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Sommaire

Les réseaux neuronaux récurrents (RNN) sont des modèles puissants qui ont obtenu des

réalisations exceptionnelles dans de nombreuses tâches d’apprentissage séquentiel. Malgré

leurs réalisations, les modèles RNN souffrent encore de longues séquences pendant l’entraî-

nement. C’est parce que l’erreur se propage en arrière de la sortie vers les couches d’entrée

transportant des signaux de gradient, et avec une longue séquence d’entrée, des problèmes

comme la disparition et l’explosion des gradients peuvent survenir. Cette thèse passe en

revue de nombreuses études actuelles et architectures existantes conçues pour contour-

ner les problèmes de dépendance à long terme de la rétropropagation dans le temps (BPTT).

Nous nous concentrons principalement sur la méthode proposée par cite Trinh2018

qui utilise une méthode d’apprentissage semi-supervisée pour atténuer les problèmes de

dépendance à long terme dans BPTT. Malgré les bons résultats obtenus avec le modèle de

cite Trinh2018, nous suggérons que le modèle peut être encore amélioré avec une manière

plus systématique d’équilibrer les signaux auxiliaires. Dans cette thèse, nous présentons

notre article - emph RNNs with Private and Shared Representations for Semi-Supervised

Learning - qui est actuellement en cours de révision pour AAAI-2019. Nous propo-

sons une architecture RNN semi-supervisée avec des représentations privées et partagées

explicitement conçues qui régule le flux de gradient de la tâche auxiliaire à la tâche principale.

Keywords: Apprentissage Automatique; Apprentissage Semi-supervisé; Formation

Auxiliaire; Sequence Learning
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Summary

Recurrent Neural Networks(RNNs) are powerful models that have obtained outstanding

achievements in many sequence learning tasks. Despite their accomplishments, RNN models

still suffer with long sequences during training. It is because error propagate backwards

from output to input layers carrying gradient signals, and with long input sequence, issues

like vanishing and exploding gradients can arise. This thesis reviews many current studies

and existing architectures designed to circumvent the long-term dependency problems in

backpropagation through time (BPTT).

Mainly, we focus on the method proposed by Trinh et al. (2018) which uses semi-

supervised learning method to alleviate the long-term dependency problems in BPTT.

Despite the good results Trinh et al. (2018)’s model achieved, we suggest that the model can

be further improved with a more systematic way of balancing auxiliary signals. In this thesis,

we present our paper – RNNs with Private and Shared Representations for Semi-Supervised

Learning – which is currently under review for AAAI-2019. We propose a semi-supervised

RNN architecture with explicitly designed private and shared representations that regulates

the gradient flow from auxiliary task to main task.

Keywords: Apprentissage Automatique; Apprentissage Semi-supervisé; Formation

Auxiliaire; Sequence Learning
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Chapter 1

Introduction

1.1. Background

A sequence is an ordered collection of objects. Sequential data occur everywhere in

our daily life. Some examples of sequential data include gene sequencing, written text,

human speech and stock prices. Sequence modelling can help us to identify genetic diseases,

understand literature, generate speeches and recognize patterns in stock prices. Thus,

learning sequences has immense value and great real-life applications.

Traditionally, Hidden Markov Models (HMMs) are commonly used to process sequential

data. HMMs make several strong assumptions (Rabiner and Juang, 1986):

(1) The observation space, V , is known and finite. Let O = {o1 . . . oT} be the observation

sequence. Every observation comes from the observation space, i.e. ∀oi ∈ O, oi ∈ V .

(2) The hidden state space, Q, is known and finite. Let H = {h1 . . . hT} be the hidden

state sequence. Every hidden state comes from the hidden state space, i.e. ∀hi ∈

H, hi ∈ Q.

(3) Markov Assumption. The future states depend only on the current state:

P (hi = a|h1, . . . , hi−1) = P (hi = a|hi−1) (1.1.1)

(4) Independence Assumption. The probability of an output observation, oi, only

depends on the immediate hidden state ht:

P (ot|o1, . . . , oT ;h1, . . . ,hT ) = P (ot|ht) (1.1.2)



However, these assumption leads to several limitations of Hidden Markov Models on sequence

learning:

(1) Memory of HMM is represented in a discrete |Q|-state multinomial. The hidden state

of an HMM can only transfer log(|Q|) bits of information about what it generates so

far (Brown and Hinton, 2001).

(2) HMM struggles to capture long range dependencies (Bengio and Frasconi, 1995;

Brown and Hinton, 2001).

Unlike HMMs, recurrent neural networks (RNNs) use distributed hidden states which al-

low information about the past to be stored efficiently (Hinton, 2013). Several modifications

on RNNs are also made to improve their long-term memories (Hochreiter and Schmidhuber,

1997; Cho et al., 2014). In recent years, RNNs have shown great promises in many sequence

learning tasks and applications (OpenAI et al., 2018; Baccouche et al., 2011; Graves et al.,

2013; Malhotra1 et al., 2015).

In general, a recurrent neural network processes an input sequence x by feeding its old

state vector and current input vector into a recurrence function at each time step:

zt,ht = RNN(xt,ht−1) (1.1.3)

here xt is the input vector at time t, ht is the hidden state vector at time t and zt is

the estimated output vector at time t. A vanilla RNN produces outputs by the following

equations:

ht = tanh(W [ht−1,xt] + bh) = tanh(Whhht−1 +Wxhxt + bh) (1.1.4)

How to train an RNN? Suppose we have an RNN model as depicted in Figure-1.1 (Chen,

2016):

ht = tanh(Whhht−1 +Wxhxt + bh) (1.1.5)

zt = softmax(Whzht + bz) (1.1.6)
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Zt-1

ht-1

xt-1

Z

h

x

whh

whz

wxh

(1)

Zt

xt

ht

Zt+1

ht+1

xt+1

(2)

Figure 1.1. This is an example of RNN: (1) On the left is the rolled up, recursive description
of the RNN. (2) On the right is the unrolled version of the RNN; the red arrow in the diagram
shows how the loss signal flows from zt+1 using backpropagation through time.

Furthermore, let’s suppose the final goal of the RNN is to map input sequence {x1, . . . ,xT} to

its corresponding target sequence {y1, . . . ,yT}. The objective for this model is to maximize

the likelihood of the data over; namely, we want to find a set of parameters that minimize

the negative log likelihood:

θ̂ = argmin
θ
L(x,y) = argmin

θ
−

T∑
t

yt log zt (1.1.7)

The derivative of L with respect to zt is

∂L
∂zt

= −(yt − zt) (1.1.8)

Tracing the gradient flow in Figure-1.1. and using chain rule, we can also derive the following

derivatives (check Chen (2016)’s note for detailed derivation):

∂L
∂Whz

=
T∑
t

∂L
∂zt

∂zt
∂Whz

(1.1.9)

∂L
∂Whh

=
T∑
t

t∑
i

∂L
∂zt

∂zt
∂ht

∂ht
∂hi

∂hi
∂Whh

(1.1.10)

∂L
∂Wxh

=
T∑
t

t∑
i

∂L
∂zt

∂zt
∂ht

∂ht
∂hi

∂hi
∂Wxh

(1.1.11)
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Supervised Loss

Supervised LossUnsupervised Loss

= +

mixed 
gradients

(a)

(b)

Figure 1.2. Schematic about gradient flows of different architectures during the backward
pass. Each cube indicates a set of hidden states at a time-step. Shading means the signal
strength of gradients – a darker color is associated with more reliable gradients. Arrows
indicate gradient flows, and those thicker ones represent more reliable gradients. Blue filling
indicates gradients w.r.t. the supervised loss. Yellow filling indicates gradients w.r.t. the
unsupervised loss. Green filling represents a mixture of the supervised and unsupervised
gradients. White filling means there is no gradient flowing through the hidden states. (a)
Gradient flows of a typical RNN with a supervised loss. (b) Gradient flows of a semi-
supervised RNN (Trinh et al., 2018).

