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Abstract

In this thesis we consider a variation of the Mahler measure where the defining integral is

performed over a more general torus. Our work is based on a tempered family of polynomials

originally studied by Boyd, Pk(x, y) = x + 1
x

+ y + 1
y

+ k with k ∈ R≥4. For the k = 4 case

we use special values of the Bloch–Wigner dilogarithm to obtain the Mahler measure of P4

over an arbitrary torus T2
a,b = {(x, y) ∈ C∗ × C∗ : |x| = a, |y| = b} with a, b ∈ R>0. Next we

establish a relation between the Mahler measure of P8 over a torus T2
a,
√
a
and its standard

Mahler measure. The combination of this relation with results due to Lalín, Rogers, and

Zudilin leads to a formula involving the generalized Mahler measure of this polynomial given

in terms of L′(E, 0). In the end, we propose a strategy to prove some similar results for the

general case k > 4 over T2
a,b with some restrictions on a, b.

Keywords : Mahler measure, Bloch–Wigner dilogarithm, L-functions of ellip-

tic curves, arbitrary torus, regulator.
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Résumé

Le présent mémoire traite une variation de la mesure de Mahler où l’intégrale de définition

est réalisée sur un tore plus général. Notre travail est basé sur une famille de polynômes

tempérée originellement étudiée par Boyd, Pk(x, y) = x+ 1
x

+y+ 1
y

+k avec k ∈ R≥4. Pour le

k = 4 cas, nous utilisons des valeurs spéciales du dilogarithme de Bloch-Wigner pour obtenir

la mesure de Mahler de P4 sur un tore arbitraire T2
a,b = {(x, y) ∈ C∗ × C∗ : |x| = a, |y| = b}

avec a, b ∈ R>0. Ensuite, nous établissons une relation entre la mesure de Mahler de P8

sur un tore T2
a,
√
a
et sa mesure de Mahler standard. La combinaison de cette relation avec

des résultats de Lalín, Rogers et Zudilin conduit à une formule impliquant les mesures de

Mahler généralisées de ce polynôme données en termes de L′(E, 0). Au final, nous proposons

une stratégie pour prouver des résultats similaires dans le cas général k > 4 sur T2
a,b avec

certaines restrictions sur a, b.

Mots clés : La mesure de Mahler, la dilogarithme de Bloch–Wigner, les fonc-

tions L des courbes elliptiques, un tore d’intégration variable, régulateur.
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Introduction

0.1. Mahler measure

The (logarithmic) Mahler measure of a non-zero rational function P ∈ C (x1, . . . , xn) is

defined by

m (P ) = m(P (x1, . . . , xn)) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn) |dx1

x1

· · · dxn
xn

,

where Tn = {(x1, . . . , xn) ∈ C∗ × C∗ × · · · × C∗ : |x1| = · · · = |xn| = 1}. We define the

Mahler measure as M(P ) = em(P ).

In the early 80’s Smyth [42] discovered the following remarkable identity, which is one of

the initial formulas for multi-variable cases:

m(x+ y + 1) = L′(χ−3,−1) =
3
√

3

4π
L(χ−3, 2), (0.1.1)

where

L(χ−3, s) =
∞∑
n=1

χ−3(n)

ns
with χ−3(n) =


1 n ≡ 1 (mod 3),

−1 n ≡ −1 (mod 3),

0 n ≡ 0 (mod 3),

(0.1.2)

is a Dirichlet L-function. Smyth also extended the above example to three variables (the

calculation can be found in the Appendix of [16]):

m(1 + x+ y + z) =
7

2π2
ζ(3).

Interest in Mahler measure of several variable polynomials arose in connection to the

identities proved by Smyth [42].

When n = 1, Jensen’s formula (see 1.1.1) gives the identity

M(Q) = |c0|
∏
|βi|≥1

|βi|, (0.1.3)



where Q(x) = c0

∏n
i=1(x− βi) is a polynomial in C[x]. This quantity was introduced first by

D.H. Lehmer [33] in early 1930’s while investigating methods to find new large primes. He

was interested, after Pierce [36], in the factors of the integers ∆m =
∏n

i=1(βmi −1) associated

to a monic polynomial Q ∈ Z[x] defined as Q(x) =
∑n

i=0 cn−ix
i = c0

∏n
i=1(x − βi). Lehmer

checked that ∆m grows with m roughly like M(Q)m. It is easy to see that for Q ∈ Z[x] we

haveM(Q) ≥ 1. A polynomial in Z[x] is called primitive if the coefficients have no non-trivial

common factor. If Q is a primitive polynomial such thatM(Q) = 1, then a classical theorem

of Kronecker [26] establishes a relation between the roots of Q and the fact that M(Q) = 1.

Theorem 0.1.1 (Kronecker [26]). If P is a primitive polynomial and P (0) 6= 0 thenM(P ) =

1 occurs only if all the roots of P are roots of unity.

Proof. Let

P (x) =
d∑
r=0

arx
r

is a primitive polynomial with ada0 6= 0, and the roots of P are α1, α2, . . . , αd. Then we

consider the family of polynomials

Pn(x) =
d∏
j=1

(x− αnj ) = xd +
d−1∑
r=0

br,nx
r.

Condition M(P ) = 1 implies that |ad| = 1 and |αj| ≤ 1 for j = 1, 2, . . . , d. Indeed, from

(0.1.3) we get 1 = M(P ) ≥ |ad|, and as ad ∈ Z\{0} we have ad = ±1. Similarly, if any of the

roots of P has modulus greater than 1, then by (0.1.3) we get M(P ) > 1, which contradicts

M(P ) = 1. Now, since |ad| = 1, a0 is a non-zero integer and |a0| = |ad| ·
∣∣∣∏d

j=1 αj

∣∣∣ ≤ 1, we

also get that |a0| = 1 and |αj| = 1 for j = 1, 2, . . . , d. This implies that the coefficients of

P are bounded above by 2d. Let K/Q be the splitting field of P. As Galois conjugates of

the roots of Pn are also roots of Pn, we obtain that τ(Pn(x)) = Pn(x) for all τ ∈ Gal(K/Q),

and therefore, Pn(x) ∈ Q[x] for all n ∈ N. Now, notice that each αj is an algebraic integer,

because either P or −P is a monic polynomial in Z[x] such that P (αj) = 0. Then, each αnj
is also an algebraic integer for n ≥ 1, and so are the coefficients of Pn, because they are

elementary symmetric polynomials in αn1 , αn2 , . . . , αnd . In other words, each br,n is an element

of Z ∩ Q = Z, where Z is the ring of all algebraic integers. Therefore, Pn(x) ∈ Z[x] for

all n ≥ 1. Also, the fact that
∣∣αnj ∣∣ = 1 for all n ∈ N and j ∈ {1, 2, . . . , d} implies the

coefficients of Pn are bounded by 2d for all n. Since the coefficients of Pn are integral, there

2



are finitely many choices for them. This shows that the family {Pn}n≥1 has finitely many

elements, and therefore, by pigeonhole principle we must have Pl = Pt for some 1 ≤ l < t.

Let Rn = {αnj : 1 ≤ j ≤ d} be the set of roots of Pn for all n ≥ 1. Then, the two sets Rl and

Rt must be equal up to a permutation, i.e

αlj = αtσ(j),

for j = 1, 2, . . . , d and σ ∈ Sd, where Sd is the symmetric group of degree d (group of all

permutations on d symbols). Let m be the order of σ in Sd. Then we have

αl
m

j =
(
αlj
)lm−1

=
(
αtσ(j)

)lm−1

=
(
αlσ(j)

)tlm−2

=
(
αtσ(σ(j))

)tlm−2

= · · · = αt
m

σm(j) = αt
m

j ,

for 1 ≤ j ≤ d. This implies that

αt
m−lm
j = 1,

i.e. each αj is a root of unity, and thus deducing Theorem 0.1.3. �

In other words, if Q is a primitive polynomial then we getM(Q) = 1 only when Q(x) is a

power of x times a product of cyclotomic polynomials in x. In light of this Lehmer proposed

the following question regarding the Mahler measure of a single variable polynomial:

Is there a constant C > 1 such that for every polynomial P ∈ Z[x] with M(P ) > 1, we have

M(P ) ≥ C?

The smallest value he was able to find was

M(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1) = 1.17628081 . . . ,

which is still the smallest known positive value of M(P ). Lehmer’s question remains open

nowadays.

We can define the Mahler measure of an algebraic number ϑ in the following way. Let

Pϑ(x) ∈ Z[x] be the minimal polynomial of ϑ. Then Mahler measure of ϑ is defined as

M(ϑ) := M(Pϑ). In fact,

h(ϑ) =
log(M(ϑ))

degree of Pϑ
,

where h(ϑ) is the Weil (or absolute) height of ϑ. In the Appendix we will provide a derivation

of the above fact.

3



Cassaigne and Maillot [34] generalized the formula found by Smyth to m(a + bx + cy)

for arbitrary complex constants a, b, and c. If |a|, |b|, and |c| are the lengths of the sides of

a planar triangle while α, β, and γ are the respective opposite angles then

πm(a+ bx+ cy) = α log |a|+ β log |b|+ γ log |c|+D

(
|a|
|b|
eic
)
,

where D is the Bloch–Wigner dilogarithm (for definition see (0.3.1)). Alternatively, when

|a|, |b|, and |c| are not sides of a triangle we have

m(a+ bx+ cy) = log max{|a|, |b|, |c|}.

Boyd [17] systematically examined families of polynomials associated to elliptic curves,

and found numerical connections between their Mahler measure and special values of their

L-functions. For example, Boyd considered the following family of two-variable polynomials,

Pk(x, y) = x+
1

x
+ y +

1

y
+ k,

where k is a parameter in C.

We know that for k 6= 0, 4, Ck : Pk = 0 is a genus one curve which is birationally

equivalent to an elliptic curve EN(k), where N(k) denotes the conductor. For k integral Boyd

numerically found many formulas of the form

m(Pk(x, y))
?
= rkL

′(EN(k), 0), (0.1.4)

where rk is a rational number of low height, and the question mark stands for a numerical

formula that is true for at least 20 decimal places. In this thesis we consider the cases where

k ∈ R>4. The computation of Mahler measure for the case k = 4 is simpler.

Deninger [23] bridged the gap by showing how to interpret m(P ) as a Deligne period of

mixed motives when P (x, y) does not vanish on Tn. In fact, identities such as Smyth’s and

Boyd’s (conjectured) can be demystified by combining Deninger’s method and the Bĕılinson

conjectures. Rodriguez-Villegas [37] further investigated this connection, and proved some of

these formulas involving Pk when the associated elliptic curves have complex multiplication

and k2 ∈ Z. The case k = 4, for which Ck is a genus 0 curve, is very similar to that of

Smyth’s. Indeed by direct manipulations of the integral defining m(P4) Boyd [17] showed

that

m(P4) = 2L′(χ−4,−1),

4



where χ−4 is the quadratic Dirichlet character of conductor 4. A detailed computation of

m(P4) can be found in [22], where it is shown that

πm(P4) = 4D(i),

where D is the Bloch–Wigner dilogarithm (defined in (0.3.1)). We note down in Table 0.1

some identities of this kind which were proved by Bosman[14], Bertin [3, 4, 8, 9], Touafek

[44, 45, 46] et al. The family of polynomials considered in that table are:

Qt(x, y) = y2 + (x4 + tx3 + 2tx2 + tx+ 1)y + x4,

Tp(x, y) = (x+ 1)y2 + (x2 + px+ 1)y + (x2 + x),

Mj(x, y) = y2(x+ 1)2 + y(x2 + jx+ 1) + (x+ 1)2,

with t, j ∈ C and p ∈ Z. Recall that χ−4 is the quadratic Dirichlet character of conductor 4

and χ−3 is defined in (0.1.2).

Identities Author(s) Year

m(Q8(x, y)) = 4L′(χ−4,−1) J. Bosman 2004

m(Q−1(x, y)) = 2L′(χ−3,−1) J. Bosman 2004

m(M6(x, y)) = 8
3
L′(χ−4,−1) N. Touafek 2008

m(T3(x, y)) = 2L′(χ−3,−1) M. J. Bertin and W. Zudilin 2015

Table 0.1. Identities of the form m(P ) = rL′(χ, s) with r ∈ Q

Further identities like (0.1.4) were proved by Bertin and Zudilin [8, 9], Brunault [18,

19, 20], Lalín [7, 28, 29, 30], Rodriguez-Villegas [37, 38], Mellit [35], Rogers and Zudilin

[39, 40] et al. Some of those results are gathered in Table 0.2. The family of polynomials

considered in that table are:

Pk(x, y) = x+
1

x
+ y +

1

y
+ k,

Rm(x, y) = (1 + x)(1 + y)(x+ y)−mxy,

Tp(x, y) = (x+ 1)y2 + (x2 + px+ 1)y + (x2 + x),

with k,m ∈ C and p ∈ Z. Here EN represents an elliptic curve of conductor N .

5



Identities Author(s) Year

m(P4
√

2(x, y)) = L′(E64, 0) F. Rodriguez-Villegas 1997

m(P4/
√

2(x, y)) = L′(E32, 0) F. Rodriguez-Villegas 1997

m(P1(x, y)) = L′(E15, 0) M. Rogers and W. Zudilin 2010

m(P5(x, y)) = 6L′(E15, 0) M. Lalín 2010

m(P2i(x, y)) = L′(E40, 0) A. Mellit 2011

m(P2(x, y)) = L′(E24, 0) M. Rogers and W. Zudilin 2012

m(R4(x, y)) = 2L′(E20, 0) M. Rogers and W. Zudilin 2012

m(Pi(x, y)) = 2L′(E17, 0) W. Zudilin 2014

m(P3(x, y)) = 2L′(E21, 0) F. Brunault, M. Lalín, D. Samart and W. Zudilin 2015

m(P12(x, y)) = 2L′(E48, 0) F. Brunault 2015

m(T1(x, y)) = L′(E14, 0) M. J. Bertin and W. Zudilin 2015

Table 0.2. Some proven identities of Mahler measure of Boyd’s families of polynomials

We will now look into a different perspective for studying Mahler measures of several

variable polynomials.

0.1.1. Periods and Mahler measure

Kontsevich and Zagier [25] defined “Periods” in the following way.

Definition 0.1.2. A period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients over domains

in Rn given by inequalities with rational coefficients.

We can replace “rational” with “algebraic” in the above definition to obtain a period, be-

cause the algebraic functions occurring in the integrand can be replaced by rational functions

by introducing more variables. It is easy to see that the set of all periods P is countable.

For example, π and ζ(s) (where s ≥ 2 is an integer) are periods. Indeed,

π =

∫ 1

0

4

x2 + 1
dx,
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and ζ(3) has an integral representation as

ζ(3) =

∫∫∫
0<x<y<z<1

dxdydz

(1− x)yz
.

It is conjectured that 1
π
, e and γ (Euler–Mascheroni constant) are not periods.

Periods are intended to bridge the gap between algebraic numbers and transcendental

numbers. The class of algebraic numbers is too narrow to include many common mathemat-

ical constants, while the set of transcendental numbers is not countable, and its members

are not generally computable.

For many purposes it is convenient to widen our previous definition and consider also

elements of the extended period ring P̂ = P [ 1
2iπ

], which is an algebra. In particular,

it follows from the definition that the (logarithmic) Mahler measures of polynomials are

elements of P̂ . Zagier noted that L-functions of elliptic curves at some special integral values

produce examples of periods, and it is also conjectured that any two integral representations

of a period can be obtained from each other just by using additivity of integrals, changes of

variables, or Stokes’ theorem. In other words, proven identities in Table 0.2 regarding the

relationships between Mahler measure of polynomials and special values of the L-functions

of certain elliptic curves are some of such examples.

In a series of papers [5, 6], Bertin derived identities between the Mahler measure of a

polynomial defining an elliptic K3 surface and L(f, 3) for some associated newform f of

weight 3. In fact, Kontsevich and Zagier argued in [25] that, for a modular form f of weight

k ≥ 2, L(f,m) ∈ P̂ for all m ≥ k (as well as for the critical values 0 < m < k). If f is also

a Hecke eigenform and k is even with

L∗(f, s) =

∫ ∞
0

f(it)ts−1dt = −L∗(f, k − s) = −
∫ ∞

0

f(it)tk−s−1dt,

then L′(f, k/2) ∈ P̂ .

Periods can also be seen as the values of integrals of algebraically defined differential forms

over certain chains in algebraic varieties. If these forms and chains depend on parameters then

the integrals, considered as functions of the parameters, typically satisfy linear differential

equations with algebraic coefficients, such as Picard–Fuchs differential equations for elliptic

curves whose solutions describe the periods of the elliptic curves. Special values of the

solutions of these differential equations at algebraic arguments produce examples of periods.

For example, consider the family of elliptic curves over C given by the Legendre equation

7



Eλ : y2 = x(x− 1)(x− λ) with λ ∈ C. The period integrals of this family are

Ω1(λ) =

∫ 1

λ

dx√
x(x− 1)(x− λ)

, Ω2(λ) =

∫ ∞
1

dx√
x(x− 1)(x− λ)

.

They are examples of periods when λ ∈ Q \ {0, 1}. For example, if λ ∈ Q<1 is a positive

rational, then we have

2Ω1(λ) = 2

∫ 1

λ

dx√
x(x− 1)(x− λ)

= 2i

∫ 1

λ

dx√
x(1− x)(x− λ)

= i

∫∫
{λ≤x≤1}∩{v2x(1−x)(x−λ)≤1}

dxdv,

and therefore, this is a period according to Definition 0.1.2. The period integrals also satisfy

the Picard–Fuchs differential equation for Eλ

λ(λ− 1)Ω′′(λ) + (2λ− 1)Ω′(λ) +
1

4
Ω(λ) = 0.

Also,

Ω2(λ) =

∫ ∞
1

dx√
x(x− 1)(x− λ)

= πF

(
1

2
,
1

2
, 1;λ

)
,

where F (a, b, c;x) is the Euler–Gauss hypergeometric function. It is defined as

F (a, b, c;x) =
∞∑
n=0

(a)n(b)n
(c)nn!

xn (where (t)n := t(t+ 1) · · · (t+ n− 1), (0)n = 1) , (0.1.5)

for a complex variable x, and a, b, c ∈ C with c 6∈ Z≤0. The series converges absolutely for

all |x| < 1. It has a continuation as a single-valued function of x in the complex plane from

which a line joining 1 to ∞ is deleted. If a, b, c ∈ Q, and c 6∈ Z≤0, then the differential

equation satisfied by the Euler–Gauss hypergeometric function is also of Picard–Fuchs type.

The next theorem shows that, given certain conditions on a, b, c and x, F (a, b, c;x) admits

an integral representation [2].

Theorem 0.1.3 ([1], Theorem 2.2.1). If |x| < 1, a, b, c ∈ C∗ with c 6∈ Z≤0 and

min{Re(a),Re(b),Re(c− a)} > 0, then we can express F (a, b, c;x) as

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1(1− xy)−bdy, (0.1.6)

where Γ(·) denotes the Gamma function. Here it is understood that arg y = arg(1− y) = 0,

and (1− xy)−b has its principal value.
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A proof of Theorem 0.1.3 is provided in the Appendix for the sake of commpleteness.

Since the integral in (0.1.6) is analytic in C\ [1,∞), the above integral representation may be

viewed as the analytic continuation of F, as a function of x, outside the unit disc, but only

when Re(c) > Re(a) > 0 [1]. Given the conditions on a, b, c in the statement of Theorem

0.1.3, if we also consider Re(c−a−b) > 0, then the series in (0.1.5) also converges absolutely

when |x| = 1. In fact, as x approaches 1, the equation (0.1.6) yields ([1], Theorem 2.2.2)

F (a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (0.1.7)

Indeed, for a, b, c ∈ C∗ with c 6∈ Z≤0, and min{Re(a),Re(b),Re(c − a),Re(c − a − b)} > 0,

we have

lim
x→1−

F (a, b, c;x) = lim
x→1−

[
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1(1− xy)−bdy

]
,

where |x| < 1 and x tends to 1 in such a way that |1−x|
1−|x| remains bounded. Then, an

application of Abel’s Limit Theorem (see Theorem (A.2.1) in the Appendix) yields that the

above limiting value of the power series F (a, b, c;x) is in fact F (a, b, c; 1).

For x algebraic with |x| < 1, Zagier [25] showed that

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1(1− xy)−bdy ∈ 1

π
P ⊂ P̂ ,

when a, b, c ∈ Q∗ with c 6∈ Z≤0. For example, if we evaluate F (a, b, c;x) at a = b = 1
2
, c = 2,

and x = 1 using (0.1.7), we obtain F
(

1
2
, 1

2
, 2; 1

)
= 4

π
∈ P̂ . Rodriguez-Villegas [37] showed

that this type of hypergeometric functions is directly related to the Mahler measure of multi-

variable polynomials.

It would be interesting to obtain connections among Mahler measure of polynomials,

periods and special values of L-functions of elliptic curves or modular forms or characters.

Including these particular relationships Kontsevich and Zagier gave a more detailed and

thorough discussions on periods in [25].

0.2. Mahler measure over arbitrary tori

Let a = (a1, . . . , an) ∈ (R>0)n and Tna = Tna1,...,an := {(x1, . . . , xn) ∈ C∗ × C∗ × · · · × C∗ :

|x1| = a1, . . . , |xn| = an} = Ta1 × · · · × Tan , where Tai := {x ∈ C : |x| = ai}. Then the
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Mahler measure of a non-zero rational function P ∈ C (x1, . . . , xn) over Tna is defined by

ma1,...,an (P ) = ma1,...,an(P (x1, . . . , xn)) :=
1

(2πi)n

∫
Tna

log |P (x1, . . . , xn) |dx1

x1

· · · dxn
xn

.

The formula found by Cassaigne and Maillot in [34] can be interpreted as ma,b,c(x+y+z).

Some cases of the formulas due to Vandervelde [47] for the Mahler measure of a0xy+ a1x+

a2y + a3 may also be viewed in this context.

Lalín and Mittal [31] explored this definition to obtain relations between polynomials

mentioned in Boyd’s paper [17], namely

R−2(x, y) := (1 + x)(1 + y)(x+ y) + 2xy,

S2,−1(x, y) := y2 + 2xy − x3 + x,

over T2
q2,q and T2

q,q respectively for some values of q ∈ R>0.

