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Résumé

Des efforts importants ont été faits pour améliorer la précision de la détection des actions

humaines à l’aide des articulations du squelette. Déterminer les actions dans un environ-

nement bruyant reste une tâche difficile, car les coordonnées cartésiennes des articulations

du squelette fournies par la caméra de détection à profondeur dépendent de la position

de la caméra et de la position du squelette. Dans certaines applications d’interaction

homme-machine, la position du squelette et la position de la caméra ne cessent de changer.

La méthode proposée recommande d’utiliser des valeurs de position relatives plutôt que des

valeurs de coordonnées cartésiennes réelles. Les récents progrès des réseaux de neurones

à convolution (RNC) nous aident à obtenir une plus grande précision de prédiction en

utilisant des entrées sous forme d’images. Pour représenter les articulations du squelette

sous forme d’image, nous devons représenter les informations du squelette sous forme de

matrice avec une hauteur et une largeur égale. Le nombre d’articulations du squelette

fournit par certaines caméras de détection à profondeur est limité, et nous devons dépendre

des valeurs de position relatives pour avoir une représentation matricielle des articulations

du squelette. Avec la nouvelle représentation des articulations du squelette et le jeu de

données MSR, nous pouvons obtenir des performances semblables à celles de l’état de l’art.

Nous avons utilisé le décalage d’image au lieu de l’interpolation entre les images, ce qui

nous aide également à obtenir des performances similaires à celle de l’état de l’art.

Mots clés - Action humaine dans un environnement virtuel, Détection des gestes, Infor-

matique médicale, Systèmes de réalité virtuelle, Apprentissage profond, Solution de RV pour

la maladie d’Alzheimer, Facteurs humains pour le traitement médical.
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Abstract

There have been significant efforts in the direction of improving accuracy in detecting

human action using skeleton joints. Recognizing human activities in a noisy environ-

ment is still challenging since the cartesian coordinate of the skeleton joints provided

by depth camera depends on camera position and skeleton position. In a few of the

human-computer interaction applications, skeleton position, and camera position keep

changing. The proposed method recommends using relative positional values instead

of actual cartesian coordinate values. Recent advancements in CNN help us to achieve

higher prediction accuracy using input in image format. To represent skeleton joints in

image format, we need to represent skeleton information in matrix form with equal height

and width. With some depth cameras, the number of skeleton joints provided is limited,

and we need to depend on relative positional values to have a matrix representation

of skeleton joints. We can show the state-of-the-art prediction accuracy on MSR data

with the help of the new representation of skeleton joints. We have used frames shifting

instead of interpolation between frames, which helps us achieve state-of-the-art performance.

Keywords— Human action in Virtual Environment, Gesture detection, Medical infor-

matics, Virtual Reality Systems, Deep learning, VR solution for Alzheimer’s, Human factors

for medical treatment.
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Chapter 1

Introduction

This chapter discusses HCI technology’s evolution in the direction of helping in treating

patients suffering from negative emotions. The chapter is organized to include motivation

factors responsible for my thesis dissertation, "Real-time Human Action and Gesture Recog-

nition Using Skeleton Joints Information Towards Medical Applications". Furthermore, the

chapter explains the problem statement, research objectives, and organization of my thesis

dissertation.

1.1. Evolution of technology and motivation

The ability to provide interactions between humans and sophisticated computer appli-

cations results in an efficient automated system to address complicated real-life problems.

In 1996, ACM SIGCHI gave a more formal and technical definition for HCI as a discipline

concerned with the design, evaluation, and implementation of interactive computing systems

for human use and the study of significant phenomena surrounding them [1]. Most of the

time, humans exchange information and emotion through speech. Speech signals provide

varieties of useful information, including speech recognition, speaker recognition, emotion

recognition, health recognition, language recognition, accent recognition, age, and gender

recognition information [2]. Machines can identify humans based on variations and unique

characteristics in the voice using the Speaker recognition solutions [3]. Identifying humans

based on their speech helps to differentiate the person as an adult or child [4]. The author

in [5] well documents the impact of speech recognition solutions in the healthcare sector

and explains how continuous systems helped doctors when compared to discrete systems in

the process of documenting patients analysis and patients care. Speech recognition is only

an assisting tool for doctors in the process of documentation and recording patient care.

Speech recognition converts audio or speech signals into the most reliable form of the data

like text for further analysis. If the data is in text format, like reports of patients having

psychological problems, it will help a computer application diagnose for a disease like severe



Fig. 1.1. Evolution of image representation method. Original figure was shown in [7].

depression, bipolar disorders, Alzheimer’s, and schizophrenia. The authors in [6] proposed a

method to prove the scope of medical records and the patient’s medical history in the process

of sentiment and emotional analysis. To make the prediction accuracy more accurate, the

authors in [6] also use speech analysis and different speech pre-processing techniques. There

are issues with the method of sentimental and emotion analysis using speech and text:

• There are no standards for doctor’s acronyms.

• There are no known proper methods to extract hidden pain and sarcasm from the

text.

• Efficient tokenization ( that is grt, great, and gr8 should be replaced with a standard

token ) of a word having different forms is painful.

• It isn’t easy to find out if a report has a biased or unbiased opinion about the patient’s

psychological status.

Human expressions convey the emotion and mental status of humans efficiently and bet-

ter than information in the form of speech and text. Labeling human expression is more

straightforward than labeling speech and text-based data. FER is used in different appli-

cations, including mental state identification, security, automatic counseling systems, face

expression synthesis, lie detection, music for mood, automated tutoring systems, and ope-

rator fatigue detection [8]. To make facial expression detection more efficient, we need to

pre-process static images or sequences of images for identifying ROI for eyes, nose, cheeks,

mouth, eyebrow, ear, and forehead. Pre-processed data goes through one more level of fea-

ture extraction step, where features are extracted from ROI’s [8]. Feature extraction steps

are considered to be expensive in terms of resources and time. FER from static images

and FER from the sequence of images [9] are two different problems since, in a sequence of

images, the temporal evolution of expression exists. Executing feature extraction procedure
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on all the pictures in a sequence turned out to be an expensive operation. Schizophrenia

patients possesses a reduced ability to perceive and express facial expressions. Review work

conducted by the authors in [10] shows that schizophrenia patients are highly sensitive to

negative emotions like fear and anger despite a general impairment of perception or expres-

sion of facial emotions. Experiments are conducted in two phases, encoding and decoding

phases. During the encoding phase, schizophrenia patient’s ability to show different facial

expressions is verified, and the decoding phase tests the ability to understand different facial

expressions. Experiment results show that schizophrenia patients have a general impairment

in the processing of emotions [10]. HAR introduces many applications such as automated

surveillance, elderly behavior monitoring, human-computer interaction, content-based video

retrieval, and video summarization. Applications capable of monitoring elderly behavior

recognize "walking", "bending", and "falling", etc. from the video and takes proper action if

there is a need for suggestions or informing emergencies. The hierarchical structure of human

activities divides each action into three categories: primitive level actions, actions/activities,

and complex interactions [7]. Image representation or feature representation approaches

evolved consistently in recent years (evolution of image representation method is shown in

figure 1.1) to extract only the useful and relevant information from a given image for improved

classification accuracy. Global representation, local representation, and depth representation

are the three standards followed by all recent research works for image representation. Local

representation is an advanced method and more efficient compared to the global representa-

tion approach [7]. Image representation is a crucial pre-processing step in emotion detection

and human action detection since an image carries a lot of unnecessary information, and

this information needs to be filtered (as shown in figure 1.2). Unwanted information like

noise, different background, and camera movements in an image makes the prediction accu-

racy suffer from intra-class and inter-class variance [7]. Depth image-based representation

is more popular because of advanced RGBD cameras, which can directly provide depth re-

presentation of images in the form of depth-map or skeleton joints information. With depth

image-based representation, we have less effort during image pre-processing steps and help

implement efficient real-time human action recognition applications. In our proposed work,

we use skeleton joints information provided by Intel Realsense camera and hand joints in-

formation provided by Leap motion camera to conduct experiments. Data given by Intel

Realsense and Leap motion cameras is the depth representation of humans and hands, res-

pectively, which in turn helps us to design applications for human action and hand gesture

recognition in real-time. Every frame from the depth camera is a depth representation of a

human/humans in a particular pose or human hand/hands pose at time ’t’. To recognize a

human action or hand gesture made by any individual, we need to encode all the frames in a

sequence into an image format [11, 12, 13, 14] so that it can be trained using deep neural

networks.

25



 

Fig. 1.2. Image representation using HOG

Representing skeleton joint information in an image format and utilizing it for human

action detection is the most reliable and computationally powerful approach. Processing real

images or videos for action detection requires a lot of computation resources [15]. There has

been tremendous research effort to improve prediction accuracy in detecting human action

with the help of skeleton joint information. CNN exploits the spatial relationship between

pixels when they are arranged in matrix representation [13]. Shift invariance property pos-

sessed by CNN helps in detecting features residing in any part of the image. Encoding spatial

and temporal information of skeleton frames in an image is proven to be the best represen-

tation for a deep neural network to understand human action [13, 14]. Detecting human

action when the position of the camera and the position of the skeleton keeps changing is

a challenging task [16]. We need to train the CNN model with many training data so that

it can understand all variations in the coordinate values of a skeleton. Encoding spatial

and temporal information of skeleton frames in an image is not sufficient. Hence, we need

to consider encoding the distance between joints for the skeleton sequence transformation

process. Depth cameras provide a limited, varying number of joints [17], and therefore it has

become challenging to come with a more useful representation of skeleton information. We

propose a method to encode the difference between 3D coordinates values in an image and

train a denseNet[18] for better prediction accuracy. Existing practice insists on adapting

interpolation between frames as the approach to fill the picture when we do not have enough

frames [13]. CNN can learn the spatial relationship between the input features effectively.

We have decided to use RGB representation so that we will be able to encode both spatial
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and temporal information of a given skeleton sequence. There is a need to bring in tem-

poral dependency of frames of the current encoded image on the skeleton action sequence’s

previous frames, and the same is achieved using the frame-shifting method.

1.2. Problem statement

As per ADI, there are 9.9 million new cases of dementia each year worldwide, implying one

new case every 3.2 seconds. Alzheimer’s patients have a deterioration of their brain connec-

tions due to negative emotions like anxiety and frustration. Negative emotions symptoms

should be diagnosed in the early stages to avoid the damages caused to cognitive abilities

[19]. Authors in [19] and [20] proposed methods to reduce the impact of negative emotions

on memory and cognitive abilities by allowing Alzheimer’s patients to experience a virtual

environment. The virtual environment is designed in such a way that the environment helps

to reduce the impact of negative emotions and helps the participants to improve memory

functions. The author in [20] shows a method for finding negative feelings with the help of

facial expression and ECG signals read from the brain. Interactive virtual environments are

more effective in treating problems related to negative emotions [21], and existing solutions

fail to provide an interactive virtual environment for treating Alzheimer’s patients. We pro-

pose a method with an interactive framework for Alzheimer’s patients to help them reduce

their negative emotions by interacting with the virtual animal world.

1.3. Research objectives and our contribution

One interest in detecting hand gestures and body gestures relies on the interaction of

Alzheimer patients into a virtual world. Virtual environments have proved their efficiency in

reducing negative emotions such as anxiety. Authors in [19] have developed a virtual train in

which Alzheimer’s patients can travel and relax, which has a positive impact on decreasing

negative emotions and increasing cognitive capabilities. In our proposed project, we aim to

allow patients to interact with virtual animals using gesture detection mechanism. This kind

of therapy would provide relaxation, motivation, and positive feelings to the patients. The

quality of interaction depends on the precision of gesture recognition, which is addressed in

the present thesis. In this thesis, we try to answer below research queries :

• What is an alternative to the existing solution and practical approach for treating

Alzheimer’s patients?

• How can an interactive based VR solution help a healthcare system to address pa-

tients suffering from negative emotions?

• How to turn an existing VR based solution into a more active and interactive based

solution?
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• How to utilize human action and gesture recognition technology to create an

interactive-based solution for treating Alzheimer’s patients?

• What is the best image representation approach for implementing real-time human

action and gesture recognition?

• How to use interpolation between frames and frame-shifting effectively during the

image pre-processing step?

• What is the impact of better image representation on the action and gesture predic-

tion accuracy?

We try to answer the above research queries by our contribution, as explained

below :

• We captured data from Intel Realsense camera and Leap motion camera to conduct

experiments and test the effectiveness of our proposed approach in real-time applica-

tion.

• Using the VR application developed by Yan AI, we examined the impact of interactive

VR environment on people’s negative emotions.

• We evaluated the effectiveness of different image representation approaches on human

action and hand gesture prediction accuracy.

• Evaluate our proposed approaches on the MSR 3D action data set [22].

• I was running experiments on two sophisticated deep neural architectures for finding

a more efficient deep neural architecture.

• Finally, we captured the experiment results, graphs, and discussed the results.

1.4. Thesis organization

The thesis is organized in five chapters, including the introduction chapter.

• Chapter 2 provides an insight into the literature review of the recent research work

in the domain of human action recognition. I discussed the most advanced research

effort in the field of human action recognition and limitations.

• Chapter 3 introduces a method for image representation using the skeleton data se-

quence. In this chapter, I address the problem of a limited number of joint informa-

tion provided by depth cameras and using frame-shifting and interpolation between

frames methods for effective image representation.

• Chapter 4 explains one more way of image representation using skeleton data and

Leap motion data. The limitations of the process described in chapter 3 are addressed

in chapter 4. We have done extensive experiments on Leap motion data since hand

gestures are more effective in developing an interactive VR application. But, we have

28



also captured results after running tests on Intel Realsense data and the MSR data

set [22].

• In chapter 5, we conclude the thesis with a discussion on experimental results, and

appendixes have graphs and deep neural architecture details.
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Chapter 2

Related Work

Recognizing human action from a video sequence depends on various factors, including the

background of video frames, facial expression, and the rate at which position of body changes.

Processing a video sequence to extract all the required information is tedious since it involves

a lot of image processing. An efficient method of information extraction requires removing

unwanted background noise and balancing or ignoring varying light effects in different video

frames. Skeleton joint information was extensively used for predicting human action and

posture detection. Kinect[23] of Microsoft, provided a skeleton tracking facility for a long

time, and it was adopted in most of the research practice. Kinect[23] provides only twenty

skeleton joints information; Intel Realsense camera[24] provides precise skeleton joints in-

formation with the assistance of third-party SDK. Nuitrack is one of the most reliable SDK

in the market, with which it is easy for a Unity developer to build a skeleton tracking ap-

plication. Depending on the system’s hardware abilities, frame rate changes. It is effortless

to develop a hardware-independent software module to capture skeleton frames in real-time

with the Unity platform’s help. Intel Realsense camera[24] instead can capture twenty-four

joints 3D coordinate values. Leap Motion hardware is a dedicated camera for detecting hand

joints position along with joints rotation.

