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SOMMAIRE

En utilisant la méthodologie de l’apprentissage profond qui préconise de s’appuyer davantage
sur des données et des modèles neuronaux flexibles plutôt que sur les connaissances de
l’expert dans le domaine, la communauté de recherche a récemment réalisé des progrès
remarquables dans la compréhension et la génération du langue naturel. Néanmoins, il reste
difficile de savoir si une simple extension des méthodes d’apprentissage profond existantes
sera suffisante pour atteindre l’objectif d’utiliser le langage naturel pour l’interaction homme-
machine. Nous nous concentrons sur deux aspects connexes dans lesquels les méthodes
actuelles semblent nécessiter des améliorations majeures. Le premier de ces aspects est
l’inefficacité statistique des systèmes d’apprentissage profond: ils sont connus pour nécessiter
de grandes quantités de données pour bien fonctionner. Le deuxième aspect est leur capacité
limitée à généraliser systématiquement, à savoir à comprendre le langage dans des situations
où la distribution des données change mais les principes de syntaxe et de sémantique restent
les mêmes.

Dans cette thèse, nous présentons quatre études de cas dans lesquelles nous cherchons
à apporter plus de clarté concernant l’efficacité statistique susmentionnée et les aspects de
généralisation systématique des approches d’apprentissage profond de la compréhension des
langues, ainsi qu’à faciliter la poursuite des travaux sur ces sujets. Afin de séparer le problème
de la représentation des connaissances du monde réel du problème de l’apprentissage d’une
langue, nous menons toutes ces études en utilisant des langages synthétiques ancrés dans des
environnements visuels simples.

Dans le premier article, nous étudions comment former les agents à suivre des instructions
compositionnelles dans des environnements avec une forme de supervision restreinte. À savoir
pour chaque instruction et configuration initiale de l’environnement, nous ne fournissons
qu’un état cible au lieu d’une trajectoire complète avec des actions à toutes les étapes. Nous
adaptons les méthodes d’apprentissage adversariel par imitation à ce paramètre et démon-
trons qu’une telle forme restreinte de données est suffisante pour apprendre les significations
compositionelles des instructions. Notre deuxième article se concentre également sur des
agents qui apprennent à exécuter des instructions. Nous développons la plateforme BabyAI
pour faciliter des études plus approfondies et plus rigoureuses de ce cadre d’apprentissage.
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La plateforme fournit une langue BabyAI compositionnelle avec 1019 instructions, dont la
sémantique est précisément définie dans un environnement partiellement observable. Nous
rapportons des résultats de référence sur la quantité de supervision nécessaire pour enseigner
à l’agent certains sous-ensembles de la langue BabyAI avec différentes méthodes de forma-
tion, telles que l’apprentissage par renforcement et l’apprentissage par imitation.

Dans le troisième article, nous étudions la généralisation systématique des modèles de
réponse visuelle aux questions (VQA). Dans le scénario VQA, le système doit répondre aux
questions compositionelles sur les images. Nous construisons un ensemble de données de
questions spatiales sur les paires d’objets et évaluons la performance des différents modèles
sur les questions concernant les paires d’objets qui ne se sont jamais produites dans la
même question dans la distribution d’entraînement. Nous montrons que les modèles dans
lesquels les significations des mots sont représentés par des modules séparés qui effectuent
des calculs indépendants généralisent beaucoup mieux que les modèles dont la conception
n’est pas explicitement modulaire. Cependant, les modèles modulaires ne généralisent bien
que lorsque les modules sont connectés dans une disposition appropriée, et nos expériences
mettent en évidence les défis de l’apprentissage de la disposition par un apprentissage de
bout en bout sur la distribution d’entraînement. Dans notre quatrième et dernier article,
nous étudions également la généralisation des modèles VQA à des questions en dehors de
la distribution d’entraînement, mais cette fois en utilisant le jeu de données CLEVR, utilisé
pour les questions complexes sur des scènes rendues en 3D. Nous générons de nouvelles
questions de type CLEVR en utilisant des références basées sur la similitude (par exemple
“ la balle qui a la même couleur que ... ”) dans des contextes qui se produisent dans
les questions CLEVR mais uniquement avec des références basées sur la localisation (par
exemple “ le balle qui est à gauche de ... ”). Nous analysons la généralisation avec zéro ou
quelques exemples de CLOSURE après un entraînement sur CLEVR pour un certain nombre
de modèles existants ainsi qu’un nouveau modèle.

Mots-clefs: apprentissage profond, compréhension du langue ancré, généralisation sys-
tématique, efficacité de l’échantillon, modèles de suivre des instructions, modèles de réponse
visuelle aux questions.
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SUMMARY

By using the methodology of deep learning that advocates relying more on data and flexible
neural models rather than on the expert’s knowledge of the domain, the research community
has recently achieved remarkable progress in natural language understanding and gener-
ation. Nevertheless, it remains unclear whether simply scaling up existing deep learning
methods will be sufficient to achieve the goal of using natural language for human-computer
interaction. We focus on two related aspects in which current methods appear to require
major improvements. The first such aspect is the data inefficiency of deep learning systems:
they are known to require extreme amounts of data to perform well. The second aspect is
their limited ability to generalize systematically, namely to understand language in situa-
tions when the data distribution changes yet the principles of syntax and semantics remain
the same.

In this thesis, we present four case studies in which we seek to provide more clarity
regarding the aforementioned data efficiency and systematic generalization aspects of deep
learning approaches to language understanding, as well as to facilitate further work on these
topics. In order to separate the problem of representing open-ended real-world knowledge
from the problem of core language learning, we conduct all these studies using synthetic
languages that are grounded in simple visual environments.

In the first article, we study how to train agents to follow compositional instructions in
environments with a restricted form of supervision. Namely for every instruction and initial
environment configuration we only provide a goal-state instead of a complete trajectory with
actions at all steps. We adapt adversarial imitation learning methods to this setting and
demonstrate that such a restricted form of data is sufficient to learn compositional meanings
of the instructions. Our second article also focuses on instruction following. We develop the
BabyAI platform to facilitate further, more extensive and rigorous studies of this setup. The
platform features a compositional Baby language with 1019 instructions, whose semantics is
precisely defined in a partially-observable gridworld environment. We report baseline results
on how much supervision is required to teach the agent certain subsets of Baby language
with different training methods, such as reinforcement learning and imitation learning.
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In the third article we study systematic generalization of visual question answering (VQA)
models. In the VQA setting the system must answer compositional questions about images.
We construct a dataset of spatial questions about object pairs and evaluate how well different
models perform on questions about pairs of objects that never occured in the same question
in the training distribution. We show that models in which word meanings are represented by
separate modules that perform independent computation generalize much better than models
whose design is not explicitly modular. The modular models, however, generalize well only
when the modules are connected in an appropriate layout, and our experiments highlight the
challenges of learning the layout by end-to-end learning on the training distribution. In our
fourth and final article we also study generalization of VQA models to questions outside of the
training distribution, but this time using the popular CLEVR dataset of complex questions
about 3D-rendered scenes as the platform. We generate novel CLEVR-like questions by using
similarity-based references (e.g. “the ball that has the same color as ...”) in contexts that
occur in CLEVR questions but only with location-based references (e.g. “the ball that is to
the left of ...”). We analyze zero- and few- shot generalization to CLOSURE after training
on CLEVR for a number of existing models as well as a novel one.

Keywords: Deep learning, grounded language understanding, systematic generalization,
sample efficiency, instruction following, visual question answering.
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Chapter 1

INTRODUCTION

Building machines that can understand natural language has been a key goal of artificial in-
telligence (AI) since the legendary Darmouth Proposal that is widely regarded as giving birth
to the field (McCarthy et al., 1956). Initially, researchers approached this grand challenge
by programming, that is by defining precisely all steps and aspects of the computation that
took language as input and produced the desired response or behavior. In their program-
ming efforts these pioneers were guided by formal theories of syntax, developed by linguists,
and formal logical approaches to meaning, developed by mathematicians and philosophers.
Some achievements from these early days remain impressive even now, e.g. the SHRDLU
(Winograd, 1972) program that could engage with a human in a lengthy and contextualized
conversation about a block world. Despite a handful of successful demonstrations as the one
noted above, this classical approach to language understanding hit the same major roadblock
of ever-growing program complexity as the attempts to model other human abilities, judge-
ments, and behaviours. The endeavor to specify precisely how ambiguities and irregularities
of real world language use should be dealt with in any possible context is seen by many,
including the author of this thesis, as rather futile.

The alternative to fully codifying one’s understanding of reality in a model (such as e.g.
a program) is to let the model directly adapt to, or differently put, learn from, the reality.
This general idea of learning from data lies at the foundation of the closely related disciplines
of statistics and machine learning. Known under different names, data-driven methods
have permeated numerous areas of science and engineering, natural language processing
(NLP) among others. Rule extraction, estimating rule probabilities for stochastic grammars,
counting frequencies of word correspondences are examples of numerous different forms of
learning in classical NLP models, to name but a few (see Manning and Schütze (1999) for a
review).

The subject of this thesis is the more recent deep learning approach to NLP. Deep learn-
ing (DL) is a general machine learning (ML) paradigm that advocates a learning-centered
approach to building intelligent systems. While other ML methodologies often view learning



from data as a supplement to codifying our understanding of intelligence, DL advocates that
the ability to learn and generalize should be the key priority in model design (Bengio, 2009).
Key ideas and practices of deep learning stem from the artificial networks of neuron-like
units (neural networks), that have been known since 80s as a model class with potentially
unlimited learning capabilities (Rumelhart et al., 1986a; Cybenko, 1989). During the last
decade this potential was finally realized thanks to the increased amounts of data and com-
putational resources, as well as technical advances in neural network design (Glorot et al.,
2011), regularization (Srivastava et al., 2014) and training (Ioffe and Szegedy, 2015). The
unparalleled ability to learn and the plug-and-play ease with which neural building blocks
(pretrained or not) can be recombined have made deep learning the default machine learning
method for the cases when data is sufficient.

When the deep learning approach is applied to understanding or generating language,
little space is left for linguistic considerations regarding syntax, semantics and pragmatics1.
Instead, texts and utterances are viewed as data, namely as sequences of discrete tokens, and
neural models are trained to learn dependencies in such sequential data from huge datasets of
millions or even billions of words. Natural to some and counter-intuitive to others, the deep
learning approach to NLP turned out to be extremely effective. Its greatest success story,
arguably, is the wide-spread practical adoption of neural machine translation (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015) and the
resulting impressive improvement in the quality of automatic translations (Wu et al., 2016).
In addition to this indisputable real-world impact, most (if not all) academic evaluations of
language understanding or generation systems nowadays feature deep learning models in the
top of the leaderboard.

While there are definitely valuable lessons to be learned from the DL revolution in NLP, it
remains unclear whether it concludes the original quest for artificial systems that understand
natural language. To avoid the philosophical debate about what it means to understand
language, we pose a narrow engineering-minded formulation of this question: are existing DL
methods sufficient to let humans productively interact with machines in natural language?
Two following considerations suggest that the answer to this question might be “not yet”.
First, the blessing of unlimited learning abilities comes with the curse of sample inefficiency:
DL systems require extreme amounts of data for best performance. While raw textual data
is essentially unlimited and some other kinds of data (e.g. pairs of sentences from different
languages) are relative easy to collect, it will be arguably much harder to collect millions
of naturalistic examples of productive interaction using language. A related concern is that
in adapting to the training data DL systems take advantage of whatever dependencies it

1Here we are talking about the mainstream models, such as e.g. LSTMs and Transformers (see Chapter 2).
Integrating deep learning and linguistic considerations is a vibrant research area, but most of the impact
outside academia currently comes from the aforementioned linguistics-free models.

2



contains. Many recent studies suggest that instead of learning broadly applicable principles
of language, DL models often exhibit high empirical performance by exploiting dataset-
specific regularities (Jia and Liang, 2017; McCoy et al., 2019). The spurious solutions learned
thereby generalize badly when the data distribution changes. Hence, the expensive massive
interactive data collection would have to be repeated as for many slightly different human-
computer interaction scenarios.

We believe that the low sample efficiency and weak generalization of DL models for lan-
guage understanding need to be addressed in order for conversational interfaces to computers
and robots to empower human users and make them more productive. But how should re-
search on these issues be conducted in order to be effective? The conventional approach
of the NLP community is to evaluate systems on their ability to deal with real world texts
coming from “naturally occurring unconstrained materials” (Marcus et al., 1993). Such un-
constrained texts come from books, newspapers, websites, reports and other sources; they
refer to a broad range of phenomena, events and activities humans individually or collec-
tively engage in. Understanding such texts requires the system to represent and reason using
knowledge about all domains of human life. It is therefore unclear what is measured by holis-
tic evaluation on unconstrained texts: the model’s grasp of generally applicable principles
of natural language or the amount of world knowledge that it is able to access in some,
possibly very superficial way. Crude models that can superficially process vast corpora can
be championed by this evaluation methodology (Halevy et al., 2009). For example, n-gram
counting approaches dominated the language modeling landscape for decades, despite the
fact that obviously, the writer’s choice of the word depends on more than the last 5-7 words.

The research presented in this thesis takes a different approach: it studies learning of
synthetic natural-like languages that are grounded in simple visual environments. The hy-
pothesis underlying the switch to synthetic data is that the amount and the kind of world
knowledge that our evaluation methods require should be tightly controlled in order facilitate
progress in data efficiency and generalization of language understanding models. It is likely
that the path to improvements in these aspects of models’ performance goes through having
them learn something akin to the rules for composing meanings that are subject of formal
semantics, a subfield of linguistics that attempts to explain precisely how humans construct
meanings of utterances from meanings of individual words (Heim and Kratzer, 1998). The
evaluation methods that use unconstrained natural text might not guide us well along this
path, and instead distract researchers by tempting them to focus on knowledge mining from
vast corpora, for this is what such benchmarks are particularly sensitive to.

Using synthetic data may seem like going against the rise of empiricism in NLP and AI in
general that led to the radically data-driven deep learning models studied in this thesis. We
would like to emphasize that we are not advocating here to go back to hand-designed rule-
based systems, despite the fact that such systems could easily handle the synthetic grammars
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used here and in similar studies. Trying to manually scale up such systems to handle all
richness of natural language appears to be a dead-end. One immediate challenge is structural
ambiguity: a sentence can have multiple correct parses, as illustrated by “time flies like an
arrow” (which surprisingly can be parsed in the same way as “fruit flies like a banana”,
(Pinker, 1994)) and “the children ate the cake with the spoon” (which unexpectedly can
be read as eating the cake together with the spoon, (Manning and Schütze, 1999)). Other
is idioms: as “kick the bucket” does not mean the same thing as “kick the ball”. Further
challenges to the manual approach are pronoun resolution and elliptical constructions (such
as “Other [challenge] is” in the previous sentence: the word “challenge” is omitted but is clear
from the context). These phenomena and many others, as well as their interactions, do seem
to be hard to address by manual modelling or by overly restricted classes of learning-based
models, such as e.g. linear probabilistic context free grammars (Manning and Schütze, 1999).
Deep learning models, on the other hand, can successfully tackle these challenges where they
are provided enough empirical evidence. Yet, as we argued above, their data inefficiency and
generalization capabilities are often dissatisfying.

Our reasoning for using synthetic languages for testing learning-based models is thus as
follows. As long as neural models struggle to learn basic compositional rules that underlie
simple synthetic languages in a generalizable way, it is likely that same keeps occuring when
they are trained on natural data. On the other hand, if improving the models’ generalization
abilities in the controlled synthetic setups (that unlike natural data allow precise multifaceted
analysis of generalization) can be done without sacrificing their flexibility and expressiveness,
the gains for the field of NLP, and in especially its data-scarce usecases, could be dramatic.

As mentioned above, the meaning of words and utterances in the synthetic languages
that we consider are grounded in perception and action. We judge that a model has learned
a language if it reliably succeeds at following instructions in or asking questions about an
environment that it visually perceives. A possible alternative approach would be to ground
the language that the model is supposed to learn in a purely symbolic universe described by
an ontology and a set of rules (see e.g. (Weston et al., 2016) and (Côté et al., 2018)). We
have chosen, however, to embrace the challenge of grounding symbols in perception instead
of shying away from it. It has been argued that certain core kinds of world knowledge may
be challenging, if not impossible, to acquire from symbolic inputs alone (Harnad, 1990).
Apart from this speculative consideration that concerns language understanding in general,
there is also a practical argument for studying grounding: it will certainly be required from
productive human-robot interaction in unstructured environments.

1.1. Thesis Structure

This thesis presents four articles in which we study grounded language learning with
neural models. Chapter 2 covers the shared background of the four articles. Chapters 3 to
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10 contain the articles themselves, as well as prologues for each of them. Lastly, Chapter 11
presents the general conclusion of the thesis.
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Chapter 2

BACKGROUND

2.1. Machine Learning

At a high level, this thesis studies computational models that can be automatically
tuned using data. Therefore, the broad academic discipline that this thesis fits best is
machine learning (ML). It should be noted that ML heavily overlaps with a number of other
disciplines that also study data-driven computational methods, including statistics and data
mining. Since the articles we present here are written according to the standards of the ML
community, it is the ML terminology and concepts that we will use throughout this thesis.

As the name may suggest, machine learning studies machines that learn. These “ma-
chines” are not physical devices, they are abstract computational models that are capable of
automatic adaptation from experience. It is this adaptation process that is called “learning”
or “training“, depending on whether the machine is viewed as the subject or as the object.

While one can attempt to formalize learning in general (see e.g. (Mitchell, 1997)), it is
much more common in ML to consider several distinct formal setups that make different
assumptions about the nature of data, the goal of learning, and the possibility of interaction
with the environment. We will introduce only two of these setups here, namely supervised
learning and reinforcement learning, for these are the two main kinds of learning that can
be found in the articles of this thesis.

2.1.1. Supervised Learning

The goal of supervised learning (SL) is to learn a mapping from a sample of input-output
pairs. Crucially, we want the learned mapping to produce correct outputs for the inputs
that were not seen during learning. A canonical example of a supervised learning problem
is handwritten digit classification: given a dataset of handwritten digit images and the
respective labels “0”, “1”, ..., “9”, the task is to build a system that can label such images
with as a few mistakes as possible.



SL allows a very clear formalization as follows. Let X be the space of all inputs and Y

be the space of all outputs. Let p(x, y) be the density (or probability in the discrete case) of
the joint distribution of (x, y) pairs, x ∈ X, y ∈ Y . Lastly, let F be the family of candidate
X → Y mappings that we consider and L(ŷ, y) be the loss that we suffer for outputting ŷ

when the true output is y. We will focus on the mapping families that can be indexed using
a parameter vector θ ∈ R

n where n is a finite number of parameters. It is common to refer
to F as the model and to θ as model parameters and to write fθ to denote the mapping with
parameters θ.

Using this notation, we can express the expected loss associated with a mapping f ∈ F

as R(f) = Ex,y∼pL(f(x), y), an expression called risk. The task of supervised learning is to
choose an f with a small R(f) only using a sample D = {(xi, yi)}N

i=1, where (xi, yi) ∼ p. The
sample D is typically called the training set. To achieve this goal most approaches target
the average loss on the training set R̂(f) = 1

N

∑N
i=1 L(f(xi), yi), which is called empirical

risk. Naively choosing f with the lowest R̂(f) does not guarantee that R(f) is low. Various
approaches are thus used to prevent overfitting, i.e. a situation where R̂(f) is low and R(f)
is high. Choices include adding additional terms to R̂(f) such as e.g. L2 or L1 penalty
(Tibshirani, 1994), restricting explicitly the model F , and in the context of neural networks,
adding noise to weights or activations (Graves, 2011; Srivastava et al., 2014) . The umbrella
term for techniques to bridge the discrepancy between R̂(f) and R(f) is regularization.

A very common practice in SL is to use a per-example surrogate loss lθ(x, y) instead of
the task loss L(fθ(x), y), and to use its respective average R̃(fθ) = 1

N

∑N
i=1 lθ(xi, yi) instead of

R̂. For one, R̂(f) is often hard to optimize directly, for example when Y is a discrete space,
and consequently, L and R̂ are discontinuous with respect to the model parameters θ. A
typical example of such a situation is a classification problem with the zero-one loss L01(ŷ, y),
which is equal to 0 when ŷ = y and 1 otherwise. For two, substituting R̃ for R̂ often has
a desirable regularization effect. A very common surrogate loss is the cross-entropy loss. It
is defined as − log qθ(y|x) for the cases where the model defines a conditional distribution
qθ(y|x) and where the mapping f selects (sometimes approximately) the output with the
largest probability, f(x) = arg maxy′ qθ(y′|x).

2.1.2. Reinforcement Learning

The supervised learning setup assumes that the training set D of inputs and the corre-
sponding outputs was collected prior to training to the model. The reinforcement learning
(RL) setup gives the model more agency. An RL agent collects its own training data by
acting in the environment and receiving rewards from it. The state of the environment
serves as the input to the RL agent and the action that it chooses can be viewed as the
output. A key difference between RL and SL is thus that the optimal output is not given for
each input, instead it has to be found by the agent by trial-and-error, using rewards as the
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guidance. Other characteristic traits of the RL setup are its temporal and stochastic aspects:
the states in which the agent finds itself depend on the actions that the agent took earlier as
well as on the (sometimes) stochastic dynamics of the environment. Below we introduce the
key concepts of RL in a more formal way, mostly adapting the parts of the narrative from
(Sutton and Barto, 2018) that are relevant for policy gradient methods.

The canonical formalization of RL relies on Markov Decision Processes (MDP) as the
abstraction for the environment. Let S be the state space and A be the action set. The
MDP is defined by the initial state distribution p0(s) and a transition probability distribution
p(s′, r|s, a) for the next state s′ ∈ S and the reward r ∈ R, given that the agent took the
action a ∈ A in the state s ∈ S. Note that p(s′, r|s, a) is not a conditional probability in
the usual sense1, the vertical bar symbol “|” is only used here to indicate that p(s′, r|s, a)
must be a proper probability distribution for each (s, a) pair. A decision-making agent that
operates in an MDP is only allowed to base its choice of action on the MDP’s current state s.
The agent’s behaviour is thus defined by an (optionally) stochastic state-to-action mapping
called the policy and denoted π(a|s), a ∈ A, s ∈ S.

The agent interacts with the MDP as follows. First, the initial state S0 is sampled
from p0(s). At each time step t = 0, 1, 2, 3, . . . the agent chooses an action At ∼ π(At|St),
to which the environment reacts by transitioning into the next state St+1 and rewarding
the agent with the reward Rt+1, (St+1, Rt+1) ∼ p(s′, r|St, At). The resulting sequence
S0, A0, R1, S1, A1, R2, S2, A2, . . . is called a trajectory and denoted as τ . We will use the
notation τ ∼ π to refer to the trajectory generation process described above.

The goal of RL is improve the policy π. The optimality of the policy is measured by the
expected return g, which is defined as the discounted sum of all future rewards:

g = E
τ∼π

∞∑
t=1

γtRt, (2.1.1)

where γ ∈ [0; 1) is the so-called discount rate. Two other concepts that are related to the
expected return g and will be helpful for further exposition are state- and state-action- value
functions v(s) and q(s, a) respectively. They correspond to the agent’s discounted expected
return under different initial conditions. Namely, v(s) is the expected return that the agent
would receive if it started in s, and q(s, a) assumes additionally that the agent’s first action
was a. Formally:

v(s) = E
τ∼π,S0=s

∞∑
t=1

γtRt, (2.1.2)

q(s, a) = E
τ∼π,S0=s,A0=a

∞∑
t=1

γtRt, (2.1.3)

1An MDP together with a policy can be used to define a joint distribution p(s′, r, s, a). The transition
probability distribution p(s′, r|s, a) could be considered a conditional for this joint. But given an MDP
alone, p(s′, r|s, a) is just family of distributions indexed by an (s, a) tuple.
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where S0 = s and A0 = a denote the conditions described above. Note, that g, v and q depend
on π, but we will not indicate this dependency in the notation to keep it light-weight.

We asssume that in practice the interaction between the agent and the environment will
be episodic. Specifically, the agent is allowed to act for T steps, after which the environment
is restarted by drawing an initial state S0 ∼ p0(s). The expected return for such an episodic
setting could be defined without discounting, as g = E

T∑
t=1

Rt, but we chose an infinite-
episode optimization objective g in Equation 2.1.1 to make sure that the state values v(s)
are stationary, i.e. do not depend on the time t.

Theoretical studies of RL often consider finite MDPs in which S and A are finite. In
this case, the policy π can be represented as a probability table. In most applications of RL,
the state space is effectively infinite, and is often represented by high-dimensional vectors.
In this case more advanced machine learning models (such as e.g. neural networks) can be
used to represent the policy π and extrapolate the learned behavior from the subset of states
seen during training to all possible states.

A wide variety of RL algorithms has been proposed, and here we will give just one exam-
ple, the advantage actor-critic algorithm (A2C, (Mnih et al., 2016; Schulman et al., 2015)).
This algorithm trains a policy π and a value function estimate v̂ that are parametrized by
vectors θ ∈ R

Dθ and φ ∈ R
Dφ respectively. A2C belongs to the family of policy gradient

methods as it relies on computing an approximation d̂g
dθ

of the gradient dg
dθ

of the expected
reward g. Once such an approximation is computed, the policy can be improved by per-
forming an approximate gradient descent step, θ ← θ + α d̂g

dθ
, where α is the step size. The

policy gradient theorem (Sutton et al., 2000) provides an expression for dg
dθ

that is often used
to construct gradient estimates:

dg

dθ
= E

s∼ρπ,γ

∑
a∈A

q(s, a)dπ(a|s)
dθ

, (2.1.4)

where ρπ,γ is the γ-discounted distribution of states that the agent visits. This can be further
rewritten as an expectation over trajectories

dg

dθ
= E

τ∼π

∞∑
t=0

γtq(St, At)
d log π(At|St)

dθ
, (2.1.5)

To turn this expression into a gradient estimate, we replace q(St, At) with a K-step approx-
imation:

q̂(St, At) =
t+K∑

i=t+1
γi−t−1Ri + γK v̂(St+K+1). (2.1.6)

where K is a hyperparameter. Furthermore, v̂(St) is subtracted at each step from q̂(St, At)
as an action-independent baseline to reduce the estimate’s variance without adding any extra

10



bias (Williams, 1992). The resulting estimate is as follows:

d̂g

dθ
≈

T −1∑
t=0

γt(q̂(St, At) − v̂(St))
d log π(At|St)

dθ
(2.1.7)

Note that the state distribution discount γt is in practice often omitted from Equation (2.1.7):

d̂g

dθ
≈

T −1∑
t=0

(q̂(St, At) − v̂(St))
d log π(At|St)

dθ
(2.1.8)

This way, the agent’s optimality in all states that it visits is valued equally, regardless of how
long it takes to get to these states from the initial state s0 ∼ p0(s). This can be seen as an
approximation to the average reward formulation of RL that we do not cover here (Thomas,
2014). Another perspective is that Equation (2.1.8) can be viewed as a biased gradient of
the undiscounted return (provided that such return is finite, Schulman et al. (2015)).

To complete the description of the algorithm, we have to specify how the value function
estimate v̂ is trained. This is typically done using a technique called temporal difference
or bootstrapping (Sutton, 1988), where a target for the value estimate v̂(St) at time t is
constructed using the estimate v̂(St′) at a later time t′ > t. In the case of A2C, q̂(St, At) can
serve as such a target, leading to the following loss for v̂:

Lv̂(φ) =
T −1∑
t=0

(v̂(St) − q̂(St, At))2 (2.1.9)

The gradient of Lhatv with respect to φ can then be used for improving the value function
estimate v̂.

The basic RL setup and the A2C algorithm that we have covered so far assume that at
each step the agent observes the whole state of the MDP, which by virtue of the Markov
assumption contains all useful information about the future. This might be not the case in
many real-world scenario, e.g. a robot navigating in a house will only perceive the room in
which it is located, but the best behavior for it might depend on what is in the other rooms.
Such partially-observable, as opposed to fully-observable environments, are covered by a
different mathematical abstraction, namely Partially-Observable Markov Decision Processes
(POMDP, see (Monahan, 1982) for a survey). A key difference of a POMDP from MDP is
that at each step the agent receives an observation Ot that contain only partial information
about the state St. While POMDPs pose a much bigger challenge for theoretical analy-
sis, for many practical usecases it is often sufficient to consider the history of observations
(O0, O1, O2, . . .) as the state and use the same RL algorithms as the ones used by POMDP.

2.2. Deep Learning

The previous section has given two examples of how learning can be formulated as opti-
mization. In covering both the SL and RL formulation we abstracted away from the details
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Figure 2.1. Popular activation functions. Sigmoid σ(x) = 1
1+exp −x

is on
the left, hyperbolic tangent is in the middle, rectifier nonlinearity ReLU(x) =
max(0, x) is on the right.

h3

o1

x1 x2 x3

h2h1

o2

Figure 2.2. An MLP with 3 inputs, 3 hidden units and 2 output units. For
simplicity we omit the upper index in h1

i .

of what the optimized models do internally. Here, we give a quick introduction to the broad
deep learning (DL) family of ML models that are the subject of this thesis. The majority
of DL models are neural networks, although it should be noted that the meaning of the
term “neural network” has been expanding over years. We will start from the simplest and
historically first neural networks models and gradually transition to the more sophisticated
ones.