Our goal is to investigate this definition for other polynomials, specifically for the par-

ticular family of polynomials due to Boyd Pk(x, y) = x+ 1
x

+ y + 1
y

+ k, where k ∈ R≥4. To

prove the theorems in this thesis we will follow a direction similar to the one used in [31].

The results we got here depend on the genus of the family of curves Ck : Pk(x, y) = 0. In

particular they involve L-functions of elliptic curves when the genus is 1, and the Bloch–

Wigner dilogarithm when it is 0. Rogers and Zudilin [40], Lalín [30], Lalín and Rogers [32]

showed formulas of the form m(Pk(x, y)) = rkL
′(EN(k), 0) for k = 1, 5, 8, 16, where rk ∈ Q∗.

We explore the k = 8 case over the torus T2
a,
√
a
. The calculations for k = 5, 16 in a similar

setting will follow from the previous case. In fact the calculations that we have provided for

the case k = 8 also hold for all k > 4.

Let a0 =
(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1 = 4.0991954 . . . . In this thesis, we explicitly

showed that for a ∈
[

1
a0
, a0

]
ma,
√
a(yP8(x, y)) = m(yP8(x, y)) = 4L′(EN(8), 0), (0.2.1)

where EN(8)(X, Y ) := Y 2 − X
(
X2 +

(
82

4
− 2
)
X + 1

)
is an elliptic curve of conductor

N(8) = 24. Notice that P8(x, y) = P8(y, x). Therefore, we have m(P8(x, y)) = m(P8(y, x))

from the definition of Mahler measure. However, it is easy to see that ma,
√
a(P8(x, y)) 6=

10



ma,
√
a(P8(y, x)) when a 6= 1. Indeed, we have

ma,
√
a(P8(x, y)) = m(P8(x, y))− 1

2
log a = m(P8(y, x))− 1

2
log a,

ma,
√
a(P8(y, x)) = m(P8(y, x))− log a = m(P8(x, y))− log a,

for certain values of a ∈ R>0. On the other hand, we have

ma,
√
a(yP8(x, y)) = m(yP8(x, y)) = m(yP8(y, x)) = ma,

√
a(yP8(y, x)).

Therefore, we obtain an equality between a symmetric case, where the Mahler measure is

considered over T2
1,1, and a non-symmetric case, where the domain of the integral is T2

a,
√
a

with a 6= 1.

The results we got are restricted to the conditions on a for the case k > 4 due to technical

difficulties involving the study of the integration path, such as if it is closed or not, etc. These

results are similar to some earlier formulas from [28] that involve a single varying parameter

and relate the Mahler measure of some polynomials to polylogarithms.

By changing variables, namely x 7→ ax and y 7→
√
ay, we get the same results in terms of

non-tempered polynomials (see Definition 1.1.5). The fact that we cannot apply K-theory

framework in this case makes it very interesting on its own.
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0.3. Main Theorems

Pk(x, y) = x + 1
x

+ y + 1
y

+ k is a family of Laurent polynomials in x and y with k ∈ C.

We restrict ourselves to those cases when k ∈ R≥4. In this thesis we prove two theorems

involving two particular cases when k = 4, corresponding to a genus 0 curve, and k = 8,

where we have a genus 1 curve.

We generalize some of the results numerically found by Boyd [17] concerning the connec-

tion between Mahler measure of Pk(x, y) = x+ 1
x

+y+ 1
y

+k and special values of L-functions

of elliptic curves associated to Pk, where x and y take values in an arbitrary torus. Our fam-

ily of polynomials is a tempered family (for more details see Definition 1.1.5 Section 1.1.3).

Therefore, Deninger’s [23] observation regarding the general conjectures of Bloch–Bĕılinson

about predicting the connection between the standard Mahler measures of some two-variable

polynomials P (x, y), when their zero loci define genus one curves, and the special values of

L-functions of the corresponding elliptic curves holds here.

We now state the theorems which we will prove in the next chapters, and then in later

sections we will predict and, in some cases, prove similar results for a more general case,

namely when k > 4.

Let a and b be positive real numbers. We consider the torus T2
a,b = {(x, y) ∈ C∗ × C∗ :

|x| = a, |y| = b}.

We denote the Bloch–Wigner dilogarithm by D(z), which is defined for z ∈ C as

D (z) = Im (Li2 (z) + i arg (1− z) log |z|) , where Li2 (z) = −
∫ z

0

log (1− v)

v
dv. (0.3.1)

Note that if z ∈ R>1 then D(z) is still well-defined. Indeed, the function Li2(z), extended

to C \ [1,∞), jumps by 2iπ log |z| as z crosses the cut. Thus the modified function Li2(z) +

i arg(1 − z) log |z| is continuous, where arg denotes the branch of argument lying between

−π and π. The Bloch–Wigner dilogarithm is continuous in C ∪ {∞}, with D(∞) = D(0) =

D(1) = 0. In fact, it is real-analytic in C \ {0, 1}.

Now we can state our first theorem.

Theorem 0.3.1. Let a and b be positive real numbers. If −1 ≤ (1+ab)(a−b)
2
√
ab(a+b)

≤ 1 and ab 6= 1,

we define sinα := (1+ab)(a−b)
2
√
ab(a+b)

with α ∈
[
−π

2
, 0
)
, when b > a, and sin β := (1+ab)(a−b)

2
√
ab(a+b)

with

β ∈
(
0, π

2

)
, when b < a. Then, for k = 4, the values of

Ra,b :=
1

2
[ma,b (P4(x,y)) + log b]

12



are given by the following table:

Condition 1 Condition 2 Extra conditions Values

b = a 1
π

(
2D
(
i
√
ab
)

−
(

log
√
ab
)

tan−1
(

2
√
ab

ab−1

))
−1 ≤ sinα < 0 1

π

(
D
(
i
√
abe−iα

)
+D

(
i
√
abeiα

)
b > a −

(
log
√
ab
)

tan−1
(

2
√
ab cosα
ab−1

))
ab 6= 1 (1+ab)(a−b)

2
√
ab(a+b)

< −1 0

0 ≤ sin β < 1 1
π

(
D
(
i
√
abe−iβ

)
+D

(
i
√
abeiβ

)
b < a −

(
log
√
ab
)

tan−1
(

2
√
ab cosβ
ab−1

))
(1+ab)(a−b)
2
√
ab(a+b)

≥ 1 0

b = a 2
π
D (i)

ab = 1 b > a 1
π

(
D

(
−e−2i cot−1

(√
b
a

))

+D

(
e

2i cot−1
(√

b
a

)))
b < a 1

π

(
D

(
−e−2i cot−1

(√
b
a

))

+D

(
e

2i cot−1
(√

b
a

)))
Table 0.3. Values of Ra,b

Recall that a0 =
(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1 = 4.0991954 . . . . We have the following

theorem:

Theorem 0.3.2. If k = 8 and 1
a0
≤ a ≤ a0 then

ma,
√
a (yP8 (x, y)) = m (yP8 (x, y)) . (0.3.2)
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Moreover,

ma,
√
a (P8 (x, y)) = m (P8 (x, y))− 1

2
log a = 4L′(EN(8), 0)− 1

2
log a, (0.3.3)

where

EN(8)(X, Y ) := Y 2 −X
(
X2 +

(
82

4
− 2

)
X + 1

)
is the Weierstrass form of an elliptic curve of conductor N(8) = 24.

In fact, it is enough to prove (0.3.2) in order to deduce Theorem 0.3.2.

Proof of (0.3.2) implies (0.3.3). In order to prove this implication we consider the equal-

ity

m (P8 (x, y)) = 4m (P2 (x, y)) , (0.3.4)

which was proven by Lalín and Rogers in [32] building on work of Kurokawa and Ochiai in

[27]. Later Rogers and Zudilin showed in [39] that

m (P2 (x, y)) = L′(EN(8), 0). (0.3.5)

Combining (0.3.4) and (0.3.5) we obtain

m(P8(x, y)) = 4m(P2(x, y)) = 4L′(EN(8), 0). (0.3.6)

Now, from the definition of Mahler measure we have

m(yP8(x, y)) =
1

(2πi)2

∫
T2

log |yP8 (x, y) |dx
x

dy

y

=
1

(2πi)2

∫∫
|x|=1,|y|=1

log |yP8 (x, y) |dx
x

dy

y

=
1

(2πi)2

∫∫
|x|=1,|y|=1

log |P8 (x, y) |dx
x

dy

y

= m(P8(x, y)), (0.3.7)
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where the penultimate step follows from the fact that log |y| = log 1 = 0 when (x, y) ∈ T2.

From the definition of Mahler measure over the torus T2
a,
√
a
we also have

ma,
√
a(yP8(x, y)) =

1

(2πi)2

∫
T2
a,
√
a

log |yP8 (x, y) |dx
x

dy

y

=
1

(2πi)2

∫∫
|x|=a,|y|=

√
a

log |yP8 (x, y) |dx
x

dy

y

=
1

(2πi)2

∫∫
|x|=a,|y|=

√
a

log |P8 (x, y) |dx
x

dy

y
+ log

(√
a
)

= ma,
√
a(P8(x, y)) +

1

2
log a, (0.3.8)

where again the penultimate equality follows from the fact that log |y| = log (
√
a) = 1

2
log a

when (x, y) ∈ T2
a,
√
a
, and 1

(2πi)2

∫∫
|x|=a,|y|=

√
a
dx
x
dy
y

= 1. Therefore, if we can show that, for
1
a0
≤ a ≤ a0,

ma,
√
a (yP8 (x, y)) = m (yP8 (x, y)) ,

then a combination of the equalities in (0.3.6), (0.3.7) and (0.3.8) yields

ma,
√
a (P8 (x, y)) = m (P8 (x, y))− 1

2
log a = 4L′(EN(8), 0)− 1

2
log a,

and thus proving (0.3.2) implies (0.3.3). �

Let

EN(k) : Y 2 = X3 +

(
k2

4
− 2

)
X2 +X,

where k 6= 0,±4. Rogers and Zudilin [40] showed that

m

(
x+

1

x
+ y +

1

y
+ 1

)
= L′(EN(1), 0).

Note that EN(16), EN(5), and

EN(1) : Y 2 = X3 − 7

4
X2 +X

are isogenous elliptic curves of conductor 15. Following the discussions in [32] we can ex-

plicitly describe these isogenies.

Let E : y2 = x(x2 + ax+ b) and E ′ : y′2 = x′(x′2− 2ax′+ (a2− 4b)) be two elliptic curves

(over C) with a2 − 4b 6= 0. There is a well-known isogeny of degree 2

ψ : E −→ E ′
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defined by

(x, y) 7−→


(
y2

x2
, y(b−x2)

x2

)
when (x, y) 6= (0, 0),

OE′ when (x, y) = (0, 0),

and ψ(OE) = OE′ , where OE and OE′ are the identity elements of the additive groups

(E(C),+) and (E ′(C),+), respectively. By using this we get the following isogenies [32]:

(1) ψ1,n : EN(2(n+ 1
n)) −→ EN(4n2), which is defined by

(X, Y ) 7−→
(
X(n2X + 1)

n2 +X
,−n

3Y (X2 + 2n2X + 1)

(n2 +X)2

)
,

(2) ψ2,n : EN(2(n+ 1
n)) 7−→ EN( 4

n2
) given by

(X, Y ) 7−→
(
X(n2 +X)

n2X + 1
,−Y (n2X2 + 2X + n2)

n(n2X + 1)2

)
.

Now if we take n = 1
2
, then (1) gives an isogeny ψ1, 1

2
: EN(5) −→ EN(1), which is defined

by

(X, Y ) 7−→
(
X(X + 4)

4X + 1
,−Y (2X2 +X + 2)

(4X + 1)2

)
.

From (2) we obtain an isogeny ψ2, 1
2
from EN(5) onto EN(16) given by

(X, Y ) 7−→
(
X(1 + 4X)

X + 4
,−8Y (X2 + 8X + 1)

(X + 4)2

)
.

We can construct an isogeny from EN(16) onto EN(1) by composing ψ1, 1
2
with the unique dual

isogeny of ψ2, 1
2
.

In her paper [30] Lalín showed that

m(P5(x, y))

6
= m(P1(x, y)) =

m(P16(x, y))

11
.

Therefore, we can follow a similar manipulation as in the proof of our theorem, for the case

k = 8, to obtain that, for b0 = 5 + 2
√

6 and c0 =
7−2
√

5+
√

(7−2
√

5)2−4

2
, we have

ma,
√
a (P16 (x, y)) = 11L′(EN(16), 0)− 1

2
log a, for a ∈

(
1

b0

, b0

)
,

and

ma,
√
a (P5 (x, y)) = 6L′(EN(5), 0)− 1

2
log a, for a ∈

(
1

c0

, c0

)
,

where EN(16) and EN(5) are isogenous elliptic curves of conductor N(16) = N(5) = 15.
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0.4. Structure of this Thesis

A remarkable breakthrough involving the Mahler measure of several variable polynomials

was obtained by Deninger [23], where he interpreted the Mahler measure of certain Laurent

polynomials P (x, y) as a regulator map r evaluated in a certain K-theory group at some

homology class. In other words, he showed that

m(P ) =
1

2π
r(ξ)([γ]),

where ξ is a certain element in an appropriate group in K-theory, and [γ] is an equivalence

class of paths (a homology class) in the curve P (x, y) = 0.

In Chapter 1 we describe this regulator map explicitly. In fact, we establish that the

Mahler measure is the integral of a certain differential form η, which corresponds to the

regulator map. The differential form η is closed in its domain of definition. For the case

k = 4, the curve P4 = 0 is of genus 0 and η is exact. The integral of η over a path is

then given by a version of the dilogarithm which gives rise to special values of Dirichlet

L-functions. In essence of this, we recall some properties of the Bloch–Wigner dilogarithm

and its relation with the closed differential form η. In the case k > 4, the genus is 1. But we

see that η is not exact here. In this case a theorem of Bloch [11] relates the regulator to the

elliptic dilogarithm, which is conjectured to yield special values of the associated L-function.

We then describe the framework connecting the Mahler measures of polynomials and the

values of L-functions of their associated elliptic curves using the elliptic regulator. We start

with the discussion of Newton polygons and tempered polynomials. These definitions are

necessary for some technical conditions coming from K-theory. We continue to describe

some properties of the elliptic dilogarithm by introducing the diamond operator, which is

necessary to evaluate the regulator. Later we state the theorem of Bloch [11] which relates

the elliptic dilogarithm with the elliptic regulator, and therefore, with the Mahler measure.

We close the chapter with a discussion on Mahler measure over an arbitrary torus and its

relationship to the regulator.

In Chapter 2 we prove Theorem 0.3.1, where we consider the polynomial P4(x, y) over

T2
a,b, for a, b ∈ R>0. Following the discussion in Chapter 1, we concentrate on expressing η as

an exact differential form to calculate the regulator in this case, and relate it to the Bloch–

Wigner dilogarithm. In order to do so, we use a change of variables to factorize P4(x, y) as
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a product of linear polynomials in two variables and a monomial. We also show that the

linear polynomials have the same Mahler measure by using another change of variables. This

change of variables leads to a change on the integration torus from T2
a,b to T2

c,d, where c, d can

be expressed as c =
√
ab and d =

√
b
a
.We do this because it is easier to express η in an exact

form when it is evaluated in linear polynomials. We state some results regarding the relation

between η and the Bloch–Wigner dilogarithm D that we need to deduce the theorem. Note

that the integral of an exact form over a path is determined completely by the endpoints

of that path (by Stokes’ theorem). Therefore, we calculate the endpoints of the integration

paths for different values of c and d. After obtaining the Mahler measures of those linear

polynomials using these endpoints, we end the chapter by concluding the proof of Theorem

0.3.1 by establishing a relation between these Mahler measures and ma,b(P4(x, y)).

In Chapter 3 we consider the case k > 4. The first part of Chapter 3 deals with the

proof of Theorem 0.3.2. As noted above, the differential form η is not exact in this case. In

favorable cases (when the integration path is closed), the integral of η can be computed by

means of the elliptic dilogarithm. This allows us to relate the Mahler measure of Pk over an

arbitrary torus to the standard Mahler measure of Pk. We first concentrate on calculating

the Mahler measure of P8 over T2
a,
√
a
with a ∈ R>0. We choose P8 because m(P8) is proven

to be related to L′(EN(8), 0) in this case [32, 39]. To achieve this we consider a birational

transformation φ between P8 and EN(8). In this context, we factorize yP8(x, y) in C(x)[y],

and argue that if a+ 1
a
< 6 then we can restrict the integral to only one of the well-defined

roots of yP8(x, y) in C(x). Next we determine the values of a such that the integration path

is closed. As the integral of η only depends on the homology class, we describe the homology

class of the integration path in H1(EN(8),Z) using the invariant holomorphic differential ω of

EN(8) and the birational transformation φ. This allows us to apply the theorem by Bloch to

evaluate the Mahler measure in terms of elliptic dilogarithm, and relate it with L′(EN(8), 0).

We then conclude our proof by evaluating the integral. In the next part of this chapter,

we describe some interesting results obtained by a similar calculation regarding the Mahler

measure of Pk over T2
a,b, when k > 4 and a, b ∈ R>0. We close the chapter with an explicit

calculation of m(P8) using the elliptic dilogarithm and the diamond operator, for the sake

of completeness.

18



In Chapter 4 we conclude this thesis with some comments on further questions related

to our results which can be pursued in the future.

The last chapter is an appendix where we include additional information on the homol-

ogy cycle mentioned in Chapter 3, which we believe provides a valuable perspective to the

discussion in that chapter in spite of not being strictly necessary in the proof. We also pro-

vide a statement of the Abel’s Limit Theorem, a proof of Theorem 0.1.3, and a derivation of

the relation between the (logarithmic) Mahler measure of an algebraic number and its Weil

height.
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Chapter 1

Prerequisites

We briefly review some necessary background in this chapter before proving the theorems

in the next ones.

1.1. The Bloch–Wigner dilogarithm and The Elliptic Regulator

In this section we first discuss the relationship between Mahler measure and dilogarithm

when k = 4, and later for the case k > 4, we describe how Mahler measure and the regulator

are related.

1.1.1. Jensen’s Formula and applications

We recall a special case of Jensen’s formula. Let z0 ∈ C. Then

1

2πi

∫
T1

log |z − z0|
dz

z
=


log |z0| |z0| ≥ 1,

0 |z0| ≤ 1.

Let C be a curve over C which defines a compact Riemann surface, and let C(C) be its

field of fractions. For f, g ∈ C(C)∗ we define

η (f, g) := log |f |d arg g − log |g|d arg f, (1.1.1)

where d arg x is defined by Im(dx
x

). Note that, η is a real C∞ differential 1-form on C \ S,

where S contains all the zeroes and poles of f and g. The following lemma consists of some

useful properties of η which we will be using in later sections.

Lemma 1.1.1. Let f, g, h, v ∈ C(C)∗ and a, b ∈ C∗. Then we have

(1) η(f, g) = −η(g, f), i.e. η is anti-symmetric,



(2) η(fg, hv) = η(f, h) + η(g, h) + η(f, v) + η(g, v),

(3) η(a, b) = 0,

(4) η is a closed differential form.

Proof. The equality in (1) holds because

η(f, g) = log |f |d arg g − log |g|d arg f = −(log |g|d arg f − log |f |d arg g) = −η(g, f).

By definition of η we have

η(fg, hv) = log |fg|d arg(hv)− log |hv|d arg(fg)

= (log |f |+ log |g|)(d arg h+ d arg v)− (log |h|+ log |v|)(d arg f + d arg g).

Expanding the last line gives the equality in (2).

As a, b are complex constants we have d arg a = d arg b = 0, and thus proving (3).

From the definition of η in (1.1.1) we have

dη(f, g) = Im (d log f ∧ d log g) = Im

(
df

f
∧ dg
g

)
.

But as C is a Riemann surface, it has complex dimension 1. On the other hand,

(d log f ∧ d log g) is a complex 2-form, and any complex 2-form of a Riemann surface is

0, i.e.

dη(f, g) = 0.

This implies that η is a closed form, and thus proving (4). �

Let P (x, y) be a Laurent polynomial in two variables. We can always multiply P (x,y) by

suitable power of y to get a polynomial in C(x)[y]. Therefore, we can assume that P (x, y) ∈

C(x)[y] is a polynomial of degree d in y, where d > 0. Then we can factorize P (x,y) over

C(x) to get

P (x, y) = P ∗ (x) (y − y1 (x)) (y − y2 (x)) · · · (y − yd (x)) ,

where P ∗ (x) ∈ C[x] and yj := yj (x) is an algebraic function of x for j ∈ {1, 2, . . . , d}.
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We apply Jensen’s formula with respect to the variable y in the standard Mahler measure

formula for P (x, y), and we obtain

m (P (x, y))−m (P ∗(x)) =
1

(2πi)2

∫
T2

log |P (x, y) |dx
x

dy

y
−m (P ∗(x)) (1.1.2)

=
1

(2πi)2

∫
T2

(
d∑
j=1

log |y − yj (x) |

)
dx

x

dy

y

=
1

2πi

(
d∑
j=1

∫
|x|=1,|yj(x)|≥1

log |yj (x) |dx
x

)

=− 1

2π

d∑
j=1

∫
|x|=1,|yj(x)|≥1

η (x, yj) , (1.1.3)

where η is defined by (1.1.1), and

η(x, yj) = log |x|d arg yj − log |yj|d arg x = i log |yj(x)|dx
x
.

Here we used the fact that log |x| = log 1 = 0 and dx
x

= d(log |x|+ i arg x), where we consider

arg(x) ∈ [−π, π).

Following the discussion in [37] we define H1(EN(k),Z)− to be the subgroup of elements

in H1(EN(k),Z) which change signs under complex conjugation. Also let H1(EN(k),Z)+ be

the subgroup of elements in H1(EN(k),Z) which are invariant under complex conjugation.

Therefore, we have

H1

(
EN(k),Z

)
= H1

(
EN(k),Z

)+ ⊕H1

(
EN(k),Z

)−
,

a direct sum of two free Z-modules, as it follows from their definitions that these two com-

ponents are mutually exclusive.

Remark 1.1.2. If we integrate η(x, y) over a path in H1(EN(k),Z)+, we will get 0. Indeed, the

path we are considering stays invariant under complex conjugation and η(x, y) = −η(x, y).

Therefore, we are interested in showing the path {|x| = 1, |yj(x)| ≥ 1} is closed, and a cycle

in H1(EN(k),Z)− rather than just in H1(EN(k),Z).

