
Université de Montréal

Towards Learning Sentence Representation with Self-supervision

par Seyedarian Hosseini

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Juillet, 2019

c© Seyedarian Hosseini, 2019.

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

Towards Learning Sentence Representation with Self-supervision

présenté par:

Seyedarian Hosseini

a été évalué par un jury composé des personnes suivantes:

Guy Lapalme, président-rapporteur
Aaron Courville, directeur de recherche
Yoshua Bengio, membre du jury

Mémoire accepté le: .

Résumé
Ces dernières années, il y a eu un intérêt croissant dans le domaine de l’appren-

tissage profond pour le traitement du langage naturel. Plusieurs étapes importantes
ont été franchies au cours de la dernière décennie dans divers problèmes, tels que
les systèmes de questions-réponses, le résumé de texte, l’analyse des sentiments,
etc. Le pré-entrâınement des modèles de langage dans une manière auto-supervisé
est une partie importante de ces réalisations. Cette thèse explore un ensemble de
méthodes auto-supervisées pour apprendre des représentations de phrases à partir
d’une grande quantité de données non étiquetées. Nous introduisons également un
nouveau modèle de mémoire augmentée pour apprendre des représentations ba-
sées sur une structure d’arbre. Nous évaluons et analysons ces représentations sur
différentes tâches.

Dans le chapitre 1, nous introduisons les bases des réseaux neuronaux avant
et des réseaux neuronaux récurrents. Le chapitre se poursuit avec la discussion de
l’algorithme de rétropropagation pour former les réseaux neuronaux de flux avant,
et la rétropropagation à travers l’algorithme de temps pour former les réseaux neu-
ronaux récurrents. Nous discutons également de trois approches différentes dans le
domaine de l’apprentissage de représentations, notamment l’apprentissage super-
visé, l’apprentissage non supervisé et une approche relativement nouvelle appelée
apprentissage auto-supervisé.

Dans le chapitre 2, nous discutons des principes fondamentaux du traitement
automatique du langage naturel profond. Plus précisément, nous couvrons les re-
présentations de mots, les représentations de phrases et la modélisation du lan-
gage. Nous nous concentrons sur l’évaluation et l’état actuel de la littérature pour
ces concepts. Nous finissons le chapitre en discutant le pré-entrâınement à grande
échelle et le transfert de l’apprentissage dans la langue.

Dans le chapitre 3, nous étudions un ensemble de tâches auto-supervisées qui
prend avantage de l’estimation contrastive bruitée afin d’apprendre des représenta-
tions de phrases à l’aide de données non étiquetées. Nous entrâınons notre modèle
sur un grand corpus et évaluons nos représentations de phrases apprises sur un
ensemble de tâches du langage naturel en aval provenant du cadre SentEval. Notre
modèle entrâıné sur les tâches proposées surpasse les méthodes non-supervisées sur
un sous-ensemble de tâches de SentEval.

Dans les chapitres 4, nous introduisons un modèle de mémoire augmentée appelé
Ordered Memory, qui présente plusieurs améliorations par rapport aux réseaux de
neurones récurrents augmentés par pile traditionnels. Nous introduisons un nouveau

iii

mécanisme d’attention de Stick-breaking inspiré par les Ordered Neurons (Shen
et al., 2019) pour écrire et effacer la mémoire. Une nouvelle cellule récursive à
portes est également introduite pour composer des représentations de bas niveau
en des représentations de haut niveau. Nous montrons que ce modèle fonctionne
bien sur la tâche d’inférence logique et la tâche ListOps, et il montre également
de fortes propriétés de généralisation dans ces tâches. Enfin, nous évaluons notre
modèle sur les tâches (binaire et multi-classe) SST (Stanford Sentiment Treebank)
et rapportons des résultats comparables à l’état de l’art sur ces tâches.

Mots clés: réseaux de neurones, apprentissage profond, apprentissage de re-
présentations, apprentissage non supervisé, traitement automatique du langage na-
turel, modélisation du langage, réseaux de neurones augmentés par la mémoire

iv

Summary
In chapter 1, we introduce the basics of feed forward neural networks and recur-

rent neural networks. The chapter continues with the discussion of the backprop-
agation algorithm to train feed forward neural networks, and the backpropagation
through time algorithm to train recurrent neural networks. We also discuss three
different approaches in learning representations, namely supervised learning, unsu-
pervised learning, and a relatively new approach called self-supervised learning.

In chapter 2, we talk about the fundamentals of deep natural language pro-
cessing. Specifically, we cover word representations, sentence representations, and
language modelling. We focus on the evaluation and current state of the literature
for these concepts. We close the chapter by discussing large scale pre-training and
transfer learning in language.

In chapter 3, we investigate a set of self-supervised tasks that take advantage
of noise contrastive estimation in order to learn sentence representations using un-
labeled data. We train our model on a large corpora and evaluate our learned
sentence representations on a set of downstream natural language tasks from the
SentEval framework. Our model trained on the proposed tasks outperforms unsu-
pervised methods on a subset of tasks from SentEval.

In chapter 4, we introduce a memory augmented model called Ordered Mem-
ory with several improvements over traditional stack-augmented recurrent neural
networks. We introduce a new Stick-breaking attention mechanism inspired by Or-
dered Neurons (Shen et al., 2019) to write in and erase from the memory. A new
Gated Recursive Cell is also introduced to compose low level representations into
higher level ones. We show that this model performs well on the logical inference
task and the ListOps task, and it also shows strong generalization properties in
these tasks. Finally, we evaluate our model on the SST (Stanford Sentiment Tree-
bank) tasks (binary and fine-grained) and report results that are comparable with
state-of-the-art on these tasks.

Keywords: neural networks, deep learning, representation learning, unsu-
pervised learning, natural language processing, language modelling, memory aug-
mented neural networks

v

Contents

Résumé . iii

Summary . v

Contents . vi

List of Figures . viii

List of Tables . xi

List of Abbreviations . xiii

Acknowledgments . xiv

1 Neural Networks . 1
1.1 Artificial Neuron . 1

1.1.1 Activation functions . 1
1.2 Multilayer Neural Networks . 4
1.3 Recurrent Neural Networks . 5

1.3.1 Long Short-Term Memory 6
1.4 Training Neural Networks . 7

1.4.1 Loss Functions . 7
1.4.2 Gradient Method . 9
1.4.3 Adam Learning Algorithm 10
1.4.4 Backpropagation Algorithm 11
1.4.5 Backpropagation Through Time 12

1.5 Representation Learning . 15
1.5.1 Supervised Learning . 16
1.5.2 Unsupervised Learning . 16
1.5.3 Self-supervised Learning . 17

2 Deep Natural Language Processing 18
2.1 Word Representations . 18
2.2 Sentence Representations . 19

2.2.1 Evaluation . 20

vi

2.2.2 Related Work . 22
2.3 Language Models . 23
2.4 Large Scale Pre-training and Transfer Learning 25
2.5 Conclusion . 27

3 Learning Sentence Representation with Self-supervision 28
3.1 Introduction . 28
3.2 Approach . 29

3.2.1 Noise-contrastive estimation 29
3.2.2 Quick Thoughts . 30
3.2.3 Self Prediction . 31
3.2.4 Global to Local . 32

3.3 Experimental Setup . 34
3.3.1 Data . 34
3.3.2 Training . 34
3.3.3 Evaluation . 34

3.4 Results & Discussion . 35
3.5 Conclusion and Future Work . 38

4 Ordered Memory . 40
4.1 Introduction . 40
4.2 Related Work . 42
4.3 Model . 43

4.3.1 Stick-Breaking Attention Mechanism 46
4.3.2 Gated Recursive Cell . 47
4.3.3 Relations to ON-LSTM and Shift-reduce Parser 47

4.4 Experiments . 49
4.4.1 Logical Inference . 49
4.4.2 ListOps . 51
4.4.3 Stanford Sentiment Treebank 52

4.5 Conclusion . 55

5 Conclusion . 56

A Appendix . 58
A.1 Compositionality in sentence embeddings 59
A.2 Tree induction algorithm . 60
A.3 Dynamic Computation Time . 60
A.4 Hyperparameters . 61

Bibliography . 62

vii

List of Figures

1.1 A graphical illustration of an artificial neuron. The input is the
feature vector x = {x1, x2, ..., xk} to which a weight vector w =
{w1, w2, ..., wk} and a bias term b is assigned. 2

1.2 (a) the Exponential Linear Unit activation function, (b) the Rec-
tifier Linear Unit, (c) the Tanh activation function, and (d) the
sigmoid activation function. 3

1.3 A three layer neural network. The weight matrix w(l) and bias b(l)

connects layers (l − 1) and (l). An activation function is applied
after each weight multiplication and bias addition. 4

1.4 A graphical illustration of a recurrent neural network and its unfold-
ing in time (Figure adapted from LeCun et al. (2015)) 5

1.5 Architecture of an LSTM cell with its gating mechanism, repeated
on a sequence of three inputs. (Figure adapted from Christopher
Olah’s blog) . 7

1.6 A graphical illustration of the gradient descent algorithm, where the
loss surface of a neural net with two parameters (θ0, θ1) is visualized.
(Figure adapted from Andrew Ng’s slides.) 9

1.7 A pseudo code for the Adam learning algorithm (stochastic optimiza-
tion) (Kingma and Ba, 2015). Note that first moment and second
moment are computed using two moving averages, but starting at
zero. Hence, the moving averages are biased towards zero, but are
corrected later. 10

1.8 (a) The forward pass and (b) the backward pass in the backpropa-
gation algorithm on a neural network with two layers. Note that in
the backward pass, since we are using the chain rule, each module
should be differentiable so that we can go through them. (Figure
adapted from Hugo Larochelle’s slides.) 11

1.9 Illustration of an RNN unfolded with an output at step τ at the
end of the sequence. If there was an output at another time step
(e.g. at t) then gradient on the output ot can be computed by
backpropagating from there. (Figure adapted from Deep Learning
Book (Goodfellow et al., 2016).) . 14

viii

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://www.deeplearningbook.org/contents/rnn.html
https://www.deeplearningbook.org/contents/rnn.html

2.1 A depiction of the transfer learning procedure (Figure adapted from
Sebastian Ruder’s blog.) . 25

3.1 An example of the corruption applied on a sentence to obtain ŝsrc
and ŝtrg. 31

3.2 Overview of the Self Prediction task in which a sentence is corrupted
in two different ways (two corruptions are denoted by α and β). Once
the α and β corrupted versions of the sentence are obtained, one of
them will be encoded using the source encoder and the other using
the target encoder. The classifier should discriminate the correct
representation, which is the representation of the β-corrupted sen-
tence from the target encoder, based on the representation of the
α-corrupted sentence from the source encoder. Other sentences in
the batch are also corrupted and encoded. They will be used as
negative examples. 32

3.3 Overview of the Global to Local task. The source sentence is encoded
using the source encoder, whereas the target sentence is first fed
through the target encoder and then the two layer CNN network to
get ztrg of all positions. 33

4.1 An example run of the OM model. Let the input sequence a, b, c, d, e and

its hierarchical structure be as shown in the figure. Ideally, the OM model

will output the values shown in the above tables. The occupied slots in

Mt are highlighted in gray. The yellow slots in M̂t are slots that can be

attended on in time-step t+ 1. At the first time-step (t = 1), the model

will initialize the candidate memory M̂1 with input a and the memory

M0 with zero vectors. At t = 2, the model attends on the last memory

slot to compute M1 (Eqn. 4.5), followed by M̂2 (Eqn. 4.7). At t = 3,

given the input c, the model will attend on the last slot. Consequently

the memory slot for b is erased by −→π 3. Given Eqns. 4.6 and 4.7, our

model will recursively compute every slot in the candidate memory M̂ i
t

to include information from M̂ i−1
t and M i

t−1. Since the cell(·) function

only takes 2 inputs, the actual computation graph is a binary tree. . . . 43
4.2 Variations in induced parse trees under different runs of the logical in-

ference experiment. The left most tree is the ground truth and one of

induced structures. We have removed the parentheses in the original

sequence for this visualization. It is interesting to note that the differ-

ent structures induced by our model are all valid computation graphs to

produce the correct results. 52
4.3 (a) shows the accuracy of different models on the ListOps dataset. All

models have 128 dimensions. Results for models with * are taken from

Nangia and Bowman (2018). (b) shows our model accuracy on the

ListOps task when varying the the size of the training set. 53

ix

http://ruder.io/state-of-transfer-learning-in-nlp/

A.1 . 59
A.2 (a) Performance on different categories of the Comparisons dataset. (b)

NLI classifier architecture using OM as sentence encoder. 59

x

List of Tables

2.1 Subset of SentEval benchmarks along with the type of the task,
labels, and size of the train and test split. 2 and 6 are number of
classes in tasks, and [0,5] means that labels are scores between 0 and
5. 19

3.1 Scores of different unsupervised models on downstream tasks from
SentEval. GloVe bag-of-words model (Logeswaran and Lee, 2018),
Denoising auto-encoders and FastSent (Hill et al., 2016) and MC-
QT (Logeswaran and Lee, 2018) are baselines. Scores were obtained
from Logeswaran and Lee (2018). Higher numbers are better for
all the columns. Last column shows the average of scores on all of
the downstream tasks. MC-QT is the MultiChannel-QT model from
Logeswaran and Lee (2018). 35

3.2 Comparison against supervised models on downstream tasks from
SentEval. 36

3.3 Nearest neighbours retrieved by our model from a random pool of
sentences of BookCorpus dataset. 37

4.1 Test accuracy of the models, trained on operation lengths of ≤ 6, with

their out-of-distribution results shown here (lengths 7-12). We ran 5 dif-

ferent runs of our models, giving the error bounds in the last row. The

F1 score is the parsing score with respect to the ground truth tree struc-

ture. The TreeCell is a recursive neural network based on the Gated

Recursive Cell function proposed in section 4.3.2. For the Transformer

and Universal Transformer, we follow the entailment architecture intro-

duced in Radford et al. (2018). The model takes <start> sentence1

<delim> sentence2 <extract> as input, then use the vector represen-

tation for <extract> position at last layer for classification. ∗The results

for RRNet were taken from Jacob et al. (2018). 49
4.2 Partitions of the Logical Inference task from Bowman et al. (2014). Each

partitions include a training set filtered out all data points that match

the rule indicated in Excluded, and a test set formed by matched data

points. 51
4.3 Accuracy results of models on the SST. 53

xi

A.1 The hyperparameters used in the various experiments described. D
is the dimension of each slot in the memory. There are 4 different
dropout rates for different parts of the model: In dropout is applied
at the embedding level input to the OM model. Out dropout is
applied at the layers in the MLP before the final classification task.
Attention dropout is applied at the layers inside stick-breaking atten-
tion mechanism. Hidden dropout is applied at various other points
in the OM architecture. 61

xii

List of Abbreviations
AE Auto-Encoder
AMLP Augmented Multi-Layer Perceptron
ANN Artificial Neural Network
BN Batch Normalization
BPTT Backpropagation Through Time
CE Cross Entropy
CR Customer Reviews
DSAE Denoising Sequential Auto-Encoder
ELU Exponential Linear Unit
GD Gradient Descent
I.I.D Independent and Identically Distributed
INIT Initialization
MLP Multi-Layer Perceptron
MPQA Multi-Perspective Question Answering
MR Movie Reviews
MSE Mean Squared Error
MSRP Microsoft Research Paraphrase
NLI Natural Language Inference
NLL Negative Log-Likelihood
OM Ordered Memory
ON Ordered Neurons
PPL Perplexity
QT Quick Thought
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SICK-R Sentence Involving Compositional Knowledge Semantic Relatedness
SNLI Stanford Natural Language Inference
SUBJ Subjectivity/Objectivity
TREC Text REtrieval Conference
VAE Variational Auto-Encoder

xiii

Acknowledgments

I would like to thank my thesis advisor Aaron Courville for his mentorship and

many helpful discussions, for giving me the chance to work on many interesting

projects, and for sharing his knowledge with me.

I would like to extend my gratitude to my co-workers, Devon J Hjelm, Alessan-

dro Sordoni, Yikang Shen, Shawn Tan and Soroush Mehri who taught me much

during my time at MSR Montreal and Mila.

I would like to thank my parents and my brother for their love and support. I

would not have gotten this far if wasn’t for them.

I must also acknowledge great help and support from my friends and colleagues,

Carolyne Pelletier, Amirhossein Shajeri, Mona Saghaee, Mandana Samiei, Moham-

mad Pezeshki and Reyhaneh Askari Hemmat.

