polyacrylamide gel matrix and was able to achieve very good alpha background discrimina-

tion through acoustic analysis. On the other hand, COUPP used superheated liquids as a

target fluid inside a bubble chamber to be able to measure the recoil of different interac-

tions. The collaboration merger utilized the best of both worlds by adopting excellent alpha

discrimination on the newly built PICO-60 bubble chamber.

PICO-40L is the current generation of dark matter detecting bubble chamber filled with

C3F8 that is being tested at the SNOLAB underground laboratory. This chamber adopts a

new "right-side up" design with the idea of mitigating some of the unwanted backgrounds

that were present in previous PICO runs while still maintaining its sensitivity. Additionally,

this detector will serve as a stepping stone in the development of a much larger bubble

chamber, PICO-500.



To calibrate these large scale bubble chambers, the collaboration has built multiple

smaller test chambers. PICO-0.1 is a smaller-scale bubble chamber located at Université

de Montréal that was previously used to calibrate for different background events. One of

the interactions that will slowly dominate the background of sub-keV threshold detectors is

the recoil onto the target’s nuclei by low energy gammas. PICO-0.1 is used to measure this

coherent (Thomson) photon scattering by exposing the detector to a 6.13, 6.92, and 7.12

MeV gamma source produced by the 19F(p,αγ)16O reaction.

In this thesis, the motivation behind using bubble chambers as a method of WIMP

detection will be presented in Chapter 1. Chapter 2 will follow with a presentation of the

achievements and results of past PICASSO, COUPP, and PICO detectors. Chapter 3 will

describe the newly designed PICO-40L and its attempt to surpass previous dark matter

limits.

The final section of this thesis will focus on how PICO-0.1 is used to calibrate for back-

grounds and improve the overall sensitivity of this kind of technology. Chapter 5 describes

the technicalities of the detector whereas Chapter 6 will present the method and results of

a world’s first attempt at measuring the coherent (Thomson) photon scattering background

using PICO-0.1.
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Chapter 1

Dark Matter Detection in Bubble Chambers

1.1. The WIMP Model

The first evidence of dark matter was introduced in 1933 after observations of gravi-

tational effects on the Coma Cluster [52]. Ever since, there has been more observational

evidence such as galactic rotation curves having a flat velocity distribution along its radius

[42] and the bending of light through gravitational lensing [48] that solidifies proof of the

existence of dark matter. In our current understanding of cosmology, dark matter consti-

tutes 23% of the total mass-energy content in the universe whereas ordinary matter only

constitutes 5%. The remaining 72% is unknown energy acting on the accelerating expansion

of the universe and is called dark energy.

Many theoretical models attempt to pinpoint the expected properties of dark matter

based on numerous observed cosmological effects. A candidate must satisfy a couple of con-

ditions: it must be stable on a cosmological time scale, be electrically neutral and have the

proper relic density (density at which the abundance of dark matter remained constant).

Amongst these models, one likely candidate is the WIMP (Weakly Interacting Massive Par-

ticle), which suggests that dark matter would only interact at the energy scale of the weak

interaction (weakly interacting) and a mass of 1 GeV to a couple of TeVs (massive particle).

One of the compelling arguments in favor of the WIMP is that the expected cross-section of

dark matter given its relic density, which was found to be '3×10−26cm3s−1, is on the same

order of magnitude as the weak interaction. This "WIMP miracle" drove many dark matter

physicists to explore this region of the cross-section mass parameter space. The current



favorite WIMP candidate is the neutralino, the lightest supersymmetric particle that would

meet these criteria.

The goal of an experimental dark matter physicist is to measure these theoretical prop-

erties and to provide concrete evidence of its interactions. There are three methods of dark

matter detection as depicted in Figure 1.1: direct detection, indirect detection, and produc-

tion. Direct detection experiments such as noble liquid detectors, cryogenic detectors, and

superheated liquid bubble chambers aim to measure a low-energy recoil from the interaction

of dark matter onto a target nuclei. Indirect detection such as neutrino telescopes looks for

self-annihilating dark matter particles outside of Earth that would produce Standard Model

particle-antiparticle pairs. A more recent approach to the field of dark matter detection is

the production of dark matter particles at particle colliders using proton beams. Although

the detectors at the colliders are not able to directly measure its energy since it is not ex-

pected to interact with ordinary matter, it can be inferred by looking for missing energy and

momentum by comparing the initial and final states of all other detected particles.

Fig. 1.1. Chart of dark matter detection methods and names of experiments that use the

method. SM represents any particle from the Standard Model and χ represents the dark

matter particle.

1.1.1. WIMP signal

One of the difficulties in finding a dark matter signal in a direct detection experiment is

to recognize a rare WIMP signal amongst a handful of background events. The expected

signal can be computed by looking at the recoil rate of the interaction between a WIMP
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and a nucleus, which is described by the integral over the expected energy spectrum [35]:

dR

dEnr
=

∫
1

E r
dR(E) (1.1.1)

where Enr = µ2v2

MN
(1 − cos(θ)) is the recoil energy at the center of mass, µ = MNMχ

MN+Mχ

is the reduced mass of the system, MN is the mass of the nucleus, Mχ is the WIMP

mass, v is the WIMP velocity, θ is the dispersion angle and r = 4 MNMχ

(MN+Mχ)2
. By convert-

ing the integral as a function of WIMP velocity instead of energy, the equation 1.1.1 becomes:

dR

dEnr
=

2ρχ
Mχ

∫
vf(~v,t)

dσ

dq2
(q2,v)d3v (1.1.2)

where ρχ is the mass density of dark matter, f(~v,t) is the velocity distribution and dσ
dq2

(q2,v)

is the cross section desribed by:

dσ

dq2
(q2,v) =

σ0
4µ2v2

F 2(q) (1.1.3)

where q is the momentum transferred to the nucleus, σ0 is the cross section at q = 0 and

F (q) is the nuclear form factor. The properties of the target nuclei used in the detector and

the velocity of dark matter with respect to the detector are used to solve the integral. Ex-

periments present their results with the assumption that the velocity distribution of WIMPs

follows the Maxwell-Boltzmann velocity distribution, which takes into account the relative

velocity of the Earth with respect to the dark matter halo in the galaxy as shown in fig

1.2. However, recent data from the Gaia telescope presented in [38] refutes this assumption

through evidence of "Dark Shards", which suggests to contain local dark matter velocity

streams. This leads to believe that the current results presented by direct dark matter de-

tection experiments in the form of exclusion plots with the dark matter mass on the x-axis

and its cross section on the y-axis are based on unphysical assumptions. However, these

assumptions are still used as a benchmark to compare different experiments and will also be

reviewed once a dark matter signal is claimed.

In addition to the variability in dark matter flux, the spin dependence is also a factor

to be considered. Since it is currently unknown whether or not the leading dark matter
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Fig. 1.2. The movement of the Earth inside the dark matter halo in the galaxy creates an

effective WIMP wind. The solar system rotates at v0 ≈ 220 km/s around the Milky Way

and the Earth orbits at a 60o angle around the Sun relative to the galactic plane, resulting

in an annual modulation of the WIMP signal. [37]

interaction is spin dependent, experiments can cover spin-dependent, spin-independent or

both parameter spaces. The sensitivity of spin-independent runs presents itself with limits

that are orders of magnitude better than the spin-dependent runs. Figure 1.3 and 1.4 are

the current observed and projected results of different experiments.

1.2. Sensitivity of dark matter experiments

The exclusion curves presented previously are explored regions by the detector in which no

WIMP event was detected. The sensitivity of these experiments is influenced by two factors:

the energy threshold and the background. The former is usually tied to the limitation in

the equipment used for the detector and the region of interest explored while the latter is an

analysis of all possible external interactions that can occur in the detector.

1.2.1. Background

A background event is all other non-WIMP interactions with the target that can happen

inside the detector. Particles such as neutrons, gammas, alphas, and neutrinos can recoil

on either the electrons or neutrons and produce a signal that could replicate a dark matter

signal. Because the aim of direct detection experiments is to isolate specific WIMP events,
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Fig. 1.3. Current spin-independent limit plot created through the SuperCDMS Dark Matter

Limit Plotter [44]. Results shown for PICASSO (Black [22]), LUX (Grey [8]), CDMSlite

(Red [6]), SuperCDMS (Dark Green [5]) PandaX (Brown [25]), COSINE-100 (Orange [3]),

CRESST-III (Gold [2]), ZEPLIN III (Green [11]), COUPP (Cyan [20]), PICO-60 (Blue

[16]), DEAP (Purple [7]) and XENON1T (Pink [19]). The greyed out region represents the

already explored parameter space.

every background must be understood and taken into account in the analysis. Dark matter

experiments are sensitive to different kinds of backgrounds based on the characteristics of

the detector. Different steps and techniques are used to characterize each contributor. While

some experiments are more sensitive to some background events and less sensitive to others,

a general background analysis provides an understanding of their contributions.

The first step is to mitigate as many background events as possible through the use of

physical improvements to the detector such as shielding, the use of material with the least

radiation and running the experiment in a controlled environment. As an example, the

liquid argon experiment, DEAP, uses a water tank as a means of shielding against neutrons
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Fig. 1.4. Current spin-dependent WIMP-proton limit plot created through the SuperCDMS

Dark Matter Limit Plotter [44]. Results shown for PICASSO (Black [22]), LUX (Grey [9]),

CDMSlite (Red [4]), PandaX-II (Brown [29]), SIMPLE (Green [27]), PICO-60 (Blue [16]),

IceCube (Purple [1] and XENON100 (Pink [18]). The greyed out region represents the

already explored parameter space.

and gammas and operates in SNOLAB, an underground laboratory, to protect itself against

cosmic rays [34]. A conceptual design of DEAP-50T shows a 44 feet diameter water tank

bathing the detector depicted in Figure 1.5.

Afterward, certain specific signals from incoming particles that are completely different

from the expected WIMP signal can be discriminated depending on the detector. Since

particles interact differently with an electron as opposed to a neutron, discrimination must be

made to properly identify the signal for each background. For example, the PICO experiment

measures the acoustic power of an event to discriminate between alpha decays and nuclear

recoil, which will be further explain in Chapter 2. Finally, for direct background contributions

within the WIMP search region of interest, calibrations are made by the main detector or by
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Fig. 1.5. Concept design of DEAP-50T, a 50 tonnes liquid argon detector that uses water

for background shielding. [32]

secondary prototypes of the detector. After measuring the desired background, simulations

are performed to compare the data. The final background analysis results are typically

presented as a count rate or an expected contribution to the main data set that follows

a Poisson distribution with a 90% confidence interval. Thorough background analysis and

control within the region of interest can significantly improve the sensitivity of detection

methods and would allow isolation of targeted WIMP events.

