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Sommaire

Cette these porte sur I’étude des familles de polynémes orthogonaux et leurs liens avec les modeles
exactement résolubles. Elle se décline en deux parties. Dans la premiére, on caractérise quatre
nouvelles familles de polynémes orthogonaux a ’aide de processus limites appliqués a des familles
appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singuliéres des polynémes de
Wilson et d’Askey-Wilson sont considérées. Deux premiéres extensions bivariées de polyndmes
appartenant au tableau de Bannai-Ito sont également introduites. La deuxieme partie présente
quatre modeles exactement résolubles en lien avec la théorie des polynémes orthogonaux. Les
propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modele de
chaine de spin XX dont les couplage sont liés aux polynémes de para-Racah sont examinées. Deux
modeles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions
sont obtenues et leurs symétries s’encodent respectivement dans 'algebre de Bannai-Ito de rang
deux et de rang arbitraire ce qui mene a conjecturer ’apparition des polyndémes de Bannai-Ito
multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la
superalgebre 0sp(1]2), deux identités de convolution pour des familles de polynémes du tableau de
Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit & une fonction

génératrice bilinéaire pour les polynémes de Big —1 Jacobi.
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Summary

This thesis is concerned with the study of families of orthogonal polynomials and their connection
to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal
polynomials are caracterized through limit processes applied to families belonging to the Askey
and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are
considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also
introduced. The second part presents four exactly solvable models connected to the theory of
orthogonal polynomials. The perfect transfer of quantum information and entanglement generation
properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are
examined. Two superintegrable models containing reflexion operators are proposed. Their solutions
are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank
Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials
as overlaps. Finally, via the representation theory of the osp(1]2) Lie superalgebra, two convolution
identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations

in terms of Dunkl operators lead to a bilinear generating function for the Big —1 Jacobi polynomials.
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Introduction

Dans son manuel Real and Complex analysis [1], notoire avec plus de 15 000 citations, W. Rudin'!
débute son prologue avec « This is the most important function in mathematics ». Il fait référence
a la fonction exponentielle dont 'ubiquité en mathématiques et en physique n’est pas & démontrer.
Ses applications vont de sujets aussi élémentaires que la notation scientifique des nombres qu’a des
sujets avancés comme les algebres de Lie. Lorsqu’une fonction apparait dans plusieurs problémes
différents, il devient naturel de s’intéresser a la nature de celle-ci et d’en faire un sujet d’étude. C’est
en quelque sorte I'objet de la théorie des fonctions spéciales. L’exponentielle en est probablement
I'exemple le plus connu. Il faut toutefois mentionner que les contours de ce domaine d’étude
sont difficiles a cerner. Cette idée de cataloguer les propriétés d’objets mathématiques utiles n’est
pas l'apanage des fonctions spéciales, mais plutét un héritage qui remonte au moins aussi loin
qu’aux Babyloniens qui utilisaient des tables d’inverses multiplicatifs et de carrés pour réduire des
problémes de multiplications et des divisions a des additions et des soustractions. L’essentiel est
de réutiliser des unités de calculs pour résoudre de nouveaux problemes. La théorie des fonctions
spéciales s’inscrit dans cette tradition et bien qu’il n’existe pas de définition précise de ce qui
constitue une fonction spéciale, il y a plutét des familles de fonctions reconnues comme telles dont
les propriétés sont étudiées et cataloguées [2]. Pour une introduction au probléme d’une définition
rigoureuse ainsi qu'un bref survol de I'histoire des fonctions spéciales, le lecteur peut se référer a
[3].

La théorie des fonctions spéciales est également intimement liée a la physique théorique. Les
fonctions spéciales forment la base du langage dans lequel les solutions aux modeéles exactement
résolubles s’expriment, ces modeles jouant eux-mémes un réle important dans 1’élaboration de nou-
velles théories. En effet, la présence de solutions exactes permet la validation de principes théoriques
fondamentaux ainsi que la formulation d’hypotheses tres précises qui peuvent étre éprouvées en la-

boratoire. De plus, I’exploration analytique de ces modeles permet la découverte de phénomenes

lRudin a été le superviseur de C. Dunkl dont les travaux sont a 1’origine des opérateurs de Dunkl qui jouent un

role important dans cette these.



physiques intéressants sans avoir recours a des expérimentations parfois laborieuses et cofiteuses.
Un exemple tres pertinent est 1’élaboration de chaines de spin basées sur les polynémes de Krawt-
chouk permettant le transport d’information quantique. En effet, le transport d’un qubit d’un bout
a Pautre de la chalne repose sur un ensemble de couplages trés précis qui proviennent de la théorie
de ces polyndémes [4]. Des validations expérimentales dans des réseaux de fibres optiques ont méme
été réalisées [5, 6]. La robustesse de ces modeéles a également pu étre démontrée mathématique-
ment & Paide d’équations diophantiennes [7]. De surcroit, I'exploration d’interactions au-dela des
proches voisins a permis de prédire de nouvelles phénoménologies [8]. Les modéles exactement
résolubles sont aussi une plateforme de choix pour développer une intuition et une compréhension
plus fine du contenu physique d’une théorie. Ils occupent ainsi une place tres importante dans 1’en-
seignement de la physique. Mentionnons finalement que les techniques et les outils utilisés dans la
résolution d’un probléme sont souvent source d’inspiration au développement de nouveaux modeles
plus complexes. A ce titre, on peut penser & toutes les variantes de modeles basés sur Doscillateur
harmonique [9, 10, 11, 12, 13, 14] : le couplage d’oscillateurs pour réaliser des modeles de plus
haute dimension, le modele d’oscillateur fini, la déformation du potentiel pour avoir un oscillateur
singulier, 'oscillateur parabosonique avec I'ajout d’opérateurs de réflexions, etc.

La notion de résolubilité exacte signifie qu’on peut exprimer explicitement les quantités d’intérét
d’un probléme en terme d’objets mathématiques connus, généralement des fonctions spéciales. Le
lien se fait par une structure algébrique qui encode d’un point de vue mathématique les propriétés
des fonctions spéciales en jeu et d’un point de vue physique les symétries du modele étudié. Cette

interaction s’illustre bien par le diagramme suivant :

Fig. 0.1. Interaction entre les modeles exactement résolubles et les fonctions spéciales

Yy
Modeéles
exactement
/ résolubles \
s s h
. Fonctions
Symeétries . .
spéciales
/ - /
e
\ Structures /
algébriques
Y




Dans ce diagramme, une avancée dans une des boites peut avoir des répercussions sur toutes
les autres. C’est un terrain de recherche ou les mathématiques et la physique se développent en
symbiose. Bien qu’ils soient tous envisageables, on considere habituellement deux chemins dans
la figure précédente. Le premier débute avec un modele physique dont on souhaite obtenir les
solutions. On s’affaire alors a identifier ses symétries et a les caractériser en termes d’une structure
algébrique. La théorie des représentations de cette structure nous guide alors dans la connection
entre les fonctions spéciales qui interviennent et les solutions du modele. L’autre chemin vise plutét
Iinterprétation physique d’une fonction spéciale. Dans ce cas, on cherche a décrire la structure
algébrique qui encode les propriétés de cette fonction. Une fois ciblée, une réalisation en terme
d’opérateurs (typiquement différentiels) de celle-ci permet d’extraire un modele physique dont les
quantités d’intérét s’exprimeront en terme de la fonction spéciale initiale.

C’est a cette interface entre la physique et les mathématiques que se situent les travaux de
recherche présentés dans cette these. D’une part, I’étude de fonctions spéciales et de leurs propriétés.
D’autre part, leurs liens avec les modeles exactement résolubles. Ceci se reflete a travers les deux
parties de cette theése, chacune comprenant quatre articles. Le leitmotiv qui les unit est une classe
particuliere de fonctions spéciales : les polyndémes orthogonaux. Ces objets jouissent d’une riche
théorie [15] qui a débuté dans les travaux de Legendre sur les orbites planétaires et qui bénéficie
aujourd’hui d’une classification trés fructueuse. Les principales structures sont les deux tableaux
du schéma d’Askey [16] ainsi que le récent tableau de Bannai-Ito qui est toujours en développement
[17]. Les contributions apportées dans cette theése touchent aux trois.

La partie I se concentre sur les processus limites pour introduire quatre nouvelles familles de
polyndémes orthogonaux. Le premier chapitre porte sur une troncation singuliére des polyndmes
de Wilson. A travers une limite finement paramétrisée, on obtient une famille originale nommée
polynémes de para-Racah. On déforme ensuite par un parametre cette famille dans le chapitre
2. La troncation singuliére des polynoémes d’Askey-Wilson conduit alors aux g-polynoémes de para-
Racah. Les deux chapitres suivants portent sur I’extension a deux variables de familles de polynémes
orthogonaux du tableau de Bannai-Ito. Il s’agit des premiéres familles multivariées de ce tableau
d’organisation. Par des limites ¢ — —1, on obtient des familles bivariées de polynoémes de Big -1
Jacobi dans le chapitre 3 et de polynémes de Bannai-Ito dans le chapitre 4. On montre également
que ces deux familles sont bispectrales.

La partie II étudie des modeles ou ces polynoémes et des familles proches interviennent. Dans
le chapitre 5, un modele de chaines de spins dont les couplages sont donnés par les coefficients
de récurrence des polynémes de para-Racah est introduit. On montre qu’il posséde les propriétés

de transfert parfait d’information quantique ainsi que de revitalisation fractionnelle. Les trois



derniers chapitres portent tous sur I’étude des représentations de la superalgebre 0sp(1]2). Dans les
chapitres 6 et 7, on prend une réalisation en termes d’opérateurs de Dunkl de cette superalgebre
pour introduire des modeles superintégrables avec réflexions respectivement sur la 3-sphere et la n-
sphére. A 'aide de la décomposition de Fischer et du théoréme d’extension de Cauchy-Kovalevskaia,
une base de fonction propres pour ces modeles est obtenue en terme des polynémes de Jacobi. On
conjecture 'apparition des polynémes de Bannai-Ito multivariés comme coefficients de connection
entre des bases associées a différentes sous-algebres abéliennes maximales. Finalement, on développe
dans le chapitre 8 deux identités de convolution pour des polyndémes du tableau de Bannai-Ito. Ces

résultats reposent sur les coefficients de Clebsch-Gordan et de Racah pour la superalgebre osp(1]2).



Partie 1

Processus limites et polynémes orthogonaux






Introduction

L’ensemble de la recherche qui a conduit & cette thése repose sur I'importante classe de fonctions
spéciales que constituent les polynémes orthogonaux. Leur pertinence tient a leurs multiples do-
maines d’application : probabilités, processus stochastiques, théorie de I'approximation, problémes
spectraux inverses, systemes superintégrables, matrices aléatoires, combinatoire algébrique, etc.
Une suite de polynémes & coefficients réels { P, (z)}5%, ot P,(z) est un polynoéme de degré n dans
la variable x continue ou discrete est dite orthogonale s’il existe une fonctionnelle linéaire L telle

que pour tous entiers n,m > 0 on a
L[Pp(z)Py(x)]=0 si m#n et L[P2(x)] # 0.

Une de leurs propriétés caractéristiques est de satisfaire une équation de récurrence a trois termes

[15]. Sans perte de généralité, celle-ci peut s’écrire sous la forme
2P () = Ppy1(x) 4+ b Pp(z) + upPr—1(x)

avec les conditions initiales P_j(z) = 0, Py(z) = 1 et ou les coefficients de récurrence b,, sont des
nombres réels pour tout n € N et u,, > 0 pour n > 1. Les polynémes orthogonaux que 1’on retrouve
le plus souvent en physique mathématique ont également la propriété d’étre hypergéométriques.
C’est-a-dire qu’ils s’expriment en terme de la série hypergéométrique généralisée [2] définie par

at, ..., @ — (a1)k ... (a )kzk
o ] 2§ e ot
PR by by ’;)(bl)k...(bq)k k!

avec (a)y = ala+ 1)(a+2)...(a + k — 1) qui dénote le symbole de Pochhammer, ou encore en

terme de sa ¢-déformation [18]

A1y ey
ol

] i ays q ar’Q)k(_1)(1+3—T)kq(1+8—r)(i) Zk
= bl, ---(bs,q)k (4 @)k

avec (a;q)r = (1 —a)(1 —aq) ... (1 —ag" ') qui dénote le g-symbole de Pochhammer. Ces familles
ont la particularité d’étre bispectrales. C’est-a-dire qu’en plus de la relation de récurrence a trois

termes, ils solutionnent également une équation différentielle ou aux différences.



Les polynoémes orthogonaux hypergéométriques sont regroupés dans une hiérarchie qu’on
nomme schéma d’Askey [16]. Celui-ci se décline en deux tableaux : Au sommet du premier tronent
les familles des polyndémes de Wilson et de Racah qui dépendent de quatre parametres. Le se-
cond est gouverné par les polyndémes d’Askey-Wilson et de g-Racah qui contiennent un cinquiéme
parametre g dit de déformation. Toutes les autres familles s’obtiennent par spécialisation des pa-
rametres ou par processus limite. En particulier, lorsque le parametre ¢ — 1, on parle de « limite
classique » et les familles du second tableau sont en correspondance avec celles du premier.

En 1984, Bannai et Ito ont identifié une nouvelle famille de polyndémes bispectraux qui porte
aujourd’hui leurs noms [19]. Celle-ci apparaissait comme limite ¢ — —1 des polynoémes de g-
Racah dans la classification de certains schémas d’associations. La différence entre ces polyndmes
et ceux du schéma d’Askey est que I’équation aux différences qu’ils satisfont contient également
des opérateurs de réflexion définis par Rf(z) = f(—=z) [20]. Cette découverte a conduit au dé-
veloppement qui se poursuit toujours d’une hiérarchie complémentaire de polynémes orthogonaux
bispectraux : le tableau de Bannai-Ito. La famille des polynémes de Bannai-Ito et leurs par-
tenaires, nommés Bannai-Ito complémentaires, sont perchés au haut de ce tableau et plusieurs
de leurs descendants correspondent également a des limites ¢ — —1 de familles appartenant au
g-tableau d’Askey [17, 20, 21, 22, 23, 24].

Soulignons un détail important : les limites entre familles de polynémes orthogonaux s’ac-
compagnent généralement d’une reparamétrisation compléte des polynémes. Bien qu’on utilise
généralement des expressions comme « limite ¢ — —1 » d’une famille de polyndmes, celle-ci n’a de
sens qu’avec la paramétrisation qui Paccompagne. A titre d’exemple, les deux familles en haut du
tableau de Bannai-Ito peuvent chacune étre obtenue & partir d’'une limite ¢ — —1 des polynémes
d’Askey-Wilson. Plus précisement, en réexprimant les parametres g, a, b, ¢, d ainsi que la variable x

des polynomes d’Askey-Wilson & 'aide des relations

t to

g=—c',a=—ic!® b= —ie® c=ie",d=ie 2ty

,x =1e
la limite ¢ — 0 conduit a des polyndémes de Bannai-Ito dans la variable y qui dépendront des

parametres «, 3, et . Toutefois, si on considére plutot la paramétrisation

t

g=—e,a=ie!® b=—ie® c=ie!",d =it x = ie W

la limite ¢ — 0 des polynomes d’Askey-Wilson conduit alors a la famille des Bannai-Ito complé-
mentaires. Cet exemple illustre bien la subtilité des processus limites entre familles de polyndmes

orthogonaux.



Une extension naturelle a la théorie des polynémes orthogonaux est la recherche de familles
multivariées. L’étude générale de cette question se complique rapidement par le fait que la me-
sure d’orthogonalité ne caractérise plus uniquement les polynémes associés [25]. On retrouve par
exemple dans le chapitre 8 des exemples de familles bivariées orthogonales par rapport a une méme
mesure. Soulignons deux approches qui ont fait des apports considérables a ce sujet. La premiere
concerne la théorie des fonctions symétriques et associe des familles de polynoémes orthogonaux
multivariées a des systémes de racines [26]. Ces principaux acteurs sont les familles des polynémes
de Macdonald et de Koornwinder. La seconde vise a généraliser directement le schéma d’Askey par
produit de familles univariées avec un entrelacement des parametres. La clé de cette construction
est de choisir les parametres de telle sorte que 'orthogonalité des polyndémes découle par induction
de l'orthogonalité dans le cas univarié. Les premieres familles sont dues aux travaux de Griffiths
[27, 28] ainsi que ceux de Karlin et Mcgregor [29]. Toutefois, c’est & Tratnik qu’est due la géné-
ralisation & plusieurs variables du tableau ¢ = 1 du schéma d’Askey [30, 31]. Par la suite, c’est
Gasper et Rahman qui ont complété le portrait avec le ¢g-tableau [32, 33]. Mentionnons également
les contributions de Koornwinder sur les polynoémes bivariés [34].

Cette premiere partie de la these porte sur les processus limites de familles de polyndmes
orthogonaux. Par cette approche, on introduit quatre nouvelles familles. La premiére concerne une
troncation singuliére des polynomes de Wilson qui se trouvent en haut du tableau ¢ = 1 d’Askey
en compagnie des polyndémes de Racah. La principale différence entre ces deux familles est que la
premieére est orthogonale par rapport a une mesure continue, tandis que la seconde ’est pour une
mesure discrete. Il est possible de passer des polynémes de Wilson a la famille des Racah par une
troncation qui consiste a spécialiser les parametres de telle sorte que les coefficients de récurrence
soient nuls pour un entier choisi. Dans ce cas particulier, sept troncations sont possibles et six
sont bien connues; la derniere étant souvent écartée parce qu’elle introduit une singularité dans les
coefficients de récurrence. Les travaux du premier chapitre montrent qu’il est possible de résoudre
cette singularité a travers un processus limite bien choisi. Cela conduit a I’obtention d’une nouvelle
famille de polyndémes orthogonaux qu’on s’applique ensuite & caractériser. On nomme cette famille
les polynémes de para-Racah. Le second chapitre présente une adaptation pour le g-tableau d’Askey
de cette technique. On obtient alors des g-polynomes de para-Racah par une troncation singuliére
de la famille d’Askey-Wilson.

Les deux chapitres suivants introduisent les premiers polynémes orthogonaux en deux variables
appartenant au tableau de Bannai-Ito. Les extensions bivariées de type Tratnik des familles de Big

—1 Jacobi et de Bannai-Ito sont définies a ’aide de processus limites ¢ — —1. Dans chaque cas, on



montre qu’elles sont bispectrales. Les relations de récurrences a trois et neuf termes sont obtenues

ainsi que les opérateurs de type Dunkl que ces polynémes diagonalisent.
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Chapitre 1

The para-Racah polynomials

J.M. Lemay, L. Vinet et A. Zhedanov (2016). The para-Racah polynomials. Journal of Mathe-
matical Analysis and Applications 438 (2), 565-577

Abstract. New bispectral polynomials orthogonal on a quadratic bi-lattice are obtained from
a truncation of Wilson polynomials. Recurrence relation and difference equation are provided. The
recurrence coefficients can be encoded in a perturbed persymmetric Jacobi matrix. The orthogonal-
ity relation and an explicit expression in terms of hypergeometric functions are also given. Special
cases and connections with the para-Krawtchouk polynomials and the dual-Hahn polynomials are

also discussed.

1.1. Introduction

Hypergeometric orthogonal polynomials have numerous applications. We shall be concerned
with polynomials that have ¢ = 1 as base. The Askey tableau presents a hierarchical organization
of these special functions [1]. It is comprised of a continuous part and of a discrete one. At the
top of the continuous part are the Wilson polynomials expressed in terms of 4F3 generalized hy-
pergeometric series. A standard truncation condition on the parameters of the Wilson polynomials
leads to the Racah polynomials which are orthogonal over a finite set of real points that form a
quadratic lattice. The simplest limiting case of the Racah polynomials is that of the Krawtchouk
polynomials orthogonal on the linear lattice.

Two of us have identified a family of orthogonal polynomials that fall outside the Askey scheme
[2]. These para-Krawtchouk, as they were called, proved orthogonal over a linear bi-lattice formed
by superimposing two linear lattices shifted one with respect to the other. The para-Krawtchouk

polynomials naturally arise in quantum transport problems over spin chains [2, 3].



We here identify the polynomials that are orthogonal with respect to quadratic bi-lattices. They
are obtained from the Wilson polynomials through a novel truncation condition. They have the
dual-Hahn polynomials as a special case and the para-Krawtchouk polynomials as a special limit.

Consider the Wilson polynomials with parameters a, b, ¢, d denoted by W, (2?;a,b, c,d). They

obey the recurrence relation [1]

—(a® + 2 )Wy (2?) = ApyWi1(2?) — (An + Co) Wi (2?) + C Wi (2?) (1.1)

where

o Wale%a,be,d)
Wa(a?) = (a+b)n(a+c)n(a+dn

with (a)g =a(a+1)...(a+ k — 1) the usual Pochhammer symbol and

m+a+b+c+d—1)(n+a+b)(n+a+c)(n+a+d)
2n+a+b+c+d—1)2n+a+b+c+d)
nn+b+c—1)n+b+d—-1)(n+c+d—-1)

C, = . 1.4
2n+a+b+c+d—-2)2n+a+b+c+d—1) (14)

A, =

(1.3)

They also satisfy the difference equation

n(n+a+b+c+d—1)Wy(2?) = D(@)Wy((z +i)%) — (D(z) + D(x)) Wy (z?) )
1.5

where D(x) is the complex conjugate of D(x)

(a+ix)(b+ix)(c+ix)(d + ix) '

Dla) = (2iz)(2iz + 1)

(1.6)

The Wilson polynomials with parameters a, b, ¢, d, admit an explicit expression given by

-n,n+a+b+c+d-1, a—ix, a+iv

Wo(2?;a,b,¢,d) = 4 F3 b ot atd ,1] =) A ®r(z®)  (17)
) ) k

where

(—n)k(n+a+b+c+d—1)

Ank = 1) (a T Oela + Inla + Ay

Op(2?) = (a — iz)p(a + iz)p. (1.8)

It is well-known [1] that the Wilson polynomials can be reduced to a finite set of N + 1 orthogonal

polynomials if
AnCpny1 = 0. (1.9)

This can be achieved by setting a4+ b, a+ ¢, a+d, b+ ¢, b+ d or c+ d equal to —N. This leads to
the Racah polynomials. Another possibility is to take a + b+ c+d — 1 = —N, but this introduces

a singularity in the denominator of the recurrence coefficients. However, one can get around this
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problem with the use of limits and obtain new orthogonal polynomials. Our goal here is to study
and characterize these polynomials which we shall call para-Racah polynomials.

This new truncation of Wilson polynomials will be presented in section 2 for odd values of N
and the corresponding recurrence relation and difference equation will be obtained. In section 3, we
derive an explicit expression for the para-Racah polynomials in terms of hypergeometric functions
and compute their weights. The para-Racah polynomials with /N even are presented in section 4.
In section 5, we discuss special cases and the connections with the para-Krawtchouk polynomials

and the dual-Hahn polynomials.

1.2. Recurrence relation and difference equation for N odd

1.2.1. Recurrence relation

Let N =2j 41 be an odd integer. The truncation condition (1.9) witha+b+c+d—1=—-N

can be achieved by setting
b=—-a—j+et, d=—c—j+eat, (1.10)

and taking the limit ¢ — 0. Here, a,c are free and e, eo are deformation parameters. Inserting
(1.10) in the recurrence coeflicients (1.3), it is straightforward to verify that only A; and Cjqq
depend on ey and es in the limit ¢ — 0. Indeed, one finds :

(n—N)(n+a+c)(n+a—c—3j) . .
. 2(2n — N) ifn#J,
o (1.11)

er . . ) .
+1)(g+a+c)a—c if n =7,
€1+62(J )(J )(a—c) J

nn—j—1l—-a+c)n—N—-a—c)(n—j7—1) . ,
. @n—1-M@n_N) fn#i+l
o (1.12)

€2 . . . .
+1)(j+a+c)la—c ifn=45+1.
2+ +a+aa—o) j

Notice that these new recurrence coefficients are now regular for all n. It can be seen from these
expressions that the combinations of deformation parameters eq, e that occur are not independent
and lead to a single deformation parameter « defined by

9 4 -2 1. (1.13)
e; + eg el + es

Hence, the new recurrence coefficients are essentially those of the Wilson polynomials, except for

Aj and Cj41 which involve the coefficient o :

Ai=a(j+1)j+a+c)(a—c) (1.14)

13



Citi=1-a)i+1)(j+a+c)(a—c). (1.15)

It is manifest from (1.11) that the truncation condition AyCxny1 = 0 is achieved. The resulting
recurrence coefficients give rise to a finite set of polynomials P, (x?) that are orthogonal with respect
to a discrete measure. Consider the monic version of these polynomials where the leading coefficient

is equal to 1 :
P,(z%) = (—1)"A1 Ay ... Ay 1 Po(2?) = (2®)" + O((z®)" 7)), (1.16)

We shall refer to them as the (normalized) para-Racah polynomials and will denote them by
P.(2% N,a,c,a) in general or simply by P,(z?) when no confusion can arise. They obey the

recurrence relation
2Py (2%) = Puy1(2?) 4+ (An + Cp — a®) Py (2?) + Ap_1Cp Pu_1(2?) (1.17)
= Pui1(2?) 4 by P (2?) + up Py (2?).
Using (1.11) and (1.12), the recurrence coefficients can be expressed as

—%laa+ j) + c(c+j) +n(N —n)] if n#j,j+1,

bn = 1§ —a® — 3j(1+a—c)(1+a+c+j) + a(a—c)(1+5)(a+c+j) if n =7, (1.18a)

—a? — %j(l—i—a—c)(l—&—a—i—c—i—j) + (1 —a)(a=—c)(1+j)(atc+yj) ifn=7+1,

n(N+1—n)(N—n+a+c)(n— 1—|-a,-l—c)((n—j—1)2 —(a—c)z)

IN—2n)(N—2n+2) ifn#j+1,
Up = (1.18b)
a(l —a)(a—c)?(1+5)%(a+c+5)? ifn=j+1.
In order to respect the general positivity condition u, > 0 forn =1,2,..., N, one must choose one

of the two following set of restrictions on a, ¢ and « :

—j—1l<a4+c<—j+1, at+c<—-N+lorO<a+ec,
lc —al| > j, or lc—a| <1, (1.19)
0 < a < 1, 0 < a < 1.

When « = 1/2, the coefficients are mirror-symmetric
bp = by_n forn=0,1,...,N (1.20)

Up = UN—nt1 forn=1,2,...,N
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and for other values 0 < o < 1, the middle coefficients b; and bj;1 are perturbed and no longer
equal. The properties of the para-Racah polynomials can be encoded in the following tri-diagonal

or Jacobi matrix with the recurrence coefficients as elements :
Vup bV
J = Vs b . (1.21)

Its action on the canonical basis |ey,) is

J‘en> =/ un+1‘en+1> + bn’€n> + \/unlen—1> (122)

assuming ug = uny4+1 = 0. Furthermore, the Jacobi matrix is clearly Hermitian and its eigenvalues
define the set of points on which the para-Racah polynomials are orthogonal. One can introduce

the eigenbasis
J|s) = xs|s) (1.23)

where the eigenvalues are chosen in increasing order zop < 1 < --- < xn. It is well known and

straightforward to see that the eigenbasis and the canonical one are connected as follows (see e.g.

[4])

N
ls) =" W’€”> (1.24)
~ A

where P,, denotes the para-Racah polynomials and wy their weights. The mirror-symmetry (1.20)
implies that the matrix J is persymmetric which means that it is symmetric with respect to the

main anti-diagonal:
RIJR=J (1.25)

with

R= _ . (1.26)

This persymmetry property has been widely studied especially in the context of inverse spectral

problems [5, 6, 7, 8].
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1.2.2. Difference equation

By inserting the parametrization (1.10) in the difference equation of the Wilson polynomials
(1.5), it is easily seen that the limit ¢ — 0 is trivial since there are no parameters in the denominator.

Hence, the para-Racah polynomials obey the same difference equation as the Wilson polynomials :

—n(N —n)Py(2?) = D(z)P,((z +1)?) — (D(z) + D(x)) Pp(2?) + D(x) Pu((z — 1)?) (1.27)

with

a+ix)(—a—j+iz)(c+iz)(—c—j+ix)
(2ix)(2ix + 1) ’

Dla) = (1.28)

Remark that the spectrum is doubly-degenerate since P, and Py_, are eigenfunctions with the
same eigenvalue —n(N — n). These polynomials are hence bispectral but they do not belong to

classical orthogonal polynomials in the usual sense.

1.3. Explicit expression and orthogonality relation for N odd

1.3.1. Explicit expression

The explicit expression for the para-Racah polynomials can be found via a limit of the Wilson

polynomials. Using the parametrization (1.10) in the coefficients (1.8) yields

(=n)k(n — N + (e1 + e2)t)x

An g = . : . 1.29
* = R + ext)i(a+ Onla—c — j + ea (1:29)
The monic para-Racah polynomials can be defined as

2y _ . 2

where 7, simply is a normalization factor to ensure monicity. Using (1.13) and (1.29), a simple
calculation gives

(=n)k(n — N)
(Dk(=)k(a+c)rla -7 — )k

if k<jand k <n,

Oé_l(.—n (n = N)N-n(Dk-14n-nN

limAnk = )k
=0 (Dr(=4)i(Dp—jm1(a+ c)pla — j — )

if k> jand k < n, (1.31)

0 otherwise.

For n < j, the sum (1.30) corresponds to the hypergeometric function

—n, n—N, a—1ix, a+ix

P, (x%) = n4 F 1(. 1.32
n(fv) Tinal'3 —j ate a—c—j ; ( )
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For n = 7, one obtains

(22) = J (—j — Di(a —iz)k(a + iz)g
B = S fa ana e (1.33)

This corresponds to (1.32) with n = j, but without the £ = j + 1 term in the summation. This
discrepancy is due to the simplification of the parameter —n with —j when n = j in the hyperge-
ometric function, which would be responsible for the truncation at the proper degree. A similar
problem occurs for n = j+ 1 if we want to express it in terms of hypergeometric functions. Instead,

we write
J

Pii1(2%) =1 1;) (Dr(a+c)rla—c—j)k

Finally, for n > j 4+ 1, the sum splits in two hypergeometric functions for £k < j and k > j

(=j — Dila — ix)p(a + iz (=1 (a+ix)j1(a = iz)j1

" ala+c)jla—c—j)in (1.34)

respectively :
-n, n— N, a—ix, a+ix
—-j,a+c,a—c—j
(—n)j+1(n — N)n—n(a — iz)j11(a + ix)j41(1)n—j-1
a(1)j+1(=j)jla+c)jr(a—c—j)jt
-n+j+1, n—j a+j+1—1z, a—l—j—l—l—i—ix.l
j+2, a+c+jij+1, a—c+1 T

1

)

Pn(xQ) = 77n4F3 |:

+ M,

(1.35)

><4F3|:

(Take note that even though there is a negative integer —j in the bottom parameters of the hy-
pergeometric functions, the truncation of the series occurs with —n for n < j and with n — N for

n > j before a zero appears in the denominator). The normalization factor is given by

(1)n(_j)n(a + C)n<a —C— ])n

M = (1= N (1.36)

a(l)n(_j)j(l)n—j—l(a +c)nla—c—j)n
(_n)n(n - N)an(l)anlfN

1.3.2. Orthogonality relation

if n <7,

ifn>j.

For a finite set of (N + 1) orthogonal polynomials of degree n = 0,..., N, the zeros of the
characteristic polynomial Py of degree N + 1 define the grid on which the polynomials are

orthogonal. Here, it can be computed via
Pyy1(2®) = nnn Y lim tAn 1 p @i (), (1.37)
k

where an additionnal ¢ is necessary to obtain non-zero coefficients. The sum can be carried with
the use of the Saalschiitz summation formula [1] to get
J
Pny1(2?) = H ((a +8)2 + x2) ((c+ )% + x2) . (1.38)
s=0

17



Hence, the para-Racah polynomials are orthogonal on the quadratic bi-lattice

$25:_(8+a)27 s=0,...,7
(1.39)
Tosp1 = —(s+¢)%, 5=0,...,].

From the standard theory of orthogonal polynomials [9], the discrete weights can be obtained via
the formula

up...uN

Wy = , s=0,1,....,N 1.40
° PN($S)P;V+1(JUS) ( )
and the orthogonality relation is
N
ZPn(ars)Pm(ws)ws = Ul ... UnOpm- (1.41)
s=0

There is however a simpler procedure to compute the weights that has been explained in [10].
Recall that the persymmetry property (1.20) is observed when o = 1/2. It thus follows that in this

case, the polynomial Py (z?) takes the following values at the spectral points [4, 6] :
Py(zg) = Jur ... uy(—1)5tL (1.42)

formula (1.40) then reduces to

= YL UN (1.43)

Wy = .
° |P ],\[+1(x8)|
The corresponding positive weights can straightforwardly be computed

N (=5)s(2a)s(a+1)s(a — ¢ — j)s(a+¢)s

s = (a+c)jti(c —a)jt1(2a + 1);s!(a)s(2a + 1 + j)s(a — e+ 1)s(a+c+j +1)s (1.44)
gery = —kN(—J)s(2¢)s(c+1)s(c —a—j)s(a+c)s .
T (a+0)j(a— o) e+ 1)1 (0)s e+ 1+ j)slc—a+ Ds(at e+ j + 1)
with
KN = (a—C—j>N(a+C)N (145)

— 1)+ (%) 41
2(—1)3+1( j )
It has also been shown in [10] that the weights for a general « are related to those of the mirror-

symmetric case by a simple multiplicative factor
wg = const(1 + B(—1)%)ws (1.46)

where [ is a real parameter. It is a simple matter to identify this parameter by comparing (1.40)
and (1.44) for a fixed value of N. One easily verifies that 5 = 1 — 2. The general weights are then
given by

wos = 2(1 — ) Was, ( )
1.47
W41 = 200W541.
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The weights have the special property that

J J
ngs =1-aq, Z Wost1 = Q (1.48)
s=0 5=0

which generalizes a known result when o = 1/2 for persymmetric Jacobi matrices [10].

1.4. Even N case

We have so far only considered the truncation of the Wilson polynomials for odd N. The even
case is treated analogously. We shall thus only summarize how this is done and provide the results

when N = 2j. First of all, the truncation condition (1.9) is now achieved by the parametrization
b=—-a—j+et, d=1—c—j+est, (1.49)

where, as before, the limit ¢ — 0 is to be taken. With the help of (1.49) and (1.13), the recurrence

coefficients (1.3) become

(n—=N)n+a+c)(n+a—c—j+1)

if n # 7,
2(2 1-N
. (En+1-H) (1.50)
aj(j+a+c)c—a—1) ifn=yj,
“N—qg-— _ i1 _
n(n 2(1(2 C)(T jN) +c—a) itn 4,
n_ —_—
C, = (1.51)
1-a)j(j+a+c)(c—a—1) if n=j.
The recurrence relation of the para-Racah polynomials is (1.17) with
b, — (n—N)in+a+c)(n+a—c—j+1) +n(n—N—a—c)(n—j—l—|—c—a) _a? (152)
2(2n+1—N) 2(2n —1— N)
and
n(2j—n+1)(a+c+n—1)(az(%—zggill))g—a-‘rc—i-j—n)(a+c+2j—n) lfn#j, j+1,
un = —2(1—a)ji+1)(a—c)la—c+1)(a+c+j—1(a+c+j) ifn=j, (1.52b)
—tajj+1)(a—c)la—c+1)(at+c+j—1)(a+c+]) ifn=7+1.
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The positivity condition u, > 0 for n = 1,2,...

constraints on a, ¢ and « :

—j<at+c<—-j3+1,
a—c<—jorc—a<-—j+1, oOr

0<a<l,

, N now requires one of the following set of

a+c<—-N+1lorO<a-+c,
O<c—a<1, (1.53)

0<a<l.