2.2.1. Neural Networks

What is known as an artificial neural network (or just neural network) in the machine
learning community traces its roots to investigations of psychologists and cognitive scientists
(Hebb, 1949; Rosenblatt, 1958), in particular to the research tradition called connectionism
(Rumelhart et al., 1986b). Connectionist argued that parallel distributed processing in large
networks of homogeneous units might be an appropriate framework for modelling cognition,
thereby challenging the dominant symbol manipulation paradigm (Newell and Simon, 1976;
Fodor, 1975). Since the adoption of neural networks as ML models in late 80s, ML researchers
have been developing their own perspective and terminology, to which I will adhere in this
section.
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The simplest example of a neural network is a fully-connected feedforward neural network,
which is also often called Multi-Layer Perceptron (MLP). An MLP consists of an input layer,
a number of hidden layers and an output layer. Each layer comprises a number of units (or
neurons). We will use m0, m1, . . . mK+1 to refer to the number of units in the input layer,
in each of the K hidden layers, and in the output layer. Each unit has an activation value
associated with it. The activation values x1, . . . , xm0 of the input units represent the input
to the network. The units of the first hidden layer compute their activations h1

j by applying
their activation function f to a biased weighted sum of the input layer activations:

h1
j = f(

∑
i

w1
ijxi + b1

j), (2.2.1)

where w1
i,j are the unit-specific weights and b1

j is the unit-specific bias term. The units
of the k-th layer perform the same computation but using the activations of the k − 1-th
layer instead of the inputs. While in theory units at different layers may have different
activation functions, all hidden layers typically use the same one. Common choices for the
activation function of hidden units include the rectifier ReLU(x) = max(0, x), the sigmoid
σ(x) = 1/(1 + e−x) and the hyperbolic tangent, see Figure 2.1. Finally, units of the output
layer are typically similar to the hidden units but use a different activation function. For
example, when an MLP is used for classification, it is common to use the softmax operation
to compute the activations of output units:

oj = exp
[∑

i

wK+1
ij hK

i + bK
j

]
/

⎛
⎝∑

j′
exp

[∑
i

wK+1
ij′ hK

i + bK
j′

]⎞
⎠ . (2.2.2)

The outputs oj can in this case be interpreted as a conditional probability distribution q(j|x),
where x is the network input. Figure 2.2 illustrates a basic MLP with one hidden layer.

Neural networks can also be described using the concise and expressive language of linear
algebra. For example, the computation performed by an MLP with a softmax output layer
can be written as

o = softmax(f(f(. . . f(xW 1 + b1) . . .)W K + bK)W K+1 + bK+1), (2.2.3)

where o is the output vector, W 1, ..., W K+1 are weight matrices, b1, ..., bK+1 are bias vectors.
From the ML perspective, the weight matrices and bias vectors are the parameters θ of the
MLP, as well as of the conditional distribution qθ(j|x) = oj that the MLP implements.

In order to train the MLP, one has to define a differentiable loss function R̃(θ), and most
importantly a procedure to compute exactly or approximately its gradient dR̃

dθ
. In the case

of supervised learning the loss function is typically defined as the average loss on a set of
examples, R̃(θ) = 1

N

N∑
i=1

l(o, yi), where yi is the desired output for the input xi, o = o(xi) is
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the network’s vector-shaped output. The gradient is then computed as follows:

dR̃

dθ
= 1

N

N∑
i=1

dl(o, yi)
do

do

dθ
, (2.2.4)

where the latter term do
dθ

is computed using the famous back-propagation algorithm (Rumel-
hart et al., 1986a; Werbos, 1974).

This gradient computation procedure is typically used to perform a version of stochastic
gradient descent using small batches of examples. The reader is referred to (Goodfellow
et al., 2016) for an overview of optimization procedures that are commonly used to train
neural networks.

Despite its simplicity, the MLP is very expressive model. The famous universal approxi-
mation theorem (Cybenko, 1989) states that any continuous function can be approximated
with an MLP with just one hidden layer, provided that it has enough hidden units. Notably,
the Multi-Layer Perceptron’s single-layer predecessor that was named Perceptron (Rosen-
blatt, 1958) was unable to approximate certain basic functions, such as e.g. XOR of binary
inputs, (Minsky and Papert, 1969). The universal approximation theorem shows how adding
just one hidden layer makes a huge difference. It has been further argued that deeper neural
networks that with more than one hidden layer are more appropriate for modelling com-
plex functions that are characteristic of intelligence, such as e.g. transformations from raw
sensory inputs to abstract categories (Bengio, 2009). These considerations about the role
of depth have given rise to the term “deep learning” that is now ubiquitously used to refer
to neural networks, as well as to other models that involve chaining trainable non-linear
transformations.

Let us pause and reflect on what an MLP is and what it can be used for. In principle, an
MLP can be taught to perform any task that can be represented as transforming a vector
into another vector. For example, images of handwritten digits can be represented as vectors
by concatenating all rows in the image. The digit’s category can be represented by a vector
that has zeros in all components but for one, a so-called one-hot vector. Given enough data in
that form, and provided that gradient-based optimization is successful, we can hope that the
trained MLP will generalize to examples beyond its training set. An MLP can furthermore
learn from trial-and-error as an RL model: it is sufficient to define how the MDP’s state s

can be represented as a vector and how the MLP’s output defines the distribution πθ(a|s)
over the actions a. Last, but not least, an MLP can be a building block in a bigger neural
network, trained by the gradient that the said neural network backpropagates to the MLP’s
outputs. Such an inner MLP block can furthermore backpropagate its gradient to the MLP’s
inputs to enable training of the preceeding neural parts.
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2.2.1.1. Recurrent Neural Networks

Representing the input as a fixed size vector is appropriate for some machine learning
usecases and less for others. A robot’s state that describes the angles and velocities of all
joints is an example of data that naturally comes in a vector form. The history of a robot’s
observations, financial time-series, natural language sentences or passages are examples of
data which is non-trivial to represent as a fixed length vector. Recurrent Neural Networks
(RNNs, Elman (1990)) take data that has a temporal or sequential aspect to it and transform
it into a sequence of vector representations. We will skip the connectionist background of
the RNNs and proceed directly to the formula, which in the simplest case is

ht = tanh(Wht−1 + V xt + b), (2.2.5)

where t is the time step, xt ∈ R
mi are input vectors, ht ∈ R

mh are the RNN states (sometimes
called hidden states), W and V are weight matrices and b is a bias vector, mi and mh stand
for the numbers of input and hidden units respectively. To complete the specification of an
RNN one must define the initial state h0, for example it can be set to a zero vector or it can
be trained as a parameter. A desirable characteristic of the RNNs is that states may act as
memory, that is the state ht may contain the inputs x1, . . . , xt, assuming that the training
results in a successful setting of the RNN’s weights. In such case the last state can represent
the whole input sequence regardless of its length, and can be used, for example as an input
to an MLP classifier, like the one described above. If the input sequence is too long to fit
in the last state, the intermediate states ht may be still useful. In this case it is common to
use another RNN that reads the inputs x1, . . . , xt backwards. A combination of the forward
state ht and the backward state h̃t summarizes a number of inputs directly preceding and
directly following xt. Such a combination of a forward RNN and a backward RNN is called
a bidirectional RNN (BiRNN), (Schuster and Paliwal, 1997), and the concatenation of their
states is called the BiRNN state.

The simple RNNs described above are known to be very hard to train in practice as they
suffer from the problem of gradient vanishing and gradient explosion (Bengio et al., 1994).
The addition of soft gates to RNNs, as first proposed in the Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) model, made them a much more practical
tool. For example, a Gated Recurrent Unit (GRU) (Cho et al., 2014) has a chance to retain
or reset its state by modulating its gates. The following equations describe the computation
of a GRU:

rt = σ(Wrh
t−1 + Vrx

t + br), (2.2.6)

zt = σ(Wzht−1 + Vzxt + bz), (2.2.7)

ht = zt 	 ht−1 + (1 − zt) tanh
(
W (rt 	 ht−1) + V vt + b

)
. (2.2.8)
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The notation in the equation above is similar to the one used in Equation (2.2.5). 	 denotes
elementwise vector multiplication. One can see that compared to the basic RNN described
by Equation (2.2.5), GRU is enhanced by the update gates zt and the reset gates rt, both
implemented using sigmoid units. When the update gate of the unit i is closed (zt

i = 1), the
activation ht

i−1 is retained for the next step as ht
i. When the reset gate is open, (rt

i = 0) the
unit i resets its state to zero before participating in computation of the next state ht.

2.2.1.2. Convolutional Neural Networks

Another important type of neural networks are convolutional neural networks (CNN), in
which units are locally connected according to the topology of the domain and share weights
across positions (LeCun et al., 1989). In a CNN that operates on image data the units of
each layer are organized in a tensor-like three-dimensional grid with two spatial and one
channel dimension. The weight wdx,dy,i,j of the convolutional layer defines the contribution
that the j-th unit of the previous layer at position (x − dx, y − dy) makes to the i-th unit
of the current layer at the position (x, y). The 4D tensor W = (wdx,dy,i,j) is often called
kernel. Formally, a CNN layer can be described by the following equation:

hk
x,y,i = f(

S∑
dx=−S

S∑
dy=−S

Ck−1∑
j=1

wdx,dy,i,jh
k−1
x−dx,y−dy,j), (2.2.9)

where hk and hk−1 are the layer’s input and output respectively, S is the maximum offset,
Ck−1 is the number of channels in input. A more compact way to describe what a con-
volutional layer does is using the convolution operator ∗ which reduces Equation 2.2.9 to
hk = f(W ∗ hk−1).

The main application of CNNs is computer vision (Krizhevsky et al., 2012), however,
they have also been successfully used in many other domains, including speech recognition
and language tasks (Waibel et al., 1989; Sercu et al., 2016; Collobert et al., 2011; Gehring
et al., 2017). For more information on CNNs we refer the reader to (Goodfellow et al., 2016).

2.2.2. Deep Learning for Language

From the viewpoint of deep learning, language is just a kind data that comes in a form
of a sequence or multiple sequences of discrete tokens. Here, we review key methods for
combining the basic building blocks of deep learning in models that can take language as
input and/or produce language as output.

As a first approximation, language can be seen as sequence of words2 that come from a
large but finite vocabulary. The first step of feeding language into a neural network is to
replace each word index w with the corresponding trainable embedding e(w). An alternative
2It would be more precise to say “sequence of moprhemes”, see (Bender, 2013) for a discussion how the
notion of word can contentious in many languages.
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perspective at the embedding step is that the words are represented as one-hot column vectors
which are then multiplied by a trainable matrix E (Elman, 1990). Due to the mechanics of
matrix multiplication, this is equivalent to taking the w-th column of the matrix E.

Once the words are embedded and represented as vectors, their representations are com-
posed to produce more vectors by further neural machinery. In what was perhaps the first
success story of using neural models on natural language data, Bengio et al. (2003) concate-
nate embeddings of each k subsequent words wt−k, ..., wt−1 from a text corpus and feed them
into an MLP that is trained to predict the next word wt. At each step, such an MLP defines
a distribution p(wt|wt−k, ..., wt−1). If the cross-entropy loss − log p(wt|wt−k, ..., wt−1) is used
for each of the predicted tokens, minimizing the sum of losses for all words wt corresponds to
maximizing the joint probability p(w1, . . . , wT ) =

T∏
t=1

p(wt|w1, . . . , wt−1) of the observed word
sequence. The resulting probabilistic language model can be used to assess the likelihood of
a given word sequence or even generate new ones.

The original feed-forward neural language model described above had a separate set of
weights for reading each of e(wt−1), e(wt−2) and etc., and besides, its memory was limited
to the last k words. These shortcomings can be addressed by replacing the MLP with an
RNN (Elman, 1990; Mikolov et al., 2010), a sequence of convolutional (Gehring et al., 2017)
or self-attention (Vaswani et al., 2017) layers, which we will briefly discuss later.

A neural language model can be trained to generate a sequence of words given an input
x by using the encoder-decoder (also called sequence-to-sequence) approach. (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014). The key idea is to modulate
the inputs and/or the initial state of a language model based on an additional input x.
As a result, the distribution that the language model defines becomes conditioned on x,
namely p(w1, . . . , wT |x). The classic example of sequence-to-sequence learning is the machine
translation model by (Sutskever et al., 2014). In that work, an LSTM-RNN first reads
the input sentence x = (x1, . . . , xL) and then continues (keeping the state) as a language
model to output probabilities of the words y = (y1, . . . , yT ) of the output sentence, thereby
implementing a conditional distribution p(y|x) =

T∏
t=1

p(yt|y1, . . . , yt−1, x). In this case the
same RNN is both the encoder, as it reads x, and the decoder, as it outputs the probability
distribution p(y|x), but one can also use two different RNNs for these roles (Cho et al., 2014).

Conditional language generation in the encoder-decoder paradigm can be greatly facili-
tated by using an attention mechanism (Bahdanau et al., 2015). Here, we will explain the
dot-product attention (Luong et al., 2015) using the query-key-value terminology proposed
by Vaswani et al. (2017). Given a query vector q, a set of value vectors vi and a set of
respective key vectors ki, the attention mechanism performs the following computation

c =
∑

i

aivi, (2.2.10)
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ai = exp qT
i ki∑

i′
exp qT

i′ ki′
, (2.2.11)

where ai are called attention weights. Informally speaking, an attention mechanism performs
a soft selection of keys ki that match the query q and returns a mixture of values that
corresponds to the soft-selected keys. In the context of encoder-decoder models, the query q

is computed from the state of the decoder RNN, and the states of the encoder BiRNN serve
as both keys ki and values vi. Note, that one vector can indeed play both key and value roles
without limiting the expressive power of the model because key and value signals can be
carried by orthogonal subspaces of the joint key-value space. The output c of the attention
mechanism serves as an additional input to the decoder RNN. The attention mechanism
hence allows the decoder RNN to dynamically create shortcuts to the relevant locations in
the input by producing the query q, performing the attention and consuming its output c.

In addition to be useful for connecting the encoder and the decoder, attention can replace
the RNNs as the basic building block in both of these components. In the self-attention
mechanism that is used for this purpose, each vector from a sequence of vectors attends to
all other vectors in the sequence. When the vectors are arranged as rows in a matrix H, one
step of single-head self-attention can be formally described as:

SelfAttention(H) = softmax(W QH(W KH)T )W V H), (2.2.12)

where W Q, W K and W V are linear transformations that are used to produce queries, keys,
and values respectively, and the softmax operator is applied row-wise. The highly successful
Transformer model by Vaswani et al. (2017) builds a representation for the input sequence
x by starting from a sequence of word vectors H = ([e(x1), p1], . . . , [e(xL), pL]) and applying
multi-head self-attention and MLP layers in alternation. Here, [e(xl), pl] stands for concate-
nation of a word embedding e(xl) and a position embedding pl.

The encoder-decoder paradigm can be used to train networks to generate language based
on many different kinds of inputs, including generating captions from images (Kiros et al.,
2014), generating the next response given a conversation history (Vinyals and Le, 2015) and
generating a summary given a document (Rush et al., 2015). While ultimately systems that
can both understand and generate language would be most desirable, studying language un-
derstanding alone has certain advantages from the research perspective. A daunting challenge
in language generation is evaluation, for evaluating a generated utterance is a non-trivial lan-
guage understanding task on its own and automated metrics are known to be unreliable (Liu
et al., 2016). If a language understanding system produces its outputs in a restricted form
instead of generating a full-fledged utterance, quantitative evaluation becomes easier. For
example, researchers study question answering systems that select the answer as a span in
the text (Rajpurkar et al., 2016), produce a single word answer (Hermann et al., 2015) or
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select the answer out of a list of candidates. The answer accuracy or F1 score in the case
of span selection can then be used to assess the system’s performance. Another popular
setup that permits quantitative evaluation is recognizing entailment, where the system has
to predict if one sentence entails another or not (Bowman et al., 2015; Williams et al., 2017).
Deep learning systems excel in such pure language understanding scenarios by encoding their
inputs with the neural components such as BiRNNs and Transformers and training classifiers
on top of produced representations. A common approach to compensate for the relatively
small size of language understanding datasets is to use pretrained word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) or encoders (Peters et al., 2018; Devlin et al., 2018).

Other cases in which deep learning methods can be used to process language include text
classification (Socher et al., 2013), syntactic and semantic parsing (Vinyals et al., 2015; Dong
and Lapata, 2016) and the traditional sequence-tagging tasks of statistical NLP (Collobert
et al., 2011).

2.3. Grounded Language Understanding

The conventional approach to studying language understanding focuses on the system’s
ability to read text and perform inference based on what it has read. Such capabilities are
very practically important, for humanity has produced vast amounts of texts and systems
that automatically process these texts, such as e.g. search engines, can be highly beneficial.
Still, human’s ability to understand language is not just about reading: it is also (or perhaps
even mostly) about referring to objects and events that we perceive and experience through
our senses. Differently put, the meanings of words and expressions that we use in our daily
life are very often grounded in what we perceive currently or in memory of such perceptions.
It is therefore interesting to study artificial systems that can understand language that is
grounded in the sensory context. While there might be less practical need for such systems
at the moment, the situation will rapidly change if (or when) robotics gets more mature and
robots are capable of operating autonomously in unstructured environments, such as e.g.
apartments and big city streets.

Another argument for studying language grounding is that it is at the moment rather
unclear how basic commonsense knowledge that is required for human-level reading can be
otherwise put into language understanding systems. A class of examples that is often used
to illustrate the importance of commonsense knowledge in reading are Winograd Schemas
(Winograd, 1972; Levesque et al., 2012). Consider e.g. the following sentence: “The trophy
would not fit in the brown suitcase because it was too big/small”. Here, one needs to know
that a suitcase can not be put in the trophy to correctly resolve the pronoun “it” depending
on whether “big” or “small” is chosen as the last word. While this example can be solved
just by knowing the sizes and purposes of trophies and suitcases, other cases may require
knowing more, e.g. that suitcases are typically parallelepipeds, that they can fall when put
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vertically, that trophies are often statues or cups, etc. Neither knowledge engineering or
crowdsourcing efforts, like CyC (Lenat, 1995) and ConceptNet (Speer and Havasi, 2013),
nor representation learning from large corpora (Peters et al., 2018; Devlin et al., 2018)
can at the moment be confidently considered compehensive solutions to the problem of
equipping machines with commonsense knowledge. The former struggles with the challenges
of knowledge representation, ambiguity, database incompleteness and inference, while the
latter suffer from reporting bias: texts tend to not state obvious facts the reader already
knows (Gordon and Van Durme, 2013).

Motivated by these and other considerations, researchers in several different fields at-
tempted to build systems that can understand languages that is grounded in (that is refers
to) extra-linguistic context. We review some of this research below.

2.3.1. Before Deep Learning

The robotics community has a long tradition of building simulated or real-world robots
that can follow natural language instructions. To this end, the instruction must be trans-
formed into a plan (such as e.g. a sequence of viewpoints or robot states) that the robot
is capable of executing (see e.g. Macmahon et al. (2006); Kollar et al. (2010); Tellex et al.
(2011); Kollar et al. (2017)). Perhaps the most advanced and flexible framework of this kind
is Generalized Grounding Graphs (G3, Tellex et al. (2011); Kollar et al. (2017)), in which
correspondence between instruction constituents (noun phrases, prepositional phrases, verb
phrases, etc.) and the so-called groundings that come from the environment (objects, places,
paths, events) is learned by a sparse syntax-aware graphical model. The G3 approach allows
to teach real-world robots to follow free-form instructions from several hundreds examples.
To achieve such efficiency, G3 relies heavily on preprocessing and domain-specific engineer-
ing. First, the environment is represented as a semantic map with pre-identified objects. As
discussed in (Kollar et al., 2017), what is not identified as an object by the robot’s percep-
tion (their examples include dirt piles, parked cars, but we would also add objects parts and
object groups), can not be referred to. The objects that are identified are represented by
using a fixed set of pre-defined semantic labels. Futhermore, place groundings need to be
pre-specified (such as the place on top of an object, or the empty space between the objects).
The geometry of paths, places, objects and combinations thereof needs to be pre-featurized
by the engineer to make learning possible. The model relies on dependency parses from
an off-the-shelf parser, which is not always appropriate for the given domain (Kollar et al.
(2017) report that “down” in “down the hall” is incorrectly labeled as “adverb” by an off-the-
shelf parser). Lastly, detailed supervision that assigns groundings to constituents of training
instructions is required to train G3 (although this was addressed in (Tellex et al., 2014)).
Another line of work considers parsing the instruction into a symbolic task specification
(Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Gopalan et al., 2018). A limitation
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of these approaches is that the vocabulary of symbols as well as the grounded meaning of
symbols are assumed to be known, and no learning procedure for adding new symbols is
offered. Less restrictive in this regard is the approach by Andreas and Klein (2015) that
models the alignment between the instruction and the plan.

All the above approaches are based on planning, that is translating the instructions into
sequences of unambiguous primitive operations to be executed. This can be problematic
when instructions refer to unknown parts of environments that are not mapped, although
in principle the plan can include exploration behavior (Matuszek et al., 2013). Another
approach is to avoid planning and instead view behaviour as a sequential decision-making
process, in the spirit of MDP and POMDP formalisms discussed in Section 2.1.2. Duvallet
et al. (2013) use this approach to train a policy to follow instructions in a partially-observable
environment using the DAGGER algorithm for imitation learning.

In addition to studying instruction-following, researchers presented systems that can an-
swer questions or understand references to objects in images (Feldman et al., 1996; Matuszek
et al., 2012; Krishnamurthy and Kollar, 2013; Malinowski and Fritz, 2014). We will refer
to such systems as performing visual question answering (VQA) to be consistent with the
current deep learning terminology. A typical before-deep-learning VQA system comprises
a perception system and a semantic parser. The former recognizes and labels entities and
relations between them. The latter converts the question into a logical form by using ei-
ther Combinatory Categorical Grammar (Steedman, 1996; Zettlemoyer and Collins, 2005)
or Dependency-Compositional Semantics (Liang et al., 2013) as the probabilistic parsing
framework. Perception and parsing components are sometimes trained together. For exam-
ple, in (Krishnamurthy and Kollar, 2013) the meaning of one- and two- place predicates from
the CCG lexicon is learnt jointly with the rule probabilities. Such a joint learning, however,
has a limited influence, because all the aforementioned systems start from a pre-detected set
of entities, and the entity detection (i.e. object recognition or image segmentation) system
does not participate in joint optimization.

2.3.2. Deep Learning Approaches

It is relatively easy to build a deep learning system that produces an output based on
perceptual and linguistic inputs: it is sufficient to combine neural networks that convert
both inputs into vector (or tensor) representations as well as a network that fuses the said
representations and produces an output based on them. Such an approach is attractive for
its simplicity and also for the fact that visual processing is trained together with language
processing, and hence can construct representations that are appropriate for the performed
task. There is no problem, for example, with entities likes piles of dust that might not be
detected by the off-the-shelf object detector: the system as a whole should be capable to
adapt to instructions or questions that mention dust piles. This flexibility comes at a price
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of needing more data to train and lacking a clear understanding of how the resulting opaque
system generalizes.

2.3.2.1. Visual Question Answering

A wide variety of deep-learning-based models that can understand grounded language
have been presented in the context of VQA research. The VQA setup gained popularity
when large-scale datasets of crowdsourced questions about natural images were collected
(e.g. the VQA 1.0 dataset by Antol et al. (2015)) and when it started being viewed as a
visual alternative to the Turing test (Geman et al., 2015). The most basic deep learning
model for VQA fuses an image representation produced by a CNN and a question represen-
tation produced by an LSTM (Antol et al., 2015). More complicated models perform visual
attention over the image or over bounding boxes produced by an object detector (Yang
et al., 2016; Anderson et al., 2018a). Another notable family of models are Neural Module
Networks (NMN) (Andreas et al., 2016). The NMN approach draws inspiration from logical
forms that were used to express the question meanings in earlier work (Krishnamurthy and
Kollar, 2013; Malinowski and Fritz, 2014). Similarly to how the meaning is contructed from
atoms (e.g. one- and two- place predicates) in logical forms, a unique network is constructed
for every question from reusable modules in the NMN approach.

A common concern regarding the VQA research discussed above is that results that
are obtained on crowd-sourced open-ended datasets are difficult to interpret. The original
VQA 1.0 dataset (Antol et al., 2015) was collected by asking crowdsourcing workers to pose
questions that would “stump the smart robot”. The workers were free to ask whatever ques-
tions they want, and as a result some of the questions are very short and specific (“What
color is the hydrant?”) and others require advanced commonsense reasoning (“Does this
man have children?”, “Is this pizza vegetarian?”, etc). Another side effect of the uncon-
strained open-ended data collection is that workers would ask similar questions in similar
circumstances. The resulting dataset regularities (often called “biases”) allow models to an-
swer questions using strategies that are clearly different from the way humans understand
language. Answers to the questions in many cases could be predicted from questions only in
the first version of the VQA dataset, such as e.g the answer to the question “What covers
the ground?” was always “snow” (Agrawal et al., 2016). In the subsequent VQA 2.0 dataset
(Goyal et al., 2016) this issue was alleviated by making sure that for each question there is at
least two different images with different answers. Further attempts to make more challenging
splits were made. In the Compositional VQA dataset (Agrawal et al., 2017) the training and
test sets are forced to not have similar question-answer pairs, and in VQA under Changing
Priors dataset (Agrawal et al., 2018) the distribution of answers at test time is different from
the training one. The aforementioned efforts seek to counteract the effect of one kind of bias
that is discussed above: the possibility to predict the answer without looking at the image
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at all. The impact of other regularities that open-ended data collection could entail (e.g.
people will probably ask more questions about salient objects) has not been discussed yet,
and thus we believe that the challenge of interpreting the open-ended VQA results remains
open.

In order to understand better what deep learning approaches to VQA are capable of, re-
searchers constructed synthetic datasets with automatically generated images and templated
languages (Johnson et al., 2016; Kuhnle and Copestake, 2017). The CLEVR dataset (John-
son et al., 2016), that is arguably is the most well-known dataset of this kind, features 700K
complex questions that require multiple steps of reasoning, counting and logical operations.
CLEVR was initially found to be challenging for basic deep learning models, such as e.g.
those combining CNN- and LSTM- produced image and question representations in a simple
way. More complex models with much better performance were quickly proposed, including
Relation Networks (RN) (Santoro et al., 2017), Feature-wise Independent Linear Modula-
tion (FiLM) (Perez et al., 2017) and Compositional Attention Networks (CAN) (Hudson
and Manning, 2018). RN treat the 3D-tensor representation of the images as a set of object
representations and consider all pair-wise interactions between them. The FiLM approach
views question-answering with deep learning models as modulation of visual processing in
lower levels of the CNN. The CAN model performs a sequence of visual attentions over the
image. A number of NMN-style approaches have also been proposed (Hu et al., 2017, 2018;
Johnson et al., 2016; Mascharka et al., 2018). Lastly, several recent papers feature two-stage
models that combine object detection and logical reasoning (Yi et al., 2018; Mao et al., 2018)
in a way that is reminiscent to the older VQA models that were reviewed above. The model
by Mao et al. (2018) in particular, is remarkably similar to the older work by Krishnamurthy
and Kollar (2013). The semantic parsers are learned jointly with predicate classifiers in both
papers, but Mao et al. (2018) uses a neural parser and neural classifiers instead of linear
ones.

Similarly to the open-ended VQA, interpreting results of synthetic data VQA research is
non-trivial. The known composition of datasets makes it possible for researchers to construct
specialized models that work well on a particular dataset, and often such models are not eval-
uated on any other data (in particular, this is very often the case for CLEVR). Furthermore,
while the diversity and complexity of the datasets can be quite high, it is still limited (e.g.
CLEVR has 90 question families for 700K questions), and it is somewhat unsurprising that
flexible deep learning models can handle these templates provided enough data. A number
of papers are now reporting how model’s performance varies with the amount of training
data, and sometimes these additional evaluations are quite insightful. For example, while
the differences between 97.6% and 98.9% accuracies of FiLM and MAC respectively after
training on CLEVR can be hard to interpret, > 90% and < 60% performances with one
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fifth of the data suggest a significant difference in ease with which the said models learn to
perform the task (Hudson and Manning, 2018).

Perhaps most importantly, the lack of real-world and data collection regularities that
plague the open-ended VQA research can be seen as both a blessing and a curse for synthetic
data VQA research. In the real world, unlike e.g. CLEVR, an object is not equally likely to
be of any color (e.g. the fire hydrants tend to be red and car tires tend to be black). Likewise,
objects of certain classes (e.g. a monitor and a keyboard) have a higher chance to be referred
to within one utterance than others (e.g. a car and a violin). A good model for grounded
language understanding should be robust to such biases in order to deal successfully with
long tail situations. Such robustness is not studied by default in synthetic data benchmarks,
increasing the uncertainty regarding the significance of findings obtained on them.

Researchers have been attempting to construct synthetic setups that incorporate a con-
trolled bias in the training distribution, thereby measuring out-of-distribution generalization.
The original CLEVR paper by Johnson et al. (2016) features a dataset version called Com-
positional Generalization Test (CoGenT3) in which objects have different colors at training
and test times. CoGenT measures models’ robustness to regularities in the image distribu-
tion and does not explicitly control the difference between training and test questions. In
contrast, in the article presented in Chapter 8 we focus on the models’ ability to generalize
from a biased question distribution while making sure that training and test image distribu-
tions are similar. In doing so, we aimed to adapt the notion of systematic (also often called
compositional, algebraic or combinatorial generalization) generalization (Marcus, 2003; Lake
and Baroni, 2018) to studies of grounded language understanding. The concept of system-
aticity corresponds to a human’s ability to consider and interpret arbitrary combinations of
known atoms of meaning (Fodor and Pylyshyn, 1988). It is closely related to the principle
of compositionality that states that humans construct meanings of linguistic constituents
from the meanings of their parts (see e.g. the textbook by Heim and Kratzer (1998)). Both
concepts are hard to define in the most general case, but compelling instantiations can be
constructed in specific cases, such as e.g. spatial reasoning about pairs of objects. We refer
the reader to Chapter 8 for more details.