1.1.2. Bloch–Wigner dilogarithm and Mahler measure

Following the discussion in the introduction we know that C4 : P4 = 0 is a genus 0 curve.

There is a certain relation between η and D (defined in (0.3.1)) which we can use to calculate

the integral in (1.1.2) to obtain the Mahler measure in this case.
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Lemma 1.1.3. Let C be a curve over C which defines a compact Riemann surface. Then,

for x, 1− x ∈ C(C)∗, we have

η (x, 1− x) = dD (x) . (1.1.4)

Proof. Recall that

Li2(v) = −
∫ v

0

log(1− u)
du

u
, (1.1.5)

where we choose the branch of log(1− u) defined in C \ [1,∞) such that log(1− 0) = 0. We

will first prove (1.1.4) when C = P1(C), i.e. we will show that if C = P1(C) with parameter

t, i.e. C(P1(C)) = C(t), then

η (t, 1− t) = dD (t) ,

where t 6≡ 0, 1,∞.

We now identify P1(C) with C ∪ {∞}. For t, ε ∈ P1(C) \ {0, 1,∞}, we know

that
∫ t
ε
η(u, 1 − u) is path-independent. Indeed, it follows from Stokes’ theorem us-

ing the fact that η(t, 1 − t) is a closed C∞ differential 1-form on P1(C) \ T, where

T = {poles and zeros of t and 1− t in P1(C)} = {0, 1,∞}. Indeed, if γ1, γ2 are two paths

joining ε and t avoiding all points of singularity of η in P1(C) and the branch cut [1,∞),

then ∫
γ1

η(u, 1− u)−
∫
γ2

η(u, 1− u) =

∫
γ

η(u, 1− u) =

∫∫
Ω

dη(u, 1− u) = 0,

where γ = γ1 ∪ (−γ2) is a closed path passing through ε and t, and Ω be the region closed

by γ containing no singularities of η. In other words, we obtain∫
γ1

η(u, 1− u) =

∫
γ2

η(u, 1− u).

We restrict ε to (0, 1) and define

h(t) = lim
ε→0

∫ t

ε

η(u, 1− u),

where the integral is taken over a path connecting ε and t avoiding the point 0. Then, by

the definition of η we have

h(t) = lim
ε→0

∫ t

ε

log |u|d arg(1− u)− lim
ε→0

∫ t

ε

log |1− u|d arg(u),

24



where we are assuming that arg z ∈ [−π, π). We also have

log(1− u) = log |1− u|+ i arg(1− u),

du

u
= d log |u|+ id arg u. (1.1.6)

We substitute v = t in (1.1.5), and combine it with (1.1.6) to get that

Im(Li2(t)) = −
∫ t

0

arg(1− u)d log |u| −
∫ t

0

log |1− u|d arg u, (1.1.7)

where log(1− u) is defined in C \ [1,∞). As the value of the integral in h(t) is the same

for homologous paths, we choose a path which does not intersect the branch cut [1,∞) to

evaluate h(t) in terms of Im(Li2(t)), and therefore, in terms of D(t).

1

Cε
ltε

−|t| 0 ε

Ct

t

Figure 1.1. Integration path γtε

Let γtε be a curve which starts at ε and ends at t, defined as follows. γtε consists of three

components (see Figure 1.1):

(1) a semicircle
x
Cε of radius ε centered at 0, starting at ε and ending at −ε (we consider

this arc to avoid the pole of η(u, 1− u) at 0),

(2) a line
−→

ltε , starting from −ε and ending at −|t|,

(3) an arc
y
Ct of radius |t| centered at 0, which connects −|t| and t.

Note that arg u is constant on
−→

ltε , and therefore, on that line d arg u = 0 with arg(1−u) = 0.

Also, |u| is constant on
y
Ct and

x
Cε , which implies d log |u| = 0. In particular,

lim
ε→0

∫
γtε

arg(1− u)d log |u| = 0.
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On
x
Cε , we have ∣∣∣∣∫x

Cε

log |1− u|d arg u

∣∣∣∣ ≤ π log(1 + ε),

which goes to 0 as ε→ 0. Therefore, we get

Im(Li2(t)) = − lim
ε→0

∫
γtε

log |1− u|d arg u = h(t)− lim
ε→0

∫
γtε

log |u|d arg(1− u). (1.1.8)

But again, for ε close to 0, we have arg(1− u) = 0 on
−→

ltε and∣∣∣∣∫x
Cε

log |u|d arg(1− u)

∣∣∣∣ ≤ Kε log ε

(1− ε)2
,

where d arg(1− u) = Im
(
d(1−u)

1−u

)
and K ∈ R>2π is a constant which does not depend on ε.

This implies that

lim
ε→0

∫
γtε

log |u|d arg(1− u) =

∫
y
Ct

log |u|d arg(1− u) = arg(1− t) log |t|,

which combined with (1.1.8) and (0.3.1) gives

h(t) = lim
ε→0

∫ t

ε

η(u, 1− u) = Im(Li2(t)) + arg(1− t) log |t| = D(t).

In other words, when C = P1(C) we have η(t, 1 − t) = dD(t), where t, 1 − t belong to the

domain of definition of η.

For the general case, note that there is a one-to-one correspondence between C(C)∪{∞}

and {rational maps C → P1(C) defined over C}. More precisely, for x ∈ C(C)∗, there exists

a rational map τ : C −→ P1(C) defined by

P 7−→

 [x(P ), 1] if x is regular at P ,

[1, 0] if x has a pole at P ,

which induces an injection

τ ∗ : C(t) −→ C(C), τ ∗(f) = f ◦ τ,

where C(t) and C(C) are the function fields of P1(C) and C, respectively. Then, for f ≡ t,

we have t ◦ τ = x. Therefore, we have the following diagram:

C P1(C)

C ∪ {∞}

x

τ

D
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Let S be a set containing poles and zeros of x and 1 − x. Then restricting the map τ to

C \ S −→ P1(C) \ T we obtain (1.1.4), i.e.

η(x, 1− x) = η(t ◦ τ, (1− t) ◦ τ) = τ ∗η(t, 1− t) = τ ∗dD(t) = dD(t ◦ τ) = dD(x),

where T = {0, 1,∞}, and η(t, 1− t) = dD(t) is (1.1.4) when C = P1(C). �

Therefore, if we can write

η (x, yj) =
∑
k

ajkη (zjk , 1− zjk) =
∑
k

ajkdD(zjk), (1.1.9)

where zjk , (1− zjk) ∈ C(C)∗ are algebraic functions of x, and the sum is finite. Then, from

(1.1.3) we obtain

m (P (x, y))−m (P ∗ (x)) =− 1

2π

d∑
j=1

∫
|x|=1,|yj(x)|≥1

η (x, yj)

=− 1

2π

d∑
j=1

∫
|x|=1,|yj(x)|≥1

∑
k

ajkη (zjk , 1− zjk)

=− 1

2π

d∑
j=1

∫
|x|=1,|yj(x)|≥1

∑
k

ajkdD(zjk)

=− 1

2π

d∑
j=1

∑
k

ajkD (zjk) |∂{|x|=1,|yj(x)≥1}, (1.1.10)

where ∂{|x| = 1, |yj| ≥ 1} is the set of boundary points of {|x| = 1, |yj| ≥ 1}.

Remark 1.1.4. As mentioned in [15] and [48], we may have some extra terms of the form

η (c, z) in (1.1.9), where c is a constant complex number and z is some algebraic function.

But we can still reach a closed formula by integrating η (c, z) directly (i.e. by integrating

log |c|d arg z). Also if ν is a constant such that |ν| = 1, then we have η (ν, z) = log |ν|d arg z =

0.

Now we note down some relations and properties of the Bloch–Wigner dilogarithm D

(for more details see [51]) :

• Note that, for z ∈ C,

D (z̄) = −D (z) , (1.1.11)

which we will use frequently in the proof of Theorem 0.3.1. This property of D follows

from its definition, and shows that D(r) = 0 for all r ∈ R.
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• Five-term Relationship : For x, y ∈ C ∪ {∞}

D(x) +D(y) +D(1− xy) +D

(
1− x
1− xy

)
+D

(
1− y

1− xy

)
= 0,

where we recall the convention D(∞) = 0. This equality is obtained from a similar

relationship involving Li2(t).

• We can obtain the following relations from the “Five-term Relationship” :

(1) If we take y = 1
x
in the “Five-term Relationship”, we get

D

(
1

x

)
= −D(x).

(2) Evaluating the “Five-term Relationship” at y = 1 we obtain

D(1− x) = −D(x).

(3) If we take x = y in the “Five-term Relationship”, and use the above relations, we

get

2D(x) + 2D(−x) = D(x2).

• The Bloch–Wigner dilogarithm also satisfies

−2

∫ θ

0

log |2 sinu|du = D
(
e2iθ
)

=
∞∑
m=1

sin(2mθ)

m2
.

1.1.3. The Elliptic Regulator

We will now recall the definition of the regulator map on the secondK-group of an elliptic

curve E, given by Bloch and Bĕılinson. Then we will explain its relation with the elliptic

dilogarithm, and recover its relationship with Mahler measure.

Let F be a field. By a theorem of Matsumoto, the second K-group of F can be described

as

K2(F ) ∼= Λ2F×/{x⊗ (1− x) : x ∈ F, x 6= 0, 1}.

Given a Laurent polynomial P (x, y) =
∑

(i,j)∈Z2 aijx
iyj, let ∆(P ) be its Newton polygon,

which is the convex hull of the points in (i, j) ∈ Z2 such that the coefficient of xiyj is

non-zero in P (x, y). The Newton polygons ∆(Pk) for Pk(x, y) = x + 1
x

+ y + 1
y

+ k, are

convex lattice polygons with only one interior point ([37]). Indeed, if we consider the convex
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hull of the points (i, j) such that xiyj in Pk(x, y) has non-zero coefficient, we have the square

of vertices

(1, 0), (0,−1), (−1, 0), (0, 1),

with the sole interior point (0, 0) (see Figure 1.2). A one-variable polynomial can be as-

sociated for each side of the corresponding Newton Polygon ∆(P ), whose coefficients are

identified with the coefficients of P (x, y) associated to the points that lie on that side. Let

τ denote a side of ∆(P ). We parametrize a side clockwise around ∆ and in such a way

that τ(0), τ(1), . . . are the consecutive lattice points in τ. To every side we then associate a

one-variable polynomial

Pτ (u) =
∑
l≥0

aτ(l)u
l ∈ C[u],

where

aτ(l) = aiτ(l)jτ(l)

for τ(l) =
(
iτ(l), jτ(l)

)
∈ τ. For example, the Newton polygons ∆(Pk) for Pk(x, y) = x + 1

x
+

y + 1
y

+ k with k ∈ C have four vertices, namely

(1, 0), (0,−1), (−1, 0), (0, 1).

x axis

y axis

τ1

τ2τ3

τ4

O

Figure 1.2. Newton Polygon of Pk

Let the sides of the Newton polygon ∆(Pk) be τ1, τ2, τ3, and τ4 (see Figure 1.2). The

corresponding one-variable polynomials associated to the sides of the Newton polygon ∆(Pk)

are the same for every side, namely (1 + u), as each side τ contains only two points (the

vertices) such that coefficients of P4(x, y) associated to them are non-zero (see Table 1.1).

Note that the standard Mahler measure of (1 + u) is 0, i.e.

m(1 + u) = 0.
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Sides (τi) Corresponding Polynomials Points (τi(l)) Coefficients of Pk Pτi(u)

τ1(0) = (0, 1) 1

τ1 x+ y 1 + u

τ1(1) = (1, 0) 1

τ2(0) = (1, 0) 1

τ2 x+ 1
y

1 + u

τ2(1) = (0,−1) 1

τ3(0) = (0,−1) 1

τ3
1
x

+ 1
y

1 + u

τ3(1) = (−1, 0) 1

τ4(0) = (−1, 0) 1

τ4
1
x

+ y 1 + u

τ4(1) = (0, 1) 1

Table 1.1. Sides of Newton polygons ∆(Pk) and associated polynomials Pτi

We can similarly construct the Newton polygon ∆(Pk,a,b) of Pk,a,b(x, y) = ax+ 1
ax

+ by+

1
by

+ k, where k ∈ C, and a, b ∈ C∗ with |a| 6= |b|. ∆(Pk,a.b) is still a square with vertices

(1, 0), (0,−1), (−1, 0), and (0, 1), but the coefficients are different. Let the sides of ∆(Pk,a,b)

be τ 1, τ 2, τ 3, and τ 4.

The corresponding one-variable polynomials associated to the sides τ 1, τ 2, τ 3 and τ 4 of

the Newton polygon ∆(Pk,a,b) are b + au, a + u
b
, 1
b

+ u
a
and 1

a
+ bu, respectively (see Table

1.2). Notice that the standard Mahler measures of Pτ i are generally not all zero. Indeed, as

|a| 6= |b|, we have that at least one of the following is non-zero:

m(b+ au) = max{log |a|, log |b|}, m
(
a+

u

b

)
= max{− log |b|, log |a|},

m

(
1

b
+
u

a

)
= max{− log |a|,− log |b|}, m

(
1

a
+ bu

)
= max{log |b|,− log |a|}.

Now we have the following definition due to Rodriguez-Villegas (for more details see

[37]):
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Sides (τ i) Corresponding Polynomials Points (τ i(l)) Coefficients of Pk,a,b Pτ i(u)

τ 1(0) = (0, 1) b

τ 1 ax+ by b+ au

τ 1(1) = (1, 0) a

τ 2(0) = (1, 0) a

τ 2 ax+ 1
by

a+ u
b

τ 2(1) = (0,−1) 1
b

τ 3(0) = (0,−1) 1
b

τ 3 1
ax

+ 1
by

1
b

+ u
a

τ 3(1) = (−1, 0) 1
a

τ 4(0) = (−1, 0) 1
a

τ 4 1
ax

+ by 1
a

+ bu

τ 4(1) = (0, 1) b

Table 1.2. Sides of Newton polygons ∆(Pk,a,b) and associated polynomials Pτ i

Definition 1.1.5. P (x, y) is called tempered if the polynomials constructed from the sides

of ∆(P ) have Mahler measure zero.

For example, {Pk(x, y)}k∈C is a tempered family of polynomials, but {Pk,a,b(x, y)}k∈C is

a non-tempered family. We will see that this condition plays a role in understanding the

K-theory framework of the regulator.

For a field F with discrete valuation ν and maximal idealM, the tame symbol is given

by

(x, y)ν ≡ (−1)ν(x)ν(y)x
ν(y)

yν(x)
(modM)

(see [37]). Note that in particular, (x, y)ν = 1 if ν(x) = ν(y) = 0.

For a curve C over C which is a compact Riemann surface, its field of fractions is denoted

by C(C). A point P ∈ C(C) defines a valuation νP on C(C), which is determined by the

order of the rational functions at the point P ∈ C(C). We follow the notation in [37] to

denote the tame symbol given by νP as (·, ·)P . We also have the residue map, which is a

linear form determined by P,

ResP : H1(C \ {P},R)→ R
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(for more details see [37]).

Let ψ : U → C be a local chart of C with P ∈ U such that ψ(P ) = 0. We define γP

as the pre-image by ψ of a small circle in C centered at zero and oriented counterclockwise.

Therefore, γP is a closed path (oriented counterclockwise) in C(C) with P in its interior

region (the region bounded by the path). Then, for ξ ∈ H1(C \ {P},R), we have

ResP (ξ) =
1

2π
ξ([γP ]) ∈ R,

where [γP ] is the homology class of γP in H1(C \ {P},Z). In fact, since the construction is

local, ResP extends to a linear form mapping H1(C \ S,R) to R for any finite set S with

ResP is identically zero if P 6∈ S.

We also have the following lemma which relates the differential form η to the tame symbol.

Lemma 1.1.6 (see [37]). Let P ∈ C(C), x, y ∈ C(C)∗, and S ⊂ C(C) a finite set containing

poles and zeroes of x and y. Then

ResP (η(x, y)) = log |(x, y)P |.

The proof of this is an application of Jensen’s formula, and follows from properties of log

and η (Lemma 1.1.1). Note that, for a closed path γ in C \ S, the map

γ 7→
∫
γ

η(x,y)

only depends on the homology class [γ] ∈ H1(C \S,Z), and therefore determines an element

in H1(C \ S,R), say r̄(x, y). From (1.1.4) we also have η(x, 1− x) = 0 in H1(C \ S,R), i.e.∫
γ

η(x, 1− x) = 0 ∀ [γ] ∈ H1(C \ S,Z).

Given a finite set S ⊂ C we can define

K2,S(C) =
⋂
P 6∈S

kerλP ⊂ K2(C(C)),

where λP : K2(C(C)) → C∗ is the corresponding map of the tame symbol (·, ·)P (see [37]).

Now by the Lemma 1.1.6 and the discussion above we have the following commutative

diagram for every P ∈ S :

K2,S(C) H1(C \ S,R)

C∗ R

r̄

λP ResP

log |·|
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Finally, for an elliptic curve E over Q we can define a tame symbol corresponding to a

point T ∈ E(Q̄) as a map K2(Q(E))→ Q(T )∗. We also have an exact sequence

0→ K2(E)⊗Q→ K2(Q(E))⊗Q→
∐

T∈E(Q)

Q(T )∗ ×Q,

where the last arrow corresponds to the coproduct of the tame symbols (for more details see

[32]).

We will interpret H1(E,R) as the dual of the first homology group of E with coefficients

in Z, namely H1(E,Z). Let [γ] ∈ H1(E,Z). Now we can define the regulator map.

Definition 1.1.7. The regulator map of Bloch [12] and Bĕılinson [10] is given by

rE : K2(E)⊗Q → H1(E,R)

{x, y} →
{

[γ]→
∫
γ

η(x, y)

}
.

Remark 1.1.8. We note down some observations regarding the regulator map.

• Let E be the Néron model of the elliptic curve E. Then the regulator is actually defined

over K2(E). But from [11], we also have that K2(E)⊗Q is a subgroup of K2(E)⊗Q

determined by finitely many extra conditions.

• Note that the regulator map is trivial for the classes in H1(E(N(k)),Z)+. Therefore it

suffices to consider the regulator as a function on H1(EN(k),Z)−. In other words, we

consider an element in H1(EN(k),Z)− rather than in H1(E(N(k)),Z)+ while integrating

η, which is an alternative way of stating the reason given in Remark 1.1.2 in terms

of the regulator map.

Rodriguez-Villegas [37] proved that the condition of P (x,y) being tempered is equivalent

to the triviality of tame symbols in K-theory, thus giving us a way to produce elements in

K2,∅(E), where E is an elliptic curve over Q. We can therefore define a map

r̃ : K2,∅(E)→ R

by ϕ 7→ 1
2π
r̄(ϕ)(c0), where c0 ∈ H1(E,Z) is the cycle determined by the connected component

of E(R). Following a similar process we may obtain a formula like (1.1.16) for cases when

the polynomial is tempered.

Let H = {z ∈ C : Im(z) > 0} the complex upper-half plane. We will now concentrate

on the integral of η(x, y). Recall that if E/Q is an elliptic curve, then we have the following
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sequence of isomorphisms,

E(C)
∼→ C/(Z + τZ)

∼→ C×/qZ

T = (℘(s), ℘′(s)) → s mod Λτ → z = e2πis,

(1.1.12)

where ℘ is the Weierstrass function, Λτ is the lattice Z + τZ, τ ∈ H, and q = e2πiτ . In other

words, Uniformization Theorem implies that there exists a lattice Λ = ω1Z + ω2Z ⊂ C with
ω2

ω1
∈ C \ R (by swapping ω1 and ω2 if necessary we may assume that ω2

ω1
∈ H) such that,

(1) E(C) corresponds to the lattice Λ,

(2) τ = ω2

ω1
∈ H,

(3) Λ and Λτ are homothetic, i.e. Λ = ω1Λτ .

Therefore C/Λ is isomorphic to C/Λτ , and this isomorphism induces the first isomorphism

in (1.1.12).

Although we will not be using the elliptic dilogarithm and diamond operator explicitly in

our proofs, we will state their definitions and a theorem due to Bloch because we believe they

provide a valuable perspective to the discussion about Mahler measure of several variable

polynomials in general. We also include some additional calculations from [32] to obtain

values of the standard Mahler measure of Pk(x, y) = x+ 1
x

+ y + 1
y

+ k for k > 4 in terms of

elliptic dilogarithm in Section 3.6 for completion.

Now we recall the definition of the elliptic dilogarithm, due to Bloch [12].

Definition 1.1.9. The elliptic dilogarithm is a function on E(C) given as follows. For

T ∈ E(C) corresponding to z ∈ C×/qZ,

DE(T ) :=
∑
n∈Z

D(qnz), (1.1.13)

where D is the Bloch–Wigner dilogarithm defined by (0.3.1).

Let Z[E(C)] be the group of divisors on E, and let

Z[E(C)]− ∼= Z[E(C)]/{(T ) + (−T ) : T ∈ E(C)}. (1.1.14)

Let f, g ∈ C(E)×. We define the diamond operation by

� : Λ2C(E)× → Z[E(C)]−

(f) � (g) =
∑
i,j

minj(Pi −Qj),
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where

(f) =
∑
i

mi(Pi) and (g) =
∑
j

nj(Qj).

We have the following result.

Theorem 1.1.10. (Bloch [12]) The elliptic dilogarithm DE extends by linearity to a map

from Z[E(Q)]− to C. Let x, y ∈ Q(E) and {x, y} ∈ K2(E). Then

rE({x, y})[γ] = DE((x) � (y)),

where [γ] is a generator of H1(E,Z)−.

Remark 1.1.11. The result above also implies

DE((f) � (1− f)) = 0

for any f ∈ Q(E).

For two elements u, v ∈ Z[E(C)]−, we write

u ∼ v when DE(u) = DE(v).

In particular, Remark 1.1.11 implies that u ∼ v if

u− v =
∑

ci(xi) � (1− xi) for some xi ∈ C(E)×, ci ∈ Z. (1.1.15)

Deninger [23] was first to write a formula of the form

m(P ) =
1

2π
r({x, y})[γ], (1.1.16)

where r is the elliptic regulator corresponding to the polynomial P.

Rodriguez-Villegas was able to prove identities between two Mahler measures in [38] after

a thorough study of the properties of η(x, y) and elliptic dilogarithm.