Finally, the work reported in this thesis would not have been possible without

the financial support from: Microsoft, NSERC, Calcul Quebec, Compute Canada,

the Canada Research Chairs and CIFAR.

xiv

1 Neural Networks

1.1 Artificial Neuron

An artificial neuron is a function from a single or multiple inputs to a single out-

put. Formally, considering a set of features for an example x = {x1, x2, x3, . . . , xk}
with k scalars, a set of k scalar weights w = {w1, w2, w3, . . . , wk} which correspond

to each feature, and finally a single scalar term b called bias, an artificial neuron

h(x) can be defined as:

h(x) = g
(k∑
i=1

wixi + b
)
, (1.1)

where function g(.) is a nonlinear function called an activation function. The input

to this function is also known as the pre-activation, where we refer to the weight

W and bias b as parameters. Equation 1.1 can also be written in vector notation,

h(x) = g
(
wTx + b

)
. (1.2)

It is worth mentioning that in the case where we have N number of examples,

x is a matrix of size k × N , whereas in the single input case, it is a vector of size

k × 1.

1.1.1 Activation functions

In Equation 1.1 the pre-activation is a simple linear weighted sum. In order to

make the function from input (or another layer) nonlinear, an activation function

is applied on the weighted sum. There are many activation functions, we introduce

five of them.

Sigmoid This activation function is an element-wise function that ranges be-

1

Figure 1.1 – A graphical illustration of an artificial neuron. The input is the feature vector
x = {x1, x2, ..., xk} to which a weight vector w = {w1, w2, ..., wk} and a bias term b is assigned.

tween 0 and 1. The sigmoid function has an ”S”-shaped curve. It squashes the

value of the input to the range of [0, 1]. Its output is centered on zero. Denoting

the pre-activation as z, this function is defined as follows,

sigmoid(z) =
1

1 + e−z
. (1.3)

Tanh This activation function is an element-wise function that ranges between

-1 and 1. It squashes the value of the input to the range of [−1, 1]. Its output

is centered on zero. Denoting the pre-activation as z, this function is defined as

follows,

tanh(z) =
ez − e−z

ez + e−z
. (1.4)

Rectifier Linear Unit (ReLU) is also an element-wise function which is

quite simple. The formula is max(0, z), which means that for negative inputs,

the output is zero, while for positive inputs, the output is the same as the input.

Despite its name, this activation function is non-linear and is one of the most

common activation functions.

Exponential Linear Unit (ELU) is the same as ReLU except for the outputs

of negative inputs. They are both identity functions for non-negative inputs. For

negative inputs, the output of ELU slowly becomes smooth until the output is

equal to −α, whereas that is not the case for ReLU which smooths sharply. ELU

has an extra constant value α in its formula which should be a positive number.

2

Figure 1.2 – (a) the Exponential Linear Unit activation function, (b) the Rectifier Linear Unit,
(c) the Tanh activation function, and (d) the sigmoid activation function.

ELU is defined as follows:

g(z) =

α(ez − 1) z ≤ 0

z z > 0
(1.5)

Empirically, optimization and training benefit from a small amount for gradient in

the negative region. That is not the case for ReLU, where in the negative region

the output of ReLU is always zero and therefore the gradient is zero in that region.

Softmax is a rather different and common type of activation function. It

calculates the probability distribution of an event over n different outputs. It could

be interpreted in a way that this function calculates the probabilities of each class

over all possible classes. For instance, it would calculate the probability of a target

word out of a vocabulary of words for a given input. Considering z as a vector of

n pre-activations, this function over these n classes is defined as follows,

g(z)i =
ezi∑n
k=1 e

k
(1.6)

A graphical illustration for the first three activation functions is shown in Figure

1.2. Note that since the Softmax activation function takes as input more that two

numbers it is not shown due to visualization limitations.

3

Figure 1.3 – A three layer neural network. The weight matrix w(l) and bias b(l) connects layers
(l−1) and (l). An activation function is applied after each weight multiplication and bias addition.

1.2 Multilayer Neural Networks

Artificial Neural Networks are structured in a layer-wise manner. In this struc-

ture, in one of the layers, neurons have different weights and biases and each one

is applied on the same input. As shown in figure 1.3, once we have the output of

one layer, it will act as the input to the next layer. A typical layer is defined as

follows,

h(l)(x) = g(b(l) + W(l)h(l−1)(x)), (1.7)

where h(l−1) is the nonlinear output of the l-th layer and h(0) = x. This multilayer

neural network can be seen as a powerful and complicated function from inputs

to outputs. This function is composed of many small functions. Multilayer neural

networks are capable of approximating any measurable function to a desired accu-

racy given sufficient number of layers and number of neurons in each layer (Hornik

et al., 1989). Finding the best parameters Ws and bs remains a challenging prob-

lem which we will cover in section 1.4.

4

1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are sequential data processing units, known

as recurrent cells. They take as their input the current input example along with

what they have processed in the previous time step. These models are very popular

and have shown great performance in many natural language tasks (Merity et al.,

2018b).

Figure 1.4 shows the unrolling of the recurrent neural network, which represents

the full network written out for the whole sequence. The computation in a typical

recurrent cell at time t can be written as

st = g(Uxt +Wst−1 + b), (1.8)

in which function g(.) is an activation function. Note that for a single set of

inputs, x is a sequence therefore a matrix of size l × d while in the case of N sets

of inputs, x is a tensor of size N × l × d.

In section 1.4.5, we will discuss how recurrent neural networks are trained using

the backpropagation through time algorithm. We will also touch on a problem

called vanishing gradients in RNNs introduced by Hochreiter (1998). This prob-

lem occurs during the training of RNNs dealing with long sequences, where as

we go back through time to calculate the gradients, they often become smaller

and smaller. In the next section we will discuss Long Short-Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al.,

Figure 1.4 – A graphical illustration of a recurrent neural network and its unfolding in time
(Figure adapted from LeCun et al. (2015))

5

2014), which are both effective solutions to address this problem.

1.3.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a variation of recurrent neural nets with a

more complicated cell architecture that uses a memory cell and gate units (Hochre-

iter and Schmidhuber, 1997). The LSTM cell computes a hidden state at timestep

t as follows:

it = σ(Wi,xxt + Wi,hht−1 + bi)

ot = σ(Wo,xxt + Wo,hht−1 + bo)

ct = ft � ct−1 + it � c̃t

ft = σ(Wf,xxt + Wf,hht−1 + bf)

c̃t = tanh (Wc̃,xxt + Wc̃,hht−1 + bc̃)

ht = ot � tanh (ct)

(1.9)

Where it denotes the input gate, ot denotes the output gate, ft denotes the forget

gate, c̃t denotes the candidate cell state and σ denotes the sigmoid activation

function. The LSTM cell has a sequential memory cell c that it can use to store and

retrieve information controlled by the gating mechanism, namely, the input, output

and forget gates. In order to have long-term information in the future, it has to

flow through these gates for many timesteps. This long-term information has shown

to be useful in many tasks (Merity et al., 2018b,a; Hochreiter and Schmidhuber,

1997; Peters et al., 2018). The architecture of the LSTM helps preserve the error

that can be backpropagated through time (and layers) and help with the vanishing

gradient problem (Hochreiter, 1998). This ability to avoid vanishing gradients

allows these recurrent nets to be able to learn over many time steps and long

sequences (Hochreiter and Schmidhuber, 1997; Pascanu et al., 2012). One popular

variant of LSTM is the Gated Recurrent Unit (GRU) (Cho et al., 2014) which we

use in our experiments in chapter 3. GRU replaces the input and forget gates with

a single update gate. It also combines the cell state and the hidden state. This

model is simpler than LSTM, and has been growing in popularity.

To sum up, recurrent neural networks can be seen as a complicated recurrent

function that is applied on a sequence. A more complicated network called Long

Short-Term Memory was introduced by (Hochreiter and Schmidhuber, 1997) to

overcome the fundamental problems of traditional RNNs and attempt at solving

many tasks at which traditional RNNs fall short. However, finding an appropriate

set of parameters (W,U’s and b’s) is still a difficult problem. In section 1.4, we

6

Figure 1.5 – Architecture of an LSTM cell with its gating mechanism, repeated on a sequence
of three inputs. (Figure adapted from Christopher Olah’s blog)

introduce the current methods for training such architectures.

1.4 Training Neural Networks

In the previous section, we introduced the structure and architectures of recur-

rent neural networks. As defined by the formulas, there are two sets of parameters,

namely weights and biases, which need to be trained and adapted so that the neural

net (or the model) acts in our desired way. This process of parameter adaptation

is called training which we will cover in the following subsections. We will cover

the methods to optimize the parameters of our model with respect to a certain loss

function.

1.4.1 Loss Functions

In the optimization literature, the loss function, also known as the cost function

is a function that maps a set of values or variables to a single real number, and

this single real number is known as the “loss”. Usually the process of training is to

minimize the expectation of this loss (or maximize its negative) over the training

data.

This process is also known as Empirical Risk Minimization in which we for-

mulate an empirical loss function considering the outputs and parameters of the

model. Let’s denote the parameters of the network as θ, input to the network as x

7

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

and the output of the network as ŷ. The objective of the network will be to mini-

mize the loss between the true (target) output y and the output of the network ŷ.

Assuming that there are N pairs of IID 1 data points (x(n),y(n)) and the output of

the network with parameters θ is ŷ(n) = f(x(n); θ), the cost function is defined as

follows:

L(x, θ) =
1

N

∑
n

l(f(x(n); θ),y), (1.10)

in which, the choice of l(., .) could be different and depends on the task. It could

be negative log likelihood (nll), Mean Squared Error, something more complicated

such as Noise Contrastive Estimation (NCE) loss (Gutmann and Hyvärinen, 2012)

or any other differentiable function.

Negative log-likelihood is usually used in a classification task with K classes,

where the value of each output neuron of the network is considered to be the

probability of that specific class. Formally, f(x)k = Pr(y = k|x). In this setting

l(., .) is the negative log-likelihood and is as follows:

l(f(x(n); θ),y) = −
∑
k

1y=k log f(x)k = − log f(x)y, (1.11)

where the choice of log is for numerical stability reasons and its properties help

simplify the math involved. Additionally, maximizing the whole data log-likelihood

is a convergent estimator of the parameters.

MSE is usually used in a regression task where the output of the model ŷ and

the target y are real values. It is formulated as follows:

l(f(x(n); θ),y) = ||f(x(n); θ)− y||2F , (1.12)

in which ||.||2F is the Frobenius norm, and the Frobenius norm of a vector X with

n elements is defined as follows:

||X||2F =

√√√√ n∑
i=1

x2i . (1.13)

1. independent, identically distributed

8

Figure 1.6 – A graphical illustration of the gradient descent algorithm, where the loss surface
of a neural net with two parameters (θ0, θ1) is visualized. (Figure adapted from Andrew Ng’s
slides.)

1.4.2 Gradient Method

The most common method of optimization for neural networks is gradient based

optimization, out of which, Gradient Descent and its variants are typically used.

Gradient Descent finds a local minimum of a surface by taking small steps towards

the direction of the gradient. This process is iterative and at each step of this

process the parameters of the model are updated as follows:

θt+1 ← θt − η∇θtL(x, θt), (1.14)

in which η is called the learning rate. A graphical illustration of this algorithm is

shown in figure 1.6 for a loss surface of a neural net with two parameters. The

values of the two parameters are shown on two axes and on the z axis the value of

the loss function is shown.

In practice, computing the gradient ∇θL(x, θ) for all the data points is usually

not suitable. Therefore, typically, Stochastic (mini-batch) Gradient Descent

(SGD) is used rather than full Gradient Descent. SGD is a more practical version

of Gradient Descent algorithm in which instead of computing the whole gradient

∇θL(x, θ) exactly, an estimate of the gradient is calculated based on a mini-batch

of randomly selected examples. Considering that these examples are randomly

selected, the expected value of the minibatch gradient is the same as the exact

gradient.

9

Figure 1.7 – A pseudo code for the Adam learning algorithm (stochastic optimization) (Kingma
and Ba, 2015). Note that first moment and second moment are computed using two moving
averages, but starting at zero. Hence, the moving averages are biased towards zero, but are
corrected later.

1.4.3 Adam Learning Algorithm

The learning rate introduced in section 1.4.2 is a very important hyperparameter

and plays a significant role in the training process, and one way to handle this

issue is to use a learning algorithm which can change and adapt the learning rate

throughout the course of training. Over the past few years many algorithms with

adaptive learning rate have been introduced. In this section, we will mention Adam

(Kingma and Ba, 2015) which is very common with recurrent neural networks and

also used in most of the experiments in section 3.4.

Adam is an adaptive learning rate method, i.e., it adapts different learning rates

for different parameters in the network. It uses the estimation of first and second

moment of the gradient to do so. It keeps a moving average of the gradient instead

of the gradient itself to take advantage of momentum. The pseudo code for this

algorithm can be seen in figure 1.7.

In this algorithm there are two other hyperparameters, namely, ρ1 and ρ2. In

practice, the value of ρ2 is set to 1 − 1
N

where N is the number of mini-batches.

While some problems with using Adam have been noticed in certain areas (Wilson

et al., 2017), researchers still work on ways to improve it.

10

Figure 1.8 – (a) The forward pass and (b) the backward pass in the backpropagation algorithm
on a neural network with two layers. Note that in the backward pass, since we are using the chain
rule, each module should be differentiable so that we can go through them. (Figure adapted from
Hugo Larochelle’s slides.)

1.4.4 Backpropagation Algorithm

In the previous sections, we covered how to train a neural network parameters

using the gradients of those parameters from the loss function. In this section, we

introduce a well-known and efficient algorithm to calculate the gradients. Back-

propagation finds the gradients in a feed forward multi-layer network iteratively

with the help of the chain rule. Clearly, in order to be able to use backpropaga-

tion and chain rule, both activation functions (as seen in 1.1.1) and pre-activations

should be differentiable. Back propagation has one forward and one backward pass.

In the forward pass we feed the inputs to the network, which means we compute the

pre-activations, activations, and finally the error (the loss function). In the back-

ward pass, the error is propagated on activations and then the pre-activations of

each layer of the network. Figure 1.8 illustrates the forward and backward passes.

Considering the network in Figure 1.8, the loss function l(f(x), y) negative log-

likelihood as described in sub-section 1.4.1, z(l) and h(l) as pre-activations and

activations at layer l respectively, then we can formally write the gradient of the

11

https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

loss with respect to the pre-activation at layer 2 as follows:

∇z(2)(x) − log f(x)y = −(e(y)− f(x)), (1.15)

where e(y) denotes a one-hot representation, i.e. all the elements in the vector are

zero except the element at index y which has a value of one. Since we want the

gradients of the parameters w.r.t loss, considering that we have ∇W(2)z(2)(x) =

h(1)(x) and ∇b(2)z(2)(x) = 1, then we can use chain rule and derive the gradients

as follows,

∇W(2) − log f(x)y =
(
∇z(2)(x) − log f(x)y

)
h(1)(x)T , (1.16)

∇b(2) − log f(x)y = ∇z(2)(x) − log f(x)y. (1.17)

Similarly, to back-propagate the gradient to the next layer of the network (the next

pre-activation to be exact), we can write,

∇h(1)(x) − log f(x)y = W(2)T
(
∇z(2)(x) − log f(x)y

)
, (1.18)

∇z(1)(x) − log f(x)y =
(
∇h(1)(x) − log f(x)y

)
� g′(z(1)(x)), (1.19)

where� is an element-wise multiplication (also known as Hadamard multiplication)

and g′(.) denotes the derivative of the activation function itself. It is clear that

once we have ∇z(1)(x) − log f(x)y, gradients of parameters in the first layer can be

computed in a similar manner.

1.4.5 Backpropagation Through Time

In the previous section we covered the backpropagation algorithm for feed for-

ward networks. Computing the gradients for parameters of the recurrent neural

nets are use a similar algorithm called backpropagation through time (BPTT). This

will ultimately compute the gradients of the RNN by applying the backpropaga-

tion algorithm to the unrolled graph of the RNN (as seen in Figure 1.4). Once the

gradients are obtained, one can use a gradient based method to train an RNN (e.g.

The algorithm in sub-section 1.4.3). Consistent with our notation in equation 1.8,

12

let’s assume that we compute the output of the RNN as follows,

ot = bo + V st (1.20)

ŷt = softmax(ot) (1.21)

Then if we assume that the loss at time step t is negative log-likelihood, we can

write the gradient of the loss w.r.t the pre-activation as

(∇otL) =
∂L(t)

∂ot
= ŷ(t) − e(y(t)) (1.22)

Note that in the computation graph of the RNN, the same weights (U,W) are used

in all of the time steps. So in order to find the gradients we would move backward

starting from the end of the sequence,

∇s(τ)L = V T∇o(τ)L (1.23)

where τ is the time step at which the loss is defined (the last step). Now, we iterate

backwards and propagate the gradients through time from this time step to t = 1.