In addition to lacking the real world regularities, synthetic VQA datasets can exhibit
biases of their own. The very fact that the language is templated in CLEVR and the same
templates are used during training and during testing can be considered a bias. A uniform
coverage of all possible question structures will arguably be very difficult to achieve when
performing natural data collection, yet we would desire the system to understand more rare

3We find the use of the word “compositional” in the name CoGenT rather misleading. The test does not focus
on whether meanings of words are composed to produce meanings phrases, instead it tests the robustness of
individual word grounding to biases in the image distribution.
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constructs as well. In Chapter 10 we discuss this issue in more detail and present new
templates to evaluate systematic generalization of models that were trained on CLEVR.

To conclude the discussion of recent VQA efforts, we note that several datasets were
recently presented that combine natural and synthetic data. This includes the GQA dataset
(Hudson and Manning, 2019), which features synthetic questions about real world images,
and the NLVR dataset (Suhr et al., 2017), which on the contrary features crowdsourced
natural language assertions about synthetic images. Combined with accurate generalization
testing of the kind that we perform in Chapters 8 and 10, this hybrid paradigm could be
fruitful and facilitate development of models that can robustly understand more kinds of
grounded language.

2.3.2.2. Instruction Following

A agent that can learn to follow instructions can be constructed using deep learning in
a way that is similar to how a basic VQA model is built. The simplest approach is to view
behaviour as sequential decision-making and train a deep learning policy to output the next
action given a history of the observations and the instruction. Such an approach sidesteps
intermediate procedures that are typical for most robotic systems (such as transforming the
environment into a symbolic semantic map and planning in such a map) and is thus, in
principle, free of the limitations that these procedures bring along (such as “dust piles” dis-
cussed earlier in this thesis and such as challenges of planning in unknown environments). In
fact, the advantages of this approach were recognized before the deep learning age (Duvallet
et al., 2013), yet with deep learning, sequential decision-making paradigm becomes especially
appealing, as feature engineering is no longer required. The price for the flexibility is the
same as for VQA models: lower data efficiency and transparency.

The studies of grounded instruction-following typically take place in abstract simulated
environments. Researchers have demonstrated the deep learning policies can be trained to
follow instructions using reinforcement learning (RL) (Hermann et al., 2017; Chaplot et al.,
2018; Yu et al., 2018) imitation learning (IL) (Mei et al., 2016) and methods that combine
aspects of both RL and IL (Janner et al., 2017). A problematic aspect of the works that
rely on pure RL is that they rely on a given instruction-conditioned reward function in
order to train the agent. Given how data-inefficient the current deep RL methods are, pure
RL approaches to training instruction-following agents are effectively limited to synthetic
languages with known unambiguous semantics. Indeed, this is the case because using RL
with natural language instructions would require a human in the loop to constantly supervise
and reward the agent during its lengthy training process.

Arguably, aspects of imitation learning (Pomerleau, 1991; Ng and Russell, 2000), whereby
the desired behaviour is illustrated by expert demonstrations, would be required in order to
make real world applications of deep learning methods for instruction-following possible.
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The expert demonstrations can reduce or eliminate the need for trial-and-error learning of
what the instructions require. Notably, almost all the approaches for teaching robots to
follow instructions that we reviewed in Section 2.3.1 are relying on expert demonstrations.
Most imitation learning methods require complete trajectories (i.e. action sequences) as
demonstrations. This can be restrictive because to demonstrate a behaviour to the agent
the human needs to control it remotely, which can be difficult. In Chapter 4.2 we explore
how reward functions can be induced from examples of instructions and the corresponding
goal states only, without using complete trajectories.

While instruction-following research that relies on RL often uses synthetic data,
imitation-learning studies tend to use instructions and demonstrations collected from
humans (Anderson et al., 2018b; Mei et al., 2016; Misra et al., 2017; Fried et al., 2018).
The success rates obtained by agents trained in these studies tend to be around 60-70%,
perhaps due to the limited size of the demonstrations datasets (from ≈ 1K to ≈ 20K

demonstrations). It is unclear whether systems that perform so unreliably can be useful. It
is therefore interesting to study how many demonstrations, or more generally, how much
supervision is at the moment required for deep learning models to learn to follow instructions
robustly. Chapter 6 presents the BabyAI platform that we developed to facilitate studies of
this topic.
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Chapter 3

PROLOGUE TO FIRST ARTICLE

3.1. Article Details

Learning to Understand Goal Specifications by Modelling Reward. Dzmitry
Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli, and Ed-
ward Grefenstette. International Conference on Learning Representations 2019. Presented
is a revised version of the article, see Section 4.7 for details.

Personal Contribution. The article is the outcome of my Fall 2017 internship at Deep-
Mind, London. The idea to study instruction-following from examples of instructions and
goal states was born in discussions with Edward Grefenstette, Pushmeet Kohli and Jan
Leike. I developed and implemented the initial algorithm as well as the GridLU-Relations
environment for testing it. Felix Hill contributed the GridLU-Arrangements environment and
experiments on it. Edward Grefenstette implemented the false negatives rejection heuristic
based on my idea. Arian Hosseini helped me to debug the PPO-based reimplementation
of the algorithm. Edward Hughes’s help with DeepMind’s infrastructure as well as with
running baseline experiments was extremely valuable. I wrote the first version of the paper,
which was later edited by all project participants, especially by Edward Grefenstette.

3.2. Context

The project was inspired by a series of papers that showed how deep RL agents can be
trained to follow synthetic instructions. All such methods relied on a programmatic im-
plementation of instruction-conditioned reward function, which assumption we found very
restrictive. It was natural for us to inquire whether such a reward function can be learned
from a relatively cheap data source, such as goal-state demonstrations paired with the cor-
responding instructions.



3.3. Contributions

The paper introduces and experimentally proves the concept of learning instruction-
conditioned reward functions from examples of instructions and corresponding goal states.
We show that the learned reward functions can be reused to adapt to a change in the
dynamics of the environment. The paper is the first to report the difficulties of achieving
near-perfect performance with reward modelling methods and deep learning models, as well
as to propose a remedy for this issue: the false negatives rejection heuristic.
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Chapter 4

LEARNING TO UNDERSTAND GOAL
SPECIFICATIONS BY MODELLING REWARD

4.1. Introduction

Figure 4.1. Different valid goal
states for the instruction “build an
L-like shape from red blocks”.

Developing agents that can learn to follow user
instructions pertaining to an environment is a long-
standing goal of AI research (Winograd, 1972). Re-
cent work has shown deep reinforcement learning
(RL) to be a promising paradigm for learning to follow
language-like instructions in both 2D and 3D worlds
(e.g. Hermann et al. (2017); Chaplot et al. (2018),
see Section 4.4 for a review). In each of these cases,
being able to reward an agent for successfully com-
pleting a task specified by an instruction requires the
implementation of a full interpreter of the instruction
language. This interpreter must be able to evaluate
the instruction against environment states to determine when reward must be granted to the
agent, and in doing so requires full knowledge (on the part of the designer) of the semantics of
the instruction language relative to the environment. Consider, for example, 4 arrangements
of blocks presented in Figure 4.1. Each of them can be interpreted as a result of successfully
executing the instruction “build an L-like shape from red blocks”, despite the fact that these
arrangements differ in the location and the orientation of the target shape, as well as in the
positioning of the irrelevant blue blocks. At best (e.g. for instructions such as the afore-
mentioned one), implementing such an interpreter is feasible, although typically onerous in
terms of engineering efforts to ensure reward can be given—for any admissible instruction in
the language—in potentially complex or large environments. At worst, if we wish to scale to
the full complexity of natural language, with all its ambiguity and underspecification, this
requires solving fundamental problems of natural language understanding.



If instruction-conditional reward functions cannot conveniently or tractably be imple-
mented, can we somehow learn them in order to then train instruction-conditional policies?
When there is a single implicit task, Inverse Reinforcement Learning (IRL; Ng and Russell,
2000; Ziebart et al., 2008) methods in general, and Generative Adversarial Imitation Learn-
ing (Ho and Ermon, 2016) in particular, have yielded some success in jointly learning reward
functions from expert data and training policies from learned reward models. In this paper,
we wish to investigate whether such mechanisms can be adapted to the more general case
of jointly learning to understand language which specifies task objectives (e.g. instructions,
goal specifications, directives), and use such understanding to reward language-conditional
policies which are trained to complete such tasks. For simplicity, we explore a facet of this
general problem in this paper by focussing on the case of declarative commands that specify
sets of possible goal-states (e.g. “arrange the red blocks in a circle.”), and where expert ex-
amples need only be goal states rather than full trajectories or demonstrations, leaving such
extensions for further work. We introduce a framework—Adversarial Goal-Induced Learning
from Examples (AGILE)—for jointly training an instruction-conditional reward model using
expert examples of completed instructions alongside a policy which will learn to complete
instructions by maximising the thus-modelled reward. In this respect, AGILE relies on fa-
miliar RL objectives, with free choice of model architecture or training mechanisms, the only
difference being that the reward comes from a learned reward model rather than from the
environment.

We first verify that our method works in settings where a comparison between AGILE-
trained policies with policies trained from environment reward is possible, to which end we
implement instruction-conditional reward functions. In this setting, we show that the learn-
ing speed and performance of A3C agents trained with AGILE reward models is superior to
A3C agents trained against environment reward, and comparable to that of true-reward A3C
agents supplemented by auxiliary unsupervised reward prediction objectives. To simulate
an instruction-learning setting in which implementing a reward function would be problem-
atic, we construct a dataset of instructions and goal-states for the task of building colored
orientation-invariant arrangements of blocks. On this task, without us ever having to imple-
ment the reward function, the agent trained within AGILE learns to construct arrangements
as instructed. Finally, we study how well AGILE’s reward model generalises beyond the ex-
amples on which it was trained. Our experiments show it can be reused to allow the policy
to adapt to changes in the environment.

4.2. Adversarial Goal-Induced Learning from Examples

Here, we introduce AGILE (“Adversarial Goal-Induced Learning from Examples”, in
homage to the adversarial learning mechanisms that inspire it), a framework for jointly
learning to model reward for instructions, and learn a policy from such a reward model.
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Specifically, we learn an instruction-conditional policy πθ with parameters θ, from a data
stream Gπθ obtained from interaction with the environment, by adjusting θ to maximise
the expected total reward Rπ(θ) based on stepwise reward r̂t given to the policy, exactly
as done in any normal Reinforcement Learning setup. The difference lies in the source of
the reward: we introduce an additional discriminator network Dφ, the reward model, whose
purpose is to define a meaningful reward function for training πθ. We jointly learn this
reward model alongside the policy by training it to predict whether a given state s is a goal
state for a given instruction c or not. Rather than obtain positive and negative examples
of 〈instruction, state〉 pairs from a purely static dataset, we sample them from a policy-
dependent data stream. This stream is defined as follows: positive examples are drawn
from a fixed dataset D of instructions ci paired with goal states si; negative examples are
drawn from a constantly-changing buffer of states obtained from the policy acting on the
environment, paired with the instruction given to the policy. Formally, the policy is trained
to maximize a return Rπ(θ) and the reward model is trained to minimize a cross-entropy
loss LD(φ), the equations for which are:

Rπ(θ) = E
(c,s1:∞)∼Gπθ

∞∑
t=1

γt−1r̂t + αH(πθ), (4.2.1)

LD(φ) = E
(c,s)∼B

− log(1 − Dφ(c, s)) + E
(ci,gi)∼D

− log Dφ(ci, gi). (4.2.2)

where
r̂t = [Dφ(c, st) > 0.5]

In the equations above, the Iverson Bracket [. . .] maps truth to 1 and falsehood to 0,
e.g. [x > 0] = 1 iff x > 0 and 0 otherwise. γ is the discount factor. With (c, s1:∞) ∼ Gπθ ,
we denote a state trajectory that was obtained by sampling (c, s0) ∼ G and running πθ con-
ditioned on c starting from s0. B denotes a replay buffer to which (c, s) pairs from T -step
episodes are added; i.e. it is the undiscounted occupancy measure over the first T steps.
Dφ(c, s) is the probability of (c, s) having a positive label according to the reward model,
and thus [Dφ(c, st) > 0.5]1 indicates that a given state st is more likely to be a goal state for
instruction c than not, according to D. H(πθ) is the expected per-step policy entropy, and
α is a hyperparameter. The approach is illustrated in Fig 4.2. Pseudocode is available in
Section 4.6. We note that Equation 4.2.1 differs from a traditional RL objective only in that
the modelled reward r̂t is used instead of the ground-truth reward rt. Indeed, in Section 4.3,
we will compare policies trained with AGILE to policies trained with traditional RL, simply
by varying the reward source from the reward model to the environment.

1While all results reported in this paper are obtained using a discretized reward rt = [Dφ(c, st) > 0.5], in
additional experiments we found that using just Dφ(c, st) as the reward is equally effective. See Section 4.7
for more context on the choice of the reward function.
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(a) Policy Training

(b) Reward Model Training

Figure 4.2. Information flow during AGILE training. The policy acts condi-
tioned on the instruction and is trained using the reward from the reward model
(Figure 4.2a). The reward model is trained, as a discriminator, to distinguish
between “A”, the 〈instruction, goal-state〉 pairs from the dataset (Figure 4.2b),
and “B”, the 〈instruction, state〉 pairs from the agent’s experience.

4.2.1. Dealing with False Negatives

Let us call Γ(c) the objective set of goal states which satisfy instruction c (which is
typically unknown to us). Compared to the ideal case where all (c, s) would be deemed
positive if-and-only-if s ∈ Γ(c), the labelling of examples implied by Equation 4.2.2 has
a fundamental limitation when the policy performs well. As the policy improves, by def-
inition, a increasing share of (c, s) ∈ B are objective goal-states from Γ(c). However, as
they are treated as negative examples in Equation 4.2.2, the discriminator accuracy drops,
causing the policy to get worse. We therefore propose the following simple heuristic to rec-
tify this fundamental limitation by approximately identifying the false negatives. We rank
(c, s) examples in B according to the reward model’s output Dφ(c, s) and discard the top
1 − ρ percent as potential false negatives. Only the other ρ percent are used as negative
examples of the reward model. Formally speaking, the first term in Equation 4.2.2 becomes
E(c,s)∼BDφ,ρ

− log(1 − Dφ(c, s)), where BDφ,ρ stands for the ρ percent of B selected, using Dφ,
as described above. We will henceforth refer to ρ as the anticipated negative rate. Setting
ρ to 100% means using BDφ,100 = B like in Equation 4.2.2, but our preliminary experiments
have shown clearly that this inhibits the reward model’s capability to correctly learn a reward
function. Using too small a value for ρ on the other hand may deprive the reward model of
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the most informative negative examples. We thus recommend to tune ρ as a hyperparameter
on a task-specific basis.

4.2.2. Reusability of the Reward Model

An appealing advantage of AGILE is the fact that the reward model Dφ and the policy
πθ learn two related but distinct aspects of an instruction: the reward model focuses on
recognizing the goal-states (what should be done), whereas the policy learns what to do in
order to get to a goal-state (how it should be done). The intuition motivating this design
is that the knowledge about how instructions define goals should generalize more strongly
than the knowledge about which behavior is needed to execute instructions. Following this
intuition, we propose to reuse a reward model trained in AGILE as a reward function for
training or fine-tuning policies.

4.2.3. Relation to GAIL

AGILE is strongly inspired by—and retains close relations to—Generative Adversarial
Imitation Learning (GAIL; Ho and Ermon, 2016), which likewise trains both a reward func-
tion and a policy. The former is trained to distinguish between the expert’s and the policy’s
trajectories, while the latter is trained to maximize the modelled reward. GAIL differs from
AGILE in a number of important respects. First, AGILE is conditioned on instructions c so
a single AGILE agent can learn combinatorially many skills rather than just one. Second, in
AGILE the reward model observes only states si (either goal states from an expert, or states
from the agent acting on the environment) rather than state-action traces (s1, a1), (s2, a2), . . .,
learning to reward the agent based on “what” needs to be done rather than according to
“how” it must be done. Finally, in AGILE the policy’s reward is the thresholded probability
[Dφ(c, st)] as opposed to − log(1 − Dφ(st, at)) used in GAIL (see Section 4.7 for additional
context on this choice).

4.3. Experiments

We experiment with AGILE in a grid world environment that we call GridLU, short
for Grid Language Understanding and after the famous SHRDLU world (Winograd, 1972).
GridLU is a fully observable grid world in which the agent can walk around the grid (moving
up, down left or right), pick blocks up and drop them at new locations (see Figure 4.3 for
an illustration and Appendix A.2 for a detailed description of the environment).

4.3.1. Models

All our models receive the world state as a 56x56 RGB image. With regard to processing
the instruction, we will experiment with two kinds of models: Neural Module Networks
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(NMN) that treat the instruction as a structured expression, and a generic model that takes
an unstructured instruction representation and encodes it with an LSTM.

Because the language of our instructions is generated from a simple grammar, we
perform most of our experiments using policy and reward model networks that are con-
structed using the NMN (Andreas et al., 2016) paradigm. NMN is an elegant architec-
ture for grounded language processing in which a tree of neural modules is constructed
based on the language input. The visual input is then fed to the leaf modules, which
send their outputs to their parent modules, which process is repeated until the root of
the tree. We mimick the structure of the instructions when constructing the tree of mod-
ules; for example, the NMN corresponding to the instruction c1=NorthFrom(Color(‘red’,
Shape(‘circle’, SCENE)), Color(‘blue’, Shape(‘square’, SCENE))) performs a computation
hNMN = mNorthF rom(mred(mcircle(hs)), mblue(msquare(hs)))), where mx denotes the module
corresponding to the token x, and hs is a representation of state s. Each module mx performs
a convolution (weights shared by all modules) followed by a token-specific Feature-Wise Lin-
ear Modulation (FiLM) (Perez et al., 2017): mx(hl, hr) = ReLU((1+γx)	(Wm∗[hl; hr])⊕βx),
where hl and hr are module inputs, γx is a vector of FiLM multipliers, βx are FiLM biases,
	 and ⊕ are element-wise multiplication and addition with broadcasting, ∗ denotes convolu-
tion. The representation hs is produced by a convnet. The NMN’s output hNMN undergoes
max-pooling and is fed through a 1-layer MLP to produce action probabilities or the reward
model’s output. Note, that while structure-wise our policy and reward model are mostly
similar, they do not share parameters.

NMN is an excellent model when the language structure is known, but this may not be
the case for natural language. To showcase AGILE’s generality we also experiment with a
very basic structure-agnostic architecture. We use FiLM to condition a standard convnet on
an instruction representation hLST M produced by an LSTM. The k-th layer of the convnet
performs a computation hk = ReLU((1+γk)	 (Wk ∗hk−1)⊕βk), where γk = W γ

k hLST M +bγ
k,

βk = W β
k hLST M + bβ

k . The same procedure as described above for hNMN is used to produce
the network outputs using the output h5 of the 5th layer of the convnet.

In the rest of the paper we will refer to the architectures described above as FiLM-NMN
and FiLM-LSTM respectively. FiLM-NMN will be the default model in all experiments
unless explicitly specified otherwise. Detailed information about network architectures can
be found in Appendix A.6.

4.3.2. Training Details

For the purpose of training the policy networks both within AGILE, and for our base-
line trained from ground-truth reward rt instead of the modelled reward r̂t, we used the
Asynchronous Advantage Actor-Critic (A3C; Mnih et al., 2016). Any alternative training
mechanism which uses reward could be used—since the only difference in AGILE is the source
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of the reward signal, and for any such alternative the appropriate baseline for fair compari-
son would be that same algorithm applied to train a policy from ground-truth reward. We
will refer to the policy trained within AGILE as AGILE-A3C. The A3C’s hyperparameters
γ and λ were set to 0.99 and 0 respectively, i.e. we did not use without temporal difference
learning for the baseline network. The length of an episode was T = 30, but we trained the
agent on advantage estimation rollouts of length 15. Every experiment was repeated 5 times.
We considered an episode to be a success if the final state was a goal state as judged by a
task-specific success criterion, which we describe for the individual tasks below. We use the
success rate (i.e. the percentage of successful episodes) as our main performance metric for
the agents. Unless otherwise specified we use the NMN-based policy and reward model in
our experiments. Full experimental details can be found in Appendices A.1 and A.3.
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Figure 4.3. Initial state and goal state for GridLU-Relations (top-left)
and GridLU-Arrangements episodes (bottom-left), and the complete GridLU-
Arrangements vocabulary (right), each with examples of some possible goal-
states.

4.3.3. GridLU-Relations

Our first task, GridLU-Relations, is an adaptation of the SHAPES visual question an-
swering dataset (Andreas et al., 2016) in which the blocks can be moved around freely.
GridLU-Relations requires the agent to induce the meaning of spatial relations such as above
or right of, and to manipulate the world in order to instantiate these relationships. Named
GridLU-Relations, the task involves five spatial relationships (NorthFrom, SouthFrom, East-
From, WestFrom, SameLocation), whose arguments can be either the blocks, which are
referred to by their shapes and colors, or the agent itself. To generate the full set of possible
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instructions spanned by these relations and our grid objects, we define a formal grammar
that generates strings such as:

NorthFrom(Color(‘red’, Shape(‘circle’, SCENE)), Color(‘blue’, Shape(‘square’, SCENE)))
(4.3.1)

This string carries the meaning ‘put a red circle north from (above) a blue square’. In general,
when a block is the argument to a relation, it can be referred to by specifying both the shape
and the color, like in the example above, or by specifying just one of these attributes.
In addition, the AGENT constant can be an argument to all relations, in which case the
agent itself must move into a particular spatial relation with an object. Figure 4.3 shows
two examples of GridLU-Relations instructions and their respective goal states. There are
990 possible instructions in the GridLU-Relations task, and the number of distinct training
instances can be loosely lower-bounded by 1.8 · 107 (see Appendix A.4 for details).

Notice that, even for the highly concrete spatial relationships in the GridLU-Relations
language, the instructions are underspecified and somewhat ambiguous—is a block in the
top-right corner of the grid above a block in the bottom left corner? We therefore decided
(arbitrarily) to consider all relations to refer to immediate adjacency (so that Instruction
(4.3.1) is satisfied if and only if there is a red circle in the location immediately above a
blue square). Notice that the commands are still underspecified in this case (since they refer
to the relationship between two entities, not their absolute positions), even if the degree of
ambiguity in their meaning is less than in many real-world cases. The policy and reward
model trained within AGILE then have to infer this specific sense of what these spatial
relations mean from goal-state examples, while the baseline agent is allowed to access our
programmed ground-truth reward. The binary ground-truth reward (true if the state is a
goal state) is also used as the success criterion for evaluating AGILE.

Having formally defined the semantics of the relationships and programmed a reward
function, we compared the performance of an AGILE-A3C agent against a priviliged baseline
A3C agent trained using ground-truth reward. Interestingly, we found that AGILE-A3C
learned the task more easily than standard A3C (see the respective curves in Figure 4.4).
We hypothesize this is because the modeled rewards are easy to learn at first and become
more sparse as the reward model slowly improves. This naturally emerging curriculum
expedites learning in the AGILE-A3C when compared to the A3C-trained policy that only
receives signal upon reaching a perfect goal state.

We did observe, however, that the A3C algorithm could be improved significantly by
applying the auxiliary task of reward prediction (RP; Jaderberg et al., 2016), which was
applied to language learning tasks by Hermann et al. (2017) (see the A3C and A3C-RP
curves in Figure 4.4). This objective reinforces the association between instructions and
states by having the agent replay the states immediately prior to a non-zero reward and
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predict whether or not it the reward was positive (i.e. the states match the instruction)
or not. This mechanism made a significant difference to the A3C performance, increasing
performance to 99.9%. AGILE-A3C also achieved nearly perfect performance (99.5%). We
found this to be a very promising result, since within AGILE, we induce the reward function
from a limited set of examples.

The best results with AGILE-A3C were obtained using the anticipated negative rate
ρ = 25%. When we used larger values of ρ AGILE-A3C training started quicker but after 100-
200 million steps the performance started to deteriorate (see AGILE curves in Figure 4.4),
while it remained stable with ρ = 25%.

Data efficiency

These results suggest that the AGILE reward model was able to induce a near perfect
reward function from a limited set of 〈instruction, goal-state〉 pairs. We therefore explored
how small this training set of examples could be to achieve reasonable performance. We
found that with a training set of only 8000 examples, the AGILE-A3C agent could reach
a performance of 60% (massively above chance). However, the optimal performance was
achieved with more than 100,000 examples. The full results are available in Appendix A.3.

Generalization to Unseen Instructions

In the experiments we have reported so far the AGILE agent was trained on all 990
possible GridLU-Relation instructions. In order to test generalization to unseen instructions
we held out 10% of the instructions as the test set and used the remaining 90% as the training
set. Specifically, we restricted the training instances and 〈instruction, goal-state〉 pairs to
only contain instructions from the training set. The performance of the trained model on
the test instructions was the same as on the training set, showing that AGILE did not just
memorise the training instructions but learnt a general interpretation of GridLU-Relations
instructions.

AGILE with Structure-Agnostic Models

We report the results for AGILE with a structure-agnostic FILM-LSTM model in Figure
4.4 (middle). AGILE with ρ = 25% achieves a high 97.5% success rate, and notably it trains
almost as fast as an RL-RP agent with the same architecture.

Analyzing the reward model

We compare the binary reward provided by the reward model with the ground-truth from
the environment during training on the GridLU-Relation task. With ρ = 25% the accuracy
of the reward model peaks at 99.5%. As shown in Figure 4.4 (right) the reward model learns
faster in the beginning with larger values of ρ but then deteriorates, which confirms our
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Figure 4.4. Left: learning curves for A3C, A3C-RP (both using ground
truth reward), and AGILE-A3C with different values of the anticipated nega-
tive rate ρ on the GridLU-Relations task. We report success rate (see Section
4.3). Middle: learning curves for policies trained with ground-truth RL, and
within AGILE, with different model architectures. Right: the reward model’s
accuracy for different values of ρ.

intuition about why ρ is an important hyperparameter and is aligned with the success rate
learning curves in Figure 4.4 (left). We also observe during training that the false negative
rate is always kept reasonably low (<3% of rewards) whereas the reward model will initially
be more generous with false positives (20–50% depending on ρ during the first 20M steps
of training) and will produce an increasing number of false positives for insufficiently small
values of ρ (see plots in Appendix A.4). We hypothesize that early false positives may
facilitate the policy’s training by providing it with a sort of curriculum, possibly explaining
the improvement over agents trained from ground-truth reward, as shown above.

The reward model as general reward function

An instruction-following agent should be able to carry-out known instructions in a range
of different contexts, not just settings that match identically the specific setting in which
those skills were learned. To test whether the AGILE framework is robust to (semantically-
unimportant) changes to the environment dynamics, we first trained the policy and reward
model as normal and then modified the effective physics of the world by making all red
square objects immovable. In this case, following instructions correctly is still possible in
almost all cases, but not all solutions available during training are available at test time. As
expected, this change impaired the policy and the agent’s success rate on the instructions
referring to a red square dropped from 98% to 52%. However, after fine-tuning the policy
(additional training of the policy on the test episodes using the reward from the previously-
trained-then-frozen reward model), the success rate went up to 69.3% (Figure 4.5). This
experiment suggests that the AGILE reward model learns useful and generalisable linguistic
knowledge. The knowledge can be applied to help policies adapt in scenarios where the
high-level meaning of commands is familiar but the low-level physical dynamics is not.

38



Figure 4.5. Fine-tuning for an immovable red square.

4.3.4. GridLU-Arrangements Task

The experiments thus far demonstrate that even without directly using the reward func-
tion AGILE-A3C performs comparably to its pure A3C counter-part. However, the principal
motivation for the AGILE framework is to avoid programming the reward function. To model
this setting more explicitly, we developed the task GridLU-Arrangements, in which each
instruction is associated with multiple viable goal-states that share some (more abstract)
common form. The complete set of instructions and forms is illustrated in Figure 4.3. To
get training data, we built a generator to produce random instantiations (i.e. any translation,
rotation, reflection or color mapping of the illustrated forms) of these goal-state classes, as
positive examples for the reward model. In the real world, this process of generating goal-
states could be replaced by finding, or having humans annotate, labelled images. In total,
there are 36 possible instructions in GridLU-Arrangements, which together refer to a total of
390 million correct goal-states (see Appendix A.5 for details). Despite this enormous space
of potentially correct goal-states, we found that for good performance it was necessary to
train AGILE on only 100,000 (less than 0.3%) of these goal-states, sampled from the same
distribution as observed in the episodes. To replicate the conditions of a potential AGILE
application as close as possible, we did not write a reward function for GridLU-Arrangements
(even though it would have been theoretically possible), and instead carried out all evaluation
manually.

The training regime for GridLU-Arrangements involved two classes of episodes (and
instructions). Half of the episodes began with four square blocks (all of the same color), and
the agent, in random unique positions, and an instruction sampled uniformly from the list
of possible arrangement words. In the other half of the episodes, four square blocks of one
color and four square blocks of a different color were initially each positioned randomly. The
instruction in these episodes specified one of the two colors together with an arrangement
word. We trained policies and reward models using AGILE with 10 different seeds for
each level, and selected the best pair based on how well the policy maximised modelled
reward. We then manually assessed the final state of each of 200 evaluation episodes, using
human judgement that the correct shape has been produced as success criterion to evaluate
AGILE. We found that the agent made the correct arrangement in 58% of the episodes.
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The failure cases were almost always in the episodes involving eight blocks2. In these cases,
the AGILE agent tended towards building the correct arrangement, but was impeded by
the randomly positioned non-target-color blocks and could not recover. Nonetheless, these
scores, and the compelling behaviour observed in the video (https://www.youtube.com/
watch?v=07S-x3MkEoQ), demonstrate the potential of AGILE for teaching agents to execute
semantically vague or underspecified instructions.