The technique presented, unfolding an RNN through time and using backpropagation

algorithm to find its gradient, is called backpropagation through time (BPTT)(Rumelhart

et al., 1986; Werbos, 1990; Chen, 2016).

Note that the term ∂ht

∂hi
in Equation-1.1.10 and Equation-1.1.11 represents the chain rule

over the sequence {hi, . . . ,ht}. As the gap between i and t becomes larger, the term ∂ht

∂hi

would become smaller (each partial derivative term within the chain rule is a matrix with

small values). Thus, gradient value would shrink over time and eventually vanish as shown

in Figure 1.2-a. This causes the states that are far away from current state has little or

no contribution to the parameters’ update. This phenomenon is known as the vanishing

gradient problem in BPTT (Bengio et al., 1994; Hochreiter et al., 2001). A way to mitigate

the vanishing gradient problem is to use activation functions that condone larger derivatives.

However, this will encourage the exploding gradient problem (Pascanu et al., 2012).

Long short-term memory model (LSTM) and gated recurrent unit (GRU) have been

proposed to alleviate the vanishing gradient problem and the exploding gradient problem

4



(Hochreiter and Schmidhuber, 1997; Cho et al., 2014). These architectures use gates to

regulate the flow of information in and out of the cell, and this allows gradient to flow more

effectively over long sequences.

LSTM (Hochreiter and Schmidhuber, 1997) explicitly introduced cells which are respon-

sible to decide when to read, write and modify information in memory. Specifically, LSTMs

use a gating mechanism to manipulate information stored in states. Gates are like valves

and learn to keep relevant information and forget irrelevant ones. Gates utilize the sigmoid

activation function (σ(x) = 1
1+e−x ) which outputs numbers between 0 and 1 to describe the

percentage of information should be let through. There are three types of gates in LSTM:

forget gate, input gate and output gate. The forget gate, as its name suggests, throws away

the old memory if the gate is closed. The gate’s status depends on the current input and

previous hidden state:

ft = σ(Wf [ht−1, xt] + bf ). (1.1.12)

To update the cell state, we also have the input gate. The input gate decides what to update

depending on the current input and previous hidden states:

it = σ(Wi[ht−1, xt] + bi). (1.1.13)

Meanwhile, we use the tanh function to generate a new memory candidate, C̃t:

C̃t = tanh(Wc · [ht−1, xt] + bC). (1.1.14)

The input gate’s output will be element-wise multiplied by the new memory candidate and

will be added to the old memory to form a new memory:

Ct = it � C̃t + ft � Ct−1. (1.1.15)

Lastly, the output gate is used to generate the cell’s output:

ot = σ(Wo[ht−1, xt] + bo), (1.1.16)

ht = ot � tanh(Ct). (1.1.17)

5



Overall, the memory cells of LSTM can maintain information in memory for long periods

of time. Thus, this architecture is more effective in learning long-term dependencies than

standard RNN.

Unlike LSTM, GRU (Cho et al., 2014) uses only the hidden states to transfer information.

It is composed of two gates: update gate and reset gate. Similar to the three gates in LSTM,

these two gates decide what information to keep and what information to forget:

ut = σ(Wi � [ht−1, xt]), (1.1.18)

rt = σ(Wr � [ht−1, xt]), (1.1.19)

ht = (1− ut)� ht−1 + ut � tanh(W � [rt � ht−1, xt]). (1.1.20)

In general, the GRU has less parameters than LSTM making it more computationally

efficient.

Other variants of RNN, including iRNN and uRNN, also promote long term dependencies

of RNN. iRNN (Le et al., 2015) suggests that RNN composed of Rectified Linear Unit

(ReLU) with the correct initialization trick is good at capturing long-term dependencies.

The essence of the model is in the initialization trick. The recurrent weight matrix is

initialized as identity matrix with zero bias. This implies that the new hidden state vector

is identical to the sum of previous hidden state vector and positive input values. For this

reason, during BPTT, the error derivatives for the hidden units remain constant and no

extra error-derivatives are added. In contrast, unitary evolution recurrent neural network

(Arjovsky et al., 2015), also known as uRNN, learns a unitary matrix with eigenvalues of 1

to encourage the learning of long-term dependencies. It is assessed that learning becomes

difficult and vanishing/exploding gradient problems start to occur when the eigenvalues of

the weight matrix deviate from 1. uRNN enforces the hidden to hidden matrix to: (1) be

unitary which can be decomposed into a set of structured unitary transform matrices with

number of parameters O(n); (2) have eigenvalues of absolute value 1. Overall, uRNN offers

an elegant solution to reduce memory usage while enhancing long-term dependencies.
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Despite recent advances in RNN architectures, capturing long-term dependencies on

long sequences using BPTT remains a fundamental challenge. RNNs with deep transition

functions are hard to train, even with modern architectures like LSTM, GRU, iRNN and

uRNN.

Moreover, Sejnowski and Rosenberg (1987); Bai et al. (2018); Kalchbrenner et al. (2014)

and many others have proposed the idea of using convolutional neural network (CNN) to

tackle sequence modeling tasks. In a more recent work, Bai et al. (2018) have reported

that a simple generic temporal convolutional network (TCN) can have effective long-term

memory and outperform some RNN variants on several commonly used sequence modeling

tasks. TCN combines 1D fully convolutional network (FCN) with causal convolution to

produce output for sequence modeling. It also uses modern convolutional architecture’s

techniques – dilated convolution (van den Oord et al., 2016) and residual connections (He

et al., 2015) – to reduce size of the network and enhance the network’s memory. However,

TCNs exhibit several disadvantages comparing to regular RNNs: (1) RNNs require less data

storage compared to TCNs because RNNs can discard the observed sequence and store the

entire history in a fixed length vector ht (Bai et al., 2018); (2) TCNs may perform poorly

transferring a model from one domain to another (Bai et al., 2018); (3) Trinh et al. (2018)’s

work shows that RNNs with an auxiliary unsupervised loss outperform TCNs in terms of

accuracy on long sequence learning tasks; (4) RNNs can model, in principle, infinitely long

dependencies with a finite number of parameters.

Lately, some strong evidences in Trinh et al. (2018)’s work suggest that using semi-

supervised learning techniques can enhance RNN’s ability to capture long-term dependencies.

In semi-supervised learning, unsupervised tasks are often used to catalyze and boost

the learning of the supervised tasks. Oftentimes, the unsupervised share of semi-supervised

learning is introduced in a pre-training fashion. For instance, Radford (2018) shows that

generative language model pretrained on a large unlabeled corpus followed by discriminating

fine-tuning leads to a significant improvement on natural language understanding tasks.

An additional example is to fix the unsupervised pretrained weights of a model and add
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additional task-specific capacity to the model making it possible to leverage large, rich and

universal representations for downstream tasks (Peters et al., 2018).

On the other hand, Trinh et al. (2018) suggest that training supervised and unsupervised

tasks concurrently can improve RNN’s memory. Trinh et al. (2018) propose the idea of

adding local auxiliary loss to force RNNs to reconstruct or predict sub-sequences and obtain

local signals. Adding local unsupervised auxiliary losses can bring benefit to sequence

learning: unsupervised loss induces regularization to the model, allowing the model to

generalize very long sequences. Future works, which elaborated on Trinh et al. (2018)’s idea,

conspicuously shared a common semi-supervised architecture which consists two distinct

RNNs (Peters et al., 2018): a primary RNN for supervised task and a secondary RNN

for auxiliary unsupervised task. More specifically, the secondary RNN is injected locally

along the sequence wherever an anchor point is placed. Figure-1.2-b illustrates a simplified

version of Trinh et al. (2018)’s architecture and shows how gradients flow in this architecture.