It is worth noting that when computing the gradients for hidden state st (for t < τ),

the gradient signals come from both the next step’s hidden state s(t+1) and from

the output at that step ot. Therefore the gradient is calculated as follows,

∇s(t)L =
(∂s(t+1)

∂s(t)
)T

(∇s(t+1)L) +
(∂o(t)
∂s(t)

)T
(∇o(t)L) (1.24)

= W Tdiag
(
1−

(
s(t+1)

)2)
(∇s(t+1)L) + V T (∇o(t)L) (1.25)

in which diag
(
1−

(
s(t+1)

)2)
is a matrix with values 1− (s

(t+1)
i)2 on its diagonal.

Once the gradients of these intermediate hidden state of the unrolled RNN has

been found, the gradients for the parameters can be obtained. First the gradients

on biases are as follows,

∇boL =
∑
t

(∂o(t)
∂bo

)T∇o(t)L =
∑
t

∇o(t)L, (1.26)

∇bL =
∑
t

(∂s(t)
∂b(t)

)T∇s(t)L =
∑
t

diag
(
1−

(
s(t)
)2)∇h(t)L (1.27)

13

Figure 1.9 – Illustration of an RNN unfolded with an output at step τ at the end of the
sequence. If there was an output at another time step (e.g. at t) then gradient on the output
ot can be computed by backpropagating from there. (Figure adapted from Deep Learning Book
(Goodfellow et al., 2016).)

Note that we use the notation b(t) as a copy of b but only used at time step t.

Concretely, ∇b(t) denotes the contribution of that parameter at time step t to the

gradient. This notation is used because the parameters are shared across all the

time steps. Considering this notation, the gradients for the rest of the parameters

are as follows,

∇VL =
∑
t

∑
i

(∂L
∂o

(t)
i

)
∇V (t)o

(t)
i =

∑
t

(∇o(t)L)s(t)
T
, (1.28)

∇WL =
∑
t

∑
i

(∂L
∂s

(t)
i

)
∇W (t)s

(t)
i =

∑
t

diag
(
1−

(
s(t)
)2)

(∇s(t)L)s(t−1)
T
, (1.29)

∇UL =
∑
t

∑
i

(∂L
∂s

(t)
i

)
∇U(t)s

(t)
i =

∑
t

diag
(
1−

(
s(t)
)2)

(∇s(t)L)x(t)
T

(1.30)

It is worth mentioning that if x(t) has parameters (e.g. trainable word embeddings)

we would need to compute the gradients with respect to x(t) as well for training.

14

https://www.deeplearningbook.org/contents/rnn.html

The vanishing gradient problem happens during training of RNNs for long se-

quences. As it was discussed, to find the gradients of the weights in an RNN we

need to go back through time (through the unrolled graph of the RNN) and apply

the backpropagation algorithm. Some activation functions, like the sigmoid acti-

vation function, have this property that a large change in the input will cause a

small change in the output, therefore the derivative of it is small. When the inputs

of these activation functions (e.g. sigmoid function) becomes smaller or larger, the

derivative becomes really small and close to zero. Since these activation functions

are used in each time step in RNNs, many small derivatives are multiplied together,

so the gradient decreases exponentially as we go back in time, and this causes prob-

lems for training RNNs. Based on the activation function that is being used, one

could get exploding gradients instead of vanishing gradients, where the derivatives

are very large and since many large derivatives are multiplied together the gradient

will be too large. LSTM and GRU architectures were designed in a way to deal

with these problems, and both are widely used architectures nowadays.

1.5 Representation Learning

The performance of many machine learning algorithms depends on how the data

is represented. For instance, a feature representation of some data that separates

different classes well in the feature space can cause ideal learning using a simple

linear classifier in this representation space. In the past, it has been common for

human experts to manually engineer and create the features for the data to make

the machine learning algorithms work. This is both expensive and difficult, and we

would ideally like to create end-to-end trainable models that automatically learn

the best features for the task at hand on their own.

This representation learning can be done in different ways. In this section we

will discuss 1) supervised learning, 2) unsupervised learning and 3) self-supervised

learning.

15

1.5.1 Supervised Learning

In supervised learning, the assumption is that both the input and the desired

label or target value are provided for the training procedure. This way, training

would simply be finding a function that correctly maps the input to the target. Two

typical categories of supervised learning problems are classification and regression

problems. In classification, the target is a discrete and categorical variable, and in

regression, the target is a continuous variable. Neural networks are mostly used for

classification problems in supervised learning. Handwritten digit recognition, sen-

timent classification and object detection are instances of classification. Supervised

learning approaches can also be categorised into discriminative and generative mod-

els. A discriminative model learns the conditional probability distribution P (y|x),

where x is the input data and the task is to predict the labels y. In classification,

this amounts to finding decision boundary between classes. Generative models

learn the joint probability distribution P (x, y) and model the actual distribution

of each class. Logistic Regression and Support Vector Machines are examples of

discriminative learning approaches, and typical generative model approaches are

Naive Bayes and Gaussian Mixture Models.

Despite the fact that impressive results have been attained with deep supervised

learning, deep models require an extremely large amount of data that is labeled in

order to perform well. Unsupervised learning, on the other hand, does not require

labeled data, and therefore has gained a lot of interest.

1.5.2 Unsupervised Learning

The training data in unsupervised learning is a set of input points without any

labels or target values. The idea is to find and learn a useful representation of

the data without any pre-existing label or information for the model. Clustering

is a very common unsupervised learning method in machine learning, in which

the goal is to group similar examples together. This method is based on finding

commonalities in the data and acting based on such commonalities when presented

with a new input. In deep learning, manifold learning, density estimation and

unsupervised feature extraction are the most common methods of unsupervised

learning. Density estimation is to construct an estimate and adapt its parameters

to recover the underlying probability of data Pdata using the training examples.

16

Manifold learning is a dimensionality reduction method where the goal is to model

a complicated distribution Pdata with another distribution Pz in which z is a low-

dimensional latent variable, representing principal factors of variation of data.

1.5.3 Self-supervised Learning

Self-supervised learning is a family of tasks where the output labels are intrin-

sically provided by the data itself by taking advantage of a relation between parts

of the data or different views of it. For instance, learning to predict a missing

word given the context sentence around it, or inversely, learning to predict sur-

rounding words given a center word as input (also known as skip-gram (Mikolov

et al., 2013)). This learning technique does not require manual labeling of the

data; therefore massive amounts of unlabeled data is available to train models with

self-supervised tasks. Unsupervised learning and self-supervised learning are closer

to the way humans learn in the natural world, which appears to be with no (or

very little) explicit supervision.

In this chapter, the fundamentals of feed forward neural networks and recurrent

neural networks have been covered. We also discussed how to train these neural

networks using the gradient method and backpropagation algorithm. Chapter 3

relies heavily on using recurrent neural networks to process sentences and the Adam

learning algorithm to help train them. Further, three approaches for representation

learning were discussed. In the next chapter, we will discuss some models which

learn useful representations for language using self-supervision.

17

2 Deep Natural Language
Processing

Natural Language Processing and Understanding is a very active area of re-

search. Over the past couple of years an explosion in the amount of data available

with increasingly powerful computation resources has emerged from many meth-

ods of transfer learning and new architectures which has significantly improved the

state-of-the-art on a wide variety of NLP tasks (Peters et al., 2018; Radford et al.,

2018; Yang et al., 2019; Kiros et al., 2015; Devlin et al., 2019).

In this chapter, we first introduce word and sentence representations, then we

discuss the fundamentals of language modelling and recent related work. Finally,

large scale pre-training is introduced and some of the recent work in that domain

is discussed.

2.1 Word Representations

Neural Networks have been very successful in many natural language tasks, such

as machine translation (Vaswani et al., 2017), question answering (Yang et al., 2019;

Peters et al., 2018) and natural language inference (Liu et al., 2019; Yang et al.,

2019). In order to apply these neural networks on text, words are represented in a

vector space. Each word is represented by a vector that represents a point in an N -

dimensional space. Early approaches used very sparse vector representations of the

size of the vocabulary with a single 1 at the index of the word in the vocabulary.

This one-hot representation does not capture any similarity between two words.

So when the model sees the word ”cat” in a context during training, it cannot use

the learned information when seeing the word ”kitten” at test time in the same

context. Instead, many methods were introduced to represent a word based on the

context in which it usually appears (Mikolov et al., 2013; Pennington et al., 2014).

These methods learn an embedding matrix where its columns are the learned word

18

vectors that capture distributional semantics and co-occurrence statistics. There is

another method where the embedding matrix is randomly initialized and trained

as a part of the model. If the tasks has enough training data this method would

generally work well.

2.2 Sentence Representations

With the success of word representations, there have been some attempts to

encode a sentence into a fixed-length vector (Kiros et al., 2015; Hill et al., 2016;

Logeswaran and Lee, 2018). However, some researchers critically disagree with the

idea of a fixed-length sentence vector as Raymond J. Mooney said ”You can’t cram

the meaning of a whole %&!$ing sentence into a single $&!*ing vector!”. Despite

these critics, sentence embeddings have achieved great results in different tasks,

such as machine translation (Cho et al., 2014; Sutskever et al., 2014) and natu-

ral language inference (Williams et al., 2018). Kiros et al. (2015); Conneau et al.

(2017); Logeswaran and Lee (2018) have proposed universal sentence embeddings

which are trained on a large amount of text and then used in many different appli-

cations.

Table 2.1 – Subset of SentEval benchmarks along with the type of the task, labels, and size of
the train and test split. 2 and 6 are number of classes in tasks, and [0,5] means that labels are
scores between 0 and 5.

Task Type Output Train size Test size

MR (Pang and Lee,
2005)

movie review 2 11k 11k

CR (Hu and Liu, 2004) product review 2 4k 4k
SUBJ (Pang and Lee,
2004)

subjectivity clas-
sification

2 10k 10k

MPQA (Wiebe et al.,
2005)

opinion polarity 2 11k 11k

TREC (Voorhees and
Buckland, 2012)

question type
classification

6 6k 0.5k

MSRP (Dolan et al.,
2004)

paraphrase detec-
tion

2 4.1k 1.7k

SICK-R (Marelli et al.,
2014)

semantic textual
similarity

[0,5] 4.5k 4.9k

19

2.2.1 Evaluation

The quality of fixed-length sentence embeddings are typically evaluated using

a suite of natural language processing tasks called SentEval (Conneau and Kiela,

2018). This toolkit uses sentence embeddings as features on a set of natural lan-

guage inference and sentence similarity tasks, which includes binary and multi-class

classification. These tasks require understanding of sentence semantics to be solved.

Table 2.1 shows a subset of SentEval tasks which will be used to evaluate our sen-

tence embeddings in the next chapter. Here is a summary of the tasks in this subset

along with examples:

— Movie Reviews (MR) is a binary sentiment analysis of movie reviews.

Example: ”there are no special effects , and no hollywood endings.”– Output:

positive.

— Customer Reviews (CR) is a binary sentiment analysis of customer prod-

uct’s reviews. Example: ”while light , it will not easily go in small handbags

or pockets.” – Output: negative.

— Subjectivity/Objectivity (SUBJ) is a binary classification task where

the goal is to classify the sentences as subjective or objective. Example: ”the

story bogs down in a mess of purposeless violence.” – Output: subjective.

— Multi-Perspective Question Answering (MPQA) is a binary classi-

fication of evaluation polarity. Example: ”did not adequately” – Output:

negative.

— Text REtrieval Conference (TREC) is a multi-class classification of

question types. Example: ”When did the American Civil War end?” – Out-

put: NUM:date.

— Microsoft Research Paraphrase (MSRP) is a binary classification task

where the goal is to classify whether a pair of sentences are paraphrases

of each other or not. Example: ”British police claim they have been tak-

ing statements from more than 30 of the women.”, ”British military police

have also been taking statements from 30 of the women who have made the

allegations.” – Output: paraphrase.

— Sentence Involving Compositional Knowledge Semantic Related-

ness (SICK-R) is a task where the goal is to measure the relatedness

between sentences. The output is from 0 (not related) to 5 (related). Ex-

ample: ”Two people are kissing near a crowd”, ”A lady is being kissed by a

20

man” – Output: 4.1.

Moreover, learning the compositional property of language is also an important

attribute that sentence representation learning methods should have (Dasgupta

et al., 2018). In the context of language, a model with compositional property is

able to find the meaning of a complex phrase from the meaning of its constituent

phrases. Learning compositionality is discussed in more details in section 4.1. Das-

gupta et al. (2018) present a new dataset to evaluate compositionality in sentence

representations with a natural language inference task, where the task is to classify

a pair of sentences into entailment, neutral or contradiction classes. They create

the examples in three different categories, and the relation (entailment, neutral or

contradiction) between pairs of sentences in each example could be changed only

by changing the order of the words in each sentence.

— Same category in which the difference of the pairs is only in the order of

the words.

Entailment:

s1: the billionaire is more weary than the writer.

s2: the billionaire is more weary than the writer.

Contradiction:

s1: the billionaire is more weary than the writer.

s2: the writer is more weary than the billionaire.

— More-Less category in which the difference of the pairs is in whether they

have the word ”more” or the word ”less”.

Contradiction:

s1: the woman is less lazy than the fashion blogger.

s2: the woman is more lazy than the fashion blogger.

Entailment:

s1: the woman is less lazy than the fashion blogger.

s2: the fashion blogger is more lazy than the woman.

— Not category in which the difference of the pairs is in having the word

”not”.

Entailment:

s1: the woman is not more cheerful than the nurse.

s2: the nurse is more cheerful than the woman.

Contradiction:

21

s1: the woman is not more cheerful than the nurse.

s2: the woman is more cheerful than the nurse.

We use this dataset to evaluate the sentence representations from our proposed

model in chapter 4. The results are shown in section A.1.

2.2.2 Related Work

In the section, recent work in learning sentence representations is discussed.

These works can be categorized into two groups, 1) unlabeled data approaches and

2) labeled data approaches.

Unlabeled Data Approaches

Kiros et al. (2015) introduced the skip-thought objective for learning sentence

representations by predicting the adjacent sentences word by word. In their model

an RNN encoder is used to encode a source sentence and the output of this RNN

is used in a decoder RNN to predict the words of the context sentences.

Gan et al. (2016) proposed a similar encoder-decoder based model to learn

generic sentence representations using CNNs. In their method, a convolution neural

network is used as an encoder to map the source sentence into a fixed length

vector, which is fed into a decoder LSTM for reconstruction and predicting adjacent

sentences. In addition, they propose a hierarchical model to encode and predict

multiple following sentences.

Le and Mikolov (2014b) proposed another method called Paragraph Vector for

fixed length embeddings from sentences, paragraphs or documents by predicting

words in the documents.

Hill et al. (2016) introduce the sequential denoising autoencoder approach on

variable length sentences. In their method, they introduce noise into a sentence

by removing some words or switching bigrams with some probability. Their LSTM

based encoder-decoder model is trained with the denoising objective to predict the

original uncorrupted sentence.

Results from (Kiros et al., 2015) and (Logeswaran and Lee, 2018) suggest that

rich sentence semantics can be obtained from neighbouring sentences. One draw-

back of these is that they are slow to train. Hill et al. (2016) propose the FastSent

approach which predicts the adjacent sentences based on a bag of words (BOW)

22

representation of a source sentence.

Labeled Data Approaches

The following approaches are on structured data rather than raw text. These

methods are usually trained for a specific task. Hill et al. (2016) propose a method

to map dictionary definitions of words to the embeddings of the corresponding

defined words.

Hermann and Blunsom (2014) propose a multilingual framework, in which their

model is trained to assign close embeddings (via inner product minimization be-

tween embeddings) to paired sentences between the two languages and far embed-

dings for sentences that are not aligned.

In a more recent work, Conneau et al. (2017) show that their sentence represen-

tations from a model trained only on natural language inference corpora outperform

the previous methods on a set of unseen tasks referred to as ”transfer tasks”.

Subramanian et al. (2018) propose a multi-task learning setup in which they

train a model with multiple training objectives, such as skip-thought, neural ma-

chine translation, natural language inference and constituency parsing to combine

the benefits of these tasks into a single model. Hashimoto et al. (2017) also pro-

posed a multi-task framework and a strategy to train the model at different depth;

however, their goal is not re-usable generic sentence representations that transfer.