4.4. Related Work

Learning to follow language instructions has been approached in many different ways,
for example by reinforcement learning using a reward function programmed by a system de-
signer. Janner et al. (2017); Oh et al. (2017); Hermann et al. (2017); Chaplot et al. (2018);
Denil et al. (2017); Yu et al. (2018) consider instruction-following in 2D or 3D environments
and reward the agent for arriving at the correct location or object. Janner et al. (2017)
and Misra et al. (2017) train RL agents to produce goal-states given instructions. As dis-
cussed, these approaches are constrained by the difficulty of programming language-related
reward functions, a task that requires a programming expert, detailed access to the state of
the environment and hard choices above how language should map to the world. Agents can
be trained to follow instructions using complete demonstrations, that is sequences of correct
actions describing instruction execution for given initial states.

Chen and Mooney (2011); Artzi and Zettlemoyer (2013) train semantic parsers to produce
a formal representation of the query that when fed to a predefined execution model matches
exactly the sequence of actions from the demonstration. Andreas and Klein (2015); Mei
et al. (2016) sidestep the intermediate formal representation and train a Conditional Ran-
dom Field (CRF) and a sequence-to-sequence neural model respectively to directly predict
the actions from the demonstrations. An underlying assumption behind all these approaches
is that the agent and the demonstrator share the same actuation model, which might not
always be the case. In the case of navigational instructions the trajectories of the agent and
the demonstrators can sometimes be compared without relying on the actions, like e.g. Vogel
and Jurafsky (2010), but for other types of instructions such a hard-coded comparison may
be infeasible. Tellex et al. (2011) train a log-linear model to map instruction constituents
into their groundings, which can be objects, places, state sequences, etc. Their approach re-
quires access to a structured representation of the world environment as well as intermediate
supervision for grounding the constituents.

Our work can be categorized as apprenticeship (imitation) learning, which studies learn-
ing to perform tasks from demonstrations and feedback. Many approaches to apprenticeship
learning are variants of inverse reinforcement learning (IRL), which aims to recover a reward

2The agent succeeded on 92% (24%) with 4 (8) blocks.
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function from expert demonstrations (Abbeel and Ng, 2004; Ziebart et al., 2008). As stated
at the end of Section 4.2, the method most closely related to AGILE is the GAIL algo-
rithm from the IRL family (Ho and Ermon, 2016). There have been earlier attempts to use
IRL-style methods for instruction following (MacGlashan et al., 2015; Williams et al., 2018),
but unlike AGILE, they relied on the availability of a formal reward specification language.
To our knowledge, ours and the concurrent work by Fu et al. (2018) are the first works to
showcase learning reward models for instructions from pixels directly. Besides IRL-style ap-
proaches, other apprenticeship learning methods involve training a policy (Knox and Stone,
2009; Warnell et al., 2017) or a reward function (Wilson et al., 2012; Christiano et al., 2017)
directly from human feedback. Several recent imitation learning works consider using goal-
states directly for defining the task (Ganin et al., 2018; Pathak et al., 2018). AGILE differs
from these approaches in that goal-states are only used to train the reward module, which
we show generalises to new environment configurations or instructions, relative to those seen
in the expert data.

4.5. Discussion

We have proposed AGILE, a framework for training instruction-conditional RL agents
using rewards from learned reward models, which are jointly trained from data provided by
both experts and the agent being trained, rather than reward provided by an instruction
interpreter within the environment. This opens up new possibilities for training language-
aware agents: in the real world, and even in rich simulated environments (Brodeur et al.,
2017; Wu et al., 2018), acquiring such data via human annotation would often be much
more viable than defining and implementing reward functions programmatically. Indeed,
programming rewards to teach robust and general instruction-following may ultimately be
as challenging as writing a program to interpret language directly, an endeavour that is
notoriously laborious, and some say, ultimately futile (Winograd, 1972).

As well as a means to learn from a potentially more prevalent form of data, our experi-
ments demonstrate that policies trained in the AGILE framework perform comparably with
and can learn as fast as those trained against ground-truth reward and additional auxiliary
tasks. Our analysis of the reward model’s classifications gives a sense of how this is possi-
ble; the false positive decisions that it makes early in the training help the policy to start
learning. The fact that AGILE’s objective attenuates learning issues due to the sparsity of
reward states within episodes in a manner similar to reward prediction suggests that the
reward model within AGILE learns some form of shaped reward (Ng et al., 1999), and could
serve not only in the cases where a reward function need to be learned in the absence of true
reward, but also in cases where environment reward is defined but sparse. As these cases are
not the focus of this study, we note this here, but leave such investigation for future work.
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As the policy improves, false negatives can cause the reward model accuracy to deterio-
rate. We determined a simple method to mitigate this, however, leading to robust training
that is comparable to RL with reward prediction and unlimited access to a perfect reward
function. Another attractive aspect of AGILE is that learning “what should be done” and
“how it should be done” is performed by two different model components. Our experiments
confirm that the “what” kind of knowledge generalizes better to new environments. When
the dynamics of the environment changed at test time, fine-tuning using frozen reward model
allowed to the policy recover some of its original capability in the new setting.

While there is a large gap to be closed between the sort of tasks and language that we
considered in this paper and those which might be presented in “real world” situations or
more complex environments, our results provide an encouraging first step in this direction.
Indeed, it is interesting to consider how AGILE could be applied to more realistic learning
settings, for instance involving first-person vision of 3D environments. Two issues would
need to be dealt with, namely training the agent to factor out the difference in perspective
between the expert data and the agent’s observations, and training the agent to ignore its
own body parts if they are visible in the observations. Future work could focus on applying
third-person imitation learning methods recently proposed by Stadie et al. (2017) learn
the aforementioned invariances. Most of our experiments were conducted with a formal
language with a known structure, however AGILE also performed very well when we used a
structure-agnostic FiLM-LSTM model which processed the instruction as a plain sequence of
tokens. This result suggest that in future work AGILE could be used with natural language
instructions.

4.6. AGILE Pseudocode

See Algorithms 1 and 2 for pseudocode descriptions of policy and discriminator training
respectively.

4.7. More On Relation to GAIL

In an earlier version of the paper we argued why AGILE reward [Dφ(c, st) > 0.5] is
preferable to a “GAIL-style reward” that we defined as log Dφ(c, st). In retrospect, the
proper adaptation of the GAIL policy objective log D(s, a) (see Equation 16 in (Ho and
Ermon, 2016)) to our notation would be − log(1 − Dφ(c, st)), not log Dφ(c, st). This holds
because (a) in GAIL the policy objective is a cost to be minimized, whereas in AGILE
it is a reward to be maximized (b) in GAIL the discriminator is trained to output higher
values for the agent’s state-action pairs, whereas in AGILE (and most of the literature on
adversarial methods) it is trained to do the opposite. We have not tried running AGILE
with − log(1 − Dφ(c, st)) as the reward function, but we hypothesize that it would work.
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Algorithm 1 AGILE Discriminator Training
Require: The policy network πθ, the discriminator network Dφ, the anticipated negative rate ρ, a

dataset D, a replay buffer B, the batch size BS, a stream of training instances G, the episode
length T , the rollout length R.

1: while Not Converged do
2: Sample a training instance (c, s0) ∈ G.
3: t ← 0
4: while t < T do
5: Act with πθ(c, s) and produce a rollout (c, st...t+R).
6: Add (c, s) pairs from (c, st...t+R) to the replay buffer B. Remove old pairs from B if it is

overflowing.
7: Sample a batch D+ of BS/2 positive examples from D.
8: Sample a batch D− of BS/(2 · (1 − ρ)) negative (c, s) examples from B.
9: Compute κ = Dφ(c, s) for all (c, s) ∈ D− and reject the top 1 − ρ percent of D− with the

highest κ. The resulting D− will contain BS/2 examples.
10: Compute L̃D(φ) = 1

BS

∑
(c,s)∈D−

− log(1 − Dφ(c, s)) +
∑

(c,g)∈D+

− log Dφ(ci, gi).

11: Compute the gradient dL̃D(φ)
dφ and use it to update φ.

12: Synchronise θ and φ with other workers.
13: t ← t + R
14: end while
15: end while

Algorithm 2 AGILE Policy Training
Require: The policy network πθ, the discriminator network Dφ, a dataset D, a replay buffer B, a

stream of training instances G, the episode length T .
1: while Not Converged do
2: Sample a training instance (c, s0) ∈ G.
3: t ← 0
4: while t < T do
5: Act with πθ(c, s) and produce a rollout (c, st...t+R).
6: Use the discriminator Dφ to compute the rewards rτ = [Dφ(c, sτ ) > 0.5].
7: Perform an RL update for θ using the rewards rτ .
8: Synchronise θ and φ with other workers.
9: t ← t + R

10: end while
11: end while
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Chapter 5

PROLOGUE TO SECOND ARTICLE

5.1. Article Details

BabyAI: A Platform to Study the Sample Efficiency of Grounded Language
Learning. Maxime Chevalier-Boivert*, Dzmitry Bahdanau*, Salem Lahlou, Lucas Willems,
Chitwan Saharia, Thien Huu Nguyen, and Yoshua Bengio (* denotes equal contribution).
International Conference on Learning Representations 2019.

Personal Contribution BabyAI was a team effort that was initiated by Yoshua Bengio.
Initially, I participated in the project as an advisor and helped to shape its vision as a data
efficiency study. Gradually, my involvement became more substantial as I started closely
supervising Salem Lahlou, Lucas Willems, Chitwan Saharia and Thien Huu Nguyen in their
work on exploration, curriculum learning, reinforcement learning, imitation learning and
neural architectures for the platform. Eventually, I inherited the code that other project
participants had written and made it all work together by fixing several critical bugs and
tuning the hyperparameters. I designed BabyAI language and levels. I rewrote and optimized
the bot that was originally implemented by Maxime Chevalier-Boivert and later developed
by Salem Lahlou. I wrote a large part of the paper and reran all the experiments to ensure
reproducibility. The credit for development of the environment, implementation of BabyAI
language and all levels goes entirely to Maxime Chevalier-Boisvert.

5.2. Context

The original goal of the project was to construct a game-like setup in which human players
interactively teach a deep learning agent to understand language (hence the name BabyAI).
We decided to conduct a feasibility study first to investigate how much time a human would
have to spend in order to teach such an agent. Preliminary investigations showed a huge gap
between what deep learning methods are capable of and what would be required to actually
put a human in the loop of learning. Quantifying this gap and building a platform that
supports further work on data efficiency became the new and the final focus of the project.



5.3. Contributions

The main contribution is the BabyAI platform with 19 levels of instruction-following
tasks, as well as the comparatively rich synthetic instruction language that it employs. We
report baseline data efficiency results for a number of approaches, including reinforcement
learning, imitation learning and basic curriculum learning.

5.4. Aftermath

In our follow-up work using the BabyAI platform we have recently discovered that sample
efficiency of imitation learning can be improved by a factor of ≈ 3.5 by applying a relatively
minor change to the neural model (namely removing the max-pooling operations that were
performed too early in the visual pipeline). We are planning to investigate this phenomenon
further and share the findings in a technical report.
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Chapter 6

BABYAI: A PLATFORM TO STUDY THE SAMPLE
EFFICIENCY OF GROUNDED LANGUAGE

LEARNING

6.1. Introduction

How can a human train an intelligent agent to understand natural language instructions?
We believe that this research question is important from both technological and scientific
perspectives. No matter how advanced AI technology becomes, human users will likely
want to customize their intelligent helpers to better understand their desires and needs. On
the other hand, developmental psychology, cognitive science and linguistics study similar
questions but applied to human children, and a synergy is possible between research in
grounded language learning by computers and research in human language acquisition.

In this work, we present the BabyAI research platform, whose purpose is to facilitate
research on grounded language learning. In our platform we substitute a simulated human
expert for a real human; yet our aspiration is that BabyAI-based studies enable substantial
progress towards putting an actual human in the loop. The current domain of BabyAI is a
2D gridworld in which synthetic natural-looking instructions (e.g. “put the red ball next to
the box on your left”) require the agent to navigate the world (including unlocking doors) and
move objects to specified locations. BabyAI improves upon similar prior setups (Hermann
et al., 2017; Chaplot et al., 2018; Yu et al., 2018) by supporting simulation of certain essential
aspects of the future human in the loop agent training: curriculum learning and interactive
teaching. The usefulness of curriculum learning for training machine learning models has
been demonstrated numerous times in the literature (Bengio et al., 2009; Kumar et al., 2010;
Zaremba and Sutskever, 2015; Graves et al., 2016), and we believe that gradually increas-
ing the difficulty of the task will likely be essential for achieving efficient human-machine
teaching, as in the case of human-human teaching. To facilitate curriculum learning studies,
BabyAI currently features 19 levels in which the difficulty of the environment configuration



and the complexity of the instruction language are gradually increased. Interactive teaching,
i.e. teaching differently based on what the learner can currently achieve, is another key
capability of human teachers. Many advanced agent training methods, including DAGGER
(Ross et al., 2011), TAMER (Warnell et al., 2017) and learning from human preferences
(Wilson et al., 2012; Christiano et al., 2017), assume that interaction between the learner
and the teacher is possible. To support interactive experiments, BabyAI provides a bot agent
that can be used to generate new demonstrations on the fly and advise the learner on how
to continue acting.

Arguably, the main obstacle to language learning with a human in the loop is the amount
of data (and thus human-machine interactions) that would be required. Deep learning meth-
ods that are used in the context of imitation learning or reinforcement learning paradigms
have been shown to be very effective in both simulated language learning settings (Mei et al.,
2016; Hermann et al., 2017) and applications (Sutskever et al., 2014; Bahdanau et al., 2015;
Wu et al., 2016). These methods, however, require enormous amounts of data, either in
terms of millions of reward function queries or hundreds of thousands of demonstrations. To
show how our BabyAI platform can be used for sample efficiency research, we perform sev-
eral case studies. In particular, we estimate the number of demonstrations/episodes required
to solve several levels with imitation and reinforcement learning baselines. As a first step
towards improving sample efficiency, we additionally investigate to which extent pretraining
and interactive imitation learning can improve sample efficiency.

The concrete contributions of this paper are two-fold. First, we contribute the BabyAI
research platform for learning to perform language instructions with a simulated human in
the loop. The platform already contains 19 levels and can easily be extended. Second, we
establish baseline results for all levels and report sample efficiency results for a number of
learning approaches. The platform and pretrained models are available online. We hope that
BabyAI will spur further research towards improving sample efficiency of grounded language
learning, ultimately allowing human-in-the-loop training.

6.2. Related Work

There are numerous 2D and 3D environments for studying synthetic language acquis-
tion. (Hermann et al., 2017; Chaplot et al., 2018; Yu et al., 2018; Wu et al., 2018). Inspired
by these efforts, BabyAI augments them by uniquely combining three desirable features.
First, BabyAI supports world state manipulation, missing in the visually appealing 3D en-
vironments of Hermann et al. (2017), Chaplot et al. (2018) and Wu et al. (2018). In these
environments, an agent can navigate around, but cannot alter its state by, for instance,
moving objects. Secondly, BabyAI introduces partial observability (unlike the gridworld of
Bahdanau et al. (2019a)). Thirdly, BabyAI provides a systematic definition of the synthetic
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language. As opposed to using instruction templates, the Baby Language we introduce de-
fines the semantics of all utterances generated by a context-free grammar (Section 6.3.2).
This makes our language richer and more complete than prior work. Most importantly,
BabyAI provides a simulated human expert, which can be used to investigate human-in-the-
loop training, the aspiration of this paper.

Currently, most general-purpose simulation frameworks do not feature language, such
as PycoLab (DeepMind, 2017), MazeBase (Sukhbaatar et al., 2015), Gazebo (Koenig and
Howard, 2004), VizDoom (Kempka et al., 2016), DM-30 (Espeholt et al., 2018), and AI2-
Thor (Kolve et al., 2017). Using a more realistic simulated environment such as a 3D rather
than 2D world comes at a high computational cost. Therefore, BabyAI uses a gridworld
rather than 3D environments. As we found that available gridworld platforms were insuffi-
cient for defining a compositional language, we built a MiniGrid environment for BabyAI.

General-purpose RL testbeds such as the Arcade Learning Environment (Bellemare et al.,
2013), DM-30 (Espeholt et al., 2018), and MazeBase (Sukhbaatar et al., 2015) do not assume
a human-in-the-loop setting. In order to simulate this, we have to assume that all rewards
(except intrinsic rewards) would have to be given by a human, and are therefore rather
expensive to get. Under this assumption, imitation learning methods such as behavioral
cloning, Searn (Daumé III et al., 2009), DAGGER (Ross et al., 2011) or maximum-entropy
RL (Ziebart et al., 2008) are more appealing, as more learning can be achieved per human-
input unit.

Similar to BabyAI, studying sample efficiency of deep learning methods was a goal of the
bAbI tasks (Weston et al., 2016), which tested reasoning capabilities of a learning agent. Our
work differs in both of the object of the study (grounded language with a simulated human
in the loop) and in the method: instead of generating a fixed-size dataset and measuring
the performance, we measure how much data a general-purpose model would require to get
close-to-perfect performance.

There has been much research on instruction following with natural language (Tellex
et al., 2011; Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013; Mei et al., 2016; Williams
et al., 2018) as well as several datasets including SAIL (Macmahon et al., 2006; Chen and
Mooney, 2011) and Room-to-Room (Anderson et al., 2018b). Instead of using natural lan-
guage, BabyAI utilises a synthetic Baby language, in order to fully control the semantics of
an instruction and easily generate as much data as needed.

Finally, Wang et al. (2016) presented a system that interactively learned language from
a human. We note that their system relied on substantial amounts of prior knowledge about
the task, most importantly a task-specific executable formal language.
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GoToObj: "go to the blue
ball"

PutNextLocal: "put the blue
key next to the green ball"

BossLevel: "pick up the grey box behind you, then go to
the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

Figure 6.1. Three BabyAI levels built using the MiniGrid environment. The
red triangle represents the agent, and the light-grey shaded area represents its
field of view (partial observation).

6.3. BabyAI Platform

The BabyAI platform that we present in this work comprises an efficiently simulated
gridworld environment (MiniGrid) and a number of instruction-following tasks that we call
levels, all formulated using subsets of a synthetic language (Baby Language). The platform
also includes a bot that can generate successful demonstrations for all BabyAI levels. All
the code is available online at https://github.com/mila-iqia/babyai/tree/iclr19.

6.3.1. MiniGrid Environment

Studies of sample efficiency are very computationally expensive given that multiple runs
are required for different amounts of data. Hence, in our design of the environment, we have
aimed for a minimalistic and efficient environment which still poses a considerable challenge
for current general-purpose agent learning methods. We have implemented MiniGrid, a
partially observable 2D gridworld environment. The environment is populated with entities
of different colors, such as the agent, balls, boxes, doors and keys (see Figure 6.1). Objects
can be picked up, dropped and moved around by the agent. Doors can be unlocked with
keys matching their color. At each step, the agent receives a 7x7 representation of its field
of view (the grid cells in front of it) as well as a Baby Language instruction (textual string).
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The MiniGrid environment is fast and lightweight. Throughput of over 3000 frames per
second is possible on a modern multi-core laptop, which makes experimentation quicker and
more accessible. The environment is open source, available online, and supports integration
with OpenAI Gym. For more details, see Appendix B.1.

6.3.2. Baby Language

We have developed a synthetic Baby Language to give instructions to the agent as well as
to automatically verify their execution. Although Baby Language utterances are a compar-
atively small subset of English, they are combinatorially rich and unambigously understood
by humans. The language is intentionally kept simple, but still exhibits interesting combina-
torial properties, and contains 2.48 × 1019 possible instructions. In this language, the agent
can be instructed to go to objects, pick up objects, open doors, and put objects next to other
objects. The language also expresses the conjunction of several such tasks, for example “put
a red ball next to the green box after you open the door". The Backus-Naur Form (BNF)
grammar for the language is presented in Figure 6.2 and some example instructions drawn
from this language are shown in Figure 6.3. In order to keep the resulting instructions read-
able by humans, we have imposed some structural restrictions on this language: the and
connector can only appear inside the then and after forms, and instructions can contain no
more than one then or after word.

〈Sent〉 |= 〈Sent1〉 | 〈Sent1〉 ’,’ then 〈Sent1〉 | 〈Sent1〉 after you 〈Sent1〉
〈Sent1〉 |= 〈Clause〉 | 〈Clause〉 and 〈Clause〉

〈Clause〉 |= go to 〈Descr〉 | pick up 〈DescrNotDoor〉 | open 〈DescrDoor〉 |
put 〈DescrNotDoor〉 next to 〈Descr〉

〈DescrDoor〉 |= 〈Article〉 〈Color〉 door 〈LocSpec〉
〈DescrBall〉 |= 〈Article〉 〈Color〉 ball 〈LocSpec〉
〈DescrBox〉 |= 〈Article〉 〈Color〉 box 〈LocSpec〉
〈DescrKey〉 |= 〈Article〉 〈Color〉 key 〈LocSpec〉

〈Descr〉 |= 〈DescrDoor〉 | 〈DescrBall〉 | 〈DescrBox〉 | 〈DescrKey〉
〈DescrNotDoor〉 |= 〈DescrBall〉 | 〈DescrBox〉 | 〈DescrKey〉

〈LocSpec〉 |= ε | on your left | on your right | in front of you | behind you
〈Color〉 |= ε | red | green | blue | purple | yellow | grey

〈Article〉 |= the | a

Figure 6.2. BNF grammar productions for the Baby Language

The BabyAI platform includes a verifier which checks if an agent’s sequence of actions
successfully achieves the goal of a given instruction within an environment. Descriptors in the
language refer to one or to multiple objects. For instance, if an agent is instructed to "go to a
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go to the red ball

open the door on your left

put a ball next to the blue door

open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue
box next to a grey box and pick up the purple box

Figure 6.3. Example Baby Language instructions

red door", it can successfully execute this instruction by going to any of the red doors in the
environment. The then and after connectors can be used to sequence subgoals. The and form
implies that both subgoals must be completed, without ordering constraints. Importantly,
Baby Language instructions leave details about the execution implicit. An agent may have
to find a key and unlock a door, or move obstacles out of the way to complete instructions,
without this being stated explicitly.

6.3.3. BabyAI Levels

There is abundant evidence in prior literature which shows that a curriculum may greatly
facilitate learning of complex tasks for neural architectures (Bengio et al., 2009; Kumar et al.,
2010; Zaremba and Sutskever, 2015; Graves et al., 2016). To investigate how a curriculum
improves sample efficiency, we created 19 levels which require understanding only a limited
subset of Baby Language within environments of varying complexity. Formally, a level
is a distribution of missions, where a mission combines an instruction within an initial
environment state. We built levels by selecting competencies necessary for each level and
implementing a generator to generate missions solvable by an agent possessing only these
competencies. Each competency is informally defined by specifying what an agent should be
able to do:

• Room Navigation (ROOM): navigate a 6x6 room.
• Ignoring Distracting Boxes (DISTR-BOX): navigate the environment even

when there are multiple distracting grey box objects in it.
• Ignoring Distractors (DISTR): same as DISTR-BOX, but distractor objects can

be boxes, keys or balls of any color.
• Maze Navigation (MAZE): navigate a 3x3 maze of 6x6 rooms, randomly inter-

connected by doors.
• Unblocking the Way (UNBLOCK): navigate the environment even when it re-

quires moving objects out of the way.
• Unlocking Doors (UNLOCK): to be able to find the key and unlock the door if

the instruction requires this explicitly.
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• Guessing to Unlock Doors (IMP-UNLOCK): to solve levels that require un-
locking a door, even if this is not explicitly stated in the instruction.

• Go To Instructions (GOTO): understand “go to” instructions, e.g. “go to the red
ball”.

• Open Instructions (OPEN): understand “open” instructions, e.g. “open the door
on your left”.

• Pickup Instructions (PICKUP): understand “pick up” instructions, e.g. “pick
up a box”.

• Put Instructions (PUT): understand “put” instructions, e.g. “put a ball next to
the blue key”.

• Location Language (LOC): understand instructions where objects are referred to
by relative location as well as their shape and color, e.g. “go to the red ball in front
of you”.

• Sequences of Commands (SEQ): understand composite instructions requiring an
agent to execute a sequence of instruction clauses, e.g. “put red ball next to the green
box after you open the door”.

Table 6.1 lists all current BabyAI levels together with the competencies required to solve
them. These levels form a progression in terms of the competencies required to solve them,
culminating with the BossLevel, which requires mastering all competencies. The definitions
of competencies are informal and should be understood in the minimalistic sense, i.e. to test
the ROOM competency we have built the GoToObj level where the agent needs to reach the
only object in an empty room. Note that the GoToObj level does not require the GOTO
competency, as this level can be solved without any language understanding, since there is
only a single object in the room. However, solving the GoToLocal level, which instructs the
agent to go to a specific object in the presence of multiple distractors, requires understanding
GOTO instructions.

6.3.4. The Bot Agent

The bot is a key ingredient intended to perform the role of a simulated human teacher.
For any of the BabyAI levels, it can generate demonstrations or suggest actions for a given
environment state. Whereas the BabyAI learner is meant to be generic and should scale
to new and more complex tasks, the bot is engineered using knowledge of the tasks. This
makes sense since the bot stands for the human in the loop, who is supposed to understand
the environment, how to solve missions, and how to teach the baby learner. The bot has
direct access to a tree representation of instructions, and so does not need to parse the Baby
Language. Internally, it executes a stack machine in which instructions and subgoals are
represented. The stack-based design allows the bot to interrupt what it is currently doing
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Table 6.1. BabyAI Levels and the required competencies
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GoToObj x
GoToRedBallGrey x x

GoToRedBall x x x
GoToLocal x x x x

PutNextLocal x x x x
PickupLoc x x x x x

GoToObjMaze x x
GoTo x x x x x

Pickup x x x x x
UnblockPickup x x x x x x

Open x x x x x
Unlock x x x x x x

PutNext x x x x x
Synth x x x x x x x x x x

SynthLoc x x x x x x x x x x x
GoToSeq x x x x x x
SynthSeq x x x x x x x x x x x x

GoToImpUnlock x x x x x x
BossLevel x x x x x x x x x x x x x

to achieve a new subgoal, and then resume the original task. For example, going to a given
object will require exploring the environment to find that object.

The subgoals which the bot implements are:

• Open: Open a door that is in front of the agent.
• Close: Close a door that is in front of the agent.
• Pickup: Execute the pickup action (pick up an object).
• Drop: Execute the drop action (drop an object being carried).
• GoNextTo: Go next to an object matching a given (type, color) description or next

to a cell at a given position.
• Explore: Uncover previously unseen parts of the environment.

All of the Baby Language instructions are decomposed into these internal subgoals which
the bot knows how to solve. Many of these subgoals, during their execution, can also push
new subgoals on the stack. A central part of the design of the bot is that it keeps track of
the grid cells of the environment which it has and has not seen. This is crucial to ensure that
the bot can only use information which it could realistically have access to by exploring the
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environment. Exploration is implemented as part of the Explore subgoal, which is recursive.
For instance, exploring the environment may require opening doors, or moving objects that
are in the way. Opening locked doors may in turn require finding a key, which may itself
require exploration and moving obstructing objects. Another key component of the bot’s
design is a shortest path search routine. This is used to navigate to objects, to locate the
closest door, or to navigate to the closest unexplored cell.

6.4. Experiments

We assess the difficulty of BabyAI levels by training a behavioral cloning baseline for
each level. Furthermore, we estimate how much data is required to solve some of the simpler
levels and study to which extent the data demands can be reduced by using basic curriculum
learning and interactive teaching methods. All the code that we use for the experiments, as
well as containerized pretrained models, is available online.

6.4.1. Setup

The BabyAI platform provides by default a 7x7x3 symbolic observation xt (a partial and
local egocentric view of the state of the environment) and a variable length instruction c

as inputs at each time step. We use a basic model consisting of standard components to
predict the next action a based on x and c. In particular, we use a GRU (Cho et al., 2014)
to encode the instruction and a convolutional network with two batch-normalized (Ioffe and
Szegedy, 2015) FiLM (Perez et al., 2017) layers to jointly process the observation and the
instruction. An LSTM (Hochreiter and Schmidhuber, 1997) memory is used to integrate
representations produced by the FiLM module at each step. Our model is thus similar to
the gated-attention model used by Chaplot et al. (2018), inasmuch as gated attention is
equivalent to using FiLM without biases and only at the output layer.

We have used two versions of our model, to which we will refer as the Large model and
the Small model. In the Large model, the memory LSTM has 2048 units and the instruction
GRU is bidirectional and has 256 units. Furthermore, an attention mechanism (Bahdanau
et al., 2015) is used to focus on the relevant states of the GRU. The Small model uses a
smaller memory of 128 units and encodes the instruction with a unidirectional GRU and no
attention mechanism.

In all our experiments, we used the Adam optimizer (Kingma and Ba, 2015) with the
hyperparameters α = 10−4, β1 = 0.9, β2 = 0.999 and ε = 10−5. In our imitation learning
(IL) experiments, we truncated the backpropagation through time at 20 steps for the Small
model and at 80 steps for the Large model. For our reinforcement learning experiments,
we used the Proximal Policy Optimization (PPO, Schulman et al., 2017) algorithm with
parallelized data collection. Namely, we performed 4 epochs of PPO using 64 rollouts of
length 40 collected with multiple processes. We gave a non-zero reward to the agent only
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Table 6.2. Baseline imitation learning results for all BabyAI levels. Each
model was trained with 1M demonstrations from the respective level. For
reference, we also list the mean and standard deviation of demonstration length
for each level.

