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Résumé 

Une augmentation de l’hypertrophie et l'hyperplasie des adipocytes est au cœur du développement de 

l'obésité. Nous avons déjà constaté que 14-3-3zeta (14-3-3ζ), une protéine d’échafaudage moléculaire, a 

plusieurs rôles essentiels dans l'adipogenèse. Cependant, les contributions de 14-3-3ζ dans la fonction 

des adipocytes matures ne sont pas connues. Les cellules 3T3-L1 et souris dépourvues de 14-3-3ζ dans 

les adipocytes (adi14-3-3ζKO) ont été utilisés pour examiner le rôle de 14-3-3ζ dans la lipolyse. 

L’élimination de 14-3-3ζ dans les cellules 3T3-L1 par l’ARNi a réduit significativement la lipolyse stimulée 

par l'isoprotérénol (un agoniste bêta adrénergique), la forskoline (un activateur de l’adénylate cyclase) 

et le dibutyryl AMPc (dbcAMP). Les analyses par qPCR ont démontré des réductions significatives 

d’adipose triglyceride lipase (Atgl) et lipase hormonsensible (Hsl) au niveau transcriptionnel. De plus, une 

réduction au niveau des substrats de la PKA phosphorylés et totaux tels que HSL et CREB, a été détectée 

par Western Blot dans les 3T3-L1 appauvris en 14-3-3ζ. Ces résultats in vitro ont été récapitulés in vivo, 

car des diminutions des taux phosphorylés et totaux de HSL ont été observés dans le tissu adipeux 

gonadique des souris adi14-3-3ζKO. Les souris adi14-3-3ζKO et les explants gonadiques ont également 

montré une lipolyse affaiblie après des injections i.p de l’agoniste bêta 3-adrénergique CL-316,243 et un 

traitement de l’isoprotérénol respectivement. De manière intéressante, une diminution de l’expression 

de 14-3-3ζ dans les cellules 3T3-L1 et les souris adi14-3-3ζKO a mené à une diminution des 

caractéristiques des adipocytes matures telles que les niveaux d’ARNm de Pparg, Lpl et Fabp4, les 

niveaux de PPARγ, le contenu en triglycérides et l'incorporation de Oil Red-O. Collectivement, ces 

résultats démontrent que 14-3-3ζ joue un rôle essentiel en facilitant la lipolyse et en déterminant la 

maturité des adipocytes.  

Mots-clés :     lipolyse, lipase, adipocyte mature



Abstract   

Altered hypertrophy and hyperplasia of adipocytes lie at the core of the development of obesity. We 

previously demonstrated that the molecular scaffold 14-3-3zeta (14-3-3ζ) had essential roles in 

adipogenesis. However, the contributions of 14-3-3ζ to mature adipocyte function are not known. 3T3-

L1 cells and tamoxifen-inducible adipocyte-specific 14-3-3ζ knockout mice (adi14-3-3ζKO) models were 

used to examine the roles of 14-3-3ζ in lipolysis. siRNA-mediated knockdown of 14-3-3ζ impaired 

lipolysis in 3T3-L1 cells stimulated by the beta-adrenergic agonist isoproterenol (Iso), forskolin (an 

activator of adenylyl cyclase) and dibutyryl cAMP (dbcAMP). qPCR analyses revealed significant 

reductions in lipase transcript levels (Atgl and Hsl). Furthermore, reductions in the phosphorylated and 

total levels of PKA substrates such as HSL and CREB were detected in 14-3-3ζ-depleted 3T3-L1 lysates by 

immunoblotting. These findings were recapitulated in vivo, as reductions in phosphorylated and total 

HSL levels were detected in the gonadal adipose tissue of adi14-3-3ζKO mice. adi14-3-3ζKO mice and 

gonadal explants also displayed impaired lipolysis following i.p CL-316,243 (a beta-3 adrenergic agonist) 

injections and Iso treatment respectively. Interestingly, decreased 14-3-3ζ expression in 3T3-L1 cells and 

mice revealed reductions in characteristics of a mature adipocyte, such as Pparg, Lpl, and Fabp4 

transcript levels, PPARγ levels, triglyceride content, and Oil Red O (ORO) incorporation. Collectively, 

these results demonstrate that 14-3-3ζ has essential roles in facilitating lipolysis and determining 

adipocyte maturity. 

Keywords:  lipolysis, lipase, mature adipocyte  
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1.1 Overview of adipocyte development and function 

1.1.1 Adipogenesis 

Adipogenesis is the process whereby pluripotent mesenchymal stem cells (MSCs) develop into 

mature adipocytes and consists of two phases: commitment to a cell lineage (or determination), and 

terminal differentiation. During adipogenesis, mesenchymal stem cells that undergo determination are 

committed to becoming pre-adipocytes and lose the ability differentiate into other cell types. The pre-

adipocytes then differentiate into mature adipocytes and gain features necessary for lipid synthesis, 

hydrolysis and transport, glucose uptake, insulin sensitivity and adipokine secretion (Figure 1) [1]. 
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Figure 1: Overview of adipogenesis. Commitment of mesenchymal stem cells (MSCs) to the adipocyte 
lineage is mediated by factors such as bone morphogenetic protein 4 (BMP4). In contrast, β-catenin-
dependent Wingless-type MMTV integration site (WNT) signaling inhibits the conversion of MSCs into 
pre-adipocytes by inhibiting the expression of the master transcription factors Peroxisome proliferator-
activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBP-α). These 
transcription factors are induced by C/EBP-β and C/EBP-δ which are expressed during early 
adipogenesis. Terminal differentiation is driven by PPARγ and C/EBP-α promoting each other’s 
expression in a positive feedback loop and results in the induction of mature adipocyte genes such as 
FABP4, adiponectin and GLUT4. The transcription factor PRD1-BF1-RIZ1 homologous domain-containing 
16 (PRDM16) associates with PPARγ coactivator 1 alpha (PGC1α) to promote the expression of 
thermogenic genes such as UCP1 and mediates the browning of white adipocytes that is induced by β3 
agonists and cold exposure. The roles of the abovementioned factors and others in the regulation of 
adipogenesis are further discussed in the text below. Figure taken and modified from [2].  

 

While MSCs mainly originate from bone marrow, they are also found in other organs, such as fat, 

lung, and skin [3]. MSCs are multipotent in that they can develop into precursors of multiple specialized 

cells, including adipocytes, myocytes, chondrocytes, and osteoblasts [4]. Specialized cells can be 

categorized by the presence or absence of proteins in precursor cells that they originate from. For 

instance, brown adipocytes and myocytes derive from Myf5+ precursor cells whereas white and beige 

adipocytes and osteocytes derive from Myf5- precursor cells [5]. Lineage commitment of MSCs is also 
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regulated by several signaling pathways including Wingless-type MMTV integration site (WNT), 

transforming growth factor-beta/bone morphogenic protein (TGF-β/BMP) signaling, Notch, and 

Hedgehog. (Figure 2) 

        

Figure 2: Signaling pathways involved in the regulation of adipogenesis. Signaling pathways affect 
adipogenesis by activating downstream transcription factors that promote or inhibit the expression of 
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) and CCAAT/Enhancer-Binding Protein alpha 
(C/EBP-α). Signaling pathways that negatively regulate adipogenesis include Wingless-type MMTV 
integration site (WNT), transforming growth factor-beta (TGF-β), and sonic hedgehog (SHH). In the 
canonical WNT pathway, β-catenin recruits the transcription factor T cell factor (TCF) to activate WNT 
targets that inhibit adipogenesis. The transcription factors GATA2/3 and SMAD3, which are downstream 
of the SHH and TGF-β pathways respectively, inhibit adipogenesis by hindering C/EBP-α from binding to 
the Pparg promoter. Conversely, bone morphogenetic protein (BMP)2/4 promote adipogenesis through 
the activation of the transcription factor SMAD1. The transcription factor cyclic AMP (cAMP) response 
element-binding protein (CREB) promotes the transcription of C/EBP-β which in turn induces PPARγ 
expression during early adipogenesis. Image taken from [1].   

WNT belongs to a family of glycoproteins that regulates MSC fate to either adipocyte or 

osteoblast lineages. In the case of canonical (β-catenin-dependent) signaling, WNT ligands like WNT10β 

promote the nuclear translocation of β-catenin, resulting in the activation of WNT target genes that 

promote osteogenic differentiation and inhibits adipogenic differentiation via the suppression of the 

adipogenic master regulators, PPARγ and C/EBP-α [3] (Figure 2). In contrast, WNT-5β, a non-canonical 

WNT ligand promotes adipogenesis by inhibiting WNT10β-mediated signaling possibly through ROR 

receptors [3, 6]. The TGF-β family of secreted ligands have regulatory roles in cell proliferation and cell 
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differentiation [3]. This family is divided into 3 sub-types: TGFβ1-3, with BMPs belonging in the TGFβ1 

sub-family. TGFβ/BMPs regulate adipogenic and osteogenic MSC differentiation through both the 

activation of SMAD transcription factors and SMAD-independent pathways such as the p38 mitogen-

activated protein kinase (MAPK) pathways. Several BMPs including BMP2 and BMP4 are associated with 

promoting adipogenic differentiation of MSCs (Figure 2) [7, 8]. 

The Notch family of transmembrane proteins has also been implicated in regulating adipogenic 

differentiation of MSCs. Ross et al. showed that the Notch ligand Jagged1 blocks PPARγ and C/EBP-α 

expression in 3T3-L1 cells, a fibroblast cell line derived from Swiss 3T3 mouse embryos that can 

differentiate into adipocytes [9]. Another study demonstrated that inhibition of Notch via the 

PI3K/AKT/mTOR pathway promotes autophagy-mediated adipogenic differentiation of MSCs [10]. Lastly, 

hedgehog secretory proteins have also been reported to induce osteogenic differentiation and inhibit 

adipogenesis in MSCs by decreasing PPARG and C/EBPA expression through GLI transcription factors 

[11].  

Terminal differentiation is controlled by several transcription factors that temporally regulate a 

series of metabolic and adipokine gene-expression events. Induction and maintenance of this 

transcriptional cascade is primarily driven by the expression and interactions of two crucial 

transcriptional regulators: Peroxisome Proliferator-activated Receptor gamma (PPARγ) and 

CCAAT/Enhancer-Binding Protein (C/EBP). PPARγ is a ligand-activated transcription factor that belongs 

to the superfamily of hormone nuclear receptors. PPARγ exists as two isoforms in mice, PPARγ1 and 

PPARγ2. These isoforms differ in that the N-terminal region of PPARγ2 contains an additional 30 amino 

acids compared to PPARγ1. In contrast to PPARγ1 which is expressed in multiple tissues, PPARγ2 

expression is adipocyte-specific. Upon activation by endogenous ligands (fatty acids such as nitrolinoleic 

acid), PPARγ forms a heterodimer with retinoid X receptor and binds to specific PPAR response element 
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regions of target genes involved in lipogenesis, lipolysis, and adipogenesis to increase the expression of 

their corresponding proteins, including FABP4, LPL, perilipin, and glycerol kinase [12]. 

Several in vivo models have demonstrated the role of PPARγ as a master regulator of 

adipogenesis. One of the earliest reports came from Barak et al. who generated chimeric Pparg 

knockout mice by supplementing knockout embryos with wild-type tetraploid cells to rescue the Pparg 

knockout mice from an embryonic lethal phenotype [13]. The absence of BAT and WAT in the chimeric 

mutants suggested that PPARγ was required for adipogenesis. In another study, systemic deletion of 

PPARγ2 yielded severely lipodystrophic mice with virtually no WAT and smaller BAT. Growth retardation 

accounted for nearly half of these mice dying before reaching adulthood. Furthermore, compensation 

by muscle to consume excess lipids limited the extent of metabolic dysfunction in these mice as they 

were mildly glucose intolerant and did not develop fatty livers [14]. In a recent study, Wang and 

colleagues observed that adipocyte-specific PPARγ knockout mice had almost no visible WAT or BAT at 3 

months of age. These lipodystrophic mice also displayed severe metabolic phenotypes including insulin 

resistance, fatty liver and abnormalities in tissues that normally contain WAT such as bone and 

mammary glands [15]. 

CCAAT/enhancer-binding proteins (C/EBPs) are a class of transcription factors that contain a basic 

leucine zipper domain. Among the 6 isoforms (α, β, δ, γ, ε, and ζ) comprising this family, C/EBP-α, C/EBP-

β, and C/EBP-δ play key roles in stimulating adipogenesis. C/EBP-β and C/EBP-δ are maximally expressed 

during early adipogenesis and bind to the Pparg promoter to induce PPARγ expression [6]. 

Transcriptional regulation of C/EBP-β is mediated by factors including cAMP-responsive element binding 

protein (CREB) and STAT3, whereas MAPK and GSK3β regulate C/EBP-β phosphorylation which is 

required for C/EBP-β binding to DNA [16]. While CEBP-δ expression was reported to be induced by 

glucocorticoids [17], little is known about C/EBP-δ regulation. C/EBP-α expression is later induced by 

PPARγ and participates in a positive-feedback loop with PPARγ by reciprocally binding to the PPARγ 



18 
 

promoter to reinforce PPARγ expression and drive adipogenesis (Figure 2) [18, 19]. In vivo models have 

also demonstrated the contributions of C/EBPs to adipogenesis. For instance, transgenic mice lacking 

C/EBP-α in all tissues except the liver had almost no subcutaneous, perirenal and epididymal WAT 

although fat was present in mammary glands. These mice also had elevated lipid levels in the serum 

[20]. In another study, global, double knockout mice that lacked C/EBP-β and CEBP-δ displayed reduced 

lipid accumulation in BAT and significantly reduced epididymal fat depots despite expressing normal 

levels of PPARγ and C/EBP-α [21]. This demonstrates that the induction of PPARγ and C/EBP-α alone is 

not enough for complete adipocyte differentiation to occur.   