The coefficients are again mirror-symmetric for o = 1/2, but in this case, it is u; and u;1; that are
perturbed for other values of a with 0 < o < 1.
Again, the difference equation for the Wilson polynomials does not change under the

parametrization (1.49) and can be written as

—n(N —n)Py(2?) = D(x)P,((x +)?) — (D(z) + D(x)) Py (2?) + D(z) P, ((z —)?) (1.54)

with

(a +iz)(—a—j+ix)(c+ix) (1 —c—j —I-ix)'

Dla) = (2iz) (2iz + 1)

(1.55)

The spectrum of the corresponding Jacobi matrix is the same for N odd and N even and each
eigenvalue is doubly-degenerate, except for the level n = j which is non-degenerate when N = 2j.
The para-Racah polynomials can be expressed as a sum of the form (1.30) with

(—n)k(n — N)p
Nela+cela—j—c+ 1)

= if k<jand k <n,
a H(=n)k(n — N)Non(Dk—14n-nN

(D

lim A, = if k>jand k <n, (1.56)
=0 De(=); Wr—jr(a+ Jula—j —c+ Dy Janer=
0 otherwise.
For n < j, the sum corresponds to the hypergeometric function
—n, n—N, a—1ix, a+1ix
P 2 — F ? ’ ’ . 1.57
n(x) Mn4 3|: —j,a-l-C,a—C—j—i-l 5 ) ( )

whereas for n > j, the sum splits in two hypergeometric functions for £ < j and k > j respectively :

-n, n—N, a—1x, a+1ix
P 2 — F ) ’ ’ .
(&) = s 3[ —j ate a—c—j+1°

(—=n)j+1(n = N)n-nla —iz)j+1(a +ix)j41(1)n—j

+1 . : (1.58
" e a(yla+ ala—c =i+ Dy )
—n+j+1,n—73+1, a+j+1—ix, a+j+1+ix
X 4F3 . . 1.
j+2, a+c+j5j+1, a—c+2
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(As for the N odd case, the truncation of the hypergeometric series occurs before the negative

integer —j in the bottom parameters produces a zero). The normalization factor is given by

(1)n(_j)n(a + C)n(a —c—J+ 1)n

(=n)n(n — N)n
N = (1.59)
a(l)n(_j)j(l)n—j—l(a + C)n(a —c—J+ 1)n

(_n)n(n - N)an(l)anlfN
Finally, the orthogonality relation for N = 2j is again (1.41) on the bi-lattice

if n <7,

if n>j.

xgsz—(s—i—a)Q, s=0,...,7,

(1.60)
Toep1 = —(s+¢)% s5=0,...,5—1,
with the weights now given by
oy — 2(1 = a)rn(—J)s(2a)s(a+1)s(a—c—j+1)s(a+c)s
T jla+e)j(c—a)j(2a+1)j(a)ss!(2a+ 1+ j)s(a—c+ 1)s(a+c+j)s’ (1.61)
Wosrr — —2akN (=7 + 1)s(2¢)s(c+ 1)s(c —a—j)s(a+ ¢)s .
ot (G—=Dla+c)jt1(a—c)jt1(2c+ 1)j—1(c)ss!(2c+ j)s(c —a+1)s(a+c+j+1)s
with
Ce—dia1
P Gl ,)g(aJrC)N. (1.62)
(—1) (%)
The above weights satisfy
J Jj—1
ngs =1-aq, Z Wost1 = Q, (1.63)
s=0 s=0

that compares to (1.48) with a different range in the second sum.

1.5. Special cases

1.5.1. Connection with the para-Krawtchouk polynomials

The para-Racah polynomials that we have introduced here are orthogonal on a quadratic bi-
lattice given by (1.39) for N odd and (1.60) for N even. It is possible to further deform these
bi-lattices into a linear bi-lattice. Take a and c as follows

0-A C+A

1.64
a)="2= o) ="22, (1.64)
it is straightforward to verify that
_ 2 _ 2
lim 2(zas + al6)”) =2s, lim 2251 + a(0)) =25+ 2A, (1.65)
06— 00 0 0— o0 0

where z; is given by (1.39) or (1.60). This linear bi-lattice corresponds to the orthogonality set of

the para-Krawtchouk polynomials [2] with parameter 2A. The same procedure can be applied to
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(1.17) to obtain the recurrence relation of the para-Krawtchouk polynomials. Indeed, consider the

polynomials Q,,(y) related to the para-Racah polynomials P, (z?%; N, a,c, ) by

0 0 — A\? AN 0—A 0+A 1
2_ _ 7. B 2. _
Inserting this in the recurrence relation (1.17) yields
2b,, + 2a(6)? 4u,,
V2ul) = Quia(y) — 2O ) B, ). (1.67)

Taking the limit # — oo with the recurrence coefficients b,, and u,, given by (1.18) gives for N odd
2b, +2a(6)? N —1+2A

lim - )
0—o00 0 2 (1 68)
. du, n(N+1-n)2n—N—-1-2A)(2n— N —1+2A) '
im —- =
§—o0 62 42n — N)(2n — N —2) ’
and using instead (1.52) for N even, one obtains the recurrence coefficients
i 2bn+2a(0)2_N—1+2A+(2A—1)(N+1)( 1 1 )
9300 o 2 4 i-N-1 =N+l e
. du, n(N+1-n)2n— N —2A)2n — N — 2+ 2A) '
lim — = .
§—o0 62 4(2n — N —1)?

The weights of the para-Krawtchouk polynomials are similarily obtained from those of the para-
Racah polynomials. Substituting (1.64) in (1.44) and (1.61) and taking the limit § — oo gives
(A DNED(A=e (A (DA =),
2(—1)741(¥) i1 (A) 41 (1 = A)s 2(=1)7 () sl (—A) 1 (1 + A)s”
for N =25+ 1 and
(CA—j+ Dn((A =g+l (A4 (i + DA =),
(—1)7 (%)slj(A),(1 - A), (1 ()5l — DU=A)41 (1 + A),

for N = 2j. This corresponds to the features of the para-Krawtchouk polynomials defined in [2]

W2s =

W2s =

with parameter 2A. We have thus given a limiting relation between the para-Racah polynomials

and the para-Krawtchouk polynomials.
1.5.2. Connection with the dual-Hahn polynomials

If one sets ¢ = a+1/2, it can be seen from (1.39) and (1.60) that the orthogonality points now

form a single quadratic lattice of the form
s 2
:BS:—<2+a> ) s=0,1,...,N. (1.70)

Furthermore, it can be shown that the para-Racah polynomials with ¢ = a + 1/2 and o = 1/2

reduce to dual-Hahn polynomials. It is straightforward to verify from the recurrence relation that

1\" 1 11 4a—1 4a—1
<—4) Pn<_4y_a2;Naava+272>:TTL(y;N’27 5 ) (1.71)
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where r,, (y; N,~,d) denotes monic dual-Hahn polynomials [1].

1.5.3. Casesa=0and a=1

The para-Racah polynomials have special properties for « =0 and a = 1. When N = 2j + 1,

the recurrence coefficient w11 becomes zero for both special values of . In view of (1.21), we can

see that the Jacobi matrix J now splits into two (j + 1) x (j + 1) tri-diagonal blocks:

bo Vi, 0 0
Vup - 0
0 Vi
g=| " 0 VE b (1.72)
1 b1 i 00
Vo=l 0

0 N
0 0 Vun by

This means that the recurrence relation for the para-Racah polynomials splits into two and defines
independent sets of orthogonal polynomials. The first set has polynomials from degree 0 to j and
the second set has polynomials from degree j + 1 to N. Furthermore, it can be seen from (1.47)
that upon setting o = 0 or a = 1, half of the weights vanishes and the orthogonality grid thus
reduce to a single quadratic lattice.

When N = 2j, similar properties arise. For a = 0, we have uj;1 = 0 and the Jacobi matrix
takes the form (1.72) with two blocks of dimension (j + 1) x (7 + 1) and (j) x (j) respectively.

Similarily, for a = 1, the Jacobi matrix becomes

bo Vi 0 0
0 Uj—1
Je 0 0 uj—1  bj1 (1.73)
1 b; Vi1 0 0
Vi 0
0 Viy
0 0
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where the first block has dimension (j) x (j) and the second block has dimension (j + 1) x (j + 1).
Again, this means that the para-Racah polynomials splits into two sets of mutually orthogonal

polynomials on a single quadratic bi-lattice.

1.6. Conclusion

To sum up, the para-Racah polynomials have been introduced and characterized. These are
polynomials of a discrete variable that are orthogonal on finite quadratic bi-lattices. They are
obtained from a novel truncation of the Wilson polynomials. The explicit expression, orthogonality
property, recurrence relation and difference equation have been provided. The cases of odd and
even numbers of cardinalities of the finite sets of polynomials must be distinguished. The para-
Racah polynomials have the dual-Hahn polynomials as a special case and the para-Krawtchouk
polynomials as a limiting case. (The latter are orthogonal on linear bi-lattices). Looking forward,
we plan to obtain the g-generalization of the para-Racah polynomials by following an approach
similar to the one adopted in this paper.

In closing, we would like to point out that the para-Racah polynomials have already found
applications in the general framework of quantum information [11]. Indeed, they have been used
in the design of a spin chain that can perform the perfect transfer of quantum states and generate
maximally entangled states. We trust that the para-Racah polynomials will prove to have many

other uses.
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Chapitre 2

A g-generalization of the para-Racah polynomials

J.M. Lemay, L. Vinet et A. Zhedanov (2018). A g-generalization of the para-Racah polynomials.
Journal of Mathematical Analysis and Applications 462 (1), 323-336

Abstract. New bispectral orthogonal polynomials are obtained from an unconventional trun-
cation of the Askey-Wilson polynomials. In the limit ¢ — 1, they reduce to the para-Racah
polynomials which are orthogonal with respect to a quadratic bi-lattice. The three term recurrence
relation and g-difference equation are obtained through limits of those of the Askey-Wilson poly-
nomials. An explicit expression in terms of hypergeometric series and the orthogonality relation
are provided. A g-generalization of the para-Krawtchouk polynomials is obtained as a special case.

Connections with the ¢-Racah and dual-Hahn polynomials are also presented.

2.1. Introduction

Persymmetric Jacobi matrices are invariant under reflections with respect to the anti-diagonal
[1, 2, 3, 4]. Recent studies found applications for these matrices in transfer of quantum information
along Heisenberg spin chains [5, 6, 7, 8, 9, 10, 11]. Necessary and sufficient conditions for
achieving perfect end-to-end transfer of a qubit have been framed as properties of Jacobi matrices
and their spectra [9]. In addition to persymmetry, differences of consecutive eigenvalues must satisfy
certain relations. This suggested to study Jacobi matrices whose spectrum are the superposition
of two lattices (bi-lattices). Interestingly, this idea led to the characterization of two novel sets of
orthogonal polynomials : the para-Krawtchouk polynomials [10] which are orthogonal with respect
to a linear bi-lattice and the para-Racah polynomials [12] which are orthogonal with respect to a
quadratic bi-lattice.

It turns out that the para-Racah polynomials can be seen to arise from a singular truncation of

the Wilson polynomials which sits atop the Askey scheme [13]. They are however not classical in



the usual sense since they satisfy the same difference equation as the Wilson polynomials but with
degenerate eigenvalues. In this setting, the corresponding Jacobi matrix is not persymmetric, but
rather corresponds to an one-parameter isospectral deformation of the persymmetric one. Hence,
the general para-Racah polynomials depend on three real parameters a, ¢, @« and the Jacobi matrix is
persymmetric only when o = 1/2. Additionally, the para-Krawtchouk polynomials can be recovered
from the para-Racah polynomials by an appropriate limit.

Our goal here is to report on a g-generalization of these results. More precisely, we will construct
new orthogonal polynomials via a singular truncation of the Askey-Wilson polynomials. We name
them the ¢-para-Racah polynomials since they reduce to the para-Racah ones in the limit ¢ — 1.
A study of the most general tridiagonal representations of the g-oscillator algebra AB — gBA =1
has given hints of their existence and their connection to the g-para-Krawtchouk polynomials [14].

The paper will unfold as follows. In section 2, we review some basic properties of the Askey-
Wilson polynomials. We then proceed with the construction of a set of N + 1 ¢-para-Racah
polynomials. We start in section 3 with the case of N = 2j+1. The three-term recurrence relation,
the ¢-difference equation and an explicit expression in terms of hypergeometric series are obtained
from a singular truncation of the Askey-Wilson OPs. The general orthogonality relation is obtained
by making use of persymmetry features that are observed when o = 1/2. Section 4 is dedicated
to the case N = 2j and the corresponding formulas. A g-generalization of the para-Krawtchouk
polynomials is obtained as a special case in section 5. A connection to the ¢g-Racah and dual-Hahn

polynomials is also presented and a short conclusion follows.

2.2. Askey-Wilson polynomials

Let us first review some properties of the Askey-Wilson polynomials. They are sitting atop the
continuous part of the ¢-Askey scheme and depend on four parameters a, b, c,d. We shall denote
them by W, (z;a,b,c,d|q) or simply W,,(z) when the parameters need not be explicit. They admit

a simple expression in terms of the hypergeometric function

— abedg™ Y, ae?, ae=

Wn(.’IJ;G/,b, c, d‘Q) - 4¢3 e

: 2.1
ab, ac, ad @ q] (2.1)

in the variable x = cos(6). For future considerations, it will be useful to write this hypergeometric

series explicitly

Wa(zsa,b,c,dlq) = ) Anp®u(2) (2.2)
k=0
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where

q ", abedg™ ™t )y,

Ank:(

)

Oy (2) = (ae”, ae™; 2.3
(q,ab,aC,ad;q)k ’ k;(fl?) (ae , ac 7Q)ka ( )

with the standard notation for the g-Pochhammer symbol (a;q)r = (1 — a)(1 —aq)...(1 — ag"*™1)
and its products (a1, a2,...,an;9)k = (a1;¢)k(a2; @)k - .. (an;q)k. The Askey-Wilson polynomials
satisfy a ¢-difference equation

(1 = ")(1 — abedq™ )W () = AO)T4 Wi (x) — [A(9) + A(6)]Wa(2) + AO)T-Woa(x) (2.4)

where the T4 are the following g-shift operators

T+€’L9 — qeie T_€i6 — q—16i9
. : : , (2.5)
T+€719 _ qflefze T_esz = ge 0
and the coefficients A() and its complex conjugate A(f) are defined by
1— 0 1— 0 1— 0 1— 0
a(p) = 22 ber )1 e )(1 —deT) (2.6)
(1 _ 6210)(1 _ q€210)
Moreover, the W, (x) obey the three-term recurrence relation
2eWy () = AWy (z) + (a+a ' — A, — Cp) W () + C, W1 () (2.7)
with recurrence coefficients
A (1= abg™)(1 — acg™)(1 — adg™)(1 — abedg™ )
" a(l — abedg® 1) (1 — abedg?™) ’ (2.8)
o =g —beg" )1 — bdg" 1) (1 — cdg" ") '

(1 — abedg®—2)(1 — abedg®™—1)
It is sometimes more convenient to work with the monic Askey-Wilson polynomials Wn(:r) They

are given by

2n ~
Wh(z) = mwn(iv) (2.9)
and satisfy the recurrence relation
Wi (2) = Wog1 (@) + 2@+ a7 = A, — Cp) Wi (2) + 14010, Wyo1 (2). (2.10)

The orthogonality relation and many more properties on the Askey-Wilson polynomials can be
found in [15, 16]. It is well-known that the Askey-Wilson polynomials can be reduced to a finite
set of N 4 1 orthogonal polynomials if

AnNCn4+1 = 0. (2.11)

It is easy to see that there are multiple ways to achieve this condition by looking at the recurrence

coefficients (2.8). Many of these possibilities lead to the g-Racah polynomials. More precisely, if

29



one chooses the parameters so that either (1 —abg™), (1 —acqg), (1 —adg™), (1 —beg™), (1 — bdg™Y)
or (1— cdq) is equal to zero, then the corresponding polynomials will be the g-Racah polynomials.

There is however another possibility which consists in choosing
1 — abedg¥ "t =0, (2.12)

but this introduces a singularity in the denominators of A, and C,, for n ~ N/2. The present
article deals with this option and we show that under an appropriate parametrization, it is possible
to recover a set of orthogonal polynomials distinct from the ¢-Racah polynomials that has not been

studied before as far as we know. In [13], we presented a similar argument for the case ¢ = 1.

2.3. Odd case: N=25+1

We aim to study the singular truncation (2.12) and to characterize the corresponding orthog-
onal polynomials. Remark first that depending on the parity of N, the singular factors in the
denominators of A4,, and C,, given by (2.8) change. This implies that both cases must be treated
separately. This section will deal with the case N odd and we relegate the case N even to the next
section.

Now, fix N =25+ 1 and let

b=a lg7te? d=c tgitet t— 0. (2.13)

Notice that in the limit ¢ — 0, this parametrization realizes the truncation condition (2.12).
2.3.1. Recurrence relation

Injecting the formulas (2.13) in the recurrence coefficients (2.8) and taking the limit ¢t — 0, one

can check that the only coefficients depending on e; and ey are

) o e1 (1 —acg’)(c—a)(1—qg 771

%E}(I)AJ N <61 + 62) ac(l —q=1) ’ (2.14)
) o €9 (1—¢ (e —a)(ac—q77)
}/1—% i = <61 + 62) ac(l —q) ' (2.15)

Remark that the two occurences of the parameters e; and es are not independent since they sum

to one. They can hence be combined into a single deformation parameter « :

g, 2 __1-a (2.16)
€1+ ey e1 +e2
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With this notation, the limiting recurrence coefficients can be expressed as

(1 —acq")(c—aq"7)(1 —¢"~%1) oy
1 — g2n—2j-1)(1 + n—j ’
lim A, — acl — 4 ) +am) (2.17)
=0 a(l —acg?)(c—a)(1—qg 771 y
ac(1—q7) e
(1 _ qn)(a _ anfjfl)(ac _ qn72j71) )
ac(l+ (1 - ) It
lim C,, = , , (2.18)
=0 (1-a)(1—¢ ) (a—c)(ac—q77) i
ac(1 —q) e

These new recurrence coefficients verify AxCn4+1 = 0 with N = 25 + 1 and thus provides a finite
set of polynomials. We define the (monic) g-para-Racah polynomials R, (x;a,c, a|q) (or R,(x) for

short) via the three-term recurrence relation
xR, (z) = Rpt1(z) + bp Ry (x) + upRp—1(x) (2.19)

with initial conditions R_j(z) = 0, Ro(x) = 1 and where the recurrence coefficients are those of the

monic Askey-Wilson polynomials (2.10) under the limit given by (2.13)

by = lim Ha+at—A,—Cp), (2.20)
up = lim 3A,-1Ch. (2.21)

Using formulas (2.17) and (2.18), they can be written as

(a+c) (¢t +1)¢" (acg? +1) .
- : 1
2ac(qj +qn) (qj+1_|_qn) ’Il#],j—i— )
at+a ' alc—a) (¢t =1) g7 (acg’—1)  (¢?—1) ¢ (c—aq) (acg? Tt —1) .
bn = y F 2ac(q — 1) N 2ac (g — 1) n=
a+at N (1—a)(c—a) (¢ =1) g7 (acg’ —1) B (¢7—=1)q77 (c—aq) (acg’ ™ —1) ne i,
2 2ac(q — 1) 2ac(¢? — 1)
(2.22)
(¢"—1) (¢"—¢**?) (acg" —q) (¢" —acg® ") (ag" —cg’™") (cqg" —ag’™) :
: 5 , : n#j+1,
4a2c2 (q]+1 + qn) (an _ q2]+1) (q2n _ q2]+3) (2 23)
Uy = .
1— )20 (i1 — 1)? i_1)?
(1—a)alc—a)’¢* (q )" (acg’ —1) neitl

4a2c?(q —1)?
Remark : 1t is straightforward to verify that these coefficients are persymmetric when a = 1/2, i.e.

that the following relations hold :
bn:bN—m TLZO,l,...,N,

(2.24)
Up = UN—n+1, N =12,...,N.
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For o # 1/2, the coefficients b; and b;;1 are perturbed and no longer equal.
Furthermore, owing to Favard’s theorem, these polynomials will be orthogonal if they satisfy
up > 0 forn = 1,...,N. With some easy computation, this is seen to be tantamount to the

following conditions on the parameters

0<g<l, 0<a<l, ¢ # a,

(2.25)

1

g<2<q, ac<1l or ac>qg' ™V,

2.3.2. g-Difference equation

Exploiting again the limit procedure given by (2.13), it is possible to recover a g-difference
equation for the g-para-Racah polynomials from that of the Askey-Wilson polynomials. Indeed, this
procedure is trivial since the g-difference equation (2.4) contains no parameters in the denominator.

Thus, the R, (z) will satisfy

¢"(1 = ") (1~ ¢""N)Rn(z) = A(0)T4 Ra(z) — [A(6) + A(0)| Ru(2) + A(O)T-Ru(x)  (2:26)

where the Ty are again given by (2.5) and the coefficients A(6) become

(1 —ae®)(1—atqg7e)(1 — ce)(1 — c1gTe?)
(1 _ 62i6>(1 _ q€2z‘6)

A(0) = (2.27)

with A(#) obtained by complex conjugation. The g-para-Racah polynomials are thus bispectral,
but we remark that upon scaling the polynomials by a factor ¢7", the eigenvalues from equation

(2.26) are degenerate in contrast to the usual classical orthogonal polynomials.

2.3.3. Explicit expression

It is possible to obtain an explicit expression for the g-para-Racah polynomials from the hy-
pergeometric expression of the Askey-Wilson polynomials. Consider the series expansion (2.2) and

use the parametrization (2.13). In the limit ¢ — 0, the coefficients (2.3) reduces to

—n . n—25—1. k
(¢79,2q79, ac, ¢; Q)
im Ay g = 4 @772 -0 (@ Dnknia (07" Ord” jand k <n (2.28)
=0 a(q7759);(q; @)k—j—1(%q77, ac, q; @) -
0 otherwise.

This allows us to express the R, (z) as

R,.(z)=n, lim A, 1 | ®r(z 2.29
(x) n;(mo +) Bilo) (2.29)
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where 7, is a normalization factor to ensure the polynomials are monic. With the help of some

well-known identities for g-Pochhammer symbols, the following expressions can be obtained :

Ifn <y,
q—n7 qn—Qj—l7 aezﬂ’ ae—iQ ]
R, (x) = , . 1q|. 2.30
n(2) nn4¢3[ i ac, actg-i |1 (2.30)
If n=j,
J ( —j—1 0 —if. k
q 77 ae”, ae"; q)kq
Rj(x) =mnj g ) (2.31)
k=0 (Q7 ac,ac ~q 7 Q)k
Ifn=j+1,
1 46t qe—it. k —j=1 , 0 . —if. j+1
q - ,ae, ae 7Q)kq ((] J , A€, a€ 7Q)j+1q]
Rjt(z) =njs + Nj+1 - (2.32)
! ! Z q,ac ac g™ J,q) ! a(q,ac,acilq*J;q)jJﬂ
Ifj+1<n<N,
-n n—2j—1 0 —1i0
q b q ) ae ) ae
(x)=mn 4¢3[ 3. ac, ac-1q-3 q q]
+ ("2 q)2j41-n(g7 ", ae? ae™"; q) 11 (¢ Q14’1 (2.33)
! alg;q);(q,ac,ac1q 775 q) 41
@I, g agitie®, agitle= |
X 4¢3 F+2. acgHl. ac-lq a9q|-
The normalization 7, is given by
I ac g7 ac; .
(g,977,ac"q Dn n<i

(¢"=21, ¢ @)n(—2a)n g+ 1)/2
- e (2.34)
(q Ja Q) (qa Q)n—j—l (ac q ]7 ac, q; q)n

(qn 2= 17Q)2]+1 n(g Q)Qn 25— 2(q—n;q)n(_2a)nqn(n+1)/2

The g-para-Racah polynomials thus generally admit an explicit expression as a linear combination

n > j.

of two basic hypergeometric functions. However, due to some cancellations between parameters in
the numerator and the denominator of the hypergeometric function when n = j and n = j 4+ 1, the
polynomials R;(x) and Rj;1(x) have to be expressed as a sum which corresponds to a "truncated'
hypergeometric series.

Moreover, the non-monic g-para-Racah polynomials given by R, (z;a,c, a|q)/n, reduces to the

(non-monic) para-Racah polynomials described in [13] upon substituting
a—q% c—q° el g (2.35)

and taking the limit ¢ — 1. Akin to the connection between the Askey-Wilson and the Wilson
polynomials, the ¢ — 1 limit is taken in the explicit expressions of the polynomials instead of the

recurrence relation.
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2.3.4. Orthogonality relation

In order to obtain the orthogonality relation of the g-para-Racah polynomials, we begin by com-
puting the characteristic polynomial which gives the spectrum of the Jacobi matrix or, equivalently,
the orthogonality lattice. In a similar fashion to the derivation of the R, (x), consider

—N-1.

(¢ Q) k"

alac,ac g7 q)r(q7750) (45 Qr—j—1

j+1 <k < N+1,

lim(1—g(® T2t A = 2.
lim(1—¢ JAN+1,k (2.36)
0 otherwise,
which can be summed with the ®;(z) to obtain
—j=1 g+li6 i+l —if
0 —if. . y ag’ e, agql e .
Rnyi1(z) o (ae™, ae™;q)j+1 X 302 acqitL, ac-1q 4 Q]- (2.37)

Note that it is possible to neglect the normalization constant since we are only interested in the
zeros of Ryy1(z). Now, using the Saalschutz g-summation formula, (2.37) can be factorized as
Ryi1(x) o< (ae ae™;q)j41(ce™, ce™; q) 11 (2.38)

The orthogonality lattice will correspond to the zeros of (2.38) :

(a'q* +ag®) s=0,1,....7, (2.39)

N[

Z2s

(c7rq™* + cq®) s=0,1,...,7J. (2.40)

N[ =

T2s+1 =

Hence, the ¢g-para-Racah polynomials will obey an orthogonality relation of the form
N
Z Ws Ry (25) R () = uiua . . . UpOnm (2.41)
s=0

where the z; are given by (2.39) and the normalization constants are given by the recurrence
coefficients (2.23). A standard formula from the theory of orthogonal polynomials explicitly gives
the weights [17] :

uiu ... UN
Rn(xs)RQVH(ms)’

ws = s=0,1,...,N. (2.42)

However, due to the involved nature of Ry(x) given by (2.33), we will use a simpler procedure
which exploits the persymmetry that arises when o = 1/2 [18]. In this case, when the polynomial
Ry (x) is evaluated at the zeros of the characteristic polynomial x4, one obtains a simple expression

which is due to the interlacing properties of their zeros :

Ry(zs) = uruz - un(—1)N T, (2.43)
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Combining (2.42) and (2.43), it is easy to compute the weights for o = 1/2 which we shall denote
by ws. The weights for general o have been shown to be related to the W by a simple multiplicative

factor in [18] :
ws x (14 B(—1)%)ws (2.44)

where [ is a real parameter independent of N. One can easily obtain by comparing (2.42) and
(2.44) for a fixed value of N (e.g. N = 3 for simplicity). Here, one obtains § = 1 — 2a. Carrying

through the calculation, one readily obtains

2(1— ) Ky 2%+ ad 120+ Dst+(+1)i (1—a2*) (a?; q), (477 q),(ac; q)s (aq;j ; q> )

Wos = — . , 2.45
’ (¢:0); (0*q;:0); (5:0) ;44 (acs @)j+1 (1 = a?) (g:0)s (3 9), (@@ 5 q), (acq?t s q) (2.45)

20K N 22 ¢l i1 g(23+D)s+(i+1); (1- 02q2s) (Cz; q)s (¢~ q)s (ac; q)s (cq*f : q)s

a

:0); (4:0); (250) ;44 (ac;@)j+1 (1 =€) (¢30)s (5 0), (@75 q), (acg’ q),

W2s+1 = ( (2.46)

where Ky is a normalization constant arising in the persymmetric case a = 1/2 and given by

KN = /uiug ... unN. (247)
It can easily be computed by using the persymmetry of the w,, (2.24) :
. . . . 2, _oi ag— cqg—d -2
(a=c)g ™ (a7 =1) (acq? = 1) (q77:0)} (a5 0); (@ 0)sacs ) (5 1) 5 (<55 0) 5 (Sria),
ac(q —1)2%+2 (¢=%15¢2) ; (¢ %;¢%); (%31 ¢%) ; '

The weights are normalized to verify

Ky =

J J
Z wos =1—« Z Wost] = QU (2.48)
s=0 s=0

which generalizes a known result for persymmetric Jacobi matrices.

When ¢ = a the spectrum becomes doubly degenerate, i.e. x9s = x2s41. This degeneracy is
related with the degeneracy of the recurrence coefficient u;1; = 0 as seen from (2.23). This means
that the corresponding Hermitian Jacobi (tridiagonal) matrix of the recurrence coefficients b,, and
Uy becomes reducible: it can be decomposed into a direct sum of two independent Jacobi matrices

each having the same (now simple) spectrum zs;.

2.4. Even case : N =2j

The construction of the g-para-Racah polynomials for even values of N is similar to the N odd
case. We review quickly the procedure in this section and give the corresponding results.

Let N = 2j. The singular truncation (2.12) is achieved via the parametrization and limit

b=a tgitet, d= ¢ tgitiret t— 0. (2.49)
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As before, the parameters e; and es are not independent and can be encoded in a single deformation

parameter o by

=1-—a. (2.50)
2.4.1. Recurrence relation

The g-para-Racah polynomials R, (x;a, ¢, a|q), or Ry, (x) for short, are defined by the recurrence

relation
xR, (x) = Rpt1(x) + bRy () + upRy—1(x) (2.51)

with initial conditions R_1(z) = 0, Ro(x) = 1 and with the coefficients given by

— lim & -1 _ _
by, = %11(1(1) s(a+a A, —Cy), (2.52)
Uy = %1_1;% 1A4n1Ch. (2.53)

where A,, and C), are the recurrence coefficients of the Askey-Wilson polynomials (2.8) in which

we substituted parametrization (2.49). A straightforward calculation yields

po_ @ +at N (¢"— 1) (acg¥ — ¢") (ag’™' = cq™) N (¢ — ¢") (acq™ — 1) (c¢/ — ag™*?) (250
S 2ac (g7 +¢7) (77— ¢%1) Zac (g + ") (@ — @)

(¢"—1) (¢"—q¥*) (acq" —q) (¢" —acg®) (ag"—cq’) (cq"—ag’™T)
402¢ (¢ + ¢") (¢ + ¢7) (¢ — )
(1-a)(c—a)g™¥ (¢ =1) (¢*' =1) (ag—c) (acg’ 1) (acg’ —q) .
12 (g 12 1) n=g o @%)
alc—a)g ¥ (qj —1) (qj‘H —1) (ag —¢) (acqj —1) (acqj —q)
da*c?(q - 1)%(¢ +1)

n#j,j+1

Up =

n=j+1

The recurrence coefficients are also persymmetric, i.e. satisfy (2.24), when oo = 1/2. The positivity

conditions u, > 0 for n =1,..., N are verified when the parameters obey
0<g<1l, 0<a<l, ¢ # a,
(2.56)
q<%<q_1, ac<1 or ac>qg V.

2.4.2. ¢-Difference equation

The ¢-difference equation for N = 2j is obtained by inserting the limit procedure given by
(2.49) in (2.4). In this case, the R, (x) satisfy

¢~ ") (L ") Ra(@) = A(O)T, Ru(x) — [A(D) + A(9)| Ru(z) + AO)T-R(z)  (257)
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where the Ty are given by (2.5) and the coefficients by

(1 _ aew)(l _ a—lq—jew)(l _ Cew)(l _ C—lq—j—i—lew)
(1 — €29)(1 — ge2i9)

A(6) = (2.58)

and its complex conjugate. Again, the g-para-Racah polynomials are bispectral, but each eigenval-

ues is degenerate upon rescaling the polynomials by ¢~".

2.4.3. Explicit expression

An explicit expression for the R, (z) can readily be obtained by inserting the parametrization

(2.49) in the series expansion (2.2). Summing the resulting terms, one obtains for n < j :

q—n’ qn—2j’ aeiﬁ’ ae—i@

Rn(x) = 77n4¢3|: q_j, CLC, ac_lq_j_;’_l

q; q} ; (2.59)

and for j+1<n<N:

—n’ qn—2j’ CL@ZG, ae—z@

_ q
R?’L(a;) - 77n4¢3|: q_j, ac, ClC_lq_j+1

4q; Q}

+n (@5 @)2-n(a™",ac”, ae™"; )11 (¢s @’ (2.60)
n — —1,— ’
a(q775q)j(q,ac,ac™ g7t q) 11
‘10 qj+1—n7 qn—j+1’ aqj+1€i97 aqj+1€—i9 '
s @2, acgitt, aclq? i

with monicity ensured by the normalization

(g,q477,ac™ g7 L ac;q)n _
(qn—2j7 q—n; q)n(_za)nqn(n-l—l)/Q nsj
N = B L in (2.61)
a(¢77;9)j(q; O)n—j—1(ac g7t ac, ¢; q)n
(0" %3 0)2j—n(a: @)2n—2j-1(¢7"; @)n(—2a)"gn (" H1)/2

The polynomials of degree j and j 4+ 1 need not be distinguished when N = 2j because the

n > j.

simplification of the parameters in the hypergeometric function does not change where the series

truncate in constrast with the N odd case.