Model Success Rate (%) Demo Length (Mean ± Std)
GoToObj 100 5.18±2.38

GoToRedBallGrey 100 5.81±3.29
GoToRedBall 100 5.38±3.13
GoToLocal 99.8 5.04±2.76

PutNextLocal 99.2 12.4±4.54
PickupLoc 99.4 6.13±2.97

GoToObjMaze 99.9 70.8±48.9
GoTo 99.4 56.8±46.7

Pickup 99 57.8±46.7
UnblockPickup 99 57.2±50

Open 100 31.5±30.5
Unlock 98.4 81.6±61.1

PutNext 98.8 89.9±49.6
Synth 97.3 50.4±49.3

SynthLoc 97.9 47.9±47.9
GoToSeq 95.4 72.7±52.2
SynthSeq 87.7 81.8±61.3

GoToImpUnlock 87.2 110±81.9
BossLevel 77 84.3±64.5

when it fully completed the mission, and the magnitude of the reward was 1 − 0.9n/nmax,
where n is the length of the successful episode and nmax is the maximum number of steps
that we allowed for completing the episode, different for each mission. The future returns
were discounted with a factor γ = 0.99. For generalized advantage estimation (Schulman
et al., 2015) in PPO we used λ = 0.99.

In all our experiments we reported the success rate, defined as the ratio of missions of
the level that the agent was able to accomplish within nmax steps.

Running the experiments outlined in this section required between 20 and 50 GPUs over
two weeks. At least as much computing was required for preliminary investigations.

6.4.2. Baseline Results

To obtain baseline results for all BabyAI levels, we have trained the Large model (see
Section 6.4.1) with imitation learning using one million demonstration episodes for each level.
The demonstrations were generated using the bot described in Section 6.3.4. The models
were trained for 40 epochs on levels with a single room and for 20 epochs on levels with a
3x3 maze of rooms. Table 6.2 reports the maximum success rate on a validation set of 512
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episodes. All of the single-room levels are solved with a success rate of 100.0%. As a general
rule, levels for which demonstrations are longer tend to be more difficult to solve.

Using 1M demonstrations for levels as simple as GoToRedBall is very inefficient and
hardly ever compatible with the long-term goal of enabling human teaching. The BabyAI
platform is meant to support studies of how neural agents can learn with less data. To
bootstrap such studies, we have computed baseline sample efficiencies for imitation learning
and reinforcement learning approaches to solving BabyAI levels. We say an agent solves
a level if it reaches a success rate of at least 99%. We define the sample efficiency as the
minimum number of demonstrations or RL episodes required to train an agent to solve
a given level. To estimate the thus defined sample efficiency for imitation learning while
staying within a reasonable computing budget, we adopt the following procedure. For a
given level, we first run three experiments with 106 demonstrations. In the remaining M

experiments we use k1 = 2l0 , k2 = 2l0+d, . . . , kM = 2l0+(M−1)d demonstrations respectively.
We use different values of l0, M for each level to ensure that we run experiments with not
enough, just enough and more than enough demonstrations. Same value of d = 0.2 is used
in all imitation learning experiments. For each experiment i, we measure the best smoothed
online validation performance si that is achieved during the first 2T training steps, where
T = (T1 + T2 + T3)/3 is the average number of training steps required to solve the level
in the three runs with 106 demonstrations. We then fit a Gaussian Process (GP) model
(Rasmussen and Williams, 2005) with noisy observations using (ki, si) as training data in
order to interpolate between these data points. The GP posterior is fully tractable, which
allows us to compute analytically the posterior distribution of the expected success rate, as
well as the posterior over the minimum number of samples kmin that is sufficient to solve the
level. We report the 99% credible interval for kmin. We refer the reader to Section 6.6 for a
more detailed explanation of this procedure.

We estimate sample efficiency of imitation learning on 6 chosen levels. The results are
shown in Table 6.3 (see “IL from Bot” column). In the same table (column “RL”) we report
the 99% confidence interval for the number of episodes that were required to solve each of
these levels with RL, and as expected, the sample efficiency of RL is substantially worse
than that of IL (anywhere between 2 to 10 times in these experiments).

To analyze how much the sample efficiency of IL depends on the source of demonstrations,
we try generating demonstrations from agents that were trained with RL in the previous ex-
periments. The results for the 3 easiest levels are reported in the “IL from RL Expert”
column in Table 6.5. Interestingly, we found that the demonstrations produced by the RL
agent are easier for the learner to imitate. The difference is most significant for GoToRed-
BallGrey, where less than 2K and more than 8K RL and bot demonstrations respectively
are required to solve the level. For GoToRedBall and GoToLocal, using RL demonstrations
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Table 6.3. The sample efficiency of imitation learning (IL) and reinforcement
learning (RL) as the number of demonstrations (episodes) required to solve
each level. All numbers are thousands. For the imitation learning results
we report a 99% credible interval. For RL experiments we report the 99%
confidence interval. See Section 6.4 for details.

Level IL from Bot RL
GoToRedBallGrey 8.431 - 12.43 15.9 - 17.4

GoToRedBall 49.67 - 62.01 261.1 - 333.6
GoToLocal 148.5 - 193.2 903 - 1114
PickupLoc 204.3 - 241.2 1447 - 1643

PutNextLocal 244.6 - 322.7 2186 - 2727
GoTo 341.1 - 408.5 816 - 1964

Table 6.4. The sample efficiency results for pretraining experiments. For
each pair of base levels and target levels that we have tried, we report how
many demonstrations (in thousands) were required, as well as the baseline
number of demonstrations required for training from scratch. In both cases we
report a 99% credible interval, see Section 6.4 for details. Note how choosing
the right base levels (e.g. GoToLocal instead of GoToObjMaze) is crucial for
pretraining to be helpful.

Base Levels Target Level Without Pretraining With Pretraining
GoToLocal GoTo 341 - 409 183 - 216

GoToObjMaze GoTo 341 - 409 444 - 602
GoToLocal-GoToObjMaze GoTo 341 - 409 173 - 216

GoToLocal PickupLoc 204 - 241 71.2 - 88.9
GoToLocal PutNextLocal 245 - 323 188 - 231

results in 1.5-2 times better sample efficiency. This can be explained by the fact that the
RL expert has the same neural network architecture as the learner.

6.4.3. Curriculum Learning

To demonstrate how curriculum learning research can be done using the BabyAI plat-
form, we perform a number of basic pretraining experiments. In particular, we select 5
combinations of base levels and a target level and study whether pretraining on base levels
can help the agent master the target level with fewer demonstrations. The results are re-
ported in Table 6.4. In four cases, using GoToLocal as one of the base levels reduces the
number of demonstrations required to solve the target level. However, when only GoToOb-
jMaze was used as the base level, we have not found pretraining to be beneficial. We find
this counter-intuitive result interesting, as it shows how current deep learning methods often
can not take the full advantage of available curriculums.

58



Table 6.5. The sample efficiency of imitation learning (IL) from an RL-
pretrained expert and interactive imitation learning defined as the number of
demonstrations required to solve each level. All numbers are in thousands.
99% credible intervals are reported in all experiments, see Section 6.4 for de-
tails.

Level IL from Bot IL from RL Expert Interactive IL from Bot
GoToRedBallGrey 8.43 - 12.4 1.53 - 2.11 1.71 - 1.88

GoToRedBall 49.7 - 62 36.6 - 44.5 31.8 - 36
GoToLocal 148 - 193 74.2 - 81.8 93 - 107

6.4.4. Interactive Learning

Lastly, we perform a simple case study of how sample efficiency can be improved by
interactively providing more informative examples to the agent based on what it has al-
ready learned. We experiment with an iterative algorithm for adaptively growing the agent’s
training set. In particular, we start with 210 base demonstrations, and at each iteration we
increase the dataset size by a factor of 21/4 by providing bot demonstrations for missions on
which the agent failed. After each dataset increase we train a new agent from scratch. We
perform such dataset increases until the dataset reaches the final size is clearly sufficient to
achieve 99% success rate. We repeat the experiment 3 times for levels GoToRedBallGrey,
GoToRedBall and GoToLocal and then estimate how many interactively provided demon-
strations would be required for the agent be 99% successful for each of these levels. To this
end, we use the same GP posterior analysis as for regular imitation learning experiments.

The results for the interactive imitation learning protocol are reported in Table 6.5. For
all 3 levels that we experimented with, we have observed substantial improvement over the
vanilla IL, which is most significant (4 times less demonstrations) for GoToRedBallGrey and
smaller (1.5-2 times less demonstrations) for the other two levels.

6.5. Conclusion & Future Work

We present the BabyAI research platform to study language learning with a human in
the loop. The platform includes 19 levels of increasing difficulty, based on a decomposition
of tasks into a set of basic competencies. Solving the levels requires understanding the Baby
Language, a subset of English with a formally defined grammar which exhibits compositional
properties. The language is minimalistic and the levels seem simple, but empirically we have
found them quite challenging to solve. The platform is open source and extensible, meaning
new levels and language concepts can be integrated easily.

The results in Section 6.4 suggest that current imitation learning and reinforcement learn-
ing methods scale and generalize poorly when it comes to learning tasks with a compositional
structure. Hundreds of thousands of demonstrations are needed to learn tasks which seem
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trivial by human standards. Methods such as curriculum learning and interactive learning
can provide measurable improvements in terms of sample efficiency, but, in order for learn-
ing with an actual human in the loop to become realistic, an improvement of at least three
orders of magnitude is required.

An obvious direction of future research to find strategies to improve sample efficiency of
language learning. Tackling this challenge will likely require new models and new teaching
methods. Approaches that involve an explicit notion of modularity and subroutines, such as
Neural Module Networks (Andreas et al., 2016) or Neural Programmer-Interpreters (Reed
and de Freitas, 2015), seem like a promising direction. It is our hope that the BabyAI
platform can serve as a challenge and a benchmark for the sample efficiency of language
learning for years to come.

6.6. Sample Efficiency Estimation

6.6.1. Reinforcement Learning

To estimate the number of episodes required for an RL agent to solve a BabyAI level,
we monitored the agent’s smoothed online success rate. We recorded the number of training
episodes after which the smoothed performance crossed the 99% success rate threshold. Each
experiment was repeated 10 times and the 99% t-test confidence interval is reported in Table
6.3.

6.6.2. Imitation Learning

Estimating how many demonstrations is required for imitation learning to achieve a given
performance level is challenging. In principle, one can sample a dense grid of dataset sizes,
train the model until full convergence on each of the resulting datasets, and find the smallest
dataset size for which on average the model’s best performance exceeds the target level. In
practice, such a procedure would be prohibitively computationally expensive.

To make sample efficiency estimation practical, we designed a relatively cheap semi-
automatic approximate protocol. We minimize computational resources by using early-
stopping and non-parametric interpolation between different data points.

Early Stopping Using Normal Time

Understanding if a training run has converged and if the model’s performance will not
improve any further is non-trivial. To early-stop models in a consistent automatic way,
we estimate the “normal” time T that training a model on a given level would take if
an unlimited (in our case 106) number of demonstrations was available. To this end, we
train 3 models with 106 demonstrations. We evaluate the online success rate after every
100 or 400 (depending on the model size) batches, each time using 512 different episodes.
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The online success rate is smoothed using a sliding window of length 10. Let s(k, j, t)
denote the smoothed online performance for the j-th run with k demonstrations at time
t. Using this notation, we compute the normal time T as T = (T1 + T2 + T3)/3, where
Ti = min

t
{t : sj(106, j, t) > 99}. Once T is computed, it is used to early stop the remaining

M runs that use different numbers of demonstrations ki. Namely the result si of the i-th of
these runs is computed as si = max

t<2T
s(ki, 1, t).

Interpolation Using Gaussian Processes

Given the success rate measurements D = {(ki, si)}M
i=1, k1 < k2 < . . . < kM , we

estimate the minimum number of samples kmin that is required for the model to reach
99% average success rate. To this end, we a Gaussian Process (GP) model to interpolate
between the available (ki, si) data points (Rasmussen and Williams, 2005). GP is a popular
model for non-linear regression, whose main advantage is principled modelling of predictions’
uncertainty.

Specifically, we model the dependency between the success rate s and the number of
examples k as follows:

f ∼ GPRBF (l), (6.6.1)

s̃(k) = 99 + σff(log2 k), (6.6.2)

ε(k) ∼ N(0, 1), (6.6.3)

s(k) = s̃(k) + σεε(k), (6.6.4)

where RBF reflects the fact that we use the Radial Basis Function kernel, l is the kernel’s
length-scale parameter, ε(k) is white noise, σf and σε add scaling to the GP f and the noise
ε. Note the distinction between the average and the observed performances s̃(k) and s(k).
Using the introduced notation, kmin can be formally defined as kmin = min

k∈[k1;kM ]
s̃(k) = 99.

To focus on the interpolation in the region of interest, we drop all (ki, si) data points for
which si < 95. We then fit the model’s hyperparameters l, σf and σε by maximizing the
likelihood of the remaining data points. To this end, we use the implementation from scikit-
learn (Pedregosa et al., 2011). Once the model is fit, it defines a Gaussian posterior density
p(s̃(k′

1), . . . , s̃(k′
M ′)|D) for any M ′ data points k′

1, k′
2, . . . , k′

M ′ . It also defines a probability
distribution p(kmin|D). We are not aware of an analytic expression for p(kmin|D), and hence
we compute a numerical approximation as follows. We sample a dense log-scale grid of
M ′ points k′

1, k′
2, . . . , k′

M ′ in the range [k1; kM ]. For each number of demonstrations k′
i we

approximate the probability p(k′
i−1 < kmin < k′

i|D) that s̃(k) crosses the 99% threshold
somewhere between k′

i−1 and k′
i as follows:

p(k′
i−1 < kmin < k′

i|D) ≈ p′
i = p(s̃(k′

1) < 99, . . . , s̃(k′
i−1) < 99, s̃(k′

i) > 99|D) (6.6.5)
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Equation 6.6.5 is an approximation because the posterior s̃ is not necessarily monotonic. In
practice, we observed that the monotonic nature of the observed data D shapes the posterior
accordingly. We use the probabilities p′

i to construct the following discrete approximation of
the posterior p(kmin|D):

p(kmin|D) ≈
M∑

i=1
p′

iδ(k′
i) (6.6.6)

where δ(k′
i) are Dirac delta-functions. Such a discrete approximation is sufficient for the

purpose of computing 99% credible intervals for kmin that we report in the paper.

62



Chapter 7

PROLOGUE TO THIRD ARTICLE

7.1. Article Details

Systematic Generalization: What Is Required and Can It Be Learned?
Dzmitry Bahdanau*, Shikhar Murty*, Michael Noukhovitch, Thien Huu Nguyen, Harm
de Vries, and Aaron Courville (* denotes equal contribution). International Conference on
Learning Representations 2019.

Personal Contribution. The initiative to perform a minimalistic study of systematic
generalization of language grounding was mine. I designed the first version of the task that
was strongly influenced by CLEVR-CoGenT and evaluated several baseline models on it.
Thien Huu Ngueyn and Michael Noukhovitch reimplemented several baseline models for
that stage of the project, which unfortunately did not yield interesting insights.

Second iteration of the project started from an insightful suggestion by Harm de Vries
to think about object frequencies, rather than color-shape biases. This idea has gradually
developed into the object-pair split that made it to the paper. Shikhar Murty, who at that
point was starting his internship at our lab, implemented the new dataset based on my old
code. Shikhar and I collaborated closely to design and implement the NMN models for the
paper. Michael Noukhovitch implemented an additional baseline. All project participants
participated in paper writing. After submission, I reran all the experiments, and then Shikhar
and I performed the final round of editing. Aaron Courville supervised the project throughout
its duration.

7.2. Context

Numerous studies showed that deep learning systems often achieve high test set per-
formance by adapting to peculiarities of the data distribution. At roughly the same time,
Lake and Baroni (2018) brought the concepts of systematicity and systematic generalization
back to mainstream machine learning discourse. Lastly, NMNs, that combine the ideas of
compositionality and deep learning were proposed by Andreas et al. (2016) in the context



of grounded language understanding. These three developments inspired us to do a study of
systematic generalization that would (a) use a train-test split that is inspired by real world
considerations (b) focus on the differences between usual deep learning models and NMNs.

7.3. Contributions

The key contribution is showcasing how NMNs that are constructed from generic modules
can generalize much better than the conventional non-modular models. We furthermore
analyze what is required for such a strong generalization, and find that choosing a correct
layout of the modules is crucial for this purpose. Lastly, the paper highlights the challenges
arising when one tries to learn the structural aspects of an NMN from a biased dataset in
an end-to-end way.
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Chapter 8

SYSTEMATIC GENERALIZATION: WHAT IS
REQUIRED AND CAN IT BE LEARNED?

8.1. Introduction

In recent years, neural network based models have become the workhorse of natural
language understanding and generation. They empower industrial machine translation (Wu
et al., 2016) and text generation (Kannan et al., 2016) systems and show state-of-the-art per-
formance on numerous benchmarks including Recognizing Textual Entailment (Gong et al.,
2018), Visual Question Answering (Jiang et al., 2018), and Reading Comprehension (Wang
et al., 2018). Despite these successes, a growing body of literature suggests that these ap-
proaches do not generalize outside of the specific distributions on which they are trained,
something that is necessary for a language understanding system to be widely deployed in
the real world. Investigations on the three aforementioned tasks have shown that neural
models easily latch onto statistical regularities which are omnipresent in existing datasets
(Agrawal et al., 2016; Gururangan et al., 2018; Jia and Liang, 2017) and extremely hard to
avoid in large scale data collection. Having learned such dataset-specific solutions, neural
networks fail to make correct predictions for examples that are even slightly out of domain,
yet are trivial for humans. These findings have been corroborated by a recent investigation
on a synthetic instruction-following task (Lake and Baroni, 2018), in which seq2seq models
(Sutskever et al., 2014; Bahdanau et al., 2015) have shown little systematicity (Fodor and
Pylyshyn, 1988) in how they generalize, that is they do not learn general rules on how to
compose words and fail spectacularly when for example asked to interpret “jump twice” after
training on “jump”, “run twice” and “walk twice”.

An appealing direction to improve the generalization capabilities of neural models is
to add modularity and structure to their design to make them structurally resemble the
kind of rules they are supposed to learn (Andreas et al., 2016; Gaunt et al., 2016). For
example, in the Neural Module Network paradigm (NMN, Andreas et al. (2016)), a neural
network is assembled from several neural modules, where each module is meant to perform



a particular subtask of the input processing, much like a computer program composed of
functions. The NMN approach is intuitively appealing but its widespread adoption has been
hindered by the large amount of domain knowledge that is required to decide (Andreas et al.,
2016) or predict (Johnson et al., 2017; Hu et al., 2017) how the modules should be created
(parametrization) and how they should be connected (layout) based on a natural language
utterance. Besides, their performance has often been matched by more traditional neural
models, such as FiLM (Perez et al., 2017), Relations Networks (Santoro et al., 2017), and
MAC networks (Hudson and Manning, 2018). Lastly, generalization properties of NMNs, to
the best of our knowledge, have not been rigorously studied prior to this work.

Here, we investigate the impact of explicit modularity and structure on systematic gener-
alization of NMNs and contrast their generalization abilities to those of generic models. For
this case study, we focus on the task of visual question answering (VQA), in particular its
simplest binary form, when the answer is either “yes” or “no”. Such a binary VQA task can
be seen as a fundamental task of language understanding, as it requires one to evaluate the
truth value of the utterance with respect to the state of the world. Among many systematic
generalization requirements that are desirable for a VQA model, we choose the following ba-
sic one: a good model should be able to reason about all possible object combinations despite
being trained on a very small subset of them. We believe that this is a key prerequisite to
using VQA models in the real world, because they should be robust at handling unlikely
combinations of objects. We implement our generalization demands in the form of a new
synthetic dataset, called Spatial Queries On Object Pairs (SQOOP), in which a model has
to perform spatial relational reasoning about pairs of randomly scattered letters and digits
in the image (e.g. answering the question “Is there a letter A left of a letter B?”). The main
challenge in SQOOP is that models are evaluated on all possible object pairs, but trained
on only a subset of them.

Our first finding is that NMNs do generalize better than other neural models when layout
and parametrization are chosen appropriately. We then investigate which factors contribute
to improved generalization performance and find that using a layout that matches the task
(i.e. a tree layout, as opposed to a chain layout), is crucial for solving the hardest version
of our dataset. Lastly, and perhaps most importantly, we experiment with existing methods
for making NMNs more end-to-end by inducing the module layout (Johnson et al., 2017)
or learning module parametrization through soft-attention over the question (Hu et al.,
2017). Our experiments show that such end-to-end approaches often fail by not converging
to tree layouts or by learning a blurred parameterization for modules, which results in poor
generalization on the hardest version of our dataset. We believe that our findings challenge
the intuition of researchers in the field and provide a foundation for improving systematic
generalization of neural approaches to language understanding.
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8.2. The SQOOP Dataset For Testing Systematic Generaliza-

tion

We perform all experiments of this study on the SQOOP dataset. SQOOP is a minimal-
istic VQA task that is designed to test the model’s ability to interpret unseen combinations
of known relation and object words. Clearly, given known objects X, Y and a known relation
R, a human can easily verify whether or not the objects X and Y are in relation R. Some
instances of such queries are common in daily life (is there a cup on the table), some are
extremely rare (is there a violin under the car), and some are unlikely but have similar, more
likely counter-parts (is there grass on the frisbee vs is there a frisbee on the grass). Still,
a person can easily answer these questions by understanding them as just the composition
of the three separate concepts. Such compositional reasoning skills are clearly required for
language understanding models, and SQOOP is explicitly designed to test for them.

Concretely speaking, SQOOP requires observing a 64 × 64 RGB image x and answering
a yes-no question q = X R Y about whether objects X and Y are in a spatial relation R. The
questions are represented in a redundancy-free X R Y form; we did not aim to make the
questions look like natural language. Each image contains 5 randomly chosen and randomly
positioned objects. There are 36 objects: the latin letters A-Z and digits 0-9, and there are
4 relations: left_of, right_of, above, and below. This results in 36 · 35 · 4 = 5040
possible unique questions (we do not allow questions about identical objects). To make
negative examples challenging, we ensure that both X and Y of a question are always present
in the associated image and that there are distractor objects Y ′ �= Y and X ′ �= X such that
X R Y ′ and X ′ R Y are both true for the image. These extra precautions guarantee that
answering a question requires the model to locate all possible X and Y then check if any pair
of them are in the relation R. Two SQOOP examples are shown in Figure 8.3.

Our goal is to discover which models can correctly answer questions about all 36 · 35
possible object pairs in SQOOP after having been trained on only a subset. For this purpose
we build training sets containing 36 · 4 · k unique questions by sampling k different right-
hand-side (RHS) objects Y1, Y2, ..., Yk for each left-hand-side (LHS) object X. We use
this procedure instead of just uniformly sampling object pairs in order to ensure that each
object appears in at least one training question, thereby keeping the all versions of the
dataset solvable. We will refer to k as the #rhs/lhs parameter of the dataset. Our test
set is composed from the remaining 36 · 4 · (35 − k) questions. We generate training and
test sets for rhs/lhs values of 1,2,4,8 and 18, as well as a control version of the dataset,
#rhs/lhs=35, in which both the training and the test set contain all the questions (with
different images). Note that lower #rhs/lhs versions are harder for generalization due to
the presence of spurious dependencies between the words X and Y to which the models
may adapt. In order to exclude a possible compounding factor of overfitting on the training
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Figure 8.1. Different NMN layouts: NMN-Chain-Shortcut (left), NMN-
Chain (center), NMN-Tree (right). See Section 8.3.2 for details.

images, all our training sets contain 1 million examples, so for a dataset with #rhs/lhs = k

we generate approximately 106/(36 · 4 · k) different images per unique question.

8.3. Models

A great variety of VQA models have been recently proposed in the literature, among
which we can distinguish two trends. Some of the recently proposed models, such as FiLM
(Perez et al., 2017) and Relation Networks (RelNet, Santoro et al. (2017)) are highly generic
and do not require any task-specific knowledge to be applied on a new dataset. On the
opposite end of the spectrum are modular and structured models, typically flavours of Neural
Module Networks (Andreas et al., 2016), that do require some knowledge about the task at
hand to be instantiated. Here, we evaluate systematic generalization of several state-of-the-
art models in both families. In all models, the image x is first fed through a CNN based
network, that we refer to as the stem, to produce a feature-level 3D tensor hx. This is
passed through a model-specific computation conditioned on the question q, to produce a
joint representation hq x. Lastly, this representation is fed into a fully-connected classifier
network to produce logits for prediction. Therefore, the main difference between the models
we consider is how the computation hq x = model(hx, q) is performed.

8.3.1. Generic Models

We consider four generic models in this paper: CNN+LSTM, FiLM, Relation Network
(RelNet), and Memory-Attention-Control (MAC) network. For CNN+LSTM, FiLM, and
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(a) S above T? Yes (b) W left of A? No

Figure 8.3. A positive (left) and negative (right) example from the SQOOP
dataset.

RelNet models, the question q is first encoded into a fixed-size representation hq using a
unidirectional LSTM network. CNN+LSTM flattens the 3D tensor hx to a vector and
concatenates it with hq to produce hq x:

hq x = [flatten(hx); hq]. (8.3.1)

RelNet (Santoro et al., 2017) uses a network g which is applied to all pairs of feature
columns of hx concatenated with the question representation hq, all of which is then pooled
to obtain hq x:

hq x =
∑
i,j

g(hx(i), hx(j), hq) (8.3.2)

where hx(i) is the i-th feature column of hx. FiLM networks (Perez et al., 2017) use N

convolutional FiLM blocks applied to hx. A FiLM block is a residual block (He et al.,
2016) in which a feature-wise affine transformation (FiLM layer) is inserted after the 2nd

convolutional layer. The FiLM layer is conditioned on the question at hand via prediction
of the scaling and shifting parameters γn and βn:

[γn; βn] = W n
q hq + bn

q (8.3.3)

h̃n
q x = BN(W n

2 ∗ ReLU(W n
1 ∗ hn−1

q x + bn)) (8.3.4)

hn
q x = hn−1

q x + ReLU(γn 	 h̃n
q x ⊕ βn) (8.3.5)

where BN stands for batch normalization (Ioffe and Szegedy, 2015), ∗ stands for convolution
and 	 stands for element-wise multiplications. hn

q x is the output of the n-th FiLM block and
h0

q x = hx. The output of the last FiLM block hN
q x undergoes an extra 1 × 1 convolution and

max-pooling to produce hq x. MAC network of Hudson and Manning (2018) produces hq x

by repeatedly applying a Memory-Attention-Composition (MAC) cell that is conditioned on
the question through an attention mechanism. The MAC model is too complex to be fully
described here and we refer the reader to the original paper for details.

8.3.2. Neural Module Networks

Neural Module Networks (NMN) (Andreas et al., 2016) are an elegant approach to ques-
tion answering that constructs a question-specific network by composing together trainable
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neural modules, drawing inspiration from symbolic approaches to question answering (Ma-
linowski and Fritz, 2014). To answer a question with an NMN, one first constructs the
computation graph by making the following decisions: (a) how many modules and of which
types will be used, (b) how will the modules be connected to each other, and (c) how are
these modules parametrized based on the question. We refer to the aspects (a) and (b) of the
computation graph as the layout and the aspect (c) as the parametrization. In the original
NMN and in many follow-up works, different module types are used to perform very different
computations, e.g. the Find module from Hu et al. (2017) performs trainable convolutions
on the input attention map, whereas the And module from the same paper computes an
element-wise maximum for two input attention maps. In this work, we follow the trend
of using more homogeneous modules started by Johnson et al. (2017), who use only two
types of modules: unary and binary, both performing similar computations. We restrict
our study to NMNs with homogeneous modules because they require less prior knowledge
to be instantiated and because they performed well in our preliminary experiments despite
their relative simplicity. We go one step further than Johnson et al. (2017) and retain a
single binary module type, using a zero tensor for the second input when only one input is
available. Additionally, we choose to use exactly three modules, which simplifies the layout
decision to just determining how the modules are connected. Our preliminary experiments
have shown that, even after these simplifications, NMNs are far ahead of other models in
terms of generalization.

In the original NMN, the layout and parametrization were set in an ad-hoc manner for
each question by analyzing a dependency parse. In the follow-up works (Johnson et al., 2017;
Hu et al., 2017), these aspects of the computation are predicted by learnable mechanisms
with the goal of reducing the amount of background knowledge required to apply the NMN
approach to a new task. We experiment with the End-to-End NMN (N2NMN) (Hu et al.,
2017) paradigm from this family, which predicts the layout with a seq2seq model (Sutskever
et al., 2014) and computes the parametrization of the modules using a soft attention mech-
anism. Since all the questions in SQOOP have the same structure, we do not employ a
seq2seq model but instead have a trainable layout variable and trainable attention variables
for each module.

Formally, our NMN is constructed by repeatedly applying a generic neural mod-
ule f(θ, γ, s0, s1), which takes as inputs the shared parameters θ, the question-specific
parametrization γ and the left-hand side and right-hand side inputs s0 and s1. Three such
modules are connected and conditioned on a question q = (q1, q2, q3) as follows:

γk =
3∑

i=1
αk,ie(qi) (8.3.6)
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sm
k =

k−1∑
j=−1

τ k,j
m sj (8.3.7)

sk = f(θ, γk, s0
k, s1

k) (8.3.8)

hqx = s3 (8.3.9)

In the equations above, s−1 = 0 is the zero tensor input, s0 = hx are the image features
outputted by the stem, e is the embedding table for question words. k ∈ {1, 2, 3} is the
module number, sk is the output of the k-th module and sm

k are its left (m = 0) and right
(m = 1) inputs. We refer to A = (αk,i) and T = (τ k,j

m ) as the parametrization attention
matrix and the layout tensor respectively.