1.2. Motivation

Sequence learning has many applications in broad areas of research and conceivably

has great resemblance to how human learns and make decisions(Robertson and Takács,

2018). Recurrent neural network has been designed to work with sequential data and is still

been widely used to tackle sequential learning problems today. Furthermore, traditional

RNNs perform poorly for long sequences. Later, LSTM and GRU are explicitly designed

to avoid long-term dependency issues. As mentioned above, in spite of the fact that

vanishing gradient problem has been partly addressed by LSTM and GRU, very long-term

dependencies are yet very difficult to capture and learning such type of dependencies is still

an activate area of research. Many variations of RNN have been introduced to attenuate

the long-term dependency problems: Dilated RNN (Chang et al., 2017), hierarchical RNNs

(El Hihi and Bengio, 1995), IndRNN (Li et al., 2018), SkipRNN (Campos et al., 2018),

semi-supervised RNN with auxiliary loss (Trinh et al., 2018), etc.
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Most of these previously mentioned methods endeavor to learn long-range dependencies

by modifying RNN architecture. One noteworthy method is Trinh et al. (2018)’s semi-

supervised learning approach which proposed to insert unsupervised auxiliary loss at random

positions along the input sequence to enhance long-term dependency. It is not uncommon

to apply auxiliary loss to help with optimizing the learning process. There are many

examples of using auxiliary loss to promote gradient propagation in shallow layers of deep

neural networks: GoogLeNet (Szegedy et al., 2014) applies auxiliary classifiers to increase

gradient signals in intermediate layers that get propagate back; in PSPNet, auxiliary loss is

added to the res4b22 residual block to assist gradient flow (Zhao et al., 2016); in Zhang

et al. (2016)’s work, auxiliary autoencoder is suggested to help classification network to

obtain better local solution. Additionally, Trinh et al. (2018)’s method, a semi-supervised

learning approach that inserts unsupervised auxiliary at random positions along the input

sequence to improve long-term dependencies, is orthogonal to the other RNN variants

(Chang et al., 2017; Koutník et al., 2014; Li et al., 2018; Campos et al., 2018; Le et al.,

2015; Arjovsky et al., 2015) that were mentioned earlier. Hence, it can be used hand in

hand with other models to improve RNN’s performance. For this reason, we focus on exam-

ining the method proposed by Trinh et al. (2018) in order to make this method more effective.

We can motivate semi-supervised sequence learning from different perspectives:

(1) From a neurobiology point of view , the knowledge in a neural network is

stored in weights that connect artificial neurons which has vague resemblance to

the synaptic weights of neuron connections in brain. R. Storrs and Kriegeskorte

(2019) suggests that the recent advances in neural networks provide us insights

into the frameworks of cognitive and neural processing in humans. Furthermore,

R. Storrs and Kriegeskorte (2019) states that the unsupervised signal encourages the

model to exploit information more efficiently because it favors the model to learn

all regularities within data. He then argues that human brains are far more capable

of learning from data than machines without explicit supervision. Thus, learning

supervised and unsupervised tasks simultaneously is a good starting point, and this

kind of learning procedure could closely resembles how perception and cognition
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might be performed in our brains.

(2) From a pedagogy point of view , semi-supervised sequence learning with auxiliary

loss imitates how human learns in real life. Local reconstruction loss pushes the

model to remember previously seen sequence. Kember (1996)’s research in cognitive

science shows that memorization and understanding contribute to each other. His

research also manifests the fact that memorization can strengthen one’s ability

to recall information. There are many other researches in the fields of cognitive

science and pedagogy show that memorization and understanding can reinforce each

other (Klemm, 2007; Entwistle and Au, 2001). The phenomena of "memorization

improves understanding; understanding contributes to better learning" may occur in

machine learning as well. If so, this could provide an authentic explanation to why

unsupervised auxiliary tasks could assist the main task in learning.

On the other hand, it is believed that the ability of making prediction plays a

significant role in how our brains perceive and learn (Hawkins and Blakeslee, 2004).

R. Storrs and Kriegeskorte (2019) affirm that if a model is arguably accurate on

estimating a certain cognitive function, then such model has the power to predict

future sequence while extracting information for the main task.

Overall, existing RNN models tend to only address a single modality and task

exclusively. However, our brains extensively interact with different modalities while

fulfilling cognitive computation. From pedagogy and cognitive science’s perspectives,

a good comprehensive model should not only tackle the task of interest, but also

memorize seen information and predict upcoming events.

(3) From a deep learning point of view , unsupervised signal is extremely useful,

and it enables the network exploit meaningful information. Unsupervised learning

requires no additional data and label; thus, unsupervised auxiliary loss can be

very profitable and economic. Unsupervised task benefits to both optimization

and generalization process of models. Erhan et al. (2010) claim that the beneficial
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generalization phenomenon of semi-supervised learning occurs because of the

non-convexity of the objective function (multi-modality).

As we mentioned that the unsupervised auxiliary task can be jointly implemented

with many new innovated RNN architectures, it makes this approach accessible for

many RNN applications.

Nevertheless, local auxiliary loss can promote gradient propagation through long

sequences. It is an effective method to encourage long-term dependency for BPTT.

Ultimately, inserting auxiliary task improves generalization and BPTT of sequence

learning, and it is a handy tool which can be used in a wide range of applications.

Although the aforementioned semi-supervised structures alleviate the long-term BPTT

problem, the auxiliary objective of these approaches differs from the main task’s objective

and this can impair the training of the main task by contaminating the entire representation

space with unsupervised loss gradient. Properly coordinating the supervised task and aux-

iliary task turns into an important yet interesting challenge in this type of semi-supervised

learning tasks.

1.3. Thesis Statement

This thesis explores the idea of how to coordinate between supervised and unsupervised

tasks for semi-supervised sequence learning. To be more specific, this thesis explores two of

these methods in detail:

(1) Weighted loss for semi-supervised learning: multiplying unsupervised loss with

a coefficient to balance the learning signals of the auxiliary task with corresponding

primary task.

(2) Private and shared representations for semi-supervised learning: control

information flow by separating the representation space. Specifically, the RNN hidden

space is divided into private and shared sub-spaces where the private space is exclusive

for the supervised task and the shared space is available for both tasks.
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1.4. Thesis Outline

In Chapter-2, we explore techniques found in other literature to balance auxiliary

signals. Almost all of these techniques use weight coefficient to balance auxiliary tasks and

main tasks, although the specific procedure of using weight coefficient varies.

In Article-1, we present our method of balancing and regulating auxiliary gradient flow

by introducing the concept of private and shared representation space. We not only describe

the theoretical advantages of our method in Section-1 of the article, but also display the

empirical asset of our method in Section-4 and Section-5 of the article.
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Chapter 2

Balancing Signals in Auxiliary Learning

In this chapter, we present and discuss some interesting existing methods for balancing

auxiliary signals.