1.3. Coherent neutrino-nucleus scattering

One of the backgrounds to direct dark matter experiments are neutrinos that elasti-

cally scatter off the nucleus, in a process called coherent elastic neutrino-nucleus scattering

(CEvNS). This process occurs when a neutrino interacts with a nucleus via the exchange of

a Z boson and produces a recoil. This was first theorized in 1974 [28] but measured in 2017

by the COHERENT experiment using a CsI[NA] crystal detector at the neutrino producing

Spallation Neutron Source (SNS) [10]. The cross section of this neutrino-nucleus interaction

is enhanced due to the coherence of this process and is proportional to N2, the square of the

number of neutrons in the target nucleus. However, despite its high interaction cross section,

it can only be measured at a very low energy threshold. For current dark matter experi-

ments, the sensitivity of the detectors does not reach this threshold yet but will be reached
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in future generations of detectors. Figure 1.6 shows the CEvNS background in relation to

the current limits on dark matter experiments.

Fig. 1.6. Exclusion plot for spin-independent direct dark matter detection experiments

showcasing the neutrino floor that will dominate the background (yellow).

Once detectors reach this "neutrino floor" in sensitivity, the background will be dom-

inated by CEvNS due to the abundant solar neutrino flux. Since this small recoil signal

replicates that expected of a WIMP signal, it will be nearly impossible to distinguish them.

Moving forward, experiments will have to either find a way to characterize and discriminate

these events or conceive a detector insensitive to neutrinos.

1.4. Bubble Chambers and the Seitz Model

The bubble chamber is one of the technologies used for particle detection. It was first

used to measure the track of a charged particle [30]. Similar to the cloud chamber, which

detects the particle’s track by observing ionized droplets in a supersaturated vapor chamber

[50], the bubble chamber detects the particle through the vaporization of a superheated

liquid. A modern bubble chamber detector consists of a cylindrical jar with a target

superheated liquid and a regulating pressure system. It detects incoming particles by having

the target liquid in a metastable state at a temperature and pressure slightly below its

boiling point. The incoming particle would deposit energy and would vaporize the liquid

and create a bubble. By measuring the energy deposition and examining the way the bubble
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is formed, it can be inferred what particle caused this change of state. When energy is

deposited onto the superheated liquid due to an incoming particle, a heat spike triggers a

local phase transition and creates a bubble. This bubble can either shrink and collapse on

itself or expand macroscopically. The condition for a bubble of critical radius rc of to form

and expand is:

rc >
2σ

Pb − Pl
(1.4.1)

where σ is the surface tension of the bubble and Pb−Pl is the difference in pressure between

the bubble and the liquid. The Seitz Theory suggests that the heat spike produced by the

radiation of the target fluid inside this critical radius will have a critical energy Ec:

Ec = 4πr2c (σ − T
∂σ

∂T
) +

4π

3
r3cρb(hb − hl)−

4π

3
r3c (Pb − Pl) +O(

δ

rc
) (1.4.2)

where, T is the temperature, ρb is the bubble’s density and hb − hl is the difference in

enthalpies between the bubble and the liquid. The first term represents the energy required

to form the surface of the bubble inside a thermal reservoir, the second term is the energy

required to vaporize the liquid to form the interior of the bubble, the third term is the

mechanical work done on the expansion of the bubble. The critical energy translates to

the energy threshold at which the detector operates and is determined by the temperature

and pressure conditions set on the detector. Figure 1.7 shows the threshold for C3F8 as a

function of pressure for different fixed temperatures. Dark matter detecting experiments,

such as PICO, are conceived to go as low as possible in energy thresholds to be able to

detect the slightest recoil due to a dark matter interaction. These experiments must also

avoid detecting non-dark matter interactions which are generally substantial at lower energy

thresholds.
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Fig. 1.7. Critical energy (Seitz Threshold) required for bubble nucleation as a function of

the pressure at different temperatures for C3F8 [39].
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Chapter 2

The PICO Experiment

The development of superheated fluid detectors has evolved rapidly in the last decade. The

PICO collaboration is a result of a merger between two previous collaborations: PICASSO

(Project In CAnada to Search for Supersymmetric Objects) and COUPP (Chicagoland

Observatory for Underground Particle Physics). Both collaborations specialized in super-

heated liquid fluid detectors: PICASSO developed superheated droplet detector whereas

COUPP used bubble chambers. Bubbles nucleated from the decay of alpha particles, which

is one of the major backgrounds for this type of technology, were partially discriminated by

an acoustic analysis technique found by PICASSO. It was then applied to COUPP 4kg and,

following the merger of both experiments, PICO detectors. PICO-60 was the first bubble

chamber commissioned by the merged PICO experiment and utilized the strengths of both

predecessors. An unknown background, caused by the interaction of water and particulates

during the runs, was present in PICO-60 and PICO-2L, which lead to the development of a

new "right-side up" design for the future PICO-40L.

The PICASSO, COUPP and PICO experiments operated their detectors in SNOLAB,

an underground clean laboratory located in Sudbury, Ontario, Canada. The depth of 2km

provides invaluable shielding against cosmic rays for the neutrino and dark matter experi-

ment it houses with a muon flux of less than 0.27 µ/m2/day [45]. It is the second deepest

underground laboratory in the world next to the 2.4 km deep China Jinping Underground

Laboratory [51].



2.1. PICASSO

The PICASSO experiment, which ran until 2014, used a superheated liquid droplet

technique in their bubble chamber to detect WIMPs described in [22]. Droplets of per-

fluorobutane (C4F10) with a diameter of around 200 µm were dispersed inside 32 jars of

water-saturated polyacrylamide. Each module from the latest generation was 17 cm in di-

ameter and 40 cm in height and contained an active mass of approximately 90g of C4F10. An

example of one of the modules is depicted in Figure 2.1 (a). Each of the jars were topped off

with mineral oil and a hydraulic manifold for pressure control and placed inside a thermally

and acoustically insulated pressure unit in groups of 4, shown in Figure 2.1 (b).

Fig. 2.1. a: Single PICASSO module filled with water-saturated polyacrylamide and C4F10

droplets. b: Thermally and acoustically insulated pressure unit housing 4 modules.

2.1.1. Detection technique

The detection technique follows one of a bubble chamber described in Section 1.4: the

controlled temperature and pressure environment set the energy threshold for the phase

transition of the superheated C4F10 droplets to occur. Once an interacting particle deposits

the necessary critical energy Ec onto one of the droplets, it vaporizes and emits an acoustic

signal captured by the piezos attached to the side of each module. Each WIMP run would

have a livetime of around 40 to 50 hours and is followed by a compression phase of 12 hours

to reduce the droplet back to its original state while preventing over-expansion and damage
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to the gel matrix. The livetime of a run is defined as the total duration during which the

detector is live and actively recording data.

2.1.2. Analysis and results

To discriminate the background acoustic signals, external sources such as neutron beams

and fast neutron sources were used to calibrate and characterize the waveforms of particle-

induced signals. The dataset goes through a series of cuts and corrections due to electronic

noise, mechanical disturbances, unexpected mystery events along the edges, etc. The final

results of PICASSO’s 231.4 kg-day exposure between March 2012 and January 2014 showed

no indication of a WIMP signal in both the spin-independent and spin-dependent sectors

with limits of 4.9 × 10−5 pb at MW = 7 GeV/c2 and 1.32 × 10−2 pb at MW = 20 GeV/c2

respectively at a 90% confidence limit as shown in Figure 1.3 and 1.4. However, the latest

results showed to have significant improvements to the previous 2012 results due to the

addition of better cuts and more data and also proved to have the best spin-dependent limit

at low thresholds of around 2-5 GeV/c2. The alpha background discrimination technique

developed by the PICASSO experiment through the analysis of acoustic signals proved to

be monumental to the future of bubble chamber since alpha events represent a large portion

of the background for this technology.

2.2. COUPP

The COUPP experiment developed bubble chambers. Deployed to SNOLAB in 2010,

using the alpha discrimination developed by PICASSO, the COUPP-4kg detector was a

fused silica bell jar with 150mm in diameter and supporting stainless steel bellows for pressure

control inside a pressure vessel filled with propylene glycol [21]. The jar encapsulated 4.0 kg

of liquid CF3I as a target fluid to their dark matter search and uses two cameras attached to

the pressure vessel to record bubble events inside the detector. Four piezoelectric transducers

were attached to the top of the jar to record the acoustic emission from the bubble formation

to discriminate background events.

2.2.1. Detection technique

As a threshold detector, the thermodynamic conditions reflect the sensitivity at which

the system operates as described by the Seitz Theory. The detector starts in a compressed
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state at around 215 PSIA and ramps down to an expanded state of 30.1 PSIA in 5 seconds to

bring the fluid below the vapour pressure, then a pressure stabilization period of 30 seconds

ensures that the detector is at the right pressure for data taking. Following this period,

the detector either triggers due to an event or times out after 500 seconds, re-compressing

the system. The trigger occurs when the recoil energy deposited on the target fluid by an

incoming particle is above the operating threshold energy of the detector, a bubble forms and

triggers the cameras to record a frame by frame sequence of images and the piezos record the

acoustics of the event. Figure 2.2 shows an image of a bubble event in the bubble chamber.

Fig. 2.2. Example of a bubble event captured by the cameras in the COUPP-4kg run. The

faint halo line indicates the separation between the target fluid (bottom) and the water buffer

(top). The piezos can also be seen attached on top of the jar.

2.2.2. Analysis and results

The data analysis consisted of three steps: image analysis to determine the number

of bubbles and spatial position of the bubbles, pressure rise analysis to identify bubbles

near the walls and acoustic analysis to classify the type of event. The neutron background

events were simulated considering the composition of the material surrounding the detector
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and the gamma efficiency was measured by placing sources inside the water tank. The

results presented by COUPP 4kg 553.0 kg-day exposure between November 2010 to June

2011 at thresholds of 7.8 ± 1.1, 11.0 ± 1.6 and 15.5 ± 2.3 keV showed 20 candidate single

nuclear recoil events and 3 multiple bubble events, up from the predicted 5.3 single nuclear

recoil events and 2.2 multiple bubble events. Despite these events passing the imposed

cuts, these events were found to be dependent on previous expansions, which lead to the

presence of unknown background events. Considering the 20 dark matter candidates, the

90% confidence limit of this result is shown in Figure 1.3 for spin-independent WIMPs and

Figure 1.4 for spin-dependent WIMPs. Despite this remaining background, the high alpha

even rate in COUPP-4kg provided the best demonstration of the efficiency of alpha acoustic

discrimination to date of >99.2%.

