
WEB APPENDIX for “A tutorial on dealing with time-varying eligibility for treatment: 

Comparing the risk of major bleeding with DOACs versus warfarin” 

 

AUTHORS: Mireille E. Schnitzer1, Robert W. Platt2, and Madeleine Durand3 

AFFILIATIONS 

1Faculty of Pharmacy and Department of Social and Preventative Medicine, Université 

de Montréal, Montreal, Canada 
2Departments of Pediatrics and of Epidemiology, Biostatistics, and Occupational Health, 

McGill University, and the Research Institute of the McGill University Health Centre, 

Montreal, Canada 
3Internal Medicine Service, Department of Medicine, Centre Hospitalier de l’Université 

de Montréal, and the Research Center of Centre Hospitalier de l’Université de Montréal, 

Montréal, Canada 

 

  



A1. SUMMARY MEASURES FOR THE THREE SIMULATED SCENARIOS 

 A0=1 (DOAC) A0=0 (warfarin) 
Scenario 1   
 n=15314 n=9686 
Baseline variables   
W, mean (sd) -0.17 (0.98) 0.30 (0.96) 
U, mean (sd) 0.00 (0.99) 0.00 (1.00) 
   
Post-initial exposure variables   
RF, p 0.07 0.10 
A1, p 0.84 0.15 
  A1 amongst those with RF=0 0.91 0.17 
  A1 amongst those with RF=1 0 0 
Y, p 0.22 0.25 

Scenario 2   
 n=15314 n=9686 
Baseline variables   
W, mean (sd) -0.17 (0.98) 0.30 (0.96) 
U, mean (sd) 0.00 (0.99) 0.00 (1.00) 
   
Post-initial exposure variables   
RF, p 0.07 0.10 
A1, p 0.84 0.15 
  A1 amongst those with RF=0 0.91 0.17 
  A1 amongst those with RF=1 0 0 
Y, p 0.21 0.24 

Scenario 3   
 n=15314 n=9686 
Baseline variables   
W, mean (sd) -0.17 (0.97) 0.30 (0.96) 
U, mean (sd) 0.00 (0.99) 0.00 (1.00) 
   
Post-initial exposure variables   
RF, p 0.14 0.07 
A1, p 0.78 0.16 
  A1 amongst those with RF=0 0.91 0.17 
  A1 amongst those with RF=1 0 0 
Y, p 0.22 0.24 

Web Table 1. Baseline and Post-initial Exposure Summary Measures for Both Initial 
Exposure Groups in the Simulated Data Example. 

  



A2. CODE FOR GENERAL NONPARAMETRIC BOOTSTRAP AND APPLIED TO IPTW 

When inverse probability weights are used, it is often recommended to estimate the 

standard error using the bootstrap. Here we provide a simple general nonparametric 

implementation that can be applied to an arbitrary estimator of a vector parameter. 

Box A2.1: Nonparametric bootstrap function for a vector parameter 
 
bootstrap.vect<-function( funct, DAT , K=500, n=dim(DAT)[1] ){ 

result.full<-funct(DAT) 

mat.est<-matrix(0,ncol=length(result.full),nrow=K) 

for (k in 1:K){ 

 #resample the original dataset 

 resamp<-sample(1:n, n, replace=T) 

 DATk<-as.data.frame(DAT[resamp,]) 

 estimate<-funct(DATk) 

 mat.est[k,]<-estimate 

 } 

VAR=apply(mat.est,2,var) 

CIlow=apply(mat.est,2,function(x) quantile(x,0.025)) 

CIhigh=apply(mat.est,2,function(x) quantile(x,0.975)) 

 

#Output: variance, 95% confidence limits, 

#and the bootstrap estimates 

return(list(VAR=VAR,CIlow=CIlow,CIhigh=CIhigh, 

estList=mat.est)) 

 

} 

 

In order to apply the above bootstrap, we must create a function that inputs the data 

and outputs the vector estimate. Here is such a function of the IPTW estimator 

described in this manuscript for both the risk ratio and odds ratio. 

  



 

Box A2.2: Function for IPTW 
 
iptw_RF<-function(DAT){ 

#define regimen W as: stay on warfarin  

#define regimen D as: stay on DOAC unless RF, then warfarin 

#patients following reg W at first time point 

RW0<-DAT$A0==0 

#patients following reg W at first AND second time points 

RW01<-(DAT$A0==0&DAT$A1==0) 

#patients following reg D at first time point 

RD0<-DAT$A0==1 

#patients following reg D at first AND second time points 

RD01<-(DAT$A0==1&DAT$A1==1) | (DAT$A0==1&DAT$RF==1) 

 

A0mod<-glm(A0~W,family=binomial(),data=DAT) 

A1mod<-glm(A1~A0+W,family=binomial(),subset=(RF==0),data=DAT) 

 