2.1. Introduction

The technique of using auxiliary tasks during learning have been popularized in the field

of machine learning due to its great performance in practice: it can be used to increase

gradient signals in shallow layers of very deep neural networks (DNNs) (Szegedy et al.,

2014; Zhao et al., 2016; Zhang et al., 2016); it can be used to stimulate denser gradient

signals that aid in task-relevant representation learning in reinforcement learning (Mirowski

et al., 2016); it can be used to encourage gradient flow over long sequences for sequence

learning (Trinh et al., 2018)... Let Taux and Tmain be the auxiliary and main tasks with

corresponding networks faux and fmain and corresponding losses Laux and Lmain. The

networks faux and fmain share a subset of parameters θ (i.e. yaux = faux(γaux, θ;xaux) and

ymain = fmain(γmain, θ;xmain)). The main loss, Lmain, is the only loss we truly care for. The

intuition behind this auxiliary technique is that the shared parameters θ would be changed

when we minimize Laux and hopefully it would reduce main task’s loss, Lmain. However,

performance of the auxiliary tasks depends on how well they align with the main task.

In semi-supervised learning with auxiliary unsupervised task, the auxiliary task would

normally have different objective from the main supervised task. For example, the main

task is to build an AI agent to navigate in complex environment and the auxiliary task is to

compute the depth map of the environment (Mirowski et al., 2016). Differences in objective



functions can cause the auxiliary signals to hurt the learning of the main task. In another

word, auxiliary tasks are not always helpful for building useful representations.

Balancing supervised and unsupervised task is not a trivial job. It is difficult to evaluate

the degree of helpfulness of the auxiliary task and where the auxiliary task starts to hurt

the main task. We want to find a proper way to balance semi-supervised signals in sequence

learning. It is unclear how Trinh et al. (2018) balance semi-supervised signals during training.

In the next section, we will delve into several related literature and examine their method of

balancing auxiliary and main tasks’ signals.

2.2. Related Work

In this section, we will discuss about three common techniques used in literature to

balance auxiliary signals.

2.2.1. Balancing Signals using Constant Coefficients

As mentioned previously, auxiliary networks are not only used in sequential learning

scenario to help gradient propagation. It is often used in DNN for its effectiveness in

regularization and usefulness in combating the vanishing gradient problem. Regularly, the

auxiliary signals are balanced using constant coefficients.

GoogLeNet (Szegedy et al., 2014) inserts auxiliary classifiers to intermediate layers.

These classifiers are small CNNs applied on the Inception 4a and Inception 4b’s outputs.

Their losses are added to the total loss of the network with a discount weight of 0.3. PSPNet

(Zhao et al., 2016) also uses auxiliary loss in residual block res4b22 (shallow layer of the

network). This loss is been discounted by a factor of 0.4 when it is added to the network’s

total loss.

The practice of using discounted weight to balance signals can be formulated as following:

ˆγaux, θ̂, ˆγmain := argmin
γaux,θ,γmain

λLaux( · ; γaux, θ) + Lmain( · ; γmain, θ) (2.2.1)
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where λ is the discounted weight coefficient and it is a hyper-parameter. γmain is a set of

parameters used only for the main task and γaux is a set of parameters used only for the

auxiliary tasks. Using weight coefficient to balance auxiliary signals is very simple and

intuitive; thus, it is the most common approach.

Averaging the semi-supervised losses is also commonly used for balancing semi-supervised

tasks, and it is a special scenario of using weight coefficient to balance signals. For exam-

ple, Toshniwal et al. (2017) introduce two auxiliary losses(phoneme decoder loss(Lp) and

state-level loss(Ls)) to attention-enabled encoder-decoder RNNs for conversational speech

recognition. They balance their total loss by averaging these losses: L = Lo+Lp+Ls
3

where Lo

is the original loss.

2.2.2. Balancing Losses using Learnable Coefficients

The coefficient to balance different tasks can be added to the network’s learnable param-

eters (Liebel and Körner, 2018). To be specific, Liebel and Körner (2018) tackle both of the

single-image depth estimation (SIDE) and semantic segmentation problems by introducing

multiple auxiliary tasks to them. They set up this challenge in multi-task learning setting

and use the following equation to combine all the losses:

L =
∑
τ∈T

λτLτ ( · ;ωτ ) (2.2.2)

where T is a set of tasks(including both main and auxiliary tasks) and ωτ = {θτ}.

Instead of manually tuning λτ ’s, they can be added to the set of learnable parameters ωτ

(i.e. ωτ = {θτ , λτ}). Regularization terms are also introduced to the final loss to avoid trivial

solution. Liebel and Körner (2018) use a special regularization term R(λτ ) = ln(1 + λτ
2) to

avoid negative regularization values. By putting everything together, the final total loss is:

L =
∑
τ∈T

1

2λτ
2L( · ;ωτ ) + ln(1 + λτ

2) (2.2.3)
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2.2.3. Adapting Auxiliary Losses Using Gradient Similarity

Du et al. (2019) propose an idea which refines the balancing signals using weight coeffi-

cient methods. Du et al. (2019) suggest to regulate the weight coefficient λ at each iteration

by monitoring the helpfulness of Taux to Tmain given θ(t), γ(t)aux and γ(t)main. That is, following

the same setting as Equation-2.2.1, the value of λ(t) is determined by the following at each

iteration:

λ(t+1) := argmin
λ

Lmain

(
γ
(t)
main − α∇γmainLmain, θ

(t) − α∇θ

(
λLaux + Lmain

)
, ymain

)
(2.2.4)

where α is the learning rate.

Du et al. (2019) point out that solving Equation-2.2.4 is expensive and offer a heuristic

solution to approximate λ(t). They propose to use cosine similarity between gradients of

tasks as an estimate of the weight coefficient. The update rules for the parameters would be

the following:

γ(t+1)
aux := γ(t)aux − α∇γauxLaux (2.2.5)

γ
(t+1)
main := γ

(t)
main − α∇γmainLmain (2.2.6)

θ(t+1) := θ(t) − α
(
∇θLmain +max

(
0, cos(∇θLmain,∇θLaux)

)
∇θLaux

)
(2.2.7)

There are some resemblances between Du et al. (2019)’s technique and gradient-based

meta-learning methods.

Recently, Valatka (2019) attempts to make the auxiliary loss adaptive by using Du et al.

(2019)’s method. However, he does not find the approach effective and claims that it slows

down the gradient calculation process significantly.

2.3. Discussion

Balancing auxiliary signal is a challenging yet important job. In this chapter, we

discuss about the problems with auxiliary tasks and why it is important to know how to

accurately balance the learning tasks. Gradients of the auxiliary task may contain worthless

information for the task of interest; in the worst case scenario, they may harm or slow down
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the learning of the primary task.

Using weight coefficient to balance auxiliary signals is a common scheme due to its

flexible nature. The three methods presented in Section-2.2 choose to use weight coefficient

to balance auxiliary signals in various ways:

• Multiplying auxiliary loss by a constant discount coefficient: This is

arguably the simplest method to balance auxiliary signal. By introducing a hyper-

parameter, the importance of the auxiliary task can be controlled by tuning this

hypermeter up or down. The value of the hyperparameter is often determined using

search algorithms such as grid search or random search. This method works well in

the setting where the auxiliary task has the same interest as the primary task (i.e.

adding an auxiliary classifier to shallow layers of a deep classification neural network).

• Multiplying auxiliary loss by a learnable coefficient: The benefits of using a

learnable coefficient over a constant coefficient are: (1) the value of the coefficient

can be changed during learning; (2) the network can automatically determine the

value of the coefficient(no need to set up manually). The importance of the auxiliary

task can change as learning advances. Thus, it is wiser to use a dynamic coefficient

than a constant coefficient.

• Using gradient similarity as coefficient: Despite its debatable efficacy, this is

still a notable method. It is the only method that the value of the coefficient is

determined by the correlation of the tasks. However, it is time consuming using

this technique since it needs to access and modify the gradient information every

time-step during training.

There are many drawbacks of using weight coefficient to balance signals between the tasks.

