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Serena Mantovani
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Résumé et mots-clés

Les trains qui transportent des conteneurs empilés (en deux niveaux) sont un élément important
du réseau de transport nord-américain. Le problème de chargement des wagons correspond un
problème opérationnel couramment rencontré dans les terminaux ferroviaires. Elle consiste
optimiser l’affectation des conteneurs des emplacements spécifiques sur les wagons.

Ce mémoire est centré sur un article scientifique traitant le chargement optimal publié dans
le European Journal of Operational Research (Volume 267, Numéro 1, Pages 107-119, 2018).
Nous avons formulé un modèle linéaire en nombres entiers (ILP) et apporté un certain nombre
de contributions. Premièrement, nous avons proposé une méthodologie générale qui peut traiter
des wagons double ou simple empilement avec des “patrons” de chargement arbitraires. Les
patrons tiennent compte des dépendances de chargement entre les plateformes sur un wagon
donné. Deuxièmement, nous avons modélisé les restrictions du centre de gravité (COG), les
règles d’empilement et un nombre de restrictions techniques de chargement associées certains
types de conteneurs et/ou de marchandises. Les résultats montrent que nous pouvons résoudre
des instances de taille réaliste dans un délai raisonnable en utilisant un solveur ILP commercial
et nous illustrons que le fait de ne pas tenir compte de la correspondance conteneurs-wagons
ainsi que des restrictions COG peut conduire une surestimation de la capacité disponible.

Mots-clés: transport; marchandises; conteneurs, planification de chargement, chargement de
trains deux niveaux; terminaux ferroviaires intermodaux
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Summary and keywords

Double-stack trains are an important component of the railroad transport network for con-
tainerized cargo in specific markets such as North America. The load planning problem em-
bodies an operational problem commonly faced in rail terminals by operators. It consists in
optimizing the assignment of containers to specific locations on the train.

The work in this thesis is centered around a scientific paper on the optimization on load
planning problem for double stack-trains, published in the European Journal of Operation Re-
search (Volume 267, Issue 1, Pages 107-119) on 16 May 2018. In the paper, we formulated an
ILP model and made a number of contributions. First, we proposed a general methodology
that can deal with double- or single-stack railcars with arbitrary loading patterns. The pat-
terns account for loading dependencies between the platforms on a given railcar. Second, we
modeled Center of gravity (COG) restrictions, stacking rules and a number of technical loading
restrictions associated with certain types of containers and/or goods. Results show that we can
solve realistic size instances in reasonable time using a commercial ILP solver and we illustrate
that failing to account for containers-to-cars matching as well as COG restrictions may lead to
an overestimation of the available train capacity.

Keywords: Transportation; Freight; Containers, Load Planning, double-stack train loading;
Intermodal Rail Terminals
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Chapter 1

Introduction

The demand for goods has grown strongly over the past half century so that today an essential
ingredient of a thriving national economy is a cost effective freight transportation system.
This involves the use of multimodal, including intermodal, transportation options. Intermodal
movements are those in which two or more different transportation modes are linked end-to-
end in order to move freight and/or people from a point of origin to a point of destination.
Intermodal freight transportation relies heavily on containerization due its several advantages:
Containerization offers safety by reducing loss and damages of the product, by ensuring a faster
exchange of modes and by decreasing transportation cost due to a smaller effort in moving the
freight itself.

In the context of intermodal transportation, terminals play an important role by providing
an interface between different transportation modes such as trains, trucks and vessels, in order
to manage the sustained flow of containers from their origin to the final destination. Within
a terminal there are several components to be managed, including the maritime side, the
land side, the yard and the equipment. The activities in each component impact directly the
performance of the others.

From a planning perspective, there are strategic, tactical and operational problems that
arise at intermodal terminal. Especially at the operational level, typically the experience of
planners plays an important role in the decision making process, and in many cases the policies
are based on simple rules of thumb.

The need for optimization using methods of operations research in container terminal op-
erations is becoming increasingly important. This is because the logistics, especially of large
container terminals, is increasing complex when operating close to capacity and with quickly
changing market requirements. Decision-aid tools based on optimization methods can provide
terminal managers necessary information to take better decisions. This thesis focuses on an
operational planning problem arising in intermodal rail terminals.

Trains are a widely used transportation mode for containerized cargo. Intermodal trains
are composed of sequences of railcars, designed to carry single- or double-stacked containers.
Railcars differ on attributes such as the number and the length of platforms, in turn composed
of different slots, and the weight holding limit. Loading rules may not be derived regardless
those differences. By nature, they can carry many more containers inland than trucks while
being cost effective compared to airplanes. Relative to single-stack trains, double-stack trains
have an increased carrying capacity as they allow the placement of two containers, one on
top of the other, rather than a single one. Double-stack trains are more rare, but they are
extensively used in some large markets like North America.

In this context, the Load Planning Problem (LPP) addresses the problem of loading the
containers on the railcars that form the departing train. Load planning aims to find an as-
signment of stored containers to specific railcars. With this thesis, the goal is to present a
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general methodology that addresses the load planning problem for intermodal trains that can
deal with single- or double-stack railcars as well as arbitrary containers-to-cars matching rules.
Terminals represent the backbone of the entire international chain, and thus we aim at improv-
ing their efficiency through a general methodology that can be used by terminal operators as
a decision-support-tool for addressing the load planning problem.

In the literature, most of the studies focus on the single-stack load planning problem,
where the loading is simple. The authors aim at deriving loading plans such that handling
costs (e.g. Corry and Kozan, 2008) in the yard or train set-up costs (Bruns and Knust, 2012)
are minimized. To the best of our knowledge, Lai, Barkan and Önal (2008) is the only study
on the double-stack load planning problem. A number of crucial aspects are however ignored,
which make the problem challenging. First, they address the matching among containers and
railcar types without considering platform dependencies, ignoring the cases when loading may
be constrained by the railcar sequence. Moreover, the problem is studied without accounting
for center-of-gravity restrictions and stacking rules.

We contribute to the existing literature by providing a general methodology that can address
the load planning problem in all its crucial operational constraints and restrictions. Given a
set of containers stored in a terminal and a departing train, the problem is to select the
optimal set of containers to load and the optimal way of loading them, using the maximum
of the available capacity. In our research we address the problem for double-stack trains,
where the load planning problem is more challenging because of a number of loading rules that
depend on container and railcar characteristics, and on the way they match together. The
size, the location of the load-bearing along the length of the container, the type (e.g., tanker
and dangerous containers have restrictions with respect to the position in the stack they may
occupy) of containers determine how containers can be stacked.

The remainder of the thesis is articulated as follows: In Chapter 2, we present the extensive
framework of intermodal freight transportation where terminal fits, to the seaports and the
railway yards. We describe the container terminals in 2.3, giving an overview of what terminals
are and which equipment are needed. Section 2.3.1 provides an overview of the sea ports and
section 2.3.2 of the yard terminals. In section 2.3.3 we discuss the problems that arise at
container terminal, together with the reasons that encourage this research. Chapter 3 presents
the research paper on the load planning problem for double-stack intermodal trains published
in the European Journal of Operational Research. Chapter 4 concludes on the thesis’ findings
and suggests future research direction for the LPP for double-stack trains.
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Chapter 2

Background on intermodal freight
transport systems

2.1 Intermodal and multimodal transportation

In this section, we broadly discuss the intermodal freight transportation. Terminals, which
are the principal entities of our study, play indeed an important role in a larger and complex
intermodal freight transportation network.

The demand for goods has grown strongly over the past half century so that today an
essential ingredient of a prosperous national economy is a cost-effective freight transportation
system. This involves the use of multimodal, including intermodal, transportation. Even if the
transportation could be of passengers or of freight, we focus on the latter.

Intermodal transportation relies heavily on containerization due its several advantages, such
as the increase of the safety by significantly reducing loss and damage, the gain in the speed
in performing transfer operations at terminal, the flexibility in the transport of products of
various types and dimension and so on. The result is a most profitable flow of cargo, which is
not damaged easily but it is simple to control and to schedule.

A container, as defined by the European Conference of Ministers of Transport (2001), is a
“generic term for a box to carry freight, strong enough for repeated use, usually stackable and
fitted with devices for transfer between modes”. Containers are large, metal and uniform boxes,
that are used to transport goods from one destination to another one and with a standardized
dimensions: A standard container is the 20-foot box, which is 20 feet long, 8’6” high and 8
wide. It is referred to as a twenty-foot equivalent unit (TEU). Containers are either made of
steel, for maritime transport, or aluminum, for domestic transport. In the recent years, they
have got a great importance especially in international maritime freight transportation.

Intermodal movements are those in which two or more different transportation modes are
linked end-to-end in order to move freight and/or people from point of origin to point of
destination. Intermodal freight transport is the term used to describe the combination of at
least two modes of transport into a single transport chain, without a change of container for
the goods, with most of the route traveled by rail, inland waterway or ocean-going vessel, and
with the shortest possible initial and final journeys by road. Despite the growing emphasis
being placed on intermodal transportation by government and industry, a consensus definition
of intermodal transportation does not exist. According to Jones et al. (2000), “a large number
of definitions are present in the research literature, suggesting that a fundamental interpretation
of this term does not currently exist”.

European Conference of Ministers of Transport on 1993 described Intermodal freight trans-
port such as the movement of goods in one and the same loading unit or vehicle which uses
successive, various modes of transport (road, rail, water) without any handling of the goods
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themselves during transfers between modes.
Contrary to conventional transportation systems, intermodal transportation aims at inte-

grating various modes and services of transportation to improve the efficiency of the whole
distribution process, in order to create a seamless journey, where transitions between modes
occur smoothly with minimal delay. In fact, according to the U.S. Department of Transporta-
tion (2006), the value of the multimodal shipments, increased from about $662 billion to about
$1.1 trillion in a period of nine years (1993 - 2003). Because of its importance, intermodal
transportation forms the backbone of world trade, and it exhibits significant growth.

It is important to underline the analogies and the dissimilarities between intermodal and
multimodal transportation, as two different types of freight transportation. In fact, Intermodal
and Multimodal are two terms often used loosely and interchangeably, but they have discernible
differences:

• The International Multimodal Transport Association defines multimodal transport as
the chain that interconnects different links or modes of transport air, sea, and land into
one complete process that ensures an efficient and cost-effective door-to-door movement
of goods under the responsibility of a single transport operator, known as a Multimodal
Transport Operator, on one transport document. A multimodal transport contract is a
single contract for carriage of goods by at least two different modes of transport, where a
multimodal transport operator (MTO) assumes responsibility for the performance thereof
as a carrier.

• Intermodal transport is a particular type of multimodal transport, wherein the goods
are moved in one and the same loading unit, for example: containers. Intermodal trans-
port uses more than one mode of transports, where each of these modes has a different
transport provider or entity responsible with independent contracts, and since the load-
ing unit remains the same, the goods being transported, are themselves not handled each
time there is a change of mode.

2.2 Transportation systems

Almost all types of freight carriers and terminal operators may be involved in intermodal
transportation by operating an intermodal transportation system. Because of the interplay
between producers and consumers and the distance that often divide them, demand for freight
transportation comes up. In fact, the one who produces raw materials requires transportation
services in order to distribute final goods to satisfy customers demand.

A supply network for freight consists not only of nodes and links but also of terminals
nodes (freight hubs, logistic centers, shunting yards, warehouses) with specific characteristics
concerning capacity and transfer delay time. Figure 2.1 shows the process steps and decision
levels in freight transport as defined in the terminology on combined transport. At each decision
level specific decisions concerning the movement of goods are required:

• The sender (shipper, consignor) demands the transport of goods-units and puts these
goods-units in the care of others (freight forwarder, carrier) to be delivered to a con-
signee. The sender will decide on a freight forwarder based on price and other factors
like temporal constraints or reliability and generate the demand for transportation.

