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Abstract 48 

 49 

Background: The greatest degree of language recovery in post-stroke aphasia takes place within the 50 

first weeks. Aphasia severity and lesion measures have been shown to be good predictors of long-term 51 

outcomes. However, little is known about their implications in early spontaneous recovery. The present 52 

study sought to determine which factors better predict early language outcomes in individuals with 53 

post-stroke aphasia. 54 

Methods: Twenty individuals with post-stroke aphasia were assessed < 72 hours (acute) and 10-14 days 55 

(subacute) after stroke onset. We developed a composite score (CS) consisting of several linguistic sub-56 

tests: repetition, oral comprehension and naming. Lesion volume, lesion load and diffusion measures 57 

(fractional anisotropy (FA) and axial diffusivity (AD)) from both arcuate fasciculi (AF) were also 58 

extracted using MRI scans performed at the same time points. A series of regression analyses were 59 

performed to predict the CS at the second assessment. 60 

Results: Among the diffusion measures, only FA from right AF was found to be a significant predictor 61 

of early subacute aphasia outcome. However, when combined in two hierarchical models with FA, age 62 

and either lesion load or lesion size, the initial aphasia severity was found to account for most of the 63 

variance (R2 = 0.678), not far from the complete models (R2 = 0.703 and R2 = 0.73, respectively).  64 

Conclusions: Initial aphasia severity is the best predictor of early post-stroke aphasia outcome, whereas 65 

lesion measures and age show a minor influence. We suggest that factors predicting early recovery may 66 

differ from those involved in long-term recovery. 67 

 68 

Introduction 69 

Aphasia represents one of the most devastating cognitive consequences of a stroke. It is 70 

associated with higher levels of anger, loneliness, social isolation and greater difficulties in resuming 71 

daily life activities (e.g., return to work).(1) The resulting impairments can partially recover in the days, 72 

weeks or months after a stroke,(2) but the degree of recovery varies widely across individuals.(3–5) To 73 

date, the degree of recovery has been primarily associated with three kinds of factors:(6) demographic 74 

variables (such as age or education),(4) lesion-related variables (such as lesion size and lesion location) 75 

(7,8) and clinical variables (including the type and severity of aphasia, and also treatment provided to 76 

the patient).(9) While demographic variables have a weak association with long-term outcomes,(10) 77 

lesion-related factors have been shown to have a strong relationship with long-term recovery.(6,11) 78 

However, clinical variables remain the most widely used measures for clinicians to gain insight into the 79 

patient’s clinical progression.(12) Current research focuses on investigating which are the most reliable 80 

factors that enable clinicians to predict long-term outcomes and that help predict recovery.  81 

 82 

Among the clinical variables, initial aphasia severity seems to be one of the best predictors of 83 

aphasia outcome.(4,13,14) For instance, Kertesz and McCabe showed that the initial Aphasia Quotient 84 

(AQ, aphasia severity scale from the Western Aphasia Battery,(15) henceforth referred to as WAB) 85 

was a good predictor of aphasia recovery at 6- and 12-months, while age or sex did not improve 86 

prognosis accuracy.(16) More recently, Lazar and colleagues proposed a modified version of the AQ 87 

for acute stroke assessment (mean = 2.1 days).(13) Their mean composite score was composed of the 88 

comprehension, repetition and naming sections of the WAB, having all sections equal weight on the 89 

final score. Using this modified AQ, they reported that initial severity was a good predictor of recovery 90 

during the first 90 days post-stroke. Although the results were clear, this study evaluated patients with 91 



only mild to moderate aphasia, which neglects those patients with more severe language deficits in 92 

which recovery results are more difficult to capture. A recent study found evidence that the interaction 93 

between severity and other variables may be different in patients with more severe aphasia.(17) 94 

Inclusion of patients with severe aphasia entails more difficulty in the analysis of data, but is necessary 95 

to picture a more realistic and clinically relevant scenario.(12) Furthermore, another gap in the 96 

literature is the study of the spontaneous recovery, scarcely studied in the weeks after stroke onset 97 