2.3 Language Models

Language Modelling is closely related to many natural language processing

tasks. At the core, the goal of language modelling is to estimate the probability

of a sequence of words (or tokens) p(x1, . . . , xT). Having this estimator can help

tasks like machine translation (Koehn et al., 2003) or speech recognition (Bahl

et al., 1990) in choosing the most probable sentence given many possible sentences.

Formally, the factorization for language modelling is as follows,

p(x1, . . . , xT) =
T∏
t=1

p(xt|x1, . . . , xt−1) (2.1)

23

It is also worth mentioning that language models are evaluated by perplexity mea-

surement,

ppl = 2
1
T

T∑
t=1
− log2 p(xt|x1,...,xt−1)

(2.2)

This is a measurement that shows how well a probability model predicts the data. A

lower value shows a model is better at predicting the data. In practice, since a cross-

entropy loss is usually used for these models perplexity can be an exponentiated

cross-entropy.

Traditionally, this was done using n-gram models. This model predicts the

probability of the next word based on a context window of size n− 1:

p(x1, . . . , xT) =
T∏
t=1

p(xt|xt−1−n, . . . , xt−1) (2.3)

where p(xt|xt−1−n, . . . , xt−1) is obtained by counting the occurrences of xt after the

window and then normalized as follows,

p(x1, . . . , xT) =
C(xt−1−n, . . . , xt−1, xt)

C(xt−1−n, . . . , xt−1)
(2.4)

But the main problem with this approach is that as the number of words in the

window grows, the count matrix will grow exponentially O(|V |n), where V is the

set of all the words in the dataset.

Bengio et al. (2003) introduced a neural language model that leverages word

embeddings and neural networks. These embeddings are vectors that act as rep-

resentations for words. Words that appear in similar context will have similar

embedding vectors (Mikolov et al., 2013). The neural language model uses these

semantic and syntactic closeness information in order to predict. But this model

lacks memory or history of what has happened before, so recurrent neural networks

language models (RNN LM) were introduced to capture long-term dependencies in

sequences (Mikolov et al., 2010) and make predictions based on what has happened

until now.

Merity et al. (2018b) investigates the methods and strategies for regularizing

and optimizing LSTM word-level language models. They show that using hidden to

hidden dropout as recurrent regularization helps improve the model’s performance.

24

They also introduce a variant of SGD algorithm that help reduce perplexities on

the Penn Treebank (Mikolov et al., 2010) and WikiText-2 datasets.

Dai et al. (2019) introduce a Transformer model in the setting of language

modelling that can learn dependencies beyond a fixed length vanilla Transformers.

2.4 Large Scale Pre-training and Transfer

Learning

The success of many natural language processing methods depends on their

ability to extract representations for content and meaning of each input sentence.

The representations and the encoding components involved are typically trained

directly for the target task in mind. This approach could be effective on some

tasks with a lot of data (Rajpurkar et al., 2018; Hassan et al., 2018), but this is

only plausible for a few NLP tasks with more than millions of training examples.

This has spiked interest in a technique called transfer learning, in which knowledge

from a source setting is extracted and reused in a target setting. Specifically,

in this technique, a model is first trained (pre-trained) in one domain with a lot

data, then it is adapted to a different domain, which typically has less data than

the source domain. Given the success of word embeddings and image encoders

Figure 2.1 – A depiction of the transfer learning procedure (Figure adapted from Sebastian
Ruder’s blog.)

(Zamir et al., 2018), it is plausible to believe this could be beneficial. It is shown

25

http://ruder.io/state-of-transfer-learning-in-nlp/
http://ruder.io/state-of-transfer-learning-in-nlp/

in the literature that language model pre-training is shown to be very effective at

capturing a variety of linguistic phenomena from a large corpus (Peters et al., 2018;

Devlin et al., 2019; Peters et al., 2018). This knowledge is then used (transferred) to

initialize and then train a model to perform well on a natural language processing

task. One property that makes these self-supervised methods attractive is that

since it does not require labeled data, vast amounts of available unlabeled data can

be used to pre-train models.

These methods extend the classic supervised machine learning paradigm to take

advantage of data from multiple tasks or domains to train a model with better gen-

eralization capabilities (Peters et al., 2018; Devlin et al., 2019; Peters et al., 2018).

Specifically, these methods in NLP combine a lot of data from the internet with

self-supervised methods as pre-training steps before fine-tuning for a downstream

task of interest.

Peters et al. (2018) introduced ELMo as a deep contextualized word representa-

tion model. The word vectors are learned from a combination of the hidden states

of a deep bidirectional language model pre-trained on 1 Billion Word Benchmark

(Chelba et al., 2014) data. The bi-directional language model is a combination of

a backward and forward language model.

Radford et al. (2018) pre-trains a uni-directional Transformer (Vaswani et al.,

2017) model with a language modelling criteria. Their model is later fine-tuned on

several supervised tasks. They report very good results on some of the tasks they

tested their model on.

Devlin et al. (2019) Take a similar approach by pre-training a Transformer

model in order to get a language representation model called BERT (Bidirectional

Transformers for Language Understanding). Their model is pre-trained on unla-

beled text to get representations by conditioning on both left and right context.

They pre-train BERT using two unsupervised tasks, namely, Masked Language

Modelling and Next Sentence Prediction (NSP). Specifically, in Masked LM they

simply mask out some percentage of the input tokens at random, and then predict

those masked tokens using the bidirectional representations. NSP is designed to

capture the relationship between two sentences. It is a binary task where the goal

is to predict whether sentence B is the actual sentence that follows sentence A.

They report exceedingly good results on several natural language tasks when they

fine-tune their model on those tasks.

26

Radford et al. (2018) train a very large Transformer model, called GPT-2, with

1.5B parameters that achieves state-of-the-art results on several language modelling

datasets when evaluated in a zero-shot setting. They also show that their model is

capable of generating very coherent texts. They demonstrate that a model trained

with a LM objective can perform well in zero-shot downstream tasks without fine-

tuning the parameters.

Yang et al. (2019) introduced a generalized pre-training method. While BERT’s

masked language modelling pre-training task is a denoising autoencoding task, XL-

Net, their proposed model, is pre-trained with an autoregressive permutation lan-

guage modelling method on different permutations of a factorization order (e.g.

x1 → x2 → x3 → · · · → xT). They achieve impressive results on many natural lan-

guage processing tasks such as question answering, sentiment analysis and natural

language inference.

2.5 Conclusion

In this chapter, fundamentals of deep natural language processing, such as word

embeddings and sentence representations were introduced. We also discussed trans-

fer learning and the benefits of self supervision in pre-training a model. Based on

the studies in the previous section, the process of training a model with a self

supervised method (e.g. language modelling) seems to learn some structures in

the language as a byproduct, which are very helpful when it comes to prediction

on downstream supervised tasks. This motivates our work discussed in the next

chapter, in which we leverage a set of self-supervised tasks to learn sentence repre-

sentations from unlabeled data that perform well in many different applications.

27

3
Learning Sentence
Representation with
Self-supervision

3.1 Introduction

Finding better and efficient sentence representations is still an active area of

research in deep natural language processing and much remains to be done. In

recent years, several methods have been proposed for learning sentence represen-

tations (Kiros et al., 2015; Logeswaran and Lee, 2018; Subramanian et al., 2018).

There are two major groups for these methods. The first group are methods that

provide sentence embeddings trained in an unsupervised (or self-supervised) man-

ner, such as SkipThought (Kiros et al., 2015), ParagraphVector (Le and Mikolov,

2014a), Quick Thought (Logeswaran and Lee, 2018), etc.

In the other group, models are trained on a specific task or on a set of tasks

using supervised training (Subramanian et al., 2018; McCann et al., 2017). The

appeal of the first group is that one can use them in a semi-supervised setting,

while taking advantage of large unlabeled data.

In this work we propose and investigate a set of self-supervised tasks to learn

sentence representations in an unsupervised setting by maximizing the mutual in-

formation between different views. This self-supervision framework allows us to

train our model on a large corpora (over 74 million sentences).

The mutual information (MI) maximization objective has been shown to result

in effective and flexible unsupervised representations (Hjelm et al., 2019; Bachman

et al., 2019). We use MI to explore a set of pre-training tasks designed to capture

information and structure from a large unlabeled corpora. We evaluate our sentence

representations on SentEval, a suite of natural language processing tasks (Conneau

and Kiela, 2018).

Section 3.2 details our proposed self-prediction tasks. We also provide an abla-

tion study on different tasks and evaluate our sentence representations on SentEval.

We report results and analysis in section 3.4.

28

3.2 Approach

In this section, we describe the proposed pre-training tasks. Our objectives

mainly work in a discriminative manner where the model attempts to find a target

embedding from a set of candidates. We explored the following approaches:

1. Quick Thoughts (Logeswaran and Lee, 2018)

2. Self Prediction

3. Global to Local Prediction

3.2.1 Noise-contrastive estimation

We train our proposed tasks using noise-contrastive estimation (Gutmann and

Hyvärinen, 2012). NCE is based on formulating a density estimation to a prob-

abilistic binary classification. This reduces down to training a logistic regression

classifier to discriminate between examples from the data distribution (positive

samples) and examples from the noise distribution (negative samples). What makes

NCE appealing is that it allows fitting an unnormalized model which makes com-

putation time independent of the number of possible output values, e.g. vocabulary

size when predicting the next word, or the number of possible sentences, here.

Suppose we want to learn the distribution of sentences for some specific context

sentence c, denoted by P c(s), where s denotes a sentence. The training data

would be tuples of the context and neighbour sentence [(c1, s1), (c2, s2), · · · (cn, sn)].

The probabilistic binary classification problem has its positive samples from the

training data, and its negative samples from a noise distribution Pneg(s). There

is freedom in choosing the noise distribution. Let’s assume that the distribution

of all the different unigram sentences in our dataset [s4, c10, s6, c . . .] is our noise

distribution. Let’s also assume that P c(pos = 1|s) is the probability that a given

sentence comes from the data (i.e. is in the context of c). We use our model, with

parameters θ, to estimate this probability as follows,

P c(pos = 1|s, θ) =
P c
θ (s)

P c
θ (s) + Pneg(s)

(3.1)

We can fit the model by maximizing the average log of the probability above over

29

the training data and noise samples, and we optimize:

L = −ED
[

logP c(pos = 1|s, θ)
]

(3.2)

Where D is our training data. Minimizing the loss in 3.2 maximizes a lower bound

on mutual information. For more details regarding the relationship between mutual

information and NCE see van den Oord et al. (2018) and Poole et al. (2019).

3.2.2 Quick Thoughts

The goal of this task is to capture information at sentence level by using the

representation of one sentence to predict the representation of its neighbouring

sentences. One benefit of doing this prediction in the representation space (rather

than in raw data space, e.g. generating the neighbouring sentences) is that the

model is free to focus on the important aspects of the sentence and ignore the

irrelevant parts of it. This task is to discriminate between the sentences that

appear in the context of a specific sentence and those that do not. In this task,

given a pair of consecutive sentences (Ssrc, Strg) in our dataset D, the objective is

to discriminate between Strg that follows Ssrc and the sentences that don’t follow

Ssrc (aka negative samples). Both sentences are encoded separately using two bi-

directional GRUs (Cho et al., 2014), Encsrc and Enctrg, the source encoder and

target encoder respectively. The source sentence Ssrc is encoded using Encsrc and

the target sentence Strg is encoded using Enctrg. The sentences are fed as inputs

to the GRUs and the final hidden states of the forward and backward GRUs are

concatenated and interpreted as the representation for sentences. Let Sneg be a

set of sentences that do not appear in the context of the source sentence Ssrc, as

negative samples, we can write the NCE loss,

LQT = −ED
[

log
exp(sim(hsrc, htrg))∑

c∈{Strg}∪Sneg

exp(sim(hsrc, hc))

]
(3.3)

Where hsrc, htrg and hc are source, target and candidate sentence representations

respectively. {Strg, Sneg} denotes a set containing the target sentence and all the

negative examples. sim is also a similarity function for which we use inner product

sim(i, j) = iT j.

30

Figure 3.1 – An example of the corruption applied on a sentence to obtain ŝsrc and ŝtrg.

3.2.3 Self Prediction

This task is designed to make the model robust to noise and small jitters in the

sentence sequence. Specifically, given a sentence s, we corrupt it twice differently

to obtain two different corrupted versions of sentence s, denoted by ŝsrc and ŝtrg (

figure 3.1). the task consists of discriminating ŝtrg from other sentences (negative

samples) given ŝsrc. The corruption procedure is done in two steps. The first step

is done similar to (Devlin et al., 2019) by replacing some percentage of the words

in the sentence with either a random word, the [MASK] token or the original word.

Specifically, we choose 50% of the words in a sentence, and replace 80% of them

with [MASK] token, replace 10% of them with a random word from the vocabulary

and we keep the other 10% unchanged. The second step consists of shuffling a word

in a sentence with another word chosen from the set of the same word and its next

k words with a uniform probability. In our experiments we set k = 3. Figure 3.1

shows an example of the result of this corruption.

Once ŝsrc is encoded using Encsrc and ŝtrg is encoded using Enctrg, a similar

NCE loss can be written,

LSP = −ED
[

log
exp(sim(ĥsrc, ĥtrg))∑

c∈{ŝtrg}∪Sneg

exp(sim(ĥsrc, hc))

]
(3.4)

Where Sneg denotes a set of negative examples, for which we sample from the

corrupted version of all the sentences in our dataset excluding s. ĥsrc and ĥtrg

are representations for corrupted sentences ŝsrc and ŝtrg obtained from Encsrc and

Enctrg respectively. The similarity function is same as in section 3.2.2 the inner

31

Figure 3.2 – Overview of the Self Prediction task in which a sentence is corrupted in two
different ways (two corruptions are denoted by α and β). Once the α and β corrupted versions
of the sentence are obtained, one of them will be encoded using the source encoder and the
other using the target encoder. The classifier should discriminate the correct representation,
which is the representation of the β-corrupted sentence from the target encoder, based on the
representation of the α-corrupted sentence from the source encoder. Other sentences in the batch
are also corrupted and encoded. They will be used as negative examples.

product. Figure 3.2 illustrates an overview of this task.

3.2.4 Global to Local

The intuition behind this task is to bridge the gap between prediction at sen-

tence level and word level. The Quick Thought and Self Prediction tasks predict

at sentence level and the masked language modelling pre-training task from Devlin

et al. (2019) predicts at word level. This task is designed to do predictions at a sub

sentence or phrase level. Given a pair of consecutive sentences (Ssrc, Strg) in our

dataset D, similar to section 3.2.2 both sequences are fed into two bi-directional

GRUs, Encsrc and Enctrg. Let hitrg denote the concatenation of the intermediate

hidden representation of the forward and backward target GRUs at step i. Then,

the sequence of all hidden states [h1trg, h
2
trg, . . . , h

T
trg] is fed into a two layer CNN

(Lecun et al., 1998) block with a kernel width of 3 and stride of 1. We will denote

the output as [z1trg, z
2
trg, . . . , z

T
trg]. Ssrc is encoded using Encsrc similar to section

3.2.2 to obtain hsrc. Given hsrc, the task is to discriminate between the interme-

diate representations of Strg, denoted by zitrg, and the intermediate representations

of sentences that don’t follow Ssrc. Note that in this task, negative examples are

32

also intermediate representations, i.e. outputs of the two layer CNN block, from

sentences that don’t follow Ssrc. Given this notation the NCE loss is as follows,

LG2L = −ED
[T∑
i=1

log
exp(sim(hsrc, z

i
trg))∑

zc∈{zitrg}∪Sneg

exp(sim(hsrc, zc))

]
(3.5)

Where Sneg is the set of negative examples, which are sampled from the distribu-

tion of intermediate representations (obtained in the same way as zitrgs) of all the

sentences in our dataset excluding Strg. Figure 3.3 shows an overview of this task.

An L2-norm of both representations hsrc and htrg is added to the loss for regu-

larization. At test time, to encode a sentence s we use the concatenation of the

output representation from both source and target encoders [Encsrc(s),Enctrg(s)]

as (Logeswaran and Lee, 2018) did in their experiments.

Figure 3.3 – Overview of the Global to Local task. The source sentence is encoded using the
source encoder, whereas the target sentence is first fed through the target encoder and then the
two layer CNN network to get ztrg of all positions.

33

3.3 Experimental Setup

3.3.1 Data

Our experimental setup is very similar to Logeswaran and Lee (2018). We

trained our models on the BookCorpus (Kiros et al., 2015) dataset. It consists of

74 million sentences. We use the case-sensitive vocabulary of size 100k for this

dataset from Logeswaran and Lee (2018).

