
Université de Montréal

Transmission spectroscopy of TRAPPIST-1d with the
new Palomar/WIRC+Spec instrument: a

Karhunen-Loève transform based approach to
extracting spectrophotometry

par

Jonathan Chan

Département de physique
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Astrophysique

December 23, 2019

c© Jonathan Chan, 2019





Université de Montréal
Faculté des études supérieures et postdoctorales

Ce mémoire intitulé

Transmission spectroscopy of TRAPPIST-1d with the new
Palomar/WIRC+Spec instrument: a Karhunen-Loève

transform based approach to extracting spectrophotometry

présenté par

Jonathan Chan

a été évalué par un jury composé des personnes suivantes :

Paul Charbonneau
(président-rapporteur)

Björn Benneke
(directeur de recherche)

Laurence Perreault Levasseur
(membre du jury)





Résumé

Le système TRAPPIST-1 offre une opportunité sans précédent de caractériser les premières
planètes potentiellement habitables en dehors de notre système solaire. Dans ce mémoire est
décrit le développement d’un pipeline de réduction de données personnalisé pour le mode
WIRC+Spec de la caméra infrarouge à grand champ récemment mise à niveau à l’observa-
toire Palomar. Nous introduisons une nouvelle approche d’ajustement de la fonction d’éta-
lement du point basée sur la transformation de Karhunen-Loève pour extraire des courbes
de lumière photométrique et spectroscopique de sources de forme irrégulière, que nous appli-
quons aux observations de l’exoplanète TRAPPIST-1d pour mesurer ses spectres de trans-
mission dans les bandes J (1.1 à 1.4 µm) et Ks (1.95 à 2.35 µm). Un guide détaillé est présenté
pour l’implémentation d’un calcul de profils de température incluant l’équilibre radiatif et
convectif pour une modélisation atmosphérique efficace et précise. En comparant une mul-
titude de scénarios atmosphériques aux observations de TRAPPIST-1d, nous obtenons des
contraintes sur la composition et la structure de son atmosphère, excluant les scénarios sans
nuages avec des métallicités inférieures à 300 fois la valeur solaire à 3σ.
Mots clés: Planètes et satellites: individuels (TRAPPIST-1d) – Planètes et satellites:
atmosphères – Spectroscopie de transit – Méthodes numériques
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Abstract

The TRAPPIST-1 system provides an unprecedented opportunity to characterize the first
potentially habitable planets outside our solar system. In this work we describe the develop-
ment of a custom data reduction pipeline for the WIRC+Spec mode of the recently upgraded
Wide Field Infrared Camera instrument on Palomar Observatory. We introduce a novel,
Karhunen-Loève transform based approach to extract photometric and spectroscopic light
curves from irregularly shaped sources, which we apply to observations of the TRAPPIST-1d
exoplanet to measure the J band (1.1 to 1.4 µm) and Ks band (1.95 to 2.35 µm) transmis-
sion spectra. We also present a detailed guide into the implementation of a self-consistent,
radiative-convective temperature structure calculation for efficient and accurate atmospheric
modelling. Comparing a host of atmospheric scenarios to the observations of TRAPPIST-1d
to date, we constrain its atmosphere, ruling out cloud-free atmospheres with metallicities
lower than 300 times the solar value at 3σ confidence.
Keywords: Planets and satellites: individual (TRAPPIST-1d) – Planets and satellites:
atmospheres – Transit spectroscopy – Numerical methods
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Introduction

1. Background

The discovery of exoplanets, planets that orbit a star other than the Sun, heralded the
exploration of a new topic in the field of astrophysics. Since the first exoplanets were found,
techniques used to detect exoplanets have flourished, resulting in the discovery and confirma-
tion of thousands of new exoplanets. Furthermore, the refinement of observational methods
has massively improved our ability to study the nature of exoplanets and characterize their
atmospheres, opening the door to the possibilities of finding habitable planets outside our
solar system.

1.1. Radial velocity method

In 1995, Mayor and Queloz analyzed the changes in radial velocity of the star 51 Pegasi
to determine the presence of a 0.5 MJ companion orbiting the star at 0.05 AU, which they
named 51 Pegasi b [7]. Radial-velocity (RV) detection has been used ever since to aid in the
detection of hundreds of exoplanets. This method of detection uses the principle of Newton’s
Third Law of Motion to determine that an exoplanet orbiting a star will cause a reflexive
circular motion around the centre of mass of the two combined objects. For a circular orbit,
the star’s motion a? can be given in the following equation:

a? = ap
Mp

M?

(1.1)

where Mp and M? represent the mass of the planet and host star respectively and ap is
the radius of the planet’s orbit [6]. The motion in the host star can then be observed by
examining the Doppler shift in a star’s spectra; as a star moves towards or away from an
observer, the observed wavelength shortens and lengthens from its expected value. The
Doppler effect is given by:

vr = δλ

λ
c (1.2)

where vr is the radial velocity of the host star, δλ is observed Doppler shift, λ is the expected
wavelength, and c is the speed of light. The radial velocity can be determined as a function
of time, yielding a sinusoidal function with a semi-amplitude K. The planet’s mass, period



P , inclination i, and eccentricity e can then be related in the equation:

K =
(2πG
P

) 1
3 Mpsini

(M? +Mp)
2
3

1√
1− e2

(1.3)

where G is the gravitational constant. Assuming the mass of the star is much greater than
the mass of the planet and that the planet is in a circular orbit, the equation becomes:
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P
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3
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)− 2
3 (Mpsini

MJ

)
203m

s
(1.4)

whereMJ is the mass of Jupiter (MJ = 1.898×1027 kg). Examination of the above equation
exposes some of the downfalls of the radial-velocity detection technique. The period and
semi-amplitude have a weak inverse dependence, making radial-velocity best for the detection
of planets with small periods. The semi-amplitude is also a function of the product ofMp and
sini; as a result, the mass of the planet and inclination cannot be derived separately through
radial-velocity detection. Radial-velocity detection also struggles in detecting multi-planet
systems, especially when the system has low mass planets with large orbits; the Newtonian
reflexive motion is often too small to differentiate from the effects of larger planets in the
system since the effects of smaller objects can be absorbed by the radial-velocity effects of
larger objects in the system. Despite these shortcomings, radial-velocity detection remains an
important method of both the discovery of new exoplanets and confirmation of the existence
of exoplanets discovered by other means.

1.2. Exoplanet transits

Within five years of Mayor and Queloz’s initial discovery with RV, the discovery of a
planet transiting its host star revealed a new technique for the study of exoplanets. In 2000,
Charbonneau et al. reported the observation of a periodic dimming of the photometric flux
received from the star HD 209458, explained by the crossing of an exoplanet, HD 209458b, in
front of the stellar disk in the observers line of sight [4]. This technique allows for observers
to study the radii of exoplanets as they cross in front of their host star since the photometric
dimming, or the transit depth, scales as:

Transit depth = ∆F
F

= (Rp/R?)2 (1.5)

where F is the stellar flux, ∆F is the observed change in flux, and Rp and R? are the plane-
tary and stellar radii respectively. Further refinement of the transit technique resulted in the
first detection of an exoplanet atmosphere in 2002, a mere two years later [5]. Observing the
transit of HD 209458 b with the Hubble Space Telescope (HST), Charbonneau et al. mea-
sured wavelength-dependent variations in transit depth, indicating wavelength-dependent
changes in the heights at which the planet becomes opaque to tangential rays. Wavelengths
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at which the planet blocks more stellar flux must therefore possess atoms or molecules in
its atmosphere which absorb the flux or otherwise block the light. Observations are then
compared to theoretical atmospheric models and spectra to determine the molecular species
corresponding to the transit depth variations. For HD 209458b, the wavelength-dependent
variations were concluded to be due to absorption from sodium in the atmosphere [5]. Since
then, the Kepler mission has discovered thousands of exoplanets with the transit technique
and has helped develop our understanding of the population statistics of exoplanets [8].
Recently, in 2019, the first detection of water on a habitable-zone planet was made with
transit spectroscopy, a testament to the effectiveness of the technique towards the study of
exoplanetary atmospheres [3].

2. Transit spectroscopy with Palomar Observatory

In this work, we explore the intricacies involved in characterizing exoplanetary atmo-
spheres with transit spectroscopy using the Wide Field InfraRed Camera (WIRC) instrument
on the 200-inch Hale Telescope at Palomar Observatory. Palomar Observatory is located in
San Diego County, California in the Palomar Mountain Range and is owned and operated
by the California Institute of Technology. The Hale Telescope is one of three active research
telescopes at the observatory and from the time of its construction in 1949 until 1975, the
200-inch telescope was the largest telescope in the world. The WIRC instrument was first
installed on the Hale Telescope in 2002 with a 2048-square Rockwell HAWAII-2 near-infrared
(NIR) detector [30]. After the failure of this detector in 2012, WIRC temporarily employed
an engineering grade detector until 2016, when it received the HAWAII-2 detector previously
mounted on Keck/OSIRIS.

2.1. WIRC Upgrades

The WIRC instrument is optimized for the J, H, and Ks bands with an 8.7 arc minute
field-of-view. In addition to the upgraded detector, a grism was installed, allowing for the
development of the new WIRC+Spec mode and granting the capability for WIRC to perform
low resolution (R≈100) slitless spectroscopy [28]. Traditionally, multi-object spectroscopy
requires a mask with multiple slits to be made, which allows for the diffraction of multiple
objects on the detector; however one of the downfalls of slit spectrographs lies in their slit loss,
which defines the waste of unused light due to the small widths of the slit for high dispersion
characteristics [10]. Slit loss becomes increasingly important when observing targets that
are already faint. Slitless spectroscopy overcomes this downfall by removing the slit entirely,
instead using a grism—a combination of a prism and a grating—which allows light from all
sources on the detector to be dispersed into wavelength dependant spectra. In the case of
WIRC+Spec, each source on the detector is diffracted into their 0th, 1st, and 2nd diffraction
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orders. Slitless spectroscopy also allows us to perform differential photometry, where we take
the photometry of a target star and one or more reference stars on the detector and divide
the measurements of the target star by the reference star(s) in order to remove atmospheric
effects. One of the drawbacks of slitless spectroscopy is the elevated background level; since
the effective slit width for diffraction is the size of the detector, the background counts are
usually much higher than for a slit spectrograph and the background also often has residual
structure [10].

2.2. Atmopsheric characterization of the TRAPPPIST-1 system

This work exploits the advantages of slitless spectroscopy while addressing its downfalls
in order to capitalize on the recent WIRC+Spec upgrades. One of the main challenges
for atmospheric characterization of many exoplanetary systems around M-dwarfs lies in the
faintness of their host stars. For example, even with multiple visits, the small apertures of
the current space based telescopes (HST and Spitzer) are unable to capture enough photons
to precisely characterize the atmospheres of the exciting TRAPPIST-1 planets. To tackle
this problem, we harness the photon collecting power of the much larger Hale Telescope with
the WIRC instrument. With slitless spectroscopy, we are able to perform spectrophotometry
on the faint TRAPPIST-1 system without losing excessive amounts of light to slit losses.
Furthermore, with multiple reference stars on the detector we can use differential photometry
to remove the atmospheric effects that are characteristic of using a ground based telescope.
To analyze the data taken by the WIRC+Spec instrument, we were required to develop a
data reduction software capable of extracting photometric measurements from the irregularly
shaped diffraction orders. In order to reduce the effects of the elevated background counts
inherent to slitless spectroscopy, we also implemented a novel point spread function (PSF)
fitting algorithm to optimally remove the background from our photometric measurement.

This work demonstrates the first applications of the WIRC+Spec mode in exoplanet
transmission spectroscopy and atmospheric characterization. We first describe the custom-
built data reduction pipeline used to extract photometric and spectroscopic light curves from
raw images taken with the new WIRC+Spec mode. We recount each of the steps within the
reduction, providing details on the algorithms used and explaining our PSF fitting approach.
We then delve into the construction of realistic atmospheric models and our implementation
of a self-consistent, radiative-convective temperature structure calculation to the Python-
based Self-Consistent Atmospheric RetrievaL for ExoplaneTs (SCARLET) framework [1, 4].
In Appendix A, we provide a step-by-step guide to solving the radiative transfer equation
(RTE) with the second-order accurate Feautrier method and using the highly efficient Rybicki
linearization method to converge upon radiative-convective equilibrium. This work combines
the algorithms found in several different publications into one, easily accessible document,
providing users with a side-by-side comparison of the mathematical expressions and the
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corresponding Python implementation. Ultimately, Appendix A and B provide a reference for
those wishing to familiarize themselves with SCARLET’s temperature structure calculation
or to implement these features in other atmospheric modelling codes. Finally, we present
an analysis of the TRAPPIST-1d exoplanet using our newly constructed data reduction
software and improved atmospheric modelling capabilities in an article being submitted to
The Astrophysical Journal.

3. Contributions

My contributions to this paper well summarizes the work presented in this thesis. In
the summer of 2017, I personally took the 5 nights of observations of TRAPPIST-1 re-
motely with the WIRC instrument on Palomar Observatory. Advised by my supervisor, we
decided on the exposure settings for the science, dark, and flat images and I closely mon-
itored the observations and the telescope’s progress throughout the 5 observing nights. I
used the WIRC_DRP built by Tinyanont et al. to perform the initial calibration of the
observations, including dark subtraction, flat fielding, and bad pixel removal [28]. I then
used the Python-based EXOplanet Transits Eclipses and Phasecurves (ExoTEP) pipeline
to perform a light curve extraction and analysis. ExoTEP is a highly modular analysis
framework which takes photometric or spectroscopic light curves and uses a Markov chain
Monte Carlo (MCMC) to find the best fitting transit parameters for a given observation.
To process the observations from WIRC+Spec with ExoTEP, I developed a module from
scratch which performs photometry and spectrophotometry on the calibrated WIRC+Spec
images in order to extract their photometric and spectroscopic light curves. I then fit the
TRAPPIST-1d light curves with the ExoTEP pipeline to extract the transmission spectrum
for each of the 5 observational nights. An atmospheric analysis was then carried out using
the SCARLET framework. SCARLET calculates atmospheric models and synthetic planet
spectra using a self-consistent photochemistry-thermochemistry model. In retrieval mode,
SCARLET determines the best fitting set of parameters for a given observation set using
a MCMC to explore the parameter space. To improve the speed, efficiency, and accuracy
of the self-consistent models, I added a radiative-convective temperature structure calcula-
tion to the SCARLET framework, presented in Appendix A. Using the improved modelling
framework, I modelled the transmission spectrum of TRAPPIST-1d and used the observed
transmission spectra extracted with ExoTEP to run an atmospheric retrieval. Compiling
the results from comparing the observed transmission spectrum with the modelled spectrum
as well as the results of the atmospheric retrieval, I wrote the entirety of the paper presented
within this thesis.

27



References
[1] Bjoern Benneke and Sara Seager. ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY

CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPEC-
TROSCOPY. The Astrophysical Journal, 753(2):100, July 2012.

[2] Björn Benneke and Sara Seager. HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES
AND WATER/VOLATILE-DOMINATED SUPER-EARTHS. The Astrophysical Journal, 778(2):153,
November 2013.

[3] Björn Benneke, Ian Wong, Caroline Piaulet, Heather A. Knutson, Joshua Lothringer, Caroline V. Mor-
ley, Ian J. M. Crossfield, Peter Gao, Thomas P. Greene, Courtney Dressing, Diana Dragomir, AndrewW.
Howard, Peter R. McCullough, Eliza M.-R. Kempton, Jonathan J. Fortney, and Jonathan Fraine. Water
Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b. The Astrophysical Journal,
887(1):L14, December 2019.

[4] David Charbonneau, Timothy M. Brown, David W. Latham, and Michel Mayor. Detection of Planetary
Transits Across a Sun-like Star. The Astrophysical Journal, 529(1):L45–L48, January 2000.

[5] David Charbonneau, Timothy M. Brown, Robert W. Noyes, and Ronald L. Gilliland. Detection of an
Extrasolar Planet Atmosphere. ApJ, 568(1):377–384, March 2002.

[6] Hubert Klahr and Wolfgang Brandner, editors. Planet formation: theory, observations and experiments.
Number 1 in Cambridge astrobiology. Cambridge University Press, Cambridge ; New York, 2006. OCLC:
ocm64313073.

[7] Michel Mayor and Didier Queloz. A Jupiter-mass companion to a solar-type star. Nature, 378(6555):355–
359, November 1995.

[8] Jason F. Rowe, Jeffrey L. Coughlin, Victoria Antoci, Thomas Barclay, Natalie M. Batalha, William J.
Borucki, Christopher J. Burke, Steven T. Bryson, Douglas A. Caldwell, Jennifer R. Campbell, Joseph H.
Catanzarite, Jessie L. Christiansen, William Cochran, Ronald L. Gilliland, Forrest R. Girouard,
Michael R. Haas, Krzysztof G. Hełminiak, Christopher E. Henze, Kelsey L. Hoffman, Steve B. Howell,
Daniel Huber, Roger C. Hunter, Hannah Jang-Condell, Jon M. Jenkins, Todd C. Klaus, David W.
Latham, Jie Li, Jack J. Lissauer, Sean D. McCauliff, Robert L. Morris, F. Mullally, Aviv Ofir, Billy
Quarles, Elisa Quintana, Anima Sabale, Shawn Seader, Avi Shporer, Jeffrey C. Smith, Jason H. Steffen,
Martin Still, Peter Tenenbaum, Susan E. Thompson, Joseph D. Twicken, Christa Van Laerhoven, Angie
Wolfgang, and Khadeejah A. Zamudio. PLANETARY CANDIDATES OBSERVED BY KEPLER . V.
PLANET SAMPLE FROM Q1–Q12 (36 MONTHS). ApJS, 217(1):16, March 2015.