(3,18,19), and impossible to analyze in longitudinal studies due to the effect of therapy and 98 

rehabilitation. Recently, Wilson and colleagues described the evolution of aphasia during the first 2 99 

weeks after a stroke, and explored how language recovers promptly in different modalities within the 100 

first week post-stroke.(20) However, no measures were taken to assess the biomarkers that might 101 

predict this recovery.  102 

 103 

 As for lesion-related factors, they are also broadly used to predict aphasia outcomes. Although 104 

lesion size has been shown to be a good predictor of stroke and aphasia outcomes, (7,21,22) the study 105 

of specific damaged structures has recently been determined to be a more accurate index for specific 106 

impairments. Because most patients with post-stroke aphasia have damage near/in the middle cerebral 107 

artery,(23) lesions to specific structures in this territory have been linked to aphasia symptoms. For 108 

instance, the superior temporal gyrus, the pars opercularis of the inferior frontal gyrus, the anterior 109 

insula and the supramarginal gyrus are among the areas most frequently related to aphasia 110 

symptoms.(24) However, contemporary frameworks of language processing consider language 111 

functions to be a result of processing cores working in an interconnected network. This functional 112 

network is supported by pathway structures linking the areas of processing, i.e. the white matter 113 

bundles. Therefore, if white matter structures are important to establish linguistic abilities, they may be 114 

good candidates to support aphasia recovery.(25) 115 

 116 

Among all the white matter structures in the brain, probably the one that is the most studied in 117 

relation to language is the arcuate fasciculus (AF).(26,27) This fiber bundle, which connects areas from 118 

the temporal, parietal and frontal cortical areas through its three segments,(23) has been linked to 119 

several language functions, from speech-in-noise perception to syntax processing. Researchers have 120 

used diffusion magnetic resonance imaging (dMRI) measures to assess the influence of the lesioned AF 121 

in the language breakdown, either through the integrity of its structure(28–30) or through its properties. 122 

Other approaches include combinations of grey and white matter,(31,32) or the quantitative measure of 123 

the spared white matter in the contralesional hemisphere.(33,34) However, most studies that have 124 

investigated the role of white matter in aphasia outcomes are performed during the chronic phase of 125 

recovery. Therefore, there is a lack of evidence regarding the role of the white matter in early and 126 

spontaneous recovery from aphasia. 127 

 128 

In this study, we intended to explore outcomes of aphasia in the first 2 weeks after stroke onset. 129 

We also intended to elucidate which factors, either related to the lesion characteristics or the preserved 130 

language skills, are accurate predictors of these outcomes in patients at the beginning of their subacute 131 

phase, before having received any therapy. To our knowledge, no previous study has evaluated the 132 

degree of improvement between the acute and sub-acute phase using analyses that combine more than 133 

one language ability and neuroimaging measures. This work could provide new information that can be 134 

used to improve the prediction of aphasia recovery and the planification of rehabilitation of patients in 135 

the long-term. Based on previous evidence,(13,20) we hypothesized that initial severity will predict the 136 

early recovery, but only partially given that the dynamics of recovery are more unstable in this phase 137 

than in the phases more commonly reported in the literature (e.g., at 3, 6 months post-onset). We also 138 

predicted that there is a relationship between the diffusion measures from the arcuate fasciculus, given 139 



its proven importance as a predictor for language abilities in other studies,(34–36) and the early 140 

outcomes two weeks after onset. 141 

Materials and Methods 142 

 143 

Participants 144 

 145 

Twenty participants took part in this study (5 women; mean age: 71.6 ± 12.45 years; mean 146 

education: 10.05 ± 5.04). Participants presented with aphasia due to a first single ischemic stroke in the 147 

left middle cerebral artery. No criteria concerning aphasia severity or lesion size were adopted. All 148 

participants were diagnosed by a neurologist at the Stroke Unit at Hôpital du Sacré-Coeur de Montréal 149 

and screened for eligibility. Initial assessments took place within the first 72 hours (mean = 2.3 days) 150 

after stroke onset, and the following assessments took place 7 to 15 days later (mean = 10.55 days). 151 

Therefore, two time points will be defined as “initial time point” and “10 days time point”. Clinical and 152 

sociodemographic information of the entire sample are presented in Table 1. All participants were 153 

fluent speakers of French or English before stroke and completed their evaluation either in French 154 

(n=18) or in English (n=2), using equivalent stimuli in the case of English dominant speakers. 155 

Exclusion criteria included a history of major psychiatric disorder(s), learning disabilities, severe 156 

perceptual deficits, additional neurological diagnoses or left-handedness. No participant presented with 157 

pronounced subcortical arteriosclerosis. The study was approved by the ethics review board (Project 158 