• The freight forwarder organizes the shipping process. It provides and schedules unimodal
or intermodal transport chains for shipping the goods. For this it may subcontract carriers
or provide its own carrier service.
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• The carrier is responsible for the carriage of goods, supplying transportation service. The
carrier answers the demand of transportation and provides the vehicles required for the
transport along a unimodal section of the transport chain. The vehicles operate on the
link infrastructure connection origin, hubs and destination.

• The driver steers the transport vehicle along a predefined tour. In case of road transport
the driver may decide on the route between two points of the tour.

• The consignee is entitled to take delivery of the goods.

Figure 2.1: Process steps and decision levels in freight transport Source: Friedrich (2003)

Considering the type of service they provide, intermodal terminals and such facilities may
be described as carriers as well. Terminals are, in this context, important for the operations of
loading, unloading, transfer operations and consolidation, and their efficiency is vital for the
performance of the entire transportation chain. The complex interactions between the actors
is one reason why it is more complicated to model the decision processes in freight transport
compared to passenger transport. The intermodal transport system can be viewed according
to the different actors:

• We can look at it from the firm, that offers the service and that has problems related to
the organization of activities. This is the point of view of the carriers (railway companies,
shipping line, trucking companies and so on) and of the terminal itself, which needs to
allocate resource to tasks in order to be as efficient as possible.

• We can look at it from the point of view of a individual container or more in general from
the point of view of shippers, which want to ship containers in the best way as possible.
Here, we find the carriers on the other side, providing services to shippers, who obviously
want the service to be as cheap as possible, while having some guarantees on the service
quality.

This combination of issues makes the intermodal transportation an hard topic. In our study,
we take the point of view of a carrier, who offers the service at the best quality as possible,
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by minimizing its own cost. As states in the Global Logistics Management book [Voortman
(2004)], “Logistics involves getting the right product to the right customer at the right time, in
the right condition, at the right place, at the right price.”.

In an intermodal transport chain we have, on the one hand, consolidated transport where
one vehicle or convoy serves to move freight for different customers with possibly different
origins and final destinations, and, on the other hand, customized transportation carriers that
provide dedicate service to each particular customers with possibly different origins and desti-
nations. Full-load trucking is a classic example of customized transportation, that travels to
the customer location, and once loaded, it moves to the destination, where it is unloaded. At
the end of this process, the truck is repositioned. Customized transportation is not always the
appropriate answer to shipper’s need, because of the relations and the trade-off between volume
and frequency of shipping and the cost, the frequency and delivery time of transportation, that
may dictate the use of consolidation services.

Consolidation can be a more attractive alternative. Freight consolidation transportation is
performed by less-than-truckload (LTL) motor carriers, railways, ocean shipping lines, regular
and express postal services, etc. Consolidation transportation carriers and most intermodal
transportation systems are organized as so-called hub and spoke network, where shipments for a
number of origin-destination points may be transferred via intermediate consolidation facilities,
or hubs, such as airports, seaport container terminals, rail yards, truck break-bulk terminals,
and intermodal platforms. An example of an hub and spoke networks follows in Figure 2.2. In
such systems, services are offered between a certain number of origins and destination points
(local/regional terminal), represented by the numbered nodes. Taking advantage of economies
of scale, low volume demands are moved first to an intermediate point, a consolidation terminal
or hub, such an airport, seaport container terminal, rail yard, or intermodal platform. So, in
hub and spoke networks, low volume demands are firstly moved from their origins to a hub
where traffic is sorted and grouped, namely classified and consolidated.

Figure 2.2: Network with consolidation terminals/hubs. Source: Crainic and Kim (2007)

The aggregated traffic is then moved in between hubs by services and loads are transferred
to their destination points from the hub by lower frequency services often utilizing smaller
vehicles. When the level of demand is sufficiently high, direct services may be run between
a hub and a regional terminal. This way to move freight between origins and destinations
is an efficient utilization of resources and it is lower cost for shippers, but it can bring a
higher amount of delays and a lower reliability due to the longer routes and the additional
operations performed at terminals. All consolidation-based transportation modes involved in
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intermodal transportation must provide efficient, reliable, and cost-effective services. In this
context, carriers face a number of challenges which may be examined according to classical
categorization of planning decisions, namely strategic (long-term), tactical (medium-term),
and operational (short-term) level of planning and management of operations.

2.3 Container terminals

In this section we describe various types of container terminals. First, we give an overview of
what they are and which equipment is needed. Second, we describe sea ports and rail yard
terminals. Third, we present the class of planning problems which arise there, to provide the
full context of our research.

An intermodal terminal provides an interface between different transportation modes such
as trains, trucks and vessel in order to manage the sustained flow of containers from their
origin to the final destination. It can be defined as any facility where passengers and/or freight
are consolidated and deconsolidated. The focus of our study is only the freight terminals.
Terminals may also be points of interchange involving the same mode of transport, which
ensure a continuity of the flows but they are also important points of transfer between modes.

Three major attributes affect the performance of terminals:

• Location: The key factor of a transport terminal is obviously to serve a large concen-
tration of population and/or industrial activities, representing a terminal’s market area.
Specific terminals have specific location constraints, such as port and airport sites. New
transport terminals tend to be located outside central areas to avoid high land costs and
congestion.

• Accessibility: Accessibility to other terminals (at the local, regional and global scale)
as well as how well the terminal is linked to the regional transport system. For instance,
a maritime terminal has little relevance if it is efficiently handling maritime traffic but is
poorly connected to its market areas through an inland transport system (rail, road or
barge).

• Infrastructure: The main function of a terminal is to handle and transship freight or
passengers since modes and passengers or cargo are physically separated. They have
a physical capacity which is related to the amount of land they occupy and their level
of technological, labor and managerial intensity. Infrastructure considerations are conse-
quently important as they must accommodate current traffic and anticipate future trends
and also technological and logistical changes.

Terminal costs represent an important component of total transport costs. They are fixed
costs that are incurred regardless of the length of the eventual trip, and vary significantly
between modes. They can be considered as: (i) Infrastructure costs: Include construction
and maintenance costs of structures such as piers, runways, cranes and facilities (warehouses,
offices, etc.); (ii) Transshipment costs: The costs of loading and unloading passengers or
freight; (iii) Administration costs: Many terminals are managed by institutions such as
port or airport authorities or by private companies (e.g., terminal operators). In both cases
administration costs are incurred.

Terminal costs play an important role in determining the competitive position between the
modes. Because of the high freight terminal costs, ships and rail are generally unsuitable for
short-haul trips. Competition between the modes is frequently measured by cost comparisons.
Reduced terminal costs would have a major impact on transportation system cost and the whole
international trade. Due to that fact, the need for optimization using methods of operations
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research in container terminal operations has become more and more important in recent years.
This is because the logistics especially of large container terminals has already reached a degree
of complexity that further improvements require scientific methods.

2.3.1 Container port terminals

A container port terminal provides transfer facility for containers among sea vessels and land
transportation modes. Two interfaces make it up in order to guarantee a smooth flow of
containers: The first one is the quayside where loading and unloading of ships take place, and
the land side where containers are loaded and unloaded on/off trucks and trains.
Containers could be transshipped directly or can be stored in a storage area for facilitating
the decoupling of quayside and land side operation. Figure 2.3 shows the operations areas in
a seaport. Three main types of handling operations are performed at port terminal:

• Ship operations associated with berthing, loading and unloading container ships.

• Receiving/delivery operations from outside trucks and trains.

• Container handling and storage operations in the yard.

After its arrival in the port, the ship is assigned to a berth equipped with quay cranes able
to load and unload containers. Different types of ships have to be served at the quayside, such
as deep sea vessels and feeder vessels. Berth space is a very important resource in a container
terminal and berth scheduling determines the berthing time and position of a container ship
at a given quay. Quay-crane allocation is the process of determining the vessel that each quay
crane will serve and the associate service time. Stowage sequencing determines the sequence of
unloading and loading containers, as well as the precise position each container being loaded
into the ship is to be placed.

During the unloading operation, a Quay-crane transfers a container from a ship to a trans-
porter. Then, the transporter delivers the inbound (unloaded) container to a yard crane that
picks it up and stacks it into a given position in the yard. This sequence of operations is called
indirect transfer. Some terminals use a direct transfer system where the equipment used to
move containers between the quay and the yard will also stack them.

For export (loading) operation, the process is carried out in the opposite direction. On the
land-side, the receiving and delivery operations provide the interface between the container
terminal activities and the external movements. A receiving operation starts when containers
arrive at the gate of the terminal carried by one or several outside trucks or a train. When
the outside truck arrives at the indicated transfer point, a yard crane lifts a container from the
truck and stacks it according to the plan.

When containers arrive by rail, the rail cars are brought in the rail area where containers and
documents are examined. Containers are then transferred by a gantry crane to a transporter,
which delivers them to the yard and stacks them. The sea-side and land-side operations interact
with the yard container handling and storage operations through the information on where the
containers are or must be stacked within the yard. How containers are stored in the yard is
one of the important factors that affect the turnaround time of ships and land vehicles. The
space-allocation problem is concerned with determining storage locations for containers either
individually or as a group.

Yard storage space is pre-assigned to containers of each ship arriving in the near future to
maximize the productivity of the loading and unloading operations. Container handling and
storage operations include the management and the handling of containers while they are in
the storage space of the yard and thus occur between the receiving and delivery operations
and the ship operations. Container-handling equipment performs the placement of containers
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Figure 2.3: Operation areas of a seaport container terminal and flow of transport. Source:
Steenken et al. (2004).

into storage and their retrieval when needed. Yard cranes move along blocks of containers to
yard bays to perform these operations. Planning these operations is part of the equipment-
assignment process, which allocates tasks to container-handling equipment. Based on the
quay crane schedule, one or two yard cranes are assigned to each quay crane for loading
and unloading. The remaining yard cranes are allocated to receive and delivery operations.
Terminal operators aim to assign and operate yard cranes in such a way that inefficient moves
and interference among yard cranes are minimized. Figure 2.4 shows an example of container
terminal.

Figure 2.4: Example of a container terminal with an indirect transfer system. Source: Crainic
and Kim (2007)

For the planning issues proper only of a maritime terminal, a fully description of the terminal
operations and a wide literature review we refer to Steenken et al. (2004), Vis and De Koster
(2003), and Crainic and Kim (2007), while for the planning issues of the land side of a maritime
terminal, we refer to the ones that we cite in the following section.

2.3.2 Railway terminals

A railway yard is a special transshipment node in a rail network where loads for trains are
processed (collected, rearranged, unloaded, stored, loaded, picked up, etc.). It can be a terminal
itself or it can be located in (or nearby) a seaport for moving freight with the hinterland. In
this section we describe the basic structure of rail yards. For a broader literature review, we
refer to Boysen et al. (2013).
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Usually, an intermodal freight rail yard serves at least one of two main purposes in the
railway system:

• A terminal can serve as an interface in intermodal transport, so that shipment can be
interchanged between the rail system and another alternative mode of transportation
(trucks, ships). Typically trains operate long-haul routes, while trucks act as link with
the end nodes of an intermodal network, and then act on a short-haul transportation.
So, a container that, for instance, must be moved from an origin to a destination where
there is not a direct rail system, will be moved before by truck, that in general serve
customers on the last mile, and then, once a railway terminal has been reached, it will
be loaded into a train that will bring it to its destination.