There have been efforts to convert 3D coordinate values into RGB image representation

for deep neural network training. The transformation step of skeleton information to RGB

representation is a significant data pre-processing stage. Encoded RGB image should include

extensive temporal and spatial information of skeleton frames in a sequence. Recognizing

human actions using skeleton information is challenging when Alzheimer patients perform

actions. There is no research work on utilizing human gesture recognition to help Alzheimer’s

treatment. The dataset we prepared for our experiments includes mainly hand-gestures

because they are more relevant for any patient to perform. Implementing a framework that

can work in real-time is challenging since most of the dataset actions look similar and have



Fig. 2.1. Camera view variations.

slight variations. The residual neural network[25] helps us in deriving the best prediction

model to challenge the complex dataset.

2.1. Challenges involved in processing real-time video

for human action recognition and prediction

There are two categories in action classification problem[26]: action recognition and ac-

tion prediction. Predicting action requires an algorithm to watch the first frames of the

video and output the accurate and most probable action class. We use action prediction

algorithms[27] in critical scenarios wherein the situation demands the application not to

wait for the complete action. Action prediction requires the beginning frames to be discri-

minative and right to not have redundant frames[26]. On the other side, action recognition

algorithms[28] have the luxury to use all the video frames before predicting the class. A

labeled action contains different versions, and different versions of an action depend on the

speed at which an individual performs that action and camera view (as shown in figure 2.1).

Background noise and camera movements can also create different versions of an act.

Deep neural networks help researchers exploit the neural network’s ability to extract

discriminative features from the training data and predicting the action label using a single

framework. These discriminative features play an essential role in making an efficient predic-

tion of unseen video frames. Deep neural networks like residual neural networks[25] demand

massive training data. The need for more training data is one of the limitations since it is

not a practical approach to collecting such enormous data for training. As opposed to the

method used by authors in [29], authors from [28] uses direct video frames wherein [29] uses

videos after segmenting human subjects. In our proposed research work, we are intended to

implement gesture recognition and not gesture prediction. Hence, in our work, we used all

the frames of an action video performed by a participant.
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Fig. 2.2. Bag of visual words model. Original image was shown in [33].

2.2. Bag of visual words and fusion methods for action

recognition

The BoVW model constructs a global representation of an image or video using the local

features, and it is processed in five different stages, as shown in figure 2.2. Feature extraction

involves collecting various features which are representing an image. Because of background

noise and light effects, pictures belong to the same class generate different kinds of features.

The visual pattern of a part of an image can be represented using HOG[30], HOF [31], and

MBH [32] descriptor. HOG [30] captures the orientation and magnitude of gradients in any

picture.

Feature extraction:

Local features are robust to background noise and helpful for image representation and

video representation. Before describing the local feature, we need to detect the local region

with the help of a local region detector like 3D-Harris [34] and 3D-Hessian [35]. The area

detected by detectors is represented using feature descriptor methods such as HOG [30]. It

is possible to represent a local region using multiple descriptors, and each descriptor caries

different aspects of visual image patterns. iDTs [36] are proved to be the best local features

because of their performance.

Feature pre-processing:

Local feature descriptors are high dimensional, and most of the features are highly cor-

related. For efficient prediction accuracy, we need to choose independent and uncorrelated

features. PCA [37] is responsible for capturing principal components, which are linearly

independent features. The whitening process is followed after PCA [37] to maintain the

same variance across all features. Feature pre-processing is not a mandatory step, but action

recognition accuracy improves if we follow the pre-processing stage.

Codebook generation:

Features mapped to the lower dimension can be grouped by dividing the feature space into

groups; also, its center represents the group, and the k-means cluster algorithm is the most
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used algorithm for generating codebooks. We can also generate codebooks using generative

models like GMM [37], where different distribution is created for each feature.

Encoding methods:

The objective of an encoding method is to calculate a code given pre-processed, multi-

dimensional local descriptors, and a codebook. Voting based encoding method [38], recons-

truction based encoding method [39], and super vector-based encoding method [40] are the

different available options for the encoding process. Hard assignment and soft assignment

are the two rules followed while applying to encode. Hard assignment enables us to assign

a single codeword to the descriptor, and soft assignment links one descriptor with many

codewords. Soft encoding methods consider codeword uncertainty and reduce information

loss during encoding.

Pooling and normalization methods:

The global representation of the video is extracted by applying pooling on codewords of

all the local descriptors. Normalization helps global representation to be invariant to the

number of local descriptors. Sum pooling and max pooling are the two varieties of pooling

methods, and authors in [41] showed theoretically that sparse features work better with max

pooling. The author in [33] demonstrates the impact of a different combination of methods

explained in BoVW pipeline and below are the conclusions :

(1) iDTs [36] with more descriptors are informative compared to any other.

(2) Data pre-processing is an important step in the BoVW pipeline.

(3) Super vector encoding methods are effective compared to other encoding methods.

(4) Sum-pooling, along with power l2-normalization, is the best choice.

(5) All the steps of BoVW are greatly contributing to the final recognition rate.

Video-based human action recognition solution demands heavy processing and computer

resources. And hence, in our proposed work, we are not using a video-based solution.

2.3. Learning realistic human actions from movies

Authors in [42] propose a method for automatic video annotation of human actions from

realistic videos. The automatic annotation of video clips helps us to address the need for

more data for training. The intra-class variation is a common problem associated with

static image classification and video classification. The method in [42] explains generalized

and extended spatial pyramids for feature representation to address the issue of intra-class

variations. Script-based automatic annotation of a video has some known issues 1) scripts

come without time information 2) need to align scripts with video 3) the action in the script

does not always align with activity in the video clip and need a very sophisticated mechanism

for action retrieval from the text. The author in [42] uses subtitles and script information

to align script with video, and these are the steps followed(as shown in figure 2.3):
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Fig. 2.3. Alignment of actions in scripts and video. This figure was originally shown in
[42].

(1) Apply line indentation on the script.

(2) Matching words in subtitles and words in the script using dynamic programming.

(3) Extract time information from subtitles and transform to script for generating time

interval of scene information.

(4) Assign a score to indicate a possible misalignment due to mismatch between script

and subtitles.

Below are the steps followed to classify script description to an action label in [42]:

(1) Each scene description is represented as a sparse vector in a high-dimensional feature

space.

(2) Remove the features which are supported by less than three training documents.

(3) Classify feature vector to a label using a regularized perceptron network.

Results show that proposed method in [42] outperforms by providing precision-recall value

for all eight actions as [prec 0.95 / rec. 0.91] which is the best compared to [prec 0.55 / rec

0.88] using regular expression matching classification.

2.4. Learning spatiotemporal features with 3D convolu-

tional networks

The author in [28] believes that preserving temporal and spatial information while per-

forming convolution helps create ideal video descriptors. Strong video descriptors possess

generic, compact, efficient, and simple to implement characteristics. The method explained

by [28] proves that even a simple linear classifier can do an appropriate action recognition
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Fig. 2.4. 2D and 3D Convolution.

task with efficient video descriptors. Hence the author in [28] more concentrated on ex-

tracting prominent features form a given video. As shown in figure 2.4, 2D convolutional

preserves the spatial relationship of the pixels. With the help of 2D convolution, it is pos-

sible to extract the relationship between different components of an image. Combining 3D

convolution with 3D pooling can help the convolution network to propagate temporal infor-

mation across all the layers, as demonstrated in [28]. Experiment results provided in [28]

confirm that 3D ConvNet with all the convolution layers having the same kernel temporal

depth along with 3 x 3 x 3 spatial receptive field is the best architecture. C3D network

learns the subject’s appearance in the first few frames and starts learning motion features in

subsequent frames. C3D features are high-level semantic features, and iDT [36] are hand-

crafted features. The author in [28] has achieved 90.4% accuracy on the UCF101 dataset[43]

after combining iDT[36] and C3D features.

2.5. Recognize Human Activities from Partially Obser-

ved Videos

The authors in [27] has attempted to provide a generic solution to predict human action

from a video having an unobserved sub sequence anywhere in the video. Action prediction

is challenging when the missing video frames are not at the end and appear in the middle of

the video frame sequence, as shown in figure 2.5. The method in [27] presents a probabilistic
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formulation approach for human action prediction. Sparse coding helps determine the like-

lihood of a particular type of activity belongs to a specific class observed in the given video.

The proposed method in [27] divides the test activity into small segments and calculates the

posterior of each segment. Combining the posterior at each segment defines the global pos-

terior of the test activity. The training video segments with fixed length and fixed duration

construct sparse coding bases. The author in [27] also proposes an extended procedure to

construct sparse coding bases using a mixture of training video segments of different duration

and different lengths. Generally, we use the mean feature vector of all the training videos

to approximate test feature vectors. However, [27] recommends to approximate test feature

vectors using sparse coding. One of the advantages of the proposed method in [27] is that we

do not need to maintain the temporal alignment of any pair of videos, and it also addresses

the problems like 1) a limited number of training videos; 2) outliers in the training video

and 3) intra-class variations. The author in [27] has conducted experiments in three phases

1) degenerate case 2) special case and general case. Results show that we can achieve the

state-of-the-art performance with the help of sparse coding way of feature approximation.

2.6. A Discriminative Model with Multiple Temporal

Scales for Action Prediction

Early prediction of the label for a given video frames sequence demands the initial seg-

ments of the video to be discriminative and not to be redundant frames. The method

explained in [44] attempting to exploit these discriminative segments to classify videos. Lo-

cal templates [44] capture all the details of the current segment in the sequence. The global

template [44] captures the evolution of the action at different temporal lengths, from the

start of the frame sequence until the present time, as shown in figure 2.5. Below are the

steps followed in [44] for action representation as shown in figure 2.6:

(1) Extract interest points [45] and trajectories [46] from a video.

(2) Apply clustering algorithms to create bag-of-visual-words.

(3) Create a histogram of all visual words for all the partial videos.

Local template(blue solid rectangles in figure 2.7) and global templates(purple and red da-

shed rectangles in figure 2.7) are captured by proposed algorithm in [44].Label consistency

captures global context information which helps in improving prediction accuracy. The pro-

posed algorithm in [44] demands initial segments of the video to be discriminative, and it

is one of the drawbacks of [44]. Experiments are conducted on UT-Interaction dataset [47]

and BIT-Interaction dataset [48]. The authors in [44] shows 78.33% recognition accuracy

when only 50% frames of the testing videos are observed. This result is better than the

results of [42]. The method in [44] also proposes a empirical risk minimization formulation

for action prediction problems and the formulation is unique.
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Fig. 2.5. Full video, unknown sub sequence at the end, unknown sub sequence at the
middle.

2.7. What are they doing? : Collective Activity Classifi-

cation Using Spatio-Temporal Relationship Among

People

Some human-computer interactive applications need to consider multiple objects in a

scene to understand the entire situation in the scene, and the same applies to the action

classification of videos. The authors in [49] proposes a method to recognize action in a

video based on the collective behavior of all the characters and not considering individual

human action independently. The complete system discussed in [49] is shown in figure 2.8

and explained in 2.7.1.

38



 

Fig. 2.6. Action representation for action prediction model. This figure created from [44]

 

Fig. 2.7. Temporal action evolution over time and the label consistency of segments. This
figure was originally shown in [44]

2.7.1. System overview

Deformable Part-Based Detector[49] is employed for human detection in all the video

frames, which in turn uses HOG[30]. During the testing phase, if the cost of deformation

to make a candidate resemble the learned model is less than a threshold, then the candidate

will be labeled as human. For pose estimation, the authors in [49] uses HOG[30] descriptor

and SVM classifier. To get better tracking results, the authors in [49] recommends using

the 3D position of the target along with camera parameters. Structure From Motion(SFM)
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Fig. 2.8. Action representation for group of people model. This figure created from [49]

method has its limitations: i) 3D reconstruction is noisy ii) in the real-time background is

not static iii) SFM process is computationally expensive and hence difficult to implement for

real-time needs. To overcome the issues of SFM, the author in [49] makes two assumptions:

i) all people are standing on flat surface ii) camera tilt is approximately zero. Based on these

assumptions, camera parameters and the target’s position are extracted using the generative

model approach. First-order Extended Kalman Filter(EKF) is applied to the noisy set of

bounding boxes given by the HOG [30] detector to estimate the target position. EKF uses

one more extra parameter, the height of the individual character, provided by the modified

SFM process for efficient estimation. The estimated location of the targets helps to extract

the Spatio-Temporal descriptor, which is robust to the viewpoint. The temporal evolution

of activities captured in a histogram with the anchor being at the center of the histogram is

called the STL descriptor. Different STL descriptors are calculated by keeping each person in

the scene at the center. The collection of extracted STL descriptors carries a massive amount

of temporal information of each person’s activity related to each other person’s activity in

the scene. SVM classifiers can classify the STL descriptors to different class labels.

Experiment Results:

Experiments are conducted on a dedicated dataset [50], which is captured in unconstrai-

ned real-world conditions. Each frame in the videos is of the 640x480 size, and videos were

recorded using handheld cameras. The author in [49] labeled training samples manually at

every tenth frame. Experiment results are shown to be performing well with the dataset.

2.8. Machine Learning for Real Time Poses Classifica-

tion Using Kinect Skeleton Data

In [16], the authors explain the method of estimating human pose using skeleton data

given by the Kinect sensor [23]. Instead of using the temporal sequence of 3D coordinates,
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Fig. 2.9. System overview. This figure was originally shown in [16]

which are relative to the camera position, the authors in [16] uses coordinate values relative

to the other joints. Relative coordinate values remove the prediction accuracy dependency on

the size and location of the subject. Firstly, three-dimensional skeleton coordinates trans-

formed into a one-dimensional feature vector as shown in figure 2.9. The feature vector

is the input to a machine learning algorithm with or without pre-processing. The propo-

sed algorithm in [16] is assessed on a vocabulary containing eighteen poses and employing

machine learning algorithms: SVM, Artificial Neural Network, K-Nearest Neighbours, and

Bayes classifier. SVM outperforms by giving 100% prediction accuracy on the dataset used

in the experiments conducted by [16]. The method in [16] works excellent with a predefined

set of actions and fails to consider the temporal dependency of frames in predicting human

action.

2.9. Recognizing human action from Skeleton moment

RGB representation can encode rich spatiotemporal information of any skeleton sequence.