Using weight coefficient cannot determine what information learnt in the auxiliary task

is helpful for the main task and what information is harmful. Even using the techniques

from Liebel and Körner (2018) and Du et al. (2019), we cannot update using only useful

information nor prevent unhelpful signal damaging the main task. Methods like them have
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limited control of the amount of signal passing from auxiliary task to main task, and they

do not have control of the type of information that is passing.

Sadly, not much literature touches on the topic of balancing auxiliary signals in

semi-supervised sequence learning setting. In the next chapter, we propose our method for

coordinating semi-supervised learning tasks in RNNs. Although we focus our method only

in the domain of sequence learning, our method can be easily modified to adapt in other

kinds of applications of auxiliary learning.
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Abstract. Training recurrent neural networks (RNNs) on long sequences using backprop-

agation through time (BPTT) remains a fundamental challenge. It has been shown that

adding a local unsupervised loss term into the optimization objective makes the training

of RNNs on long sequences more effective. While the importance of an unsupervised task

can in principle be controlled by a coefficient in the objective function, the gradients with

respect to the unsupervised loss term still influence all the hidden state dimensions, which

might cause important information about the supervised task to be degraded or erased.

Compared to existing semi-supervised sequence learning methods, this thesis focuses upon

a traditionally overlooked mechanism – an architecture with explicitly designed private and

shared hidden units designed to mitigate the detrimental influence of the auxiliary unsu-

pervised loss over the main supervised task. We achieve this by dividing the RNN hidden

space into a private space for the supervised task or a shared space for both the supervised

and unsupervised tasks. We present extensive experiments with the proposed framework

on several long sequence modeling benchmark datasets. Results indicate that the proposed

framework can yield performance gains in RNN models where long term dependencies are

notoriously challenging to deal with.

Keywords: Semi-supervised Learning; Sequence Learning; Auxiliary Learning

1. Introduction

Some semi-supervised learning techniques are utilized to improve the learning of

long-term dependencies in RNNs as mentioned in Section-1.1. Simultaneously training

an auxiliary task in additional to the main supervised task helps the model by inducing

regularization and allowing it to generate enhanced generalization of very long sequences
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(Trinh et al., 2018).

Despite the ability of these new semi-supervised architectures to mitigate the problem

of long-distance BPTT, these approaches risk impairing the training of the main task by

contaminating the entire representation space with the unsupervised loss gradients.

The challenge we address here is how to properly coordinate supervised and unsupervised

tasks. In Section-2.2, we have briefly discussed about three approaches of using weighted

coefficients to balance supervised and unsupervised losses. One of these methods keeps

the weighted coefficients constant during the entire training process; one of these methods

turns the weight coefficient into a learnable parameter; one of these methods adapts the

weight coefficient using a cosine similarity metric to measure the resemblance between

the unsupervised and supervised tasks. However, all of these methods cannot radically

address the aforementioned problem since representations for supervised and unsupervised

learning are still entangled in the same space. It is true that the contribution of the

unsupervised task can in principle be controlled by a coefficient in the objective function,

but the gradients with respect to the unsupervised loss term still influence all the hidden

state dimensions, which might cause important information about the supervised task

to be erased accidentally. Another approach is to coordinate these two types of learning

by specifying a training order and separating them into different learning phases. This

approach usually pre-trains a model under unsupervised setting first, then use the model

for supervised learning (Radford, 2018).

While these methods can provide rich auxiliary knowledge which are potentially useful

for the main task, there is no guarantee that this asynchronous learning fashion could allow

the main task to utilize the auxiliary information well. Hence, long-term dependencies

are still difficult to capture. Thus, it is crucial to ask: how to cooperate the auxiliary

unsupervised tasks to best serve the main supervised learning task for long sequence learning?

RNN’s representation space can be divided into various groups/subspaces, and different

groups/subspaces can be employed to perform different tasks. This concept can be useful
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for modeling long-term dependencies. An example is the hierarchical RNNs (El Hihi and

Bengio, 1995; Koutník et al., 2014) where each group is responsible for a subset of hidden

states and each processes input at different clock speeds. It is also possible to let each layer

represent a group, and each group may run at different time scales (Schmidhuber, 1992;

Chung et al., 2016). Yet another inspiration comes from the shared-private feature spaces

introduced in (Liu et al., 2017). However, it is only studied in the context of supervised

learning tasks.

With the above analysis in mind, we propose to solve the long-term dependency problem

by enabling the two RNNs to have a shared feature space for both supervised and unsu-

pervised tasks and a private space dedicated to the supervised task. The key insight is to

associate different time-scale updating operations of distinct RNNs with different represen-

tational spaces. The RNNs can only exchange information through the shared feature space,

and the private space is kept privately without any interference from the unsupervised task.

As a byproduct, the proposed variant of RNNs trains and evaluates slightly faster than Trinh

et al. (2018)’s since the architecture by design introduced an inductive bias that the modules

for auxiliary tasks should have less parameters. Figure-3.1-(c) shows how the gradients flow

through the hidden states during the backward pass of BPTT for the proposed architecture.

It is clear that the lower (blue) space is not allowed to receive gradients from the unsuper-

vised task.

2. Related Work

Trinh et al. (2018) propose RNN-AE (RNN AutoEncoder) to form an auxiliary unsuper-

vised task to aid RNNs in handling long sequences, i.e. r-RNN (reconstruction) and p-RNN

(prediction). The r-RNN approach tries to reconstruct the original input from the internal

representation. On the other hand, the p-RNN approach tries to predict the future input

from the internal representation.

Skim-RNN (Seo et al., 2017), inspired by the principles of speed reading, dynamically

decides on whether to "skim" or "full-read" an input at each time-step by determining the
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Figure 3.1. Similar as Figure-1.2. Schematic about gradient flows of different architectures
during the backward pass. Each cube indicates a set of hidden states at a time-step. Shading
means the signal strength of gradients – a darker color is associated with more reliable
gradients. Arrows indicate gradient flows, and those thicker ones represent more reliable
gradients. Blue filling indicates gradients w.r.t. the supervised loss. Yellow filling indicates
gradients w.r.t. the unsupervised loss. Green filling represents a mixture of the supervised
and unsupervised gradients. White filling means there is no gradient flowing through the
hidden states. (a) Gradient flows of a typical RNN with a supervised loss. (b) Gradient flows
of a semi-supervised RNN Trinh et al. (2018). (c) Gradient flows of our proposed method,
which consists of a shared and private spaces.

significance of that input. Particularly, Skim-RNN(Seo et al., 2017) only updates the entire

hidden state with the default RNN cell if the decision on current input token is "full-read"

and updates partial hidden state with a smaller RNN if the decision on current input

token is "skim", whereas regular RNN sequentially "reads" input token and update the

entire hidden state at each time-step. Skim-RNN(Seo et al., 2017) aims at accelerating the

inference speed and models only for supervised tasks. In contrast, our method is specifically

designed for long sequence learning problems with an unsupervised loss. Furthermore, a

skim-RNN only uses one RNN at each time-step which is determined by a reinforcement

learning agent, whereas ours always use multiple RNNs. As a side-effect of not relying on

reinforcement learning algorithms, our method is easier to train in practice.
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The hidden state of our proposed RNN also has multiple subsets, but they run at the

same clock speed. Even more importantly, we introduce an inductive bias that different

hidden sub-spaces should be responsible for different tasks.

3. Methodology

We will discuss these methods in detail. We first briefly explain our version of the

RNN-AE and its key differences with that introduced by Trinh et al. (2018); then, we dive

into our method of inducing a private-and-shared structure.

3.1. RNN Autoencoder

Given an input sequence [x1,x2, . . . ,xn] and its corresponding state vectors [h1,h2, . . . ,hn]

generated by running the sequence through an RNN, we define an unsupervised loss in

addition to the supervised loss.