We experiment with two choices for the NMN’s generic neural module: the Find module
from Hu et al. (2017) and the Residual module from Johnson et al. (2017). The equations
for the Residual module are as follows:

[W k
1 ; bk

1; W k
2 ; bk

2; W k
3 ; bk

3] = γk (8.3.10)

s̃k = ReLU(W k
3 ∗ [s0

k; s1
k] + bk

3), (8.3.11)

fResidual(γk, s0
k, s1

k) = ReLU(s̃k + W k
1 ∗ ReLU(W k

2 ∗ s̃k + bk
2)) + bk

1), (8.3.12)

and for Find module as follows:

[W1; b1; W2; b2] = θ, (8.3.13)

fF ind(θ, γk, s0
k, s1

k) = ReLU(W1 ∗ γk 	 ReLU(W2 ∗
[
s0

k; s1
k

]
+ b2) + b1). (8.3.14)

In the formulas above all W ’s stand for convolution weights, and all b’s are biases. Equations
8.3.10 and 8.3.13 should be understood as taking vectors γk and θ respectively and chunking
them into weights and biases. The main difference between Residual and Find is that in
Residual all parameters depend on the questions words (hence θ is omitted from the signature
of fResidual), where as in Find convolutional weights are the same for all questions, and only
the element-wise multipliers γk vary based on the question. We note that the specific Find
module we use in this work is slightly different from the one used in (Hu et al., 2017) in that
it outputs a feature tensor, not just an attention map. This change was required in order to
connect multiple Find modules in the same way as we connect multiple residual ones.

Based on the generic NMN model described above, we experiment with several specific
architectures that differ in the way the modules are connected and parametrized (see Fig-
ure 8.1). In NMN-Chain the modules form a sequential chain. Modules 1, 2 and 3 are
parametrized based on the first object word, second object word and the relation word re-
spectively, which is achieved by setting the attention maps α1, α2, α3 to the corresponding
one-hot vectors. We also experiment with giving the image features hx as the right-hand side
input to all 3 modules and call the resulting model NMN-Chain-Shortcut. NMN-Tree is
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similar to NMN-Chain in that the attention vectors are similarly hard-coded, but we change
the connectivity between the modules to be tree-like. Stochastic N2NMN follows the
N2NMN approach by Hu et al. (2017) for inducing layout. We treat the layout T as a sto-
chastic latent variable. T is allowed to take two values: Ttree as in NMN-Tree, and Tchain as in
NMN-Chain. We calculate the output probabilities by marginalizing out the layout i.e. prob-
ability of answer being “yes” is computed as p(yes|x, q) = ∑

T ∈{Ttree,Tchain} p(yes|T, x, q)p(T ).
Lastly, Attention N2NMN uses the N2NMN method for learning parametrization (Hu
et al., 2017). It is structured just like NMN-Tree but has αk computed as softmax(α̃k),
where α̃k is a trainable vector. We use Attention N2NMN only with the Find module be-
cause using it with the Residual module would involve a highly non-standard interpolation
between convolutional weights.

8.4. Experiments

In our experiments we aimed to: (a) understand which models are capable of exhibiting
systematic generalization as required by SQOOP, and (b) understand whether it is possible
to induce, in an end-to-end way, the successful architectural decisions that lead to systematic
generalization.

All models share the same stem architecture which consists of 6 layers of convolution (8
for Relation Networks), batch normalization and max pooling. The input to the stem is a 64
× 64 × 3 image, and the feature dimension used throughout the stem is 64. Further details
can be found in Appendix C.1. The code for all experiments is available online1.

8.4.1. Which Models Generalize Better?

We report the performance for all models on datasets of varying difficulty in Figure 8.4.
Our first observation is that the modular and tree-structured NMN-Tree model exhibits
strong systematic generalization. Both versions of this model, with Residual and Find mod-
ules, robustly solve all versions of our dataset, including the most challenging #rhs/lhs=1
split.

The results of NMN-Tree should be contrasted with those of generic models. 2 out of 4
models (Conv+LSTM and RelNet) are not able to learn to answer all SQOOP questions,
no matter how easy the split was (for high #rhs/lhs Conv+LSTM overfitted and RelNet
did not train). The results of other two models, MAC and FiLM, are similar. Both models
are clearly able to solve the SQOOP task, as suggested by their almost perfect < 1% error
rate on the control #rhs/lhs=35 split, yet they struggle to generalize on splits with lower
#rhs/lhs. In particular, we observe 13.67±9.97% errors for MAC and a 34.73±4.61% errors
for FiLM on the hardest #rhs/lhs=1 split. For the splits of intermediate difficulty we saw

1https://github.com/rizar/systematic-generalization-sqoop
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the error rates of both models decreasing as we increased the #rhs/lhs ratio from 2 to 18.
Interestingly, even with 18 #rhs/lhs some MAC and FiLM runs result in a test error rate
of ∼ 2%. Given the simplicity and minimalism of SQOOP questions, we believe that these
results should be considered a failure to pass the SQOOP test for both MAC and FiLM. That
said, we note a difference in how exactly FiLM and MAC fail on #rhs/lhs=1: in several runs
(3 out of 15) MAC exhibits a strong generalization performance (∼ 0.5% error rate), whereas
in all runs of FiLM the error rate is about 30%. We examine the successful MAC models
and find that they converge to a successful setting of the control attention weights, where
specific MAC units consistently attend to the right questions words. In particular, MAC
models that generalize strongly for each question seem to have a unit focusing strongly on
X and a unit focusing strongly on Y (see Appendix C.2 for more details). As MAC was the
strongest competitor of NMN-Tree across generic models, we perform an ablation study for
this model, in which we vary the number of modules and hidden units, as well as experiment
with weight decay. These modifications do not result in any significant reduction of the gap
between MAC and NMN-Tree. Interestingly, we find that using the default high number of
MAC units, namely 12, is helpful, possibly because it increases the likelihood that at least
one unit converges to focus on X and Y words (see Appendix C.2 for details).

8.4.2. What is Essential to Strong Generalization of NMN?

The superior generalization of NMN-Tree raises the following question: what is the key
architectural difference between NMN-Tree and generic models that explains the performance
gap between them? We consider two candidate explanations. First, the NMN-Tree model
differs from the generic models in that it does not use a language encoder and is instead
built from modules that are parametrized by question words directly. Second, NMN-Tree is
structured in a particular way, with the idea that modules 1 and 2 may learn to locate objects
and module 3 can learn to reason about object locations independently of their identities.
To understand which of the two differences is responsible for the superior generalization, we
compare the performance of the NMN-Tree, NMN-Chain and NMN-Chain-Shortcut models
(see Figure 8.1). These 3 versions of NMN are similar in that none of them are using a
language encoder, but they differ in how the modules are connected. The results in Figure 8.4
show that for both Find and Residual module architectures, using a tree layout is absolutely
crucial (and sufficient) for generalization, meaning that the generalization gap between NMN-
Tree and generic models can not be explained merely by the language encoding step in the
latter. In particular, NMN-Chain models perform barely above random chance, doing even
worse than generic models on the #rhs/lhs=1 version of the dataset and dramatically failing
even on the easiest #rhs/lhs=18 split. This is in stark contrast with NMN-Tree models
that exhibits nearly perfect performance on the hardest #rhs/lhs=1 split. As a sanity
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Figure 8.4. Top: Comparing the performance of generic models on datasets
of varying difficulty (lower #rhs/lhs is more difficult). Note that NMN-Tree
generalizes perfectly on the hardest #rhs/lhs=1 version of SQOOP, whereas
MAC and FiLM fail to solve completely even the easiest #rhs/lhs=18 version.
Bottom: Comparing NMNs with different layouts and modules. We can
clearly observe the superior generalization of NMN-Tree, poor generalization
of NMN-Chain and mediocre generalization of NMN-Chain-Shortcut. Means
and standard deviations after at least 5 runs are reported.

check we train NMN-Chain models on the vanilla #rhs/lhs=35 split. We find that NMN-
Chain has little difficulty learning to answer SQOOP questions when it sees all of them at
training time, even though it previously shows poor generalization when testing on unseen
examples. Interestingly, NMN-Chain-Shortcut performs much better than NMN-Chain and
quite similarly to generic models. We find it remarkable that such a slight change in the
model layout as adding shortcut connections from image features hx to the modules results
in a drastic change in generalization performance. In an attempt to understand why NMN-
Chain generalizes so poorly we compare the test set responses of the 5 NMN-Chain models
trained on #rhs/lhs=1 split. Notably, there was very little agreement between predictions
of these 5 runs (Fleiss κ = 0.05), suggesting that NMN-Chain performs rather randomly
outside of the training set.
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Figure 8.5. Learning
dynamics of layout in-
duction on 1 rhs/lhs and
18 rhs/lhs datasets using
the Residual module with
p0(tree) = 0.5. All 5 runs
do not learn to use the
tree layout for 1 rhs/lhs,
the very setting where the
tree layout is necessary for
generalization.

Figure 8.6. Attention
quality κ vs accuracy for
Attention N2NMN mod-
els trained on different
#rhs/lhs splits. We can
observe that generalization
is strongly associated with
high κ for #rhs/lhs=1,
while for splits with 2 and
18 rhs/lhs blurry attention
may be sufficient.

Figure 8.7. An example of how attention weights of modules 1 (left), 2
(middle), and 3 (right) evolve during training of an Attention N2NMN model
on the 18 rhs/lhs version of SQOOP. Modules 1 and 2 learn to focus on different
objects words, X and Y respectively in this example, but they also assign high
weight to the relation word R. Module 3 learns to focus exclusively on R.

8.4.3. Can the Right Kind of NMN Be Induced?

The strong generalization of the NMN-Tree is impressive, but a significant amount of
prior knowledge about the task was required to come up with the successful layout and
parametrization used in this model. We therefore investigate whether the amount of such
prior knowledge can be reduced by fixing one of these structural aspects and inducing the
other.

8.4.3.1. Layout Induction

In our layout induction experiments, we use the Stochastic N2NMN model which treats
the layout as a stochastic latent variable with two values (Ttree and Tchain, see Section 8.3.2
for details). We experiment with N2NMNs using both Find and Residual modules and
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Table 8.1. Tree layout induction results for Stochastic N2NMNs using
Residual and Find modules on 1 rhs/lhs and 18 rhs/lhs datasets. For each
setting of p0(tree) we report results after 5 runs. p200K(tree) is the probability
of using a tree layout after 200K training iterations.

module #rhs/lhs p0(tree) Test error rate (%) Test loss p200K(tree)

Residual
1

0.1 31.89 ± 0.75 0.64 ± 0.03 0.08 ± 0.01
0.5 1.64 ± 1.79 0.27 ± 0.04 0.56 ± 0.06
0.9 0.16 ± 0.11 0.03 ± 0.01 0.96 ± 0.00

18
0.1 3.99 ± 5.33 0.15 ± 0.06 0.59 ± 0.34
0.5 0.19 ± 0.11 0.06 ± 0.02 0.99 ± 0.01
0.9 0.12 ± 0.12 0.01 ± 0.00 1.00 ± 0.00

Find
1

0.1 47.54 ± 0.95 1.78 ± 0.47 0.00 ± 0.00
0.5 0.78 ± 0.52 0.05 ± 0.04 0.94 ± 0.07
0.9 0.41 ± 0.07 0.02 ± 0.00 1.00 ± 0.00

18
0.1 5.11 ± 1.19 0.14 ± 0.03 0.02 ± 0.04
0.5 0.17 ± 0.16 0.01 ± 0.01 1.00 ± 0.00
0.9 0.11 ± 0.03 0.00 ± 0.00 1.00 ± 0.00

report results with different initial conditions, p0(tree) ∈ 0.1, 0.5, 0.9. We believe that the
initial probability p0(tree) = 0.1 should not be considered small, since in more challenging
datasets the space of layouts would be exponentially large, and sampling the right layout in
10% of all cases should be considered a very lucky initialization. We repeat all experiments
on #rhs/lhs=1 and on #rhs/lhs=18 splits, the former to study generalization, and the
latter to control whether the failures on #rhs/lhs=1 are caused specifically by the difficulty
of this split. The results (see Table 8.1) show that the success of layout induction (i.e.
converging to a p(tree) close to 0.9) depends in a complex way on all the factors that we
considered in our experiments. The initialization has the most influence: models initialized
with p0(tree) = 0.1 typically do not converge to a tree (exception being experiments with
Residual module on #rhs/lhs=18, in which 3 out of 5 runs converged to a solution with
a high p(tree)). Likewise, models initialized with p0(tree) = 0.9 always stay in a regime
with a high p(tree). In the intermediate setting of p0(tree) = 0.5 we observe differences in
behaviors for Residual and Find modules. In particular, N2NMN based on Residual modules
stays spurious with p(tree) = 0.5 ± 0.08 when #rhs/lhs=1, whereas N2NMN based on Find
modules always converges to a tree.

One counterintuitive result in Table 8.1 is that for the Stochastic N2NMNs with Residual
modules, trained with p0(tree) = 0.5 and #rhs/lhs=1, make just 1.64 ± 1.79% test error
despite never resolving the layout uncertainty through training (p200K(tree) = 0.56 ± 0.06).
We offer an investigation of this result in Appendix C.3.
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8.4.3.2. Parametrization Induction

Next, we experiment with the Attention N2NMN model (see Section 8.3.2) in which
the parametrization is learned for each module as an attention-weighted average of word
embeddings. In these experiments, we fix the layout to be tree-like and sample the pre-
softmax attention weights α̃ from a uniform distribution U [0; 1]. As in the layout induc-
tion investigations, we experiment with several SQOOP splits, namely we try #rhs/lhs
∈ {1, 2, 18}. The results (reported in Table 8.2) show that Attention N2NMN fails dramati-
cally on #rhs/lhs=1 but quickly catches up as soon as #rhs/lhs is increased to 2. Notably,
9 out of 10 runs on #rhs/lhs=2 result in almost perfect performance, and 1 run completely
fails to generalize (26% error rate), resulting in a high 8.18% variance of the mean error
rate. All 10 runs on the split with 18 rhs/lhs generalize flawlessly. Furthermore, we inspect
the learned attention weights and find that for typical successful runs, module 3 focuses
on the relation word, whereas modules 1 and 2 focus on different object words (see Figure
8.7) while still focusing on the relation word. To better understand the relationship be-
tween successful layout induction and generalization, we define an attention quality metric
κ = minw∈{X,Y } maxk∈1,2 αk,w/(1−αk,R). Intuitively, κ is large when for each word w ∈ X, Y

there is a module i that focuses mostly on this word. The renormalization by 1/(1 − αk,R) is
necessary to factor out the amount of attention that modules 1 and 2 assign to the relation
word. For the ground-truth parametrization that we use for NMN-Tree κ takes a value of 1,
and if both modules 1 and 2 focus on X, completely ignoring Y, κ equals 0. The scatterplot
of the test error rate versus κ (Figure 8.6) shows that for #rhs/lhs=1 high generalization
is strongly associated with higher κ, meaning that it is indeed necessary to have different
modules strongly focusing on different object words in order to generalize in this most chal-
lenging setting. Interestingly, for #rhs/lhs=2 we see a lot of cases where N2NMN generalizes
well despite attention being rather spurious (κ ≈ 0.6).

In order to put Attention N2NMN results in context we compare them to those of MAC
(see Table 8.2). Such a comparison can be of interest because both models perform attention
over the question. For 1 rhs/lhs MAC seems to be better on average, but as we increase
#rhs/lhs to 2 we note that Attention N2NMN succeeds in 9 out of 10 cases on the #rhs/lhs=2
split, much more often than 1 success out of 10 observed for MAC2. This result suggests that
Attention N2NMNs retains some of the strong generalization potential of NMNs with hard-
coded parametrization.

2If we judge a run successful when the error rate is lower than τ = 1%, these success rates are different with
a p-value of 0.001 according to the Fisher exact test. Same holds for any other threshold τ ∈ [1%; 5%].
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Table 8.2. Parameterization induction results for 1,2,18 rhs/lhs datasets
for Attention N2NMN. The model does not generalize well in the difficult 1
rhs/lhs setting. Results for MAC are presented for comparison. Means and
standard deviations were estimated based on at least 10 runs.

Model #rhs/lhs Test error rate (%) Test loss (%)
Attention N2NMN 1 27.19 ± 16.02 1.22 ± 0.71
Attention N2NMN 2 2.82 ± 8.18 0.14 ± 0.41
Attention N2NMN 18 0.16 ± 0.12 0.00 ± 0.00

MAC 1 13.67 ± 9.97 0.41 ± 0.32
MAC 2 9.21 ± 4.31 0.28 ± 0.15
MAC 18 0.53 ± 0.74 0.01 ± 0.02

8.5. Related Work

The notion of systematicity was originally introduced by (Fodor and Pylyshyn, 1988) as
the property of human cognition whereby “the ability to entertain a given thought implies the
ability to entertain thoughts with semantically related contents”. They illustrate this with
an example that no English speaker can understand the phrase “John loves the girl” without
being also able to understand the phrase “the girl loves John”. The question of whether
or not connectionist models of cognition can account for the systematicity phenomenon has
been a subject of a long debate in cognitive science (Fodor and Pylyshyn, 1988; Smolensky,
1987; Marcus, 1998, 2003; Calvo and Colunga, 2003). Recent research has shown that lack
of systematicity in the generalization is still a concern for the modern seq2seq models (Lake
and Baroni, 2018; Bastings et al., 2018; Loula et al., 2018). Our findings about the weak
systematic generalization of generic VQA models corroborate the aforementioned seq2seq
results. We also go beyond merely stating negative generalization results and showcase the
high systematicity potential of adding explicit modularity and structure to modern deep
learning models.

Besides the theoretical appeal of systematicity, our study is inspired by highly related
prior evidence that when trained on downstream language understanding tasks, neural net-
works often generalize poorly and latch on to dataset-specific regularities. Agrawal et al.
(2016) report how neural models exploit biases in a VQA dataset, e.g. responding “snow” to
the question “what covers the ground” regardless of the image because “snow” is the most
common answer to this question. Gururangan et al. (2018) report that many successes in
natural language entailment are actually due to exploiting statistical biases as opposed to
solving entailment, and that state-of-the-art systems are much less performant when tested
on unbiased data. Jia and Liang (2017) demonstrate that seemingly state-of-the-art read-
ing comprehension system can be misled by simply appending an unrelated sentence that
resembles the question to the document.
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Using synthetic VQA datasets to study grounded language understanding is a recent
trend started by the CLEVR dataset (Johnson et al., 2016). CLEVR images are 3D-rendered
and CLEVR questions are longer and more complex than ours, but in the associated gener-
alization split CLEVR-CoGenT the training and test distributions of images are different.
In our design of SQOOP we aimed instead to minimize the difference between training and
test images to make sure that we test a model’s ability to interpret unknown combinations
of known words. The ShapeWorld family of datasets by Kuhnle and Copestake (2017) is
another synthetic VQA platform with a number of generalization tests, but none of them
tests SQOOP-style generalization of relational reasoning to unseen object pairs. Most closely
related to our work is the recent study of generalization to long-tail questions about rare
objects done by Bingham et al. (2017). They do not, however, consider as many models as
we do and do not study the question of whether the best-performing models can be made
end-to-end.

The key paradigm that we test in our experiments is Neural Module Networks (NMN).
Andreas et al. (2016) introduced NMNs as a modular, structured VQA model where a fixed
number of hand-crafted neural modules (such as Find, or Compare) are chosen and composed
together in a layout determined by the dependency parse of the question. Andreas et al.
(2016) show that the modular structure allows answering questions that are longer than the
training ones, a kind of generalization that is complementary to the one we study here. Hu
et al. (2017) and Johnson et al. (2017) followed up by making NMNs end-to-end, removing
the non-differentiable parser. Both Hu et al. (2017) and Johnson et al. (2017) reported that
several thousands of ground-truth layouts are required to pretrain the layout predictor in
order for their approaches to work. In a recent work, Hu et al. (2018) attempt to soften the
layout decisions, but training their models end-to-end from scratch performed substantially
lower than best models on the CLEVR task. Gupta and Lewis (2018) report successful layout
induction on CLEVR for a carefully engineered heterogeneous NMN that takes a scene graph
as opposed to a raw image as the input.

8.6. Conclusion and Discussion

We have conducted a rigorous investigation of an important form of systematic gen-
eralization required for grounded language understanding: the ability to reason about all
possible pairs of objects despite being trained on a small subset of such pairs. Our results
allow one to draw two important conclusions. For one, the intuitive appeal of modularity and
structure in designing neural architectures for language understanding is now supported by
our results, which show how a modular model consisting of general purpose residual blocks
generalizes much better than a number of baselines, including architectures such as MAC,
FiLM and RelNet that were designed specifically for visual reasoning. While this may seem
unsurprising, to the best of our knowledge, the literature has lacked such a clear empirical
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evidence in favor of modular and structured networks before this work. Importantly, we
have also shown how sensitive the high performance of the modular models is to the layout
of modules, and how a tree-like structure generalizes much stronger than a typical chain of
layers.

Our second key conclusion is that coming up with an end-to-end and/or soft version of
modular models may be not sufficient for strong generalization. In the very setting where
strong generalization is required, end-to-end methods often converge to a different, less com-
positional solution (e.g. a chain layout or blurred attention). This can be observed especially
clearly in our NMN layout and parametrization induction experiments on the #rhs/lhs=1
version of SQOOP, but notably, strong initialization sensitivity of layout induction remains
an issue even on the #rhs/lhs=18 split. This conclusion is relevant in the view of recent
work in the direction of making NMNs more end-to-end (Suarez et al., 2018; Hu et al., 2018;
Hudson and Manning, 2018; Gupta and Lewis, 2018). Our findings suggest that merely
replacing hard-coded components with learnable counterparts can be insufficient, and that
research on regularizers or priors that steer the learning towards more systematic solutions
can be required. That said, our parametrization induction results on the #rhs/lhs=2 split
are encouraging, as they show that compared to generic models, a weaker nudge (in the form
of a richer training signal or a prior) towards systematicity may suffice for end-to-end NMNs.

While our investigation has been performed on a synthetic dataset, we believe that it
is the real-world language understanding where our findings may be most relevant. It is
possible to construct a synthetic dataset that is bias-free and that can only be solved if the
model has understood the entirety of the dataset’s language. It is, on the contrary, much
harder to collect real-world datasets that do not permit highly dataset-specific solutions, as
numerous dataset analysis papers of recent years have shown (see Section 8.5 for a review).
We believe that approaches that can generalize strongly from imperfect and biased data will
likely be required, and our experiments can be seen as a simulation of such a scenario. We
hope, therefore, that our findings will inform researchers working on language understanding
and provide them with a useful intuition about what facilitates strong generalization and
what is likely to inhibit it.
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Chapter 9

PROLOGUE TO FOURTH ARTICLE

9.1. Article Details

CLOSURE: Assessing Systematic Generalization of CLEVR Models. Dzmitry
Bahdanau, Harm de Vries, Timothy J. O’Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua
Bengio, and Aaron Courville. In preparation.

Personal Contribution. I did most of the work, including building the dataset, implement-
ing all models, running all experiments, and writing most of the paper. Other authors mostly
advised and helped with writing. In particular, Harm de Vries’s and Timothy O’Donnell’s
help with writing was very substantial.

9.2. Context

The project had two goals. One was to complement the study of systematic generaliza-
tion that is presented in Chapter 8 by an investigation that uses a more diverse synthetic
dataset and focuses on different linguistic phenomena. Another goal was to contextualize the
impressive results on the CLEVR dataset that had been reported for a number of models.
We suspected that a key aspect of these results is the fact that the same templates are used
at training and test time in the usual CLEVR setup and designed our experiments to test
this hypothesis.

9.3. Contributions

We analyze and compare generalization abilities of modern VQA models and show that
all of them experience generalization issues when tested on CLEVR-like questions that are
out of the original data distribution. We propose a new Vector-NMN module with which
the NMNs generalize better. Lastly, our few-shot transfer learning studies highlight different
adaptation behaviors of models with and without internal programs.





Chapter 10

CLOSURE: ASSESSING SYSTEMATIC
GENERALIZATION OF CLEVR MODELS

10.1. Introduction

The ability to communicate in natural language and ground it effectively into our rich
unstructured 3D reality is a crucial skill that we expect from artificial agents of the future. A
popular task to benchmark progress towards this goal is Visual Question Answering (VQA),
in which one must give a (typically short) answer to a question about the content of an
image. The release of the relatively large VQA 1.0 dataset by Antol et al. (2015) ignited
the interest for the VQA setup, but researchers soon found that the biases of natural data
(such as the heavily skewed answer distribution for certain question types) make it hard to
interpret the VQA 1.0 results (Agrawal et al., 2016). To complement biased natural data,
Johnson et al. (2016) constructed the CLEVR dataset of complex synthetic questions about
3D-rendered scenes to be free of such biases (see Q1 and Q2 in Figure 10.1 for examples of
CLEVR questions). The CLEVR dataset has spurred VQA modeling research, and many
models were designed for it and showcased using it (Santoro et al., 2017; Perez et al., 2017;
Johnson et al., 2017; Hudson and Manning, 2018; Mascharka et al., 2018).

The high complexity and diversity of CLEVR questions and the reported 97-99% accura-
cies may lead to the impression that these high-performing models are capable of answering
any possible question that uses the same linguistic constructs as in CLEVR. Such an intuitive
expectation corresponds to the concept of systematicity (Fodor and Pylyshyn, 1988), which
characterizes the ability of humans to interpret arbitrary combinations of known primitives.
One can argue that systematicity is also a highly desirable property for AI systems. For
example, suppose you refer to an object by relating its appearance to another object, as in
“the object that is the same size as the red cube”. If a CLEVR-trained model understands
such a referring expression, it is likely that you will expect this model to understand it in
other, more complex contexts. This includes cases in which such an expression is embedded
in a more complex referring expression, e.g. “the cylinder to the left of the object that is



Q1 (CLEVR): There is another
cube that is the same size as the
brown cube; what is its color?
Q2 (CLEVR): There is a thing
that is in front of the yellow thing;
does it have the same color as
cylinder?
Q3 (CLOSURE): There is another
rubber object that is the same size
as the gray cylinder; does it have the
same color as the tiny shiny block?

Figure 10.1. CLEVR questions (Q1 and Q2) require complex multi-step rea-
soning about the contents of 3D-rendered images. We construct CLOSURE
questions (Q3) by using the referring expressions that rely on matching ob-
ject properties (e.g. the red fragment in Q1) in novel contexts, such as e.g.
comparison questions with two referring expressions (Q2).

Figure 10.2. Programs P1, P2, P3 that define the ground-truth meaning for
the questions Q1, Q2 and Q3 in Figure 10.1. The fragments in red correspond
to the matching REs in the respective questions.

the same size as the red cube”, or is logically combined with another expression, e.g. “ei-
ther cubes or objects that are the same size as the red cube”. For learning-based systems,
unless the training distribution uniformly covers all sensible compositions of interest (which
is nearly impossible to achieve for natural data), systematicity requires a particular kind
of out-of-domain generalization, whereby the test distribution is different from the training
one but follows the same rules of semantic and syntactic composition. Such systematic gen-
eralization of modern neural models has been recently studied in the context of artificial
sequence transduction and VQA tasks (Lake and Baroni, 2018; Bahdanau et al., 2019b), the
latter done in a setup that is much simpler and less diverse than CLEVR.
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In this work, we perform a case-study of how systematic CLEVR-trained models are in
their generalization capabilities. In doing so, we seek to provide important context to the
near-perfect CLEVR accuracies that are measured by the usual methodology, as well as to
contribute to the literature on systematic generalization. The specific aspect of systematicity
that we analyze is the one exemplified in the previous paragraph: the ability to interpret
known ways of referring to objects in arbitrary contexts. We focus on the matching referring
expressions (see e.g. “another cube that it is the same size as the brown cube” in Figure 10.1)
that require the object (or objects) to match another object in terms of a property, such as
the size, the color, the material or the shape. We construct 7 CLOSURE tests with questions
that highly overlap with the CLEVR ones and yet are different (see the Q3 in Figure 10.1
for an example from one such test), aiming to cover the contexts in which property matching
is not used to refer to objects in the original CLEVR. We call the resulting benchmark
CLOSURE referring to the underlying idea of taking a closure (in the mathematical sense)
of CLEVR questions under the operation of referring expression substitution and keeping
those questions that are similar enough to the original ones.

We evaluate a number of different CLEVR-trained models on CLOSURE, including end-
to-end differentiable ones, like FiLM (Perez et al., 2017) and MAC (Hudson and Manning,
2018), and models using intermediate symbolic programs, like NS-VQA (Yi et al., 2018) and
the variety of Neural Module Networks (NMN, Andreas et al. (2016)) proposed by John-
son et al. (2017). We show that all aforementioned models often struggle on CLOSURE
questions. For models using symbolic programs, such as NS-VQA and NMN, we observe a
generalization gap in the performance of their neural sequence-to-sequence program genera-
tors (Sutskever et al., 2014; Bahdanau et al., 2015). Furthermore, NMNs often exhibit poor
generalization even when the ground-truth programs are provided. This result is remarkable
given that the original motivation for NMNs is to decompose the model into components
that can be recombined arbitrarily. To improve the NMN’s generalization, we develop a
new Vector-NMN module with vector-valued (as opposed to tensor-valued) inputs and out-
puts. We show that the Vector-NMN modules perform much better than prior work when
assembled in configurations that are different from the training ones. Lastly, we complement
our 0-shot systematic generalization analysis with a few-shot transfer learning study and
contrast the few-shot adaptation behavior of models with and without symbolic programs.