2.4.4. Orthogonality relation
The characteristic polynomial can once more be computed via
o
Ryi1(x) = nns1 Z %E%(l — gt Ay 1 By (2). (2.62)
k=0

Carrying through the computation and using the Saalschutz g-summation formula, it can be ex-

pressed in factorized form as

Ryy1(x) o< (ae? ae™; q)j41(ce®, ce™; q);. (2.63)
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The orthogonality grid is again has the form of a biexponential bi-lattice :

Tos = 2(a" g +ag®)  s=0,1,...,] (2.64)

Tosi1 = 2(c'qg 5+ cg®) s=0,1,...,5—1, (2.65)
and the orthogonality relation is
N

Z Ws Ry (2s) R () = urus .« . . UnOpm. (2.66)
s=0

As in the previous section, one can compute the general weights by using the persymmetry when

a = 1/2. The result is

B (1 —a)Knalcdq®)% (1 — a?¢?) (a?; ), (a77;q), (ac;q)s (a‘f(j+1 ; Q)s
2 g g); (a%g; 0); (£:4) ;44 (ac;); (1 — a?) (¢ 0)s (%5 ), (aP@7 5 0) (aca’; q), (2.67)
- _aKNajJrle—lq(zj)s (1 _ Cqus) (CQ; q)s (q—j—f—l; q)s (ac; q)s (cq;j : q)s
Hrert = (:0)j-1(:0) ;-1 (%:9) ;1 (ac; ) (1=c2) (5. 0)s (T3 0) (@5 ) (acg 5 ), (2.68)
with
o (c=a)(1+¢)) (1= ) (1=¥ ) (c—aq) (g 0); (47~ )5 (25 )42 (23 )5 (L ) (24 ";q>j.

g2 1(1 = q)*(ac — q) (¢ ¥~ ¢*)3(~q;0)3(a — cg?)(1 — acg®)(c — agi*1)

The weights also satisfy the relations
J Jj—1
ngs =1-aq, Z Wos+1 = Q. (2.69)
s=0 s=0

2.5. Special cases

2.5.1. g-para-Krawtchouk

Under an appropriate reparametrization, it is possible to reduce the R,(x) to polynomials
orthogonal with respect to an exponential bi-lattice instead of a biexponential bi-lattice. We call
the corresponding polynomials the g-para-Krawtchouk polynomials because they reduce to the
para-Krawtchouk polynomials when ¢ — 1. The persymmetric case a = 1/2 for N = 25 + 1 has
been briefly mentionned in [14]. We here obtain the general g-para-Krawtchouk polynomials for
general N and general «. To this end, let us first rewrite the parameters a and ¢ in terms of new

parameters 6 and A given by
, (2.70)

(2.71)
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Rescaling the lattice xs and taking the limit & — oo, one obtains an exponential bi-lattice y;

described by

. 2a

e = Jim, e = A" 272
. 2a

Yosi1 = 91520 g Ll = q°. (2.73)

The g-para-Krawtchouk polynomials @, (y) can be obtained by taking a similarity transformation

0 o\ "
_ 7 W) = (L) Ru(a). 2.74
r= g QW= () R (274
Under this transformation, the recurrence relations (2.19) and (2.51) of the g-para-Racah becomes
an(y) = Qn+1 + BnQn(y) + ananl(y) (2'75)
where
~ 2a 4a?
= li 5 On, Up = i o Un. 2.
e (270
Inserting the recurrence coefficients (2.22) and (2.23) in the previous formula gives
n+i(14gI T (14+A ..
q(qj.tqu)q(qﬁr)l(_i_;n)) n # J,J+ 17
b= Y A - @GO L Gl (2.77)
A — (1—0)(1—1!1_j;1)(A—1) i q(l—(tzlj_)g%q—l) n=7j+1,
q2j+1+n(l_qn)(q2j+2_qn)(qn_qu+1)(qj+1_Aqn) .
1 2 (25 L2 (2 T3 2 n;é]—i—L
i, = (@71 +q™) (? I =) (g¥ T3 —¢?") (2.78)
e n=j+1
for N = 2j 4 1. Using instead (2.54) and (2.55) gives
P_AL @ =D = AP qM(eY —q")(¢ = A (2.79)
! (@@ +q") (g7 = ¢*) (@@ +q") (¢ — ¢ th) 7 '
254+ (g7 —1) (231 —gn) (g" = AgI T (Ag™ —gI ..
: (q(qj_,_Bl(nq)(qj+1_(,1_q)n()q(q2j+?_q2)n()2q z) n#j,j+1,
_ ) (1= (1—gi 1) (A—1)(1— .
| 2w
a(l=¢")1—¢g’*H(A-1)(1—qA) —
R e n=J+1

for N = 2j. In the limit ¢ — 1, this recurrence relation reduces to the one of the para-Krawtchouk
polynomials up to another similarity transformation. Remark that these coefficients are also per-

symmetric when o = 1/2. The orthogonality relation for the @, (y) can be obtained by the same
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procedure used in section 3 and 4 to obtain the orthogonality relation for the g-para-Racah poly-

nomials. Omitting the details, one readily finds

N
> wsQn(Ys)Qu(ys) = Ty . . . UnOrim (2.81)
s=0

where the weights are given by

(1-a) (1= %) & (Aq730); (%50)  (a7739), (Agsa),

J

wys = Ky -
(g:0)s (& q)jH A (Ag: q)s
o 20 M)A (155a)  (Aa ) (a75a), (T5a), (2.82)
W2s =
S (4:0)s(859)11 (£50),

(
Ko (_1)jqj(j—1) (1 _ q2j+1)
N U949 (5 )

for N =25+ 1 and by

wo. — fec =) (a7730), (Aq' 3 q),
2 NN (g 9)s (£59) (Ags q)s

(2.83)

wosy1 = K

Jj—1

(_1)jq%j(j—1) (qj +1) (1_qj+1) (1_q2j+1) (qujfl; q)j (1—Aq) (q‘A ;q>j (Aqu;q)j

(1= Agit) (1—q)2 (%27 (—q:9)?

Ky =

for N = 2j.
2.5.2. Reduction to a single lattice

Consider the persymmetric case a = % For ¢ = aq%, the orthogonality lattice reduces to a

single biexponential lattice of the form

1 S S
5(crlcfﬁ +aq?) s=0,1,2,...,N. (2.84)

Tsg =

In this setting, the g-para-Racah polynomials connect with the g-Racah polynomials in base q%.

More precisely, the following relation holds for any N :
19 —n _1 _1 —4i-—3 _1 i1
Ry (x;a,aq2, 5|q) = (2a) "pn(2ax;a0q™ %, —a” "¢ 771, —aq” 1, —aq” 1|q2) (2.85)

where p,(y; o, 5,7,9|q) = pn(y) are the monic g-Racah polynomials defined in [15]. This can be
checked by substituting directly (2.85) in the recurrence relation (2.19) for N odd and (2.51) for

N even and comparing the coefficients with those of the monic g-Racah polynomials found in [15].
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In addition, this special instance of ¢-para-Racah polynomials bears a connection with the dual-

Hahn polynomials in the limit ¢ — 1. To see this, consider the recurrence coefficients A,, and C,

given in (2.17) and (2.18) and let = & and ¢ = aq%. Now, substitute a — ¢* and compute the

2
limits
Ap
lim —"— = (n+ 21 + 1)(n - N),
171 (1 —q2)?
c (2.86)
limin:n(n—lmT_l—N—l).

=1 (1 - g3 )2

These results corresponds precisely to the recurrence coefficients (also denoted by A,, and C,,) of

4a—1

5 It is a trivial matter

the dual-Hahn polynomials given in [15] with parameters v = § =

to verify that the same result holds for even values of N. This is in perfect correspondance with
the special case of the para-Racah polynomials that reduces to the dual-Hahn polynomials with
parameters v = § = % when the orthogonality bi-lattice of the former reduces to a single lattice

[13].

2.6. Conclusion

To summarize, we constructed new orthogonal polynomials from a singular truncation of the
Askey-Wilson polynomials. They have been called the g-para-Racah polynomials because their con-
struction is parallel to the one of the para-Racah polynomials starting from the Wilson polynomials.
Furthermore, they can be connected by a ¢ — 1 limit in their (unnormalized) explicit expression
in a similar fashion to the connection between the Askey-Wilson and the Wilson polynomials. A
three-term recurrence relation, a g-difference equation, an explicit expression and the orthogonality
relation have been obtained both for sets containing an even or odd numbers of polynomials. We
further characterized the g¢-para-Krawtchouk polynomials as a special case of the g-para-Racah
polynomials. This is also of interest because these last polynomials had never been much charac-
terized in the literature before. This specialization occurs in a limit where the orthogonality grid
reduces from a biexponential bi-lattice to an exponential bi-lattice. A connection to the g-Racah
and dual-Hahn polynomials has also been presented in the special case where the bi-lattice reduces
to a single lattice.

The g-para-Racah and the g-para-Krawtchouk are both associated to an isospectral deformation
of persymmetric Jacobi matrices. Specifically, their Jacobi matrices are persymmetric only when
the parameter « = 1/2. This is an interesting feature which we hope could see them arise in
future applications. An idea is to interpret their Jacobi matrices as the restriction to the one-

excitation sector of an Heisenberg spin chain Hamiltonian and to study their ability to produce
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transfer of quantum information or generate entangled pairs. Another direction would be to study
their bispectrality. Although the ¢g-para-Racah polynomials possess the bispectrality property, the
spectrum of the corresponding g-difference operators in (2.26) and (2.57) is doubly degenerate. This
means that the ¢g-para-Racah polynomials do not belong to the category of "classical" orthogonal
polynomials with the Leonard duality property. It would be interesting to find an appropriate
algebraic description of these polynomials. We hope to report on these questions in the near

future.
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Chapitre 3

Two-variable -1 Jacobi polynomials

V.X. Genest, J.M. Lemay, L. Vinet et A. Zhedanov (2015). Two-variable -1 Jacobi polynomials.
Integral Transforms and Special Functions 26 (6), 411-425

Abstract. A two-variable generalization of the Big —1 Jacobi polynomials is introduced and
characterized. These bivariate polynomials are constructed as a coupled product of two univariate
Big —1 Jacobi polynomials. Their orthogonality measure is obtained. Their bispectral properties
(eigenvalue equations and recurrence relations) are determined through a limiting process from the
two-variable Big ¢-Jacobi polynomials of Lewanowicz and WozZny. An alternative derivation of the

weight function using Pearson-type equations is presented.

3.1. Introduction

The purpose of this paper is to introduce and study a family of bivariate Big —1 Jacobi poly-
nomials. These two-variable polynomials, which shall be denoted by 7, x(z,y), depend on four real

parameters «, 3,7, d such that o, 5,7 > —1, § # 1 and are defined as

0
Furlw,) = Tucs (0 2+ B9+ 1 (1)8) pulo) I (539,87 ) (3.1)

with kK =0,1,...and n=Fk,k+1,..., where

[N

only) = yk( —Zg)k_,l k even,
(1-%) 7 (142), kodd,

and where J,(x;a,b, c) denotes the one-variable Big —1 Jacobi polynomials [1] (see section 1.1).
It will be shown that these polynomials are orthogonal with respect to a positive measure defined
on the disjoint union of four triangular domains in the real plane. The polynomials 7, (z,y) will

also be identified as a ¢ — —1 limit of the two-variable Big g-Jacobi polynomials introduced by



Lewanowicz and WozZny in [2], which generalize the bivariate little g-Jacobi polynomials introduced
by Dunkl in [3]. The bispectral properties of the Big —1 Jacobi polynomials will be determined
from this identification. The polynomials J,, x(x,y) will be shown to satisfy an explicit vector-type
three term recurrence relation and it will be seen that they are the joint eigenfunctions of a pair
of commuting first order differential operators involving reflections. By solving the Pearson-type
system of equations arising from the symmetrization of these differential/difference operators, the
weight function for the polynomials 7, i (x,y) will be recovered.

The defining formula of the two-variable Big —1 Jacobi polynomials (3.1) is reminiscent of the
expressions found in [4] for the Krall-Sheffer polynomials [5], which, as shown in [6], are directly
related to two-dimensional superintegrable systems on spaces with constants curvature (see [7] for
a review of superintegrable systems). The polynomials 7, x(x, y) do not belong to the Krall-Sheffer
classification, as they will be seen to obey first order differential equations with reflections. The
results of [6] however suggest that the polynomials 7, x(x,y) could be related to two-dimensional
integrable systems with reflections such as the ones recently considered in [8, 9, 10, 11]. This fact

motivates our examination of the polynomials 7, i (z,v).

3.1.1. The Big —1 Jacobi polynomials

Let us now review some of the properties of the Big —1 Jacobi polynomials which shall be
needed in the following. The Big —1 Jacobi polynomials, denoted by J,(x;a, b, c), were introduced
in [1] as a ¢ = —1 limit of the Big ¢g-Jacobi polynomials [12]. They are part of the Bannai-Ito
scheme of —1 orthogonal polynomials [13, 14, 15, 16]. They are defined by

-3, ndathd? 1—22 n(l—x) 1-%, ndaxbi2 1—a2
2F1 2 a+12 ) 1—c2 + (1+C)(a+1) 2F1 2 a+3 2 5 1—c2 | n even,
2 2
Jn(ﬁ a,b, C) = _n-l ntatbil oo (ntatb+1)(1—z) _n=l ntatbt3 L o
) . 1l—2 _ ) P S’
o ? a+1 2 y1—c2 | (1+¢)(a+1) o b 2 a+3 2 Y 1=z | T Odd7
2 2
(3.2)

where o F) is the standard Gauss hypergeometric function [17]; when no confusion can arise, we shall

simply write J,(z) instead of J,(x;a,b,c). The polynomials (3.2) satisfy the recurrence relation
xIp(x) =Ap Jnsa1(z) + (1 — Ap — Cp) Jn(x) + Cp Jn—1(2),

with coeflicients

(n+a+1)(c+1) n(l—c)
A TZntatbrz 0 M EVeDL c ntath TV EVERL
= =
(1—=c)(n+a+b+1) (n+b)(1+c)
“ntatbis —» nodd, Snters » nodd.
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It can be seen that for a,b > —1 and |c| # 1 the polynomials .J,,(z) are positive-definite. The Big

—1 Jacobi polynomials satisfy the eigenvalue equation
LI, (x)={(-1)"(n+a/2+b/24+1/2)} Jp(z), (3.3)

where L is the most general first-order differential operator with reflection preserving the space of

polynomials of a given degree. This operator has the expression

zzF”“?“JW@R+L;+“;fMR—D+P+g+1&

where R is the reflection operator, i.e. Rf(z) = f(—=x), and I stands for the identity. The orthog-

onality relation of the Big —1 Jacobi polynomials is as follows. For |c¢| < 1, one has

(1—c)*s
/ In(z;a,b,¢) Iy (50,0, ¢) w(x;a,b,c) de = | ——————| hp(a,b) dnm, (3.4)
c (1+¢)
where the interval is C = [—1, —|¢|] U [|¢c|, 1] and the weight function reads
w(zsa,b,e) = 0(z) (1+2) (x — ¢) (a® — )T (1- 227, (3.5)
with 6(z) is the sign function. The normalization factor h,, is given by
o (bl )p(ntatd)(n))
(n+a+1)21“("+“2+b+22)(a7+21)2n ’ even,
hn(a, b) = (nta-+b+1) F(n+b+2)r(n+a?—2)(n7—l)] (3'6)
2 n odd,

where (a),, stands for the Pochhammer symbol [17]. For |¢| > 1, one has

_ 0(c)(c® —1)“F2 ] -
/an(x; a,b,c) Jn(z;a,b,¢) W(x;a,b,c) de = hn(a,b) Opm, (3.7)
c 1+c¢
where the interval is C = [—|¢|, —1] U [1, |¢|] and the weight function reads
(x5 a,b,¢) = 0(cx) (1 +z) (c —x) (¢ — xQ)IFTl (z% — 1)%1 (3.8)
In this case the normalization factor has the expression
2T(EE)r (=) (5)!
- (rrarDr (222252 (2513 e
hn(a,b) = (3.9)

2
2
(n+a+b+1) F(%M)F("‘F;-‘rQ)(nT—l)!
() ()

The normalization factors h,, and h,, were not derived in [1]. They have been obtained here using
the orthogonality relation for the Chihara polynomials provided in [14] and the fact that the Big
—1 Jacobi polynomials are related to the latter by a Christoffel transformation. The details of this

derivation are presented in appendix A.
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3.2. Orthogonality of the two-variable Big —1 Jacobi polynomials

We now prove the orthogonality property of the two-variable Big —1 Jacobi polynomials.
Proposition 3.1. Let a, (3,7 > —1 and |0| < 1. The two-variable Big —1 Jacobi polynomials
defined by (3.1) satisfy the orthogonality relation

/D /D TIng(@,y) Tme(x,y) W(x,y) dov dy = Hpg dkebnm, (3.10)
y T

with respect to the weight function

y—1 B—1
x\ [x—0 a-1 22\ % (2?2 =62\ %
Wiz,) =6l ) (14 2) (S0 )0 - o) (1- S IERCREY
Y Y Y Y
The integration domain is prescribed by
Dz = [_|y‘7 _’5‘] U [’5‘7 ‘yH7 Dy - [_17 _’(SH U [’5‘7 1]a (312)
and the normalization factor Hy, has the expression
I (1 g2)* 5 by, ) (s 2 4+ 74+ B 4 1)
n = 9 n— ag Y

where hy(a,b) is given by (3.6).
Proof. We proceed by a direct calculation. We denote the orthogonality integral by
I= [ [ Fur@y) Tnslay) Wia,y) do dy.
Dy /D,

Upon using the expressions (3.1) and (3.11) in the above, one writes

I= /D Tn-k(U; @, 2k + v + B+ 1, (=1)%6) Jm_o(y, 0, 2k +7 + B+ 1,(~1)*6)

Y
a=1
x [ok)pe() |y (1 +9) (1 -y | dy
o\ T/ 2 s\ T
_ 2 _ 3
X / Ik (z;%ﬁ, 5) Jo (x;%ﬁ, 5) [9 ($> (1 + x) (x 6) (1 - m2> <x 25 ) ] de.
« Y Yy Yy Yy Yy Yy Yy Yy Yy

The integral over D, is directly evaluated using the change of variables © = z/y and comparing

with the orthogonality relation (3.4). The result is thus
1= (3 8) G % [ nilys 2k 47+ 841, (1)) ooy, 2647 + B+ 1, (<1)%9)
Yy

X pi(y) pe(y) [e(y) (L+y) (1-y")"z (y(yil;)] ’
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Assuming that k = /£ is an even integer, the integral takes the form

I:hu%ﬂﬁmx/'L%uwaak+v+ﬂ+1ﬁ>LWA%aﬂk+w+ﬂ+L®
Dy

k L (y2 - 52)%;%
x(y2 — 89k 10(y) (1 +vy) (1 —y?) T dy,
(y )7 0y) A +y) (1 —y7) ) y
which in view of (3.4) yields
(1- 52)2k+a+2,8+"/+3
I = hk(’)/:/B)hnfk(aa 2k + v + 6 + 1) 1+ 5 ] 5k25mn

Assuming that k = /£ is an odd integer, the integral takes the form

Izhﬂ%ﬁﬁuX/‘L%M%aﬂk+7+ﬁ+1rﬁ)Lmﬂwa2k+7+ﬁ+L—®
Dy

x(y* = 6%y +6) G0

(g
e@>u+y>u—y%%“’>]d%

which given (3.4) gives

(1 B 52) 2k+a+2/3+7+3
I'=hi(y, B)hn—i(a, 2k + v+ B +1) =3 Okt Omn-
Upon combining the k even and k odd cases, one finds (3.10). This completes the proof. ([l

It is not difficult to see that the region (3.12) corresponds to the disjoint union of four triangular
domains. The |6| = 1/5 case is illustrated in the following figure.

For o, 8,7 > —1 and |§| < 1, it can be verified that the weight function (3.11) is positive on
(3.12). The orthogonality relation for |§| > 1 can be obtained in a similar fashion. The result is as

follows.
Proposition 3.2. Let a, 3,7 > —1 and |§] > 1. The two-variable Big —1 Jacobi polynomials
defined by (3.1) satisfy the orthogonality relation

/5 5 jn,k(l'ay) Jm,((m7y) W(xvy) dx dy = ﬁnk 5k€5nm7
y T

with respect to the weight function

y—1 8
N T . w22 T 5242\ T
W(e.) =062l 1+ (147 (2 )@2_n:z<§f_g (5 : )
(3.13)

The integration domain is

f)z = [_’5|7 _‘yH U Hy|7 |5H7 By = [_|6‘7 1] U [17 |6H7 (3‘14)
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Fig. 3.1. Orthogonality region for |§| = 1/5.
10

y

05

1.0

-05}

and the normalization factor is of the form

B (&2 — 1)2k+a+2,8+1+3 ~ -

where hy(a,b) is given by (3.9).
Proof. Similar to proposition 2.1 using instead (3.7), (3.8) and (3.9). O

It can again be seen that the weight function (3.13) is positive on the domain (3.14) provided that
a,B,v > —1 and [§] > 1. The orthogonality region defined by (3.14) again corresponds to the

disjoint union of four triangular domains, as illustrated by the next figure for the case |§| = 3.
3.2.1. A special case: the bivariate Little —1 Jacobi polynomials
When ¢ = 0, the Big —1 Jacobi polynomials J,,(z;a,b,c) defined by (3.2) reduce to the so-

called Little —1 Jacobi polynomials j,(z;a,b) introduced in [16]. These polynomials have the

hypergeometric representation

n nt+a+b+2 n ntat+b42
9 . 2 n 1—(13 1__» -9 . 2
gFl[ 2 GTHQ ,1—w}+%m22F1[ 2#2 ,1—w}, n even,
]n(x,CL,b) - n—1 n+a+b+1 n—1 n+a+b+3
— =5, V5 _ 2 n+a+b+1)(1—x -5 . 2
2F]_|: QQ_HQ ,1—1}]—%2F1 2a_+32 ,1—33 s n odd.
2 2

(3.15)
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Fig. 3.2. Orthogonality region for |§| = 3.
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Taking 6 = 0 in (3.1) leads to the following definition for the two-variable Little —1 Jacobi polyno-

mials:

) [z
qu(x,y):jn_k(y;oz,Qk:—i—ﬁ—i—v—i—l)ykjk(;mﬁ), k=0,1,2..., n=kk+1,.... (3.16)

It is seen from (3.16) that the two-variable Little —1 Jacobi polynomials have the structure cor-
responding to one of the methods to construct bivariate orthogonal polynomials systems proposed
by Koornwinder in [18]. For the polynomials (3.16), the weight function, which can be obtained
by taking 6 = 0 in either (3.11) or (3.13), can also be recovered using the general scheme given in

[18]. For § = 0, the region (3.12) reduces to two vertically opposite triangles.

3.3. Bispectrality of the bivariate Big —1 Jacobi polynomials

In this section, the two-variable Big —1 Jacobi polynomials 7, x(x,y) are shown be the joint
eigenfunctions of a pair of first-order differential operators involving reflections. Their recurrence
relations are also derived. The results are obtained through a limiting process from the correspond-
ing properties of the two-variable Big g-Jacobi polynomials introduced by Lewanowicz and Wozny

[2].
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3.3.1. Bivariate Big g-Jacobi polynomials

Let us review some of the properties of the bivariate g-polynomials introduced in [2]. The

two-variable Big g-Jacobi polynomials, denoted Py, x(z,y; a, b, c,d; q) are defined as

d d
Pk, ys @, by ¢, di q) = Paop(ys a, beg® ™, dg¥s q) o (yq;q) P, (;’;c,b,y;q), (3.17)
k

where (a;q), stands for the ¢g-Pochhammer symbol [19] and where P, (z;a,b,c;q) are the Big ¢-

Jacobi polynomials [12]. The two-variable Big ¢g-Jacobi polynomials satisfy the eigenvalue equation
2]

ql—n(qn _ 1)(abcqn+2 o

OPnrleny) = (¢—1)?

1
where (2 is the g-difference operator

Q= (z —dg)(z — ac®)DgaDy-1, + (y — aq)(y — dg)DgyDy

+ ¢ H(z—dg)(y—aq)Dy-1,D 1, + acg’(bx — d)(y — 1)Dg Dy,

abeg®—1)(z—1 acg®—1)(dg—1 abeg®—1)(y—1)—(ag—1)(dg—1
4 (abeg®~1)( ;gq )(dg )Dq,x-i-( q )(yq)_l(q )(dq )qu7

and where D, , stands for the g-derivative

flgz,y) — f(z,y)
x(g—1)

The bivariate Big g-Jacobi polynomials also satisfy the pair of recurrence relations [2]

Dy.f(z,y) =

YPni(,y) = ank Pnt1.k(2,y) + buk Prp(2,y) + ek Pr—1,k(2,9),

x Pn,k(-ra y) = €nk ,PnJrl,kfl(w? Z/) + fnk PnJrl,k(xa y) + Ink Pn+1,k+1(x7 y) (3 19)
+ Tnk ,Pn,kfl(xa y) + Snk ,Pn,k<x7 y) + tnk Pn,k+1 (377 y)
+ Upk Pn—l,k—l(xv y) + Unk P?’L—l,k(x7 y) + Wpk Pn—l,k+1($7 y);

where the recurrence coefficients read

_ (1_ aqn_k+1)(1 - abcq”+k+2)(1 _ dqn-i-l) — B
Ank = (abcq2n+2 )2 ) nk — Ank Crks
_ abco, 2R3 (abeg™ — d)(g"F 1, q)s - )
Wk = (1-— qu+1)(abcq2n+1; 9)2 frke = anp(beg®m, — o + 1),
kaqu qu —1)(1 — dqn+1 aqn7k+1;q )
€nk = ( )( )( ) , Vpk = an;(bch’fk — oy + 1)7

(abeg®+2;q)9

o (1 — dg"™) (abeg™ ™25 q),

Ink = (1~ dg" 1) (abe® %, q)s Snk = bk (bed® i, — o3, + 1) + d(¢* oy, — 1),
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, 7qk“akzn(l—q”_k)(l—abcqn+k+2) S dq"“‘l(q” k —1)(1— bcq”+k+1)(1 abed™1 ”+1)
le‘ bl TLk (abchn_;'_l7 q)2 b))

1— qu+1
Traq" " F 1 (dg" —1)(abeg™ T —d) (beg"t; q)

nkarl) (1 _bcqn+k+1)

Tnk = Tkzn(qu_l)(l_aq

y Unk = (abcq2n+1; q)Q )
and where o, 7, and z, are given by
(1 — g1 (1 — begh ™) abeqg" (1 + q — dg"tt) —d
O = ,  Rp = s
k (beg?*+1; q)q "7 (1 — abeg? ) (1 — abeg?nt3)
= (1 =g (1~ bg")
(bcqzk, q)2 '

3.3.2. Jpi(z,y) as a ¢ — —1 limit of P, j(z,y)

The two-variable Big —1 Jacobi polynomials 7, 1 (x,y) can be obtained from the bivariate Big
g-Jacobi by taking ¢ — —1. Indeed, a direct calculation using the expression (3.17) shows that

111'1(1) Pn,k($; Y; _eea’ _BEB’ _6677 57 _ee) = jn,k(xv Y5 «, B, v, 6)7 (320)
e—

where we have used the notation J, x(x,y;a, 3,7,0) to exhibit the parameters appearing in the
Big —1 Jacobi polynomials defined in (3.1). A similar limit was considered in [1] to obtain the

univariate Big —1 Jacobi polynomials in terms of the Big ¢-Jacobi polynomials.
3.3.3. Eigenvalue equation for the Big —1 Jacobi polynomials

The eigenvalue equation (3.18) for the Big g-Jacobi polynomials and the relation (3.20) between
the Big g-Jacobi polynomials and the Big —1 Jacobi polynomials can be used to obtain an eigenvalue

equation for the latter.

Proposition 3.3. Let L; be the first-order differential/difference operator
= Gs(z,y) Ry R0, + Ge(x,y) R0y + G7(x,y) Ry R0, + Gs(x,y) Ry0y (3.21)
+ Gl(x) y) Rny + G2($, y) R:C + G3(337 y) Ry - (Gl(x7 y) + GQ(SU, y) + G3(I‘7 y)) H?

where Ry, R, are reflection operators and where the coefficients read

r[l+ B+ —yla+B+y+2)]—dyla+y+1)—1]

Gi(z,y) = o : (3.22a)
G, y) = zfz(8+~+ 1)4;25?;] +oly +2). Golo,y) = oz —;2;3/ i) (3.22b)
Calong) = 3 (x—kaz:y—y[i(cz;—v-i—l) —7]>’ Crlg) = (5+x2)?(Jy—1)7 (5.220
Gyfay) = CFDW L), Cy(z,y) = LT D@ =) Z)x(;” Y (3224)
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The Big —1 Jacobi polynomials satisfy the eigenvalue equation

n
-5, n even,

Ly Pn,k(xvy) = Hn Pn,k(xyy)a Hn =
wv n odd.

Furthermore, let Lo be the differential/difference operator

2y — x)(z +0)

1)a? + (67 — 5
L, — ) R,a, 4 (T B+ D27+ (07 = By)z + oy

T2

(Rl’ - H)v
The Big —1 Jacobi polynomials satisfy the eigenvalue equation

2k, k even,
Lo P iz, y) = vie Prp(, ), v =
—2(k+B8+~v+1), k odd

Proof. The eigenvalue equation with respect to L; is obtained by dividing both sides of (3.18) by
(1 + g) and taking the ¢ — —1 limit according to (3.20). The eigenvalue equation with respect to
Ly is obtained by combining (3.1), (3.2) and (3.3). O

The two-variable Big —1 Jacobi polynomials are thus the joint eigenfunctions of the first order
differential operators with reflections Ly and Lo. It is directly verified that these operators commute
with one another, as should be.

The ¢ — —1 limit (3.20) of the recurrence relations (3.19) can also be taken to obtain the
recurrence relations satisfied by the Big —1 Jacobi polynomials. The result is as follows.

Proposition 3.4. The Big —1 Jacobi polynomials satisfy the recurrence relations
Y Tk (@, 9) = Gnk Tns1.x(@,Y) + buie Tk (@, 9) + Gt Tn1.6(2,9),
2 T (@,Y) = Enk Tnt1e=1(2, ) + Frk Tnst (@, 9) + Gk Tt 1,61 (7, 9)
+ Tk Tnk—1 (T, Y) + Sk Tk (T, Y) + toke T2 (2, 9)
+ Ungy Tn—1,5—1(2,Y) + Opke Tn—1.5(2, y) + Wnke Tn—1,5+1(2,Y).
With

sl kHBe o k+Béitytl o (CU"—dCn+a+Bey+?)
Pkt Bt %t Btv+r2 T CntatBirt)ntatfiqtd)

where ¢, = (1 — (—=1)F)/2 is the characteristic function for odd numbers, the recurrence coefficients

read

1496, n—k+a+1, n+ k even,
= X
m+a+pB+7+3

an,k
n+k+a+8+v+2, n+k odd,
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= 1+ 6,41 n—k, n+ k even,
n,k —
ntat Byl ki B4y 41 n+k odd,
G = Te(1 — 6) (1 + 6,) n—k+a+1, n+k even,
nk —
2ntatfryts n—k+a+2, n+k odd,
- ar(1+ 0p) n+k+a+pB+v+3, n+k even,
= X
Ik = ¥ s)@n+a+B+7+3)

n+k+a+pF+v+2, n+k odd,

_ - i n—k+a+1 n+ k even
Tnk = 2Tk2n ((—1)% = 9) X

n+k+8+v+1 n+k odd

~ 2(—1)k+1&k5n n—k, n+ k even,
S A
Ok n+k+a+B+y+2, n+k odd

~ k(1 — 0k)(1 — 6y) y n+k+p+7, n+ k even,

nk —

CntatBHvHD | ks Bartl, mk odd

_ or(1 — o) n—k, n+ k even,
Wn k= X

T A+ a)2n+a+ B+ +1)

n—k—1, n+k odd,
with 6, = (—1)"9 and

bnj =1 = dnf = Cn, Sk = bni(1 — G — 7) — 0k (Fk — )

f"vk :an7k(1_5k_7~—n,k)a 5n,k :En,k(l—gk;_%k).
Proof. The result is obtained by applying the limit (3.20) to the recurrence relations (3.19). O

3.4. A Pearson-type system for Big —1 Jacobi

Let us now show how the weight function W (z,y) for the polynomials 7, x(x, y) can be recovered

as the symmetry factor for the operator L; given in (3.21). The symmetrization condition for L is
(W(z,y)L1)" = W(z,y)L, (3.23)
where M™ denotes the Lagrange adjoint. For an operator of the form

M= Y Ay;(z,y) 0k 0] Rt RY,
I’I‘7V7k7j
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for p,v € {0,1} and k,j =0,1,2,..., the Lagrange adjoint reads
M*= Y (=1)FY RERY 0] 0F Ay j(z,y),
/“L7I/7k7j
where we have assumed that W (z,y) is defined on a symmetric region with respect to R, and R,,.

Imposing the condition (3.23), one finds the following system of Pearson-type equations:

W(z,y) Gs(z,y) = W(-z,y) Gs(—z,y), (3.24a)
W(z,y) Gr(z,y) = W(-z,—y) G7(—z, —y), (3.24D)
Wiz, y) Ge(z,y) = W(z, —y) Ge(z, —y), (3.24c)
W(z,y) Gs(z,y) = W(—z, —y) G5(—z, —y) (3.24d)
W(z,y) Gs(z,y) = W(z, —y) Gs(z, —y) — 9y(W (z, —y) Gs(z, —y)), (3.24e)
W(z,y) Go(x,y) = W(—z,y) Go(—x,y) — O (W (—z,y) Gs(—x,y)), (3.24f)

W((E, y) Gl(x7 y) = W<_:Ca _y) Gl(_x7 _y)
- ax(W(_m’ _y) G7(—$, _y)) - ay(W(_xv _y) G5(—JZ, _y))7 (324g)

where the functions G;(z,y), i = 1,...,8, are given by (3.22). We assume that W(z,y) > 0 and
moreover that 0] < |z| < y < 1. Upon substituting (3.22) in (3.24a), one finds

(z+06) (z —y) W(z,y) = —(x = 0) (x + y) W(=z,y),

for which the general solution is of the form
W (z,y) = 0(x) (x — ) (z +y) fr(z* y), (3.25)
where f1 is an arbitrary function. Using (3.25) in (3.24b) yields
(y =1 APy =y +1) filz? —y),
which has the general solution
fil@?,y) = 0(y) (y + 1) fa(a?, %),

where fy is an arbitrary function. The function W (x,y) is thus of the general form

W(a,y) = 0(x)0(y) (v — 0) (v +y) (y + 1) fala®,9). (3.26)
Upon substituting the above expression in (3.24f), one finds after simplifications

—1 ~1
x€_52 + xz_yQ $f2($2,y2) = 833 f2($2>y2)-
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After separation of variable, the result is
) = @ = )7 (o =)7K,
Finally, upon substituting the above equation in (3.24e) one finds
yla—1)f3(y%) = (v° = DI, fa(y?),
which gives f3 = (1 — yQ)%1 and thus
fa(a? y?) = (@7 =637 (1 — )T (19?7

Upon combining the above expression with (3.26), we find

~y—1 B—1
T T — 1 .'13‘2 2 .'IZ‘2 _ 852\ 2
W) =0l o) (14 2) (S0 ) 1= (1—2> ( 25> ,

which indeed corresponds to the weight function of proposition 2.1. The weight function W (x,y)

for the two-variable Big —1 Jacobi polynomials thus corresponds to the symmetry factor for L;.

3.5. Conclusion

In this paper, we have introduced and characterized a new family of two-variable orthogonal
polynomials that generalize of the Big —1 Jacobi polynomials. We have constructed their orthog-
onality measure and we have derived explicitly their bispectral properties. We have furthermore
shown that the weight function for these two-variable polynomials can be recovered by symmetriza-
tion of the first-order differential operator with reflections that these polynomials diagonalize. The
two-variable orthogonal polynomials introduced here are the first example of the multivariate gener-
alization of the Bannai-Ito scheme. It would be of great interest to construct multivariate extensions

of the other families of polynomials of this scheme.
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Appendix : Normalization coefficients for Big —1 Jacobi polynomials
In this appendix, we present a derivation of the normalization coefficients (3.6) and (3.9) ap-

pearing in the orthogonality relation of the univariate Big —1 Jacobi polynomials. The result is

obtained by using their kernel partners, the Chihara polynomials. These polynomials, denoted by

Cp(z;a, 8,7), have the expression [14]

(a+ 1), —n,n—i—a—{—ﬁ-l—l'xQ_,}/2}7

02"(%0(’@7):(_1)n(n+a+ﬁ+1)n 2F1{ ot ;
. gy (a+2) —n, n+a+pB+2 5 4
Cony1 (z;0, B,7) = (—1) (n+a+ﬁ+2)n(m_7)2Fl[ a2 ; _7}

For a, B > —1, they satisfy the orthogonality relation
(3.27)

/SCn (30, 8,7) Con (w50, B,7) 0(x) (@ + 7) (2% = ¥*)* (L ++* = 2%)” dz = 96,

on the interval & = [—\/1 + 2, —|v|]] U [|7], v/1 + 7?] and their normalization coefficients read
n!

_Tn+a+1)I(n+p+1)
n Tntatp+1) @ntatBtntatptl)?
Tn+a+2)I(n+p+1) n!
Pl T T it a+8+2) Cnta+B+2)ntat B+
Let .J,(z) be the monic Big —1 Jacobi polynomials:
Jn(2) = kpdp(z) = 2™ + O(z" ),
where k,, is given by
(-8 (=),
m%+—bw7 n even,
Hn(aa b, C) = n—l jl
(I+o)(1=c?) "z ()
2— nodd.

( n+a-2kb+1 ) nT"rl

The kernel polynomials fn(:v, a, b, ¢) associated to jn(ac, a, b, c) are defined through the Christoffel

transformation [20]:
Tun(x) = 220 (@) .