As shown in Figure 3.1-(b) and 3.1-(c), we add the unsupervised tasks of local sequence

reconstruction and prediction at various anchor points within each input sequence . We

sample m anchors at locations a1, a2, ..., am along each input sequence, and at each anchor

ai, we perform local reconstruction and/or prediction within a neighbourhood of xai .

How do we select the anchor positions?

We sample anchor locations differently from Trinh et al. (2018)’s approach. Instead of

randomly sampling the anchor locations over the entire sequence, we evenly divide the input

into m sub-sequences, where m is the number of anchors, and only sample each anchor

within its corresponding region.

Let’s suppose we would like to have m anchor positions for reconstruction/prediction

and the reconstruction/prediction’s window size is l. We first split the input sequence into
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m equal-sized sub-sequences from time-step l to time-step n − l (i.e. the i-th sub-sequence

is [xb(i−1)n−2l
m
c+l, . . . ,xbin−2l

m
+lc]: the first sub-sequence is [xl, . . . ,xbn−2l

m
+lc] and the last(m-th)

sub-sequence is [xb(m−1)n−2l
m
c+l, . . . ,xn−l]). Later, we sample one anchor point from each

sub-sequence. After all, we would obtain m anchor positions.

This is to ensure that reconstruction spans most if not all of the input sequence; this

way, gradient flows back to a higher percentage of the input.

How do we implement local reconstruction?

This is done by using an auxiliary reconstruction RNN with GRUs (a decoder network)

at each anchor. Specifically, an auxiliary RNN at anchor ai is initialized by hai , and asked

to reconstruct the sequence of tokens prior to xai . Here, hai is the state vector at time step

ai. The reconstruction step can be described as following:

x̂ai = xai (3.1)

x̂t−1, ĥt−1 = RNNrec(x̂t, ĥt) (3.2)

The reconstruction RNN is denoted as RNNrec. x̂t is the reconstructed input at time t

and ĥt is the shared hidden representation space between the unsupervised and super-

vised tasks at time t. We will discuss more about the shared and private space in Section-3.2.

Rather than reconstructing the sequence in a forward manner as in Trinh et al. (2018)’s

approach, we find that backwards reconstruction works better in practice. Thus, we

reconstruct local sequences backward during unsupervised reconstruction.

Lastly, we compute the reconstruction auxiliary loss using L2-norm for each anchor i:

Lirec =
∑ai−l

t=ai−1
(
xt − x̂t

)2
l

(3.3)

Lrec =
m∑
i

Lirec (3.4)
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Equation-3.4 generates a total unsupervised loss as the sum of auxiliary loss at each anchor

location, and its gradient flows back to each anchor neighbourhood to improve long-term

dependency.

How do we implement local prediction?

At each anchor, the reconstruction task uses the sequence prior to this anchor as the

target while the prediction tasks uses the sequence after this anchor as target. In this sense,

the reconstruction tasks reconstruct what has already been seen and the prediction tasks

predicts what is to come.

Specifically, at anchor ai, the prediction task’s target is the upcoming sequence (xai to

xai+l) of some length l. For unsupervised prediction, we follow the similar approach listed

in Equation-3.1 and Equation-3.2. We initialize x̂ai to be xai and define a prediction RNN

that replaces the reconstruction RNN in Equation-3.2. The prediction RNN would output

a prediction for the target sequence xai+1 to xai+l:

x̂ai = xai (3.5)

x̂t+1, ĥt+1 = RNNpred(x̂t, ĥt) (3.6)

The prediction RNN is denoted as RNNrec. Similar to equations (Equation-3.3 and Equation-

3.4), we use the following equations to compute the prediction loss:

Lipred =

∑ai+l
t=ai+1

(
xt − x̂t

)2
l

(3.7)

Lpred =
m∑
i

Lipred (3.8)

Prediction loss is considered to be analogous to language model loss. The main objective

for language modelling is to learn the structure of natural language through distributed

representation of words. Language modelling is often used to predict the upcoming word.

Instead of applying a language model over the whole input sequence, we predict local
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sub-sequences only.

There are two details that our method differs from Trinh et al. (2018)’s metioned

previously: (1) anchor sampling and (2) backward reconstruction. Furthermore, in various

task settings, we include both unsupervised prediction and reconstruction instead of using

only one. and most importantly, rather than using the entire hidden state of the anchor

to do reconstruction and prediction, we only use a part of the state vector for these

unsupervised tasks; this is the point we expand on next.

3.2. Private and Shared Structure

We propose to divide the state vectors of the main RNN into task-specific chunks. To

achieve this, we send only part of the hidden vector to the auxiliary RNN for reconstruction.

More concretely, we take the d-dimension state vector h = [h1,h2,...,hd]
ᵀ and split it into hs

and hp (shared and private state) where hs = [h1, h2, ..., hr]
ᵀ and hp = [hr+1, ..., hd]

ᵀ; i.e.

h = [hsᵀ||hpᵀ]ᵀ where [a||b] denotes the concatenation of a and b.

At each anchor step, only hs is used to initialize the auxiliary RNN for the recon-

struction task, and hp remains untouched. More precisely, we reconstruct sub-sequence

[xai−1, xai−2, . . . , xai−l] or predict sub-sequence [xai+l, xai+2, . . . , xai+l] by initializing ĥai to

be:

ĥai = hsai (3.9)

Afterwards, we either use Equation-3.1 and Equation-3.2 to reconstruction, use Equation-3.5

and Equation-3.6 to predict, or both. Lastly, we use Equation-3.3, Equation-3.4, Equaiton-

3.7 and Equation-3.8 to calculate total auxiliary loss.

At the final time step, we use the entire state vector h for the supervised task. In this

sense, hs is the section of state vector that is shared by the reconstruction task and the

final supervised task; hp is private in the sense that it is the section of state vector that is
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reserved for the supervised task.

Some internal representations learnt are more applicable for both unsupervised and

supervised tasks than others. The intuition behind our approach is that we want to partition

the feature space to reduce the impact of the unsupervised tasks on the supervised task.

After a few iterations of training, naturally, the network learns to store features that are

relevant for the unsupervised tasks in the shared space because the unsupervised tasks can

only retrieve information from the shared features of current time step, hst . In our case,

the unsupervised tasks are reconstruction and prediction. Since the selection of anchor

points is arbitrary, the unsupervised RNNs might take action at random, the shared hidden

states should be ready to pass information that is useful for these tasks to the unsupervised

RNNs at any point in time. Consequently, the shared region learns to capture more specific

features for the unsupervised tasks than the private region.

This way, we overcome the negative side effects of RNN-AE while retaining its ability to

introduce gradient at all time steps. Thus we are able to facilitate the learning of long-term

dependency without hindering the model’s ability to perform supervised task.

4. Experiments

The experiments are designed to answer a key question: Since we divide hidden states

into sub-spaces, compared with RNNs with a holistic hidden space, is our proposed method

indeed more effective?

We code our model using PyTorch (Paszke et al., 2017) and the repository of our

code can found in the Appendix-B.1. We evaluate our proposed methods on two bench-

mark tasks: image classification and sentiment analysis. For image classification, we

used pixel-level sequential MNIST, Fashion-MNIST and CIFAR-10 as our datasets. For

sentiment analysis, we use the IMDB movie reviews corpus and DBPedia ontology dataset.