3.3.2 Training

We conducted our experiments with a batch size of 400. Each example in a

batch is a pair of sentences from the corpus. Given that there is no order between

examples in the batch, we use all the sentences in the batch (instead of sampling

from the whole dataset) to form the set of negative examples Sneg for each task as

described in the section 3.2. Logeswaran and Lee (2018) states that this simple

random strategy for choosing negative samples performs as well as other more

complicated strategies. We train the models for 10 epochs with the Adam optimizer

and a learning rate of 5e − 4. GRU weights are initialized using uniform Xavier

initialization (Glorot and Bengio, 2010) and word embeddings are initialized from

GloVe embeddings (Pennington et al., 2014). For the experiments with more than

one pre-training task we sample two tasks for each batch at the same time and

compute the loss for those tasks. We also use a coefficient of 1e − 5 for the L2

regularization.

3.3.3 Evaluation

We use the SentEval toolkit to evaluate our sentence embeddings as features.

Following (Logeswaran and Lee, 2018) we evaluate our embeddings on the tasks

listed in table 2.1.

There is no dev split for the binary tasks MR, CR, SUBJ and MPQA. A 10-fold

cross validation is carried out to report the test scores for these tasks. The rest

of the tasks each have a dev split which are used to choose the best regularization

hyperparameter. We use the evaluation code and strategies from (Logeswaran and

Lee, 2018) and (Kiros et al., 2015). In this strategy, a softmax or logistic classifier is

34

simply trained on top of features/embeddings from the model. These embeddings

are kept fixed and only the classification layer is trained.

3.4 Results & Discussion

Table 3.1 – Scores of different unsupervised models on downstream tasks from SentEval. GloVe
bag-of-words model (Logeswaran and Lee, 2018), Denoising auto-encoders and FastSent (Hill
et al., 2016) and MC-QT (Logeswaran and Lee, 2018) are baselines. Scores were obtained from
Logeswaran and Lee (2018). Higher numbers are better for all the columns. Last column shows
the average of scores on all of the downstream tasks. MC-QT is the MultiChannel-QT model
from Logeswaran and Lee (2018).

Model MR CR SUBJ MPQA TREC MSRP SICK Avg

Acc F1 r ρ

GloVe BoW 78.1 80.4 91.9 87.8 85.2 72.5 81.1 0.764 0.687 80.2
SDAE 67.6 74.0 89.3 81.3 77.6 76.4 83.4 N/A N/A N/A
FastSent 71.8 78.4 88.7 81.5 76.8 72.2 80.3 N/A N/A N/A
MC-QT 80.4 85.2 93.9 89.4 92.8 76.9 84.0 0.868 0.801 85.5

QT+SP+G2L 79.97 84.7 94.58 89.47 92.0 74.67 82.02 0.867 0.798 84.87
QT+SP-G2L 80.42 84.86 94.12 89.42 91.2 74.72 81.76 0.866 0.798 84.76
QT+G2L-SP 80.21 85.6 94.38 89.51 90.4 74.96 81.89 0.861 0.794 84.71
SP+G2L-QT 79.87 84.25 93.59 89.01 92.0 75.77 82.5 0.864 0.796 84.77

Downstream Tasks Table 3.1 shows scores of multiple models on the Sen-

tEval downstream tasks from table 2.1. All the approaches compared in this table

learn representations from unlabeled data. GloVe bag-of-words sentence represen-

tations have dimension of 300. Dimensions for SDAE and FastSent are 2400 and

lower than 500 respectively. MC-QT and the rest of the models have dimension-

ality of 4800. Ablating the three tasks QT, SP and G2L leads to the importance

or gains from the corresponding task. Results show that having all three tasks

perform better than removing each one of them, but worse than MC-QT. More-

over, it can be seen that removing SP had the biggest effect on the performance,

and removing QT had the smallest effect. This shows the importance of each task

in training, but the relationship between these pre-training tasks could be more

complex during the pre-training phase.

35

Table 3.2 – Comparison against supervised models on downstream tasks from SentEval.

Model MR CR SUBJ MPQA SST-2 TREC MSRP SICK

Acc F1 r

GenSen 82.5 87.7 94.0 90.9 83.2 93.0 78.6 84.4 0.888
InferSent 81.1 86.3 92.4 90.2 84.6 88.2 76.2 83.1 0.884
DictRep 76.7 78.7 90.7 87.2 - 81.0 68.4 76.8 -
CaptionRep 61.9 69.3 77.4 70.8 - 72.2 - - -
NMT (En to Fr) 64.7 70.1 84.9 81.5 - 82.8 - - -
QT+SP+G2L 79.97 84.7 94.58 89.47 84.62 92.0 74.67 82.02 0.867

Table 3.2 shows our approach against supervised models that learn their rep-

resentations from labeled data. DictRep, CaptionRep and NMT (En to Fr) are

models introduced by Hill et al. (2016) which learn representations from map-

ping words and their definition, matching images and caption and neural machine

translation. InferSent model is from Conneau et al. (2017) which is trained on the

natural language inference task. GenSen is the model from Subramanian et al.

(2018) which is trained in a multi-task setup on NLI, Skip-thought, NMT, con-

stituency parsing. GenSen has a strong performance on most of the tasks, and it

is trained on approximately 124M sentence pairs (including the 74M sentences of

BookCorpus). Our model outperforms GenSen on the SUBJ and SST-2 tasks.

36

Nearest Neighbours To have a better idea of the embedding space and

its quality we extracted nearest neighbours of random query sentences. Table

3.3 shows a random query sentence from the BookCorpus and the corresponding

nearest neighbours from a pool of sentences from BookCorpus for the QT+SP+G2L

model. It is interesting how close in meaning the query and the neighbours are. In

the second example it is interesting how the representations for the query and N3

are close while their syntactic properties are not that close.

Table 3.3 – Nearest neighbours retrieved by our model from a random pool of sentences of
BookCorpus dataset.

QT+SP+G2L

Query Patrick ’ s stomach tightened a bit .
N1 Patrick hung up and went back to wait and pray for the happy ending of that

adventure to come soon .
N2 He had a feeling about all that .
N3 He felt a pressure on him .

Query Any other detail was lost in the moment of panic .
N1 The danger was imminent .
N2 They were caught off guard and had started to panic .
N3 She was unable to control the shivering in her body .

Query He could see that her mind was working through whether or not to accept his
offer , and he wondered if women were even allowed to read here .

N1 He could read her too well , and she was already feeling raw and exposed .
N2 He wanted to ask about something else , but was finding it difficult to speak .
N3 He nodded , and she wondered if this uncomfortable conversation was finally

at an end .

37

3.5 Conclusion and Future Work

This chapter explores a set of pre-training tasks and takes advantage of mu-

tual information maximization to learn representations in an unsupervised method.

These tasks, namely, quick thoughts objective, self prediction and global to lo-

cal prediction (described in section 3.2) find structure that is effective in transfer

tasks. These ”transfer tasks” are downstream tasks which are not used during

training/pre-training. We evaluate our representations on downstream tasks from

SentEval (table 2.1) toolkit against models and approaches that use unlabeled data

as well as those that use labeled/structured data.

An ablation study is done on these tasks and based on the results we conclude

that:

— Applying all three tasks together results in better overall performance.

— Removing the self prediction task led to the largest drop in the average

score. Surprisingly, removing the quickthought task had the smallest effect

on the average scores on the downstream tasks.

— Our approach achieves somewhat comparable results to supervised methods

which learn their representations from structured data and achieves better

scores in the SST-2 and SUBJ tasks.

— The nearest neighbour sentences retrieved show that the sentence representa-

tions learned by our model captures the meaning and semantics of sentences

rather than just focusing on the syntax.

We hope that these explorations and comparisons between different tasks will

help us to have a better understanding of self-supervision, unsupervised task design

and architecture choices.

38

Prologue to the Article

Ordered Memory.Yikang Shen, Arian Hosseini, Shawn Tawn, Zhouhan Lin,

Alessandro Sordoni, and Aaron Courville. Accepted in the 33rd conference on Neu-

ral Information Processing Systems, NeurIPS, 2019

An important goal in human-like AI is to have natural language processing

models that take the compositional property of language into account. This al-

lows the models to understand the meaning of an expression from the meaning

of its parts (Montague, 1970; Dowty, 2007). Studies have shown the failure of

neural networks in achieving compositionality (Gershman and Tenenbaum, 2015;

Lake and Baroni, 2018; Loula et al., 2018). Dasgupta et al. (2018) propose a new

dataset for the natural language inference task that requires compositionality in

order to be solved. They evaluate the (state-of-the-art) sentence representations

from InferSent (Conneau et al., 2017) and report poor results on their dataset,

showing that there is a gap between sentence representation methods and humans

in learning compositionality. Ordered Memory is a step towards closing this gap.

Specifically, the model presented in this work is trying to compute a sentence rep-

resentation 1 from a tree structure. We did not try to pre-train the proposed model

with self-supervised tasks, but this idea can be explored in future work.

Personal Contribution. I contributed to architecture design and implementa-

tions. Then, I implemented and carried out experiments on ListOps, SCAN and

Stanford Sentiment Treebank (SST). Yikang and I conducted different experiments

on SST (binary and fine-grained). We implemented the majority of the code in py-

torch (Paszke et al., 2017). I contributed to the writing of the paper as well, but

most of the paper is written by Yikang Shen and Shawn Tawn, with valuable in-

puts, reviews and rewritings from our co-authors Alessandro Sordoni and Zhohan

Lin, and my supervisor Prof. Aaron Courville.

1. The input sequences in experiments 4.4.1 and 4.4.2 are in fact utterances, but one could
consider them to be sentences.

39

4 Ordered Memory

4.1 Introduction

A long-sought after goal in natural language processing is to build models that

account for the compositional nature of language — granting them an ability to

understand complex, unseen expressions from the meaning of simpler, known ex-

pressions (Montague, 1970; Dowty, 2007). Despite being successful in language

generation tasks, recurrent neural networks (RNNs, Elman 1990) fail at tasks that

explicitly require and test compositional behavior (Lake and Baroni, 2018; Loula

et al., 2018). In particular, Bowman et al. (2015), and later Bahdanau et al.

(2019) give evidence that, by exploiting the appropriate compositional structure of

the task, models can generalize better to out-of-distribution test examples. Results

from Andreas et al. (2016) also indicate that recursively composing smaller modules

results in better representations. The remaining challenge, however, is learning the

underlying structure and the rules governing composition from the observed data

alone. This is often referred to as the grammar induction (Chen, 1995; Cohen et al.,

2011; Roark, 2001; Chelba and Jelinek, 2000; Williams et al., 2018).

Fodor and Pylyshyn (1988) claim that “cognitive capacities always exhibit cer-

tain symmetries, so that the ability to entertain a given thought implies the ability

to entertain thoughts with semantically related contents,” and use the term system-

aticity to describe this phenomenon. Exploiting known symmetries in the structure

of the data has been a useful technique for achieving good generalization capabil-

ities in deep learning, particularly in the form of convolutions (Fukushima, 1980),

which leverage parameter-sharing. If we consider architectures used in Socher et al.

(2013) or Tai et al. (2015), the same recursive operation is performed at known

points along the input where the substructures are meant to be composed. Could

symmetries in the structure of natural language data be learned and exploited by

models that operate on them?

40

In recent years, many attempts have been made in this direction using neu-

ral network architectures (Grefenstette et al., 2015; Bowman et al., 2016; Williams

et al., 2018; Yogatama et al., 2018; Shen et al., 2019; Dyer et al., 2016). These mod-

els typically augment a recurrent neural network with a stack and a buffer which

operate in a similar way to how a shift-reduce parser builds a parse-tree. While

some assume that ground-truth trees are available for supervised learning (Bowman

et al., 2016; Dyer et al., 2016), others use reinforcement learning (RL) techniques to

learn the optimal sequence of shift reduce actions in an unsupervised fashion (Yo-

gatama et al., 2018).

To avoid some of the challenges of RL training (Havrylov et al., 2019), some

approaches use a continuous stack (Grefenstette et al., 2015; Joulin and Mikolov,

2015; Yogatama et al., 2018). These can usually only perform one push or pop ac-

tion per time step, requiring different mechanisms — akin to adaptive computation

time (ACT, Graves 2016; Jernite et al. 2017) — to perform the right number of shift

and reduce steps to express the correct parse. In addition, continuous stack models

tend to “blur” the stack due to performing a “soft” shift of either the pointer to the

head of the stack (Grefenstette et al., 2015), or all the values in the stack (Joulin

and Mikolov, 2015; Yogatama et al., 2018). Finally, while these previous models

can learn to manipulate a stack, they lack the capability to lookahead to future

tokens before performing the stack manipulation for the current time step.

In this paper, we propose a novel architecture: Ordered Memory (OM), which

includes a new Stick-breaking Attention mechanism and a new Gated Recurrent

Cell. We demonstrate that our method generalizes for synthetic tasks where the

ability to parse is crucial to solving them. In the Logical inference dataset (Bow-

man et al., 2015), we show that our model can systematically generalize to unseen

combination of operators. In the ListOps dataset (Nangia and Bowman, 2018),

we show that our model can learn to solve the task with an order of magnitude

less training examples than the baselines. The parsing experiments shows that our

method can effectively recover the latent tree structure of the both tasks with very

high accuracy. We also perform experiments on the Stanford Sentiment Treebank,

in both binary classification and fine-grained settings (SST-2 & SST-5), and find

that we achieve comparative results to the current benchmarks.

41

4.2 Related Work

Composition with recursive structures has been shown to work well for cer-

tain types of tasks. Pollack (1990) first suggests their use with distributed rep-

resentations. Later, Socher et al. (2013) shows their effectiveness on sentiment

analysis tasks. Recent work has demonstrated that recursive composition of sen-

tences is crucial to systematic generalisation (Bowman et al., 2015; Bahdanau et al.,

2019). Kuncoro et al. (2018) also demonstrate that architectures like Dyer et al.

(2016) handle syntax-sensitive dependencies better for language-related tasks.

Schützenberger (1963) first showed an equivalence between push-down automata

(stack-augmented automatons) and context-free grammars. Knuth (1965) intro-

duced the notion of a shift-reduce parser that uses a stack for a subset of formal

languages that can be parsed from left to right. This technique for parsing has been

applied to natural language as well: Shieber (1983) applies it to English, using as-

sumptions about how native English speakers parse sentences to remove ambiguous

parse candidates. More recently, Maillard et al. (2019) shows that a soft tree could

emerge from all possible tree structures through back propagation.

The idea of using neural networks to control a stack is not new. Zeng et al. (1994)

uses gradient estimates to learn to manipulate a stack using a neural network. Das

et al. (1992) and Mozer and Das (1993) introduced the notion of a continuous stack

in order for the model to be fully differentiable. Much of the recent work with stack-

augmented networks built upon the development of neural attention (Graves, 2013;

Bahdanau et al., 2015; Weston et al., 2015). Graves et al. (2014) proposed methods

for reading and writing using a head, along with a “soft” shift mechanism. Apart

from using attention mechanisms, Grefenstette et al. (2015) proposed a neural stack

where the push and pop operations are made to be differentiable, which worked

well in synthetic datasets. Yogatama et al. (2017) proposes RL-SPINN where the

discrete stack operations are directly learned by reinforcement learning.

42

Figure 4.1 – An example run of the OM model. Let the input sequence a, b, c, d, e and
its hierarchical structure be as shown in the figure. Ideally, the OM model will output
the values shown in the above tables. The occupied slots in Mt are highlighted in gray.
The yellow slots in M̂t are slots that can be attended on in time-step t+ 1. At the first
time-step (t = 1), the model will initialize the candidate memory M̂1 with input a and
the memory M0 with zero vectors. At t = 2, the model attends on the last memory slot
to compute M1 (Eqn. 4.5), followed by M̂2 (Eqn. 4.7). At t = 3, given the input c, the
model will attend on the last slot. Consequently the memory slot for b is erased by −→π 3.
Given Eqns. 4.6 and 4.7, our model will recursively compute every slot in the candidate
memory M̂ i

t to include information from M̂ i−1
t and M i

t−1. Since the cell(·) function only
takes 2 inputs, the actual computation graph is a binary tree.

4.3 Model

The OM model actively maintains a stack and processes the input from left to

right, with a one-step lookahead in the sequence. This allows the OM model to

decide the local structure more accurately, much like a shift-reduce parser (Knuth,

1965).

At a given point t in the input sequence x (the t-th time-step), we have

a memory of candidate sub-trees spanning the non-overlapping sub-sequences in

x1, . . . , xt−1, with each sub-tree being represented by one slot in the memory stack.

