
Université de Montréal

On Challenges in Training Recurrent Neural Networks

par

Sarath Chandar Anbil Parthipan

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Composition du jury

Président-rapporteur: Jian-Yun Nie

Directeur de recherche: Yoshua Bengio

Co-directeur: Hugo Larochelle

Membre du jury: Pascal Vincent

Examinateur externe: Alex Graves

November, 2019

Résumé

Dans un problème de prédiction à multiples pas discrets, la prédiction à chaque
instant peut dépendre de l’entrée à n’importe quel moment dans un passé lointain.
Modéliser une telle dépendance à long terme est un des problèmes fondamentaux
en apprentissage automatique. En théorie, les Réseaux de Neurones Récurrents
(RNN) peuvent modéliser toute dépendance à long terme. En pratique, puisque la
magnitude des gradients peut crôıtre ou décrôıtre exponentiellement avec la durée
de la séquence, les RNNs ne peuvent modéliser que les dépendances à court terme.
Cette thèse explore ce problème dans les réseaux de neurones récurrents et propose
de nouvelles solutions pour celui-ci.

Le chapitre 3 explore l’idée d’utiliser une mémoire externe pour stocker les états
cachés d’un réseau à Mémoire Long et Court Terme (LSTM). En rendant l’opération
d’écriture et de lecture de la mémoire externe discrète, l’architecture proposée réduit
le taux de décroissance des gradients dans un LSTM. Ces opérations discrètes
permettent également au réseau de créer des connexions dynamiques sur de longs
intervalles de temps. Le chapitre 4 tente de caractériser cette décroissance des
gradients dans un réseau de neurones récurrent et propose une nouvelle architecture
récurrente qui, grâce à sa conception, réduit ce problème. L’Unité Récurrente Non-
saturante (NRUs) proposée n’a pas de fonction d’activation saturante et utilise la
mise à jour additive de cellules au lieu de la mise à jour multiplicative.

Le chapitre 5 discute des défis de l’utilisation de réseaux de neurones récurrents
dans un contexte d’apprentissage continuel, où de nouvelles tâches apparaissent
au fur et à mesure. Les dépendances dans l’apprentissage continuel ne sont pas
seulement contenues dans une tâche, mais sont aussi présentes entre les tâches. Ce
chapitre discute de deux problèmes fondamentaux dans l’apprentissage continuel:
(i) l’oubli catastrophique d’anciennes tâches et (ii) la capacité de saturation du
réseau. De plus, une solution est proposée pour régler ces deux problèmes lors de
l’entrâınement d’un réseau de neurones récurrent.

Mots clés: Réseaux de Neurones Récurrents, Dépendances à long terme, Unité
Récurrente Non-saturante, Réseaux de Neurones à Mémoire Augmentée, Machine
Neuronale de Turing, LSTMs, connexions dynamiques, apprentissage continuel,
oubli catastrophique, capacité de saturation.

i

Summary

In a multi-step prediction problem, the prediction at each time step can depend
on the input at any of the previous time steps far in the past. Modelling such long-
term dependencies is one of the fundamental problems in machine learning. In
theory, Recurrent Neural Networks (RNNs) can model any long-term dependency.
In practice, they can only model short-term dependencies due to the problem of
vanishing and exploding gradients. This thesis explores the problem of vanishing
gradient in recurrent neural networks and proposes novel solutions for the same.

Chapter 3 explores the idea of using external memory to store the hidden states
of a Long Short Term Memory (LSTM) network. By making the read and write
operations of the external memory discrete, the proposed architecture reduces the
rate of gradients vanishing in an LSTM. These discrete operations also enable the
network to create dynamic skip connections across time. Chapter 4 attempts to
characterize all the sources of vanishing gradients in a recurrent neural network
and proposes a new recurrent architecture which has significantly better gradient
flow than state-of-the-art recurrent architectures. The proposed Non-saturating
Recurrent Units (NRUs) have no saturating activation functions and use additive
cell updates instead of multiplicative cell updates.

Chapter 5 discusses the challenges of using recurrent neural networks in the
context of lifelong learning. In the lifelong learning setting, the network is expected
to learn a series of tasks over its lifetime. The dependencies in lifelong learning are
not just within a task, but also across the tasks. This chapter discusses the two
fundamental problems in lifelong learning: (i) catastrophic forgetting of old tasks,
and (ii) network capacity saturation. Further, it proposes a solution to solve both
these problems while training a recurrent neural network.

Keywords: Recurrent Neural Networks, Long-term Dependencies, Non-saturating
Recurrent Units, Memory Augmented Neural Networks, Neural Turing Machines,
LSTMs, skip connections, lifelong learning, catastrophic forgetting, capacity satu-
ration.

ii

Contents

Résumé . i

Summary . ii

Contents . iii

List of Figures . vi

List of Tables . x

Chapter 1: Introduction . 1
1.1 Contributions . 2
1.2 Thesis layout . 3

Chapter 2: Background . 5
2.1 Sequential Problems . 5

2.1.1 Sequence Classification . 5
2.1.2 Language Modeling . 6
2.1.3 Conditional Language Modeling 6
2.1.4 Sequential Decision Making 7

2.2 Vanilla Recurrent Neural Networks 7
2.2.1 Limitations of Feedforward Neural Networks 7
2.2.2 Recurrent Neural Networks 8

2.3 Problem of vanishing and exploding gradients 10
2.4 Long Short-Term Memory (LSTM) Networks 11

2.4.1 Forget gate initialization . 13
2.5 Other gated architectures . 14
2.6 Orthogonal RNNs . 16
2.7 Unitary RNNs . 17
2.8 Statistical Recurrent Units . 17
2.9 Memory Augmented Neural Networks 18

2.9.1 Neural Turing Machines . 19
2.9.2 Dynamic Neural Turing Machines 21

iii

2.10 Normalization methods . 24

Chapter 3: LSTMs with Wormhole Connections 27
3.1 Introduction . 27
3.2 TARDIS: A Memory Augmented Neural Network 28

3.2.1 Model Outline . 29
3.2.2 Addressing mechanism . 30
3.2.3 TARDIS Controller . 31
3.2.4 Micro-states and Long-term Dependencies 32

3.3 Training TARDIS . 34
3.3.1 Using REINFORCE . 35
3.3.2 Using Gumbel Softmax . 37

3.4 Gradient Flow through the External Memory 37
3.5 On the Length of the Paths Through the Wormhole Connections . . 41
3.6 On Generalization over the Longer Sequences 43
3.7 Experiments . 45

3.7.1 Character-level Language Modeling on PTB 45
3.7.2 Sequential Stroke Multi-digit MNIST task 45
3.7.3 NTM Tasks . 48
3.7.4 Stanford Natural Language Inference 49

3.8 Conclusion . 49

Chapter 4: Non-saturating Recurrent Units 51
4.1 Introduction . 51
4.2 Non-saturating Recurrent Units . 52

4.2.1 Discussion . 54
4.3 Experiments . 54

4.3.1 Copying Memory Task . 55
4.3.2 Denoising Task . 60
4.3.3 Character Level Language Modelling 61
4.3.4 Permuted Sequential MNIST 62
4.3.5 Model Analysis . 62

4.4 Conclusion . 65

Chapter 5: On Training Recurrent Neural Networks for Lifelong
Learning . 67
5.1 Introduction . 67
5.2 Related Work . 70

5.2.1 Catastrophic Forgetting . 70
5.2.2 Capacity Saturation and Model Expansion 72

5.3 Tasks and Benchmark . 74
5.3.1 Copy Task . 75

iv

5.3.2 Associative Recall Task . 75
5.3.3 Sequential Stroke MNIST Task 75
5.3.4 Benchmark . 76
5.3.5 Rationale for using curriculum style setup 78

5.4 Model . 79
5.4.1 Gradient Episodic Memory (GEM) 79
5.4.2 Net2Net . 82
5.4.3 Extending Net2Net for RNNs 83
5.4.4 Unified Model . 85
5.4.5 Analysis of the computational and memory cost of the pro-

posed model . 86
5.5 Experiments . 87

5.5.1 Models . 87
5.5.2 Hyper Parameters . 88
5.5.3 Results . 88

5.6 Conclusion . 92

Chapter 6: Discussions and Future Work 93
6.1 Summary of Contributions . 93
6.2 Future Directions . 94

6.2.1 Better Recurrent Architectures 94
6.2.2 Exploding gradients . 94
6.2.3 Do we really need recurrent architectures? 94
6.2.4 Recurrent Neural Networks for Reinforcement Learning . . . 95
6.2.5 Reinforcement Learning for Recurrent Neural Networks . . . 95

6.3 Conclusion . 96

Bibliography . 97

v

List of Figures

2.1 A vanilla Recurrent Neural Network. Biases are not shown in the
illustration. 9

2.2 RNN unrolled across the time steps. An unrolled RNN can be consid-
ered as a feed-forward neural network with weights W ,U ,V shared
across every layer. 9

2.3 Long Short-Term Memory (LSTM) Network. 12

3.1 At each time step, controller takes xt, the memory cell that has been
read rt and the hidden state of the previous timestep ht�1. Then,
it generates ↵t which controls the contribution of the rt into the
internal dynamics of the new controller’s state ht (We omit the �t

in this visualization). Once the memory Mt becomes full, discrete
addressing weights wr

t
is generated by the controller which will be

used to both read from and write into the memory. To predict the
target yt, the model will have to use both ht and rt. 33

3.2 TARDIS’s controller can learn to represent the dependencies among
the input tokens by choosing which cells to read and write and creat-
ing wormhole connections. xt represents the input to the controller
at timestep t and the ht is the hidden state of the controller RNN. 34

3.3 In these figures we visualized the expected path length in the memory
cells for a sequence of length 200, memory size 50 with 100 simula-
tions. a) shows the results for TARDIS and b) shows the simulation
for uMANN with uniformly random read and write heads. 41

3.4 Assuming that the prediction at t1 depends on the t0, a wormhole
connection can shorten the path by creating a connection from t1 �
m to t0 + n. A wormhole connection may not directly create a
connection from t1 to t0, but it can create shorter paths which the
gradients can flow without vanishing. In this figure, we consider the
case where a wormhole connection is created from t1 �m to t0 + n.
This connections skips all the tokens in between t1 �m and t0 + n. 42

vi

3.5 We have run simulations for TARDIS, MANN with uniform read
and write mechanisms (uMANN) and MANN with uniform read and
write head is fixed with a heuristic (urMANN). In our simulations,
we assume that there is a dependency from timestep 50 to 5. We run
200 simulations for each one of them with di↵erent memory sizes for
each model. In plot a) we show the results for the expected length
of the shortest path from timestep 50 to 5. In the plots, as the size
of the memory gets larger for both models, the length of the shortest
path decreases dramatically. In plot b), we show the expected length
of the shortest path travelled outside the wormhole connections with
respect to di↵erent memory sizes. TARDIS seems to use the memory
more e�ciently compared to other models in particular when the size
of the memory is small by creating shorter paths. 44

3.6 An illustration of the sequential MNIST strokes task with multiple
digits. The network is first provided with the sequence of strokes
information for each MNIST digits (location information) as input,
during the prediction the network tries to predict the MNIST digits
that it has just seen. When the model tries to predict, the predictions
from the previous time steps are fed back into the network. For the
first time step, the model receives a special <bos> token which is
fed into the model in the first time step when the prediction starts. 47

3.7 Learning curves for LSTM and TARDIS for sequential stroke multi-
digit MNIST task with 5, 10, and 15 digits respectively. 48

4.1 Copying memory task for T = 100 (in top) and T = 200 (in bottom).
Cross-entropy for random baseline : 0.17 and 0.09 for T=100 and
T=200 respectively. 56

4.2 Change in the content of the NRU memory vector for the copying
memory task with T=100. We see that the network has learnt to use
the memory in the first 10 time steps to store the sequence. Then it
does not access the memory until it sees the marker. Then it starts
accessing the memory to generate the sequence. 58

4.3 Variable Copying memory task for T = 100 (in left) and T = 200
(in right). 59

4.4 Comparison of top-3 models w.r.t the number of the steps to con-
verge for di↵erent tasks. NRU converges significantly faster than
JANET and LSTM-chrono. 60

4.5 Denoising task for T = 100. 61
4.6 Validation curve for psMNIST task. 63

vii

4.7 Gradient norm comparison with JANET and LSTM-chrono across
the training steps. We observe significantly higher gradient norms
for NRU during the initial stages compared to JANET or LSTM-
chrono. As expected, NRU’s gradient norms decline after about 25k
steps since the model has converged. 64

4.8 E↵ect of varying the number of heads (left), memory size (middle),
and hidden state size (right) in psMNIST task. 65

5.1 Per-level accuracy on previous tasks, current task, and future tasks
for a 128 dimensional LSTM trained in the SSMNIST task distri-
bution by using the curriculum. The model heavily overfits to the
sequence length. 79

5.2 Current Task Accuracy for the di↵erent models on the three “task
distributions”(Copy, Associative Recall, and SSMNIST respectively).
On the x-axis, we plot the index of the task on which the model
is training currently and on the y-axis, we plot the accuracy of the
model on that task. Higher curves have higher current task accuracy
and curves extending more have completed more tasks. For all the
three “task distributions”, our proposed small-Lstm-Gem-Net2Net
model clears either more levels or same number of levels as the large-
Lstm-Gem model. Before the blue dotted line, the proposed model
is of much smaller capacity (hidden size of 128) as compare to other
two models which have a larger hidden size (256). Hence the larger
models have better accuracy initially. Capacity expansion technique
allows our proposed model to clear more tasks than it would have
cleared otherwise. 89

5.3 Previous Task Accuracy for the di↵erent models on the three task
distributions (Copy, Associative Recall, and SSMNIST respectively).
Di↵erent bars represent di↵erent models and on the y-axis, we plot
the average previous task accuracy (averaged for all the tasks that
the model learned). Higher bars have better accuracy on the previ-
ously seen tasks and are more robust to catastrophic forgetting. For
all the three task distributions, the proposed models are very close
in performance to the large-Lstm-Gem models and much better than
the large-Lstm models. 89

viii

5.4 Future Task Accuracy for the di↵erent models on the three task
distributions (Copy, Associative Recall, and SSMNIST respectively).
Di↵erent bars represent di↵erent models and on the y-axis, we plot
the average future task accuracy (averaged for all the tasks that the
model learned). Higher bars have better accuracy on the previously
unseen tasks and are more beneficial for achieving knowledge transfer
to future tasks. Even though the proposed model does not have any
component for specifically generalizing to the future tasks, we expect
the proposed model to generalize at least as well as the large-Lstm-
Gem model and comparable to large-Lstm. Interestingly, our model
outperforms the large-Lstm model for Copy task and is always better
than (or as good as) the large-Lstm-Gem model. 90

5.5 Accuracy of the di↵erent models (small-Lstm-Gem-Net2Net, large-
Lstm-Gem and large-Lstm respectively) as they are trained and eval-
uated on di↵erent tasks for the Copy and the SSMNIST task dis-
tributions. On the x-axis, we show the task on which the model
is trained and on the y-axis, we show the accuracy corresponding
to the di↵erent tasks on which the model is evaluated. We observe
that for the large-Lstm model, the high accuracy values are concen-
trated along the diagonal which indicates that the model does not
perform well on the previous task. In the case of both small-Lstm-
Gem-Net2Net and large-Lstm-Gem models, the high values are in
the lower diagonal region indicating that the two models are quite
resilient to catastrophic forgetting. 91

ix

List of Tables

3.1 Character-level language modelling results on Penn TreeBank Dataset.
TARDIS with Gumbel Softmax and straight-through (ST) estimator
performs better than REINFORCE and it performs competitively
compared to the SOTA on this task. ”+ R” notifies the use of RE-
SET gates ↵ and �. 46

3.2 Per-digit based test error in sequential stroke multi-digit MNIST
task with 5,10, and 15 digits. 48

3.3 In this table, we consider a model to be successful on copy or as-
sociative recall if its validation cost (binary cross-entropy) is lower
than 0.02 over the sequences of maximum length seen during the
training. We set the threshold to 0.02 to determine whether a model
is successful on a task as in (Gulcehre et al., 2016). 49

3.4 Comparisons of di↵erent baselines on SNLI Task. 50

4.1 Number of tasks where the models are in top-1 and top-2. Maximum
of 7 tasks. Note that there are ties between models for some tasks
so the column for top-1 performance would not sum up to 7. 55

4.2 Bits Per Character (BPC) and Accuracy in test set for character
level language modelling in PTB. 62

4.3 Validation and test set accuracy for psMNIST task. 63

5.1 Comparison of di↵erent models in terms of the desirable properties
they fulfill. 74

x

List of Abbreviations

BPC Bits per character

BPTT Backpropagation Through Time

CIFAR Canadian Institute for Advanced Research

DL Deep Learning

D-NTM Dynamic Neural Turing Machine

EUNN E�cient Unitary Neural Network

EURNN E�cient Unitary Recurrent Neural Network

EWC Elastic Weight Consolidation

FFT Fast Fourier Transform

GEM Gradient Episodic Memory

GORU Gated Orthogonal Recurrent Unit

GRU Gated Recurrent Unit

HAT Hard Attention Target

HMM Hidden Markov Model

iCaRL Incremental Classifier and Representation Learning

IMM Incremental Moment Matching

JANET Just Another NETwork

KL divergence Kullback-Leibler divergence

LRU Least Recently Used

LSTM Long Short Term Memory

LwF Learning without Forgetting

MANN Memory Augmented Neural Network

xi

ML Machine Learning

MLP Multi-Layer Perceptron

MNIST Mixed National Institute of Standards and Technology

NMC Nearest Mean Classifier

NOP No Operation

NRU Non-saturating Recurrent Unit

NTM Neural Turing Machine

psMNIST Permuted Sequential MNIST

PTB Penn Tree Bank

QP Quadratic Programming

REINFORCE REward Increment = Nonnegativev Factor times O↵set

Reinforcement times Characteristic Eligibility

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SNLI Stanford Natural Language Inference

SOTA State-of-the-art

SRU Statistical Recurrent Unit

SSMNIST Sequential Stroke MNIST

TARDIS Temporal Automatic Relation Discovery In Sequences

xii

To my mother Premasundari.
For all the sacrifices that she has made!
She is the reason I’m where I am today!!

xiii

Acknowledgments

August 2014. I was visiting Hugo Larochelle’s lab at the University of Sher-
brooke. Hugo and I were discussing my options for a PhD. “If you want to do a
Ph.D. in Deep Learning, you have to do it with Yoshua,” Hugo had said. I applied
only to the University of Montreal and I got an o↵er to do my Ph.D. with Yoshua
Bengio and Hugo Larochelle. I accepted the o↵er and the next four years were a
wonderful journey. If I have to go back and redo my Ph.D., I would do it exactly
in the same way!

I should start my acknowledgements by thanking Hugo Larochelle. I know Hugo
since NeurIPS 2013. Not only did he show me the right path to do my Ph.D. with
Yoshua, but he also agreed to co-supervise me. In the last four years, Hugo has
been my adviser, mentor, teacher, and well-wisher. Even though this thesis does
not include any of my joint work with Hugo, this thesis is not possible without his
advice and mentoring.

My next thanks are to Yoshua Bengio. Yoshua gave me the independence to
do my research. However, he was always there every time I got stuck and our
discussions always helped me progress. He always encouraged me to do good science
and not run after publications. Yoshua and Hugo together are the best combination
of advisers one could ask for!

I would like to thank my primary collaborators without whom this thesis is not
possible: Caglar Gulcehre, Chinnadhurai Sankar, and Shagun Sodhani. Chapters 3,
4, and 5 in this thesis are joint work with Caglar, Chinna, and Shagun respectively.

I am grateful to be part of Mila, which is a very vibrant and dynamic research
lab that one can think of. I would like to thank the following Mila faculty members
for several technical and career-related discussions over the last four years: Lau-
rent Charlin, Aaron Courville, Will Hamilton, Simon Lacoste-Julien, Guillaume
Lajoie, Roland Memisevic, Ioannis Mitliagkas, Chris Pal, Prakash Panangaden,
Liam Paull, Joelle Pineau, Doina Precup, Alain Tapp, Pascal Vincent, Guillaume
Rabusseau. I would like to thank Dzmitry Bahdanau, Harm de Vries, William
Fedus, Prasanna Parthasarathi, Iulian Vlad Serban, Chiheb Trabelsi, and Eugene
Vorontsov for several interesting conversations. I would like to thank my lecoinnoir
team for all the fun in the workplace. Special thanks to Laura Ball for keeping our
corner green!

xiv

I would like to thank the Google Brain Team in Montreal for hosting me as
a student research scholar for the last 2 years. I have had several stimulating
research discussions with Hugo Larochelle, Marc Bellemare, Laurent Dnih, Ross
Goroshin, Danny Tarlow and Shibl Mourad (DeepMind) in the Google o�ce. A
special thanks to my manager Natacha Mainville for always making sure that I
never had any blocks in my research and work at Google.

I would like to thank everyone who participated in Hugo’s weekly meetings:
David Bieber, Liam Fedus, Disha Srivastava, and Danny Tarlow. Despite being
on a friday, these meetings were always fun! I would like to thank the following
external researchers for several interesting research discussions and career-related
advice: Kyunghyun Cho, Orhan Firat, Marlos Machado, Karthik Narasimhan, Siva
Reddy. During my Ph.D., I was lucky to mentor Mohammad Amini, Vardhaan
Pahuja, Gabriele Prato, Shagun Sodhani, and Nithin Vasishta. I would like to
thank all of them for the knowledge that I gained through mentoring them.