2.3. Previous PICO detectors

2.3.1. PICO-60 (CF3I)

Initially developed as COUPP-60, this project, along with PICO-2L, were first major

projects of the merged PICO collaboration. This experiment featured a larger scale bubble

chamber containing 36.8 kg of CF3I as opposed to the COUPP-4kg run in Section 2.2 [13].

The detector setup was a scaled-up version of the previous COUPP-4kg detector as shown

in Figure 2.3, a fused silica jar containing the target fluid supported by bellows inside a

pressure vessel.

The 1335 kg-day exposure after cuts of this run at a continuum of thresholds between 7

keV and 20 keV found 0 dark matter candidates and 1 multiple bubble event, which consistent

with the predicted 1 single bubble nuclear recoil event and 1 multiple bubble event. However,

a significant number of unexpected background events were found in the low acoustic power

region shown in Figure 2.4. Although these events were distinguishable from a dark matter

signal, the lack of understanding of their origin would prove difficult to the future of bubble

chamber detectors.

2.3.2. PICO-2L (Run 1)

The PICO-2L detector featured a 2 liters bubble chamber described in [12]. The setup

of the experiment was similar to the COUPP-4kg: a fused silica bell jar of the same size,
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Fig. 2.3. Schematic of the PICO-60 detector.

mounted piezos, stainless steel bellows, and a pressure vessel, as shown in Figure 2.5. The

primary goal of the experiment was to compare using C3F8 as a target fluid as opposed to

CF3I to see whether or not the unknown events were still present. To do so, the jar was

filled with 2.90 kg of C3F8 and the background efficiency was measured with the help of

calibrations and simulations.

Improvements to the measurable neutron background were made to the surrounding

materials of the detector such as the piezos, which contains less radioactivity than previous

ones. Also, the AP was found to be dependent on alpha energy using C3F8, which allowed an

improved acoustic cut on the data. The first WIMP search of this detector ran at thresholds

of 3.2, 4.4, 6.1 and 8.1 keV with a total exposure of 211.5 kg-day with more exposure at the 3.2

and 6.1 keV threshold. This WIMP search yielded 9 candidates at 3.2 keV and 3 candidates

at 6.1 keV. However, the same unknown background present in the CF3I run was also seen

in this run. Further investigation suggested that these events originated from particulates

merging with the water in the buffer creating a point-initiated bubble with acoustic emission

within the AP range of the WIMP search. Surface properties of the active fluid, buffer liquid
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Fig. 2.4. AP distribution between 7 and 64 kHz of PICO-60 CF3I run with neutron calibra-

tion data (black) and WIMP search data (red). An excess of unknown background events

can be seen. This background was later found to be caused by the interaction between water

and particulates.

Fig. 2.5. Schematic of the PICO-2L detector.

and jar can influence the bubble formation conditions at the interface and create excess events

at the surface. These particulates can originate from external contamination, metal fatigue

from the stainless steel bellows, and stress fracturing from silica. Although these events
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can be cut during the analysis, it greatly reduces the livetime of the run. To avoid this

background, it was suggested to either use another buffer fluid such as linear alkylbenzene.

[40]

2.3.3. PICO-2L (Run 2)

The second run of PICO-2L tested whether careful cleaning and reduced particulate

production could reduce the observed background rate. This includes the use of a fused silica

flange as opposed to the quartz flange which lowered the radioactivity of particulates, leading

to a lower background. In addition, significant attention was devoted to the cleanliness of the

detector during the reassembly to ensure maximum mitigation of the expected particulate

background. The second run was at a threshold of 3.3 keV with an exposure of 129 kg-day

and observed 1 single bubble nuclear recoil event and 3 multiple bubble events [14]. This

result was consistent with the predicted number of nuclear recoil events from radioactive

backgrounds and concluded that the unknown background from previous runs was removed.

The results are presented in Figure 1.3 for the spin-independent WIMP and Figure 1.4 for

the spin-dependent WIMP.

In addition to the world-leading limits achieved by the detector at the time, PICO-2L

brought invaluable information to the future of bubble chambers in search of dark matter.

The operating threshold of the bubble chamber was able to achieve lower thresholds than

previously capable, able to correct for the unknown background that was present in CF3I

runs and reinforce a thorough cleaning procedure to avoid the particulates in future runs.

2.3.4. PICO-60 (C3F8)

Concurrent with PICO-2L run 2, PICO-60 was rebuilt with a significantly modified de-

sign, fluid, and assembly procedure. Following the C3F8 tests with the PICO-2L chamber,

the PICO-60 detector shown in Figure 2.3 was recommissioned with 52.2 kg of C3F8 as a

target fluid instead of CF3I [15]. In order to avoid the particulate contamination found

previously, every component was cleaned and assembled at a military level standard MIL-

STD-1246C level 50 before closing the inner volume [24]. Improvements to the setup include

a new low-stress seal design between the bellows and the jar, additional cameras and a new

chiller for better temperature stability in the water tank. The first run at a threshold of 3.3

keV with an exposure of 1167 kg-day found 0 single bubble nuclear recoil WIMP candidates
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and 3 multiple bubble vents, which was consistent with the predicted 0.24 ± 0.09 single

bubble nuclear recoil events and 0.96 ± 0.34 multiple bubble events. In addition, it was

noticed that the bubble rate for this run was lower than the previous run with the improved

cleaning technique which helped reduce the number of particulate background events.

Following this run, the pressure and temperature limits were pushed to explore lower

thresholds. The detector was able to achieve a stable nucleation threshold of 1.81 keV. At

this level, increasing sensitivity to gammas in the environment would cause electron recoil

events in the bubble chamber to dominate the background. The threshold for the second

exposure was set at 2.45 keV, where the neutron background rate would be similar to the

3.3 keV run. With an exposure of 1404 kg-day, 3 single bubble nuclear recoil events and 2

multiple bubble events were recorded after the cuts, consistent with the expected neutron

background. Before the decommissioning of PICO-60, a stable threshold of 1.20 keV was

achieved with the expected electron recoil background to dominate.

The PICO experiment is currently commissioning a new bubble chamber design with the

aim of having better efficiency and limits to other current dark matter experiments. The

collaboration opted for a new "right-side up" design which attempts to further eliminate the

particulate problem present in previous detectors through the removal of a buffer fluid. A

detailed presentation of this detector will be presented in the following chapter. A summary

of the running conditions of all previous PICASSO, COUPP, and PICO runs before PICO-

40L are presented in Table 2.1.

PICASSO COUPP 4kg PICO-60 (CF3I) PICO-2L (Run 1) PICO-2L (Run 2) PICO-60 (C3F8)

Target fluid C4F10 CF3I CF3I C3F8 C3F8 C3F8

Threshold (keV) 1 to 40 7.8, 11.0, 15.5 7 to 20 3.2, 4.4, 6.1, 8.1 3.3 3.3, 2.45

Exposure (kg-day) 231.4 553 1335 211.5 129 1167, 1404

Number of

Single (Multiple)

Bubble Events

0 20 (3) 0 (1) 12 (0) 1 (3) 0 (3), 3(2)

Tab. 2.1. Summary of all dark matter detecting bubble chambers in the PICO collaboration

prior to PICO-40L.
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Chapter 3

PICO-40L

During PICO-60’s operations, some of the collaboration’s efforts were invested into the re-

search and development of the next generation of bubble chamber for direct dark matter de-

tection, PICO-40L. PICO-40L does not follow the design of the previous PICO and COUPP

detectors shown in Figure 2.3, instead the experiment opted for a right-side up type detector

as shown in Figure 3.1 (left). This completely new design aims to eliminate the use of a

water buffer as a piston, which was the cause of background events in previous PICO runs.

This design must be tested in order to move forward and apply it to the next generation of

PICO detectors, PICO-500.

3.1. Right-Side Up Design

The new right-side up design aimed to fix some problems that was present in previous

detectors. As explained in Section 2.3.2, an unknown background caused by water partic-

ulates inside the detector created an abnormally large number of unexplained background

events. Although a strict cleaning procedure was imposed to avoid this, the omission of

the water buffer would completely eliminate such issue. With this new design, the water

buffer previously used a piston for the pressure system was replaced by a fused silica piston

with a temperature gradient. Another problem the old design had was, depending on the

thermodynamic conditions of the detector, the target fluid (C3F8) could condense while the

detector was either expanded or compressed. This led to the possibility of the fluid entering

the bellows and seal regions, and either becoming trapped, cavitating on surfaces, and/or

stirring and transporting particulates down towards the active region. By flipping the detec-

tor right-side up, bubbles rise away from the bellows and metal particulates fall away from



Fig. 3.1. Left: Concept design of the PICO-40L right-side up detector. Right: PICO-40L

detector inside the pressure vessel.

the active region. Finally, the surface tension between the water and the target fluid was a

source of background reducing detector livetime. By avoiding all non-silica interfaces in the

warm region, the surface tension between two liquids is no longer present.

The detector is composed of a outer silica jar with a height of 1001mm, an inner radius

of 145mm, and a volume of 64.44L and an inner silica jar with a height of 673mm, an

inner radius of 131mm and a volume of 35.07L on top of a bellow system for pressure

control [33]. Multiple sensors for pressure (pressure transducers) and temperature (resistance

temperature detectors) are attached to components of the detector to monitor their states

and to record the operating conditions during the analysis. The detector itself is placed

inside a stainless steel pressure vessel with a radius of 457mm with a top shell and a bottom

flange of approximately 2.59m in length, as shown in Figure 3.1 (right).
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3.2. Detector Stability

One of the key parts of running a successful direct dark matter detector is to ensure

that the detector itself is as stable as possible to be able to maximize the livetime during

the WIMP search. For the PICO bubble chambers, this means minimizing any possible

downtime such as expansion time, compression time, and event rate. Figure 3.2 shows an

example of an event cycle for a PICO bubble chamber.

Fig. 3.2. Example of a typical PICO bubble chamber cycle. Pressures and times are for

reference only and can vary from one detector run to another. Before an event, the detector

starts in a compressed state and expands in a couple of seconds to reach the pressure setpoint

where the detector stays until either an event causes a trigger or a set timeout (500 seconds

in this case) is reached. There is a compression cooldown time (30 seconds in this case) after

every trigger.