[9] Samaporn Tinyanont, Maxwell A. Millar-Blanchaer, Ricky Nilsson, Dimitri Mawet, Heather Knutson,
Tiffany Kataria, Gautam Vasisht, Charles Henderson, Keith Matthews, Eugene Serabyn, Jennifer W.
Milburn, David Hale, Roger Smith, Shreyas Vissapragada, Louis D. Santos, Jason Kekas, and Michael J.
Escuti. WIRC+Pol: A Low-resolution Near-infrared Spectropolarimeter. PASP, 131(996):025001, Feb-
ruary 2019.

[10] Jeremy Walsh, M. Kummel, and H. Kuntschner. Slitless Spectroscopy with HST Instruments. July 2010.
[11] John C. Wilson, Stephen S. Eikenberry, Charles P. Henderson, Thomas L. Hayward, Joseph C. Carson,

Bruce Pirger, Donald J. Barry, Bernhard R. Brandl, James R. Houck, Gregory J. Fitzgerald, and
T. M. Stolberg. A Wide-Field Infrared Camera for the Palomar 200-inch Telescope. page 451, Waikoloa,
Hawai’i, United States, March 2003.

28



First Article.

Atmospheric characterization
of TRAPPIST-1d using the
new Palomar/WIRC+Spec

mode and a new
Karhunen-Loève Transform

based approach for
spectrophotometeric extraction

by

Jonathan Chan1, and Björn Benneke1

(1) Institute for Research on Exoplanets and Department of Physics, Université de
Montréal, Montréal, QC, Canada

This article will be submitted in The Astrophysics Journal.



Abstract. The TRAPPIST-1 system provides an unprecedented opportunity to char-
acterize the first potentially habitable planets outside our solar system. Here we present
the first spectroscopic results from the WIRC+Spec mode of the recently upgraded Wide
Field Infrared Camera (WIRC) instrument on Palomar Observatory. We describe a novel,
Karhunen-Loève transform (KLT) based, PSF fitting approach to extract photometric and
spectroscopic light curves from 5 transit observations of TRAPPIST-1d with defocused,
slitless multi-object spectroscopy, and present the measured J band (1.1 to 1.4 µm) and Ks

band (1.95 to 2.35 µm) transmission spectra. For faint sources such as TRAPPIST-1 (J
= 11.35), the observations are background noise limited; our approach allows us to extract
the PSF from the background, lowering the effect of background noise, and also enables
us to robustly extract the spectrophotometric light curves from the spectra trace despite
substantial atmospheric effects on the spectral trace. We then use a newly implemented
self-consistent radiative-convective temperature structure calculation to model and compare
various atmospheric scenarios with observations to date, ruling out cloud-free atmospheres
on TRAPPIST-1d with metallicities lower than 300× the solar value at 3σ confidence.
Keywords: planets and satellites: individual (TRAPPIST-1d) – planets and satellites:
atmospheres

1. Introduction

The TRAPPIST-1 system presents us with a unique opportunity to study and charac-
terize temperate, Earth-like planets in a compact M-dwarf system. Discovered in 2017, the
seven planet system orbiting an ultracool M8-dwarf has analogies to our own solar system
and hosts three habitable-zone planets [18, 17]. TRAPPIST-1d in particular receives nearly
the same amount of incident flux as Earth (1.043 ± 0.060 S⊕) and likely houses a rocky
core with a radius of 0.784 ± 0.23 R⊕ and a mass of 0.297 ± 0.39 M⊕. TRAPPIST-1d is
also 60% less dense than Earth at 0.616 ρ⊕, indicative of a gaseous envelope in the possible
form of a thick atmosphere [7, 19]. Furthermore, the predicted equilibrium temperature of
282.1 ± 4.0 K (assuming a null Bond albedo) provides the right conditions for liquid water
and complex organic molecules, a condition generally regarded as necessary for the existence
of life as we know it [7]. Nonetheless, much about the habitability of planets around M-
dwarfs is still unknown and the atmospheric characterization of the TRAPPIST-1 planets
will shape our understanding and knowledge of factors such as atmospheric loss and the high
energy environment of M-dwarf systems [9, 8].

Habitable-zone planets around M-dwarfs offer two key advantages over habitable-zone
planets around Sun-like stars for atmosphere studies [23]. The small diameter of the star
(0.11 R� for TRAPPIST-1) results in larger transit signatures since the amplitude of transit
and atmospheric signals scale inversely with the square of the stellar radius. The short orbital
periods (5-11 days for the TRAPPIST-1 system) for habitable-zone planets around M-dwarfs
also enables the observation of repeated transits within a relatively short time frame. Kepler
determined that roughly 40% of M-dwarfs host small planets (1–2 R⊕) in the habitable-zone
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[21, 10, 11, 26, 12]; moreover, M-dwarf stars account for approximately 75% of all stars,
further amplifying their importance in the search for life in the universe [31].

One of the main challenges for atmospheric characterization of M-dwarf systems lies in
the faintness of their host stars. Even with multiple visits, the small apertures of the current
space based telescopes (HST and Spitzer) are unable to capture enough photons to precisely
characterize the atmospheres of the TRAPPIST-1 planets. The solution to this problem
therefore requires observations from larger telescopes, either in space, with the upcoming
James Webb Space Telescope (JWST ), or on the ground.

Taking advantage of a recent upgrade to the Wide-field InfraRed Camera (WIRC) on
the 200-inch Hale Telescope at Palomar Observatory, our team uses the new WIRC+Spec
mode to probe the atmosphere of TRAPPIST-1d with transmission spectroscopy. WIRC
is a near-infrared (J, H, and Ks bands spanning from 1.1 – 2.3 µm) camera with an 8.7’
× 8.7’ field of view at a prime focus of f/3.3 [30]. WIRC was outfitted with an upgraded
science-grade HAWAII-2 detector (previously mounted on Keck/OSIRIS) along with the
installation of a polarization grating for spectropolarimetry (WIRC+Pol mode) in January
2017 [28]. 32 channel read-out electronics were also upgraded from the previous 4 channels,
shortening the minimum exposure time from the previous 3.23s to 0.92s. An update to
WIRC’s guiding software also granted the capability to guide on elongated traces (shown
in Figure 3.2) with a 2-D cross correlation algorithm, as opposed to the previous script,
which fit 2-D Gaussians to the 0th order PSFs of the field. The guiding update allows for
improved guiding on faint sources, where the 0th order PSF of the star may be too dim
and lack the required contrast from the background to guide on. The WIRC+Spec mode
expands the capabilities of the WIRC instrument to perform low resolution (R≈100) slitless
spectroscopy in the near-infrared (J, H, and Ks bands). With the photon collecting potential
of the 5.08 m diameter Hale telescope, WIRC+Spec provides the scientific community with
the opportunity to perform spectroscopic measurements of faint targets from the ground.

In this paper, we present observations gathered by the WIRC+SPEC instrument on
Palomar Observatory of TRAPPIST-1d. In Section 2 we describe the observations and data
reduction process. We then present an innovative Karhunen-Loève Transform (KLT) based
point spread function (PSF) fitting approach to obtaining our photometric and spectroscopic
results in Section 3. We perform a joint light curve analysis in Section 4 and present the best-
fit broadband and spectroscopic light curves as well as the derived transmission spectrum.
Our atmospheric modelling analysis is described in Section 5. Section 6 then provides a
discussion of our results within the context of previous and future studies.

2. Observations and data reduction

We obtained time series spectroscopy during five transits of TRAPPIST-1d with the
WIRC+Spec instrument on Palomar Observatory between UT 2017 August 8 and October
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Planet(s) Wavelength [µm] UT Start Date Notes
d 1.1 – 1.3 2017/08/08

c, d 1.1 – 1.3 2017/08/12 Non-overlapping transits of planets c
and d

b, d 1.1 – 1.3 2017/10/12 Overlapping transit of planets b and
d

d 1.95 – 2.35 2017/10/16
b, d, e 1.95 – 2.35 2017/10/24 Transits of b and e overlap, followed

by transit of planet d
Table 3.1. Summary of all transit observations of TRAPPIST-1d obtained for this study.

24. We perform three of our observing nights with the J band filter, which spans the range of
1.1 to 1.4 µm, and the other two nights with the Ks band filter, spanning the range of 1.95 to
2.35 µm; we list our observations in Table 3.1. Previous work with HST has already covered
the J band, however these observations are the first to probe the TRAPPIST-1 system with
the Ks bandpass [6]. Each transit observation included up to an hour of baseline before
and after the expected transit mid-point, with the exception of the visit on UT 2017/10/24,
in which the transit of TRAPPIST-1d was close to dawn and thus we cut the baseline
short after the transit to avoid overexposing the detector. We use 15 s exposure times for
the J band observations, allowing us to obtain sufficient signal to noise while maintaining
a good cadence of observation throughout the transit. We find that with the Ks filter,
TRAPPIST-1 is extremely faint on the detector compared to the background and we opted
to use an exposure time of 2 s with 5 co-adds in order to maintain acceptable signal to
noise without oversaturating the detector. The WIRC+SPEC instrument spreads photons
from the observed star across the detector into three visible orders, as depicted in Figure
3.2. We defocus the instrument, preventing saturation of the detector while also further
spreading the light across multiple pixels to minimize detector effects from single pixels. For
simplicity, we describe the zeroth, first, and second diffraction order traces as point spread
functions (PSFs). Starting with the raw images, we use the WIRC_DRP pipeline built
by Tinyanont et al. to handle dark subtraction, flat fielding, and bad pixel determination
[28]. We then built a custom WIRC+Spec data reduction module for the Python based
Exoplanet Transits, Eclipses and Phase Curves (ExoTEP) pipeline [5, 3]. The main steps
of the data reduction process are outlined in Figure 3.1. The extraction procedure differs
slightly between J band observations and Ks band observations; we will describe the steps
taken for J band observations, indicating the steps taken differently for the Ks band datasets
where applicable.
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Raw	Image

Image	Calibration
- Dark	subtraction
- Flat	fielding
- Bad	pixel	removal

Image	Preparation
- Determine	positions	of	0th,	1st,	and	2nd order	traces	
of	both	TRAPPIST-1	star	and	reference	star
- Remove	outliers	and	background
- Shift	traces	into	the	center	of	their	cutout	frames

Light	Curve	Extraction
- Model	PSF	with	KLT

- Fit	model	to	the	observed	image	to	obtain	
photometric	measurement
- Obtain	photometry	for	each	exposure	throughout	
the	observing	period	to	obtain	raw	light	curve	

Light	Curve	Analysis	with	ExoTEP
- Differential	photometry:	divide	the	raw	light	curve	
extracted	from	the	1st diffraction	order	of	the	
TRAPPIST-1	star	by	that	of	the	reference	star
- Fit	systematics	model	and	transit	parameters	to	find	
transit	depth	

Atmospheric	modelling	and	retrieval	with	
SCARLET

For each of the 0th, 1st, and 2nd diffraction orders of
the TRAPPIST-1 star and reference star:

Fig. 3.1. Main steps of the data reduction process. The steps are colour coded according to
the relevant framework used: image calibration was performed with the WIRC_DRP; image
preparation and light curve extraction was performed with the custom built WIRC module
for light curve extraction in the EXOplanet Transits Eclipses and Phasecurves (ExoTEP)
framework; light curve analysis was performed with the transit parameter fitting module of
ExoTEP; and atmospheric modelling and retrieval was performed with the Self-Consistent
Atmospheric RetrievaL for ExoplaneTs (SCARLET) framework.

2.1. Image calibration

We first calibrate the raw images with the WIRC_DRP pipeline designed for the
WIRC+Pol spectropolarimetry mode of the WIRC instrument.

2.1.1. Dark subtraction and flat fielding

The WIRC_DRP median combines specified dark images to create a master dark frame,
which is then subtracted from the science images. When the exposure times of the darks
and science images are not the same, the darks are scaled to the exposure of the science
image. Flat field images are median normalized and then median combined into a master
flat frame, which is then divided from the science image. For J band observations, we use
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dome flats with the lamp set to low while for Ks band, we use sky flats; we found that the
dome lamp saturated the detector when used with the Ks filter.

2.1.2. Bad pixel removal

The WIRC_DRP uses both the dark and flat images to determine and remove bad pixels.
First, pixels with unusual dark currents are determined from the dark frames by removing 5σ
outliers from the mean of a median absolute deviation distribution of counts at each pixel.
Dead pixels are then determined from the flat field images through a local and global filtering
procedure. Local filtering detects isolated bad pixels by comparing neighboring pixels. The
master flat frame is used to compute a map of standard deviations where the value at each
pixel is determined by the standard deviation of a 11 × 11 box of pixels surrounding it.
Pixels with values deviating by more than 3σ from surrounding values are rejected. Global
filtering is then used to detect groups or patches of dead pixels, which may be overlooked by
the local filtering since bad pixels are surrounded by equally bad pixels. First, a large-scale
variation map is constructed by passing the master flat frame through a median filter. A
map of pixel-to-pixel variations can then be determined by dividing the master flat frame
by the large-scale variation map; 9σ outliers of the pixel-to-pixel map values are rejected.
In total, Tinyanont et al. estimate ∼20,000 pixels are rejected, accounting for 0.5% of the
entire array [28].

Fig. 3.2. Left: Sample raw frame from WIRC+Pol, adapted from Tinyanont et al. [28].
Right: Sample raw frame from WIRC+Spec. In the exposure taken by WIRC+Pol, the PSF
is spread into symmetrical quadrants based on polarization.
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2.2. Image preparation

The WIRC_DRP has the capability to perform photometric and spectral extractions for
the WIRC+Pol spectropolarimetric mode, however the new WIRC+Spec mode introduces
a different layout of the source across the detector, requiring a change in the reduction
procedure. A comparison of a WIRC+Pol exposure and a WIRC+Spec exposure is shown
in Figure 3.2. We create our own data reduction software as a module for the ExoTEP
framework to customize the photometric and spectroscopic extraction to the WIRC+Spec
exposures, allowing us to optimize each step to the specific needs of the new layout of the
image.
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Fig. 3.3. Histogram of pixel count frequency for an example 1st order PSF cut-out frame.
The peak corresponds to the high frequency of background pixels in the frame. A red dashed
line illustrates the Gaussian fit describing the peak; the local background value for a given
frame is estimated to be the mean of the Gaussian fit.

After calibrating the raw images with the WIRC_DRP pipeline, we prepare the images
by finding the positions of the relevant traces, removing outliers and background, and shifting
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the traces to the center of their respective frames to optimize the effectiveness and efficiency
of the photometric and spectroscopic extraction.

We first obtain a data cube containing cutouts of the 0th, 1st, and 2nd order traces from
the calibrated images in order to isolate the important/essentials while also reducing the
amount of data being passed through the pipeline.

We specify the approximate locations of the center of the 0th order PSF and the 1st

and 2nd order traces of the target and reference stars, which we determine manually for a
single frame from the calibrated image. We then find the pixel coordinates of a box which
encompasses the trace and save the data of the calibrated image inside the box within a
numpy array. The pixel locations of the cutout edges are also saved for future use. This
allows us to quickly access the relevant traces in a given frame without loading the entire
calibrated image. The instrument’s guiding system does a sufficient job at keeping the traces
within a few pixels between each frame so we are able to adjust the size of our cutouts to
consistently capture the whole trace for every frame of a given night of observation. We
choose a cutout size for each trace that allows for the trace to be framed by 10, 20, and 30
pixels for the 0th, 1st, and 2nd orders respectively, which gives us room to further isolate the
individual traces in the next steps.

We use two different methods to determine the exact location of a trace on the detector,
depending on the bandpass observed. For J band, we employ a flux-weighted positioning
algorithm which iteratively finds the centroid of the 0th order PSF, given the calibrated image
and a first guess [5]. The 1st and 2nd order traces are elliptically shaped, preventing us from
using the flux-weighted positioning algorithm, which is designed for circular PSFs. Instead,
we determine the vector describing the position of the 1st and 2nd order traces from the
position of the 0th order PSF, which is a fixed value, intrinsic to the instrument’s grism. We
can then calculate the position of the 1st and 2nd order traces from the 0th order PSF. For the
Ks bandpass, the 0th order is much fainter on the detector and does not achieve the required
contrast from the background noise to use a flux-weighted positioning algorithm effectively.
Instead, we fit a 2-D Gaussian to the 0th order cutout of the calibrated image and use the
mean x and y values of the fit to determine the position of the PSF. In some cases, the 0th

order PSF of the star is completely lost in the background noise of a calibrated frame. To
handle these exceptions, we also fit a 2-D Gaussian to the 1st order trace to determine their
positions.