In the last seven years of my research, I was extremely lucky to have several good
collaborators. Apart from the ones mentioned above, I would like to thank the fol-
lowing: Ghulam Ahmed Ansari, Alex Auvolat, Sungjin Ahn, Nolan Bard, Michael
Bowling, Neil Burch, Alexandre de Brebisson, Murray Campbell, Mathieu Duches-
neau, Vincent Dumoulin, Iain Dunning, Jakob N. Foerster, Jie Fu, Alberto Garcia-
Duran, Revanth Gengireddy, Mathieu Germain, Edward Hughes, Samira Kahou,
Nan Rosemary Ke, Khimya Ketarpal, Taesup Kim, Marc Lanctot, Stanislas Lauly,
Zhouhan Lin, Sridhar Mahadevan, Vincent Michalski, Subhodeep Moitra, Alexan-
dre Nguyen, Emilio Parisotto, Prasanna Parthasarathi, Michael Pieper, Olivier
Pietquin, Janarthanan Rajendran, Sai Rajeshwar, Vikas Raykar, Subhendu Ron-
gali, Amrita Saha, Karthik Sankaranarayanan, Francis Song, Jose M. R. Sotelo,
Florian Strub, Dendi Suhubdy, Sandeep Subramanian, Gerry Tesauro, Saizheng
Zhang.

I would like to thank Simon Lacoste-Julien for accepting me to TA for his
graphical models course for 2 years. In my Ph.D., I also got the opportunity to
teach the Machine Learning course at McGill twice. I would like to thank all the
300+ students who took the course. I learned a lot by teaching this course. Special
thanks to all my TAs for supporting me to teach such a large scale course.

Throughout my Ph.D., I was fortunate to hold several fellowships and scholar-
ships. I was supported by an FQRNT-PBEEE fellowship by the Quebec Govern-
ment for the second and third year. I was supported by an IBM Ph.D, fellowship
for the fourth and fifth years. I also received the Antidote scholarship for NLP
by Druide Informatique. Google also supported my Ph.D. by giving me a student
research scholar position which allowed me to work part-time at Google Brain Mon-
treal. I would like to thank all these institutions for providing financial support
which helped me to do my research. Special thanks to all the sta↵ members at

xv

Mila who made my Ph.D. life much easier: Frédéric Bastien, Myriam Cote, Joce-
lyne Etienne, Mihaela Ilie, Simon Lefrancois, Julie Mongeau, and Linda Peinthiere.

I would like to thank my undergrad adviser Susan Elias for introducing me to
research, my Master’s adviser Ravindran Balaraman for introducing me to Machine
Learning, my long-term collaborator and mentor Mitesh Khapra for introducing me
to Deep Learning.

This thesis would not have been possible without the support of my friends and
family! I will start by acknowledging my room-mate for the first three years: Chin-
nadhuari Sankar. We had technical discussions even while cooking and driving. Our
pair-programming in late nights has resulted in several interesting projects includ-
ing the NRU (presented in this thesis). Special thanks to Gaurav Isola, Prasanna
Parthasarathi, and Shagun Sodhani for being good friends, and well-wishers, and
supporting me whenever I face any personal issues. Thanks to Igor Kozlov, Ritesh
Kumar, Disha Srivastava, Sandeep Subramaniam, Nithin Vasishta, and Srinivas
Venkattaramanujam for all the fun time in Montreal. I would like to thank my
long-time friends Praveen Muthukumaran and Nivas Narayanasamy for supporting
me through thick and thin. I would like to thank my music teacher Divya Iyer for
accommodating my busy research life and teaching me music whenever I find the
time. Music, for me, is a soul recharging experience!

Ph.D. is a challenging endeavour. It is the support of my family which encour-
aged me to keep going. I would like to thank Sibi Chakravarthi for everything he
has done for me. Life would be boring without our silly fights! I also would like
to thank Chitra aunty for her support and advice. She always treats me the same
way as Sibi. I would like to thank Mamal Amini for all his love and care. Montreal
has given me a Ph.D. and a career, but you are the best gift that Montreal gave
me. Thank you for being such an awesome friend and brother. Thank you for
making sure I go to the gym even if there is a deadline the next day! I would like
to thank my sister Parani for her constant support. She always cares for me and
encourages me every time I feel down. I would like to thank my wife Sankari for
supporting my dreams and understanding every night I was working in front of the
desktop (including the night I am writing this acknowledgement section!). Thank
you for your love and a↵ection. I would like to thank my mom Premasundari for
everything. I am the world for her. This thesis is rightly dedicated to her. Finally,
I would like to thank my father Parthipan for everything. He always wanted to
see me as a scientist. Now I can finally say that I have achieved your dreams for
me dad! You are still living in our memories and I know you will be feeling proud
about me right now!

xvi

1 Introduction

Designing general-purpose learning algorithms is one of the long-standing goals
of artificial intelligence and machine learning. The success of Deep Learning (DL)
(LeCun et al., 2015; Goodfellow et al., 2016) demonstrated gradient descent as one
such powerful learning algorithm. However, it shifted the attention of the machine
learning research community from the search for a general-purpose learning algo-
rithm to the search for a general-purpose model architecture. This thesis considers
one such general-purpose model architecture class: Recurrent Neural Networks
(RNNs). RNNs have become the de-facto models for sequential prediction prob-
lems. Variants of RNNs are used in many natural language processing applications
like speech recognition (Bahdanau et al., 2016), language modeling (Merity et al.,
2017), machine translation (Wu et al., 2016), and dialogue systems (Serban et al.,
2017). RNNs are also used for sequential decision-making problems (Hausknecht
and Stone, 2015).

While RNNs are more suitable for sequential prediction problems, they can also
be useful computation models for one-step prediction problems. A one-step predic-
tion problem like image classification could still benefit from recurrent reasoning
steps over the available information to make better predictions as demonstrated by
Mnih et al. (2014). Thus any improvements to RNNs should have a significant im-
pact on the general problem of prediction. This thesis proposes several architectural
and algorithmic improvements in training recurrent neural networks.

RNNs, even though a powerful class of model architectures, are di�cult to train
due to the problem of vanishing and exploding gradients (Hochreiter, 1991; Bengio
et al., 1994). While training an RNN using gradient descent, gradients could vanish
or explode as the length of the sequence increases. While exploding gradients
destabilize the training, vanishing gradients prohibit the model from learning long-
term dependencies that exist in the data. Learning long-term dependencies is one of
the central challenges for machine learning. Designing a general-purpose recurrent
architecture which has no vanishing or exploding gradients while maintaining all
its expressivity remains an open question. The first half of this thesis attempts to
answer this question.

Moving away from the single-task setting where one trains a model to perform
only one task, the second half of the thesis considers a multi-task lifelong learning

1

setting. In a lifelong learning setting, the network has to learn a series of tasks
rather than just one task. This is beneficial since the network can transfer knowl-
edge from one task to another and hence learn new tasks faster than learning them
from scratch. However, this comes with additional challenges. When we train
an RNN to learn multiple tasks it might forget the previous tasks while learning
the new task and hence its performance in previous tasks might degrade. This
is known as catastrophic forgetting (McCloskey and Cohen, 1989). Also note that
RNNs are finite capacity parametric models. When forced to learn more tasks than
its capacity allows, an RNN tends to unlearn previous tasks to free the capacity
to learn new tasks. We call this capacity saturation. Note that capacity saturation
and catastrophic forgetting are related issues. While capacity saturation leads to
catastrophic forgetting, it is not the only source of catastrophic forgetting. Another
source is the gradient descent algorithm itself which forces the parameter to move
to a di↵erent region in the parameter space to learn the new task better. The thesis
attempts to provide solutions to tackle these additional challenges that would arise
in a lifelong learning setting.

1.1 Contributions

The key contributions of this thesis are as follows:

— Dynamic skip-connections to avoid vanishing gradients. In a typical
recurrent neural network, the state of the network at each time step is a
function of the state of the network at previous time step. This creates
a linear chain that the gradients has to pass through. We propose a new
recurrent architecture called “TARDIS” which learns to create dynamic skip
connections to previous time steps so that the gradients can pass directly
to a previous time step without passing through all the intermediate time
steps. This significantly reduces the rate at which gradients vanish (Chapter
3).

— A recurrent architecture with no vanishing gradients. In this thesis,
we propose a new recurrent architecture which does not have any vanishing
gradients by construction. We call the architecture “Non-saturating Recur-
rent Unit” (NRU) (Chapter 4).

— RNNs for lifelong learning. We study the problem of using RNNs for life-
long learning. While most of the existing work on lifelong learning focused on
catastrophic forgetting, this work highlights that the issue of capacity satura-
tion is also important and proposes a hybrid learning algorithm which would
tackle both catastrophic forgetting and capacity saturation. Specifically, we

2

extend the individual solutions for these problems from the feed-forward lit-
erature and also merge them to tackle both problems together (Chapter 5).

This thesis is based on the following three publications:

1. Caglar Gulcehre, Sarath Chandar, Yoshua Bengio. Memory Augmented Neu-
ral Networks with Wormhole Connections. In arXiv, 2017.
— Personal Contributions: The model is inspired from our earlier work

(Gulcehre et al., 2016). Caglar came up with the idea of tying the read-
ing and writing head. Caglar performed the language model and SNLI
experiments. I created the sequential stroke multi-digit MNIST task and
performed the benchmark experiments. Caglar and I wrote the paper
with significant contributions from Yoshua.

2. Sarath Chandar*, Chinnadhurai Sankar*, Eugene Vorontsov, Samira Ebrahimi
Kahou, Yoshua Bengio. Towards Non-saturating Recurrent Units for Mod-
elling Long-term Dependencies. Proceedings of AAAI, 2019.
— Personal Contributions: I was looking for alternative solutions for

vanishing gradients after the TARDIS project. Yoshua suggested the
idea of using a flat memory vector with ReLU based gating in one of
our discussions. I developed NRUs based on this suggestion. I designed
the experiments and implemented the tasks. Chinnadhurai and I ran
most of the experiments. Eugene helped us by running the unitary RNN
baselines. I wrote the paper with feedback from all the authors.

3. Shagun Sodhani*, Sarath Chandar*, Yoshua Bengio. Towards Training Re-
current Neural Networks for Lifelong Learning. Neural Computation, 2019.
— Personal Contributions: The idea of studying the capacity saturation

issue in lifelong learning was mine. I also came up with the idea of
combining Net2Net with methods that mitigate catastrophic forgetting.
I designed the tasks and Shagun ran all the experiments and we both
wrote the paper together with feedback from Yoshua.

1.2 Thesis layout

The rest of the thesis is organized as follows. Chapter 2 introduces sequential
problems and recurrent neural networks. Chapter 2 also introduces the problem
of vanishing and exploding gradients and provides necessary background on state-
of-the-art recurrent architectures which aim to solve this problem. Chapter 3 and
chapter 4 introduce two di↵erent solutions to solve the vanishing gradient problem:
LSTMs with wormhole connections and Non-saturating Recurrent Units respec-
tively. Chapter 5 discusses the challenges in training RNNs for lifelong learning

3

and proposes a solution. Chapter 6 concludes the thesis and outlines future re-
search directions.

4

2 Background

In this chapter, we will provide the necessary background on recurrent neural
networks to understand this thesis. We assume that the reader already knows the
basics of machine learning, neural networks, gradient descent, and backpropagation.
See (Goodfellow et al., 2016) for a relevant textbook.

2.1 Sequential Problems

This thesis focuses on sequential problems and we give the general definition of
a sequential problem here.

In a sequential problem, at every time step t, the system receives some input xt

and has to produce some output yt. The number of time steps is a variable and it
can potentially be infinite (in which case the system receives an infinite stream of
inputs and produces an infinite stream of outputs). The input xt at any time step
t can be optional and so is the output yt at any time step t. yt at any time step
might be dependent on any of the previous xt or even all of previous xt which makes
the problem more challenging than the standard single step prediction problems
where the output depends on just the immediately preceding input.

Now we will show several example applications which can be considered in this
framework of sequential problems.

2.1.1 Sequence Classification

Given a sequence x1, ...,xT , the task is to predict yT which is the class label of
the sequence. This can be considered in the general sequential problem framework
with no output yt at all time steps except for t = T . The sequence is defined as
(x1,), (x2,), ..., (xT�1,), (xT ,yT).

Example applications include sentence sentiment classification where given a
sequence of words, the task is to predict whether the sentiment of the sentence is
positive, negative or neutral.

5

2.1.2 Language Modeling

Given a sequence of words w1, ...,wT , the goal of language modeling is to model
the probability of seeing this sequence of words or tokens, P (w1, ...,wT). This can
be represented as the conditional probability of the next word given all the previous
words:

P (w1, ...,wT) =
TY

t=1

P (wt|wt�1

1
) (2.1)

where wt�1

1
refers to w1, ...,wt�1 and w0

1
is defined as null. This task can be

posed as a sequential prediction problem where at every time t, given w1, ...,wt�1,
the system predicts wt. The sequence flow for this problem is defined as (,w1),
(w1,w2), ..., (wT�1,wT). At any point in time t, the system has seen the previous
t�1 words (over t�1 time steps) and hence should be able to model the probability
of the t-th word given the previous t� 1 words. A system trained with a language
modeling objective can be used for unconditional language generation by sampling
a word given the sequence of previously sampled words. It may also be used to
score a word sequence by P (w1, ...,wT) using equation 2.1.

2.1.3 Conditional Language Modeling

In conditional language modeling, we model the probability of a sequence of
words w1, ...,wT given some object o: P (w1, ...,wT |o). The conditioning object o
itself can be a sequence. There are several applications for conditional language
modeling.

In question answering, given a question (which is a sequence of words), the sys-
tem has to generate the answer (which is another sequence of words). In machine
translation, given a sequence of words in one language, the system has to generate
another sequence of words in a di↵erent language. In image captioning, given an
image (which is a single object), the system has to generate a suitable caption
(which is a sequence of words). In dialogue systems, given the previous utterances
(each of which is a sequence of sentences), the system has to generate the next
utterance (which is a sequence of words). The sequence flow for conditional lan-
guage modeling is defined as (o1,), ..., (oT1 ,), (,w1), ..., (,wT2) where T1 is 1 for
non-sequential objects.

6

2.1.4 Sequential Decision Making

In sequential decision making, at any time step t, the agent perceives a state st
and takes an action at. Based on the current state and the action, the agent receives
some reward rt+1 and moves to a new state st+1 with probability P (st+1|st, at). The
goal of the agent is to find a policy (i.e. which action to take in the given state)
such that it can maximize the discounted sum of the rewards, where the future
rewards are discounted by some discount factor � 2 [0, 1]. The sequence flow
in this setting is ({ , s1}, a1), ({r2, s2}, a2), ..., ({rT , sT}, aT). This is the central
problem of Reinforcement Learning.

2.2 Vanilla Recurrent Neural Networks

In this section, we will first show the limitations in using feed-forward networks
for sequential problems. Then we will introduce recurrent neural networks as an
elegant solution for sequential problems. We assume discrete outputs throughout
the discussion (i.e. yt takes a finite set of values). The discussion can be easily
extended to the continuous output setting.

2.2.1 Limitations of Feedforward Neural Networks

Feedforward neural networks are the simplest neural network architectures that
take some input x and predict some output y. Consider a sequential problem where
at every time step t, the network receives xt and has to predict yt. The typical
architecture of a feedforward one-hidden layer fully-connected neural network is
defined as follows:

ht = f(Uxt + b) (2.2)

ot = softmax(Vht + c) (2.3)

where f is some non-linearity function like sigmoid or tanh, and ht is the hidden
state of the network. U is the input to hidden state connection matrix and V is
the hidden state to output connection matrix. b and c are the bias vectors for the
hidden layer and the output layer respectively. Softmax gives a valid probability
distribution over possible values yt can take.

Given a sequence of xt,yt, {(xt,yt)}Tt=1
, the network is trained by minimizing

7

the negative log-likelihood of yt given xt.

L = �
TX

t=1

log Pmodel(yt|xt) (2.4)

This loss function can be minimized by using the backpropagation algorithm. This
simple model learns to predict yt solely based on xt. Hence, it cannot capture the
dependency of yt with some previous xt0 with t0 < t. In other words, this is a state-
less architecture since it cannot remember previous xt0 while making prediction for
the current yt.

The straightforward extension of this architecture to model the dependencies
with previous inputs is to consider previous k inputs while predicting the next
output. The architecture of such a network is defined as follows:

ht = f(U1xt +U2xt�1 + ...+Ukxt�k+1 + b) (2.5)

ot = softmax(Vht + c) (2.6)

The loss function in this case is

L = �
TX

t=1

log Pmodel(yt|xt,xt�1, ...,xt�k+1) (2.7)

While we simulate states in this architecture by explicitly feeding the previous
k inputs, this model has limited expressive power in the sense that it can only
model the dependencies within the previous k inputs. In addition, the number of
parameters of the model grows linearly as the value of k increases. Ideally we would
expect to model the dependencies with all the previous inputs and also avoid this
linear growth in the number of parameters as the length of the sequence increases.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of neural network architectures
specialized for processing sequential data. RNNs are similar to feedforward net-
works except that the hidden states have a recurrent connection. RNNs can use
this hidden state to remember the previous inputs and hence the hidden state at
any point of time acts like a summary of the entire history. The typical architecture
of a simple, or vanilla RNN is defined as follows:

ht = f(Uxt +Wht�1 + b) (2.8)

ot = softmax(Vht + c) (2.9)

8

where the matrix W corresponds to hidden to hidden connections. The initial
hidden state h0 can be initialized to a zero vector or can be learned like other
parameters. Figure 2.1 shows the architecture of this RNN. RNNs when unrolled
across time correspond to a feedforward neural network with shared weights in
every time step (see Figure 2.2). Hence one can learn the parameters of the RNN by
using backpropagation in this unrolled network. This is known as backpropagation
through time (BPTT). The memory required for BPTT increases linearly with the
length of the sequence. Hence we often approximate BPTT with truncated BPTT
in which we truncate the backprop after some k time steps.

ot

ht= f ()

xt

V

W

U

Figure 2.1 – A vanilla Recurrent Neural Network. Biases are not shown in the illustration.

o1

h1= f ()

x1

V

W

U

h0

o2

h2= f ()

x2

V

W

U

o3

h3= f ()

x3

V

W

U

ot

ht= f ()

xt

V

W

U

Figure 2.2 – RNN unrolled across the time steps. An unrolled RNN can be considered as a
feed-forward neural network with weights W ,U ,V shared across every layer.

The loss function in this case could be

L = �
TX

t=1

log Pmodel(yt|xt

1
) (2.10)

RNNs have several nice properties suitable for sequential problems.

1. Prediction for any yt is dependent on all the previous inputs.

9

2. The number of parameters is independent of the length of the sequences.
This is achieved by sharing the same set of parameters across the time steps.

3. RNNs can naturally handle variable length sequences.

2.3 Problem of vanishing and exploding
gradients

Even though RNNs are capable of capturing long term dependencies, they often
learn only short term dependencies. This is mainly due to the fact that gradients
vanish as the length of the sequence increases. This is known as vanishing gradient
problem and has been well studied in the literature (Hochreiter, 1991; Bengio et al.,
1994).

Consider an RNN which at each timestep t takes an input xt 2 Rd and produces
an output ot 2 Ro. The hidden state of the RNN can be written as,

zt = Wht�1 +Uxt, (2.11)

ht = f(zt). (2.12)

where W and U are the recurrent and the input weights of the RNN respectively
and f(·) is a non-linear activation function. Let L =

P
T

t=1
Lt be the loss function

that the RNN is trying to minimize. Given an input sequence of length T , we can
write the derivative of the loss L with respect to parameters ✓ as,

@L
@✓

=
X

1t1T

@Lt1

@✓
=

X

1t1T

X

1t0t1

@Lt1

@ht1

@ht1

@ht0

@ht0

@✓
. (2.13)

The multiplication of many Jacobians in the form of @ht
@ht�1

to obtain
@ht1
@ht0

is the

main reason of the vanishing and the exploding gradients (Pascanu et al., 2013b):

@ht1

@ht0

=
Y

t0<tt1

@ht

@ht�1

=
Y

t0<tt1

diag[f 0(zt)]W . (2.14)

Let us assume that the singular values of a matrix M are ordered as, �1(M) �
�2(M) � · · · � �n(M). Let ↵ be an upper bound on the singular values of W , s.t.
↵ � �1(W), then the norm of the Jacobian will satisfy (Zilly et al., 2016),

|| @ht

@ht�1

|| ||W || ||diag[f 0(zt)|| ↵ �1(diag[f
0(zt)]), (2.15)

10

Pascanu et al. (2013b) showed that for || @ht
@ht�1

|| �1(
@ht

@ht�1
) ⌘, the following

inequality holds:

||
Y

t0tt1

@ht

@ht�1

|| �1

Y

t0tt1

@ht

@ht�1

!
 ⌘t1�t0 . (2.16)

where ↵||f 0(zt)|| ⌘ for all t. We see that the norm of the product of Jacobians
grows exponentially on t1�t0. Hence, if ⌘ < 1, the norm of the gradients will vanish
exponentially fast. Similarly, if ⌘ > 1, the norm of the gradients may explode
exponentially fast. This is the problem of vanishing and exploding gradients in
RNNs. While gradient clipping can limit the e↵ect of exploding gradients, vanishing
gradients are harder to prevent and so limit the network’s ability to learn long term
dependencies.