• A terminal can be a hub node in a hub and-spoke network, so that containers are ex-
changed between different trains. Economies of scale are generated because of the con-
solidations of several blocks, that represent short groups of railcars having loads with
different destinations grouped into few very long trains, which share part of the inter-
modal trip. Again, railway transport oversees the long haul routes because of very high
fixed costs.

According to Boysen et al. (2013) three different kinds of yards have been established,
depending on their generation (here we include yard types that are not limited to intermodal
traffic): In traditional classification yards (first generation shunting yards, see Figure 2.5) trains
arrive onto a receiving tracks, railcars are typically pushed over a ramp (so-called hump), which
redirects them toward classification tracks, where they are switched and addressed to departure
tracks to outbound trains.

Figure 2.5: Classification yard. Source: Boysen et al. (2013)

Second generation railway yards are the traditional rail-roads terminals, where trains usually
keep the railcars and only containers are moved by means of huge gantry cranes, that span
several parallel tracks. In this type of yards, often, additional elements are present, such as areas
for intermediate storage of containers and adjacent truck lanes for immediate transshipment
from trains to trucks and vice versa. The main purpose of such yards is to serve as an interface
between different modes of transportation. Lastly, third generation railway yard, which have a
similar layout compared to second generation railway terminal, but are typical in a modern rail-
rail transshipment, where a fully automated sorting system is employed, instead of conventional
floor storage. Those kinds of terminal are still in a design phase, and hence we mainly focus on
second generation railway yards with some mentions to the third generation terminal issues,
since, instead, shunting yards are fundamentally different in structure and operations, and by
the way are rarely part of modern container-based rail network.

A rail terminal, as already underlined, serves as interface of exchange between different
transportation modes. Such terminals often feature a holding zone for trucks, a gate, and an
office area for controlling access into and out the terminal. Trucks connecting the terminal with
the hinterland arrive on parallel truck lanes, divided into driving and parking lanes, bringing
into the terminal or out of the terminal, containers which have been moved by train. Trucks
may arrive respecting some schedules or certain booking windows. For a given container, if
its outbound train is not being loaded as the container arrives, it is moved to a storage area.
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Trains are parked into parallel transshipment tracks of the terminal that cranes or reach stacker
trucks can reach for loading and off-loading activities.

A terminal manager coordinates the activities in the three main interacting components
of the terminal: rail track operations, storage yard operations and gate operations. Since a
delay related to any type of operation affects the others, the objective of a terminal manager
is to ensure that all the operations run as effectively as possible. For instance, a problem with
storage yard operations can create delays both at the rail track and gate operations and have
an impact on the terminal productivity and the quality of its services.

A real world example of a large-scale intermodal terminal is the BNSF Logistics Park
Terminal, in the suburbs of Chicago (60 km southwest), which represents the largest intermodal
terminal in North America (Figure 2.6). It is a typical example of contemporary intermodal
terminal which includes all the components of a modern intermodal site in a typical rectangular
shape. In addition to the common elements that are the intermodal yard, namely the storage
area, chassis depots and the access gates (separate entry and exit locations), it also include
classification yards and a car terminal.

Figure 2.6: Chicago rail terminal. Source: Google Earth.

2.3.3 Planning problems

Planning problems occurring at intermodal rail terminals can be divided into two categories:
infrastructure planning (e.g., design) and operational planning (e.g., resource management)
(Boysen et al., 2013).

Design. The first type of problems concern the long-term strategic planning intended to an-
swer questions such as which elements should compose the infrastructure, and how to integrate
them into the system, in order to make the existing operations more efficient (Boysen et al.,
2013).

During the design phase of a terminal, critical decisions in regard to the dimensions of each
terminal elements are made. For instance, the number of holding and transshipment tracks,
the capacity of the storage and parking area, the number of technology and gantry cranes need
to be determined. All these choices are interdependent and influence the yard performance.

Some planning decisions connected with railway terminals are:

• Infrastructure layout: It is the problem of configuring terminal infrastructure. Recon-
struction activities may comprise the reduction, exchange or amplification of tracks, re-
tarders or safety equipment, exchange or amplification of storage yard.

• Resource type and dimensioning: The problem is to find the type of equipment and the
optimal number of resources to be used in the terminal. This is a strategic level decision,
because the horizon in which the decision has an impact is about few years.
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The existing literature on layout planning mainly consists of simulation studies, in order to
anticipate yard performance for different terminal layouts. Within the existing literature on
the broad range of issues regarding the layout of the terminal, refer to Boysen et al. (2013).

Operational problems. Once the layout of the terminal is fixed, several problems at oper-
ational level arise. Timetable of the trains is supposed to be fixed, and chosen at tactical level
considering the whole network, hence it will not be accounted in the study of a single terminal.
But the terminal manager, considering trains that arrive and leave the yard following a given
schedule, needs to manage the flow of containers and railcars.

An operational problem worth of study is the assignment of an inbound train to a parking
position in the yard. Any parking position in the yard is characterized, according to Boysen
et al. (2013), by a vertical and an horizontal coordinate, and it must be assigned to any train
that enters the transshipment yard. Firstly, the train is assigned to a vertical parking position
of the yard, which relates to the actual track on which the train enters the yard, and then,
an horizontal parking position of a train is assigned too, which refers to the slot in which the
traction vehicle is positioned.

As soon as a train is parked, the unloading of all inbound containers can begin. Normally,
some of the trucks that must take inbound containers are already in the yard, waiting for the
unloading operations. In such cases, it can be preferable to transship directly a container from
the train to the truck, rather than incurring in a double handling movement of moving it before
to the intermediate storage area of the yard.

If a truck is waiting in the holding area, it is assigned to a parking position. This is normally
a parking lane just beside the respective target railcar. This allows crane (or reach stacker) to
move a container from the railcar to the truck directly.

If a container must be subject to a double handling, which is normally referred as a split
move, it requires that a storage location close to the railcar is assigned to it, with the goal
to reduce the crane operating time. The objective in this case, is to make the retrieval of
that container as easy as possible once the truck arrives to the terminal. This could be done
by organizing the containers based on updated information of the arrival times of the trucks,
which could avoid future additional handlings of any blocking containers.

The processing of outbound operations is carried out similarly to the inbound operations
but in a reversed order. Whenever a truck that is transporting an outbound container reaches
the terminal, depending if the target train is already on the track or not, the truck is directed
either to the storage area or besides one of the railcars of the target train, ready for a direct
transfer.

An operational planning issue in this case is to determine, for each outbound container that
reaches the terminal, which is its ideal position in the yard, in order to minimize the reshuffles
of whole set of containers presented in the yard.

The aforementioned operational problems related to outbound containers are intrinsically
connected to the load planning problem. The latter defines a plan identifying where to place
each container on the available (double-stack) outbound railcars. This should be done such
that crane handling costs are minimized while maximizing the utilization of available capacity
and respecting a number of constraints. This thesis focuses on the load planning problem,
central to effective operations at intermodal rail terminals.
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Chapter 3

The load planning problem for
double-stacked intermodal trains

This chapter is published as: Serena Mantovani, Gianluca Morganti, Nitish Umang, Teodor
Gabriel Crainic, Emma Frejinger and Eric Larsen, The load planning problem for double-stack
intermodal trains, European Journal of Operational Research 267(1):107-119, 2018.

Author contribution

This chapter is based on a project in collaboration with the Canadian National Railway Com-
pany. The work involved everything from mapping the decision processes at a terminal, docu-
menting the operational constraints and objectives to mathematical modelling the problem and
validation of the solutions with the operations at the company. Given the extent of the work,
several people were involved over a quite long period of time. I was involved in all aspects of
the scientific work: literature review, mathematical modelling, the design of the experimental
results, the generation of results and the documentation of the work.

Abstract

This paper presents a general methodology that addresses the load planning problem for inter-
modal trains. We propose a model that can deal with single- or double-stack railcars as well as
arbitrary containers-to-cars matching rules. Moreover, we model weight and center of gravity
constraints, stacking rules and technical loading restrictions associated with specific container
types and/or contents. We propose an integer linear programming (ILP) formulation whose
objective is to choose the optimal subset of containers and the optimal way of loading them
on outbound railcars so as to minimize the resulting loading cost. An extensive numerical
study is conducted. It shows that ignoring center of gravity constraints and containers-to-cars
matching rules may lead to an overestimation of the train capacity and to select load plans that
are not feasible in practice. We also show that we can solve realistic instances to optimality in
reasonable computational time using a commercial ILP solver.

3.1 Introduction

Nowadays, an essential ingredient of a competitive economy is a cost-effective freight trans-
portation system. Intermodal transportation is an important component of this system in
which different transport modes are linked in order to move freight from a point of origin to
a point of destination. Taking advantage of economies of scale, low volume demands are first
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shipped to an intermediate point, a consolidation terminal or hub, where traffic is sorted (clas-
sified) and grouped (consolidated). Then, the consolidated traffic is moved between hubs by
efficient transport modes. In this paper we deal with intermodal railway transportation where
containers are consolidated and transported by trains on the long-haul part of their trip. We
focus on the North American market and on double-stack trains.

Intermodal transportation relies heavily on containerization because, in addition to de-
creasing transportation cost, it ensures faster and safer handling as well as transfer between
transport modes. Intermodal containers are steel frame boxes designed to move goods across
the world using different transport modes without any re-handling of the cargo. Since 2005,
the containerized worldwide traffic has increased from 382 to 684 million of TEU (Twenty
Foot Equivalent Unit) (CBRE Research, 2015) and, since 1990, North American ports have
seen container traffic grow by an annual average of 5.3% (International Association of Ports
and Harbors, 2015). This growth is placing a heavy burden on the entire consolidation-based
transportation system, which must provide efficient, reliable and cost-effective services.

Terminals are major components of any intermodal transportation system and thus are
critical to the entire international trade. They are special transshipment nodes that provide
equipment and space where containers are processed, loaded, unloaded and stored to ensure
a seamless transfer between different modes. Carriers, in our case railways, face a number of
challenging planning issues, which may be examined according to the classical categorization
with respect to the planning horizon, that is strategic, tactical, operational. In this study,
we focus on the load planning problem, which is an operational problem arising at intermodal
railway terminals.

Given a set of containers stored in a terminal and a sequence of railcars, the problem is
to determine the optimal subset of containers to load and the exact way of loading them on
an optimal subset of railcars while minimizing cost. We address this problem for double-
stack trains. This is a challenging problem because the load plan must satisfy a number
of complex loading rules that depend on specific container and railcar characteristics. For
example, stacking rules depend on container sizes, weights, and contents and on Center Of
Gravity (COG) restrictions. While the methodology expounded in this paper is general, the
North American market is the main focus of our attention because it is particularly challenging.
Indeed, there are in North America a large number of railcar types and several more container
types and containers than the standard 20 ft (feet) and 40 ft.

As we detail in Section 3.3, with one exception, the existing literature does not address the
load planning problem for double-stack trains. Moreover, the simplifying assumptions that are
adopted may lead to load plans that violate important loading rules and hence cannot be used
in practice. For example, none of the studies model the COG restrictions. The objective of
this paper is to propose a general methodology that addresses the load planning problem of
double-stack trains taking into account all the different loading rules encountered in actuality.

There are a large number of possible ways – so-called loading patterns – in which containers
of different sizes may be loaded onto a railcar of a particular standardized type. The multitude
of railcar types and the very large cardinalities of several of the associated sets of loading
patterns is a key issue. We refer to this problem as containers-to-car matching. In connection
with this problem, we make a number of contributions. First, we propose a general model that
can deal with single- and double-stack railcars that can be of different types and subject to
different loading rules. Second, our model accounts for additional loading constraints related
to the specific container types, contents and weights as well as to COG restrictions. Third,
we present an extensive set of numerical results based on a case study focusing on the North
American market.