That way, machine learning models like CNN and its variants can efficiently extract image

features and classify the image into an available class. Transforming skeleton joint coordinate

values into RGB image space is explained by the authors in [12]. Skelton parts are divided

into five significant parts P1, P2, P3, P4, and P5. Each part will have 3D coordinate values

of the set of skeleton joints (P1, P2: two arms, P4, P5: two legs, P3: trunk) at time ’T’. And

hence, J
′

11 is nothing but the 3D coordinate of the first joint that comes under the P1 part at

T = 1. The transformation module will convert skeleton joints into an image by arranging

pixels in the order of P1->P2->P3->P4->P5, as shown in figure 2.10. The proposed method
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Fig. 2.10. System overview. This figure was originally shown in [12]

of data transformation in [12] helped the author to achieve the best prediction accuracy

with the help of three different variants of ResNet models. The author in [12] achieved

state-of-the-art performance on the MSR dataset[22]. This paper [12] fails to explain how

to effectively incorporate spatio-temporal information of skeleton motion when the skeleton

motion has a higher number of frames. The image representation method explained by [12]

is based on global representation and ignores to capture the relationship between adjacent

frames. In our proposed solution, we encode global information along with local relationships

between frames. The method explained in [12] archives 99.47% test accuracy with the MSR

dataset [22].

2.10. Skeleton Based Action Recognition Using

Translation-Scale Invariant Image Mapping and

Multi-Scale Deep CNN

Transforming from skeleton information to image representation is a crucial step in the

process of human action classification using skeleton data. A sophisticated and promising

method of transformation is discussed and demonstrated in [11] with the help of results.

Very few parameters, which play a vital role in the transformation process, are extracted

from each video sequence instead of referring the whole data. The proposed method in [11]

helps in preserving scale invariance and translation invariance of the training data. In [11],

the authors claim that the complete process of transformation becomes dataset independent.

Translation-scale invariant image mapping: Below are the steps followed to extract

scale-invariant features by [11]:
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Fig. 2.11. Translation-scale invariant image mapping. This figure was originally shown in
[11]
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Fig. 2.12. System overview. This figure was originally shown in [11]

(1) The human skeleton in each frame is divided into five parts: two arms, two legs, and

a trunk.

(2) 3D coordinate values are normalized, considering only the current video sequence

and not the complete training data to achieve a translation-scale invariant image

mapping, as shown in figure 2.11.

(3) Normalized 3D skeleton coordinates are arranged into RGB channels, as shown in

figure 2.12.

The proposed method in [11] exhibits state-of-the-art performance on NTU RGB-D [51],

UTD-MHAD [52], MSRC-12 Kinect Gesture dataset [53] and G3D [54] dataset.

2.11. Skepxels : Spatio-temporal Image Representation

of Human Skeleton Joints for Action Recognition

We need an effective method to represent skeleton 3D coordinates. That way, deep

learning models can exploit the correlation between local pixels, which in turn helps us to

have better prediction accuracy. The paper [13] discusses a method that can help us arrange

skeleton information as skepxels [13] in the horizontal and vertical direction. Skepxels [13] in

horizontal direction carry the frames in skeleton data. Similarly, the rate of change of joints

position are captured in velocity frames, as shown in figure 2.14. Spatial information of the

skeleton frame sequence was captured in the vertical direction of the transformed image by

rearranging pixels of a skeleton frame at a time ’t’ as shown in figure 2.13.
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Fig. 2.13. Generating skepxel from skeleton joints. This figure was originally shown in
[13]

The proposed way of arranging skeleton frames in [13] will increase the prediction accu-

racy as each image is carrying rich spatiotemporal information (as shown in the figure 2.15).

The author in [13] also explains how using image interpolation between frames can create

a full image even though we have a smaller number of frames in a skeleton motion. If the

number of frames exceeding the number of frames required to make an image, then the rest

of the frames are moved to the next image and labeled with the same class name. NTU 3D

action data [51] was used to evaluate the proposed method in [13], and the transformation

process generates millions of pictures after the transformation step. For data-augmentation,

the author in [13] has recommended adding Gaussian noise samples to each frame and double

the training data size. With all the proposed strategies in [13], the Resnet model [25] can

achieve a state-of-the-art performance. Experiments conducted by [13] show that the pro-

posed method in [13] can achieve 85.4% average test accuracy on the NUCLA dataset [55]

and 97.2% average test accuracy on UTD-MHAD dataset [52]. If the position of the camera

and skeleton changes, then model prediction accuracy will change to a great extent. With

the proposed method in [13], to ensure better test accuracy, we need to take more data with

all possible positioning of the skeleton. When the skeleton frame sequence is long, dividing

sequence into multiple images as suggested in [13] will ignore temporal dependency infor-

mation of the current image on the previous frames in the series. The method explained in

[13] archives 97.2% test accuracy with the UTD-MHAD dataset [52].
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Fig. 2.14. Position and velocity frames. This figure was originally shown in [13]

 

Fig. 2.15. Spatial and temporal arrangement of skepxels. This figure was originally shown
in [13]

2.12. A Deep Learning Approach for Real-Time 3D Hu-

man Action Recognition from Skeletal Data

Surrounding distractions, along with viewpoint changes, make the HAR task challenging.

Depth sensor based-HAR is the best solution to overcome the above challenges. The authors

in [14] talks about the effective method for transforming the temporal sequence of human

skeleton movements into RGB representation. The technique proposed in [14] does not
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become dependent on the length of the skeleton sequence and efficiently can extract global

features. Below are the steps followed in [14] for skeleton sequence to RGB transformation :

(1) Encode human poses into RGB images.

(2) Enhance local textures of the RGB images by applying AHE [56].

(3) Before feeding images into D-CNN, a smoothing filter is applied to reduce the input

noise effect.

(4) Discriminative features can be learned by feeding images to DenseNet [18].

The proposed method in [14] is built based upon the below hypotheses:

(1) Human actions can be represented using skeleton movements.

(2) Spatio-temporal evolution of skeletons can be transformed into RGB images.

(3) Skeleton joints information is more efficient and less complicated compared to depth

images for training D-CNN.

(4) DenseNet [18] is one of the most effective CNN architectures for image classification.

ESPMF is an enhanced version of SPMF [57], which in turn includes encoded PFs and MFs.

The PFs encode skeleton joints position information, and MFs encode the rate of skeleton

joints changes concerning all other skeleton joints. The complete process followed by [14] is

shown in figure 2.16. The proposed method in [14] achieves the state-of-the-art performance

on MSR action data [22] and NTU RGB+D dataset [51]. ESPMF representation shows

a 1.42% increased prediction accuracy when compared to SPMF[57] representation(99.10%

test accuracy with MSR dataset[22]). The method explained by the authors in [14] is consi-

dered to be the best image representation method. We need a mechanism to start and

terminate the sequence of skeleton frames when the prediction has to be made continuously

in real-time. An interactive framework for treating Alzheimer’s patients demands a conti-

nuous prediction of human action or hand gestures. To facilitate continuous prediction in

a healthcare application, we consider dividing the sequence of skeleton frames into blocks

with an equal number of frames. Each block of frames contains the same amount of frames,

and this number is the average number of frames in the training data. We understand

that not all video sequences are of the equal number of frames, and to address this issue,

we propose using frame-shifting and interpolation between frames method. We propose a

problem-specific solution to recognize human action in real-time using Intel Realsense ca-

mera in Chapter 3. We experimented with the method explained in Chapter 3 to know the

possibility and impact of considering relative joint values instead of 3D coordinate values. In

Chapter 4, we try to address the issues of manually choosing a responsible list of joints for

generating relative skeleton joint values. Finally, we show the effective image representation

method and its impact on prediction accuracy with results in Chapter 4.
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Fig. 2.16. Skeleton data is encoded in RGB image. RGB images are fed to D-CNN for
action classification. This figure was originally shown in [14]
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Chapter 3

Image representation for Intel realsense

skeleton sequence data

Authors in [13, p. 13] realized after experimenting with large values of λ and small values of λ

that, relative positions of the joints is more important for CNNs than absolute positions. For

experiments, authors in [13] consider using the joint’s absolute positions but using the best

set of skeleton joints arrangement. Arriving at the best set of skeleton joints arrangement

is an NP-hard problem, and hence authors in [13, p. 13] use a realistic strategy to find a

suitable set of arrangments of skeleton joints. In this chapter, we want to show the impact

of a combined approach on prediction accuracy, where we try to use relative joint values and

the best arrangement of relative skeleton joint values for generating RGB images from the

skeleton sequence. We adapt frame-shifting and interpolation between frames to fill RGB

images when encountering a variable number of skeleton frames. Chapter 3 is organized as

follows: Section 3.1 introduces the hardware setup we are using for our experiments; Section

3.2.1 explains SkepxelRel construction using frame-shifting and interpolation between frames.

Section 3.2.1 also introduces us to image pre-processing techniques and data augmentation

methods we followed; A brief introduction to Residual network [25] is given in section 3.2.2. A

detailed discussion of the experimental results conducted on Intel Realsense data is provided

in section 3.2.3.

3.1. Intel Realsense Camera and Leapmotion Camera

Intel Realsense camera has five necessary hardware modules, as shown in figure 3.1 :

(1) Right Imager

(2) Left Imager

(3) IR Projector

(4) RGB Module

(5) PCB and components



 

 

Fig. 3.1. Intel Realsense camera. This figure was originally shown in [24]

Right Imager and Left Imager:

Right and Left Imagers are the camera sensors with identical configurations. Sensors are

named "left" and "right" from the perspective of the camera looking outward. The active

pixels of the sensors is 1280 x 800.

Infrared projector:

Infrared projectors project a static infrared pattern on the low texture scene to increase

the texture. The power delivery and laser safety circuits are on the stereo depth module

[24].

RGB Module:

Data from the left and right imagers along with the data from RGB sensors is used for

creating color point cloud and for 3D model reconstruction [58]. The active pixels of the

color sensor is 1920 x 1080.

PCB: PCB contains Intel Vision Processor, D4, capable of sending high-quality depth

and RGB images over USB channel.

Nuitarck SDK:

Nuitrack SDK [59], along with Intel realsense camera, can generate skeleton joints in real-

time. Nuitrack is a skeleton tracking middle-ware, and its a multi-language, cross-platform

framework. Nuitrack helps to capture twenty-four human body joints in real-time.

Leap motion camera:

Leap motion hardware contains two cameras and three infrared LEDs. The camera

viewing range is 2.6 feet and struggles to track hand movements beyond 80 cm. LED light

propagation through space limits the camera viewing range. The Leap motion controller

reads images through the USB controller, applies resolution adjustments, and sends it to
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Leap motion service running on a computer through a USB connection. Leap motion service

does not generate a depth map; instead makes 3D reconstruction of what the camera sees.

The tracking layer of the Leap motion service infers the details of fingers. After applying

filters to tracking data, the transport layer sends the data to native or web-based client

applications. Leap motion camera can capture the position and rotations of twenty-six

significant hand joints for each hand.

3.2. Skeleton sequence to RGB transformation of Intel

Realsense data

Using pixels of training images, CNN tries to build minor and significant features of

images. CNN models are translation invariant, and they can recognize trained characteristics

anywhere in the pictures. In this paper, we demonstrate how to generate images from skeleton

joints information by creating building blocks of a picture called SkepxelsRel. We do not

use skeleton joint coordinates; instead, we use a list of 3D coordinate values generated after

taking the difference between two joints. We group a set of pair of joints which contribute

more in deciding the class of action. This combination of a couple of skeleton joints is also

a hyper-parameter during training a ResNet model [25]. Velocity frames generated uses the

speed at which the difference of considered skeleton joints changes. As demonstrated in [16],

when we take the reference point as other joints, the prediction accuracy does not depend

on the position of the camera and skeleton. We explain the approach as followed.

3.2.1. Constructing SkepxelsRel

SkepxelsRel have a similar structure of Skepxels explained in [13]. SkepxelsRel tensors

encode differences of coordinate values along the third dimension, as shown in figure 3.2.

We follow the same strategy explained in [13] in choosing the best pixels arrangements

for filling spatial information of a skeleton frame at time ’t’(The algorithm to generate

the required number of pixel arrangements is shown in algorithm 1). As shown in figure

3.3, RGB channels encode spatial-temporal information of skeleton joint differences and

create an image. Velocity frames are constructed using a similar method, as explained in

[13]. However, we use SkepxelsRel values to calculate the rate at which the differences

between reference joints change, as shown in figure 3.4. With our proposed method, we can

generate any number of joints required for image representation using equation 3.2.2. As

shown in figure 3.7, we created thirty-six relative data points, which play an essential role in

deciding human actions from Intel Realsense data. As shown in figure 3.4, velocity frames

are generated by taking the difference of adjacent frames in a sequence and dividing them

by frame rate (equation 3.2.3). In our experiments, we considered the frame rate as thirty

frames/second for Intel Realsense data (data is available here : Intel Realsense Data).
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Fig. 3.2. Skeleton structure and generating relative joints

If we are encoding 30 skeleton frames in an RGB image, then we generate 30 random

pixel arrangements so that the final image has equal height and width. The Random pixel

arrangements of a skeleton frame at time ’t’ are stacked vertically, and subsequent skeleton

frames in the skeleton action sequence are stacked horizontally (as shown in figure 2.15).

The equation to calculate the image dimension is given in equation 3.2.1. We choose K = L

in equation 3.2.1 to achieve equal width and height in the final RGB representation. Hence,

with J = 36, final RGB image dimension is (180× 180× 3) with K = L = 30 and the final

image dimension is (300× 300× 3) with K = L = 50.

K = The number of skeleton frames to encode in an RGB image.

L = The number of random arrangements.

J = The number of relative joints for every frame

Image Dimension = (K ∗
√

J)× (L ∗
√

J)× 3 (3.2.1)

When the number of frames required to form the image is more than needed, we recom-

mend using frames shifting (as shown in the figure 3.6) instead of moving the remaining

skeleton frames (shown in the 3.5) to the next image. Frame shifting way of image construc-

tion helps in real-time prediction wherein each image encodes only the original frames of the

skeleton motion without adding interpolated frames in between. The frame-shifting method

also helps us to encode temporal dependency information of previous frames in the current

image. If the available number of frames for constructing an image is less than the required,

then we can go with interpolation between frames approach. Figure 3.6 demonstrates the

steps involved in adjusting the frames to accommodate all the available skeleton frames.
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X(R channel) Y(G channel) Z(B channel) Final RGB Representation

Fig. 3.3. RGB Channels generated with (x, y, z) coordinates of skeleton sequence.

X
Y
Z

Y
X

Z

Skeleton

Frame at time ‘t’
Skeleton 

Frame at time ‘t-1’

(Subtraction)

Velocity frame at

time ‘t’

dX
dY
dZ

(Subtracted 

values are divided 

by framerate)

Fig. 3.4. Velocity frames calculated by subtracting frames.

Skeleton action sequence

t,  t+1,  t+2        ………………………………………………………………………………………………………… t+n

Interpolation between 

frames

RGB Image 1 RGB Image 2

Fig. 3.5. Interpolation between frames applied.