For the IMDB movie reviews, our tasks are done on the character level using 1-hot

vectors and for DBPedia tasks we learn character level embeddings. Detailed descriptions

1We use one-hot character-level embedding and remove the inputs with length less than 500.
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Dataset Description

Seq. MNIST (LeCun and
Cortes, 2010)

The MNIST database contains 60K grey-scale images
of handwritten digits for training. It has 10 classes in
total and each image has size of 28× 28. In this thesis,
images in MNIST are fed into the network one pixel
at a time (sequential MNIST). The network receives a
1-dimensional input vector at each time step.

Seq. CIFAR10 (Krizhevsky
et al., 2010)

The CIFAR-10 database contains 60K 32×32 colour im-
ages of objects in 10 classes. In this thesis, images in CI-
FAR10 are fed into the network one pixel at a time (se-
quential CIFAR). The network receives a 3-dimensional
input vector at each time step.

Seq. Fashion-MNIST (Xiao
et al., 2017)

The Fashion-MNIST database contains 60K 28 × 28
grey-scale images of fashion items in 10 classes. In this
thesis, images in Fashion-MNIST are fed into the net-
work one pixel at a time (sequential Fashion-MNIST).
The network receives a 1-dimensional input vector at
each time step.

IMDB(Maas et al., 2011) The IMDB database contains 50K of movie reviews.
These reviews are separated into 2 classes: positive or
negative review. The dataset is been preprocessed using
one-hot character embedding(60d).

DBPedia Ontology(Zhang
et al., 2015)

The DBPedia dataset contains large carefully selected
Wikipeida of 14 classes. The dataset has been prepro-
cessed in character level(100d).

Table 3.1. Description of the datasets used in this thesis.

Dataset Mean Length # Classes Train Set Size Valid. Set Size

Seq. MNIST 784 10 50K 10K
Seq. CIFAR10 1024 10 45K 15K
Seq. Fashion-MNIST 784 10 50K 10K
IMDB 14301 2 20K 2.2K
DBPedia Ontology 300 14 560K 70K

Table 3.2. Key statistics of the datasets used in this thesis.

about the datasets are given in Table-3.1 and statistics of the datasets are given in Table-3.2.
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In order to compare with state-of-the-art results fairly, we re-implement and re-run

all the baseline methods. For all of our experiments, including the baseline and re-

implementations, we grid search our hyperparameters using a validation set to find the

optimal values. For faster convergence, we adopt SGDR (Loshchilov and Hutter, 2016) as

the optimizer throughout this paper. SGDR is a stochastic gradient descent optimizer with

learning rate scheduler. It periodically performs restarts of SGD: during each period of

restart, the learning rate is set to some value and is scheduled to decrease. We incorporate

early stopping with patience of 50 epochs to avoid overfitting, which is also based on a

validation set.

As shown in Table-3.4, our proposed method achieves better outcome on both MNIST

and CIFAR-10 than previous competitive results. Table-3.3 provides a more comprehensive

list of the experiments along with the hyperparameters used for each one. The top row(s) of

each sections, the ones without parameters, are baseline results run with GRU. As the shared

proportion parameter reaches 100%, our model reduce to the RNN-AE model introduced in

Trinh et al. (2018), thus the rows with "100%" as the value for the "shared" hyperparameter

are results for Trinh et al. (2018). As previously mentioned, the hyperparameters for these

cases are also grid searched to ensure fair comparison.

In our experiments, we are able to achieve better accuracy with either less or comparable

number of parameters. In the case of MNIST, we are able to do so with less than one-tenth

of the parameters compared to Trinh et al. (2018).

Overall, from these tables, we can study the effect of key hyperparameters such as

private-vs-shared proportion, number of anchors and reconstruction length. we see how

entirely sharing the hidden space is not optimal, which leads us to ask the follow up

question: how much of the space should be shared? In the following Section-5.1, we describe

our analysis on this very inquiry.
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Tasks Accuracy Unsup. Type Sharing Schema Sampling Opts. #Param.
Pred. Rec. Shared Private #Anchor Rec Len.

M
N

IS
T

98.5% - - - - 90K
98.8% X 100% 0% 1 50 1M
98.5% X 100% 0% 20 30 1M
98.8% X 30% 70% 1 50 76K
98.9% X X 30% 70% 40 20 84K

F
-M

N
IS

T

90.5% - - - - 11K
90.4% X 100% 0% 5 32 12K
90.8% X 60% 40% 20 30 12K
90.4% X X 50% 50% 5 30 11K

C
IFA

R
10

70.8% - - - - 3.1M
68.9% - - - - 5.4M
73.5% X 100% 0% 20 30 5.4M
75.1% X 40% 60% 20 30 3.9M
76.2% X X 60% 40% 10 64 4.7M

IM
D

B

84.4% - - - - 95K
84.8% X 100% 0% 1 50 69K
85.1% X 60% 40% 1 64 59K
85.7% X 60% 40% 5 50 75K

D
B

P
ed

ia

83.1% - - - - 3.5M
95.4% X 100% 0% 20 15 6.9M
97.1% X 50% 50% 20 15 4.5M
97.2% X 40% 60% 20 15 4.1M

Table 3.3. Performances of our models on MNIST, fashion-MNIST, CIFAR-10, and IMDB
datasets. Note that when the shared proportion reaches 100%, it reduces to the model
proposed in Trinh et al. (2018).

5. Analysis

In this section, we present two crucial analyses on the private-shared structure. First,

we examine how shared proportion affects our model outcomes. Then, we visualize both the

private and shared hidden space learned by our model to highlight distinct features of the two.
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Unpermuted Se-
quential MNIST

Sequential CIFAR10

iRNN (Le et al., 2015) 97% N/A
uRNN (Arjovsky et al., 2015) 95.1% N/A
RNN with Aux. Loss (Trinh et al., 2018) 98.4% 72.2%
RNN with private-shared space 98.9% 76.2%
Table 3.4. Comparing test accuracy on unpermuted sequential MNIST and sequential CI-
FAR10. iRNN(Le et al., 2015) is a RNN variant that is composed with Rectified Linear
Units(ReLU) and its weight matrices are initialized with identity matrix. uRNN(Arjovsky
et al., 2015) is a RNN variant whose hidden to hidden weight matrix is unitary matrix with
eignvalues of absolute value exactly 1.

Figure 3.2. Accuracy (left axis) and Loss (right axis) vs Shared Proportion. We visualize
the results from Table-255.6

5.1. Effect of Shared Proportion

To observe exactly what effect different sharing proportions have on classification tasks,

we run our model on CIFAR-10 with varying share percentages from 0% to 100% as listed

in Table-255.6. The results are given in Figure-3.2.
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Acc. L Main L Aux. S.% # Param.

70.8 1.523 - 0% 3.1M
73.8 1.422 0.960 10% 3.3M
74.0 1.063 0.818 30% 4M
76.1 0.865 0.758 50% 5.4M
74.6 0.986 0.695 70% 7.3M
73.1 1.013 0.621 100% 11M

Table 255.6. Experiments on shared proportions (S.%) performed on CIFAR. Accuracy is
reported in percentage. L Main and L Aux. are the main loss and auxiliary loss respectively.

With 0% shared, the model is essentially an RNN without unsupervised loss as no part

of the hidden state is sent to the auxiliary RNN. In this setting, our model achieves the

lowest accuracy of the group. As we slowly increase the shared percentage, the accuracy

rises. From this, we confirm that the addition of auxiliary loss is indeed helpful in modeling

long-term dependencies.