Ky (w;a,b,¢) =
r —V

For v = 1, the monic polynomials %n(a;, a,b,c) can be expressed in terms of the Chihara polyno-

mials. Indeed, one can show that [14]
b—1 1 —
- ot ‘ ) . (3.29)

T (e — (/1 — 2"
Kalgiaby0) = (V1 =€) C”(m’ 22 Vite
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Let M be the orthogonality functional for the Big —1 Jacobi polynomials. In view of the relation
(3.28), one can write [20]

~

— T,
M((z — ) Ra(w:a,b,c) ¥ = —;IS”’MLZ%@; 0,5,)] G
(v
By linearity, one thus finds
M = — Jvz,\—&-l(l/) ﬁn
In (V)

where 7j, = M|[(z — v) K2(z)] and h,, = M[P2(x)]. For v = 1, the value of 7, is easily computed
from (3.27) and (3.29). The above relation then gives the desired coefficients.
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Chapitre 4

Bivariate Bannai-Ito polynomials

J.M. Lemay et L. Vinet (2018). Bivariate Bannai-Ito polynomials. Journal of Mathematical
Physics 59 (12), 121703

Abstract. A two-variable extension of the Bannai-Ito polynomials is presented. They are
obtained via ¢ — —1 limits of the bivariate g-Racah and Askey-Wilson orthogonal polynomials
introduced by Gasper and Rahman. Their orthogonality relation is obtained. These new polyno-
mials are also shown to be bispectral. Two Dunkl shift operators are seen to be diagonalized by

the bivariate Bannai-Ito polynomials and 3- and 9-terms recurrence relations are provided.

4.1. Introduction

In their classification of P- and Q-polynomial association schemes [1], Bannai and Ito identified
a new 4-parameter family of orthogonal polynomials that now bear their names. They provided the
explicit expressions of these polynomials and observed that they correspond to a ¢ — —1 limit of the
g-Racah polynomials. The understanding of the Bannai-Ito polynomials has considerably increased
in recent years. Of particular relevance to the present study is the fact that they have been shown
[2] to also arise as ¢ — —1 limits of the Askey-Wilson polynomials. The Bannai-Ito polynomials are
now known to be bispectral : they are eigenfunctions of the most general first order shift operator of
Dunkl type that preserves the space of polynomials of a given degree [2]. They have been identified
with the non-symmetric Wilson polynomials [3] and are essentially the Racah coefficients of the
Lie superalgebra osp(1]|2) [4]. They have moreover found various applications beyond algebraic
combinatorics especially in the context of superintegrable and exactly solvable models [5, 6, 7].
The Bannai-Ito polynomials and their kernel partners, the complementary Bannai-Ito polynomials
admit various bispectral families of orthogonal polynomials as descendants and special cases and

thus sit at the top of a ¢ = —1 analog of the Askey-scheme [8, 9, 10, 11, 2, 12, 13].



The extension to many variables of the theory of univariate orthogonal polynomials is obviously
of great interest. There are two major directions in this broad topic (see [14, 15] for instance).
One involves the theory of symmetric functions [16] and has the Macdonald and Koornwinder
polynomials associated to root systems as main characters. The other works through the coupling
of univariate polynomials and features the multivariable extension of the Racah and Wilson poly-
nomials and their descendants introduced by Tratnik [17, 18]. We shall focus on the latter area
in the following. A key feature of Tratnik’s construction is that the multivariate orthogonality
relation is obtained by induction on the univariate one. Iliev and Geronimo have shown that these
Tratnik polynomials are multispectral [19, 20]. Their g-generalizations have been discovered by
Gasper and Rahman who thus provided multivariable extension of the ¢g-Racah and Askey-Wilson
polynomials and in so doing of the entire ¢g-scheme [21, 22].

The goal of the present paper is to initiate a multivariable extension for the ¢ = —1 scheme.
Specifically, we introduce a bivariate extension of the Bannai-Ito polynomials and provide various
structure relations. These polynomials are defined in formula (4.21).

The paper will be comprised of three main sections. We begin with a review of the Bannai-
Ito polynomials and their structure relations. In section 2, we define the bivariate Bannai-Ito
polynomials from a ¢ — —1 limit of Gasper and Rahman’s two-variables g-Racah polynomials.
The truncation conditions are examined and the orthogonality relation is obtained. In section 3,
we obtain an untruncated definition for the bivariate Bannai-Ito polynomials from a ¢ — —1 limit
of two-variable Askey-Wilson polynomials. This has the benefit of expressing the bispectrality
relations in terms of operators which act directly on the variables instead of the orthogonality grid.
A connection with the first definition is established and bispectrality relations for the polynomials

are derived. Remarks and open questions are discussed in the conclusion.

4.2. Univariate Bannai-Ito polynomials

The monic Bannai-Ito polynomials B, (x; p1, p2,71,72), or By (z) for short, depend on 4 param-
eters p1, p2, 71,72 and are symmetric with respect to the Zs X Zso group transformations generated

by p1 ¢ p2 and r1 <> ro. Explicitly, this means that the BI polynomials verify

By, (x5 p1, p2,71,72) = Bp(x; p2, p1,71,72) = Bp(x; p1, p2,72,71) = Bp(x; p2, p1,72,71). (4.1)

We denote by g the combination of parameters

g=p1+p2—1r1—1o. (4.2)
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Throughout this section, it will be convenient to write integers as follows
n = 2ne + ny, np, € {0,1}, neN. (4.3)

With these notations, the Bannai-Ito polynomials can be expressed in terms of two hypergeometric

functions
1 —ne, ne+g+1, —r1+3, —z—r1+3
— By (w3 p1, p2,71,72) = 4F} . R (4.4)
Min l-ri—r2, pr—r1+3, p2—rit+3

(D)™ (netnp+gnp)(z—r1+31)

—ne—np+1, netnptg+l, a—ri+3, —z—ri+y 1
e =) ’

_l’_

4F3{

1-r1—7r2, P1*T1+%, ,02*7“1+%
where the normalization coefficient is given by

(pl | + %)ne'f'np(pQ | + %)ne+np(1 — T = Tz)ne

= (—1)"
in = (=1) (ne + 9+ Dnetn,

(4.5)

The expression (4.4) can be obtained from a ¢ — —1 limit of the ¢g-Racah polynomials [1] and
also from a ¢ — —1 limit of the Askey-Wilson polynomials [2]. Note that the two hypergeometric
functions appearing in (4.4) are almost identical except for two +1 shifts in the upper parameter
row and two in the lower row.

The B, (z) satisfy the three-term recurrence relation
xBp(z) = Bpt1(z) + (p1 — An — Cn) B (z) + Ap—1Cy Br—1(x), (4.6)

with the initial conditions B_;(z) = 0 and By(z) = 1. The recurrence coefficients A, and C,, are

given by
(n+2p1—2r1 +1)(n+2p1 —2ra + 1)
, N even,
A - 4n+g+1)
" (n+29+1)(n+2p1 +2p2+1) 1 odd
4n+g+1) ’ ’
(4.7)
n(n — 2r; — 2rg)
- , n even,
o o_ 4(n +g)
" (n+2p2 —2r2)(n—|—2p2 —27’1)
— , mn odd.
4(n+ g)

It can be seen from the above relations that the positivity conditions u,, = A,—1Cy > 0 cannot be
satisfied for all n € N. This comes from the fact that C,, becomes negative for large n. It follows
that the Bannai-Ito polynomials can only form a finite set of orthogonal polynomials for which
the conditions u,, > 0, n = 1,2,..., N are verified. This requires that the parameters realize a

truncation condition for which

ug = uny41 = 0. (4.8)
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We call the integer N the truncation parameter.
If these conditions are fulfilled, the BI polynomials B, (z) satisfy the discrete orthogonality

relation
N
Z kan(xk)Bm(xk) = hnénma (49)
k=0

with respect to a positive set of weights wy. The orthogonality grid x; corresponds to the simple
roots of the polynomial Byyi(x). The explicit formulas for the weight function wy and the grid
points xp depend on the parity of N and more explicitly on the realization of the truncation
condition w41 = 0.

If N is even, it follows from (4.7) that the condition uyy; = 0 is tantamount to one of the
following requirements associated to all possible values of j and ¢ :

N +1

s ale{l2) (4.10)

i)rj—pg:

Note that the four possibilities coming from the choices of j and ¢ are equivalent since the poly-
nomials By, (x) are invariant under the exchanges p; <+ p2 and 11 <> r2. To make the formulas

explicit, fix j = ¢ = 1. Then the grid points have the expression
ar = (—1)"(k/2+ p1 + 1/4) — 1/4, (4.11)

for k=0,...,N and using (4.3) the weights take the form

(=1)% (p1 =71+ 1/2)ke sk, (p1 = 72+ 1/2) ke 1k, (p1 + p2 + Vi (201 + 1),
ke! (p1 471+ 1/2) k4, (p1 + 12+ 1/2) g 41, (p1 — p2 + 1),

Wy, = , (4.12)

where (a), = a(a+1)---(a 4+ n — 1) denotes the Pochhammer symbol. The normalization factors
are

_ ne'N5'<1+2p1)Ne(]‘+p1+p2)ne(1+n5+g)Ne*ne(%+p1 _r2)ne+np(%+p2_’r2)ne+np
K (Ne_ne_np)!(%—i_pl_‘_/ré)Ne_ne(%+ne+np+p2_rl>Ne_ne_np<1+n+g)72’l,e+np

(4.13)

The formulas for other values of j and ¢ can be obtained by using the appropriate substitutions
p1 4> p2 and 71 <> 72 in (4.10)—(4.13).

If N is odd, it follows from (4.7) that the condition uy4; = 0 is equivalent to one of the
following restrictions:

. N+1 N+1 . N +1
Wprtpr=——pg—, W) TItT2= 0, W) prtppri T2 =

5 > (4.14)

We refer to the possible truncation conditions as type i) to type iv). Note however that type

iv) leads to a singularity in u, when n = (N + 1)/2 so it is not admissible’. For type ii), the

Iyt might be possible to absorb this singularity with some fine-tuning of the parameters as has been done for the

Racah and g-Racah polynomials [23, 24] but this has not been explored yet and goes beyond the scope of this paper.
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formulas (4.11) and (4.12) hold and the normalization factors are given by

B ne! Ne! (1 + 2p1) N, +1(1—71 _T2)ne<1+ne+9)Ne+1fne(%"‘Pl_Tl)ne-i-np(%‘i‘/)l _T2)ne+np
(Ne=ne)/(5 + p1 4+ 71 Net1-n—ny (5 + Ne + 1 + p2 = T2) Net1-ne—n, (L + 1+ 9)5 )
(4.15)

n

For type iii), the spectral points are given by
zp = (- —k/2—1/4) —1/4, (4.16)
for £ = 0,...,N, the weight function is given by the formula (4.12) with the substitutions

(p1,p2,71,72) = — (71,72, P1, p2) and the normalization factors are

ne!Ne!(2T2_N)Ne+1 (p1+p2_Ne)Ne+1+ne (pl +p2_Ne)ne (T2+pl_%_Ne)ne+np (7“2+p2_%_Ne)ne+np
(Ne - ne)!(pl + P2 — Ne)%(r2 —P1— % - N€>N5+1*nefnp (7"2 — P2 + % + ne + np)Nelefnefnp
(4.17)

n =

To construct a bivariate extension of the Bannai-Ito polynomials, the different truncation conditions
for different parities of IV will play an important role.

The BI polynomials also verify a difference equation :
LBy, (z) = A\Bp(x) (4.18)

with

EZ(:c—pl)(x—pz)(l_Rm)+(x—r1+%)(w—r2+%)(

T'R, — 1 4.1
2 2c + 1 o fe —1) (4.19)

where 1 is the identity operator, R, f(z) = f(—z) denotes the reflexion operator and T,"f(x) =

f(z +m) is a shift operator. The eigenvalues are given by

n
7 n even,

An = (4.20)
ri+re—pr—pe— 2 nodd

It was shown in [2] that £ is in fact the most general first order Dunkl difference operator with

orthogonal polynomials as eigenfunctions.

4.3. Limit from bivariate g-Racah OPs

4.3.1. Defining the bivariate Bannai-Ito polynomials

Definition 4.1. The bivariate Bannai-Ito polynomials are defined by

B 22) = Bun (21— 54 60,0, 0 B (12— 32, 2,002 (220
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where the By, and 1, are as in (4.4) and (4.5) and the parameters are given by

1 1
P =c—pi+1, i =1-m,
@ O (4.22)
2) =Z2+p2—%, T 222—102%-%
and
2 _
p?):—"l;lJchrm—pl, 7"5)2712”1—191—192, (4.23)
4.23
2
P =py — ()™ N py 4 po +ps), rs?) = —py — (=)™ N(Y 4 py 4 po + pa).

It is useful to denote the first and second BI polynomial in the definition by Br(Lll)(zl) and

Bg)( 2). Note that Bgl)(zl) contains the variable zo, while B( ) (22) contains the degree ny in its
parameters. We shall see that the By, n,(21, 22) are orthogonal polynomials of degree ny +ng < N
in the variables z; and zo which depend on the four parameters p1, p2, p3 and c.

Let us motivate this definition. In a spirit similar to the one that led to the discovery of
the Bannai-Ito polynomials, we look at a ¢ — —1 limit of g-Racah polynomials in two-variable
introduced by Gasper and Rahman in [21] as a g-generalization of Tratnik’s multivariable Racah
polynomials. We start here by specializing their g-Racah polynomials to two variables. Consider

(1)

the product of ¢-Racah polynomials Ry, x R(Q) depending on four parameters a1, as, ag and b where

R(l) and Rgu) are defined by
q; Q} s

2 —
RD = 404 T2, bagazg®™ ", ¢M T2, ajagg™ T
bagg®+1, ajazazgNtm, gm—N

RY = 45 [ ", baxg™, ", arg™
— 4
b(L a1a2qm2> q_x2

(4.24)

q; Q}
in terms of the usual basic hypergeometric function ,¢s (see e.g. [25]). Up to normalization of
the polynomials, those corresponds to the g-Racah polynomials introduced by Gasper and Rahman
[21]. Our goal is to take a ¢ — —1 limit of these polynomials in such a way that each hypergeometric
function reduces to a Bannai-Ito polynomials and that each parameter survives the limit. Let us
first write the hypergeometric functions as series :
00 00
RY) =Y AV, RP) =3 AP¢" (4.25)
k=0

where the coefficients are given by

A(l) :kf (1- q—n1+%)(1 — b&2qn1+z)(1 _ q—x1+i)(1 _ aqul—l—i)
k : (1 — ¢ F)(1 = bg' ) (1 — ajagg® i) (1 — g—=2Fi)

. , ‘ (4.26)
A(Q) :kl_[l <1 - qianﬂ)(l - ba2a3q2”1+"2+’)(1 _ qnlfzerz)(l _ alazqurngrz)
k : (1 — ¢ ) (1 — bagg®+179) (1 — ajagasgN+m+i) (1 — gm—N+i)

66



Note that the coefficients of an hypergeometric series are usually written in terms of Pochhammer
symbols, but for our purpose, it is essential to expand them as products because the parity of the

dummy index ¢ will play an important role. Now, achieve the ¢ — —1 limit with the following

parametrization
t T Lty T2 2 tyo
q— —e, t— 0, ¢t — (—1)2 e ¢"2 — (—1)2 e
. . . . (4.27)
ap = ()T e, ag = (=122, a3 — (=1)2e!, b (—1)2 e’
where the s; € {0,1}, i = 1,2,...,6 are integers to be determined. The precise formulas to select

the s; are a bit cumbersome. Hence, for clarity, let us simply sketch how one chooses a proper set
of s;. First, insert the parametrization (4.27) in the coefficients (4.26) to obtain

( 1)b1+l tB1

J(1— (1l (1 - (1l (1 - (1)t
— (- 1)b5+z€tB5)
)

(1

(1= (FL)PoietPo) (T = (~L)orietPr) (1 = (LT ierPs)’
(

)

I
’:]|

A,(j)
(4.28)

ol .
[
- O

( 1)59+1 tBoy(1 — ( 1)b10+2 tBlO)(l _ (_1)511+i€t311)(1 _ (_1)b12+i6t312)
( )b13+26t31 (1 ( 1)b14+letB14)(1_ (_1)b15+iet315)(1_ (_1)b16+ietB16)

(1
(1
(1 -
o (1-

I

S

Il
L=

where the bj are linear combinations of n1,n2, N and the s;, while the B; are linear combinations
of the dummy index ¢, the degrees ni,na, N, the variables y1,yo and the parameters a1, as, as, 5.
The choice of s; should be such that the b; are integers. Thus, depending on the parity of the b;,
each factor in the limit ¢ — 0 will alternate between 0 and 2 for incrementing values of . It is
straightforward to see that the parities of the b; must be chosen in such a way that there are the
same number of zeroes and two in the numerator and in the denominator. Otherwise, the limit
would diverge or become zero. Now, ratios of 2 will simply cancel out while ratios of 0 will give a
non-trivial limit :

1+etB t—0 1 — etB t—0 l
Trebn b 1B By (429)

The key to obtaining Bannai-Ito polynomials in the limit ¢ — 0 is to chose the s; in such a way
that, for each ¢, there are always 2 zeroes and 2 twos in both numerators and denominators. Such
a choice is not unique, but it can be verified by enumeration that all possible choices yield results

that are equivalent under affine transformations of the parameters. This implies that (4.28) will

reduce to
A =0 H Bj, Bj, " Bj,Bj,
" i Bj5B]6 Bj Bj,’
i even i odd 778
(4.30)
A,(f) t—0 H Bj,Bj,, " H Bj,, Bji,
i even Bj13 Bj14 i odd les B]16
for some permutation m € Sig of the integers ji = w(k), k = 1,...,16 depending on the choice of

the s;. The explicit computation of the limit requires to consider separately all possible parities of
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the degrees ni,no, N and also of the dummy indices k and i. Some notable features arise : First,
the products in (4.30) can be written in terms of Pochhammer symbols. However, the products
over even values of ¢ will get additional factors when k is odd. Thus, the sums in (4.25) must be
split between even and odd values of k. Each sum can be expressed as an hypergeometric 4F3, but
the additional factors for k£ odd have to be pulled in front. One obtains a linear combination of two
similar 4 F3 with some +1 shifts. It is then possible to compare the result with (4.4) to express the
result in terms of Bannai-Ito polynomials.

Let us consider without loss of generality one possible parametrization for the limit ¢ — —1 :

q— —et, t—0, q:c1 N etyl’ qm N etyz’
(4.31)
ap = —e', ag — €2, ag— e, b —e'f
For convenience, we also use a different set of parameters :
o] = 4p1 — 1, g = 4p27 a3 = 4p3 -+ 1’
(4.32)

B=2c, y1=73—2z, y2=73—22—2p —2pa.
Using (4.31) and (4.32), a straightforward computation yields

1 @ (1) (@ 1 2) (2) (2 (2
Rgl) - TBM (Zl - %;,Og )’pg )’Tg )’Té )) R%) — — B, ((_1)n132 - %;pg )’pg )77“§ ),Té ))

ni n2
where the parameters are given by (4.22) and (4.23). Omitting the normalization factors, this
corresponds to Definition 1 of the bivariate Bannai-Ito polynomials given above. There are two
reasons for removing the factors 7,, : It is more natural to define the bivariate polynomials as a
product of two monic Bannai-Ito polynomials and more importantly, the normalization factor n,,

being a rational function in z9 would break the polynomial structure.

4.3.2. Truncation conditions and orthogonality relation

Given our definition of the bivariate Bannai-Ito polynomials, the most important property to
verify is orthogonality. We begin by stating the result.
Proposition 4.1. The bivariate Bannai-Ito polynomials defined in (4.21) satisfy the orthogonality
relation
N N
SN w0 Buy s (21(7), 22(5)) By o (21(r), 22(5)) = Hg g N0y oy Oy (4:33)
5=07=0

where the grids are given by

(N ps—N—2p+ )] r=0,...,N (4.34)

D=

z1(r) =

() =3 [N - N=2p -2+ )] s5=0,...N (4.35)

N[ =
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the weights by

1 _ (2p2)r(—8)r(1 —2p1 — 25)7‘(% +c—2p1 — 3),
2Tl — e — 8)p(1 - 2p1 — 8)r (1 — 2p1 — 2p2 — 23),
W ) (Z8)rn (1= 2p1 = 28),(5 4 e = 2p1 = 8),
s rl(3 —c—8)p(1—2p1 — §)pg1(1 — 2p1 — 2p2 — 25),11 (430
4.36
w(l) _ (2p2)r(—5)r(—2p1 — 25)7‘(% +c—2p1 — 3),
BT (=L e = 8),(1 - 2p1 — 3),(—2p1 — 2p2 — 23),
WV (2p2)r41(=58)r(=2p1 — 28), (5 + ¢ — 2p1 — 3)r i1
LI (L e = 8), 1 (1 - 2p1 — 3)r(—2p1 — 2p2 — 23), 11
and
W (=1*(5) (B +e—2p1 — N)s(1 = 2p1 — 2p> — 2N),(5 + 2p3)s
292N NI(L == N)o(1-2p1 —2p2 — 2N )25 (3 —2p1 —2pa —2p3 —2N) 5 (1—2p1 —2N +25) v
R (—1)* ("7 G + e 2p1 = N)y(1 = 2p1 — 2p — 2N)(5 + 2p3)s1
PALEN T (N =) == N)o(1—-2p1 —2p2— 2N ) 2511 (3 —2p1 —2p2 —2p3 —2N ) 541 (2—2p1 —2N +28) N
@) _ (=1 (V) (3 +c—2p1 — N)o(—2p1 — 2p2 — 2N)(3 + 2p3)s
W2s2N+1 = NI(—=2—c—N)yo(—2p1—2p3—2N ) (— 1 —2p1 —2po —2p3 —2N ) (—2p1 —2N +2
(=3 s(—2p1—2p2 )2s(—5 —2p1 —2p2—2p3 )s(—2p1 +25)Nt1-s
e _ (=) () (G e = 2p1 = N)ss1(=2p1 — 2p2 — 2N)s(§ + 2p3)s1
2ot L2 N!(*% —c—N)sy1(—2p1—2p2 *2N)zs+1(*% —2p1—2p2—2p3—2N)s11(1—2p; —2N +28) N _s

(4.37)

and the normalization coefficients H,,, », N are given in the appendiz.

Proof. Our main tool will be orthogonality relation for the univariate BI polynomials which depends
on the truncation conditions (4.10) and (4.14).

Notice that definition (4.21) involves a truncation parameter N inherited from the g-Racah
polynomials in the limit process and which appears in the parameters (4.23). This implies that the
definition comes with truncation conditions that are already built-in. Indeed, one can easily check

that 37(122)(22) satisfies a mixture of type i) (4.10) and type i) (4.14) truncation conditions :

7"52) — ,0(22) = 7]\7*31“ if N —nq even,
(4.38)
7"52) + 7“52) = 7]\7*31“ if N —nj odd
with truncation parameters N — n;. Both conditions impose grid points for the variable z :
(—D)™zp — L =, (4.39)

where x4 is given by (4.11) when N +ny is even and by (4.16) when N + n; is odd. Inspecting this

equation for each possible parities of nq and N, one obtains (4.35). Substituting this relation for
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z9 in the parameters (4.22), one can now check the truncation conditions satisfied by By, :

(1) - pél) = Nﬁ;“ if N — s even,

(4.40)
r) 4l = Nestl o if N — s odd.
Thus, the polynomial B, also satisfies the mixed type i) and type #ii) truncation conditions with

parameter N — s. Again, both conditions impose grid points for the variable z :
2 — % =z, (4.41)

with x, given by (4.11) for N — s even and (4.16) for N — s odd. This amounts to (4.34). Now, we

are looking for an orthogonality relation of the form

Z w —s s nl n2 (Zl( ) 22(3))Bm1,m2 (21 (T)a 22(3» = Hm,anVéme 5n2,m2 (4'42)

In view of (4.40), the polynomial B,Sll)(zl) satisfies the orthogonality relation

S we_ BO G (r) B (21(r) = Y Sy e (4.43)

Using (4.12), one obtains the weights (4.36). The normalization coefficients are retrieved from
(4.13) and (4.17) :

O 3! nl'(2p2)n1(1 +c+ny+2p2)s— nl(%+0+2p2+§)m( +c—2p1—38)n, (1-2p1 —23);
2n1,23 (B—n)!(5 4+ c+n1)s—n (3 +c+n1+2p2)2 (1 —2p1 — 2py — 28)5-n, ’
L) 1m0 1(2p2)u, 1 (3 et +2p2)sny (3t 292 8), 1 (3 e 2p1 —8),, (121 —25);
22 T G DL Aot nn Dm0 (3 et +202)2, 41 (1= 2p1 — 2pp — 28)5_,
B 3 ! (2pa)n, (31 42P2) 5010y (5 +HCH+2D248)n, (5+6—2p1 —8)n, (—2p1 —25)511
2n1,25+1 — ’

(B—n)!(3 4+ c+n1)sr1—n (3 + ¢+ 11+ 2p2)2 (—2p1 — 2p2 — 28)541-n,

8 n11(2p2)ny 11 (3 +c+n14+2p2)s41-ny (5 +C+2P245)ny 41(5 +¢—2p1 —5)ny (—2p1 —28) 541
(B=n)!3 +c+n)son, (5 +c+n1+2p2)2 11 (—2p1 — 2p2 — 25)5n

(1)
h2n1+1,2§+1 =

(4.44)
Using (4.43) in (4.42), one gets that

Zhru N—s sNB(Q)( ( ))ng(ZZ(s)) = Hnl,ng,N5n2,m2 (445)

should be the orthogonality relation satisfied by the univariate BI polynomials B%)(zz). Indeed,
(2)

using (4.38) and the corresponding weights from section 1, one readily checks that the w,, are
given by (4.37) and the normalization coefficients are given in the appendix.

Hence the bivariate Bannai-Ito polynomials obey the orthogonality relation

N—n1 N—s

1 2
Z Z wﬁ,])\/fswg,])\/Bm,m (21 (T)v 22(3))Bm1,m2 (z1(r), Z2(3)) = Hm,nz,N(Sm,ml Ona,ms (4'46)
s=0 r=0
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with the weights, the grids and the normalization coefficients given above. It is not hard to verify
that both sums can be extended from 0 to N without changing the results. Indeed, one can check

that all the extra terms are in fact zero because of the weights. ([

4.4. Limit from bivariate Askey-Wilson OPs

In this section, a different definition for the bivariate Bannai-Ito polynomials via a ¢ — —1
limit of the Askey-Wilson polynomials is investigated. While very similar to the approach from
g-Racah polynomials, the main difference lies in the fact that the Askey-Wilson polynomials do not
have truncation conditions. Hence, no truncation parameter N is carried through the limit and
a definition for untruncated bivariate Bannai-Ito polynomials is obtained. This definition has the
advantage that its bispectrality relations can be expressed in terms of operators acting directly on
the variables instead of acting on the orthogonality grids. The connection between both approaches

is established.

4.4.1. Untruncated bivariate Bannai-Ito polynomials
Definition 4.2. The untruncated bivariate Bannai-Ito polynomials are defined by
By, mo(21,22) = By, (zl — i; B,z +€— %,oz, Zz9 — €+ %) (4.47)
X B, ((—1)"12 - %; B4+e+ 5 (1 —mn)y+mp b —e— 1k, (m, — 1)0 — 7Tn1’}/)
in terms of the monic BI polynomials By, (x) and where

14 (-1)n 1 n even,

T 5 = (4.48)
0 n odd,
1s the indicator function of even numbers.
Note that Definition 2 reduces to Definition 1 (4.21) of section 2 if we let
O‘_)%_pla B_>%+C_p1> € — P2,
—S—pi-m N even, 5 N=L 4 pr+po+ps N even, (4.49)
’y = =
Lt pi+pa+ps N odd, — S —p1—p2 N odd.
To motivate Definition 2, let us first consider the Askey-Wilson polynomials
R g ", abedg™ ', az, az"!
pn(T;a,b,c,d) = 4¢3 4 q (4.50)
ab, ac, ad
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in the variable x = %(z + 27 1), The bivariate Askey-Wilson polynomials depending on five param-

eters a, b, ¢,d, as as introduced by Gasper and Rahman in [22] are

Py oy (1, 9) = Py (215 0, b, anza, azzy ) pn, (295 aazq™ , bagg™ , ¢, d). (4.51)

The limiting procedure is the same as in the previous section. Briefly, the choice of parametrization
amounts to a selection of phases in front of each parameter defined as exponentials. Expanding
the hypergeometric functions as series and expanding the Pochhammer symbols as products, one
obtains an expression of the form (4.28) and must select the phases in such a way that there are
always 2 zeroes and 2 twos in both numerators and denominators for each value of the dummy
index i. Again, this choice is not unique, but all possibilities can again be shown to yield equivalent

Bannai-Ito polynomials under affine transformations of the parameters.

We take
g— —€', t—0, 21— eV zg — Y2,
. - ; - } (4.52)
a— et b— —iet, c—=iet®  d— —ie!?, ay — P
with the reparametrization
~ _ 1§ 1 o~ 1 7 1
a——204—|—§, b—26+§, C—2’Y+§, d—25+§,
(4.53)
y1 = —2z1, Yy2= —2z, az=2e
This gives
PV (cos b L B L. 1 1 4.54
n1 (COS 1)—>777 ﬂl(zl_Za 67Z2+€_Zva,22_6+1> ( )
1
1
PT(LZ)(COS 09) — n—Bn2 ((_1)”1z — %; B+e+ 5, (1=mn)y + mpy 0,00 — € = B, (M, —1)0 — 7rn1’y) .
na

The definition for the untruncated bivariate Bannai-Ito polynomials is thus obtained by taking
the product of the corresponding monic Bannai-Ito polynomials, again dropping the normalization

factors.

4.4.2. Multispectrality of the bivariate BI polynomials

Iliev demonstrated the bispectrality of the bivariate Askey-Wilson polynomials (4.51) (with
a different normalization) in [20]. This section examines how the bispectrality relations of these
polynomials are carried in the ¢ — —1 limit. Recalling the definition of the shift operator 7" and
the reflection operator R, given after (4.19), we have the following equations in the variables z;

and zs.
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Proposition 4.2. The untruncated bivariate Bannai-Ito polynomials (4.47) obey the difference

equations

Lanl,ng (Zla 22) = Hn, Bnl,ng (Zla 22)

L2Bn1,n2 (Z17 22) = )\nl,ng Bn1,n2 (217 22)

with the operators

(e+21 —22)(z1 —a+ i)
2(2’1 + %)

(e — 21+ 22) (21 —ﬁ—%)

L1 =
! 2(2’1 — %)

and

Z1T 29

j{: ci TP RE TP RI,
7.]__1

with coefficients

(1—a+D+yv+He+21+22+1)

o i+ D=+ D)

o i (21 —a+3)(e+ 21— 22)(8(z2+ 1) — (22 — 1))
o 1+ Dz - D@+ 1)

c :(Zl—04+%)(22—5—%)(6+21—22)

o (a + D2 )

o1 = (22 4+ + %)(e — 21+ 22)(a(z1 — i) + B(z1 + %))

(21 = a1+ 22 + 1)
cop=aly=0+3)+B(1—6—3) —5(y+5+3)~

+(6+42122 (o (Zl—*)+5(21+ )((Z2+1)—7(22—ﬁ

(Tzll/QRZl

)
Az = )z + 1) (22— Pz + 3)

(20— 6 — $)(e+21 — z)(alz1 — 3) +B(z1 + 1))

o i(m Dat Hm- D)

c :(Zl_IB_%)(Z2+FY+%)(€_Z1+Z2)

v 4o — D+ D)

e _ (21_/8 %)(6—214‘22)((5(2’24—%)—7(22_i))
H 4z - Dz - D+ 1)

. (- B-(z—b6—1)(e—z—z2+3)
b eI |
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(4.56)

—1) (4.57)

(4.58)
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The eigenvalues are given by

n
B = ny1 even,
Hny =
n
—St+a— 8- 2 n1 odd,
and
% ny + no even,

)‘nl,nz -

metmetl o+ B4y + 6+ 2€ ni + ng odd.

Proof. Consider the renormalized Askey-Wilson polynomials
pn(:[:; a? b’ C? d) = gn(a? b? C? d)ﬁn(w; a’ b? C? d)

where

e (abc,d) = 22 Dn

a?’L

and their corresponding bivariate extension
. —1 . n n
Py 0y (21, 72) = Gy ng Py (715 @, b, @222, agzy ) pny (25 aazq™ , bazg™ , ¢, d)

with normalization

Cn1 “+no agll

Cm,ng = ( P)

as; q)m (aca% Q)n1+n2 (bca?; q)n1+n2 (Cd§ q)ﬂz ‘

They obey the g¢-difference equation [20]
£Pmﬂ“bz (xlv x2) = Anl,n2Pn17n2 (xla 332)

where
1 . .
L= > Ci;E, FE

q,%2
17_7:_1

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

in terms of the shifts operators E, . which send z — gz. The explicit expression for the coefficients

C;,; can be found in the appendix and the eigenvalues are given by

Aping = (™7™ = 1) (1 — aagbcdqnﬁnrl) .

(4.68)

The difference equation for the bivariate Bannai-Ito polynomials is found as a limit of this relation.

The operator £ will correspond to the operator Lo given by (4.58) in the limit (4.52) with the

reparametrization (4.53). The coefficients ¢; ; are obtained by the limits

ci; = lim _Gij
T 51 4(1 4+ q)
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and the eigenvalues by

nitnz
s ni + ng even,

A
A, = lim ——— = (4.70)
@=L 4(1 +q) metnetl o+ B4+ 6+ 2€ ny + ng odd.
The factor i is just for convenience. The bivariate Bl polynomials (4.47) will thus satisfy the
difference equation (4.56).
The difference equation (4.55) follows directly from the univariate Dunkl difference equation
given by (4.18), (4.19) and (4.20). It is also possible to obtain it from a ¢ — —1 limit of the

bivariate Askey-Wilson polynomials second g¢-difference equation [20]. ([

Let us now turn to the recurrence relations.
Proposition 4.3. The untruncated bivariate Bannai-Ito polynomials By, n,(21,%2) defined in

(4.47) werify the 3-term recurrence relation

((=1)"22 = 1) Buyna(21,22) = Buinaa (31, 22) + (B4 €+ 3 — Any = Ciy) By o (21, 22) .
4.71
+ Angflcnanl,nzfl(Zla ZQ)

where the coefficients A, and Cy, are given by (4.7) with the parameters pi, pa,r1,72 being those
of the second BI polynomial of (4.47).

They also satisfy the 9-term recurrence relation
(2’1 —a?+ 52)Bn17n2 (Zl') 752) = 97(111),11237114-1,”2 + 9%21)77123”14_17”2_1 + 67(131)#@B”H'L”?_2

+ 9£L41),TL2‘B"117712+1 + 95551),712‘87117”2 + 9(6) Bm,ﬂz—l (4'72)

ni,n2
7 8 9
+ 97(7,1),11an1—17”2+2 + 97(11),1123”1_17”2"1‘1 + 921)771,23”1_1,”2

where the explicit expression for the coefficients 6553,”2 are given in the appendiz.

Proof. The polynomials Py, n,(x1,x2) verify [20]

Hb btq —1 _ 1 2 3
CGZ[(aab)((liq) ! —R1 % ]Pnlmﬁ (‘Tl? 5172) - T7(7,1),n2P7L1+1,’ﬂ2 + Tr(Ll),nZPnlJrl,nz*l + Tr(ll),nQPn1+1,n272

+ T7(é),n2 Pn17n2+1 + TV(L‘?),/’.LQ Pn11"2 + T/’(l»?)7n2 Pn1,n2—1 (473)

+ Tr(zzznz Pﬂ1*17n2+2 + Tr(j),ng Pﬂ1*17”2+1 + TT(L?),n2 Pﬂlfl,’ﬂz'
The expression for the coefficients T,S?m can be found in the appendix. This will become a 9-term
recurrence relation for the bivariate Bannai-Ito polynomials in the ¢ — —1 limit. The only tricky

part is to keep track of all the changes in normalization of the various polynomials in play. Denote

by

an,ng = Cm,mfnl (xla a, b7 ag22z9, a222_1)€n2 (x27 aa2qn1 ) baQqnl , G, d) (4-74)

75



the normalization factors that appear in (4.64) and
Mm,nz = 777(111)7]1(122) (4'75)

the normalization coefficients in the monic BI OPs (4.47) given by (4.5). Now, the recurrence

coefficients are obtained by the following limits :

1 6
9(1) - M lim Nn1+l’n2 TT(Ll)’nz 9(6) — M"l,nz lim anmz—l 7'1&1?712
n1,n2 Mn1+17n2 g——1 an,nz 4(1+Q)’ ni,n2 Mn1,n2—1 q——1 Nn1,n2 4(1+q)7
2 7
9(2) = M lim anJrl’nQil Tr(zl)’m 0(7) = Mm’ng lim N”1*17n2+2 7-7’(1«1?77»2
ni,ng Mn1+1,n271 g—-—1 Nm,nz 4(1+q)v ni,ng Mmfl,nngQ q——1 an,ng 4(1+q)7
M N, @ M N (8)
ovB) = T2 gy ntlna =2 Tning p® ™M,72 lim ni—1no+1 Tni,ng
n1,n2 ./\/ln1+1,n272 qg——1 Nm,nz 4(1+q)’ ni,n2 MnlflynZJrl q——1 an,nz 4(1+q)7
4 9
9(4) = M lim Nn1,n2+1 TT(Ll?nQ 9(9) — M”h”Q lim an—l,nz 7—7(L13n2
e Mnl,n2+1 ¢—=-1 anv”2 4(1+Q) ’ e Mnl—l,ng q——1 N’m ,n2 4(1+Q) ’
5
B)  _ 1 TT(LI?”Q

0 =1 .
ni,n2 q_lfill 4(1+q>
The limits are assumed to be parametrized by (4.52) and (4.53). The results of these limits can be

found in the appendix. Moreover, the recurrence relation operator is obtained via

- €Ay [ (ath)(abtq)
Jm, 11+q) rren

—n—2 =2 — o+ 52 (4.76)
Combining all these results, the recurrence relation (4.73) reduces to the desired 9-term recurrence
relation for the bivariate Bannai-Ito polynomials.