10.2. CLOSURE: A Systematic Generalization Benchmark for

CLEVR

Analysis of CLEVR

The key source of diversity and complexity in CLEVR questions is how objects of interest
are referred to. We call a noun phrase a referring expression (RE) when it refers to an object
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or a set of objects, themselves called referents. We distinguish three kinds of REs that occur
in CLEVR: simple REs, complex REs and logical REs. A simple RE is a noun that is
(optionally) modified by one or more adjective, e.g.:

the big red cube (10.2.1)

yellow shiny spheres. (10.2.2)

In Complex REs, a relative clause (in square brackets in the examples below) is used to
modify the noun (possibly in addition to adjectives):

the cube [that is left of 〈RE〉], (10.2.3)

big spheres [that are the same color as 〈RE〉]. (10.2.4)

In examples above, 〈RE〉 is the embedded RE, which can be either simple or also complex.
Complex REs in CLEVR can be spatial (Example 10.2.3) or rely on matching objects’ prop-
erties (Example 10.2.4). We will call the latter matching REs. The RE’s type is determined
by whether a spatial predicate (“is left of 〈RE〉”, “is right of 〈RE〉”, ...) or a matching
predicate (“is the same size as 〈RE〉”, “is the same color as 〈RE〉”, ...) is used to construct
the relative clause.1 In Logical REs, two REs (Example 10.2.5, square brackets) or two
prepositional phrases (Example 10.2.6, square brackets) are combined using “and” or “or”:

[tiny balls] or [brown blocks behind the matte object], (10.2.5)

a metallic object that is [left of the brown ball]

and [in front of the tiny block] (10.2.6)

The second most important axis of variation in CLEVR is what kind of question is asked
about the referents. CLEVR includes existence, counting, attribute and object comparison
questions, see examples below:

• (existence) Is there a big cyan object?
• (counting) How many purple things are behind the cylinder?
• (attribute) What material is the big purple ball?
• (comparison) Do the red thing and the big thing have the same shape?

In existence, counting and attribute questions there is one top-level RE, whereas comparison
questions contain two top-level REs.

CLOSURE questions

We have constructed the CLOSURE dataset by generating new CLEVR-like questions
with matching predicates. To this end, we analyzed the composition of CLEVR and found

1Note that the original paper by (Johnson et al., 2016) these are called “spatial relationships” and “same-
attribute relationships”
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a number of question templates in which a spatial predicate could be seamlessly substituted
for a matching one. We focused on 7 cases where such substitution was possible and where it
yielded questions that were not possible under CLEVR’s original data distribution. Below,
we describe and give examples of each of the resulting 7 CLOSURE tests. For a more
technical explanation of the question generation procedure we refer the reader to Section
10.7.

The embed_spa_mat test contains existence questions with a matching RE that has an
embedded spatial RE, e.g:

• Is there a cylinder that is the same material as the object to the left of the blue thing?
Here, a spatial RE “the object to the left of the blue thing” is embedded in a matching RE
“a cylinder that is the same material ...”. Note, that in original CLEVR matching REs can
only contain simple embedded REs. A closely related test is embed_mat_spa, in which the
top-level RE is spatial and the embedded one uses property matching:

• Is there a thing behind the cube that is the same color as the ball?
In compare_mat and compare_mat_spa tests we focus on models’ ability to understand

matching REs in comparison questions:
• There is another small cylinder that is the same material as the small cyan cylinder;

does it have the same color as the block?
• There is another cube that is the same material as the gray cube; does it have the

same size as the metal thing to the right of the tiny gray cube?
The comparison questions in CLEVR only use spatial REs, hence compare_mat and
compare_mat_spa require models to recombine known constructs (that is the matching REs
and the comparison questions) in a novel way. The two tests differ in whether the second
RE is simple (compare_mat) or spatial (compare_mat_spa).

The remaining three CLOSURE tests assess models’ understanding of matching predi-
cates in logical REs. The or_mat and or_mat_spa questions require counting referents for
a logical “or” of two REs, one of which uses property matching:

• How many things are cubes or cylinders that are the same size as the red object?
• How many things are objects that are in front of the blue thing or small metallic

things that are the same color as the rubber block?
The or_mat_spa test differs from the or_mat one in that the second RE is also a complex
one. The and_mat_spa test contains attribute questions in which the RE involves a logical
“and” of a spatial and a matching predicate:

• What is the color of the thing that is to the left of the red cylinder and is the same
size as the red block?

All the three tests presented above contain questions that are impossible under CLEVR’s
original data distribution, as logical REs in CLEVR only employ spatial predicates.
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CLOSURE templates and programs

To construct CLOSURE questions and to compute the ground-truth answers we used
the template-based question generator that comes with CLEVR. The question generator
randomly fills the slots of a given template to produce new questions as well as symbolic
programs in a functional domain-specific language (DSL) that represent questions’ meanings.
See Figure 10.2 for example programs P1 and P2. The programs are executed against a
symbolic scene graph to produce the ground-truth answers for all questions. Another usecase
for groundtruth programs is to bootstrap learning in models that internally use programs
as representations of questions’ meanings, such e.g. Neural Module Networks (NMN). Here,
we explain how differences between CLOSURE and CLEVR questions manifest themselves
in their respective ground-truth programs.

The DSL functions that implement meanings of referring expressions operate on sets of
objects, where each object is represented by the values of its four properties (shape, color,
size and material) and its spatial coordinates. Filter functions filter the input set of objects
by the value of a property (e.g. “filter_color[brown]”, “filter_shape[cube]”), and relations
return a set of all other objects that are related to the given object. The two kinds of
relations in the DSL correspond to the spatial and matching predicates that we discussed
above. Namely, there are spatial relations: (“relate[left]”, “relate[right]”, ...) and matching
relations (“same_shape”, “same_color”, ...). The subprograms that correspond to the REs
consist of chained filters and relations, as well as set union and set intersection functions in
the case of logical REs2. The wider use of matching predicates that distinguishes CLOSURE
questions from CLEVR ones translates into matching relations appearing in more diverse
kinds of programs than in CLEVR. For example, in program P3 in Figure 10.2 the relation
“same_size” appears in the same program with the function “equal_color”, a combination
that would not be possible in CLEVR. Hence, to succeed on CLOSURE, the NMN models
have to learn modules which can be arbitrarily recombined with each other.

Dataset statistics

Our public dataset release3 includes:
• a validation test of 3600 questions each CLOSURE test,
• a test set of the same size,
• a small training set of 36 questions per CLOSURE test for few-shot learning investi-

gations.
The validation and test sets contain questions about different validation images from CLEVR
(we could not generate new questions for CLEVR test images as the corresponding scene
2The “unique” function also frequently appears in the subprograms that correspond to REs. Its only role is
to raise an exception if its input is not a singleton set
3https://github.com/rizar/CLOSURE
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graphs are not available). The training set questions are asked about training images in
CLEVR.

10.3. Models

A large number of models for the CLEVR task have been recently proposed, and it would
be impossible for us to evaluate all of them. We therefore choose several models that vary
in how CLEVR-specific their design is, aiming to cover the whole spectrum of “CLEVR-
awareness” that such models possess. In addition to existing models, we experiment with
a novel Vector-NMN neural module that we employ in the context of the Neural Module
Network paradigm.

Throughout this section we use capital letters for matrix- or tensor-shaped parameters
of all models and small letters for the vector-valued ones. We use ∗ to denote convolution as
well as to inform the reader that the symbols on the left and right sides of the operator are
a 4D and a 3D tensor respectively. 	 and ⊕ are used to denote feature-wise multiplication
and addition for the case where one argument is a 3D tensor and another is a vector. The
respective operation is applied independently to all sub-vectors of the tensor-valued argument
obtained by fixing its first two indices (the approach known as “broadcasting”). We will use
square brackets [x; y] to denote tensor concatenation performed along the last dimension.

10.3.1. Generic Models

The most generic method that we consider is Feature-wise Linear Modulation (FiLM) by
Perez et al. (2017). In this approach, an LSTM recurrent network transforms the question
q into biases β and element-wise multipliers α that are then applied in the blocks of a
deep residual convolutional network (He et al., 2016). A FiLM-ed residual block takes a
tensor-valued input hin and performs the following computation upon it:

[γ; β] = W · LSTM(q) + b, (10.3.1)

h̃ = BN(W2 ∗ R(W1 ∗ hin ⊕ b1)), (10.3.2)

hout = hin + R(γ 	 h̃ ⊕ β), (10.3.3)

where R stands for the Rectified Linear Unit, BN denotes batch normalization (Ioffe and
Szegedy, 2015). Several such blocks are stacked together and applied to a 3D feature tensor
hx that is produced by several layers of convolutions, some of them pretrained. The FiLM-ed
network thus processes the input image x in a manner that is modulated by the question q.
Despite its simplicity, FiLM achieves a remarkably high reported accuracy of 97.7% on the
CLEVR task.

A more advanced model that we include in our evaluation is Memory-Attention-
Composition (MAC) by Hudson and Manning (2018). In the MAC approach, the input
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and control components of the model first produce a sequence of control vectors ci from
the question q. A visual attention component (called the read unit in the original paper) is
then recurrently applied to a preprocessed version hx of the image x. The i-th application
of the read unit is conditioned on the respective control vector ci and on a memory mi of
the unit’s outputs at the previous steps:

ri = read_unit(hx, ci, mi−1), (10.3.4)

mi = memory_unit(ri, mi−1). (10.3.5)

Such read operations and memory updates are performed for T steps, after which the last
memory vector mT and a question representation q are concatenated and passed to the
classifier. Different versions of the MAC model reach near-perfect 98.9-99.4% performance
on CLEVR.

10.3.2. Modular and Symbolic Approaches

In addition to the end-to-end differentiable models, we experiment with methods that rely
on intermediate structured symbolic meaning representations. We adhere to the common
practice of using programs expressed in the CLEVR DSL as such representations, although
in principle logical formulae or other formalisms from the field of formal semantics could
be used for this purpose. Under the assumption that a symbolic execution engine for the
programs is available, the task of VQA can be reduced to parsing the question and the image
into a program and a symbolic scene representation respectively. Such an approach has been
proposed by Yi et al. (2018) under the name Neural-Symbolic VQA (NS-VQA) with a
reported CLEVR accuracy of 99.8%. This excellent performance, however, is achieved by
relying heavily on the prior knowledge about the task, meaning that applying NS-VQA in
conditions other than CLEVR could require significantly more adaptation and data collection
than needed for the more generic methods, such as FiLM and MAC.

Intermediate symbolic programs can also be used without apriori knowledge of the se-
mantics of the symbols, in which case the execution engine for the programs is either fully or
partially learned. In the Neural Module Network (NMN) paradigm, proposed by Andreas
et al. (2016), the meanings of symbols are represented in the form of trainable neural mod-
ules. Given a program, the modules that correspond to the program’s symbols are retrieved
and composed following the program’s structure. Formally, a program in CLEVR DSL can
be represented as a (P, L, R) triple, where P = (p1, p2, . . . , pT ) is the sequence of function
tokens4, L = (l1, . . . , lT ) and R = (r1, . . . , rT ) are the indices of the left and right arguments
for each function call respectively (some DSL functions only take one or zero arguments, in
which case the respective ri and li are undefined). Using this formalism, a step of the NMN
4In this work we treat composite functions like e.g. “filter_color[brown]” as standalone ones, not as “fil-
ter_color” parameterized by “brown”
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computation can be expressed as follows:

hi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mpi
(hx), arity(pi) = 0,

Mpi
(hx, hli), arity(pi) = 1,

Mpi
(hx, hli , hri

), arity(pi) = 2.

(10.3.6)

Here, Mpi
is the neural module corresponding to the function token pi and hi is its output,

while hx is a tensor representing the image. Similar to MAC, the output hT of the last module
is fed to the classifier, after which the modules are jointly trained by backpropagating the
classifier’s loss.

A number of NMN-based approaches have been proposed for the CLEVR task, including
those where different modules perform different operations (e.g. the module corresponding
to logical “and” might compute an element-wise maximum of two vectors (Hu et al., 2017;
Mascharka et al., 2018)), and those where all modules perform similar computations but
use different parameters (Johnson et al., 2017). We focus on the latter variety of NMNs,
since such models rely less on the domain knowledge and thus complement well the NS-VQA
approach in our evaluation. In both cases, a program generator can be pretrained with a
small seed set of (question, program)-pairs and then fine-tuned, e.g. with REINFORCE (Hu
et al., 2017; Johnson et al., 2017), on the rest of the dataset, using only (image, question,
answer)-triplets as supervision. The programs produced by such a program generator can
then be used at test time, meaning that after training, the complete model takes the same
inputs as end-to-end continuous models, such as FiLM and MAC.

The first NMN model that we consider is the one proposed by Johnson et al. (2017),
in which residual blocks (He et al., 2016) are used as neural modules Mpi

. For example,
modules corresponding to functions of arity 2, (such as e.g. “and”, “equal_color”, etc.),
perform the following computation in their approach:

hproj = R(W1 ∗ [hli ; hri
]), (10.3.7)

h̃ = R(W2 ∗ hproj ⊕ b2), (10.3.8)

hi = R(W3 ∗ h̃ ⊕ b3) + hproj. (10.3.9)

Note that the module described above does not use the image representation hx as an input;
only the Mscene module—the root node in all CLEVR programs—does so.

Our preliminary experiments showed that such modules often perform much worse when
assembled in novel combinations. We hypothesized that this could be due to the fact that
high-capacity 3D tensors hi are used in this model as the interface between modules. In
order to test this hypothesis, we have designed a new module with a lower-dimensional
vector output. We will henceforth refer to the module by Johnson et al. (2017) and our
new module as Tensor-NMN and Vector-NMN respectively. The computation of our
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Vector-NMN is inspired by the FiLM approach to conditioning residual blocks on external
inputs:

h̃1 = R(U1 ∗ (γ1 	 hx ⊕ β1)), (10.3.10)

h̃2 = R(U2 ∗ (γ2 	 h̃1 ⊕ β2) + hx), (10.3.11)

hi = maxpool(h̃2), (10.3.12)

where “maxpool” denotes max pooling of the 3D-tensor across all locations. Note that each
Vector-NMN module also takes the image feature tensor hx as the input, unlike Tensor-
NMN. The above equations describe a 1-block version of Vector-NMN, but in general several
FiLM-ed residual blocks described by Equations 10.3.10 and 10.3.11 can be stacked prior to
the max-pooling. The FiLM coefficients β1, β2, γ1 and γ2 are computed with 1-hidden-layer
MLPs from the concatenation hcond = [e(pi); hli ; hri

] of the embedding e(pi) of the function
token pi and the module inputs hli and hri

[βk, γ̃k] = W k
2 (R(W k

1 hcond + bk
1) + bk

2), (10.3.13)

γk = 2 tanh(γ̃k) + 1. (10.3.14)

The extra tanh nonlinearity in Equation 10.3.14 was required to achieve stable training.
Note that unlike in Tensor-NMN, the convolutional filters U1 and U2 are reused among all
modules. To make this possible, we feed zero vectors instead of hri

or hli when the function
pi takes less than two inputs.

10.4. Experiments

We use the original implementation for FiLM and Tensor-NMN and train these models
with the hyperparameter settings suggested by the authors. For the MAC model, we use a
PyTorch reimplementation by Bahdanau et al. (2019b) that is close to the original one. We
report results for a 2-block version of Vector-NMN, as our preliminary experiments on the
original CLEVR dataset showed that it performs better than the 1-block version.

For all models that rely on symbolic programs, i.e. NS-VQA and the NMNs, we use
a standard seq2seq model with an attention mechanism (Bahdanau et al., 2015) as the
program generator. Our preliminary investigations showed that this model generalizes better
than the seq2seq models without attention (Sutskever et al., 2014; Cho et al., 2014), as
used in (Johnson et al., 2017), and better than the seq2seq model used in the reference
implementation of NS-VQA, in which the decoder does not take the attention outputs as
inputs. We report results for program generators trained with supervised learning on the
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(question, program)-pairs from all 700K CLEVR examples5. In addition to evaluating the
NMNs with the predicted programs, we also measure their performance when the ground-
truth programs are given at test time. For the latter setting, we prepend GT to the model’s
name (as in GT-Vector-NMN), as opposed to prepending PG (as in PG-Vector-NMN).

All numbers that we report are averages over 5 or 10 runs. Where relevant, we also report
the standard deviation σ in the form of ±σ or as a vertical black bar in figures.

10.4.1. Zero-shot Generalization

In our first set of experiments, we assess zero-shot systematic generalization of models
trained on CLEVR by measuring their performance on the CLOSURE tests. To put these
results in context, for each model and test we measure the model’s performance on validation
questions from CLEVR that are most similar to the given test’s questions6. For example,
consider the embed_spa_mat questions in which a spatial RE is embedded in a matching RE,
such as “Is there a big blue metal thing that is the same shape as the rubber object behind the
blue shiny object?”. To establish a baseline for this test, we used existence questions where
a spatial RE was embedded in another spatial RE, such as “Is there a big blue metal thing
that is behind the rubber object behind the blue shiny object?” (notably, all models were
accurate on > 98% of such questions). The gap between the model’s performance on baseline
questions and the model’s performance on a CLOSURE test is indicative of how systematic
the model’s generalization behavior is. Indeed, the test- and model- dependent baseline
scheme described above allows us to focus on the impact of combining known constructs
in novel ways while controlling for other factors that influence the models’ performance.
For example, CLEVR-trained models typically perform worse on counting questions than
on other question types, and hence we should expect lower accuracies on the or_mat and
or_mat_spa tests that require counting.

The results are reported in Figure 10.3. One can clearly see that most models perform
significantly worse on most CLOSURE tests compared to their accuracies on the respective
baseline questions. A notable exception is embed_spa_mat, on which all models perform quite
well. Among generic models, MAC consistently fares better than FiLM, albeit the former still
loses 15% to 35% of its baseline accuracy in 6 out of 7 tests. Surprisingly, the NS-VQA model,
whose only learnable component is a program generator, generalizes outright badly on tests
that involved logical references, and also shows significant deterioration compared to baseline
questions on other tests. This lack of systematic generalization in program generation also
strongly affects performances of the two NMN models that we considered (PG-Vector-NMN
5Similarly to prior work we found that pretraining on as few as 300-1000 ground-truth programs, followed
by REINFORCE finetuning, is sufficient to achieve near-perfect program generation performance. We chose,
however, to use all available data to keep the study focused on systematic generalization.
6For or_mat and or_mat_loc we had to generate new CLEVR questions to compute baseline performance,
see Section 10.7 for details.
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and PG-Tensor-NMN). Interestingly, even given the ground-truth programs at test-time,
Tensor-NMN modules perform worse on CLOSURE questions than on the respective baseline
questions in 6 tests out of 7 (see GT-Tensor-NMN results). In contrast, our proposed Vector-
NMN module generalizes much better, matching its baseline performance almost always, with
a notable exception of the and_mat_spa test.

10.4.2. Few-shot transfer learning

The results above show that inductive biases of existing models are often insufficient
for 0-shot systematic generalization measured by CLOSURE. A natural question to ask in
these circumstances is whether just a few examples would be sufficient to correct the models’
extrapolation behavior. To answer this question, we finetune MAC, PG-Vector-NMN and
NS-VQA models that are pretrained on CLEVR using 36 examples from each CLOSURE
family, for a total of 252 new examples. For PG-Vector-NMN and NS-VQA we consider two
fine-tuning scenarios: one where the programs are provided for new examples and one where
they are not given and must be inferred. To infer programs, we use a basic REINFORCE-
based program induction approach (Johnson et al., 2017; Hu et al., 2017). We will refer to the
two said scenarios as strong and weak supervision respectively. To get the best finetuning
performance, we oversample 300 times the 252 training CLOSURE examples, add them
to the CLEVR training set and train on the resulting mixed dataset. Just like in 0-shot
experiments, we consider the model’s performance on the closest CLEVR questions as the
systematic generalization target.

The few-shot results, reported in Figure 10.4, show that as few as 36 examples from each
family can significantly improve CLOSURE performance for all models. A notable exception
from this general observation is the and_sim question family, on which weakly supervised
program induction for NS-VQA and PG-Vector-NMN most often did not work. We analyzed
this case in detail and found that the appropriate programs for and_sim would typically have
a very low probability, and hence were never sampled in our REINFORCE-based program
search.

A closer analysis reveals that the impact of 36 examples varies widely depending on the
model and on the test. The models using symbolic programs reached the target performance
in 6 tests out of 7. On the contrary, for MAC a gap of 5% to 20% between its CLOSURE and
target accuracies remained on all tests, except for the embed_spa_mat test that MAC handled
well even without fine-tuning. Notably, unlike the models relying on weakly-supervised
program induction, MAC benefited greatly from fine-tuning on the challenging and_mat_spa
test. Besides, MAC’s absolute performance on or_mat and or_mat_spa is comparable to that
of PG-Vector-NMN.
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10.5. Related Work

Several related generalization tests that were proposed for CLEVR and other VQA
datasets differ from CLOSURE in what they aim to measure and/or how they were con-
structed. The Compositional Generalization Test (CoGenT) from the original paper by
Johnson et al. (2016) restricts the colors that cubes and cylinders can have in the training
set images and inverts this restriction during the test time. By its design, CoGenT evaluates
how robust a model is to a shift in the image distribution. On the contrary, in CLOSURE
the image distribution remains the same at test time, but the question distribution changes
to contain novel combinations of linguistic constructs from CLEVR. The generalization splits
from the ShapeWorld platform (Kuhnle and Copestake, 2017) also focus on the difference
in the distribution of images, not questions. The CLEVR-Humans dataset was collected
by having crowd workers ask questions about CLEVR images (Johnson et al., 2017). Some
questions from this dataset require reasoning that is outside of the scope of CLEVR, such
as e.g. quantification (“Are all the balls small?”). In contrast, CLOSURE requires models
to recombine only the well-known reasoning primitives. A compositional C-VQA split was
proposed for the VQA 1.0 dataset (Agrawal et al., 2017). In C-VQA similar questions must
have different answers when they appear in the training and test sets, yet the distributions
of questions at training and testing remain similar, unlike CLOSURE.

Perhaps the closest to our work is the SQOOP dataset and the study conducted on it
by Bahdanau et al. (2019b). SQOOP features questions of the form “Is there an X R of
Y”, where X and Y are object words and R a spatial relation. The authors test whether
models can answer all possible SQOOP questions after training on a subset that is defined
by holding out most of the (X, Y) pairs. The methodology of that study is thus very
similar to ours, however the specific nature of the generalization split is different. Similarly
to our results, Bahdanau et al. (2019b) report significant generalization gaps for a number
of VQA models, with a notable exception of the Tensor-NMN, that generalized perfectly
in their study when a tree-like layout was used to connect the modules. We believe our
CLOSURE results are an important addition to the SQOOP ones. The specific cause of the
aforementioned discrepancies between the two studies is, however, an intriguing question for
future work.

As can be clearly seen from the performance of the NS-VQA model, much of the per-
formance drop that we reported can be explained by insufficient systematicity of seq2seq
models that we use for program generation. The SCAN dataset (Lake and Baroni, 2018)
and the follow-up works (Loula et al., 2018; Bastings et al., 2018) have recently brought
much-needed attention to this important issue. Compared to SCAN, CLOSURE features
richer and more natural-looking language, and hence can serve to validate the conclusions
drawn in recent SCAN-based studies, e.g. (Russin et al., 2019).
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Figure 10.3. 0-shot accuracy of all models on the 7 CLOSURE tests. For
each model and test, the white bar in the background is the model’s accuracy
on the closest CLEVR questions. The hatching used for “GT-...” models
indicates that we used the ground-truth programs at test time.

Figure 10.4. The accuracies for NS-VQA, PG-Vector-NMN and MAC after
finetuning on 36 examples from each CLOSURE family. The background white
bar is the model’s accuracy on the closest CLEVR questions. The yellow
horizontal line denotese the model’s accuracy before fine-tuning. The hatcing
indicates the use of ground-truth programs at the fine-tuning stage.

Prior work on Neural Module Networks features modules that output either attention
maps (Andreas et al., 2016; Hu et al., 2017, 2018) or feature tensors (Johnson et al., 2017).
The model by (Mascharka et al., 2018) combines modules with both attention- and tensor-
valued outputs. Our Vector-NMN generalizes more systematically than its tensor-based
predecessor by Johnson et al. (2017), while inheriting that model’s simplicity, generality and
good CLEVR performance.
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10.6. Discussion

Our study shows that while models trained on CLEVR are very good at answering
questions from CLEVR, their high performance quickly deteriorates when the question dis-
tribution features unfamiliar combinations of well-known primitives. We believe that this is
an interesting finding, given that CLEVR puts VQA models in very favorable conditions:
the training set is large and well-balanced and complex questions are well represented. One
could say that we took advantage of a gap in the CLEVR question distribution to make our
point, yet we believe that natural language datasets collected under naturalistic conditions
will only have more gaps like this.

While in our 0-shot test of systematic generalization all models fare similarly badly,
our few-shot learning study highlights important differences in their behavior. Given few
examples, the program-based models either almost perfectly adapt to the target task or com-
pletely fail, depending on whether the right programs are found. For end-to-end continuous
models back-propagation is always effective in adapting them to the target examples, but
the systematic generalization gap is often not fully bridged with a number of examples that
is sufficient for the program-based models. An important context for this comparison is
that program-based models require seed programs to jump-start the training and are later
on constrained to the seed lexicon. It would be highly desirable to combine the strengths
of these two types of systems in one model without inheriting any of their limitations, a
direction that we would like to explore in our future work.

We hope that the CLOSURE benchmark will facilitate future work in a number of di-
rections. First, our results suggest that parsing (program generation in our case) can be the
bottleneck for systematic generalization of grounded language learning. CLOSURE can thus
be used for testing systematic generalization of neural parsers, complementing the SCAN
benchmark and its variants. Besides parsing, further work on interchangeability of neural
modules can be done using CLOSURE. While Vector-NMN improves upon prior work, it still
generalizes suboptimally on the and_mat_spa test. Lastly, our test set construction methods
can be adapted to natural data, yielding more insights and helping researchers make mea-
surable progress towards learning-based models for grounded language understanding that
generalize systematically.

10.7. Further details on CLOSURE and baseline questions

The exact CLOSURE templates can be found in Figure 10.5. The templates contain
three kinds of slots:

• the slots 〈A〉 and 〈Q〉 will be filled by names of CLEVR properties, such as “shape”,
“size”, “color” and “material”
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• the slots 〈Z〉, 〈C〉, 〈M〉 and 〈S〉 will be either left blank or filled by words that
characterize objects’ properties, such as “big”, “small”, “yellow”, “rubber”, “cube”,
etc.

• the 〈R〉 slots will be filled with spatial words, such as “left of”, “right of”, “behind”
or “in front of”.

In some templates fragments of text are in square brackets; those are optional and will be
discarded with 50% probability.

We generate the question from the templates in two stages. At the first stage, we fill the
〈A〉 and 〈Q〉 slots, and at the second stage we use CLEVR question generation code to fill
the rest. The two-stage procedure is required because the original generation engine does
not support 〈A〉 and 〈Q〉 slots; instead, CLEVR authors wrote unique templates for each
property that is queried (the purpose of 〈Q〉) or used to refer to objects (the purpose of 〈A〉).

We used CLEVR generation code mostly as is, with the exception of two important
modifications. First, we restricted the answers of counting questions to be either 1, 2 or 3,
and also applied more aggressive rejection sampling to make these answers equally likely.
We did so because the distribution of answers to counting questions in CLEVR is skewed,
and answers of 4 and more are very unlikely. Instead of trying to replicate the original
skewed answer distribution, we chose to enforce uniformity among those answers (that is
1, 2 and 3) that do have a significant probability in CLEVR. We did not allow 0 as the
answer because due to implementation details, CLEVR questions that contain logical “or”
and a complex spatial RE never have 0 as the answer. Overall, with our modifications
to generation of counting questions we tried to put side the irrelevant confounding factors
and focus on the impact of replacing a spatial RE with a matching one. To compute the
appropriate target performance for or_mat and or_mat_spa, we generated new questions
from the closest original CLEVR templates but using the modified version of the generation
code.

The second modification concerns the question degeneracy check that is described in the
appendix of (Johnson et al., 2016). In the reference question generation code it is only applied
to programs with spatial relations. We modified the code to also apply the degeneracy check
to matching relations.

A minor issue with compare_sim and compare_sim_loc questions is that the word “an-
other” can be used in cases where it is not required, e.g. “... another cube that is the
same size as the sphere”. CLEVR generation code removes “another” in such cases, but we
found it hard to extend this feature to CLOSURE questions in a maintainable way. In our
preliminary experiments we found the proper handling of “another” does not change results
of zero-shot experiments. We also experimented with removing the word “is” from “... and
is the same 〈A〉 ...” in the and_mat_spa template to make it more similar to the closest
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• embed_spa_mat Is there a 〈Z〉 〈C〉 〈M〉 〈S〉 that is the same 〈A〉 as the 〈Z2〉 〈C2〉
〈M2〉 〈S2〉 〈R〉 the 〈Z3〉 〈C3〉 〈M3〉 〈S3〉?

• embed_mat_spa Is there a 〈Z〉 〈C〉 〈M〉 〈S〉 〈R〉 the 〈Z3〉 〈C3〉 〈M3〉 〈S3〉 that is the
same 〈A〉 as 〈Z2〉 〈C2〉 〈M2〉 〈S2〉?

• compare_mat There is another 〈Z2〉 〈C2〉 〈M2〉 〈S2〉 that is the same 〈A〉 as the 〈Z〉
〈C〉 〈M〉 〈S〉; does it have the same 〈Q〉 as the 〈Z3〉 〈C3〉 〈M3〉 〈S3〉?