1.2. Arbitrary Tori and Mahler measure

We follow an analysis similar to the one in [31] if the integration torus is arbitrary. We

continue to consider that P (x, y) is a Laurent polynomial and P ∗(x) ∈ C[x]. For simplicity

we take d = 2, where d is the degree of y in P (x, y).
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Let x = ax′ and y = by′. Then yj = yj(x) = by′j is an algebraic function of x for

j ∈ {1, 2}. We have

ma,b (P (x, y))−ma,b (P ∗(x)) =
1

(2πi)2

∫∫
|x|=a,|y|=b

log |P (x, y) |dx
x

dy

y
−ma,b (P ∗(x, y))

=
1

(2πi)2

∫∫
|x′|=|y′|=1

log |P (ax′, by′) |dx
′

x′
dy′

y′
−ma,b (P ∗(x))

=
1

(2πi)2

∫∫
|x′|=|y′|=1

(
2∑
j=1

log |by′ − yj (ax′) |

)
dx′

x′
dy′

y′

=
1

(2πi)2

∫∫
|x′|=|y′|=1

(
2∑
j=1

log

∣∣∣∣y′ − yj (ax′)

b

∣∣∣∣
)
dx′

x′
dy′

y′

+
2

(2πi)2

∫∫
|x′|=|y′|=1

(log b)
dx′

x′
dy′

y′

=2 log b+
1

2πi

(
2∑
j=1

∫
|x′|=1,|yj(ax′)|≥b

log

∣∣∣∣yj (ax′)

b

∣∣∣∣ dx′x′
)

=2 log b+
1

2πi

(
2∑
j=1

∫
|x′|=1,|y′j |≥1

log |y′j|
dx′

x′

)
, (1.2.1)

where the penultimate equality follows from Jensen’s formula and the fact that
∫
|z|=1

dz
z

=

2πi. Now using a similar derivation as in (1.1.3) we get

η(x′, y′j) = i log |y′j|
dx′

x′

for j = 1, 2. Then (1.2.1) becomes

ma,b (P (x, y))−ma,b (P ∗(x)) =2 log b− 1

2π

∫
|x′|=1,|y′1|≥1

η (x′, y′1)− 1

2π

∫
|x′|=1,|y′2|≥1

η (x′, y′2)

=2 log b− 1

2π

∫
|x|=a,|y1|≥b

η (x/a, y1/b)

− 1

2π

∫
|x|=a,|y2|≥b

η (x/a, y2/b) , (1.2.2)

where the penultimate step follows from Lemma 1.1.1. Each of the terms in the last line can

be further simplified using (2) of Lemma 1.1.1 as

− 1

2π

∫
|x|=a,|yj |≥b

η (x/a, yj/b) =− 1

2π

∫
|x|=a,|yi|≥b

(η (x, yj)− η (a, yi)− η (x, b))

=− log b− 1

2π

∫
|x|=a,|yj |≥b

(η (x, yj)− log (a) d arg yj) ,
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where
1

2π

∫
|x|=a,|yj |≥b

η(x, b) =
1

2π

∫
|x|=a,|yj |≥b

i log |b|dx
x

= − log b.

As mentioned in the beginning, if P (x, y) is tempered then we reduce to the classical case

to evaluate

− 1

2π

∫
|x|=a,|yj |≥b

η (x, yj) . (1.2.3)

If we can show that {|x| = a, |yj| ≥ b} is a closed path, which can be characterized as a cycle

in H1(E,Z)− (where E is the corresponding elliptic curve of P (x, y) = 0), the integration

becomes simpler due to Deninger [23].

Now for the term with d arg yj,

log a

2π

∫
|x|=a,|yj |≥b

d arg yj (1.2.4)

leads to a multiple of log a if {|x| = a, |yi| ≥ b} is a closed path.

If we have a genus 0 curve (such as C4 : P4(x, y) = 0) then, instead of proceeding as in the

direction above, we may be able to use Lemma 1.1.3 to relate the Bloch–Wigner dilogarithm

and η for evaluating the Mahler measure as in (1.1.10). The evaluation is much simpler in

this case.
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Chapter 2

Proof of Theorem 0.3.1

In this chapter our goal is to prove Theorem 0.3.1. The methods used to prove the

theorem are mostly inspired by those used in [22]. We start by considering the factorization

of P4(x, y) due to Boyd (see Section 2A in [17]) to obtain an equality as in (1.2.2). We adapt

the notation used in the proof of Theorem 12 in [22]. We substitute the change of variables

x 7→ w
z
and y 7→ wz in P4(x, y) =

(
x+ 1

x
+ y + 1

y
+ 4
)
to get

Q (w, z) = P4

(w
z
,wz

)
= 4+wz+

1

wz
+
w

z
+
z

w
=

1

wz
(1 + iw + iz + wz) (1− iw − iz + wz) .

(2.0.1)

Therefore we can concentrate on finding the Mahler measure of the new simpler polyno-

mial Q (w, z) for the tori T2
c,d = {(w, z) ∈ C∗ × C∗ : |w| = c, |z| = d} (where c, d ∈ R>0)

and later use the above change of variables to discover the values of P4(x, y) for the tori

T2
a,b = {(x, y) ∈ C∗ × C∗ : |x| = a, |y| = b}. From the change of variable we get that

c =
√
ab, d =

√
b

a
.

Now we have

mc,d (Q(w, z)) = mc,d

(
1

wz

)
+ 2mc,d (1 + iw + iz + wz) , (2.0.2)

because we can apply a further change of variables, namely z 7→ −z and w 7→ −w, to obtain

mc,d (1− iw − iz + wz) = mc,d (1 + iw + iz + wz) ,

since it does not alter the Mahler measure. Let Q1 (w, z) = 1 + iw + iz + wz. It remains to

evaluate mc,d

(
1
wz

)
and mc,d (Q1 (w, z)) to deduce Theorem 0.3.1.



2.1. Outline of the proof of Theorem 0.3.1

We recall Theorem 0.3.1:

Theorem 0.3.1. Let a and b be positive real numbers. If −1 ≤ (1+ab)(a−b)
2
√
ab(a+b)

≤ 1 and ab 6= 1,

we define sinα := (1+ab)(a−b)
2
√
ab(a+b)

with α ∈
[
−π

2
, 0
)
, when b > a, and sin β := (1+ab)(a−b)

2
√
ab(a+b)

with

β ∈
(
0, π

2

)
, when b < a. Then, for k = 4, the values of Ra,b := 1

2
[ma,b (P4(x,y)) + log b] are

given by the following table:

Condition 1 Condition 2 Extra conditions Values

b = a 1
π

(
2D
(
i
√
ab
)

−
(

log
√
ab
)

tan−1
(

2
√
ab

ab−1

))
−1 ≤ sinα < 0 1

π

(
D
(
i
√
abe−iα

)
+D

(
i
√
abeiα

)
b > a −

(
log
√
ab
)

tan−1
(

2
√
ab cosα
ab−1

))
ab 6= 1 (1+ab)(a−b)

2
√
ab(a+b)

< −1 0

0 ≤ sin β < 1 1
π

(
D
(
i
√
abe−iβ

)
+D

(
i
√
abeiβ

)
b < a −

(
log
√
ab
)

tan−1
(

2
√
ab cosβ
ab−1

))
(1+ab)(a−b)
2
√
ab(a+b)

≥ 1 0

b = a 2
π
D (i)

ab = 1 b > a 1
π

(
D

(
−e−2i cot−1

(√
b
a

))

+D

(
e

2i cot−1
(√

b
a

)))
b < a 1

π

(
D

(
−e−2i cot−1

(√
b
a

))

+D

(
e

2i cot−1
(√

b
a

)))
Table 2.1. Values of Ra,b
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Instead of a direct approach to deduce the theorem we start by finding the values of

mc,d(Q(w, z)) for different values of positive real numbers c and d.We can compute mc,d

(
1
wz

)
and mc,d(Q1(w, z)) separately, and add them via (2.0.2) to obtain the values of mc,d(Q(w, z)).

Though computation of the first term follows directly from the integral, we use the exactness

of η to evaluate the second term. In fact, following the discussion in Section 1.2 we can write

mc,d(Q1(w, z)) as

mc,d(Q1(w, z)) = − 1

2π

∫
|w|=c,|z1|≥d

(η (w, z1)− log (c) d arg z1) = − 1

2π

∫
|w|=c,|z1|≥d

η
(w
c
, z1

)
,

(2.1.1)

where

z1 := z1 (w) = −1 + iw

w + i

is a rational function of w, and the last equality in (2.1.1) is obtained by using (2) of Lemma

1.1.1.

Let w = ceiθ with θ ∈ [−π, π). Our first goal in this case is to determine the values of θ,

c and d such that

|w| = c⇒ |z1| ≥ d. (2.1.2)

Next we want to express η(w, z1) in terms of an exact differential form by writing it as a

sum of η(uj, 1 − uj), where uj are algebraic functions of w, and apply Lemma 1.1.3 to get

the required values. For the integral

1

2π

∫
|w|=c,|z1|≥d

log (c) d arg z1,

we propose a simplification of the term d arg z1 in terms of c and θ, and use the obtained

values of θ satisfying (2.1.2) to evaluate the integral. It only remains to deduce a relation

between ma,b(P4(x, y)) and mc,d(Q(w, z)) via the change of variables x 7→ w
z
and y 7→ wz,

and thus concluding the proof of Theorem 0.3.1.

2.2. Proof of Theorem 0.3.1

We prove Theorem 0.3.1 as an application of the following results.

Let w = cw′ where w′ = eiθ for θ ∈ [−π, π).

Proposition 2.2.1. For c, d ∈ R>0, we have

mc,d

(
1

wz

)
= − log |cd|.
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Lemma 2.2.2. If c, d are positive real numbers, then the condition |z1(w)| ≥ d can be

rewritten as:

(1) −1 ≤ sin θ ≤ 1+c2

2c
1−d2
1+d2

, when c 6= 1,

(2)
∣∣cot

(
2θ+π

4

)∣∣ ≥ d, when c = 1.

Lemma 2.2.3. For c ∈ R>0, we can decompose η
(
w
c
, z1

)
= η(w′, z1) as

η(w′, z1) = η (−icw′, 1− (−icw′))− η (icw′, 1− icw′)− η
(
c,

1 + icw′

1− icw′

)
.

Therefore, using Lemma 1.1.3 we can rewrite η(w′, z1) as

η(w′, z1) = dD (−icw′)− dD (icw′)− η
(
c,

1 + icw′

1− icw′

)
,

where D is the Bloch–Wigner dilogarithm given in (0.3.1) as

D (z) = Im (Li2 (z) + i arg (1− z) log |z|) ,

with z ∈ C.

Lemma 2.2.4. Let ψ = θ + π
2
. Then, for c ∈ R>0 and θ ∈ [−π, π) we have

d arg

(
1 + icw′

1− icw′

)
=

2 (c−1 − c) cosψ

(c−1 − c)2 + 4 sin2 ψ
dψ.

Proposition 2.2.5. If
∣∣∣1+c2

2c
1−d2
1+d2

∣∣∣ ≤ 1, we define τ ∈
[
−π

2
, π

2

]
such that sin τ = 1+c2

2c
1−d2
1+d2

.

Then, for c, d ∈ R>0 and c 6= 1, we have

(1) if
∣∣∣1+c2

2c
1−d2
1+d2

∣∣∣ > 1, then mc,d(Q1(w, z)) = 0,

(2) if
∣∣∣1+c2

2c
1−d2
1+d2

∣∣∣ ≤ 1, then

mc,d(Q1(w, z)) =
1

π

(
D(ice−iτ ) +D(iceiτ )− (log c) tan−1

(
2 cos τ

c− c−1

))
. (2.2.1)

Remark 2.2.6. Note that, if 1+c2

2c
1−d2
1+d2

= ±1, then τ = ±π
2
, respectively. Now, replacing this

value in (2.2.1) with the fact that D(R) = {0} (see (1.1.11)) we get that mc,d(Q1(w, z)) = 0.

Moreover, α and β, defined in the statement of Theorem 0.3.1, are nothing but τ = α when

τ ∈
[
−π

2
, 0
)
, and τ = β when τ ∈

(
0, π

2

)
.

Proposition 2.2.7. If c = 1 and d ∈ R>0, then

mc,d(Q1(w, z)) =
1

π

(
D
(
−e−2i cot−1 d

)
+D

(
e2i cot−1 d

))
.
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Lemma 2.2.8. The change of variables

x 7→ w

z
and y 7→ wz

implies that

mc,d(Q(w, z)) = ma,b(P4(x, y)).

Proof of Theorem 0.3.1: The proofs of Propositions 2.2.5 and 2.2.7 follow from Lem-

mas 2.2.2, 2.2.3 and 2.2.4. We conclude the proof of Theorem 0.3.1 by combining the

results in Propositions 2.2.1, 2.2.5 and 2.2.7 with the relation in (2.0.2) and the fact that

mc,d(Q(w, z)) = ma,b(P4(x, y)), which can be obtained from Lemma 2.2.8. Note that the

change of variables establishes the following relations among a, b, c and d:

c =
√
ab, d =

√
b

a
, a =

c

d
and b = cd. (2.2.2)

We replace the above values of c, d in the formulas of mc,d(Q(w, z)), obtained from Proposi-

tions 2.2.5 and 2.2.7, to deduce the list of values in Table 2.1. �

The rest of this chapter deals with the proofs of the propositions and lemmas mentioned

above.

2.3. Evaluation of mc,d

(
1
wz

)
We start by evaluating mc,d

(
1
wz

)
.

Proof of Proposition 2.2.1: For c, d ∈ R>0, we have

mc,d

(
1

wz

)
=

1

(2πi)2

∫
|w|=c

∫
|z|=d

log

∣∣∣∣ 1

wz

∣∣∣∣ dww dz

z
= − log |cd|. (2.3.1)

�

Next we consider the main term mc,d (Q1 (w, z)).

2.4. Evaluation of mc,d (Q1(w, z))

For simplicity we have considered w = cw′ with |w′| = 1. Now Q1 (w, z) is a non-zero

polynomial of degree 1 in z. Recall that z1 = z1 (w) = −1+iw
w+i

, a rational function of w, is
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the solution of Q1 (w, z). Let w = ceiθ with −π ≤ θ < π. To evaluate mc,d (Q1 (w, z)) we use

(1.2.2) to get

mc,d (Q1 (w, z)) = − 1

2π

∫
|w|=c,|z1|≥d

η
(w
c
, z1

)
. (2.4.1)

Our goal is to rewrite η
(
w
c
, z1

)
in a similar manner given in (1.1.9), and obtain an expression

of the form (1.1.10) to evaluate mc,d (Q1 (w, z)) . To begin with, we need to find all the

elements of ∂{|w| = c, |z1| ≥ d}, the set of boundary points of {|w| = c, |z1| ≥ d}. Note that

the set of values of w at the endpoints of the intervals of θ such that |z1(w)| ≥ d is in fact

the set ∂{|w| = c, |z1| ≥ d}.

Proof of Lemma 2.2.2: We have

|z1(w)| ≥ d⇔
∣∣∣∣1 + iw

w + i

∣∣∣∣ ≥ d⇔
∣∣∣∣1 + iw

1− iw

∣∣∣∣ ≥ d. (2.4.2)

The denominator |1− iw| is a non-negative real number. We want to consider distinctly the

cases when it is always positive and when it can be zero. In order to do so we substitute

w = ceiθ in |1− iw| and square it to get

|1− iw|2 = (1 + c sin θ)2 + (c cos θ)2 = 1 + 2c sin θ + c2.

Now the term 1 + 2c sin θ + c2 is 0 only when c = 1 and sin θ = −1. Therefore, we consider

the cases c 6= 1 and c = 1 separately below.

(1) c 6= 1: We rewrite (2.4.2) by substituting w = ceiθ and taking squares on both sides

to obtain∣∣∣∣1 + ic (cos θ + i sin θ)

1− ic (cos θ + i sin θ)

∣∣∣∣2 ≥ d2 ⇔ (1− c sin θ)2 + (c cos θ)2

(1 + c sin θ)2 + (c cos θ)2 ≥ d2

⇔ 1− 2c sin θ + c2

1 + 2c sin θ + c2
≥ d2

⇔ 1− 2c sin θ + c2 ≥ d2
(
1 + 2c sin θ + c2

)
⇔ 2c sin θ

(
1 + d2

)
≤
(
1− d2

) (
1 + c2

)
(2.4.3)

where we have assumed that c 6= 1. Therefore, inequality (2.4.3) gives us a restriction

on θ for the condition |z1 (w) | ≥ d, namely

− 1 ≤ sin θ ≤ 1 + c2

2c

1− d2

1 + d2
. (2.4.4)
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(2) c = 1: We have w = w′ = eiθ with θ ∈ [−π, π). Then the inequality |z1(w)| ≥ d

becomes

|z1 (w) | =
∣∣∣∣1 + iw

w + i

∣∣∣∣ ≥ d⇔
∣∣∣∣1 + iw

w + i

∣∣∣∣ =

∣∣∣∣1 + iw

1− iw

∣∣∣∣ =

∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ ≥ d. (2.4.5)

�

In order to use the exactness of η to compute the integral in 2.4.1, we now prove Lemma

2.2.3.

Proof of Lemma 2.2.3: Using properties of η in Lemma 1.1.1 we can decompose

η(w′, z1) as

η(w′, z1) = η

(
w′,

1 + icw′

1− icw′

)
= η (w′, 1 + icw′)− η (w′, 1− icw′)

= η (−icw′, 1− (−icw′))− η (−ic, 1 + icw′)− η (icw′, 1− icw′) + η (ic, 1− icw′)

= η (−icw′, 1− (−icw′))− η (icw′, 1− icw′)− η
(
c,

1 + icw′

1− icw′

)
− η

(
i,

1 + icw′

1− icw′

)
− η (−1, 1 + icw′)

= η (−icw′, 1− (−icw′))− η (icw′, 1− icw′)− η
(
c,

1 + icw′

1− icw′

)
= dD (−icw′)− dD (icw′)− η

(
c,

1 + icw′

1− icw′

)
, (2.4.6)

where the penultimate equality follows from Remark 1.1.4, because i and −1 are 4th and

2nd roots of unity respectively. �

We replace the decomposition of η (w′, z1) given by (2.4.6) in

mc,d (Q1 (w, z)) = − 1

2π

∫
|cw′|=c,|z1|≥d

η (w′, z1)

to get

mc,d (Q1 (w, z)) =− 1

2π

∫
|w′|=1,|z1|≥d

(
dD (−icw′)− dD (icw′)− η

(
c,

1 + icw′

1− icw′

))
=− 1

2π
(D (−icw′)−D (icw′)) |∂{|w′|=1,|z1|≥d} +

log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
,

(2.4.7)

where ∂{|w′| = 1, |z1| ≥ d} is the set of boundary points of {|w′| = 1, |z1| ≥ d}.
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2.4.1. Simplification of d arg
(

1+icw′

1−icw′
)

In this section, we will deal with the simplification of the last term in (2.4.7).

Proof of Lemma 2.2.4: We know that d arg z = Im
(
dz
z

)
. Then

d arg

(
1 + icw′

1− icw′

)
= d arg (1 + icw′)− d arg (1− icw′) = Im

(
icdw′

1 + icw′
+

icdw′

1− icw′

)
= Im

(
cdw̃

1 + cw̃
+

cdw̃

1− cw̃

)
,

where w̃ = iw′. Let w̃ = eiψ, i.e. ψ = θ + π
2
. Then

Im

(
cdw̃

1 + cw̃
+

cdw̃

1− cw̃

)
= Im

(
iceiψdψ

1 + ceiψ
+
iceiψdψ

1− ceiψ

)
= Im

(
i

(
ceiψdψ

1 + ceiψ
+

ceiψdψ

1− ceiψ

))
= Re

(
ceiψdψ

1 + ceiψ
+

ceiψdψ

1− ceiψ

)
= Re

(
2ceiψ

1− c2e2iψ
dψ

)
=2 Re

(
1

c−1e−iψ − ceiψ
dψ

)
. (2.4.8)

We can simplify the denominator of the last expression as

c−1e−iψ − ceiψ =
(
c−1 − c

)
cosψ − i

(
c−1 + c

)
sinψ.

Therefore (2.4.8) becomes

2 Re

(
1

c−1e−iψ − ceiψ
dψ

)
=2 Re

(
1

(c−1 − c) cosψ − i (c−1 + c) sinψ
dψ

)
=2.

1

2

(
1

(c−1 − c) cosψ − i(c−1 + c) sinψ

+
1

(c−1 − c) cosψ + i (c−1 + c) sinψ

)
dψ

=
2 (c−1 − c) cosψ

(c−1 − c)2 cos2 ψ + (c−1 + c)2 sin2 ψ
dψ

=
2 (c−1 − c) cosψ

(c−1 − c)2 + 4 sin2 ψ
dψ. (2.4.9)

�
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2.4.2. Values of mc,d(Q1(w, z)) when c 6= 1

Proof of Proposition 2.2.5: To evaluate mc,d(Q1(w, z)), when c 6= 1, using (2.4.7)

we now consider several cases depending on whether d = 1, d > 1, or d < 1.

Note that, to prove (1) we need to consider only d > 1 and d < 1, because the case d = 1

implies 1+c2

2c
1−d2
1+d2

= 0. Therefore, we have the following cases:

d > 1: If d > 1, then we have 1− d2 < 0. Therefore, the given condition can be written

as ∣∣∣∣1 + c2

2c

1− d2

1 + d2

∣∣∣∣ > 1⇒ 1 + c2

2c

1− d2

1 + d2
< −1.

From (1) of Lemma 2.2.2 we therefore obtain{
θ : −1 ≤ sin θ ≤ 1 + c2

2c

1− d2

1 + d2

}
= ∅.

In other words, the integration path is empty, i.e. {|w| = c, |z1(w)| geqd} = ∅, with

w = ceiθ. This information applied to (2.4.7) concludes

mc,d (Q1 (w, z)) = 0.

d < 1: In this case we have 1− d2 < 0. Therefore, the interval of values of θ satisfying∣∣∣∣1 + c2

2c

1− d2

1 + d2

∣∣∣∣ > 1, i.e.
1 + c2

2c

1− d2

1 + d2
> 1

is {
θ : −1 ≤ sin θ ≤ 1 ≤ 1 + c2

2c

1− d2

1 + d2

}
= [−π, π),

where w
c

= w′ = eiθ. In other words, we have

|w′| = 1⇒ |z1(w)| ≥ d.