The numerical results indicate that our model provides an appropriate framework for solving
very large instances of the load planning problem in reasonable time using a commercial solver.
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They also demonstrate that failing to account for containers-to-cars matching as well as COG
and stacking restrictions may lead to overestimations of the usable capacity and to suggesting
load plans that are not applicable in practice.

The remainder of the paper is structured as follows. Section 3.2 describes the load planning
problem in detail. Section 3.3 is dedicated to a review of the existing literature on the assign-
ment of containers to railcars and to highlight our main contributions. Section 3.4 presents
the ILP formulation of the load planning problem. Section 3.5 describes the content of the
empirical study and examines its results. Finally, Section 3.6 draws conclusions and discusses
possible directions for future research.

3.2 The double-stack train loading problem

This section presents a detailed description of the load planning problem for double-stack trains.
We examine the ways in which containers and railcars can be physically matched together and
explain how these loading possibilities depend on the exact characteristics of the containers
and railcars. We start by successively describing the intermodal containers and the rules for
stacking them as well as the intermodal railcars. We then present the rules governing the
loading of containers onto railcars.

3.2.1 Intermodal containers

Intermodal containers are characterized by (i) their size (length and height) (ii) their type (iii)
their contents and (iv) their weight, filling level and weight distribution. In order to facilitate
their handling, sizes are standardized. There are four ISO standard sizes used worldwide: 20
ft high cube, 40 ft low and high cube, 45 ft high cube (the height of low cube containers is 8
ft 6 in / 2.6 m whereas it is 9 ft 6 in / 2.9 m for high cubes). This paper focuses on the North
American market, where there are two additional sizes of high cubes: 48 ft and 53 ft.

Figure 3.1: Examples of container types

For each size, containers are available in several standardized types. Some are illustrated
in Figure 3.1. Ninety percent of the global fleet consists of general purpose containers, called
“dry containers”, that are steel frame boxes with 6 solid sides (upper left in the figure). Sev-
eral other types of containers are designed to transport goods for which dry containers are not
suitable. For instance, reefers (refrigerated containers) or heated containers are designed to
carry goods needing temperature control (bottom left in the figure). During transport, the
reefers can either be connected to a genset (power generator set) supplying electrical power to
a number of them or can have individual power units. Figure 3.1 also shows an open/soft top
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container without a roof (upper right), an open-side container and a tank container for the
transportation of liquids (bottom right). While the designs of these containers are different,
their sizes remain standard. Containers can carry hazardous materials in which case special
restrictions usually govern their storage and transport.

Containers can be stacked one on top of another. In addition to rules governing the weights
and the positioning of containers loaded onto railcars, the stacking of containers must conform
to rules prescribing their relative position. In essence, the containers must be positioned so
as to ensure that their load is transferred in accordance with the design of their steel frames.
Specifically, the container above can be connected to the container(s) below with four Inter
Box Connectors (IBC) designed for this purpose and the standard lengthwise distance between
the connecting points where these couplings can be installed is 40 ft. This is illustrated in
Figure 3.2 where the thick lines indicate this 40 ft distance. Hence, a 40 ft container can be
loaded on top of two 20 ft but a 20 ft container cannot be loaded on top of a 40 ft one. Since
the connecting points are symmetrically located from the mid-length of the containers, a longer
container (45, 48, 53 ft) must be centered on top of a shorter one (40, 45, 48 ft) or on top of a
pair of 20 ft containers.

Figure 3.2: Container stacking at 40 ft distance

Lastly, we assume that there exists a per container cost associated with the failure to load
an available container standing for, e.g., customer penalties for late arrival and storage costs
in the terminal.

3.2.2 Intermodal railcars

Intermodal trains consist of a sequence of railcars designed to carry single- or double-stacked
containers. Intermodal railcars are characterized by their number of platforms and by the
length, weight-carrying capacity and tare weight of each one.

Figure 3.3 illustrates a five-platform double-stack railcar. In accordance with the North
American industry standard, the front platform is named A, the rear B and the other platforms
C to E from front to rear. Similarly, the platforms of a three-platform railcar are named A, C,
B from front to rear, and so forth. Each double-stack platform has two slots: bottom and top.

Costs are associated with the operation of a train and are incurred in the acquisition and
maintenance of the locomotives and railcars, in purchasing fuel and employing crews (see e.g.
Bouzaiene-Ayari et al., 2014). We hence assume that there is a cost associated with leaving
slots empty on outbound railcars.
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Figure 3.3: Five-platform double-stack railcar

3.2.3 Loading containers on railcars

Trains are composed of blocks where a block in this context is a group of railcars that move
between an Origin and Destination (OD) pair of terminals without being reclassified. The
purpose of grouping railcars, with different OD terminal pairs, into blocks is to minimize the
transfer from one train to another or the classification of individual railcars at intermediate
terminals. The block plan is a tactical decision problem and the operational load planning
problem is solved separately for each block.

Containers arrive to an intermodal rail terminal by trucks or by vessels. Upon their arrival,
the containers are either classified according to the block on which they will travel and stored
in the yard, or directly loaded on outbound railcars of this block. Since containers can arrive
shortly before, or even during the loading operations, load plans must be computable in a short
time (preferably within a few minutes).

The assignment of containers to slots must conform to a number of rules that depend on the
characteristics of the railcars and the containers. We start by describing the rules that pertain
to container size only. We refer to them as containers-to-cars matching rules. For the North
American market, the AAR Guide (Association American Railroads, 2014) provides for each
listed series of railcars a complete description of the combinations of container lengths that can
be loaded in the bottom and top slots of each platform. Except for the bottom slots that can
generally accommodate up to a pair of 20 ft containers placed end-to-end, slots can receive at
most one container. Table 3.1 provides an illustration for a five-platform railcar series. The
second block of rows is excerpted from the AAR Guide. It prescribes for each one of the five
platforms (A-E) which container sizes can be loaded in the bottom and top slots respectively.
Each row in the third block states one particular loading possibility, i.e. a loading pattern,
satisfying the prescriptions of the second block.

The platform length for this series of railcars is 40 ft whence the bottom slots can accom-
modate one or two 20 ft containers (2 – 20′ in the table) or one 40 ft (1 – 40′ in the table).
The load in the top slot must conform to the stacking rules and to the space available. The
space between platforms can in some cases be sufficient to allow the loading in the top slot of
a container exceeding the length of the platform. This is examplified in Table 3.1 where each
top slot can accommodate a 40 ft, a 45 ft or a 48 ft container and where the space between
the platforms allows to load 53 ft containers in the top slot of platforms A, D and B, provided
there is a 40 ft container or no container at all in top slots of platforms C and E (see table
footnote). Crucially, these joint requirements imply that the containers-to-cars matching rules
cannot be described for each platform separately.

Slots may also be left empty and an upper slot can be filled only provided the slot below is
filled. Moreover, a top slot cannot be filled if there is a single 20 ft container loaded in the slot
below. There are clearly several different ways in which to load a five-platform railcar so as to
satisfy the loading capabilities stipulated in the AAR Guide and the lower rows of Table 3.1
exemplify a very small number of them. For example, the last row describes a loading pattern
where a 40 ft container is placed in every slot except in the top one of platform E. The latter
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is left empty.

Bottom slot Top slot

A C D E B A C D E B

AAR Guide

2− 20′ 2− 20′ 2− 20′ 2− 20′ 2− 20′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′

1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 45′ 1− 45′ 1− 45′ 1− 45′ 1− 45′

1− 48′ 1− 48′ 1− 48′ 1− 48′ 1− 48′

1− 53′(*) 1− 53′(*) 1− 53′(*)

Some examples satisfying AAR Guide

2− 20′ 2− 20′ 2− 20′ 2− 20′ 2− 20′ 1− 48′ 1− 40′ 1− 45′

1− 40′ 2− 20′ 1− 40′ 2− 20′ 1− 40′ 1− 45′ 1− 40′ 1− 53′ 1− 40′ 1− 53′

2− 20′ 1− 40′ 2− 20′ 1− 40′ 1− 40′ 1− 48′ 1− 45′ 1− 48′ 1− 45′ 1− 48′

1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′ 1− 40′

Table 3.1: Example of AAR Guide railcar series BN 63900 - 63909 type IBC 100 tons (*): 53
ft containers in top slot of platforms A, D and B only when a 40 ft container or none is loaded in top slot of
platforms C and E.

The assignment of the containers to the slots of the railcars is conditioned by the weights
of the containers and the weight-carrying characteristics of the railcars. There are two main
loading restrictions with respect to the weight of the load on a platform. First, the total weight
of the containers loaded on a platform must be smaller than the weight capacity of the platform.
Second, a condition pertaining to the height of the center of gravity must be satisfied. This
expression is used in the North American railway industry with a meaning identical to that
of the expression center of mass. Although it designates more generally the mean location of
a distribution of mass in space, it is defined in the context of railway operations as the mean
location of mass along the vertical axis of a platform. The AAR Guide states “...The COG
for a double-stack car and the load in the platform must be less than or equal to 98 inches at
top of rail. Reference Rule 89, Section C.2.e. in the AAR Field Manual”. A failure to obey
this rule would imply practically that the container placed in the top slot of the platform is
too heavy in comparison with the weight of the container(s) placed in the bottom slot. This
situation would be viewed as a risk factor to a derailment. While the actual COG depends on
the filling level and the load distribution in the containers, the COG restriction stated in the
AAR Guide relies on the assumption of a uniform weight distribution. In the case of a solid
body with uniform weight distribution, the center of mass is the same as the centroid of the
body. In this paper we follow the AAR definition of COG.

The COG restriction is expressed as an upper bound on the weight of the container in the
top slot, given the characteristics of the container in the bottom slot. Figure 3.4 provides an
illustration for a single platform. There are three solid bodies: the platform p, the bottom
container i and the top container i′. Their centroids are illustrated with black dots and the
associated heights from the top of the rail are denoted mp, mi and mi′ , respectively. The
bottom and top containers are connected with IBCs. Under the assumption of a uniform
weight distribution, the height of the COG m for the three solid bodies is

m =
mpgp +migi +mi′gi′

gp + gi + gi′
(3.1)

where gp is the platform tare weight and gi and gi′ are the weights of the bottom and top
containers respectively. According to the AAR Guide, m ≤M where M equals 98 in (2.5 m).
Using (3.1) and M it is possible to compute a maximum weight c for the top container. By
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rearranging (3.1) and using M instead of m and c instead of gi′ we obtain

c =
gp(M −mp) + gi(M −mi)

mi′ −M
. (3.2)

Figure 3.4: COG restriction

Containers exist in a diversity of types carrying a diversity of contents and rules are attached
to particular combinations of types and contents. These rules give rise to a number of additional
constraints in the container loading problem. For the North American market we have identified
six technical loading restrictions that apply to certain types of containers and contents or to
combinations thereof:

1. Loading is restricted to railcars having a given minimum weight-carrying capacity (inde-
pendently of railcar series). This restriction applies to containers whose weight is above
a certain threshold and needs to comply with additional restrictions not captured by the
weight-carrying capacity of a platform.

2. Loading is restricted to certain positions in the sequence of railcars (e.g., hazardous
material).

3. Loading is restricted to high weight capacity railcars (only certain railcar series).

4. Loading in top slot is forbidden.

5. Loading in top slot and double stacking is forbidden.

6. Loading must be on a platform within a maximum distance from a specific container
(e.g., for the reefers that must be connected to a genset).