Relative Joint12(x‘, y‘, z‘) = Reference Joint1(x, y, z)− Reference Joint2(x, y, z) (3.2.2)

Velocity of relative joint at time t =
Joint(x‘, y‘, z‘)at time t− Joint(x‘, y‘, z‘)at time t-1

frame rate
(3.2.3)
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Skeleton action sequence

t,  t+1,  t+2        ………………………………………………………………………………………………………… t+n

Frame shifting

RGB Image 1 RGB Image 2

Fig. 3.6. Frames are shifted to right and temporal dependency of frames is not ignored.

LIST_OF_JOINTS = [(Joint.ShoulderLeft, Joint.ElbowLeft), (Joint.ElbowLeft, Joint.HandLeft), 

(Joint.ShoulderLeft, Joint.HandLeft),(Joint.Spine, Joint.ElbowLeft),

(Joint.Spine, Joint.HandLeft), (Joint.HipCenter, Joint.HandLeft),

(Joint.Head, Joint.ElbowLeft), (Joint.Head, Joint.HandLeft),

(Joint.HipLeft, Joint.HandLeft),

(Joint.ShoulderRight, Joint.ElbowRight), (Joint.ElbowRight, Joint.HandRight), 

(Joint.ShoulderRight, Joint.HandRight),(Joint.Spine, Joint.ElbowRight),

(Joint.Spine, Joint.HandRight), (Joint.HipCenter, Joint.HandRight),

(Joint.Head, Joint.ElbowRight), (Joint.Head, Joint.HandRight),

(Joint.HipRight, Joint.HandRight),

(Joint.HandLeft, Joint.HandRight), (Joint.ElbowLeft, Joint.ElbowRight),

(Joint.HandLeft, Joint.ShoulderRight),(Joint.HandRight, Joint.ShoulderLeft),

(Joint.HandLeft, Joint.ShoulderCenter), (Joint.HandRight, Joint.ShoulderCenter),

(Joint.Head, Joint.HipCenter), (Joint.ShoulderCenter, Joint.HipCenter),

(Joint.Head, Joint.AnkleLeft), (Joint.Head, Joint.AnkleRight),

(Joint.ShoulderCenter, Joint.KneeLeft), (Joint.ShoulderCenter, Joint.KneeRight),

(Joint.KneeLeft, Joint.KneeRight), (Joint.AnkleLeft, Joint.AnkleRight),

(Joint.FootLeft, Joint.FootRight), (Joint.HipLeft, Joint.HipRight),

(Joint.HipLeft, Joint.AnkleLeft), (Joint.HipRight, Joint.AnkleRight)]

class Joint:

HipCenter = 6

Spine = 3

ShoulderCenter = 2

Head = 19

ShoulderLeft = 1

ElbowLeft = 8

WristLeft = 10

HandLeft = 12

ShoulderRight = 0

ElbowRight = 7

WristRight = 9

HandRight = 11

HipLeft = 5

KneeLeft = 14

AnkleLeft = 16

FootLeft = 18

HipRight = 4

KneeRight = 13

AnkleRight = 15

FootRight = 17

Fig. 3.7. List of thirty-six relative joints generated for every frame from Intel Realsense
data.

Data Pre-Processing:

To conduct experiments in real-time, we generated skeleton sequences for primary actions

using the Intel Realsense camera [24] with the help of Nuitrack SDK [59]. Each skeleton

frame is normalized by making the center of the frame as the center of the coordinate system

(0, 0, 0) [15].

Data Augmentation:

To increase the training data size, we sampled from a gaussian distribution with mean zero

and a standard deviation of 0.02 and added those noise samples to actual skeleton frames.

We have also applied random cropping, horizontal flip, and vertical flip data augmentation

strategies (shown in figure 3.9).
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1 29 7 19 4 18

14 16 24 28 11 23

21 2 8 15 32 27

25 20 12 26 3 36

30 5 17 31 33 22

10 13 34 6 35 9

Fig. 3.8. Example of a random arrangement of a frame’s thirty-six relative joints in a 6×6
matrix.

 

Fig. 3.9. Data Augmentation.

3.2.2. Residual Network

Deep neural networks with many more layers help a deep neural network model to have

a higher number of parameters, and by that degree of freedom of that model increases.

With the increased complexity of the model, the ability to learn new sophisticated features

will also increase. When a neural network has the freedom to choose parameters without

regularization, then the chances of finding a global minima is less, and the model ends

up finding local minima. Hence, it is useful to include regularization methods to regulate

the most in-depth neural networks and try avoiding model over-fitting behavior. Recent

experiments and research show that even after having regularization methods in a deep

neural network, it is inevitable to have an over-fitted model. To avoid such behavior without

losing the benefits of deep neural networks, researchers have come up with new architecture

called Residual Network [25]. Our experiment results show that the residual network model

outperforms in real-time prediction.
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Algorithm 1 Algorithm to generate random arrangements

1: ⊲ Because of the values we have chosen for lambda_thr, we always get desired number
of random arrangements

2: mat_list← Generate list of random arrangements ⊲ as is shown in figure 3.8
3: lamda_thr ← 2500 ⊲ We found this value by calculating radial distance for every pair

of matrices
4: result_mat_list← []
5: final_list← []
6: num_of_joints← 36 ⊲ Number of joints in each matrix
7: thr_nu_frames← 30 ⊲ We need 30 arrangements
8: for i in range(length(mat_list)) do
9: mat1← mat_list[i]

10: for k in range(length(mat_list)) do
11: if i == k then
12: continue
13: mat2← mat_list[k]
14: total_sum = 0.0
15: for j in range(num_joints) do
16: x, y ← get position of joint ’j’ in mat1
17: x_ta, y_ta← get position of joint ’j’ in mat2
18: total_sum← total_sum + max(abs(x− x_ta), abs(y − y_ta))

19: if total_sum > lamda_thr then
20: result_mat_list.append(mat1)
21: if length(result_mat_list) == thr_nu_frames then
22: return (result_mat_list).tolist() ⊲ we get required arrangements

23: final_list← (result_mat_list).tolist() ⊲ we don’t get required arrangements
24: return final_list

One of the significant problems associated with deep neural networks is vanishing gra-

dients problem, wherein gradients at the last layer will not be able to propagate back to

initial layers. Hence, learning will be prolonged and improper. Shortcut connections provi-

ded in Residual blocks (as shown in figure 3.10) make a model to learn identity mapping of

the input very quickly. Also, the shortcut connection helps to carry gradients back to initial

layers without vanishing gradients problem. Hence, we have adopted the Residual network

[25] in our experiments to learn significant features of the skeleton sequence.

3.2.3. Experiments

We used a setup having Intel Realsense camera [24] for capturing skeleton frames on

the Unity platform. 20-layer ResNet model [25] was trained for six basic human actions,

including No Movements, Wave Hands, Soothing, Come, Go, and Clap. These actions are

parts of movements that an Alzheimer patient could show for interacting with an animal

such as a horse or a dog. We observed that the trained model was able to predict all the
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Fig. 3.10. Residual Network.

actions with 100% accuracy in real-time (accuracy graph is shown in figure 3.11). As stated

already, we have used a set of joints that are responsible for predicting pre-decided actions.

Other factors also behave as hyper-parameters like frame rate (number of frames per second

captured by the Unity platform, and it is hardware dependent) and size of the transformed

image. As the data available is less with only six human actions, we had to augment data

to satisfy ResNet [25] requirements. We tried with different frame rates:30, 20, 10 and 30

outperformed compared to other frame-rates. Since we are using differences of coordinates,

changing camera position, and skeleton position did not have any impact on prediction

accuracy. We tried with different image sizes 180x180, 300x300, and 180x180 outperformed

compared to other image dimensions. As explained in equation 3.2.1, the number of skeleton

frames (K) to be encoded in RGB representation decides the image size. If we use a higher

value for K, actions with lesser frames will be extended using interpolation between frames.

Interpolation between frames results in action looks slower compared to the action without

the interpolation process. If we use less value for K, chances are high that we lose important

details of the action in RGB representation. Hence we decided to use moderate values for

K, which are near to the average number of frames calculated for the training dataset. The

average number of frames calculated for Intel Realsense training data is 36, and K = 30

shows better results.

Our proposed method does not need the number of joints to be equivalent to the requi-

red number of joints to form a SkepxelsRel. We can generate the required number of data

points by taking differences among responsible joints. High-frequency spatial components

are essential features in an image for useful prediction accuracy [60]. The SkepxelRel method

generates high frequencies in the final RGB representation. The SkepxelRel representation

also work well with DenseNet architecture [18], as shown in figure 3.12. DenseNet architec-

ture is the better option for image classification since it avoids the overfitting behavior of

deep neural networks [18]. The random arrangement of pixels [13] is not a more reliable

way of skeleton joints representation since random arrangement ignores spatial and temporal
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Fig. 3.11. Intel Realsense data, ResNet, SkepxelRel, performance graph.

relationships among pixels representation [11]. Authors in [11, 12] consider arranging ske-

leton joints in a particular way to retain the spatial relationship between human joints when

they are transformed into RGB form. Hence the loss function is unstable with DenseNet [18]

architecture as shown in figure 3.12. We run experiments on MSR dataset[22] using Skepxels

representation, and the accuracy results are not up to the state-of-the-art performance. Fi-

gure 3.13 and 3.14 shows accuracy graphs of ResNet[25](Resnet-20 architecture is given in

A.1) and DenseNet[18] (DenseNet architecture is given in B.1)models. We need an even

more efficient representation of skeleton frame sequence, which can capture spatial-temporal

information of skeleton movements, preserve high-frequency spatial data, and retain pixel

spatial relationships. We will be able to derive an efficient model for prediction with the

help of DenseNet [18] even though we have fewer data like the MSR dataset [22]. All expe-

riment details conducted with SkepxelRel representation is listed in the table 3.1. In the next

chapter, we discuss the issues with SkepxelRel representation and an alternative approach

to replace the SkepxelRel method for an efficient skeleton sequence to RGB transformation.
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Fig. 3.12. Intel Realsense data, DenseNet, SkepxelRel, performance graph.

 

Fig. 3.13. MSR data, ResNet, SkepxelRel , performance graphs.

Intel Realsense DataSet and Image Dimension Best Test Accuracy Best Test Loss

(180x180), 30 frames, ResNet-20 95.351% 12.681%

(300x300), 50 frames, ResNet-20 96.4% 8.928%

(180x180), 30 frames, DenseNet 100% 7.843%

(300x300), 50 frames, DenseNet 100% 8.008%

Tableau 3.1. SkepxelRel experiment details along with results
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Fig. 3.14. MSR data, DenseNet, SkepxelRel , performance graphs.
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Chapter 4

Enhanced SkepxelRel representation for

skeleton joints sequence

Skeleton sequence to RGB transformation process needs to capture spatial-temporal infor-

mation of skeleton joints movements effectively. SkepxelRel provides the flexibility to choose

the number of relative joint values for RGB transformation and ignores the spatial rela-

tionship between joints during motion detection. The set of actual joints to be considered

to generate relative joints is a hyper-parameter. It is not a practical solution to choose a

set of real joints that can contribute more to the action detection process. The process of

selecting the set of actual joints is highly dependent on the human action type. Chapter 4

explains a generic solution for transforming the skeleton sequence into RGB image represen-

tation after considering the complexity of generating the best list of relative joints and their

arrangements.

The total number of possible combinations that can be generated is given by the equa-

tion 4.1.1. Equation 4.1.1 is a complex equation, and it is not feasible to generate all such

combination of joints for a real-time prediction application. The amount of time required

to evaluate all possible combinations is not practical, and to avoid the unnecessary compu-

tational effort, we can choose M = N !
(N−2)!×2!

in the equation 4.1.1. Hence with N=20, we

will have 190 relative joints in one frame(as per the equation 4.1.4). All the relative joints

can be stacked in columns to generate RGB representation of the skeleton sequence. In sec-

tion 4.1, we discuss implementation details of enhanced SkepxelRel using the Leap motion

data(data is available here : Leap motion data) that we captured. Experimental results, the

impact of enhanced SkepxelRel representation on Leap motion data classification and a brief

introduction to densely connected convolution network architecture are provided in section

4.1.1.

https://github.com/creative-swamy/Leap-Motiondata-for-experiments/


 

X axis rotation 

Y axis rotation 

Z axis rotation 

Fig. 4.1. Rotation in X, Y, Z axes.

4.1. Enhanced SkepxelRel formation and experiments

.

The Extended SkepexelRel approach is motivated by the method explained in [14] whe-

rein the proposed way by [14] produces efficient RGB representation of skeleton sequence.

We need a few more modifications on top of the method explained by [14] for real-time pre-

diction applications. Alzheimer’s treatment demands a continuous prediction of the patient’s

hand gestures. Hand gesturing made by the patient changes the virtual environment, and

these changes will have a direct impact on the patient’s medical status. Data for training

is captured from a Leap Motion camera with the Unity platform for basic hand gestures

including 1) "Left Hand Call" 2) "Right Hand Call" 3) "Left Hand Go" 4) "Right Hand Go"

5) "Version2 Left Hand Call" 6) "Version2 Right Hand Call" 7) "Left Hand Wave" 8) "Right

Hand Wave" 9) "Left Hand Still" and 10) "Right Hand Still"(as shown in figure 4.2). There

are two versions of the "Call" gesture since both have different rotation values. Data from the

Leap Motion camera provides twenty-six joints information. Each frame data will have the

position and rotation values of twenty-six joints. The position represents the joint’s actual

position in the Unity scene, and rotation values are the rotation of a joint relative to the

world coordinate system wherein rotation in all three axes is generated for each joint, as

shown in figure 4.1. With Leap Motion and Unity setup, it is effortless to capture all the

details of hand gestures made by Alzheimer’s. Rotation values play a very significant role in

the hand gesture recognition process. Most of the actions listed above have little variation

in position values but will have differences in rotations. Unity updates rotation in all three

axes with the help of Euler angles [61]. We need a mechanism to transform both position

and rotation values into RGB representation, similar to the method explained by [14].
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Fig. 4.2. Examples of Hand Gestures captured with the help of Leap Motion camera

Some hand gestures like "Clap Hands" and "Hold an Object" demand encoding gestures

made by both hands, and hence we need to encode one hundred and four data points for each

frame. To encode the speed at which the position and rotation of hand joints change, we

have to consider differences between consecutive frames. SkepxelRel is formed by taking the

differences of actual joints, and for generating extended SkepxelRel, we can use the Euclidean

distance of 3D coordinates(4.1.2).

Possible number of combinations =
( N !

(N−2)!×2!
)!

(( N !
(N−2)!×2!

)−M)!×M !
(4.1.1)

N = Number of actual joints detected per hand by the hardware = 26

M = Total number of relative joints in each frame

Euclidean Distance = ||−−→JiJj|| =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (4.1.2)

Wherein (xi, yi, zi) and (xj, yj, zj) are 3D coordinates of joints (∀i, j ≤ N !
(N−2)!×2!

and i 6= j).