Other transcription factors contribute to the regulation of adipogenesis by promoting or inhibiting 

the expression and activity of PPARγ and C/EBP-α proteins. Kruppel-like factors (KLFs) are zinc-finger 

proteins that have established roles in regulating differentiation, proliferation and apoptosis [6]. The KLF 

family consists of both pro-adipogenic and anti-adipogenic members. KLFs that promote differentiation 

include KLF5, KLF6, and KLF15, whereas KLF2 and KLF7 inhibit adipogenesis. Upon induction by C/EBP-β 

and C/EBP-δ, KLF5 binds and activates the Pparg promoter to maintain the differentiated state [22]. The 

role of KLF5 in adipogenesis was recapitulated in vivo by Oishi and colleagues who showed that 

heterozygous KLF5 knockout mice displayed impaired WAT development within the first few days after 

birth [22]. Heterozygous mice also weighed less than control littermates. In addition, WAT depots from 

the back and neck were significantly smaller and adipocytes contained either smaller or no lipid droplets 

compared to wild-type adipocytes.   

KLF6 promotes adipogenesis in 3T3-L1 cells by inhibiting the expression of delta-like-1/pre-

adipocyte factor-1 (DLK1/PREF-1), a transmembrane protein that inhibits adipocyte differentiation by 

activating the ERK/MAPK pathway to stimulate SOX9 expression [23]. In addition to promoting 

adipocyte differentiation, KLF15 also induces the expression of glucose transporter 4 which is necessary 

for insulin-mediated glucose uptake. In contrast, KLF2 inhibits adipogenesis by repressing the Pparg 
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promoter [24]. Similarly, KLF7 decreases PPARγ and C/EBP-α expression [25]. GATA transcription factors 

also contain zinc finger domains and regulate cellular processes, such as proliferation and 

differentiation, by binding to specific DNA sequences. GATA proteins such as GATA2 and GATA3 inhibit 

adipogenesis by directly binding to the Pparg promoter or by binding to C/EBP-α to decrease its 

transcriptional activity on the Pparg promoter [26]. 

In contrast to white adipogenesis, PPARγ and C/EBPs have less prominent roles in the 

differentiation of brown adipocytes when compared to the transcription factor PRD1-BF1-RIZ1 

homologous domain-containing 16 (PRDM16), which was shown to be crucial to brown adipogenesis. In 

fact, PRDM16 was reported to act as a molecular switch controlling the fate of Myf5+ precursor cells 

between brown adipocyte and myocyte lineages [27]. While PRDM16 participates in the induction of 

adipocyte-related genes such as Pparg and Fabp4, it also induces the expression of brown adipocyte-

specific and thermogenic genes, such as Ucp1 upon forming a transcriptional complex with C/EBP-β and 

PPARγ [6]. PRDM16 also associates with PPARγ co-activator 1α (PGC-1α) to induce the expression of 

genes related to mitochondrial biogenesis and adaptive thermogenesis in brown adipocytes [4]. In 

addition, PRDM16 inhibits the expression of white adipocyte genes, such as resistin and 

angiotensinogen, by forming a transcriptional repression complex with C-terminal binding proteins 1 

and 2 (CTBP1 and CTBP2) [28]. PRDM16 is also expressed in white adipocytes and plays a role in 

mediating the browning or “beiging” of white adipocytes stimulated by cues such as β3-adrenergic 

stimulation and cold exposure [29]. 

1.1.2 General functions of adipocytes  

The regulation of energy homeostasis is principally mediated by three types of adipocytes: 

white, brown and beige. These adipocytes differ in several aspects, including morphology, function, and 

gene expression. White adipocytes are the principal component of white adipose tissue (WAT) which 
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specializes in the storage of lipids. White adipocytes have unilocular lipid droplets and few 

mitochondria. In contrast, brown adipocytes specialize in thermogenesis and contain multilocular lipid 

droplets and a high density of mitochondria [30]. Brown adipocytes dissipate energy in the form of heat 

by the action of uncoupling protein 1 (UCP-1), which uncouples the electrochemical proton gradient 

from ATP production. Beige adipocytes are interspersed within WAT and acquire brown adipocyte-like 

features under conditions, such as cold stimulation and β3 adrenergic receptor stimulation [31]. In the 

basal state, beige adipocytes resemble white adipocytes; however, upon stimulation, beige adipocytes 

acquire the brown adipocyte phenotype, as both mitochondrial density and UCP-1 expression increase 

[32]. Removal of stimuli reverses the browning process thereby returning beige adipocytes back to the 

basal state [33].   

The functions of adipose tissue extend beyond regulating lipid storage and energy dissipation as 

they also include protecting delicate organs such as the eye, protecting body parts from mechanical 

stress, moving skeletal components within joints, and sculpting facial features [5, 34]. Since the 

discovery of leptin, adipose tissue has been recognized as a major endocrine organ involved the 

regulation of whole-body glucose metabolism, systemic insulin sensitivity, and inflammatory responses 

[35]. White adipocytes also secrete a wide range of cytokines (also called adipokines) that affect whole-

body metabolism and regulate inflammation. Leptin, which is perhaps the most renowned adipokine, is 

secreted in proportion to adipose tissue mass and plays an important role in regulating food intake. One 

of the well-known functions of leptin includes its binding to leptin receptors in the hypothalamus to 

reduce appetite and food intake [36]. Upon binding to its cognate receptors, ADIPOR1 and ADIPOR2, 

adiponectin promotes insulin sensitivity in tissues, such as the liver and skeletal muscle, through 

crosstalk between the adiponectin and insulin signaling pathways. More specifically, an adaptor protein 

(APPL1) that is initially bound to ADIPOR1/2 mediates the action of adiponectin by binding to IRS1/2, 

which promotes IRS1/2 binding to the insulin receptor to ultimately enhance insulin signaling [37]. In 



21 
 

contrast, proinflammatory cytokines like resistin, tumor necrosis factor-α (TNF-α), and IL-6 contribute to 

insulin resistance by activating inflammation pathways involving c-Jun N-terminal kinase (JNK) and 

inhibitor of κβ (IKK) that result in increased serine phosphorylation of IRS molecules [38].  Other 

adipokines and their reported functions are listed in Table 1. 

Table 1: Examples of adipokines secreted by WAT and BAT and their functions 

Adipokine Source Function Reference 

Adiponectin WAT Insulin sensitization in peripheral tissues  [37] 

BMP2/4/7 WAT, BAT Regulation of commitment and differentiation 
of adipogenic precursor cells 

[39] [40] [41] 

IL6 WAT, BAT Promotes inflammation, inhibits insulin signaling [42, 43] 

Leptin WAT Regulates appetite via central nervous system  [36] 

MCP-1 WAT Recruitment of monocytes to adipose  
tissue 

[44] 

NRG4 WAT, BAT Maintains adipose tissue vasculature, regulates 
hepatic lipogenesis 

[45] [46] 

Resistin WAT Modulates glucose homeostasis by inhibiting 
insulin signaling  

[47] 

TNF-α WAT Promotes inflammation, inhibits insulin signaling [48] 

VEGF WAT, BAT Stimulates angiogenesis in adipose tissue [49] 

BMP, bone morphogenic protein; IL6, interleukin 6; MCP-1, moncocyte chemoattractant protein-1; 
NRG4, neuregulin 4; TNF-α, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor 

 

1.1.3 Interactions between adipocytes and other cell-types 

Adipocytes have been shown to play additional roles in various biological processes through 

crosstalk with other cell types. In the context of obesity, elevated levels of proinflammatory adipokines 

promote the recruitment of monocytes to adipose depots to increase the inflammatory response and 

clear infections [50]. Macrophages are also recruited to adipose depots by free fatty acids (FFAs) during 

fasting and weight loss periods and take up nearby lipids to maintain circulatory free fatty acids levels 

[51]. In addition, M2 macrophages activated by cold exposure in an IL-4-dependent manner were shown 

to secrete catecholamines that promote the browning of white adipose tissue, confirming reciprocal 

crosstalk between macrophages and adipocytes [52]. Adipocyte progenitor cells were shown to promote 
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hair growth in mice by stimulating the expression of platelet-derived growth factor α (PDGF-α), which 

induces stem cell activation in hair follicles [5]. Adipocytes found in the epicardium are associated with 

increased atherosclerosis and blood pressure [53]. Furthermore, adipocytes regulate insulin sensitivity in 

skeletal muscle [54]. Adipocyte-myocyte interactions also involve fibro-adipogenic precursor (FAP) cells 

which exist in skeletal muscle and can differentiate into white adipocytes under conditions of metabolic 

dysfunction and muscular dystrophy. Undifferentiated FAPs were previously shown to be involved in 

muscle repair following muscle damage, whereby they proliferate, clear necrotic cells, and promote 

myogenesis in response to cytokine production at the site of injury [5].  

Adipocytes in the bone marrow arise from multipotent precursor cells that commit to either the 

osteoblast or adipocyte lineages. This cell fate decision is thought to explain an inverse association 

between marrow fat and bone strength and density [55]. In addition, several studies have demonstrated 

reciprocal regulation between adipocytes and osteoblasts. For instance, Hamrick and colleagues 

reported that leptin-deficient ob/ob mice treated with leptin displayed a loss in the size and number of 

bone marrow adipocytes as well as increased bone formation [56]. In contrast, Luo et al. showed that 

adiponectin negatively regulates bone formation by inhibiting the production of the osteoclastogenesis 

inhibitor, osteoprotegerin, in osteoblasts [57]. Conversely, osteocalcin which is secreted by osteoblasts, 

was reported by Ferron and colleagues to affect fat mass and improve insulin sensitivity in wild-type 

mice by stimulating the release of adiponectin in white adipose tissue [58]. Adipocytes have also been 

implicated in tumor development, as one in vitro study demonstrated that leptin promotes tumor 

proliferation by activating the ERK1/2 and JNK pathways [59]. Secretion of cytokines such as IL-6 and 

MCP-1 promote macrophage recruitment to proinflammatory environments that are optimal for tumor 

proliferation [60]. Cytokines also mediate tumor migration and homing to adipose depots (e.g. omental 

depot) that provide cancer cells with fatty acids to serve as fuel for rapid cell division [59]. Additionally, 

adipocytes secrete ECM components such as collagen VI and matrix metalloproteinase 11 that promote 
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ECM remodelling [59]. Adipocytes also secrete VEGF-A which stimulates angiogenesis to accommodate 

the increased demand for nutrients and O2 to be delivered at tumor sites [49]. 

The functional diversity of adipocytes is also reflected by the identification of adipocytes that 

are distinct from their traditional white, brown and beige counterparts. These include pink and yellow 

adipocytes that develop in mammary glands and in the bone marrow respectively. Mammary adipocytes 

are involved in the regulation of epithelial growth and epithelium function, and communicate with other 

cell types in mammary glands [61-63]. Lineage tracing studies by Cinti and colleagues led to the 

observation that subcutaneous adipocytes in mammary glands convert into milk-secreting epithelial 

cells [64]. In this regard, mammary adipocytes were reported to dedifferentiate into fibroblast-like 

preadipocytes during lactation to allow for mammary alveolar structures to expand and develop milk-

secreting properties in the ductal epithelium of the mammary gland [65, 66]. However, these findings 

were recently challenged in a report by Wang et al. who used a doxycycline-inducible adipocyte-specific 

tracking model to demonstrate that mammary adipocytes do not trans-differentiate into milk-secreting 

alveolar cells [66]. During the involution period, these preadipocytes re-differentiate into mature 

mammary adipocytes as mammary alveolar structures undergo apoptosis [66-68].  

Bone marrow adipocytes have unique features compared to adipocytes found in other depots. 

For instance, marrow adipocytes are smaller and differ in fatty acid composition compared to other 

adipocytes [69]. Lipid mobilization doesn’t occur in marrow adipocytes during caloric restriction despite 

marrow adipocytes being able to hydrolyze lipids [70, 71]. In addition, progenitor cells of marrow 

adipocytes lack cell surface markers such as CD24 that are seen in progenitor cells for other adipose 

depots [55, 72]. Thus, the influence that adipocytes have on other cell types and tissues demonstrates 

that the function of adipose tissue is more complex than just regulating energy homeostasis.  
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1.1.4 Functional differences between different adipose depots 

Adipose tissue can be further classified into depots according to their location. In the case of 

WAT, most depots are generally categorized as being visceral (vWAT) or subcutaneous (scWAT) tissue. In 

humans, vWAT includes the mesenteric, omental, retroperitoneal and epicardial depots. scWAT 

encompasses depots found in the abdominal, gluteal, and femoral regions. All vWAT depots listed above 

are also found in mice except for epicardial depots [73]. Conversely, epididymal fat depots that are 

present in mice are not found in humans [5]. vWAT and scWAT also differ in physiological and metabolic 

function. For instance, vWAT adipocytes are more metabolically active and insulin-resistant than scWAT 

[74, 75]. Visceral adipocytes also display greater lipolytic activity, as they are more sensitive to 

catecholamine-stimulated lipolysis, which is the hydrolysis of triglycerides into FFA and acylglycerols [31, 

76]. Furthermore, inflammatory cells are more prevalent in vWAT compared to scWAT depots [77, 78]. 

scWAT depots are also more efficient in taking up FFA and triglycerides from circulation during the 

postprandial period [76]. These differences explain in part why vWAT is closely associated with insulin 

resistance, hyperglycemia, dyslipidemia and mortality in comparison to scWAT which is even associated 

with protection against cardiometabolic disease in obesity [31, 79]. In humans, BAT is distributed around 

the paravertebral, supraclavicular, and suprarenal regions in humans whereas in mice, BAT is divided 

into the interscapular and perirenal depots [73]. 