This set of technical loading restrictions is sufficiently general to cover the specificities that
we have identified thus far in relation with the North American railways. Additional technical
loading restrictions might have to be defined in order to reflect new or presently unknown
railway policies or country regulations.

In summary, we focus on the load planning problem: Given a set of containers stored
in a terminal, a sequence of railcars, and the relevant constraints, determine the subset of
containers to load and the exact way of loading them. The objective is to minimize the cost of
unloaded containers and the cost of empty slots. A key performance indicator currently used
to measure the efficiency of a load plan is the slot utilization, which measures the percentage
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of the available slots on the railcars that are occupied in the load plan (Burriss, 2003). We
note that we focus on a deterministic setting, and that we do not model the different handling
costs associated with retrieving containers in the terminal. Our goal is to develop a general
methodology, which can be used within a decision support tool that provides load plans to
decision makers. We deal with all the loading rules and restrictions that arise for double-stack
trains, by taking into account the multitude of containers and railcars types that exist in the
North American market.

3.3 Literature review

The load planning problem may be viewed as a special case of the packing-cutting-knapsack
problems (Martello and Toth, 1990; Dowsland and Dowsland, 1992; Dyckhoff et al., 1997;
Wäscher et al., 2007). The goals and the associated models are different in most cases, however.
For example, in two- (Lodi et al., 2002) and three-dimensional packing (Crainic et al., 2008)
one faces a much larger number of items than the number of available (or desirable) loading
units (bins) and the dimensions of the items span a broad range of values from tiny to almost
as large as the bin. One then focuses on identifying the “best” bin and the “best” position in
the bin to load all items in as few bins as possible. In the rail load planning problem, on the
other hand, bins - the railcar platforms - and the items - the containers - are fundamentally of
similar dimensions, the positioning being determined by the physical configurations of both.
The goal is then changed from packing as many items as possible into as few bins as possible
to identifying the best combination (assignment) of given container dimensions and weights
to the available railcars given technical loading constraints (e.g., total weight and COG). The
cutting/packing setting closest to the problem we address is identified as the multiple identical
large object placement problem by Wäscher et al. (2007), where the multi-platfom railcars
would be the more or less identical large bins, while the heterogeneous fleet of containers
would correspond to the set of large items. There were no contributions to this problem class
when the classification of Wäscher et al. (2007) was published and we are not aware of any
more recent ones either.

COG and load balancing concerns also arise when planning the loading of vehicles for other
freight transportation modes, e.g., trucking, sea and air transportation. Each transportation
mode has its own vehicle and operation characteristics, resulting in particular forms of these
general restrictions. For example, the axle weight restriction for trucks may result in particular
requirements for weight distribution when loading the containers before even the ocean segment
of their trip (Lim et al., 2013). The distribution of weight, and thus of containers, is of capital
importance for the stability of ships and airplanes. The COG of the vehicle thus becomes a hard
safety constraint in ship stowage (Steenken et al., 2004; Stahlbock and Voß, 2008) and airplane
(Mongeau and Bes, 2003), but while the number of container re-handles (at intermediate stops)
is generally not relevant in the latter case, it is an element to be taken into account in the
former case (Imai et al., 2006).

We open this overview of the literature relevant to the rail load planning problem by pointing
to two surveys whose scopes extend to intermodal freight transportation activities in general:
See Crainic and Kim (2007) for the planning of intermodal carrier and terminal operations, and
Carlo et al. (2014) for transportation activities in container terminals. Several studies focus on
the train blocking problem (e.g., Bodin et al., 1980; Newton et al., 1998; Barnhart et al., 2000).
For general views on the rail load planning problem per se, see Heggen et al. (2016) for a recent
classification of the existing literature and Boysen et al. (2013) for a comprehensive overview of
the planning issues that arise specifically in railway yards, including the load planning problem.

Specifically in connection with the rail load planning problem, Feo and Gonzalez-Velarde
(1995) made the first contribution and, later on, Powell and Carvalho (1998) dealt with the
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problem of balancing the flat cars over a network from a load planning perspective. Similarly
to these two studies, most contributions in the literature addressed the simpler single-stack
load planning problem where the set of matches between container and railcar combinations is
smaller than the double-stack one. The existing literature examined simpler settings than that
of this paper, accounting mainly for limits on axial and total train weight. It has generally
focused on objectives related to, e.g., minimizing handling costs in the yard (e.g., Corry and
Kozan, 2006, 2008; Ambrosino et al., 2011; Ambrosino and Siri, 2015) or train set-up costs
(Bruns and Knust, 2012; Bruns et al., 2014), rather than optimizing the capacity made available
by a given train or block as in this paper.

The authors focusing on single-stack loading deal with load planning at different degrees of
detail. For example, Corry and Kozan (2008) consider matching different container and railcar
types, while Corry and Kozan (2006) do not. Bruns and Knust (2012) extend the former work
by considering both the matching problem between containers and railcars and the weight
constraints. Heggen et al. (2016) build on the latter and integrate a number of practical
loading constraints. Ambrosino et al. (2011) and Ambrosino and Siri (2015) minimize re-
handling in the yard and unproductive movements of cranes. Anghinolfi et al. (2014) consider
several container lengths and possible railcar (platform) loading combinations to accommodate
them, combined to axial and train weight restrictions. For single-stack loading problems,
Dotoli et al. (2015) consider issues often addressed during previous planning processes (e.g.,
block planning) such as the positioning of the loaded cars within the train and their transfer
from one train to another. Besides the weight-related restrictions, the authors also address the
so-called commercial value of the train measured by the priority and, possibly, the value of
the containers. Dotoli et al. (2017) extends this work to a decision-support system, which also
addresses the management of the containers in the yard. Finally, Bruns et al. (2014) consider
several sources of uncertainty (regarding, e.g., weights, lengths and equipment failures) in a
robust optimization approach.

The aforementioned studies focus on single-stack trains, and on the main challenges associ-
ated with optimizing yard or transport operations rather than on train loading. We study the
operational problem of loading double-stack trains in a context where the tactical train and
block plan, i.e., what trains are operated, what sequence of trains moves each block, and what
block moves each container (loaded on a car) from its origin to its destination, were previously
constructed. Loading double-stack trains is a difficult problem taking place in a complex set-
ting. On the one hand, it requires considering the matching between a multitude of different
railcar (platform types and configurations) and container types, while putting containers on
top of other containers. On the other hand, we enforce a good number of technical constraints,
in particular the COG restrictions and stacking rules. We therefore focus on the train (block)
load planning problem, assuming the cars making up the train (block) are given, as well as the
containers to load.

To the best of our knowledge, the first contributions to the double-stack loading literature
aimed for automatic heuristic rules and procedures. Pacanovsky et al. (1995) embedded such
procedures into a simulation-based decision-support system. Lai, Barkan and Önal (2008)
is the first optimization study on the double-stack load planning problem. Similarly to this
study, they also ignore handling costs. Their focus is on minimizing the aerodynamic drag
of double-stack trains that depends on the gaps between containers and the location of these
gaps along the train. They present an integer linear programming formulation, but they make
a number of simplifying assumptions. First, they address the matching among containers
and railcars types, deriving the loading patterns without considering the possible platform
dependencies. This implies that loading rules can be defined for platforms independently
(Table 3.1 shows an example where this assumption is invalid). Second, they ignore the possible
dependencies between the loadings of the individual railcars in the sequence (such dependencies
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are introduced by technical restrictions, e.g., the requirement that reefers must be loaded in
close proximity of the genset supplying the required power). These dependencies make it
inappropriate to define loading rules over each platform or each railcar independently. Third,
they study the problem without accounting for COG and technical restrictions. The authors
extend the model to a rolling horizon setting and show that one could improve the loading by
considering several trains at a time. Lai, Ouyang and Barkan (2008), Lang et al. (2020) consider
COG concerns within the study of a limited number of containers-to-cars configurations based
on the case of Chinese rail. Detailed formulas are developed for each configuration and are
embedded into a multi-objective formulation.

As this literature survey illustrates, there currently does not exist a comprehensive optimiza-
tion model for the double-stack train loading problem considering a realistic set of constraints
and a broad range of container and railcars types. We present such a model in the next section.

3.4 Mathematical formulation

A realistic load plan must comply with the applicable set of loading patterns, weight and COG
restrictions, stacking rules and technical restrictions. This section presents an Integer Linear
Programming (ILP) formulation of the load planning problem whose objective is to maximize
slot utilization. This is accomplished by minimizing an appropriately weighted sum of the
cost of containers that are not loaded and the cost of railcars that are used for loading. We
open this section with detailed explanations, first, of the mathematical structure describing
the containers-to-cars matching rules and, second, of the COG constraints. Next, we provide
a detailed description of the full ILP formulation.

3.4.1 Modeling containers-to-cars matching

We model the containers-to-cars matching through loading patterns. A loading pattern de-
scribes a feasible assignment of container lengths to the slots of a railcar. Whereas Corry
and Kozan (2008) and Lai, Ouyang and Barkan (2008) also use loading patterns, the main
difference here lies in the fact that we account for dependencies between the loadings of the
platforms on a railcar. As illustrated by the example shown in Table 3.1, accounting for these
dependencies is important but leads to an exponential growth in the number of loading patterns
as the number of platforms increases.

Let H be the set of standard container lengths in feet. In our case, H = {20, 40, 45, 48, 53}.
A loading pattern k ∈ Kj is a n-tuple that specifies the total number of containers of each
length h ∈ H that can be loaded on each platform of a given railcar j ∈ J . We show an
example of a one-platform railcar in Table 3.2. Each row corresponds to a loading pattern and
there is a total of 11 possible patterns |Kj| = 11, including empty slots but excluding an empty
railcar. The first row shows, for example, that the platform can hold one 20 ft container, the
second, two 20 ft containers, the third, one 40 ft container and so forth. Notice that the loading
patterns do not indicate the slots in which the containers can be loaded, only the number per
platform. This information may be inferred from the content of the platform based on stacking
rules. When a railcar consists of several platforms the n-tuples are concatenated from left to
right. For example, a particular pattern for a railcar comprising three platforms is described by
a 3-n-tuples concatenation. The set of loading patterns Kj is composed of all feasible loadings
as described in Association American Railroads (2014) and discussed in depth in Section 3.2.3.
The set of railcars J can be divided into subsets Jt (

⋃
t∈T Jt = J) where each type t ∈ T has a

unique set of loading patterns Kt. The loading patterns can be generated and stored a priori
for all railcar types.
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k / h 20 40 45 48 53

1 1 0 0 0 0
2 2 0 0 0 0
3 0 1 0 0 0
4 2 1 0 0 0
5 2 0 1 0 0
6 2 0 0 1 0
7 2 0 0 0 1
8 0 2 0 0 0
9 0 1 1 0 0
10 0 1 0 1 0
11 0 1 0 0 1

Table 3.2: Example set of loading patterns Kj for a one-platform railcar j (the rows correspond
to one pattern k ∈ Kj and columns to container lengths h ∈ H)

The number of loading patterns increases exponentially with the number of platforms.
However, in rather general circumstances, there may exist redundancies among them, in the
sense that, for a given railcar, a number of distinct loading patterns may accommodate exactly
the same set of containers. As an example of redundancy that justifies a reduction in the number
of loading patterns without loss of generality, consider the three distinct loading patterns
assigning one 40 ft container to a three-platform railcar: the 40 ft container could be placed
on platform A, B or C. However, in view of the independence of the platforms it would be
sufficient to consider only one of these three patterns.