The 3-term recurrence relation simply follows from the the recurrence relation of the univariate

Bannai-Ito polynomials (4.6) applied to the second polynomial of (4.47). O

These two propositions establish the full bispectrality of the bivariate Bannai-Ito polynomials.
Importantly, the recurrence relations prove that the B, ,, are polynomials and not simply rational

functions of z1 and zs.

4.5. Conclusion

This paper has enlarged the catalogue of orthogonal polynomials in two variables with the
construction of bivariate polynomials of Bannai-Ito type. Their identification and characterization
made us of the ¢ — —1 limits of both the bivariate ¢g-Racah and Askey-Wilson polynomials of
Gasper and Rahman. The first instance led to a truncated version (Definition 1) equipped with
a set of positive-definite weights on a two-dimensionnal lattice against which the BI polynomials

are orthogonal. The ¢ — —1 limit of the bivariate Askey-Wilson polynomials yielded untruncated
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Bannai-Ito polynomials in two variables (Definition 2) out of which the finite ones (Definition 1) can
be obtained by the choice of parameters (4.49). This latter approach allowed for the identification
of the difference equations and recurrence relations obeyed by the resulting functions showing in
particular that they are indeed polynomials. Let us remark that the finite bivariate Bannai-Ito
polynomials that have been found do only make use of the truncation conditions i) and #ii) that
the univariate polynomials admit. The question of whether there are other bivariate extensions
that rely on different reduction mixtures and in particular condition 47) is open and certainly worth
exploring.

In another vein, one may wonder if there are natural multivariate generalizations of the Bannai-
Ito polynomials along the symmetric function direction. In this respect, the examination of the
q — —1 limit of the Koornwinder polynomials of BCy type could prove illuminating and is envis-
aged.

We have initiated this exploration of the Bannai-Ito polynomials in many variables within the
Tratnik framework because of the expected occurence of extensions of that type in the representa-
tion theory of the higher rank Bannai-Ito algebra [26] as well as in certain superintegrable models
that have been constructed [27, 28]. Let us mention the following to be concrete. A Hamilton-
ian system on the 3-sphere whose symmetries realize the Bannai-Ito algebra of rank 2 has been
constructed in [27] and various bases of wavefunctions have been explicitly obtained using the
Cauchy-Kovalevskaia extension theorem. It is expected that bivariate Bannai-Ito polynomials arise
in the interbasis connection coefficients. Do these overlaps coincide with the two-variable polyno-
mials constructed here or do they belong to another extension yet to be found. We plan on looking
into this in the near future. Another related question is to determine the algebra underscoring the
multispectrality of the two variable BI polynomials we have defined, that is the algebra generated
by L1, Lo, x1 and xs. How does the resulting algebra compare with the rank 2 Bannai-Ito algebra?

We hope to report on some of these questions soon.
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Appendix

To make the article more reader friendly, some cumbersome formulas have been omitted from

the text. We give in this appendix their explicit expressions.
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The normalization coefficients appearing in orthogonality relation (4.33) are given by

112! (2p2)n, (2034 3 )y (cH114+2p2+ 2 ) N (e— N —2p1+3) 1y 14y
(N—=n1—n2)l(c+n1+1) Non, (c+n1+2p2+3)2 (c+2n14+12+2p2+ 5 ) Nopyns

H2n1,2n2,2N =

« (c+N+n1+2p2+2p3+1)n, (c+2n1 +n2+2p2+2p3+1) Nonyn,
(c+2n1+n9+2p+2p3+1)2, (2N —2p1 —2p2 —2p3+ 3) Nonyns

112! (2p2)nyt1 (2p3+ %)ng (c+n1+2pa+ %)N(C_N_Qpl +%)n1+n2
(N—n1—na—1)!{(c+n1+3) Nonma (cHn1+2p2+3)2 41 (c+2n1+n2+2p2+3) Nenynot

Hop1 200,28 =

" (c+N+n1+2p2+2p3+2)n, (c+2n1+n24+2p2+2p3+2) Nopy—ns
(c+2n1+no+2p2+2p3+2)2, (2N —2p1 —2p> —2p3+ 2 ) Nenyny

n1!n2!(2p2)n1 (2p3+ %)nz-i—l (c+n1 +2p2+%)N(C—N—2p1 +%)n1+n2
N—nj—ng—1)!(c+ni+3)Nop, (c+11+2pa+3)2 (4211 +n2+2p2+3 ) Nonynot

Hop\ onpt12N = (

» (c+N+n14+2p2+2p3+1)poi (c+2n1+n2+2p2+2p3+1) Ny
(c+2n1+n2+2pa+2p3+1)2 (2N —2p1 —2p2—2p3+3) N-n1—ns

11121 (2p2) 11 (2p3+ 3 ) nor1 (c+n1+2p2+3) N (=N —2p1 42 ) gt

Hopt1 2001128 =
LAt (N —n1—ng—1)!(cHn1+3) Nono1 (cHn1+2p2 4 3)2 41 (c+2n1 419+ 2p2+ ) Nony g2

(c+N+n1+2p2+2p3+2)n, (c+2n1+n2+2p2+2p3+2) Noyy—ns
(c42n1+n2+2p2+2p3+2)2, 11 (2N —2p1 —2p2 —2p3+3) Nonynp 1

n11n21(2p2)ny (2034 3 )y (c+11+2p24+ 3 ) N (e— N —2p1+ 3 )4
N —n1—no)!l(c+n+5) Nona (c+n1+2p2+3)2 (c+2n1 +n2+2p2+3) Nonyons

Hop\ ons oNH = (

» (c+N—|—n1+2p2+2p3—|—2)n2 (C—I—27’L1+n2+2p2+2p3+1)]\7_n1_n2+1
(c+2n1+n2+2p2+2p3+1)2 (2N —2p; —2p2 —2p3— %)N_nrn,ﬁl

n1!n2!(2p2)n1+1(2p3+%)n2 (c+ny +2p2+%)N(C—N—2p1 +%)n1+n2+1
N —ny—ng)! (c4+n1+3) Non, (cHn1+2p2+5)2 11 (c+2n1 4124+ 2p2+ 3 ) Nony g

Hopi1, 200 2N41 = (

« (CJrNJr’I’Ll +2p2+2p3 +2)n2 (c+2n1 +n9o+2p2+2p3 +2)Nm1%2
(c4+2n1+n2+2p2+2p3+2)2, (2N —2p1 —2ps —2p3— 3 ) Ny

n1!n2!(2p2)n, (2p3+ %)nz—kl(c'f‘nl +2p2+%)N(C—N—2p1 +%)n1+‘n2+1
N—n1—n2)!(c+n1+3) Nony1 (c+n1+2p2+3)2, (4201 +12+2p2+ 3 ) Nonyng 1

Hopy 2no1,2841 = (

oo (et N +n1+42p2 +2p3+1 )0y (c+ 201 +n2+2p2 +2p3+1) Nonyny
(c+2n1+n2+2p2+2p3+1)2 1 (2N —2p1 —2p2 —2p3— 5 ) Nonyns
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1121 (2p2) 11 (23 + 5 ) not1 (c+n1+2p2+3) N (=N —=2p14 3 ) ot
(N —=ny—ng—1){(c+n1+35) Neny (c+n1+2p2+3)2 1 (c+2n1+n2+2p2+3) Nonyno2

Hopi1 20011 284 =

o (c+N+n1+2p2+2p3+2)ny11 (c+2n1 +n2+2p2+2p3+2)1\mw2
(c+2n14+n2+2pa+2p3+2)7 1 (2N —2p1 —2py —2p3— ) Nenions

The coefficients of the differential operator £ (4.67) of section 3 are given by

(z1 —a)(z1 — b)(22 — ¢)(22 — d) (2122 — a2)(z122 — a2q)

C11=—
v (2f = 1) (23 = 1) (3 —a) (¢ — 23)
22 C
oo 20q(q+ 1) (21 — a) (21 — b) (z122 — a2) (21 — a222) ( + %l - %)
- (28 =1) (28 —q) (¢ — 23) (¢25 — 1)
_ (a—21)(21 — b)(cza — 1)(1 — d22)(21 — a222)(21 — a2q22)
Co11 =
’ (2 = 1) (23 = 1) (3 —q) (¢23 — 1)
22 a
o 219(q + 1) (22 — ¢) (22 — d) (z122 — a2) (22 — a221) (1 + 22— %)
S (23 =1) (32 —q) (1 —gzf) (3 —q)
b d 2bcd
Coo = —1+ az(a+b)(c+d) aazbe
q+1 q
2,2 2 2 ab _ (3i+1)(a+b) af _ ap(z+1)(25+1) cd _ (3+1)(c+d)
i taCht (1 - E?) (% - =2 ) 0+ 5 - as”)
(27 —¢) (1= ¢27) (33 — ¢) (1 - ¢23)
22 a
B 219(q 4+ 1)(1 — c2z9)(1 — dz2)(2z1 — a222)(1 — agz122) (1 + %b - %)
v (1—23) (2f —a) (1 — g2f) (1 —gz3)
_ (az1 — 1)(bz1 — 1)(c — 22)(22 — d)(azz1 — 22)(a2qz1 — 22)
Cr-1=

(f = 1) (23 — 1) (q2f — 1) (¢ — 23)
(22+1)(c+d)

B 20q(q+ 1)(1 — az1)(1 — bz1)(22 — a2z1)(1 — agz122) (1 + %l - W)
e (28 =1) (g2 — 1) (¢ — 23) (g5 — 1)

Cri= (az1 — 1)(bz1 — 1)(cze — 1)(1 — dz2)(agz122 — 1)(agqz122 — 1)
’ (ef —1) (%8 — 1) (a2f — 1) (23 — 1)

The recurrence coefficients for the Askey-Wilson polynomials appearing in (4.73) have the

following expressions

(a%q”1 — 1) (aa%bq”1 —q) (aagcq™ ™2 —1) (agbeg™ 2 —1) (aa%bcdcf"l“‘”2 — 1) (aa%bcdqznﬁ‘”2 —q)

+)

nima T (aa3bg®1 —1) (aa3bg®™ —q) (aa3bedg?™1+72) —1) (aadbedg?™1t72) —q)

@ a2cg™ (¢"=1) (a3¢™ —1) (aa3bg™ —q) (aadbedg®™ ™2 —q) ((a+b)(g+aadbedg> ™)) —aazb(g+1)(c+d)g™ )
T =

nn2 (g—aa3bg®™) (aadbg®™ —1) (¢ —aa3bedq?™1+72)) (aadbedg?(nitn2) —1)
@ _ _9a3dc’e™ (¢ 1) (¢" —g) (a3q™ —1) (aadbg™ —q) (aasdq™ "2 —q) (azbdg"*"2 —q)

ni,na (aa%bq%l _ )(aaquznl _q) (aachdqQ(nﬁ-nz)_ ) (aazbcdq (n1tns2) _ q )
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q(g+1) (1—cdg™) (1—aazcq™ ") (1—asbeq™"2) (1—aazbedg® ) (1+ 4 _ (fbragaadben +aq>)

L@ @b (g )
e (1 - %) (1—aa3bg®™) (1 —aa%bcdqQ("1+”2)) (1—aa3bedg?nit2na-1)
2
2 2 a3 (ab+q)(g+aa3bg®™t) (a+b)(g+aabedg?™@1tn2)) d  (g+aa2bg®™1)(q+aa2bedg?(M1tm2))
T(S) . q (q+1) (1+?2_ abq"1+1(q2+1) 1+§_ aagbdq"f+"2 (g+1) 1+%_ 2aa§bq1+2"1+"22 (g+1)
ni,me " (o
o (12 ) 0o (1~ g™ ) (1—aaedgborn)

) _ 936%™ (q" —1) (g—aazbg®™ ") (g—aazdg™ ") (g—asbdg™ ") (abg™ (1+q)(a3+q) — (ab+q)(g-+aazbg™™))
(¢>—aa3bg®) (aa3bg®™ —1) (¢—aa3bedg?™1+72)) (q2 —aadbedg?(mitn2))

ni,n2

@ aa3bg® ™ (1—¢™) (g—abg™) (1—cdg"?) (1—cdg"*™) (1—aazcq™™2) (1—agbeg™"2)
ni,ng (q—aa%qunl) (q2—aa§bq2"1) (q—aa%bcdqQ("l+"2)) (aa%bcdqz(”l"’m)—l)

9 _ 93eq™ (4" 1) (g—abg™) (edg™ —1) (q—aa3bg ") ((a +b)(q + aadbedg®™ ")) — aazb(c + d)(1 + q)g" )
(g—aa3bg®™) (q2—aa3bg®™) (¢ —aadbedg?tn2)) (1—aadbedg?(mitn2))

ni,nz

L@ _ (g™ 1) (abg™ —q) (aazbg® "2 —q) (aazbg™ "2 —q?) (aapdg™ " —q) (asbdg™ "™ —q)
(g—aa3bg®) (¢>—aa3bg®™) (q—aadbedg?™72)) (g% —aa3bedg?itn2))

ni,nz

The coefficients for the 9-term recurrence relation (4.72) satisfied by the bivariate Bannai-Ito

polynomials are

1 _ ng
97(7,1),77,2 - (_1)
na 2842v+2e+n;+na+1 __ —2042vy+2e+n1+ng
i (—a+ﬁ+7+5+2e+n1+n2+1 —at Byt 2etnitn iy even, ny even,
1 —2a+29+2etnitno+1l 28429 +2etni+no
1(27 426 +n2) (—a+5+7+6+2e+n1+n2+1 ot B+ 2etni g ny even, n odd,
0,
1,12
no 2B+2v4+2e+n1+n2 __ —2042y42e+n14no+1
4 (—a+6+7+5+2e+n1+n2 Byt 2etn o+l ny odd, np even,
1 —2a42y+2e4ni4ng 284+2v+2e+n;+na+1
1(27 + 26+ n2) (—a+ﬁ+v+6+2e+m+n2 ot B+ o+ 2etn tnat1 ny odd, ny odd,
_ n2(2y4+20+n2—1)(—2a+2y+2e+n1+n2) (2842042401 +n2)
T6(—at By +042en; 1n2)? T even, ng even,
(n2—1)(2y+26+n2)(—2a+25+2e+n1+n2)(28+27+2e+n1+n2)
59 16 (=t Bt 61 et +na)? n1 even, ng odd,
n1,n2

) (29+25+n2—1)(—2a+26+2e+n1+n2)(2842v+2e+n1+n2)
16(—a+B8+7+0+2e+n1+n2)?

n1 odd, no even,

(n2—1)(274+26+n2)(—2a+2y+2e+n14+n2)(2+26+2e¢+n1+n2)
16(—a+B+vy+d+2e+n1+n2)? s Odd, n9 Odd,

2e+ 7L =L
— 2 — 2 ni even
o) —a+pB+2e+n1+3  —at+B+2etni—3 ’
ni,ne 2E+n1,1 ny+1
- 2 T — > T ny odd,
—atB+2etni—35 —atf+2etni+5
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1 ni 4e+nq . o 2842v+2e+n1+n2+1
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— _ n2
X ( 2a+203 B NEHW N, P, +46+2n1+1> n1 even, ng even,
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-
1,12
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X (—20428+ — g By Het2m—1) n1 odd, ns odd,
n2 (204—23-5-%415”711_1—1) (—Oé+7+€+n12ﬂ) (3+5+6+%) (—a+/3+7+5+26+n1+7172)
2(—2a+2B+4e+2n1+1)(—a+B+vy+5+2e+n1+n2)?
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(v+o+72) (20‘*2“%*1) (matBt2etni+ R ) (—atdtet g2 ) (Btet M)
(—2a+2B+4e+2n1+1)(—a+B+vy+6+2e+n1+n2)?
n1 even, no odd,
)
ni,ng

na (Qa—2ﬁ+$2§;§w—l) (—oto+et ME2) (Bytet L") (—atfty+o+2etni +72)

2(—2a+2B+4e+2n1+1)(—a+B+vy+5+2e+n1+n2)?

n1 odd, ny even,

(v+0+52) (2a—25+$ﬂig+’;1_1—1) (—atB+2e+n1+72 ) (—atytet M52 ) (B+d+et M52

(—2a+28+4e+2n1+1)(—a+B+y+0+2e+n1+n2)?

n1 odd, ne odd,

(_ 1)712 ni (72a+25+4e+n1 71)
(—2a+28+4e+2n1—1)2

n1 even,
7

O = )( )

(4e4+n1—1)(—2a+28+n
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(—2a12B+4c12n1 —1)2(—atBty+o12etniTna+1) i even, np even,
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Partie 2

Modeles exactement résolubles






Introduction

Dans cette deuxieme partie de la these on se penche sur des modeles ot les polynémes orthogonaux
jouent un role important. Le premier présente une application directe des polynoémes de para-
Racah introduits au premier chapitre de cette thése et témoigne de travaux qui ont été menés
parallelement au développement de cette famille de fonctions spéciales. Le modeéle consiste en une
chaine de spin de Heisenberg de type XX. La premiere tache d’intérét consiste a transporter un
qubit, ou de fagon équivalente un état de spin, d’un bout a 'autre de la chaine dans un temps donné.
On nomme cette tache le transfert parfait. Vinet et Zhedanov ont montré que le choix de couplages
permettant le transfert parfait se réduit a un probleme spectral inverse en correspondance directe
avec des familles de polynémes orthogonaux [35]. Le modele le plus connu est certainement celui
associé aux polynomes de Krawtchouk [4]. Une deuxiéme tache aux applications prometteuses est la
génération et le partage d’états intriqués. Ceci peut étre réalisé par la revitalisation fractionnelle ou
une excitation initialement localisée sur le premier site de la chaine se retrouverait éventuellement
aux deux extrémités. L’investigation de chalnes XX dont les couplages réaliseraient cette tache ont
conduit naturellement a la découverte des polynémes de para-Krawtchouk qui sont orthogonaux
sur la superposition de deux réseaux linéaires [36]. Le modeéle qu’on présente au chapitre 5 poursuit
cette idée et introduit un second modele réalisant de la revitalisation fractionnelle en utilisant des
couplages associés aux coeflicients de récurrence polynémes de para-Racah qui sont orthogonaux
sur un bi-réseau quadratique.

Dans leur classification de tous les systémes superintégrables d’ordre deux en deux dimensions
[37], Miller, Post et Winternitz ont identifié un modele général duquel tous les autres peuvent
étre obtenus par contractions ou spécialisations. Les symétries de ce systéme générique a trois
parametres sur la sphére s’encodent dans I’algebre de Racah. Cette structure algébrique a également
la propriété de caractériser les polynémes de Racah et de Wilson au sommet du tableau ¢ = 1 du
schéma d’Askey [38]. Il en découle la remarquable propriété que les systémes superintégrables
de cette classification sont en correspondance avec les membres de cette hiérarchie de polyndmes

orthogonaux [39]. Une extension a trois dimensions de ce modele a été introduite [40]. Une



des motivations derriére la caractérisation de ce nouveau systeme superintégrable repose dans ses
symétries. En effet, ’approche algébrique qui a mené a celui-ci a permis de montrer que ses
symétries correspondent a l’algebre de Racah de rang deux [41]. Celle-ci encode maintenant les
propriétés de bispectralité de la famille de Racah des polynémes bivariés de type Tratnik. Ces
polyndémes apparaissent alors comme coefficients de recouplement dans le probleme de Racah pour
I'algebre qui sous-tend ce systeme. De facon équivalente, ces polyndmes agissent comme coefficients
de connexion entre différentes bases de fonctions propres du systéme. Dans une autre direction, une
généralisation du systéme générique a trois parametres sur la sphere a ’aide d’opérateurs de Dunkl
a conduit a une déformation avec des opérateurs de réflexions de ce modele [42]. Les symétries
sont alors encodées par ’algebre de Bannai-Ito et les polynémes du méme nom apparaissent comme
coefficients de changement de base. Les chapitres 6 et 7 de cette these développent les modeles
analogues de plus haute dimension avec réflexions. On considere le modele a trois dimensions
dans le chapitre 6 et la généralisation & n variables dans le chapitre suivant. En particulier, on
conjecture I'apparition des polynémes de Bannai-Ito multivariés dans ces systémes. Cette conjecture
a maintenant été démontrée par un des coauteurs dans [43]. Les solutions du modéle sont également
obtenues en terme des polynémes de Jacobi a l'aide de I'extension de Cauchy-Kovalevskaia et de
la, décomposition de Fischer.

Finalement, le dernier chapitre de cette these porte sur la théorie des représentations de la
superalgebre de Lie osp(1]2). C’est la méme structure algébrique qui sous-tend la construction des
modeles des chapitres 6 et 7. Ce travail reprend une construction de Van der Jeugt et Koelink pour
lalgebre su(1,1) [44], elle méme basée sur des idées de Granovskii et Zhedanov [45], dans le cadre
de la superalgebre. On se concentre sur un élément dont les représentations sont tridiagonales et
démontre sa connection avec une famille de polynémes appartenant au tableau de Bannai-Ito. Dans
le produit tensoriel de représentations, on utilise les coefficients de Clebsch-Gordan et de Racah
pour construire deux identités de convolution ou quatre familles de ce méme tableau interviennent.
Le modeéle introduit agit donc comme vitrine pour ces familles de polynémes. De plus, a ’aide d’une
réalisation en termes d’opérateurs de Dunkl, une fonction génératrice bilinéaire pour les polynémes
de Big -1 Jacobi est introduite. De surcroit, une interprétation des polynémes qui interviennent

dans le modele comme familles bivariés de type Tratnik est présentée.
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Chapitre 5

An analytic spin chain model with fractional revival

J.M. Lemay, L. Vinet et A. Zhedanov (2016). An analytic spin chain model with fractional revival.
Journal of Physics A: Mathematical and Theoretical 49 (33), 335302

Abstract. New analytic spin chains with fractional revival are introduced. Their nearest-
neighbor couplings and local magnetic fields correspond to the recurrence coefficients of para-Racah
polynomials which are orthogonal on quadratic bi-lattices. These models generalize the spin chain
associated to the dual-Hahn polynomials. Instances where perfect state transfer also occurs are

identified.

5.1. Introduction

Fractional revival (FR) is observed when clones of a wave packet reproduce with periodicities
in a localized fashion [1]. This phenomenon has been shown to be possible in XX spin chains with
pre-engineered couplings. Specifically, in such instances, a state with a spin up initially at one
end of the chain evolves after some time 7" into a state for which the amplitude to find the spin
up at a given site is non zero only for the two ends of the chain [2, 3, 4, 5, 6, 7]. The special
case when the spin up localizes exclusively at the end of the chain at some time T is referred to as
perfect state transfer (PST). (See [8] and references therein.) The wave packet splitting realized via
FR provides, like PST, new tools for applications in quantum interference. As indicated in [5], in
the multiple particle context, FR can generate Hanbury Brown and Twiss correlations, Hong-Ou-
Mandel bunching effects and it can also lead to quantum interference patterns known as quantum
carpets [9]. The possibility to enact FR (as well as PST) in spin chains has made these systems very
attractive for the design of wires that can transport quantum information with high fidelity, generate
entanglement or provide remote gates. The interest in these questions is generating an abundant

literature (See [10, 4, 11] for reviews and further references, see also [12, 13, 14, 15, 16, 17]). A



key advantage of these models is that the tasks are performed through the chain dynamics without
the need for external control operations beyond the input/output interventions.

This motivates the identification of the XX spin chains that will exhibit FR. A systematic
analysis of FR at two sites in such models as XX spin chains has been carried in [7]. In general, FR
is essentially described by two parameters that can be tuned independently. The first is connected
to a prescribed one-parameter deformation [6]. The second comes from a remarkable analytic
model. Let us briefly explain its features.

For the purpose of studying fractional revival it suffices to consider states with only one spin
up. When restricted to the one-excitation sector, the XX spin chain Hamiltonians with nearest-
neighbor couplings become tridiagonal matrices J that are diagonalized by polynomials orthogonal
on the finite set of points formed by the eigenvalues of J. One necessary condition for PST is
that the matrices J possess a special property called mirror-symmetry [18]. Looking for fractional
revival in systems with special Hamiltonians whose restrictions J are mirror-symmetric, one analytic
model has been found where the couplings and magnetic fields are exactly given by the recurrence
coefficients of polynomials that are orthogonal on linear bi-lattices [7]. By a linear bi-lattice we
mean the set of points obtained by shifting two equally-spaced linear lattices with respect to one

another:
1
$S:$0+8+§(5—1)(1—(—1)S) s=0,...,N. (5.1)

We assume that the chains have N+1 sites and thus N links. Interestingly, the associated orthogonal
polynomials have only been discovered recently in the context of PST studies [19]. They have
been called para-Krawtchouk polynomials. The corresponding FR parameter is related to the
relative shift §. To our knowledge this model is so far the only known mirror-symmetric analytic
Hamiltonian with FR.

Now there is a procedure known as spectral surgery [8] that allows to remove spectral points
while preserving mirror-symmetry. In principle this permits to obtain any prescribed spectrum for
J and the corresponding mirror-symmetric couplings and magnetic fields by removing in this way
the appropriate elements from the linear bi-lattice set. As explained in [7], upon performing the
isospectral deformation (mentioned above) of surgered models, one could construct additional XX
spin chains with FR.

The usefulness of exactly solvable models does not need to be stressed. They make possible the
analytic exploration of the dynamics and are rooted in a secular tradition in theoretical physics.
They also offer very useful benchmarks for experimental testing. Now it is a fact that the repeated

removal of energy levels will yield expressions that are more and more complicated for the chain data
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and will thus have the effect of obscuring the analytic properties of the system. There is hence much
interest in finding directly other manifestly analytic models with FR. The purpose of the paper
is to introduce a second analytic mirror-symmetric XX spin chain that possesses fractional revival
(Note that it is not so clear and at this moment unknown, how this new model could be recovered
from the para-Krawtchouk system by spectral surgeries). This new model has more parameters
than the para-Krawtchouk one. This could prove useful in an experimental implementation; these
parameters must however satisfy certain constraints for FR to occur.

The discovery of the para-Krawtchouk polynomials orthogonal on linear bi-lattices has
prompted the search for polynomials orthogonal on quadratic bi-lattices. These functions have
been found very recently [20]. They have been called the para-Racah polynomials and are denoted
by P,(z% N;a,c,a). As the notation suggests, they are polynomials of degree n in the variable 22
(like the Wilson polynomials [21]) and they depend on 3 parameters, two of which being related
to the definition of the grid or bi-lattice, in addition to the natural number N.

We shall here discuss the fractional revival properties of the XX spin chains associated to these
orthogonal polynomials. Mirror-symmetry requires oo = % When this is so, FR will occur provided
a and c¢ are expressed in terms of solutions of a quadratic Diophantine equation. PST will happen
for a subset of the values of the parameters for which FR is realized. When ¢ = a + %, the models
will be seen to reduce to the ones associated to the dual-Hahn polynomials - a paradigm example
of chains exhibiting PST [18]. When an isospectral transformation is applied, mirror-symmetry
is broken and more general models with FR are obtained and found to correspond to para-Racah
polynomials now with an arbitrary a.

There has recently been remarkable experimental verifications of PST in optical arrays [22,
23, 24]. The XX spin chain dynamics is then reproduced by the propagation of photons in arrays
of evanescently coupled waveguides that are arranged side by side. The proper engineering of
the interactions is realized by adjusting the distances between the fibers. The specifications of
the chain/array are chosen so as to optimize the experimental conditions. It would now be of
great interest to also obtain experimental observations of FR in photonic lattices. The para-Racah
model that will be described in this paper has features similar to those of the para-Krawtchouk
system. In particular, both models exhibit irregularities in the distribution of the couplings around
the middle of the chains. This is not really worrisome in a photonic implementation since it just
requires fixing the distances one by one accordingly. The fact that the para-Racah model has more
parameters could however prove advantageous in giving some flexibility to minimize undesirable

experimental features such as propagation losses, array inhomogeneity and non-nearest-neighbour
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couplings. This adds motivation to the search for other analytic models beyond the general interest
in enlarging the class of analytic models with FR.

The paper will unfold as follows. In Section 2, relevant aspects of fractional revival in XX
spin chains will be reviewed. The models with mirror-symmetric couplings and magnetic fields
corresponding to the recurrence coefficients of the para-Racah polynomials with @ = % will be
introduced in Section 3 for N odd, that is for an even number of sites. The conditions (on the
parameters) for fractional revival to take place will be determined and the situations of PST will
also be identified. The presentation of the models for N even will be carried out via the spectral
surgery procedure. This last point will be the object of Section 3 where we shall give the couplings
and magnetic fields that result when the last level of the chains with N odd is removed. That
the models reduce to the one associated with the dual-Hahn polynomials will be discussed in
Section 5. The shape of the couplings and magnetic fields will be depicted in plots exhibiting the
differences between the odd and even N cases as well as with the dual-Hahn polynomials situation.
The isospectral deformation of the mirror-symmetric chains considered up to that point will be
carried out in Section 6 to find analytic models with FR corresponding to the general para-Racah
polynomials. The classification will be done in full generality for spin chains with N > 4. We shall

sum up to conclude.

5.2. Fractional Revival and Orthogonal Polynomials

We shall consider X X spin chains with /V 4 1 sites and nearest-neighbor interactions governed

by Hamiltonians H of the form

N-1 N
1 1
H = 5 Z Jng1(oponiq + O'%O‘Z_H) + B Z B, (of +1). (5.2)
n=0 n=0
Jn is the coupling constant between the sites n — 1 and n with n = 1,...,N — 1 and B,, is the
magnetic field strength at the site n with n = 0,1,..., N. The symbols o, 0¥, o7 stand for the

Pauli matrices with the index n indicating on which C? copy of (C2)®N*1 they act. It is easy to

see that the Hamiltonian H is invariant under rotation around the z-axis:

=0. (5.3)

1 N
le a Z(O—é + 1)
2n:0

This implies that the eigenstates of H split in subspaces labeled by the number of spins over the
chain that are up, i.e. that are eigenstates of o* with eigenvalue +1. To study fractional revival it

suffices to focus on the restriction J of H to the one-excitation sector. The states of that subspace
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are naturally described by the canonical basis vectors of Z®N*1
|n) = (0,0,...,1,...,0)T (5.4)

with the single 1 in the nt" position corresponding to the single spin up at the n'* site. The action

of J in that basis follows from (5.2) and is given by
JIny = Jpp1ln+ 1) + Bpln) + Ju|n — 1) (5.5)

where Jg = Jy4+1 = 0 is assumed. That is, J is the following Jacobi matrix

By Ji
J By Jo
J= Jy By . . (5.6)
JN
JN By

It will be said to be mirror-symmetric with respect to the anti-diagonal or persymmetric if
RIR=J (5.7)

with

In terms of the couplings and magnetic field strengths, this amounts to
Jn = JN+177’L7 Bn = Ban- (59)

Since By, J, € R, J is clearly hermitian and has real eigenvalues. We can introduce the eigenbasis

of J:
J|x8> = $s|$s>a (5.10)

where the eigenvalues s are assumed to be non-degenerate and are taken to be in increasing order

xg < x1 < --- < xy. Then, in view of (5.5), it is easy to show that we have the following expansions

N N
|zs) = Z Vwsxn(zs)|n), |n) = Z VWsxn(Ts)|Ts), (5.11)
n=0 s=0

93



where y,(x) are orthonormal polynomials on the finite set of spectral points z; that obey the

recurrence relation
Xn () = Jnt1Xn+1() + Buxn(z) + Jnxn—1(2). (5.12)
It can be shown [8] that J is persymmetric if and only if
v (zs) = ()N s=0,1,...,N. (5.13)

Let us now come to fractional revival at two sites. A wave packet initially localized at the site 0

will be revived at sites 0 and N after time T if
e~""710) = £]0) + n|N) (5.14)

with |£]2+4|n|? = 1. Given the normalization condition, £ and 1 parametrize the points of a 3-sphere
and thus amount to 3 angles. Moreover since the overall phase of the state on the rhs of (5.14)
is not physically meaningful and is one of the 3 angles, we see that fractional revival at two sites
is essentially characterized by two real angles. Observe that we are in a situation of perfect state

transfer when £ =0 :
e~ T710) = ' |N).
With the help of expansion (5.11), it is immediate to see that condition (5.14) translates into
e = €+ (2s). (5.15)

Note that for the right hand side of (5.15) to have modulus 1, we must have

Re(&n*)
n|?

The implications of (5.15) have been examined in [7] to obtain a characterization of the chains with

Xar(zs) +2 =1 (5.16)

FR. The analysis proceeds in two steps. Condition (5.15) is first enforced when & and 7 involve

only one of the two essential angles (apart from the global phase ¢) and are expressed like this :
£ =e“sin20, n=ie'® cos26. (5.17)

The additional parameter (second essential angle) is then introduced by subsequently performing
an isospectral deformation of the Jacobi matrix obtained as a result of the first step. This course
will be followed here. In what immediately follows, the parametrization with the single angle 8
(apart from ¢) will be used. How the second angle o is brought in the analysis will be explained in
Section 6.

When ¢ and 7 take the special form (5.17), we see from (5.16) that y%/(zs) = 1. Simple

considerations (explained fully in [7]) lead one to conclude that condition (5.13) must then be
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obeyed. In other words, the fractional revival condition (5.15) requires that J be persymmetric
when £ and 7 are as in (5.17). Moreover, with these expressions for £ and 7, the real and imaginary

parts of (5.15) yield the following relations that the eigenvalues x5 of J must satisfy :

cos(Txs + ¢) = cos (;r - 20) , sin(Tzs + ¢) = (—1)V T+ sin (;T - 29) . (5.18)

The determination of J and of H as a result, is henceforth framed as an inverse spectral problem
that can be solved using the theory of orthogonal polynomials. The eigenvalues z found to verify
the FR conditions (5.18) determine the characteristic polynomial of degree N +1 and the knowledge
of xn at the N +1 points x4, as prescribed by (5.13), completely specifies this polynomial also. All
the other polynomials x,,(z) can be constructed from these two by using the Euclidian algorithm
(see [8]) and this gives J and H.

The generic set of eigenvalues satisfying conditions (5.18) is a linear bi-lattice and the algorithm
we just explained leads in this case to the para-Krawtchouk polynomials [19]. The specifications
of the chain are then provided by the recurrence coefficients.

In the following, we shall not adopt this deductive approach which is explained fully in [7]. We
shall rather identify a new analytic model by proceeding in the reverse. We shall first provide a
set of mirror-symmetric couplings and magnetic fields known to form the recurrence coefficients
of polynomials that are orthogonal with respect to quadratic bi-lattices. We shall then determine
for what values of the grid parameters are the FR conditions (5.18) satisfied. The isospectral
deformations that allow to relax the condition that J is persymmetric will be presented in the last

section.