3.2.1. Expansion and Compression Time

Getting the expansion and compression time as low as possible through hardware and

software optimization is crucial to maximize the detector’s livetime. The expansion time

aims to be as short as possible relies heavily on the hardware and the responsiveness of the

optimized software to reach the proper pressure set point. A necessary compression time is

required to be able to run the detector. Once a bubble event occurs, the compression of the

detector causes the bubble to collapse, which creates a local heat spike. A cooldown time

is required to reach thermal equilibrium around the collapsed bubble before being able to

expand for the next event.
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3.2.2. Event rate

Another way to gain as much livetime as possible is to reduce the event rate of the

detector since fewer events directly translate to less expansion and compression times. Other

than WIMP events and background events (explained in Section 3.4), sources of excessive

nucleation (hearafter called instabilities) of the detector can create unwanted events that

hinder its normal operation. In previous PICO detectors, this includes events caused by

particulates (Section 2.3.2), wall and interface events caused by surface tension and dissolved

gas contamination, and convective currents in the fluid due to large volumes. Although the

new PICO-40L design can help prevent some of these events, lack of experience with the

design necessitates the reevaluation of all potential causes of instability. Thorough testing of

this detector before the WIMP search is crucial to the success of the experiment. One of the

important works of this thesis presented in Chapter 4 is the creation of a clear monitoring

interface to be able to pinpoint exactly where stability issues may occur.

3.3. PICO-40L Run Plan

The PICO-40L detector is currently built and being tested for stability. The sensitivity

of the detector relies heavily on the capacity of the temperature and pressure components

to maintain its operating conditions without failure. Following all testing, the detector is

expected to start a blinded WIMP search run of 1 live-year filled with 56kg of C3F8 at a

threshold of 2.8 keV. A blind run is used to prevent an experiment’s results to be biased,

which can be unintentionally intended if an experiment sets its cuts after seeing the results.

In PICO’s case, the information of the bubble events is not revealed until after the unblinding,

where variable cuts and the expected background analysis are already set. The blind analysis

makes the results provided by the experiment more reliable.

3.4. Backgrounds in PICO-40L

As a direct detection experiment, the most important part of the experiment is to properly

mitigate and evaluate every possible background event. For the PICO-40L bubble chamber,

this means any non-WIMP interaction that can create a bubble inside the jar during op-

erations. As previously mentioned, the bubble nucleation process requires a minimal recoil

energy for the macroscopic expansion of a bubble and usually follows the Seitz Theory in
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Section 1.4. For background events that cannot be shielded against, an estimation based on

calibrations and simulations are made.

3.4.1. Nuclear recoils

A nuclear recoil can occur whenever a particle with enough energy and momentum to

scatter off a neutron inside the detector. This is the most important background to take

into consideration as it can mimic the expected WIMP-nucleon scattering produced by dark

matter. Both neutrons and neutrinos can produce a background event, but since neutrinos

have a relatively low interaction cross-section, explained in Section 3.4.4, neutrons are the

main source of this background.

In the construction phase of the detector, this background is minimized as much as

possible by evaluating against the radioactivity of optimal components that were assayed.

Some sources such as 238U and 238Th, that are present in important detector components like

piezos and retroreflector, can spontaneously fission and produce neutrons that interact with

the bubble chamber. In addition, (α, n) reactions from ambient interactions can also create

a nuclear recoil. A water bath surrounding the pressure vessel shown in Figure 3.3 blocks

ambient neutrons coming from the lab. To estimate the contribution of each radioactive

component in the experiment setup during the run, GEANT4 simulations evaluate the impact

of each of the sources based on their given geometry.

One well-established behaviour of neutrons from past experiments and external calibra-

tions is the bubble multiplicity of an event. Unlike the expected WIMP-nucleon interactions,

neutrons are more likely to produce more than one bubble along their track per event, which

allows straightforward discrimination between neutron events and WIMP events. Simula-

tions expect that the background due to neutrons from (α, n) and spontaneous fission will

produce up to 3 times more multiple bubble events than single bubble events.

3.4.2. Electron recoils

One of the large advantages of superheated liquid bubble chambers is its low sensitivity

to gammas in the operating conditions for our dark matter search. The gamma nucleation

probability increases drastically as the detector becomes more sensitive with a lower thresh-

old. To evaluate the sensitivity of PICO detectors towards background gammas, external
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Component Leakage prob.

S(M) × 104
Singles/year

× 104
Multiples/year

× 104

OV quartz jar 729 (1857) 0.0095 ± 0.0056 0.024 ± 0.014

IV quartz jar 126 (279) 0.0011 ± 0.0007 0.0025 ± 0.0015

Bellows 0.049 (0.099) 74 ± 17 151.2 ± 34.6

Titanium 0.15 (0.32) 5.4 ± 5.5 11.3 ± 11.5

Piezos 34 (71) 54 ± 79 113 ± 166

Piezos (PICO-84) 54 (111) 7055 ± 2909 14619 ± 6023

Heating 99(261) 99 (261) 939 ± 958 2255 ± 2300

Retro reflector 0.26 (0.70) 2.2 ± 0.7 6.1 ± 2.0

Camera 0.07 (0.19) 9.4 ± 2.0 25.3 ± 5.3

Lenses 0.06 (0.18) 98 ± 23 287 ± 66

PCB & LEDs 0.07 (0.18) 3.4 ± 1.4 9.1 ± 3.8

Pressure Vessel 0.03 (0.09) 358 ± 82 992 ± 226

Oil 41 (106) 57534 ± 56917 147038 ± 145439

Plastic thermal shield 0.007 (0.014) 0.93 ± 0.25 1.9 ± 0.48

Tab. 3.1. Table of simulation results from neutron recoil events of various PICO-40L com-

ponents using GEANT4 by Arthur Plante [39]. The leakage probability of each component

for single (multiple) events is based on the geometry of the simulation itself while the sin-

gles/year and multiples/year indicate the simulated expected event rate per year for single

bubble events and multiple bubble events.

radioactive sources are exposed to the jar and the nucleation probability as a function of

threshold energy is recorded.

Although the nucleation process of electron recoils in CF3I roughly followed the hot-spike

nucleation model through the release of heat described by the Seitz Model, gamma calibration

data from tests chambers show that this model failed to describe the nucleation process for

jars filled with C3F8. In [17], a fit was performed on over 20 independent calibration data

from C3F8 filled bubble chambers using multiple sources and found that the bubble nucleation

process occurs by ionization rather than by heat.
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Fig. 3.3. PICO-40L detector in SNOLAB during its final installation phase. The filled C3F8

jar is inside the pressure vessel, which is placed inside a tank to be closed up and filled with

water as a shielding against backgrounds.

3.4.3. Alpha recoils

Alpha particles from the decay of radioactive elements, such as radon and polonium,

produce a background inside the detector. These events are minimized by using components

that contain the least amount of these elements and by taking precaution during any step

of the assembly to prevent any external contamination. Before the assembly, material used

for PICO-40L are scanned for radioactive content and evaluated appropriately.
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However, alpha events can be discriminated through the analysis of their acoustic signal.

The acoustic power classifies the signal read from the piezos, corrected for the position of

the bubble, in frequency bands. This method of distinguishing between an alpha and a

neutron recoil was initially implemented in PICASSO bubble chambers. Calibration data

from PICASSO shown in Figure 3.4 show a clear discrepancy in acoustic power between

alpha dominated signals and neutron dominated signals.

Fig. 3.4. Alpha recoil calibration from the COUPP-4kg experiment [21]. The number of

bubbles as a function of the acoustic power for background data (blue) and for neutron

calibration data (red).

The ability to distinguish both signals based on the acoustic power makes it so that alpha

background does not affect the WIMP signal analysis, which means that the primary goal is

to minimize the number of alpha events in order to maximize the detector livetime of other

possible WIMP signals.

3.4.4. Cosmic rays

Depending on the thermodynamic conditions of the system, low energy interactions will

not trigger the detector due to its inability to create a bubble. The Earth receives a large

neutrino flux and can cause background in the detector. However, since the interaction cross-

section for neutrinos is relatively low with respect to the conditions at which PICO-40L will
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be running at, the number of neutrino events during the WIMP search was found to be 1.3

events per year based on simulations and the expected neutrino flux.

Cosmic muons are also a possible source of background for PICO-40L. Fortunately, the

detector is heavily shielded against them due to the 2 km rock overburded provided by the

location of the lab, which estimates that the muon flux to be less than 0.27 µ/m2/day. One

way muons interact with the detector is by scattering off electrons. However, due to the

low sensitivity of PICO-40L towards electron recoils, the background rate of these muons

are insignificant. One of the important contributions caused by muons are the ones that

induce neutrons, which are thought to be produced by the interaction between muons and

underground rocks.
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Chapter 4

Data Acquisition Software

A data acquisition system (DAQ) is crucial for any experiment and is used to collect infor-

mation about the physical condition of the experiment. Traditionally, physically writing the

numerical value of the data produced by an experiment can be a way of data acquisition.

This is done for instance to log the operating parameters of University of Montreal’s Tandem

accelerator (Section 6.1). However, with modern experiments, the success of the experiment

can heavily rely on the frequency at which the data is recorded. To optimize this process, the

use of a computerized system can automatically collect the data. It does so by converting

any signal produced by a sensor to a digital readable signal. Generally, sensors will produce

an electrical signal that will be translated through the internal circuit which results in a

digital readout. For the case of PICO-40L, a data acquisition system must be implemented

to be able to record and monitor important parameters such as temperatures and pressures

at very high frequencies (from hundreds to thousands times per second). However, to be

able to achieve this automation, a lot of internal programming is required.

One of the programs required for data monitoring is the slow DAQ, an external pro-

gram that has the capacity of remotely reading and recording parameters from the main

DAQ. Monitoring the conditions of the detector at all times is crucial to the success of the

experiment especially during the WIMP search since an operator is not always present at

the physical detector to correct any failures. In addition, a monitoring database allows a

preliminary analysis of the data during the run to ensure that nothing is going wrong. The

conception of the slow DAQ user interface program is one of the significant projects from

this thesis is presented in the following sections of this chapter.



4.1. Front end of the SlowDAQ Monitoring UI

The monitoring user interface (UI) is a program within the PICO-40L servers that is

remotely accessible through Virtual Network Computing (VNC). Instructions on accessing

the slow DAQ is found on the PICO docdb entry 4659. The goal of the program is to

ultimately be able to monitor and change certain parameters of the PICO-40L detector. It

features four tabs: an overview tab, a hydraulic system tab, a temperature system tab, and

a water system tab.