Now, we conclude our proof of (1) by proving the following proposition.

Proposition 2.4.1. If the inequality considered above is satisfied, then,

mc,d (Q1(w, z)) =− 1

2π

∫
|w′|=1,|z1|≥d

η(w′, z1)

=− 1

2π

∫
|w′|=1

η(w′, z1)

= 0.
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Proof. We start by expanding (the integrand in) mc,d (Q1 (w, z)) (see (2.4.1)) in

terms of “log”.

Let z1 (cw′) = 1+icw′

1−icw′ , a rational function in w = cw′ where w′ = eiθ with −π ≤ θ < π.

Then we have

mc,d (Q1(w, z)) =
1

(2πi)2

∫∫
|w′|=1,|z|=d

log |z − z1(cw′)|dw
′

w′
dz′

z′

=
1

2πi

∫
|w′|=1,|z1(cw′)|≥d

log

∣∣∣∣1 + icw′

1− icw′

∣∣∣∣ dw′w′

=
1

2π

∫ π

−π
log

∣∣∣∣1 + iceiθ

1− iceiθ

∣∣∣∣ dθ
=

1

2π

[∫ 0

−π
log

∣∣∣∣1 + iceiθ

1− iceiθ

∣∣∣∣ dθ]+
1

2π

[∫ π

0

log

∣∣∣∣1 + iceiθ

1− iceiθ

∣∣∣∣ dθ] , (2.4.10)

where we used the fact that |w′| = 1⇒ |z1| ≥ d in the third step. We use two changes

of variables, namely θ + π
2
7→ δ and θ − π

2
7→ τ for the first and second integral in

(2.4.10) respectively, and we obtain

mc,d (Q1(w, z)) =
1

2π

[∫ π
2

−π
2

log

∣∣∣∣1 + ceiδ

1− ceiδ

∣∣∣∣ dδ
]

+
1

2π

[∫ π
2

−π
2

log

∣∣∣∣1− ceiτ1 + ceiτ

∣∣∣∣ dτ
]

= 0.

�

Now we concentrate on proving (2). As mentioned in the beginning of this proof, we will

study the cases d < 1, d = 1, and d > 1 separately.

Case 1: If d = 1, then 1− d2 = 0. By (2.4.4), we have −1 ≤ sin θ ≤ 0. Therefore,

when − π ≤ θ ≤ 0, we have |z1 (w) | ≥ d.

Thus we should integrate (2.4.6) between w′|θ=−π = e−iπ = −1 and w′|θ=0 = ei0 = 1.

In other words, we have ∂{|w| = c, |z1| ≥ 1} = ∂{|w′| = 1, |z1| ≥ 1} = {−1,1}. As

the values of the integrals with integrands of the form dD (x) only depend on the
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endpoints, from (2.4.7) we have

mc,d (Q1(w, z)) =− 1

2π
(D(−icw′)−D(icw′)) |1−1

+
log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=− 1

2π
(D(−ic)−D(ic)−D(ic) +D(−ic))

+
log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=− 1

2π
(−4D(ic)) +

log c

2π

∫ π
2

−π
2

2(c−1 − c) cosψ

(c−1 − c)2 + 4 sin2 ψ
dψ (2.4.11)

where the last step follows from (1.1.11) and Lemma 16 of [22] which states the

following result.

Lemma 2.4.2. If R ∈ R>0 and υ = eiθ with θ ∈ [−π, π) then we have∫ i

−i
d arg

(
1 +Rυ

1−Rυ

)
= −2 tan−1

(
2

R−R−1

)
.

Now we use the change of variables sinψ 7→ t in (2.4.11), and in the following step we

consider another change of variable 2t
c−c−1 7→ u to obtain

mc,d (Q1(w, z)) =− 1

2π
(−4D(ic)) +

log c

2π

∫ 1

−1

2(c−1 − c)
(c−1 − c)2 + 4t2

dt

=− 1

2π
(−4D(ic))− log c

2π

∫ 2
c−c−1

− 2
c−c−1

du

1 + u2

=− 1

2π
(−4D(ic))− log c

π
tan−1

(
2

c− c−1

)
=

1

π

(
2D(ic)− (log c) tan−1

(
2

c− c−1

))
, (2.4.12)

Case 2: We now consider d > 1. From (2.4.4) we have

1 + c2

2c
≥ 1 + d2

d2 − 1
⇔ 0 ≥ 1 + c2

2c

1− d2

1 + d2
≥ −1. (2.4.13)

Recall the definition of α given in the statement of Theorem 0.3.1 as sinα := 1+c2

2c
1−d2
1−d2

with −π
2
≤ α < 0.

Therefore, when −1 ≤ sin θ ≤ sinα, we have |z1 (w) | ≥ d, i.e.

when − π − α ≤ θ ≤ α < 0, we have |z1(w)| ≥ d
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where w = ceiθ. A similar reasoning as in Case 1 implies that we have to integrate

between w′|θ=−π−α = ei(−π−α) = −e−iα and w′|θ=α = eiα, i.e. the set of boundary

points ∂{|w| = c, |z1| ≥ d} = ∂{|w′| = 1, |z1| ≥ d} = {−e−iα, eiα}. Therefore, from

(2.4.7) we have

mc,d (Q1(w, z)) =− 1

2π
(D(−icw′)−D(icw′)) |eiα−e−iα

+
log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=− 1

2π

(
D(−iceiα)−D(iceiα)−D(ice−iα) +D(−ice−iα)

)
+

log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=− 1

2π

(
−2D(ice−iα)− 2D(iceiα)

)
+

log c

2π

∫ π
2

+α

−(π2 +α)

2 (c−1 − c) cosψ

(c−1 − c)2 + 4 sin2 ψ
dψ

=
1

π

(
D(ice−iα) +D(iceiα)

)
− log c

π
tan−1

(
2 cosα

c− c−1

)
,

where the third step is obtained by using the change of variable ψ = θ + π
2
and a

similar calculation to (2.4.12). So we get, in this particular case,

mc,d (Q1 (w, z)) =
1

π

(
D
(
ice−iα

)
+D

(
iceiα

)
− (log c) tan−1

(
2 cosα

c− c−1

))
. (2.4.14)

Case 3: The last case is when d < 1. Let,

0 <
1 + c2

2c
<

1 + d2

1− d2
⇔ 1 + c2

2c

1− d2

1 + d2
< 1.

Recall the definition of β given in the statement of Theorem 0.3.1 as sin β := 1+c2

2c
1−d2
1−d2

with 0 < β < π
2
. Therefore, when −1 ≤ sin θ ≤ sin β, we have |z1 (w) | ≥ d, i.e.

when θ ∈ [−π, β]
⋃

[π − β, π], we have |z1(w)| ≥ d,

where w
c

= w′ = eiθ. So, we have to integrate between

{w′|θ=−π = e−iπ and w′|θ=β = eiβ} and {w′|θ=π−β = ei(π−β) and w′|θ=π = eiπ}. This
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implies that ∂{|w| = c, |z1| ≥ d} = ∂{|w′| = 1, |z1| ≥ d} = {−e−i(π−β), eiβ, eiπ}, as

eiπ = e−iπ. Therefore, following the discussion in 2.4, we can rewrite (2.4.7) as

mc,d (Q1(w, z)) =− 1

2π
(D(−icw′)−D(icw′)) |eiβe−iπ

− 1

2π
(D(−icw′)−D(icw′)) |eiπei(π−β)

+
log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=− 1

2π
(D(−icw′)−D(icw′)) |eiβ−e−iβ

+
log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=

1

π

(
D(ice−iβ) +D(iceiβ)

)
+

log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
, (2.4.15)

where the penultimate step holds because eiπ = e−iπ, and the last step follows from

(1.1.11). Now we will calculate the remaining integral in (2.4.15), namely

log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=

log c

2π

∫ β

−π
d arg

(
1 + iceiθ

1− iceiθ

)
+

log c

2π

∫ π

π−β
d arg

(
1 + iceiθ

1− iceiθ

)
. (2.4.16)

We use the change of variable θ − 2π 7→ τ for the second integral in (2.4.16) to get

log c

2π

∫
|w′|=1,|z1|≥d

d arg

(
1 + icw′

1− icw′

)
=

log c

2π

∫ β

−π
d arg

(
1 + iceiθ

1− iceiθ

)
+

log c

2π

∫ −π
−π−β

d arg

(
1 + iceiτ

1− iceiτ

)
=

log c

2π

∫ β

−π−β
d arg

(
1 + iceiθ

1− iceiθ

)
=

log c

2π

∫ π
2

+β

−π
2
−β

2 (c−1 − c) cos γ

(c−1 − c)2 + 4 sin2 γ
dγ

=− log c

π

(
tan−1

(
2 cos β

c− c−1

))
, (2.4.17)

where we obtain the penultimate line using a similar calculation to the one in (2.4.11)

with a change of variable θ + π
2
7→ γ. From (2.4.15) and (2.4.17) we get, in this
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particular case,

mc,d (Q1(w, z)) =
1

π

(
D(ice−iβ) +D(iceiβ)− (log c) tan−1

(
2 cos β

c− c−1

))
. (2.4.18)

Combining (2.4.12), (2.4.14), and (2.4.18) with Remark 2.2.6 conclude the proof of Proposi-

tion 2.2.5. �

Next we will describe the case when c = 1, and deduce Proposition (2.2.7).

2.4.3. Values of mc,d (Q1(w, z)) when c = 1

When c = 1 we have w = eiθ and z1 = z1 (w) = −1+iw
w+i

= −1+ieiθ

i+eiθ
. We already obtained

in (2.4.5) that if c = 1, then

|z1 (w) | =
∣∣∣∣1 + iw

w + i

∣∣∣∣ ≥ d⇔
∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ ≥ d.

Proof of Proposition 2.2.7: We now consider again several cases regarding the val-

ues of d as before.

Case 1: d > 1

To find the interval(s) of θ such that |z1| ≥ d we first look for solutions of
∣∣cot

(
2θ+π

4

)∣∣ =

d for θ ∈ [−π, π):

∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ = d⇔ cot

(
2θ + π

4

)
= ±d

⇔ 2θ + π

4
= cot−1 (±d) = ± cot−1 d

⇔ θ =
±4 cot−1 d− π

2
= ±2 cot−1 d− π

2
. (2.4.19)

Note that d > 1 implies that we are considering the case when 0 ≤ cot−1(d) < π
4
with

θ ∈ [−π, π). Therefore, if d < 1, then

∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ ≥ d⇔ −
(

2 cot−1 d+
π

2

)
≤ θ ≤

(
2 cot−1 d− π

2

)
,
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which implies ∂{|w| = 1, |z1| ≥ d} =
{
−e−i(2 cot−1 d+π

2 ), ei(2 cot−1 d−π
2 )
}
, Now using

this restriction on θ and the fact that η
(
1, 1+iw

1−iw

)
= 0 in (2.4.7), we have

m1,d (Q1(w, z)) =− 1

2π

∫
|w|=1,|z1|≥d

(dD(−iw)− dD(iw))

=− 1

2π
(D(−iw)−D(iw))

∣∣ei(2 cot−1 d−π2 )

e−i(2 cot−1 d+π2 )

=− 1

2π

(
D
(
−e2i cot−1 d

)
−D

(
e2i cot−1 d

)
−D

(
−e−2i cot−1 d

)
+D

(
e−2i cot−1 d

))
=− 1

2π

(
−2D

(
−e−2i cot−1 d

)
− 2D

(
e2i cot−1 d

))
=

1

π

(
D
(
−e−2i cot−1 d

)
+D

(
e2i cot−1 d

))
, (2.4.20)

where the penultimate step follows from (1.1.11).

Case 2: d = 1

Following a similar calculation to (2.4.19) we obtain∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ ≥ 1⇔ −π ≤ θ ≤ 0, (2.4.21)

i.e. ∂{|w| = 1, |z1| ≥ 1} = {e−iπ, ei0} = {−1, 1}. In [17], Boyd gives the main idea to

obtain the Mahler measure for this case. Here we reproduce the steps in the proof of

Theorem 12 in [22] to obtain the standard Mahler measure of Q1(w, z).We know that

η
(
1, 1+iw

1−iw

)
= 0 in (2.4.7). Combining this fact with the restriction on θ in (2.4.21) we

have

m(Q1(w, z)) =− 1

2π

∫
|w|=1,|z1|≥d

(dD(−iw)− dD(iw))

=− 1

2π
(D(−iw)−D(iw))

∣∣1
−1

=− 1

2π
(D(−i · 1)−D(−i · (−1))−D(i · 1) +D(i · (−1)))

=
2

π
D(i), (2.4.22)

where the penultimate step follows from (1.1.11). In fact, in this case

cot−1 d = cot−1 1 =
π

4
,−π +

π

4
.
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If we replace these values in (2.4.20), then (2.4.22) follows from (1.1.11), i.e.

1

π

(
D
(
−e−2i cot−1 1

)
+D

(
e2i cot−1 1

))
=

2

π
D(i).

Case 3: d < 1

Note that d < 1 implies that we are considering the case when π
4
≤ cot−1 d < π

2
with

θ ∈ [−π, π). Following a calculation similar to the one in (2.4.19) and using the fact

that d < 1 we have∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ ≥ d⇔ θ ∈
[
−π, 2 cot−1 d− π

2

]⋃[
3π

2
− 2 cot−1 d, π

]
.

Therefore, the set of boundary points

∂{|w| = 1, |z1| ≥ d} =
{
e−iπ, ei(2 cot−1 d−π

2 ), e−i(2 cot−1 d− 3π
2 ), eiπ

}
.

We also have η
(
1, 1+iw

1−iw

)
= 0 in (2.4.7). Therefore, we obtain

m1,d (Q1(w, z)) =− 1

2π

∫
|w|=1,|z1|≥d

(dD(−iw)− dD(iw))

=− 1

2π

[
(D(−iw)−D(iw))

∣∣ei(2 cot−1 d−π2 )

e−iπ

+ (D(−iw)−D(iw))
∣∣eiπ
e
−i(2 cot−1 d− 3π

2 )

]
=− 1

2π

[
D
(
−e2i cot−1 d

)
−D

(
e2i cot−1 d

)
−D(i) +D(−i)

+D(i)−D(−i)−D
(
−e−2i cot−1 d

)
+D

(
e−2i cot−1 d

)]
=− 1

2π

(
−2D

(
−e−2i cot−1 d

)
− 2D

(
e2i cot−1 d

))
=

1

π

(
D
(
−e−2i cot−1 d

)
+D

(
e2i cot−1 d

))
, (2.4.23)

where the penultimate step again follows from (1.1.11).

This conclude the proof of Proposition 2.2.7. �

2.5. Evaluation of mc,d(Q(w, z))

Now that we have obtained the values of mc,d (Q1(w, z)) for different values of c and d,

we can use Propositions 2.2.1, 2.2.5, and 2.2.7 to evaluate mc,d (Q(w, z)) for each of the cases
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described above. Rewriting the equalities in (2.0.2) and (2.3.1) we have

1

2
[mc,d (Q(w, z)) + log(cd)] = mc,d (Q1(w, z)) .

We now gather the values of mc,d (Q1(w, z)) which we obtained in Section 2.4, and rewrite

them in Table 2.2.

Values of c Values of d Extra conditions Values of mc,d (Q1(w, z))

d = 1 1
π

(
2D(ic)− (log c) tan−1

(
2

c−c−1

))
α ∈

[
−π

2
, 0
)

1
π

(
D (ice−iα) +D (iceiα)

d > 1 −1 ≤ 1+c2

2c
1−d2
1+d2

= sinα < 0 −(log c) tan−1
(

2 cosα
c−c−1

))

c 6= 1 1+c2

2c
1−d2
1+d2

< −1 0

β ∈
(
0, π

2

)
1
π

(
D
(
ice−iβ

)
+D

(
iceiβ

)
d < 1 0 ≤ 1+c2

2c
1−d2
1+d2

= sin β < 1 −(log c) tan−1
(

2 cosβ
c−c−1

))
1+c2

2c
1−d2
1+d2
≥ 1 0

d = 1 2
π
D(i)

c = 1 d > 1 1
π

(
D
(
−e−2i cot−1 d

)
+D

(
e2i cot−1 d

))
d < 1 1

π

(
D
(
−e−2i cot−1 d

)
+D

(
e2i cot−1 d

))
Table 2.2. Values of mc,d (Q1(w, z))

Now it only remains to establish the relation mc,d(Q(w, z)) = ma,b(P4(x, y)), where the

variables w, x, y, and z are related via the change of variables

x 7→ w

z
and y 7→ wz.
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2.6. Change of variables and proof of Lemma 2.2.8

Lemma 2.2.8 is a corollary to the following result from [24] (pg. 52):

Proposition 2.6.1. Let

P (x) =
∑

cmxm ∈ C[x1, x2, . . . , xn],

where xm = xm1
1 · · ·xmnn . Let A be an n × n integer matrix with non-zero determinant, and

define P (A)(x) =
∑
cmxmA. Then

m(P (x)) = m(P (A)(x)).

Note that we can write mc,d(Q(w, z)) as

mc,d(Q(w, z)) =
1

(2πi)2

∫∫
|w|=c,|z|=d

log |Q(w, z)|dw
w

dz

z

=

∫ 1

0

∫ 1

0

log
∣∣Q(ce2iπτ1 , de2iπτ2)

∣∣ dτ1dτ2

=

∫ 1

0

∫ 1

0

log
∣∣P4(ae2iπ(τ1−τ2), be2iπ(τ1+τ2))

∣∣ dτ1dτ2, (2.6.1)

where we use (2.2.2), (2.0.1)) to deduce the last step.

Proof of Lemma 2.2.8: We consider the matrix

A =

1 −1

1 1

 .
Let g(u) = g(u1, u2) := P4(au1, bu2) = au1 + 1

au1
+ bu2 + 1

bu2
+ 4 be a Laurent polynomial in

u = (u1, u2) ∈ T2. Then we have

g(A)(u) =a
u1

u2

+
u2

au1

+ bu1u2 +
1

bu1u2

+ 4

=
cu1

du2

+
du2

cu1

+ cdu1u2 +
1

cdu1u2

+ 4

=Q(cu1, du2), (2.6.2)

where we use the relation among a, b, c and d from (2.2.2) in the penultimate line, namely

a =
c

d
, b = cd.

Let w = cu1 and z = du2, where (u1, u2) ∈ T2. Then, the relation

mc,d(Q(w, z)) = m(Q(cu1, du2))
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follows from the definition of Mahler measure. Using (2.2.2), (2.6.2) and Proposition 2.6.1

we get

mc,d(Q(w, z)) = m(Q(cu1, du2)) =m(g(A)(u1, u2))

=m(g(u1, u2))

=m(P4(au1, bu2))

=
1

(2πi)2

∫∫
|u1|=1,|u2|=1

log |P4(au1, bu2)|du1

u1

du2

u2

=

∫ 1

0

∫ 1

0

log |P4(ae2iπθ1 , be2iπθ2)|dθ1dθ2

=ma,b(P4(x, y)),

which concludes the proof of Lemma 2.2.8. �
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Chapter 3

Proof of Theorem 0.3.2 and generalization

In this section our main goal is to prove Theorem 0.3.2. Later we will consider a more

general case, namely Pk(x, y) = x + 1
x

+ y + 1
y

+ k when k > 4. Our methods to prove the

theorem are mostly inspired by those used in [31].

3.1. The birational transformation

In order to establish a relation between the Mahler measure of Pk and a Weierstrass form

of a family of elliptic curves EN(k), we begin with considering a birational transformation

connecting these families of curves. Notice that these transformations work for k 6= 0,±4,

but we will be using it only for the cases k > 4. In Section 3.4.2 we use this transformation to

integrate the invariant holomorphic differential of EN(k) over certain integration paths which

are closed to determine their homology class(es) in H1(EN(k),Z)− (as mentioned in Chapter

2).

Let Ck be the curve defined by Pk(x, y) = 0. The change of variables

X = − 1

xy
,

Y =
(y − x)

(
1 + 1

xy

)
2xy

,

and 
x =

kX − 2Y

2X(X − 1)
,

y =
kX + 2Y

2X(X − 1)
,

(3.1.1)



gives a birational transformation

φ : Pk(x, y)→ EN(k)(X, Y ), (3.1.2)

between

Pk(x, y) := x+
1

x
+ y +

1

y
+ k

and

EN(k)(X, Y ) := Y 2 −X
(
X2 +

(
k2

4
− 2

)
X + 1

)
,

which is an elliptic curve for k 6= 0,±4.

3.2. Outline of the proof of Theorem 0.3.2

Recall that a0 =

[(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1

]
. Then, the statement of Theorem

0.3.2 is as follows:

Theorem 0.3.2. If k = 8 and 1
a0
≤ a ≤ a0 then

ma,
√
a (yP8 (x, y)) = m (yP8 (x, y)) .

Moreover,

ma,
√
a (P8 (x, y)) = m (P8 (x, y))− 1

2
log a = 4L′(EN(8), 0)− 1

2
log a,

where

EN(8)(X, Y ) := Y 2 −X
(
X2 +

(
82

4
− 2

)
X + 1

)
is the Weierstrass form of an elliptic curve of conductor N(8) = 24.

We start by factorizing yP8(x, y) in C(x)[y] as

yP8 (x, y) = y

(
x+

1

x
+ y +

1

y
+ 8

)
= (y − y1 (x)) (y − y2 (x)) ,

where

y1 (x) =
−
(
8 + x+ 1

x

)
−
√(

8 + x+ 1
x

)2 − 4

2
, (3.2.1)

y2 (x) =
−
(
8 + x+ 1

x

)
+
√(

8 + x+ 1
x

)2 − 4

2
.

Notice that yi(x) is well-defined for each i ∈ {1, 2} because the square root is taken whenever[(
8 + x+ 1

x

)2 − 4
]
> 0. In particular, we will show in Lemma 3.3.1 that we can fix a certain

branch of the square root for every x where |x| = a with a ∈ R>0 and a+ 1
a
< 6.
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Following the discussion in Section 1.2, we can write ma,b (yP8 (x, y)) as

ma,b (yP8(x, y)) =2 log b− 1

2π

∫
|x|=a,|y1|≥b

η (x/a, y1/b)

− 1

2π

∫
|x|=a,|y2|≥b

η (x/a, y2/b)

= − 1

2π

∫
|x|=a,|y1|≥b

(η (x, y1)− log (a) d arg y1)

− 1

2π

∫
|x|=a,|y2|≥b

(η (x, y2)− log (a) d arg y2) , (3.2.2)

where in our case we have b =
√
a, and

η(x, yj) = i log |yj|
dx

x
(3.2.3)

for j = 1, 2. To calculate the integral using methods developed by Deninger [23], we need to

obtain values of a such that {|x| = a, |yj| ≥
√
a} is a closed path and a cycle in H1(EN(8),Z).