We also maintain a memory stack of sub-trees that contains x1, . . . , xt−2. We use

the input xt to choose its parent node from our previous candidate sub-trees. The

descendant sub-trees of this new sub-tree (if they exist) are removed from the mem-

ory stack, and this new sub-tree is then added. We then build the new candidate

sub-trees that include xt using the current input and the memory stack. In what

follows, we describe the OM model in detail. To facilitate a clearer description, a

discrete attention scheme is assumed, but only “soft” attention is used in both the

43

training and evaluation of this model.

Let D be the dimension of each memory slot and N be the number of memory

slots. At time-step t, the model takes four inputs:

— Mt−1: a memory matrix of dimension N × D, where each occupied slot

is a distributed representation for sub-trees spanning the non-overlapping

subsequences in x1, ..., xt−2;

— M̂t−1: a matrix of dimension N ×D that contains representations for can-

didate subtrees that include the leaf node xt−1;

— −→π t−1: a vector of dimension N , where each element indicate whether the

respective slot in Mt−1 is occupied by a subtree.

— xt: a vector of dimension Din, the input at time-step t.

The model first transforms xt to a D dimension vector.

x̃t = LN(Wxt + b) (4.1)

where LN(·) is the layer normalization function (Ba et al., 2016).

To select the candidate representations from M̂t−1, the model uses x̃t as its

query to attend on M̂t−1:

pt = Att(x̃t, M̂t−1,
−→π t−1) (4.2)

−→π i
t =

∑
j≤i

pjt (4.3)

←−π i
t =

∑
j≥i

pjt (4.4)

where pt is a distribution over different memory slots in M̂t−1 and pjt is the prob-

ability on the j-th slot. Att is the attention mechanism that gives a categorical

probability distribution over memory slots. This function is described in 4.3.1. In-

tuitively, pt can be viewed as a pointer to the head of the stack, −→π t is an indicator

value over where the stack exists, and ←−π t indicates where in the memory will be

forgotten (and replaced). 1 − ←−π t is an indicator over what will be kept in the

memory slots.

To compute Mt, we combine M̂t−1 and Mt−1 through:

M i
t = M i

t−1 · (1−←−π)i + M̂ i
t−1 · ←−π i

t, ∀i (4.5)

44

Data: x1, ..., xT
Result: oNT
initialize M0, M̂0;
for i← 1 to T do

x̃t = LN(Wxt + b);

pt = Att(x̃t, M̂t−1,
−→π t−1);

−→π i
t =

∑
j≤i p

j
t ;

←−π i
t =

∑
j≥i p

j
t ;

M̂0
t = x̃t;

for i← 1 to N do

M i
t = M i

t−1 · (1−←−π t)
i + M̂ i

t−1 · ←−π i
t;

oit = cell(M i
t , M̂

i−1
t);

M̂ i
t = x̃t · (1−−→π t)

i + oit · −→π i
t;

end

end
return oNT ;

Algorithm 1: Ordered Memory algorithm. The attention function Att(·) is defined

in section 4.3.1. The recursive cell function cell(·) is defined in section 4.3.2.

Suppose pt points at a memory slot yt in m̂. Then ←−π t will write M̂ i
t−1 to M i

t

for i ≤ yt, and (1−←−π t) will write M i
t−1 to M i

t for i > yt. In other words, Eqn. 4.5

copies everything from Mt−1 to the current timestep, up to the where pt is pointing.

We believe that this is a crucial point that differentiates our model from past

stack-augmented models like Yogatama et al. (2017) and Joulin and Mikolov (2015).

Both constructions have the 0-th slot as the top of the stack, and perform a convex

combination of each slot in the memory / stack given the action performed. More

concretely, a distribution over the actions that is not sharp (e.g. 0.5 for pop)

will result in a weighted sum of an un-popped stack and a pop stack, resulting

in a blurred memory state. Compounded, this effect can make such models hard

to train. In our case, because (1 − ←−π t)
i is non-decreasing with i, its value will

accumulate to 1 at or before N . This results in a full copy, guaranteeing that the

earlier states are retained. This full retention of earlier states may play a part in

the training process, as it is a strategy also used in Gulcehre et al. (2017), where

all the memory slots are filled before any erasing or writing takes place.

To compute candidate memories for time step t, we recurrently update all mem-

45

ory slots with

oi = cell(M i
t , M̂

i−1
t) (4.6)

M̂ i
t = x̃t · (1−−→π t)

i+1 + oit · −→π i
t,∀i (4.7)

where M̂0
t is xt. The cell(·) function can be seen as a recursive composition function

in a recursive neural network (Socher et al., 2013). We propose a new cell function

in section 4.3.2.

The output of time step t is the last memory slot M̂N
t of the new candidate

memory, which summarizes all the information from x1, ..., xt using the induced

structure. The pseudo-code for the OM algorithm is shown in Algorithm 1.

4.3.1 Stick-Breaking Attention Mechanism

Instead of the cumax(·) function used in Shen et al. (2019) and the softmax(·)
function, we use a stick breaking formulation to model the categorical distribution

for selecting the split point to erase/preserve memory.

Given the projected input x̃t and candidate memory M̂ i
t−1, we feed every (x̃t, M̂

i
t−1)

pair into a feed-forward network:

αit = wAtt
2 tanh

(
WAtt

1

[
M̂ i

t−1

x̃t

]
+ b1

)
+ b2 (4.8)

βit = exp

(
αit −max

j
αjt

)
(4.9)

where WAtt
1 is N × 2N matrix, wAtt

2 is N dimension vector, and the output βit is a

scalar. We further mask the βt with the cumulative probability from the previous

time step to prevent the model attending on non-existent parts of the stack:

β̂it = βit
−→π i+1

t−1 (4.10)

where −→π N+1
t−1 = 1 and −→π ≤N0 = 0. We can then compute the probability distribution:

pit = β̂it ·
i−1∏
j=1

(
1− β̂jt

)
(4.11)

46

This formulation bears similarity to the method used for the multi-pop mechanism

seen in Yogatama et al. (2018).

4.3.2 Gated Recursive Cell

Instead of using the recursive cell proposed in TreeLSTM (Tai et al., 2015) and

RNTN (Socher et al., 2010), we propose a new gated recursive cell, which is inspired

by the feed-forward layer in Transformer (Vaswani et al., 2017). The inputs M i
t

and M̂ i−1
t are concatenated and fed into a fully connect feed-forward network:

vit

hit

cit

uit

 = WCell
2 ReLU

(
WCell

1

[
M̂ i−1

t

M i
t

]
+ b1

)
+ b2 (4.12)

Like the TreeLSTM, we compute the output with a gated combination of the inputs

and uit:

oit = LN(σ(vit)� M̂ i−1
t + σ(hit)�M i

t + σ(cit)� uit) (4.13)

where vit is the vertical gate that controls the input from previous slot, hit is horizon-

tal gate that controls the input from previous time step, cgit is cell gate that control

the uit, o
i
t is the output of cell function, and LN(·) share the same parameters with

the one used in the Eqn. 4.1.

4.3.3 Relations to ON-LSTM and Shift-reduce Parser

Ordered Memory is implemented following the principles introduced in Ordered

Neurons (Shen et al., 2019). Our model is related to ON-LSTM in several aspects:

1) The memory slots are similar to the chunks in ON-LSTM, when a higher ranking

memory slot is forgotten/updated, all lower ranking memory slots should likewise

be forgotten/updated; 2) ON-LSTM uses the monotonically non-decreasing master

forget gate to preserve long-term information while erasing short term information.

The OM model uses the cumulative probability −→π t; 3) Similarly, the master input

gate used by ON-LSTM to control the writing of new information into the memory

is replaced with the reversed cumulative probability ←−π t in the OM model.

47

At the same time, the internal mechanism of OM can be seen as a continuous

version of a shift-reduce parser. At time step t, a shift-reduce parser could perform

zero or several reduce steps to combine the heads of stack, then shift the word t into

stack. Similarly, the OM can perform zero or several reduce steps. A single reduce

step is implemented with the Gated Recursive Cell. This cell combines M̂ i−1
t , the

output of previous reduce step, and M i
t , the next element in stack, into M̂ i

t , the

representation for new sub-tree. The number of reduce steps is modeled with the

stick-breaking attention mechanism. The probability distribution pt models the

position of the head of stack after all necessary reduce operations are performed.

The shift operations are implemented as copying the current input word xt into

candidate memory M̂t.

The upshot of drawing connections between our model and the shift-reduce

parser is interpretability: We can approximately infer the computation graph con-

structed by our model with Algorithm 2 (see appendix). The algorithm can be

used for the latent tree induction tasks in (Williams et al., 2018).

48

Table 4.1 – Test accuracy of the models, trained on operation lengths of ≤ 6, with their
out-of-distribution results shown here (lengths 7-12). We ran 5 different runs of our
models, giving the error bounds in the last row. The F1 score is the parsing score with
respect to the ground truth tree structure. The TreeCell is a recursive neural network
based on the Gated Recursive Cell function proposed in section 4.3.2. For the Transformer
and Universal Transformer, we follow the entailment architecture introduced in Radford
et al. (2018). The model takes <start> sentence1 <delim> sentence2 <extract>

as input, then use the vector representation for <extract> position at last layer for
classification. ∗The results for RRNet were taken from Jacob et al. (2018).

Model Number of Operations Sys. Gen.
7 8 9 10 11 12 A B C

Sequential sentence representation
LSTM 88 84 80 78 71 69 84 60 59
RRNet* 84 81 78 74 72 71 – – –
ON-LSTM 91 87 85 81 78 75 70 63 60

Inter sentence attention
Transformer 51 52 51 51 51 48 53 51 51
Universal Transformer 51 52 51 51 51 48 53 51 51

Our acc 98 ± 0.4 97 ± 0.5 96 ± 0.8 94 ± 0.8 94 ± 1.5 92 ± 0.7 94 91 81
Our F1 87.9± 8.9

Recursive NN + ground-truth structure
TreeLSTM 94 92 92 88 87 86 91 84 76
TreeCell 98 96 96 95 93 92 95 95 90
TreeRNN 98 98 97 96 95 96 94 92 86

4.4 Experiments

We evaluate the tree learning capabilities of our model on two datasets: logical

inference (Bowman et al., 2015) and ListOps (Nangia and Bowman, 2018). In these

experiments, we infer the trees with our model by using Alg. 2 and compare them

with the ground-truth trees used to generate the data. We evaluate parsing per-

formance using the F1 score 1. We also evaluate our model on Stanford Sentiment

Treebank (SST), which is the sequential labeling task described in Socher et al.

(2013).

4.4.1 Logical Inference

The logical inference task described in Bowman et al. (2015) has a vocabulary

of six words and three logical operations, or, and, not. The task is to classify the

relationship of two logical clauses into seven mutually exclusive categories. We use

1. All parsing scores are given by Evalb https://nlp.cs.nyu.edu/evalb/

49

https://nlp.cs.nyu.edu/evalb/

a multi-layer perceptron (MLP) with (h1, h2, h1 ◦ h2, |h1 − h2|) as input, where h1

and h2 are the M̂N
T of their respective input sequences. We compare our model

with LSTM, RRNet (Jacob et al., 2018), ON-LSTM (Shen et al., 2019), Tranformer

(Vaswani et al., 2017), Universal Transformer (Dehghani et al., 2019), TreeLSTM

(Tai et al., 2015), TreeRNN (Bowman et al., 2015), and TreeCell. We used the

same hidden state size for our model and baselines for proper comparison. Hyper-

parameters can be found in Appendix A.4. The model is trained on sequences

containing up to 6 operations and tested on sequences with higher number (7-12)

of operations.

The Transformer models were implemented by modifying the code from the

Annotated Transformer 2. The number of Transformer layers are the same as the

number of slots in Ordered Memory. Unfortunately, we were not able to successfully

train a Transformer model on the task, resulting in a model that only learns the

marginal over the labels. We also tried to used Transformer as a sentence embed-

ding model, but to no avail. Tran et al. (2018) achieves similar results, suggesting

this could be a problem intrinsic to self-attention mechanisms for this task.

Length Generalization Tests The TreeRNN model represents the best results

achievable if the structure of the tree is known. The TreeCell experiment was

performed as a control to isolate the performance of using the cell(·) composition

function versus using both using cell(·) and learning the composition with OM.

The performance of our model degrades only marginally with increasing number

of operations in the test set, suggesting generalization on these longer sequences

never seen during training.

Parsing results There is a variability in parsing performance over several runs

under different random seeds, but the model’s ability to generalize to longer se-

quences remains fairly constant. The model learns a slightly different method of

composition for consecutive operations. Perhaps predictably, these are variations

that do not affect the logical composition of the subtrees. The source of different

parsing results can be seen in Figure 4.2. The results suggest that these latent

structures are still valid computation graphs for the task, in spite of the variations.

2. http://nlp.seas.harvard.edu/2018/04/03/attention.html

50

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Table 4.2 – Partitions of the Logical Inference task from Bowman et al. (2014). Each
partitions include a training set filtered out all data points that match the rule indicated
in Excluded, and a test set formed by matched data points.

Part. Excluded Training size Test set example

A * (and (not a)) * 128,969 f (and (not a))

B * (and (not *)) * 87,948 c (and (not (a (or b))))

C * ({and,or} (not *)) * 51,896 a (or (e (and c)))

Full 135,529

Systematic Generalization Tests Inspired by Loula et al. (2018), we created

three splits of the original logical inference dataset with increasing levels of diffi-

culty. Each consecutive split removes a superset of the previously excluded clauses,

creating a harder generalization task. Each model is then trained on the ablated

training set, and tested on examples unseen in the training data. As a result, the

different test splits have different numbers of data points. Table 4.2 contains the

details of the individual partitions.

The results are shown in the right section of Table 4.1 under Sys. Gen. Each

column labeled A, B, and C are the model’s aggregated accuracies over the un-

seen operation lengths. As with the length generalization tests, the models with

the known tree structure performs the best on unseen structures, while sequential

models degrade quickly as the tests get harder. Our model greatly outperforms all

the other sequential models, performing slightly below the results of TreeRNN and

TreeCell on the different partitions.

Combined with the parsing results, and our model’s performance on these gen-

eralization tests, we believe this is strong evidence that the model has both (i)

learned to exploit symmetries in the structure of the data by learning a good cell(·)
function, and (ii) learned where and how to apply said function by operating its

stack memory.

4.4.2 ListOps

Nangia and Bowman (2018) build a dataset with nested summary operations

on lists of single digit integers. The sequences comprise of the operators MAX, MIN,

MED, and SUM_MOD. The output is also an integer in [0, 9] As an example, the input:

51

a or not d and not not b and c a or not d and not not b and c

a or not d and not not b and c

Figure 4.2 – Variations in induced parse trees under different runs of the logical inference
experiment. The left most tree is the ground truth and one of induced structures. We have
removed the parentheses in the original sequence for this visualization. It is interesting to
note that the different structures induced by our model are all valid computation graphs
to produce the correct results.

[MAX 2 9 [MIN 4 7] 0] has the solution 9. As the task is formulated to be

easily solved with a correct parsing strategy, the task provides an excellent test-

bed to diagnose models that perform tree induction. The authors binarize the

structure by choosing the subtree corresponding to each list to be left-branching:

the model would first take into account the operator, and then proceed to compute

the summary statistic within the list. A right-branching parse would require the

entire list to be maintained in the model’s hidden state.

Our model achieves 99.9% accuracy, and an F1 score of 100% on the model’s

induced parse tree (See Table 4.3a). This result is consistent across 3 different

runs of the same experiment. In Nangia and Bowman (2018), the authors perform

an experiment to verify the effect of training set size on the latent tree models.

As the latent tree models (RL-SPINN and ST-Gumbel) need to parse the input

successfully to perform well on the task, the better performance of the LSTM than

those models indicate that the size of the dataset does not affect the ability to learn

to parse much for those models. Our model seems to be more data efficient and

solves the task even when only training on a subset of 90k examples (Fig. 4.3b).

4.4.3 Stanford Sentiment Treebank

The Stanford Sentiment Treebank is a classification task described in Socher

et al. (2013). There are two settings: SST-2, which reduces the task down to a

positive or negative label for each sentence (the neutral sentiment sentences are

ignored), and SST-5, which is a fine-grained classification task which has 5 labels

52

Model Accuracy F1

LSTM* 71.5±1.5 –
RL-SPINN* 60.7±2.6 71.1
Gumbel Tree-LSTM* 57.6±2.9 57.3
Transformer 57.4±0.4 –
Universal Transformer 71.5±7.8 –
Havrylov et al. (2019) 99.2±0.5 –

Ours 99.9±0.02 100

(a) (b)

Figure 4.3 – (a) shows the accuracy of different models on the ListOps dataset. All
models have 128 dimensions. Results for models with * are taken from Nangia and
Bowman (2018). (b) shows our model accuracy on the ListOps task when varying the
the size of the training set.