1.1.5 Heterogeneity of adipose tissue 

Functional differences between adipose depots may result from heterogeneity among adipocyte 

precursor cells (APCs) that develop into different adipocyte populations. Methods such as lineage 

tracing, fluorescence activated cell sorting (FACS), and single-cell RNA sequence (scRNAseq) analysis 

have led to the identification of distinct APC populations and have advanced our understanding of the 

developmental origins of different adipose depots. One example is the case of Seale and colleagues who 
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used the Cre–LoxP system to investigate whether white and brown adipocytes shared a common 

precursor expressing Myf5, which was initially thought of being expressed solely in myocytes. Lineage 

tracing by Cre–LoxP is a method that uses reporter and Cre recombinase models to evaluate whether 

progeny cells express genes that are also expressed by precursor cells belonging to a specific lineage. 

White and brown adipocytes were determined to be derived from separate APCs that were Pax7-; Myf5- 

and Pax7+; Myf5+ respectively [27, 80]. Furthermore, brown adipocytes and skeletal muscle were 

derived from a common precursor cell whose fate into either lineage was controlled by PRDM16 [27]. 

Lineage tracing also indicated that beige adipocytes that develop in WAT following stimulation with an 

β3-adrenergic agonist were not derived from Myf5+ precursors of intrascapular BAT but did resemble 

Myf5- white adipocyte precursors [27]. 

In another study, Rodeheffer and colleagues used FACS, a technique that separates cells based 

on the absence or presence of cell-surface proteins, to characterize the preadipocyte lineage using APCs 

collected from the stromal vascular fraction (SVF) of murine adipose tissue. Rodeheffer et al. defined 

this population as being negative for CD31, CD45, and Ter119 which are respectively expressed in 

committed lineages for endothelial cells, macrophages and erythrocytes [30]. This population was 

positive for CD29, CD34, Sca1 and CD24 stem cell markers [81]. To confirm that adipocytes were derived 

from this population of cells, these precursor cells were transplanted into depots of lipodystrophic mice, 

and the successful reconstitution of WAT in these mice validated the identification of these precursor 

cells belonging to the adipocyte lineage [81]. In a later study, lineage tracing by the Cre–LoxP system 

was utilized to determine whether white adipocytes in mice could be derived from hematopoietic and 

endothelial lineages [82]. Results from that study indicated that WAT was not derived from either 

lineage, which was consistent with the earlier identification of an APC population by FACS that was 

devoid of endothelial and erythrocyte cell surface markers. Additional lineage tracing studies using 

Pdgfra-Cre mice led to the identification of adipocyte precursors that were either positive or negative 
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for the cell surface marker CD24. The expression of adipocyte-associated genes like Pparg and C/ebpa in 

CD24- APCs but not in CD24+ APCs led Rodeheffer and colleagues to the conclusion that CD24+ precursors 

develop into CD24- precursors that are more committed to the preadipocyte lineage [82]. Additional 

studies into the heterogeneous origins of WAT depots that utilized the lineage tracing by Cre–LoxP 

method demonstrated that APCs from respective depots originate from distinct areas of the mesoderm 

[30, 83, 84]. 

In a recent study conducted by Merrick et al., separation of fat cells with FACS followed by 

further grouping of cells by single-cell RNA sequencing (scRNAseq, a method that groups cells according 

to gene expression) led to the identification of three novel APC populations in mice and humans: 

interstitial progenitor cells (IPCs) expressing Dipeptidyl Peptidase-4 (DPP4), preadipocytes expressing 

intercellular adhesion molecule-1 (ICAM1), and group 3 cells expressing CD142 [85]. Based on in vivo cell 

transplantation studies, DPP4-expressing IPCs are progenitor cells for committed ICAM1- and CD142-

expressing preadipocytes. Merrick et al. noted that group 3 APCs are present in the subcutaneous fat of 

mice but not humans. The idea of APC heterogeneity contributing to differences between adipose 

depots was supported by the finding that fewer IPCs were present in visceral depots than in 

subcutaneous depots [85]. Adipocyte heterogeneity has not only been seen between different depots, 

but also among adipocytes within a single depot. Reports of mature white adipocytes isolated from a 

single depot displaying variable lipogenesis, insulin sensitivity and fatty acid uptake suggest that a single 

adipose depot may be comprised of several distinct adipocyte subtypes [86, 87]. Furthermore, Lee et al. 

utilized in vitro clonal cell analysis to identify three white adipocyte populations characterized by unique 

expression profiles of three gene markers: Wilms tumor 1 (Wt1, type 1), transgelin (Tagln, type 2) and 

Myxovirus 1 (Mx1, type 3) [88].  In addition, clonal cell analysis and lineage tracing models revealed 

differences in metabolism and gene expression across these three populations, and that WAT depots are 

comprised of these 3 distinct adipocyte populations that differ in abundance [88]. 
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1.2 Lipid Homeostasis 

1.2.1 Lipid droplets 

Lipid droplets consist of a core composed of triacylglycerols (TAGs) and cholesterol esters 

enveloped by a monophospholipid layer and are coated with various proteins including ATGL (adipose 

triglyceride lipase) [89]. Lipid droplets are mainly found in adipocytes, hepatocytes, mammary epithelial 

cells and steroidogenic cells [89]. Furthermore, the composition of the lipid core varies between cell 

types. Lipid droplets are not found only in mammals, but also in plants, bacteria and insects [90, 91]. 

Lipid droplets were initially thought of only having roles in lipid storage and preventing lipotoxicity; 

however, recent reports of the presence of proteins such as Rab GTPases on the lipid droplet surface 

suggest that they have additional roles in lipid trafficking and lipid metabolism [92]. Proteins found on 

the surface of lipid droplets include perilipin A (PLIN1), adipocyte differentiation-related protein (ADRP 

or PLIN2), and tail-interacting protein of 47 kDa (TIP47 or PLIN3), all of which contain a conserved 

sequence region called the PAT domain [93].  

Whereas PLIN3 is highly expressed in all tissues, PLIN1 and PLIN2 are mostly expressed in WAT 

and liver respectively [94]. In adipocytes, perilipin A regulates lipid metabolism by controlling the access 

of lipases to the lipid droplets. Upon phosphorylation by protein kinase A, perilipin no longer blocks 

lipases found on the surface of lipid droplets from hydrolyzing TAGs stored in the lipid core. ADRP, which 

was named based on its early induction during adipocyte differentiation, has roles in the formation and 

stabilization of small lipid droplets [94] and is replaced with PLIN1 as preadipocytes mature. [95, 96].  

Despite initially being implicated with intracellular trafficking of lysozymes, PLIN3 was reported to 

contribute towards lipid droplet stabilization [97]. 
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1.2.2 Lipolysis 

1.2.2.1 Key players in the lipolytic pathway  

While white adipose tissues serve as sites for the storage of excess energy in the form of 

triglycerides, they also regulate the release and mobilization of stored triglycerides to other tissues that 

require energy in a process called lipolysis [98]. Lipolysis is a chemical pathway whereby triglycerides are 

sequentially hydrolyzed into FFAs and acylglycerols. Lipolysis is modulated by catecholamines, which 

bind either to β-adrenergic receptors to stimulate lipolysis or α2-adrenergic receptors to inhibit lipolysis 

[99]. In the case of lipolysis, binding of endogenous catecholamines such as norepinephrine to G-protein 

coupled β-adrenergic receptors (GPCRs) causes the α-subunit of heterotrimeric G-proteins to dissociate 

from the β and γ subunits. As a result, the Gα subunit stimulates the activity of adenylyl cyclase, 

increases production of the second messenger cAMP, activation of PKA, and the subsequent 

phosphorylation of HSL and transcription factors (Figure 3) [98]. Three enzymes are involved in the 

sequential hydrolysis of triglycerides to yield glycerol and FFA: adipose triglyceride lipase (ATGL), 

hormone sensitive lipase (HSL), and monoacylglycerol lipase (MAGL). ATGL catalyzes the hydrolysis of 

triacylglycerols (TAGs) into diacylglycerols (DAGs), which are subsequently hydrolyzed into 

monoacylglycerols (MAGs) by HSL. Lastly, MAGL hydrolyzes MAGs into free fatty acids and glycerol. A 

study that used ATGL-deficient mice and small-molecule inhibitors for HSL suggests that ATGL and HSL 

account for at least 90% of lipid hydrolysis in murine WAT [100]. 
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Figure 3: Lipolysis pathway in adipocytes. Stimulation of lipolysis involves catecholamines binding to β-
adrenergic receptors and generation of the second messenger cAMP. Insulin signaling inhibits lipolysis 
through PI3K/AKT-mediated activation of PDE3B, which converts cAMP to AMP. AC, adenylyl cyclase; 
βAR, β-adrenergic receptor; CGI-58, comparative gene identification-58; HSL, hormone sensitive lipase; 
IR, insulin receptor; IRS, insulin receptor substrate; PDE3B, phosphodiesterase 3B; PIP2, 
phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PLIN, perilipin 

  

1.2.2.2 HSL 

Although HSL has been shown to exhibit broad specificity in hydrolyzing TAGs, DAGs, and MAGs, 

it was reported to have greater specificity for DAGs which are hydrolyzed approximately 10 times faster 

than TAGs [101, 102]. Several findings challenged the initial belief that HSL was the sole rate-limiting 

enzyme involved in the hydrolysis of TAGs. One example was the difference in the relative fold increase 

in β-adrenergic stimulated lipolysis from basal conditions (50-fold) compared to the fold increase in the 

specific activity of HSL (less than 2-fold) upon stimulation [102]. Furthermore, Haemmerle and 

colleagues observed that HSL knockout (HSL KO) mice only displayed a 30-40% reduction in FFA release 

compared to wild-type littermates. While these mice also displayed an accumulation of DAGs in adipose 

tissue, muscle, and testis, no TAG accumulation was observed in adipose or non-adipose tissue [103]. 
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Taken together, these observations suggested that other lipases were involved in lipolysis (see sections 

1.2.2.3 and 1.2.2.4).  

Regulation of HSL activity is controlled by several factors.  For instance, PKA has been shown to 

regulate HSL via phosphorylation at multiple sites including Ser650 in humans and Ser563, Ser659, and 

Ser660 in rat [104, 105]. Furthermore, β-adrenergic stimulation and insulin have opposing roles in 

modulating HSL activity, as the former condition strongly induces HSL activity and the latter inhibits its 

activity. Insulin inhibits lipolysis by activating AKT (also called PKB) and activates phosphodiesterase 3B 

which converts cAMP to 5’AMP (Figure 3) [106]. Under basal conditions, HSL resides in the cytoplasm 

and PLIN1 prevents HSL from accessing the lipid droplet. Upon stimulation of lipolysis, PKA 

phosphorylates multiple PLIN1 residues, including Ser81, Ser222, Ser272, Ser433, Ser492 and Ser517. As 

a result, PLIN1 interacts with and activates phosphorylated HSL which is found at the lipid droplet and is 

no longer restricted from hydrolyzing lipid droplets [107, 108]. Although PLIN1 was initially believed to 

be essential for HSL translocation, Miyoshi and colleagues demonstrated by cell fractionation and 

confocal microscopy that translocation of HSL to the lipid droplet surface was still possible in the 

presence of PLIN1 devoid of its six PKA-binding sites. This suggests that PLIN1 and PKA are not the sole 

proteins that mediate the activation of HSL. 

 

1.2.2.3 ATGL 

ATGL is also known as desnutrin and patatin-like phospholipase domain containing 2 (PNPLA2) 

and is highly selective for TAGs as it hydrolyzes them 10 times faster than DAGs [109]. Reports of 

significant reductions in TAG hydrolase activity following ATGL immunoprecipitation from human and 

mouse adipose tissue lysates suggested that ATGL may be responsible for hydrolyzing most TAGs [109, 

110]. The contributions of ATGL in lipolysis and its role as the principal enzyme implicated in the 
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hydrolysis of TAGs were further substantiated by studies involving ATGL knockout (ATGL KO) mice. 

Haemmerle and colleagues observed that ATGL KO mice displayed significant reductions in TAG 

hydrolase activity, enlarged adipose tissues, and accumulated lipids in the heart causing cardiac 

dysfunction [111]. ATGL KO mice were also cold-sensitive as they reduced their body temperature and 

oxygen consumption when fasted. This was explained by the failure of WAT and BAT to mobilize 

adequate amounts of FFA which was evident from the nearly 70% decrease in isoproterenol-stimulated 

FFA release and significantly reduced plasma FFA levels in ATGL KO mice [111]. 

At least two serine residues have been identified as phosphorylation sites in murine ATGL: 

Ser406 and Ser430 [89]. Similarly, Bartz et al. identified Ser404 and Ser428 as phosphorylation sites in 

human ATGL [89].  Despite the identification of these phosphorylation sites, PKA was shown not to play 

a role in ATGL phosphorylation [109]. Ahmadian et al. demonstrated that ATGL phosphorylation was 

mediated by AMP-activated kinase (AMPK) at Ser406 and resulted in an increase in lipase activity [112]. 

However, a recent study from Pagnon et al. called into question whether phosphorylation of murine 

ATGL was strictly PKA-independent. Pagnon and colleagues showed that whereas both PKA and AMPK 

were able to phosphorylate Ser406 in vitro, only PKA could phosphorylate Ser406 in vivo. This was based 

on observations of pharmacological PKA inhibitors blocking the increase in β-adrenergic-stimulated 

phosphorylation at Ser406. Furthermore, no increases in AMPK activity in adipose tissue of fasted mice 

was observed, despite increases in phosphorylation of Ser406 [113]. Thus, this study called into question 

the previously established roles (or lack thereof) of AMPK and PKA in regulating lipolysis by 

phosphorylating mouse ATGL to modulate its activity.  