Remarkably, there is a pronounced peak at the 50% mark – where half of the state is

shared by the auxiliary RNN and half is reserved for the classification task – after which,

model performance, in terms of both cross entropy loss and classification accuracy begins to

worsen. One may suspect that this is caused by overfitting since the number of parameters

steadily increases. However, in this set of experiments, the capacity of the main RNN is fixed

as the dimension of the hidden state remains the same. As we include more of the hidden

state for unsupervised task, the auxiliary RNN increases in capacity, thus causing the overall

parameter number to increase. Furthermore, the auxiliary test loss lowers progressively,

suggesting that there is no overfitting in the auxiliary RNN either. In this case, the change

in performance should attributed to the difference in shared proportion. This finding

agrees with what we posited earlier: that the learned knowledge from the unsupervised

task is not all helpful towards the supervised task, and that this information may actually

hurt performance by overwriting knowledge that are important to the main task. What

is somewhat surprising is that at 100% shared, the model’s classification result is barely

comparable to the 10% version. We did not expect such big drop in classification rate (∼3%)
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at the maximum shared level with comparable model capacity. However, this further corrob-

orates the importance of disentangling the hidden space through a private-shared framework.

5.2. Shared and Private Spaces

Figure 3.3. Hidden state response to an "8" at beginning of training

To better understand how the use of our framework influences representation learning,

we analyze the hidden vectors of the main RNN. For this analysis, we retrain our MNIST

model with 50% shared proportion and a hidden space size of only 16. In other words, the

first 8 dimensions are shared, and the last 8 are private. We hypothesize that the small

representation-space would force the RNN to learn important features; it would also allow

us to see how knowledge from the two tasks might contend with each other if there existed

any competition.

To visualize the hidden space, we collect the RNN’s hidden state vectors

{ht ∈ Rd×1| 1 ≤ t ≤ 784} after it receives an MNIST image (784 pixels) as input.

We concatenate them horizontally to obtain H = [h1||h2||...||h784] ∈ Rd×784. Then, we look
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Figure 3.4. Hidden state response to a "3" after 5 epochs

Figure 3.5. Hidden state response to a "9" after 25 epochs
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at how the nth dimension of the hidden state changes across time by picking out the nth row

of H . We reshape each row into a 28 × 28 image to better compare the state elements.

Figure-3.3, Figure-3.4 and Figure-3.5 show three instances of visualization of the hidden

state vector across time, which are generated using the same network and different input

images at different stages of training. Respectively from left to right, the images are

generated when training begins, progresses, and converges. Each small square in the image

corresponds to a single dimension of the hidden state from t = 1 to t = 784. In this setting,

the left 2 columns of each subplot contain the 8 shared dimensions and the right 2 columns

corresponds to the 8 private dimensions.

Noticeably, as training progresses the hidden state changes how it responds to input.

Moreover, there are dimensions in the shared region of the hidden state that originally

display a response similar to those in the private region, only to be replaced later. For

example, in the beginning of training, there are several similar responses in multiple

dimensions of the state vector. In both the designated shared and private region, some

dimensions seem to have a high correlation with the input image thus resulting in a readable

number. As the model refines itself, the aforementioned response begins to fade from the

shared representation; however, it still exists in the private representation. In the end, we

see the a complete absence of such response in the shared representation, replaced by more

abstract features.

One possible explanation would be that this type of response is more important to the

supervised task than to the unsupervised one. By generating a large non-zero value when

the input is non-zero, a dimension of the hidden state allows the RNN to propagate this

information along to later times steps. This could be very helpful for digit classification, as

we might need to know what is written in the beginning to decide which digit it is. However,

it is not required for the auxiliary task which concerned with only local pixels and has less

need to propagate a strong signal when a particular input is given.
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6. Conclusion

In this thesis, we have presented a semi-supervised RNN architecture with explicitly

designed private and shared hidden representations. This architecture allows information

transfer between the supervised and unsupervised tasks in a hitherto unexplored way. Com-

pared with other similar semi-supervised RNN techniques, our experiments on widely used

and competitive benchmark data sets suggest that our formulation indeed yields performance

gains. We conjecture that these gains come from the desirable properties of both gradient

and information flow in architectures with shared and private representations. As a side-

product, our proposed architecture trains and evaluates faster than the related alternatives

that we have explored since the architecture introduces an inductive bias that the modules

for auxiliary tasks should have fewer parameters.

45





Bibliography

M. Arjovsky, A. Shah, et Y. Bengio, “Unitary evolution recurrent neural networks”, CoRR,

vol. abs/1511.06464, 2015. En ligne: http://arxiv.org/abs/1511.06464

J. Chung, S. Ahn, et Y. Bengio, “Hierarchical multiscale recurrent neural networks”, arXiv

preprint arXiv:1609.01704, 2016.

S. El Hihi et Y. Bengio, “Hierarchical recurrent neural networks for long-term dependencies”,

dans Proceedings of the 8th International Conference on Neural Information Processing

Systems, série NIPS’95. Cambridge, MA, USA: MIT Press, 1995, pp. 493–499. En ligne:

http://dl.acm.org/citation.cfm?id=2998828.2998898

J. Koutník, K. Greff, F. J. Gomez, et J. Schmidhuber, “A clockwork RNN”, CoRR, vol.

abs/1402.3511, 2014. En ligne: http://arxiv.org/abs/1402.3511

A. Krizhevsky, V. Nair, et G. Hinton, “Cifar-10 (canadian institute for advanced research)”,

University of Toronto, 2010. En ligne: http://www.cs.toronto.edu/~kriz/cifar.html

Q. V. Le, N. Jaitly, et G. E. Hinton, “A simple way to initialize recurrent

networks of rectified linear units”, CoRR, vol. abs/1504.00941, 2015. En ligne:

http://arxiv.org/abs/1504.00941

Y. LeCun et C. Cortes, “MNIST handwritten digit database”, 2010. En ligne:

http://yann.lecun.com/exdb/mnist/

P. Liu, X. Qiu, et X. Huang, “Adversarial multi-task learning for text classification”, arXiv

preprint arXiv:1704.05742, 2017.

http://arxiv.org/abs/1511.06464
http://dl.acm.org/citation.cfm?id=2998828.2998898
http://arxiv.org/abs/1402.3511
http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1504.00941
http://yann.lecun.com/exdb/mnist/


I. Loshchilov et F. Hutter, “Sgdr: stochastic gradient descent with restarts”, arXiv preprint

arXiv:1608.03983, 2016.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, et C. Potts, “Learning word

vectors for sentiment analysis”, dans Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies. Portland,

Oregon, USA: Association for Computational Linguistics, June 2011, pp. 142–150.

En ligne: http://www.aclweb.org/anthology/P11-1015

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, et A. Lerer, “Automatic differentiation in PyTorch”, dans NIPS Autodiff Work-

shop, 2017.

A. Radford, “Improving language understanding by generative pre-training”, 2018.

J. Schmidhuber, “Learning complex, extended sequences using the principle of history com-

pression”, Neural Computation, vol. 4, no. 2, pp. 234–242, 1992.

M. Seo, S. Min, A. Farhadi, et H. Hajishirzi, “Neural speed reading via skim-rnn”, arXiv

preprint arXiv:1711.02085, 2017.

T. H. Trinh, A. M. Dai, T. Luong, et Q. V. Le, “Learning longer-term dependencies

in rnns with auxiliary losses”, CoRR, vol. abs/1803.00144, 2018. En ligne:

http://arxiv.org/abs/1803.00144

H. Xiao, K. Rasul, et R. Vollgraf, “Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms”, CoRR, vol. abs/1708.07747, 2017. En ligne:

http://arxiv.org/abs/1708.07747

X. Zhang, J. J. Zhao, et Y. LeCun, “Character-level convolutional networks

for text classification”, CoRR, vol. abs/1509.01626, 2015. En ligne: http:

//arxiv.org/abs/1509.01626

48

http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1803.00144
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626


Appendix

B.1. Code

The code for this thesis can be found here https://tinyurl.com/yxw53h7y.

https://tinyurl.com/yxw53h7y
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