We remove redundancy between loading patterns by defining equivalence classes over the
loading patterns and selecting a single representative loading pattern for the class. We de-
fine the equivalence classes as follows: loading patterns for a given railcar type are deemed
equivalent if they can be obtained one from the other through a permutation of the individ-
ual n-tuples describing the loadings of each platform. We call this equivalence with respect to
platform permutations. Proceeding in this fashion, we can achieve important reductions in the
cardinalities of the sets of loading patterns without loss of generality. We present descriptive
statistics for the North American railcar fleet in Section 3.5.

It is important to note that the classes of equivalence for the loading patterns must be
defined in accordance with the characteristics of the load planning problem at hand, if their
use is not to cause a loss of generality in the description of the loading possibilities. An example
where equivalence with respect to platform permutations may not hold is the model presented
in Lai, Barkan and Önal (2008) where the aerodynamic efficiency of the load plan is optimized
and where the longitudinal position of the containers is of importance. Notice, however, that
the key aspect of optimizing aerodynamic efficiency resides in choosing the location of empty
slots/platforms, and that this aspect becomes significantly less important in situations with
excess demand. In this case, the equivalence classes may not impact the quality of the solution.

3.4.2 Modeling the COG restriction

We described the COG restriction in Section 3.2.3 as an upper limit on the weight of container
i′, gi′ , loaded in the top position on a platform p. Stated as an inequality the weight limit (3.2)
is

gi′ ≤ c =
gp(M −mp) + gi(M −mi)

mi′ −M
. (3.3)

Notice that it depends non-linearly on the characteristics of the container loaded in the bot-
tom slot. In the following we indicate how we can express the COG restriction using linear

23



Figure 3.5: Four height configurations relevant to the COG constraints

constraints.
While (3.3) depends on the size of the containers through the height of their centroids

(mi and mi′), we only need to consider four height configurations. Indeed, as illustrated in
Figure 3.5, containers are either Low Cube (LC) or High Cube (HC). Hence, for a given
container in the bottom slot i, mi′ can take two values depending on i′ being HC or LC. Let
mLC

i and mHC
i denote these two possible values of mi′ . The platform height and tare weight

(mp and gp) are constants. We can now write (3.3) with the following two inequalities:

gi′ ≤ cLC

i =
gp(M −mp) + gi(M −mi)

mLC
i −M

if i′ is LC, (3.4)

gi′ ≤ cHC

i =
gp(M −mp) + gi(M −mi)

mHC
i −M

if i′ is HC. (3.5)

The COG restriction is always satisfied when the container in the bottom slot has the same
weight or is heavier than the one in the top slot (gi ≥ gi′). Finally we note that we can
compute cLC

i and cHC
i for all containers i ∈ N a priori. We take into account that two 20 ft

containers can be loaded in the same bottom slot by considering this pair of 20 ft containers
as the bottom load and compute the weight limit on the upper container accordingly, based on
the total weight of the pair.

3.4.3 ILP formulation

A container of length h ∈ H, i ∈ Nh, N =
⋃

h∈H Nh, is characterized by its weight gi, length
li, cost if left on the ground πi, and, possibly, by a particular technical loading restriction. Let
NLC and NHC denote the sets of low-cube and high-cube containers. Let Ñs ⊆ N be the set of
containers affected by technical loading restriction s ∈ S. Then, for the s = 1, . . . , 6 classes of
technical loading restrictions identified for the North American market (Section 3.2.3), we have:

DW , the minimum weight-carrying capacity of a railcar that can receive container i ∈ Ñs1 ; pre-
processed parameter Fj = 1 when, given the sequence of railcars, one cannot load on railcar

j containers i ∈ Ñs2 (0, when one can); indicator αj = 1 when railcar j ∈ J with high-weight

capacity Uj may receive containers i ∈ Ñs3 ; R, the maximum number of consecutive platforms
on the train between a refrigerated container and the source of electric power.

A railcar j ∈ J is characterized by its weight-carrying capacity Gj and a utilization (by at
least one container) cost τj. Let P represent the set of platforms of all railcars, and Pj the
set of platforms of railcar j ∈ J . Each platform p ∈ P is characterized by its length Lp, its
weight-carrying capacity Gp, and a sequence number γp, numbered from head to tail of the
train. Let Q be the set of all slots, Qp the set of slots of a given platform p, and µq be a binary
parameter equal to 1 if q ∈ Q is a bottom slot, 0 otherwise. Furthermore, let cLC p

i and cHC p
i

be the low cube and high cube weight limit, respectively, of the top slot for container i ∈ N
loaded in the bottom slot of platform p ∈ P , calculated using (3.4) and (3.5).

Railcars are defined by their type as presented in Section 3.4.1. For the sake of notational
simplicity we let Kj be the set of loading patterns for railcar j ∈ J , with nh

kp, the number of
containers of length h ∈ H on platform p in loading pattern k ∈ K.
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We define two main sets of decision variables. First, viq = 1, if container i ∈ N is assigned
to slot q ∈ Q, and zero otherwise. Second, wjk = 1 if railcar j ∈ J is assigned loading pattern
k ∈ Kj, and zero otherwise. We also define two sets of auxiliary binary variables linking the
container assignment variables viq to platforms and railcars. More precisely, let yip = 1, if
container i ∈ N is loaded on platform p ∈ P , 0 otherwise, and xij = 1, if container i ∈ N is
loaded on railcar j ∈ J , 0 otherwise. The model then becomes:

min
∑
i∈N

πi(1−
∑
q∈Q

viq) +
∑
j∈J

τj(
∑
k∈Kj

wjk) (3.6)

s.t
∑
q∈Q

viq ≤ 1 ∀i ∈ N (3.7)

yip =
∑
q∈Qp

viq ∀i ∈ N, ∀p ∈ P (3.8)

xij =
∑
p∈Pj

yip ∀i ∈ N, ∀j ∈ J (3.9)

∑
k∈Kj

wjk ≤ 1 ∀j ∈ J (3.10)

∑
k∈Kj

nh
kpwjk =

∑
i∈Nh

yip ∀p ∈ Pj, ∀j ∈ J, ∀h ∈ H (3.11)

∑
i∈N

∑
q∈Qp

µqviqli ≤ Lp ∀p ∈ P (3.12)

∑
i∈N

yipgi ≤ Gp ∀p ∈ P (3.13)∑
i∈NLC

∑
q∈Qp

(1− µq)viqgi ≤
∑
i∈N

∑
q∈Qp

µqviqc
LC p
i ∀p ∈ P (3.14)

∑
i∈NHC

∑
q∈Qp

(1− µq)viqgi ≤
∑
i∈N

∑
q∈Qp

µqviqc
HC p
i ∀p ∈ P (3.15)

∑
j∈J

xij(Gj −DW ) ≥ 0 ∀i ∈ Ñs1 (3.16)∑
j∈J

xij Fj = 0 ∀i ∈ Ñs2 (3.17)∑
j∈J

xij(αjUj − gi) ≥ 0 ∀i ∈ Ñs3 (3.18)∑
q∈Q

viq(1− µq) = 0 ∀i ∈ Ñs4 (3.19)

yip +
∑
q∈Qp

vi′q(1− µq) ≤ 1 ∀i ∈ Ñs5 , ∀i′ ∈ N \ i, ∀p ∈ P

(3.20)∑
p∈P

γpyip −
∑
p∈P

γpyi′p ≤ R + (|P | −R)(1−
∑
p∈P

yi′p) ∀i, i′ ∈ Ñs6 , i 6= i′ (3.21)

viq ∈ {0, 1} ∀i ∈ N, ∀q ∈ Q (3.22)

yip ∈ {0, 1} ∀i ∈ N, ∀p ∈ P (3.23)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ J (3.24)

wjk ∈ {0, 1} ∀j ∈ J, ∀k ∈ K (3.25)
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The objective (3.6) of the ILP model seeks to minimize the total of the cost of the containers
left on the ground and the cost of the railcars used to load at least one container. We note
that

∑
k∈Kj

wjk = 0 when railcar j is not used. Under certain cost parameterizations this
generalized cost leads to the maximization of the slot utilization.

There are five sets of loading constraints in the model. The assignment constraints (3.7)
ensure that each container i ∈ N can be assigned to at most one slot q ∈ Q. For a given
container i ∈ N ,

∑
q∈Q viq = 0 implies that the container is not assigned to any slot and thus

is left on the ground. Constraints (3.8) and (3.9) define the auxiliary assignment variables yip
and xij of containers to slots and platforms, respectively.

The loading pattern constraints (3.10) ensure that exactly one loading pattern k ∈ Kj is
assigned to each railcar j ∈ J . Constraints (3.11) link variables wjk and yip, enforcing that
the number of loaded containers of length h ∈ H on platform p ∈ P equals nh

kp. Constraints
(3.12) ensure that the length of the container(s) loaded in the bottom slot of platform p ∈ P
does not exceed the length of the platform.

The weight capacity constraints (3.13) ensure that the total weight of the loaded containers
does not exceed the maximum allowable weight limit of the platform. The COG restrictions
are modeled by constraints (3.14) and (3.15).

In addition to dimensional and weight restrictions, there are also a variety of technical
loading restrictions imposing or forbidding the loading of certain types of containers on specific
railcars or slots. Constraints (3.16) - (3.21) correspond to the six classes of technical loading
restrictions we identified for the North American market. Notice, however, that these can be
easily extended to describe other company policies or country regulations.

Constraints (3.16) state that containers i ∈ Ñs1 can only be loaded on railcars that have the
minimum weight-carrying capacity DW . Constraints (3.17) restrict the loading of containers

i ∈ Ñs2 to a particular railcar in the given sequence of railcars, while constraints (3.18) restrict

the loading of containers i ∈ Ñs3 to railcars with a suficiently high weight capacity.

There are two types of stacking constraints. First, containers i ∈ Ñs4 cannot be loaded in

the top slot (3.19). Second, containers i ∈ Ñs5 ⊆ Ñs4 cannot be loaded in a top slot and cannot
be double stacked (3.20).

Constraints (3.21) concern the storage of refrigerated containers that need a source of

electrical power (the genset is a container i ∈ Ñs6), limiting the distance between any two

loaded containers belonging to the set Ñs6 . Finally, expressions (3.22)-(3.25) define the domain
of the decision variables.

3.5 Numerical results

Two numerical studies have been conducted. The first one assesses the effects of containers-
to-cars matching and COG restrictions on load planning solutions. The second one examines
the relationship between the particular sets of characteristics presented by the load planning
problems and the computation times required for their solution. Without loss of generality,
and to simplify the discussion, we assume for all instances that container costs πi = π, ∀i ∈ N
and railcar cost τj = τ, ∀j ∈ J .

The Java programming language was used for processing the data and for running and post
processing the solutions on an Intel(R) Core(TM) i5-5300U, 2.30 GHz CPU processor equipped
with 24 GB of RAM. The ILP optimization model was solved using a 32-bit version of the IBM
ILOG CPLEX 12.6 solver, with a preset computational time limit of 10 hours. The reported
computational times only account for the solver’s CPU time, since the computations associated
with pre processing the data and post processing the solutions required negligible time.
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The sets of loading patterns were generated one time, a priori, using the Python program-
ming language. The generation for every railcar series found in the North American fleet
required less than 45 minutes of CPU time.