In fact, following the discussion in Remark 1.1.2 we will show that {|x| = a, |yj| ≥
√
a} is a

cycle in H1(EN(8),Z)− for those values of a.We can rephrase the closedness of the integration

path by identifying {|x| = a, |yj| ≥
√
a} with {|x| = a} for certain values of a.

Note that y1 (x) · y2 (x) = 1. So if |yi (x) | ≥
√
a, then |yj (x) | ≤ 1√

a
, where i 6= j and

{i, j} = {1, 2}. If we have a ≥ 1 then, for i 6= j,

|yi (x) | ≥
√
a⇔ |yj (x) | ≤ 1√

a
≤
√
a.

As P8 (x, y) is invariant under the transformations x 7→ 1
x
and y 7→ 1

y
, it is enough to consider

the case when a > 1 (a = 1 is done in [39]). We will follow a similar approach to this problem

as the one taken in [31].

In few words, our main aim is to first determine which yj(x), between y1(x) and y2(x),

we should consider such that |yj(x)| ≥
√
a whenever |x| = a; later we will study the behavior

of minx=aeiθ,θ∈[0,2π) |yj(x)| with different values of a to find the values of a such that {|x| =

a, |yj(x)| ≥
√
a} is a closed path. A comparison of values of |yj(x)| at x = a with

√
a yields

that it is enough to consider y1(x) for rest of the proof. Now we can concentrate on obtaining

minθ∈[0,2π) |y1

(
aeiθ

)
|. Proposition 3.3.3 shows that this minimum is attained at θ = π.

Therefore, in order to obtain values of a such that the integration path {|x| = a, |y1| ≥
√
a}

is closed, we just need to find intervals of positive reals satisfying

|y1

(
aeiπ

)
| = |y1(−a)| ≥

√
a.
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But as noted in Remark 1.1.2, we have to show that, for these values of a, the integration

path is in fact a representative of certain homology class in H1(EN(8),Z)−. Once we prove

this fact using Lemma 3.3.5, the only integral in (3.2.2) remains to be calculated is

1

2π

∫
|x|=a,|y1|≥

√
a

d arg y1.

Lemma 3.3.6 deals with this integral, and we obtain that the value of this integral is 0 for the

above obtained values of a. These results and the relation between elliptic dilogarithm and

regulator map (see Theorem 1.1.10) can be combined with the relation between regulator

map and Mahler measure (see [23]) to deduce the desired result.

3.3. Proof of Theorem 0.3.2

Following the discussions in Sections 3.2 we prove Theorem 0.3.2 as an application of the

following results.

Lemma 3.3.1. If a+ 1
a
< 6 and a ∈ R>0 , then

(
8 + x+ 1

x

)2− 4 6∈ (−∞, 0) , where x = aeiθ

and θ ∈ [0, 2π).

Note that if we consider the case where a > 1 and a + 1
a
> 10, then |y1(−a)| < 1 <

√
a

and |y2(a)| < 1√
a
. Lemma 3.5.1 gives a detailed description of this fact for a general case,

namely when a + 1
a
> k + 2 for k > 4. Also in this case (k = 8) if a < 1, then we can

show that |y1(ae
5πi
6 )| <

√
a. And if 6 ≤ a + 1

a
≤ 10 then

[(
8− a− 1

a

)2 − 4
]
≤ 0. We

want to avoid the case where
[(

8− a− 1
a

)2 − 4
]
< 0, because then we will not be able

to work with a fixed branch of the square root of
[(

8 + x+ 1
x

)2 − 4
]
. In case of equality

we have y1(x) = y2(x) = ±1 (as y1(x) · y2(x) = 1), which after replacing in (3.2.3) yields

η(x, yj) = 0 for j ∈ {1, 2}, and as a result we get ma,
√
a(P8(x, y)) = 0. More details on these

results is provided in Section 3.5. Once we fix a branch (principal branch) of square root of(
8 + x+ 1

x

)2 − 4, we have two well-defined the algebraic functions of x, namely y1(x) and

y2(x), when |x| = a.

Lemma 3.3.2. Let y1(x) and y2(x) be defined by (3.2.1), where |x| = a with a ∈ R>0 and

a+ 1
a
< 6. Then |y1(a)| > |y2(a)|. We also have |y1(a)| >

√
a.

Therefore, we can concentrate on obtaining minθ∈[0,2π) |y1

(
aeiθ

)
| for |x| = a.

Proposition 3.3.3. If a+ 1
a
< 6 and a ∈ R>0, then |y1(x)| = |y1

(
aeiθ

)
| attains its minimum

at θmin = π, where θ ∈ [0, 2π).
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Note that a0 =

[(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1

]
> 1.

Lemma 3.3.4. For a ∈
[

1
a0
, a0

]
, the integration path {|x| = a, |y1| ≥

√
a} is closed.

Lemma 3.3.5. Let a ∈ R>0 be such that 1
a0
≤ a ≤ a0. Then∫

φ∗(|x|=a)

ω ∈ iR,

where the integral is performed over the path {|x| = a, |y1(x)| ≥
√
a}, where y1(x) is given

by (3.2.1) and satisfies P8 (x, y1) = 0.

If a satisfies the conditions of Lemma 3.3.5, then the fact that the value of the above

integral is independent of a implies

[φ∗(|x| = a)] = ±[φ∗(|x| = 1)] = ±[|X| = 1],

where [|X| = 1] ∈ H1(E8,Z)−. It can also be shown that the sign is independent of a in this

case. This will imply

[φ∗(|x| = a)] = [φ∗(|x| = 1)] = [|X| = 1] ∈ H1(E8,Z)−.

In particular, the above homology classes are identified as the generator of the component

H1(EN(8),Z)− of the group H1(EN(8),Z). In fact, for a ∈
[

1
a0
, a0

]
we have∫

φ∗(|x|=a)

ω = − i
2
K

(
1

2

)
, (3.3.1)

where

K(k) :=

∫ π
2

0

dθ√
1− k2 sin2 θ

is the complete Elliptic Integral of the First Kind. We give a proof of this fact in the

Appendix (Lemma A.1.1). The next lemma deals with the value of

1

2π

∫
|x|=a,|y1|≥

√
a

d arg y1.

Lemma 3.3.6. Let y1 be the root of yP8 (x, y) = 0 given by (3.2.1), and let a ∈ R>0 be such

that a ∈
[

1
a0
, a0

]
. Then,

1

2π

∫
|x|=a,|y1|≥

√
a

d arg y1 =
1

2π

∫
|x|=a

d arg y1 = 0.

Before we proceed to prove these results, we use them to deduce Theorem 0.3.2.
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Proof of Theorem 0.3.2: From (3.2.2) and Lemma 3.3.6 we obtain that

ma,
√
a (yP8(x, y)) = − 1

2π

∫
|x|=a,|y1|≥

√
a

η (x, y1) .

We use Lemmas 3.3.4 and 3.3.5 to get∫
|x|=a,|y1|≥

√
a

η (x, y1) =

∫
|x|=a

η (x, y1) =
1

2π

∫
φ∗(|x|=a)

η
(
x ◦ φ−1, y ◦ φ−1

)
, (3.3.2)

where φ is the birational transformation in (3.1.2) with k = 8. But, from Lemma 3.3.5 and

(3.3.1) it follows that

1

2π

∫
φ∗(|x|=a)

η
(
x ◦ φ−1, y ◦ φ−1

)
=

1

2π

∫
φ∗(|x|=1)

η
(
x ◦ φ−1, y ◦ φ−1

)
. (3.3.3)

The relation between P8(x, y) and EN(8)(X, Y ) via the birational transformation φ implies

that
1

2π

∫
|X|=1

η (X, Y ) =
1

2π

∫
φ∗(|x|=1)

η
(
x ◦ φ−1, y ◦ φ−1

)
. (3.3.4)

Therefore, using (3.3.2), (3.3.3) and (3.3.4) we can now write, ∀ a ∈
[

1
a0
, a0

]
,

1

2π

∫
|X|=1

η (X, Y ) =
1

2π

∫
φ∗(|x|=1)

η
(
x ◦ φ−1, y ◦ φ−1

)
=

1

2π

∫
φ∗(|x|=a)

η
(
x ◦ φ−1, y ◦ φ−1

)
.

We can now conclude that, ∀ a ∈
[

1
a0
, a0

]
,

ma,
√
a (yP8(x, y)) = − 1

2π

∫
φ∗(|x|=a)

η
(
x ◦ φ−1, y ◦ φ−1

)
= − 1

2π

∫
φ∗(|x|=1)

η
(
x ◦ φ−1, y ◦ φ−1

)
= m (yP8(x, y)) = m (P8(x, y)) .

In other words,

ma,
√
a (P8) = m (P8)− 1

2
log a. (3.3.5)

We conclude the proof by combining (3.3.5) with the results

m (P8) = 4m (P2) ,

due to Lalín and Rogers [32], and

m (P2) = L′(EN(8), 0),
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proved by Rogers and Zudilin [39]. Combining these results we obtain

ma,
√
a (P8) = m (P8)− 1

2
log a = 4L′(EN(8), 0)− 1

2
log a,

thus deducing Theorem 0.3.2. �

Next section deals with the proofs of the proposition and lemmas mentioned in this

section.

3.4. Proof of the proposition and lemmas

Our first task is to find the values of a ∈ R>0 such that {|x| = a, |yi (x) | ≥
√
a} is a

closed path, where yi (x) is an algebraic function in x for i = 1, 2, and satisfies P8 (x, yi) =

0. In particular, we will show that {|x| = 1, |yi (x) | ≥ 1} is a closed path. Once we

recover those values of a we conclude that the above path is homologous to the closed path

{|x| = 1, |yi (x) | ≥ 1}, and therefore we will be able to prove Lemmas 3.3.4 and 3.3.5. The

importance of considering EN(k) follows from the formula in (1.1.16), found by Deninger [23].

3.4.1. The integration path {|x| = a, |yi| ≥
√
a} for i = 1, 2

Based on numerical experiments, Boyd [17] hypothesized that

m(P8(x, y)) = 4m(P2(x, y)) = 4L′(EN(8), 0), (3.4.1)

where EN(8)(X, Y ) := Y 2 − X
(
X2 +

(
82

4
− 2
)
X + 1

)
. The relation between the Mahler

measures was then proved by Lalín and Rogers [32] by establishing functional equations for

the function m(Pk(x, y)), and combining them with other functional equations proved by

Kurokawa and Ochiai [27]. The relationship with the L-function was eventually proved by

Rogers and Zudilin [39] using a relation between Mahler measure and hypergeometric series.

There are also similar results to (3.4.1) when k = 16 and k = 5 (for more details on the

standard Mahler measure in these cases see [30], [32] and [40]).

We can extend our method for the cases when k = 5, 16 and obtain a relation involving

m(Pk) and the Mahler measures of the corresponding polynomials considered over T2
a,
√
a
. In

particular, if we consider T2
a,b instead of T2

a,
√
a
as our integration torus then some restricted

results for the cases when k > 4 (see Section 3.5) will follow from an argument similar to

the one provided below.
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As mentioned above, our main aim in this section is to first determine which yj(x),

between y1(x) and y2(x), we should consider such that |yj(x)| ≥
√
a whenever |x| = a; later

we will study the behavior of minx=aeiθ,θ∈[0,2π) |yj(x)| with different values of a to find the

values of a such that {|x| = a, |yj(x)| ≥
√
a} is a closed path.

Proof of Lemma 3.3.1: After substituting x = aeiθ the given expression can be ex-

panded to

h (a, θ) :=
(
8 + aeiθ + a−1e−iθ

)2 − 4 =
(
8 +

(
a+ a−1

)
cos θ + i

(
a− a−1

)
sin θ

)2 − 4

=
(
8 +

(
a+ a−1

)
cos θ

)2 −
(
a− a−1

)2
sin2 θ − 4

+ 2i
(
8 +

(
a+ a−1

)
cos θ

) ((
a− a−1

)
sin θ

)
.

Now h (a, θ) ∈ (−∞, 0) only if both of the following conditions hold.

• Im (h (a, θ)) = 0, i.e. 2 (8 + (a+ a−1) cos θ) ((a− a−1) sin θ) = 0.

As a ∈ R>0 and a+ 1
a
< 6, we get that the above will happen if and only if(

a− a−1
)

sin θ = 0,

i.e. if and only if (a− a−1) = 0 or sin θ = 0 or both.

• Re (h (a, θ)) < 0. Replacing the values of a and θ obtained above, we get

(a− a−1) sin θ = 0. But again using the conditions in Proposition 3.3.3, we obtain

(8 + (a+ a−1) cos θ)
2 − 4 > 0. In other words, Re (h (a, θ)) > 0 for all a and θ

satisfying the given conditions.

Thus, for x = aeiθ, θ ∈ [0, 2π) and a+ 1
a
< 6,

(
8 + x+ 1

x

)2 − 4 6∈ (−∞, 0). �

Before starting the proof of Lemma 3.3.2 we fix a branch of the square root for the rest of

the section in order to make the expressions of yj(x) in (3.2.1),for j = 1, 2, well-defined.

Proof of Lemma 3.3.2: We start by evaluating |yj(x)| at θ = 0 (viz. x = a) for

j ∈ {1, 2}:

|y1

(
aei0

)
| =

∣∣∣∣∣∣−
(
8 + a+ 1

a

)
−
√(

8 + a+ 1
a

)2 − 4

2

∣∣∣∣∣∣ =

(
8 + a+ 1

a

)
+
√(

8 + a+ 1
a

)2 − 4

2
,

|y2

(
aei0

)
| =

∣∣∣∣∣∣−
(
8 + a+ 1

a

)
+
√(

8 + a+ 1
a

)2 − 4

2

∣∣∣∣∣∣ =

(
8 + a+ 1

a

)
−
√(

8 + a+ 1
a

)2 − 4

2
,
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where we use the fact that a + 1
a
≥ 2 because a ∈ R>0, and therefore,

(
8 + a+ 1

a

)
>√(

8 + a+ 1
a

)2 − 4. We obtain |y1 (a) | > |y2 (a) |. It remains to find if |y1(a)| ≥
√
a.

We denote g (a) := 4 (|y1 (a) |2 − a). If we can show that g(a) ≥ 0 for a ∈ R>0, then we

get

• if a > 1, then |y1(a)| ≥
√
a, and simultaneously |y2 (a) | < 1√

a
≤
√
a;

• if a < 1, then |y1(a)| = |y1

(
1
a

)
| ≥ 1√

a
>
√
a, and simultaneously |y2(a)| ≤

√
a, where

we use the fact that y1(x) and y2(x) are invariant under the transformation x 7→ 1
x

when |x| = a.

We can then concentrate on finding the values of a such that |y1 (x) | ≥
√
a, for all x satisfying

|x| = a. But observe that

g (a) = 4
(
|y1 (a) |2 − a

)
= 2

(
8 + a+

1

a

)2

− 4 + f (a)− 4a > 2a2 + 4− 4a > 0,

where f (s) = 2
(
8 + s+ 1

s

)(√(
8 + s+ 1

s

)2 − 4

)
> 0 for any positive real s, and this proves

our lemma. �

Our next goal is to prove Proposition 3.3.3. In order to prove it, we start with the

following auxiliary lemma.

Lemma 3.4.1. If Re (z) > 0 and arg(z) ∈ (−π, π], then Re (
√
z) ≥

√
Re (z), where the

square root is taken with the principal branch.

Proof. Let z = reiθ where r = |z|. We also have Re(
√
z) > 0 because arg(z) ∈ (−π, π]. So

we have

Re
(√

z
)

=
√
r cos

θ

2
=

√
1

2
r (1 + cos θ) ≥

√
r cos θ =

√
Re (z),

where the penultimate step is true because | cos θ| ≤ 1. �

As
(
8 + x+ 1

x

)2 − 4 6∈ (−∞, 0), we can assume that, for t =
(
6 + aeiθ + a−1e−iθ

)
with

θ ∈ [0, 2π),

arg(t(t+ 4)) = arg((t+ 2)2 − 4) = arg

[(
8 + x+

1

x

)2

− 4

]
∈ (−π, π].

We will now prove Proposition 3.3.3.
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Proof of Proposition 3.3.3: We write |y1 (x) | = |y1(aeiθ)| in terms of t as

2|y1

(
aeiθ

)
| =
∣∣∣∣− (8 + aeiθ + a−1e−iθ

)
−
√

(8 + aeiθ + a−1e−iθ)2 − 4

∣∣∣∣
=

∣∣∣∣t+ 2 +

√
(t+ 2)2 − 4

∣∣∣∣
=
∣∣∣t+ 2 +

√
t (t+ 4)

∣∣∣ .
As mentioned before, we fixed that arg(t(t+ 4)) = arg((t+ 2)2− 4) ∈ (−π, π], which implies

arg(
√
t(t+ 4)) ∈

[
−π

2
, π

2

)
. We also have from Lemma 3.3.1 that

√
t(t+ 4) is well-defined

and so is 2|y1(aeiθ)|. Also note that∣∣∣t+ 2 +
√
t (t+ 4)

∣∣∣2 =
[
Re (t+ 2) + Re

(√
t (t+ 4)

)]2

+
[
Im (t+ 2) + Im

(√
t (t+ 4)

)]2

≥
[
Re (t) + 2 + Re

(√
t (t+ 4)

)]2

, (3.4.2)

where the equality holds if
[
Im (t+ 2) + Im

(√
t (t+ 4)

)]
= 0.

Now to minimize 2|y1

(
aeiθ

)
| we first need to minimize Re (t+ 2) + Re

(√
t (t+ 4)

)
.

From the proof of Lemma 3.3.1 we have that Re (t+ 2) ,Re (t (t+ 4)) , and Re
(√

t(t+ 4)
)

are positive for a > 0, a+ 1
a
< 6 and θ ∈ [0, 2π). Indeed, as we have considered the principal

branch of the square root of (t(t+4)), we obtain arg
(√

t(t+ 4)
)
∈
[
−π

2
, π

2

)
, and this implies

Re
(√

t(t+ 4)
)
> 0. Therefore,

min
θ∈[0,2π)

∣∣∣t+ 2 +
√
t (t+ 4)

∣∣∣2 ≥ min
θ∈[0,2π)

[
Re (t+ 2) + Re

(√
t (t+ 4)

)]2

≥
[

min
θ∈[0,2π)

(Re (t+ 2)) + min
θ∈[0,2π)

(
Re
(√

t (t+ 4)
))]2

. (3.4.3)

First we will minimize Re (t+ 2). If it attains its minimum at θmin,t+2 ∈ [0, 2π), then we get

θmin,t+2 = π, because

min
θ∈[0,2π)

Re (t+ 2) = min
θ∈[0,2π)

(
8 +

(
a+ a−1

)
cos θ

)
= Re (t+ 2)

∣∣
θmin,t+2=π

= 8− a− 1

a
,

where 2 ≤ a + 1
a
< 6. Note that we have t(t + 4) = (t + 2)2 − 4, Re(t(t + 4)) > 0 and

arg(t(t+ 4)) ∈ [−π, π) in our case. In other words, we can apply Lemma 3.4.1 to t(t+ 4) to

get

Re

(√
(t+ 2)2 − 4

)
≥
√

Re
(
(t+ 2)2)− 4 =

√
[Re (t+ 2)]2 − [Im (t+ 2)]2 − 4,
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and

min
θ∈[0,2π)

[
[Re (t+ 2)]2 − [Im (t+ 2)]2 − 4

]
=
[
[Re (t+ 2)]2 − [Im (t+ 2)]2 − 4

] ∣∣
cos θ=−1,sin θ=0

.

Note that we have Re (t+ 2)
∣∣
θ=0

> Re (t+ 2)
∣∣
θ=π

and

[Im (t+ 2)]
∣∣
sin θ=0

= 0 =
[
Im
(√

t (t+ 4)
)] ∣∣∣

sin θ=0
.

Therefore, if Re(t(t + 4)) = Re((t + 2)2 − 4) attains its minimum at θmin,t(t+4) ∈ [0, 2π),

then θmin,t(t+4) = π. Thus, if we can minimize Re (t+ 2), we will simultaneously minimize

Re (t (t+ 4)). In other words, we have θmin,t+2 = θmin,t(t+4) = θmin = π,[
Im (t+ 2) + Im

(√
t (t+ 4)

)] ∣∣∣
θmin

= 0, (3.4.4)

and

Re
(√

t(t+ 4)
) ∣∣∣

θmin

= Re

(√
(t+ 2)2 − 4

) ∣∣∣∣
θmin

=
√

Re
(
(t+ 2)2)− 4

∣∣∣∣
θmin

.

The equations (3.4.2) and (3.4.4) combined with the fact that Re(t+ 2) and Re
(√

t(t+ 4)
)

are strictly positive when θ ∈ [0, 2π) imply that the equality holds through out (3.4.3), and

we get

min
θ∈[0,2π)

∣∣∣t+ 2 +
√
t (t+ 4)

∣∣∣2 =

[
min

θ∈[0,2π)
Re (t+ 2) + min

θ∈[0,2π)
Re
(√

t (t+ 4)
)]2

=
[
Re (t+ 2)

∣∣
θmin=π

+ Re
(√

t (t+ 4)
) ∣∣

θmin=π

]2

=

8− a− 1

a
+

√(
8− a− 1

a

)2

− 4

2

. (3.4.5)

Therefore, if a + 1
a
< 6 and a ∈ R>0, then |y1(x)| = |y1

(
aeiθ

)
| attains its minimum for

θ ∈ [0, 2π) at θmin = π. �

To determine the values of a such that {|x| = a, |y1(x)| ≥
√
a} is a closed path, we now

just have to consider the cases where |y1(aeiπ)| = |y1(−a)| ≥
√
a.

Proof of Lemma 3.3.4: Note that it is enough to find the positive real roots of

G(u) = 8− u− 1

u
− 2
√
u+

√(
8− u− 1

u

)2

− 4
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such that u+ 1
u
< 6. Indeed, once we find the roots we can determine the interval(s) in the

real line where G(u) ≥ 0, following the conditions on u, and that will give us our required

values of a.