Unlike HSL, ATGL requires a coactivator protein called comparative gene identification-58 (CGI-

58) or α/β hydroxylase domain containing protein 5 (ABDH5) to achieve full TAG hydrolase activity. This 

was demonstrated in mouse models that reported up to a 20-fold increase in ATGL hydrolase activity in 

the presence of CGI-58 [114]. ATGL, which is found both in the cytoplasm and on the lipid droplet 
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surface, has also been reported to be indirectly regulated by perilipin. Studies point to perilipin 

regulating ATGL activity by controlling the accessibility of ATGL to its coactivator CGI-58 [115, 116]. In 

the basal state, perilipin binds to CGI-58 and prevents ATGL activation. In the stimulated state, PKA 

phosphorylates perilipin resulting in the dissociation of the perilipin – CGI58 complex. Consequently, 

CGI-58 is free to bind to and activate ATGL. Miyoshi and colleagues showed that PKA-mediated 

phosphorylation of perilipin at Ser517 was critical for ATGL activation as mutation of this site reduced 

forskolin-stimulated glycerol and FFA release by 95% in adipocytes derived from mouse embryonic 

fibroblasts [116]. 

1.2.2.4 MAGL 

MAGL catalyzes the conversion of monoglycerides to glycerol and FFA. MAGL was previously 

reported to exhibit high specificity for MAGs [117]. Although MAGL is abundantly expressed in several 

tissues, the highest expression is seen in WAT. MAGL is found in the cytoplasm, plasma membrane and 

on the lipid droplet surface [118, 119]. In comparison to HSL and ATGL, very little is known about the 

regulation of MAGL [119]. In one study involving MAGL knockout mice, Taschler et al. reported a 35% 

reduction in stimulated lipolysis and MAG hydrolase activity [120]. This suggests that other recently 

discovered monoacylglycerol lipases including α/β hydrolase domain-containing protein 6 (ABHD6), 

ABDH12, and fatty acid amide hydrolase (FAAH) likely contribute to MAG hydrolysis. While the above-

mentioned lipases were determined to display MAG hydrolase activity in vitro, the in vivo contributions 

and implications of these lipases to MAG hydrolysis remain to be elucidated. Lastly, interest in the 

contributions of MAGL outside of lipolysis stem from its reported role in degrading 2-arachidonylglycerol 

(2-AG), a signaling molecule belonging to the family of endogenous lipids known as endocannabinoids 

[121]. Endocannabinoids  bind to G-protein coupled cannabinoid receptors to regulate energy 

homeostasis, lipid metabolism and food intake [122]. 
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1.2.3 Lipogenesis 

1.2.3.1 Overview of lipogenesis 

De novo lipogenesis is a pathway whereby excess carbohydrates are used to synthesize free 

fatty acids, which are later converted into triglycerides for storage, particularly in white adipose tissue 

and the liver (Figure 4). Citrate produced from glucose undergoing glycolysis, pyruvate processing, and 

the tricarboxylic acid (TCA) cycle is shuttled from the mitochondria to the cytosol to generate acetyl-CoA 

by ATP-citrate lyase (ACLY). Fatty acids are then obtained from acetyl-CoA through a series of reactions 

catalyzed by the enzymes acetyl-CoA carboxylase (ACC1), fatty acid synthase (FASN), and stearoyl-CoA 

desaturase-1 (SCD-1). ACC1 and FASN are the two principle enzymes involved in the de novo lipogenesis 

pathway, as the former enzyme catalyzes the conversion of acetyl-CoA to malonyl-CoA and the latter 

enzyme converts malonyl-CoA into palmitate. The generation of palmitate, the first fatty acid product, is 

the rate-limiting step of the de novo lipogenesis pathway. Palmitate is elongated and saturated by 

enzymes including SCD-1 to generate various complex fatty acids, such as palmitoleic acid, steric acid, 

and oleic acid [123]. Regulation of these two principle enzymes are controlled by sterol-response-

element-binding protein 1c (SREBP1c) and carbohydrate-response-element-binding protein (ChREBP). 

The roles of these transcription factors as the dominant regulators of de novo lipogenesis varies across 

different cell types, as SREBP1c is the main regulator in the liver and ChREBP is the main regulator in 

WAT [5]. 
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Figure 4: The de novo lipogenesis pathway in adipocytes. Glucose is metabolized into pyruvate through 
glycolysis and is later processed into acteyl-coA which enters the TCA cycle to generate citrate. The 
enzymes ACLY, ACC1, FASN, and SCD-1 catalyze a series of reactions to convert citrate into palmitate 
which undergoes additional processing to synthesize various fatty acids. The expression of these 
enzymes is regulated by the transcription factors ChREBP and SREBP-1c, which in turn are respectively 
stimulated by high glucose and insulin. ACLY, ATP citrate lyase; ACC1, Acetyl-CoA carboxylase 1; ChREBP, 
carbohydrate-response element binding protein; ChORE, carbohydrate response element; FASN, fatty 
acid synthase; SREBP-1c, Sterol-responsive element binding protein; SRE, sterol response element; SCD-
1, stearoyl-CoA desaturase. Image taken from [123]. 
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1.2.3.2 SREBP-1c 

Sterol-responsive element binding proteins (SREBPs) are a class of transcription factors that 

possess the basic helix-loop-helix-leucine zipper (bHLH-Zip) domain for binding to DNA. The SREBP 

family is comprised of three isoforms: SREBP-1a, SREBP-1c, and SREBP-2. SREBP-1a activates genes 

involved in cholesterol, fatty acid, and triglyceride synthesis. SREBP-1c and SREBP-2 have more 

restrictive roles, as they respectively promote expression of genes related to fatty acid synthesis and 

cholesterol synthesis [124]. SREBPs are initially synthesized in their inactive form consisting of an amino-

terminal domain containing the bHLH-Zip region, a hydrophobic transmembrane region, and a carboxy-

terminal regulatory domain. When intracellular cholesterol levels are low, the escort protein and sterol 

sensor SREBP cleavage-activating protein (SCAP) binds and directs SREBP to the Golgi apparatus where it 

is proteolytically cleaved by two proteases, Site-1 and Site-2 protease (S1P and S2P). The activated 

amino-terminal domain translocates to the nucleus and binds to specific sterol response elements (SRE) 

in promoter regions of genes associated with fatty acid and cholesterol synthesis to drive their 

expression. Some target genes of SREBP-1c include ACLY, ACC1, FASN, and SCD-1 [124]. This process is 

also promoted by insulin. In hepatocytes, insulin also promotes transcription of SREBP-1c through the 

PI3K/AKT pathway that activates the downstream target mammalian target of rapamycin complex 1 

(mTORC1) [125-127].  

Loss of function and overexpression models for SREBP-1 have been utilized to examine its 

contributions to lipogenesis. Shimano and colleagues report that systemic deletion of SREBP-1 

decreased hepatic lipogenesis but increased hepatic SREBP-2 levels and SREBP-2-mediated cholesterol 

synthesis. Interestingly, adiposity and lipogenic gene expression in WAT were not affected [128]. While 

adipocyte-specific SREBP knockout models have yet to be reported, adipocyte-specific SREBP 

overexpression studies have been conducted for the SREBP-1a and SREBP-1c isoforms. In a study by 

Horton et al., increased lipogenesis, hypertrophy, and fatty acid release in adipose tissue were observed 
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[129]. In the case of SREBP-1c, Shimomura et al. observed impaired adipocyte differentiation, reduced 

adiposity, glucose intolerance and impaired insulin sensitivity [130]. When taken together, the loss of 

function and gain of function models for SREBP-1 suggest that SREBP-1 plays a minor role in adipocyte 

de novo lipogenesis. 

1.2.3.3 ChREBP 

Carbohydrate-response element binding proteins (ChREBPs) are also transcription factors that 

have a bHLH/Zip motif. The N-terminus domain contains regions regulating its nuclear localization, 

whereas the C-terminus domain contains the bHLH/Zip motif required for DNA-binding [131, 132]. To 

date, two ChREBPs isoforms have been identified: ChREBP-α and ChREBP-β. ChREBP activity is 

dependent on glucose levels. During fasting periods when glucose levels are low, elevations in plasma 

glucagon and epinephrine stimulate the activation of PKA, which along with AMPK, phosphorylates 

ChREBP-α. Consequently, the transcriptional activity of ChREBP-α is inhibited, and it is retained in the 

cytosol. During feeding and in high glucose conditions, intermediates of glucose metabolism, such as 

xylulose-5-phosphate (Xu-5-P) and glucose-6-phosphate (G6P), accumulate and activate protein 

phosphatase 2A, which dephosphorylates ChREBP-α. As a result, ChREBP-α translocates to the nucleus 

and binds to carbohydrate response elements in the promoter regions of ChREBP-α target genes 

involved in glycolysis and fatty acid synthesis. These genes are the same previously mentioned targets of 

SREBP-1c. ChREBP-α also induces the transcription of ChREBP-β, which upon feed-forward stimulation of 

its own expression activates its respective set of gene targets (Figure 4) [133-135].  

Global knockout of ChREBP in mice led to decreases in adiposity, increased glucose tolerance, 

and reduced insulin sensitivity [136]. However, adipocyte-specific deletion of ChREBP was reported to 

decrease sucrose-induced lipogenesis only in liver while also impairing glucose tolerance and insulin 

sensitivity [137]. Conversely, Nuotio-Antar et al. reported that mice overexpressing ChREBP in adipose 
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tissue displayed a lean phenotype while lipogenesis in adipose tissue increased. Other metabolic 

phenotypes included improved glucose tolerance and insulin sensitivity [138]. The reports of increased 

adipocyte de novo lipogenesis in the adipocyte-specific overexpression model for ChREBP but not 

SREBP-1c suggests that between the two transcription factors, ChREBP is the principal activator of de 

novo lipogenesis in adipocytes.  

1.2.3.4 ACC1 

ACC1 catalyzes the carboxylation of acetyl CoA to produce malonyl CoA. In eukaryotes, ACC1 

exists as a single multifunctional polypeptide that containing domains of a biotin carboxyl carrier 

protein, a biotin carboxylase, and a transcarboxylase. Each monomer is approximately 265 kDa. In 

contrast, these three domains correspond to three separate proteins in prokaryotes [139]. ACC1 

expression is transcriptionally regulated by SREBP-1c and ChREBP as previously described (Figure 4). In 

addition, ACC1 activity is modulated post-translationally by AMPK-mediated phosphorylation. Activation 

of AMPK by glucagon and epinephrine results in the phosphorylation and inactivation of ACC1, whereas 

insulin-mediated activation of protein phosphatase 2A reverses this and activates ACC1. In addition, 

citrate, an upstream precursor in the de novo lipogenesis pathway, allosterically binds and partially 

activates ACC1 [123]. The important role of ACC1 in de novo lipogenesis was demonstrated by Mao et al. 

who reported that liver-specific ACC1 mice displayed reduced hepatic lipid content compared to control 

mice placed on a fat-free diet [140]. However, this protective reduction in hepatic lipid content was lost 

when the liver-specific knockout mice were put on high-fat diet.  

1.2.3.5 FASN 

FASN catalyzes the synthesis of palmitate from malonyl CoA and exists in two forms: FASN I 

(type 1) and FASN II (type 2). FASN I is found in animals and fungi and exists as a multifunctional 

homodimeric polypeptide [141, 142]. In plants and bacteria, FASN II exists as a series of individual 
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monofunctional enzymes whose domains are homologous to FASN I orthologs [143]. FASN is 

transcriptionally regulated by the previously mentioned transcription factors SREBP-1c and ChREBP 

(Figure 4). Mouse models have identified key roles of FASN in lipid synthesis and cellular signaling. In 

one study, liver-specific FASN knockout mice that were fed a zero-fat diet displayed exacerbated hepatic 

steatosis [144]. This suggests that the protection against steatosis observed in ACC1 knockout mice fed a 

fat-free diet is likely attributed to the reduction in malonyl-CoA production [145]. In another report by 

Lodhi et al, adipocyte-specific FASN knockout mice had a lean phenotype resulting from impaired PPARγ 

activation, and displayed increased energy expenditure and beiging of subcutaneous adipose tissue. 

activation. These mice were also protected from diet-induced obesity. In addition, decreased 

transcriptional PPARγ activity and adipogenesis was shown to result from a reduction in the synthesis of 

PPARγ agonists such as specific alkyl ether lipids [146].  

1.3 14-3-3 proteins 

1.3.1 Structure 

Since their original discovery in bovine brain homogenates over 50 years ago, a renewed interest 

has been taken in understanding the roles of molecular scaffolds belonging to the 14-3-3 protein family. 

The name 14-3-3 is derived from their discovery in the 14th fraction of DEAE-cellulose chromatography 

and migration position 3.3 following gel electrophoresis [147]. 14-3-3 proteins are 28-33 kDa acidic 

proteins. In mammals, seven isoforms comprise the 14-3-3 protein family: β, γ, ε, η, σ, θ and ζ. Although 

these isoforms are highly conserved, their individual expression profiles vary between tissues and cell 

types [148]. 14-3-3 proteins often dimerize to form either homodimers or heterodimers in order to 

interact with client proteins [149, 150]. Each monomer consists of nine α-helices that are arranged in an 

antiparallel manner. Furthermore, a monomer consists of the N-terminus, a conserved core region, and 

the C-terminus. Although both the N-terminus and C-terminus display variability across the isoforms, 

only the N-terminus contains the residues required for dimerization [151, 152]. In the core region, four 
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α-helices, helices 3, 5, 7, and 9 arrange themselves in such a way that an amphipathic groove is formed, 

whereby one side has a cluster of polar residues and the other side has a cluster of non-polar residues 

[151]. This amphipathic groove comprises the ligand binding domain that allows the 14-3-3 proteins to 

interact with their target proteins. Two classical types of phosphorylation-dependent and high-affinity 

14-3-3 binding motifs were identified: RSX pS/T XP (mode 1) and RXXX pS/T XP (mode 2) where pS/T and 

X represent phosphorylated serine or threonine and any amino acid respectively [153]. 14-3-3 proteins 

are also capable of binding to non-phosphorylated client proteins. Dimerization also allows 14-3-3 

proteins to simultaneously bind to two targets [154]. These phospho-motifs are generated by kinases, 

such as PKA, AKT and PKC [147, 153]. Upon binding, 14-3-3 proteins can spatially and temporally control 

the localization of their binding partners, regulate the activity of their targets, and mediate protein 

interactions that involve the client protein [151, 152, 155].  