The second cause of vanishing gradients is the activation function f . If the
activation function is a saturating function like a sigmoid or tanh, then its Jacobian
diag[f 0(zt)] has eigenvalues less than or equal to one, causing the gradient signal to
decay during backpropagation. Long term information may decay when the spectral
norm of (Wdiag[f 0(zt)]) is less than 1 but this condition is actually necessary in
order to store this information reliably (Bengio et al., 1994; Pascanu et al., 2013b).

Designing a recurrent neural network architecture which has no vanishing or
exploding gradients is an open question in the RNN literature. While there are
certain recurrent architectures which have no vanishing or exploding gradients,
their parameterizations are rather less expressive (as we will see in this chapter).

2.4 Long Short-Term Memory (LSTM)
Networks

Long Short-Term Memory (LSTM) Networks were introduced by Hochreiter and
Schmidhuber (1997) to mitigate the issue of vanishing and exploding gradients. The
LSTM is a recurrent neural network which maintains two recurrent states: a hidden
state ht (similar to a vanilla RNN) and a cell state ct. The cell state is updated in
an additive manner instead of the usual multiplicative manner, which is the main
source of vanishing gradients. Further, the information flow to the cell state and
out of the cell state are controlled by sigmoidal gates.

Specifically, the LSTM has three di↵erent gates: forget gate ft, input gate it,
and output gate ot. All the three gates are functions of the current input xt and

11

the previous hidden state ht�1.

it = sigmoid(Wxixt +Whiht�1 + bi) (2.17)

ft = sigmoid(Wxfxt +Whfht�1 + bf) (2.18)

ot = sigmoid(Wxoxt +Whoht�1 + bo). (2.19)

The cell state ct is updated as follows:

c̃t = tanh(Wxcxt +Whcht�1 + bc) (2.20)

ct = ft � ct�1 + it � c̃t (2.21)

where � denotes element-wise product and c̃t is the new information to be added
to the cell state. Intuitively, ft controls how much of ct�1 should be forgotten and
it controls how much of c̃t has to be added to the cell state.

The hidden state is computed using the current cell state as follows:

ht = ot � tanh(ct). (2.22)

The LSTM maintains a cell state that is updated by addition rather than multipli-
cation (see Equation 2.21) and serves as an “error carousel” that allows gradients
to skip over many transition operations. The gates determine which information is
skipped. Figure 2.3 shows the architecture of LSTM.

Xt

ht-1

ct-1

𝛔

✕

ht

ct

𝛔 tanh

✕

+

𝛔

tanh

✕

ft
it otct

~

Figure 2.3 – Long Short-Term Memory (LSTM) Network.

The cell state and the hidden state in an LSTM play two di↵erent roles. While
the cell state is responsible for information from the past that will be useful for
future predictions, the hidden state is responsible for information from the past that

12

will be useful for the current prediction. Note that in a vanilla RNN, the hidden
state played both these roles together. While a vanilla RNN has all the expressive
power that an LSTM has, the explicit parameterization of the LSTM makes the
learning problem easier. This idea of constructing explicit parameterizations to
make learning easier is one of the central themes of this thesis.

The LSTM, even though introduced in 1997, is still the de-facto model that
is used for most of the sequential problems. There has been few improvements
to the original version of LSTM proposed by Hochreiter and Schmidhuber (1997).
The initial version of the LSTM did not have forget gates. The idea of adding
forgetting ability to free memory from irrelevant information was introduced in
Gers et al. (2000). Gers et al. (2002) introduced the idea of peepholes connecting
the gates to the cell state so the network can learn precise timing and counting of
the internal states. The parameterization of an LSTM with peephole connections
is given below:

it = sigmoid(Wxixt +Whiht�1 +Wcict�1 + bi) (2.23)

ft = sigmoid(Wxfxt +Whfht�1 +Wcfct�1 + bf) (2.24)

ct = ftct�1 + it tanh(Wxcxt +Whcht�1 + bc) (2.25)

ot = sigmoid(Wxoxt +Whoht�1 +Wcoct + bo) (2.26)

ht = ot tanh(ct) (2.27)

where the weight matrices from the cell to gate vectors (e.g. Wcf) are diagonal.
When we refer to LSTMs in this thesis, it is usually LSTMs with peephole connec-
tions.

While the additive cell updates avoided the first source of vanishing gradients,
the gradients still vanish in LSTMs due to the saturating activation functions used
for gating. When the gating unit activations saturate, the gradient on the gating
unit themselves vanishes. However, locking the gates to ON (or OFF) is necessary
for distance gradient propagation across memory. This introduces an unfortunate
trade-o↵ where either the gate mechanism receives updates or gradients are skipped
across many transition operators. Due to this issue, LSTMs often end up learning
only short term dependencies. However, the short term dependencies learned by
LSTMs are still longer than the dependencies learned by a vanilla RNN and hence
the name long short-term memory.

2.4.1 Forget gate initialization

Gers et al. (2000) proposed to initialize the bias of the forget gate to 1 which
helped in modelling medium term dependencies when compared with zero initial-
ization. This was also recently highlighted in the extensive exploration study by

13

Józefowicz et al. (2015). Tallec and Ollivier (2018) proposed chrono-initialization to
initialize the bias of the forget gate (bf) and input gate (bi). Chrono-initialization
requires the knowledge of maximum dependency length (Tmax) and it initializes the
gates as follows:

bf ⇠ log(U [1, Tmax � 1]) (2.28)

bi = �bf (2.29)

This initialization method encourages the network to remember information for ap-
proximately Tmax time steps. While these forget gate bias initialization techniques
encourage the model to retain information longer, the model is free to unlearn this
behaviour.

2.5 Other gated architectures

A simpler gated architecture called Gated Recurrent Unit (GRU) was introduced
by Cho et al. (2014). Similar to LSTMs, GRUs also have gating units to control the
information flow. However, unlike LSTMs which has three types of gates, GRUs
has only two type of gates: an update gate zt and a reset gate rt. Both the gates
are functions of the current input xt and the previous hidden state ht�1.

zt = sigmoid(Wxzxt +Whzht�1 + bz) (2.30)

rt = sigmoid(Wxrxt +Whrht�1 + br) (2.31)

At any time step t, first the candidate hidden state h̃t is computed as follows:

h̃t = tanh(Wxhxt +Whh(rt � ht�1) + bh) (2.32)

When the reset gate is close to zero, the unit essentially forgets the previous state.
This is similar to the forget gate in LSTM.

Now the hidden state ht is computed as a linear interpolation between the
previous hidden state ht�1 and the current candidate hidden state h̃t:

ht = (1� zt)� ht�1 + zt � h̃t (2.33)

where the update gate zt determines how much the unit updates its content based
on the newly available content. This is very similar to the cell state update in an
LSTM. However, GRU does not maintain a separate cell state. The hidden state
serves the purpose of both the cell state and the hidden state in an LSTM. While
the cell state helps the LSTM to remember long-term information, in GRU, it is the

14

duty of the update gate to learn to remember long-term information. GRUs while
simpler than LSTMs, are comparable in performance to LSTMs (Chung et al.,
2014) and hence are widely used.

While GRUs reduced the number of gates in LSTM from three to two, Just
Another NETwork (JANET) (van der Westhuizen and Lasenby, 2018) reduces the
number of gates further to only one: the forget gate ft.

ft = sigmoid(Wxfxt +Whfht�1 + bf) (2.34)

At any time step t, first the candidate hidden state h̃t is computed as follows:

h̃t = tanh(Wxhxt +Whhht�1 + bh) (2.35)

Then the hidden state ht is computed as follows:

ht = ft � ht�1 + (1� ft)� h̃t (2.36)

JANET couples the input gate and the forget gate while removing the output
gate. Like GRUs, JANET also does not contain an explicit cell state. van der
Westhuizen and Lasenby (2018) hypothesized that it will be beneficial to allow
slightly more information to accumulate than the amount of information forgotten.
This can be implemented by subtracting a pre-specified value � from the input
control component. The modified JANET equations are given as follows:

st = Wxfxt +Whfht�1 + bf (2.37)

h̃t = tanh(Wxhxt +Whhht�1 + bh) (2.38)

ht = sigmoid(st)� ht�1 + (1� sigmoid(st � �))� h̃t (2.39)

van der Westhuizen and Lasenby (2018) showed that JANET with chrono-initialization
performs better than LSTMs and LSTMs with chrono-initialization. van der West-
huizen and Lasenby (2018) call this the unreasonable e↵ectiveness of the forget
gate.

The fact that GRUs and JANETs, with lesser number of gates, work better
than LSTMs support our hypothesis that saturating gates make learning long-
term dependencies di�cult. We will get back to this crucial observation in Chapter
4.

15

2.6 Orthogonal RNNs

Better initialization of the recurrent weight matrix has been explored in the
literature of RNNs. One standard approach is orthogonal initialization where the
recurrent weight matrices are initialized using orthogonal matrices. Orthogonal
initialization makes sure that the spectral norm of the recurrent matrix is one
during initialization and hence there is no vanishing gradient due to the recurrent
weight matrix. This approach has two caveats. Firstly, the gradient would still
vanish due to saturating activation functions. Secondly, this is only an initialization
method. Hence, RNNs are free to move away from orthogonal weight matrices and
the norm of the recurrent matrix can become less than or greater than one which
would result in vanishing or exploding gradients respectively.

Le et al. (2015) addressed the first caveat using identity initialization (which
results in a recurrent weight matrix with the spectral norm of one) to train RNNs
with ReLU activation functions. While the authors showed good performance in a
few tasks, ReLU RNNs are notoriously di�cult to train due to exploding gradients.
A simple way to avoid the second caveat is to add a regularization term to ensure
that the recurrent weight matrixW stays close to an orthogonal matrix throughout
the training. For example, one can add:

�||W TW � I||2. (2.40)

Vorontsov et al. (2017) proposed a direct parameterization of W which permits a
direct control over the spectral norms of the matrix. Specifically, they consider the
singular value decomposition of the W matrix:

W = USVT (2.41)

where U and V are the orthogonal basis matrices and S is a diagonal spectral
matrix that has the singular values ofW as the diagonal entries. The basis matrices
U and V are kept orthogonal by doing geodesic gradient descent along the set of
weights that satisfy UUT = I and VVT = I respectively. If we fix the S matrix to
be an identity matrix, we can ensure the orthogonality ofW matrix throughout the
training. However, Vorontsov et al. (2017) proposes to parameterize the S matrix
in such a way that the singular values can deviate from 1 by a margin of m. This
is achieved with the following parameterization:

si = 2m(�(pi)� 0.5) + 1, si 2 {diag(S)},m 2 [0, 1] (2.42)

This parameterization guarantees that the singular values are restricted to the
range [1�m, 1 +m] while the underlying parameters pi are updated by using the
regular gradient descent. Experiments by Vorontsov et al. (2017) conclude that

16

maintaining the hard orthogonal constraint can be overall detrimental. Authors
hypothesise that orthogonal RNNs cannot forget information and this might be
problematic in tasks that require only short-term dependencies. On the other
hand, allowing the singular values to deviate from 1 by a small margin consistently
improved the performance. Deviating by a large margin can lead to vanishing and
exploding gradients.

2.7 Unitary RNNs

Another line of work starting from (Arjovsky et al., 2016) explored the idea
of using unitary matrix parameterization for recurrent weight matrix. Unitary
matrices generalize orthogonal matrices to the complex domain. The spectral norm
of the unitary matrices is also one. Arjovsky et al. (2016) proposed a simple
parameterization of unitary matrices based on the observation that the product of
unitary matrices is a unitary matrix. Their parameterization ensured that one can
do gradient descent on the parameters without deviating from the unitary recurrent
weight matrix.

Wisdom et al. (2016) observed that the parameterization of Arjovsky et al.
(2016) does not span the entire space of unitary matrices and proposed an alternate
parameterization that has full capacity. To stay in the manifold of unitary matrices,
Wisdom et al. (2016) has to re-project the recurrent weight matrix to the unitary
space after every gradient update. Jing et al. (2017b) avoids the re-projection cost
by using an e�cient unitary RNN parameterization with tunable representation
capacity which does not require any re-projection step. This model is called the
E�cient Unitary Neural Network (EUNN).

One issue with orthogonal and unitary matrices is that they do not filter out
information, preserving gradient norm but making forgetting impossible. Gated
Orthogonal Recurrent Units (GORUs) (Jing et al., 2017a) addressed this issue by
combining Unitary RNNs with a forget gate to learn to filter the information. It is
worth noting that Unitary RNNs are, in general, slow to train due to the inherent
sequential computations in the parameterizations. Restricting the recurrent weight
matrices to be orthogonal or unitary also restricts the representation capacity of
an RNN.

2.8 Statistical Recurrent Units

Oliva et al. (2017) proposed a new ungated recurrent architecture called Statisti-

17

cal Recurrent Units (SRUs). SRUs model sequential information by using recurrent
statistics which are generated at multiple time scales. Specifically, SRUs maintain
exponential moving averages m(↵) defined as follows:

m(↵)

t = ↵m(↵)

t�1
+ (1� ↵)m̂t (2.43)

where ↵ 2 [0, 1) defines the scale of the moving average and m̂t is the recurrent
statistics at time t computed as follows:

rt = f(Wrmt�1 + br) (2.44)

m̂t = f(Wmrt +Wxxt + bm) (2.45)

where f is a ReLU activation function. As we can see, the recurrent statistics at
time t is conditioned on the current input and on the recurrent statistics at the
previous time step. Oliva et al. (2017) proposed to consider m di↵erent values for ↵
(wherem is a hyper-parameter) to maintain the recurrent statistics at multiple time
scales. At any time-step t, let mt denote the concatenation of all such recurrent
statistics.

mt = [m↵1
t ;m↵2

t ; ...;m↵m
t

] (2.46)

Now the hidden state of the SRU is computed as follows:

ht = f(Whmt + bh) (2.47)

SRUs handle the vanishing gradients by having an ungated architecture with ReLU
activation function and simple recurrent statistics. However, it is worth noting that
the recurrent statistics are computed by using exponential moving averages which
will shrink the gradients.

2.9 Memory Augmented Neural Networks

Memory augmented neural networks (MANNs) (Graves et al., 2014; Weston
et al., 2015) are neural network architectures that have access to an external mem-
ory (usually a matrix) which it can read from or write to. The external memory
matrix can be considered as a generalization of the cell state vector in an LSTM. In
this section, we will introduce two memory-augmented architectures: Neural Tur-
ing Machines (Graves et al., 2014) and Dynamic Neural Turing Machines (Gulcehre
et al., 2016).

18

2.9.1 Neural Turing Machines

Memory

Memory in Neural Turing Machine (NTM) is a matrix Mt 2 Rk⇥q where k is
the number of memory cells and q is the dimensionality of each memory cell. The
controller neural network can use this memory matrix as a scratch pad to write to
and read from.

Model Operation

The controller in an NTM can either be a feed-forward network or an RNN.
The controller has multiple read heads, write heads, and erase heads to access the
memory. For this discussion, we will assume that the NTM has only one head
per operation. However, this description can be easily extended to the multi-head
setting.

At each time step t, the controller receives an input xt. Then it generates the
read weight wr

t
2 Rk⇥1. The read weights are used to generate the content vector

rt as a weighted combination of all the cells in the memory:

rt = MT

t
wr

t
2 Rq⇥1 (2.48)

This content vector is used to condition the hidden state of the controller. If
the controller is a feed-forward network, then the hidden state of the controller is
defined as follows:

ht = f(xt, rt) (2.49)

where f is any non-linear function. If the controller is an RNN, then the hidden
state of the controller is computed as:

ht = g(xt,ht�1, rt) (2.50)

where g can be a vanilla RNN or a GRU network or an LSTM network.

The controller also updates the memory with a projection of the current hidden
state. Specifically, it computes the content to write as follows:

at = f(ht,xt) (2.51)

It also generate write weights ww

t
2 Rk⇥1 in similar way as read weights and erase

vector et 2 Rq⇥1 whose elements are in the range (0,1). It updates each cell Mt[i]

19

as follows:

Mt[i] = Mt�1[i](1�ww

t
[i]et) +ww

t
[i]at (2.52)

Intuitively, the writer erases some content from every cell in the memory and adds
a weighted version of the new content to every cell in the memory.

Thus in every time step, the controller computes the current hidden state as
a function of the content vector generated from the memory. Also, at every time
step, the controller writes the current hidden state to the memory. Thus, even if
the controller is a feed-forward network, the architecture is recurrent due to the
conditioning on the memory.

Addressing Mechanism

Now we will describe how the read head generates the read weights to address
the memory cells. The write heads generate their write weights in a similar manner.

In NTMs, memory addressing is a combination of content-based addressing and
location-based addressing.

The read head first generates a key for memory access:

kt = f(xt,ht�1) 2 Rq⇥1 (2.53)

The key is compared with each cell in the memory Mt by using some similarity
measure S to generate the content-based weights as follows:

wc

t
=

exp(�tS[kt,Mt[i]])P
j
exp(�tS[kt,Mt[j]])

(2.54)

where �t is a positive key strength vector that can amplify or attenuate the precision
of the focus.

Next, the read head generates a scalar interpolation gate gt 2 (0, 1) which is
used to interpolate between the content-based addressing and the previous address
wr

t�1
. The interpolated weight wg

t is defined as follows:

wg

t = gtw
c

t
+ (1� gt)w

r

t�1
(2.55)

If the gating weight is one, then the previous weight is ignored and only the content-
based weight is considered. If the gating weight is zero, then the content-based
weight is ignored and only the previous weight is considered. This interpolated
weight is passed as input to the location-based addressing.

20

After interpolation, the read head generates a shifting weight st which defines
a normalized distribution over the allowed integer shifts. If the memory locations
are indexed from 0 to k-1, then the rotation applied to wg

t by st can be expressed
as a circular convolution:

w̃t[i] =
k�1X

j=0

wg

t [j]st[i� j] (2.56)

where the indices are computed modulo N. The convolution operation may cause
leakage of weight over time if the shift weight is not sharp. This is addressed by
generating a scalar �t � 1 which is used to sharpen w̃t to produce the final weights:

wr

t
[i] =

w̃t[i]�tP
j
w̃t[j]�t

(2.57)

This addressing mechanism can learn to operate in three modes: pure content-
based addressing, pure location-based addressing, content-based addressing follow-
ing by location-based shifting. As we can see, the entire addressing mechanism is
continuous and hence the architecture is fully di↵erentiable. Graves et al. (2014)
showed that NTMs can easily solve several algorithmic tasks which are very dif-
ficult for LSTMs. NTMs inspired a series of memory augmented architectures:
Dynamic NTMs (Gulcehre et al., 2016), Sparse Access Memory (Rae et al., 2016),
and Di↵erentiable Neural Computer (Graves et al., 2016). We will describe only
the Dynamic NTM architecture, which is more relevant to this thesis.

2.9.2 Dynamic Neural Turing Machines

Memory

The memory matrix Mt 2 Rk⇥q in the Dynamic NTM (D-NTM) is partitioned
into two parts: the address part At 2 Rk⇥da and the content part Ct 2 Rk⇥dc such
that da + dc = q.

Mt = [At;Ct] (2.58)

The address part is considered to be a model parameter and is learned during
training. During inference, the address part is frozen and is not updated. On the
other hand, the content part is updated during both training and inference. Also,
the content part is reset to zero for every example, C0 = 0. The learnable address
part allows the model to learn more sophisticated location-based strategies when
compared to the location-based addressing used in NTMs.

21

Model Operation

Like NTMs, the controller in D-NTMs can either be a feed-forward network or
an RNN. At each time step t, the controller receives an input xt. Then it generates
the read weights wr

t
2 Rk⇥1. The read weights are used to generate the content

vector rt as a weighted combination of all the cells in the memory:

rt = MT

t
wr

t
2 Rq⇥1. (2.59)

This content vector is used to condition the hidden state of the controller. If
the controller is a feed-forward network, then the hidden state of the controller is
defined as follows:

ht = f(xt, rt), (2.60)

where f is any non-linear function. If the controller is an RNN, then the hidden
state of the controller is computed as:

ht = g(xt,ht�1, rt), (2.61)

where g can be a vanilla RNN or a GRU network or an LSTM network.

Similar to the NTM, the controller in D-NTM also updates the memory with a
projection of the current hidden state. Specifically, it computes the content vector
ct 2 Rdc⇥1 to write as follows:

ct = ReLU(Wmht + ↵tWxxt), (2.62)

where ↵t is a scalar gate controlling the input. It is defined as follows:

↵t = f(ht,xt). (2.63)

The controller also generates write weights ww

t
2 Rk⇥1 in similar way as read

weights and erase vector et 2 Rdc⇥1 whose elements are in the range (0,1). It
updates the content of each cell Ct[i] as follows:

Ct[i] = Ct�1[i](1�ww

t
[i]et) +ww

t
[i]ct. (2.64)

Intuitively, the writer erases some content from every cell in the memory and adds
a weighted version of the new content to every cell in the memory. Unlike NTMs,
D-NTMs have a designated No Operation (NOP) cell in the memory. Reading from
or writing to this NOP cell is ignored. This is used to add the flexibility of not
accessing the memory at any time step.