4.1.1. Overview

The overview tab displays the important detector parameters from the other three tabs

and summarizes it into a general tab as shown in Figure 4.1. However, features such as

plotting and trigger are only seen in this tab. A distinctive colored background replicating

the actual detector reflects the approximate real position of multiple sensors.

Fig. 4.1. Layout of the overview tab displaying the important parameters of the detector.
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4.1.1.1. Labels and Buttons

Various indicators for the slow DAQ are distinguishable by color. Figure 4.2 shows the

common types of indicators and their meanings. There are other indicators such as the bars

on the left of the detector that helps visualize the position of the bellows and the inner vessel.

Fig. 4.2. Example of the type of indicators in the slow DAQ. The red and green indicators

reflect the state of a part of the detector and are denoted by either On/Off or Open/Closed.

The blue indicators are buttons that are clickable and modified. Gray indicators are read-

only static labels.

4.1.1.2. Admin mode

An admin mode was implemented in the program (top left corner of Figure 4.1) to prevent

any accidental changes to the state of the detector. The admin prompt, accessible through

any tab, requires a predetermined password (Figure 4.3 (left)) giving a 900-second access to

the user to make changes to the detector and can be refreshed by reentering the password.

Any user that does not have admin access will only be in a read-only mode and presented

with the message shown in Figure 4.3 (right).

Fig. 4.3. Left: Prompt for admin access to be able to make changes to the detector. Right:

Error message denying any attempts to change the system without admin access.
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4.1.1.3. Plotting tool

The overview tab will feature a plotting tool on the right side that will allow the user to

select up to four parameters to plot as a function of time. An external plotting software is

opened and provides real-time updating plots of the given parameters. Because the plotting

software is independent of the main UI, it can also be accessed from the command line.

Fig. 4.4. Example of a plot from the slow DAQ. The plot shown displays the pressure of

PT1 (Pressure Transducer measuring the pressure inside the outer jar) of PICO-40L as a

function of time over the span of 12 hours. The variation in pressure in this plot shows the

compressed state at high pressure and expanded state at low pressure during the testing

phase.

4.1.2. Hydraulic System

The hydraulic system displays and controls the pressure system of the detector. This tab

is utilized to visualize and change the state of different valves as a method of regulating the

inner vessel’s pressure. Figure 4.5 shows the design of the hydraulic system tab

4.1.3. Temperature System

The temperature system tab displays all the temperature-related sensors inside the de-

tector. The majority of the sensors are resistance temperature detectors (RTDs) located in
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Fig. 4.5. Layout of the hydraulic system tab for pressure readouts and valve control.

places where temperature readouts are crucial in order to properly monitor the operating

conditions. On the left side of the UI, chillers and heaters can be turned on and off and the

temperature setpoint can be adjusted as well. In addition, the PID parameters dictating the

automatic temperature controls of the hot region (denoted by the light red color in the back-

ground), cold region (denoted by the sky blue color in the background) and the camera can

be modified through this program. Finally, the conditions, such as temperature, humidity,

and pressure, of all four cameras on the pressure vessel are monitored and the temperature

of these cameras can be adjusted with the camera chiller button. Figure 4.6 show the design

of the temperature tab.

4.1.4. Water System

The water system tab is the last tab on the UI and is used to control and monitor

the conditions of the outer water tank. RTDs are placed inside the tank to monitor the

temperature of the water. The water tank chiller parameters can also be adjusted to change

the temperature of the water. Furthermore, certain valves can be opened and closed to

dictate the flow between the water inside and outside the tank.
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Fig. 4.6. Layout of the temperature system tab for temperature readouts, camera readouts,

and chiller/heater controls.

4.2. Back end of the SlowDAQ Monitoring UI

The front end of the monitoring UI program is held together by multiple programming

languages and codes. The diagram presented in Figure 4.7 summarizes the steps taken to

provide a finished product. Further information is presented in the following subsections.

4.2.1. UI Design

The graphic element of the user interface is coded with Glade, an interface designer that

allows the user to place different kinds of widgets on a designated window and compiles all

the information regarding this window, such as widget positions and sizes, into an Extensible

Markup File (XML) to be read by another code that manages the signals associated to the

widget. Every indicator is shown in Figure 4.2 is associated with a dynamic text label to

display a value. For blue indicators, a button widget is stacked on top of the label and

associated with a click signal to create a clickable area.
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Fig. 4.7. Diagram showing how the UI reads and writes information to the detector through

a series of codes. The layout is made with the Glade UI Designer (green), supported by a C

code that utilizes the GTK library (purple) to read and write from both the pressure (red)

and temperature (blue) PLCs. The output UI (yellow) is created and can be accessed from

any computer (teal).

4.2.2. Code

The C based code supporting the interface is tasked to change the labels off read values,

create a trigger signal for the buttons and send user inputs to the detector. The code starts

by reading the UI information contained within the .XML file described in Section 4.2.1 as

a structure for the code.
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4.2.2.1. Connecting to Modbus

To read and write values from and to the detector, a Python code was written by the

collaboration and then modified for the specific needs of this program. The Modbus protocol,

a system that universalizes communication between different components of DAQ machines,

is used for the exchange of values between the code and the on-site DAQ. Each readout such

as pressure, temperature, and state from both the pressure PLC and the temperature PLC

has an associated Modbus address to it and can be retrieved from this algorithm. Parameters

of this code are exchanged between the C code and the Python code via a library designated

for cross-language interpretation.

4.2.2.2. GTK

In the main C code, the GTK library is used to link all the widgets and declare them

as variables inside the code to be able to manipulate them. Also, other functions in the

library proved to be very useful such as the ability to dynamically change the labels based

on a predetermined fixed interval of time and display the variables retrieved from the Python

code.

4.3. Database Logging and Alarms

Another goal of the slow DAQ system was to create a running program that is able

to log all the data and send out alarms based on the alarm conditions. This program is

written by Chen Wen Chao and is independent of the monitoring UI described previously.

The database logging script is written in Python based on the MySQL database managing

system and compiled using Cython. The diagram presented in Figure 4.8 shows a flowchart

of how the logging and alarm process works and will be further explained in the text.

The .XML files provided by the pressure PLC and temperature PLC contains the follow-

ing information:

• PLC server address

• Modbus address for each variable

• Alarm conditions for each variable

The script begins by retrieving all the variables from both of the files and generating an

alarm list based on the preset conditions. The script then accesses the PLCs via Modbus,

40



Fig. 4.8. Diagram of how the database logging system functions. Two .XML files from both

pressure and temperature PLCs are read, alarm conditions are checked and recorded to the

database.

reads all the variables, and checks whether any of the alarm conditions are met. Finally,

the variables are then stored in a MySQL database and the script loops back to reading the

PLC every second. Every day at midnight, the MySQL database is dumped and stored into

the servers.

In the case where one of the alarm conditions is triggered, email and SMS alerts are sent

to a designated list of recipients. If the condition of the alarm is unchanged within a set

interval of time, a reminder is sent until it is corrected. A user can edit the state of the

alarms and the email/SMS list through instructions given in the documentation.
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Chapter 5

PICO-0.1 Detector

Multiple smaller test chambers are engineered for the purpose of calibrating the bigger bubble

chambers such as PICO-40L. At Université de Montréal, the PICO-0.1 bubble chamber is

used to calibrate the response of different types of particles, including gammas. This chapter

will describe and present the detector itself while Chapter 6 will describe the coherent photon

scattering measurement made using this detector.

5.1. Setup

The PICO-0.1 detector was built by Fermilab as a small version of a real PICO detec-

tor used for calibrations. It follows the same idea as a traditional PICO bubble chamber

explained in Section 2.3.2. Figure 5.1 shows the setup of PICO-0.1 and lists its main com-

ponents. The setup is further explained in the following sections with number references to

the figure.

The fused silica pressure vessel (1), a XQ80 designed for high-pressure chemical reactions,

can hold up to 75 ml of target fluid and is held on by a stand. The jar is able to withstand

high pressures provided by the hydraulic system (4) without the need for a pressure vessel

due to its thicker walls of 0.9 cm and small radius. The pressure system is comprised of

two accumulators, one for high pressure (over 150 PSIA) and one for low pressure (20-70

PSIA), filled with mineral oil, and is regulated by electronic valves controlled by a National

Instruments synchronous controller and asynchronous DAQ computer using Labview linked

to it. The top hat shaped bellow system (3) is filled with oil and two steel bellows. Figure 5.2

shows the inside of the top hat when it is removed. The pressure inside the jar is controlled

by changing the compressing and expanding the bellows with the hydraulic system. The



Fig. 5.1. PICO-0.1 setup: 1. Fused silica jar, 2. Piezoelectric sensors, 3. Top hat containing

bellows, 4. Pressure system, 5. Valve system for feeding and evacuating fluids, 6. Water

bath, 7. LEDs, 8. One of two camera.

valve system on top of the bellows (5) is used to fill the jar with oil, which is used as a buffer,

and target fluid. After the initial fill, an oil-filled capsule and a bleeding port are used to

maintain a low-pressure differential between the outside and inside of the bellows by either

adding or removing the buffer oil, this is mainly to prevent putting too much pressure on the

bellows and breaking them. Two piezoelectric sensors (2) are installed near the top of the jar

to capture the acoustic signals produced by the bubbles. However, due to the thickness of the

jar, the signal read by the piezos is limited in amplitude and are not used for the measurement

described in Chapter 6. The detector is placed inside a water-filled bath (6) connected to

an external chiller to control the temperature within the detector. Four temperature sensors
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are placed inside the bath at different heights to monitor the temperature gradient within

the bath. Four pressure transducers placed at key spots are used to monitor the pressure

of the accumulators, the pressure regulator, the bellows, and the target fluid. The pressure

and temperature sensors are required to be able to calibrate the threshold of the detector to

prevent any damage to the detector caused by overpressure. Two sets of LEDs (6) are used

to add brightness to the picture quality produced by both cameras (8).

Fig. 5.2. Left: Bellows system inside of the cover regulating the pressure inside the jar

during operations. Right: Close up of the top hat of the detector containing the bellows

system.