1.3.2 Function 

14-3-3 proteins are also called tyrosine and tryptophan hydroxylase activators (YWHAs). This 

alternative name comes from the discovery of their first reported function, which was the regulation of 

tyrosine and tryptophan hydroxylases [156]. Tyrosine and tryptophan hydroxylases catalyze the rate-

limiting steps of catecholamine and serotonin synthesis, respectively. 14-3-3 proteins are often referred 

as molecular scaffolds due to their ability to interact with one or several target proteins implicated in a 

signaling pathway. For example, 14-3-3β and 14-3-3θ were reported to facilitate interactions between 

PKC and RAF-1 in the RAF/MEK/ERK cascade that regulates cell fate [157]. Various roles have been 

reported for 14-3-3 proteins with respect to cellular and organismal metabolism and include the 

regulation of the cardiac isoform phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFK-2) [158, 159] 

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) involved in gluconeogenesis and glycolysis 

[160-162]. Other 14-3-3 targets that have been cited include cell division cycle 25B (CDC25B) involved in 

progression of the cell cycle [163-165] and Bcl-2-associated death promoter (BAD) involved in apoptosis 
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and insulin secretion by pancreatic β-cells [166, 167]. Lim et al. previously reported on the metabolic 

contributions of the zeta isoform with respect to glucose homeostasis using a systemic knockout mouse 

model. They observed that 14-3-3ζ knockout mice had improved oral glucose tolerance despite 

displaying insulin resistance. This was attributed to elevated levels of GLP-1 [168].   

1.3.3 Implication of 14-3-3 proteins on adipocyte development 

We previously demonstrated that 14-3-3ζ has essential roles in adipogenesis using a combination of 

in vitro and in vivo models. We reported that only 14-3-3ζ was required for the differentiation of 3T3-L1 

pre-adipocytes [169], and that 14-3-3ζ affects alternative splicing of Pparg mRNA during adipocyte 

differentiation [170]. We also reported that systemic 14-3-3ζ knockout (14-3-3ζKO) mice displayed 

significant reductions of fat specifically in visceral depots and had smaller gonadal adipocytes compared 

to wild-type littermates. [169]. Furthermore, transgenic mice overexpressing 14-3-3ζ gained more 

weight and fat mass compared to wild-type mice fed a high-fat diet (HFD). Metabolic phenotype studies 

revealed that 14-3-3ζ overexpression did not impair glucose tolerance or insulin sensitivity [169]. 

Regarding the insulin-mediated glucose uptake pathway that is dependent on GLUT4 in adipocytes, 14-

3-3ζ was shown to interact with several targets including IRS1, IRS2, and AS160 [171, 172].   

1.4 Hypothesis and objectives 

We demonstrated in a previous report that 14-3-3ζ has essential roles in the development of 

adipocytes and adipose tissue [169, 170]. However, the contributions of 14-3-3ζ to the function of 

mature adipocytes are still not known. Furthermore, conclusions regarding the contributions of 14-3-3ζ 

to adipogenesis were based in part on mice models where 14-3-3ζ was either systemically deleted or 

systemically overexpressed. A limitation in using these models is that they do not allow for contributions 

of 14-3-3ζ specifically in adipocytes to be evaluated. This master’s project was pursued to address these 

outstanding issues.  
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Our hypothesis was that decreasing 14-3-3ζ expression in adipocytes will impair the function of 

mature adipocytes. In order to test this hypothesis, the first objective of this project is to obtain a 

clearer understanding of how 14-3-3ζ contributes to adipocyte-specific processes. We begin this 

endeavor by determining if 14-3-3ζ plays a role in lipolysis, as 14-3-3 protein binding motifs have been 

identified in ATGL and HSL [173]. This suggests that 14-3-3ζ may have regulatory roles in lipolysis. The 

second objective of this project is to assess whether the deletion of 14-3-3ζ specifically in adipocytes 

affects whole-body metabolism. This determination requires the metabolic characterization of 

adipocyte-specific 14-3-3ζ knockout mice (adi14-3-3ζKO) that will be used in this project.
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2.1 Abstract   

The molecular scaffold, 14-3-3ζ, was previously reported to have roles in the development of 

adipocytes. However, the contributions of 14-3-3ζ to processes such as lipolysis in mature adipocytes 

have yet to be elucidated.  Herein, we demonstrate that 14-3-3ζ is necessary for lipolysis, as adipocyte-

specific 14-3-3ζ knockout (adi14-3-3ζKO) mice and adipose tissue lacking 14-3-3ζ display impaired 

glycerol and FFA release following activation of the β3-adrenergic signaling pathway. Furthermore, HSL 

activation in gonadal adipose depots was decreased in adi14-3-3ζKO mice. These findings were 

recapitulated in siRNA-transfected 3T3-L1 adipocytes that exhibited reductions in phosphorylated and 

total forms of PKA substrates including HSL and CREB. 3T3-L1 adipocytes depleted of 14-3-3ζ also 

displayed reductions in lipase mRNA and impaired lipolysis in response to multiple agonists including 

isoproterenol, forskolin and dbcAMP. In vitro mechanistic studies point to 14-3-3ζ regulating lipolysis in 

a PKA-dependent manner. In addition, 14-3-3ζ appears to have roles in determining adipocyte maturity 

as mature adipocyte features including Pparg mRNA and PPARγ expression and triacylglycerol content 

are reduced in adi14-3-3ζKO adipose depots and 14-3-3ζ-depleted 3T3-L1 adipocytes. Collectively, these 

findings reveal a novel role for 14-3-3ζ in regulating PKA-dependent lipolysis.  
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2.2 Introduction 

The primary function of white adipose tissue is the regulation of energy homeostasis. White 

adipocytes specialize in both the storage of triacylglycerols (TAGs) and the mobilization of free fatty 

acids (FFAs) to peripheral tissues to accommodate increases in metabolic demand that occur during 

exercise and fasting [98]. In WAT, FFAs are generated by the hydrolysis of TAGs in a process known as 

lipolysis. Stimulation of the lipolytic pathway involves the binding of catecholamines to β-adrenergic 

receptors and the subsequent generation of the second messenger cyclic adenosine monophosphate 

(cAMP), which activates protein kinase A (PKA) [98]. TAG hydrolysis is mediated by three lipases: 

adipose triacylglycerol lipase (ATGL), hormone sensitive lipase (HSL), and monoacylglycerol lipase 

(MAGL). These lipases, respectively, catalyze the sequential conversion of TAGs into diacylglycerols 

(DAGs), monoacylglycerols (MAGs), and finally FFAs and glycerol. One of these lipases, HSL, has been 

shown to be directly phosphorylated by PKA [104, 105].  

The 14-3-3 family of molecular scaffolds are implicated in several cellular processes, such as 

proliferation, apoptosis and metabolism [169, 174, 175]. This stems from their ability to interact with 

target proteins via phosphorylated serine and threonine motifs to regulate their localization, activity and 

interactions with other proteins [153, 154]. We have previously reported that only one of these seven 

mammalian isoforms, 14-3-3ζ, was required for adipogenesis [169]. However, the role of 14-3-3ζ in 

mature adipocyte function has not been examined. To that end, our focus turned to understanding the 

contributions of 14-3-3ζ to adipocyte-specific processes, such as lipolysis. The identification of the 14-3-

3ζ binding motifs on ATGL and HSL suggests that 14-3-3ζ may have a regulatory role in lipolysis [173].   
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Herein, we report that 14-3-3ζ is an important regulator of lipolysis, as adipocyte-specific 14-3-

3ζ knockout (adi14-3-3ζKO) mice display impaired glycerol release and HSL activation. These 

observations are replicated in vitro with 3T3-L1 adipocytes transfected with siRNA directed against 14-3-

3ζ. We also report on an unexpected role of 14-3-3ζ in the regulation of adipocyte maturity based on 

reduced mRNA levels for genes involved in adipogenesis, lipogenesis, fatty acid transport, and lipid 

content.  
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2.3 Materials and Methods 

Animal husbandry 

Adipoq-CreERT2Soff mice (stock no. 025124) were purchased from the Jackson Laboratory. 

Cryopreserved sperm for Ywhaz-floxed (Ywhazfl/fl) mice were purchased from the International Mouse 

Phenotyping Consortium and rederived onto a C57BL/6J (CRCHUM Transgenesis Core) background. 

Sperm was derived from the breeding of mice with a knock-out first allele with FRT flippase-expressing 

mice (Ywhaztm1a(EUCOMM)Hmgu); https://www.mousephenotype.org/data/genes/MGI:109484).  Adipoq-

CreERT2 and Ywhaz-floxed mice were maintained on a C57/BL6J background. Cre-LoxP technology was 

used to delete exon 4 of Ywhaz which encodes 14-3-3ζ, following intraperitoneal administration of 

tamoxifen (50 mg/kg b.w; Sigma Aldrich, St. Louis, MO) for five days at two months of age. Transgenic 

mice overexpressing 14-3-3ζ (TAP) on a CD1 background were provided  by the laboratory of Dr. Amparo 

Acker-Palmer [169, 176]. All mice were maintained on a standard chow diet (Teklad diet no. TD2918) 

under 12-hour light/12-hour dark cycles in an environmentally controlled setting (22°C ± 1°C) with free 

access to food and water. All procedures were approved and performed in accordance with CIPA 

(Comité institutionnel de protection des animaux du CRCHUM) guidelines at the Université de Montréal 

Hospital Research Centre. 

Cell Culture and transient transfections 

3T3-L1 cells were maintained in DMEM (Life Technologies Corporation, Grand Island, NY), 

supplemented with 10% newborn calf serum (NBCS) and 1% penicillin/streptomycin (P/S) and were 

seeded onto 12-well plates (100,000 cells/well) or 10cm dishes (2x106 cells/dish) 2 days prior to the 

induction of differentiation. Confluent cells were treated with a differentiation cocktail (DMEM 

supplemented with 10% FBS, 1% P/S, 500 μM IBMX, 500 nM dexamethasone and 172 nM insulin) for 48 

hours, followed by media replacement (DMEM with 10% FBS, 1% P/S and 172 nM insulin) every 2 days 
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for 7-8 days. Knockdown and overexpression of 14-3-3ζ was achieved by transfecting day 7-8 

differentiated cells with scrambled control siRNA, 14-3-3ζ-specific siRNA (Ambion, Austin, TX), GFP 

control plasmids, or plasmids encoding 14-3-3ζ (14-3-3ζ IRES-GFP) using the Amaxa Cell Line 

Nucleofector Kit L, as per manufacturer’s instructions (Lonza, Koln, Germany).  

Metabolic phenotyping 

For glucose tolerance tests, adi14-3-3ζKO mice were fasted for six hours and challenged with d-

glucose (2 g/kg b.w.; VWR, Solon, OH) by intraperitoneal administration [168, 169]. For insulin tolerance 

tests, adi14-3-3ζKO mice were fasted for four hours and were injected intraperitoneally with Humulin R 

insulin (0.5 U/kg b.w; Eli Lilly, Toronto, ON) [168, 169]. Blood glucose was measured from tail blood with 

a Contour Next EZ glucose meter (Ascencia Diabetes Care, Basel, Switzerland). 

Measurements of lipolysis 

Adi14-3-3ζKO mice were injected with 1 mg/kg CL-316,243, a β3 adrenergic agonist (Sigma-

Aldrich, St. Louis, MO) following an overnight fast [177]. TAP mice were injected with 10 mg/kg 

isoproterenol (Sigma-Aldrich), following an overnight fast. Blood was collected from the tail vein before 

and 30 minutes after receiving injections and was centrifuged at 13,000 RPM for 10 minutes to measure 

plasma glycerol and free fatty acids levels in both mice. To measure lipolysis ex vivo, gonadal adipose 

tissue was harvested and immediately placed into pH 7.4-adjusted Krebs-Ringer buffer (135 mM NaCl, 

3.6 mM KCl, 0.5 mM NaH2PO4, 0.5 mM MgCl2, and 1.5 mM CaCl2) supplemented with 10 mM HEPES, 2 

mM NaHCO3, 5 mM glucose and 2% bovine serum albumin (BSA). Gonadal explants were treated with or 

without 1 μM isoproterenol (Sigma Aldrich) for two hours [177].  The supernatant was collected and 

centrifuged for 15 minutes at 1500 RPM. To measure lipolysis from differentiated 3T3-L1 cells (Zenbio, 

Research Triangle Park, NC), cells were incubated in starvation media consisting of pH 7.4-adjusted 

Krebs-Ringer buffer, 5 mM glucose and 0.2% BSA for two hours. Cells were then incubated in 
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experimental media consisting of pH 7.4-adjusted Krebs-Ringer buffer, 5 mM glucose and 2% BSA for 

two hours while treated with 1 μM isoproterenol (Sigma-Aldrich), 10 μM forskolin with 0.5 mM IBMX 

(Sigma-Aldrich), or 1 mM dibutyryl cAMP (Sigma-Aldrich).  Supernatant was collected, and glycerol and 

free fatty acid (FFA) release was measured using triglyceride (Sigma-Aldrich) and non-esterified fatty 

acid (NEFA; Wako Diagnostics, Osaka, Japan) kits following the manufacturer’s protocol.  