22

Addressing Mechanism

We describe the addressing mechanism for the read head here. But the same
description holds for the write heads as well.

The read head first generates a key for the memory access:

kt = f(xt,ht�1) 2 Rq⇥1. (2.65)

The key is compared with each cell in the memory Mt by using some similarity
measure S to generate the logits for the address weights as follows:

zt[i] = �tS[kt,Mt[i]], (2.66)

where �t is a positive key strength vector that can amplify or attenuate the pre-
cision of the focus. Up to this point, the addressing mechanism looks like the
content-based addressing in the NTM. But note that the memory also has a loca-
tion part and hence this adressing mechanism is a mix of content-based addressing
and location-based addressing.

While writing, sometimes it is e↵ective to put more emphasis on the least re-
cently used (LRU) memory locations so that the information is not concentrated
in only few memory cells. To implement this e↵ect, D-NTM computes the moving
average of the logits as follows:

vt = 0.1vt�1 + 0.9zt. (2.67)

This accumulated vt is rescaled by a scalar gate �t 2 (0, 1) and subtracted from
the current logits before applying the softmax operator. The final weight is given
as follows:

wr

t
= softmax(zt � �tvt�1). (2.68)

By setting �t to 0, the model can choose to use pure content-based addressing.
This is known as dynamic LRU addressing since the model can dynamically decide
whether to use LRU addressing or not.

D-NTM uses single head with multi-step addressing similar to Sukhbaatar et al.
(2015) instead of multiple heads used by the NTM.

Discrete Addressing

wr

t
in Equation 2.68 is a continuous vector and if used as such, the entire ar-

chitecture is di↵erentiable. The D-NTM with continuous wr

t
vector is known as

23

continuous D-NTM.

Note that wr

t
is a valid probability distribution over k memory cells. Gulcehre

et al. (2016) also propose a discrete D-NTM which samples an index from this
probability distribution. The discrete address w̃r

t
is defined as follows:

w̃r

t
[k] = I(k = j) (2.69)

where j ⇠ wr

t
and I is an indicator function. While we sample the index during

training, we can use argmax index during inference. This discrete addressing makes
the model non-di↵erentiable and hence Gulcehre et al. (2016) used REINFORCE
(Williams, 1992) to approximate the gradient. Training discrete D-NTMs was also
di�cult. Hence the authors suggested a curriculum based training where the model
starts with continuous addressing and moves to discrete addressing over the period
of training. It was shown that D-NTMs performed better than NTMs in several
tasks.

2.10 Normalization methods

Normalization methods are used in deep neural networks to avoid vanishing
gradients due to saturating activation functions. The basic idea is to normalize
the pre-activations of a layer such that the activation function in that layer does
not saturate. Batch Normalization (Io↵e and Szegedy, 2015) normalized the pre-
activation based on the batch-level statistics. Consider the pre-activation x over a
mini-batch B = {x1,x2, ...,xm} of m examples. We first compute the mini-batch
mean and variance as follows:

µB =
1

m

mX

i=1

xi (2.70)

�2

B =
1

m

mX

i=1

(xi � µB)
2 (2.71)

Then, we compute the normalized pre-activation x̂i by using the mini-batch mean
and variance.

x̂i =
xi � µBp
�2

B + ✏
(2.72)

24

where ✏ is a small non-zero value added for numerical stability. The input to the
activation function yi is computed as follows:

yi = �x̂i + � (2.73)

where � and � are the scaling and the shifting parameters respectively. These
parameters are also learnt as part of training. Finally, the hidden layer activations
are computed as

h = f(BN(x)) (2.74)

where f is the activation function, x is the pre-activation, and BN is the batch-
normalization operation such that BN(x) = y. Note that the scale and the shift
allows the network to cancel the e↵ect of normalization if the task demands it.
During testing, we will use a global mean and variance computed from training set.

Batch Normalization has been extended for recurrent neural networks in (Cooi-
jmans et al., 2016; Laurent et al., 2016). However, to obtain the best performance
using recurrent batch-normalization, one has to track independent normalization
statistics for each time-step. During inference time, it is not clear how to handle
sequences longer than the training sequences.

Ba et al. (2016) introduced Layer normalization as an alternative to the recurrent
batch normalization. The basic proposal by Ba et al. (2016) is to compute the
normalization statistics using the hidden units in the same layer instead of using
mini-batch of examples. Specifically, we compute

µl =
1

H

HX

i=1

xi (2.75)

�2

l
=

1

H

HX

i=1

(xi � µl)
2 (2.76)

where H is the number of hidden units in the layer and xi is the pre-activation for
i-th hidden unit. Now, we compute the normalized pre-activations as follows:

x̂ =
x� µlp
�2

l
+ ✏

(2.77)

Similar to the batch normalization, the normalized pre-activation is both scaled
and shifted before applying the activation function.

The main advantage of layer normalization over batch normalization is we do
not need to compute batch-level statistics. Hence, it is very easy to extend layer
normalization to RNNs. We can apply layer normalization for pre-activations of

25

every activation function used in RNNs, LSTMs, or any other recurrent architec-
tures. Ba et al. (2016) report that layer normalization helps in faster convergence
and also achieves better performance for several recurrent architectures.

26

3 LSTMs with Wormhole
Connections

In this chapter, we propose our first solution to avoid vanishing gradients called
TARDIS (Gülçehre et al., 2017).

3.1 Introduction

Memory augmented neural networks (MANNs) such as neural Turing machine
(NTM) (Graves et al., 2014; Rae et al., 2016), dynamic NTM (D-NTM) (Gulcehre
et al., 2016), and Di↵erentiable Neural Computer (DNC) (Graves et al., 2016) use
an external memory (usually a matrix) to store information and the MANN’s con-
troller can learn to both read from and write into the external memory. As we
show here, it is in general possible to use particular MANNs to explicitly store the
previous hidden states of an RNN in the memory and that will provide shortcut
connections through time, called here wormhole connections, to look into the
history of the states of the RNN controller. Learning to read and write into an
external memory by using neural networks gives the model more freedom or flexi-
bility to retrieve information from its past, forget or store new information into the
memory. However, if the addressing mechanism for read and/or write operations
are continuous (like in the NTM and continuous D-NTM), then the access may
be too di↵use, especially early on during training. This can hurt especially the
writing operation, since a di↵used write operation will overwrite a large fraction of
the memory at each step, yielding fast vanishing of the memories (and gradients).
On the other hand, discrete addressing, as used in the discrete D-NTM, should be
able to perform this search through the past, but prevents us from using straight
backpropagation for learning how to choose the address.

We investigate the flow of the gradients and how the wormhole connections intro-
duced by the controller a↵ects it. Our results show that the wormhole connections
created by the controller of the MANN can significantly reduce the e↵ects of the
vanishing gradients by shortening the paths that the signal needs to travel between
the dependencies. We also discuss how the MANNs can generalize to sequences
longer than the ones seen during the training.

27

In a discrete D-NTM, the controller must learn to read from and write into the
external memory by itself and additionally, it should also learn the reader/writer
synchronization. This can make learning more challenging. In spite of this di�-
culty, Gulcehre et al. (2016) reported that the discrete D-NTM can learn faster
than the continuous D-NTM on some of the bAbI tasks. We provide a formal
analysis of gradient flow in MANNs based on discrete addressing and justify this
result. In this chapter, we also propose a new MANN based on discrete address-
ing called TARDIS (Temporal Automatic Relation Discovery in Sequences). In
TARDIS, memory access is based on tying the write and read heads of the model
after memory is filled up. When the memory is not full, the write head stores
information in memory in the sequential order.

The main characteristics of TARDIS are as follows, TARDIS is a simple mem-
ory augmented neural network model which can represent long-term dependencies
e�ciently by using an external memory of small size. TARDIS represents the
dependencies between the hidden states inside the memory. We show both the-
oretically and experimentally that TARDIS fixes to a large extent the problems
related to long-term dependencies. Our model can also store sub-sequences or se-
quence chunks into the memory. As a consequence, the controller can learn to
represent the high-level temporal abstractions as well. TARDIS performs well on
several structured output prediction tasks as verified in our experiments.

The idea of using external memory with attention can be justified with the
concept of mental-time travel which humans do occasionally to solve daily tasks.
In particular, in the cognitive science literature, the concept of chronesthesia is
known to be a form of consciousness which allows human to think about time
subjectively and perform mental time-travel (Tulving, 2002). TARDIS is inspired
by this ability of humans which allows one to look up past memories and plan for
the future using the episodic memory.

3.2 TARDIS: A Memory Augmented Neural
Network

Neural network architectures with an external memory represent the memory
in a matrix form, such that at each time step t the model can both read from and
write to the external memory. The whole content of the external memory can be
considered as a generalization of hidden state vector in a recurrent neural network.
Instead of storing all the information into a single hidden state vector, our model
can store them in a matrix which has a higher capacity and with more targeted
ability to substantially change or use only a small subset of the memory at each

28

time step. The neural Turing machine (NTM) (Graves et al., 2014) is such an
example of a MANN, with both reading and writing into the memory.

3.2.1 Model Outline

In this subsection, we describe the basic structure of TARDIS i (Temporal Au-
tomatic Relation Discovery In Sequences). TARDIS is a MANN which has an
external memory matrix Mt 2 Rk⇥q where k is the number of memory cells and
q is the dimensionality of each cell. The model has an RNN controller which can
read from and write to the external memory at every time step. To read from
the memory, the controller generates the read weights wr

t
2 Rk⇥1 and the reading

operation is typically achieved by computing the dot product between the read
weights wr

t
and the memory Mt, resulting in the content vector rt 2 Rq⇥1:

rt = (Mt)
>wr

t
. (3.1)

TARDIS uses discrete addressing and hence wr

t
is a one-hot vector and the dot-

product chooses one of the cells in the memory matrix (Zaremba and Sutskever,
2015; Gulcehre et al., 2016). The controller generates the write weights ww

t
2 R1⇥k,

to write into the memory which is also a one hot vector, with discrete addressing.
We will omit biases from our equations for simplicity in the rest of the chapter. Let
i be the index of the non-zero entry in the one-hot vector ww

t
, then the controller

writes a linear projection of the current hidden state to the memory location Mt[i]:

Mt[i] = Wmht, (3.2)

where Wm 2 Rdm⇥dh is the projection matrix that projects the dh dimensional
hidden state vector to a dm dimensional micro-state vector such that dh > dm.

At every time step, the hidden state ht of the controller is also conditioned on
the content rt read from the memory. The wormhole connections are created by
conditioning ht on rt:

ht = �(xt,ht�1, rt). (3.3)

As each cell in the memory is a linear projection of one of the previous hidden
states, the conditioning of the controller’s hidden state with the content read from
the memory can be interpreted as a way of creating short-cut connections across
time (from the time t0 that ht0 was written to the time t when it was read through
rt) which can help with the flow of gradients across time. This is possible because
of the discrete addressing used for read and write operations.

i. Name of the model is inspired from the time-machine in a popular TV series Dr. Who.

29

However, the main challenge for the model is to learn proper read and write
mechanisms so that it can write the hidden states of the previous time steps that
will be useful for future predictions and read them at the right time step. We call
this the reader/writer synchronization problem. Instead of designing complicated
addressing mechanisms to mitigate the di�culty of learning how to properly ad-
dress the external memory, TARDIS side-steps the reader/writer synchronization
problem by using the following heuristics. For the first k time steps, our model
writes the micro-states into the k cells of the memory in a sequential order. When
the memory becomes full, the most e↵ective strategy in terms of preserving the
information stored in the memory would be to replace the memory cell that has
been read with the micro-state generated from the hidden state of the controller
after it is conditioned on the memory cell that has been read. If the model needs
to perfectly retain the memory cell that it has just overwritten, the controller can
in principle learn to do that by copying its read input to its write output (into
the same memory cell). The pseudocode and the details of the memory update
algorithm for TARDIS is presented in Algorithm 1.

Algorithm 1 Pseudocode for the controller and memory update mechanism of
TARDIS.
1: Initialize h0

2: Initialize M0

3: for t 2 {1, · · ·Tx} do
4: Compute the read weights wr

t
 read(ht,Mt,xt)

5: Sample from/discretize wr

t
and obtain wr

t

6: Read from the memory, rt (Mt)>wr

t
.

7: Compute a new controller hidden state, ht �(xt,ht�1, rt)
8: if t k then
9: Write into the memory, Mt[t] Wmht

10: else
11: Select the memory location to write into j argmax

j
(wr

t
[j])

12: Write into the memory, Mt[j] Wmht

There are two missing pieces in Algorithm 1: How to generate the read weights?
What is the structure of the controller function �? We will answer these two
questions in detail in next two sub-sections.

3.2.2 Addressing mechanism

Similar to the D-NTM, memory matrix Mt of TARDIS has disjoint address
section At 2 Rk⇥a and content section Ct 2 Rk⇥c, Mt = [At;Ct] and Mt 2 Rk⇥q

for q = c+ a. However, unlike in the D-NTM, address vectors are fixed to random

30

sparse vectors. The controller reads both the address and the content parts of the
memory, but it will only write into the content section of the memory.

The continuous read weights wr

t
are generated by an MLP which uses the in-

formation coming from ht, xt, Mt and the usage vector ut (described below). The
MLP is parametrized as follows:

⇡t[i] = a>tanh(W �

h
ht +W �

x
xt +W �

m
Mt[i] +W �

u
ut) (3.4)

wr

t
= softmax(⇡t), (3.5)

where {a,W �

h
,W �

x
,W �

m
,W �

u
} are learnable parameters. wr

t
is a one-hot vector

obtained by either sampling from wr

t
or by using argmax over wr

t
.

ut is the usage vector which denotes the frequency of accesses to each cell in
the memory. ut is computed from the sum of discrete address vectors wr

t
and

normalizing them:

ut = norm(
t�1X

i=1

wr

i
). (3.6)

The norm(·) applied in Equation 3.6 is a simple feature-wise computation of center-
ing and divisive variance normalization. This normalization step makes the training
easier with the usage vectors. The introduction of the usage vector can help the
attention mechanism to choose between the di↵erent memory cells based on their
frequency of accesses to each cell of the memory. For example, if a memory cell is
very rarely accessed by the controller, for the next time step, it can learn to assign
more weights to those memory cells by looking into the usage vector. This way,
the controller can learn an LRU access mechanism (Santoro et al., 2016; Gulcehre
et al., 2016).

Further, in order to prevent the model to learn deficient addressing mechanisms,
for e.g. reading the same memory cell which will not increase the memory capacity
of the model, we decrease the probability of the last read memory location by
subtracting 100 from the logit of wr

t
for that particular memory location.

3.2.3 TARDIS Controller

We use an LSTM controller, and its gates are modified to take into account the
content rt of the cell read from the memory:

0

@
ft
it
ot

1

A =

0

@
sigm

sigm

sigm

1

A (Whht�1 + Wxxt + Wrrt) , (3.7)

31

where ft, it, and ot are the forget gate, input gate, and output gate respectively.

The cell of the LSTM controller, ct is computed according to the Equation 3.8
as follows:

c̃t = tanh(↵tW
⌘

h
ht�1 +W ⌘

x
xt + �tW

⌘

r
rt),

ct = ftct�1 + itc̃t, (3.8)

where ↵t, �t are the scalar RESET gates which control the magnitude of the in-
formation flowing from the memory and the previous hidden states to the cell of
the LSTM ct. By controlling the flow of information into the LSTM cell, those
gates will allow the model to store the sub-sequences or chunks of sequences into
the memory instead of the entire context.

We use Gumbel sigmoid (Maddison et al., 2016; Jang et al., 2016) for ↵t and �t

due to its behavior close to binary:

✓
↵t

�t

◆
=

✓
gumbel-sigmoid
gumbel-sigmoid

◆✓✓
w↵>

h

w�>
h

◆
ht�1 +

✓
w↵>

x

w�>
x

◆
xt +

✓
w↵>

r

w�>
r

◆
rt

◆
, (3.9)

We find Gumbel-sigmoid to be easier to train than the regular sigmoid. The
temperature of the Gumbel-sigmoid is fixed to 0.3 in all our experiments.

The hidden state of the LSTM controller is computed as follows:

ht = ot tanh(ct). (3.10)

In Figure 3.1, we illustrate the interaction between the controller and the mem-
ory with various heads and components of the controller.

3.2.4 Micro-states and Long-term Dependencies

A micro-state of the LSTM for a particular time step is the summary of the
information that has been stored in the LSTM controller of the model. By attending
over the cells of the memory which contains previous micro-states of the LSTM,
the model can explicitly learn to restore information from its past.

The controller can learn to represent high-level temporal abstractions by cre-
ating wormhole connections through the memory as illustrated in Figure 3.2. In
this example, the model takes the token x0 at the first time-step and stores its
representation to the first memory cell with address a0. In the second time-step,
the controller takes x1 as input and writes into the second memory cell with the
address a1. Furthermore, the �1 gate blocks the connection from h1 to h2. At the

32

a0

a1

a2

m0

m1

m2

Mt-1

ht⍺t

ct

xt

yt

mt

a0

a1

a2

m0

m1

m2

Mt

rt
Legend:

: MLP output

: Read/Write output

: Observed Input

: Output prediction

: General Connection

: Multiplicative Connection

: Affine Connection

: Controller

Figure 3.1 – At each time step, controller takes xt, the memory cell that has been read rt
and the hidden state of the previous timestep ht�1. Then, it generates ↵t which controls the
contribution of the rt into the internal dynamics of the new controller’s state ht (We omit the
�t in this visualization). Once the memory Mt becomes full, discrete addressing weights wr

t is
generated by the controller which will be used to both read from and write into the memory. To
predict the target yt, the model will have to use both ht and rt.

33

x0 x1 x2 x3 x4 x5

h0

h0

Write h0 to a0

x0

a0
a1

Dependencies among the input tokens:

M0
h0

h1

Write h1 to a1

x1

a0
a1

M1
h1

h0

h2

Write h2 to a0

x2

a0
a1

M2

h1

h0

h3

Write h3 to a1

x3

a0
a1

M3
h1

h0

h4

Write h4 to a0

x4

a0
a1

M4
h1

h2 h2
h3

h0

h5

Write h5 to a1

x5

a0
a1

M5
h1

h2 h4
h3

h2 h4
h3 h5

Read a0

β0=1 β1=0 β2=1 β3=0 β4=0

Read a1 Read a0 Read a1

Figure 3.2 – TARDIS’s controller can learn to represent the dependencies among the input
tokens by choosing which cells to read and write and creating wormhole connections. xt represents
the input to the controller at timestep t and the ht is the hidden state of the controller RNN.

third time-step, the controller starts reading. It receives x2 as input and reads the
first memory cell where micro-state of h0 was stored. After reading, it computes
the hidden-state h2 and writes the micro-state of h2 into the first memory cell. The
length of the path passing through the micro-states of h0 and h2 would be 1. The
wormhole connection from h2 to h0 would skip a time-step.

A regular single-layer RNN has a fixed graphical representation of a linear-chain
when considering only the connections through its recurrent states or the temporal
axis. However, TARDIS is more flexible in that it can learn directed graphs with
more diverse structures using the wormhole connections and the RESET gates.
The directed graph that TARDIS can learn through its recurrent states have at
most a degree of 4 at each vertex (maximum 2 incoming and 2 outgoing edges) and
it depends on the number of cells (k) that can be stored in the memory.

In this work, we focus on a variation of TARDIS, where the controller maintains
a fixed-size external memory. However as in (Cheng et al., 2016), it is possible to
use a memory that grows with respect to the length of its input sequences, but
that would not scale and can be more di�cult to train with discrete addressing.

3.3 Training TARDIS

In this section, we explain how to train TARDIS as a language model. We use
language modeling as an example application. However, we would like to highlight

34

that TARDIS can also be applied to any complex sequence to sequence learning
task.

Consider N training examples where each example is a sequence of length T .
At every time-step t, the model receives the input xt 2 {0, 1}|V | which is a one-
hot vector of size equal to the size of the vocabulary |V | and should produce the
output yt 2 {0, 1}|V | which is also a one-hot vector of size equal to the size of the
vocabulary |V |.

The output of the model for the i-th example and t-th time-step is computed as
follows:

oi

t
= softmax(W og(h(i)

t , r(i)t)), (3.11)

where W o are the learnable parameters and g(ht, rt) is a single layer MLP which
combines both ht and rt as in deep fusion by Pascanu et al. (2013a). The task
loss would be the categorical cross-entropy between the targets and model outputs.
Superscript i denotes that the variable is the output for the ith sample in the
training set.

Lmodel(✓) = �
1

N

NX

i=1

TX

t=1

|V |X

k=1

y(i)

t [k] log(o(i)t [k]), (3.12)

However, the discrete decisions taken for memory access during every time-step
makes the model not di↵erentiable and hence we need to rely on approximate
methods of computing gradients with respect to the discrete address vectors. In
this work we explore two such approaches: REINFORCE (Williams, 1992) and the
straight-through estimator (Bengio et al., 2013).