#MP-32-2018-1478) of the research center of the Centre intégré universitaire de santé et de services du 159 

Nord-de-l’Île-de-Montréal, in the Hôpital Sacré Coeur de Montreal. Written informed consent was 160 

obtained from all participants. 161 

 162 

************************ 163 

Insert Table 1 approximately here 164 

************************* 165 

 166 

Rationale, construction, and scoring of the Aphasia Composite Score 167 

 168 

Based on Lazar et al.,(13) we developed a composite score (CS) adapted for the French- and 169 

English-speaking population that consisted of three subscores: comprehension, repetition and naming. 170 

For the comprehension subscore, we combined the Word-Sentence Comprehension Task (max = 47 171 

points) of the Montreal-Toulouse(37) and the revised (short) version of the Token Test(38) (max = 36 172 

points), which includes oral comprehension of words, sentences and sequential commands. The 173 

repetition subscore was assessed using the repetition task (2 points for each word/nonword (n=30) and 174 

5 points for each sentence (n=3), max = 75 points) of the MT-86.(37) Finally, the naming subscore 175 

consisted of using the DO-80(39) (max = 80 points) and the semantic fluency task (max = 25 points) of 176 

the Protocole Montréal d’Évaluation de la Communication.(40) The Boston Naming Test (BNT) was 177 

used instead of the DO-80 in the cases in which participants were more proficient in English.(41) Each 178 

of the three subscores was computed to a possible score of 10, so the maximum CS was equal to 30. 179 

Initial aphasia severity (CS initial) and sub-acute severity (CS10 days) were calculated for each participant, 180 

as well as their potential recovery (potential recovery = 30 – CS initial) and their achieved recovery 181 

(achieved ΔCS = CS10 days – CS initial). A percentage of factual recovery per individual was computed as 182 

achieved recovery = (achieved ΔCS / Potential recovery). 183 

 184 

Neuroimaging processing and tractography analyses 185 

 186 



Participants underwent an MRI scan the same day of each language assessment. The MRI 187 

protocol was acquired using a Skyra 3T MRI scanner (Siemens Healthcare, USA) at the Radiology 188 

Department of Hôpital du Sacré-Coeur in Montreal. One high resolution 3D T1-weighted scan was 189 

acquired using a Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence (TR = 2200 ms, 190 

TE = 2.96 ms, TI = 900 ms, voxel size = 1x1x1 mm3, matrix = 256x256, 192 slices, flip angle = 8 191 

degrees). A diffusion weighted imaging (DWI) series of sequences in a posterior-anterior acquisition 192 

(64 images with non-collinear diffusion gradients at b =1,000 s/mm² with TR = 8051 ms, TE = 86 ms, 193 

FOV = 230 mm, voxel size = 2 mm×2 mm×2 mm, flip angle = 90 degrees, bandwidth = 1698Hz; EPI 194 

factor=67) was also acquired. In addition, two T2-weighted images at b = 0 s/mm² were also acquired 195 

one in a posterior-anterior acquisition, one in an anterior-posterior acquisition to correct for distortion 196 

caused by magnetic field inhomogeneities. Stroke lesions were demarcated using a semi-automated 197 

demarcation performed with Clusterize(42) (http://www.medizin.uni-198 

tuebingen.de/kinder/en/research/neuroimaging/software/). Agreement between a manual segmentation 199 

and the semi-automated lesion maps obtained with Clusterize has been shown to be excellent in acute 200 

stroke using CT, DWI and T2 FLAIR.(43) Moreover, ADC maps extracted from the DWI sequence are 201 

less sensitive to imaging artifacts (i.e. T2-shine-through) than DWI images(44) and both have high 202 

sensitivity for detecting acute ischemic stroke.(45) Thus, stroke lesions were segmented with the ADC 203 

maps using Clusterize, and were verified and corrected by two other independent judges afterwards. 204 

Lesion size was estimated in mL. After lesion demarcation, regions of interest were extracted using 205 

FreeSurfer (https://surfer.nmr.mgh.harvard.edu) and tensors and fiber orientation maps were obtained 206 

using MRtrix3. Previous research has shown the importance of the AF for recovery from aphasia, but 207 

some studies indicate the AF in the left hemisphere is more important(35,36), whereas others suggest 208 

the right hemisphere is relevant for recovery.(34) Based on this converging evidence regarding the role 209 

of the long segment of the AF in language recovery in patients with aphasia, we extracted the fractional 210 

anisotropy (FA), the axial diffusivity (AD) and the lesion load of this fiber bundle in both hemispheres. 211 