RNA isolation and qPCR 

After 48 hours, total RNA was isolated from differentiated 3T3-L1 cells using the RNeasy kit 

(Qiagen, Hilden, Germany). cDNA was generated using the High-Capacity cDNA Reverse Transcription kit 

(ThermoFisher Scientific, Vilnius, Lithuania). mRNA expression was measured by real-time qPCR with 

SYBR green chemistry using the QuantStudio 6-flex Real-time PCR System (Thermofisher Scientific) and 

Hprt as the housekeeping gene. No specific qPCR protocols were used. Primer sequences are listed in 

Supplementary Table 1.   

Measurement of intracellular cAMP levels  

Day 7 differentiated 3T3-L1 adipocytes were transfected with scrambled siRNA or siRNA 

targeting 14-3-3ζ. After 48 hours, cells were incubated in starvation media (pH 7.4-adjusted Krebs-Ringer 

buffer, 5 mM glucose, and 0.2% BSA) for two hours, followed by incubation in experimental media in the 

presence of 1 μM Iso or 20 μM forskolin with 0.5 mM IBMX for one hour. Lysates were harvested and 

intracellular cAMP levels were assayed using the cAMP Parameter Assay Kit (R&D Systems, Minneapolis, 

MN). 

 

 

 



50 
 

Immunoblotting and detection 

Differentiated 3T3-L1 cells were lysed in RIPA buffer (0.9% NaCl, 1% v/v triton X-100, 0.5% 

sodium deoxycholate, 0.1% SDS, and 0.6% tris base) supplemented with protease and phosphatase 

inhibitors (Sigma-Aldrich) 48 hours after transfection. Proteins were resolved by SDS-PAGE on 10-12.5% 

gels for 1.5 – 2 hours and transferred to PVDF membranes using the Trans-blot turbo transfer system 

(Bio-Rad Laboratories, Hercules, CA). Antibodies and their concentrations are listed in Supplementary 

Table 2. 

Oil Red-O (ORO) staining  

Differentiated 3T3-L1 cells were stained with ORO (VWR). Cells were washed in PBS and 

incubated in ORO solution for 15 minutes. ORO incorporation was measured, as previously described 

[169]. 

Statistical Analyses  

Data are expressed as mean ± standard error of the mean. Statistical analyses were performed 

using two-tailed Student’ t-test or two-way ANOVAs with appropriate post-hoc tests. A p-value less than 

0.05 was considered statistically significant.    
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2.4 Results 

Adipocyte-specific deletion of 14-3-3ζ impairs lipolysis in mice  

To investigate the contributions of 14-3-3ζ to mature adipocyte function, tamoxifen-inducible 

adipocyte-specific 14-3-3ζ knockout (adi14-3-3ζKO) mice were generated by deleting exon 4 of Ywhaz 

using Cre-LoxP technology. We first sought to validate our model and confirmed by qPCR that 14-3-3ζ 

expression was decreased in the gonadal white (gWAT), inguinal white (iWAT), and brown adipose (BAT) 

depots of male and female adi14-3-3ζKO mice following tamoxifen injection (Figures 1A and 1B). We 

also confirmed that 14-3-3ζ deletion did not alter transcript levels of the other 14-3-3 isoforms (Figure 

S1). We next conducted metabolic phenotype studies on the adi14-3-3ζKO mice. No differences in body 

weights between adi14-3-3ζKO and Cre+ wild-type littermate controls were observed (Figures 1C and 

1D). Furthermore, adipocyte-specific deletion of 14-3-3ζ did not affect glucose metabolism as shown by 

intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (ITT) (Figures 1E-

H).  

We then focused on whether 14-3-3ζ can influence lipolysis. To achieve this, adi14-3-3ζKO mice 

were fasted overnight and challenged with CL-316,243, a β3-adrenergic agonist. Male adi14-3-3ζKO mice 

displayed a significant reduction in plasma glycerol levels following intraperitoneal administration of CL-

316,243 (Figure 2A). Plasma glycerol levels were also lower in female adi14-3-3ζKO mice, although the 

difference was not significant (Figure 2B). In contrast, plasma FFA levels in male and female adi14-3-

3ζKO mice were comparable to littermate controls following stimulation with CL-316,243 (Figures 2C 

and 2D).  Our observation of impaired glycerol release in adi14-3-3ζKO mice prompted us to further 

examine the effect of 14-3-3ζ deletion on adipocyte function. To that end, male gWAT depots were 

harvested and stimulated with isoproterenol. Significant impairments in isoproterenol-mediated glycerol 

and FFA release were detected in adi14-3-3ζKO gonadal explants (Figures 2E and 2F).  
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HSL activation is impaired in adi14-3-3ζKO mice 

As a first step to understanding the functional roles of 14-3-3ζ in lipolysis, we looked at lipase 

expression in the gWAT and iWAT of adi14-3-3ζKO mice. A significant reduction in Atgl mRNA was 

observed in the gWAT of male knockout mice (Figure 3A). Interestingly, mRNA levels of Pparg also 

decreased following deletion of 14-3-3ζ in adipocytes (Figures 3E and 3F). Immunoblotting was next 

performed to determine whether 14-3-3ζ deletion altered lipase expression at the protein level. ATGL 

levels remained unchanged between the gWAT of male adi14-3-3ζKO and Cre+ wild-type mice (Figure 

3G). However, adi14-3-3ζKO mice displayed noticeable reductions in both the phosphorylated and total 

levels of HSL. Furthermore, reductions in the PPARγ2 isoform, which is specifically expressed in 

adipocytes [178], were observed in the gWAT of male adi14-3-3ζKO mice (Figure 3H). This is consistent 

with qPCR results that suggest downregulation of Pparg mRNA expression following adipocyte-specific 

ablation of 14-3-3ζ (Figure 3E). 

14-3-3ζ depletion decreases lipolysis in 3T3-L1 cells in a PKA-dependent manner 

To further elucidate the regulatory role of 14-3-3ζ in lipolysis, differentiated 3T3-L1 adipocytes 

were transfected with siRNA against 14-3-3ζ to examine the impact on the lipolytic pathway. As shown 

in Figure 4A, treatment with various concentrations of siRNA resulted in more than a 90% reduction in 

Ywhaz levels compared to cells transfected with a scrambled, control siRNA. qPCR results confirmed that 

siRNA-mediated knockdown of 14-3-3ζ did not affect mRNA levels of the six other 14-3-3 isoforms 

(Figure S2). Immunoblotting was also performed to validate 14-3-3ζ knockdown occurring at the protein 

level following RNA silencing of Ywhaz (Figure 4B). Next, glycerol and FFA levels were measured in the 

supernatant of 14-3-3ζ-depleted 3T3-L1 adipocytes treated with different agonists that stimulate 

lipolysis. These agonists included isoproterenol, forskolin, and dibutyryl cAMP (dbcAMP). Knockdown of 



53 
 

14-3-3ζ led to significant reductions in both glycerol and FFA release compared to control cells for all 

agonists (Figures 4C and 4D).  

Our focus next turned to determining where 14-3-3ζ acts in the lipolytic pathway to exert its 

regulatory role. We first looked at message expression of the adrenergic β-receptor isoforms (Adrb1, 

Adrb2, and Adrb3) in 14-3-3ζ-depleted adipocytes. While there was no change in mRNA levels for Adrb1 

and Adrb2,  a significant reduction in mRNA levels of Adrb3, which is mainly expressed in adipocytes 

[179], was observed (Figure 4E). To examine whether impaired lipolysis resulting from 14-3-3ζ depletion 

was attributed to altered cAMP degradation or production, we next measured transcript levels of 

various phosphodiesterase isoforms in siRNA-transfected 3T3-L1 adipocytes, and no significant 

differences were observed in any of the isoforms examined (Figure 4F). To evaluate whether adenylyl 

cyclase activity was affected by 14-3-3ζ depletion, intracellular cAMP levels were measured in 3T3-L1 

lysates treated with isoproterenol, and no differences were observed (Figure 4G). We next looked at 

lipase expression and observed significant reductions in Atgl and Hsl mRNA transcripts in 14-3-3ζ-

depleted cells (Figure 4H). The effect of 14-3-3ζ knockdown on lipase expression was evaluated by 

immunoblotting, which revealed that phosphorylated and total HSL levels were reduced in siRNA-

transfected 3T3-L1 cells (Figure 4I). This is in agreement with the adi14-3-3ζKO model that demonstrated 

decreased HSL activation and total expression following 14-3-3ζ deletion in adipocytes (Figure 3H). 

Immunoblotting for CREB, a transcription factor and phosphorylation target of protein kinase A, 

revealed similar reductions in phosphorylated and total forms of CREB (Figure 4I). 

Overexpression of 14-3-3ζ potentiates lipolysis in vitro 

The effect of 14-3-3ζ overexpression on lipolysis was also explored using both in vitro and in vivo 

models. Plasmids encoding 14-3-3ζ, or GFP as a control were introduced into differentiated 3T3-L1 

adipocytes by electroporation, and 14-3-3ζ overexpression was confirmed by immunoblotting (Figure 
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S3A). FFA release was significantly potentiated in 3T3-L1 cells overexpressing 14-3-3ζ (Figure S3B). In 

contrast, TAP mice overexpressing 14-3-3ζ did not display a potentiated lipolytic response to 

isoproterenol (Figures S3C-F). 

14-3-3ζ is required for maintaining the mature adipocyte phenotype 

Our observation of decreased Pparg mRNA expression in gWAT of adi14-3-3ζKO mice (Figures 3E 

and 3F) prompted us to evaluate whether adipocyte maturity was altered in 14-3-3ζ-defficient 3T3-L1 

adipocytes. qPCR revealed significant reductions in transcript levels for adipocyte markers including 

Pparg, Fabp4, Fasn, and Lpl in 14-3-3ζ-depleted 3T3-L1 adipocytes. (Figure 5A). Given that one of the 

main functions of white adipose tissue is energy storage and mobilization, we looked at whether 14-3-3ζ 

depletion altered triglyceride content levels in 3T3-L1 adipocytes. A significant reduction in TAG levels 

was observed in 14-3-3ζ-depleted lysates (Figure 5B). This was recapitulated using Oil Red-O, which 

demonstrated a significant reduction in intensity (Figure 5C). Moreover, marked reductions in lipid 

droplets were observed in 14-3-3ζ-depleted cells (Figure 5D).  
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2.5 Discussion 

The aim of this study was to examine the contributions of 14-3-3ζ to the function of mature 

adipocytes. As 14-3-3ζ has been shown to regulate activities of proteins implicated in diverse metabolic 

processes [159, 160, 167, 172, 180-182], we hypothesized that 14-3-3ζ had essential roles in adipocyte-

specific processes, such as lipolysis. Mice with targeted deletion of 14-3-3ζ specifically in adipocytes 

displayed impaired lipolysis, as well as reduced Atgl mRNA expression and HSL activation. These findings 

were recapitulated in 3T3-L1 cells depleted of 14-3-3ζ by siRNA. Mechanistic studies done in 3T3-L1 cells 

suggest that 14-3-3ζ regulates lipolysis in a PKA-dependent manner to modulate lipase expression and 

activation (Figure 6). In addition, decreased Pparg mRNA and PPARγ expression was observed in both in 

vivo and in vitro 14-3-3ζ models, suggesting that 14-3-3ζ plays an additional role in determining 

adipocyte maturity. Despite these observations, adipocyte specific deletion of 14-3-3ζ did not produce 

any changes in body weight. Furthermore, systemic overexpression of 14-3-3ζ did not affect lipolysis in 

mice.  

Adi14-3-3ζKO mice were used to investigate the contributions made by 14-3-3ζ specifically in 

adipocytes. Male adi14-3-3ζKO mice displayed significantly lower plasma glycerol levels following 

intraperitoneal injections of the β3-adrenergic agonist CL-316,243, and this observation was 

recapitulated ex vivo, as gonadal WAT explants from adi14-3-3KO mice displayed significant reductions 

in glycerol and FFA release when stimulated with isoproterenol. Although 14-3-3-binding sites have 

been previously reported for ATGL and HSL, thus implicating roles of 14-3-3 proteins [112, 173], our 

results demonstrate for the first time that 14-3-3ζ directly regulates lipolysis in adipocytes possibly 

through modulating HSL activation.  To our knowledge, no prior studies regarding the contribution of 

14-3-3 proteins to lipolysis have been reported. This study expands on our knowledge about the roles of 

14-3-3 proteins in lipid metabolism, which was previously limited to fatty acid synthesis. Affinity 

proteomics identified fatty acid synthase as a binding partner of 14-3-3 proteins [180, 182], but the 
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significance of this interaction was not further explored. In addition, 14-3-3 proteins were shown to 

interact with ChREBP, a key transcription factor that regulates de novo lipogenesis, and prevent its 

translocation from the cytosol to the nucleus [124, 131, 132]. Future studies are required to further 

understand how 14-3-3 proteins, and specifically 14-3-3ζ, regulate the activity of enzymes involved in 

lipolysis and lipogenesis. 

3T3-L1 cells are a favoured model for adipocyte biology, as they recapitulate many aspects of 

primary mouse adipocytes such as signaling pathways involved in lipolysis and adipogenesis [183, 184]. 