We estimate the local background for each trace by making a histogram of the flux
values in each pixel contained by the cutout. We expect a double peaked distribution;
background pixels will correspond to the lower flux peak while pixels containing the trace
will be associated with the higher flux peak. In reality, since our cutout encompasses many
more background pixels than pixels containing the trace, the histogram depicts a single peak
for the background pixels along with a trailing tail corresponding to the trace pixels. We fit
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a Gaussian distribution to the peak associated with the background pixels to determine the
local background of a given trace. Figure 3.3 shows the histogram fit for a 1st order trace
for a J band observation. We found that simply taking the median flux value of the cutout
consistently overestimates the local background as opposed to fitting a Gaussian to the
pixel flux values. Using the Gaussian fit, we then calculate the full width at half maximum
(FWHM) of the 0th order PSF for the target and reference stars where:

FWHM = 2σ
√

2 ln 2 (2.1)

where σ is the standard deviation of the Gaussian fit.
At this point, we subtract the local background calculated at each time step for each

source trace from the corresponding cutouts and also remove outlier pixels. We find the
median and standard deviation images in time for each of the source traces and construct a
mask where:

Mask = |Image−Median Image|
Standard Deviation Image (2.2)

We then construct an outlier image where:

Outlier Image = Mask > σ (2.3)

We reject 4.5σ outliers for J band observations. For Ks band nights, we forgo pixel outlier
removal as we find the results do not change significantly even when rejecting up to 10σ
outliers.

2.2.1. Signal-to-Noise Ratio (SNR) determination

We determine the expected SNR for aperture photometry in order to gauge the effective-
ness of our photometric extraction. We first construct an aperture based on the order of the
trace: we use a circular aperture for the 0th order PSF and an elliptical aperture for the 1st

and 2nd order traces.
We manually approximate the radius of the 0th order PSF in pixels from a single calibrated

frame of an observing night, adding up to 5 pixels to account for the PSF’s change in size with
time from atmospheric effects. We then construct a CircularAperture with the photutils
package. To construct an elliptical aperture for the 1st and 2nd order traces, we must first
determine the parameters describing the elliptical traces. We approximate the semi-major
axis in pixels of the traces manually for a single calibrated image, adding up to 10 pixels
to account for changes in the size of the trace throughout the observing night. Taking the
vector describing the position of the 1st and 2nd order traces from the position of the 0th

order PSF, we determine the angle θ between the trace and the horizontal axis, measured
counter-clockwise from the horizontal axis, using simple trigonometry. Estimating the size
of the trace by eye, we then calculate the length of the semi-major (a) and semi-minor (b)
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axes from the rotation angle (θ) and the approximate size (r) of the trace as:

α = π − θ (2.4)

a = r

2sinα (2.5)

b = r

2tanα (2.6)

Fig. 3.4. Elliptical aperture for an example 1st order trace. The white ellipse depicts the
aperture while the green line depicts the horizontal axis from which the angle of the trace θ
(illustrated in red) is taken from. The colour scale depicts the number of counts read by the
detector.

Given the parameters of the elliptical trace, we construct an EllipticalAperture with
the photutils package; we show the aperture for a 1st order trace in Figure 3.4. We multiply
the aperture mask by the background subtracted cutout, which we assume represents only the
counts from the source, and taking into account the instrument’s gain of 1.2, we determine
the accumulated source electrons detected by the charge-coupled device (CCD). Similarly,
to determine the accumulated background electrons detected we multiply the aperture mask
by the calculated local background value, taking into account a gain of 1.2 to convert from
ADU to e−. The expected SNR is then:

SNR = Source e−√
Source e− + Background e−

(2.7)
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Fig. 3.5. Reconstruction of photometric PSF. Panel a) depicts the reconstructed PSF
model. Panels b) shows the original background subtracted exposure. The red outline cor-
responds to the aperture used to perform aperture photometry. A residual image obtained
by subtracting the background subtracted exposure by the reconstructed PSF is presented
in c).

and the individual scatter for the target and reference stars in parts per million (ppm) are:

ScatterSource = 1
SNR × 106 (2.8)

To account for the division of the target star light curve by the reference star light curve
with differential photometry, which reduces the effects of changes in the Earth’s atmosphere,
we perform error propagation to determine the expected light curve scatter to be:

Total Scatter =
√
Scatter2

Target + Scatter2
Reference (2.9)

3. Light Curve Extraction

Our photometric extraction employs a novel PSF fitting approach with a Karhunen-Loève
(KL) transform—closely related to the widely known principal component analysis (PCA)—
which is commonly used in image processing. We use the KLT to construct a PSF model,
which we then scale to the data in order to extract our photometric and spectroscopic
data. Compared to aperture photometry, this technique allows us to reduce the effects
of background noise on our extraction and also provides a robust approach to extracting
spectroscopy from the irregularly shaped PSFs.

3.1. Photometric PSF Fitting

We adapt the KL image projection (KLIP) algorithm, first introduced by Soummer et
al., in our PSF fitting procedure [27, 29]. Soummer et al. initially introduced the the KLIP
algorithm as a direct imaging technique, allowing for the optimal subtraction of a PSF from a
given image, thus exposing any nearby faint astronomical signals (planets or other binaries)
around the annulus of a target star [27]. KLIP first uses a KLT to model the PSF of a
given frame, then subtracts the PSF from the original frame to find otherwise undetectable
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sources. Similarly, we tailor the algorithm to accurately model the irregularly shaped PSFs of
the 1st and 2nd order traces from WIRC+Spec, which then allows us to remove unnecessary
background from our photometry. The KLIP algorithm is as follows:

(1) The target image and set of reference images are chosen and the average value of
each frame is subtracted so they have zero mean over each frame. In our reduction,
all exposures which do not contain the transit are used as the set of reference images;
exposures within the transit event are excluded from the reference since they will
vary from the baseline.

(2) The Karhunen-Loève transform is computed to find the eigenvectors and eigenvalues
of the covariance matrix of the reference set.

(3) The number of components used to estimate the target image is chosen. We use
20 components to rebuild the PSFs of our J band observations and 100 components
to rebuild the PSFs of our Ks band observations; these numbers yielded the lowest
photometric light curve scatter.

(4) The best estimate of the target image PSF is then computed from the projection of
the target image on the Karhunen-Loève basis. Figure 3.5 illustrates a comparison
of the modelled PSF with the original target image.

(5) The model target PSF is subtracted from the original target image, leaving only
the background and, for direct imaging applications, any faint astronomical signals
otherwise masked by the host PSF. The result of this step is depicted in Figure 3.5
as the residuals of subtracting the original image from the modelled PSF.

The KLT used in this algorithm share close similarities to the widely known principal
component analysis (PCA) method; some authors use both terms interchangeably. Funda-
mentally, both methods are dimensionality reduction techniques which allow a set of data
to be described using fewer variables than originally, however the process to achieve this ob-
jective are slightly different between the KLT and PCA. The KLT has two defining features
which are not necessarily characteristic of a PCA. First of all, KLT completely decorrelates
the signal. That is to say, after KLT, the covariance matrix of the signal is diagonalized
and the covariance between any two components is always zero. Secondly, the geometric
interpretation of the KLT is merely a rotation of the coordinate system while the PCA first
shifts the origin of the coordinate system before performing the same rotation. A more in
depth comparison of the KLT and PCA can be found in Gerbrands and Soummer et al.
[16, 27].

We first perform a sub-pixel shift with the calculated positions of the 0th, 1st, and 2nd

order traces of the TRAPPIST-1 star, shifting the position of the cut-out frame so that the
PSF is in the center of each cut-out. This removes the variability of the PSF’s movement on
the detector from the KLT; we treat this effect with an instrumental systematics model later
on. Following steps 1 to 4 of the KLIP algorithm, we extract a model PSF for each cut-out
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frame, assuming the PSF follows a Gaussian noise model. We then normalize the model
PSF to sum to unity and scale the normalized model PSF to best fit the original calibrated
image as follows:

Data = A×Model (3.1)

Where A is a scaling factor. Following Gagné et al., we define the goodness-of-fit as:

G =
N∑
i=1

(
Data− A×Model

σData

)2

(3.2)

We then fit a scaling factor A that minimizes Gk,j for each image [14]. The best fit for A
can be expressed analytically as:

A =
∑N
i=1

Data×Model
σ2
Data∑N

i=1
Model2
σ2
Data

(3.3)

During the reduction we do not consider a measurement error, σData, for each image, but
instead derive error from the photometric scatter of the light curve after photometry has
been extracted. Ignoring σData, A can then be further simplified to:

A =
∑N
i=1 Data×Model∑N

i=1 Model2
(3.4)

We take A to be the photometric measurement of the cut-out frame. For each exposure, we
use this technique to obtain A for each of the 0th, 1st, and 2nd order PSFs for the TRAPPIST-
1 star. We then repeat the process for the 0th, 1st, and 2nd order PSFs of a nearby reference
star; thus, we obtain 6 time-series raw light curves in total for each night of observation: 3
for the TRAPPIST-1 star and 3 for the reference star, based on the 0th, 1st, and 2nd order
PSFs. In Section 4, we then use the light curves of the 1st order PSFs from the TRAPPIST-1
star and the reference star to perform differential photometry.

We find that our PSF fitting method is consistent with results obtained with aperture
photometry: a comparison of calculated light curve scatter from the two techniques is pre-
sented in Table 3.2. These values are calculated from the light curve extracted from the 1st

order PSF after differential photometry (eg. the TRAPPIST-1 1st order light curve has been
divided by that of the reference star). For the J band observations, the photometric scatter
values of the light curves obtained from aperture photometry and our PSF fitting method
are within 5% difference. The Ks band observations a higher percent difference, which may
be a result of the overall increased noise and variability in the observations. We believe the
increased scatter on UT 2017/10/24 is due to the lack of baseline after the transit, which
was cut short due to the brightening of the sky as dawn approached. We show the raw white
light curves of UT 2017/08/12 from the 1st order PSF, extracted using both aperture pho-
tometry and PSF fitting, in Figure 3.6. The light curves extracted with PSF fitting exhibit
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Fig. 3.6. Comparison of normalized white light curves extracted from the 1st diffraction
order PSF of the TRAPPIST-1 and reference star using the PSF fitting method and aperture
photometry for the night of UT 2017/08/12. The relative flux of the reference star has been
offset for clarity. The TRAPPIST-1 light curve is later divided by the reference star light
curve in order to remove atmospheric effects, as described in Section 4.

UT Night Band Aperture Photometry PSF Fitting Percent Difference
2017/08/08 J 4998 ppm 5148 ppm 2.956%
2017/08/12 J 2624 ppm 2532 ppm 3.569%
2017/10/12 J 3460 ppm 3338 ppm 3.589%
2017/10/16 Ks 5892 ppm 5201 ppm 12.46%
2017/10/24 Ks 6081 ppm 6844 ppm 11.81%

Table 3.2. Comparison of the photometric scatter of the TRAPPIST-1 light curves using
the 1st order PSF after differential photometry. Results are shown using both aperture
photometry and PSF fitting methods. J band observations are consistent to within 5%
difference while Ks band observations are consistent to within 13% difference.

less variability, as confirmed by Table 3.2. Our PSF fitting method also provides us with a
robust approach to extracting the spectroscopic light curves, which we discuss below.

3.2. Spectroscopic PSF Fitting

To perform spectroscopic extraction on a given frame, we obtain the wavelength solution
of the detector and using the wavelength at each pixel location, we construct a forward model
which retrieves the best fitting spectroscopic PSF model. We first determine the distribution
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Fig. 3.7. Reconstruction of spectroscopic PSF for 5 spectral bins. Panel a) depicts the
original background subtracted exposure. Panels b) to f) show the 5 spectral bins which are
then added together to construct the PSF model, depicted in g). A residual image obtained
by subtracting the background subtracted exposure (a) by the reconstructed PSF (g) is
presented in h). Panels a) to g) are on the same colour scale.

of flux across the source trace as a function of pixel location and match the falloff of counts
with respect to pixel location to the filter transmission cutoffs. At low spectral resolution,
we can assume that wavelength is a linear function of pixel position and thus we obtain
the absolute wavelength solution [28]. Figure 3.8 shows the wavelength grid for a J band
observation.

From there, we take the model PSF constructed by the KLIP algorithm and divide it into
segments according to the number of spectroscopic bins. We pass each segment through a
Gaussian convolution and use the wavelength solution to determine the segment’s wavelength
coverage based on its pixel location on the detector. We then construct a forward model
which combines the separate spectroscopic segments to reconstruct the model PSF and scales
each segment by a scaling factor A. For N spectroscopic bins, the data can be fit as:

Data =A1 × Segment1 + A2 × Segment2+

. . . AN × SegmentN

Our forward model handles the scaling of each PSF model segment and combines each seg-
ment to reconstruct the PSF model. We then use a least squares minimization to determine
the best fitting scaling values for all spectroscopic PSF segments at the same time, ulti-
mately reconstructing the a PSF that best estimates the original data. A visualization of
the spectroscopic PSF reconstruction for 5 spectral bins is shown in Figure 3.7. For our
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Fig. 3.8. Wavelength solution for a sample 1st order PSF of a J band exposure, calculated
by matching the counts on the detector with the filter transmission cutoffs.

analysis, we chose to extract 10 spectroscopic bins from our J band observations and 5 bins
from the K band observations. This allows us to optimize spectral resolution while main-
taining reasonable signal-to-noise within each bin. Again, we take A for each bin as the
spectrophotometric measurement and we obtain A for the 0th, 1st, and 2nd order PSF’s of
the TRAPPIST-1 star as well as a nearby reference star for each exposure, ultimately giving
us 6 spectroscopic time-series light curves: 3 for TRAPPIST-1 and 3 for the reference star.

In comparison to an aperture photometry approach, PSF fitting allows us to robustly
and accurately extract spectroscopic data from the 1st and 2nd order traces. For an aperture
photometry approach, we create N rectangular apertures to capture the counts in each
spectroscopic bin, as shown in Figure 3.9. This allows us to obtain a rough estimate of
the flux in each bin, however it does not account for the Gaussian profile of the flux in
each wavelength bin. Although it is also possible to rotate each bin to intersect the PSF
perpendicularly, we find this approach makes lining up each rectangular bin along the PSF
without gaps or missed pixels to be unnecessarily difficult and inefficient. Furthermore, this
approach requires much more manual input to determine the best apertures based on the
size of the PSF, which can vary throughout the night due to atmospheric effects and changes
from one observational night to another. As the PSF grows, the wavelength solution changes
as well; we find that maintaining precise wavelength bins is unmanageable with an aperture
approach since the size of the aperture would need to change constantly.
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Fig. 3.9. Rectangular apertures for spectroscopy, shown in red. Due to atmospheric effects,
the PSF may grow or shrink on the detector. In order to maintain precise wavelength bins
based on the wavelength solution, the apertures would also need to grow or shrink in size,
leading to imprecise spectrophotometry.

4. Light curve analysis

We carry out our light curve analysis of the TRAPPIST-1d observations within the
ExoTEP analysis framework [5, 3]. In our analysis, we use the photometric results of the
1st order PSFs, which are the brightest of the three differential orders per star, and yield the
cleanest light curves. We perform differential photometry, dividing the light curve extracted
from the 1st order source of the TRAPPIST-1 star by that of the reference star in order to
broadly account for the effects of the atmosphere. We were unable to fit the overlapping
transit of planets b and d well, and thus chose to omit the visit of UT 2017/10/12 from our
analysis.
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Fig. 3.10. Left: Joint fit broadband light curve for the two J band Palomar transit obser-
vations of TRAPPIST-1 d. The top panel shows the best fitting model light curves (black
curve), overlaid with the systematics-corrected data (circles), binned to 30 seconds. Resid-
uals from the light curve fits are shown in the middle panels. The bottom panels shows
a histogram of the residuals normalized by the fitted photometric scatter parameter for
each respective transit. The residuals follow the expected Gaussian distribution for photon
noise limited observations. Right: Similarly for the two Ks band transit observations of
TRAPPIST-1 d, binned to 120 seconds.

4.1. Photometric Light Curves

The astrophysical model is derived using the batman package, described in Kreidberg
(2015) [22], which models the transit signal of a planet as it crosses in front of its host star.
We then fit the transit depth and mid-transit time of the time series photometry with a
Markov chain Monte Carlo (MCMC), as described in Benneke et al. [5, 3], fixing all other
parameters of the planet and star to the values reported in the literature [7, 6]. The resulting
joint white light curves are depicted in Figure 3.10.

4.1.1. Instrumental Systematics

The systematics model aims to correct for instrumental and atmospheric time-correlated
effects in the dataset. For the J band measurements, we find the expansion and contraction
of the PSF on the detector due to atmospheric effects has the greatest influence in the
photometry. To account for this, we model the systematics with the following analytical
function:
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Fig. 3.11. Blue and green data points show transit depth measurements from the J band
observations and Ks band observations, respectively; vertical bars indicate the 1σ transit
depth uncertainties while the horizontal bars indicate the wavelength ranges of the mea-
surements. A blue solid line represents the Spitzer 4.5 um transit depth with the dashed
representing the upper and lower bounds [7]. Similarly, the red solid and dashed lines depict
the average HST J band transit depth and error [6]. Our results are consistent with the
HST and Spitzer transit depths, albeit with larger uncertainties.