By setting G(u) = 0 we obtain

8− u− 1

u
+

√(
8− u− 1

u

)2

− 4 = 2
√
u

⇔ 8− u− 1

u
= 2
√
u−

√(
8− u− 1

u

)2

− 4

⇒
(

8− u− 1

u

)2

=

2
√
u−

√(
8− u− 1

u

)2

− 4

2

⇔
(

8− u− 1

u

)2

= 4u+

(
8− u− 1

u

)2

− 4− 2

√√√√u

((
8− u− 1

u

)2

− 4

)

⇒ 4 (u− 1)2 = u

((
8− u− 1

u

)2

− 4

)

⇔
(

8− u− 1

u

)2

= 4

(
u+

1

u
− 1

)
⇔
(

1− u− 1

u

)2

+ 18

(
1− u− 1

u

)
+ 72 = 0

⇔
(

10− u− 1

u

)2

= 92 − 72

⇔ u+
1

u
= 10± 4

√
2.

Since we assumed that u+ 1
u
< 6, we are left with only one choice, namely

u+
1

u
= 10− 4

√
2

⇔ u =
(

5− 2
√

2
)
±
√(

5− 2
√

2
)2

− 1 = a0 or u =
1

a0

, (3.4.6)

where a0 =

[(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1

]
> 1.
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Notice that u0 = 1
4

(
17−

√
41 +

√
314− 34

√
41
)

= 5.10245374 . . . is a root of G(u).

Indeed, after clearing the fraction in the equation G(u) = 0, we square both sides to obtain

4u3 =

1− 8u+ u2 − u

√(
8− u− 1

u

)2

− 4

2

.

Now, we open the square on the right-hand side, and rearrange the terms to isolate the

radicals. Next we square both sides, and multiply the equation through a suitable power of

u to obtain a polynomial equation in u, namely

16u3(u4 − 17u3 + 64u2 − 17u+ 1) = 0.

As the domain of the function G(u) under consideration is contained in R>0, it only remains

to solve the equation

(u4 − 17u3 + 64u2 − 17u+ 1) = 0. (3.4.7)

As u > 0, we consider U = u+ 1
u
to get

U2 − 17U + 62 = 0,

which has roots at 17+
√

41
2

and 17−
√

41
2

. Then, the possible solutions of the equation (3.4.7)

are

u =
1

4

(√
41 + 17 +

√
314 + 34

√
41

)
, or u =

1

4

(√
41 + 17−

√
314 + 34

√
41

)
,

or u =
1

4

(
17−

√
41 +

√
314− 34

√
41

)
, or u =

1

4

(
17−

√
41−

√
314− 34

√
41

)
.

But, only u0 = 1
4

(
17−

√
41 +

√
314− 34

√
41
)
satisfies the equation G(u) = 0.

Now, if 1
5
≤ u ≤ 5 then u + 1

u
≤ 5 + 1

5
, which yields that G(u) ≥ 0 when u ∈

[
1
5
, 5
]
.

In particular, we have 1
5
< 1

a0
< 1 < a0 < 5, and G (1) = 4 +

√
32 > 0. Therefore,

G (u) ≥ 0 ∀ u ∈ [ 1
a0
, a0].

Therefore, if a ∈ [1, a0], then {|x| = a, |yi| ≥
√
a} is a closed path. But note that

|y1(x)| = |y1(x−1)|, and if a < 1, then
√
a < 1√

a
. In this case we have |y1(−a)| = |y1

(
− 1
a

)
| ≥

1√
a
>
√
a. So, if a ∈

[
1
a0
, 1
)
, we still have a closed path, namely {|x| = a, |yi| ≥

√
a}. Thus

proving our lemma. �

In conclusion, we can now remove the restriction on a of being greater than 1, and we

can proceed to find the values of ma,
√
a (P8(x, y)) for a ∈

[
1
a0
, a0

]
.
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3.4.2. Homology class of the integration path in H1(EN(8),Z)

We have concluded that the integration path is closed under certain conditions. In

this section we study its class in the homology group H1

(
EN(8),Z

)
. We substitute k =

8 in (3.1.1), and consider the invariant holomorphic differential of the Weierstrass form

EN(8)(X, Y ), namely ω. Let S = {α1, α2} be a set of generators of the group H1(EN(8),Z),

which is a rank 2 free Z-module. We consider the complex analytic isomorphism

EN(8)(C) −→ C/Λ,

defined by P 7→
∫ P
O
ω (mod Λ), where Λ = ω1Z + ω2Z with

∫
αi
ω = ωi, for i = 1, 2, and O is

the identity element of the additive group
(
EN(8)(C),+

)
. This map implies that any path∫ P

O
ω is well-defined up to addition of a complex number of the form n1ω1 +n2ω2, for ni ∈ Z.

Therefore, the integral of ω over a closed path is 0 (mod Λ). Let γ1 and γ2 be two closed

paths which do not self-intersect. In order to show that the two paths γ1 and γ2 define the

same homology class, we first need to show that
∫
γ1
ω = m

∫
γ2
ω, for some positive integer

m. In other words, we need to show [γ1] = m[γ2]. But as γ1 and γ2 are closed and do not

self-intersect, then they must be generators, and m = ±1. In our case, our goal is to show

that the homology classes [φ∗(|x| = a)], [φ∗(|x| = 1)] and [|X| = 1] are equal as elements

of H1(EN(8),Z)−, which is a rank 1 free Z-module. In order to do so, we follow a similar

argument to the one given in [31] to show that the integrals
∫
γ
ω are in fact elements of iR,

where γ is a representative of one of the above mentioned homology classes, and they are

also positive multiples of each other.

Recall that a0 =

[(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1

]
.

Proof of Lemma 3.3.5: We will prove the above result for a ∈
(

1
a0
, a0

)
and the bound-

ary cases will follow by continuity. Since we have∫
φ∗(|x|=a)

ω =

∫
|x|=a

φ∗ω, (3.4.8)

we need to find an explicit expression for φ∗ω. From the change of variables in (3.1.1), we

obtain

dX =
1

x2y
dx+

1

y2x
dy.
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By differentiating the expression P8 (x, y) = 0, we get(
1− 1

x2

)
dx+

(
1− 1

y2

)
dy = 0.

Now, we replace dy in the expression of dX to get

dX =

 1

x2y
+

(
1− 1

x2

)
y2x

(
1
y2
− 1
)
 dx.

Also we have

2Y =
(y − x)

(
1 + 1

xy

)
xy

.

Therefore, φ∗ω is given by

dX

2Y
=

[
1
x2y

+
(1− 1

x2
)

y2x
(

1
y2
−1

)
]
dx

(y−x)(1+ 1
xy )

xy

=

[
y +

x(1− 1
x2

)(
1
y2
−1

)
]

(y − x) (xy + 1)
dx.

We also have y1 (x) · y2 (x) = 1. As we are working with y1 := y1 (x) , we replace y with y1

in the above expression, where y1 (x) is given by (3.2.1). Before doing so we denote

∆8 :=

(
8 + x+

1

x

)2

− 4, i.e. y2(x)− y1(x) =
√

∆8.

Let y2 := y2(x). We now rewrite the expression of dX
2Y

with y1 to get

dX

2Y
=

[
y1 +

x(1− 1
x2

)(
1
y1

2−1
)
]

(y1 − x) (xy1 + 1)
dx

=

(
1
y1
− y1

)
+
(
x− 1

x

)
y1

(
1− x

y1

)
(1 + xy1)

(
1
y12
− 1
)dx

=

√
∆8 + x− 1

x

(1− xy2) (1 + xy1)
√

∆8

dx (using y1 · y2 = 1)

=

√
∆8 + x− 1

x

(1− x (y2 − y1)− x2)
√

∆8

dx

= − 1√
∆8

dx

x
. (3.4.9)

Therefore, we find that ∫
φ∗(|x|=a)

ω =

∫
|x|=a

φ∗ω = −
∫
|x|=a

1√
∆8

dx

x
.
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We now substitute x = aeiθ for θ ∈ [0, 2π) in the above expression. We know from Lemma

3.3.1 that we can consider a fixed branch of square root of ∆8. Therefore, we can write∫
φ∗(|x|=a)

ω =

∫
|x|=a

φ∗ω = −
∫
|x|=a

1√
∆8

dx

x

= −i
∫ 2π

0

dθ√
(8 + aeiθ + a−1e−iθ)2 − 4

= −i
∫ π

−π

dτ√
(8 + aeiτ + a−1e−iτ )2 − 4

= −2iRe

∫ π

0

dτ√
(8 + aeiτ + a−1e−iτ )2 − 4

 ,
where we used the change of variables θ − π 7→ τ in the second line. We then have∫

φ∗(|x|=a)

ω =

∫
|x|=a

φ∗ω ∈ iR.

On other hand we know that φ : P8 7→ EN(8) induces φ∗ : H1 (C8,Z) 7→ H1

(
EN(8),Z

)
, where

C8 : P8(x, y) = 0. Using the Uniformization Theorem we get that there exists a lattice Λ ⊂ C

such that EN(8) (C) ∼= C/Λ is a complex analytic isomorphism. We therefore get a group

isomorphism H1

(
EN(8) (C) ,Z

) ∼= H1 (C/Λ,Z). But the last term is a rank 2 free Z-module.

But we can also write

H1

(
EN(8) (C) ,Z

)
= H1

(
EN(8) (C) ,Z

)+ ⊕H1

(
EN(8) (C) ,Z

)−
,

which shows that H1

(
EN(8) (C) ,Z

)+ and H1

(
EN(8) (C) ,Z

)− are free Z-modules of rank 1.

From Remark 1.1.2 and the above discussion we know that [φ∗ (|x| = a)] ∈

H1

(
EN(8),Z

)−. Taking a = 1 we also get [φ∗ (|x| = 1)] ∈ H1

(
EN(8),Z

)−
. But

H1

(
EN(8),Z

)− is a rank 1 free Z-module, and the closed integration paths φ∗ (|x| = 1)

and φ∗ (|x| = a) do not self-intersect. Therefore, we obtain [φ∗ (|x| = 1)] = c[φ∗ (|x| = a)]

and c′[φ∗ (|x| = 1)] = [φ∗ (|x| = a)] for some c, c′ ∈ Z \ {0}. This implies that c = c′ and

c ∈ {−1, 1}. Also, from [32] and [39], we have∫
|X|=1

ω =

∫
φ∗(|x|=1)

ω ∈ iR, for (x, y) ∈ T2,
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and [φ∗ (|x| = 1)] = [|X| = 1]. As a+ 1
a
< 6, the sign of the integral in (3.4.8) is independent

of the values of a. In fact, we will argue that c = c′ = 1 in the Appendix. Combining these

results we get our desired relations. �

3.4.3. The integral over d arg y

It remains to compute the integral (1.2.4).

Proof of Lemma 3.3.6: We have shown in Lemma 3.3.1 that
(
8 + x+ 1

x

)2 − 4 6∈

(−∞, 0), when |x| = a ∈ R>0 and a+ 1
a
< 6. This implies that we can consider the principal

branch of the square root of
(
8 + x+ 1

x

)2 − 4. Therefore, we have a well-defined algebraic

function of x when |x| = a, namely

y1 (x) = −

(
8 + x+ 1

x
+
√(

8 + x+ 1
x

)2 − 4

)
2

.

The above discussion leads to the fact that y1 (z) is holomorphic on the annulus A =

{z ∈ C : 1
a0
< |z| < a0}. We claim that y1 (z) does not vanish for any z ∈ A. Suppose it

vanishes at least at one point, say x0. In other words,

y1 (x0) = 0

⇔ −
(

8 + x0 +
1

x0

)
=

√(
8 + x0 +

1

x0

)2

− 4

⇒
(

8 + x0 +
1

x0

)2

=

(
8 + x0 +

1

x0

)2

− 4,

which is impossible. Therefore, y1 (z) is holomorphic and non-vanishing in A.

Let γa = −→τ1

⋃ −→
l
⋃ −→

l
⋃ ←−τa , where ←−τr is the path obtained by traveling the circle

|z| = r counter-clockwise with r ∈
(

1
a0
, a0

)
and
−→
l is the straight line along the imaginary

axis starting from i and ending at ia. We also have Cauchy’s Theorem in our domain of

definition A, which says

1

2πi

∫
γ

f ′

f
= 0,

for any f which is non-vanishing and holomorphic in A and γ is a simple closed path

contained completely in A. We take f = y1, i.e. f(z) = y1(z) and γ = γa. Let I (r) =
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1
2πi

∫
←−τr

dy1
y1

, where r ∈
(

1
a0
, a0

)
. We have

I (1) = − 1

2πi

∫
−→τ1

dy1

y1

, I (a) =
1

2πi

∫
←−τa

dy1

y1

, and
1

2πi

∫
γa

dy1

y1

= I (a)− I (1) = 0,

where the last expression follows from Cauchy’s Theorem and the fact that integration along

the paths
−→
l and

←−
l cancel each other. Therefore, it is enough to calculate I (1). But

I (a) = I (1) =
1

2πi

∫
←−τ1

dy1

y1

=
i

2π

∫ 2π

0

2 sin θ√
(8 + 2 cos θ)2 − 4

dθ

=
−i
2π

∫ π

−π

2 sin τ√
(8− 2 cos τ)2 − 4

dτ [Change of variable: θ − π 7→ τ ]

= 0.

The last step follows from the fact that the integrand is an odd function in τ, and the previous

steps follow from the following calculation:

I (1) =
1

2πi

∫
←−τ1

d

(
8 + z + 1

z
+
√(

8 + z + 1
z

)2 − 4

)
(

8 + z + 1
z

+
√(

8 + z + 1
z

)2 − 4

)
=

1

2πi

∫
←−τ1

z − 1
z√(

8 + z + 1
z

)2 − 4

dz

z

=
i

2π

∫ 2π

0

2 sin θ√
(8 + 2 cos θ)2 − 4

dθ
[
Change of variable: z 7→ eiθ

]
=
−i
2π

∫ π

−π

2 sin τ√
(8− 2 cos τ)2 − 4

dτ,

where we used the change of variable θ − π 7→ τ in the last line.

We know that d arg y1 = Im
(
dy1
y1

)
. Therefore we can rewrite I (1) as

I(1) =
1

2πi

∫
←−τ1

dy1

y1

=
1

2πi

[∫
←−τ1

Re

(
dy1

y1

)
+ i

∫
←−τ1

Im

(
dy1

y1

)]
= 0.

Therefore, for a ∈
(

1
a0
, a0

)
we have

1

2π

∫
|x|=a

d arg y1 =
1

2π

∫
|x|=a

Im

(
dy1

y1

)
= 0.
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By continuity we get ∀a ∈
[

1
a0
, a0

]
,

1

2π

∫
|x|=a

d arg y1 = 0.

�

3.5. Partial results when k > 4

We now describe some partial results that we obtained using a similar method as above,

regarding the values of ma,b (Pk(x, y)) when b ∈ R≥1, a ∈ R>0 with b not necessarily a

function of a. We also restrict ourselves to k ∈ R>4.

We can factorize yPk(x, y) over C(x) as

yPk (x, y) = (y − y1,k (x)) (y − y2,k (x)) ,

where

y1,k (x) =
−
(
k + x+ 1

x

)
−
√(

k + x+ 1
x

)2 − 4

2
, (3.5.1)

y2,k (x) =
−
(
k + x+ 1

x

)
+
√(

k + x+ 1
x

)2 − 4

2
,

are algebraic functions in x.

Our main goal is to determine when the integration path {|x| = a, |yi,k| ≥ b} is a closed

path for i ∈ {1, 2}.

Firstly, a discussion similar to the one in the proof of Proposition 3.3.3 implies that the

minimum of |∆k| =
∣∣∣(k + x+ 1

x

)2 − 4
∣∣∣ is attained at x = −a. As described in the proof of

Lemma 3.3.5, we consider a restriction on a so that ∆k 6∈ (−∞, 0). We can even omit the

case when ∆k = 0 for all x ∈ T1
a, because in that case we have y1,k(x) = y2,k(x) = ±1. In

other words, we want to consider a fixed branch of the square root of ∆k for our computation

to conclude when {|x| = a, |yi,k(x)| ≥ b} is a closed path for i ∈ {1, 2}. In fact, we want to

consider the principal branch of the square root of ∆k.

To do so we need

∆k

∣∣
x=−a =

(
k − a− 1

a

)2

− 4 =

(
k − a− 1

a
+ 2

)(
k − a− 1

a
− 2

)
∈ C \ (−∞, 0].

But as ∆k

∣∣
x=−a ∈ R, we can restrict our search to the case when ∆k

∣∣
x=−a > 0.We claim that

if a+ 1
a
> k+2, then {|x| = a, |yi,k(x)| ≥ b} is not a closed path for any i ∈ {1, 2}. Therefore,
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according to our claim we will have the liberty to work with a + 1
a
< k − 2 as we did in

“k = 8” case. In order to prove our claim, we search for values of x such that |yi,k(x)| < b

for i ∈ {1, 2}. As mentioned above we are restricting our computations to b ∈ [1,∞). The

following lemma provides us those particular values of x.

Lemma 3.5.1. Let y1,k(x) and y2,k(x) be defined by (3.5.1), where |x| = a with a ∈ R>0.

We now have the following relations between them:

• |y1,k(a)| > |y2,k(a)|,

• If a+ 1
a
> k + 2 then |y1,k(ae

iπ)| = |y1,k(−a)| < 1 ≤ b,

• |y2,k(a)| < 1 ≤ b.

Proof. We have proved |y1,k(a)| > |y2,k(a)| in 3.4.1 for the special case k = 8. The proof

for k > 4 follows a similar direction.

For the second part, we denote −N =
(
k − a− 1

a

)
. Then, we have N > 2 as a+ 1

a
> k+2.

Now we rewrite |y1,k(−a)| in terms of N as

|y1,k(−a)| =

∣∣∣∣∣∣
(
k − a− 1

a

)
+
√(

k − a− 1
a

)2 − 4

2

∣∣∣∣∣∣ =

∣∣∣∣∣−N +
√

(−N)2 − 4

2

∣∣∣∣∣ =
N −

√
N2 − 4

2
,

where the last equality holds because N >
√
N2 − 4. Now note that N − 2 > 0, and we get

(N − 2) <
√

(N − 2)(N + 2).

In other words,
N −

√
N2 − 4

2
< 1,

which proves the result.

The third part follows from a proof similar to the one above by considering N1 = k+a+

1
a
> 2, and noting that

|y2,k(a)| = N1 −
√
N2

1 − 4

2
< 1.

�

Lemma 3.5.1 implies that if a + 1
a
> k + 2, then {|x| = a, |y1,k(x)| ≥ b} is not a closed

path because we have |y1,k(ae
iπ)| = |y1,k(−a)| < b. Similarly it also shows that |y2,k(a)| < b,

which combined with the previous statement proves our claim that if a + 1
a
> k + 2, then

{|x| = a, |yi,k(x)| ≥ b} is not a closed path for any i ∈ {1, 2}. In particular, we can restrict

ourselves to a+ 1
a
< k − 2.
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Now that we have a+ 1
a
< k− 2, we can proceed similarly as we did in k = 8 (simply by

replacing 8 with k).

For a+ 1
a
< k − 2, we write x = aeiθ to obtain

min
θ∈[0,2π)

|y1,k (x) | = |y1,k

(
aeiπ

)
| = |y1,k(−a)|,

and

min
θ∈[0,2π)

|y2,k (x) | = 1

maxθ∈[0,2π) |y1,k (x) |

= |y1,k

(
aei0

)
|−1

= |y2,k

(
aei0

)
| = |y2,k(a)|.

The first equality can be justified from an argument similar to the proof of Proposition 3.3.3,

and the second equality follows from the following lemma.

Lemma 3.5.2. If a ∈ R>0 and a+ 1
a
< k−2 then |y1,k(x)| = |y1,k

(
aeiθ

)
| attains its maximum

in [0, 2π) at θmax = 0.

Proof. We use the expression of y1,k from (3.5.1) and the above mentioned conditions on

a to get

|y1,k(x)| =

∣∣∣∣∣∣−
(
k + x+ 1

x

)
−
√(

k + x+ 1
x

)2 − 4

2

∣∣∣∣∣∣
≤
∣∣∣∣k + x+ 1

x

2

∣∣∣∣+

∣∣∣∣∣∣
√(

k + x+ 1
x

)2 − 4

2

∣∣∣∣∣∣
=

∣∣k + x+ 1
x

∣∣
2

+

√∣∣k − 2 + x+ 1
x

∣∣ ∣∣k + 2 + x+ 1
x

∣∣
2

≤
k + a+ 1

a
+
√(

k + a+ 1
a

)2 − 4

2
= |y1,k(a)|,

where the last inequality follows from the fact that

I. a+ 1
a
< k− 2, which implies

(
k + x+ 1

x

)2 − 4 6∈ (−∞, 0] for x = aeiθ with θ ∈ [0, 2π)

(see Lemma 3.3.1),
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II. | cos θ|, | sin θ| are bounded by 1, and writing x = aeiθ, we have∣∣∣∣L+ aeiθ +
1

aeiθ

∣∣∣∣2 =

(
L+

(
a+

1

a

)
cos θ

)2

+

(
a− 1

a

)2

sin2 θ

≤
(
L+ a+

1

a

)2

,

where L ∈ {k − 2, k, k + 2}.

Therefore, |y1,k(ae
iθ)| attains its maximum at θmax = 0, where θ ∈ [0, 2π). �

• Main Result : The conditions a ∈ R>0 and a+ 1
a
< k − 2 implies that if

max{1, |y2,k(a)|} < b ≤ |y1,k(−a)|,

then

ma,b (yPk (x, y)) = m (yPk (x, y))⇔ ma,b (Pk (x, y)) = m (Pk (x, y))− log b,

where k > 4. The proof of the above results is very similar to the proof of the k = 8

case before.

Now let

ma,b,1,k =
1

2πi

∫
|x|=a,|y1,k(x)|≥b

log |y1,k(x)|dx
x

and

ma,b,2,k =
1

2πi

∫
|x|=a,|y2,k(x)|≥b

log |y2,k(x)|dx
x
.

If we let 0 < b ≤ |y2,k(a)| < 1, then, as y1,k(x) · y2,k(x) = 1, we can derive that

ma,b(yPk(x, y)) = ma,b,1,k + ma,b,2,k = ma,b,1,k −ma,b,1,k = 0.