Our investigation of the in vitro contributions of 14-3-3ζ to lipolysis began with treating 14-3-3ζ-depleted 

3T3-L1 adipocytes with isoproterenol, forskolin, and dbcAMP, which activate the β-adrenergic receptor, 

adenylyl cyclase, and PKA, respectively. With all agonists, significantly impaired glycerol and FFA release 

were observed following 14-3-3ζ depletion. These results agree with the in vivo and ex vivo lipolysis data 

that suggest impaired adipocyte function.  Intracellular cAMP levels were comparable between control 

and 14-3-3ζ-depleted 3T3-L1 lysates suggesting that 14-3-3ζ does not affect cAMP generation by 

adenylyl cyclase. Thus, regulation of lipolysis by 14-3-3ζ likely occurs downstream of cAMP generation 

with PKA being a possible target. This is consistent the finding that 14-3-3 proteins bind to and regulate 

the activity of PKA during growth cone turning responses in neurons [185]. Coimmunoprecipitation 

studies done by Kent et al. reported that the gamma and epsilon 14-3-3 isoforms bind to the RIIα and 

RIIβ regulatory subunits of PKA and could modulate PKA activity [185]. Further studies are required to 

examine if 14-3-3ζ has similar roles in PKA binding and the regulation of its activity. It is also possible 

that 14-3-3ζ influences lipolysis by facilitating interactions between PKA and its substrates including HSL 

and CREB. Indeed, 14-3-3 proteins were reported to act as molecular adapters to promote interactions 

between PKC and the PKC substrate RAF-1 [157]. Coimmunoprecipitation studies revealed that binding 

of 14-3-3ζ to the PKC regulatory domain was required to form a PKC-14-3-3ζ-RAF-1 ternary complex that 

was mediated by 14-3-3β and 14-3-3θ [157]. 
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In the current study, reductions in Pparg mRNA and protein expression were observed in 14-3-

3ζ-depleted 3T3-L1 cells and in the gWAT and iWAT of adi14-3-3ζKO mice. This suggests a loss in 

adipocyte maturity whereby some adipocytes may be reverting to preadipocyte-like precursor cells. 

Indeed, dedifferentiation and re-differentiation has been previously reported in mouse and rat 

adipocytes in several physiological and pathophysiological contexts such as pregnancy [186, 187], tissue 

repair [187] and tumorigenic transformations of liposarcomas [188]. In addition, dedifferentiation of 

visceral and subcutaneous mature adipocytes from individuals with obesity to fibroblast-like cells was 

previously shown to decrease mRNA expression of mature adipocyte gene markers including PPARG2, 

C/EBPA, LPL and adiponectin [189].  

While this study currently focuses on the contribution of 14-3-3ζ to lipolysis, future experiments 

are aimed at understanding how 14-3-3ζ regulates other aspects of adipocyte function such as diet-

induced obesity-mediated fat expansion. We previously reported that systemic 14-3-3ζ knockout mice 

displayed reduced adiposity and mild glucose intolerance compared to wild-type littermates under a 

high-fat diet [169]. In contrast, TAP mice overexpressing 14-3-3ζ gained more weight on a high-fat diet 

without displaying additional impairments in glucose tolerance or insulin sensitivity suggesting that 14-

3-3ζ promotes adipose tissue expansion [169]. Thus, our prior observations suggest that adi14-3-3ζKO 

mice may gain less weight and display impaired glucose tolerance when challenged with a high-fat diet.    

Collectively, results from our in vivo and in vitro models of decreased 14-3-3ζ function 

demonstrate that 14-3-3ζ facilitates lipolysis in a PKA-dependent manner and offer novel insights into 

the roles of 14-3-3 proteins in regulating lipid metabolism. In addition, our data also point to 14-3-3ζ 

acting as a central regulator of the development and maintenance of the mature adipocyte phenotype. 

This study complements our previous report of 14-3-3ζ being a mediator of adipogenesis [169]. 

Uncovering a regulatory role of 14-3-3ζ in lipolysis may lead to the development of new therapies aimed 

at targeting molecular scaffolds to treat conditions that result from dysregulated lipid metabolism. 
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2.6 Figures and Tables 

Figure 1. Adipocyte-specific 14-3-3ζ knockout (adi14-3-3ζKO) mice do not display a metabolic 

phenotype. (A-B) Validation of adipocyte-specific deletion of Ywhaz (encoding 14-3-3ζ) in gonadal 

(gWAT), inguinal (iWAT) and brown (BAT) adipose depots of male (A) and female (B) adi14-3-3ζKO mice 

by qPCR (n=14 Cre+ wt, n=10 Cre+ fl/fl for male mice *: p<0.05 Cre+ fl/fl vs Cre+ wt mice; n=7 Cre+ wt, 

n=7 Cre+ fl/fl for female mice). (C-D) Body weights of male (C) and female (D) adi14-3-3ζKO mice 

following i.p injections of tamoxifen (50 mg/kg b.w) (n=14 Cre+ wt, n=10 Cre+ fl/fl for male mice; n=7 

Cre+ wt, n=7 Cre+ fl/fl for female mice). (E-F) Intraperitoneal glucose (2 g/kg b.w.) tolerance tests on 

male (E) and female (F) adi14-3-3ζKO mice fasted for 6 hours at 12 weeks of age (n=9 Cre+ wt, n=6 Cre+ 

fl/fl for male mice; n=6 Cre+ wt, n=6 Cre+ fl/fl for female mice). (G-H) Intraperitoneal insulin (0.5 U/kg 

b.w.) tolerance tests on male (G) and female (H) adi14-3-3ζKO mice fasted for 4 hours at 13 weeks of 

age (n=6 Cre+ wt, n=6 Cre+ fl/fl for male mice; n=6 Cre+ wt, n=5 Cre+ fl/fl for female mice).  

Figure 2. Lipolysis is impaired in adi14-3-3ζKO mice. (A-D) Plasma glycerol (A,B) and FFA (C,D) levels in 

male and female adi14-3-3ζKO mice injected with CL-316,243 (CL, 1 mg/kg b.w.) following an overnight 

fast (n=10 Cre+ wt, n=9 Cre+ fl/fl for male mice; n=7 Cre+ wt, n=7 Cre+ fl/fl for female mice; *: p<0.05 

Cre+ fl/fl vs. Cre+ wt mice under the +CL condition. #: p<0.05 +CL vs. –CL for the same genotype). (E-F) 

Glycerol (E) and FFA (F) levels in the supernatant of male gonadal adipose tissue explants treated with 

isoproterenol (Iso, 1 μM) for 2 hours. Glycerol and FFA release were normalized to the mass of the 

explants (n=3-4 Cre+ wt, n=4-5 Cre+ fl/fl; *: p<0.05 Cre+ fl/fl vs. Cre+ wt mice under the +Iso condition. 

#: p<0.05 +Iso vs. –Iso for the same genotype).
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Figure 3. Adipocyte-specific deletion of 14-3-3ζ impairs HSL activation in mice. (A-F) mRNA levels of 

Atgl (A-B), Hsl (C-D), and Pparg (E-F) in gonadal (gWAT) and inguinal (iWAT) adipose depots of male and 

female adi14-3-3KO mice (n=14 Cre+ wt, n=10 Cre+ fl/fl for male mice *: p<0.05 Cre+ fl/fl vs Cre+ wt 

mice; n=7 Cre+ wt, n=7 Cre+ fl/fl for female mice). (G-H) Immunoblot for phosphorylated and total levels 

of ATGL (G) and HSL (H) in gonadal adipose tissue (gWAT) of male adi14-3-3KO mice (n=6 per group).  

Figure 4. Regulation of lipolysis by 14-3-3ζ occurs downstream of cAMP generation. (A-B) siRNA-

mediated depletion of 14-3-3ζ in 3T3-L1 adipocytes transfected with scramble siRNA (siCon, 20 nM) or 

siRNA against 14-3-3ζ (siζ, 20 nM and 35 nM) was validated by qPCR (A) (n=6 per condition; *= p<0.05 

siCon vs si14-3-3ζ ) and immunoblotting of cell lysates for 14-3-3ζ (B) (n=3 per condition). (C-D) Levels of 

glycerol (C) and FFA (D) released by siRNA-transfected 3T3-L1 adipocytes (siCon, 20 nM or si14-3-3ζ, 35 

nM) treated with isoproterenol (Iso, 1 μM), forskolin (10 μM) with IMBX (0.5 mM), or dibutyryl cAMP 

(dbcAMP, 1 mM) for 2 hours (n=6 per condition; *= p<0.05 siCon vs si14-3-3ζ). (E-F) mRNA levels of β-

adrenergic receptor (E) and phosphodiesterase (F) isoforms in 14-3-3ζ-depleted 3T3-L1 adipocytes (n=6 

per condition; *= p<0.05 siCon vs si14-3-3ζ). (G) Intracellular cAMP levels of siRNA-transfected 3T3-L1 

lysates treated with Iso (1 μM) or forskolin (20 μM) for 1 hour (n=6-7 per condition). (H) mRNA 

expression of Atgl and Hsl lipases in 3T3-L1 cells following siRNA-mediated knockdown of 14-3-3ζ (n=6 

per condition; *= p<0.05 siCon vs si14-3-3ζ). (I) Immunoblot for phosphorylated and total forms of HSL 

and CREB in siRNA-transfected 3T3-L1 lysates treated with Iso (1 μM), forskolin (10 μM) with IMBX (0.5 

mM) or dbCAMP (1 mM) (n=6 per condition).  
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Figure 5. 14-3-3ζ depletion may alter adipocyte maturity. (A) mRNA levels of Pparg, Fabp4, Fasn and 

Lpl in 14-3-3ζ-depleted 3T3-L1 adipocytes (n=6 per condition for Pparg, Fabp4, Fasn and Lpl; *= p<0.05 

siCon vs si14-3-3ζ). (B) Triacylglycerol content in siRNA-transfected mature 3T3-L1 adipocytes (n=6 per 

condition; *= p<0.05 siCon vs si14-3-3ζ, 1-tailed t-test). (C-D) Oil Red-O incorporation and quantification 

in 3T3-L1 adipocytes (C) and 4x magnification of cells (D) (n=4 per condition;  

*= p<0.05 siCon vs si14-3-3ζ). 

Figure 6. Proposed regulatory role of 14-3-3ζ in lipolysis. Binding of an agonist to a β-adrenergic 

receptor activates adenylyl cyclase (AC) and increases cAMP production. cAMP activates PKA, which 

phosphorylates several substrates including the lipases ATGL, HSL and MAGL which catalyze the 

sequential conversion of triglycerides to glycerol and FFAs. The transcription factor CREB is also a PKA 

substrate. 14-3-3ζ has dual roles in lipolysis through facilitating the expression and activation of lipases 

and influencing cAMP-PKA-activity. Figure adapted from [190]. 



61 
 

SUPPLEMENTARY FIGURES:  

Figure S1. A-L The adipocyte-specific 14-3-3ζ KO (adi14-3-3ζKO) mouse model was validated by 

measuring mRNA levels of Ywhab, Ywhag, Ywhae, Ywhah, Ywhas and Ywhaq (encoding 14-3-3β, 14-3-3γ, 

14-3-3ε, 14-3-3η, 14-3-3σ, and 14-3-3θ respectively) in gonadal (gWAT), inguinal (iWAT) and brown 

(BAT) adipose depots of male (A-F) and female (G-L) adi14-3-3ζKO mice (n=14 Cre+ wt, n=10 Cre+ fl/fl 

for male mice; n=7 Cre+ wt, n=7 Cre+ fl/fl for female mice). 

Figure S2. siRNA-mediated knockdown of 14-3-3ζ was validated by measuring mRNA levels of Ywhab, 

Ywhag, Ywhae, Ywhah, Ywhas and Ywhaq (encoding 14-3-3β, 14-3-3γ, 14-3-3ε, 14-3-3η, 14-3-3σ, and 

14-3-3θ respectively) in mature 3T3-L1 adipocytes transfected with scramble siRNA (siCon, 20 nM) or 

siRNA targeting 14-3-3ζ (si14-3-3ζ, 35 nM) (n=6 per condition).  

Figure S3. (A) Validation immunoblot for 14-3-3ζ overexpression in 3T3-L1 adipocytes transfected with 

plasmids containing GFP (2 μg) or 14-3-3ζ IRES-GFP (2 μg) in the absence and presence of Iso (1 μM) for 

2 hours (n=4 per condition). (B) FFA release from 14-3-3ζ-overexpressing 3T3-L1 adipocytes (n=4 per 

condition). *: p<0.05 GFP vs 14-3-3ζ IRES-GFP. (C-F) Plasma glycerol (C-D) and FFA (E-F) levels in male 

and female wild-type (WT) and 14-3-3ζ over-expressing (OE) transgenic mice injected intraperitoneally 

with Iso (10 mg/kg b.w.) following an overnight fast (n=5-6 WT, n=9-11 OE for male mice; n=8 WT, n=9-

12 OE for female mice).  
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Supplementary Table 1. Primer sequences used for qPCR 

Gene Forward Sequence (5'-3') Reverse Sequence (5'-3') 

Ywhab AATGCCACCCAGGCAGAAAGCA CTTGGTAAGCCTGCTGGGAGTT 

Ywhag GGACTATTACCGTTACCTGGCAG CTGCATGTGCTCCTTGCTGATC 

Ywhae CTAACACTGGCGAGTCCAAGGT GTAAGCCACGAGGCTGTTCTCT 

Ywhah CCGCGTATAAGGAAGCCTTCGA AGGCTTGCTCTGGTGCATTCTG 

Ywhas CATGAAGAGCGCCGTGGAAAAG CTCTTCTGCTCGATGCTGGACA 

Ywhaq GCTGAAGTAGCTTGTGGCGATG ATGCGTAGGCTGCATCTCCTTC 

Ywhaz CAGAAGACGGAAGGTGCTGAGA CTTTCTGGTTGCGAAGCATTGGG 

Hprt1 TCCTCCTCAGACCGCTTTT CCTGGTTCATCATCGCTAATC 

Adrb1 CTCGTCCGTCGTCTCCTTCTAC GTCGATCTTCTTTACCTGTTTTTGG 

Adrb2 TTGCAGTGGATCGCTATGTTG TGACCACTCGGGCCTTATTCT 

Adrb3 CCTTCAACCCGGTCATCTAC GAAGATGGGGATCAAGCAAGC 

Pde3b CTTCACAAGGGATTGAGTGGCAGAACC CATCCATGACTTGAAACACTGACTTCTTGG 

Pde4a TGGATGCCGTGTTCACAGACCTGG GTTCTCAAGCACAGACTCATCGTTGTAC 

Pde4b CAGGAAAATGGTGATTGACATGGTGTTGG CGAAGAACCTGTATCCGGTCAGTATAG 

Pde4d GGTCATTGACATTGTCCTGGCGACAG CAGTGCACCATATTCTGAAGGACCTGG 

Pparg GGTCAGCTCTTGTGAATGGAA ATCAGCTCTGTGGACCTCTCC 

Fabp4 AGTACTCTCTGACCGGATGG GGAAGCTTGTCTCCAGTGAA 

Fasn TGGGTTCTAGCCAGCAGAGT ACCACCAGAGACCGTTATGC 

Atgl AACACCAGCATCCAGTTCAA GGTTCAGTAGGCCATTCCTC 

Hsl ACCGAGACAGGCCTCAGTGTG GAATCGGCCACCGGTAAAGAG 

Magl GTGCCTACCTGCTCATGGAAT GAGGACGGAGTTGGTCACTTC 

Lpl GTGACCGATTTCATCAAGTTTGGAG GACGGACACAAAGTTAGCACCAC 
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Supplementary Table 2.  List of antibodies 