3.3.1 Using REINFORCE

REINFORCE is a likelihood-ratio method, which provides a convenient and
simple way of estimating the gradients of the stochastic actions. In this work,
we focus on application of REINFORCE on sequential prediction tasks, such as
language modelling. For example i, let R(wr(i)

j
) be the reward for the action wr(i)

j

at timestep j. We are interested in maximizing the expected return for the whole
episode as defined below:

J (✓) = E[
TX

j=0

R(wr(i)

j
)] (3.13)

35

Ideally we would like to compute the gradients for Equation 3.13, however com-
puting the gradient of the expectation may not be feasible. We would have to use
a Monte-Carlo approximation and compute the gradients by using REINFORCE
for the sequential prediction task which can be written as in Equation 3.14.

r✓J (✓) =
1

N

NX

i=1

[
TX

j=0

(R(wr(i)

j
)� bj)

TX

t=0

r✓ log(w
r(i)

t)], (3.14)

where bj is the reward baseline. However, we can further assume that the future
actions do not depend on the past rewards in the episode/trajectory and further
reduce the variance of REINFORCE as in Equation 3.15.

r✓J (✓) =
1

N

NX

i=1

[
TX

t=0

TX

j=t

(R(wr(i)

j
)� bj)r✓ log(w

r(i)

t)], (3.15)

In our preliminary experiments, we find that the training of the model is easier
with discounted returns, instead of using the centered undiscounted return:

r✓J (✓) =
1

N

NX

i=1

[
TX

t=0

TX

j=t

[�j�t(R(wr(i)

j
)� bj)]r✓ log(w

r(i)

t)]. (3.16)

REINFORCE Training with an Auxiliary Cost Training models with RE-
INFORCE can be di�cult, due to the variance imposed into the gradients. In
recent years, researchers have developed several tricks in order to mitigate the ef-
fect of high-variance in gradients. As proposed by (Mnih and Gregor, 2014), we
also use variance normalization on the REINFORCE gradients.

For TARDIS, reward at timestep j (R(wr(i)

j
)) is the log-likelihood of the predic-

tion at that timestep. Our initial experiments showed that REINFORCE with this
reward structure often tends to under-utilize the memory and mainly rely on the
internal memory of the LSTM controller. Especially, in the beginning of training,
it can just decrease the loss by relying on the memory of the controller and this
can cause REINFORCE to increase the log-likelihood of the random actions.

In order to deal with this issue, instead of using the log-likelihood of the model as
reward, we introduce an auxiliary cost to use as the reward R0 which is computed
based on predictions which are only based on the memory cell rt read by the
controller and not the hidden state of the controller:

R0(wr(i)

j
) =

|V |X

k=1

y(i)

j
[k] log(softmax(W o

r
r̄(i)
j

+W o

x
x(i)

j
))[k], (3.17)

36

In Equation 3.17, we only train the parameters {W o

r
2 Rdo⇥dm ,W o

x
2 Rdo⇥dx}

where do is the dimensionality of the output size and dx (for language modelling
both do and dx would be do = |V |) is the dimensionality of the input of the model.

We do not backpropagate through r(j)
i

and thus we denote it as r̄(j)
i

in our equations.

3.3.2 Using Gumbel Softmax

Training with REINFORCE can be challenging due to the high variance of the
gradients. Gumbel-softmax provides a good alternative with its straight-through
estimator to tackle the variance issue. Unlike (Maddison et al., 2016; Jang et al.,
2016) instead of annealing the temperature or fixing it, our model learns the inverse-
temperature with an MLP ⌧(ht) which has a single scalar output conditioned on
the hidden state of the controller.

⌧(ht) = softplus(w⌧>ht + b⌧) + 1. (3.18)

gumbel-softmax(⇡t[i]) = softmax((⇡t[i] + ⇠)⌧(ht)), (3.19)

We replace the softmax in Equation 3.5 with gumbel-softmax defined above. During
forward computation, we sample from wr

t
and use the generated one-hot vector wr

t

for memory access. However, during backprop, we use wr

t
for gradient computation

and hence the entire model becomes di↵erentiable.

Learning the temperature of the Gumbel-Softmax reduces the burden of per-
forming extensive hyper-parameter search for the temperature.

3.4 Gradient Flow through the External
Memory

In this section, we analyze the flow of the gradients through the external mem-
ory and will also investigate its e�ciency in terms of dealing with the vanishing
gradients problem (Hochreiter, 1991; Bengio et al., 1994). In our analysis, we also
assume that the weights for the read/write heads are discrete.

We will show that the rate of the gradients vanishing through time for a memory-
augmented recurrent neural network is much smaller than of a regular vanilla re-
current neural network.

Consider the MANN where the contents of the memory are linear projections of
the previous hidden states as described in Equation 3.2. Let us assume that both

37

reading and writing operations use discrete addressing. Let the content read from
the memory at time step t correspond to some memory location i:

rt = Mt[i] = Ahit , (3.20)

where hit corresponds to the hidden state of the controller at some previous timestep
it.

Now the hidden state of the controller in the external memory model can be
written as,

zt = Wht�1 +Vrt +Uxt,

ht = f(zt). (3.21)

If the controller reads Mt[i] at time step t and its memory content is Ahit as
described above, then the Jacobians associated with Equation 3.21 can be computed
as follows:

@ht1

@ht0

=
Y

t0<tt1

@ht

@ht�1

=

Y

t0<tt1

diag[f0(zt)]W

!
+

t1�1X

k=t0

(
Y

k<t⇤<t1

diag[f0(zt⇤)]W) diag[f0(zk)]VA
@hik

@ht0

+ diag[f0(zt1)]VA
@hit1

@ht0

(3.22)

= Qt1t0 +Rt1t0 . (3.23)

where Qt1t0 and Rt1t0 are defined as,

Qt1t0 =
Y

t0<tt1

diag[f0(zt)]W , (3.24)

Rt1t0 =
t�1X

k=t0

(
Y

k<t⇤<t

diag[f0(zt⇤)]W) diag[f0(zk)]VA
@hik

@ht0

+ diag[f0(zt1)]VA
@hit1

@ht0

.

(3.25)

As shown in Equation 3.23, Jacobians of the MANN can be rewritten as a
summation of two matrices, Qt1t0 and Rt1t0 . The gradients flowing through Rt1t0

do not necessarily vanish through time, because it is the sum of jacobians computed
over the shorter paths.

The norm of the Jacobian can be lower bounded as follows by using the Minkowski

38

inequality:

||@ht1

@ht0

|| = ||
Y

t0<tt1

@ht

@ht�1

|| (3.26)

= ||Qt1t0 +Rt1t0 || � ||Rt1t0 ||� ||Qt1t0 ||. (3.27)

Assuming that the length of the dependency is very long ||Qt1t0 || would vanish
to 0. Then we will have,

||Qt1t0 +Rt1t0 || � ||Rt1t0 ||. (3.28)

The rate of the gradients vanishing through time depends on the length of the
sequence passing through Rt1t0 . This is typically less than the length of the se-
quence passing through Qt1t0 . Thus the gradients vanish at a smaller rate than in
an RNN. In particular the rate would strictly depend on the length of the shortest
paths from t1 to t0, because for the long enough dependencies, gradients through
the longer paths would still vanish.

We can also derive an upper bound for the norm of the Jacobian as follows:

||@ht1

@ht0

|| = ||
Y

t0<tt1

@ht

@ht�1

|| (3.29)

= ||Qt1t0 +Rt1t0 || �1(Qt1t0 +Rt1t0) (3.30)

where �1(M) is the largest singular value of matrix M. Using the result from
(Loyka, 2015), we can lower bound �1(Qt1t0 +Rt1t0) as follows:

�1(Qt1t0 +Rt1t0) � |�1(Qt1t0)� �1(Rt1t0)| (3.31)

For long sequences we know that �1(Qt1t0) will go to 0 (see equation 2.16).
Hence,

�1(Qt1t0 +Rt1t0) � �1(Rt1t0) (3.32)

The rate at which �1(Rt1t0) reaches zero is strictly smaller than the rate at which
�1(Qt1t0) reaches zero and with ideal memory access, it will not reach zero. Hence
unlike vanilla RNNs, Equation 3.32 states that the upper bound of the norm of the
Jacobian will not reach zero for a MANN with ideal memory access.

Theorem 1. Consider a memory augmented neural network with T memory cells
for a sequence of length T , and each hidden state of the controller is stored in

39

di↵erent cells of the memory. If the prediction at time step t1 has only a long-term
dependency to t0 and the prediction at t1 is independent from the tokens appearing
before t0, and the memory reading mechanism is perfect, then the model will not
su↵er from vanishing gradients when we back-propagate from t1 to t0. i

Proof: If the input sequence has a longest-dependency on t0 for t1, we would
only be interested in gradients propagating from t1 to t0 and the Jacobians from
t1 to t0, i.e.

@ht1
@ht0

. If the controller learns a perfect reading mechanism at time step

t1 it would read memory cell where the hidden state of the RNN at time step t0
is stored at. Thus following the Jacobians defined in the Equation 3.23, we can
rewrite the Jacobians as,

@ht1

@ht0

=
Y

t0<tt1

@ht

@ht�1

=

Y

t0<tt1

diag[f0(zt)]W

!
+

t1�1X

k=t0

(
Y

k<t⇤<t1

diag[f0(zt⇤)]W) diag[f0(zk)]VA
@hik

@ht0

+ diag[f0(zt1)]VA
@ht0

@ht0

(3.33)

In Equation 3.33, the first two terms might vanish as t1 � t0 grows. However,
the singular values of the third term do not change as t1 � t0 grows. As a result,
the gradients propagated from t1 to t0 will not necessarily vanish through time.
However, in order to obtain stable dynamics for the network, the initialization of
the matrices, V and A is important. ⇤

This analysis highlights the fact that an external memory model with optimal
read/write mechanism can handle long-range dependencies much better than an
RNN. However, this is applicable only when we use discrete addressing for read-
/write operations. Both NTM and D-NTM still have to learn how to read and write
from scratch which is a challenging optimization problem. For TARDIS, tying the
read/write operations make the learning become much simpler for the model. In
particular, the results of the Theorem 1 points the importance of coming up with
better ways of designing attention mechanisms over the memory.

The controller of a MANN may not be able learn to use the memory e�ciently.
For example, some cells of the memory may remain empty or may never be read.
The controller can overwrite the memory cells which have not been read. As a result
the information stored in those overwritten memory cells can be lost completely.
However TARDIS avoids most of these issues by the construction of the algorithm.

i. Let us note that, unlike the Markovian n-gram assumption, here we assume that at each
time step the dependency length n can be di↵erent.

40

3.5 On the Length of the Paths Through the
Wormhole Connections

As we have discussed in Section 3.4, the rate at which the gradients vanish for a
MANN depends on the length of the paths passing along the wormhole connections.
In this section we will analyse those lengths in depth for untrained models such
that the model will assign uniform probability to read or write all memory cells.
This will give us a better idea on how each untrained model uses the memory at
the beginning of the training.

A wormhole connection can be created by reading a memory cell and writing
into the same cell in TARDIS. For example, in Figure 3.2, while the actual path
from h4 to h0 is of length 4, memory cell a0 creates a shorter path of length 2
(h0 ! h2 ! h4). We call the length of the actual path T and the length of the
shorter path created by wormhole connections Tmem.

Consider a TARDIS model which has k cells in its memory. If TARDIS accesses
each memory cell uniformly at random, then the probability of accessing a random
cell i, p[i] = 1

k
. The expected length of the shorter path created by wormhole

connections (Tmem) would be proportional to the number of reads and writes into
a memory cell. For TARDIS with reader choosing a memory cell uniformly at
random, this would be Tmem =

P
T

i=k
p[i] = T

k
� 1 at the end of the sequence. We

verify this result by simulating the read and write heads of TARDIS as in Figure
3.3 (a).

a) b)

Figure 3.3 – In these figures we visualized the expected path length in the memory cells for a
sequence of length 200, memory size 50 with 100 simulations. a) shows the results for TARDIS
and b) shows the simulation for uMANN with uniformly random read and write heads.

Now consider a MANN with separate read and write heads each accessing the
memory in discrete and uniformly random fashion. Let us call it uMANN. We will
compute the expected length of the shorter path created by wormhole connections

41

(Tmem) for uMANN. wr

t
and ww

t
are the read and write head weights, each sampled

from a multinomial distribution with uniform probability for each memory cells
respectively. Let jt be the index of the memory cell read at timestep t. For any
memory cell i, len(·), defined below, is a recursive function that computes the length
of the path created by wormhole connections in that cell.

len(Mt[i], i, jt) =

⇢
len(Mt�1[jt], i, jt) + 1 if ww

t
[i] = 1

len(Mt�1[i], i, jt) if ww

t
[i] = 0

(3.34)

It is possible to prove that Tmem =
P

t
Ei,jt [len(Mt[i], i, jt)] will be T/k � 1 by

induction for every memory cell. However, the proof assumes that when t is less
than or equal to k, the length of all paths stored in the memory len(Mt[i], i, jt)
should be 0. We have run simulations to compute the expected path length in a
memory cell of uMANN as in Figure 3.3 (b).

This analysis shows that while TARDIS with uniform read head maintains the
same expected length of the shorter path created by wormhole connections as
uMANN, it completely avoids the reader/writer synchronization problem.

If k is large enough, Tmem << T should hold. In expectation, �1(Rt1t0) will decay
proportionally to Tmem whereas �1(Qt1t0) will decay proportional i to T . With ideal
memory access, the rate at which �1(Rt1t0) reaches zero would be strictly smaller
than the rate at which �1(Qt1t0) reaches zero. Hence, as per Equation 3.32, the
upper bound of the norm of the Jacobian will vanish at a much smaller rate.
However, this result assumes that the dependencies on which the prediction relies
are accessible through the memory cell which has been read by the controller.

t0
t1t0+n

t1-m

…

Figure 3.4 – Assuming that the prediction at t1 depends on the t0, a wormhole connection can
shorten the path by creating a connection from t1 �m to t0 + n. A wormhole connection may
not directly create a connection from t1 to t0, but it can create shorter paths which the gradients
can flow without vanishing. In this figure, we consider the case where a wormhole connection is
created from t1�m to t0+n. This connections skips all the tokens in between t1�m and t0+n.

In the more general case, consider a MANN with k � T . The writer just fills
in the memory cells in a sequential manner and the reader chooses a memory cell

i. Exponentially when the Equation 2.16 holds.

42

uniformly at random. Let us call this model urMANN. Let us assume that there
is a dependency between two time-steps t0 and t1 as shown in Figure 3.4. If t0 was
taken uniformly between 0 and t1� 1, then there is a probability 0.5 that the read
address invoked at time t1 will be greater than or equal to t0 (proof by symmetry).
In that case, the expected shortest path length through that wormhole connection
would be (t1 � t0)/2, but this still would not scale well. If the reader is very well
trained, it could pick exactly t0 and the path length will be 1.

Let us consider all the paths of length less than or equal to k + 1 of the form
in Figure 3.4. Also, let n k/2 and m k/2. Then, the shortest path from t0 to
t1 now has length n +m + 1 k + 1, using a wormhole connection that connects
the state at t0 + n with the state at t1 �m. There are O(k2) such paths that are
realized, but we leave the distribution of the length of that shortest path as an
open question. However, the probability of hitting a very short path (of length less
than or equal to k + 1) increases exponentially with k. Let the probability of the
read at t1 �m to hit the interval (t0, t0 + k/2) be p. Then the probability that
the shorter paths over the last k reads hits that interval is 1 � (1 � p)k/2, where
p is on the order of k/t1. On the other hand, the probability of not hitting that
interval approaches to 0 exponentially with k.

Figure 3.4 illustrates how wormhole connections can create shorter paths. In
Figure 3.5 (b), we show that the expected length of the path travelled outside the
wormhole connections obtained from the simulations decreases as the size of the
memory decreases. In particular, for urMANN and TARDIS the trend is very close
to exponential. As shown in Figure 3.5 (a), this also influences the total length of
the paths travelled from time-step 50 to 5 as well. Writing into the memory by
using weights sampled with uniform probability for all memory cells cannot use the
memory as e�ciently as other approaches that we compare to. In particular fixing
the writing mechanism seems to be useful.

Even if the reader does not manage to learn where to read, there are many ”short
paths” which can considerably reduce the e↵ect of vanishing gradients.

3.6 On Generalization over the Longer
Sequences

Graves et al. (2014) have observed that LSTMs did not generalize well on se-
quences substantially longer than the ones seen during the training. On the other
hand, a MANN such as an NTM or a D-NTM has been shown to generalize to
longer sequences on a set of toy tasks.

43

a) b)

Figure 3.5 – We have run simulations for TARDIS, MANN with uniform read and write mech-
anisms (uMANN) and MANN with uniform read and write head is fixed with a heuristic (ur-
MANN). In our simulations, we assume that there is a dependency from timestep 50 to 5. We run
200 simulations for each one of them with di↵erent memory sizes for each model. In plot a) we
show the results for the expected length of the shortest path from timestep 50 to 5. In the plots,
as the size of the memory gets larger for both models, the length of the shortest path decreases
dramatically. In plot b), we show the expected length of the shortest path travelled outside the
wormhole connections with respect to di↵erent memory sizes. TARDIS seems to use the memory
more e�ciently compared to other models in particular when the size of the memory is small by
creating shorter paths.

We believe that the main reason for why LSTMs typically do not generalize
to sequences longer than the ones that are seen during training is mainly because
the hidden state of an LSTM network utilizes an unbounded history of the input
sequence and as a result, its parameters are optimized using the maximum likeli-
hood criterion to fit the sequences with lengths specific to the training examples.
However, an n-gram language model or an HMM does not su↵er from this issue.
In comparison, an n-gram LM would use an input context with a fixed window size
and an HMM has the Markov property in its latent space. As argued below, we
claim that while being trained, a MANN can also learn the ability to generalize
for sequences with a longer length than the ones that appear in the training set by
modifying the contents of the memory and reading from it.

A regular RNN will minimize the negative log-likelihood objective function for
the targets yt by using the unbounded history represented by the hidden state of the
RNN, and it will model the parametrized conditional distribution p(yt|ht;✓) for the
prediction at time-step t, while a MANN would learn p(yt|ht, rt;✓). If we assume
that rt represents all the dependencies that yt depends on in the input sequence,
we will have p(yt|ht, rt;✓) ⇡ p(yt|rt,xt;✓) where rt represents the dependencies in
a limited context window that only contains paths shorter than the sequences seen
during training. Due to this property, we claim that MANNs such as NTM, D-NTM
or TARDIS can generalize to longer sequences more easily. In our experiments on

44

PennTreebank, we show that a TARDIS language model trained to maximize the
log-likelihood for p(yt|ht, rt;✓) yields very close results while making predictions
even while using p(yt|rt,xt;✓) instead of p(yt|ht, rt;✓) during testing. The fact
that the best results on bAbI dataset obtained in (Gulcehre et al., 2016) is with a
feedforward controller and similarly in (Graves et al., 2014) a feedforward controller
was used to solve some of the toy tasks also confirms our hypothesis. As a result,
what has been written into the memory and what has been read becomes very
important to be able to generalize to the longer sequences.

3.7 Experiments

3.7.1 Character-level Language Modeling on PTB

As a preliminary study on the performance of our model we consider character-
level language modelling. We have evaluated our models on the Penn TreeBank (PTB)
corpus (Marcus et al., 1993) based on the train, valid and test sets used in (Mikolov
et al., 2012). On this task, we are using layer-normalization (Ba et al., 2016) and
recurrent dropout (Semeniuta et al., 2016) as those are also used by the SOTA
results on this task. Using layer-normalization and recurrent dropout improves the
performance significantly and reduces the e↵ects of overfitting. We train our mod-
els with Adam (Kingma and Ba, 2014) over sequences of length 150. We show our
results in Table 3.1.

In addition to the regular char-LM experiments, in order to confirm our hy-
pothesis regarding the ability of MANNs to generalize to longer sequences, we have
trained a language model which learns p(yt|ht, rt;✓) by using a softmax layer as
described in Equation 3.11 and tested the performance using p(yt|rt,xt;✓). As in
Table 3.1, the model’s performance by using p(yt|ht, rt;✓) is 1.26 BPC, however
by using p(yt|rt,xt;✓) it becomes 1.28 BPC. This gap is small enough to confirm
our assumption that p(yt|ht, rt;✓) ⇡ p(yt|rt,xt;✓).

3.7.2 Sequential Stroke Multi-digit MNIST task

In this subsection, we introduce a new pen-stroke based sequential multi-digit
MNIST prediction task as a benchmark for long term dependency modelling. We
also benchmark the performance of LSTM and TARDIS on this challenging task.

45

Model BPC
CW-RNN (Koutnik et al., 2014) 1.46

HF-MRNN (Sutskever et al., 2011) 1.41
ME n-gram (Mikolov et al., 2012) 1.37

BatchNorm LSTM (Cooijmans et al., 2016) 1.32
Zoneout RNN (Krueger et al., 2016) 1.27
LayerNorm LSTM (Ha et al., 2016) 1.27

LayerNorm HyperNetworks (Ha et al., 2016) 1.23
LayerNorm HM-LSTM & Step Fn. & Slope Annealing(Chung et al., 2016) 1.24

Our LSTM + Layer Norm + Dropout 1.28
TARDIS + REINFORCE + R 1.28

TARDIS + REINFORCE + Auxiliary Cost 1.28
TARDIS + REINFORCE + Auxiliary Cost + R 1.26

TARDIS + Gumbel Softmax + ST + R 1.25

Table 3.1 – Character-level language modelling results on Penn TreeBank Dataset. TARDIS
with Gumbel Softmax and straight-through (ST) estimator performs better than REINFORCE
and it performs competitively compared to the SOTA on this task. ”+ R” notifies the use of
RESET gates ↵ and �.