SJBand(t) = c+ vxx(t) + vyy(t)

+ vFWHMFWHM(t)
(4.1)

where c is a normalization constant, vx is the slope of the x position with respect to time
x(t), vy is the slope of the y position with respect to time y(t), and vFWHM is the slope
of the full width at half maximum (FWHM) of the PSF as a function of time FWHM(t).
Detrending against the FWHM and the position of the PSF on the detector allows us to
correct for changes in pixel sensitivities across the detector as well as atmospheric effects
which may cause the PSF to grow or shrink throughout the period of observation.

For Ks band observation sets, we found the 0th order PSF did not always offer high
enough contrast above the background noise to extract the FWHM, thus we instead correct
for positional effects on the detector and the effects of background with respect to time. The
systematics function is as follows:

SKsBand(t) = c+ vxx(t) + vyy(t) + vbbkg(t) + vtt (4.2)

where vb is the slope of the changes in background with time bkg(t) and vt is the slope of
the time scale, t. As can be seen in Figure 3.10, the Ks band transit observations show a
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fair amount of systematic noise, visible both in the best fitting model light curve and in the
residuals. This suggests that the systematics model insufficiently describes the instrumental
and atmospheric time-correlated effects. The justification for this systematic noise is twofold.
Firstly, due to the nature of the Ks band observations, the systematics model could not take
into account the FWHM of the PSF, depriving the systematics model of corrections to the
light curve based on variations in the PSF’s size. Secondly, the effects of the brightening
sky as dawn approached during the transit observation on the night of UT 2017/10/24 may
not have been well constrained by the systematics model, resulting in increased noise and
systematic variability.

4.2. Spectroscopic Light Curves

We fit the spectroscopic light curves using the same model as the broadband light curves.
We perform a joint MCMC fit of a transit and systematics model to all spectroscopic light
curves, keeping the mid-transit time fixed to the best-fitting value from the broadband light
curve to obtain posterior distributions for individual planet-to-star radius ratios in each
spectroscopic bin. The transmission spectrum from our joint analysis of the J band and Ks

band nights are given in Figure 3.11. The first bin (1.10 - 1.13 µm) and the last two bins
(1.34 - 1.40 µm) of the J band observations and the first bin (2.0 - 2.06 µm) of the Ks band
observations hold too little light due to the WIRC filter cut offs, resulting in noisy, unreliable
light curves. We choose to exclude these points in our analysis.

5. Atmospheric Analysis

Atmospheric characterization of exoplanets is firmly dependent on the accuracy of the
available model spectra. Advances in transit, eclipse, and direct imaging techniques and in-
strumentation constantly improve the quality and resolution of observed spectra. To explain
the observed phenomena, modern atmospheric models follow two main approaches: forward
modelling and retrievals [25, 2]. Forward models take into account the numerous physical
processes at work within an atmosphere and generate simulated spectra based on a defined
set of model parameters. Algorithms describing the atmospheric chemistry, energy transport
mechanisms, clouds and hazes, and thermodynamics, etc. all play a complex role in calcu-
lating a self-consistent atmospheric model. Model spectra can then be compared and fit to
the observed spectra by tweaking the model parameters until a desired match is obtained.
Forward models excel in their ability to take into account prior knowledge of atmospheric
chemistry and physics in order to gain physical insights into the modeled atmospheric pro-
cesses, however they lack the ability to treat observational uncertainties and the models are
based upon the assumption that our understanding of the physical and chemical processes
are absolute [15, 1, 4]. In comparison, atmospheric retrieval methods attempt to fit models
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to observed spectra by fitting free parameters which describe the atmospheric composition
and characteristics. The method explores the model parameter space to find the best fit-
ting model, deriving statistically robust uncertainties for derived chemical abundances and
temperature profiles. One of the major downfalls associated with this method arises from
the lack of physical consistency in the derived models. The retrieved models take chemical
abundances and temperature profiles as free parameters and do take into account the at-
mospheric processes at play. As a result, retrievals can yield unphysical outcomes when the
retrieved temperature profiles are incompatible with the retrieved abundances [2].

5.1. Self-consistent modelling

In this work, we build upon the Python based Self-Consistent Atmospheric Retrieval
framework for ExoplaneTs (SCARLET), which tries to bridge the gap between forward
modelling and retrievals in order to constrain the uncertainties of relevant model parame-
ters while calculating self-consistent atmospheric models to match observed data [1, 4, 2].
SCARLET calculates atmospheric models and synthetic planet spectra using a self-consistent
photochemistry-thermochemistry model. Chemical abundances are determined using either
a chemical equilibrium model, which minimizes Gibb’s free energy in each layer of the at-
mosphere, or a more detailed kinetics and transport model, which solves the coupled mass-
continuity equations for each molecular species.

5.1.1. Self-consistent temperature structure using the Rybicki method

Critical to both forward models and retrievals, the treatment of a planet’s temperature
structure dictates how and where energy is deposited within the atmosphere, affecting the
possible chemical abundances, as well as the resulting model spectra.

Here, we implement the highly efficient Rybicki method into SCARLET to converge
upon radiative-convective equilibrium. Previously, the equations of hydrostatic equilibrium,
radiative transfer, radiative equilibrium and convection were solved individually, iterating
between all equations to converge upon the temperature structure. As a result, the iterations
were slow and thousands of iterations were required to relax towards the solution. In contrast,
the Rybicki method linearizes all equations, thus allowing us to solve all structural equations
simultaneously. The method is essentially a Newton-Raphson procedure for solving a set
of nonlinear algebraic equations, and allows us to efficiently advance towards the converged
solution much more quickly; in most cases only 10 to 20 iterations are required as opposed to
thousands previously. We describe the Rybicki method in its entirety in Appendix A, Section
A.4. These additions allow SCARLET to evolve as a next-generation atmospheric modelling
framework, increasing the speed, efficiency, and accuracy of the self-consistent temperature
profile calculation. This code self-consistently handles both incident stellar irradiation as
well as internal flux, enabling it to treat a variety of possible applications.
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Fig. 3.12. The SCARLET temperature structure calculation framework. The black arrows
represent the first run through of the code, which does not implement convection or changes
to hydrostatic equilibrium, which solves stability issues. After the first convergence of the
temperature structure, the code follows the flowchart with the red arrows and the equations
of hydrostatic equilibrium and radiative-convection equilibrium are solved.
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An overview of the basic architecture of the self-consistent temperature structure cal-
culation framework is illustrated in Figure 3.12. An initial temperature profile is either
generated from the planet properties (eg. a uniform temperature structure based on the ex-
oplanet’s equilibrium temperature), or otherwise parameterized by the user. After initializing
a pressure grid representative of the layers of the atmosphere, the chemical composition is
calculated with a self-consistent photochemistry-thermochemistry model for the initial tem-
perature profile and the hydrostatic equilibrium equations are solved to obtain the altitude,
mean molecular mass, and scale heights for each atmospheric layer. Extinction, absorption,
and scattering coefficients at each layer for every wavelength are then interpolated from pre-
calculated opacity tables. We then use the Feautrier method to solve the radiative transfer
equation (RTE) for every layer and wavelength, described in Section A.3 of Appendix A[13].
From there, the Rybicki method handles the modelling of energy transport, solving the equa-
tions of radiative equilibrium to yield a correction to the temperature for each layer which
will bring the temperature profile closer to the self-consistent solution (see Section A.4 of
Appendix A)[1, 24]. We apply the temperature correction to the previous temperature pro-
file and then recalculate the opacities based on the new temperature profile. The RTE is
then resolved for the new temperature profile and a new temperature correction is calculated
with the Rybicki method. We iterate until the temperature correction is sufficiently small to
converge upon an initial solution. For stability, we do not account for convective equilibrium
or change the chemical composition until the algorithm has converged upon a tempera-
ture structure which first satisfies the conditions for radiative equilibrium. After an initial
solution has been found, we update the chemical composition using the photochemistry-
thermochemistry model and solve the hydrostatic equilibrium equations at each iteration.
We then also account for convection within our energy transport algorithms, allowing us to
finally converge upon a self-consistent temperature profile. Convection is treated within the
Rybicki method using mixing length theory. Appendix A provides a detailed description of
the self-consistent temperature calculation.

5.1.2. Self-consistent Models of TRAPPIST-1d

We construct a host of possible combinations of atmospheric metallicity and cloud top
pressures. Figure 3.14 depicts the calculated self-consistent temperature structures for each
case. We choose a solar carbon to oxygen (C/O) ratio, a Bond albedo of 0.1, and a heat
distribution factor of 0.25 and use SCARLET’s chemically consistent mode to compute a
model spectrum at radiative-convective and chemical equilibrium. SCARLET first computes
the molecular abundances in chemical and hydrostatic equilibrium and the molecule opaci-
ties. A self-consistent temperature structure is then calculated using the Feautrier method
to solve the RTE and the Rybicki method to converge upon radiative-convective equilibrium.
We treat clouds as a gray opacity source parameterized by the cloud top pressures, which
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we vary between 1 mbar and 1010 mbar. We also probe metallicities between 0.01 × solar
to 100 × solar. The resulting spectra are computed with line-by-line radiative transfer. We
compare the calculated spectra to the WIRC (this work), HST [6], and Spitzer [7] observa-
tions to date with a reduced chi square (χ2), as illustrated in Figure 3.13. The uncertainty of
our results do not allow us to constrain the atmosphere of TRAPPIST-1d better than previ-
ous studies using HST, however our results are consistent in ruling out cloud-free, hydrogen
dominated atmospheres. Lower reduced χ2s are found with high metallicity cases and lower
cloud top pressures, indicating a better fit to the observations.

5.2. Atmospheric Retrieval

Using the HST, Spitzer, and Palomar observations, we also run a retrieval with SCAR-
LET’s chemically consistent mode. In retrieval mode, SCARLET determines the best fitting
set of parameters for a given observation set using a MCMC to explore the parameter space.
We take atmospheric metallicity, C/O ratio, cloud top pressure, and the vertical temperature
structure as free fitting parameters with log-uniform priors. For a probed set of parameters,
SCARLET calculates a self-consistent atmospheric model and generates a transmission spec-
tra; the modelled spectra is then compared with the observations to evaluate its likelihood.
With a Bayesian MCMC analysis combined with the chemically-consistent atmospheric for-
ward model, we found we were able to constrain the metallicity and cloud top pressure of
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Fig. 3.13. Full spectrum with transit points from this work (blue), and previous HST (red)
and Spitzer (black) studies [6, 7]. Vertical bars indicate the 1σ transit depth uncertainties
while the horizontal bars indicate the wavelength ranges of the measurements. Bottom: The
left, middle, and right plots zoom in on the J, Ks, and Spitzer bandpasses respectively.
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Fig. 3.14. Self-consistent temperature-pressure profiles for different atmospheric scenarios
on TRAPPIST-1d. The dashed red line illustrates the calculated equilibrium temperature
for TRAPPIST-1d while the solid curves depict the temperature-pressure profiles for various
atmospheric cases at radiative-convective equilibrium. Note that the pressure axis is inverted
as is commonly done for atmospheric temperature profiles.

TRAPPIST-1d, as depicted in Figure 3.15. Shaded regions represent normalized probabil-
ity densities where darker shading indicate higher probability regions. We find cloud top
pressures above 10000 mbar excluded from the 3σ bounds from metallicities of 0.01 to 300×
the solar value, indicating that clouds become optically thick below 10000 mbar. Low cloud
top pressures and high metallicities have the same effect on observed and modelled spectra:
both attenuate the observed or modelled transmission spectra. Thus, at high metallicities
the effect of varying cloud top pressures becomes indistinguishable, as can be seen in Figure
3.15 at metallicities over 300× solar. Similar to our results from self-consistent modelling,
our joint retrieval also rules out cloud free atmospheres (with cloud top pressures lower than
10000 mbar) to 3σ at metallicities lower than 300× the solar value.

6. Discussion and Conclusions

In this work we present the first spectroscopic results with the WIRC+Spec mode on
Palomar Observatory’s WIRC instrument. Using a custom built data reduction pipeline, we
apply a novel, KLT based, PSF fitting approach to extracting photometric and spectroscopic
light curves from our observations of TRAPPIST-1d with the WIRC+Spec mode. We show
the photometric results of our PSF fitting technique are consistent with the results of using
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Fig. 3.15. Constraints on metallicity versus cloud top pressure. The shading indicates the
normalized probability densities derived with SCARLET’s Bayesian atmospheric retrieval
framework while the black contours show the 68%, 95%, and 99.7% Bayesian credible regions.
Metallicities are described in reference to multiples of solar metallicity.

aperture photometry. This technique also provides a robust approach to extracting spec-
troscopy while taking into account the changes in PSF size due to atmospheric effects; this is
not feasible with aperture spectrophotometry as discussed in Section 3.2. Using a newly im-
plemented self-consistent radiative-convective temperature structure calculation, we model
and compare various atmospheric scenarios with observations to date, confirming that a
cloud-free, hydrogen dominated atmosphere is highly unlikely on TRAPPIST-1d. Although
we were unable to characterize the atmosphere of TRAPPIST-1d better than previous works,
we demonstrate WIRC+Spec’s capabilities as a tool for transit spectroscopy, even for a faint,
challenging target such as TRAPPIST-1. In the future, we plan to apply our techniques to
characterize the atmospheres of hot Jupiters and obtain more observations of TRAPPIST-1
to improve the signal of our current results. The James Web Space Telescope (JWST ) and
other upcoming next generation observatories will bring further clarity into the nature of
the TRAPPIST-1 system.
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Summary and Conclusion

In this work, we demonstrated the capabilities of the WIRC+Spec mode on the WIRC
instrument for exoplanet atmospheric characterization. Starting with observations from
WIRC+Spec taken from August to October 2017, we developed a pipeline to reduce the
raw exposures into time series photometric and spectroscopic light curves. We innovatively
adapt a KLT-based algorithm to model the observed PSFs, allowing us to use a PSF fitting
approach to extract our photometry and spectroscopy in an efficient and robust manner.
Following the reduction and light curve analysis of our data, we compare the measured
transmission spectrum against state-of-the-art atmospheric models. These models use the
newly implemented self-consistent temperature structure calculation, which linearizes the
RTE in order to quickly converge upon radiative-convective equilibrium. Our analysis of
TRAPPIST-1d rules out cloud free atmospheres (with cloud top pressures lower than 10000
mbar) at metallicities lower than 300× solar to 3σ confidence. In the future, we plan to
apply our data reduction software to analyse hot Jupiter observations taken by WIRC+Spec
in 2017. These targets are generally much less faint and therefore less challenging to observe.
With a higher signal-to-noise ratio, we will be able to reduce our uncertainties and extract
much cleaner light curves and resulting transmission spectra. These results will further
establish WIRC+Spec as a candidate for future exoplanet observations and atmospheric
characterization with transmission spectroscopy.





Appendix A

Self Consistent Temperature Structure Calculation

A.1. Overview

In the following sections, we describe the numerical methods from Hubeny and Mihalas as
they have been implemented in SCARLET [1]. The source code for each step is also included
for reference and a "cheat sheet" of the described variables can be found in Appendix B. For
those using this appendix as a reference to implement a self-consistent temperature structure
calculation, please be aware of the subtleties in nomenclature used (eg. κ vs. k or ω vs.
w). Although the best effort has been made to clarify variable nomenclature, some variables
may differ from one section of the code to the next (eg. Ad in the Feautrier code and Ak in
the Rybicki method) in order to best emulate the original published algorithms.

A.2. Starting Procedure

We start by defining a pressure grid, which define the layers of the modelled atmosphere.
The grid is defined at the boundary of each layer with the 0th layer being at the top of the
atmosphere and the N th layer being at the bottom, or surface of the planet.

A.2.1. Estimate Composition and Solve for Hydrostatic Equilibrium

Given a set of estimated parameters for the celestial object, we first estimate the chemical
composition and solve for hydrostatic equilibrium using the calcComposition and calcHy-
droEqui functions respectively.

dP

dz
= −ρg (A.2.1)

P = ρkBT

m
(A.2.2)

A.2.2. Calculate Opacities

We then determine the extinction, absorption, and scattering coefficients with calcO-
pacities, taking into account any cloud opacities depending on the desired atmospheric



model.
χν = κν + σν (A.2.3)

where χν is the extinction coefficient, κν is the absorption coefficient, and σν is the scattering
coefficient.We divide the extinction coefficient by the density at each layer to calculate the
change in optical depth at each layer, ∆τν .

ων = χν
ρ

(A.2.4)

In SCARLET, ∆τν is defined at the boundary of the top layer (∆τ [0]), and then in the middle
of each layer for all other layers down to the exoplanet’s surface (∆τ [1:]). This allows us to
calculate ∆τ at half layers (eg. ∆τ [0] = ∆τ0, ∆τ [1] = ∆τ3/2).

∆τν(d = 0) = ων(d = 0)P (d = 0)
g(d = 0) (A.2.5)

∆τν,d>0 = 1
2

(ων,d + ων,d−1) (Pd − Pd−1)
gd

(A.2.6)

1 dtau = np.zeros([self.nLay,self.nWave])
2 dtau[0,:] = (mExtinctCoef[0,:]*self.p[0])/self.grav[0]
3 for i in range(1,self.nLay):
4 dtau[i,:] = 0.5*(mExtinctCoef[i,:] +
5 mExtinctCoef[i-1,:])*(self.p[i]-self.p[i-1])/self.grav[i]

Algorithm A.1. Defining dtau within the solveRTE function

A.2.3. Calculate Stellar Irradiation and Planck Function (B)

We assume the star is a black body and determine the stellar irradiance (Hext) at the
subsolar point for the given planet.