AD was chosen over other diffusivity measures since it has been more directly related to acute post-212 

stroke recovery in motor impairments compared to other measures.(46) Lesion load was calculated 213 

from the number of voxels that were defined as AF inside the lesion size of each participant, weighted 214 

by the number the same voxels occupied by the AF in healthy participants, described in another study 215 

of our team.(47) 216 

 217 

Statistical analyses 218 

 219 

 First, we performed tests on the behavioral measures alone to evaluate whether there was a 220 

significant improvement of language impairment during the first two weeks following a stroke. Since 221 

CS10 days and some of the subscores showed a non-normal distribution (a Shapiro Wilk normality test 222 

revealed the scores for comprehension(10 days),  repetition(initial), repetition(10 days), being p < .05 in all 223 

cases), we conducted a Wilcoxon signed rank test for paired-samples between CSinitial and CS10 days and 224 

between the paired subscores, with at least one subscore having a non-normal distribution. For the 225 

other pair whose distribution was normal (naming), a paired-sample t-test was used. We also inspected 226 

how much of the achieved score was influenced by the potential recovery.  227 

 228 

Second, we performed different analyses to determine which variables predict more accurate 229 

CS10 days. We first performed a series of Pearson correlations to test the association between all our 230 

variables of interest with CS10 days. Correlation analyses were corrected at a level of significance of α = 231 

0.01. Subsequently, to test which variables best fit an ultimate regression model, we performed several 232 

regressions analyses in different steps. In a first step, a backwards analysis was performed to determine 233 

which diffusion variables extracted from the arcuate fasciculus (i.e., FA from left AF; FA from right 234 

AF; AD from left AF; AD from right AF) was more so related to the dependent variable. The variables 235 



that were found to be significant were included in a hierarchical multivariate regression later. Two 236 

models of this hierarchical regression were tested. Both of them were computed in t blocks: in the first 237 

block, age and initial aphasia severity were entered as control variables, or covariates (since previous 238 

research has already shown a certain capacity of prediction of both of them for later outcomes in 239 

aphasia);(6) in the second block, we introduced either lesion size (first hierarchical model) or lesion 240 

load of the left AF (second hierarchical model); in the third block, we introduced the significant 241 

diffusion variables from the first regression that we performed. Doing so, we could differentiate the 242 

contribution of the patient-related- and the different lesion-related-factors in the final prediction of the 243 

outcome.  244 

 245 

  Results 246 

 247 

Individual CS scores during the initial and second assessment are reported in Table 2. Three 248 

participants showed a deterioration during the two time points; the rest of the participants showed an 249 

improvement in CS scores. As a group, the mean CSinitial was 17.57 (SD = 7.55), whereas the mean 250 

CS10days was 21.68 (SD = 6.01). There was a significant overall improvement in language functioning 251 

during the follow-up (Z = 3.547, P <0.001). The mean improvement in CS for the whole group was 252 

33% (SD = 26.9), i.e. 33% of the potential recovery was reported on average. Achieved ΔCS positively 253 

correlated with the potential ΔCS (r = 0.651, P = 0.002). A visual representation of this relation can be 254 

seen in the figure 1 in the supplementary materials. All three subscores (i.e., comprehension, repetition 255 

and naming) were significantly improved between the initial assessment and the follow-up 256 

(Comprehension Wilcoxon signed ranks test, Z = 3.771, P < 0.001; Repetition Wilcoxon signed ranks 257 

test, Z = -3.115, P = 0.002; naming paired-sample t-test = -2.329, df = 18, P = 0.031). A visual 258 

comparison can be seen in the figure 2 in the supplementary materials. 259 

 260 

************************ 261 

Insert Table 2 approximately here.  262 

************************* 263 

Only one model was significant as a result of the backwards regression analysis that used the 264 

diffusion variables and CS10days as dependent variable. The model included FA from right AF (rFA) and 265 

AD from left AF after elimination of the less contributing variables (R2 = 0.282). From these two 266 

variables, only rFA was found to have a significant coefficient (β = 0.590, P = 0.23). Thus, rFA was the 267 

only diffusion variable included in the hierarchical regression analyses with the rest of the variables.  268 