P1<-predict(A0mod,type="response");  P0<-1-P1 

P00<-((1-predict(A1mod,  

 newdata=as.data.frame(cbind(W=DAT$W,A0=0)),type="response"))* 

 (DAT$RF==0)+1*(DAT$RF==1))*P0 

P11<-((DAT$RF==0)* 

 predict(A1mod,newdata=as.data.frame(cbind(W=DAT$W,A0=1)), 

 type="response") + (DAT$RF==1))*P1 

 

w<-(1/P00*RW01 + 1/P11*RD01) 

 

sub<-(RD01==1|RW01==1) 

 

#5% weight truncation 

#w[w>quantile(w[sub],0.05)]<-quantile(w[sub],0.05) 

 

#Option 1: RISK DIFFERENCE 

IPTWmod<-lm(Y~RD01,weights=w,subset=sub,data=DAT) 

est_RD<-IPTWmod$coef[2] 

 

#Option 2: RISK RATIO 

IPTWmod<-glm(Y~RD01,weights=w,subset=sub, 

 family=quasibinomial(link=log),data=DAT) 

est_RR<-exp(IPTWmod$coef[2]) 

 

#Option 3: ODDS RATIO 

IPTWmod<- 

glm(Y~RD01,weights=w,subset=sub,family=quasibinomial(),data=DAT) 

est_OR<-exp(IPTWmod$coef[2]) 

 

return(c(est_RD,est_RR,est_OR)) #output all three estimates 

} 



The next box shows how to use the above functions to obtain bootstrapped estimates of 

the standard errors of the risk difference, risk ratio, and odds ratio given data 

O=(W,A0,RF,A1,Y) as defined previously. 

Box A2.3: Using the bootstrap and IPTW functions 
 
#Both functions must first be run 

#Save the data as a dataframe 

DAT<-as.data.frame(cbind(W,A0,RF,A1,Y)) 

 

#K is the number of bootstrap resamples 

bsres<-bootstrap.vect(iptw_RF,DAT,K=500) 

 

#Estimated standard error for each parameter estimate 

sqrt(bsres$VAR) 

 

#Lower-limit of the 95% confidence interval for each estimate 

bsres$CIlow 

 

#Upper-limit of the 95% confidence interval for each estimate 

bsres$CIhigh 

 

#List of bootstrapped estimates (vector of size K) 

#Can use to plot histogram and/or identify failed runs 

Bsres$estList 
  



A3. SIMULATION STUDY RESULTS 

We compare the performance of the four adherence analyses (M1-M4) with the 

performance of the IPW application contrasting the two treatment strategies. Recall 

that, in our simulated data with the data-generating functions given in Box 2, there is no 

true difference between the effects of DOACs and warfarin on bleeding (i.e. no arrows 

leading from either exposure node to the outcome, Y). Thus, a correct result from this 

analysis would result in null estimates (OR=1).  

We independently sample 1,000 datasets of size n=25,000 and run the models M1-M4 

and IPW for treatment strategy on each of the 1,000 datasets. The parameters 

estimated by the first four methods are the exponential of the coefficients in the models 

M1-M4, i.e. the conditional odds ratios related to A0 and A1, respectively. The parameter 

estimated by the IPW method contrasting strategies RD and RW is the marginal odds 

ratio (P[Y(RD)=1]/{1- P[Y(RD)=1]})/(P[Y(RW)=1]/{1- P[Y(RW)=1]}). We then save the point 

estimates from each model run on each dataset and also note whether the resulting 

confidence interval includes the null. If not, this is considered a false positive, incorrectly 

concluding that there is an effect of anticoagulant choice on bleeding.  

Parameter M1. Adjust 
for W 

M2. Subset 
on RF 

M3. Subset on 
RF with 
weights 

M4. Adjust 
for RF 

IPW for 
strategy 

      
Scenario 1      
OR of      
  A0 1.07 (31.9) 1.00 (4.2) 1.00 (5.4) 1.00 (4.8)  
  A1 0.90 (61.0) 1.00 (4.6) 1.00 (5.2) 1.00 (4.6)  
  RD vs RW     1.00 (5.4) 

Scenario 2      
OR of      
  A0 1.11 (69.4) 1.08 (29.2) 1.07 (27.7) 1.02 (7.7)  
  A1 0.82 (98.3) 0.88 (63.4) 0.89 (61.8) 0.94 (20.3)  
  RD vs RW     1.00 (6.6) 

Scenario 3      
OR of      
  A0 1.61 (100.0) 0.82 (95.4) 0.82 (97.6) 0.81 (99.7)  
  A1 0.41 (100.0) 1.00 (3.6) 1.01 (5.7) 1.00 (3.6)  
  RD vs RW     1.00 (5.0) 

Web Table 2. Mean of the Point Estimates and % False Positives for Regression 
Methods M1-M4 and the IPW Treatment Strategy Approach over 1,000 Simulated 
Draws. 
 