Table 3.3 reports descriptive statistics for the sets of loading patterns associated with all
railcar types in the North American fleet. Each row corresponds to single- (S) or double-stack
(D) railcars with a given number of platforms. The third column gives the number of unique
sets of loading patterns (there is a total of 60 sets). The next block of three columns reports the
average, minimum and maximum cardinalities of the original sets of loading patterns and the
last three columns the same figures for the reduced sets. The latter are obtained by defining
equivalence classes as we describe in Section 3.4.1. Whereas the cardinalities of the sets of
loading patterns increase with the number of platforms and become very large, the use of
equivalence classes results in important reductions.

# platforms Single-/ # sets Cardinality original set Cardinality reduced set
double-stack Avg. Min Max Avg. Min Max

1 S 1 7 7 7 7 7 7
1 D 6 18 6 27 15 6 21
2 S 1 25 25 25 15 15 15
3 S 3 171 125 245 56 35 80
3 D 10 4,741 1,000 9,261 940 220 1,771
4 D 2 106921 83,521 130,321 6,080 4,845 7,315
5 S 6 3,803 32 7,776 194 6 371
5 D 31 485,664 1,024 4,084,101 10,915 56 53,130

Table 3.3: Descriptive statistics for the sets of loading patterns for railcars in the North Amer-
ican fleet

3.5.1 Effects of containers-to-cars matching and COG restrictions

In order to isolate and measure the effects of containers-to-cars matching and COG restrictions
on load planning solutions, we designed a stylized experiment. It is based on 396 generated
instances, differentiated with respect to the main container and railcar characteristics, namely
length and weight of containers and length and weight capacity of railcar platforms. The goal is
to examine the changes in the use of block capacity resulting from changes in the characteristics
of the containers and railcars. In the following, we first describe the instance generation, and
then we present the results.

In all generated instances, we keep the length of the railcar sequence as fixed. Yet, the
capacity in terms of number of slots can still vary since platforms have different lengths. We
define four railcar scenarios that involve either one- or five-platform cars with either 40 ft or 53
ft platforms. We assume that it is possible to include 25% more 40 ft slots than 53 ft ones and
fix the capacity to 250 40 ft slots or 200 53 ft slots. For each railcar scenario, we choose one
railcar type whence the set of loading patterns is the same for all railcars in a given scenario.

We consider 18 different scenarios for the container sets. The number of containers in each
set is equal to the number of slots in the block. They have different characteristics in terms of
mix of container lengths and weights. There are five different length mixes: 50% 40 ft containers
and 50% 53 ft containers, 75% 40 ft containers and 25% 53 ft containers and vice versa, 100% 40
ft and 100% 53 ft. The containers are assigned weights in three different ways, two deterministic
and one random. The deterministic cases present favorable weight distributions, i.e. where one
can use the maximum capacity because there are no restrictions related to the COG. This
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holds when either all containers have equal weight, or half of the containers are light and half
heavy. We draw weights at random for 40 ft and 53 ft containers from uniform distributions,
respectively in [8,000;62,000] lb (equivalent to [4;31] tons) and [11,000;72,000] lb (equivalent to
[5.5;36] tons), and we generate 20 instances for each length mix. We define light and heavy to be
the first and third quartile, respectively. The 18 different scenarios defining the container sets
are denoted S1–S18 and each scenario comprises 22 instances (20 random and 2 deterministic)
whence a total of 396 instances are solved.

Tables 3.4 and 3.5 report the results for the scenarios with one- and five-platform railcars,
respectively. In both tables, the first two columns show the number of loaded containers and
the number of used railcars in the optimal solution. The third column shows CPLEX solution
time. The gap is not reported because all the instances are solved to optimality. Note that in
case of random weights, we report an average over the 20 instances.

The results show that the solution time is less than 200 seconds for one-platform railcars,
while it increases to a maximum of 935 seconds for five-platform railcars. This results from
the increased cardinality of the sets of loading patterns Kj. In the case of 40 ft one-platform
railcars, the maximum number of containers that can be loaded is equal to the number of slots,
that is 250. However, 53 ft containers can only be loaded in the top slot since their length
exceeds the platform length. Hence, as long as there are less than 125 53 ft containers in the
instances (S1-S4 in Table 3.4), all slots can be used under the favorable weight values of the
deterministic instances. In Table 3.4, S5 is an example of a scenario where the number of 53
ft containers exceeds the number of top slots, and where, as a result, even though the weight
values are favorable, some of the containers cannot be loaded.

Loading patterns may impose additional restrictions for five-platform railcars. In particular,
as seen in Section 3.4.1, 53 ft containers cannot be loaded in the top slots of contiguous 40
ft platforms. This is illustrated in scenarios S13 and S14 of Table 3.5 where regardless of
the favorable deterministic weight values, some slots must be left empty because of the high
proportion of 53 ft containers.

The results obtained with differing container weights clearly illustrate that the maximum
capacity of 40 ft railcars can only be reached under favorable weight settings. In the case of
random container weights where COG restrictions play a role, the results indicate a decrease
in the average number of loaded containers, even when their lengths are well-matched to the
railcars. The 53 ft platform railcars are more flexible because they can accommodate 53 ft
containers also in the bottom position. For every set of weight values, it is possible to load all
containers. However, since 53 ft railcars are longer, there are only 200 slots compared to 250
for the 40 ft platform railcars.

In order to load as many containers as possible, there is a trade-off between using 53 ft
and 40 ft platforms and this trade-off depends on both the size of the containers and their
weights. For example, the 250 slots on the 40 ft platforms can only be used under the most
favorable settings. As the share of 53 ft containers increases (in particular for the random
weight setting), the number of containers loaded decreases towards 200 (and might possibly
reach less than 200 if weights are unfavorable as in S14).

This stylized numerical study demonstrates that ignoring COG restrictions and containers-
to-cars matching (i.e., assuming favorable container length and weight settings) may lead to an
overestimation of the usable capacity offered by the railcars in a block. Indeed, in the case of
40 ft platforms, the number of loaded containers varies between 175 and 250 while the capacity
is 250.
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250 CONTAINERS 125 ONE 40ft PLATFORM RAILCARS

INSTANCE DESCRIPTION LOADED USED TIME [s]
CONTAINERS RAILCARS

S1 : 250 40ft containers
1) Containers same weights 250 125 17.8

2) Containers half low and half high weights 250 125 22.07
3) Containers random weights 250 125 46.30

S2: 200 40ft containers and 50 53ft containers
1) Containers same weights 250 125 14.61

2) Containers half low and half high weights 250 125 22.02
3) Containers random weights 244 123 51.54

S3: 150 40ft containers and 100 53ft containers
1) Containers same weights 250 125 11.21

2) Containers half low and half high weights 250 125 14.49
3) Containers random weights 238 120 76.0

S4: 125 40ft containers and 125 53ft containers
1) Containers same weights 250 125 10.22

2) Containers half low and half high weights 250 125 11.49
3) Containers random weights 234 118 200.82

S5: 100 40ft containers and 150 53ft containers
1) Containers same weights 200 100 9.28

2) Containers half low and half high weights 200 100 12.81
3) Containers random weights 200 100 35.62

200 CONTAINERS 100 ONE 53ft PLATFORM RAILCARS

INSTANCE DESCRIPTION LOADED USED TIME [s]
CONTAINERS RAILCARS

S6: 200 40ft containers
1) Containers same weights 200 100 8.10

2) Containers low and high weights 200 100 16.22
3) Containers random weights 200 100 15.63

S7: 125 40ft containers and 75 53ft containers
1) Containers same weights 200 100 9.69

2) Containers low and high weights 200 100 13.55
3) Containers random weights 200 100 23.47

S8: 75 40ft containers and 125 53ft containers
1) Containers same weights 200 100 9.45

2) Containers low and high weights 200 100 15.77
3) Containers random weights 200 100 28.07

S9: 0 40ft containers and 200 53ft containers
1) Containers same weights 200 100 9.84

2) Containers low and high weights 200 100 8.74
3) Containers random weights 200 100 27.09

Table 3.4: Effects of matching problem and COG restrictions: number of loaded containers,
number of used railcars and solution time for one-platform railcars
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250 CONTAINERS 25 FIVE 40ft PLATFORM RAILCARS

INSTANCE DESCRIPTION LOADED USED TIME [s]
CONTAINERS RAILCARS

S10: 250 40ft containers
1) Containers same weights 250 25 111.69

2) Containers half low and half high weights 250 25 167.99
3) Containers random weights 250 25 178.14

S11: 200 40ft containers and 50 53ft containers
1) Containers same weights 250 25 126.59

2) Containers half low and half high weights 250 25 132.83
3) Containers random weights 233 24 935.88

S12: 150 40ft containers and 100 53ft containers
1) Containers same weights 250 25 119.32

2) Containers half low and half high weights 250 25 120.38
3) Containers random weights 219 24 764.72

S13: 125 40ft containers and 125 53ft containers
1) Containers same weights 200 25 116.75

2) Containers half low and half high weights 200 25 127.73
3) Containers random weights 200 25 331.79

S14: 100 40ft containers and 150 53ft containers
1) Containers same weights 175 25 113.67

2) Containers half low and half high weights 175 25 125.89
3) Containers random weights 175 25 329.88

200 CONTAINERS 20 FIVE 53ft PLATFORM RAILCARS

INSTANCE DESCRIPTION LOADED USED TIME [s]
CONTAINERS RAILCARS

S15: 200 40ft containers
1) Containers same weights 200 20 514.81

2) Containers low and high weights 200 20 539.24
3) Containers random weights 200 20 733.83

S16: 125 40ft containers and 75 53ft containers
1) Containers same weights 200 20 574.13

2) Containers low and high weights 200 20 636.86
3) Containers random weights 200 20 799.33

S17: 75 40ft containers and 125 53ft containers
1) Containers same weights 200 20 471.43

2) Containers low and high weights 200 20 844.02
3) Containers random weights 200 20 932.13

S18: 0 40ft containers and 200 53ft containers
1) Containers same weights 200 20 429.88

2) Containers low and high weights 200 20 513.44
3) Containers random weights 200 20 859.54

Table 3.5: Effects of matching problem and COG restrictions: number of loaded containers,
number of used railcars and solution time for five-platform railcars
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3.5.2 Computational times

This section examines the computation times required to solve realistic instances of the load
planning problem. For this purpose, we generate instances of diverse sizes and characteristics.
Sets of railcars are sampled at random from the types available in the North American fleet. We
also generate sets of containers with different cardinalities comprising containers with diverse
characteristics.

Figure 3.6: Overview of the instance generation process

Figure 3.6 overviews the generation process. Four block lengths are considered: 2,000 ft
(0.6 km), 6,000 ft (1.8 km), 10,000 ft (3 km) and 14,000 ft (4.3 km). Loading and unloading
a block is highly dependent on the layout of the terminals, in particular on the length of the
tracks and the location of the container storage in relation to the tracks. In practice, block
lengths of 10,000 or 14,000 ft may therefore be considered unreasonably long. We include them
for the sake of comparison. For the same reason, 6,000 ft is considered very large and 2,000 ft
a realistic length.

For each block length we generate 20 sequences of railcars by sampling the North American
distribution of railcar types. We apply two different sampling protocols: simple random (10
sequences) and stratified random (10 sequences). We classify the railcars in the North American
fleet according to their flexibility in accommodating a diversity of load patterns. This flexibility
is indexed over the railcar types by calculating for each one the average number of loading
patterns per platform. Figure 3.7 shows a histogram of the share of railcar types over the
values of the flexibility index. Since a large proportion of the railcar types exhibit high flexibility
indices, the railcar sequences generated by simple random sampling present a greater share of
railcars with high flexibility index values than the sequences generated by stratifying the sample
over the values of the flexibility index.