Task and Dataset

Recently (de Jong, 2016) introduced an MNIST pen stroke classification task
and also provided a dataset which consisted of pen stroke sequences representing
the skeleton of the digits in the MNIST dataset. Each MNIST digit image I is
represented as a sequence of quadruples {dxi, dyi, eosi, eodi}Ti=1

, where T is the
number of pen strokes to define the digit, (dxi, dyi) denotes the pen o↵set from the
previous to the current stroke (can be 1, -1 or 0), eosi is a binary valued feature
to denote end of stroke and eodi is another binary valued feature to denote end
of the digit. In the original dataset, the first quadruple contains absolute values
(x, y) instead of o↵sets (dx, dy). Without loss of generality, we set the starting
position (x, y) to (0, 0) in our experiments. Each digit is represented by 40 strokes
in average and the task is to predict the digit at the end of the stroke sequence.

While this dataset was proposed for incremental sequence learning in (de Jong,
2016), we consider the multi-digit version of this dataset to benchmark models
that can handle long term dependencies. Specifically, given a sequence of pen-
stroke sequences, the task is to predict the sequence of digits corresponding to each
pen-stroke sequences in the given order. This is a challenging task since it requires
the model to learn to predict the digit based on the pen-stroke sequence, count
the number of digits and remember them and generate them in the same order
after seeing all the strokes. In our experiments we consider 3 versions of this task

46

with 5, 10, and 15 digit sequences respectively. We generated 200,000 training data
points by randomly sampling digits from the training set of the MNIST dataset.
Similarly we generated 20,000 validation and test data points by randomly sam-
pling digits from the validation set and test set of the MNIST dataset respectively.
Average length of the stroke sequences in each of these tasks are 199, 399, and 599
respectively.

4 6 3 2

<bos> 4 6 3

Figure 3.6 – An illustration of the sequential MNIST strokes task with multiple digits. The
network is first provided with the sequence of strokes information for each MNIST digits (location
information) as input, during the prediction the network tries to predict the MNIST digits that
it has just seen. When the model tries to predict, the predictions from the previous time steps
are fed back into the network. For the first time step, the model receives a special <bos> token
which is fed into the model in the first time step when the prediction starts.

Results

We benchmark the performance of LSTM and TARDIS in this new task. Both
models receive the sequence of pen strokes and at the end of the sequence are
expected to generate the sequence of digits followed by a particular <bos> token.
The tasks is illustrated in Figure 3.6. We evaluate the models based on per-digit
error rate. We also compare the performance of TARDIS with REINFORCE with
that of TARDIS with gumbel softmax. All the models were trained for the same
number of updates with early stopping based on the per-digit error rate in the
validation set. Results for all 3 versions of the task are reported in Table-3.2. From
the table, we can see that TARDIS performs better than the LSTM in all three
versions of the task. Also TARDIS with gumbel-softmax performs slightly better
than TARDIS with REINFORCE, which is consistent with our other experiments.

We also compare the learning curves of all three models in Figure-3.7. From the
figure we can see that TARDIS learns to solve the task faster than the LSTM by
e↵ectively utilizing the given memory slots. Also, TARDIS with gumbel softmax
converges faster than TARDIS with REINFORCE.

47

Model 5-digits 10-digits 15-digits

LSTM 3.00% 3.54% 8.81%
TARDIS with REINFORCE 2.09% 2.56% 3.67%
TARDIS with gumbel softmax 1.89% 2.23% 3.09%

Table 3.2 – Per-digit based test error in sequential stroke multi-digit MNIST task with 5,10,
and 15 digits.

Figure 3.7 – Learning curves for LSTM and TARDIS for sequential stroke multi-digit MNIST
task with 5, 10, and 15 digits respectively.

3.7.3 NTM Tasks

Graves et al. (2014) proposed associative recall and the copy tasks to evaluate a
model’s ability to learn simple algorithms and generalize to sequences longer than
the ones seen during the training. We trained a TARDIS model with 4 features
for the address and 32 features for the memory content part of the model. We
used a model with hidden states of size 120. Our model uses a memory of size 16.
We train our model with Adam and used a learning rate of 3e-3. We show the
results of our model in Table 3.3. TARDIS was able to solve both tasks, both with
Gumbel-softmax and REINFORCE.

48

Copy Task Associative Recall

D-NTM cont. (Gulcehre et al., 2016) Success Success
D-NTM discrete (Gulcehre et al., 2016) Success Failure
NTM (Graves et al., 2014) Success Success
TARDIS + Gumbel Softmax + ST Success Success
TARDIS REINFORCE + Auxiliary Cost Success Success

Table 3.3 – In this table, we consider a model to be successful on copy or associative recall if its
validation cost (binary cross-entropy) is lower than 0.02 over the sequences of maximum length
seen during the training. We set the threshold to 0.02 to determine whether a model is successful
on a task as in (Gulcehre et al., 2016).

3.7.4 Stanford Natural Language Inference

Bowman et al. (2015) proposed a new task to test a machine learning algorithm’s
ability to infer whether two given sentences entail, contradict or are neutral (se-
mantic independence) from each other. However, this task can be considered a
long-term dependency task if the premise and the hypothesis are presented to the
model in sequential order, as also explored by Rocktäschel et al. (2015). Because
the model should learn the dependency relationship between the hypothesis and
the premise. Our model first reads the premise, then the hypothesis. At the end of
the hypothesis, the model predicts whether the premise and the hypothesis contra-
dicts or entails. The model proposed by Rocktäschel et al. (2015), applies attention
over its previous hidden states over the premise when it reads the hypothesis. In
that sense their model can still be considered to have some task-specific architec-
tural design choice. TARDIS and our baseline LSTM models do not include any
task-specific architectural design choices. In Table 3.4, we compare the results of
di↵erent models. Our model performs better than the other models we compare
against in this experiment. However recently it has been shown that with archi-
tectural tweaks, it is possible to design a model specifically to solve this task and
achieve 88.2% test accuracy (Chen et al., 2016).

3.8 Conclusion

In this chapter, we proposed a simple and e�cient memory augmented neural
network model which can perform well both on algorithmic tasks and more realistic
tasks. Unlike previous approaches, we show better performance on real-world NLP
tasks, such as language modelling and SNLI. We have also proposed a new task to
measure the performance of the models dealing with long-term dependencies.

49

Model Test Accuracy
Word by Word Attention (Rocktäschel et al., 2015) 83.5

Word by Word Attention two-way (Rocktäschel et al., 2015) 83.2
LSTM + LayerNorm + Dropout 81.7

TARDIS + REINFORCE + Auxiliary Cost 82.4
TARDIS + Gumbel Softmax + ST 84.3

NTM 80.2
D-NTM 80.9

LSTM (Bowman et al., 2015) 82.3
NTM + Layer-Norm + Dropout 81.8

D-NTM + Layer-Norm + Dropout 82.3

Table 3.4 – Comparisons of di↵erent baselines on SNLI Task.

We provide a detailed analysis on the e↵ects of using external memory for the
gradients and justify the reason why MANNs generalize better on sequences longer
than the ones seen in the training set. We have also shown that the gradients will
vanish at a much slower rate (if they vanish) when an external memory is being
used. Our theoretical results should encourage further studies in the direction
of developing better attention mechanisms that can create wormhole connections
e�ciently.

50

4 Non-saturating Recurrent

Units

In this chapter, we introduce our second solution to mitigating vanishing gradi-
ents, called Non-saturating Recurrent Units (NRUs) (Chandar et al., 2019).

4.1 Introduction

Successful architectures, like the LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014), alleviate vanishing gradients by allowing information to
skip transition operators (and their activation functions) via an additive path that
serves as memory. Both gates and transition operators use bounded activation
functions (sigmoid, tanh). These help keep representations stable but attenuate
gradients in two ways: they are contractive and they saturate at the bounds. Acti-
vation functions whose gradients contract as they saturate are typically referred to
as saturating nonlinearities; in that sense, rectified linear units (ReLU) (Nair and
Hinton, 2010) are non-saturating and thus help reduce vanishing gradients in deep
feed-forward networks (Krizhevsky et al., 2012; Xu et al., 2015).

Saturating activation functions still dominate in the literature for recurrent
neural networks, in part because of the success of LSTM on sequential problems
(Sutskever et al., 2014; Vinyals and Le, 2015; Merity et al., 2017; Mnih et al., 2016).
As these functions saturate, gradients contract. In addition, while saturated gates
may push more information through memory and improve gradient flow across a
long sequence, the gradient to the gating units themselves vanishes. We expect that
non-saturating activation functions and gates could improve the modelling of long-
term dependencies by avoiding these issues. We propose a non-saturating recurrent
unit (NRU) that forgoes both saturating activation functions and saturating gates.
We present a new architecture with the rectified linear unit (ReLU) and demon-
strate that it is well equipped to process data with long distance dependencies,
without sacrificing performance on other tasks.

Saturating gating functions introduce a trade-o↵ where distant gradient propa-
gation may occur at the cost of vanishing updates to the gating mechanism. We
seek to avoid this trade-o↵ between distant gradient propagation but not update-
able gates (saturated gates) and short gradient propagation but updateable gates

51

(non-saturated gates). To that end, we propose the Non-saturating Recurrent Unit
— a gated recurrent unit with no saturating activation functions.

4.2 Non-saturating Recurrent Units

At any time-step t, the NRU takes some input xt and updates its hidden state
as follows:

ht = f(Whht�1 +Wixt +Wcmt�1) (4.1)

where ht�1 2 Rh is the previous hidden state, mt�1 2 Rm is the previous memory
cell, and f is a ReLU non-linearity. The memory cell in NRU is a flat vector similar
to the cell vector in the LSTM. However, in NRU, the hidden state and the memory
cell need not be of the same size. We allow the memory cell to be larger than the
hidden state to hold more information.

At every time step t, memory cells are updated as follows:

mt = mt�1 +
k1X

i=1

↵iv
w

i
�

k2X

i=1

�iv
e

i
(4.2)

where
— mt 2 Rm is the memory vector at time t.
— k1 is the number of writing heads and k2 is the number of erasing heads. We

often set k1 = k2 = k.
— vw

i
2 Rm is a normalized vector which defines where to write in the memory.

Similarly ve

i
2 Rm is a normalized vector which defines where to erase in the

memory.
— ↵i is a scalar value which represents the content which is written in the

memory along the direction of vw

i
. Similarly, �i is a scalar value which

represents the content which is removed from the memory along the direction
of ve

i
.

Intuitively, the network first computes a low-dimensional projection of the cur-
rent hidden state by generating a k-dimensional ↵ vector. Then it writes each unit
of this k-dimensional vector along k di↵erent basis directions (vw

i
s). These k basis

directions specify where to write as continuous-valued vectors and hence there is
no need for saturating non-linearities or discrete addressing schemes. The network
also similarly erases some content from the memory (by using � and ve

i
s).

52

Scalars ↵i and �i are computed as follows:

↵i = f↵(xt,ht,mt�1) (4.3)

�i = f�(xt,ht,mt�1) (4.4)

where f↵ and f� are linear functions followed by an optional ReLU non-linearity.
Vectors vw

i
and ve

i
are computed as follows:

vw

i
= fw(xt,ht,mt�1) (4.5)

ve

i
= fe(xt,ht,mt�1) (4.6)

where fw and fe are linear functions followed by an optional ReLU non-linearity
followed by an explicit normalization. We used L5 normalization in all of our
experiments since it performed slightly better than L2 normalization in our initial
experiments.

Each v vector is m-dimensional and there are 2k such vectors that need to be
generated. This requires a lot of parameters which could create problems both
in terms of computational cost and in terms of overfitting. We reduce this large
number of parameters by using the following outer product trick to factorize the v
vectors:

pw

i
= fw1(xt,ht,mt�1) 2 R

p
m (4.7)

qw

i
= fw2(xt,ht,mt�1) 2 R

p
m (4.8)

vw

i
= g(vec(pw

i
qw

i

T)) (4.9)

where fw1 and fw2 are linear functions, vec() vectorizes a given matrix, g is an
optional ReLU non-linearity followed by an explicit normalization. Thus, instead
of producing an m-dimensional vector for the direction, we only need to produce a
2
p
m-dimensional vector which requires substantially fewer parameters and scales

more reasonably. We can further reduce the number of parameters by generating
a 2
p
km-dimensional vector instead of 2k

p
m-dimensional vector and then use the

outer product trick to generate the required km-dimensional vector. We do this
trick in our implementation of NRU.

If there is no final ReLU activation function while computing ↵, �, and v, then
there is no distinction between write and erase heads. For example, either �i or
ve

i
could become negative, changing the erasing operation into one that adds to

the memory. Having an explicit ReLU activation in all these terms forces the
architecture to use writing heads to add information to the memory and erasing
heads to erase information from the memory. However, we treat this enforcement
as optional and in some experiments, we let the network decide how to use the
heads by removing these ReLU activations.

53

4.2.1 Discussion

In vanilla RNNs, the hidden state acts as the memory of the network. So
there is always a contradiction between stability (which requires small enough Wh

to avoid explosions) and long-term storage (which requires high enough Wh to
avoid vanishing gradients). This contradiction is exposed in a ReLU RNN which
avoids the saturation from gates at the cost of network stability. LSTM and GRU
reduce this problem by introducing memory in the form of information skipped
forward across transition operators, with gates determining which information is
skipped. However, the gradient on the gating units themselves vanishes when
the unit activations saturate. Since distant gradient propagation across memory
is aided by gates that are locked to ON (or OFF), this introduces an unfortunate
trade-o↵ where either the gate mechanism receives updates or gradients are skipped
across many transition operators.

NRU also maintains a separate memory vector like the LSTM and GRU. Unlike
the LSTM and GRU, NRU does not have saturating gates. Even if the paths
purely through hidden states h vanish (with small enough Wh), the actual long
term memories are stored in memory vector m which has additive updates and
hence no vanishing gradient.

Although the explicit normalization in vectors vw

i
and ve

i
may cause gradient

saturation for large values, we focus on the nonlinearities because of their outsized
e↵ect on vanishing gradients. In comparison, the e↵ect of normalization is less
pronounced than that of explicitly saturating nonlinearities like tanh or sigmoid
which are also contractive based on our experiments. Also, normalization has
been employed to avoid the saturation regimes of these nonlinearities (Io↵e and
Szegedy, 2015; Cooijmans et al., 2016). Furthermore, we observe that foregoing
these nonlinearities allows the NRU to converge much faster than other models.

4.3 Experiments

In this section, we compare the performance of NRU networks with several
other RNN architectures in three synthetic tasks (5 including variants) and two
real tasks. Specifically, we consider the following extensive list of recurrent ar-
chitectures: RNN with orthogonal initialization (RNN-orth), RNN with identity
initialization (RNN-id), LSTM (Hochreiter and Schmidhuber, 1997), LSTM with
chrono initialization (LSTM-chrono) (Tallec and Ollivier, 2018), GRU (Cho et al.,
2014), JANET (van der Westhuizen and Lasenby, 2018), SRU (Oliva et al., 2017),
EURNN (Jing et al., 2017b), GORU (Jing et al., 2017a). We used the FFT-like
algorithm for the orthogonal transition operators in EURNN and GORU as it tends

54

to be much faster than the tunable algorithm, both proposed by Jing et al. (2017b).
While these two algorithms have a low theoretical computational complexity, they
are di�cult to parallelize.

We mention common design choices for all the experiments here: RNN-orth and
RNN-id were highly unstable in all our experiments and we found that adding layer
normalization helps. Hence all our RNN-orth and RNN-id experiments use layer
normalization. We did not see any significant benefit in using layer normalization
for other architectures and hence it is turned o↵ by default for other architectures.
NRU with linear writing and erasing heads performed better than with ReLU based
heads in all our experiments except the language model experiment. Hence we used
linear writing and erasing heads unless otherwise mentioned. We used the Adam
optimizer (Kingma and Ba, 2014) with a default learning rate of 0.001 in all our
experiments. We clipped the gradients by norm value of 1 for all models except
GORU and EURNN since their transition operators do not expand norm. We used
a batch size of 10 for most tasks, unless otherwise stated.

Table-4.1 summarizes the results of this section. Out of 10 di↵erent architectures
that we considered, NRU is the only model that performs among the top 2 models
across all 7 tasks. The code for the NRU Cell is available at https://github.

com/apsarath/NRU.

Model in Top-1 in Top-2

RNN-orth 1 1
RNN-id 1 1
LSTM 1 1
LSTM-chrono 1 1
GRU 1 2
JANET 1 3
SRU 1 1
EURNN 2 3
GORU 0 1
NRU 4 7

Table 4.1 – Number of tasks where the models are in top-1 and top-2. Maximum of 7 tasks.
Note that there are ties between models for some tasks so the column for top-1 performance would
not sum up to 7.

4.3.1 Copying Memory Task

The copying memory task was introduced in Hochreiter and Schmidhuber (1997)
as a synthetic task to test the network’s ability to remember information over many
time-steps. The task is defined as follows. Consider n di↵erent symbols. In the

55

Figure 4.1 – Copying memory task for T = 100 (in top) and T = 200 (in bottom). Cross-entropy
for random baseline : 0.17 and 0.09 for T=100 and T=200 respectively.

56

first k time-steps, the network receives an initial sequence of k random symbols
from the set of n symbols sampled with replacement. Then the network receives
a “blank” symbol for T � 1 steps followed by a “start recall” marker. The network
should learn to predict a “blank” symbol, followed by the initial sequence after the
marker. Following Arjovsky et al. (2016), we set n = 8 and k = 10. The copying
task is a pathologically di�cult long-term dependency task where the output at
the end of the sequence depends on the beginning of the sequence. We can vary the
dependency length by varying the length of the sequence T . A memoryless model
is expected to achieve a sub-optimal solution which predicts a constant sequence
after the marker, for any input (referred to as the “baseline” performance). The
cross-entropy for such a model would be klogn

T+2n
(Arjovsky et al., 2016).

We trained all models with approximately the same number of parameters
(⇠23.5k), in an online fashion where every mini-batch is dynamically generated.
We consider T = 100 and T = 200. In Figure 4.1 we plot the cross-entropy loss for
all the models. Unsurprisingly, EURNN solves the task in a few hundred updates
as it is close to an optimal architecture tuned for this task (Hena↵ et al., 2016).
Conversely, RNN-orth and RNN-id get stuck at baseline performance. NRU con-
verges faster than all other models, followed by JANET which requires two to three
times more updates to solve the task.

We observed the change in the memory vector across the time steps in Figure-
4.2. We can see that the network has learnt to add information into the memory
in the beginning of the sequence and then it does not access the memory until it
sees the marker. Then it makes changes in the memory in the last 10 time steps to
copy the sequence. Note that NRU has to make changes in the memory even while
copying the sequence since there is no location based addressing of the memory.

We performed additional experiments following the observation by Hena↵ et al.
(2016) that gated models like the LSTM outperform a simple non-gated orthogonal
network (similar to the EURNN) when the time lag T is varied in the copying task.
This variable length task highlights the non-generality of the solution learned by
models like EURNN. Only models with a dynamic gating mechanism can solve
this problem. In Figure-4.3, we plot the cross-entropy loss for all the models. The
proposed NRU model is the fastest to solve this task, followed by JANET, while
the EURNN performs poorly, as expected according to Hena↵ et al. (2016). These
two experiments highlight the fact that NRU can store information longer than
other recurrent architectures. Unlike EURNN which behaves like a fixed clock
mechanism, NRU learns a gating function to lock the information in the memory
as long as needed. This is similar to the behaviour of other gated architectures.
However, NRU beats other gated architectures mainly due to better gradient flow
which results in faster learning. Figure-4.4 shows that NRU converges significantly
faster than its strongest competitors (JANET and LSTM-chrono) in all the 4 tasks.

57

Figure 4.2 – Change in the content of the NRU memory vector for the copying memory task
with T=100. We see that the network has learnt to use the memory in the first 10 time steps to
store the sequence. Then it does not access the memory until it sees the marker. Then it starts
accessing the memory to generate the sequence.

58

Figure 4.3 – Variable Copying memory task for T = 100 (in left) and T = 200 (in right).

59

Figure 4.4 – Comparison of top-3 models w.r.t the number of the steps to converge for di↵erent
tasks. NRU converges significantly faster than JANET and LSTM-chrono.

4.3.2 Denoising Task

The denoising task was introduced by Jing et al. (2017a) to test both the memo-
rization and forgetting ability of RNN architectures. This is similar to the copying
memory task. However, the data points are located randomly in a long noisy se-
quence. Consider again an alphabet of n di↵erent symbols from which k random
symbols are sampled with replacement. These symbols are then separated by ran-
dom lengths of strings composed of a “noise” symbol, in a sequence of total length
T . The network is tasked with predicting the k symbols upon encountering a “start
recall” marker, after the length T input sequence. Again we set n = 8 and k = 10.
This task requires both an ability to learn long term dependencies and also an
ability to filter out unwanted information (considered noise).