A skeleton representation of a human body includes orientation and magnitude of vec-

tors connecting each joint, as shown in figure 4.3. The magnitude can be measured

using the Euclidean distance of joints in Euclidean space. Similarly, the orientation of

the vector connecting two joints is given by the direction of a unit vector, as in equation 4.1.3.

Orientation of JiJj = −→u =
Jj − Ji

||−−→JiJj||
(4.1.3)

Euclidean distance transforms 3D coordinates into one-dimensional values, and hence these

values must be mapped back to 3D. Remapping to 3D is necessary because RGB repre-

sentation demands 3D data. We apply JET mapping(shown in figure 4.4) to transform

one-dimensional Euclidean distance values to 3D values, and we adapt this mapping method
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(Orientation signifies the direction of the 

Vector pointing from Joint ‘J2’ -> Joint ‘J3’)

Fig. 4.3. Magnitude and Orientation of vectors connecting skeleton joints

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.4. JET Color Map

from [14]. Euclidean distance values are normalized to the range [0, 1], and normalized

values are mapped to RGB values using JET mapping. JET mapping maps values in the

range [0, 1] to RGB color values, starting from blue and ends at red. Euclidean distance

and orientation calculation are applied for both position and rotation values of both hands

data. We use maximum and minimum values of the training data of position and rota-

tion values for normalizing Euclidean distance values. Hence training images generation is

data-dependent, and we need to evaluate minimum and maximum values before generating

images for training. Skeleton motion is encoded by calculating the Euclidean distance and

orientation values considering two adjacent frames. Equations for encoding motion informa-

tion are same as equation 4.1.2 and 4.1.3 but the ith joint should be from the frame at time

’t’ and jth joint should be considered from the frame at time ’t+1’. The number of data

points in each motion frame is more than that of Euclidean data points from pose frames;

hence we enhance the number of Euclidean data points in pose frames by appending the

nearest data points. The equation for calculating the number of data points in each motion

frame and number of data points to append to pose frame [14] are given by equation 4.1.5

and 4.1.6 respectively(data points arrangement is shown in fig 4.5). Since the pose frame is

extended by replicating the nearest pixel value, it has no bad impact on final image quality

and prediction accuracy.

64



Motion data points

Motion framePose frame

Appended nearest

data points

Euclidean distance 

data points

(Actual pose data 

points)

Fig. 4.5. Data point arrangement of pose and motion frames

Number of data points in each pose frame =
N !

(N − 2)!× 2!
= 325 (4.1.4)

Number of data points in each Motion frame = N2 = 676 (4.1.5)

Number of data points to append to pose frame = N2 − N !

(N − 2)!× 2!
= 351 (4.1.6)

Pose, and motion frames are generated for both position and rotation values, and we arrange

them in a specific order for better RGB representation, as shown in figure 4.6. The number

of actual frames from the camera to be accommodated in an image is decided based on the

average number of frames evaluated from the training dataset. For ’K’ number of actual

frames(K = 40) from the camera, we need to generate ’K’ number of pose frames and ’K-1’

number of motion frames. Hence, with ’K’ number of frames, we create an image of size:

width = 8× ((2×K)− 1) = 632 and height = N2 = 676. Generated images are resized to

40 × 40 to maintain the same image size across training and testing data. Before resizing,

images go through AHE[56] to enhance local contrast of the picture by applying histogram

equalization to multiple parts of the image. Enhancing the local contrast of the image

by Applying AHE[56] before resizing the images help us in keeping the color variations.

Hence even after image resizing we can see the different color variations in images for every

action. Figure 4.7 shows sample images generated using Leap Motion data. Figure 4.8 shows

accuracy graph generated using DenseNet [18] on Leap motion data.

We have used the same DenseNet architecture proposed by [14] along with hyper-

parameters such as batch size-32, learning rate-0.0003, Adam optimizer. Data augmentation

methods like horizontal and vertical flip, height-shift, and width shift techniques are applied

to increase the data size and avoid overfitting. The average number of frames of the Leap

motion training data is 36 frames. During real-time testing, we can use interpolate between

frames or image resize technique to adjust the image size if the number of frames required

to form the RGB representation is not available. From the real-time test results on the

experiments we conducted, we see that proposed RGB representation captures and encodes
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Fig. 4.6. Pose and motion frames arrangement

Right Hand Wave Right Hand Come Right Hand Go

Right Hand Still Left Hand Wave Left Hand Come

Fig. 4.7. Sample Images generated for Leap Motion data using extended SkepxelRel me-
thod.

position and rotation of hand joints efficiently and provides 100% test accuracy. We conduc-

ted different experiments by changing a few critical hyper-parameters, and the results are

listed in table 4.1.

4.1.1. Densely Connected Convolutional Networks

.

Recent research works demonstrate that providing a short-cut connection from the input

of the first layer to the input of the next layer will avoid vanishing gradient problem. Existing

work (ResNet [25])ignores maximum information flow between previous layers to subsequent

layers, and the information flow problem is addressed by DenseNet architecture [18]. Den-

seNet [18] allows each layer obtain feature maps from all its preceding layers and pass its

feature maps to all its subsequent layers. Instead of summation of feature maps from the

previous layer [25], DenseNet [18] concatenate feature maps for efficient information flow,

as shown in figure 4.9. Number of parameters to learn in DenseNet [18] is less than the
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Fig. 4.8. Accuracy Graph, Leap Motion data

DataSet and Image Dimension Best Test Accuracy Best Test Loss

Leap Motion data : 30 frames 100% 4.355%

Leap Motion data : 36 frames 100% 3.5%

Leap Motion data : 50 frames 100% 4.085%

Leap Motion data : 80 frames 100% 4.594%

MSR data : 40 frames 100% 10.594%

Tableau 4.1. Extended SkepxelRel experiment details along with results

number of parameters learned by ResNet [25]. Every layer in the DenseNet [18] have direct

access to gradients, and input signal hence helps to deep supervision. The total number

of connections in a DenseNet is given by the equation 4.1.7. DenseNet [18] possesses very

narrow layers and provides few feature (’k’) maps for every layer. ’k’ is a hyper-parameter in

DenseNet is called growth rate of the network. Authors in [18] shown that, with a minimal

value of k = 12, it is possible to achieve state-of-the-art results.

Total number of connections =
L× (L + 1)

2
. Where L is total number of layers. (4.1.7)

DenseNet [18] architecture can learn unique features for every action from the Leap

motion training dataset, as shown in figure 4.10. Trained DenseNet can predict test images in

real-time with 100% accuracy. We evaluated trained DenseNet in real-time, and it is possible

to predict every two-second action in less than 0.5 seconds. Results shown in the table 4.1
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H4
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Fig. 4.9. Dense Network, Original figure was shown in [18]

Right Hand Wave                Right Hand Come1             Right Hand Go                      Right Hand Still              Left Hand Wave

Left Hand Come1             Left Hand Go                      Left Hand Still                   Right Hand Come2            Left Hand Come2

Fig. 4.10. Feature maps learned by DenseNet

proves that even with an increased number of frames encoded in RGB representation, the test

error does not change significantly. Leap motion data that we captured for our experiments

include actions that can be performed in a short duration. Data were obtained at different

frame rates supported by the camera and we used the best frame rate for our experiment

purpose(30 frames per second). Hand gestures are performed by ten different subjects, and

data from subjects [1, 3, 5, 7, 8, 9, 10] are used for training, and remaining subjects are

used for testing. We make sure that testing data has unseen rotations and positions of hand-

joints to validate the trained model. We experimented with different image sizes by changing

the Leap motion training data’s average frame size, and the results are captured in table

4.1(Accuracy graphs are shown in C.1). MSR skeleton sequence data is transformed using

extended SkepxelRel and trained using DenseNet [18], and we can see the state-of-the-art

performance (accuracy graph is shown in D.1).
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Chapter 5

Conclusion and Future Work

In this chapter, I conclude my thesis by giving justification to all the research objectives

listed in Chapter 1 and giving an insight into future work.

5.1. Conclusion

There are challenges to address when implementing a solution for treating Alzheimer’s

patients. Existing solutions only provide assisting tools and a virtual environment to help

improve cognitive abilities and avoid negative emotions in the participants. Recent research

shows that an interactive virtual environment helps a healthcare system treat Alzheimer’s

effectively, and hence, we have proposed an interactive virtual environment solution for

treating Alzheimer’s.

We can create even a very sophisticated virtual environment for training purposes, but

the environment should help Alzheimer’s patients overcome negative emotions and improve

cognitive abilities. Research work proves that Animal Assisted Therapy allows Alzheimer’s

patients to improve their mental status. In this project, we have created a virtual dog

and a horse character in the VR environment. Research has proved that the Alzheimer’s

patients will have reduced agitation, increased physical activity, improved eating, and im-

proved pleasure feeling behavior after a real dog visits into the patient’s environment. Yan

AI has developed a virtual environment for our experiments, and we have used the same

environment for treating Alzheimer’s patients.

To create a real-life situation in the virtual environment, we need to allow the participants

to interact with pet animals present in the VR. HCI enables multiple ways and provides many

interfaces to interact with the VR. We can have a voice-based interface, an action-based

interface, or a gesture-based interface to communicate to the VR world. We have proposed

using a gesture-based interface since we can easily capture hand joints information using a

Leap motion camera and have developed a sophisticated algorithm for gesture prediction. It

is easy for Alzheimer’s patients to remember and perform simple hand gestures instead of a



need for complex human actions. The healthcare system we proposed can detect basic and

straightforward to create hand gestures like wave hands, invite the VR character to come

near-patient, instruct the animal character to leave the environment, and idle hands. The

trained deep-learning model was tested in the virtual environment created by Yan AI, and

it works efficiently. Apart from the basic gestures with which our model is trained, we can

train the DenseNet model with new gestures. For doing this, we have to capture training

data for new gestures using the Unity application and train the DenseNet with new training

data set. We followed the same method to train our DenseNet model progressively by adding

support to one gesture.

For implementing a better prediction algorithm, we face challenges like the need for an

efficient representation of hand joints sequence, sufficient data for training a deep-learning

model, efficient deep-learning architecture, and highly complicated parameters tuning pro-

cess. We had to experiment with two of the best approaches to see the impact on prediction

accuracy. SkepxelRel provides state-of-the-art performance with the Intel Realsence data but

fails to perform better with MSR 3D action dataset. This failure is because of the random

arrangement of relative joints and manually deciding the best list of joints for generating

relative joints. We propose an enhanced SkepxelRel method that can effectively encode both

position and rotation values of hand joints in an RGB format. The RGB representation

using enhanced SkepxelRel is compact and efficient, and it is evident from the experiment

results.

A promising skeleton sequence to the RGB representation method achieves better pre-

diction accuracy. The random arrangement of transformed skeleton joints information does

not yield good results. Skeleton joints information after the transformation process needs to

be arranged in a specific manner to retain the spatial relationship between pixels. Enhan-

ced SkepxelRel representation helps to keep the spatial and temporal correlation of pixels

and helps DenseNet to learn unique features for every action. Enhanced SkepxelRel re-

presentation and training using DenseNet is a training-data dependent process. DenseNet

architecture determines distinct features with minimal training data, has less impact of over-

fitting on the training process and avoids vanishing gradient problem. DenseNet architecture

possesses a minimum number of parameters compared to other existing deep neural networks

like ResNet and provides state-of-the-art performance. Arranging skeleton joints in a dif-

ferent order in a sequence has an impact on test accuracy. We found that adjacent joints to

be placed in the same order to retain spatial relationship among them and to yield better test

accuracy. Data augmentation should not change the actual data information, and hence we

considered adding Gaussian noise with only 0.02 as standard deviation. We found that using

the average number of frames calculated for training data as the number of skeleton frames

to be encoded in every RGB image is the best choice in our experiments. Encoding very few

frames or encoding a very high number fo frames results in bad test accuracy. Our proposed
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method shows better results when tested with Leap motion data and MSR action dataset.

The pre-processing method for skeleton sequence, SkepxeRel, required for representing the

sequence in RGB form is a feasible solution to implement for real-time applications. We

tested our proposed method in a virtual environment setup for treating Alzheimer patients,

and our proposed method shows state-of-the-art performance in a real-time application. It

is evident from the provided graphs and user experience with the interactive system that I

addressed all the research objectives considered with the help of the proposed method.

5.2. Future Work

I want to extend my work to satisfy the requirements below, which in turn make the

complete healthcare system more user friendly:

• It is possible to make the VR environment more interactive by including both hu-

man action detection and human gesture detection. Intel Realsence camera provides

human body joints information, and the Leap motion camera provides hand joints

information. We can develop an algorithm to combine hand gestures and human

action detection to understand better what the participant wants to do with the VR

character. With this approach, we will be able to make the VR environment more

interactive.

• Our proposed method for image representation has a known limitation, wherein the

process of training and testing depends on training data. We need to extract few

parameters from the training data before starting the training and testing process.

Hence the process of training and testing is training data-dependent, which results

in predicting unseen hand gestures with low confidence. I want to extend my work

in the future to make the training and testing process independent of training data.
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Appendix A

Twenty layer Residual Network Architecture

A.1. Appendix: Resnet-20

We avoid the ReLU unit after adding information from the residual unit and bypass

connection so that gradients can easily flow to early layers during back-propagation [12]. The

baseline model has a ReLU connection after every residual block. Resnet-20 formed by one

convolution block at the beginning and nine residual units, each unit have two convolution

blocks and a final dense block. The number of residual blocks in Resnet-N model is given

by Numberofresidualblocks = 2×N−2
2

.