5.3. A model with fractional revival based on the para-Racah polynomials for N

odd

The analytic model introduced here is based on the para-Racah polynomials P,(z?; N;a, c, ).

These polynomials have only been identified recently [20]. For now, take N to be odd and write
N =25+1. (5.19)

When a = %, the recurrence coeflicients of the para-Racah polynomials provide the following

explicit expressions for couplings and magnetic fields :

1
B, =

2
nN+1-n)(N-n+a+c)n—1+a+c)(n—j—1)2—(a—-c)? 1 (5.20)

A(N —2n)(N — 2n+2) :

[a(a +j) +cle+j) +n(N —n)],

Jn =
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where the parameters a and c are such that a > —% and |a| < ¢ < |a+1]. It can be checked directly
that these J,, and B, satisfy (5.9) and that they hence form a persymmetric matrix.
The para-Racah polynomials are known [20] to satisfy a discrete orthogonality relation on the
points of the quadratic bi-lattice defined by
Ty =(s+a)’, s5=0,...,7,
(5.21)
Tosy1 = (s +¢)%, s5=0,...,].
Now, FR will be observed when such eigenvalues obey conditions (5.18). Splitting the even and

odd cases and using (5.19), FR requires that

cos(T(s + a)* 4+ ¢) = cos (;T — 29) , cos(T(s+c)? + ¢) = cos (_;r + 29) ,

(5.22)
sin(T(s + a)? + ¢) = sin (;r — 29) , sin(T(s 4 ¢)> + ¢) = sin (—;T + 29) ,
for s =0,1,...,7. This implies that
T(s+a)?=—=—20—¢+2rM,,  T(s+c)?=—s+20—¢+2rL,, (5.23)

2 2

where M, and Ly are arbitrary sequences of integers. Now, since the LHS of (5.23) are quadratic
functions of s, the RHS must also be quadratic functions of s. Hence, M, and L take the general

form
M, = A1s>+Cis+7v1,  Ly= Ays® + Chs +yo. (5.24)

For j > 1, the sequences M, and L, will take integer values for all s if and only if ~; is an arbitrary
integer and A;, C; are both simultaneously either integers or half-integers for i = 1 and ¢ = 2. The
proof is elementary and we omit it. We shall henceforth assume that the above restriction (j > 1)
is verified and shall thus determine the FR conditions for generic chains with N > 3. For very
small chains, there are additional special possibilities that we shall not spell out here. With this

understanding, we can cast the A; and C; as

_o _ b _ _ P
Al_2) 01_27 A2_2a 02_25 (525)

where a; and (31 are integers with the same parity and as and (2 are also integers with the same
parity. With (5.24) and (5.25), condition (5.23) becomes
0 =(T — way)s® + (2aT — 7f1)s + (a*T — g +20 4 ¢ —2171),

(5.26)

0 =(T — mag)s® + (2¢T — 7h2)s + (2T + g — 20+ ¢ — 277).
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Since these relations must hold for s = 0,1,..., 7, again with j > 1, each coefficient must vanish.

First, the coefficients of s? yield
T =7ma; = mag, (5.27)

which says that oy = ag is a positive integer, that oy, 51 and B2 must share the same parity and
that the time for FR to occur is a multiple of 7. Second, in view of (5.27), equating the coefficients

of s in eq.(5.26) gives

B B2
N = 7= 5.28
“ 2a1 ’ ¢ 2&1 ( )
The parameters a and c are thus rational numbers. Recall that a > —% and |a| < ¢ < |a + 1]
implying that
B1>—a1, |Pi| < P2 <|B1+ 2aq]. (5.29)
Third, equating the constant terms provides
2 ™ 2 ™
aT=§—¢—29+27T’)/1, CT:_§_¢+29+27T’}/2. (5.30)
It is helpful to consider the sum and difference of these two equations:
T(* —a®) = —m + 40 + 21 (72 — 1), (5.31a)
T(c* 4 a?) = —2¢ + 27(71 + 72). (5.31b)

Using (5.27) and (5.28), equation (5.31a) provides a condition on the parameters (1,52 and 6:

(52—51)4(,31 52 _ [y — o) — 1+, (5.32)

where (1, 82,71, 72 are integers and «; is a positive integer. Note that since 51 and (o share the
same parity, the LHS of (5.32) is an integer. This implies that § must be a multiple of ﬁ :

T
0 = 4%; (5.33)
where £ is an irreducible fraction and ¢ divides a;. Finally, upon substituting (5.27) and (5.28) in
(5.31b), one obtains that the global phase ¢ is a fraction of 7. Hence, the Hamiltonian (5.2) with
couplings and magnetic fields given by (5.20) will admit fractional revival if the parameters a, ¢ are
of the form (5.28) with /31, 82, a1 solutions of (5.32) respecting (5.29). An example of solution is :
61 =14, B =16, a1 =6, 6 = %” and yo — 1 = 1 which gives a = % and ¢ = %. Mathematically,
one could say that (5.32) yields all the possible values of § (guaranteed to be of the form (5.33))

when the integers a1, 1, 82,71 and 72 run over their admissible values. In practice however one
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might wish to pick a value of ¢, for instance the value T that gives balanced FR, and find the set
of parameters that will give this 6.

Mirror-symmetry which is realized in the models we have been discussing so far is a necessary
condition for PST. It is hence of interest to enquire if PST can also be observed in spin chains that
have been found to exhibit FR. Once one has (5.14) with £ and 7 given by (5.17), it can be shown

[7] that one has also
e M 0y = ew[cosM <72T - 29> |0) 4+ ¢sin M (;r - 20) |N>} (5.34)

with M an integer. This simply follows from formulas for e~*7” that will be given for N odd and

N even at the beginning of section 6. Perfect state transfer will then occur at time MT if

M (;r - 29) = M (g) (5.35)

with M; an arbitrary odd number. Recall that (5.32) requires (5.33). For fixed p and ¢, given a set

of parameters solving (5.32), we see that the corresponding model will possess PST in addition if

M _q-p (5.36)
This requires' that p and ¢ have opposite parities and M = ¢. This is ensured by the irreducibility
of g for ¢q even, but not for ¢ odd. Thus, spin chains with FR at time T" will also show PST at time
qT if g is even but when ¢ is odd, PST will only happen at time ¢7T if p is even.

It turns out that the solutions with PST can be identified with the models presented by Albanese
and Lawi in an unpublished paper [25] although the authors have assumed not quite correctly that
the underlying polynomials are special cases of the Racah polynomials.

A particular feature of the para-Racah model is the bump in the couplings J, in the middle of
the of chain. The figure 5.1 shows the strengths of the couplings along the chain.

5.4. Spectral Surgery and the case N even

A procedure called spectral surgery and described in [8] allows to modify the spectrum of a
Jacobi matrix while preserving its mirror-symmetry. It is hence possible to relate a chain with N
sites to one with IV —1 sites by removing the last eigenvalue. That the modified chain will still enact

fractional revival is obvious since the conditions (5.18) will remain satisfied for s =0,1,..., N — 1.

1The case p = 0 is also possible with M = M; but in this instance there will just be replications of PST at times
MiT.
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Fig. 5.1. Couplings strenghts for N = 55, a = 1/8 and ¢ = 3/8.
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This technique hence permit to define our models for even N. The new couplings Bn, Jp are

related to (5.20) by

R . A, 1%
By = Byt + ApNpsr — An,  Jo = J {A] ° (5.37)
n—1
N sa,C. 1
where A,, = PIZ:({;TVN NNM% §) is given by
N-n)(n—j+a—c)(N—-n—-1
A, — ( n)(n—j+a—c) n +a+c). (5.38)

2(2n — N)

Upon changing N — N + 1, a direct computation yields the recurrence coefficients for N = 2j:

A

By=%a®+F+n—n?)+i2n+a+c)(N-1)

(5.39a)
+ (n+1)(n+a+c)(1+2a—2c¢) + n(n—14a+c)(142a—2c)
4(142n—N) 4(1—2n+N)
and
1
3 _ [n(N+1-n)(n—1+a+c)(N—n+a+c)(n—j+a—c)(n—j+c—a—1)]2
j _[n ) )(4(N72n+1)2 j J } _ (5.39D)

It can be directly checked that the persymmetry condition (5.9) still holds while the spectrum of

J is now

Tos =(s+a)?, s=0,...,7,
(5.40)
Tosy1 =(s +¢)?, s=0,...,5— 1.
Fractional revival will occur for a and ¢ again given by (5.28) and (5.32). Here, in view of (5.40)

and of the remarks after equations (5.24), we need to assume that j > 2. Our analysis thus provide

a full classification of the FR conditions for chains with N > 4. The plot showing the strengths of
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the couplings along the chains exhibit a different behavior for N even; here, both the couplings J,

and the magnetic fields B;,, have a bump in the middle of the chains :

Fig. 5.2. Couplings strenghts for N = 56, a = 1/8 and ¢ = 3/8.
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The presence of irregularities in the distribution of the couplings and magnetic fields (when N is
even) around the middle of the chain is a particular feature of the para-Racah model that is shared
by the para-Krawtchouk chain. This is not deemed to be especially problematic for applications in
systems that are relatively small. Note from formulas (5.20) and (5.39) that these variations are

modulated by the values of a and ¢ and that they become more important as N grows.

5.5. Special case ¢ = a + %

The models presented here encompass simpler known models. Note that upon setting ¢ = a+ %,

the bi-lattice (5.21) reduces to a single quadratic lattice of the form

vy = (; + a>2. (5.41)

In this case, the recurrence coefficients for odd N (5.20) and even N (5.39) need not be distinguished

and are given by

2
Bn:N+4N(a+n)+a2—%,

1
I n(n—i—2a—%)(N—n—i—Qa—i—%)(N—i—l—n)]2
" 16 '

This correspond to the analytic spin chain models connected to the dual-Hahn polynomials that

were identified by Albanese et al. in [18]. Note that our analysis shows that these simpler models
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also exhibit FR for some values of the parameters. In this case, the bump in the middle couplings

disappear and the patterns are those of smooth parabolas :

Fig. 5.3. Couplings strenghts for N =55, a = 1/6 and ¢ = 4/6.
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5.6. Isospectral deformations

We shall now indicate how a second parameter in addition to # can be introduced in the
amplitudes of the two revived clones by means of an isospectral deformation.

Let us first point out that the conditions (5.18) do not only imply (5.14) with £ and n as in
(5.17) but more generally that

—iTJ _ id

sin 20

1cos 260

sin 260

1cos 20

101

7.cos 260

sin 20

1cos 20

sin 20




for N odd and

sin 20 1.cos 20
sin 20 0 7cos 20
o~ iTT _ ,id 0 oi(5—20) 0
1cos 20 0 sin 20
1 cos 260 sin 260

for N even. This is not difficult to show and has been derived in [7].

Now introduce the symetric matrix

sino cos o

sinoc coso
V = , (5.42)

cosog —sino

Ccos o —sino
for N odd and

sino cos o

sinc 0 coso
V = 0 1 0 , (5.43)

coso 0 —sino

Ccos o —sino

for N even. It is easy to verify that V2 = 1. Now let J be a persymmetric Jacobi matrix and define

J via the conjugation
J=VJV. (5.44)

It is clear that this provides an isospectral deformation of .J. J will no longer be persymmetric but

will satisfy

J=QJQ (5.45)
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with Q@ = VRV. A direct computation shows that e=iTJ acting on |0) gives
e 710y = VeIV |0) = £[0) + 1| N) (5.46)
for both N odd and N even with

€ = €' (sin 26 + 2i cos 20 cos o sin o) (5.47a)

n = ie'® cos 20(cos® o — sin? 7). (5.47b)

An additional angle o has thus been introduced in the parameterization of £ and 7 and it is easily
verified that the normalization condition |£|? + |n|? = 1 is still satisfied. Tt is observed that .J is also
tridiagonal, it thus provides the couplings and magnetic fields of an XX spin chain that exhibits
again fractional revival at two sites. Remarkably, most of the coupling constants and magnetic
fields of J remains unchanged. Carrying out the transformation (5.44), it is seen that the only

entries of J that differ from those of J are

jw = Jn41 cos 20,
7 2 (5.48a)

Bnrnz1 = By-1 + Jn41 sin 20,
2 p) 2
for N odd and

Jy = Jy(coso —sino),
7 ’ (5.48b)

J%H = J%(cosa—i-sina),
for N even. Remembering the expressions (5.20) and (5.39) for the entries of J, it is seen that the
elements of J (.J,, and B,,) correspond to the recurrence coefficients of the para-Racah polynomials
P, (2% N;a,c,a) [20] with sin(20) = 1 — 2a for N odd and sino = ﬁ%\gm for N even. We thus
observe that the general para-Racah polynomials are associated with XX spin chains with generic

fractional revival described by two parameters provided that a and ¢ remain given by (5.28) in

terms of solutions of (5.32).

5.7. Conclusion

Let us summarize our findings and make a few additional remarks to conclude. We have
introduced a novel analytic XX spin chain with fractional revival. It depends on 3 parameters a,
¢, a in addition to the number of sites N + 1. Its nearest-neighbor couplings and local magnetic
field strengths are provided by the recurrence coefficients of the recently identified para-Racah
polynomials P, (z2; N;a, c, o) which are orthogonal on the quadratic bi-lattice (5.21) characterized

by a and ¢. When ¢ =a+ %, these P, reduce to the dual-Hahn polynomials. There are constraints
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on the parameters for fractional revival to take place after time 7. One must have according to

(5.27) and (5.28) :
T T
a—ﬁlﬁ, C—ﬁ2ﬁ, (5.49)

where 1 and fg are integers that solve the Diophantine equation (5.32). (There might be additional
special solutions when N < 4). There are two angles 6 and o that determine the FR amplitudes
¢ and 7 in (5.14) as per the parameterization (5.47). The first, 6, is determined by (5.32) and
forced to take the restricted values specified by 6 = Z—g with p, ¢ co-primes and ¢ dividing T'/.
The second, o, is directly related to a in a way that depends on whether N is odd or even (see
the formulas in the paragraph after egs.(5.48)). When o = 0, that is when o = %, the recurrence
coefficients J,, and B, form a mirror-symmetric matrix. A necessary condition for perfect state
transfer is then realized and it has been indicated that if FR happens at time 7', PST will occur
at time ¢7" when the parameters a and c¢ lead to an angle of the form 6 = Z—g where ¢ and p have
different parities. Solutions of (5.32) with § = 0 provide models that exhibit PST but not FR.

The study presented here complements and extends the analysis [7] of the transport properties
of the spin chains connected to the para-Krawtchouk polynomials [19] which are orthogonal on the
linear bi-lattice (5.1) instead of the quadratic bi-lattice (5.21). It is informative to compare the
features of the latter model with those of the para-Racah system that we have examined so far in
this paper.

To focus on the model with FR which is based on the para-Krawtchouk polynomials per se,
we must set the angle o equal to zero. We are thus in a mirror-symmetric situation. For the

para-Krawtchouk model, the FR angle 6 is related in a simple way to the bi-lattice parameter § in

(5.1), one has

5142 (5.50)

s

There are no further conditions to have FR. However, in order for PST to manifest itself, we must
have that

"=

(5.51)

where M; and M are positive co-prime integers and M; is odd.
The para-Krawtchouk spin chains also possess another interesting property. When § is an
irrational number, even though state transfer is no longer perfect, it can be approached in finite time

to any level of precision. It is indeed possible to show [26] using classical theorems of Diophantine
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approximations, that there exists a sequence of times ¢,, n = 0,1,2,..., such that
[(N]e=™|0)| =1 (5.52)

as n — oo. It follows that we have in these models, manifestations of what is called almost perfect
state transfer (APST).

These last comments suggest directions for future investigations. A first question is : under what
circumstances would the mirror-symmetric spin chains associated to the para-Racah polynomials
exhibit APST? Other questions relate to FR. We have been dealing in this paper with perfect
fractional revival. Let |[¢)| denote the norm of |¢)) and € be a small positive real number. It would

be of interest to determine the conditions for almost perfect fractional revival where
[e=710) = (€0) + nlN)) | <€ (5.53)

or where, in other words, e~*7/|0) can be as close as desired to the state with two localized clones
at |0) and |N). It would seem relevant to probe the para-Krawtchouk and para-Racah chains in

this respect.
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Chapitre 6

A superintegrable model with reflections on S° and the rank two

Bannai-Ito algebra

H. de Bie, V.X. Genest, J.M. Lemay et L. Vinet (2016). A superintegrable model with reflections
on $3 and the rank two Bannai-Ito algebra. Acta Polytechnica, 56(3), 166-172

Abstract. A quantum superintegrable model with reflections on the three-sphere is presented.
Its symmetry algebra is identified with the rank-two Bannai-Ito algebra. It is shown that the
Hamiltonian of the system can be constructed from the tensor product of four representations of
the superalgebra osp(1|2) and that the superintegrability is naturally understood in that setting.
The exact separated solutions are obtained through the Fischer decomposition and a Cauchy-

Kovalevskaia extension theorem.

This paper is dedicated with admiration and gratitude to Jifi Patera and Pavel Winternitz on the

occasion of their 80th birthdays.

6.1. Introduction

Superintegrability shares an intimate connection with exact solvability. For classical systems,
this connection is fully understood while it remains an empirical observation for general quantum
systems. The study of superintegrable models has proved fruitful in understanding symmetries and
their algebraic description, and has also contributed to the theory of special functions. A quantum
system in n dimensions with Hamiltonian H is said to be maximally superintegrable if it possesses
2n — 1 algebraically independent constants of motion c1,c¢o, ..., cop—1 commuting with H, that is
[H,c;] =0 for i =1,...,2n — 1, where one of these constants is the Hamiltonian itself. Such a
system is further said to be superintegrable of order [ if the maximum order in momenta of the

constants of motion (except H) is .



One of the important quantum superintegrable models is the so-called generic three-parameter
system on the two-sphere [1], whose symmetries generate the Racah algebra which characterizes the
Wilson and Racah polynomials sitting atop the Askey scheme [2]. All two-dimensional second order
superintegrable models of the form H = A4V where A denotes the Laplace-Beltrami operator have
been classified [1] and can be obtained from the generic three-parameter model through contractions
and specializations [3]. A similar model with four parameters defined on the three-sphere has also
been introduced and its connection to bivariate Wilson and Racah polynomials has been established
[4].

Recently, superintegrable models defined by Hamiltonians involving reflection operators have
been the subject of several investigations [5, 6, 7, 8, 9]. One of the interesting features of these
models is their connection to less known bispectral orthogonal polynomials referred to as —1 polyno-
mials. Many efforts have been deployed to characterize these polynomials, which can be organized
in a tableau similar to the Askey one [10, 11, 12, 13, 14, 15, 16]. Of particular relevance to
the present paper is the Laplace-Dunkl equation on the two-sphere studied in [17, 18], which has
the rank-one Bannai-Ito algebra as its symmetry algebra [14]. This Bannai-Ito algebra encodes
the bispectrality of the Bannai-Ito polynomials which depend on four parameters and stand at the
highest level of the hierarchy of —1 orthogonal polynomials. As such, this Laplace-Dunkl system
on the two sphere can be thought of as a generalization with reflection operators of the generic
three-parameter model (without reflections) on the two-sphere which is recovered when wavefunc-
tions with definite parities are considered. The goal of this paper is to introduce a novel quantum
superintegrable model with reflections on the three-sphere which similarly embodies the generic
four-parameter model introduced and studied in [4].

The paper is divided as follows. In section 2, we introduce a superintegrable model with four-
parameters on the three-sphere and exhibit its symmetries explicitly. In section 3, it is shown
how the Hamiltonian of the model can be constructed from four realizations of the superalgebra
osp(1]2). Moreover, the symmetry algebra is characterized and is seen to correspond to a rank-two
generalization of the Bannai-Ito algebra. In section 4, the structure of the space of polynomial
solutions is exhibited using a Fischer decomposition and an explicit basis for the eigenfunctions is
constructed with the help of a Cauchy-Kovalevskaia extension theorem. Some concluding remarks

are offered in section 6.

6.2. A superintegrable model on S*

Let s1, 89, 83,84 be the Cartesian coordinates of a four-dimensional Euclidian space and take

the restriction to the embedded three-sphere: s? + s3 4 s2 + s7 = 1. Consider the system with four
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parameters (i1, fo, (43, b4 with p; > 0 for ¢ = 1,2, 3,4 governed by the Hamiltonian

4
Hi
H= > J%+Zsj(ui—3i)’ (6.1)
1<i<j<4 i—1 Si
where
1
Jij = g(Sz’@sj — 50s,), Rif(si) = f(=si), (6.2)

are the angular momentum operators and reflection operators, respectively. The six quantities
1 Sk S; k
Lji, = (2 + iR + pp Ry + (iij + Mj;jRj — Mks;iRk> H Rl>Rij, 1<j<k<4, (6.3
l=j+1

can easily be verified to commute with H on the 3-sphere and are thus conserved. It can be shown
that any four of the L;;, are algebraically independent. Hence H defines a maximally superintegrable

system of first order. There are also four more conserved quantities of the form

k
My = <1+ZMR + > (zJ]k—l—sk Rj — s; kRk> 11 Rl> I1 R (6.4)

icA j<k l=j+1 icA
j,keA

where A = {1,2,3},{1,2,4},{1,3,4} or {2,3,4}. Furthermore, a direct computation yields
[H,Ri| =0, i=1234. (6.5)

The reflections are thus discrete symmetries of the system.

6.3. Algebraic construction from osp(1]2)

The superalgebra osp(1/2) can be presented with five generators x, D, E, |z|?> and D? with the
following defining relations:
{z,z} =2|z|>, {D,D}=2D?
{z,D}=2E, [D,E]=D,
(D, |2*] = 22, [B,2] ==, (6.6)
[D? x] =2D, [D* E]=2D?

[D?,|z[*] = 4E, [E,|z|*] = 2Jz|,
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where [a,b] = ab — ba is the commutator and {a,b} = ab + ba is the anti-commutator. One can

realize four mutually commuting copies of this superalgebra by taking
D;=d, - "R, D}=DD,
Si

T = 8, |zi* = 7, (6.7)
1
E; = si0s, + >
where ¢ = 1,2, 3,4. Each superalgebra possesses a sCasimir element given by
1
Si = 5([Di,xi] — 1), (68)
which anticommutes with the odd generators
{Sz,Dz} = {Sz,l'z} = 0, (6.9)
and thus commutes with the even generators

(i, Ei] = [Si, |2if*] = [Si, DF) = 0. (6.10)

It is immediate to verify that in the realization (6.7), the reflection R; verifies the same commutation

relations as the sCasimir
[Ri, Ei] = [R;,|2:|°] = [Ri, Dj] = {Ri, Di} = {Ri, z;} = 0. (6.11)
This implies that one can construct a Casimir operator of the form
Qi = SiR;. (6.12)

It is straightforward to verify that @); indeed commutes with every generator. These four realizations
of 0sp(1]2) can act as building blocks for many other realizations. Let [n] = {1,2,...,n} and A C [4].
The operators given by

sup A
Da=Y" (Di 11 Rj), D% =DaDy,
icA j=it+1
sup A

Ta=) (Si 11 Rj)7 ENEED IS (6.13)
i€A - j=itl icA
€A

verify the commutation relations (6.6) for any A C [4] and thus form new realizations of osp(1|2).

These result from the repeated application of the coproduct of osp(1]2) (see [19]). Moreover, for
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any A the sCasimir and the Casimir operators are also similarly defined:

Sy = %([DA,xA]—l), Qa =54 ]] Re. (6.14)
€A

One can directly check that

Qi = 1, Qjr = Lji, QB = Mp, (6.15)

where @i, denotes Q4 with A = {j,k} and B is any 3-subset of [4]. Another explicit computation

gives

=

(i — Ri). (6.16)

Sty —Sw—3= Y Jit(si+si+sitsi))d

1<i<j<4 i=1

»
SN

However, since [z 2 = s? + s3 + s3 + s7 commutes with Sp4 and all the Casimirs, it is central in
the algebra generated by the Casimirs and can thus be treated as a constant. Taking |z 2=1,it

is straightforward by comparing (6.16) and (6.1) that
5[24] — 5[4] - % = H. (6.17)

Hence, a quadratic combination of the sCasimir of four copies of 0sp(1|2) yields the Hamiltonian of
the superintegrable model presented in section 1 and the intermediate Casimirs are its symmetries.
Indeed, it can be checked that [@Qa, H] = 0 for A C [4]. The symmetry algebra has the following

structure relations

{Q4, @B} = Qrau)\(anB) + 2Q4nBRAUB + 2Q 4\ (anB) @B\ (4nB); (6.18)

where A, B C [4] and Qy = —1/2 as prescribed by the definitions (6.13) and (6.14). This algebra has
already been studied in [20] and is interpreted as a rank 2 Bannai-Ito algebra. To see this, we remark
that the Casimirs with A C [3] generate the (rank 1) Bannai-Ito algebra. Let K1 = Q12, K2 = Q23

and K3 = @13. The recurrence relations (6.18) can then be rewritten as
{Kl,KQ} = K3+ ws, {K27K3}:K1 + wq, {Kg,Kl} = K5 4+ wo, (6.19)
where w1, wo, w3 are central elements given by

w1 =2Q3Q123 +2Q1Q2, w2 =2Q1Q123 +2Q2Q3, w3 =2Q2Q123 +2Q1Q3. (6.20)

This corresponds to the Bannai-Ito algebra introduced in [14] which appears in a corresponding

superintegrable model with reflections on S? as its symmetry algebra [17].
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6.4. Wavefunctions

To obtain the solutions to the equation Hy = Ay let us first introduce the gauge transformation
4
z—=Z= G(E)’%G(E’), G(3) = H |si|H, (6.21)

where z is any operator and § = (s, s2, 53, S4). Under this transformation, the generators of 0sp(1|2)

in the realization (6.7) become

s
fz*xi:su ‘ji|2:3?7
} (6.22)
b = Szasi + i, R; = R;,
Si = #iRia Qz = Wi,
where
A=Y (ni+3) (6.23)
€A

These operators also verify (6.6) and correspond to the realization of osp(1]2) (or equivalently
sl_1(2)) arising in the one-dimensional parabose oscillator [5]. Furthermore, the construction (6.13)
can be reproduced with this transformed realization to obtain operators of the form D A, T A, E A, S
and Q4 and is trivially seen to be equivalent to the gauge transformation of the corresponding
operators. Hence, we can obtain eigenvalues and eigenfunctions of H by finding eigenfunctions of
S [4]- Note that since 5'[4] commutes with P = Rj Re R3 R4, this is equivalent to finding eigenfunctions
of Q[4]'

We thus aim to obtain polynomial eigenfunctions of S 14- To do so, let us first introduce P, (R™),
the space of homogeneous polynomials of degree m in the variables s, s2, ..., s,. We define I, (R™)

the kernel space of degree m as
K (R™) = ker f)[n} N P (R™). (6.24)
When n = 4, this is an eigenspace of 5’[4]. Indeed, take ¥, € K,,(R*) and compute

(D [4]—90[4]174]—1)1/7 = 2(DZ — 1)¥m

(D + Dy — 1o = 5({Z), Dy} — Db

5[4]1/;m =

N[

|
[Nl

= 2(2Ey — 1)pm = [Z 8i0s; + Yja) — 5] Vs

=1
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where we used the property D[4]1/~Jm = 0 and the commutation relations (6.6). Since U is a
homogeneous polynomial of degree m, it is an eigenfunction of the Euler operator : Zle 5i0s, U =

mty,. This implies

and shows that &C,,,(R?) is an eigenspace of 5’[4}. We use two results in order to construct explicitly
the eigenfunctions. First, the space of homogeneous polynomials P,,(R™) admits a decomposition

in terms of the kernel spaces. This is called the Fischer decomposition and can be cast as

Pm(R") = P &, K (R™). (6.26)
=0

Second, we use the Cauchy-Kovalevskaia isomorphism (CK-map) between the space of m-

homogeneous polynomials in n — 1 variables and the kernel space of degree m in n variables

CK!" : P (R — K (R™). (6.27)

One can compute the CK-map explicitly. To compute CK*4, take p(s1, s2,53) € Ppn(R3) and let

S4
CKLi[p(s1,52,83)] = D s§pals1, 52, 83), (6.28)
a=0

where po (51, 82, 53) € Pm—a(R3) and po(s1, s2,53) = p(s1, 82, 83). Demand that

m
D[4] Z SZ‘pO((Sl, S92, 83) =0 (6.29)
a=0

to fix and compute the coefficients p,(s1, $2, $3). A straightforward calculation yields
CK?‘* — i (._1)1'(‘94)2% ~[24i] + i <‘_1)i+1(34)2?+1 D%Z—H,
e il(h)i(2)% il(ya)ig1 ()24 1

=0

(6.30)

where (a); =a(a+1)...(a+n — 1) denotes the Pochhammer symbol. Similarly, one obtains

00 (_1)i(5n)2i ~ o 00 (_1)i+1(sn)2i+1 ~ o
bn = NN\ 7o\ L i+1

for n = 2,3,4. Now, iterating the Fischer decomposition (6.26) and the CK-map (6.27), the

eigenspace K., (R*) can be expressed as

K (R? CK“‘*[é 2CK§‘§[@§7J2 ICK [Py (R)] ] (6.32)

2=0 Jj1=0
This means that we can explicitly construct a basis of eigenfunctions {@Z;j(znj)”?) (5)}j14jatja=m of

K (R*) with

B4 1, (8) = CK.: [ CKL [#3 CKL2 (7] . (6.33)
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This calculation can be carried straightforwardly with the help of the identities with 1, € K (R™)
DRt m = 2°(=B)a(l = m = B = Yoy~ “Wom,
DY E = 22 B(1 = B)a(l—m = B = pu))aiyy " Pms
Dzt dm = 22%(=B)al—m = B = ey Dim,

D[QT(L)]H_l [2,?]+1¢m = 22a+1(_ﬁ)a(m + 0+ 'Y[n})(l —m—p— ’V[n])ax2ﬁ 2a¢7

(6.34)

which follows from (6.6). The result can be presented in terms of the Jacobi polynomials pi*? )(x),

defined as [2]

a+1) -n,n+a+p+1 1—x
ped) () = (@3 Do [ ; 6.35
n ( ) nl 241 a+1 T 9 ; ( )
with the help of the identity :
a+1 —n, —n —
(w+y)np(a,5) ( y) _ ( ' )nmnzFl[ ) 5;_3/]‘ (6.36)
T4y n! a+1 x
One obtains
¢]1732 i3 (5) =P jo.js (5)Qj1jz (51, 52, 83) Ry (51, 52), (6.37)
where
P _ c! 2 2 2 2\¢
Jrgzigs (8) = (81 + 83 + s3 + s3)
(V4)e
C(74 Lj1+j2+73) 1)(s§+s§+s§—s§) _ 543 3] (’Y4aj1+j2+'7[3])(sz+s§+s§752> if s = 2¢
T +534s3+s7 si+s3tsitsy ol s{tsy+s3+sy ’
X
~ (va—=Lj1+72+73]) [ s2452+52—s2 Jitiztetys) p(Vaditiatys —1) (242453 —s2\  ie o
Tate () e R (Fies) s =2e+1,
T S BN
Qj.jz (51, 82, 83) = o) (s7+ 55 + 3)
(v3—Lj1+y2—1) [ s2+s2—s2 s3&[y) (v3:51+772)) [ 82452 —s2 e o
By (s§+sg+s§) ~ ittt (m) if j2 = 2b,
X
- p(s=Lji+y) (s3+s3—s2 Jitbtpg p(sd1 Y1) (s34s3—s2\ Lo
FaP, (355) - =55 h (3d7a) i =241,
P(’yzfl,'n*l) 53—53 — 152 P(’Y2v’71)<5 *3%) if 41 = 2a
al 5 @ sitsy)  sTsyt ol (s % ’
le(31752) = (57 +83)" x
(72)0 2

2 2
stPO2 1) (959 - sy plen D (S29) i Gy = 2a+1.

Note that the expressions for Pj, j, j,(s1, 52, 83, 54) and Qy, j, (51, S2, 83) contain the operators (3
and [y respectively. Recalling the expressions (6.22) and (6.13), it can be seen that these operators

only contain variables s; and reflection operators R;. These reflections conveniently account for signs
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occuring in the solutions without having to give a different expression for every parity combination
of the parameters ji, jo and js.
By effecting the reverse gauge transformation, we thus obtain a basis for the eigenspace of the

operator Sy given by

v, (3 = 0, L (B)G), (6.38)

where m = 0,1,... and j; + j2 + j3 = m. With the help of (6.25), they obey the relation

Sy, 5, (3) = (m 4y — 5", 1 (). (6.39)

Recalling (6.17), this also implies

31,]2 .J3 (‘;) (m + ’7[4})(7” + 4] — 2)¢j(‘:ilj)'2,j3 (5’) (6.40)

Finally, we can normalize these eigenfunctions as

(m) 1213
\Ijj17j2,j3 (5) = V2 w‘]l,jg,‘]g(_’) (6.41)
where
I(a+~ 1 if j1 = 2a,
= 72\/a'r(a +71)F[(2jz)+ 5 (6.42)
\/% if j1 =2a+1,
Db+ j1 + ) 1 if jo = 20,
BT\ BTG+ 45T (b + ﬁ]Jr o) bty vy (6:43)
2 b+ if jo = 2b+1,
F(C+]1—|—]2—|—’y ) 1 ifj3:2C,
B =M At T e ) = (6.44)
: 4 . . _
\/ﬁ if js = 2c+1,
so that
/53 W5T317j3 (5‘)\1}’(6711?162,163 (5)d5 = On,m0jy ey Ojo ez - (6.45)

This can be verified directly from the orthogonality relation of the Jacobi polynomials [2].

6.5. Conclusion

To sum up, we have introduced a new quantum superintegrable model with reflections on the
three-sphere. Its symmetries were given explicitly and were shown to realize a rank-two Bannai-
Ito algebra. It was observed that the model can be constructed through the combination of four
independent realizations of the superalgebra osp(1]2). A quadratic expression in the total sCasimir

operator was found to coincide with the Hamiltonian while the intermediate Casimir operators were
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seen to coincide with its symmetries. The exact solutions have been obtained by using a Cauchy-
Kovalevskaia extension theorem. We did not find many occurences of this remarkably simple
technique in the superintegrability literature and we trust it could find many other applications.
Furthermore, an interesting feature of this model is the appearance in a scalar model of the rank 2
Bannai-Ito algebra which arose as a particular case in the analysis of the Dirac-Dunkl equation [20].
One expects that the bivariate Bannai-Ito polynomials will arise as overlaps between wavefunctions
of this model separated in different hyperspherical coordinate systems. These polynomials have

never been identified so far and we aim to study this question in the near future.
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Chapitre 7

A superintegrable model with reflections on S" ! and the higher

rank Bannai-Ito algebra

H. de Bie, V.X. Genest, J.M. Lemay et L. Vinet (2017). A superintegrable model with reflections
on S" ! and the higher rank Bannai-Ito algebra. Journal of Physics A: Mathematical and
Theoretical 50 (19), 195202

Abstract. A quantum superintegrable model with reflections on the (n—1)-sphere is presented.
Its symmetry algebra is identified with the higher rank generalization of the Bannai-Ito algebra.
It is shown that the Hamiltonian of the system can be constructed from the tensor product of n
representations of the superalgebra osp(1]2) and that the superintegrability is naturally understood
in that setting. The separated solutions are obtained through the Fischer decomposition and a

Cauchy-Kovalevskaia extension theorem.

7.1. Introduction

This paper introduces a superintegrable model with reflections on the (n — 1)-sphere which has
the rank (n — 2)-Bannai-Ito algebra as its symmetry algebra.