Table 4.3 – Accuracy results of models on the SST.

SST-2 SST-5

Sequential sentence representation & other methods
Radford et al. (2017) 91.8 52.9
Peters et al. (2018) – 54.7
Brahma (2018) 91.2 56.2
Devlin et al. (2019) 94.9 –
Liu et al. (2019) 95.6 –

Recursive NN + ground-truth structure
Tai et al. (2015) 88.0 51.0
Munkhdalai and Yu (2017) 89.3 53.1
Looks et al. (2017) 89.4 52.3

Recursive NN + latent / learned structure
Choi et al. (2018) 90.7 53.7
Havrylov et al. (2019) 90.2±0.2 51.5±0.4

Ours (Glove) 90.4 52.2
Ours (ELMO) 92.0 55.2

for each sentence.

Current state-of-the-art models use pretrained contextual embeddings Radford

et al. (2018); McCann et al. (2017); Peters et al. (2018). Building on ELMO Peters

et al. (2018), we achieve a performance comparable with the current state-of-the-art

for both SST-2 and SST-5 settings. However, it should be noted that our model is

53

a sentence representation model. Table 4.3 lists our and related work’s respective

performance on the SST task in both settings.

54

4.5 Conclusion

In this paper, we introduce the Ordered Memory architecture. The model is

conceptually close to previous stack-augmented RNNs, but with two important dif-

ferences: 1) we replace the pop and push operations with a Stick-breaking Attention

and a new writing and erasing mechanism inspired by Ordered Neurons (Shen et al.,

2019); 2) we also introduce a new Gated Recursive Cell to compose lower level rep-

resentations into higher level one. On the logical inference and ListOps tasks, we

show that the model learns the proper tree structures required to solve them. As

a result, the model can effectively generalize to longer sequence and combination

of operators that is unseen in the training set, and the model is data efficient. We

also demonstrate that our results on the SST are comparable with state-of-the-art

models.

55

5 Conclusion

In this thesis, we first discussed neural networks as powerful functions to learn

the underlying representations in data. We also touched on recurrent neural net-

works as sequential data processing units and how to train them. Moreover, we

discussed the emerging field of self-supervised representation learning, and focused

on its success and potential for use in natural language processing. Lastly, to close

the background section, we discussed word representations, sentence representa-

tions and the typical approach to evaluate the utility of sentence embeddings.

In the first work presented, we explore a set of self-supervised learning tasks

as pre-training methods to learn sentence representations from a large unlabeled

corpora. These pre-training tasks (explained in section 3.2) are Quick Thought,

Self Prediction and Global to Local prediction. We evaluate the representations

learned from these pre-training tasks on a set of downstream tasks from SentEval

and compare our approach with existing methods. Our approach achieves better

results on MR, CR, SUBJ and MPQA compared to the unsupervised models. It

also achieves somewhat comparable results to supervised methods in the literature.

However, we realized that pre-training on these self-supervised tasks did not result

in outstanding gain in performance. We concluded that we need to explore a larger

suite of self-supervised methods for pre-training.

In the second work presented, we introduce a new architecture called Ordered

Memory which bears a resemblance to stack-augmented RNNs. However, it has two

major differences. The first one is that the push and pop operations are replaced

with Stick-breaking attention mechanism, and writing and erasing are based on

a new mechanism. The second difference is the introduced Gated Recursive Cell

used to compose low level representations to form high level ones. In this work, we

focused on utilizing the compositional structure of the tasks to have better general-

ization abilities (Bowman et al., 2015; Bahdanau et al., 2019). As a result, the OM

model shows good generalization properties in the logical inference and ListOps

tasks on examples that are unseen during training. We also report comparable

56

with state-of-the-art results on the Stanford Sentiment Treebank. The OM model

finds a sentence representation by composing parts of a sequence (or sentence) in

a tree structure; however, we did not achieve impressive results on the natural

language inference dataset from Dasgupta et al. (2018), for which they claim the

model requires to learn compositionality to solve it. We concluded that we need

to pre-train the OM model on a larger dataset as well as using a wider class of

objectives in pre-training.

Learning representations from unlabeled data is a promising alley and can be

a very powerful instrument for machine learning. In this thesis, we showed some

methods of learning representations using self-supervised methods. However, self-

supervised learning is still in its early stages and there is still disagreement about

its definition as well as how to evaluate these methods. Although pre-training with

self-supervised methods have shown impressive results in natural language tasks,

there is still much to be done and understood. What are these self-supervision

methods learning? Are they just memorizing large amounts of data that they are

trained on? Do the models learn important concepts like compositionality using

these methods? We hope that future work can build on top of our findings and

results to answer such critical questions.

57

A Appendix

58

A.1 Compositionality in sentence embeddings

In this section we evaluate the performance of sentence representations from

the OM model on the natural language inference task from Dasgupta et al. (2018)

(described in section 2.2.1). Following Dasgupta et al. (2018), in this experiment a

classifier model is first trained on the SNLI (Stanford Natural Language Inference)

training set (Bowman et al., 2015). This task is a three-way classification task, in

which pairs of sentences are classified into ‘entailment’, ‘contradiction’, or ‘neutral’.

Similar to the logical inference experiment in section 4.4.1, we use an MLP with

(h1, h2, h1 ◦h2, |h1−h2|) as input (see figure A.1b), where h1 and h2 are the M̂N
T of

their respective input sequences (premise and hypothesis). We train the classifier

model using GloVe embeddings (Pennington et al., 2014) on SNLI with a hidden

size of 1120 dimensions, and same number of parameters as the InferSent model in

Dasgupta et al. (2018) for proper comparison. Our trained model achieves 81.36%

accuracy on validation and 80.77% accuracy on the test set of SNLI. Next, we

evaluate the classifier on the proposed Comparisons dataset from Dasgupta et al.

(2018). Table A.1a shows the performance of each model on different categories of

the Comparisons dataset. Our model outperforms InferSent on the more/less and

not categories; however, we did not achieve impressive results in this experiment.

Category Ours BOW-MLP InferSent

same 40.42 50.0 50.37
more/less 62.28 30.24 50.35
not 52.40 48.98 45.24

(a) (b)

Figure A.1

Figure A.2 – (a) Performance on different categories of the Comparisons dataset. (b)
NLI classifier architecture using OM as sentence encoder.

59

A.2 Tree induction algorithm

Data: p1, ..., pT
Result: T
initialize queue = [w2, ..., wT]

stack = [w1], h = argmax(p1)− 1;
for i← 2 to T do

yi = argmax(pi);
d = yi − h;
if d > 0 then

for j ← 1 to d do
if len(stack) < 2 then

Break;
end
e1 = stack.pop();
e2 = stack.pop();
stack.push(node(e1, e2));

end

end
stack.push(queue.popleft());
h = yi − 1;

end
while len(stack) > 2 do

e1 = stack.pop();
e2 = stack.pop();
stack.push(node(e1, e2));

end
Algorithm 2: Shift-reduce parsing algorithm for generate parsing tree from Or-
dered Memory model. Here we greedily choose the argmax(pt) as the head of
stack for each slot.

A.3 Dynamic Computation Time

Given Eqn. 4.7, we can see that some oits are multiplied with −→π i
t. It may not

necessary to compute the cell function (Eqn. 4.6) if the cumulative probability −→π i
t

is smaller than a certain threshold. This threshold actively controls the number of

computation steps that we need to perform for each time step. In our experiments,

60

we set the threshold to be 10−5. This idea of dynamically modulating the number

of computational step is similar to Adaptive Computation Time (ACT) in Graves

(2016), which attempts to learn the number of computation steps required that

is dependent on the input. However, the author does not demonstrate savings

in computation time. In Tan and Sim (2016), the authors implement a similar

mechanism, but demonstrate computational savings only at test time.

A.4 Hyperparameters

Table A.1 – The hyperparameters used in the various experiments described. D is the dimension
of each slot in the memory. There are 4 different dropout rates for different parts of the model: In
dropout is applied at the embedding level input to the OM model. Out dropout is applied at the
layers in the MLP before the final classification task. Attention dropout is applied at the layers
inside stick-breaking attention mechanism. Hidden dropout is applied at various other points in
the OM architecture.

Task Memory size #slot Dropout Batch size Embedding
In Out Hidden Attention Size Pretrained

Logic 200 15 0.2 0.2 0.2 0.2 128 200 None
ListOps 128 21 0.1 0.1 0.1 0.1 128 128 None
SST(Glove) 300 15 0.3 0.4 0.2 0.2 128 300 Glove
SST(ELMO) 300 15 0.3 0.2 0.2 0.3 128 1024 ELMo

61

Bibliography

Andreas, J., M. Rohrbach, T. Darrell, and D. Klein (2016). Neural module net-

works. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 39–48.

Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). Layer normalization. arXiv preprint

arXiv:1607.06450 .

Bachman, P., R. D. Hjelm, and W. Buchwalter (2019). Learning representations

by maximizing mutual information across views. ArXiv abs/1906.00910.

Bahdanau, D., K. Cho, and Y. Bengio (2015). Neural machine translation by jointly

learning to align and translate. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings.

Bahdanau, D., S. Murty, M. Noukhovitch, T. H. Nguyen, H. de Vries, and A. C.

Courville (2019). Systematic generalization: What is required and can it be

learned? In 7th International Conference on Learning Representations, ICLR

2019, New Orleans, LA, USA, May 6-9, 2019.

Bahl, L. R., F. Jelinek, and R. L. Mercer (1990). A maximum likelihood approach

to continuous speech recognition. In Readings in speech recognition, pp. 308–319.

Elsevier.

Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin (2003). A neural probabilistic

language model. Journal of machine learning research 3 (Feb), 1137–1155.

Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning (2015). A large annotated

corpus for learning natural language inference. In L. Màrquez, C. Callison-Burch,

J. Su, D. Pighin, and Y. Marton (Eds.), Proceedings of the 2015 Conference on

62

Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Por-

tugal, September 17-21, 2015, pp. 632–642. The Association for Computational

Linguistics.

Bowman, S. R., J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts

(2016, August). A fast unified model for parsing and sentence understanding.

In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), Berlin, Germany, pp. 1466–1477. Associa-

tion for Computational Linguistics.

Bowman, S. R., C. D. Manning, and C. Potts (2015). Tree-structured composition

in neural networks without tree-structured architectures. In Proceedings of the

2015th International Conference on Cognitive Computation: Integrating Neural

and Symbolic Approaches - Volume 1583, COCO’15, Aachen, Germany, pp. 37–

42. CEUR-WS.org.

Bowman, S. R., C. Potts, and C. D. Manning (2014). Recursive neural networks

for learning logical semantics. CoRR abs/1406.1827.

Brahma, S. (2018). Suffix bidirectional long short-term memory.

CoRR abs/1805.07340.

Chelba, C. and F. Jelinek (2000). Structured language modeling. Computer Speech

& Language 14 (4), 283–332.

Chelba, C., T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robin-

son (2014). One billion word benchmark for measuring progress in statistical

language modeling. In INTERSPEECH 2014, 15th Annual Conference of the

International Speech Communication Association, Singapore, September 14-18,

2014, pp. 2635–2639.

Chen, S. F. (1995). Bayesian grammar induction for language modeling. In Proceed-

ings of the 33rd annual meeting on Association for Computational Linguistics,

pp. 228–235. Association for Computational Linguistics.

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio (2014, October). Learning phrase representations using RNN

encoder–decoder for statistical machine translation. In Proceedings of the 2014

63

Conference on Empirical Methods in Natural Language Processing (EMNLP),

Doha, Qatar, pp. 1724–1734. Association for Computational Linguistics.

Choi, J., K. M. Yoo, and S.-g. Lee (2018). Learning to compose task-specific

tree structures. In Proceedings of the 2018 Association for the Advancement of

Artificial Intelligence (AAAI). and the 7th International Joint Conference on

Natural Language Processing (ACL-IJCNLP).

Cohen, S. B., D. Das, and N. A. Smith (2011). Unsupervised structure prediction

with non-parallel multilingual guidance. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pp. 50–61. Association for

Computational Linguistics.

Conneau, A. and D. Kiela (2018). Senteval: An evaluation toolkit for universal

sentence representations. In Proceedings of the Eleventh International Conference

on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-

12, 2018.

Conneau, A., D. Kiela, H. Schwenk, L. Barrault, and A. Bordes (2017). Supervised

learning of universal sentence representations from natural language inference

data. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11,

2017, pp. 670–680.

Dai, Z., Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov (2019).

Transformer-xl: Attentive language models beyond a fixed-length context. In

Proceedings of the 57th Conference of the Association for Computational Lin-

guistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long

Papers, pp. 2978–2988.

Das, S., C. L. Giles, and G.-Z. Sun (1992). Learning context-free grammars: Ca-

pabilities and limitations of a recurrent neural network with an external stack

memory. In Proceedings of The Fourteenth Annual Conference of Cognitive Sci-

ence Society. Indiana University, pp. 14.

Dasgupta, I., D. Guo, A. Stuhlmüller, S. Gershman, and N. Goodman (2018).

Evaluating compositionality in sentence embeddings. In C. Kalish, M. A. Rau,

64

X. J. Zhu, and T. T. Rogers (Eds.), Proceedings of the 40th Annual Meeting

of the Cognitive Science Society, CogSci 2018, Madison, WI, USA, July 25-28,

2018. cognitivesciencesociety.org.

Dehghani, M., S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser (2019). Univer-

sal transformers. In 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Devlin, J., M. Chang, K. Lee, and K. Toutanova (2019). BERT: pre-training

of deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,

Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.

4171–4186.

Dolan, B., C. Quirk, and C. Brockett (2004). Unsupervised construction of large

paraphrase corpora: Exploiting massively parallel news sources. In Proceedings

of the 20th International Conference on Computational Linguistics, COLING

’04, Stroudsburg, PA, USA. Association for Computational Linguistics.

Dowty, D. (2007). Compositionality as an empirical problem. In In Chris Barker

and Pauline Jacobson (eds.) Direct Compositionality, pp. 23–101.

Dyer, C., A. Kuncoro, M. Ballesteros, and N. A. Smith (2016). Recurrent neural

network grammars. In Proceedings of the 2016 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies, pp. 199–209.

Elman, J. L. (1990). Finding structure in time. Cognitive science 14 (2), 179–211.

Fodor, J. A. and Z. W. Pylyshyn (1988). Connectionism and cognitive architecture:

A critical analysis. Cognition 28 (1-2), 3–71.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological

cybernetics 36 (4), 193–202.

65

Gan, Z., Y. Pu, R. Henao, C. Li, X. He, and L. Carin (2016). Unsuper-

vised learning of sentence representations using convolutional neural networks.

CoRR abs/1611.07897.

Gershman, S. and J. B. Tenenbaum (2015). Phrase similarity in humans and

machines. In CogSci. Citeseer.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep

feedforward neural networks. In In Proceedings of the International Conference

on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial In-

telligence and Statistics.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850 .

Graves, A. (2016). Adaptive computation time for recurrent neural networks. arXiv

preprint arXiv:1603.08983 .

Graves, A., G. Wayne, and I. Danihelka (2014). Neural turing machines. arXiv

preprint arXiv:1410.5401 .

Grefenstette, E., K. M. Hermann, M. Suleyman, and P. Blunsom (2015). Learn-

ing to transduce with unbounded memory. In Advances in Neural Information

Processing Systems, pp. 1828–1836.

Gulcehre, C., S. Chandar, and Y. Bengio (2017). Memory augmented neural net-

works with wormhole connections. arXiv preprint arXiv:1701.08718 .

Gutmann, M. U. and A. Hyvärinen (2012, February). Noise-contrastive estimation

of unnormalized statistical models, with applications to natural image statistics.

J. Mach. Learn. Res. 13 (1), 307–361.

Hashimoto, K., C. Xiong, Y. Tsuruoka, and R. Socher (2017). A joint many-task

model: Growing a neural network for multiple NLP tasks. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing, EMNLP

2017, Copenhagen, Denmark, September 9-11, 2017, pp. 1923–1933.