Hext = F?

(
R?

a

)2
(A.2.7)

where F? = B(Teff ,ν) is the flux at the star’s surface, R? is the radius of the star, a is the
semi-major axis of the planet, and the Planck function is calculated as follows:

B(T,ν) = 2hν3

c2
1

e
hν
kBT − 1

(A.2.8)
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A.3. Solve the Radiative Transfer Equation with Feautrier’s
Method

A.3.1. Derivation

We start by splitting the radiative transfer equation into two sub-equations: one for
incident radiation and another for emergent radiation.

µ
∂Iν(τν ,µ)
∂τν

= Iν(τν ,µ)− Sν(τν) (A.3.1)

becomes:
+ µ

∂Iν(+µ)
∂τν

= Iν(+µ)− Sν (A.3.2)

− µ∂Iν(−µ)
∂τν

= Iν(−µ)− Sν (A.3.3)

We assume the source function is symmetric so: Sν(−µ) = Sν(+µ) = Sν

We then define I±ν = Iν(±µ) and:

uµν ≡
1
2(I+

ν + I−ν ) (A.3.4)

vµν ≡
1
2(I+

ν − I−ν ) (A.3.5)

Adding A.3.2 and A.3.3, we get:

µ
∂

∂τν
(I+
ν − I−ν ) = (I+

ν + I−ν )− 2Sν (A.3.6)

µ
∂vµν
∂τν

= uµν − Sν (A.3.7)

Subtracting A.3.2 and A.3.3 gives us:

µ
∂

∂τν
(I+
ν + I−ν ) = (I+

ν − I−ν ) (A.3.8)

µ
∂uµν
∂τν

= vµν (A.3.9)

Taking the derivative of A.3.9 with respect to τν ,

µ
∂2uµν
∂τ 2

ν

= ∂vµν
∂τν

(A.3.10)

We substitute A.3.10 into A.3.7 to obtain Feautrier’s Equation:

µ2∂
2uµν
∂τ 2

ν

= uµν − Sν (A.3.11)

The source function of the RTE is:

Sν = κνBν + σνJν
κν + σν

(A.3.12)
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where we define
λν = κν

κν + σν
= κν
χν

(A.3.13)

We can then define Jν in terms of uµν as

Jν = 1
2

∫ 1

−1
Iνdµ = 1

2

(∫ 1

0
I+
ν dµ+

∫ 0

−1
I−ν dµ

)
(A.3.14)

Jν = 1
2

∫ 1

0
(I+
ν + I−ν )dµ (A.3.15)

Jν =
∫ 1

0
uµνdµ (A.3.16)

Similarly,
Kν =

∫ 1

0
uµνµ

2dµ (A.3.17)

A.3.2. Boundary Conditions

At τν = 0, I−ν = 0. Therefore, uµν(0) = vµν(0) and A.3.9 becomes:

µ

(
∂uµν
∂τν

)
τν=0

= uµν(0)−Hext (A.3.18)

where Hext is the incoming stellar radiation.
At τν = τmax, the diffusion approximation gives us:

I±ν (τmax) = Bν(τmax)± µ
(
dBν

dτν

)
τmax

(A.3.19)

uµν(τmax) = 1
2
[
I+
ν (τmax) + I−ν (τmax)

]
= Bν(τmax) (A.3.20)

A.3.3. Discretization

In order to solve the RTE, we discretize and express the equations using finite differences.
We first introduce the index d to represent each layer and j to represent each angle µ.

τd, d = 0,...,ND − 1

where ND is the total number of layers, and

µj, j = 0,...,M − 1

where M is the total number of angles probed.
The source function can then be expressed as:

Sν = λνBν + (1− λν)Jν

Sd = λdBd + (1− λd)
M−1∑
j=0

wjuj,d (A.3.21)

where wj is a weighting function used to perform the integral numerically.
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Then expressing a given function X in terms of finite differences of τ :
Xd −Xd−1

τd − τd−1
≡
(
dX

dτ

)
d−1/2

(A.3.22)

Xd+1 −Xd

τd+1 − τd
≡
(
dX

dτ

)
d+1/2

(A.3.23)

(
d2X

dτ 2

)
d

=

(
dX
dτ

)
d+1/2

−
(
dX
dτ

)
d−1/2

∆τd
(A.3.24)

where

∆τd = 1
2(∆τd+1/2 + ∆τd−1/2)

∆τd−1/2 = τd − τd−1

∆τd+1/2 = τd+1 − τd

(A.3.25)

Note that equation A.3.25 and equation A.2.6 are equivalent.
Using a similar discretization for equation A.3.11, we can write:

µ2∂
2uµν
∂τ 2

ν

= uµν − Sν

µ2
j

[(
duj
dτ

)
d+1/2

−
(
duj
dτ

)
d−1/2

]
∆τd

=
µ2
j

∆τd

[
(uj,d+1 − uj,d)

∆τd+1/2
− (uj,d − uj,d−1)

∆τd−1/2

]
= uj,d − Sd (A.3.26)

µ2
j

∆τd∆τd−1/2
uj,d−1 −

µ2
j

∆τd

(
1

∆τd+1/2
+ 1

∆τd−1/2

)
uj,d +

µ2
j

∆τd∆τd+1/2
uj,d+1

= uj,d − λdBd − (1− λd)
M−1∑
k=0

wkuk,d

(A.3.27)
Here k replaces the index j in the summation term of the source function for reasons of
clarity.

This equation forms a matrix of the form:
a00 0 · · · 0
0 a11 · · · 0
... ... . . . ...
0 0 · · · aM−1M−1




u0

u1
...

uM−1


d−1

+


b00 b01 · · · b0M

b10 b11 · · · b1M
... ... . . . ...

bM0 bM1 · · · bM−1M−1




u0

u1
...

uM−1


d

+


c00 0 · · · 0
0 c11 · · · 0
... ... . . . ...
0 0 · · · cM−1M−1




u0

u1
...

uM−1


d+1

=


l0

l1
...

lM−1


d
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Which can also be written as:

−Adud−1 + Bdud −Cdud+1 = Ld (A.3.28)

A.3.4. Numerical Methods

A.3.4.1. Middle Layers

With equation A.3.27 and A.3.28, we find for all layers excluding the top and bottom of
the atmosphere:

ajj = −
µ2
j

∆τd∆τd−1/2

ajk = 0

bjj = −
µ2
j

∆τd

(
1

∆τd+1/2
+ 1

∆τd−1/2

)
− 1 + (1− λd)wj

bjk = (1− λd)wk

cjj = −
µ2
j

∆τd∆τd+1/2

cjk = 0

lj = −λdBd

(A.3.29)

1 # Middle _______________________________________
2 for d in range(1,l-1):
3 for j in range(imu):
4 A[j,:] = -mu[j]**2/(dtau[d,:]*1.0/2.0*(dtau[d,:]+dtau[d+1,:]))
5 C[j,:] = -mu[j]**2/(dtau[d+1,:]*1.0/2.0*(dtau[d,:]+dtau[d+1,:]))
6 L[j,:] = -lmbda[d,:]*plnk[d,:]
7 for k in range(imu):
8 B[j,k,:] = (1.0-lmbda[d,:])*weight[k]
9 B[j,j,:] = B[j,j,:] + A[j,:] + C[j,:] - 1

Algorithm A.2. Solving the matrices of the middle layers within the feautrierRTE
function

A.3.4.2. Top of the atmosphere

At the top of the atmosphere, equation A.3.18

µ

(
∂uµν
∂τν

)
τν=0

= uµν(0)−Hext
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becomes:
µj

(
uj1 − uj0

∆τ3/2

)
= uj0 −Hext (A.3.30)

We perform a Taylor expansion to obtain:

uj1 = uj0 −Hext + ∆τ3/2

(
du

dτ

)
0

+ 1
2∆τ 2

3/2

(
d2u

dτ 2

)
0

(A.3.31)

where from the Feautrier’s Equation (A.3.11) and the upper boundary condition:(
d2u

dτ 2

)
0

= 1
µ2
j

(uj0 − S0)

(
du

dτ

)
0

= uj0
µj

and therefore,

(uj1 − uj0) = ∆τ3/2
uj0
µj

+ 1
2

∆τ 2
3/2

µ2
j

(uj0 − S0)−Hext (A.3.32)

µj
(uj1 − uj0)

∆τ3/2
= uj0 + 1

2
∆τ3/2

µj
(uj0 − S0)−Hext (A.3.33)

We rearrange the above to write a matrix equation of the form:

B0u0 −C0u1 = L0 (A.3.34)

where

bjj = − µj
∆τ3/2

− 1− 1
2

∆τ3/2

µj
(1− (1− λ0)wj) (A.3.35)

bjk = 1
2

∆τ3/2

µj
(1− λ0)wk (A.3.36)

cjj = − µj
∆τ3/2

(A.3.37)

lj = −1
2

∆τ3/2

µj
λ0B0 −Hext (A.3.38)

1 # TOA _______________________________________
2 for j in range(imu):
3 C[j,:] = -mu[j]/dtau[1,:]
4 L[j,:] = -1.0/2.0*dtau[1,:]/mu[j]*lmbda[0,:]*plnk[0,:] - Hext
5

6 for k in range(imu):
7 B[j,k,:] = 1.0/2.0*dtau[1,:]/mu[j]*(1.0-lmbda[0,:])*weight[k]
8

9 B[j,j,:] = B[j,j,:] + C[j,:] - 1.0 - 1.0/2.0*dtau[1,:]/mu[j]
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Algorithm A.3. Solving the matrices of the top layers within the feautrierRTE function

A.3.4.3. Bottom of the atmosphere

At the bottom of the atmosphere, uµν(τmax) = Bν(τmax) and AND−1 = CND−1 = 0 so:

BND−1uND−1 = LND−1 (A.3.39)

where

bjj = 1 (A.3.40)

bjk = 0 (A.3.41)

lj = BND−1 (A.3.42)

where B is the Planck function.

1 # Bottom _______________________________________
2 for j in range(imu):
3 U[j,l-1,:] = plnk[l-1,:]

Algorithm A.4. Solving the matrices of the bottom layers within the feautrierRTE
function

The following grand matrix can then be constructed:

B0 −C0 0 0 · · · · · · 0
−A1 B1 −C1 0 · · · · · · 0

0 −A2 B2 −C2 · · · · · · 0

0 0 . . . . . . . . . · · · 0
... ... ... . . . . . . . . . 0
... ... ... · · · −AND−2 BND−2 −CND−2

0 · · · · · · · · · 0 −AND−1 BND−1





u0

u1

u2
...
...

uND−2

uND−1


=



L0

L1

L2
...
...

LND−2

LND−1


(A.3.43)

A.3.4.4. Solution of the Matrix

We solve this system of equations using a Gauss-Jordan elimination, consisting of a
forward elimination from the top layer down, followed by a back substitution at the bottom
layer back up to the top.
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Starting from the top layer:
B0u0 −C0u1 = L0 (A.3.44)

u0 = B−1
0 C0︸ ︷︷ ︸
D0

u1 + B−1
0 L0︸ ︷︷ ︸
R0

(A.3.45)

u0 = D0u1 + R0 (A.3.46)

and then for the middle layers:

−A1u0 + B1u1 −C1u2 = L1 (A.3.47)

where we can substitute A.3.46 for u0 to obtain:

−A1 (D0u1 + R0) + B1u1 −C1u2 = L1 (A.3.48)

(B1 −A1D0) u1 = C1u2 + A1R0 + L1 (A.3.49)

u1 = (B1 −A1D0)−1 C1︸ ︷︷ ︸
D1

u2 + (B1 −A1D0)−1 (A1R0 + L1)︸ ︷︷ ︸
R1

(A.3.50)

Then in general up to d = ND − 2:

ud = Ddud+1 + Rd (A.3.51)

Dd = (Bd −AdDd−1)−1 Cd (A.3.52)

Rd = (Bd −AdDd−1)−1 (AdRd−1 + Ld) (A.3.53)

We then calculate all Dd and Rd of the system. At the bottom of the atmosphere, AND−1 =
CND−1 = 0 and we can then solve for uND−1:

uND−1 = B−1
ND−1LND−1 (A.3.54)

We can then use
ud = Ddud+1 + Rd (A.3.55)

to find the rest of the ud, finally allowing us to calculate Jν and Kν

Jd =
M−1∑
j=0

wjujd (A.3.56)

Kd =
M−1∑
j=0

wjµ
2
jujd (A.3.57)

and to find H:

H0 =
M−1∑
j=0

wjµjuj0

Hd = Kd −Kd−1

∆τd

(A.3.58)
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We then define fν and gν as:
fν ≡

Kν

Jν
(A.3.59)

gν ≡
Hν(τ = 0)
Jν(τ = 0) (A.3.60)

We show below the complete feautrierRTE function including the calculations of the
matrices at each layer and the Gauss-Jordan elimination as implemented in SCARLET.
Please refer to Appendix A for a complete list of variables for the Feautrier method (as
described in this section) and their equivalents in SCARLET.

1 def feautrierRTE(self,lmbda,dtau,B,Hext = 0, mu =
np.array([0.8872983346,0.5,0.1127016654]), weight =
np.array([0.27777777,0.4444444,0.27777777])):

2

3 [imu,l,w] = [mu.size,self.nLay,self.nWave]
4

5 plnk = B
6 J = np.zeros([l,w])
7 K = np.zeros([l,w])
8 H = np.zeros([l,w])
9

10 fn = np.zeros([l,w])
11 Gfn = np.zeros([w])
12

13 # Tier 1: mu
14 A = np.zeros([imu,w])
15 C = np.zeros([imu,w])
16 L = np.zeros([imu,w])
17 X = np.zeros([imu,w])
18

19 # Tier 2: mu*mu
20 B = np.zeros([imu,imu,w])
21 N = np.zeros([imu,imu,w])
22

23 # Tier 3: layered
24 U = np.zeros([imu,l,w])
25 R = np.zeros([imu,l,w])
26 D = np.zeros([imu,imu,l,w])
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27

28 # TOA _______________________________________
29 for j in range(imu):
30 C[j,:] = -mu[j]/dtau[1,:]
31 L[j,:] = -1.0/2.0*dtau[1,:]/mu[j]*lmbda[0,:]*plnk[0,:] - Hext
32

33 for k in range(imu):
34 B[j,k,:] = 1.0/2.0*dtau[1,:]/mu[j]*(1.0-lmbda[0,:])*weight[k]
35

36 B[j,j,:] = B[j,j,:] + C[j,:] - 1.0 - 1.0/2.0*dtau[1,:]/mu[j]
37

38 # Gauss-Jordan forward elimination
39 #Inverse B
40 Bflip = B
41 for i in range(imu-1,0,-1):
42 Bflip = np.swapaxes(Bflip,i-1,i)
43 B = np.linalg.inv(Bflip)
44 for i in range(0,imu-1):
45 B = np.swapaxes(B,i,i+1)
46

47 for j in range(imu):
48 for k in range(imu):
49 D[j,k,0,:] = B[j,k,:]*C[k,:]
50

51 for j in range(imu):
52 R[j,0,:] = 0
53 for k in range(imu):
54 R[j,0,:] = R[j,0,:] + B[j,k,:]*L[k,:]
55

56 # Middle _______________________________________
57 for d in range(1,l-1):
58 for j in range(imu):
59 A[j,:] = -mu[j]**2/(dtau[d,:]*1.0/2.0*(dtau[d,:]+dtau[d+1,:]))
60 C[j,:] = -mu[j]**2/(dtau[d+1,:]*1.0/2.0*(dtau[d,:]+dtau[d+1,:]))
61 L[j,:] = -lmbda[d,:]*plnk[d,:]
62 for k in range(imu):
63 B[j,k,:] = (1.0-lmbda[d,:])*weight[k]
64 B[j,j,:] = B[j,j,:] + A[j,:] + C[j,:] - 1
65

66 for j in range(imu):
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67 for k in range(imu):
68 N[j,k,:] = B[j,k,:] - A[j,:]*D[j,k,d-1,:]
69

70 for j in range(imu):
71 X[j,:] = A[j,:]*R[j,d-1,:]+L[j,:]
72

73 # Gauss-Jordan forward elimination
74 # Inverse N
75 Nflip = N
76 for i in range(imu-1,0,-1):
77 Nflip = np.swapaxes(Nflip,i-1,i)
78 N = np.linalg.inv(Nflip)
79 for i in range(0,imu-1):
80 N = np.swapaxes(N,i,i+1)
81

82 for j in range(imu):
83 for k in range(imu):
84 D[j,k,d,:] = N[j,k,:]*C[k,:]
85

86 for j in range(imu):
87 for k in range(imu):
88 R[j,d,:] = R[j,d,:] + N[j,k,:]*X[k,:]
89

90 # Bottom _______________________________________
91 for j in range(imu):
92 U[j,l-1,:] = plnk[l-1,:]
93

94 # Reverse Substitution _______________________________
95 for d in range(l-2,-1,-1):
96 for j in range(imu):
97 for k in range(imu):
98 U[j,d,:] = U[j,d,:] + D[j,k,d,:]*U[k,d+1,:]
99 U[j,d,:] = U[j,d,:] + R[j,d,:]

100

101

102 # Calculate J,K,H
103 for d in range(l):
104 for j in range(imu):
105 J[d,:] = J[d,:]+weight[j]*U[j,d,:]
106 K[d,:] = K[d,:]+weight[j]*mu[j]**2*U[j,d,:]
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107 fn[d,:] = K[d,:]/J[d,:]
108

109 for d in range(1,l):
110 H[d,:] = (K[d,:] - K[d-1,:])/dtau[d,:]
111

112 for j in range(imu):
113 H[0,:] = H[0,:] + weight[j]*mu[j]*U[j,0,:]
114

115 Gfn = H[0,:]/J[0,:]
116 return J,K,H,fn,Gfn

Algorithm A.5. The complete feautrierRTE function to solve the radiative transfer
equation

In this section, we have solved the radiative transfer equation using the Feautrier method.