5.2. Assembly and Tests

Before taking any calibration measurements using the PICO-0.1 bubble chamber, the de-

tector is to be disassembled, cleaned, reassembled, filled, and tested to ensure the quality of

the data during the measurement. After previous measurements, the detector is usually left

in an idle compressed state and ready to either take new measurements or to be reassembled

with a new target fluid. Even when using the same fluid, a reassembly is also recommended

if the previous calibration was lengthy. This is mainly due to the possibility of passive con-

densation of gaseous freon inside the bellows section of the detector leading to spontaneous

boiling that limits the operable setpoint expansion pressure. Because of the smaller size of

this detector compared to PICO-60 or PICO-40L, the active fluid can be easily and quickly

changed for different calibration measurements.
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After disassembly, the components of the detector are thoroughly cleaned to prevent any

unwanted bubble events during the run phase due to residual particles. Because most of the

components have been in contact with some sort of oil in the previous assembly, multiple

rounds of cleaning are performed in order to ensure that no oil is left on any piece before the

final assembly. All the non-electronic components are hand cleaned with soap and water to

remove the majority of the oil. Afterward, inside an ISO 4 cleanroom, the components are

then placed inside an ultrasonic bath to be washed once with RadiacWash for around 30-45

minutes and once without for 20-30 minutes. Finally, the final reassembly of the detector is

done in an ISO 3 cleanroom to minimize unwanted particles coming in contact with the inside

of the jar. Some external components, such as the stand, do not need to be meticulously

cleaned since they will be in contact with oil anyways during the assembly

A leak check is done using a helium leak detector to verify that all seals are properly

done and that there no possibility of a leak after the assembly. After adding oil as the buffer,

a procedure describes the steps to follow to fill the outside of the bellows with mineral oil

and to pressurize the accumulators. The active fluid is slowly fed through the valve system

through condensation until an appropriate amount of liquid has been added to the jar.

Careful attention must be given during the fill since the droplets can start to condensate

inside the bellows if the flow is too fast. Any liquid stuck inside the steel bellows can cause

instabilities during the data acquisition and cannot be easily removed without doing a full

disassembly.

5.3. Stability Tests

With the fill complete, the testing phase begins by constantly expanding and compressing

the detector using the DAQ computer to verify that the pressure drop and rise are consistent.

In a previous testing phase, the pressure dropped noticeably slower than expected and was

unable to reach the designated set point. In addition, the pressure inside the jar and the

oil inside the top hat was slowly equalizing, meaning that there was a possibility of a leak

causing fluid to be exchanged between both systems and is further explained in the following

section. If the detector shows no sign of problems when compressing and expanding, the

next step is to test the threshold range of the detector to see whether or not it can reliably

reach the pressure it has to for the desired calibration measurements.
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5.4. 2018 Assembly and Tests

To perform the measurements explained in Chapter 6, the assembly of the detector and

fill with C3F8 as the active fluid, following the C2H2F4 calibrations by Frédéric Tardif, was

done in late 2018. During the assembly, it was noticed that the small bellows were not

straight, but a bit crooked. This was most likely caused by unintentionally large forces

applied to them due to undetected leaks or poor handling. After performing a helium leak

test on both bellows, it was concluded that no apparent leaks were present. Although the

assembly went smoothly, a major issue was seen during expansion and compression tests

while testing for stability shown in Figure 5.3.

After several expansion and compression cycles, the detector was not able to reach the

pressure set point and the pressure inside the regulating bellows was slowly going down.

In addition, the pressure differential between the pressure inside bellows and the pressure

in the jar was slowly going towards 0 in both the expanded and compressed state, it was

clear that the integrity of the detector had been compromised. It was suspected that the

slightly crooked small bellows ended up breaking and was leaking causing an exchange of

fluids between the outside of the bellows and the inside, eventually equalizing the pressures.

After the disassembly, it was clear that the small bellows were already on its last legs. Figure

5.4 shows a picture of the deformed bellows right after the removal of the top hat.

A thorough inspection of the bellows confirmed that some areas of the bellow convolutions

were ripped. The first idea was to replace the existing bellows with a spare part within the

collaboration, but to no avail since no spare bellows with similar specifications were available.

The second idea was to solder the teared parts of the bellow to be able to reseal them, but

even after the soldering, a helium leak test still indicated a large leak. The final solution

was to find a manufacturer that sells stainless steel bellows with similar specifications. Most

of the companies that were contacted replied that to produce these stainless steel bellows,

they would need to make custom molds, which made the cost over the expected budget.

Fortunately, a company was able to sell similar bellows that were already in stock at a

moderate cost. However, miscommunications and disagreement over payment terms caused

the shipment to arrive much later than expected, which delayed the progress of the project.

Upon the arrival of the bellows, the previous flanges were soldered onto them and a leak test

was performed to ensure everything was working as intended.
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Fig. 5.3. Plot of the pressure differential between the pressure inside the jar (active fluid)

and the regulating pressure at the bellows for multiple cycles. The expanded states is shown

in red and the compressed states are shown in blue. The pressure differential goes towards

0 in both the expanded and compressed state.

5.5. The Future of PICO-0.1

PICO-0.1 will remain an important tool used to make important measurements at Uni-

versité de Montréal. Following the coherent photon scattering measurement presented in

Chapter 6, an attempt to measure the directionality of bubble events inside PICO-0.1 will

be made by applying an electric field to the active fluid inside the quartz jar. Further

down the line, there will be plans to change the detector to the "right-side up" design like

PICO-40L, which will allow further testing of this new technology.
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Fig. 5.4. Picture of the bellows of PICO-0.1 after the removal of the top hat following tests

showing instabilities inside the detector. This kind of deformity (shown in red) can trap

condensed freon inside the bellows, hindering the normal operation of the detector.
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Chapter 6

Coherent Photon Scattering Measurements

With direct dark matter experiments being unable to claim a dark matter signal in the

current energy scale in both the spin-independent (Figure 1.3) and spin-dependent (Figure

1.4), future detectors of these experiments will have to explore lower energy scales. As

a consequence, recoils produced by lower energy particles such as CEvNS (Section 1.6)

will start dominating background events. Amongst these backgrounds, MeV-scale photons

scattering off the atom of the target can create a recoil signal within the detector at sub-

keV thresholds. This coherent (nuclear Thomson) photon scattering will start to become a

significant background for experiments running at low thresholds like SuperCDMS, which

leads to future detectors having to decide to either invest resources into mitigating it or

develop a discriminating technique to isolate this type of produced signal [41].

Although it is unlikely that future PICO bubble chambers will be able to achieve this

sub-keV threshold, the PICO-0.1 chamber filled with C3F8 as the active fluid described in

Chapter 5 can be used in the prescence of a source to provide the world’s first measurement of

this effect. To produce recoils above the PICO detection threshold of several keV, high energy

photons of 6.13, 6.92, and 7.12 MeV are produced using Université de Montréal’s Tandem

accelerator. These high energy gammas are produced through the 19F(p,αγ)16O interaction

by creating a proton beam hitting a CaF2 target. The C3F8 filled PICO-0.1 detector is placed

in proximity of the target producing gammas to record the events. Previously, Frédéric Tardif

had attempted to measure this Thomson scattering with the C2H2F4 filled PICO-0.1 bubble

chamber but was unsuccessful due to the high background events caused by low-energy

neutrons from the dissociation of deuterium inside the active fluid itself [47].



To detect nuclear Thomson scattering, this measurement looks for a significant increase

in the number of bubble events inside the detector at specific threshold energies. It is also

necessary to evaluate and measure all possible backgrounds that can affect the results.

6.1. Université de Montréal Particle Accelerator

One of the advantages of operating PICO-0.1 at Université de Montréal is the different

types of interactions that can be produced using the particle accelerator. This tandem based

accelerator utilizes a two-step ion acceleration process through a high voltage terminal to

produce the desired particles. The beam current is prepared and optimized in the control

room by manipulating different deflectors to finally hit the desired target. The floor plan of

the particle accelerator is shown in Figure 6.1.

Fig. 6.1. Plan of Université de Montréal’s particle accelerator. 1: Source. 2: Tandem

accelerator. 3: Analysing magnet. 4: Faraday cage and switching magnet. 5: Target room.

6: Control room.

A source is placed at the beginning of the line (1) to be stripped and accelerated by the

tandem (2). The beam passes through a magnetic deflector (3) before the Faraday cage (4)
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and split to the desired beamline in the target room (5) where the detector lies. The control

room (6) electronically operates the beam in a radiation safe area. A safety procedure is

followed and multiple radiation counters are placed around the room to ensure the security

of anybody working in the facility.

6.2. Mechanism

There are a few sub-GeV interactions that can occur with a photon: incoherent scat-

tering (Compton or Thomson), coherent scattering (Rayleigh, Delbrück, nuclear Thomson

or nuclear resonance), photoabsorption, pair production, and photonuclear reactions. The

interaction of interest here is the nuclear Thomson scattering, which occurs when energy

from photon is deposited onto a nucleus and creates a recoil. For eV scale direct dark matter

experiments, coherent scattering dominates over incoherent (Compton) scattering and will

produce an enhanced spectrum of low-energy recoils [41]. For this measurement, at the

energy scale of the gamma source, the detector is highly sensitive to this interaction. Figure

6.2 depicts a simplified example of a single interaction that can occur within the detector.

Fig. 6.2. An incoming gamma ray with energy Ei hits the atom of the target fluid, is

backscattered with energy Ef , and produces a recoil energy that is recorded if the recoil

energy Er meets the threshold requirement of the operating conditions.

53



The recoil energy produced by this interaction is given by:

Er =
(2Eγ sin

1
2
θ)2

2Mc2
(6.2.1)

where Eγ is the gamma energy, θ is the angle of interaction, and M is the mass of the

atom. The maximum recoil energies for gamma rays backscattering from either the 12C and
19F atoms are listed in Table 6.1.

Gamma Energy (MeV) Carbon Recoil (keV) Fluorine Recoil (keV)

6.13 6.66 4.20

6.92 8.52 5.38

7.12 9.02 5.70

Tab. 6.1. Recoil energy of the interaction between the gamma ray at a specific energy and

both the 12C and 19F atoms.

6.3. Experimental Setup

The PICO-0.1 detector setup is placed at the end of Université de Montréal’s 0 degree

beamline (line perpendicular to the Tandem accelerator in Figure 6.1) to be exposed to the

produced gamma rays. While the beam is running, the DAQ is remotely accessed through

a computer connected to the virtual network in the particle accelerator’s control room to

be able to safely control the detector settings. The experimental setup of this calibration is

depicted in Figure 6.3.

The BGO detector is used in order to measure the relative bubble nucleation probability

of PICO-0.1. A discriminator with a narrow acceptance window, set around the 6.13 MeV

peak, provided a measure of the photon fluence in that region. The signal is stretched and

then digitized by the DAQ. The slow digitization rate of the DAQ necessitated a relatively

low count rate to prevent pileup. As a result, an extremely narrow discriminator window

was chosen and the BGO was placed further away from the photon production source.