A.1.1. Baseline architecture of Resnet-20

3× 3 Conv, 16 filters, BN, ReLU

Residual Unit : BN-ReLU-Conv,16 filters -BN-ReLU-Dropout-Conv, 16 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,16 filters-BN-ReLU-Dropout-Conv, 16 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,16 filters-BN-ReLU-Dropout-Conv, 16 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,32 filters-BN-ReLU-Dropout-Conv, 32 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,32 filters-BN-ReLU-Dropout-Conv, 32 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,32 filters-BN-ReLU-Dropout-Conv, 32 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,64 filters-BN-ReLU-Dropout-Conv, 64 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,64 filters-BN-ReLU-Dropout-Conv, 64 filters-
⊕−ReLU

Residual Unit : BN-ReLU-Conv,64 filters-BN-ReLU-Dropout-Conv, 64 filters-
⊕−ReLU

Global Pooling -Dense Layer

A.1.2. Experimented architecture of Resnet-20

3× 3 Conv, 16 filters, BN, ReLU

Residual Unit : BN-ReLU-Conv,16 filters-BN-ReLU-Dropout-Conv, 16 filters-
⊕

Residual Unit : BN-ReLU-Conv,16 filters-BN-ReLU-Dropout-Conv, 16 filters-
⊕



Residual Unit : BN-ReLU-Conv,16 filters-BN-ReLU-Dropout-Conv, 16 filters-
⊕

Residual Unit : BN-ReLU-Conv,32 filters-BN-ReLU-Dropout-Conv, 32 filters-
⊕

Residual Unit : BN-ReLU-Conv,32 filters-BN-ReLU-Dropout-Conv, 32 filters-
⊕

Residual Unit : BN-ReLU-Conv,32 filters-BN-ReLU-Dropout-Conv, 32 filters-
⊕

Residual Unit : BN-ReLU-Conv,64 filters-BN-ReLU-Dropout-Conv, 64 filters-
⊕

Residual Unit : BN-ReLU-Conv,64 filters-BN-ReLU-Dropout-Conv, 64 filters-
⊕

Residual Unit : BN-ReLU-Conv,64 filters-BN-ReLU-Dropout-Conv, 64 filters-
⊕

BN-Global Pooling -Dense Layer
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Appendix B

DenseNet Architecture

B.1. Appendix: DesneNet-40, k=12

As per [14], the number of dense blocks implemented in a Dense-N model is three. Each

dense block implements N−4
3

convolution blocks. Each convolution block is a combination

of ReLU-Conv and an optional dropout layer. Every convolution block is followed by a

transition layer and includes ReLU- 1 × 1 Conv - optional dropout layer - Average pooling

layer. The final dense block is followed by a dense layer. Complete Dense-40 model can ge

given as below :

Conv layer- Dense Block(12 Conv layers)- Transition layer (1 Conv layer)- Dense Block(12

Conv layers)- Transition layer (1 Conv layer)- Dense Block(12 Conv layers)- Dense Layer.





Appendix C

Accuracy graphs SkepxelRel

C.1. Appendix:Accuracy graphs for Intel Realsense

data with SkepxelRel representation

 

Fig. C.1. SkepxelRel accuracy graphs with average frames as 30



 

Fig. C.2. SkepxelRel accuracy graphs with average frames as 50
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Appendix D

Extended SkepxelRel accuracy graph with

MSR dataset :AS1

D.1. Appendix:Accuracy graphs for MSR dataset AS1

with extended SkepxelRel representation

We conducted experiments on MSR dataset [22] along with extended SkepxelRel repre-

sentation and Densenet-40 architecture, and figure D.1 shows the performance graph for

MSR dataset. MSR dataset is divided into three sections: AS1, AS2, and AS3. The author

in [22] captured data when ten different subjects performing actions and the actions per-

formed by subjects with ID’s 1, 3, 5, 7, and 9 are used as training data rest are used for

preparing test data. We could achieve 100% best test accuracy with a 10% test loss.

 

Fig. D.1. Extended SkepxelRel accuracy graphs with average frames as 50





Appendix E

Conference accepted

We have submitted a paper based on the SkepxelRel method to "KS Marulasidda Swamy,

Hamdi Ben Abdessalem and Claude Frasson (full paper submission accepted) Real-time

Gesture Recognition Using Deep Learning Towards Alzheimer’s Disease Applications, Brain

Function Assessment in Learning(BFAL) 2020, Crete, Greece, 2020", and below are the

details.

Our proposed healthcare system is a combination of deep learning and virtual environ-

ment modules. Preparing training and testing data for training deep neural network models

is done by Marulasidda Swamy. Training the deep neural network model by fine-tuning

hyperparameters and testing the model in real-time is also done by Marulasidda Swamy.

Hamdi integrated the human gesture recognition model into the VR environment and tested

it in a real environment. Hamdi also took part in checking Alzheimer’s mental status after

allowing Alzheimer’s experience in the healthcare system we developed. Professor Claude

Frasson guided us through the complete project while taking significant design changes and

implementation decisions. Marulasdidda Swamy and Hamdi contributed to writing the paper

and were reviewed and concluded by Professor Claude Frasson.



Real-time Gesture Recognition Using Deep Learning 

Towards Alzheimer’s Disease Applications 

KS Marulasidda Swamy, Hamdi Ben Abdessalem and Claude Frasson 

Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Canada 

{marulasidda.swamy.kibbanahalli.shivalingappa, 

hamdi.ben.abdessalem}@umontreal.ca, frasson@iro.umontreal.ca 

Abstract. There have been significant efforts in the direction of improving accu-

racy in detecting human action using skeleton joints. Determining actions in a 

noisy environment is still challenging since the Cartesian coordinate of the skel-

eton joints provided by depth sense camera depends on camera position and skel-

eton position. In a few of the human-computer interaction applications, skeleton 

position and camera position keep changing. The proposed method recommends 

using relative positional values instead of actual Cartesian coordinate values. Re-

cent advancements in the Convolution Neural Network (CNN) help us achieve 

higher prediction accuracy using image format input. To represent skeleton joints 

in image format, we need to represent skeleton information in matrix form with 

equal height and width. With some depth sense cameras, the number of skeleton 

joints provided is limited, and we need to depend on relative positional values to 

have a matrix representation of skeleton joints. We can show near the state-of-

the-art performance on MSR 3-Dimensional(3D) data and the new representation 

of skeleton joints. We have used image shifting instead of interpolation between 

frames, which helps us have state-of-the-art performance. 

Keywords: Human action, Gesture recognition, Real-time, Skelton-joint, Deep 

learning, Resnet. 

1 Introduction 

Representing skeleton joint information in an image format and utilizing it for human 

action detection is the most reliable and computationally powerful approach. Pro-

cessing real images or videos for action detection requires a lot of computation re-

sources [1]. There has been tremendous research effort to improve prediction accuracy 

in detecting human action with the help of skeleton joint information. CNN (Convolu-

tion Neural Network) exploits the spatial relationship between pixels when arranged in 

matrix representation [2, 3, 4]. Shift invariance property possessed by CNN helps in 

detecting features residing in any part of the image. Encoding spatial and temporal in-

formation of skeleton frames in an image is proven to be the best representation for a 

deep neural network to understand human action [2, 3, 4]. 

Detecting human action when the camera's position and the position of the skeleton 

keeps changing is a challenging task [5]. We need to train the CNN model with a lot of 
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training data to understand all variations in the coordinate values of a skeleton. Encod-

ing spatial and temporal information of skeleton frames in an image is not sufficient, 

and hence we need to consider encoding the difference between joints for the skeleton 

transformation process. Depth sense cameras provide a limited, varying number of 

joints [6], and therefore it has become challenging to come with better representation 

of skeleton information. 

We propose a method to encode the difference between 3D coordinates values in an 

image and train a deep residual neural network [7] for better prediction accuracy. Ex-

isting practice insists on adapting interpolation between frames as the approach to fill 

the picture when we do not have enough frames [3, 4]. CNN can only understand static 

images, and hence we need to bring in temporal dependency of frames of the current 

image on previous frames of the skeleton action sequence. We can achieve exploiting 

a better representation of the picture by shifting earlier frames to the current image.  

This method could be used to detect hand gestures and body gestures in many fields, 

especially for medical applications like to create applications for Alzheimer's disease. 

The rest of this paper is organized as follows. In section 2, we give an overview of the 

related works. In section 3, we describe our methodology.  In section 4, we detail the 

Residual Network. In section 5, we detail the experiments, and finally, in section 5, we 

present the obtained results. 

2 Related Works 

Skeleton joint information was extensively used for predicting human action and pos-

ture detection. Intel Realsense camera [10] provides precise skeleton joints information 

with third-party SDKs (Software Development Kit). Nuitrack is one of the most reliable 

SDK's in the market, with which it is easy for a Unity developer to build a skeleton 

tracking application. Depending on the system's hardware abilities, framerate changes, 

and it is effortless to develop a hardware-independent software module to capture skel-

eton frames in real-time with the help of the Unity platform. Kinect [8] of Microsoft 

provided a skeleton tracking facility for a long time, and it was adopted in most of the 

research practice. Kinect [8] provides just twenty skeleton joints information; Intel Re-

alsense camera [10] instead can capture twenty-four joints 3D coordinate values. Leap 

Motion hardware is a dedicated camera for detecting hand joints position along with 

rotation. There have been efforts to convert 3D coordinate values to RGB (Red, Green, 

Blue. A color model represents a pixel's color by combining Red, Green, and Blue in 

different ranges) image representation for training deep neural networks. The transfor-

mation step of skeleton information to RGB representation is a significant data pre-

processing stage. Encoded RGB image should include extensive temporal and spatial 

information of skeleton frames in a sequence. 

2.1 Realtime pose detection 

The authors in [8] explain estimating human pose using skeleton data given by the Ki-

nect sensor. Instead of using the temporal sequence of 3D coordinates, relative to the 
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camera position, the authors in [8] uses coordinate values relative to the other joints. 

Relative coordinate values remove the prediction accuracy dependency on the size and 

location of the subject. Firstly, three-dimensional skeleton coordinates transformed into 

a one-dimensional feature vector. The feature vector is the input to a machine learning 

algorithm with or without pre-processing. The proposed algorithm is assessed on a vo-

cabulary containing eighteen poses and employing machine learning algorithms: Sup-

port Vector Machines (SVM), Artificial Neural Network, K-Nearest Neighbors, and 

Bayes classifier and SVM outperforms on the data set used in experiments. The method 

explained in [8] works excellently with a predefined set of actions and failed to consider 

the temporal dependency of frames in predicting human action. 

2.2 Skeleton Based Action Recognition Using Translation-Scale 

Invariant Image Mapping and Multi-Scale Deep CNN 

Transforming from skeleton information to image representation is a crucial and sig-

nificant step in human action classification using skeleton data. A sophisticated, prom-

ising method of transformation is discussed and demonstrated by the authors in [2] with 

the help of results. Very few parameters, which plays a vital role in the transformation 

process, are extracted from each video sequence instead of referring the whole data. 

The proposed method in [2] helps preserve scale invariance and translation invariance 

of the training data. The authors in [2] also claim that the complete process of transfor-

mation becomes data set independent. 

2.3 Recognizing human action from Skeleton moment 

Deep learning algorithms need data to be represented in image format so that machine 

learning models like CNN and its variants can extract image features and classify the 

image into an available class efficiently. Transforming skeleton joint coordinate values 

into RGB image space is explained by the authors in [3]. Skelton parts are divided into 

five significant parts P1, P2, P3, P4, and P5. Each section will have 3D coordinate 

values of the set of skeleton joints (P1, P2: two arms, P4, P5: two legs, P3: trunk). 

Transformation module explained by the authors in [3] will convert skeleton joints into 

an image by arranging pixels in the order of P1->P2->P3->P4->P5. The proposed trans-

formation method helped the authors in [3] achieve the best prediction accuracy with 

three different variants of Resnet models [7]. The paper [3] fails to effectively incorpo-

rate Spatio-temporal information of skeleton motion when the skeleton motion has a 

higher number of frames. 

2.4 Skepxels: Spatio-temporal Image Representation of Human 

Skeleton Joints for Action Recognition  

We need an effective method to represent skeleton 3D coordinates so that deep learning 

models can exploit the correlation between local pixels, which helps us have better 

prediction accuracy. The paper [4] talks about a method that can help us arrange skele-

ton information like Skepxels [4] in the horizontal and vertical directions. Skepxels [4] 
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in the horizontal direction, carry the frames in skeleton data. Spatial information of the 

skeleton frame sequence was captured in the vertical direction of the transformed image 

by rearranging pixels of a skeleton frame at a time 't'. The proposed way of arranging 

skeleton frames in [4] will increase the prediction accuracy as each image carries rich 

temporal-spatial information. In [4], the author also explains how using image interpo-

lation between frames can create a full image even though we have a smaller number 

of frames in a skeleton motion. If the number of frames exceeds the number of frames 

required to make an image, then the rest of the frames are moved to the next image and 

labeled with the same class name. NTU 3D action data [9] was used to evaluate the 

model, and the transformation process generates millions of pictures after the transfor-

mation step. For data-augmentation author in [4] has recommended adding Gaussian 

noise samples to each frame and double the training data size. With all the proposed 

changes in [4], the Resnet model [7] can achieve state-of-the-art performance. If the 

position of the camera and skeleton changes, then model prediction accuracy will 

change to a great extent. With the proposed method in [4], we need to take more data 

with all possible skeleton positioning to ensure better test accuracy. When the skeleton 

frame sequence is long, dividing sequence into multiple images will ignore the current 

picture's temporal dependency information on the previous frames in the series. 

 

3 Our Methodology  

Using pixels of training images, CNN tries to build minor and significant features of 

images. CNN models are translation invariance, and they can recognize trained charac-

teristics anywhere in the pictures. This paper demonstrates how to generate images 

from skeleton joints information by creating building blocks of a picture called 

SkepxelsRel. We don't use skeleton joint coordinates; instead, we use a list of 3D co-

ordinate values generated after taking the difference between two joints. We need to 

group a set of pair of joints which contribute more in deciding the class of action. Com-

bining a couple of skeleton joints is also a hyperparameter during training a Resnet 

model [7]. Velocity frames generated uses the speed at which the difference of consid-

ered skeleton joints changes. As demonstrated in [5], when we take the reference point 

as other joints, the prediction accuracy does not depend on the camera and skeleton's 

position. We explain the approach as follows: 

3.1 Skeleton Picture Relative Elements (SkepxelsRel) 

SkepxelsRel does have a similar structure of Skepxels explained in [4]. SkepxelsRel 

tensors encode differences of coordinate values along the third dimension (Fig. 1). We 

follow the same strategy in choosing the best pixels arrangement for filling spatial in-

formation of a skeleton frame at time 't.' As shown in Fig. 2, RGB channels encode 

spatial-temporal information of skeleton joint differences and create an image. Velocity 

frames (Fig. 3) are constructed using a similar method, as explained in [2], but we use 

SkepxelsRel values to calculate the rate at which the differences between reference 
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joints change. With the proposed method, we can generate any number of joints re-

quired for image representation. As shown in Fig. 1, we created forty relative skeleton 

joints, which play an essential role in deciding human action. As shown in Fig 3, ve-

locity frames are generated by taking the difference of successive frames and dividing 

them by frame rate. In our experiments, we considered the frame rate as 30 frames/sec-

ond. 

 

Fig. 1. Skeleton Example with relative joints 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐽𝑜𝑖𝑛𝑡(𝑥`, 𝑦`, 𝑧`) = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐽𝑜𝑖𝑛𝑡1(𝑥, 𝑦, 𝑧) − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐽𝑜𝑖𝑛𝑡2(𝑥, 𝑦, 𝑧)   

 (1) 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐽𝑜𝑖𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 =  𝐽𝑜𝑖𝑛𝑡(𝑥`,𝑦`,𝑧`) 𝑎𝑡 𝑡− 𝐽𝑜𝑖𝑛𝑡(𝑥`,𝑦`,𝑧`) 𝑎𝑡 𝑡−1𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒                

 (2) 

 

Fig. 2. RGB Channels generated with (x, y, z) coordinates of skeleton sequence 

 

Fig. 3. Velocity frames calculated by subtracting frames 
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When the number of frames required to form the image is more than needed, we rec-

ommend using frames shifting (Fig. 5) instead of moving the remaining skeleton frames 

(Fig. 4) to the next image. This way of image construction helps in real-time prediction 

wherein each image encodes only the original frames of the skeleton motion without 

adding interpolated frames in between. And this method also helps us to encode tem-

poral dependency information of previous frames in the current image. If the available 

number of frames for constructing an image is less than the required, we can go with 

interpolation between frames approach. Fig. 5 demonstrates the steps involved in a 

proper way of adjusting the frames to accommodate all the available skeleton frames. 