 269 

Two hierarchical multivariate regressions were computed, each one with a different variable 270 

that represented a measure of the lesion: the first consisted of a three-block computation, where CS initial 271 

and age were introduced in the first block, lesion load of the left AF was introduced in the second block 272 

and rFA was introduced in the second block. The second regression consisted of the same procedure, 273 

but we used lesion size in the second block. Before performing the regression analysis, we performed a 274 

correlation analysis between the possible predictors to determine the independence of the variables. CS 275 

initial, lesion load and lesion size were found to have a significant correlation with the dependent variable 276 

(respectively, r = 0.810, P <0.001; r = -0.515, P = 0.02; -0.628, P = 0.003; see Table 3 for all 277 

correlations between the variables). 278 

 279 

 280 

After this, regression analyses were performed. Results are reported in Table 4. First, we 281 

decided to run univariate regressions to determine the possible predictive power of each of the lesion-282 

related measures, i.e. lesion size, lesion load of AF and rFA, and the initial severity (CSinitial ) on the 283 

CS10days. Regressions with lesion size, lesion load and initial severity were found to be significant. Each 284 



accounted, respectively, for 39%, 26.5% and 67.3% of the variance of the dependent variable. The next 285 

step consisted of performing a multivariate regression analyses with the previous variables and age 286 

(used as a covariate). When combined in the first block of the hierarchical analysis, CS initial and age 287 

explained 67.8% of the variance (R2 = 0.678), with a F = 17.874 (P < 0.001, df = 19), and CS initial 288 

being the only variable whose coefficient was significant (β = 0.824; P < 0.001). Adding the second 289 

block to the model allowed us to see two possible results that depended on the lesion-related variable. 290 

If lesion load was added, it did not add more R2 to the previous model, and the CS initial was still the 291 

only significant coefficient (P = 0.001). If lesion size was added, it explained up to 71.7% of the 292 

variance (R2 = 0.717) with a F = 10.130 (P < 0.001, df = 19). We added a third block in each 293 

regression, which included the rFA. Inclusion of this variable increased 2.6% in the variance account of 294 

the regression that used the lesion load (R2 change = - 0.007), and 2.3% in the case of the regression 295 

that used lesion size (R2 change = - 0.006). Both changes were not significant. We decided to run a 296 

variance inflation factor analysis (VIF) to discard multi-collinearity (or dependency) among the 297 

predictors, since two of these predictors in each model were highly correlated with the dependent 298 

variable. No predictor was found to be extremely collinear with the others. 299 

 300 

************************ 301 

Insert Table 4 approximately here.  302 

************************ 303 

 304 

Discussion 305 

Substantial improvement in language performance occurred within the first two weeks after 306 

stroke; this was measured using a composite score of several language functions in patients with mild 307 

to severe aphasia. As previously reported, there was a significant correlation between the degree of the 308 

achieved recovery (achieved ΔCS) and the potential improvement (potential ΔCS); however, our 309 

assessment time points were different than those previously reported in a study using similar 310 

measures.(13) As for the predictions of the composite score during the early sub-acute phase, the most 311 

successful model consisted of a combination of age, lesion size, initial aphasia severity and FA of the 312 

long segment of the right AF. Even without the diffusion measure, the model could predict up to 70% 313 

of the variance of the severity during the sub-acute phase. Most importantly, the predictive power of 314 

the initial aphasia severity (univariate model) was close to the multivariate models including lesion 315 

measures, which indicates that among all our variables, it was the best predictor for severity at the 316 

second time point. 317 

 318 

Recovery from aphasia peaks during the first weeks after onset,(3,4) but it is difficult to ensure 319 

that all changes in the abilities are constrained by time. We have reported here, as has also been 320 

recently reported elsewhere,(20) that it is possible to capture this process with a sensitive and reliable 321 

assessment. As is typical when quantifying these processes, patients with higher initial severities also 322 

show more recovery, due to a larger level of possible improvement. Other patients with a lower initial 323 

severity improved less, or even slightly deteriorated during this period. These patients’ recovery results 324 

may depend on other factors that do not systematically contribute to their recovery as successfully as in 325 

other patients. The reasons for this may vary from individual physiological factors, such as the brain’s 326 

blood supply and modulation of post-stroke neuroinflammation(5) to more patient-related factors, such 327 