Maximally superintegrable quantum Hamiltonians in n dimensions possess 2n — 1 algebraically
independent constants of motion (including H). Often interesting in their own right, these systems
form the bedrock for the analysis of symmetries and their study has witnessed significant advances
in recent years. Of note is the complete classification of all scalar superintegrable systems in two
dimensions whose conserved quantities are at most of order two in momenta [1, 2]. It shows that
(for Euclidean signature) all superintegrable systems in that class can be obtained as contractions
or special cases of the so-called generic model on the 2-sphere. This developped in parallel with

the study of non-linear algebras [3, 4] associated to the bispectrality of the orthogonal polynomials



of the Askey tableau [5]. These algebras are usually referred to by the name of the corresponding
polynomials.

Separated wavefunctions of the generic model are obtained as joint eigenfunctions of H and one
constant of motion. The overlaps between wavefunctions associated to the diagonalization of two
different generators are given in terms of Racah polynomials [6]. In view of this, it was somewhat
natural to find that the symmetry algebra of the generic scalar system on the 2-sphere is the Racah
algebra [7]. This was subsequently put into a cogent framework when it was observed that the
description of the generic model could be formulated via the recoupling of three s[(2) realizations
(8, 9, 10].

Superalgebras somehow subsumes Lie algebras. Indeed Lie algebras can be engendered as even
subalgebra of superalgebras from quadratic expressions in the odd generators of the latter. A
translation of this has appeared in the realm of superintegrable models. It has indeed been seen
[11] that by using reflection operators, a number of generic superintegrable models with different
constants can be combined together in a supersymmetric fashion to give a generalized Hamiltonian
whose symmetries form the Bannai-Ito algebra [12, 11]. This algebra associated to the Bannai-Ito
polynomials [13] has simple defining relations and arises upon considering the tensor product of
three osp(1]2) superalgebras [14, 15]. It has further been seen that the Racah algebra can be
embedded in the Bannai-Ito algebra by using quadratic polynomials in the generators of the latter
[16]. This model with reflection operator together with its symmetry algebra could thus be viewed
as more basic than the generic scalar one.

In the wake of the classification of two-dimensional systems, the exploration of higher dimen-
sional superintegrable models was undertaken. The generic model on the 3-sphere was shown to
be connected to the bivariate Racah polynomials [17]; the model with reflections on S® was also
constructed and analyzed [18]. Having in mind the recoupling framework for superintegrable mod-
els, it becomes clear that the search for the symmetry algebras of higher dimensional version of the
generic model amounts to the identification of the Bannai-Ito and Racah algebras of higher ranks.
Results in this direction have been obtained.

The higher rank Bannai-Ito algebra was first identified using the Dirac-Dunkl equation as model
[19]. It was subsequently constructed in [20] using n-fold products of osp(1|2). Similarly, the Racah
algebra was extended to arbitrary ranks in [21] by considering multiple tensor products of sl(2)
realized in terms of Dunkl operators. It was also observed [22] that the generators of this algebra
realize the Drinfeld-Kohno relations.

We now bring these advances to bear on superintegrable models by providing here the non-

relativistic Hamiltonian with reflections that has for symmetry algebra the higher rank Bannai-Ito

120



algebra recently discovered. We shall also show how these symmetries can be put to use in order
to obtain the wavefunctions of this quantum model.

The paper is divided as follows. In section 2, the model with n parameters on S" ! is introduced
and its symmetries are given. In section 3, it is shown how it is built out of n copies of the
superalgebra 0sp(1|2). This construction will lead to the identification of the symmetry algebra. The
wavefunctions are obtained in Section 4 using the Fischer decomposition and a Cauchy-Kovalevskaia
extension theorem. (It will be of interest to observe that such a theorem can also be devised in a
scalar situation outside the usual Clifford algebra context.) Some concluding remarks are offered

in section 5.

7.2. A superintegrable model on S"!

Let s1, so, ..., sy be the Cartesian coordinates of the n-dimensional Euclidean space and consider
the embedding of the S"~! sphere given by the constraint: 7 ; s? = 1. We shall be interested

in the system with n parameters pq, pg, ..., u, with g; > 0 for ¢ = 1,2,...,n governed by the

Hamiltonian
[
H= % J%Z;;(ui—m), (7.1)
1<i<j<n i=1 "1
where
1
Jij = g(siasj — 8j0s,), Rif(si) = f(=si), (7.2)

are the angular momentum operators and reflection operators, respectively. Denote by [n] the set

{1,2,3,...,n}. The quantities

1 ' A k—1
My = <— 5 + Z(% + ,UiRi) + Z (—Zij — Sk%Rj + Sj/:kRk) H Rl> H R, (7.3)
icA i<k J k I=j meA
J,keA
labelled by subsets A C [n] can be seen to commute with H and are thus conserved. Note that

when the set A contains only one element, say i, M; will be taken to be
Mi:Hia i:1,2,...,n. (74)

In view of their expression, the number of algebraically independent constant of motion M4 will cor-
respond to the number of independent generators of so(n) thus implying that H is superintegrable.

Furthermore, a direct computation shows that all reflections are also symmetries of H:

[H,R]=0, i=12...,n. (7.5)
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7.3. Algebraic construction from osp(1/2)

We shall now explain the relation that the Hamiltonian H has with osp(1]|2). This superalgebra
has 5 generators, two odd x and D and three even E,|z|? and D? which satisfy the commutation

relations:
{z,2} =2|z>, {D,D}=2D?
{x,D}=2E, [D,E]=D,
D, |z =2z, [E,2] ==, (7.6)
[D?,2] =2D, [D? E]=2D?
(D2, |2]*) = 4B, [E,|z|’] = 2|,

where [a,b] = ab — ba is the commutator and {a,b} = ab + ba is the anti-commutator. One can

realize mutually commuting copies of this superalgebra by taking

D; =08, — ™R, D?=D;D;,
S

T = i, ji[* = 57, (7.7)
1
E; = 5,05, + >
where ¢ = 1,2,...,n. Each superalgebra possesses a sCasimir element given by
1
Si = 5([Di733i] —-1), (7.8)

which anticommutes with the odd generators
{Si, Di} = {Si, i} =0, (7.9)

and thus commutes with the even generators
[Si, Ei] = [Si, |if*] = [Si, DF) = 0. (7.10)

It is immediate to verify that in the realization (7.7), the reflection R; obeys the same commutation

relations as the sCasimir
[Ri, Ei] = [Ri, |xi|*] = [Ri, D}] = {Ry, Di} = {Ri, x;} = 0. (7.11)
This implies that one can construct a Casimir operator of the form

Qi = SiR;. (7.12)
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It is straightforward to verify that ; indeed commutes with every generator. The commuting
realizations of 0sp(1|2) can be used as building blocks to construct other realizations. Let [n] =

{1,2,...,n} and A C [n] as before. The operators given by

Da=Y (D ﬁRj), D% = DaDy,

€A j=1
i—1
A=) (Si 11 Rj), zal? =" st (7.13)
i€A - j=1 i€A
Ea=)_E; Ra= ] R,
i€A €A

verify the commutation relations (7.6) for any A C [n] and thus form new realizations of osp(1|2).
These result from the repeated application of the coproduct of asp(1]2) (see [19]). For any A the

sCasimir and the Casimir operators are again defined by
1
SA:§([DA,xA]—1), Qa=SaR,. (7.14)
One can directly check that
Qa= My,  AC|n] (7.15)

Another explicit computation gives

R R ) J5+<le%>2“;<m—m>. (7.16)

1<i<j<n i=1 7t

However, since ]:U[n]|2 =", s? commutes with S[n) and all the Casimirs, it is central and can be

treated as a constant. Taking |3:[n]|2 =1, it is straightforward to see from (7.1) and (7.16) that

> (n—1)(n—3)

Hence, a quadratic combination of the sCasimir of n copies of 0sp(1|2) yields the Hamiltonian of
the superintegrable model presented in section 1 and the osp(1]|2) Casimirs Q4 will be its sym-
metries since [Qa4, H] = 0 for A C [n] in view of (7.17). This makes the Bannai-Ito algebra the
symmetry algebra of the model since it is precisely defined as the algebra generated by the osp(1]2)
intermediate Casimir operators Q4 given by (7.13) and (7.14). The defining relations have been
obtained [19] and read:

{Q4,QB} = Quaus)\ (anB) + 2QAnBQAUB + 2Q 4\(anB)@B\(ANB) (7.18)
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where A,B C [n] and Q@ = —1/2. When n = 3, let K1 = Q{LQ},KQ = Q{Q’g} and K3 = Q{173}.

The recurrence relations (7.18) can then be rewritten as
{K1, K2} = K3 +ws, {Ka K3} =Ky +w, {K3 Ki}=Ks+uws, (7.19)
where w1, ws,ws are central elements given by

w1 = 2Q3Q123 +2Q1Q2, w2 =2Q1Q123 +2Q2Q3, w3 = 2Q2Q123 +2Q1Q3. (7.20)

This corresponds to the Bannai-Ito algebra already seen [15] to be the symmetry algebra of the S?

version of the Hamiltonian H given in (7.1).

7.4. Wavefunctions

We shall indicate in this section how the separated wavefunctions of H can be obtained by
exploiting the symmetries that have been exhibited. To that end we shall design in this scalar
context an extension map of the Cauchy-Kowalevskaia type that is formulated in terms of Dunkl

operators. In order to make these operators appear we shall first perform the gauge transformation

n
2= 2=G(5)2G(5), G =] s, (7.21)
i=1
where z is any operator and § = (s1, s2, ..., sp). Under this transformation, the osp(1]2) generators

of the realization (7.7) become

Ez :(951 —|—%<1—RZ), DZQ :DzDza
i
.fi:.m:SZ', ‘i’l| :S?,
(7.22)
Ei = Siasi + Vi, RZ R’Lv
SA - _MZRM Q’l Hi,
where
va=> (i +3). (7.23)
i€A

These operators also verify (7.6) and correspond to the realization of osp(1]2) (or equivalently of
sl_1(2)) associated to the one-dimensional parabose oscillator [23]. The construction (7.13) can be
repeated to obtain operators D4, Za, E4,S4 and Q4 that are gauge equivalent to those without
tildes. We can hence obtain the eigenvalues and eigenfunctions of H by finding those of S’[n]. Note

that since S[n} commutes with P = [[i*; R;, this is equivalent to finding the eigenfunctions of Q[n}.
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We now wish to obtain the polynomial eigenfunctions of g[n}. Denote by P,,(R™) the space of

homogeneous polynomials of degree m in the variables s1, s9, ..., s, and define ,,,(R™) by
Km(R™) = ker Dp,; N P (R™) (7.24)

with ker f)[n] the set of null-eigenfunctions of f)[n]. Km(R™) is an eigenspace of S’[n]. Indeed, take
Ym € Kin(R™), one has

N[ —=

(D) Zin) = ) D) — D¥m = 5(DpZn) — 1)om

(D) E(n] + 1D[n Vb = 5({Fpn)s Dy} = Db

(el

SV[n]d’;m =

|
[l

i=1
where we used the property D[n]ﬁm = 0 and the commutation relations (7.6). Since U is a
homogeneous polynomial of degree m, it is an eigenfunction of the Euler operator : "1 ; 5;0s, U =

mpy,. This implies that
Spg¥m = (M + V) — 3)¥m (7.25)

and concludes our proof.

Our aim is thus to construct a basis for IC,,, (R™). This will be done by relying on two constructs.
One is a Cauchy-Kovalevskaia (CK)-map between the space of homogeneous polynomials of degree
m in n — 1 variables P,,(R"™!) and the space K,,(R") of null-eigenfunctions of D[n} that are

homogeneous polynomials of degree m in n variables:
CK!" : P (R™1) — K (R™). (7.26)
To construct explicitly the map CK!™ take p(si,...,Sp—1) € Pmn(R"™!) and let

CKL [p(s1,.. .5 8n—1)] = Z $ODa(81, -y Sn_1), (7.27)

where po(51,...,80-1) € Pm—o(R" ™) and po(s1,...,80-1) = p(s1,...,5,_1). Demand that

D[n} Z Sgpa(sb SR Sn—l) =0 (728)
a=0
and solve for the coefficients p,(s1,...,sn—1). A straightforward calculation yields
o~ (=1)'(s0)* 9 z+1( n) 241
CKir = 7D ot Ry, D¥tL 7.29
n Zzg i(7n)i(2)2 -1] Z ()41 (2) 2 [n—1]"n—1] ( )

where (a); = a(a+1)...(a + i — 1) denotes the Pochhammer symbol. It can be shown that the

resulting map is an isomorphism (the proof follows the one given in [21]).
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The second construct is the Fisher decomposition which states that the space of homogeneous
polynomials Py, (R™) can be decomposed over spaces K;(R"™) as follows :

m

=P, Km i (R). (7.30)

Jj=0

(This is analogous to the decomposition of P,,(R™) over spaces of spherical harmonics.) Upon using
in alternance the Fisher decomposition and the CK map, one shows that the space K,,(R™) can be

represented as follows :

m

Km(R") = CKl[ @) 3 2CKl |- EB K [Py (R)] ] (7.31)

Sn—1

Jn—2=0 Jj1=0

This implies that a basis for &,,(R™) is provided by the eigenfunctions {wjl j 1(§')}Zn =
sJn— 1 Ji=
given by

G, (8) = CKEy [0 CKEn [ CKE [s]']] . (7.32)

Different bases are obtained by permuting the order in which the CK-extensions are applied. This
leads to explicit formulas. The calculation that (7.32) entails can be carried out straightforwardly

with the help of the identities with 1), € Ky (R")

DEEdm = 22 (=B)a(l = m — B = Yoy Prms
DigEi  m = 2 (=Bal=m — B — oz P,
Ry Dpyta 2me——22°‘5( —Ba(l=m - — V[n])ax[] Ry tm,

Ry DY a 2B+1wm 22T (—B)a(m + B+ ) (1 —m — B — ’Yw)ax[ | By,

(7.33)

which follows from (7.6). The results can be presented in terms of the Jacobi polynomials p{*?) ()

defined as [5]

PP () = (04—71;!1)7L2F1 {—n, n;_j j_ ot 1; ! ; m} (7.34)
and with the help of the identity :
(z +y)" PP (m - z> _ e Z!l)” 2"y Fy {_"’a_ﬁl_ A, —Z] . (7.35)
One obtains
B 5 (3) = PuP L PyQj (s1,5), (7.36)
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where Py is an operator depending on the k variables si,...,s; and on the k£ — 1 parameters
15+, Jk—1 which is given by

c! k ‘
e

(’Yk:)c i—1

(Ve=Ld—2) Y k—11—1) (s§+---+s§,fs}i

('ka]k 2 HV k1)) (s34 +si_—st
S?+“-+Si_1+8i) + 2+ +S o oo e | Ty B

¢ S3tets?_ +s2
if jr—1 = 2¢,
X
PO (e Yoy e D (o oy
if jp_1=2¢c+1
with

Jim) = D Ji (7.37)
i=1
and where @, (s1,s2) is the function

(v2—1,91—1)(s1—5 515 (v2:1) [ $2—s2 e -
0| PR s e nE () -

m(S% + 83)" x

s PO 1m) (Zl+zz) — sy PR (1T2) if j1 = 2a + 1.

Qj1 (Sla 52) =

Note that the expressions for P contain the operators Zj,_1) and Rj;_y) respectively. Recalling
the expressions (7.22) and (7.13), it can be seen that these operators only involve the variables s;
and the reflection operators R; with ¢ = 1,...,k — 1. These reflections conveniently account for
signs occuring in the solutions and prevent the need to give different expressions for each parity
combination of the parameters ji,j2,. .., jn_1-

By effecting the reverse gauge transformation, we thus obtain a basis for the eigenspace of the

operator S, given by

Y @ =0 (BGEA), (7.38)

where m =0,1,... and ji + - + jn,—1 = m. Given (7.25), they obey the relation

Sl 5 (3 = (m g — HeS™ (@), (7.39)

Recalling (7.17), this is seen to imply that

3 50y () = (m ) 0+ 31 = 20575, (). (7.40)
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The normalized eigenfunctions are given by

v @) (H m) P (3), (7.41)

where
T(a+ 1 if j1 = 2a,
Vi = (72)a\/a,r(ai );[(QC]L)JF ;X (7.42)
! 71 72 Ziﬁ if j1 =2a+1,
T(c+ jin_ol + Vin 1 if jn—1 = 2c,
T = (%)CJ c'F(C-i-’i )Fgc[ +2]]'[ Z][ j-)V[ 1)) ) T (7.43)
! ! C+j[n72]7:ﬂ/[n71] i jn—1 =2c+1,
so that
/,;’nfl \I/g':/ v]n 1 (g‘)\Ilkly , -1 (g‘)dg: 6m7m/6j17k1 e 5.jn71»k'n71 : (744)

This can be verified directly from the orthogonality relation of the Jacobi polynomials [5].

7.5. Conclusion

To sum up, we have introduced a new quantum superintegrable model with reflections on
the (n — 1)-sphere. Its symmetries were given explicitly and shown to realize the higher rank
generalization of the Bannai-Ito algebra. It was observed that the model can be constructed through
the combination of n independent realizations of the superalgebra osp(1|2). A quadratic expression
in the total sCasimir operator was found to coincide with the Hamiltonian while the intermediate
Casimir operators were seen to form its symmetries. The exact solutions have been obtained by
using a Cauchy-Kovalevskaia extension theorem.

In keeping with the 2-dimensional picture [11] the overlap between wavefunctions associated to
different maximal Abelian subalgebras [19] of the Bannai-Ito algebra will be expressed in terms of
multivariate Bannai-Ito polynomials that we plan to characterize in the near future.

We have stressed that the Hamiltonian H with reflections on S™~! actually commutes with all
reflection operators and that these can hence be diagonalized simultaneously with H. In each of
the sectors with definite parity, H reduces to a scalar Hamiltonian that extends to S™~! the generic
model on S? known to have the Racah algebra as symmetry algebra. It was shown in [21] that
these scalar models on S”~! admit the (more involved) higher rank Racah algebra identified in
the same article as the algebra generated by intermediate Casimir operators in the n-fold tensor
product of realizations of s[(2). This indicates that, as in the rank 1 case [16], there is an embedding

of the Racah algebra in the Bannai-Ito one for higher ranks also. This rests on the fact that the
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s[(2) (intermediate) Casimir operators are quadratic expressions that are reflection invariant in the
(intermediate) Casimir operators of osp(1|2). Details will be given elsewhere.

While in two dimensions, all scalar second order superintegrable models (with Euclidean sig-
nature) can be obtained from the generic model, this is obviously not so in higher dimensions. We
have here provided a superintegrable multidimensional version with reflections of the master model
in two dimensions; There are however other known superintegrable models in arbitrary dimensions
that do not derive from the one discussed here. Of particuliar interest are the rational Calogero
models which are formulated in terms of Dunkl and reflection operators especially when distin-
guishable particles are considered. These models are superintegrable and their symmetries have
been much studied. (See for instance [24, 25] among the many references on this topic.) We intend
to revisit the rational Calogero model with the perspective on superintegrable systems brought in

this paper.
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Chapitre 8

Convolution identities for Dunkl orthogonal polynomials

from the osp(1]|2) Lie superalgebra

E. Koelink, J.M. Lemay et L. Vinet (2019). Convolution identities for Dunkl orthogonal polyno-
mials from the osp(1]2) Lie superalgebra. Journal of Mathematical Physics 60 (9), 091701

Abstract. New convolution identities for orthogonal polynomials belonging to the ¢ = —1
analog of the Askey-scheme are obtained. A specialization of the Chihara polynomials will play a
central role as the eigenfunctions of a special element of the Lie superalgebra osp(1|2) in the positive
discrete series representation. Using the Clebsch-Gordan coefficients, a convolution identity for the
Specialized Chihara, the dual -1 Hahn and the Big -1 Jacobi polynomials is found. Using the
Racah coefficients, a convolution identity for the Big -1 Jacobi and the Bannai-Ito polynomials is
found. Finally, these results are applied to construct a bilinear generating function for the Big -1

Jacobi polynomials.

8.1. Introduction

In [1], Granovskii and Zhedanov proposed an approach to obtain convolution identities for or-
thogonal polynomials of the Askey-scheme through algebraic methods. The main idea is to study
a self-adjoint element of a Lie algebra which corresponds to a recurrence operator diagonalized by
orthogonal polynomials in a suitable representation. In the tensor product of representations, the
Clebsch-Gordan decomposition and the Racah recoupling can then be used to relate polynomial
eigenfunctions in two different bases to arrive at convolution identities. Van der Jeugt [2] expanded
on this idea to obtain generalizations of some classical convolution identities for the Laguerre and

Hermite polynomials. One of the authors then joined Van der Jeugt [3] to exploit this approach



further and obtain convolution identities for the Meixner-Pollaczek, the Hahn and the Jacobi poly-
nomials and their descendants with su(1, 1) as the underlying Lie algebra and also for the Al-Salam
Chihara, g-Racah and Askey-Wilson polynomials using the quantized analog U,(su(1,1)). Two
subsequent papers [4, 5] extended this work and derived generating functions and Poisson kernels
for some involved polynomials by using differential realizations of the discrete series representations
of su(1,1) and its g-generalization.

The main goal of this paper is to use this construction to obtain convolution identities
for orthogonal polynomials belonging to the Bannai-Ito scheme of -1 orthogonal polynomials
[6, 7, 8 9, 10, 11, 12]. These polynomials arise as the ¢ = —1 limits of families belonging
to the Askey tableau of g-orthogonal polynomials [13]. More precisely, most of its polynomials are
defined by ¢ — —1 limits of the Askey-Wilson polynomials and its descendants. The -1 orthogo-
nal polynomials are eigenfunctions of Dunkl operators [14] which involve the reflexion operator R
defined by Rf(x) = f(—=z) [15, 16]. For this reason, they are also called Dunkl orthogonal polyno-
mials. The first example of such polynomials was introduced by Bannai and Ito as a ¢ — —1 limit
of the g-Racah polynomials in the classification of a category of association scheme [6]. They have
since been fully characterized [8] and have appeared in various context : superintegrable systems
[17, 18, 19] and the transport of quantum information [20, 21, 11] for example. The Lie super-
algebra osp(1|2), sometimes referred to as sl_1(2), has been found to provide a fruitful algebraic
underpinning for a number of -1 polynomials [22, 23, 24]. In particular, the Clebsch-Gordan
coefficients of 0sp(1]|2) can be expressed in terms of dual —1 Hahn polynomials [25] and the Racah
coefficients in terms of Bannai-Ito polynomials [26]. These two results are essential ingredients of
the main results of this paper : the convolution identities given in propositions 8.4 and 8.7. The
former relates the Specialized Chihara, the dual —1 Hahn and the Big —1 Jacobi polynomials and
the latter connects the Big —1 Jacobi and the Bannai-Ito polynomials. These results can also be
interpreted in another interesting way. They give connection coefficients for different two-variables
polynomials orthogonal with respect to the same measure. This is an interesting feature as the
extension to multiple variables of the Bannai-Ito scheme is in its early stages [27, 28, 29]. It is
also quite remarkable to have a framework relating so many Dunkl orthogonal polynomials. As
additional results, we obtain a generating function for the Specialized Chihara polynomials and
follow an approach similar to the one used in [4] to obtain a bilinear generating function for the
Big -1 Jacobi polynomials. The discussion in section 5 indicates that the results of [5] can be gen-
eralized to Lie superalgebra representations; the complexity of the outcome will however increase

considerably.
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The paper is structured as follows. The properties of the relevant —1 orthogonal polynomials
are surveyed in section 2 and section 3 is dedicated to a review of the superalgebra osp(1]2) and its
Clebsch-Gordan and Racah coefficients. We proceed in section 4 to the construction of convolution
identities. A self-adjoint element of 0sp(1|2) is introduced and its generalized eigenvectors in the
positive discrete series representation are obtained. Looking at the tensor product of irreducible
representations, the Clebsch-Gordan coefficients are used to construct a first convolution identity.
Next, the three-fold tensor product and the Racah coefficients are considered to obtain a second
convolution identity. In section 5, we present a first application of these results and derive a bilinear
generating function for the Big —1 Jacobi polynomials. Finally, some closing remarks are given in

the conclusion.

8.2. Review of Dunkl orthogononal polynomials

The results we present in this paper have the notable feature of connecting various orthogonal
polynomials from the Bannai-Ito scheme together. The families involved are the Specialized Chihara
polynomials P, (A; 4, 7), the Big —1 Jacobi polynomials J,(x; a, b, ¢), the dual -1 Hahn polynomials
R, (x;n,&, N) and finally the Bannai-Ito polynomials By, (z; p1, p2,71,72). We review in this section
some of their properties while etablishing the notation that will be used throughout this paper.

8.2.1. Specialized Chihara polynomials

A one-parameter extension of the generalized Hermite polynomials was introduced in [12] as
a special case of the Chihara polynomials which both sit in the ¢ = —1 analog of the Askey
scheme. We present some of their properties here with a different normalization and a different
notation. For simplicity, we name them the Specialized Chihara polynomials and denote them by

Pp(A;p,v) = Pp(N). They satisfy the 3-term recurrence relation
AP,(N) = [0+ 1,2 P () + 7 (=1)"Pa(N) + [0],* Paca (V) (8.1)

where [n], = n+ (1 — (=1)")u denotes the p-number. The Specialized Chihara polynomials can

be expressed in terms of Laguerre polynomials in the following way :

n! T(u+ 4 1y (A2 42
Pon(Xp,7) = (=1)" et a) ped (7 )

Tin+u+3) 2
Y (8.2)
N B N s N R AN N P
Pony1( A p,y) = (—1) T(n+p+ %) (\/m) Ln 2 ’
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where the Laguerre polynomials are given in terms of the usual hypergeometric function

L§ﬁ> () = (a—;!l)n 1F1 L[_fl;x] (8.3)

with (a), = a(a+1)...(a +n — 1) denoting the Pochhammer symbol. The Specialized Chihara

polynomials satisfy the orthogonality relation

[ Pa )P (0wt 1)dA = 201+ D)o (8.9

where F' = (—o0, —|y] ) U ( |y],00) and the weight function is given by

2 2\ M3 [(a2-42
w()\,u,'y):sign()\)()\—i—'y)()\ 27> e ( 2 ) (8.5)

This result can easily be verified from the orthogonality of the Chihara polynomials or from that of
the Laguerre polynomials. They satisfy also a specialization of the differential-difference equation

obeyed by the Chihara polynomials.

8.2.2. The Big -1 Jacobi polynomials

We now review some of the properties of the Big —1 Jacobi polynomials which shall be needed
in the following. Denoted by J,(z;a,b, c), these polynomials are also part of the ¢ = —1 analog of
the Askey scheme and were introduced in [9] as a ¢ — —1 limit of the Big g-Jacobi polynomials.

They are defined by

n ntatbdb42 n ntatb42
— 95 . 17"22 n 1727 1_77 2 . 717$2
2F1[ 2 a+12 : 1_62] + (1+(c)(a+)1) 2F1[ 2 L+32 ; 1—02}’ n even,
) 2
Jp(x;a,b,c) =
n( (et ] ) _n—1 ntatbtl a2 (n+atb+1)(1—z) _n—1 ntatb43 1—a2
) . —X — I . —X
2F’1|: 2 at1 2 ; 1_62:| — (1+C)(a+1) 2F1 I: 2 ats 2 ) 1_62:|7 n Odd7
5 2
(8.6)

where o F} is the standard Gauss hypergeometric function. We shall simply write J,(z) instead of

Jn(x;a,b, c) when the parameters are clear from the context. They satisfy the recurrence relation
xJn(z) = Ay Jnt1(x) + (1 — A, — Cp) Jn(z) + Cp Jn—1 (),

with coeflicients

(n+a+1)(c+1) n(l—c)

Intatbra n even, ntath’ n even,
An = Cn =
(1—c)(n+a+b+1) (n+b)(1+c)
mtatbiz s M odd, teth M odd.

It can be seen that for a,b > —1 and |c¢| # 1 the polynomials J,(z) are positive-definite. The

orthogonality relation of the Big —1 Jacobi polynomials is different for |¢| < 1 and |¢| > 1. In what
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follows, we only need the polynomials for the first case. For |c| < 1, one has

a+b+2
2

(1-c?

JRACTACEACTAR <w;a7b=c>dm’:[<1+0>

] hn(a,b) 6nm, (8.7)

where the interval is C = (=1, —|c| ) U ( |¢|,1) and the weight function reads

b— a—1

w(x;a,b,c) = sign(x) (1 + ) (x —¢) (z* — 02) (1—2?)"7. (8.8)
The normalization factor h,, is given by
2 F(n+b+1) (n+a+d)(£)
(nta+1) F(”*““’“)(%Q)Q@ ’ reven
hafab) = (22 o, 2y (252) (8.9)
2~ nodd.

e ey
2

The orthogonality relation for |¢| > 1 and a difference equation can be found in [9].

8.2.3. The dual -1 Hahn polynomials

We now introduce a third family of orthogonal polynomials. The dual -1 Hahn polynomials,
denoted by R, (x;n,&, N) or R, (x), depends on two real parameters 7, £ and on an integer parameter
N. They have been introduced in [11] as a ¢ — —1 limit of the dual ¢-Hahn polynomials. They
have found applications in the transport of quantum information along spin chains [20] and, of
importance here, they have also been shown to arise as the Clebsch-Gordan coefficients of the Lie

superalgebra osp(1]2) [25]. They satisfy the 3-term recurrence relation
TRy (z) = Ryy1(x) + ((=1)" 126 + (=1)V2n) — 1) Ry (@) + 4[n)¢[N — n + 1], Rp—1(z).  (8.10)

They can be expressed as follows in terms of hypergeometric series. For N even, we have

n ) n even,
2 2 - 2
Rn(ff»nava) - o ne1 6+L+1 SiLH
16 (1-4), , (232), 1(56+2n+2£+1)3F2[ 270 1l v T i1, modd
2 2 2
where § = —w and, for N odd, we have
n _0 gl 5 ztl
162 (1_2 )2 (252“)2 3F2[ ? 171\74 2¢+1 * ;1], n even,
Ry (w;n,&,N) = ’ ’ 27
243 e wa
16 (TN)LA ( 2 )n 1 (:L’—i—Qf 277+1)3F2|: 1-N 2¢+3 i1, n odd,
2 2 2 2
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where § = %&1 The dual -1 Hahn polynomials are orthogonal with respect to the discrete

measure

N
Zws(n>£7 N)Rn(ysa 777’5? N)Rm(ys>na€a N) = Vn(nvé.a N)(Sn,m
s=0

with the following grid points :

(—1)%(2s — 2 — 26 — 2N — 1),
Ys =
(=1)*(2s +2n+ 26 + 1),

N even,

N odd.

For N even, the weights and normalization factors are given by

(), (FF i), (N0
e G PSR A /
(n,&,N) = (-5 -e+a), (5 -n-9),
T - 1 (_%> st1 (_% —n+ %) s—1 (—N—T}—f)%
(—1)7 2 2 ) s odd,
%%_%_f‘k%)s? (_%_77_ )542'1
16" 5! (_%)g ¢+ %)g (7N722n+1)g ((1]\;[2277&&1);ZY ’ even,
N
Va1, €, N) = SN
2 N
2
whileas for V odd, the weights and normalization factors are given by
(), (6+3), m+e+);
—1)2 ” 2 T L—i?} ) s even,
. 2.(n+2)%( ] +n+§)§
R I € W (S S PR U R o
(-1)7= s—1 ) 1 ]\? 3 ’ s odd,
T!(”‘Fi)sgl (%+n+f)%
vn(n,§,N) = (n+E+1) N1
—16" %‘(%)% (§+%)"T“ (‘%‘U),%l Wa n odd.
For future convenience, we introduce
= (e 264, e ) = | e N e
ws(n, & N), N odd
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which corresponds to the grid points and weights of the dual —1 Hahn polynomials with the indices

reversed when N is even but not when NV is odd.

8.2.4. The Bannai-Ito polynomials

We finally present a last family of orthogonal polynomials called the Bannai-Ito polynomials.
They were originally discovered by Bannai and Ito [6] in their classification of P— and Q— poly-
nomials association scheme which are in correspondance with orthogonal polynomials satisfying
the Leonard duality property. In this original setting, they were observed to be ¢ — —1 limit of
the g-Racah polynomials. They have also been shown to correspond to a ¢ — —1 limit of the
Askey-Wilson polynomials [8]. The Bannai-Ito polynomials occur in a Bochner-type theorem for
first order Dunkl difference operators [8] that has them at the top of the ¢ = —1 analog of the
g-Askey tableau. Of particular relevance to this paper, they are the Racah coefficients for the Lie
superalgebra osp(1]2) [26].

The monic Bannai-Ito polynomials B, (x; p1, p2,71,72), or By (z) for short, depend on 4 param-

eters pi, p2, 71,72 and the linear combination
g=p1+p2—r1—T2 (8.18)

They are symmetric with respect to the Zy x Zso group transformations generated by p; <> p2 and

r1 <> ro. Throughout this section, it will be convenient to write integers as follows
n = 2ne + ny, ny, € {0,1}, mn,n. e N. (8.19)

The Bannai-Ito polynomials can be defined in terms of two hypergeometric functions

1 —Ne, Ne+9+1, :trfrlJrl, 7:tfr1+l
— Bu(x; p1, p2,71,72) = 4F3 ? 1

Min 1—-r1—7ro, /31—1“1-5-%7 p2—T1+%

(8.20)

(=)™ (netnptgnp)(z—r1+1)

—ne—np+1, ne+np+g+1, xfr1+%, f:pfrlJr% 1
(=rit3) (- 3) |

_l’_

4F3{

1—r1—7r2, P1*T‘1+%, ,02*7“1+%
with the normalization coefficients

n (pl | + %)ne‘i‘np(pz | + %)ne+np(]‘ -7 — T2)ne
(ne +g+ 1)ne+np .

M= (—1) (8.21)

It is also possible to express the Bannai-Ito polynomials as a linear combination of two Wilson
polynomials [8].

The B,,(z) satisfy the 3-term recurrence relation

2B (2) = Bpa1(2) + (pr — An — Cn)Bn(@) + An_1CpBn_1(x), (8.22)
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with the initial conditions B_1(z) = 0 and By(z) = 1. The recurrence coefficients A,, and C,, are

given by
(n+2p1 —2r1 +1)(n+2p1 — 2r9 + 1)7 1 even,
A 4in+g+1)
") (n 29+ 1)(n+2p1 +2pp + 1) - odd
4(n+g+1) ’ ’
(8.23)
n(n —2r; — 2rg)
— , n even,
4(n+g)
C, =
(n+2p2 — 2r9)(n + 2py — 2r1)
— , n odd.
4(n+g)

Favard’s theorem states that these polynomials will be orthogonal only if they satisfy the positivity
conditions u, = A,_1C, > 0. Since this cannot be achieved for all n € N, the parameters must

verify a truncation condition of the form
Ug = UN+1 = 0. (824)

The integer N is called the truncation parameter.
If these conditions are fulfilled, the Bannai-Ito polynomials B, (z) satisfy the discrete orthogo-

nality relation

N
Z wi B (2k) B (k) = hnlnm, (8.25)
k=0

with respect to a positive set of weights wy. The orthogonality grid x; corresponds to the simple
roots of the characteristic polynomial By1(z). The explicit formulas for the weight function wy,
and the grid points z; depend on the parity of N and more explicitly on the realization of the
truncation condition uxy1 = 0.

If N is even, it follows from (8.23) that the condition uy;; = 0 is tantamount to one of the

following requirements associated to all possible values of j and ¢ :

. N+1 .
Z) T’j —pPL= T? j7€ € {172} (826)

Note that the four possibilities coming from the choices of j and ¢ are equivalent since the polyno-
mials B, (x) are invariant under the exchanges p <> p2 and r1 <> ra.