The experimental procedure is exactly the same as described for the copying
memory task. In Figure 4.5 we plot the cross-entropy loss for all the models for
T = 100. In this task, all the models converge to the solution except EURNN.While
NRU learns faster in the beginning, all the algorithms converge after approximately
the same number of updates.

60

Figure 4.5 – Denoising task for T = 100.

4.3.3 Character Level Language Modelling

Going beyond synthetic data, we consider character level language modelling
with the Penn Treebank Corpus (PTB) (Marcus et al., 1993). In this task, the
network is fed one character per time step and the goal is to predict the next
character. Again we made sure that all the networks have approximately the same
capacity (⇠2.15M parameters). We use a batch size of 128 and perform truncated
backpropagation through time, every 150 time steps. We evaluate according to bits
per character (BPC) and accuracy.

All models were trained for 20 epochs and evaluated on the test set after selecting
for each the model state which yields the lowest BPC on the validation set. The
test set BPC and accuracy are reported in Table-4.2. We did not add drop-out or
batch normalization to any model. From the table, we can see that GRU is the
best performing model, followed closely by NRU. We note that language modelling
does not require very long term dependencies. This is supported by the fact that
changing the additive memory updates in NRU to multiplicative updates does
not hurt performance (it actually improves it). This is further supported by our
observation that setting Tmax to 50 was better than setting Tmax to 150 in chrono-
initialization for LSTM and JANET. All the best performing NRU models used
ReLU activations in the writing and erasing heads.

61

Model BPC Accuracy

LSTM 1.48 67.98
LSTM-chrono 1.51 67.41
GRU 1.45 69.07
JANET 1.48 68.50
GORU 1.53 67.60
EURNN 1.77 63.00
NRU 1.47 68.48

Table 4.2 – Bits Per Character (BPC) and Accuracy in test set for character level language
modelling in PTB.

4.3.4 Permuted Sequential MNIST

The Permuted Sequential MNIST task was introduced by Le et al. (2015) as a
benchmark task to measure the performance of RNNs in modelling complex long
term dependencies. In a sequential MNIST task, all the 784 pixels of an MNIST
digit are fed to the network one pixel at a time and the network must classify
the digit in the 785th time step. Permuted sequential MNIST (psMNIST) makes
the problem harder by applying a fixed permutation to the pixel sequence, thus
introducing longer term dependencies between pixels in a more complex order.

For this task, we used a batch size of 100. All the networks have approximately
the same number of parameters (⇠165k). This corresponds to 200 to 400 hidden
units for most of the architectures. Since the FFT-style algorithm used with EU-
RNN requires few parameters, we used a large 1024 unit hidden state still achieving
fewer parameters (⇠17k parameters) at maximum memory usage. We report vali-
dation and test accuracy in Table-4.3 and plot the validation curves in Figure-4.6.
On this task, NRU performs better than all the other architectures, followed by
the EURNN. The good performance of the EURNN could be attributed to its
large hidden state, since it is trivial to store all 784 input values in 1024 hidden
units. This model excels at preserving information, so performance is bounded
by the classification performance of the output layer. While NRU remains stable,
RNN-orth and RNN-id are not stable as seen from the learning curve. Surprisingly,
LSTM-chrono is not performing better than regular LSTM.

4.3.5 Model Analysis

Stability: While we use gradient clipping to limit exploding gradients in NRU,
we observed gradient spikes in some of our experiments. We suspect that the net-
work recovers due to consistent gradient flow. To verify that the additive nature

62

Figure 4.6 – Validation curve for psMNIST task.

Model valid test

RNN-orth 88.70 89.26
RNN-id 85.98 86.13
LSTM 90.01 89.86
LSTM-chrono 88.10 88.43
GRU 92.16 92.39
JANET 92.50 91.94
SRU 92.79 92.49
EURNN 94.60 94.50
GORU 86.90 87.00
NRU 95.46 95.38

Table 4.3 – Validation and test set accuracy for psMNIST task.

63

of the memory does not cause memory to explode for longer time steps, we per-
formed a sanity check experiment where we trained the model on the copy task
(with T=100, 200, and 500) with random labels and observed that training did
not diverge. We observed some instabilities with all the models when training with
longer time steps (T = 2000). With NRU, we observed that the model converged
faster and was more stable with a higher memory size. For instance, our model
converged almost twice as early when we increased the memory size from 64 to 144.

Forgetting Ability: We performed another sanity check experiment to gauge
the forgetting ability of our model. We trained it on the copy task but reset the
memory only once every k= 2, 5, and 10 examples and observed that NRU learned
to reset the memory in the beginning of every example.

Gradient Flow: To give an overview of the gradient flow across di↵erent time
steps during training, we compared the total gradient norms in the copying memory
task for the top 3 models: NRU, JANET and LSTM-Chrono (Figure 4.7). We see
that the NRU’s gradient norm is considerably higher during the initial stages of
the training while the other model’s gradient norms rise after about 25k steps.
After 25k steps, the drop in the NRU gradient norm coincides with the model’s
convergence, as expected. We expect that this ease of gradient flow in NRU serves
as an additional evidence that NRU can model long-term dependencies better than
other architectures.

Figure 4.7 – Gradient norm comparison with JANET and LSTM-chrono across the training
steps. We observe significantly higher gradient norms for NRU during the initial stages compared
to JANET or LSTM-chrono. As expected, NRU’s gradient norms decline after about 25k steps
since the model has converged.

64

Hyper-parameter Sensitivity Analysis

NRU has three major hyper-parameters: memory size (m), number of heads
(k) and hidden state size (h). To understand the e↵ect of these design choices, we
varied each hyper-paramteter by fixing other hyper-parameters for the psMNIST
task. The baseline model was m = 256, k = 4, h = 200. We varied k 2 {1, 4, 9, 16},
m 2 {100, 256, 400}, and h 2 {50, 100, 200, 300}. We trained all the models for a
fixed number of 40 epochs. Validation curves are plotted in Figure-4.8. It appears
that increasing k is helpful, but yields diminishing returns above 4 or 9. For a
hidden state size of 200, a larger memory size (like 400) makes the learning di�cult
in the beginning, though all the models converge to a similar solution. This may
be due to the increased number of parameters. On the other hand, for a memory
size of 256, small hidden states appear detrimental.

Figure 4.8 – E↵ect of varying the number of heads (left), memory size (middle), and hidden
state size (right) in psMNIST task.

4.4 Conclusion

In this chapter, we introduce Non-saturating Recurrent Units (NRUs) for mod-
elling long term dependencies in sequential problems. The gating mechanism in
NRU is additive (like in LSTM and GRU) and non-saturating (unlike in LSTM
and GRU). This results in better gradient flow for longer durations. We present
empirical evidence in support of non-saturating gates in the NRU with (1) im-
proved performance on long term dependency tasks, (2) higher gradient norms,
and (3) faster convergence when compared to baseline models. NRU was the best
performing general purpose model in all of the long-term dependency tasks that
we considered and is competitive with other gated architectures in short-term de-
pendency tasks. This work opens the door to other potential non-saturating gated
recurrent network architectures.

65

We would also like to apply NRU in several real world sequential problems in
natural language processing and reinforcement learning where the LSTM is the
default choice for recurrent computation.

66

5
On Training Recurrent

Neural Networks for
Lifelong Learning

In the last two chapters, we explored the problem of learning long-term de-
pendencies that arises when training recurrent neural networks with very long se-
quences. The focus was on single-task setting. In this chapter, we explore the
challenges that arise while training RNNs in a multi-task lifelong learning setting.
The results reported in this chapter appears in (Sodhani et al., 2019).

5.1 Introduction

Lifelong machine learning considers systems that can learn many tasks (from one
or more domains) over a lifetime (Thrun, 1998; Silver et al., 2013). This has sev-
eral names and manifestations in the literature: incremental learning (Solomono↵,
1989), continual learning (Ring, 1997), explanation-based learning (Thrun, 1996,
2012), never-ending learning (Carlson et al., 2010), etc. The underlying idea mo-
tivating these e↵orts is the following: lifelong learning systems would be more
e↵ective at learning and retaining knowledge across di↵erent tasks. By exploit-
ing similarity across tasks, they would be able to obtain better priors for the task
at hand. Lifelong learning techniques are very important for training intelligent
autonomous agents that would need to operate and make decisions over extended
periods of time. These characteristics are especially important in the industrial
setups where the deployed machine learning models are being updated frequently
with new incoming data whose distribution need not match the data on which the
model was originally trained.

The lifelong learning paradigm is not just restricted to the multi-task setting
with clear task boundaries. In real life, the system may have no control over what
task it receives at any given time step. In such situations, there is no clear task
boundary. Lifelong learning is also relevant when the system is learning just a
single task but the data distribution changes over time.

Lifelong learning is an extremely challenging task for machine learning models
because of two primary reasons:

67

1. Catastrophic Forgetting: As the model is trained on a new task (or a
new data distribution), it is likely to forget the knowledge it acquired from
the previous tasks (or data distributions). This phenomenon is also known
as catastrophic interference (McCloskey and Cohen, 1989).

2. Capacity Saturation: Any parametric model, however large, can only
have a fixed amount of representational capacity, to begin with. Given that
we want the model to retain knowledge as it progresses through multiple
tasks, the model would eventually run out of capacity to store the knowledge
acquired in the successive tasks. The only way for it to continue learning,
while retaining previous knowledge, is to increase its capacity on the fly.

Catastrophic forgetting and capacity saturation are related issues. In fact, ca-
pacity saturation can lead to catastrophic forgetting. But it is not the only cause
for catastrophic forgetting. As the model is trained on one data distribution for a
long time, it can forget its “learning” from the previous data distributions irrespec-
tive of how much e↵ective capacity it has. While an under-capacity model could
be more susceptible to catastrophic forgetting, having su�cient capacity (by say
using very large models) does not protect against catastrophic forgetting (as we
demonstrate in section 5.5). Interestingly, a model that is immune to catastrophic
forgetting could be more susceptible to capacity saturation (as it uses more of its
capacity to retain the previously acquired knowledge). We demonstrate this e↵ect
as well in section 5.5. It is important to think about both catastrophic forgetting
and capacity saturation together, as solving just one problem does not take care of
the other problem. Further, the role of capacity saturation and capacity expansion
in lifelong learning is an under-explored topic.

Motivated by these challenges, we compile a list of desirable properties that a
model should fulfill to be deemed suitable for lifelong learning settings:

1. Knowledge Retention - As the model learns to solve new tasks, it should
not forget how to solve the previous tasks.

2. Knowledge Transfer - The model should be able to reuse the knowledge
acquired during previous tasks to solve the current task. If the tasks are
related, this knowledge transfer would lead to faster learning and better
generalization over the lifetime of the model.

3. Parameter E�ciency - The number of parameters in the model should
ideally be bounded, or grow at-most sub-linearly as new tasks are added.

4. Model Expansion - The model should be able to increase its capacity on
the fly by “expanding” itself.

The model expansion characteristic comes with additional constraints: In a true
lifelong learning setting, the model would experience a continual stream of training

68

data that cannot be stored. Hence, any model would, at best, have access to only
a small sample of the historical data. In such a setting, we cannot rely on past
examples to train the expanded model from scratch and a zero-shot knowledge
transfer is desired. Considering the parameter e�ciency and the model expansion
qualities together implies that we would also want the computational and memory
costs of the model to increase only sublinearily as the model trains on new tasks.

We propose to unify the Gradient Episodic Memory (GEM) model (Lopez-Paz
and Ranzato, 2017) and the Net2Net framework (Chen et al., 2015) to develop a
model suitable for lifelong learning. The GEM model provides a mechanism to
alleviate catastrophic forgetting, while allowing for improvement in the previous
tasks by beneficial backward transfer of knowledge. Net2Net is a technique for
transferring knowledge from a smaller, trained neural network to another larger,
untrained neural network. We discuss both these models in detail in the Related
Work (section 5.2).

One reason hindering research in lifelong learning is the absence of standardized
training and evaluation benchmarks. For instance, the vision community benefited
immensely from the availability of the ImageNet dataset (Deng et al., 2009) and
we believe that availability of a standardized benchmark would help to propel and
streamline research in the domain of lifelong learning. Creating a good bench-
mark set up to study di↵erent aspects of lifelong learning is extremely challenging.
Lomonaco and Maltoni (2017) proposed a new benchmark for Continuous Object
Recognition (CORe50) in the context of computer vision. Lopez-Paz and Ranzato
(2017) considered di↵erent variants of MNIST and CIFAR-100 datasets for lifelong
supervised learning. These benchmarks help study-specific challenges like catas-
trophic forgetting by abstracting out the other challenges, but they are quite far
from a real-life setting. Another limitation of the existing benchmarks is that they
are largely focused on non-sequential tasks and there has been no such benchmark
available for lifelong learning in the context of sequential supervised learning. Se-
quential supervised learning, like reinforcement learning, is a sequential task and
hence more challenging than one step supervised learning tasks. However, un-
like reinforcement learning, the setup is still supervised and hence makes it easier
to focus on the challenges in lifelong learning in isolation from the challenges in
reinforcement learning.

In this work, we propose a curriculum-based, simple and intuitive benchmark for
evaluating lifelong learning models in the context of sequential supervised learning.
We consider a single task setting where the model starts with the first data dis-
tribution (the simplest data distribution) and subsequently progresses to the more
di�cult data distributions. We can consider each data distribution as a task by
itself. Each task has well-defined criteria of completion and the model can start
training on a task only after learning over all the previous tasks in the curricu-
lum. Each time the model finishes a task, it is evaluated on all the tasks in the

69

curriculum (including the tasks that it has not been trained on so far) so as to
compare the performance of the model in terms of both catastrophic forgetting
(for the previously seen tasks) and generalization (to unseen tasks).

If the model fails to learn a task (as per pre-defined criteria of success), we ex-
pand the model and let it train on the current task again. The expanded model
is again evaluated on all the tasks just like the regular, unexpanded model. Per-
forming this evaluation step enables us to analyze and understand how the model
expansion step a↵ects the model’s capabilities in terms of generalization and catas-
trophic forgetting. We describe the benchmark and the di↵erent tasks in detail in
the Tasks and Setup section(section 5.3).

The main contributions of this work are as follows:

1. We tackle the two main challenges of lifelong learning by unifying Gradi-
ent Episodic Memory (a lifelong learning technique to alleviate catastrophic
forgetting) with Net2Net (a capacity expansion technique).

2. We propose a simple benchmark of tasks for training and evaluating models
for learning sequential problems in the lifelong learning setting.

3. We show that both GEM and Net2Net which are originally proposed for
feed-forward architectures are indeed useful for recurrent neural networks as
well.

4. We evaluate the proposed unified model on the proposed benchmark and
show that the unified model is better suited to the lifelong learning setting
as compared to the two constituent models.

5.2 Related Work

We review the prominent works dealing with catastrophic forgetting, capacity
saturation and model expansion, as these are the important aspects of lifelong
learning.

5.2.1 Catastrophic Forgetting

Much of the work in the domain of catastrophic forgetting can be broadly clas-
sified into two approaches:

1. Model Regularization: A common and useful strategy is to freeze parts of
the model as it trains on successive tasks. This can be seen as locking in the
knowledge about how to solve di↵erent tasks in di↵erent parts of the model so

70

that training on the subsequent tasks cannot interfere with this knowledge.
Sometimes, the weights are not completely frozen and are regularized to not
change too much as the model trains across di↵erent tasks. This approach is
adopted by elastic weight consolidation (EWC) (Kirkpatrick et al., 2016). As
the model trains through the sequence of tasks, learning is slowed down for
weights which are important to the previous tasks. Liu et al. (2018) extended
this model by reparameterizing the network to approximately diagonalize the
Fisher information matrix of the network parameters. This reparameteriza-
tion leads to a factorized rotation of the parameter space and makes the
diagonal Fisher Information Matrix assumption (of the EWC model) more
applicable. Chaudhry et al. (2018) presented RWalk, a generalization of
EWC and Path Integral (Zenke et al., 2017) with a theoretically grounded
KL-divergence based perspective along with several new metrics. One down-
side of such approaches is the loss in the e↵ective trainable capacity of the
model as more and more model parameters are regularized over time. This
may seem counter-intuitive given the desirable properties that we want the
lifelong learning systems to have (section 5.1), but the di↵erent objectives
can be in tension.

2. Rehearsing using previous examples: When learning on a given task,
the model is also shown examples from the previous tasks. This rehearsal
setup (Silver and Mercer, 2002) can help in two ways - if the tasks are related,
training on multiple tasks helps in transferring knowledge across the tasks. If
the tasks are unrelated, the setup still helps to protect against catastrophic
forgetting. Rebu� et al. (2017) proposed the iCaRL model which focuses on
the class-incremental learning setting where as the number of classes (in the
classification system) increases, the model is shown examples from the previ-
ous tasks. Generally, this strategy requires persisting some training examples
per task. In practice, the cost of persisting some data samples (in terms of
memory requirements) is much smaller than the memory requirements of the
model. Though, in the rehearsal setup, the computational cost of training
the model increases with each new task as the model has to rehearse on the
previous tasks as well.

Mensink et al. (2012) proposed the Nearest Mean Classifier (NCM) model in the
context of large scale, multi-class image classification. The idea is to use distance-
based classifiers where a training example is assigned to the class which is “nearest”
to it. The setup allows adding new classes and new training examples to existing
classes at a near-zero cost. Thus the system can be updated on the fly as more
training data becomes available. Further, the model could periodically be trained
on the complete dataset (collected thus far). Li and Hoiem (2016) proposed the
Learning without Forgetting (LwF) approach in the context of computer vision
tasks. The idea is to divide the model into di↵erent components. Some of these

71

components are shared between di↵erent tasks and some of the components are
task-specific. When a new task is introduced, first the existing network is used to
make predictions for the data corresponding to the new task. These predictions are
used as the“ground-truth” labels to compute a regularization loss that ensures that
training on the new task does not a↵ect the model’s performance on the previous
task. Then a new task-specific component is added to the network and the network
is trained to minimize the sum of loss on the current task and the regularisation
loss. The “addition” of new components per task makes the LwF model parameter
ine�cient.

Li and Hoiem (2016) proposed to use the distillation principle (Hinton et al.,
2015) to incrementally train a single network for learning multiple tasks by using
data only from the current task. Lee et al. (2017) proposed incremental moment
matching (IMM) which incrementally matches the moment of the posterior dis-
tribution of the neural network which is trained on the first and the second task,
respectively. While this approach seems to give strong results, it is evaluated only
on datasets with very few tasks. Serrà et al. (2018) proposed to use hard attention
targets (HAT) to learn pathways in a given base network using the ID of the given
task. The pathways are used to obtain the task-specific networks. The limitation
of this approach is that it requires knowledge about the current task ID.

The recently proposed Gradient Episodic Memory approach (Lopez-Paz and
Ranzato, 2017) outperforms many of these models while enabling positive transfer
on the previous tasks. It uses an episodic memory which stores a subset of the
observed examples from each task. When training on a given task, an additional
constraint is added such that the loss on the data corresponding to the previous
tasks does not increase though it may or may not decrease. One limitation of the
model is the need to compute gradients corresponding to the previous task at each
learning iteration. Given that GEM needs to store only a few examples per task
(in our experiments, we stored just one batch of examples), the storage cost is
negligible. Given the strong performance and low memory cost, we use GEM as
the first component of our unified model.

5.2.2 Capacity Saturation and Model Expansion

The problem of capacity saturation and model expansion has been extensively
studied from di↵erent perspectives. Some works explored model expansion as a
mean of transferring knowledge from a small network to a large network, to ease
the training of deep neural networks (Gutstein et al., 2008; Furlanello et al., 2018).
Analogously, the idea of distilling knowledge from a larger network to a smaller
network has been explored in (Hinton et al., 2015; Romero et al., 2014). The ma-
jority of these approaches focus on training the new network on a single supervised

72

task where the data distribution does not change much and the previous examples
can be reused several times. This is not possible in a true online lifelong learning
setting, where the model experiences a continual stream of training data and has
no access to previously seen examples again.

Chen et al. (2015) proposed using function-preserving transformations to ex-
pand a small, trained network (referred to as the teacher network) into a large,
untrained network (referred to as the student network). Their primary motivation
was to accelerate the training of large neural networks by first training small neural
networks (which are easier and faster to train) and then transferring their knowl-
edge to larger neural networks. The paper evaluated the technique in the context
of single task supervised learning and mentioned continual learning as one of the
motivations. Given that Net2Net enables the zero-shot transfer of knowledge to
the expanded network, we use this idea of function preserving transformations to
achieve zero-shot knowledge transfer in the proposed unified model.