as previous language use or socio-individual situation.  328 

 329 

The effective recovery that occurs during the early stage of aphasia remains an important part of 330 

the whole recovery process, but it is highly variable between individuals. This variability is reflected in 331 

the different rates of recovery per individual, which tend to stabilize over time.(18,48) Most studies 332 

have investigated the prediction of language outcomes (either from damaged or spared brain areas and 333 



for long term outcomes) such that the “size or site”, or any combination of both, could explain severity, 334 

symptoms and prognosis of aphasia.(28,31,34,49,50) Conversely, we present evidence that different 335 

factors may account for the early phases of recovery, and more specifically, these factors may influence 336 

spontaneous recovery. Previous studies have reported that initial aphasia severity, isolated or in 337 

combination with other biological measures, can account for a large amount of variance in the long 338 

term.(13,17) It has been also shown that different white matter structures may be involved in the 339 

outcome of aphasia at different stages, although this has not been explored during early recovery.(51) 340 

This evidence indicates that behavioral measures are useful for predicting the linguistic abilities at 341 

several phases of aphasia recovery and may explain its dynamics in a more detailed way than has been 342 

explored to date. Based on these data, we propose that initial language severity may have a greater 343 

influence for short-term overall language prediction; whereas lesion-related variables may be more 344 

important for the prediction of specific language domains or for long-term predictions. 345 

 346 

One of the main hypotheses about the mechanisms of aphasia recovery is the involvement of 347 

spared contralateral homologue structures during the acute phase(52), as a prelude to a different stage 348 

of recovery where left hemisphere structures are involved,(33,52) reflecting a better long-term 349 

recovery. The right arcuate fasciculus was the white matter structure that better predicted aphasia 350 

outcomes after stroke in our sample, which is in line with previous findings in the literature(34). 351 

However, its involvement, as measured using FA, is much less significant when introduced into a 352 

multivariate model. One explanation is that the stabilization of recovery had not yet reached its peak 353 

because pathophysiological processes may have avoided a right “uptake” from the right arcuate 354 

fasciculus, and the timing of the assessment may have been too close to stroke onset to see differences. 355 

Previous studies have looked into changes in white matter structures over time after lesions,(54,55) but 356 

these changes have been reported only at long term time points and under specific therapies. The 357 

emerging question is whether initial aphasia severity, and therefore the degree of early recovery, 358 

influences the changes of these structures in the long term.  359 

 360 

Limitations of this study include the small sample size and the analysis that was limited to only 361 

one white matter tract. In order to analyze the complex process of spontaneous recovery, more factors 362 

should be addressed, specifically the structures that have been flagged as potential scaffolding for later 363 

recovery, such as the inferior fronto-occipital fasciculus or the uncinate fasciculus.(51) However, we 364 

have been able to explain a large part of language outcome after almost two weeks in individuals with 365 

aphasia using linguistic assessments and biological measures that do not target specific structures. This 366 

suggests that cognitive evaluation remains one of the most useful tools in the acute stages of aphasia 367 

and in the study of its evolution. Future studies should address differences between recovery phases 368 

with more neuroimaging techniques and with a larger sample to help account for the variability that this 369 

disorder presents in daily clinical practice.  370 



Table 1. Participants’ sociodemographic and clinical information. 

 
Sex 

 
Age 

Educ. 
(years) 

Initial 
NIHSS 
score 

rTPA 

 

Aphasia 

type 

Severity 

(BDAE 

Scale) 