Target Host anti-
species target 

Dilution Source Product ID 

14-3-3ζ Rabbit 1:1000 Cell Signalling Technology 7413 

Phosphorylated HSL (S660) Rabbit 1:1000 Cell Signaling Technology 4126 

Total HSL Rabbit 1:1000 Cell Signaling Technology 4107 

Phosphorylated CREB (S133) Rabbit 1:1000 Cell Signaling Technology 9198 

Total CREB Rabbit 1:1000 ThermoFisher, Rockford, IL MA1-083 

ATGL Rabbit 1:1000 Cell Signaling Technology 2439 

PPARγ Rabbit 1:1000 Cell Signaling Technology 2443 

β-actin  Mouse 1:1000 Cell Signaling Technology 3700 

β-tubulin  Mouse 1:1000 Cell Signaling Technology 86298 

Anti-rabbit IgG HRP-linked 
antibody 

Goat 1:2000 Cell Signaling Technology 7074 

Anti-mouse IgG HRP-linked 
antibody 

Horse 1:5000 Cell Signaling Technology 7076 
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Figure 6 
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Figure S1 
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Figure S2 
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Figure S3 

                               

   

          



 

3.0  Discussion 
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The objective of this research project was to investigate the adipocyte-specific contributions of 

14-3-3ζ to mature adipocyte function. White adipocytes specialize in both the storage and mobilization 

of energy that takes the form of lipids. During times in which the energy demand of other organs is high, 

WAT must hydrolyze triacylglycerols to generate FFAs which are then transported to the appropriate 

tissue for use as energy substrates [98]. Based on our previous findings of 14-3-3ζ being required for 

adipogenesis [169], we hypothesized that decreasing 14-3-3ζ expression in adipocytes would impair 

adipocyte-specific processes including lipolysis. 

Whereas a significant reduction in plasma glycerol levels was detected in male adi14-3-3ζKO 

mice injected with CL-316,243 (Figure 2A), there was no difference in plasma FFA levels between the 

adi14-3-3ζKO and control groups (Figure 2C). This may possibly be explained by impaired FFA uptake by 

the BAT in adi14-3-3ζKO mice. The β3-adrenergic agonist CL-316,243 is known to stimulate lipolysis in 

white adipocytes, but its activation in BAT has been shown to induce BAT thermogenesis and FFA uptake 

[191-193]. Adipocyte-specific deletion of 14-3-3ζ could reduce FFA uptake by BAT, which when coupled 

to impaired lipolysis in WAT yields net plasma FFA levels that are comparable to plasma FFA levels 

measured in wild-type littermates. The rationale for reconciling the differences between the plasma 

glycerol and plasma FFA measurements is supported by the ex vivo lipolysis data that showed significant 

reductions in glycerol and FFA release in adi14-3-3ζKO gonadal explants that were isolated from other 

metabolically active tissues (Figures 2E and 2F). Measuring FFA uptake and FFA oxidation in BAT would 

address whether the plasma FFA measurements reflect altered BAT function.   

The conclusion that 14-3-3ζ regulates lipolysis in a PKA-dependent manner was largely based on 

measurements of intracellular cAMP levels (Figure 4G) and immunoblotting of phosphorylated HSL and 

CREB (Figure 4I), which were indirect approaches to measure PKA activity. In the first case, significantly 

impaired glycerol and FFA release was observed in 14-3-3ζ-depleted 3T3-L1 adipocytes that had 

comparable cAMP levels to control-treated adipocytes. This suggests that impairment in the lipolysis 
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pathway occurs downstream of adenyl cyclase which generates cAMP. In the second case, PKA activity 

was measured in terms of phosphorylation of known PKA substrates. Additional studies are required to 

directly answer whether PKA activity is altered following the depletion of 14-3-3ζ. A co-

immunoprecipitation experiment can address whether the regulation of lipolysis by 14-3-3ζ involves 14-

3-3ζ interacting with PKA. This was done by Kent and colleagues who reported that 14-3-3γ and 14-3-3ε 

bind and regulate PKA activity to control neural outgrowth and growth cone turning responses [185]. 

Co-immunoprecipitation between HSL and 14-3-3ζ can also be performed to see whether regulation of 

lipolysis by 14-3-3ζ involves interactions with HSL. Alternatively, a pull-down assay which uses a bait 

protein instead of antibodies can be performed to assess whether 14-3-3ζ and PKA interact in a 

complex. It is also possible to measure PKA activity in cell homogenates with non-radioisotope kinase 

assays that use fluorescent-labelled phosphate acceptor peptides [194].  

To confirm that regulation of lipolysis by 14-3-3ζ is PKA-dependent, a PKA overexpression-rescue 

experiment can be performed in vitro. This would require transfecting control and 14-3-3ζ-depleted 3T3-

L1 adipocytes with plasmids encoding PKA. If knockdown of 14-3-3ζ impairs lipolysis by impairing PKA 

activity, then 14-3-3ζ-depleted 3T3-L1 cells overexpressing PKA will no longer exhibit decreased glycerol 

and FFA release as exogenous PKA compensates for the impaired activity of endogenous PKA. In 

addition, a mouse model whereby constitutively active PKA is specifically expressed in adipose tissue 

lacking 14-3-3ζ can be used to test whether 14-3-3ζ regulation of in vivo lipolysis is also PKA-dependent. 

In fact, a similar model was used by Kaihara et al. who reported that PKA activation enhanced acute-

phase insulin secretion in β-cells [195].   

Decreased markers of a mature adipocyte following 14-3-3ζ depletion suggests that adipocytes 

may be reverting to an immature state. Since there is not a complete absence of Pparg expression and 

lipid content, it is possible that some adipocytes may undergo a loss in adipocyte identity. As the 

expression of Cre is driven by the promoter of adiponectin, a mature adipocyte marker, recombination 



76 
 

only occurs in mature adipocytes of adi14-3-3ζKO mice. In vivo studies about the contribution of 14-3-3ζ 

to differentiation will require the Pdgfrα-Cre mouse line which is an ideal model for knockout studies in 

adipocyte precursor cells [196]. Additional characterization studies of the adi14-3-3ζKO mice are 

required to gain additional insights into the in vivo contributions of 14-3-3ζ in determining adipocyte 

maturity. gWAT and iWAT will be harvested to assay for TAG content to see if there is agreement 

between the in vivo and in vitro models. Histology analyses are also planned for harvested fat depots to 

see if size distribution is altered in the adipocytes of adi14-3-3ζKO mice. More specifically, these 

experiments would determine the contribution of 14-3-3ζ to adipocyte hypertrophy.  Additional 

measurements for adipogenic markers such as angiotensin and resistin and preadipocyte markers 

including CD34, PDGFRα, PDGFRβ and PREF-1 [66] will provide additional insights into how 14-3-3ζ 

affects adipocyte maturity at the transcriptional level. If mature adipocytes are in fact reverting to a 

preadipocyte-like state, then one would expect reductions in angiotensin and resistin transcript levels 

and an increase in CD34, Pdgfra, Pdgfrb, and Pref-1 mRNA levels. 

As an organ specialized in the storage of energy, adipose tissue undergoes dynamic remodelling 

in response to changes in nutrient availability. This tightly regulated process requires coordination 

between adipocytes, stromal cells, macrophages, and extracellular matrix proteins [197, 198]. Although 

adipocyte-specific deletion of 14-3-3ζ was associated with impaired in vivo and ex vivo lipolysis, adi14-3-

3ζKO mice did not display any differences in body weight or glucose metabolism under a normal chow 

diet (Figures 1C-H). Adi14-3-3ζKO mice will be placed on a high-fat diet to observe differences in body 

weight gain, fat mass, and adipocyte functions, such as adipokine secretion. Adi14-3-3ζKO mice may gain 

less weight and display impaired glucose tolerance and smaller WAT depots as reductions in PPARγ2 

levels were observed in the gWAT. Indeed, multiple studies have shown that decreased PPARγ 

expression in mouse adipocytes impairs WAT and BAT formation and glucose tolerance [14, 15]. A high-

fat diet study will also determine whether adi14-3-3ζKO mice may display impaired glucose tolerance, 
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which was our observation in a prior high-fat diet study involving systemic 14-3-3ζ knockout mice [169]. 

To address the impact of 14-3-3ζ overexpression in adipocytes, a doxycycline-inducible model may 

determine whether increasing levels of 14-3-3ζ in mice potentiates lipolysis and exacerbates weight 

gain. We predict that adipocyte-specific 14-3-3ζ-overexpressing mice will gain more weight that is 

independent of changes in glucose and insulin tolerance on a high-fat diet, as this phenotype was 

previously reported in the case of systemic overexpression of 14-3-3ζ [169, 199, 200]. 

WAT is not only considered as a storage site for lipids but is also an endocrine organ. WAT 

secretes a range of adipokines, such as leptin, adiponectin, VEGF and IL6 that have roles in regulating 

feeding behaviour, insulin sensitivity, angiogenesis in WAT and inflammation responses respectively [36, 

37, 49, 66, 201]. ELISAs should also be performed to see whether any difference in serum adipokine 

levels between wild-type and knockout mice arises from a loss in the mature adipocyte phenotype.   

A more in-depth analysis about the extent in which mature adipocyte function is altered by 14-

3-3ζ deletion requires additional adipocyte processes to be examined, including lipogenesis, glucose 

uptake and fatty acid transport. Indeed, reductions in transcript levels were not seen only in Pparg, but 

also for Fabp4 and Fasn which are important actors in fatty acid transport and de novo lipogenesis 

respectively. While the role of 14-3-3 proteins in fatty acid transport has not been studied in detail, 

reports have suggested that 14-3-3 proteins may have roles in de novo lipogenesis. In fact, FASN has 

been identified as a 14-3-3 binding partner in multiple affinity proteomic studies [180, 182]. 

Furthermore, the formation of a 14-3-3β – ChREBP complex was reported to involve 14-3-3β binding to 

the α2 helix of ChREBP [131]. This interface is in the N-terminal regulatory region of ChREBP that 

regulates its subcellular localization. Under low glucose or starvation conditions, 14-3-3β competes with 

importin-α (a protein that imports proteins into the nucleus) for binding to ChREBP and retains ChREBP 

in the cytosol thereby preventing the transcriptional activation of de novo lipogenesis genes [124, 132]. 
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De novo lipogenesis can be examined by measuring the incorporation of labeled glucose into harvested 

fat pads for fatty acid synthesis [202].   

In this study, acute deletion of 14-3-3ζ in fully developed adipose tissue did not affect body 

weight. However, the effects of adipocyte-specific 14-3-3ζ deletion during early adipose tissue 

development should be evaluated as subcutaneous depots develop during embryonic days 14-18 

whereas gonadal depots develop postnatally [203, 204]. This temporal difference in the development of 

distinct depots requires the use of the Pdgfra-Cre and Adipoq-Cre constitutive knockout mouse lines, as 

14-3-3ζ deletion targets adipocyte precursors cells in the former model and mature adipocytes in the 

latter [196].    

Lastly, several studies have demonstrated that tamoxifen affects glucose tolerance and body 

weight in sex- and strain-dependent manners [200, 205]. Only mice that expressed Cre recombinase 

were used in this study, and all genotypes were injected with tamoxifen to account for any effects of Cre 

activation. The inclusion of Cre- wt and Cre- fl/fl mice as controls in this study would have addressed the 

specific effect of tamoxifen alone on glucose tolerance and insulin sensitivity.  Nevertheless, deletion of 

14-3-3ζ in adipocytes did not affect glucose tolerance in male and female mice, as adi14-3-3ζKO mice 

displayed virtually identical responses when challenged with intraperitoneal glucose and insulin. 

Moreover, no significant effects on body weight were observed after tamoxifen exposure.



 
 

4.0  Conclusion 
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In conclusion, our findings from our in vitro and in vivo models suggest that 14-3-3ζ contributes 

to the regulation of lipolysis in adipocytes. Adi14-3-3ζKO mice displayed impaired glycerol release, and 

gonadal adipose tissue explants displayed reductions in both glycerol and FFA release. In vitro lipolysis 

results were consistent with these findings as depletion of 14-3-3ζ in 3T3-L1 adipocytes using siRNA 

resulted in significant reductions in glycerol and FFA release in the supernatant. In addition, impaired 

HSL activation was observed in both models. Lastly, indicators of mature 14-3-3ζ-depleted adipocytes 

regressing to an immature state such as decreased transcript and protein levels of PPARγ and decreased 

lipid content suggest that 14-3-3ζ may have additional roles in determining adipocyte maturity. Future 

studies will address whether 14-3-3ζ contributes to other adipocyte-specific process that define the 

mature adipocyte. 
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