Web Table 2 presents the mean of the odds ratio point estimates and the % of false 

positives over the 1,000 simulated datasets in each scenario. For scenario 1, there is a 

small average bias for both exposure effects, leading to 32% and 61% false positives for 

A0 and A1 respectively. For the models M2-M4 there is no bias with roughly 5% false 

positives in each case as desired. There is similarly no bias for the IPW approach and 5% 

false positives, indicating that the standard errors were well-estimated by bootstrap. For 

scenario 2, we see that for all regression models, there is an upwards mean bias in the 

odds ratio estimates of A0 and a downwards bias for A1. The biases are particularly large 

for M1, which ignored the contraindication entirely, and lowest for M4, which adjusted 

for RF in the regression model. The high level of false positives in all scenarios suggests 

that an investigator is likely to conclude that there is indeed an effect. The IPW method 

had no bias on average and 6.6% type 1 error. In scenario 3, where RF is a collider, 

models M1-M4 produced the largest average bias overall resulting in very high levels of 

type 1 errors. In particular, the direction of bias of the effect of A0 for models M2-M4 

was reversed compared to the previous scenario, suggesting a protective effect of early 

exposure. In M2-M4, there was no average bias in the estimation of the effect of A1, 

which makes sense as these models correctly adjusted for the confounder RF of the 

relationship A1 – Y. The IPW estimator was unbiased on average with optimal type 1 

error. 

In order to evaluate the IPW estimator for a true parameter off the null, we repeated 

the same simulation as scenario 3, except that we changed the outcome generation to 

Y0<-rbinom(size=1,n=ssize,p=plogis(-2+0.5*W+2*U+0.2*A0+0.4*A1)) 

so that both early and later treatments had positive effects on the probability of an 

outcome. The results are in Web Table 3. 

Parameter M1. Adjust 
for W 

M2. Subset 
on RF 

M3. Subset on 
RF with 
weights 

M4. Adjust 
for RF 

IPW for 
strategy 

      
OR of      
  A0 1.78 (1.00) 0.96 (0.15) 0.94 (0.23) 0.93 (0.35)  
  A1 0.56 (1.00) 1.31 (1.00) 1.32 (1.00) 1.31 (1.00)  
  RD vs RW     1.38 (1.00) 

Web Table 3. Mean of the Point Estimates and % True Positives (power) for Regression 

Methods M1-M4 and the IPW Treatment Strategy Approach over 1,000 Simulated 

Draws. In this scenario, both early and later exposures have small positive effects 

(conditional OR=1.22 and 1.49, resp.). True effect of treatment strategy OR = 1.38. 



A4. CODE FOR STABILIZED WEIGHTS 

Better finite-sample properties can be obtained by computing stabilized weights that 

include a numerator probability that does not adjust for W. Weight stabilization has a 

negligible impact on the current finite sample simulation results. 

Box A4.1: Stabilized weights for IPW for treatment strategy 
 

#denominator (same as before) 

A0mod<-glm(A0~W,family=binomial()) 

A1mod<-glm(A1~A0+W,family=binomial(),subset=(RF==0)) 

 

P1<-predict(A0mod,type="response") 

P0<-1-P1 

P00<-((1-predict(A1mod, 

newdata=as.data.frame(cbind(W,A0=0)),type="response"))*(RF==0)+1*

(RF==1))*P0 

P11<-

((RF==0)*predict(A1mod,newdata=as.data.frame(cbind(W,A0=1)),type=

"response")+ (RF==1))*P1 

 

#numerator 

P1n<-mean(A0) 

P0n<-1-P1n 

P00n<-((1-mean(A1[RF==0&A0==0]))*(RF==0)+1*(RF==1))*P0n 

P11n<-((RF==0)*mean(A1[RF==0&A0==1])+ (RF==1))*P1n 

 

#stabilized weights 

ws<-(P00n/P00*RW01 + P11n/P11*RD01) 
 

 

  



A5. DAGITTY CODE FOR THE DAGS PRESENTED IN FIGURE 2 

An anonymous reviewer generously provided DAGitty 
(http://www.dagitty.net/dags.html) code to reproduce the DAGs presented in Figure 2, 
which we relay to the reader. 
dag { 

bb="0,0,1,1" 

A0 

[exposure,pos="0.170,0.488"] 

A1 

[exposure,pos="0.405,0.490"] 

RF [pos="0.270,0.566"] 

U [latent,pos="0.194,0.655"] 

W [adjusted,pos="0.168,0.288"] 

Y [outcome,pos="0.518,0.497"] 

A0 -> A1 

RF -> A1 

RF -> Y 

U -> Y 

W -> A0 

W -> A1 

W -> RF 

W -> Y 

} 

 
 

 

dag { 

bb="0,0,1,1" 

A0 

[exposure,pos="0.170,0.488"] 

A1 

[exposure,pos="0.405,0.490"] 

RF [pos="0.270,0.566"] 

U [latent,pos="0.194,0.655"] 

W [adjusted,pos="0.168,0.288"] 

Y [outcome,pos="0.518,0.497"] 

A0 -> A1 

A0 -> RF 

RF -> A1 

U -> RF 

U -> Y 

W -> A0 

W -> A1 

W -> RF 

W -> Y 

} 
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