 

Fig. 4. Existing method: Interpolation between frames applied 

 

Fig. 5. Frames are shifted to right and temporal dependency of frames is not ignored 

3.2 Data pre-processing 

We generated skeleton sequences for primary actions using the Intel Realsense camera 

[10] with the help of Nuitrack SDK. Hand gesture recognition experiments are con-

ducted on multiple channel images. Each skeleton frame is normalized by making the 

center of the frame the center of the coordinate system (0, 0, 0) [1].  
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3.3 Data augmentation 

To increase the training data size, we sampled from a gaussian distribution with mean 

0 and a standard deviation of 0.02 and added those noise samples to actual skeleton 

frames. We have also applied random cropping, horizontal flip, and vertical flip data 

augmentation strategies (Fig. 6). 

 

Fig. 6. Data Augmentation 

4 Residual Network 

Deep neural networks with many more layers stacked, help the model to have a greater 

number of parameters, and hence degree freedom of a model increases. With the in-

creased complexity of the model, the ability to learn new sophisticated features will 

also increase. When a neural network has the freedom to choose parameters without 

regularization, then the chances of finding global minima are less, and the model ends 

up finding local minima. Hence, we include regularization methods to regulate the most 

in-depth neural networks and try avoiding model overfitting behavior. Recent experi-

ments and research show that even after having regularization methods in the deep neu-

ral network, it is inevitable to have an overfitted model. Researchers have come up with 

new architecture called Residual Network to avoid such behavior without losing the 

benefits of deep neural networks [7]. 

 

Fig. 7. Residual Block 
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One of the significant problems associated with deep neural networks is vanishing gra-

dients problem, wherein gradients at the last layer will not be able to propagate back to 

initial layers. Hence, learning will be very slow and improper. Shortcut connections 

provided in Residual blocks (Fig. 7) make the model learn identity mapping of the input 

very easily. Also, the shortcut connection helps to carry gradients back to initial layers 

without vanishing gradients problem. Hence, we have adopted the Residual network 

[7] in our experiments to learn significant features of skeleton sequence. 

5 Experiments 

5.1 Real-time prediction using Intel Realsense camera 

We used a setup having Intel Realsense camera [10] for capturing skeleton frames on 

the Unity platform. 20-layer Resnet model [7] was trained for six basic actions, includ-

ing Still, Wave Hands, Soothing, Come, Go, Clap. We observed that the trained model 

could predict all the actions with 100% accuracy in real-time. As stated already, we 

have used a set of joints that are responsible for deciding pre-decided actions. Other 

factors also behave as hyperparameters like frame rate (number of frames per second 

captured by the unity platform, hardware dependent), and image size. As the data avail-

able is less with only six human actions, we had to augment data to satisfy Resnet [7] 

requirements. We tried with different frame rates:30, 20, and 10 and 30 outperformed 

compared to other framerates. Since we are using differences of coordinates, changing 

camera position, and skeleton position did not impact prediction accuracy. We also tried 

with different image sizes 180*180, 250 * 250, and 180*180 outperformed compared 

to other image dimensions.  

The proposed method does not need the number of joints to be equivalent to the 

required number of joints to form a SkepxelsRel since we can generate the required 

number of values by taking differences among responsible joints. Leap motion camera 

can provide hand joints information along with hand joints rotation information. This 

set up is used in a different application wherein rotation and moment of joints are very 

important in deciding hand gestures. Hence, we encoded hand joints position infor-

mation in the first three channels and rotation information in the next three channels. 

5.2 MSR Action 3D Data set 

MSR data set [11] is divided into three data sets, and model performance is evaluated 

on each data set type. There are twenty actions performed by ten different subjects in 

generating each dataset type. We use actions from five subjects for generating training 

data and remaining data used for testing. There is a total of 557 action files having 20 

actions performed by different subjects. Generated data is trained and tested with Res-

net-20 [7] and Resnet-50 [7] models, and Resnet-20 [7] model outperformed the rest of 

the models. 
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6 Results and Discussion 

Intel Realsense data: We captured skeleton data for six necessary actions using Intel 

Realsense depth camera [10]. We have trained 20-layer and 50 Resnet models [7] with 

a batch size of 64, optimizer as Stochastic Gradient Descent, initial learning rate as 

0.01. The accuracy graph (Fig. 8) shows that the model converges very slowly with a 

lot of variation in validation accuracy. Validation accuracy fluctuation is not an issue. 

The variation is due to low validation data, the high degree of freedom of the model, 

large batch size, and high learning rate. This fluctuation gets stabilized with a greater 

number of epochs.(Data is uploaded here: https://github.com/creative-

swamy/IntelRealSenseData). It is evident from the accuracy graph (Fig. 8) that the 

model can predict the unseen action data efficiently since we see 100% test accuracy 

with the loss nearing to zero. The data is captured from seven different subjects. Seven 

different people perform each action, and actions performed by four subjects are con-

sidered for training data, and the remaining are regarded as validation data. We made 

sure that the data used for testing is unseen data and has noise and variation compared 

to training data. If the model performs better with the test data, then it can be considered 

for testing in real-time need. We tested the model performance in the Virtual Real en-

vironment with two unknown subjects, which are not part of training and testing data, 

performing actions. The model can predict all the trained actions with 100% prediction 

accuracy. 

 

Fig. 8. Intel Realsense data, accuracy graph 

Leap Motion data: Leap Motion data: Leap Motion camera provides information about 

hand joints position and their respective rotation values. We have captured all joints 

position of two hands and individual rotation values for ten different hand gestures. The 

data is obtained from ten different subjects. Six subjects are considered for training 

data, and the remaining subjects are regarded as validation data. We trained the Resnet-

20 model [7] incrementally by adding more hand gesture data, and the model behavior 

is very consistent concerning validation accuracy (Fig. 9). We tested the trained model's 

performance in a real-time Virtual Reality environment with two unknown subjects, 

which are not part of training and testing, performing actions. The model can predict 

all six gestures made by unknown subjects with 100% prediction accuracy, and it is 
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evident from the accuracy graph shown in figure 9. (Data is uploaded 

here: https://github.com/creative-swamy/Leap-Motiondata-for-experiments/). 

 

Fig. 9. Leap motion data, accuracy graph 

Running Experiments with MSR 3D Action data [11]: We started exploring proposed 

algorithm behavior with one of the benchmark data set, MSR 3D Action dataset [11]. 

We tested the model's functioning with a cross data strategy and found that validation 

accuracy stops at 91%. We have not yet considered converting the skeleton data to 

scale-invariant and view-invariant [1]. Efficient pre-processing of the skeleton data will 

make sure proper learning curves to establish. Our research aims to address the moving 

object and camera position while implementing real-time action or gesture prediction 

algorithms. We wanted to experiment on the standard dataset to show that our proposed 

method performs near the state-of-the-art model.  We can improve the model perfor-

mance by enhancing the training data size using more advanced data augmentation 

methods and extensive hyper-parameters tuning. Our one more research aim is to im-

plement and using a sophisticated, real-time compatible machine learning model in a 

medical application environment. We concentrated more on experimenting with our 

prepared dataset and hence did not get more time to tune the model for MSR 3D action 

dataset. We consider enhancing our model performance in the future to work even bet-

ter with standard datasets like the MSR 3D action dataset. 

 

7 Conclusion 

This paper demonstrated a skeleton-based action detection mechanism using the resid-

ual neural network model with a unique way of data representation. The experiments 

on data captured from Intel Realsense camera [10] and Leap motion prove that the al-

gorithm outperforms real-time prediction. The analysis conducted on a challenging data 

set, MSR 3D human action dataset, also shows that the proposed algorithm provides 

near the state-of-the-art performance. Results show that considering relative positional 

values to construct images provide better accuracy in real-time human action prediction 

using skeleton joint information. Also, using this method, we can create a medical ap-

plication for Alzheimer's disease. There are challenges to address when implementing 
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a solution for treating Alzheimer's patients. Existing solutions only provide assisting 

tools and a virtual environment to help improve cognitive abilities and avoid negative 

emotions in the participants. Recent research shows that an interactive virtual environ-

ment helps a healthcare system treat Alzheimer's effectively, and hence, we have pro-

posed an interactive virtual environment solution for treating Alzheimer's. We can cre-

ate even a very sophisticated virtual environment for training purposes, but the envi-

ronment should help Alzheimer's patients overcome negative emotions and improve 

cognitive abilities. Research work proves that Animal Assisted Therapy allows Alzhei-

mer's patients to improve their mental status. In this project, we have created a virtual 

dog and a horse character in the VR environment. Research has proved that the Alzhei-

mer's patients will have reduced agitation, increased physical activity, improved eating, 

and improved pleasure feeling behavior after a real dog visits into the patient's environ-

ment. We aim to use our proposed method of human action prediction in a sophisticated 

Virtual Environment created for Alzheimer's patients and study the impact of a virtual 

treatment on Alzheimer's mental status. 
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Conference accepted

We have submitted a paper based on the Extended SkepxelRel method to "Ben Abdessalem,

H., Ai, Y., Kibbanahalli Shivalingappa, M. S., Frasson, C. (full paper submission accepted)

Virtual Reality Zoo Therapy for Alzheimer’s Disease Using Real-time Gesture Recognition,

Genetics Geriatrics and Neurodegenerative diseases (GeNeDis) 2020, Crete, Greece, 2020",

and below are the details.

Preparing training and testing data for training deep neural network models is done

by Marulasidda Swamy. Training the deep neural network model by fine-tuning hyperpa-

rameters and testing the model in real-time is also done by Marulasidda Swamy. Hamdi

integrated the human gesture recognition model into the VR environment and tested it in a

real environment. Hamdi also took part in checking Alzheimer’s mental status after allowing

Alzheimer’s experience in the healthcare system we developed. Yan AI contributed to deve-

loping a sophisticated VR environment, which includes animal characters. Professor Claude

Frasson guided us through the complete project while taking significant design changes and

implementation decisions. Marulasdidda Swamy, Yan AI and Hamdi contributed to writing

the paper and were reviewed and concluded by Professor Claude Frasson. Professor Claude

Frasson funded the complete work.
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Abstract. Alzheimer disease affects almost 10 million people every year. Nega-

tive emotions such as frustration and anxiety can have impact on brain capability 

in term of memory functions. Alzheimer’s patients experience more negative 
emotions then healthy older adults. Non-pharmacological treatment such as ani-

mal therapy could help Alzheimer patient but has restrictions and requirements. 

We propose a Virtual Reality Zoo Therapy system in which the patients are im-

mersed in a virtual environment and can interact with animals using their hands. 

With the immersive experience of Virtual Reality, patients feel that they are in a 

real therapy room and can freely interact with animals. This system is controlled 

by an intelligent agent which tracks the patients’ emotions using electroenceph-
alography and commands the animals according to their hand gesture and emo-

tions. Experiments have been done and preliminary results show that it is possible 

to predict patients’ hand gesture and interpret them in order to interact with vir-

tual animals and the Zoo Therapy system can reduce the negative emotions. 

Keywords: Virtual Reality, EEG, Intelligent Agent, Immersive Environment, 

Gesture Recognition, Zoo Therapy, Emotions. 

1 Introduction 

There is an increasing number of people with Alzheimer's disease (AD) and, unfortu-

nately, there is no effective pharmacological treatment that can stop or reverse the dis-

ease's progression. It is known that negative emotions such as frustration and stress 

have an impact on the brain capability in term of memory and cognitive functions and 

this is visible also in adults with AD. 

Non-pharmacological approaches to reduce the impact of symptoms may be inter-

esting. For instance, animal-assisted treatment, can temporarily relieve or improve 

symptoms. The interaction between an animal and human results in an increase of neu-

rochemical initiating, a decrease in blood pressure and relaxation. This may be benefi-

cial for ameliorating agitate behavior and psychological symptoms of AD [1]. 

This treatment method has very strict requirements and restrictions on the treatment 

environment and the animals participating in the treatment. Virtual reality (VR) has 

proven to be efficient in treating some disorders and could eliminate the restrictions of 
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the real-world methods using its immersion. Thus, a VR system with virtual animals 

could eliminate the restrictions and requirements of real animal therapy. 

However, how the virtual animal can recognize the interaction? Gesture recognition 

of the patient is a way to detect what command could be communicated to interact  with 

animals present in a VR environment in order to make the environment more immersive 

and feels like a real work which could attract the patients to actively cooperate with the 

treatment and increase the treatment effect. 

As the system is intended to calm the patient, we need to measure his-her emotions 

and their evolution. For that we use electroencephalography (EEG) with a portable de-

vice that can track the emotions of the patients in real-time. According to the evolution 

of the emotions we change the behaviour of the virtual animals in order to continue to 

reduce negative emotions. 

In order to create this system, we need to combine VR for immersion, gesture recog-

nition for animal reactions, EEG for measuring patients’ emotions and neurofeedback 

for adapting animal comportment to the patients’ emotions. The creation of such a sys-

tem is complicated because we have to use three different devices at the same time: VR 

headset, EEG headset and a Hand Tracking device. Each device needs to have a module 

in order to communicate with it: a virtual environment with the VR headset, a measur-

ing module with the EEG headset, and a gesture recognition module with the Hand 

Tracking device. The challenge is to synchronize between these modules in order to 

have a real-like user experience. 

Our research questions are: Q1- is-it possible to predict hand gesture in or-der to 

interact in a virtual reality environment?  and Q2 - is-it possible to reduce negative 

emotions while interacting with animals? 

The rest of this paper is organized as follows. In section 2, we give an overview of 

the characteristics of AD. In section 3, we present our approach and detail the different 

modules of the system that we developed. In section 4 we detail the experimental pro-

cedure. Finally, in section 5 we present and discuss the obtained results. 

2 Related Works 

2.1 Animal Therapy for Alzheimer’s Disease 

Alzheimer’s disease is a chronic progressive neurodegenerative disease that usually 

starts slowly and gradually worsens over time, it is the cause of 60–70% of cases of 

dementia [2][3]. It has three primary groups of symptoms.  The most common symptom 

is cognitive dysfunction. The second group comprises psychiatric symptoms and be-

havioral disturbances (for example, depression, hallucinations, delusions, agitation col-

lectively) termed non-cognitive symptoms.  The third group comprises difficulties with 

performing activities of daily living.  