Lesion 

location 

Lesion 

size 

(mL) 
        F T P S  

1 M 52 9 n/a yes TC mixed 

Moderate to 

severe 

 X   35 

2 M 74 6 9 yes Wernicke Severe  X X X 20 

3 M 61 10 6 no Broca 

Moderate to 

severe 

X   X 12 

4 M 49 9 6 no Anomic 

Mild to 

moderate 

X  X X 2 

5 M 73 19 18 no Wernicke Severe  X  X 16 

6 M 83 9 9 no TC sensory Moderate X  X  35 

7 F 73 7 n/a no TC sensory Moderate X X X  6 

8 M 65 11 6 yes Anomic Mild  X X  12 

9 M 72 15 11 yes TC mixed 

Moderate to 

severe 

X  X X 1 

10 M 87 9 6 no Anomic Mild X    3 

11 M 55 11 23 yes TC mixed 

Moderate to 

severe 

X   X 98 

12 M 73 11 n/a yes Wernicke 

Moderate to 

severe 

 X X X 16 

13 M 64 15 n/a yes Conduction Mild   X  16 

14 F 95 6 1 no Broca 

Mild to 

moderate 

  X  13 

15 F 60 12 7 yes Anomic 

Mild to 

moderate 

X X  X .26 

16 M 91 19 7 no Anomic 

Mild to 

moderate 

X   X .10 



17 F 85 16 n/a no TC mixed Moderate   X  14 

18 M 71 7 n/a no TC motor Moderate X  X  1 

19 F 81 15 17 yes Anomic Mild   X  10 

20 F 68 12 n/a yes Anomic Mild X  X  .33 

         rTPA = Recombinant tissue plasminogen activator 

           F = Frontal, T = Temporal, P = Parietal, S = Subcortical 

 BDAE scale = Boston Denomination Aphasia Examination severity scale 

  

 

 

 

 

  



Table 2. Participants’ Composite Scores (CS)  

 

Participants CS 

INITIAL 

CS10 

DAYS  

ACHIEVED 

ΔCS 

POTENTIAL 

ΔCS 

% Achieved 

recovery 

1 8.20 24.78 16.58 21.80 76% 

2 10.24 13.81 3.56 19.76 18% 

3 11.51 15.34 3.83 18.68 21% 

4 24.82 27.44 2.62 5.18 51% 

5 7.71 14.02 6.31 22.29 28% 

6 3.01 14.51 10.50 26.10 40% 

7 14.36 17.23 2.86 15.64 18% 

8 28.53 28.88 0.35 1.47 24% 

9 21.33 28.11 6.77 8.67 78% 

10 10.63 9.90 -0.74 19.37 - 4% 

11 19.35 18.63 -0.72 10.65 - 7% 

12 12.76 14.79 2.03 17.24 12% 

13 27.46 28.90 1.44 2.54 57% 

14 16.27 22.86 6.59 13.73 48% 

15 23.60 21.73 -1.87 6.40 - 29% 

16 19.01 25.07 4.99 9.91 50% 

17 12.30 22.39 10.08 17.70 57% 

18 18.59 21.83 3.24 11.41 28% 

19 26.79 27.70 0.91 3.21 28% 

20 26.74 28.78 2.04 3.26 62% 

MEAN 

(SD) 

17.57 

(7.55) 

21.68 

(6.01) 

4.10 (4.31) 12.43 (7.55) 33% (26.9) 



Table 3. Matrix with all correlations between independent variables (Initial severity, 

Age, Lesion load, Lesion size, rFA) and the dependent variable (CS10 days). Pearson 

coefficients are reported (level of p). All correlations have been corrected to a threshold 

of α = 0.01.  

 

 Initial 

severity 

Age Lesion 

load 

Lesion 

size 

FA from 

right AF 

CS10days 

Initial 

severity 

________ -.045 

(.850) 

-.666 

(.004)* 

-.521 

(.032)*  

.237 

(.360) 

.821 

(<.001)** 

Age  ______ .006 

(.980) 

-.335 

(.189) 

-.417 

(.097) 

.051 

(846) 

Lesion 

load 

  _______ .457 

(.065) 

-.163 

(.533) 

-.569 

(.017)* 

Lesion 

size 

   ______ -.335 

(.189) 

-.628 

(.007)* 

FA from 

right AF 

    _______ .349 

(.170) 

* Equals to p < .01 

** Equals to p < .001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Summary of results from regression models. 

 

Model Independent variables ANOVA F 

(p) 

R2 Best coefficient (β, p) 

 Backwards FAr + ADL 3.49 (0.05) 0.3 rFA (0.571, 0.023)* 

Univariate CSinitial 37.17 

(<0.001) ** 

0.673   

Univariate Lesion size 11.75 

(0.003)* 

0.39   

Univariate Lesion load  6.506 (0.02)* 0.265   

Hierarchical Age, CSinitial, Lesion size, 

rFA 

10.130 

(<0.001)** 

0.73 CSinitial (0.789, 

0.001**) 

Hierarchical Age, CSinitial, Lesion 

load, rFA 

9.036 

(0.001)** 

0.71 CSinitial (0.659, 

0.001**) 

 * Equals to p < .05 

** Equals to p < .001 
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