66

http://www.deeplearningbook.org

Hassan, H., A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann, X. Huang,

M. Junczys-Dowmunt, W. Lewis, M. Li, S. Liu, T. Liu, R. Luo, A. Menezes,

T. Qin, F. Seide, X. Tan, F. Tian, L. Wu, S. Wu, Y. Xia, D. Zhang, Z. Zhang,

and M. Zhou (2018). Achieving human parity on automatic chinese to english

news translation. CoRR abs/1803.05567.

Havrylov, S., G. Kruszewski, and A. Joulin (2019). Cooperative learning of disjoint

syntax and semantics. In Proc. of NAACL-HLT .

Hermann, K. M. and P. Blunsom (2014). Multilingual distributed representations

without word alignment. In 2nd International Conference on Learning Repre-

sentations, ICLR 2014, Banff, Canada.

Hill, F., K. Cho, and A. Korhonen (2016). Learning distributed representations of

sentences from unlabelled data. In NAACL HLT 2016, The 2016 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, San Diego California, USA, June 12-17, 2016,

pp. 1367–1377.

Hill, F., K. Cho, A. Korhonen, and Y. Bengio (2016). Learning to understand

phrases by embedding the dictionary. Transactions of the Association for Com-

putational Linguistics 4, 17–30.

Hjelm, R. D., A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,

A. Trischler, and Y. Bengio (2019). Learning deep representations by mutual

information estimation and maximization. In 7th International Conference on

Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems 6 (2), 107–116.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural com-

putation 9 (8), 1735–1780.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks

are universal approximators. Neural networks 2 (5), 359–366.

67

Hu, M. and B. Liu (2004). Mining and summarizing customer reviews. In Pro-

ceedings of the Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’04, New York, NY, USA, pp. 168–177. ACM.

Jacob, A. P., Z. Lin, A. Sordoni, and Y. Bengio (2018). Learning hierarchical struc-

tures on-the-fly with a recurrent-recursive model for sequences. In Proceedings

of The Third Workshop on Representation Learning for NLP, pp. 154–158.

Jernite, Y., E. Grave, A. Joulin, and T. Mikolov (2017). Variable computation

in recurrent neural networks. In 5th International Conference on Learning Rep-

resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings.

Joulin, A. and T. Mikolov (2015). Inferring algorithmic patterns with stack-

augmented recurrent nets. In Advances in neural information processing systems,

pp. 190–198.

Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kiros, R., Y. Zhu, R. Salakhutdinov, R. S. Zemel, R. Urtasun, A. Torralba, and

S. Fidler (2015). Skip-thought vectors. In Advances in Neural Information Pro-

cessing Systems 28: Annual Conference on Neural Information Processing Sys-

tems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 3294–3302.

Knuth, D. E. (1965). On the translation of languages from left to right. Information

and control 8 (6), 607–639.

Koehn, P., F. Och, and D. Marcu (2003). Statistical Phrase-Based Translation. In

NAACL ’03: Proceedings of the 2003 Conference of the North American Chap-

ter of the Association for Computational Linguistics on Human Language Tech-

nology, Morristown, NJ, pp. 48–54. Association for Computational Linguistics:

Association for Computational Linguistics.

Kuncoro, A., C. Dyer, J. Hale, D. Yogatama, S. Clark, and P. Blunsom (2018).

Lstms can learn syntax-sensitive dependencies well, but modeling structure

68

makes them better. In Proceedings of the 56th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), Volume 1, pp.

1426–1436.

Lake, B. M. and M. Baroni (2018). Generalization without systematicity: On the

compositional skills of sequence-to-sequence recurrent networks. In Proceedings

of the 35th International Conference on Machine Learning, ICML 2018, Stock-

holmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 2879–2888.

Le, Q. and T. Mikolov (2014a). Distributed representations of sentences and doc-

uments. In Proceedings of the 31st International Conference on International

Conference on Machine Learning - Volume 32, ICML’14, pp. II–1188–II–1196.

JMLR.org.

Le, Q. V. and T. Mikolov (2014b). Distributed representations of sentences and

documents. In Proceedings of the 31th International Conference on Machine

Learning, ICML 2014, Beijing, China, 21-26 June 2014, pp. 1188–1196.

LeCun, Y., Y. Bengio, and G. Hinton (2015, 5). Deep learning. Nature 521 (7553),

436–444.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pp. 2278–2324.

Liu, X., P. He, W. Chen, and J. Gao (2019). Multi-task deep neural networks for

natural language understanding. In Proceedings of the 57th Conference of the

Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-

August 2, 2019, Volume 1: Long Papers, pp. 4487–4496.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer, and V. Stoyanov (2019). Roberta: A robustly optimized BERT pretrain-

ing approach. CoRR abs/1907.11692.

Logeswaran, L. and H. Lee (2018). An efficient framework for learning sentence

representations. In 6th International Conference on Learning Representations,

ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings.

69

Looks, M., M. Herreshoff, D. Hutchins, and P. Norvig (2017). Deep learning with

dynamic computation graphs. In 5th International Conference on Learning Rep-

resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings.

Loula, J., M. Baroni, and B. M. Lake (2018). Rearranging the familiar: Test-

ing compositional generalization in recurrent networks. In Proceedings of

the Workshop: Analyzing and Interpreting Neural Networks for NLP, Black-

boxNLP@EMNLP 2018, Brussels, Belgium, November 1, 2018, pp. 108–114.

Maillard, J., S. Clark, and D. Yogatama (2019). Jointly learning sentence em-

beddings and syntax with unsupervised tree-lstms. Natural Language Engineer-

ing 25 (4), 433–449.

Marelli, M., S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli

(2014, May). A SICK cure for the evaluation of compositional distributional

semantic models. In Proceedings of the Ninth International Conference on Lan-

guage Resources and Evaluation (LREC-2014), Reykjavik, Iceland, pp. 216–223.

European Languages Resources Association (ELRA).

McCann, B., J. Bradbury, C. Xiong, and R. Socher (2017). Learned in translation:

Contextualized word vectors. In Advances in Neural Information Processing

Systems, pp. 6297–6308.

Merity, S., N. S. Keskar, and R. Socher (2018a). An analysis of neural language

modeling at multiple scales. CoRR abs/1803.08240.

Merity, S., N. S. Keskar, and R. Socher (2018b). Regularizing and optimizing LSTM

language models. In 6th International Conference on Learning Representations,

ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean (2013). Efficient estimation of

word representations in vector space. In ICLR Workshop.

Mikolov, T., M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur (2010).

Recurrent neural network based language model. In INTERSPEECH 2010,

70

11th Annual Conference of the International Speech Communication Associa-

tion, Makuhari, Chiba, Japan, September 26-30, 2010, pp. 1045–1048.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013). Distributed

representations of words and phrases and their compositionality. In Advances in

Neural Information Processing Systems 26: 27th Annual Conference on Neural

Information Processing Systems 2013. Proceedings of a meeting held December

5-8, 2013, Lake Tahoe, Nevada, United States., pp. 3111–3119.

Montague, R. (1970). Universal grammar. Theoria 36 (3), 373–398.

Mozer, M. C. and S. Das (1993). A connectionist symbol manipulator that discov-

ers the structure of context-free languages. In Advances in neural information

processing systems, pp. 863–870.

Munkhdalai, T. and H. Yu (2017). Neural tree indexers for text understanding. In

Proceedings of the conference. Association for Computational Linguistics. Meet-

ing, Volume 1, pp. 11. NIH Public Access.

Nangia, N. and S. R. Bowman (2018). Listops: A diagnostic dataset for latent tree

learning. In S. R. Cordeiro, S. Oraby, U. Pavalanathan, and K. Rim (Eds.), Pro-

ceedings of the 2018 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics, NAACL-HLT 2018, New Orleans, Louisiana,

USA, June 2-4, 2018, Student Research Workshop, pp. 92–99. Association for

Computational Linguistics.

Pang, B. and L. Lee (2004). A sentimental education: Sentiment analysis us-

ing subjectivity summarization based on minimum cuts. In Proceedings of the

42Nd Annual Meeting on Association for Computational Linguistics, ACL ’04,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Pang, B. and L. Lee (2005). Seeing stars: Exploiting class relationships for sen-

timent categorization with respect to rating scales. In Proceedings of ACL, pp.

115–124.

Pascanu, R., T. Mikolov, and Y. Bengio (2012). Understanding the exploding

gradient problem. CoRR abs/1211.5063.

71

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer (2017). Automatic differentiation in PyTorch.

In NIPS Autodiff Workshop.

Pennington, J., R. Socher, and C. D. Manning (2014). Glove: Global vectors

for word representation. In A. Moschitti, B. Pang, and W. Daelemans (Eds.),

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of

SIGDAT, a Special Interest Group of the ACL, pp. 1532–1543. ACL.

Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer (2018). Deep contextualized word representations. In M. A. Walker, H. Ji,

and A. Stent (Eds.), Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June

1-6, 2018, Volume 1 (Long Papers), pp. 2227–2237. Association for Computa-

tional Linguistics.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelli-

gence 46 (1-2), 77–105.

Poole, B., S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker (2019, 09–15

Jun). On variational bounds of mutual information. In K. Chaudhuri and

R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on

Machine Learning, Volume 97 of Proceedings of Machine Learning Research,

Long Beach, California, USA, pp. 5171–5180. PMLR.

Radford, A., R. Jozefowicz, and I. Sutskever (2017). Learning to generate reviews

and discovering sentiment. arXiv preprint arXiv:1704.01444 .

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever (2018). Improving lan-

guage understanding by generative pre-training. URL https://s3-us-west-2. ama-

zonaws. com/openai-assets/research-covers/languageunsupervised/language un-

derstanding paper. pdf .

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever

(2018). Language models are unsupervised multitask learners. URL

72

https://d4mucfpksywv.cloudfront.net/better-language-models/language-

models.pdf .

Rajpurkar, P., R. Jia, and P. Liang (2018). Know what you don’t know: Unan-

swerable questions for squad. In I. Gurevych and Y. Miyao (Eds.), Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics,

ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers,

pp. 784–789. Association for Computational Linguistics.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Compu-

tational linguistics 27 (2), 249–276.

Schützenberger, M. P. (1963). On context-free languages and push-down automata.

Information and control 6 (3), 246–264.

Shen, Y., S. Tan, A. Sordoni, and A. C. Courville (2019). Ordered neurons: In-

tegrating tree structures into recurrent neural networks. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net.

Shieber, S. M. (1983). Sentence disambiguation by a shift-reduce parsing technique.

In Proceedings of the 21st annual meeting on Association for Computational

Linguistics, pp. 113–118. Association for Computational Linguistics.

Socher, R., C. D. Manning, and A. Y. Ng (2010). Learning continuous phrase rep-

resentations and syntactic parsing with recursive neural networks. In Proceedings

of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop,

Volume 2010, pp. 1–9.

Socher, R., A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts

(2013). Recursive deep models for semantic compositionality over a sentiment

treebank. In Proceedings of the 2013 conference on empirical methods in natural

language processing, pp. 1631–1642.

Subramanian, S., A. Trischler, Y. Bengio, and C. J. Pal (2018). Learning general

purpose distributed sentence representations via large scale multi-task learning.

73

In 6th International Conference on Learning Representations, ICLR 2018, Van-

couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

OpenReview.net.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning with

neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and

K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems

27, pp. 3104–3112. Curran Associates, Inc.

Tai, K. S., R. Socher, and C. D. Manning (2015). Improved semantic representa-

tions from tree-structured long short-term memory networks. In Proceedings of

the 53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing of the

Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015,

Beijing, China, Volume 1: Long Papers, pp. 1556–1566. The Association for

Computer Linguistics.

Tan, S. and K. C. Sim (2016). Towards implicit complexity control using variable-

depth deep neural networks for automatic speech recognition. In 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 5965–5969. IEEE.

Tran, K. M., A. Bisazza, and C. Monz (2018). The importance of being recurrent

for modeling hierarchical structure. In E. Riloff, D. Chiang, J. Hockenmaier,

and J. Tsujii (Eds.), Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, Brussels, Belgium, October 31 - November 4,

2018, pp. 4731–4736. Association for Computational Linguistics.

van den Oord, A., Y. Li, and O. Vinyals (2018). Representation learning with

contrastive predictive coding. CoRR abs/1807.03748.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin (2017). Attention is all you need. In I. Guyon, U. von Luxburg,

S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett

(Eds.), Advances in Neural Information Processing Systems 30: Annual Confer-

ence on Neural Information Processing Systems 2017, 4-9 December 2017, Long

Beach, CA, USA, pp. 5998–6008.

74

Voorhees, E. M. and L. P. Buckland (Eds.) (2012). Proceedings of The Twenty-

First Text REtrieval Conference, TREC 2012, Gaithersburg, Maryland, USA,

November 6-9, 2012, Volume Special Publication 500-298. National Institute of

Standards and Technology (NIST).

Weston, J., S. Chopra, and A. Bordes (2015). Memory networks. In Y. Bengio

and Y. LeCun (Eds.), 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Wiebe, J., T. Wilson, and C. Cardie (2005). Annotating expressions of opinions

and emotions in language. Language Resources and Evaluation 1 (2), 0.

Williams, A., A. Drozdov, and S. R. Bowman (2018). Do latent tree learning models

identify meaningful structure in sentences? Transactions of the Association of

Computational Linguistics, TACL. 6, 253–267.

Williams, A., N. Nangia, and S. R. Bowman (2018). A broad-coverage challenge

corpus for sentence understanding through inference. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans,

Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 1112–1122.

Wilson, A. C., R. Roelofs, M. Stern, N. Srebro, and B. Recht (2017). The marginal

value of adaptive gradient methods in machine learning. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett

(Eds.), Advances in Neural Information Processing Systems 30, pp. 4148–4158.

Curran Associates, Inc.

Yang, Z., Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le

(2019). Xlnet: Generalized autoregressive pretraining for language understand-

ing. CoRR abs/1906.08237.

Yogatama, D., P. Blunsom, C. Dyer, E. Grefenstette, and W. Ling (2017). Learning

to compose words into sentences with reinforcement learning. In 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-

26, 2017, Conference Track Proceedings. OpenReview.net.

75

Yogatama, D., Y. Miao, G. Melis, W. Ling, A. Kuncoro, C. Dyer, and P. Blun-

som (2018). Memory architectures in recurrent neural network language models.

In 6th International Conference on Learning Representations, ICLR 2018, Van-

couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

OpenReview.net.

Zamir, A. R., A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese (2018).

Taskonomy: Disentangling task transfer learning. 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 3712–3722.

Zeng, Z., R. M. Goodman, and P. Smyth (1994). Discrete recurrent neural networks

for grammatical inference. IEEE Transactions on Neural Networks 5 (2), 320–

330.

76

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 List of Abbreviations
	 Acknowledgments
	1 Neural Networks
	1.1 Artificial Neuron
	1.1.1 Activation functions

	1.2 Multilayer Neural Networks
	1.3 Recurrent Neural Networks
	1.3.1 Long Short-Term Memory

	1.4 Training Neural Networks
	1.4.1 Loss Functions
	1.4.2 Gradient Method
	1.4.3 Adam Learning Algorithm
	1.4.4 Backpropagation Algorithm
	1.4.5 Backpropagation Through Time

	1.5 Representation Learning
	1.5.1 Supervised Learning
	1.5.2 Unsupervised Learning
	1.5.3 Self-supervised Learning

	2 Deep Natural Language Processing
	2.1 Word Representations
	2.2 Sentence Representations
	2.2.1 Evaluation
	2.2.2 Related Work

	2.3 Language Models
	2.4 Large Scale Pre-training and Transfer Learning
	2.5 Conclusion

	3 Learning Sentence Representation with Self-supervision
	3.1 Introduction
	3.2 Approach
	3.2.1 Noise-contrastive estimation
	3.2.2 Quick Thoughts
	3.2.3 Self Prediction
	3.2.4 Global to Local

	3.3 Experimental Setup
	3.3.1 Data
	3.3.2 Training
	3.3.3 Evaluation

	3.4 Results & Discussion
	3.5 Conclusion and Future Work

	4 Ordered Memory
	4.1 Introduction
	4.2 Related Work
	4.3 Model
	4.3.1 Stick-Breaking Attention Mechanism
	4.3.2 Gated Recursive Cell
	4.3.3 Relations to ON-LSTM and Shift-reduce Parser

	4.4 Experiments
	4.4.1 Logical Inference
	4.4.2 ListOps
	4.4.3 Stanford Sentiment Treebank

	4.5 Conclusion

	5 Conclusion
	A Appendix
	A.1 Compositionality in sentence embeddings
	A.2 Tree induction algorithm
	A.3 Dynamic Computation Time
	A.4 Hyperparameters

	 Bibliography