A.4. Determining the Temperature Profile

We follow the Rybicki method outlined in Hubeny & Mihalas (2014) to converge upon
the correct temperature-pressure profile. The method follows a Newton-Raphson procedure,
linearizing the solution to the RTE and radiative-convective equilibrium in order to solve for
a temperature difference that iteratively brings us closer towards the converged solution. The
linearization couples bordering layers and also takes into account the wavelength dependent
opacities for the entire wavelength band at once, reducing both computational power and
required time.

The Rybicki method can be divided into three segments: solving for radiative transfer,
radiative equilibrium, and convective equilibrium. The derivation of Rybicki’s linearization
is beyond the scope of this work and we instead focus on the implementation of Rybicki’s
result.

A.4.1. Numerical Derivatives

We first calculate the necessary derivatives of κ, χ, ω, λ, κB and B at the current
temperature and pressure numerically. For example, to calculate the derivative of a variable
X(T ):

∂Xd

∂Td
= X(1.01Td)−X(Td)

1.01Td − Td
(A.4.1)

Below, we show the diffVar function used to calculate needed numerical derivatives. For
numerical stability we do not update the chemistry of the model until the temperature-
pressure profile has converged once.
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1 def diffVar(self,T,plnk,lmbda,mExtinctCoef,extinctCoef,absorbCoef,loop):
2 newT = T*1.01
3 diff = newT-T
4 diff = np.tile(diff[:,np.newaxis],(1,self.nWave))
5

6 if loop == 1: # Add stability by calculation chemistry/hydroequil only
after 1st convergence

7 self.qmol_lay =
self.calcComposition(self.modelSetting,self.params,newT)

8 self.z,self.dz,self.grav,self.ntot,self.nmol,self.MuAve,
9 self.scaleHeight,self.RpBase,self.r=

10 self.calcHydroEqui(self.modelSetting,self.params,newT)
11

12 extinctCoef2,absorbCoef2, scatCoef =
self.calcOpacities(self.modelSetting,self.params,newT)

13 rho = np.tile((self.ntot*self.MuAve)[:,np.newaxis],(1,self.nWave))
14

15 mExtinctCoef2 = extinctCoef2/rho
16

17 lmbda2 = absorbCoef2/extinctCoef2
18

19 B2 = rad.PlanckFct(np.tile(newT[:,np.newaxis],(1,self.nWave)),
20 np.tile(self.f[np.newaxis,:],(len(newT),1)),’Hz’,’W/(m**2*Hz)’,’rad’)
21

22 diffExt = (extinctCoef2 - extinctCoef)/diff
23 diffAbs = (absorbCoef2 - absorbCoef)/diff
24 diffMExt = (mExtinctCoef2 - mExtinctCoef)/diff
25 diffLmbda = (lmbda2 - lmbda)/diff
26 diffN = (absorbCoef2*B2 - absorbCoef*plnk)/diff
27 diffPlnk = (B2 - plnk)/diff
28

29 return diffExt,diffAbs,diffMExt,diffLmbda,diffN,diffPlnk

Algorithm A.6. Determining the numerical derivatives of κ, χ, ω, λ, κB and B in the
diffVar function

A.4.2. Radiative Transfer

The linearized form of the RTE results in the following matrix equation:

UkδJk + VkδT = Ek (A.4.2)
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where
k = 0,...,NF − 1

and NF is the total number of frequencies considered. Uk and Vk are tridiagonal matrices
to account for the coupling between any given layer and the layers above and below it; for
one frequency, the matrix is of the form:

UB,d=0 UC,d=0 0 0 · · · · · · 0
−UA,1 UB,1 −UC,1 0 · · · · · · 0

0 −UA,2 UB,2 −UC,2 · · · · · · 0

0 0 . . . . . . . . . · · · 0
... ... ... . . . . . . . . . 0
... ... ... · · · −UA,ND−2 UB,ND−2 −UC,ND−2

0 · · · · · · · · · 0 −UA,ND−1 UB,ND−1


(A.4.3)

where
d = 0,...,ND − 1

and ND is the total number of layers.Vk is similarly structured.
Below, we describe the equations to build the linearized matrices of the RTE from the

components of the Feautrier method.
At the top of the atmosphere:

UB,0 = f0

∆τ3/2
+ gν + ∆τ3/2

2 λ0 (A.4.4)

UC,0 = f1

∆τ3/2
(A.4.5)

VB,0 =
−f0J0 − f1J1

∆τ 2
3/2

+ 1
2λ0 (J0 −B0)

 ∆τ3/2

ω0 + ω1

∂ω0

∂T0

+ ∆τ3/2

2

[
∂λ0

∂T0
J0 − λ0B0

(
1

κ0B0

∂(κ0B0)
∂T0

− 1
χ0

∂χ0

∂T0

)] (A.4.6)

VC,0 =−
f0J0 − f1J1

∆τ 2
3/2

 ∆τ3/2

ω1 + ω2

∂ω1

∂T1

 (A.4.7)

E0 = −f0J0 − f1J1

∆τ3/2
− gνJ0 +Hext −

∆τ3/2

2 (J0 −B0)λ0 (A.4.8)

1 ######################## Top of atmosphere #########################
2 U = np.zeros([self.nLay,self.nLay,self.nWave])
3 V = np.zeros([self.nLay,self.nLay,self.nWave])
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4 E = np.zeros([self.nLay,self.nWave])
5 # Top Layer
6 # at the top layer A = 0 and so we only have B and C
7 # B equation 18.64a
8 U[0,0,:] = fn[0,:]/dtau[1,:] + Gfn + dtau[1,:] * lmbda[0,:] / 2.0 # B at top
9 # C equation 18.64b

10 U[0,1,:] = fn[1,:]/dtau[1,:] # C at top
11 # B equation 18.65a
12 V[0,0,:] = ((-1.0*(fn[0,:]*J[0,:] - fn[1,:]*J[1,:])/(dtau[1,:]**2)) + 0

.5*lmbda[0,:]*(J[0,:] - plnk[0,:]))*(dtau[1,:]*domega_dT[0,:]/(omega[0,:] +
13 omega[1,:])) + (0.5*dtau[1,:])*(dlambda_dT[0,:]*J[0,:] -

lmbda[0,:]*plnk[0,:]*(deta_dT[0,:]/(kappa[0,:]*plnk[0,:]) +
dchi_dT[0,:]/chi[0,:]))

14 # C equation 18.65b
15 V[0,1,:] = -1.0*((fn[0,:]*J[0,:] -

fn[1,:]*J[1,:])/(dtau[1,:]**2))*(dtau[1,:]*domega_dT[1,:]/(omega[0,:] +
omega[1,:]))

16 # L in Mihalas equation 18.66
17 E[0,:] = (-1.0*(fn[0,:]*J[0,:] - fn[1,:]*J[1,:])/dtau[1,:]) - Gfn*J[0,:] + Hext -
18 (0.5*dtau[1,:]*lmbda[0,:]*(J[0,:] - plnk[0,:]))

Algorithm A.7. Solving the matrices of the top layers within the correcT function

For the middle layers:

UA,d = −
[

fd−1

∆τd−1/2∆τd

]
(A.4.9)

UB,d = fd
∆τd

(
1

∆τd−1/2
+ 1

∆τd+1/2

)
+ λd (A.4.10)

UC,d = −
[

fd+1

∆τd+1/2∆τd

]
(A.4.11)

VA,d = −
[
ad

(
∂ωd−1

∂Td−1

)]
(A.4.12)

VB,d = − (ad + cd)
∂ωd
∂Td

+ ∂λd
∂Td

Jd − λdBd

(
1

κdBd

∂(κdBd)
∂Td

− 1
χd

∂χd
∂Td

)
(A.4.13)

VC,d = −
[
cd

(
∂ωd+1

∂Td+1

)]
(A.4.14)
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where

αd = fdJd − fd−1Jd−1

∆τd−1/2∆τd
(A.4.15)

γd = fdJd − fd+1Jd+1

∆τd+1/2∆τd
(A.4.16)

βd = αd + γd (A.4.17)

ad =
αd + 1

2βd
(∆τd−1/2

∆τd

)
ωd−1 + ωd

(A.4.18)

cd =
γd + 1

2βd
(∆τd+1/2

∆τd

)
ωd+1 + ωd

(A.4.19)

Ed = −βd − λd (Jd −Bd) (A.4.20)

1 ######################## Middle of atmosphere #########################
2 mid_lyrs = np.arange(self.nLay-2)+1 # all layers excepts the top and bottom ones
3 # A equation 18.68a
4 U[mid_lyrs,mid_lyrs-1,:] =

-1.0*(fn[mid_lyrs-1,:]/(dtau[mid_lyrs,:]*0.5*(dtau[mid_lyrs,:]
5 +dtau[mid_lyrs+1,:])))
6 # B equation 18.68b
7 U[mid_lyrs,mid_lyrs,:] =

(fn[mid_lyrs,:]/(0.5*(dtau[mid_lyrs,:]+dtau[mid_lyrs+1,:])))*
8 (1.0/dtau[mid_lyrs,:] + 1.0/dtau[mid_lyrs+1,:]) + lmbda[mid_lyrs,:]
9 # C equation 18.68c

10 U[mid_lyrs,mid_lyrs+1,:] =
-1.0*(fn[mid_lyrs+1,:]/(dtau[mid_lyrs+1,:]*0.5*(dtau[mid_lyrs,:]+

11 dtau[mid_lyrs+1,:])))
12 # now for V we need to compute equations 18.70a-e
13 alpha_di = (fn[mid_lyrs,:]*J[mid_lyrs,:] -

fn[mid_lyrs-1,:]*J[mid_lyrs-1,:])/(dtau[mid_lyrs,:]*0.5*(dtau[mid_lyrs,:]+
14 dtau[mid_lyrs+1,:]))
15 gamma_di = (fn[mid_lyrs,:]*J[mid_lyrs,:] -

fn[mid_lyrs+1,:]*J[mid_lyrs+1,:])/(dtau[mid_lyrs+1,:]*0.5*(dtau[mid_lyrs,:]+
16 dtau[mid_lyrs+1,:]))
17 beta_di = alpha_di + gamma_di
18 a_di = (alpha_di + 0.5*beta_di*dtau[mid_lyrs,:]/(0.5*(dtau[mid_lyrs,:]+
19 dtau[mid_lyrs+1,:])))/
20 (omega[mid_lyrs-1,:]+omega[mid_lyrs,:])

77



21 c_di = (gamma_di + 0.5*beta_di*dtau[mid_lyrs+1,:]/(0.5*(dtau[mid_lyrs,:]+
22 dtau[mid_lyrs+1,:])))/
23 (omega[mid_lyrs+1,:]+omega[mid_lyrs,:])
24 # A equation 18.69a
25 V[mid_lyrs,mid_lyrs-1,:] = -1.0*(a_di*domega_dT[mid_lyrs-1,:])
26 # B equation 18.69b
27 V[mid_lyrs,mid_lyrs,:] = -1.0*(a_di+c_di)*domega_dT[mid_lyrs,:] +

dlambda_dT[mid_lyrs,:]*J[mid_lyrs,:] -
lmbda[mid_lyrs,:]*plnk[mid_lyrs,:]*(deta_dT[mid_lyrs,:]/(kappa[mid_lyrs,:]*

28 plnk[mid_lyrs,:]) - dchi_dT[mid_lyrs,:]/chi[mid_lyrs,:] )
29 # C equation 18.69c
30 V[mid_lyrs,mid_lyrs+1,:] = -1.0*(c_di*domega_dT[mid_lyrs+1,:])
31 # L equation 18.71
32 E[mid_lyrs,:] = -1.0*beta_di - lmbda[mid_lyrs,:]*(J[mid_lyrs,:] -

plnk[mid_lyrs,:])

Algorithm A.8. Solving the matrices of the middle layers within the correcT function

At the bottom of the atmosphere:

UA,ND−1 = −
[

fd−1

∆τd−1/2

]
(A.4.21)

UB,ND−1 = fd
∆τd−1/2

+ 1
2 + ∆τd−1/2

2 λd (A.4.22)

VA,ND−1 =−
fdJd − fd−1Jd−1

∆τ 2
d−1/2

− bd

 ∆τd−1/2

ωd + ωd−1

∂ωd−1

∂Td−1
− 1

3∆τd−1/2

(
∂B

∂T

)
d−1

 (A.4.23)

VB,ND−1 =
−fdJd − fd−1Jd−1

∆τ 2
d−1/2

+ bd + 1
2λd (Jd −Bd)

 ∆τd−1/2

ωd + ωd−1

∂ωd
∂Td

+ ∆τd−1/2

2

[
∂λd
∂Td

Jd − λdBd

(
1

κdBd

∂ (κdBd)
∂Td

− 1
χd

∂χd
∂Td

)]

−
(

1
2 + 1

3∆τd−1/2

)(
∂B

∂T

)
d

(A.4.24)

where
bd = 1

3
Bd −Bd−1

∆τ 2
d−1/2

(A.4.25)

END−1 = −fdJd − fd−1Jd−1

∆τd−1/2
− 1

2 (Jd −Bd) + 1
3
Bd −Bd−1

∆τd−1/2
−

∆τd−1/2

2 λd (Jd −Bd) (A.4.26)

78



1 ###################### Bottom of atmosphere
2 # A equation 18.72b
3 U[-1,-2,:] = -1.0*fn[-2,:]/dtau[-1,:]
4 # B equation 18.72a
5 U[-1,-1,:] = fn[-1,:]/dtau[-1,:] + 0.5 + 0.5*dtau[-1,:]*lmbda[-1,:]
6 # for V first calculate b_i (equation 18.73)
7 b_i = (1.0/3.0)*(plnk[-1,:]-plnk[-2,:])/(dtau[-1,:]**2)
8 # A equation 18.72d
9 V[-1,-2,:] = -1.0*((((fn[-1,:]*J[-1,:] - fn[-2,:]*J[-2,:])/(dtau[-1,:]**2) -

b_i)*dtau[-1,:]*domega_dT[-2,:]/(omega[-1,:]+omega[-2,:])) -
dplnk_dT[-2,:]/(3.0*dtau[-1,:]))

10 # B equation 18.72c
11 V[-1,-1,:] = ((-1.0*((fn[-1,:]*J[-1,:] - fn[-2,:]*J[-2,:])/(dtau[-1,:]**2))) +
12 b_i + 0.5*lmbda[-1,:]*(J[-1,:]-plnk[-1,:]))*(dtau[-1,:]*domega_dT[-1,:]/
13 (omega[-1,:]+omega[-2,:])) + 0.5*dtau[-1,:]*(dlambda_dT[-1,:]*J[-1,:] -
14 lmbda[-1,:]*plnk[-1,:]*(deta_dT[-1,:]/(kappa[-1,:]*plnk[-1,:]) -
15 dchi_dT[-1,:]/chi[-1,:])) - dplnk_dT[-1,:]*(0.5 + 1.0/(3.0*dtau[-1,:]))
16 # L equation 18.74
17 E[-1,:] = -1.0*((fn[-1,:]*J[-1,:] - fn[-2,:]*J[-2,:])/dtau[-1,:]) - 0.5*(J[-1,:]

- plnk[-1,:]) +
18 (plnk[-1,:] - plnk[-2,:])/(3.0*dtau[-1,:]) - 0

.5*dtau[-1,:]*lmbda[-1,:]*(J[-1,:] - plnk[-1,:])

Algorithm A.9. Solving the matrices of the bottom layers within the correcT function

A.4.3. Radiative Equilibrium

For a single layer, the equation for radiative equilibrium can be written as:∫ ∞
0

κν (Jν −Bν) dν = 0 (A.4.27)

∫ ∞
0

d (fνJν)
dτν

dν = σSB
4π T 4

int (A.4.28)

where σSB is the Stefan-Boltzmann constant and Tint is the internal heat of the planet.
For numerical stability, the layers of the atmosphere are split into two regimes in order to
solve for radiative equilibrium. The integral form (equation A.4.27) is used in the top of the
atmosphere (P < 1 × 105Pa) while the differential form (equation A.4.28) is used for the
bottom of the atmosphere (P ≥ 1× 105Pa).
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The linearized equations of radiative equilibrium leave us with the following matrix equa-
tion:

NF−1∑
k=0

XkδJk + AδT = F (A.4.29)

where, like Uk and Vk in the linearized RTE, Xk and A are again tridiagonal matrices of
the form:

XB,0 −XC,0 0 0 · · · · · · 0
−XA,1 XB,1 −XC,1 0 · · · · · · 0

0 −XA,2 XB,2 −XC,2 · · · · · · 0

0 0 . . . . . . . . . · · · 0
... ... ... . . . . . . . . . 0
... ... ... · · · −XA,ND−2 XB,ND−2 −XC,ND−2

0 · · · · · · · · · 0 −XA,ND−1 XB,ND−1


(A.4.30)

A.4.3.1. Integral Form

Linearizing equation A.4.27 for the upper atmosphere builds the following matrices for
convective layers:

XB,d = wkκd (A.4.31)

AB,d =
NF−1∑
k=0

wk

(
∂κd
∂Td

Jd −
∂(κdBd)
∂Td

)
(A.4.32)

Fd = −
NF−1∑
k=0

wkκd (Jd −Bd) (A.4.33)

Here the integration weights wk are calculated within the calcWeight function of SCAR-
LET, which determines the required integration weights based on the wavelength grid of the
model.