6.4. Expected Backgrounds

As for most measurements, there are expected backgrounds that will have to be taken

into account during the analysis of the results.
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Fig. 6.3. Experimental setup of the calibration. Protons produced by the particle accelera-

tor (1) interacts with the CaF2 target (2) placed at the end to create gammas. The PICO-0.1

detector (3) is placed 24.5 cm away from the target to be exposed to the produced gamma

rays. A 7.6 cm diameter and 5 cm thick Bismuth Germanate (BGO) based gamma counter

pointed towards the PICO-0.1 detector (4) is placed 157 cm away from the target to measure

the relative number of events occurring in PICO-0.1 during the analysis.

6.4.1. Environmental Background

These are background events from ambient interactions. This can include neutrons and

gammas from the environment interacting with the active fluid during the run. To correct

for this background, events are recorded by PICO-0.1 for several days without the gamma

source and are subtracted from the real run dataset. Events caused by this background

are expected to be minimal since gammas that will interact with the active fluid are not

abundant in the environment and the bath of water surrounding the jar is also used as

shielding against neutrons.

Also, alpha events produced by the decay chain of 222Rn are expected to have nuclear

recoils of over 100 keV and are nearly 100% efficient [26, 20]. Although this presents itself as

a significant background to the experiment, its contribution can be estimated by recording

higher threshold events outside of the region of interest but lower than 100 keV to keep its

high bubble nucleation efficiency.

6.4.2. Deuterium Background

The limiting factor of Frédéric Tardif’s attempt at measuring this coherent photon scat-

tering was the presence of dissociating deuterium in the C2H2F4. Although the C3F8 does

not contain hydrogen, the water bath surrounding the active fluid may be a background.
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To see whether or not this background is significant, 1g of fully deuterated styrene sample,

which contains as much deuterium as about 64L of ordinary water, was placed between the

beam and the detector, and the event rate was examined. A significantly enhanced rate of

events from deuterium dissociation would be expected in the presence of this additional deu-

terium, providing an upper limit on the rate of this process in the 1 L of water surrounding

the detector from which low energy neutrons could efficiently enter the detector and produce

a bubble

6.4.3. Other Beam-on Backgrounds

Alpha events produced by the decay chain of 222Rn are expected to have nuclear recoils

of over 100 keV and are nearly 100% efficient [26, 20]. Although this presents itself as a

significant background to the experiment, its contribution can be estimated by recording

higher threshold events outside of the region of interest but lower than 100 keV to keep its

high bubble nucleation efficiency.

6.5. Production of Gamma Ray

To produce the gamma rays of the specified energy for the experiment, the accelerator

process explained in Section 6.1 is used. The source and beam were set up to produce a

1.4 MeV proton beam to collide with the CaF2 target of several nm thick at the end of the

beamline. This documented production method explained in [49] is able to produce 6.13,

6.92, and 7.12 MeV gamma rays used for this calibration through the 19F(p,αγ)16O reaction.

The mechanism of this reaction exploits the high energy gamma emission from energy level

transitions of the excited states of 16O.

After setting up Université de Montréal’s particle accelerator to produce the desired

proton beam energy and optimal beamwidth with the help of an operator, a test run was

done to measure the frequency of bubble events inside the jar. For a good data set, the time

it takes for a bubble to be produced has to be long enough so that the possibility of two

overlapping events is as low as possible but it has to be fast enough so that as much data as

possible can be recorded during the data acquisition period. After a couple of dozens of test

events, the beam current was adjusted to be (0.80±0.02)µA such that events were occurring

on average at about 10 to 15 seconds after the beam starts at the lowest threshold operating
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conditions. The uncertainty on the current is estimated by observing of the current monitor

in the control room.

6.6. Run Conditions

Before the data acquisition period, the PICO-0.1 detector settings have to be set at

the desired temperature and pressure conditions. Options in the DAQ gives the user the

choice to provide multiple settings of pressure during the run. Then the program randomly

selects the pressure of the next expansion after each event based on the given weight of each

input. The randomization of the pressure setpoints is to avoid any bias due to time varying

backgrounds within the run. The C3F8 filled chamber calibration run had two independent

data acquisition periods and the approximate run conditions are shown in Table 6.6 for

the first run and Table 6.7 for the second run. During both data acquisition periods, the

temperature of the chiller was set at 14◦C.

During the run, the DAQ sends an electrical signal to the software controlling the particle

accelerator before the expansion to turn on the beam 10 seconds after the beginning of the

expansion, this lets the detector reach the pressure set point before being exposed to the

gammas. Once 10 seconds have elapsed, the beam starts, and gammas are produced via the
19F(p,αγ)16O reaction.

6.7. Expected Number of Events

The expected number of events coming from the coherent photon scattering can be com-

puted given the conditions of the setup. The first step is to figure out the number of gammas,

which are produced via the 19F(p,αγ)16O reaction using the 1.37 MeV resonance, reaching

the active fluid inside PICO-0.1 after the production at the beamline and then account for

the interaction cross section.

6.7.1. Photon production

The rate at which the photons are produced at the beam can be computed using the

following equation:

Yield =
Avogadro Number× Cross Section× Resonance Width

Stopping Power× CaF2 Molar Mass
(6.7.1)
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Where the stopping power of CaF2 for 1.37 MeV protons was given by [23] and the

interaction cross section and resonance width of the 19F(p,αγ)16O reaction was provided by

[46]. Table 6.2 summarizes the parameters used in equation 6.7.1.

Stopping Power (MeV cm2 /g) (1.41±0.03)×102

CaF2 Molar Mass (g/mol) 78.07

Avogadro’s Number (/mol) 6.02×1023

Interaction Cross Section (cm2) (3.51±0.27)×10−25

Cross Section Energy Width (MeV) (1.19±0.12)×10−2

Proton Current (e/s) (5.0± 0.1)× 1012

Tab. 6.2. Summary of the variables used for the number of photons produced.

Using Equation 6.7.1, this leads to a photon production rate of (2.3±0.3)×106 photons/s.

The 19F(p,αγ)16O reaction using 1.37 MeV protons produces 6.13, 6.92 and 7.12 MeV photons

with a 92% yield and a branching ratio of 76.20%, 11.50%, and 4.30% respectively [43].

6.7.2. Mass attenuation

The second factor to take into account is the proportion of photons lost due to the mass

attenuation of the material the photons will have to go through before reaching the active

fluid. Given the highly penetrating photons, the scattering is negligible and a 1-dimensional

model can be used to approximate this attenuation. Figure 6.4 depicts an example of the

path of a photon.

To calculate the attenuation, Beer-Lambert’s law describing the attenuation of light in

the material its travelling inside is:

Intensity = e−
µλ
ρm (6.7.2)

Where µ is the mass attenuation coefficient, λ is the area density, and ρm is the mass

density. Table 6.3 lists the length of the medium and the density and Table 6.4 lists the

attenuation coefficients provided by graphs taken from the National Institute of Standards

and Technology [31] and extracted by Engauge [36] and the final attenuation.

The total mass attenuation for 6.13, 6.92, and 7.12 MeV photons are (89.2 ± 2.0)%,

(89.6± 2.0)%, and (89.8± 2.0)% respectively.
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Fig. 6.4. The path of a photon coming out of the end of the beamline reaching the active

fluid. It starts by goes through the air (1), then reaches the acrylic water bath wall (2),

passes by the water (3), then the quartz jar (4) and finally reaches the active fluid (5). Half

of the active fluid’s volume is taken into consideration in this calculation.

Medium Length (in cm) Density (in g/cm3)

Air (gas) 11.37 0.0012

Acrylic (solid) 0.63 1.18

Water (liquid) 10.35 0.00100

Quartz (solid) 0.902 2.2

C3F8 (liquid) 1.25 1.38

Tab. 6.3. Table of length in medium with their respective densities.

6.7.3. C3F8 Cross Section

The cross section for the nuclear Thomson scattering is given by:

σT =
8π

3
(
α~Z2

mc
)2 (6.7.3)

Where α is the fine structure constant, ~ is the reduced Planck constant, Z is the atomic

number, m is the mass of the nucleus and c is the speed of light. Using this formula, the

interaction cross section for on the nucleus is 8.89×10−8 cm2/g for 12C and 1.26×10−7 cm2/g

for 19F. This gives a total cross section for C3F8 of 1.85 × 10−8 cm2/g. From the density

given in Table 6.3 and a volume of (25.0 ± 0.5) mL, the jar contained a total of (34.5 ±

0.7) g of C3F8. By multiplying the cross section by the photon production and taking into
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Medium (Photon Energy) Mass Attenuation Coefficient (in cm2/g) Intensity (in %)

Air (6.13 MeV) 0.0250 99.97±0.40

Air (6.92 MeV) 0.0238 99.97±0.42

Air (7.12 MeV) 0.0234 99.97±0.43

Acrylic (6.13 MeV) 0.0263 98.06±0.37

Acrylic (6.92 MeV) 0.0250 98.16±0.39

Acrylic (7.12 MeV) 0.0244 98.20±0.40

Water (6.13 MeV) 0.0277 99.97±0.36

Water (6.92 MeV) 0.0263 99.97±0.38

Water (7.12 MeV) 0.0258 99.97±0.39

SiO2 (6.13 MeV) 0.0266 94.86±0.36

SiO2 (6.92 MeV) 0.0255 95.07±0.37

SiO2 (7.12 MeV) 0.0258 95.00±0.37

C3F8 (6.13 MeV) 0.0243 95.91±0.40

C3F8 (6.92 MeV) 0.0232 96.08±0.41

C3F8 (7.12 MeV) 0.0218 96.32±0.44

Tab. 6.4. X-Ray mass Coefficients in cm2/g of each material a photon goes through for

each photon energy provided by NIST. The error on each value is 0.0001 and reflects the

uncertainty on the value that was extracted from Engauge. The intensity is computed using

Equation 6.7.1.

account the mass attenuation, the mass of C3F8 and the mean distance between the source

and the target fluid, the interaction rate is expected to be (1.60 ± 0.21)×10−4 events/s.