Containers are selected as follows. For each block length, and for each railcar sequence, we
consider four sets of containers. The sizes of these sets are equal to 1.5 times the number of
slots in the railcar sequence. This ensures that solutions achieving a slot utilization close to
100% are possible. There are two mixes of container lengths: one with only 20 ft and 40 ft
containers and one with all lengths (20,40,45,48 and 53 ft). In a manner similar to that of the
previous section, we assign weights to containers by drawing from a weight distribution that is
conditional on container size. In order to assess the influence of the technical loading restrictions
on computational time, some instances include containers affected by stacking restrictions. In
these instances, each container is assigned a stacking restriction at random which results in a
share of 3%.

We solve a total of 240 instances, that is, six railcar sequence scenarios with 10 sequences
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Figure 3.7: Share of North American railcar types over flexibility index values

each, and four container sets per railcar sequence. Table 3.6 displays the average computational
time. The results show that we can find an optimal solution for the instances of 2,000 ft in less
than 24 seconds on average, for all scenarios. The stratified random sampling contains a higher
share of railcars with low flexibility index than the other, which results in longer computational
time. The average computational time is longer for instances of 6,000 ft. Still, all instances
can be solved in less than 17 minutes on average. We note that the instances of 10,000 ft can
be solved to optimality but in the most complex case (i.e., including containers of all sizes
and featuring technical restrictions) requires on average 3.5 hours which is not reasonable for
the problem at hand. The cardinality of the sets of loading patterns has an important impact
on computational time. This can clearly be seen by comparing the computational time for
the instances including only 20/40 ft containers with those including all container sizes. The
number of variables ranges from some 45,000 for the simplest instances (2,000 ft and 20/40 ft
container) to some 1.9M in the more complex settings (14,000 ft and all container sizes with
stacking restrictions). Similarly, the number of constraints ranges from some 19,000 to 2.6M.

Summing up, this numerical study shows that we can solve realistic instances in short
computational time and very large instances (6,000 ft) in reasonable time. It is also possible
to solve to optimality instances of 10,000 ft and the simpler settings of the 14,000-ft instances.
However, in the most complex settings, this cannot be accomplished in reasonable time on the
single core machine used here. In the most complex setting (14,000 ft, all container sizes and
stratified sampling) the optimal solution is not found for 6 out of 10 instances in 10 hours. The
average gap for those instances is 0.43.

Containers without Containers with
technical loading restrictions technical loading restrictions

Block length / 20 & 40 ft All sizes 20 & 40 ft All sizes
Sampling protocol Time [s] Slot U [%] Time [s] Slot U [%] Time [s] Slot U [%] Time [s] Slot U [%]
2,000 ft
Simple random 7.11 100.00 13.10 100.00 7.95 100.00 14.36 100.00
Stratified random 11.97 99.54 21.20 99.78 12.92 99.54 24.74 99.78
6,000 ft
Simple random 184.59 100.00 450.96 100.00 661.05 100.00 639.37 100.00
Stratified random 209.15 99.58 576.12 99.54 377.63 99.50 1,077.98 99.58
10,000 ft
Simple random 967.42 100.00 4,010.52 100.00 1,963.78 100.00 8,266.35 100.00
Stratified random 1,653.16 99.50 4,217.13 99.54 2,755.56 99.50 13,254.41 99.54
14,000 ft
Simple random 4,714.59 100.00 17,510.18 100.00 18,220.68 100 22,860.32 98.78
Stratified random 5,677.45 99.64 22,828.71 99.67 15,295.58 99.64 27,508.56 99.59
In bold: statistics based on 4/10 instances that were solved to optimality in a time limit of 36,000 s.

Table 3.6: Average computational time and average slot utilization for instances with diverse
characteristics

32



3.6 Conclusions and directions for future research

In this chapter we studied the load planning problem for double-stack intermodal trains. Given
a set of containers stored in a terminal, a sequence of railcars, and the relevant constraints,
determine the subset of containers to load and the exact way of loading them. The objective
is to minimize the cost of unloaded containers and the cost of empty slots. Under certain
cost parameterizations this generalized cost leads to the maximization of the slot utilization,
a key performance indicator in the industry. Previous studies in the literature either do not
address the load planning problem for double-stack trains or make simplifying assumptions
that may lead to load plans that violate important loading rules. The problem related to
double-stack trains is challenging because the load plan must respect a number of loading rules
that depend on container and railcars characteristics such as containers-to-cars matching and
COG restrictions.

We formulated an ILP model and made a number of contributions. First, we proposed a
general methodology that can deal with double- or single-stack railcars with arbitrary loading
patterns. The patterns account for loading dependencies between the platforms on a given
railcar. Second, we modeled COG restrictions, stacking rules and a number of technical loading
restrictions associated with certain types of containers and/or goods.

We presented two numerical studies. We show that we can solve realistic size instances
in reasonable time using a commercial ILP solver and we illustrate that failing to account for
containers-to-cars matching as well as COG restrictions may lead to an overestimation of the
available train capacity. The results showed that the computational time varies with the size
and characteristics of the instances. For example, it is more time consuming to solve instances
with five-platform railcars and several container sizes compared to fewer platforms and only 20
and 40 ft containers. This is due to the cardinality of the sets of loading patterns. It is also
more time consuming to solve instances with containers having technical loading restrictions
than those without.

On the one hand one may use the proposed methodology in decision-aid tools for terminal
managers in charge of the load planning. On the other hand, in a more tactical or strategic
planning setting to assess railcar fleet management decisions. We also note that we can extend
the model to plan several trains ahead under perfect information, similar to Lai, Ouyang and
Barkan (2008).

There are several possible directions for future research. One could extend the model in
order to consider handling costs in the yard or the potential penalties of not delivering on time,
for example, by selecting containers according to their location in stacks or their priority and
time left before the due date, respectively. Furthermore, several aspects of the problem may
be subject to uncertainty, for example, the availability and characteristics of containers and
railcars. Modeling this uncertainty is another topic of future research.
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Chapter 4

Conclusions

In this thesis we provided a broad context on intermodal transportation with a particular
focus on the main entities of the intermodal transportation chain: the terminals. We presented
some planning problems that arise at terminals, emphasizing that decision-aid tools based
on optimization methods can provide terminal managers necessary information to take better
decisions. This need increased in recent years because the logistics especially at large container
terminals is complex.

The focus of the thesis is the freight transportation, using containers as a key loading
devices. In this context, we focused specifically on rail transportation, and we addressed the
Load Planning Problem (LPP) for double-stack intermodal trains. The work of the thesis was
based on a scientific article, published in the European Journal of Operational Research in
2018.

The LPP consists in finding an optimal assignment of stored containers of different sizes
and with different characteristics to slots on railcars of a departing train. The goal was to work
on a general methodology solving realistic instances with reasonable amount of time, which
would have been used by terminal managers as a decision aid tools. Studies in the literature
either do not address the LPP for double-stack trains or make simplifying assumptions that
may lead to load plans that violate important loading rules.

We formulated an ILP model and made a number of contributions. We model the matching
among types of containers and railcars through loading patterns, with the same logic as the
ones we found in the literature (i.e., Corry and Kozan, 2008; Lai, Barkan and Önal, 2008),
but accounting for dependencies between the loading of the platforms of the same railcars for
the first time. For the North American market, the matching among container and railcar
types is covered by the AAR guide (Association American Railroads, 2014), which provides
information on which container sizes that can be loaded in the bottom and top slot of each
platform of the existing railcars. We refer to them as containers-to-cars matching rules. The
guide reports the loading capabilities but it does not show all the possible ways of matching
them. Plus the loading patterns for certain platforms may depend on the loading of the others
and thus one may not decompose the railcar loading problem by platform. We generated all the
combination of containers-to-cars matching rules but reduced the number by defining equivalent
classes, solving for any double- or single-stack railcars with arbitrary loading patterns.

In deriving load plans, we accounted for the weight holding restrictions. First, the total
weight of the containers loaded on a given platform could not exceed its weight holding capacity.
The second type of restriction concerned the vertical center of gravity (COG restrictions), that
is the unique point where the weighted relative position of the distributed mass sums to zero.
Finally, we addressed technical loading restrictions associated with certain types of containers
and/or goods.

We performed two numerical studies, to assess the importance and the accuracy of the
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model. Results showed that ignoring containers-to-cars matching and center-of-gravity restric-
tions may lead to an overestimation of the train capacity and to infeasible load plans. Moreover,
we showed that, using a commercial solver, we find an optimal solution for realistic instances
in a reasonable amount of time.

To conclude, the proposed methodology presented in the thesis can be used as a decision-aid
tool for terminal managers in charge of the load planning. In the long term, as the problems
become larger and more complex, the solutions provided by an optimization model do not only
contribute to significantly reduce cost, but also make the operations of the railway company less
dependent on the unique expertise of a limited number of individuals, making a decision-aid
tool more and more valuable to the terminal planners.

There are several possible directions for future research. First, we could extend the model to
plan several trains ahead under perfect information, similar to Lai, Ouyang and Barkan (2008).
One could extend the model to consider handling costs in the yard or the potential penalties
of not delivering on time, for example, by selecting containers according to their location in
stacks or their priority and time left before the due date, respectively.

A big challenge for a future research, will be to develop decision aid tools to manage the
terminal in a real time. The goal being not only the loading of the current train, but also
incorporating equipment and resources management in the study. At the time of the planning,
the containers which are not physically in the terminal, that are about to arrive (before the
cut off time of the train), could be taken into account in deciding where to load each unit of
cargo on the first leaving train. Given that containers continue to arrive after the loading of a
train has been started, one challenge will be to consider the sequence in which the containers
are loaded. One idea is to formulate a dynamic model to derive the optimal loading sequence.

Furthermore, several aspects of the problem may be subject to uncertainty, for example, the
availability and characteristics of containers and railcars. Modeling this uncertainty is another
topic of future research.

35



Bibliography

Ambrosino, D., Bramardi, A., Pucciano, M., Sacone, S. and Siri, S. (2011), Modeling and
solving the train load planning problem in seaport container terminals, in ‘Automation
Science and Engineering (CASE), 2011 IEEE Conference on’, IEEE, pp. 208–213.

Ambrosino, D. and Siri, S. (2015), ‘Comparison of solution approaches for the train load plan-
ning problem in seaport terminals’, Transportation Research Part E: Logistics and Trans-
portation Review 79, 65–82.

Anghinolfi, D., Caballini, C. and Sacone, S. (2014), Optimizing train loading operations in
innovative and automatedcontainer terminals, in ‘Proceedings of the 19th World Congress
The International Federation of Automatic Control Cape Town, South Africa. August 24-29,
2014’, pp. 9581–9586.

Association American Railroads (2014), ‘Loading Capabilities Guide’. available
at: https://www.aar.org/StatisticsAndPublications/Publications?title=

LoadingCapabilitiesGuide.

Barnhart, C., Jin, H. and Vance, P. H. (2000), ‘Railroad blocking: A network design applica-
tion’, Operations Research 48(4), 603–614.

Bodin, L. D., Golden, B. L., Schuster, A. D. and Romig, W. (1980), ‘A model for the blocking
of trains’, Transportation Research Part B 14(1), 115–120.

Bouzaiene-Ayari, B., Cheng, C., Das, S., Fiorillo, R. and Powell, W. B. (2014), ‘From single
commodity to multiattribute models for locomotive optimization: a comparison of opti-
mal integer programming and approximate dynamic programming’, Transportation Science
50(2), 366–389.

Boysen, N., Fliedner, M., Jaehn, F. and Pesch, E. (2013), ‘A survey on container processing in
railway yards’, Transportation Science 47(3), 312–329.
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