1 def calcWeight(self):
2 weight = np.zeros([self.nWave])
3 for i in range(1,self.nWave-1):
4 weight[i] = 0.5*(self.f[i+1]-self.f[i-1])
5

6 weight[0] = 0.5*(self.f[1]-self.f[0])
7 weight[-1] = 0.5*(self.f[-1]-self.f[-2])
8

9 if self.f[0] > self.f[-1]:
10 return weight * -1.0 #FLIPPED FREQ GRID SO -VE
11 else:
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12 return weight

Algorithm A.10. Calculating integration weights with the calcWeight function.

Solving for the integral matrices with SCARLET is show below:

1 # integral form at top half of atmosphere
2 # B equation 18.78a
3 X[int_top,int_top,:] = weights*kappa[int_top,:]
4 # B equation 18.78b - note that we think there should be a sum here
5 A[int_top,int_top] = np.sum((dkappa_dT[int_top,:]*J[int_top,:] -

deta_dT[int_top,:])*weights,
6 axis=1)
7 # L equation 18.78c
8 F[int_top] = -1.0*np.sum(weights*kappa[int_top,:]*(J[int_top,:] -

plnk[int_top,:]), axis=1)

Algorithm A.11. Solving the integral form matrices of radiative equilibrium withing the
correcT function

A.4.3.2. Differential Form

Similarly, linearizing equation A.4.28 gives the following terms for convective layers:

XA,d = −
[
wk

fd−1

∆τd−1/2

]
(A.4.34)

XB,d = wk
fd

∆τd−1/2
(A.4.35)

AA,d = −
NF−1∑

k=0
wk
fdJd − fd−1Jd−1

∆τ 2
d−1/2

∆τd−1/2

ωd + ωd−1

∂ωd−1

∂Td−1

 (A.4.36)

AB,d = −
NF−1∑
k=0

wk
fdJd − fd−1Jd−1

∆τ 2
d−1/2

∆τd−1/2

ωd + ωd−1

∂ωd
∂Td

(A.4.37)

Fd = σSB
4π T 4

int −
NF−1∑
k=0

wk
fdJd − fd−1Jd−1

∆τd−1/2
(A.4.38)

At the top of the atmosphere:
XB,0 = wkgν (A.4.39)

F0 = σSB
4π T 4

int −
NF−1∑
k=0

wk (gνJ0 −Hext) (A.4.40)

These last two equations for the top of the atmosphere are generally not applicable when
the integral and differential forms are combined since the differential form of linearized
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radiative equilibrium is not used at the top of the atmosphere, however we include them for
completeness.

1 # Differential form at bottom part of the atmosphere
2 # A equation 18.79a
3 X[diff_bot,diff_bot-1,:] = -1.0*weights*fn[diff_bot-1,:]/dtau[diff_bot,:]
4 # B equation 18.79b
5 X[diff_bot,diff_bot,:] = weights*fn[diff_bot,:]/dtau[diff_bot,:]
6 # A equation 18.79c
7 A[diff_bot,diff_bot-1] = -1.0*np.sum(weights*((fn[diff_bot,:]*J[diff_bot,:] -
8 fn[diff_bot-1,:]*J[diff_bot-1,:])/(dtau[diff_bot,:]**2))*
9 (domega_dT[diff_bot-1,:]*dtau[diff_bot,:]/

10 (omega[diff_bot,:]+omega[diff_bot-1,:])),axis=1)
11 # B equation 18.79d
12 A[diff_bot,diff_bot] = -1.0*np.sum(weights*((fn[diff_bot,:]*J[diff_bot,:] -
13 fn[diff_bot-1,:]*J[diff_bot-1,:])/(dtau[diff_bot,:]**2))*
14 (domega_dT[diff_bot,:]*dtau[diff_bot,:]/(omega[diff_bot,:]+
15 omega[diff_bot-1,:])),axis=1)
16 # L equation 18.80
17 F[diff_bot] = (sigmaSB*self.params[’Tint’]**4)/(4.0*np.pi) -
18 np.sum(weights*(fn[diff_bot,:]*J[diff_bot,:] -
19 fn[diff_bot-1,:]*J[diff_bot-1,:])/dtau[diff_bot,:],axis=1)
20

21 # top boundary condition of differential method - generally not applicable for
combined form since differential form is only used at BOA

22 top = np.where(diff_bot==0)[0]
23 # B equation 18.81a
24 X[top,top,:] = weights*Gfn
25 # L equation 18.81b
26 F[top] = (sigmaSB*self.params[’Tint’]**4)/(4.0*np.pi) -

np.sum(weights*(Gfn*J[0,:] - Hext))

Algorithm A.12. Solving the differential form layers within the correcT function

A.4.4. Convective Equilibrium

An atmosphere is convectively unstable when the Schwarzschild criteria for convective
instability is met:

∇ > ∇ad (A.4.41)
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where ∇ = dlnT/dlnP is the logarithmic temperature gradient and ∇ad is the adiabatic
gradient. We consider ∇ad = 2/7, which holds for an ideal gas and is a sufficient estimate
for our purposes. If the temperature gradient is greater than the adiabatic gradient, the gas
will be warmer than its surroundings and therefore rise due to convective instability [1]. The
Schwarzschild criteria is often met at layers deep in the atmosphere, where the atmosphere is
opaque and radiative transfer is inefficient at transporting energy. In our implementation, we
treat convective layers with Mixing Length Theory. A parcel of gas within a convective layer
rises when it is warmer than its surroundings. The Mixing Length Theory stipulates that
after the gas has travelled the distance of a mixing length `, it dissipates the energy into its
surroundings, allowing for the efficient transport of heat from one altitude of the atmosphere
to another; the resulting temperature gradient is less than if the heat were transported by
radiation alone [2].

For convective layers, we add a convective flux term to Equations A.4.27 and A.4.28 to
give us: ∫ ∞

0
κν (Jν −Bν) dν + ρg

4π
∂Fconv
∂P

= 0 (A.4.42)

∫ ∞
0

d (fνJν)
dτν

dν + Fconv
4π = σSB

4π T 4
int (A.4.43)

where

Fconv =
√gQHP

32 (ρcPT ) (∇−∇el)3/2
(
`

HP

)2
 (A.4.44)

Here HP is the scale height, cP is the specific heat at constant pressure, Q ≡ −(dlnρ/dlnT ) =
1 for an ideal gas, ` is the mixing length, taken to be ≈ HP , and

∇−∇el = 1
2B

2 + (∇−∇ad)− B
(1

4B
2 + (∇−∇ad)

)1/2
(A.4.45)

where
B = 16

√
2σSBT 3

ρcP (gQHP )1/2(`/HP )
τel

1 + 1
2τ

2
el

(A.4.46)

and τel = χR` is the optical thickness of the mixing length. We also define Hconv = Fconv/4π.

A.4.4.1. Prerequisite Calculations

We first calculate the temperature gradient ∇ of each layer for the current temperature
profile to determine the convective layers where:

∇d = dlnTd
dlnPd

(A.4.47)

Hubeny and Mihalas also calculate Hconv, ∂Hconv/∂T , and ∂Hconv/∂P at the middle of each
layer so we determine the corresponding temperature and pressures in preparation.
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1 grad = np.zeros([self.nLay])
2

3 grad[1:] = np.diff(np.log(T))/np.diff(np.log(self.p))
4 grad[0] = grad[1]
5

6 grad_ad = 2./7.
7 convLay = np.where(grad >= grad_ad)[0]
8

9 self.convLay = deepcopy(convLay)
10

11

12 Tmid = np.hstack([T[0],0.5*(T[:self.nLay-1]+T[1:self.nLay])])
13 Pmid = np.hstack([self.p[0],0.5*(self.p[:self.nLay-1]+self.p[1:self.nLay])])

Algorithm A.13. Calculate ∇ and temperatures and pressures at the middle of each layer

We then solve for Fconv, ∇ − ∇el, and Hconv with the function getHconv, as well as
∂Hconv/∂T , and ∂Hconv/∂P with the function getdHconv.

1 Hconv,grad_diff,rho = self.getHconv(Tmid,Pmid,grad,grad_ad,chi)
2

3

4 def getHconv(self,T,P,grad,grad_ad,chi):
5 z,dz,grav,ntot,nmol,MuAve,scaleHeight,RpBase,r =

self.calcHydroEqui(self.modelSetting,self.params,T)
6

7 rho = ntot*MuAve
8 Hp = scaleHeight #P/(self.grav*rho)
9 Q = 1.

10 sizel = Hp
11

12 MuAveLay =
np.hstack([MuAve[0],0.5*(self.MuAve[:self.nLay-1]+self.MuAve[1:self.nLay])])

13 Rconst = 8.3144598 /(MuAveLay/uAtom * 0.001)#J/mol*K / kg/mol = J/kg*K
14 Cp = 7./2. * Rconst # 5./2.*R Monotomic, 7./2.*R #Diatomic, 4*R #Polyatomic

units of J/kg K
15 dplnk_dT = self.Planck_deriv(T)
16 tau_el=np.zeros([self.nLay])
17 for i in range(self.nLay):
18 tau_el[i] = self.ChiRoss_not_over_rho(dplnk_dT[i,:],chi[i])*sizel[i]
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19

20 beta =
((16.*np.sqrt(2.)*sigmaSB*T**3.)/(rho*Cp*(self.grav*Q*Hp)**0.5*(sizel/Hp)))*

21 (tau_el/(1.+0.5*tau_el**2.))
22 grad_diff = (grad-grad_ad) + (0.5*beta**2. -

beta*(0.25*beta**2.+(grad-grad_ad))**0.5)
23 Fconv = (self.grav*Q*Hp/32.)**0.5*(rho*Cp*T)*(grad_diff)**1.5*(sizel/Hp)**2.
24 Hconv = Fconv/(4.*np.pi)
25

26 return Hconv,grad_diff,rho

Algorithm A.14. Finding Fconv,∇−∇el, and Hconv within the getHconv function

1 dHconv_T,dHconv_P = self.getdHconv(Tmid,Pmid,grad,grad_ad,Hconv,chi)
2

3 def getdHconv(self,T,P,grad,grad_ad,Hconv,chi):
4 dT = T*0.0001
5 dp = P*0.0001
6

7 chiNew = self.calcOpacities(self.modelSetting,self.params,T+dT)[0]
8 Hconv_T, grad_diff,rho = self.getHconv(T + dT,P,grad,grad_ad,chiNew)
9 Hconv_P, grad_diff,rho = self.getHconv(T,P + dp,grad,grad_ad,chi)

10

11 dHconv_T = (Hconv_T - Hconv)/dT
12 dHconv_P = (Hconv_P - Hconv)/dp
13 return dHconv_T,dHconv_P

Algorithm A.15. Calculating ∂Hconv/∂T and ∂Hconv/∂P within the getdHconv function.

Linearizing equations A.4.42 and A.4.43 yield the convective terms that must be added
to the integral and differential form matrices for the appropriate layers. More specifically,
the A and F matrices, corresponding to radiative equilibrium, are modified to account for
radiative-convective equilibrium. We also introduce the Q and R matrices, corresponding
to elements of the grand matrix which are related to ∇.
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A.4.4.2. Integral Form

For convective layers in the top of the atmosphere (P < 1×105Pa), we linearize equation
A.4.42 to find the additional terms required to account for convection.

Aconv
A,dconv =−

(∂Hconv

∂T

)
d−1/2

+
(
∂Hconv

∂P

)
d−1/2

kNd−1

 ρd
2∆md

 (A.4.48)

Aconv
B,dconv =

(∂Hconv

∂T

)
d+1/2

+
(
∂Hconv

∂P

)
d+1/2

kNd

−
(
∂Hconv

∂T

)
d−1/2

−
(
∂Hconv

∂P

)
d−1/2

kNd

 ρd
2∆md

(A.4.49)

Aconv
C,dconv =−

−
(∂Hconv

∂T

)
d+1/2

+
(
∂Hconv

∂P

)
d+1/2

kNd−1

 ρd
2∆md

 (A.4.50)

Qconv
A,dconv = −

[
Hconv, d−1/2

∇d−1/2 −∇el, d−1/2

3ρd
4∆md

]
(A.4.51)

Qconv
B,dconv =

(
Hconv, d+1/2

∇d+1/2 −∇el, d+1/2
−

Hconv, d−1/2

∇d−1/2 −∇el, d−1/2

)
3ρd

2∆md

(A.4.52)

Qconv
C,dconv = −

[(
Hconv, d+1/2

∇d+1/2 −∇el, d+1/2

)
3ρd

2∆md

]
(A.4.53)

Fconv
dconv = − ρd

∆md

(
Hconv, d+1/2 −Hconv, d−1/2

)
(A.4.54)

1 #if layer uses integral form
2 if np.where(int_top == d)[0].size == 1:
3 A[d,d-1] += -((dHconv_T[d]+dHconv_P[d]*(self.p[d-1]/T[d-1]))*0.5*rho[d]/

(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d]))
4 A[d,d] += (((dHconv_T[d+1]+dHconv_P[d+1]*(self.p[d]/T[d])) -
5 (dHconv_T[d-1]+dHconv_P[d-1]*(self.p[d]/T[d])))*0.5*rho[d]/

(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d]))
6 A[d,d+1] += ((dHconv_T[d+1]+dHconv_P[d+1]*(self.p[d-1]/T[d-1]))*0.5*rho[d]/

(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d]))
7

8

9 if grad_diff[d+1] == 0: # Do not allow division by 0
10 Q[d,d-1] = -((Hconv[d]/grad_diff[d])*(1.5*rho[d])/

(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d]))
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11 Q[d,d] = ((0-Hconv[d]/grad_diff[d])*(3.*rho[d]/
(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d])))

12 Q[d,d+1] = 0
13 else:
14 Q[d,d-1] = -((Hconv[d]/grad_diff[d])*(1.5*rho[d])/

(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d]))
15 Q[d,d] =

((Hconv[d+1]/grad_diff[d+1]-Hconv[d]/grad_diff[d])*(3.*rho[d]/
(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d])))

16 Q[d,d+1] = -((Hconv[d+1]/(grad_diff[d+1]))*(3.*rho[d]/
(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d])))

17

18 F[d] += -(Hconv[d+1]-Hconv[d]*2.)*rho[d]/
(self.p[d+1]/self.grav[d]-self.p[d-1]/self.grav[d])

Algorithm A.16. Solving the additional matrices for the integral form convective layers
within the correcT function.

A.4.4.3. Differential form

Similarly, for convective layers at the bottom of the atmosphere (P ≥ 1 × 105Pa), we
linearize equation A.4.43 to find the additional terms required to account for convection. For
exoplanets, convective layers are generally deep within the atmosphere and thus usually are
modelled with the differential form.

Aconv
A,dconv = −

−1
2

(
∂Hconv

∂T

)
d−1/2

− 1
2

(
∂Hconv

∂P

)
d−1/2

kNd−1

 (A.4.55)

Aconv
B,dconv = 1

2

(
∂Hconv

∂T

)
d−1/2

+ 1
2

(
∂Hconv

∂P

)
d−1/2

kNd (A.4.56)

Qconv
B,dconv =

3
2Hconv, d−1/2

∇d−1/2 −∇el, d−1/2
(A.4.57)

Fconv
dconv = −Hconv, d−1/2 (A.4.58)

∂Hconv

∂T
= Hconv (T + δT, P,∇)−Hconv(T,P,∇)

δT
(A.4.59)

∂Hconv

∂P
= Hconv (P + δP, T,∇)−Hconv(P,T,∇)

δP
(A.4.60)

1 # If layer uses differential form
2 if np.where(diff_bot == d)[0].size == 1:
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3 # A equation 18.88b
4 A[d,d-1] += -(-(0.5*dHconv_T[d])-(0.5*dHconv_P[d])*(self.p[d-1]/T[d-1]))
5 # B equation 18.88d
6 A[d,d] += (0.5*dHconv_T[d])+(0.5*dHconv_P[d])*(self.p[d]/T[d])
7 # B equation 18.88e
8 Q[d,d] = (3./2. * Hconv[d]) / (grad_diff[d])
9 # L equation 18.88f

10 F[d] += -(Hconv[d])

Algorithm A.17. Solving the additional matrices for the differential form convective layers
within the correcT function.