• compare_mat_spa There is another 〈Z2〉 〈C2〉 〈M2〉 〈S2〉 that is the same 〈A〉 as the
〈Z〉 〈C〉 〈M〉 〈S〉; does it have the same 〈Q〉 as the 〈Z4〉 〈C4〉 〈M4〉 〈S4〉 [that is] 〈R2〉
the 〈Z3〉 〈C3〉 〈M3〉 〈S3〉?

• and_mat_spa What is the 〈Q〉 of the 〈Z3〉 〈C3〉 〈M3〉 〈S3〉 that is 〈R2〉 the 〈Z2〉 〈C2〉
〈M2〉 〈S2〉 and is the same 〈A〉 as the 〈Z〉 〈C〉 〈M〉 〈S〉?

• or_mat How many things are [either] 〈Z〉 〈C〉 〈M〉 〈S〉s or 〈Z3〉 〈C3〉 〈M3〉 〈S3〉s that
are the same 〈A〉 as the 〈Z2〉 〈C2〉 〈M2〉 〈S2〉?

• or_mat_spa How many things are [either] 〈Z2〉 〈C2〉 〈M2〉 〈S2〉s [that are] 〈R〉 the
〈Z〉 〈C〉 〈M〉 〈S〉 or 〈Z4〉 〈C4〉 〈M4〉 〈S4〉s that are the same 〈A〉 as the 〈Z3〉 〈C3〉
〈M3〉 〈S3〉?

Figure 10.5. CLOSURE templates.

CLEVR questions, in which “and” combines prepositional phrases (i.e. “... that is left of the
cube and right of the sphere”). Likewise, we saw no influence on the zero-shot results.
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Chapter 11

GENERAL CONCLUSION

Studies of deep learning systems that understand grounded language are still in their infancy.
In the articles that are presented in this thesis, we attempted to lay a solid foundation for this
field. The BabyAI platform that we presented in Chapter 6 challenges researchers to achieve
near-perfect performance using a smaller amount of supervision. We hope that the 19 levels
of BabyAI will facilitate studies on how to make deep language grounding methods benefit
from curriculum learning. In Chapter 4 we show that such near-perfect performance can also
be achieved using restricted supervision in the form of instructions and their corresponding
goal states. The AGILE algorithm that we developed for this purpose relies on adversarial
imitation learning. An important finding of the AGILE project is that the challenge of false
negative examples needs to be tackled to approach convergence. A straightforward next step
in this line of research can be to study the sample efficiency of AGILE-like algorithms more
rigorously using the BabyAI platform.

Our visual question answering studies presented in Chapters 8 and 10 contribute much-
needed clarity on the systematic generalization abilities of modern models. The SQOOP
and CLOSURE evaluations highlight the undesirable tendency of end-to-end continuous
models to adapt to particularities of the current data distribution. While explicitly modular
models generally fared better in both studies, a challenge of making these models as domain-
agnostic and flexible as the end-to-end continuous models remains open. The modular models
rely on layouts or programs that specify which modules should be used and how these are
connected, and results in Chapter 10 suggest that predicting such programs with a neural
program generator can on its own be a systematic generalization bottleneck. Furthermore,
ground-truth programs are required for the currently available methods for training the
program generator, and as a consequence, using modular models on a new domain requires
a significant amount of domain knowledge. Future work could focus on addressing these
issues, as well as on the module coadaptation problem that we have alleviated but not yet
fully solved with the new Vector-NMN module.



11.1. Towards Better Methodology for Systematic Generaliza-

tion Studies

As research on systematic (or compositional) generalization gains popularity, future work
should put it on a more solid theoretical foundation. Most recently proposed studies, in-
cluding the ones presented in Chapters 8 and 10, start from informal considerations and
turn them into concrete tasks with generalization splits of rather arbitrary character. These
studies provide useful insights, but it is unfortunate that the implied bespoke definitions are
sometimes inconsistent with each other. For example, in CLEVR-CoGenT (Johnson et al.,
2016) and ShapeWorld (Kuhnle and Copestake, 2017) benchmarks the image distributions
at training and test time are deliberately made different. This does not align with our view
that systematic generalization in language understanding should be about recombining per-
fectly familiar individual words in novel ways, and that the meanings of the individual words
should be the same in training and testing. The lack of a theoretical foundation makes
it hard to precisely point out the difference and discuss its implications. This problem is
not new, for the original article by Fodor and Pylyshyn (1988) that contributed the notion
of systematicity, as well as later contributions (e.g. (Marcus, 2003)), were very informal
in the first place. In general, the notions of systematicity and compositionality resist easy
formalization (see e.g. (Zadrozny, 1994)). A promising formulation of compositional gener-
alization has recently been proposed in a concurrent work by Keysers et al. (2020), where
it is defined as generalization across distributions in which the atoms (i.e. the grammar
rules) occur with the same frequencies, whereas compounds (i.e. the combinations of the
aforementioned rules) have different frequencies. We find this intuition relevant, although
it seems unfortunate that this definition depends on the particular grammatical formalism
used. In this regard, drawing connections between systematic generalization and the formal
semantics subfield of linguistics would be desirable. For perceptual grounded settings, such
as the ones we study here, it would be interesting to establish closer connections to cognitive
science, whose scholars also often use the term compositionality (Lake et al., 2016).

Furthermore, to make systematic generalization studies more relevant for downstream
applications, future work could use models that are pretrained on large corpora in self-
supervised way, such as e.g. BERT (Devlin et al., 2018). The parameter settings of these
models are shaped by enormous amount of training, and several studies argued that these
models internally know a lot about language (Tenney et al., 2019; Hewitt and Manning,
2019). It is conceivable that fine-tuning these models the right way could yield much stronger
generalization than training randomly initialized models from scratch.

102



11.2. Towards Better Data Efficiency and More Systematic

Generalization

Looking forward, a promising research direction for the future work is to bridge the gap
between the deep learning approaches that we study here and the largely symbolic approaches
that roboticists rely on (see Section 2.3.1). In particular, there are two assumptions in these
models that seem to be particularly relevant to our goals. First, the object-centric repre-
sentations that are characteristic of classical systems can facilitate generalization through
explicit disentangling of different objects’ properties. That said, there is no universally cor-
rect way to partition the world into discrete things that can be referred to. It would therefore
be interesting to build systems that identify and represent the set of relevant entities in a
way that depends on what the instruction or the question refers to. Second, while grammar-
based approaches to constructing meanings in a compositional way appear overly restrictive,
the limited context sensitivity with which decisions are made in such models might be the
missing ingredient that we need to add to neural models to improve their generalization and
data efficiency.

A complementary line of research could study how better learning objectives could be used
to improve generalization. The conventional objectives do not encourage neural networks
to find solutions that are in some sense more general than others; in fact defining what it
means for the solution to be general is arguably the main challenge in this context. Data-
driven definitions of generality, such as e.g. the CLOSURE tests that we presented in
Chapter 10, lose some of their validity once they are used to provide any form of training
signal. One can attempt to provide automatic generalization signal by using the domain-
specific considerations regarding the compositional nature of the world and language (see
(Andreas, 2019) and (Lake, 2019) for recent work in this direction). Tests like CLOSURE
can then be used to verify the success of such optimization for generalization.

To sum up, we believe that integrating what we know or even intuit about world, humans
and natural language into the learning-centric approach of deep learning is the way forward.
No matter if this is achieved by explicitly altering models or by formulating more complex
training objectives, it is important that researchers carefully assess the achieved progress. We
hope that the contributions of this thesis will either directly (as benchmarks) or indirectly
(as food for thought) have a positive impact on the way research on grounded language
understanding is carried out.
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Appendix A

SUPPLEMENTARY MATERIAL FOR THE FIRST
ARTICLE

A.1. Training Details

We trained the policy πθ and the discriminator Dφ concurrently using RMSProp as the
optimizer and Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016) as the RL
method. A baseline predictor (see Appendix A.6 for details) was trained to predict the
discounted return by minimizing the mean square error. The RMSProp hyperparameters
were different for πθ and Dφ, see Table A.1. A designated worker was used to train the
discriminator (see Algorithm 1). Other workers trained only the policy (see Algorithm 2).
We tried having all workers write to the replay buffer B that was used for the discriminator
training and found that this gave the same performance as using (c, s) pairs produced by the
discriminator worker only. We found it crucial to regularize the discriminator by clipping
columns of all weights matrices to have the L2 norm of at most 1. In particular, we mul-
tiply incoming weights wu of each unit u by min(1, 1/||wu||2) after each gradient update as
proposed by Srivastava et al. (2014). We linearly rescaled the policy’s rewards to the [0; 0.1]
interval for both RL and AGILE. When using RL with reward prediction we fetch a batch
from the replay buffer and compute the extra gradient for every rollout.

For the exact values of hyperparameters for the GridLU-Relations task we refer the reader
to Table A.1. The hyperparameters for GridLU-Arrangements were mostly the same, with
the exception of the episode length and the rollout length, which were 45 and 30 respectively.
For training the RL baseline for GridLU-Relations we used the same hyperparameter settings
as for the AGILE policy.

A.2. GridLU Environment

The GridLU world is a 5 × 5 gridworld surrounded by walls. The cells of the grid can be
occupied by blocks of 3 possible shapes (circle, triangle, and square) and 3 possible colors
(red, blue, and green). The grid also contains an agent sprite. The agent may carry a block;



Table A.1. Hyperparameters for the policy and the discriminator for the
GridLU-Relations task.

Group Hyperparameter Policy πθ Discriminator Dφ

RMSProp

learning rate 0.0003 0.0005
decay 0.99 0.9

ε 0.1 10−10

grad. norm threshold 40 25
batch size 1 256

RL

rollout length 15 —
episode length 30 —

discount 0.99 —
reward scale 0.1 —
baseline cost 1.0 —

reward prediction cost (when used) 1.0 —
reward prediction batch size 4 —

num. workers training πθ 15 1

AGILE size of replay buffer B — 100000
num. workers training Dφ — 1

Regularization entropy weight α 0.01 —
max. column norm — 1

when it does so, the agent sprite changes color1. When the agent is free, i.e. when it does
not carry anything, it is able to enter cells with blocks. A free agent can pick a block in the
cell where both are situated. An agent that carries a block cannot enter non-empty cells,
but it can instead drop the block that it carries in any non-empty cell. Both picking up and
dropping are realized by the INTERACT action. Other available actions are LEFT, RIGHT,
UP and DOWN and NOOP. The GridLU agent can be seen as a cursor (and this is also how
it is rendered) that can be moved to select a block or a position where the block should be
released. Figure A.1 illustrates the GridLU world and its dynamics. We render the state
of the world as a color image by displaying each cell as an 8 × 8 patch2 and stitching these
patches in a 56 × 56 image3. All neural networks take this image as an input.

A.3. Experiment Details

Every experiment was repeated 5 times and the average result is reported.

1We wanted to make sure the that world state is fully observable, hence the agent’s carrying state is explicitly
color-coded.
2The relatively high 8 × 8 resolution was necessary to let the network discern the shapes.
3The image size is 56 × 56 because the walls surrounding the GridLU world are also displayed.
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Figure A.1. The dynamics of the GridLU world illustrated by a 6-step
trajectory. The order of the states is indicated by arrows. The agent’s actions
are written above arrows.

RL vs. AGILE

All agents were trained for 5 · 108 steps.

Data Efficiency

We trained AGILE policies with datasets D of different sizes for 5 · 108 steps. For each
policy we report the maximum success rate that it showed in the course of training.

GridLU-Arrangements

We trained the agent for 100M time steps, saving checkpoints periodically, and selected
the checkpoint that best fooled the discriminator according to the agent’s internal reward.

Data Efficiency

We measure how many examples of instructions and goal-states are required by AGILE in
order to understand the semantics of the GridLU-Relations instruction language. The results
are reported in Figure A.2. The AGILE-trained agent succeeds in more than 50% of cases
starting from 8000 examples, but as many as 130000 is required for the best performance.
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Figure A.2. Performance of AGILE for different sizes of the dataset of
instructions and goal-states. For each dataset size of we report is the best
average success rate over the course of training.

A.4. Analysis of the GridLU-Relations Task

GridLU Relations Instance Generator

All GridLU instructions can be generated from <instruction> using the following
Backus-Naur form, with one exception: The first expansion of <obj> must not be iden-
tical to the second expansion of <obj> in <bring_to_instruction>.
<shape> ::= circle | rect | triangle
<color> ::= red | green | blue

<relation1> ::= NorthFrom | SouthFrom | EastFrom | WestFrom
<relation2> ::= <relation1> | SameLocation

<obj> ::= Color(<color>, <obj_part2>) | Shape(<shape>, SCENE)
<obj_part2> ::= Shape(<shape>, SCENE) | SCENE

<go_to_instruction> ::= <relation2>(AGENT, <obj>) | <relation2>(<obj>, AGENT)
<bring_to_instruction> ::= <relation1>(<obj>, <obj>)
<instruction> ::= <go_to_instruction> | <bring_to_instruction>
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There are 15 unique possibilities to expand the nonterminal <obj>, so there are 150
unique possibilities to expand <go_to_instruction> and 840 unique possibilities to ex-
pand <bring_to_instruction> (not counting the exceptions mentioned above). Hence
there are 990 unique instructions in total. However, several syntactically different instruc-
tions can be semantically equivalent, such as EastFrom(AGENT, Shape(rect, SCENE)) and
WestFrom(Shape(rect, SCENE), AGENT).

Every instruction partially specifies what kind of objects need to be available in the
environment. For go-to-instructions we generate one object and for bring-to-instructions
we generate two objects according to this partial specification (unspecified shapes or colors
are picked uniformly at random). Additionally, we generate one “distractor object”. This
distractor object is drawn uniformly at random from the 9 possible objects. All of these
objects and the agent are each placed uniformly at random into one of 25 cells in the 5x5
grid.

The instance generator does not sample an instruction uniformly at random from a list
of all possible instructions. Instead, it generates the environment at the same time as the
instruction according to the procedure above. Afterwards we impose two ‘sanity checks’: are
any two objects in the same location or are they all identical? If any of these two checks fail,
the instance is discarded and we start over with a new instance.

Because of this rejection sampling technique, go-to-instructions are ultimately generated
with approximately 25% probability even though they only represent ≈ 15% of all possible
instructions.

The number of different initial arrangements of three objects can be lower-bounded by(
9
3

)
= 2300 if we disregard their permutation. Hence every bring-to-instruction has at least

K = 2300 · 9 ≈ 2 · 104 associated initial arrangements. Therefore the total number of task
instances can be lower-bounded with 840 · K ≈ 1.7 · 107, disregarding the initial position of
the agent.

Discriminator Evaluation

During the training on GridLU-Relations we compared the predictions of the discrim-
inator with those of the ground-truth reward checker. This allowed us to monitor several
performance indicators of the discriminator, see Figure A.3.

A.5. Analysis of the GridLU-Arrangements Task

Instruction Syntax

We used two types of instructions in the GridLU-Arrangements task, those referring
only to the arrangement and others that also specified the color of the blocks. Examples
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Figure A.3. The discriminator’s errors in the course of training. Left: per-
centage of false positives. Right: percentage of false negatives.

Connected(AGENT, SCENE) and Snake(AGENT, Color(’yellow’, SCENE)) illustrate the
syntax that we used for both instruction types.

Number of Distinct Goal-States

Table A.2 presents our computation of the number of distinct goal-states in the GridLU-
Arrangements Task.

Table A.2. Number of unique goal-states in GridLU-Arrangements task.

Arrangement

Possible
arrangement
positions

Possible
colors

Possible
agent
positions

Possible
distractor
positions

Possible
distractor
colors

Total
goal
states

Square 16 3 25 5985 2 14,364,000
Line 40 3 25 5985 2 35,910,000
Dline 8 3 25 5985 2 7,182,000
Triangle 48 3 25 5985 2 43,092,000
Circle 9 3 25 5985 2 8,079,750
Eel 48 3 25 5985 2 43,092,000
Snake 48 3 25 5985 2 43,092,000
Connected 200 3 25 5985 2 179,550,000
Disconnected 17 3 25 5985 2 15,261,750
Total 389M

A.6. Models

In this section we explain in detail the neural architectures that we used in our experi-
ments. We will use ∗ to denote convolution, 	, ⊕ to denote element-wise addition of a vector
to a 3D tensor with broadcasting (i.e. same vector will be added/multiplied at each location
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Figure A.4. Our policy and discriminator networks with a Neural Module
Network (NMN) as the core component. The NMN’s structure corresponds to
an instruction WestFrom(Color(‘red’, Shape(‘rect’, SCENE)), Color(‘yellow’,
Shape(‘triangle’, SCENE))). The modules are depicted as blue rectangles.
Subexpressions Color(’red’, ...), Shape(’rect’, ...), etc. are depicted as “red”
and “rect” to save space. The bottom left of the figure illustrates the compu-
tation of a module in our variant of NMN.

of the feature map). We used ReLU as the nonlinearity in all layers with the exception of
LSTM.

FiLM-NMN

We will first describe the FiLM-NMN discriminator Dφ. The discriminator takes a 56x56
RGB image s as the representation of the state. The image s is fed through a stem convnet
that consisted of an 8x8 convolution with 16 kernels and a 3x3 convolution with 64 kernels.
The resulting tensor hstem had a 5x5x64 shape.

As a Neural Module Metwork (Andreas et al., 2016), the FiLM-NMN is constructed of
modules. The module mx corresponding to a token x takes a left-hand side input hl and a
right-hand side input hr and performs the following computation with them:

mx(hl, hr) = ReLU((1 + γx) 	 (Wm ∗ [hl; hr]) ⊕ βx), (A.6.1)

where γx and βx are FiLM coefficients (Perez et al., 2017) corresponding to the token x,
Wm is a weight tensor for a 3x3 convolution with 128 input features and 64 output features.
Zero-padding is used to ensure that the output of mx has the same shape as hl and hr. The
equation above describes a binary module that takes two operands. For the unary modules
that received only one input (e.g. mred, msquare) we present the input as hl and zeroed out
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hr. This way we are able to use the same set of weights Wm for all modules. We have 12
modules in total, 3 for color words, 3 for shape words, 5 for relations words and one mAGENT

module used in go-to instructions. The modules are selected and connected based on the in-
structions, and the output of the root module is used for further processing. For example, the
following computation would be performed for the instruction c1 =NorthFrom(Color(‘red’,
Shape(‘circle’, SCENE)), Color(‘blue’, Shape(‘square’, SCENE))):

hnmn = mNorthF rom(mred(mcircle(hstem)), mblue(msquare(hstem))), (A.6.2)

and the following one for c2 =NorthFrom(AGENT, Shape(‘triangle’, SCENE)):

hnmn = mNorthF rom(mAGENT (hstem), mtriangle(hstem)). (A.6.3)

Finally, the output of the discriminator is computed by max-pooling the output of the
FiLM-NMN across spatial dimensions and feeding it to an MLP with a hidden layer of 100
units:

D(c, s) = σ(wT ReLU(Wmaxpool(hnmn) + b)), (A.6.4)

where w, W and b are weights and biases, σ(x) = ex/(1 + ex) is the sigmoid function.
The policy network πφ is similar to the discriminator network Dθ. The only difference is

that (1) it outputs softmax probabilites for 5 actions instead of one real number (2) we use
an additional convolutional layer to combine the output of FiLM-NMN and hstem:

hmerge = ReLU(Wmerge ∗ [hnmn; hstem] + bmerge), (A.6.5)

π(c, s) = softmax(W2ReLU(W1maxpool (hmerge) + b1) + b2), (A.6.6)

the output hmerge of which is further used in the policy network instead of hnmn.
Figure A.4 illustrates our FiLM-NMN policy and discriminator networks.

FiLM-LSTM

For our structure-agnostic models we use an LSTM of 100 hidden units to predict FiLM
biases and multipliers for a 5 layer convnet. More specifically, let hLST M be the final state
of the LSTM after it consumes the instruction c. We compute the FiLM coefficients for the
layer k ∈ [1; 5] as follows:

γk = W γ
k hLST M + bγ

k, (A.6.7)

βk = W β
k hLST M + bβ

k , (A.6.8)

and use them as described by the equation below:

hk = ReLU((1 + γk) 	 (Wk ∗ hk−1) ⊕ βk), (A.6.9)
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where Wk are the convolutional weights, h0 is set to the pixel-level representation of the world
state s. The characteristics of the 5 layers were the following: (8x8, 16, VALID), (3x3, 32,
VALID), (3x3, 64, SAME), (3x3, 64, SAME), (3x3, 64, SAME), where (mxm, nout, p) stands
for a convolutional layer with mxm filters, nout output features, and p ∈ {SAME, VALID}
padding strategy. Layers with p = VALID do not use padding, whereas in those with
p = SAME zero padding is added in order to produce an output with the same shape as
the input. The layer 5 is also connected to layer 3 by a residual connection. Similarly to
FiLM-NMN, the output h5 of the convnet is max-pooled and fed into an MLP with 100
hidden units to produce the outputs:

D(c, s) = σ(wT ReLU(Wmaxpool(h5) + b)), (A.6.10)

π(c, s) = softmax(W2ReLU(W1maxpool(h5) + b1) + b2). (A.6.11)

Baseline prediction

In all policy networks the baseline predictor is a linear layer that took the same input as
the softmax layer. The gradients of the baseline predictor are allowed to propagate through
the rest of the network.

Reward prediction

We use the result hmaxpool of the max-pooling operation (which was a part of all models
that we considered) as the input to the reward prediction pathway of our model. hmaxpool is
fed through a linear layer and softmax to produce probabilities of the reward being positive
or zero (the reward is never negative in AGILE).

Weight Initialization

We use the standard initialisation methods from the Sonnet library4. Bias vectors are
initialised with zeros. Weights of fully-connected layers are sampled from a truncated normal
distribution with σ = 1√

nin
, where nin is the number of input units of the layer. Convolutional

weights are sampled from a truncated normal distribution with σ = 1√
fanin

, where fanin is
the product of kernel width, kernel height and the number of input features.

4https://github.com/deepmind/sonnet/
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Appendix B

SUPPLEMENTARY MATERIAL FOR THE
SECOND ARTICLE

B.1. MiniGrid Environments for OpenAI Gym

The environments used for this research are built on top of MiniGrid, which is an open
source gridworld package. This package includes a family of reinforcement learning envi-
ronments compatible with the OpenAI Gym framework. Many of these environments are
parameterizable so that the difficulty of tasks can be adjusted (e.g. the size of rooms is often
adjustable).

The World

In MiniGrid, the world is a grid of size NxN. Each tile in the grid contains exactly zero
or one object, and the agent can only be on an empty tile or on a tile containing an open
door. The possible object types are wall, door, key, ball, box and goal. Each object has an
associated discrete color, which can be one of red, green, blue, purple, yellow and grey. By
default, walls are always grey and goal squares are always green.

Reward Function

Rewards are sparse for all MiniGrid environments. Each environment has an associ-
ated time step limit. The agent receives a positive reward if it succeeds in satisfying an
environment’s success criterion within the time step limit, otherwise zero. The formula for
calculating positive sparse rewards is 1 − 0.9 ∗ (step_count/max_steps). That is, rewards
are always between zero and one, and the quicker the agent can successfully complete an
episode, the closer to 1 the reward will be. The max_steps parameter is different for each
mission, and varies depending on the size of the environment (larger environments having
a higher time step limit) and the length of the instruction (more time steps are allowed for
longer instructions).



Action Space

There are seven actions in MiniGrid: turn left, turn right, move forward, pick up an
object, drop an object, toggle and done. The agent can use the turn left and turn right
action to rotate and face one of 4 possible directions (north, south, east, west). The move
forward action makes the agent move from its current tile onto the tile in the direction it
is currently facing, provided there is nothing on that tile, or that the tile contains an open
door. The agent can open doors if they are right in front of it by using the toggle action.

Observation Space

Observations in MiniGrid are partial and egocentric. By default, the agent sees a square
of 7x7 tiles in the direction it is facing. These include the tile the agent is standing on.
The agent cannot see through walls or closed doors. The observations are provided as a
tensor of shape 7x7x3. However, note that these are not RGB images. Each tile is encoded
using 3 integer values: one describing the type of object contained in the cell, one describing
its color, and a state indicating whether doors are open, closed or locked. This compact
encoding was chosen for space efficiency and to enable faster training. The fully observable
RGB image view of the environments shown in this paper is provided for human viewing.
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Appendix C

SUPPLEMENTARY MATERIAL FOR THE THIRD
ARTICLE

C.1. Experiment Details

We trained all models by minimizing the cross entropy loss log p(y|x, q) on the training
set, where y ∈ {yes, no} is the correct answer, x is the image, q is the question. In all our
experiments we used the Adam optimizer (Kingma and Ba, 2015) with hyperparameters
α = 0.0001, β1 = 0.9, β2 = 0.999, ε = 10−10. We continuously monitored validation set
performance of all models during training, selected the best one and reported its performance
on the test set. The number of training iterations for each model was selected in preliminary
investigations based on our observations of how long it takes for different models to converge.
This information, as well as other training details, can be found in Table C.1.

Table C.1. Training details for all models. The subsampling factor is the
ratio between the original spatial dimensions of the input image and those of
the representation produced by the stem. It is effectively equal to 2k, where k
is the number of 2x2 max-pooling operations in the stem.

model stem layers subsampling factor iterations batch size
FiLM 6 4 200000 64
MAC 6 4 100000 128
Conv+LSTM 6 4 200000 128
RelNet 8 8 500000 64
NMN (Residual) 6 4 50000 64
NMN (Find) 6 4 200000 64
Stochastic NMN (Residual) 6 4 200000 64
Stochastic NMN (Find) 6 4 200000 64
Attention NMN (Find) 6 4 50000 64



C.2. Additional Results for MAC Model

We performed an ablation study in which we varied the number of MAC units, the model
dimensionality and the level of weight decay for the MAC model. The results can be found
in Table C.2.

Table C.2. Results of an ablation study for MAC. The default model has
12 MAC units of dimensionality 128 and uses no weight decay. For each
experiment we report means and standard deviations based on 5 repetitions.

model #rhs/lhs train error rate (%) test error rate (%)
default 1 0.17 ± 0.21 13.67 ± 9.97
1 unit 1 0.27 ± 0.35 28.67 ± 1.91
2 units 1 0.23 ± 0.13 24.28 ± 2.05
3 units 1 0.16 ± 0.15 26.47 ± 1.12
6 units 1 0.18 ± 0.17 20.84 ± 5.56
24 units 1 0.04 ± 0.05 9.11 ± 7.67
dim. 64 1 0.27 ± 0.33 23.61 ± 6.27
dim. 256 1 0.00 ± 0.00 4.62 ± 5.07
dim. 512 1 0.02 ± 0.04 8.37 ± 7.45

weight decay 0.00001 1 0.20 ± 0.23 19.21 ± 9.27
weight decay 0.0001 1 1.00 ± 0.54 31.19 ± 0.87
weight decay 0.001 1 40.55 ± 1.35 45.11 ± 0.74

We also perform qualitative investigations to understand the high variance in MAC’s
performance. In particular, we focus on control attention weights (c) for each run and aim
to understand if runs that generalize have clear differences when compared to runs that
failed. Interestingly, we observe that in successful runs each word w ∈ X, Y has a unit that
is strongly focused on it. To present our observations in quantitative terms, we plot attention
quality κ = minw∈{X,Y } maxk∈[1;12] αk,w/(1 − αk,R), where α are control scores vs accuracy in
Figure C.1 for each run (see Section 8.4.3.2 for an explanation of κ). We can clearly see a
positive correlation between κ and error rate, especially for low #rhs/lhs.

Next, we experiment with a hard-coded variation of MAC. In this model, we use hard-
coded control scores such that given a SQOOP question X R Y, the first half of all modules
focuses on X while the second half focuses on Y. The relationship between MAC and
hardcoded MAC is similar to that between NMN-Tree and end-to-end NMN with parame-
terization induction. However, this model has not performed as well as the successful runs of
MAC. We hypothesize that this could be due to the interactions between the control scores
and the visual attention part of the model.
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(a) 1 rhs/lhs (b) 2 rhs/lhs

(c) 4 rhs/lhs (d) 8 rhs/lhs

(e) 18 rhs/lhs

Figure C.1. Model test accuracy vs κ for the MAC model on different
versions of SQOOP. All experiments are run 10 times with different random
seeds. We can observe a clear correlation between κ and error rate for 1, 2
and 4 rhs/lhs. Also note that perfect generalization is always associated with
κ close to 1.
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C.3. Investigation of Correct Predictions with Spurious Lay-

outs

In Section 8.4.3.1 we observed that an NMN with the Residual module can answer test
questions with a relative low error rate of 1.64 ± 1.79%, despite being a mixture of a tree
and a chain (see results in Table 8.1, p0(tree) = 0.5). Our explanation for this phenomenon
is as follows: when connected in a tree, modules of such spurious models generalize well,
and when connected as a chain they generalize poorly. The output distribution of the
whole model is thus a mixture of the mostly correct p(y|T = Ttree, x, q) and mostly random
p(y|T = Tchain, x, q). We verify our reasoning by explicitly evaluating test accuracies for
p(y|T = Ttree, x, q) and p(y|T = Tchain, x, q), and find them to be around 99% and 60%
respectively, confirming our hypothesis. As a result the predictions of the spurious models
with p(tree) ≈ 0.5 have lower confidence than those of sharp tree models, as indicated by
the high log loss of 0.27 ± 0.04. We visualize the progress of structure induction for the
Residual module with p0(tree) = 0.5 in Figure 8.5 which shows how p(tree) saturates to 1.0
for #rhs/lhs=18 and remains around 0.5 when #rhs/lhs=1.
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