If N is odd, it follows from (8.23) that the condition un4+1 = 0 is equivalent to one of the
following restrictions:

N+1
2 )

N+1

N +1
2 7 '

i) p1+ p2 = — i) T+ 1o = w) p1+pr—r1—T0 = — 5 (8.27)
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In this paper, we shall only be concerned with the truncation conditions ro — p; = % when N is

_ N1
2

even and pj + p2 = when N is odd. In these cases, the grid points have the expression

zp = (—1)*(k/2+ p1 +1/4) — 1/4, (8.28)

for k=0,..., N and using (8.19) the weights take the form

(=) (pr =71+ 1/2)kesk, (p1 — 72 + 1/2)kee 1k, (p1 + p2 + V)i (201 + 1),
ke! (P14 714 1/2) ke, (P2 + 72+ 1/2) gk, (P1 — p2 4 Dk

where (a), = a(a +1)---(a +n — 1) denotes the Pochhammer symbol. When N is even, the

wy, = , (8.29)

normalization factors are given by
. ne! Ne!(1 + 2P1)Ne(1 +p1 + p2)n, (1 +ne + 9>Ne—ne(% +p1 — "”l)ne—i-np(% + p2 — Tl)ne+np
" (Ne — e — np)!(% +p1+ Tl)Ne—ne(% + Ne +np + p2 — TZ)NE—ne—np(l +n+ 9)721e+np
(8.30)

and, for NV odd, they are instead given by
_ ne! Nel(1+ 2p1) N, +1(1—71 _T2)ne(1+ne+g)Ne+1—ne(%"‘pl _Tl)ne+np(%+P1_7"2)ne+np
(Ne=ne)!(5 + p1 +T1)Net1-ne—n, (3 + Me + 1 + p2 = T2) Ne1-ne—n, (L+ 10+ 91 i,
(8.31)

n

The Bannai-Ito polynomials also verify a difference equation. It was shown in [8] that in fact
they diagonalize the most general first order Dunkl difference operator with orthogonal polynomials
as eigenfunctions.

8.3. The o0sp(1|2) Lie Superalgebra

This section describes the key entity upon which our study rests namely the Lie superalgebra
osp(1]2). This superalgebra possesses one even generator Jy and two odd generators Ji. The

Zo-grading will be encoded with the help of an involution operator R. The defining relations are
[Jo, Ju] = +Jx, {Jy,J }=2Jo, [R,Jo)]={R,J:} =0, R*=1 (8.32)

where [A, B] = AB — BA and {A, B} = AB + BA are the usual commutator and anticommutator.

There is a Casimir operator
Q=(JJ-—Jo+ 3R (8.33)

which commutes with all the generators. Moreover, o0sp(1]2) also admits a Hopf algebra structure.
In particular, there is an algebra morphism called the coproduct defined on the universal enveloping

algebra A : U(osp(1|2)) — U(osp(1]2)) @ U(osp(1]2)) which acts as follows

A(Jy)=J: ®R+1®Js, A(J)=Jo®1+1®Jy, AR)=R®R (8.34)
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and a *-structure given by Ji = J+,Jj = Jg and R* = R. The Hilbert space (*(Z) equipped
with the orthonormal basis e% ’5), n=0,1,... supports irreducible representations (u, €) of osp(1]2)
indexed by two parameters u > 0 and € = £1 :

I = (ke Delpd, R = e(-1yefp),

(8.35)
JoelB) = [+ 120 ) = [/

nocn

where [n], =n+ (1 — (=1)")u denotes again the y-number. It is called the positive discrete series
representation and the decomposition into irreducible components of the tensor product of two such
representations is given by

oo

(11, €1) ® (p2, €2) @ (#1 + p2 + 5+ J, 6162(—1)j> : (8.36)

This Clebsch-Gordan decomposition series implies that there is a unitary transformation between

the direct product and direct sum bases of the representations involved :

N N T 50
ni+na=N+j
where
M12::U’1+M2+j+%’ 61226162(—1)j, j:071,2,... (838)

The Clebsch-Gordan coefficients of osp(1]2) are given in terms of the dual -1 Hahn polynomials
[25] by

' (*1)¢(n1’n2’j) [n2],! pj(p2, p1, n1+n2)
i = [n1] v Ry, (zj; p2, 1, m1 +n2)  (8.39)

mn2 T (2e9)™ n1+ nalu,! vo(pe, g1, n1+ na)

with the p-factorial defined by [n],! = [1],[2], ... [n].. Here, we fix the phase factors to be

d(n1,na, §) = "1(”;_ D j(j; D +ny(n1 +ns + 1). (8.40)

The Clebsch-Gordan decomposition can also be used to recouple the multiple tensor product of
irreducible representations in a pairwise fashion. For instance, when considering the three-fold
tensor product (p1,€1) ® (2, €2) @ (13, €3) there are two standard ways of doing this. On the one
hand, one can decompose the first two spaces into irreducible representations, and then couple the
resulting spaces with the third component :

o0

(1, €1) @ (p2, €2) ® (s, e3) = €D (112, €12) ® (3, €3) EB @ (1123, €123). (8.41)
J12=0 J12=0j(12)5=0
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On the other hand, it is possible to combine the last two spaces first and to bring in the first

component subsequently :

o
(11, €1) @ (p2, €2) ® (s, e3) = €D (p1,€1) © (pa3, €23) @ @ (1123, €123). (8.42)
J23=0 J23=0J1(23)=0

Focusing on the parameters pu, the following relations stem from the repeated use of (8.38) :

p123 = p1 + p2 + pz + 1+ Ji2s, (8.43)
= 2 + 413 + J12)3 (8.44)
= p1 + p23 + Ji(23) (8.45)
and
p12 = p1 + p2 + iz, po3 = p2 + p3 + jo3- (8.46)

Analogous relations can be found for the parameters €. These equations imply that the five decom-

position integers j are constrained :
J123 = Ji23) + J23 = J(12)3 + J12- (8.47)

While only three decomposition integers are independent, it will be convenient to use all five to
simplify the notation especially when dealing with indices. Now, to each of the two decomposition

schemes one can associate a basis. To the scheme (8.41) corresponds

1 i n123:](12)3 € €
123,J12 — H12,€12 13,€3
'}71123 2 = Z ni2,n3 '$7,12 ) ® 6( ) (848)
ni2+n3
- n123,3(12)3 yn1a,j12 (1€l p2,€2) (p3,€3
- Z Z CTL127 Cn1 ng 67(11 ) ® e’s'LQ ® eng ) (849)

ni2+n3 ni+n2

where the sums run over nia3 + ji123 = ni2 + ng, ni12 + ji2 = n1 + ng and to (8.42), the basis

193,505 n123,j1(23) 1,€1 23,€23
gn1122i = Z n1,n23 egﬁ ) ® 6%3 : (8'50)
ni1+n23
n 37]
_ Z Z n11,2n231 23)022237%23 e(”l’ﬂ) ® e(u2762) ® e(”3’63) (8.51)

n1+n23 n2+ns3

where ni23 4+ ji23 = n1 + neg and ngg + jo3 = no + n3. The connection coefficients for these two

bases are called the Racah coefficients. Explicitly,

J123
J123,J12 _ Z H1,42,13 J123,523
n123 - RJ12,J237J123 Inias ' (8‘52)
J23=0
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It has been shown in [26] that the Racah coefficients for the osp(1]2) Lie superalgebra can be

expressed in terms of Bannai-Ito polynomials given in (8.20). One has

. W
H1,H2,043  _ ( 1\P 12 J23 ) o
J12,J23,J123 ( 1) €3 h BJl2 (‘%23’

potps
2

)

p1+(—1)7123 11193 — (=1)7123 py93—p1
)  Maiz : (8.53)

Ji2
where the zj,wg, h, are given in equations (8.28-8.31) where the parameters of the Bannai-Ito
polynomials p;,r;,i = 1,2 are assumed to be the same as in the polynomial Bj, (z; p1, p2,71,72)

above. The choice of phase factor relevant for this paper is

) (12 — )j12

SNy
© = J123 5 U2 & Vi )”712> . (8.54)

+ (Jizz +1) (j23 + 5

8.4. Convolution identities

The construction of convolution identities for orthogonal polynomials that we are proposing
here will proceed along the following lines : select an appropriate self-adjoint element X from the
Lie superalgebra, construct its generalized eigenvectors in a given representation and study their
overlaps in the tensor product of representations. In order to obtain orthogonal polynomials, this Lie
superalgebra element should act as a three-term recurrence operator in the chosen representation.
Furthermore, the chosen element should generate a coideal subalgebra to ensure proper behavior

under tensor product of representations. The self-adjoint element we consider here is
Xe=Jr+J_+cR (8.55)

in the osp(1]2) Lie superalgebra depending a single parameter ¢ € R. While this is not the most
general self-adjoint element in 0sp(1|2), the addition of a Jy term would break the coideal property
given in equation (8.65). Indeed, this property is non-trivial for algebras with a twisted coproduct
such as (8.34). See [3] for example, where this construction is done for su(1,1) and U,(su(1,1))
where the coproduct is untwisted in the first case and twisted in the second.

With the element X. at hand, we shall study its discrete series representations and compute
its generalized eigenvectors in the next subsection. In the subsequent ones, we will respectively
consider the two-fold and three-fold tensor product of irreducible representations and derive two

convolution identities.

8.4.1. Action of X, in the positive discrete series representation

The operator X, has a tridiagonal structure on the representation space (i, €) defined in (8.35).

One has

Xeele) = [n+ 1]}/26%;61) + ce(—1)"ele) [n]hﬂegﬁ?. (8.56)
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Let v§ denote the eigenvector with eigenvalue A of X.. Then, there is an expansion of the form
o0
o= anelt,  a, R (8.57)
n=0

Acting on both sides of this equation with the operator X, gives the following 3-term recurrence

relation on the expansion coefficients a,, :
Aa, = [n+ 1]/1/2an+1 + ce(—1)"ay, + [n]}/Qan_l. (8.58)

There is a solution of the form a,, = P,,(\)-ag where the P, (\) are orthogonal polynomials satisfying

the recurrence relation

APL(A) = [0+ 1/2Puga(A) + ce(—1)"Pu(A) + [n]/2 Pu_1 (). (8.59)

Comparing this equation with the recurrence relation (8.1), one sees directly that the P,(\) are

Specialized Chihara polynomials with the following parameters :
Pu(A) = Pu(Xs p, ce). (8.60)

Taking into account the normalization factor in the orthogonality relation (8.4), the polynomials

P, (X; p, ce) are thus orthonormal with respect to the weight function

w(h, i ce)

W(}\,/J,, CE) - 21—\(#_1_ %)

(8.61)

on the interval F' = (—o0, |c| )U( ||, 00) where the w(A, i, ce) are given in (8.5). If one asks that the
eigenvectors v§ be orthonormal, it is easy to see that this implies ag = 1 and that the generalized

eigenvectors of X, are
oo
0§ = 3 Puls s ce) ). (8.62)
n=0

Note that the series in (8.62) does not converge in the representation space and should be considered
as a formal eigenvector. We reformulate this result in the following proposition.

Proposition 8.1. The unitary operator

A: 2(Zy) — LA(F,W(\, p,ce))
(8.63)
el s PN, p, ce)

is an intertwiner of the operator My which denotes multiplication by X on L*(F, W (X, u, ce)) and
the operator X. acting in *(Zy) :

MA = AX,. (8.64)
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Proof. The unitarity of A is checked from the fact that it maps an orthonormal basis onto another

one. The intertwining relation derives directly from the above computation. ([l

8.4.2. Action on the tensor product space

We now wish to study the action of the coproduct of X, on a tensor product of irreducible repre-
sentations (1, €1)® (u2, €2) and obtain its generalized eigenvectors. A straightforward computation

yields
AX) =X R+1® Xy (8.65)

where X denotes the operator X, with its parameter set to zero. In view of how it acts on the first

space in the tensor product, it is natural to study the action of A(X.) on vectors of the following

form :
A(X)v§, ® e¥2?) = 0§ @ (MR + Xo)ell2<?) (8.66)
=05, ® Xy, ellze2) (8.67)

where v is an eigenvector of X, given by (8.62) and X}, is the operator (8.55) with parameter

A1. It follows that the generalized eigenvectors of A(X,.) are

o0

Viiae = O Pui(Aasnn, cer) Py (Mo i, Aren) el @ elfe) (8.68)

ni,n2=0
with eigenvalues As. This allows us to establish the following proposition.

Proposition 8.2. The unitary operator

T (Z4) @ C(Zy) = LG, W (A, i, ce)W (Ao, 2, Aiez))
) @ elfe2) iy Py (Mg, cer) Poy (A2 iz, Me2) (509
with
G ={(M, ) ER | |Ag] > |As] > ef}
is an intertwiner of the operator My, on L*(G, W (A1, 1, ce1)W (Aa, pi2, Mi€2)) denoting multiplica-
tion by Ao and the operator A(X,) acting in (2(Zy) @ (2(Zy) :

My, T = TA(X,). (8.70)
Proof. The proof is similar to that of the previous proposition. Unitarity follows from the mapping

of an orthonormal basis onto another one and the intertwining relation is a restatement of the

eigenvectors computed above. O
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Now, in view of the Clebsch-Gordan decomposition (8.36) of (u1,€1) ® (u2, €2) into irreducible

representations, there exists another orthonormal basis 6%12’612) with N =0,1,... and
pi2=p1+p+j+35, ea=ee(-1)7, j=01,... (8.71)

where j labels the irreducible subspaces of the form (pj2,€12) in the tensor product space. This

(Ml,fl) ® e(ﬂ27€2)

basis is often referred to as the coupled basis, while the basis ey, no is called the uncou-

pled basis. The operator T also maps the coupled basis to a set of orthonormal polynomials in
L2(G, W (A1, p1, cer) W (Ao, 2, Ai€2)).
Proposition 8.3. In L2(G, W ()1, p1,ce1)W (e, p2, Me2)), we have

Tel> 92 (A, Ag) = Py (Aa; o, cer2) Tel 2 (A, M), (8.72)
) €l cere
Te(()ﬂl% 12)()\1, )\2) — Kj()\z’ W2, 11 C) J < i 2,[1,2, 2,[1,1, ;22> (873)
with
Kj(Ao; po, psc) = -y ( o ) T+ 0+ 5) (8.74)
3 \A25 B2, 415 2 Ao — (=1)Jcerea ) T(pao + 5)hj(2u2, 2101) ‘

where the notation of section 2 for the Specialized Chihara and the Big —1 Jacobi polynomials is

assumed.
Proof. Use the intertwining relation (8.70) to write

)\ Te (H127€12) M T (M127€12) TA( ) (#12,612) (875)

The action of A(X.) on the irreducible spaces (u12,€12) is given by the relations (8.35). This
yields a 3-term recurrence relation on N of the same form as (8.58). Its solution is (8.72) where
the initial condition Te(()“u’m)()\l,)\g) remains to be determined. To obtain it, note that the
orthonormality of the vectors and the unitarity of T implies the following. Using the notation

(8.71) and 2 = p1 + po + 5+, 12 = e162(—1), one has

<6(M12,612) e(ﬂ127€12)> _ <T€%A12,612),Te§g12,€12)>

5NN5]] N YUN

= //G Py (X2; 12, ce12) Py (Ao; finz, cé12) Te (()“12 612)()\ A2)Te (“12’612)()\1,&) (8.76)

X W()\l, M1, Cel)W(/\g, M2, )\162)d)\1d)\2.
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Integrate first on Aq :

OnNO; 5= /GQ P (Ag; 12, ce12) Py (Ag; finz, céi2)

(8.77)
X . Te[()ul27612)<)\1, /\Q)Teg)ﬂ127€12)(A1’ )\Q)W()\l, i, C€1>W()\2, H, Aleg)d/\ld/\Q
1
where
G1= (A2, —lc) U (lc]; A2),  Ga = (—00,—[c|) U (|c], 00). (8.78)

If we consider the special case j = j, the inner integral on A\; must correspond to the orthogonality
measure of the Specialized Chihara polynomials Py (Ag; 12, ce12) since the corresponding moment
problem is determined. This can be checked from the divergence of the series Zflozl[n];l/ ? which
satisfies one of Carleman’s conditions for determinacy [30]. Furthermore, applying Y on both
sides of the Clebsch-Gordan decomposition (8.37) with N = 0, one can deduce that Te[()“ 12:612) §g o
polynomial of degree j in the variables A\; and A\o. Taking these two observations into account, it is

possible to identify Te(()“12’512)

in terms of Big —1 Jacobi polynomials. Indeed, setting u = ea\1 /A2,
it is straightforward to identify the resulting weights factors with those of the Big —1 Jacobi
polynomials given in (8.8) in the variable u. This gives the result (8.73). The normalization factor
(8.74) is obtained by comparing the weight function in the integral on Ay with that of the Specialized

Chihara polynomials Py (Ae; p12, ce12) given in (8.5) and computing the integral. O

Thus, the equations (8.72) and (8.73) give us the action of T on the coupled basis. With these
results in hand, it is now possible to obtain a convolution identity for the Specialized Chihara, Big
-1 Jacobi and dual -1 Hahn polynomials.

Proposition 8.4. In the notation of section 2 for the Specialized Chihara, Big —1 Jacobi and dual

—1 Hahn polynomials, the following convolution identity holds :

€9\ cele
K(X2; pa, p1;¢)Pn(Ag; piz, cer)J; (21 12)

;2 72 y

= Z (_1)‘75(71177127]') <€2>n1 \/[nl] [n2]u2! pj(NQ,,UJI,nl + n2) (8.79)

g N 2 ! [n + ol vo(pe, p1,m1 + n2)

X Ry, (255 pas i1, m1 + n2) Py (A5 11, c€1) Py (A2; po, Area).

Proof. Consider the Clebsch-Gordan decomposition (8.37) and apply the operator T on each side
of the equation. Using (8.69), (8.72) and (8.73), one obtains the above formula. O
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Remark 8.1. [t is also possible to obtain another convolution identity using the inverse basis

expansion :

P (A1; i, c€1) Py (A2s 2, A €2)

= 3 (—pyemmd) (62>”1\/[n1] [n2]u,! pj(pa, g1, na + ng) (8.80)

Nebjmrs g 2 pad 01 4 malp,! vo(p2, pa, na +n2)
€91 C€1€2
X Ry, (255 iy pr1s a1 + n2) K (Xas po, prs €) Py (A2s pa2, ce12)J; (/\2; 2p2, 2411, —)\2) :

Remark 8.2. Note that the propositions 8.2 and 8.3 both define polynomials in two vari-
ables Ai,Ao of the Tratnik-type that are orthogonal with respect to the same measure
W (A1, p1,ce1)W (Ao, o, \€2) on G. In this picture, the convolution identities (8.79) and
(8.80) provide connection coefficients for these two sets of orthogonal polynomials. This is an
interesting result especially since the generalization to multiple variables of the Bannai-Ito scheme
is still in its early stages. Note that section 4.3 similarly gives orthogonal polynomials in three

variables in this class.

8.4.3. Action on the three-fold tensor product space

We now study how the operator X. can be extended to the three-fold tensor product space
(11,€1) @ (u2,€2) @ (us,€e3). This will lead to another convolution identity involving the Racah

coefficients of 0sp(1]2). One first computes
A%(X,) = (1®A)A(X,) = A(Xe) ® R+ A1) @ Xo
(8.81)
=X QROR+10 X0 R+1®1® Xo.

The notation A? is unambiguous because of the coassociativity of the coproduct
(1® A)A = (A®1)A. The eigenvectors of A%(X.) can be found by studying its action on

vectors of the form v§, ,, ® en, :
AP (X050 @ eng = (A(Xe) ® R+ A1) @ Xo)oS, 5, @ eng

= (1®1®)\2R+1®1®X0)U§\1A2 X eng

(8.82)
= (1 ® 1 ® X>\2>’U§\1,)\2 ® 677J3
= UKL)\Q ® X, €ns-
It follows naturally that the generalized eigenvectors are
o0
Vidods = O Pr(Mip, 1) Pay(Aai iz, Mea) Py (As; 13, Aaes) el @ eli2:€2) @ elfscs)

ni,n2,n3=0

with eigenvalues A3. This establishes the analog of propositions 8.1 and 8.2.
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Proposition 8.5. The unitary operator

O: ((Zy)@*(Zy)® R (Zy) — LHG®, W), (8.83)

67(1/'11'1’61) & 65{;2’62) ® 65{;3’63) — Pn1 ()\1; M1, CEl)Pn2 ()\2; M2, )\162)Pn3 ()\3; M3, )\263) (884)

where
G® = {(M, A2, M3) € R | [As| > [Aa| > |Ai| > ]}
and
W = W (A1, p1, cer)W (Ao, p2, Aea) W (A3, 3, Azes).

is an intertwiner of the operator My, on L>(G®), W®)) and the operator A?(X.) acting in (>(Z,)®
C(Z4+) @ (L)

M,,0 = OA%(X,). (8.85)

Proof. The proof follows those of propositions 8.1 and 8.2. Unitarity follows from mapping an
orthonormal basis onto another one. The intertwining relation comes from the computation of the

generalized eigenvectors before proposition 8.5. ]

The idea is again to act with the operator © in different bases in order to obtain a new
convolution identity. The bases of interest here are the two that arise when decomposing the
representation space (ui,€1) ® (u2,€2) ® (us,€3) into irreducible components. As mentioned in
section 3, this can be done in two standard ways using the Clebsch-Gordan decomposition. This
yields the bases f7123712 and gJ123723 respectively given in (8.48) and (8.50).

Proposition 8.6. In L2(G®), W®)), we have

i on €91 cer€n
@f#lig?]m = Kjlz ()\27 H2, 11, C) ‘]j12 < )\2 ) 2:“27 2”17 _)\2) (886)
€32 CE12€3
X K105 (N33 135 123 €) T ()\3; 2p3, 2112, —)\3) Pros (X35 11123, ce123),
J123,j23 €32 A1€9€3
@gn123’ = Kj23 ()\37 U3, 125 )\1) Jj23 Tg, 2/13, 2,&2, — )\3 (887)

€231 ce1€23

XK, (55 (M35 123, 1115 €) Ty 0 ()\3; 2#23,2111,—)\3) Pros (M35 11123, c€123).

Proof. The key to obtain the action of © on these two bases is to use the expansions (8.48) and
(8.50) in terms of the basis ef{il’el) ® 6%2’62) ® e%’f”q), act with © as per proposition 8.5 and resum
the resulting polynomials by using the convolution identity (8.79) twice. Using the notation of

proposition 8.3 and of section 2, one obtains the relations above. O
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This leads to the following result.

Proposition 8.7. The convolution identity

K, (A2 po, pis €) Jjy, ( 350 200, 2001, — Ceﬁf) K105 (N33 113, 11123 €) 14 (%;2%,2#127—“&7?3)

J123
i W, 1)J123 _ —1)7123 —
— § _1)\PJ12 J23 . M2+#3 p1H(=1)7123 193 pz—po  (=1)7123p123—p
- ( 1) €3 R BJ12 (x1237 2 ’ 2 ’ 2 (8'88)

J12

J23=0

ce1€23 )

]23 ()\37 M3, K2, )\1)Jj25 ( )\3 5 2”37 2:“27 1E§63)Kj1<23>(A3; H23, 13 C)le(gg)(%; 2“237 2,“’17 - A3

holds with the relations (8.47) between the ji2, jo3, j(12)3, J1(23)> J123, the notation for the polynomials

of section 2 and equation (8.74).

Proof. This formula is obtained by acting with © on both sides of the Racah decomposition (8.52).
The factors Pp,,,(A3; ft123, c€123) on the left and on the right cancel out. This is just the manifes-

tation of the well-known Wigner-Eckart theorem in this context. O

Remark 8.3. It is also possible to obtain a similar convolution identity using the orthogonality of

the Racah coefficients :

Kj23(>\3;ﬂ37l£2;>\1)<]j23 (63>\2 2us, 22, — m) Kj1(23)(>\3;M23,M1;C)Jj1(23)( 3>\1 2093, 201, — ce1e23)

J123
; w; J125 1]125
_ _1\@ J12 23 o u2+u3 p1+(= 1) M2 gy (=1)7123 193 —pu1
- Z( 1) 63 h: BJ12 (x]237 2 2 (889)
J12

j12=0

celez

]12 ()\27 M2, 15 )lez ( 2”25 2”15 ) J2)3 ()‘37 M3, 1123 )Jj<12>3 ( ks, 2,“’37 2,“127 661263>

where the relations (8.47) and the same notation are still assumed.

8.5. Bilinear generating function

In this section, we consider a realization of 0sp(1|2) in terms of Dunkl operators. This leads
to a generating function for the Specialized Chihara polynomials. Additionally, the convolution
identity from proposition 8.4 is used to derive a bilinear generating function for the Big -1 Jacobi
polynomials.

We introduce the following realization in terms of Dunkl operators of the osp(1]|2) Lie superal-

gebra :
Iy =z, J,:82+S(I—RZ), Jo=20.+p+Li R=R, (8.90)

where R, is just the the reflexion operator acting on the variable z by R, f(z) = f(—z). These oper-

ators verify the relations (8.35) when acting on the orthonormal basis vectors el = ([n])~1/2 2m.
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We shall make use of this model to derive generating functions for the Specialized Chihara
polynomials P, (A; u, ce). First, recall equation (8.62) giving the generalized eigenvectors of the
operator X, and insert the realization (8.90) above to obtain

n

¥4
Z s Wy € E P )\ /,L,CC []T (891)
u .

If one can obtain an explicit formula for v§(z, i, €) in terms of special functions, this equation will
yield the desired generating function. This can be done through the following steps. First, split

the sum in the RHS over the even and the odd values of n :

(o) = 3 PurlNsse0) = + 5 Paga o) ——— (5.92)
ox(z €)= > Por(ANpc€) ——75-+ ) Popp1i( Ny 06) ————75-- 8.92
k=0 2K/ i 2k + 10,/
Then, rewrite the p-factorial in terms of Pochhammer symbols with
2k = 4K+ D)k, 26+ 1 =2(u+ 3)4RKI(u + 3y, (8.93)

and express the polynomials Py () and Poyy1(A) in terms of Laguerre polynomials using equation

(8.2) to get

Az, 1 €) =

Nk
0
no|

N

1 Q)k 1 2 2 _ o (1 k L1 2 _
(=3 (A c ce) 22 ( +H (A 2
TERIA Ly < 5 ) 2u+1 2:: ( 5| (899

= (1t 9k )k
Now, each sum can be reframed in terms of hypergeometric functions with the help of a generating
function for the Laguerre polynomials (see equation 1.11.11 of [13]) :
i LL(O‘) () =€ o[} { xt} (8.95)
—(at1), " L
Inserting the result into equation (8.91) leads to the following generating function for the Specialized
Chihara polynomials.

Proposition 8.8. The Specialized Chihara polynomials possess the generating function

> 2" _ - 2N = 2(\ —ce - 2N =
an()\;ﬂa“)ﬁ:e /2 <0F1[ 15 ( 1 ) + <2 1)0F1 3;(4)] .
n=0 [n]/ 7! Kt B+ Pt 5

Proof. This result follows from the preceding computation. O

Remark 8.4. [t is also possible to reexpress the hypergeometric functions in terms of the modified
Bessel functions of the first type I,(x) to obtain
o efz2/2r<lu .

00 l)
Pp(A; = 2
Z (s ) /% (2)p-1/2(02 — 2)5+1

{()\2 — 02)%1'

1
n3

(2vR=) + 345 1,0 (zm)}
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Remark 8.5. Note that this explicit expression for the generalized eigenvectors v§(z, ji,€) in terms
of special functions in the realization (8.90) can also be obtained by solving the difference-differential
equation X vS(z, i, €) = AS§(z, p, €). This also requires to separate the function v§(z, p,€) into an
even and odd part and leads to a system of two coupled first order ordinary differential equations.
Focusing now on obtaining a bilinear generating function, we consider how the generating
function given above carries to the tensor product of representations. In fact, the extension of the
generalized eigenvectors to the tensor product of two representations in the realization (8.90) is

immediate. Explicitly, the generalized eigenvectors of A?(X.) are

2202
v§, (21, 1, €0)03) (22, pa, €2) Z Py (A 1, c€1) Py (A2 2, Ae) —— 75— 5= (8.96)
ni,n2=0 N1y ![712]“2 !

where each v§(z, 11, €) admits an expression in terms of special functions as before. The monomials

can be cast in the coupled basis by the inverse expansion of (8.37),

ni _na

A1 %9 _ Nj (mzer)
— s ogn = 2. O (21, 22), (8.97)
[nl]m -[712}“2 . N+j=ni+n2

to obtain

v§, (21, i1, €)03) (22, pa, €2) = Z Poy (A5 1, ce1) Py (A 2, Aez) Y. Chvd e (i) () 2).
n1,n2=0 N+j=ni+n2

Inverting the order of summation, one gets

%(2?1,#1761)U§2(22,M2,€2 Z 6“12’612 (21, 22) Z i T1o Py (15 g1, ce1) Py (A2; 12, M €2)
N,j=0 ni+n2=N-+j

where the second sum now corresponds directly to the first convolution identity (8.79). Using this
gives

o

0§, (21, i1, )03 (22, b, €2) = Z [(A2; pi2, pa; €)Jj (

5 202, 2401, — 06162)

(8.98)

X Z Py (Ag; iz, cera)el ™) (21, 22).
N=0

If one obtains an expression for the second sum in terms of special functions, then a generating
function for the Big -1 Jacobi polynomials follows immediately. We first look for an explicit
realization of the coupled basis vectors 5{,“2’512)(21,@). Consider its expansion in terms of the

uncoupled basis given in (8.37) in the realization (8.90) and substitute no = N + j —n; :

( ) pasy ™ N+j

H12,€12 22 J

en (21, 22) g c ,N+ zy 7. (8.99)
2 T AN G -
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The sum on the RHS corresponds to the generating function for the osp(1]2) Clebsch-Gordan
coefficients [23]. Taking into account the choice of normalization and phase factor made in section

3, this gives

22 + 22 N2 . .
er(j) if N even,
6%12’612)(21, ) = e (8.100)
(=2 +25)""
Wfo(j) if N odd
piz:

where fc(j) and fo(j) are functions of j. Let j = 2j. + j, with j, € {0,1} and j. € N, then

1/2
(% _I_ lu’l)je“l’jp
(Je +Jp + 14 p1 + p2)j.+j,

2
A1/2
LS

_.671_16_‘_ _]-jp j 2 ] 1_16_‘71_‘6_
><<2F1[ Jes 3 = Je = Jp uz._(2)2}+( )P z1(j + usz)F[ Je=Jpy 37 uz,_(zl)QD

fo(4) = (71)je+jp

s+m zo€a(1 + 2p11) S+ m =
and
: -1/2 1 1/2
. . = + . .
fo(j) = (_1)]e+]p % +1 2122 : : (2 lu’l)]ri"'.jp (8102)
Z3 [j]ué | (e +dp + 14 p1 + p2)jetsy

. . 1 . ) . 1 . .
—Je = Jpy T35 —Je — M2 2112 (=1)7Pz1 (j+14+2p1+2p27p) —Jes 3~ Je—Jp— M2 2112
X 2F1{ s —(22)7] + 2 Fy s —(2)7 ] -
( % + " ) z2 2262(1+2/.L1) % + 11 ) z9

Separating the sum over N according to parities in (8.98) and substituting (8.100) gives

vy, (21, M1761)U§‘;(Z2,u2,€2)

o0
=Y Kj(Xo; pia, pi; ) Jj (giﬁl; 242, 201, —“;—;2)
=0
2k 2k+1
L 224237 e 2242272
x| feld) 2 Pawlas ”12’0612)% + fo(4) Y Pakr1(Ne; M12,ce12)% .
k=0 [2K] 5! k=0 [2F + 1],45!

The two sums over k have precisely the form of the sums appearing in equation (8.92). It is thus
possible to reexpress both of them in terms of an hypergeometric function by using the generating

function of the Laguerre polynomials. This yields

’U,C\l (21, 1, 61)1&‘; (22, 112, €2)

2 2 oo
z{ tz
= exp <_122> E KJ(A27M2,M1,C)J] (62)\)2\1, 2#272111117_(:6)372@)
=0

1
: (szrz%L()\gcQ)] n fo(j) (Z% + Z%)Q ()\2 — 6612) r |: - (zf+z§)()\§c2)]> '

12+ % 212 +1 piz + 3’ 4

X (fe(j)OFl{
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Using proposition 8.8 to express both eigenvectors on the LHS in terms of special functions, the
previous equation becomes a generating function for the Big -1 Jacobi polynomials.
Proposition 8.9. The Big —1 Jacobi polynomials satisfy the bilinear generating function

<0F1[ - Z%()\%—C%}+21()\1—061)0F1{ - 212()\%—62)]>

p+ 5 4 2u+1 pr+ 3 4

X OFl[ o ,Zg()\%—)\%)}_‘_&()\z—)\leg) Fl[ _ 'M}
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1
: - <22+z2><x2—c2>] (2 +23)2 (\g — cern) [ - (22+22)(>\2—62)]
X | fe(4)oF el IS N F TR )
(f (7)o 1{ ! 1 fo(9) Sma 1 1 oF| 4 .

where pi2 = p1 + p2 + % +j and fo(§), fo(4), Kj(Ao; pr, posc) are given by the formulas (8.101),
(8.102), (8.74).

Proof. The result follows from the analysis provided before the statement of this proposition. [J

8.6. Conclusion

We considered the discrete series representations of the superalgebra osp(1|2) and singled out a
self-adjoint element X.. We constructed the generalized eigenvectors of this special element in the
representation spaces and in their two- and three-fold tensor products. Looking at different bases
and their overlaps led to our main results : propositions 8.4 and 8.7 which provide convolution
identities for —1 orthogonal polynomials and also connection coefficients for two-variable Dunkl
polynomials orthogonal with respect to the same measure. This was further used to obtain a
bilinear generating function for the Big —1 Jacobi polynomials. This led to interpretations and
connections between the Specialized Chihara, the dual -1 Hahn, the Big -1 Jacobi and the Bannai-
Ito polynomials.

This study suggests a number of future research questions. A natural extension would be to look
at higher dimensional spaces via the n-fold tensor product of representations. This was done for
su(1,1) in [31]. This should lead to new convolution identities and to multivariate Dunkl orthogonal
polynomials of Tratnik type. In fact, it is straightforward to extend the unitary operators from
propositions 8.1, 8.2 and 8.5 to an arbitrary n-fold tensor product; the main difficulty is to find
interesting bases and overlaps. It should be noted however that some investigations on this last

point have already been done [32, 29]. Another avenue to explore would be how the convolution
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identities obtained here could be used to derive different generating functions and Poisson kernels.

Interesting constructions pointing in this direction have been presented in [4] and [5] for the Lie

algebras su(1,1) and Ugy(su(1,1)). Finally, a broader project would be to revisit the construction

with different representations and realizations. We mention as examples [33] and [34] where similar

questions are considered.
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Conclusion

Pour conclure, voici quelques pistes de recherche découlant directement des travaux présentés dans

cette these et qui mériteraient sans doute d’étre poursuivies.

e Dans l’esprit des deux premiers chapitres, il serait intéressant d’étudier si un processus
limite pourrait permettre de résoudre la troncation singuliere qui se présente dans les
coefficients de récurrence des polynémes de Bannai-Ito. La méme situation se présente
également pour les polynémes de Bannai-Ito complémentaires. Une version « para » de

ces deux familles de polyndémes pourrait peut-étre étre obtenue.

e Un large programme serait d’entreprendre ’exploration plus systématique des polyndémes
multivariés de type Tratnik du tableau de Bannai-Ito. Bien qu’on commence & avoir une
relativement bonne compréhension des polynémes de Bannai-Ito multivariés, le terrain est
presqu’entierement vierge concernant les autres familles. Une piste est 1’étude rigoureuse

des processus limites ¢ — —1 des extensions multivariés du ¢-tableau d’Askey.

o Il serait intéressant d’obtenir plus d’interprétations algébriques et physiques des polynomes
du tableau de Bannai-Ito. Un chemin possible est ’étude d’autres superalgebres de la
forme osp(n|m) ou encore des analogues ¢ — —1 d’algebres quantiques. Ces structures
pourraient potentiellement s’adapter a des constructions algébriques comme celle présentée

au chapitre 8.

e Les questions de transport d’information et de calculs quantiques sont une immense
source de questions de recherche. Pour rester proche du travail présenté au cha-
pitre 5, mentionnons qu’il pourrait étre intéressant de faire la correspondance entre ce

modele et les propriétés de transport sur des graphes en lien avec des schémas d’association.
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