In other words, if a ∈ R>0, a+ 1
a
< k − 2 and 0 < b ≤ |y2,k(a)| < 1 then,

ma,b(Pk(x, y)) = log

(
1

b

)
.

3.6. Additional calculation with the diamond operator

We have shown ma,b(yPk(x, y)) = m(yPk(x, y)) for some restricted values of a and b when

k > 4. Note that, except for computing integrals of ω and d arg y over some closed paths

in section 3.4.2 and 3.4.3 we are not using the birational transformation φ explicitly in our

proof. In fact, we have shown that, for certain values of a and b, the Mahler measures of

this family of polynomials are the same as their standard Mahler measures, and to do so we
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obtained values of a, b in R>0 such that the integration path {|x| = a, |yi,k| ≥ b} is closed for

i ∈ {1, 2} and homologous to {|x| = 1, |yi,k| ≥ 1}.

Although we have not used the elliptic dilogarithm and the diamond operator in our

proof explicitly, we add this section here for the sake of completeness.

We will follow [32] and [30] to calculate ma,b(Pk(x, y)) in terms of elliptic dilogarithm

when k > 4 for certain values of a, b (obtained in Section 3.5). As we have the equality

ma,b(yPk(x, y)) = m(yPk(x, y)) for certain values of a and b, it is enough to consider the case

where a = b = 1.

From Definition 1.1.9 we know that for T ∈ EN(k)(C), corresponding to z ∈ C×/qZ, the

elliptic dilogarithm is

DEN(k)(T ) = DEN(k)(z) :=
∑
n∈Z

D(qnz).

In our context, it is enough to take into account that

rEN(k)
({xN(k), yN(k)})[γ] = DEN(k)((xN(k)) � (yN(k))), (3.6.1)

where rEN(k)
is the regulator map due to Bloch [12] and Bĕılinson [10], {xN(k), yN(k)} is an

element of K2(C(EN(k))), D
EN(k) is the elliptic dilogarithm in EN(k) constructed by Bloch

[12], and [γ] is a generator of H1(EN(k),Z)−, which is a rank 1 free Z-module.

Our goal is to prove equality (0.3.4), namely

m (P8 (x, y)) = 4m (P2 (x, y)) ,

following the steps in [32]. To begin with we recall two functional equations of m(Pk):

(1) Kurokawa and Ochiai [27] showed that, for h ∈ R \ {0} we have

m(P4h2) + m
(
P 4
h2

)
= 2m

(
P2(h+ 1

h)

)
. (3.6.2)

(2) Lalín and Rogers [32] showed that, for h 6= 0, and |h| < 1 we have

m
(
P2(h+ 1

h)

)
+ m

(
P2(ih+ 1

ih)

)
= m

(
P 4
h2

)
. (3.6.3)

Setting h = 1√
2
in (3.6.2) and (3.6.3) we obtain

m(P2) + m(P8) = 2m(P3
√

2), (3.6.4)

and

m(P3
√

2) + m(Pi
√

2) = m(P8), (3.6.5)
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respectively. Therefore it remains to obtain a relation between m(P3
√

2) and m(Pi
√

2) to

finish the proof of (0.3.4).

First we consider the torsion group of EN(k) over Q. It is not hard to see that (EN(k)(Q))tor

is isomorphic to Z/4Z with generator P = (1, k/2) ∈ EN(k)(Q). Notice that, 2P = (0, 0),

3P = (1,−k/2), and 4P = O.

From [32] and (3.1.1) we also have

(X) = 2(2P )− 2O,

(x) = (P )− (2P )− (3P ) +O, (3.6.6)

(y) = −(P )− (2P ) + (3P ) +O.

Applying the diamond operator between (x) and (y) we get

(x) � (y) = 8(P ). (3.6.7)

Note that Q =
(
− 1
h2
, 0
)
is a point of order 2 in EN(k) when k = 2

(
h+ 1

h

)
. It is easy to

see that P +Q =
(
−1, h− 1

h

)
, 2P +Q = (−h2, 0) and 3P +Q = (−1, 1

h
− h).

For simplicity we will denote EN(k) as Ek and rEN(k)
as rk in the future.

Now we use the isomorphism

ϕ : E2(h+ 1
h) → E2(ih+ 1

ih), (X, Y ) 7→ (−X, iY ), (3.6.8)

to pull some rational functions u, v ∈ C
(
E2(ih+ 1

ih)

)
back to C

(
E2(h+ 1

h)

)
. This implies that

r2(ih+ 1
ih)({u, v}) = r2(h+ 1

h)({u ◦ ϕ, v ◦ ϕ}). (3.6.9)

Recall that H is the complex upper-half plane. The Uniformization Theorem says that

there exists a lattice Λ′ ⊂ C such that E3
√

2(C) ∼= C/Λ′ is a complex analytic isomorphism.

Let ω′1, ω′2 be complex numbers such that Λ′ = ω′1Z + ω′2Z with ω′2
ω′1
∈ C \R (by swapping ω′1

and ω′2 if necessary we may assume that ω′2
ω′1
∈ H). We denote τ :=

ω′2
ω′1
∈ H. Then we combine

(1.1.12) and (3.6.8) to get the following commutative diagram :

E3
√

2 Ei
√

2

C/Λτ C×/qZ

ϕ

'

'
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where Λτ = Z + τZ, and q = e2iπτ . Note that Λτ and Λ′ are homothetic, i.e. Λ′ = ω′1Λτ .

The above diagram implies that for T ∈ E3
√

2(C), we have

DEi
√
2(ϕ(T )) = DE3

√
2(T ).

We write x1, y1, X1, Y1 for the rational functions in E3
√

2, and x2, y2, X2, Y2 for the corre-

sponding objects in Ei√2. The relations among the above set of rational functions in E3
√

2

and the relations among x2, y2, X2, Y2 in Ei√2 can be written using (3.1.1) as


xj =

kjXj − 2Yj
2Xj(Xj − 1)

,

yj =
kjXj + 2Yj

2Xj(Xj − 1)
,

(3.6.10)

for j ∈ {1, 2} with k1 = 3
√

2 and k2 = i
√

2.

We have a commutative triangle in this following diagram:

P3
√

2

Pi
√

2 E3
√

2

Ei
√

2

φ

φ
ϕ

(see (3.1.2) for more details on the birational transformation φ). Therefore, it follows from

[37] that some integer multiples of

ξ1 = {x1, y1} and ξ2 = {x2 ◦ ϕ, y2 ◦ ϕ}

are in K2(E3
√

2). From the above diagram and (3.6.10) we can write x2 ◦ ϕ and y2 ◦ ϕ in

terms of X1, Y1 as 
x2 ◦ ϕ =

−k2X1 − 2iY1

2X1(X1 + 1)
,

y2 ◦ ϕ =
−k2X1 + 2iY1

2X1(X1 + 1)
.

(3.6.11)

Combining (3.6.11) and a calculation similar to (3.6.6) we obtain

(x2 ◦ ϕ) � (y2 ◦ ϕ) = 8(P +Q). (3.6.12)
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Also note that we can rewrite (3.6.7) in terms of rational functions in E3
√

2 as

(x1) � (y1) = 8(P ).

Now, in order to obtain a relation between m(P3
√

2) and m(Pi
√

2) we have to find relations

between (P ) and (P + Q) in Z
[
E3
√

2(C)
]−
, where Z

[
E3
√

2(C)
]
is the group of divisors on

E3
√

2 (see (1.1.14)). In other words, we need to relate the dilogarithm DE3
√
2 evaluated in

both elements (x1)�(y1) and (x2◦ϕ)�(y2◦ϕ) of Z
[
E3
√

2(C)
]−
.We want to find combinations

of tame symbols (also known as Steinberg symbols) {f, 1− f} with f ∈ C(E3
√

2) such that

the corresponding combination (f) � (1− f) yields a linear combination of (P ) and (P +Q).

From Remark 1.1.11 we know that {f, 1− f} is trivial in K-theory. Thus giving us a linear

combination involving (P ) and (P +Q).

In order to do so we consider the function f =
√

2Y1−X1

2
in C(E3

√
2). Note that(√

2Y1 −X1

2

)
= (2P ) + 2(P +Q)− 3O,(

1−
√

2Y1 −X1

2

)
= (P ) + (Q) + (3P +Q)− 3O.

We now apply the diamond operation to get

(f) � (1− f) = 6(P )− 10(P +Q).

But the discussion on the previous paragraph, Remark 1.1.11 and (1.1.15) yield

6(P ) ∼ 10(P +Q)⇐⇒ 6DE3
√
2(x1 � y1) = 10DE3

√
2 ((x2 ◦ ϕ) � (y2 ◦ ϕ))

because of the triviality of (f) � (1− f) in K-theory. In other words, using (3.6.1) we get

6r3
√

2({x1, y1}) = 6r3
√

2(ξ1) = 10r3
√

2(ξ2) = 10r3
√

2({x2 ◦ ϕ, y2 ◦ ϕ}) = 10ri
√

2({x2, y2}),

where last equality follows from (3.6.9). Therefore, we have

3m(P3
√

2) = 5m(Pi
√

2). (3.6.13)

From (3.6.4), (3.6.5) and (3.6.13) we conclude that

m(P8) =
8

5
m(P3

√
2) = 4m(P2) = 4L′(EN(8), 0),

where the last equality was proved by Rogers and Zudilin [39].

Recall that a0 =

[(
5− 2

√
2
)

+

√(
5− 2

√
2
)2 − 1

]
.
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In fact we have proved above that, for a ∈
[

1
a0
, a0

]
, we have

ma,
√
a(P8) = m(P8)− 1

2
log a = 4L′(EN(8), 0),

thus proving Theorem 0.3.2.
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Chapter 4

Conclusions and further questions

We have used a dependence of b on a or vice-versa while proving the results for k > 4

cases. It would be interesting to investigate the cases where we remove this dependence and

vary a and b independently.

There are many additional problems which could be addressed. The most immediate

ones that we have to investigate are the cases when k 6∈ R, such as when k2 ∈ Z<0. We may

be able to obtain a similar string of results for such cases with the help of our method. It will

be challenging to consider k ∈ C \ R as our method may not work in those cases. Another

intriguing problem will be to compute the Mahler measure of non-tempered polynomials over

arbitrary tori, as it is not certain that the K-theory framework works in such cases.

It would be also natural to consider the cases where the integration paths are not closed,

and they are not easily identifiable as cycles in the homology group.

A different direction would be to consider other families of polynomials due to Boyd.

Finally as mentioned in 0.1.1, it would be interesting to look for periods in terms of the

Mahler measure of several variable polynomials and special values of L-functions of elliptic

curves or modular forms.
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Appendix A

Additional results

A.1. Evaluation of the integral in Lemma 3.3.5

Here we describe an approach to show that the sign of the integral in Lemma 3.3.5 is

independent of a if a ∈
[

1
a0
, a0

]
, where

a0 =

[(
5− 2

√
2
)

+

√(
5− 2

√
2
)2

− 1

]
.

Moreover, we will show that c = c′ = 1 as mentioned at the end of the proof of Lemma 3.3.5

in 3.4.2.

Lemma A.1.1. Let a ∈ R>0 be such that 1
a0
≤ a ≤ a0. Then∫

φ∗(|x|=a)

ω = − i
2
K

(
1

2

)
,

where

K(k) :=

∫ π
2

0

dθ√
1− k2 sin2 θ

is the complete Elliptic Integral of the First Kind. Thus if a belongs to the given interval

then the sign of the integral is independent of a.

Proof. Recall that we have shown in Lemma 3.3.5 that∫
φ∗(|x|=a)

ω =

∫
|x|=a

φ∗ω = −2iRe

∫ π

0

dτ√
(8 + aeiτ + a−1e−iτ )2 − 4

 .
We use the change of variable (aeiτ+a−1e−iτ )

2
7→ u and the fact that Re(z) = Re(z̄) to obtain∫

φ∗(|x|=a)

ω = −i Im

∫ a+a−1

2

−a+a−1

2

du√
(u2 − 1)(u+ 3)(u+ 5)

, (A.1.1)



where the integral is over an arc in the complex upper half plane H, joining two real points

−
(
a+a−1

2

)
and

(
a+a−1

2

)
. We close the curve by connecting these two real points with a

straight line along the real line. Let the complete closed path be Γ.

It is easy to see that 1 ≤ a+a−1

2
< 3, for a satisfying a + 1

a
< 6 and a ∈ R>0. Also if S

is the set of poles of the denominator of the integrand then S ⊂ {−5,−3,−1, 1}. Indeed,

notice that the polynomial in u under the square root has four roots u1, u2, u3, and u4, which

satisfy

u1 = 1 > u2 = −1 > u3 = −3 > u4 = −5. (A.1.2)

The poles of the integrand are not in the interior of the region covered by Γ but on the real

line joining the two points mentioned above. Now note that

−3 < −a+ a−1

2
≤ −1 < 1 ≤ a+ a−1

2
< 3.

Therefore, to avoid the poles we modify the integration path by subtracting a semicircle of

radius ε around each pole. Notice that the integrals over these semicircles approach 0 as

ε → 0. In addition, the imaginary parts of the integrals over
[
−a+a−1

2
,−1

]
and

[
1, a+a−1

2

]
are zero because the integrand is real in those intervals. Therefore, we get∫

φ∗(|x|=a)

ω = −i Im

∫ a+a−1

2

−a+a−1

2

du√
(u2 − 1)(u+ 3)(u+ 5)

= −i Im

∫ 1

−1

du√
(u2 − 1)(u+ 3)(u+ 5)

.

We will now state a result which we will use to prove our lemma.

Proposition A.1.2 ([21], formula 256.00 page 120). Let a > b > c > d be real numbers and

a ≥ r > b. Then∫ r

b

dt√
(a− t)(t− b)(t− c)(t− d)

=
2√

(a− c)(b− d)
F

(
sin−1

(√
(a− c)(r − b)
(a− b)(r − c)

)
,

√
(a− b)(c− d)

(a− c)(b− d)

)
,

where

F (δ, k) =

∫ δ

0

dθ√
1− k2 sin2 θ

.
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Notice that K(l) = F
(
π
2
, l
)
. Now replacing the values of

a = r = u1, b = u2, c = u3, d = u4,

(given by (A.1.2)) in Proposition A.1.2, we have∫
φ∗(|x|=a)

ω = −i 2√
(u1 − u3)(u2 − u4)

K

(√
(u1 − u2)(u3 − u4)

(u1 − u3)(u2 − u4)

)

= − i
2
K

(
1

2

)
,

which proves our result. �

Therefore, for a ∈
[

1
a0
, a0

]
we have that∫

φ∗(|x|=a)

ω = − i
2
K

(
1

2

)
,

which implies that [φ∗ (|x| = a)] = [φ∗ (|x| = 1)] = [|X| = 1] is a generator of H1(EN(8),Z)−.

A similar calculation holds for the more general case k > 4 when a+ 1
a
< k − 2.

A.2. Abel’s Limit Theorem

Theorem A.2.1. Let f(z) =
∑∞

n=0 anz
n be a power series such that

∑∞
n=0 an converges.

Then for any K ≥ 1, f(z) tends to f(1) as z tends to 1 within

DK = {z ∈ C : |z| < 1 and |1− z| ≤ K(1− |z|)}.

Note that the fact
∑∞

n=0 an converges implies that the radius of convergence of f(z) is at

least 1. In particular,
∑∞

n=0 anz
n converges when |z| < 1.

A.3. Integral representation of F (a, b, c;x)

Recall that

F (a, b, c;x) =
∞∑
n=0

(a)n(b)n
(c)nn!

xn (where (t)n := t(t+ 1) · · · (t+ n− 1), (0)n = 1) ,

where x is a complex variable, and a, b, c ∈ C with c 6∈ Z≤0. In fact, the series converges

absolutely for all |x| < 1. We will now prove Theorem 0.1.3 in order to obtain an integral

reperesentation of F (a, b, c;x) given by (0.1.6).
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Theorem 0.1.3. If |x| < 1, a, b, c ∈ C∗ with c 6∈ Z≤0 and min{Re(a),Re(b),Re(c− a)} > 0,

then we can express F (a, b, c;x) as

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1(1− xy)−bdy, (A.3.1)

where Γ(·) denotes the Gamma function. Here it is understood that arg y = arg(1− y) = 0,

and (1− xy)−b has its principal value.

Proof. In order to obtain (A.3.1) from the definition of F (a, b, c;x), we first notice that

(a)n
(c)n

=
Γ(c)Γ(a+ n)

Γ(a)Γ(c+ n)
=

Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya+n−1(1− y)c−a−1dy,

when a, c ∈ C∗ with c 6∈ Z≤0,Re(a) > 0 and Re(c − a) > 0. We also have the binomial

expansion
∞∑
n=0

(b)n
n!

un = (1− u)−b,

where |u| < 1 and b ∈ C with Re(b) > 0. Therefore, if |x| < 1 then combining all of these we

obtain

F (a, b, c;x) =
∞∑
n=0

(a)n(b)n
(c)nn!

xn =
Γ(c)

Γ(a)Γ(c− a)

∞∑
n=0

∫ 1

0

(b)n
n!

xnynya−1(1− y)c−a−1dy

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1

{
∞∑
n=0

(b)n
n!

ynxn

}
dy

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1(1− xy)−bdy,

where the interchange of the sum and the integral in the first step follows from Fubini’s

Theorem, i.e. we can take the infinite sum inside the integral because, for |x|, |y| < 1, we

have
∞∑
n=0

∫ 1

0

∣∣∣∣(b)nn!
ya−1(1− y)c−a−1ynxn

∣∣∣∣ dy ≤ ∞∑
n=0

∣∣∣∣(b)nn!
xn
∣∣∣∣ ∫ 1

0

yRe(a)−1(1− y)Re(c−a)−1dy

= B (Re(a),Re(c− a))
∞∑
n=0

∣∣∣∣(b)nn!
xn
∣∣∣∣ <∞,

where we used the fact that min{Re(a),Re(b),Re(c− a)} > 0. �

This Euler’s integral representation of the hypergeometric function is convergent on the

given domain. Here, we assume |x| < 1 to avoid the singularity of (1 − xy)−b. Note that if
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|x| < 1, a, b, c ∈ C∗ with c 6∈ Z≤0 and min{Re(a),Re(b),Re(c − a),Re(c − b)} > 0, then a

derivation similar to (A.3.1) yields

F (a, b, c;x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

yb−1(1− y)c−b−1(1− xy)−ady,

where again it is understood that arg y = arg(1 − y) = 0, and (1 − xy)−a has its principal

value.

A.4. Mahler measure of an algebraic number

A.4.1. Product formula

LetK be a number field and let Qp be the field of p-adic numbers with the usual valuation

| · |p. We consider a complete set of inequivalent valuations | · |ν of the field K, normalized so

that for ν|p, | · |ν = | · |p on Qp. Then we have the following result.

Proposition A.4.1 (Product Formula, see e.g. [50], [13]). Let Kν be the completion of K

with respect to | · |ν . It is possible to choose a set MK of representatives of equivalence classes

of absolute values on K in such a way that for all a ∈ K×∏
ν∈MK

|a|dνν = 1,

where dν := [Kν : Qν ].

In the next section we use this proposition to prove that the (logarithmic)Mahler measure

of an algebraic number equals the product of the degree of its minimal polynomial and its

Weil height from Section 0.1.

A.4.2. Mahler measure and Weil Height

Recall that the Mahler measure of algebraic number is defined as the Mahler measure

of its minimal polynomial over Z. The Mahler measure is actually a height function on

polynomials with integer coefficients, as there are only a finite number of such polynomials

of bounded degree and bounded Mahler measure. In fact, we can relate the Mahler measure

of an algebraic number with its Weil height. In order to do so we need to consider the New-

ton polytope of its minimal polynomial with respect to valuations of the smallest algebraic

extension of Q containing the algebraic number.
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Let Qν be the completion of Q with respect to | · |ν . Given a polynomial P ∈ Qν [x] we

can associate a polygon in R2. To each term of P (x) =
∑m

i=0 bix
i we assign a point in R2 in

the following manner:

if bixi 6= 0, take the point (i, ν(bi)),

if bixi = 0, take the non-existent point (i,∞) = (i, ν(bi)).

Now, we consider the (lower) convex hull of the set of points

{(i, ν(bi)) : i = 0, 1, . . . , n}.

The polygon thus determined is called the Newton polytope of P (x) with respect to ν.

Note that the Newton Polygon defined in Section 1.1.3 differs from this definition. In fact,

we have considered the exponent polytope (see [41]) of a two-variable polynomial in Section

1.1.3 instead of the Newton polytope of the polynomial. In other words, we have considered

the convex polygon of a two-variable polynomial constructed by taking the projection of

its Newton polytope on its first two coordinates (for more details on Newton polytopes see

[43]).

Let ϑ be an algebraic number and let Pϑ(x) =
∑d

i=0 aix
i ∈ Z[x] be the minimal poly-

nomial of ϑ. We can consider a complete set of inequivalent valuations | · |ν of the field

K := Q(ϑ), normalized so that, for ν|p, | · |ν = | · |p on Qp as in A.4.1. Then we get

|a0| =
∏
p<∞

|a0|−1
p =

∏
p<∞

∏
ν|p

max(1, |ϑ|dνν ), (A.4.1)

which can be derived from the product formula on Q (see Proposition A.4.1), and from

considering the Newton polytopes of irreducible factors (of degree dν) of Pϑ with respect to

ν over Qp (as ν|p) (see e.g. [50]).

Let MK be the set of places on K, with representatives chosen in such a way that the

product formula holds (see Proposition A.4.1). Then from (0.1.3) and (A.4.1) (see [13], [49])

we have

M(ϑ) := M(Pϑ) =
∏
ν∈MK

max(1, |ϑ|dνν ),

and

h(ϑ) :=
logM(ϑ)

d
=
∑
ν∈MK

log+ |ϑ|
dν
d
ν ,
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where

log+ |ρ| =
∫ 1

0

log |e2iπt − ρ|dt = max(0, log |ρ|),

for some non-zero complex number ρ. Here h(ϑ) is the (absolute logarithmic) Weil height of

ϑ. In sum, we see that the (logarithmic) Mahler measure of an algebraic number is same as

the product of its (logarithmic) Weil height and the degree of its minimal polynomial, and

the Mahler measure is indeed a height function on polynomials.
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