Finally, we calculate the additional convective terms that are universal for both the
integral and differential forms:

Rconv
A,dconv = −

[
2Td∇d

T 2
d − T 2

d−1
− 2Pd∇d

P 2
d − P 2

d−1
kNd−1

]
(A.4.61)

Rconv
B,dconv = 2Td−1∇d

T 2
d − T 2

d−1
− 2Pd−1∇d

P 2
d − P 2

d−1
kNd (A.4.62)

Fconv
dconv = ∇d−1/2 −

Td − Td−1

Td + Td−1
· Pd + Pd−1

Pd − Pd−1
= 0 (A.4.63)

1 R[d,d-1] = ((2*T[d]*grad[d])/(T[d]**2-T[d-1]**2) -
2 (2*self.p[d]*grad[d])/(self.p[d]**2-self.p[d-1]**2)*
3 (self.p[d-1]/T[d-1]))
4 R[d,d] = ((2*T[d-1]*grad[d])/(T[d]**2-T[d-1]**2) -
5 (2*self.p[d-1]*grad[d])/(self.p[d]**2-self.p[d-1]**2)*(self.p[d]/T[d]))

Algorithm A.18. Calculate the additional matrices universal to both the integral and
differential forms for convective layers within the correcT function.
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A.4.5. Solving for the Temperature Correction

Finally, combining the matrix equations from the linearized RTE and radiative-convective
equilibrium, we obtain the following grand matrix:

U0 0 · · · · · · 0 V0

0 U1 0 · · · ... V1
... 0 U2 0 ... V2
... ... ... . . . ... ...
0 0 0 · · · UNF−1 VNF−1

X0 X1 X2 · · · XNF−1 Ar+c





δJ0

δJ1

δJ2
...

δJNF−1

δT





E0

E1

E2
...

ENF−1

Fr+c


(A.4.64)

where the convective terms are incorporated into the Ar+c and Fr+c terms by:

Ar+c = (A + Aconv) + QconvRconv (A.4.65)

Fr+c = F + Fconv (A.4.66)

We can write the δJk in terms of δT to obtain:

δJk =
(
U−1
k Ek

)
−
(
U−1
k Vk

)
δT (A.4.67)

and substituting the above into A.4.29 allows us to solve for δT
NF−1∑
k=0

Xkδ
((

U−1
k Ek

)
−
(
U−1
k Vk

)
δT
)

+ Ar+cδT = Fr+c

(
Ar+c −

NF−1∑
k=0

Xk

(
U−1
k Vk

))
δT =

(
Fr+c −

NF−1∑
k=0

Xk

(
U−1
k Ek

))
(A.4.68)

We show how δT and δJk are calculated in SCARLET below:

1 ## Now we solve for delta T
2 U_moved = np.moveaxis(U,-1,0)
3 U_inv_moved = np.linalg.inv(U_moved)
4 V_moved = np.moveaxis(V,-1,0)
5 UV_moved = np.matmul(U_inv_moved,V_moved) # the 3 matmul lines are taking most

of the time
6 UV = np.moveaxis(UV_moved,0,-1)
7 X_moved = np.moveaxis(X,-1,0)
8 XUV = np.matmul(X_moved, UV_moved)
9 XUV_summed = np.sum(XUV,0)

10 A_conv = A + np.matmul(Q,R)
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11 LHS = A_conv - XUV_summed
12 U_inv = np.moveaxis(U_inv_moved,0,-1)
13

14 UE = np.einsum(’ijk,jk->ik’, U_inv, E)
15 XUE = np.einsum(’ijk,jk->ik’, X, UE)
16 XUE_summed = np.sum(XUE, axis=1)
17

18 RHS = F - XUE_summed
19 deltaT = np.dot(np.linalg.inv(LHS),RHS)
20

21 dT = np.tile(deltaT[:,np.newaxis],(1,self.nWave))
22 UVT = np.einsum(’ijk,jk->ik’, UV, dT)
23

24 deltaJ = UE - UVT

Algorithm A.19. Solving for the temperature correction within the correcT function.

A.4.6. Arriving at a Self-Consistent Temperature Profile

The Rybicki method solves the RTE and radiative-convective equilibrium equations, giv-
ing us a correction for the temperature at each layer. We then apply this temperature
correction to the temperature profile, yielding a new temperature structure that is closer to
the converged solution and iterate until reaching a threshold of δT/T = 10−3.

1 def
calcNonGrayTpProf(self,modelSetting,params,firstIter,LucyUnsold,runConvection):

2 # Linearized Tp model
3 if (modelSetting[’maxNonGrayIter’] is None) or

(modelSetting[’maxNonGrayIter’]> self.nonGrayIter):
4 print ’Calculate Self-Consistent TP:’
5

6 if self.Teq<400:
7 print ’Quadrupling the max # of iterations to accomodate low Teq of

planet’
8 modelSetting[’maxIterForNonGrayTpCalc’] =

modelSetting[’maxIterForNonGrayTpCalc’]*4
9

10 elif self.Teq<800:
11 print ’Tripling the max # of iterations to accomodate low Teq of

planet’
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12 modelSetting[’maxIterForNonGrayTpCalc’] =
modelSetting[’maxIterForNonGrayTpCalc’]*3

13

14 #Set initital conditions for temperature profile T
15 if LucyUnsold:
16 # Use Lucy Unsold tp profile as starting point if it was used
17 T = ut.loadpickle(’test.pkl’) # Load from Lucy Unsold
18 else:
19 if (firstIter is True):
20 if ’Tprof’ in params:
21 T = np.interp(np.log(self.p),np.log(params[’Tprof’][0]),
22 params[’Tprof’][1])
23 else:
24 T=self.Teq*np.ones_like(self.p)
25 else:
26 T=self.T #Use temperature structure from previous iteration as

initital condition
27

28 # Initialize chemistry, hydrostatic equilibrium, and opacities
29 self.qmol_lay = self.calcComposition(modelSetting,params,T)
30 self.z,self.dz,self.grav,self.ntot,self.nmol,self.MuAve,self.scaleHeight,
31 self.RpBase,self.r=
32 self.calcHydroEqui(modelSetting,params,T)
33 self.extinctCoef,self.absorbCoef, self.scatCoef =

self.calcOpacities(modelSetting,params,T)
34

35 # calculate integration weights so that later we can sum instead of
integrate

36 weights = self.calcWeight()
37

38 # Run RTE solver
39 B,J,K,H,fn,Gfn,dtau,lmbda,extinctCoef,mExtinctCoef,absorbCoef =

self.solveRTE(T,modelSetting,params,self.IrradStarEffIntensityPerHz,
40 TpCorrLin = True)
41

42 # Save iterations of T and dT
43 TList = deepcopy(T)
44 dTList = np.zeros([self.nLay])
45 errorList = np.zeros([self.nLay])
46
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47 # Iterate until convergence criteria of T are met
48 runConvection = False # Don’t run convection until after 1st convergence

for stability
49

50 for loop in range(2):
51 i = 1
52 not_converged = True
53 prev_best_dT = 500.
54

55 prev_iter = np.zeros(self.nLay)
56

57 while(not_converged):
58 print i,
59

60 nNonConvergedLay = 0
61

62 # Call Tp linearization method
63 dT,dJ=

self.correcT(T,B,J,fn,Gfn,self.IrradStarEffIntensityPerHz,dtau,
64 lmbda,mExtinctCoef,extinctCoef,absorbCoef,weights,loop,
65 runConvection)
66

67

68 #Slow down jumps if dT is too large (for stability)
69 for k in range(self.nLay):
70 if np.abs(dT[k])> 0.6*T[k]:
71 dT[k] = 0.6*T[k]*np.sign(dT[k])
72 if self.Teq<400:
73 if np.abs(dT[k])>0.3*T[k]:
74 dT[k] = 0.3*T[k]*np.sign(dT[k])
75

76 if runConvection and self.Teq<800: # Slow down even more when
running convection

77 if np.abs(dT[k])>0.4*T[k]:
78 dT[k] = 0.4*T[k]*np.sign(dT[k])
79

80 elif runConvection and self.Teq<400:
81 if np.abs(dT[k])>0.2*T[k]:
82 dT[k] = 0.2*T[k]*np.sign(dT[k])
83
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84 # If iteration is -ve of the previous iteration, only apply
1/2 of the dT

85 if np.round(dT[k]) == np.round(prev_iter[k])*-1.:
86 dT[k] = dT[k] / 2.
87

88 prev_iter = deepcopy(dT)
89 # Calculate new T (in this next iteration)
90 T = T+dT
91

92 # Check temperature convergence of all layers
93 for d in range(self.nLay):
94 if np.abs(dT[d]/(T[d]-dT[d])) < 1e-3: #Convergence criteria
95 nNonConvergedLay += 0
96 else:
97 nNonConvergedLay += 1
98

99 if nNonConvergedLay == 0:
100 #--> Tp profile is converged for this molecular composition
101 not_converged = False
102 if loop == 0:
103 print ’’
104 print ’Checking chemistry/hydrostatic equilibrium

convergence’,
105 if modelSetting[’TempType’]==’NonGrayConv’:
106 print ’and adding convection’
107 runConvection = True
108 self.convLay = ’(Not yet computed)’
109 print ’’
110 if loop == 1:
111 print ’’
112 print ’dJ: ’, np.amax(np.abs(dJ))
113 print ’Successfully converged’
114

115 elif np.amax(np.abs(dT)) < prev_best_dT:
116 # Save best iteration
117 best_T = deepcopy(T)
118 prev_best_dT = np.amax(np.abs(dT))
119 if runConvection:
120 prev_best_convLay = self.convLay
121
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122

123 # Do not allow for inversions when running convection for
challenging target

124 if runConvection and self.Teq<400:
125 if len(self.convLay) != 0:
126 for k in range(self.nLay):
127 if k >= self.convLay[0] and T[k] < T[k-1]:
128 dT[k] = T[k-1]-T[k]
129 T[k] = T[k-1]
130

131

132 # Save iterations of T and dT
133 TList = np.c_[TList,T]
134 dTList = np.c_[dTList,dT]
135

136 errorList = np.c_[errorList,np.abs(dT/(T-dT))]
137

138 self.errorList = errorList
139 self.dTList = dTList
140 self.TList = TList
141

142 if not_converged:
143 # Iterate
144 if loop >= 1: # Add stability by changing

chemistry/hydroequilibrium only after 1st convergence
145 self.qmol_lay = self.calcComposition(modelSetting,params,T)
146 self.z,self.dz,self.grav,self.ntot,self.nmol,
147 self.MuAve,self.scaleHeight,self.RpBase,self.r =
148 self.calcHydroEqui(modelSetting,params,T)
149

150 B,J,K,H,fn,Gfn,dtau,lmbda,
151 extinctCoef,mExtinctCoef,absorbCoef =
152 self.solveRTE(T,modelSetting,params,
153 self.IrradStarEffIntensityPerHz,TpCorrLin=True)
154 i+=1
155

156 if self.plotTpChangesEveryIteration:
157 self.plotTpChanges(save=True,close=True,loop=loop)
158
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159 #Display some convergence measures (just for user to see
convergence)

160 IdownPerHz = self.IrradStarEffIntensityPerHz
161 IupPerHz = 4.0 * H[0,:] - IdownPerHz
162 FupPerHz = pi * IupPerHz
163 TotalFluxUpTOA = - np.trapz(x=self.f,y=FupPerHz) #Minus sign

because self.f goes from high to low
164 TotalIrradTOA = -

np.trapz(x=self.f,y=self.IrradStarEffIntensityPerHz) * np.pi
#Minus sign because self.f goes from high to low

165 netFluxTOA=TotalFluxUpTOA-TotalIrradTOA
166 print ’\nTotal flux up at TOA: %6g W/m**2)’%(TotalFluxUpTOA)
167 print ’Total irradiation at TOA: %6g W/m**2)’%(TotalIrradTOA)
168 if runConvection:
169 print ’dTmax = {:7g} | dJmax = {:7g} | flux residual: {:7g}

W/m**2 ({:5g}%) |
Conv={}’.format(np.amax(np.abs(dT)),np.amax(np.abs(dJ)),

170 netFluxTOA, netFluxTOA/TotalIrradTOA*100,str(runConvection)+
171 ’ for layers:’ + str(self.convLay))
172 else:
173 print ’dTmax = {:7g} | dJmax = {:7g} | flux residual: {:7g}

W/m**2 ({:5g}%) |
Conv={}’.format(np.amax(np.abs(dT)),np.amax(np.abs(dJ)),

174 netFluxTOA,netFluxTOA/TotalIrradTOA*100,runConvection)
175

176 #Check whether maximum number of iterations is reached (user
specified)

177 if i == modelSetting[’maxIterForNonGrayTpCalc’]:
178 print ’Reached max # of iterations: using Tp profile with

lowest dT (dTmax = {:7g})’.format(prev_best_dT)
179 self.TList = TList
180 not_converged=False
181 T = deepcopy(best_T)
182 self.convLay = prev_best_convLay
183

184

185 self.TList = TList
186 self.nonGrayIter += 1
187

188 return T
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Algorithm A.20. Calculating the self-consistent temperature profile in the
calcNonGrayTpProf function.
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Appendix B

Variable Names and Definitions

Variable Name in SCARLET Definition

General variables:
T T Temperature
P P Pressure
τ Optical depth
ν self.freqs converted to self.wave Frequency (converted to wave-

lengths for SCARLET)
z z Altitude
dz dz Change in altitude
ρ rho Density
kB kBoltz Boltzmann constant
g grav Boltzmann constant
m MuAve Mean molecular mass
κν absorbCoef Absorption coefficient
ων scatCoef Scattering coefficient
χν extinctCoef Extinction coefficient
λν lmbda κν/χν

ων mExtinctCoef Extinction coefficient by mass
∆τν dtau Change in optical depth
B B Planck Function
µ mu Cosine of angle θ relative to

the vertical of a layer
Iν Specific intensity
Sν Source function
uµν uµν ≡ 1/2(I+

ν + I−ν )
vµν vµν ≡ 1/2(I+

ν − I−ν )



wj weight Integration weights for
Feautrier method

Jν J Mean intensity of radiation
Hν H 1st moment of specific intensity
Kν K 2nd moment of specific intensity
Hext Hext External stellar irradiation
fν fn Kν/Jν

gν Gfn Hν(τ = 0)/Jν(τ = 0)

Solving the RTE (within FeautrierRTE):
Ad A See equation A.3.28
Bd B See equation A.3.28
Cd C See equation A.3.28
Ld L See equation A.3.28
ud U See equation A.3.28
Dd D See equations A.3.45 and A.3.50
Rd R See equations A.3.45 and A.3.50
(Bd −AdDd−1) N See equation A.3.52
(AdRd−1 + Ld) X See equation A.3.53

Rybicki method (within correcT):
Uk U See equation A.4.2
Vk V See equation A.4.2
Ek E See equation A.4.2
δJk deltaJ Change in Jν for each layer

(see equation A.3.28)
δT deltaT Temperature correction for each

layer (see equation A.3.28)
αd alpha_di See equation A.4.15
γd gamma_di See equation A.4.16
βd beta_di See equation A.4.17
ad a_di See equation A.4.18
cd c_di See equation A.4.19
bd b_i See equation A.4.25
αd alpha_di See equation A.4.15
γd gamma_di See equation A.4.16
βd beta_di See equation A.4.17
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∂χd/∂Td dchi_dT Numerically solved partial
derivatives from diffVar

∂κd/∂Td dkappa_dT Numerically solved partial
derivatives from diffVar

∂ωd/∂Td domega_dT Numerically solved partial
derivatives from diffVar

∂λd/∂Td dlambda_dT Numerically solved partial
derivatives from diffVar

∂(κdBd)/∂Td deta_dT Numerically solved partial
derivatives from diffVar

∂Bd/∂Td dplnk_dT Numerically solved partial
derivatives from diffVar

Xk X See equation A.4.29
Ak A See equation A.4.29
Fk F See equation A.4.29
wk weights Integration weights for

Rybicki method
σSB sigmaSB Stefan-Boltzmann constant
Tint Tint Internal heat of the planet

Convection prerequisites
(within getHconv and getdHconv):
∇ad grad_ad Adiabatic gradient
∇d grad Logarithmic temperature gradient
∇d −∇el,d grad_diff Difference between the temperature

gradient and the mixing length
gradient (See equation A.4.45).

HP Hp Scale height of the atmosphere
Q Q = −(dlnρ/dlnT ) = 1 for an ideal gas
τel tau_el Optical thickness of the mixing length
Hconv Hconv H convective (See section A.4.4)
Fconv Fconv F convective (See equation A.4.44)
(∂Hconv/∂T )d dHconv_T Numerically solved partial derivatives
(∂Hconv/∂P )d dHconv_P Numerically solved partial derivatives

Convection (within correcT):
kNd self.p[d]/T[d] k, the Boltzmann constant, multiplied
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by Nd, the total particle number
density

∆md self.p[d+1]/self.grav[d]- Relates pressure and gravity changes
self.p[d-1]/self.grav[d]) in neighboring layers

Aconv
d A See section A.4.4

Qconv
d Q See section A.4.4

Rconv
d R See section A.4.4

Fconv
d F See section A.4.4
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