The symptoms of Alzheimer’s disease progress from mild symptoms of memory loss 
to very severe dementia [2]. When the situation deteriorates, patients often be-come 

withdraw from their families or society [2] and gradually lose their physical function, 

eventually leading to death [4].  The cause of Alzheimer's disease is poorly understood 
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[2]. No treatments stop or reverse its progression, though some may temporarily im-

prove symptoms [3]. Most of these treatments are palliative.   

Current treatments can be divided into pharmaceutical, psychosocial and caregiving. 

Pet therapy (animal-assisted therapy (AAT)) is a Stimulation-oriented treatment of psy-

chosocial, which is an interaction between humans and animals for therapeutic pur-

poses. It can help someone recover from a health problem or mental disorder. The most 

used types of AAT are dog assisted therapy and horse assisted therapy. AAT aims to 

improve patients' social, emotional or cognitive function. A growing body of research 

shows the social, psychological and physical benefits of animal-assisted therapy in 

health and education [5]. In aged people, AAT can be used for ameliorating agitate 

behaviors, psychological, occupational, social and physical disorders especially in Alz-

heimer and Dementia.  AAT can be increase social interactions by initiating decrease 

the agitate behaviors of patients with Alzheimer and Dementia [6]. People with Alz-

heimer may have an easier time decoding the simple repetitive, non-verbal actions of a 

dog. Animals can act as transitional objects, allowing people to first establish a bond 

with them and then extend this bond to people. Most of the study results revealed that 

AAT especially dog therapy had an “calming effect” on the patients with dementia and 
Alzheimer disease [7]. 

2.2 Virtual Reality and Alzheimer’s Disease 

Over the last years, Virtual Reality started to be used in many fields due to its re-mark-

able advantages such as the immersion. There have many reports revealing the benefits 

of VR for AD patients. Some researchers showed that VR intervention with computer-

ized cognitive training can improve cognitive domains in individuals with mild cogni-

tive impairment or AD [8,9]. Additionally, AD patients prefer completing cognitive 

training tasks in VR over its pencil-paper counterpart [10]. This technology has been 

applied in the field of psychology to treat various disorders, including brain damage 

[11], and alleviation of fear [12]. 

Most studies focus on the use of VR to help users improve cognitive performances 

[13,14]. However, several researchers are investigating the importance of VR at a more 

physiological level [15,16]. 

2.3 Gesture Detection 

Recognizing human action from a video sequence depends on various factors, including 

the background of video frames, facial expression, and the rate at which position of 

body changes. An efficient method of information extraction requires removing un-

wanted background noise and balancing or ignoring varying light effects in different 

video frames.  

There have been efforts to convert 3D coordinate values into RGB image represen-

tation for deep neural network training. Encoded RGB image should include extensive 

temporal and spatial information of skeleton frames in a sequence. Recognizing human 

gestures using 3D coordinate information is challenging when Alzheimer patients 
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perform gestures. The dataset we prepared for our experiments includes mainly hand-

gestures because they are more relevant for any patient to per-form.  

The DenseNet [17] helps us derive the best prediction model from challenging the 

complex dataset. The authors in [18] talks about the effective method for trans-forming 

the temporal sequence of human skeleton moments into RGB representation. The tech-

nique proposed in [18] does not become dependent on the length of the skeleton se-

quence and efficiently can extract global features. Below are the steps followed in [18] 

for skeleton sequence to RGB transformation: Encode human poses into RGB images; 

Enhance local textures of the RGB images by applying AHE [19]; Before feeding im-

ages into D-CNN, a smoothing filter is applied to reduce the input noise effect; Dis-

criminative features can be learned by feeding images to DenseNet [17]. DenseNet [17] 

is one of the most effective CNN architectures for image classification. ESPMF is an 

enhanced version of SPMF [19], which in turn includes encoded PFs and MFs. The PFs 

encode skeleton joints position information, and MFs encode the rate of skeleton joints 

changes concerning all other skeleton joints. The proposed method in [18] achieves the 

state-of-the-art performance on MSR action data [20] and NTU RGB+D dataset [21]. 

ESPMF representation shows a 1.42% increased pre-diction accuracy when compared 

to SPMF [19] representation. 

3 Our approach: Zoo Therapy System 

In order to reach our goals, we propose a Zoo Therapy System. This system is com-

posed of 4 main components: Zoo VR environment, EEG Measures, Gesture Recogni-

tion and an Intelligent Agent. 

The users/Ad patients are immersed into Zoo VR environment and an EEG measur-

ing module measures their emotional reactions to the environment. The gesture recog-

nition module tracks hand gesture in real time. The intelligent agent receives the hand 

gesture and users’ emotions in real-time and intervene in Zoo VR by commanding an-

imals depending on the emotions and the gestures of the users. Figure 1 illustrates a 

general architecture of our zoo therapy system. 

 

Fig. 1. Architecture of Zoo Therapy 

Following is a detailed description for each module of our approach. 
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3.1 Zoo VR 

We propose to create "Zoo VR" which creates a safe and economic environment in-

cluding animals. In this environment, the user can call the animal to approach, eat or 

ask it to leave at any time. Animals respond as soon as they receive instructions from 

users. In addition to the user's gestures, the animals in the environment can also deter-

mine the next inter-action by sensing the user's emotions, that is, the changes of the 

user's emotions will affect the animals' coming and going and some other actions in real 

time. 

  Our environment can be divided into five Functional Modules, namely, scene mod-

ule, animal module, sound effect module, map module and human-computer interaction 

module. Following a description for each module. 

          

               Fig. 2. 3D treatment room                                           Fig. 3. 3D horse 

Scene Module - The overall appearance of the environment. In the scene module, we 

created a 3D treatment room (shown as figure 2)     

Animal models-animals in the environment. The most common forms of AAT are 

dogs and horses. Therefore, we created a 3D treatment horse and a 3D treatment dog. 

(Figure 3, the horse is in the treatment room). In order to match the interaction between 

animals and users, we made some animations while generating 3D animals, such as 

walking, running, eating, etc. 

  Sound effect module-environment and animal sound effects. We not only play 

soothing background music in the entire 3D environment; we also add different ani-

mal sound effects. For example, horse and dog can make several different calls in re-

sponse to different commands from users, and the sounds of horse’s walking and eating, 
the dog's panting. The sound effect will accompany the animal's movement and change 

in real time according to the different actions of the animal. 

  Map Module-the trajectory of animal movement and the generation of interactive 

routes. The function of the map module is to calculate and generate a feasible path 

according to the animal's real-time position and state, so that the animal will update its 

state under the path and approach or go away from the user. 

  Human-computer interaction module-user interaction with the environment. First, 

the user can interact with the animals by selecting the 3D button in the environment. 

Then, after completing the model training of the gesture recognition system, we will 

directly update the 3D button to gesture recognition. Users can use gestures to make 

animals come, walk, eat or leave. In addition, a neurofeedback system has been added 
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to the environment to influence animal behavior by identifying emotional changes in 

the user's EEG. When the two instruction modules work together, we give priority to 

the gesture recognition system. 

  Finally, we integrate the above five modules. The scene module adds the map mod-

ule and the animal module, the animal module adds the sound module, and finally con-

nects with the human-computer interaction module. The gesture recognition system and 

neurofeedback system will then be linked to the map module, the scene module and the 

animal module to form the final zoo treatment. 

3.2 EEG Measures 

In this research we use the Emotiv Epoc EEG headset to track emotions. The headset 

contains 14 electrodes spatially organized according to the International 10-20 system, 

moist with a saline solution. The electrodes are placed in antero-frontal (AF3, AF4, F3, 

F4, F7, F8), fronto-central (FC5, FC6), parietal (P7, P8), temporal (T7, T8) and occip-

ital (O1, O2) regions with two additional reference sensors placed behind the ears. The 

detailed position of the measured regions is shown in figure 4. 

 

Fig. 4. Emotiv headset sensors placement 

The Emotiv system generates raw EEG data (in µV) with a 128Hz sampling rate as well 

as the five well-known frequency bands, namely Theta (4 to 8 Hz) Alpha (8 to 12Hz), 

low Beta (12 to 16 Hz), high Beta (16 to 25 Hz) and Gamma (25 to 45 Hz).  

The system uses internal algorithms to measure the following mental states: medita-

tion, frustration, engagement, excitement and valence. Although we don’t have access 
to the system’s proprietary algorithms, studies have provided evidence showing the re-

liability of its output [22]. 

3.3 Gesture recognition system 

Our proposed extended SkepexelRel approach for skeleton sequence to RGB represen-

tation is motivated by the method explained in [18] wherein the recommended way by 

[18] produces an efficient RGB image of skeleton sequence. We need a few more mod-

ifications on top of the method explained by [18] for real-time prediction applications. 

Alzheimer's treating use demands a continuous prediction of the patient's hand gestures. 

Hand gesturing made by the patient changes the virtual environment, and these changes 

will have a direct impact on the patient's medical status. Data for training is captured 

from a Leap Motion camera with the Unity platform for basic hand gestures including: 
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• "Left Hand Come" and "Right Hand Come": will make the animals come near the 

user, 

• "Left Hand Go" and "Right Hand Go":  will make the animals goes away from the 

user, 

• "Version2 Left Hand Come" and "Version2 Right Hand Come":  will make the ani-

mals come near the user, 

• "Left Hand Wave" and "Right Hand Wave": will make the animals exit the room, 

• "Left Hand Still" and "Right Hand Still": will not affect the animals. 

There are two versions of the "Come" gesture since both have different rotation values. 

Data from the Leap Motion camera provides twenty-six joints information. Each frame 

data will have the position and rotation values of twenty-six joints. The position repre-

sents the joint's actual position in the Unity scene, and rotation values are the rotation 

of a joint relative to the world coordinate system wherein rotation in all three axes is 

generated for each joint. With Leap Motion and Unity setup, it is effortless to capture 

all the details of hand gestures made by Alzheimer's. Rotation values play a very sig-

nificant role in the hand gesture recognition process. Most of the actions listed above 

have little variation in position values but will have differences in rotations. Unity up-

dates rotation in all three axes with the help of Euler angles. We need a mechanism to 

transform both position and rotation values into RGB representation, similar to the 

method explained by [18]. The figure 5 shows features learned by the DenseNet model 

with the extended SkepxelRel RGB representation. We experienced a 100% real-time 

human gesture prediction accuracy in the VR environment. 

 

Fig. 5. Feature maps learned by DenseNet 

3.4 Intelligent Agent 

In order to personalize the zoo therapy to every participant, The Intelligent Agent tracks 

the emotions and the gesture of the patient while they are immersed into Zoo VR and 

intervene in the environment in order to command the animals. The com-mands send 

to Zoo VR depends on the emotions and the hand gesture of the participants. 

The agent uses a rule-based system in order to adapt the environment to the partici-

pants. For instance, if the frustration of the participants increases when the animal ap-

proaches them, the agent makes the animal go away. 
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The agent combines hand gesture and emotions as an input in order to make a deci-

sion of an action. It starts by given priority to the gestures and tracks at the same time 

the participants’ emotions in order to intervene in case of negative emotions. For in-
stance, if the participant performs a “Come” gesture in order to make the animal come 

and then the agent detect that his negative emotions are increasing while the animal 

approaching him, it will command it to go away. 

The weight of the rules is updated after each intervention in order to adapt the system 

to the participant. For example, if the agent makes the animal go away when the partic-

ipant is frustrated but the frustration doesn’t decrease, the agent will understand that the 
animal is not the reason for the frustration and will decrease the weight of the rule so 

next time another rule with higher weight will be applied. 

4 Experiments 

In order to analyze the effectiveness of our approach we started by training the hand 

gesture prediction module. Hand gestures were performed by ten different subjects, and 

data from subjects [1, 3, 5, 7, 8, 9, 10] were used for training, and remaining subjects 

are used for testing. We make sure that testing data has unseen rotations and positions 

of hand joints to validate the trained model. Leap motion data that we captured for our 

experiments include actions that can be performed in short duration. Data were obtained 

at different frame rates supported by the camera and we used the best frame rate for our 

experiment purpose (30 frames per second).  

After that, we aimed to experiment the entire Zoo Therapy system with participants 

which has these following criteria:  

• Older than aged 60 of age 

• Francophone 

• Normal or correct-to-normal vision 

• Normal hearing 

• Met the Consortium for the Early Identification of Alzheimer’s Disease – Quebec 

(CIMA-Q) criteria for SCD: 

─ Presence of a complaint defined as a positive answer to the following statements: 

“my memory is not as good as it used to be” “and it worries me” 

─ MoCA 20-30 

─ No impairment on the logical memory scale based on the education-adjusted 

CIMA-Q cut-off scores. 

Unfortunately, we were not able to perform experiments due to COVID-19 circum-

stances, but we were able to test our system on one participant. We started by equipping 

the participant with an EEG headset. When the exercises were complete, we added the 

Fove VR headset in which we installed the Leap Motion devise (used for gesture pre-

diction) and the participant started the immersive experiment. 
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5 Results 

The first objective of this research was to discover whether it is possible to predict 

hand gesture in order to interact in a virtual reality environment. Results shows 

that DenseNet architecture can learn unique features for every action from the Leap 

motion training dataset. Trained DenseNet can predict test images in real-time with 

100% accuracy (accuracy graphs are shown in figure 6). We evaluated trained Dense-

Net in real-time, and it is possible to predict every two-second action in less than 0.5 

seconds.   

 

Fig. 6. Learning graphs for Leap motion dataset 

The second objective of this research was to analyze if it is possible to reduce negative 

emotions while interacting with animals. To this end, we analyzed the mean frustra-

tion of the participant before, during and after Zoo Therapy. Results shows that, before 

the therapy the mean frustration was 0.524, during Zoo Therapy, the mean frustration 

was 0.429 and after the mean frustration was 0.486. Figure 7 shows the difference be-

tween the mean frustration before, during and after Zoo Therapy. 

 

Fig. 7. Histogram of general mean frustration 

108



10 

 

Even though these results are only from one participant, these results show that Zoo 

Therapy has the potential to reduce negative emotions and thus reduce AD symptoms. 

6 Conclusion 

In this paper, we presented a novel approach which could be used to improve AD pa-

tients’ memory performance by reducing their negative emotions using Zoo Therapy 
system. We created a VR environment in which we can interact with animals using 

gesture recognition module. An intelligent agent intervenes in real-time in order to con-

trol the animals depending on participants’ emotions and gesture. Experiments were 
conducted during which we collected hand gesture data in order to train the gesture 

recognition module. We tested our system and results showed that we can predict hand 

gestures and we might reduce negative emotions with Zoo Therapy system. These re-

sults indicate that our system might be used to reduce AD symptoms. 
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