6.7.4. Thomson Scattering Spectrum

To incorporate the expected PICO-0.1 response based on the operating conditions of

the detector, the normalized integrated Thomson scattering spectrum formula calculated by

Frédéric Tardif [47] is used:

R(Eth) = 1− 3

4

mc2

E2
γ

Eth +
3

8
(
mc2

E2
γ

Eth)
2 − 1

8
(
mc2

E2
γ

Eth)
3 (6.7.4)
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Threshold (keV) 6.13 MeV 6.92 MeV 7.12 MeV Total

2.6 0.458 0.550 0.569 0.475

3.2 0.350 0.473 0.496 0.372

3.9 0.194 0.376 0.407 0.228

5.0 0.081 0.188 0.242 0.102

6.4 0.016 0.080 0.090 0.028

8.7 0 0 0.013 0.001

12.1 0 0 0 0

17.8 0 0 0 0

Tab. 6.5. Table of the expected response of C3F8 filled PICO-0.1 bubble chamber at dif-

ferent energy thresholds for all 3 photon energies. The total expected response in the last

column was calculated by taking into account the relative branching ratios given in Section

6.7.1.

Where m is the mass of the nucleus, Eth is the threshold energy, and Eγ is the energy of

the gamma. Table 6.5 lists the expected response for C3F8 at all 3 photon energies.

6.8. Data Acquisition Period

The two data acquisition periods were in August 2019 and November 2019. During the

first run, the BGO counter did not properly record gammas during the background run,

possibly because it was looking at the wrong energy window. During the second run, a

synchronization issue between the beam start signal and the actual start of the beam was

present. After the expected 10-second expansion delay, the beam on signal in the DAQ

was set to true while the beam took an extra couple of seconds to actually turn on. This

permitted the detector to collect ’beam on’ data without actual beam. The fix for this was

to provide a return signal from one of the Faraday cages (4 of Figure 6.1) where the beam

on boolean inside the DAQ would only turn true if a beam was detected. Events prior to the

fix were kept and the live times were adjusted in the processing based on the first recorded

gamma by the BGO detector.
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6.9. Data Processing

After taking data, the data itself is stored in folders as images of frames of the bubble

formation and text files with all the measured parameters to be processed and analyzed.

The first step of processing the raw data is to upload the data onto the Fermilab server

which contains all the processing and analysis codes. Although this step is usually done

automatically by a weekly scheduled sync program with the local DAQ server, it had to be

done manually due to a failure in the hardware. All beam events and background events

were uploaded.

In the raw data, each event contains a slowDAQ log file that records the state of the

detector such as the temperatures and pressures every 5 ms. Although the raw information

can be useful for certain parts of the analysis, for the most part, a processed version that

compiles all the useful information of each event into a single line is used. The processing

scripts developed for previous PICO-0.1 calibrations used for not only PICO-0.1 but all the

calibration chambers within the collaboration is used to compile all the events from both

runs. Also, the data goes through an image analysis script that looks at the images from

each event to come up with important information such as bubble multiplicity. Events such

as Figure 6.5 would be tagged by the script to have more than one bubble. Without this

program, the other reliable way would be to manually handscan every event.

6.10. Data Analysis

Once all the data is processed on the servers, the analysis of the data can begin. The

analysis aims to cut all the bad events from the data using conditions for both the run and

background data and provide results in the form of a binned graph. The analysis is done on

MATLAB and the base code is written by Mathieu Laurin and modified for this run. An

additional script was written to retrieve the livetime of the events. Since one of the problems

that was encountered during the data taking was the desynchronization of the time between

the beam start and the event livetime, the script took that into consideration and provided

the proper livetime for all events.
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Fig. 6.5. Picture from one of the two cameras of a PICO-0.1 bubble event with more than

one bubble. (Bottom of the jar)

6.10.1. Analysis Cuts

The first cut on the data run is the livetime cut. By imposing that the livetime of the

event is greater than the time it takes for the beam to start, any early triggers that are

clearly background events are removed. Second, a cut is imposed on the type of trigger each

event is: all non-camera triggers are removed. Normally, bubble events are detected and

triggered by the cameras. However, when there are instabilities inside the detector, such

as abnormal pressures, the DAQ can trigger and create an event even though there are no

bubbles. Lastly, any events that do not have exactly one bubble are discarded. This is tagged

by the processing and multiple bubbles are most likely caused by a neutron interaction rather

than the interaction of interest.

6.10.2. Event Binning

Once the dataset goes through all the cuts, the events are separated into bins matching

their thresholds. For each pressure listed in Table 6.6 and 6.7, a bin is created accepting any
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event that falls within 2 PSIA of each pressure and falls within 1◦C of the set temperature.

For example, an event that has an average pressure of 30.5 PSIA and a temperature of 14◦C

would fall into the 30 PSIA bin, this is because of the pressure set on the DAQ is not perfectly

exact and can slightly fluctuate during an expansion especially at lower pressures. Any events

that do not belong in any bins are discarded. The number of events, background events,

livetimes, and background livetimes are listed with its associated pressure and threshold in

Table 6.6 for the first run and Table 6.7 for the second run. For the second run, extra

weighting was given to the 30 and 35 PSIA pressures to have more statistics in that region.

6.10.3. Analysis Summary

Table 6.8 summarizes and compiles the data from both runs. The number of BGO

background gammas for the first run is noticeably lower than the one of the second run,

which is most likely caused by a shift in the energy window during the background data

acquisition. Due to this issue, the analysis and discussion will focus on the second run.

Pressure (PSIA) Threshold (keV) Events Bkg Events Livetime (s) Bkg Livetime (s)

25 2.6 116 133 1674 17458

30 3.2 117 84 1625 18796

35 3.9 107 81 1791 18710

40 5.0 100 62 1789 18838

45 6.4 105 80 1686 19493

50 8.7 102 56 1820 18677

70 48.8 80 31 2840 18689

Tab. 6.6. A summary of the pressures, thresholds, number of events, number of background

events, livetimes and background livetimes for the first run (August).

6.11. Background Subtraction

The expected backgrounds listed in 6.4 can now be subtracted from the event data.

The first background is the background contribution of ambient interactions. These were

backgrounds measured when the gamma production was halted and are listed alongside the
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Pressure (PSIA) Threshold (keV) Events Bkg Events Livetime (s) Bkg Livetime (s)

30 3.2 245 441 4621 93152

35 3.9 245 395 4294 94217

40 5.0 155 218 2646 59344

50 8.7 135 171 2695 59352

55 12.1 129 136 2842 58606

60 17.8 113 138 3235 58677

Tab. 6.7. A summary of the pressures, thresholds, number of events, number of background

events, livetimes and background livetimes for the first run (November).

Run 1 Run 2

Total Livetime (s) 13230 20300

Total Background Livetime (s) 130661 423348

Total Number of Events 727 1022

Total Number of Background Events 529 1499

Total Number of BGO Gamma Events 172666 161982

Total Number of BGO Background Gamma Events 85 30282

Average Time per event (s) 18.2 19.9

Average Time per background event (s) 247 283

Tab. 6.8. Summary of the results from both runs after the analysis.

run results in the previous tables. This background is subtracted after being normalized over

its livetime using the following equation:

# of Events−# of Background Events× Event Livetime
Background Livetime

(6.11.1)

The same process is repeated for the BGO gammas so the results can be normalized.

The normalized data set was obtained by dividing the total number of events by the total

number of BGO gammas for each bin.

The second background to take into account is the alpha background. This is done by

subtracting the nucleation probability of the highest threshold under the assumption that

events at that threshold are mostly due to alpha interactions. From Table 6.5 and Table 6.1,

65



it was shown that the expected recoil from both 12C and 19F does not surpass 10 keV. As a

result, the gamma nucleation probability from the 12.1 keV threshold data was subtracted

from the gamma nucleation probabilities of lower thresholds.

The third background is the dissociation of deuterium due to the water in the bath. A

1g deuterated styrene sample, containing much more deuterium than the amount expected

in the bath, was placed near the active fluid and 100 events were recorded at the same run

conditions for run 2. Doing the same analysis for these events showed that the event rate

(second per event) did not significantly change and was still within the statistical error for

all pressures that were measured. This leads to the fair assumption that the deuterium

background contribution of the water in the bath is negligible.

After the background corrections listed above, the normalized gamma nucleation proba-

bility of a nuclear coherent photon recoil onto a C3F8 nuclei in the PICO-0.1 bubble chamber

has been plotted in Figure 6.6.

Fig. 6.6. Normalized gamma nucleation probability as a function of detector threshold of

the Run 2 Data (Black) and the expected response from the theoretical coherent photon

scattering interaction (Red).

Although the data from the second run was within an order of magnitude of the expected

response, the event rate of the nuclear Thomson scattering was too small compared to the

beam related backgrounds. Thus, the claim that this measurement was able to record the
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nuclear recoil of a photon cannot be made. A quick calculation indicates that out of the

1022 events recorded for a total livetime of 2.03×104 s, up to 1.6 events would be due to

nuclear Thomson scattering. Furthermore, this estimation is an upper limit that assumes

that most of the data is taken at the 30-40 PSIA thresholds. Although the conclusion of this

analysis was not able to provide solid results, the method presented can be used as a basis

and improved on for any future attempt at measuring this interaction.

The main limitation of this measurement was the background event rate when increasing

the particle accelerator beam current. Since the beam current is directly proportional to the

expected event rate, using another photon production reaction with lower energy branches

could significantly reduce beam background events in PICO-0.1 and allow for a higher beam

current. Another improvement would be to be able to efficiently take significantly more data.

Due to the current state of the PICO-0.1 DAQ server, manually uploading all the event files

from the local computer and processing them takes significantly more time than usual. An

automated process would allow much more data-taking and provide much better statistics

on the measurement.
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Conclusion

The use of superheated liquid detectors for direct dark matter detection has improved over

the years. PICASSO developed an excellent alpha discrimination technique and currently

still holds exceptional limits for the spin-dependent sector while COUPP developed the

bubble chamber design still currently used in PICO experiments. With PICO-40L fully

built and under tests, a new era for this kind of technology begins. Fully understanding the

limitations and the possible problems of this new "right-side up" design will be crucial to

the development of PICO-500.

Even though future detectors such as PICO-500 will become more and more sensitive to

nuclear recoils, the window to discover dark matter becomes smaller and smaller since the

neutrino floor will soon become a dominant background. Each experiment will have to either

discriminate this background or attempt to shield it.

Although the work in this thesis was not able to properly measure the nuclear Thom-

son scattering, which will prove to be a significant background in future sub-keV threshold

detectors, this attempt can be used as a baseline for future measurements using PICO-0.1.

By implementing the suggested improvements in Chapter 6, such as using a gamma source

with lower energies and taking a significantly larger amount of data, better results can show

whether or not PICO-0.1 is reliably able to measure this background.
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