Rusu et al. (2016) proposed the idea of Progressive Networks that explicitly
supports the transfer of features across a sequence of tasks. The progressive network
starts with a single column or model (neural network) and new columns are added
as more tasks are encountered. Each time the network learned a task, the newly
added column (corresponding to the task) is “frozen” to ensure that “knowledge”
cannot be lost. Each new column uses the layer-wise output from all the previous
columns to explicitly enable transfer learning. As a new column is added per task,
the number of columns (and hence the number of network parameters) increases
quadratically with the number of tasks. Further, when a new column is added,
only a fraction of the new capacity is actually utilized, thus each new column is
increasingly underutilized. Another limitation is that during training, the model
explicitly needs to know when a new task starts so that a new column can be
added to the network. Similarly, during inference, the network needs to know the
task to which the current data point belongs to so that it knows which column
to use. Aljundi et al. (2016) build upon this idea and use a Network of Experts
where each expert model is trained for one task. During inference, a set of gating
autoencoders are used to select the expert model to query. This gating mechanism
helps to reduce the dependence on knowing the task label for the test data points.

Mallya et al. (2018) proposed the piggyback approach to train the model on a
base task and then learn di↵erent bit masks (for parameters in the base network)
for di↵erent tasks. One advantage as compared to Progressive Networks is that only
1 bit is added per parameter of the base model (as compared to 1 new parameter
per parameter of the base model). The shortcoming of the approach, however, is
that knowledge can be transferred only from the base task to the subsequent tasks
and not between di↵erent subsequent tasks.

Table 5.1 compares the di↵erent lifelong learning models in terms of the desirable

73

Table 5.1 – Comparison of di↵erent models in terms of the desirable properties they fulfill.

Model

Property Knowledge

Retention

Knowledge

Transfer

Parameter

E�ciency

Model

Expansion

EWC X X
IMM X X X
iCaRL X X
NCM X X
LwF X
GEM X X X

Net2Net X X
Progressive Nets X X X

Network of Experts X X X
Piggyback X X

HAT X X X

properties they fulfill. The table makes it very easy to determine which combination
of models could be feasible. If we choose a parameter-ine�cient model, then the
unified model will be parameter ine�cient which is clearly undesirable. Further,
we want at least one of the component models to have the expansion property
so that the capacity can be increased on the fly. This narrows down the choice
of the first model to Net2Net. Since this model lacks both knowledge retention
and knowledge transfer, we could pick either IMM, GEM or HAT as the second
component. IMM is evaluated for very few tasks while HAT requires the task IDs
to be known beforehand. In contrast, GEM is reported to work well for a large
number of tasks (Lopez-Paz and Ranzato, 2017). Given these considerations, we
choose GEM as the second component. Now, the unified model has all the four
properties.

5.3 Tasks and Benchmark

In this section, we describe the tasks, training, and the evaluation setup that
we proposed for benchmarking lifelong learning models in the context of sequential
supervised learning. In a true lifelong learning setting, the training distribution can
change arbitrarily and no explicit demarcation exists between the data distribution
corresponding to the di↵erent tasks. This makes it extremely hard to study how
model properties like catastrophic forgetting and generalization capability evolve
with the training. We sidestep these challenges by using a curriculum-based, simple
and intuitive setup where we can have full control over the training data distribu-
tions. This setup gives us explicit control over when the model experiences di↵erent

74

data distributions and in what order. Specifically, we train the models in the cur-
riculum style setup (Bengio et al., 2009) where the tasks are ordered by di�culty.
We discuss the rationale behind using the curriculum approach in section 5.3.5. We
consider the following three tasks as part of the benchmark.

5.3.1 Copy Task

The copy task is an algorithmic task introduced by Graves et al. (2014) to
test whether the training network can learn to store and recall a long sequence of
random vectors. Specifically, the network is presented with a sequence of randomly
initialized, seven-bit vectors. Each such vector is followed by an eighth bit which
serves as a delimiter flag. This flag is zero at all time-steps except for the end
of the sequence. The network is trained to generate the entire sequence except
the delimiter flag. The di↵erent levels are defined by considering input sequences
of di↵erent lengths. We start with input sequences of length 5 and increase the
sequence length in steps of 3 and go till the maximum sequence length of 62 (20
levels). We can consider arbitrarily large sequences but we restrict ourselves to
maximum sequence length of 62 as none of the considered models were able to
learn all these sequences. We report the bit-wise accuracy metric.

5.3.2 Associative Recall Task

The associative recall task is another algorithmic task introduced by Graves
et al. (2014). In this task, the network is shown a list of items where each item is a
sequence of randomly initialized 8-bit binary vectors, bounded on the left and the
right by the delimiter symbols. First, the network is shown a sequence of items and
then it is shown one of the items (from the sequence). The model is required to
output the item that appears next from the ingested sequence. We set the length
of each item to be 3. The levels are defined in terms of the number of items in the
sequence. The first level considers sequences with 5 items and the number of items
is increased in steps of 3 per level, going till 20 levels where there are 62 items per
sequence. We report the bit-wise accuracy metric.

5.3.3 Sequential Stroke MNIST Task

The Sequential Stroke MNIST (SSMNIT) task was introduced by Gülçehre et al.
(2017) with an emphasis on testing the long-term dependency modeling capabilities
of RNNs. In this task, each MNIST digit image I is represented as a sequence of
quadruples {dxi, , dyi, eosi, eodi}Ti=1

. Here, T is the number of pen strokes needed

75

to define the digit, (dxi, dyi) denotes the pen o↵set from the previous to the current
stroke (can be 1, -1 or 0), eosi is a binary-valued feature to denote end of stroke
and eodi is another binary-valued feature to denote end of the digit. The average
number of strokes per digit is 40. Given a sequence of pen-stroke sequences, the task
is to predict the sequence of digits corresponding to each pen-stroke sequences in
the given order. This is an extremely challenging task as the model is first required
to predict the digits based on the pen-stroke sequence, count the number of digits,
and then generate the digits in the same order as the input after having processed
the entire sequence of pen-strokes. The levels are defined in terms of the number
of digits that make up the sequence. Given that this task is more challenging than
the other two tasks, we use a sequence of length 1 (i.e. single digit sequences) for
the first level and increase the sequence length in steps of 1. Just like before, we
consider 20 levels and report the per-digit accuracy as the metric.

5.3.4 Benchmark

So far, we have considered the setup with three tasks and have defined multiple
levels within each task. Alternatively, we could think of each task as a “task dis-
tribution” and each level (within the task) as a task (within a “task distribution”).
From now on, we employ the task-distribution / task notation to keep the discussion
consistent with the literature in lifelong learning where multiple tasks are consid-
ered. Thus we have 3 task distributions (Copy, Associative Recall, and SSMNIST)
and multiple tasks (in increasing order of di�culty) per task distribution. To be
closely aligned with the true lifelong learning setup, we train all the models in an
online manner where the network sees a stream of training data. Further, none of
the examples are seen more than once. A common setup in online learning is to
train the model with one example at a time. Instead, we train the model using
mini-batches of 10 examples at a time to exploit the computational benefits of us-
ing mini-batches. However, we ensure that every mini-batch is generated randomly
and that none of the examples are repeated so that a separate validation or test
dataset is not needed. For each task (within a task distribution), we report the
current task accuracy as an indicator of the model’s performance on the current
task. If the running-average of the current task accuracy, averaged over the last k
batches, is greater-than or equal-to c%, the model is said to have learned the task
and we can start training the model on the next task. If the model fails to learn the
current task, we stop the training procedure and report the number of tasks com-
pleted. Every model is trained for m mini-batches before it is evaluated to check
if it has learned the task. Since we consider models with di↵erent capacity, some
models could learn the task faster thus experiencing fewer examples. This setup
ensures that each model is trained on the same number of examples. This training
procedure is repeated for all the task distributions. Benchmark parameters k, m,

76

and c can be set to any reasonable value, as long as they are kept constant for all
tasks in a given task distribution. Specifically, we set k = 100, and m = 10000
for all the tasks, as well as c = 80 for Copy and c = 75 for Associative Recall and
SSMNIST.

In the lifelong learning setting, it is very important for the model to retain knowl-
edge from the previous tasks while generalizing to the new tasks. Hence, each time
the model learns a task, we evaluate it on all the previous tasks (that it has been
trained on so far) and report the model’s performance (in terms of accuracy) for
each of the previous task. Additionally, we also report the average of all these pre-
vious task accuracies and denote it as the per-task-previous-accuracy. When the
model fails to learn a task and its training is stopped, we report both the individual
per-task-previous-accuracy metrics and the average of these metrics, which is de-
noted as the previous-task-accuracy. While the per-task-previous-accuracy metric
can be used as a crude approximation to quantify the e↵ect of catastrophic forget-
ting, we highlight that the metric, on its own, is an insu�cient metric. Consider
a model which learns to solve just 1 task and terminates training after the 2nd

task. When evaluated for backward transfer, it would be evaluated only on the 1st

task. Now consider a model which just finished training on the 10th task. When
evaluated for backward transfer, it would be evaluated on the first 9 tasks. per-
task-previous-accuracy metric favors models which stop training early and hence
the series of per-task-previous-accuracy metrics is a more relevant measure.

Another interesting aspect of lifelong learning is the generalization to unseen
tasks. Analogous to the per-task-previous-accuracy and previous-task-accuracy, we
consider the per-task-future-accuracy and future-task-accuracy. There is no success
criteria associated with this evaluation phase and the metrics are interpreted as a
proxy of a model’s ability to generalize to future tasks. In our benchmark, the tasks
are closely related, which makes it reasonable to test generalization to new tasks.
Note that the benchmark tasks can have levels beyond 20 as well. We limited our
evaluation to 20 levels as none of the models could complete all the levels.

In the context of lifelong learning systems, the model needs to expand its capac-
ity once it has saturated, to make sure it can keep learning from the incoming data.
We simulate this scenario in our benchmark setting as follows. If the model fails to
complete a given task, we use some capacity expansion technique and expand the
original model into a larger model. Specifically, since we are considering RNNs, we
expand the size of the hidden state matrix. The expanded model is then allowed
to train on the current task for 20000 iterations. From there, the expanded model
is evaluated (and trained on subsequent tasks) just like a regular model. If the
expanded model fails on any task, the training is terminated. Note that this ter-
mination criterion is a part of our evaluation protocol. In practice, we can expand
the model as many times as we want. In the ablation studies, we consider a case
where the model is expanded twice.

77

5.3.5 Rationale for using curriculum style setup

For all three task distributions, it can be argued that as the sequence length in-
creases, the tasks become more challenging, since the model needs to store/retrieve
a much longer sequence. Hence, for each task distribution, we define a curriculum
of tasks by controlling the length of the input sequences. We note that our exper-
imental setup is di↵erent from a real-life setting in two ways: First, in real-life, we
may not know beforehand which data point belongs to which data (or task) dis-
tribution. Second, in real life, we have no control over the di�culty or complexity
of the incoming data points. For the benchmark, we assume perfect knowledge of
which data points belong to which task and we assume full control over the data
distribution. This trade-o↵ has several advantages:

1. As the tasks are arranged in increasing order of di�culty, it becomes much
easier to quantify the change in the model’s performance as the evaluation
data distribution becomes di↵erent from the training data distribution.

2. It enables us to extrapolate the capacity of the model with respect to the
unseen tasks. If the model is unable to solve the nth task, it is unlikely to
solve any of the subsequent tasks as they are harder than the current task.
Thus, we can use the number of tasks solved (while keeping other factors
like optimizer fixed) as an ordinal indicator of the model’s capacity.

3. As the data distribution becomes harder, the model is forced to use more
and more of its capacity to learn the task.

4. In general, given n tasks, there are n! ways of ordering the task and the model
should be evaluated on all these combinations as the order of training tasks
could a↵ect the model’s performance. Having the notion of the curriculum
gives us a natural way to order the tasks.

To highlight the fact that curriculum-based training is not trivial, we show the
performance of an LSTM in the SSMNIST task in figure 5.1. We can see that
training on di↵erent tasks makes the model highly susceptible to over-fitting to
any given task and less likely to generalize across tasks.

Capacity saturation can happen because of two reasons in our proposed bench-
mark:

1. The model is operating in a lifelong learning setting and when the model
learns a new task, it also needs to spend some capacity to retain knowledge
about the previous tasks.

2. As the sequence length increases, the new tasks require more capacity to be
learned.

78

Figure 5.1 – Per-level accuracy on previous tasks, current task, and future tasks for a 128
dimensional LSTM trained in the SSMNIST task distribution by using the curriculum. The
model heavily overfits to the sequence length.

Given these factors, it is expected that as the model learns new tasks, its capacity
would be strained, thus necessitating solutions that enable the model to increase
its capacity on the fly.

5.4 Model

In this section, we first describe how the rehearsal setup is used in the GEM
model and how the function preserving transformations can be used in the Net2Net
model. Next, we describe how we extend the Net2Net model for RNNs. Then, we
describe how the proposed model leverages both these mechanisms in a unified
lifelong learning framework.

5.4.1 Gradient Episodic Memory (GEM)

In this section, we provide a brief overview of the Gradient Episodic Memory
(Lopez-Paz and Ranzato, 2017) and how it is used for alleviating catastrophic
forgetting, while ensuring positive transfer on the previous tasks.

79

The basic idea is to store some input examples corresponding to each task (that
the model has been trained on so far) in a memory bu↵er B. In practice, the bu↵er
would have a fixed size, say Bsize. If we know T , the number of tasks that the
model would encounter, we could reserve Bsize/T number of slots for each task.
Alternatively, we could start with the first task, use all the slots for storing the
examples from the first task. Then, as we progress through tasks, we keep reducing
the number of memory slots per task. While selecting the examples to store in the
bu↵er, we just save the last few examples from each task. Specifically, we store
only 1 minibatch of examples (10 examples) per task and find that even this small
amount of data is su�cient.

As the model is training on the lth task, care is taken to ensure that the current
gradient updates do not increase the loss on the examples already saved in the
memory. This is achieved as follows. Given that the model is training on the
lth task, we first compute the parameter gradient with respect to the data for
the current task, which we denote as the current task gradient or as gl. Then a
parameter gradient is computed corresponding to each of the previous tasks and is
denoted as the previous task gradient. If the current gradient gl increases the loss on
any of the previous tasks, it is projected to the closest gradient g̃l (where closeness
is measured in terms of L2 norm) such that the condition is no more violated.
Whether the current task gradient increases the loss on any of the previous tasks
can be checked by computing the dot product between current task gradient and the
previous task gradient (corresponding to the given previous task). The projected
gradient update g̃l can be obtained by solving the following set of equations

minimizeg̃l
1

2
kgl � g̃lk22

subject to hg̃l, gki � 0 for all k < l. (5.1)

To solve (5.1) e�ciently, the authors use the primal of a Quadratic Program (QP)
with inequality constraints:

minimizez
1

2
z>Cz + p>z

subject to Az � b, (5.2)

where C 2 Rp⇥p, p 2 Rp, A 2 R(t�1)⇥p, and b 2 Rt�1. The dual problem of (5.2) is:

minimizeu,v
1

2
u>Cu� b>v

subject to A>v � Cu = p,

v � 0. (5.3)

If (u?, v?) is a solution to (5.3), then there is a solution z? to (5.2) satisfying

80

Cz? = Cu? (Dorn, 1960).

The primal GEM QP (5.1) can be rewritten as:

minimizez
1

2
z>z � g>z +

1

2
g>g

subject to Gz � 0,

where G = �(g1, . . . , gt�1), and the constant term g>g is discarded. This new
equation is a QP on p variables (where p is the number of parameters of the neural
network). Since the network could have a lot of parameters, it is not feasible to
solve this equation and the dual of the GEM QP is considered:

minimizev
1

2
v>GG>v + g>G>v

subject to v � 0, (5.4)

since u = G>v+g and the term g>g is constant. This is a QP on t�1⌧ p variables
(where t is the number of observed tasks so far). Solution for the dual problem
(5.4), v?, can be used to recover the projected gradient update as g̃ = G>v? + g.
The authors recommend adding a small constant � � 0 to v? as it helps to bias the
gradient projection to updates that favoured beneficial backwards transfer.

We refer to this projection step as computing the GEM gradient and the result-
ing update as the GEM update. Since the projected gradient is only constrained
to not increase the loss on the previous examples, a beneficial backward transfer is
possible.

There are several downsides of using the GEM model. First, the projection of
current task gradient regularizes the model, thereby decreasing its e↵ective capac-
ity. This e↵ect can be seen in figure 5.2 where for all the three task distributions,
the green curve (Large LSTM model which does not use the GEM update) con-
sistently outperforms the red curve (LSTM model which uses the GEM update)
both in terms of current task accuracy and in terms of numbers of tasks completed.
We counter this limitation by using functional transformations to enable capacity
expansion. Another downside is the cost - both in terms of computation and mem-
ory - of storing and rehearsing over the previous examples. We found that for all
our experiments, storing just 10 examples per task is su�cient to get benefit from
the GEM model. Hence the memory footprint of storing the training examples
is very small and almost negligible as compared to the memory cost of persisting
di↵erent copies of the model. The computational overhead of computing the GEM
gradient could be reduced to some extent by controlling the frequency at which the
model rehearses on the previous examples and future work could look at a more
systematic approach to eliminate or reduce this computational cost.

81

5.4.2 Net2Net

Training a lifelong learning system on a continual stream of data can be seen as
training a model with an infinite amount of data. As the model experiences more
and more data points, the size of its e↵ective training dataset increases and eventu-
ally the network would have to expand its capacity to continue training. Net2Net
(Chen et al., 2015) proposed a very simple technique, based on function preserving
transformations, to achieve zero-shot knowledge transfer when expanding a small,
trained network (referred to as the teacher network) into a large, untrained net-
work (referred to as the student network). Given a teacher network represented by
the function y = f(x, ✓) (where ✓ refers to the network parameters), a new set of
parameters � are chosen such that 8x, f(x,�) = g(x, ✓). The paper considered two
variants of this approach - Net2WiderNet which increases the width of an existing
network and Net2DeeperNet which increases the depth of the existing network.
The main benefit of using function-preserving transformations is that the student
network immediately performs as well as the original network without having to
go through a period of low performance.

We use the Net2WiderNet for expanding the capacity of the model. The formu-
lation of Net2WiderNet is as follows.

Assume that we start with a fully connected network where we want to widen
layers i and i + 1. The weight matrix associated with layer i is W (i) 2 Rm⇥n and
that associated with layer i+1 is W (i+1) 2 Rn⇥p. Layer i may use any element-wise
non-linearity. When we widen layer i, the weight matrix W (i) expands into U (i) to
have q output units where q > n. Similarly, when we widen layer i+ 1, the weight
matrix W (i+1) expands into U (i+1) to have q input units.

A random mapping function g : {1, 2, · · · , q}! {1, 2, · · · , n}, is defined as:

g(j) =

⇢
j j n
random sample from {1, 2, · · ·n} j > n

For expanding W (i), the columns of U (i) are randomly chosen from W (i) using
g as shown:

U (i)

k,j
= W (i)

k,g(j)

Notice that the first n columns of W (i) are copied directly into U (i).

The rows of U (i+1) are randomly chosen from W (i+1) using g as shown:

U (i+1)

j,h
=

1

|{x|g(x) = g(j)}|W
(i+1)

g(j),h

82

Similar to the previous case, the first n rows of W (i+1) are copied directly into
U (i+1).

The replication factor, (given by 1

|{x|g(x)=g(j)}|), is introduced to make sure that
the output of the two models is exactly the same. This procedure can be easily
extended to multiple layers. Similarly, the procedure can be used for expanding
convolutional networks (where layers will have more convolution channels) as con-
volution is multiplication by a doubly block circulant matrix).

Once the training network has been expanded, the newly created larger network
can continue training on the incoming data. In theory, there is no restriction on
how many times the Net2Net transformation is applied, though we limit to using
the transformation only once for most of our experiments.

While Chen et al. (2015) mention lifelong learning as one of their motivations,
they only focused on transfer learning from smaller network to a larger network for
the single-task setup. Secondly, they considered the Net2Net transformation in the
context of feed-forward and convolutional models. Our work is the first attempt to
use Net2Net style function transformations for model expansion in the context of
lifelong learning or even for sequential models.

5.4.3 Extending Net2Net for RNNs

In this section, we discuss the applicability of the Net2Net formulation for the
RNNs in the context of lifelong learning.

The Net2WiderNet transformation makes two recommendations about the train-
ing of the student network. The first is that the learning rate for the student net-
work may be reduced by an order of 10. This argument seems useful in the original
setup in which Net2Net is proposed: training the student model over the same data
on which the teacher model was trained. In the context of lifelong learning, the
model does not see the same data again and the data distribution changes with
the task. Hence the argument about lowering the learning rate does not apply.
Our preliminary experiments showed that reducing the learning rate degrades the
performance of the model. Hence we decided not to reduce the learning rate after
the expansion.

The second and more important recommendation is that a small amount of
random noise should be added to the student network to break the symmetry. In
our initial experiments, we found that adding noise is a requirement and the model
without noise performs extremely poorly. This is in contrast to the feed-forward
setting where the model works quite well even without using noise.

In the case of RNNs, when we apply the Net2WiderNet transformation, the

83

condition number of the hidden-to-hidden matrices increases drastically and it be-
comes ill-conditioned. Recall that the condition number is defined as the ratio of
the largest singular value of the matrix to its smallest singular value. The ideal con-
dition number would be 1 (as is the case of orthogonal matrices) and ill-conditioned
networks are harder to train. Without adding noise, the condition number becomes
infinity after expansion. This is due to the presence of correlated rows in the ma-
trix. One way to get around this problem is to add a small amount of noise which
helps to precondition the weight matrices and hence reduce their condition number.
The issue with adding random noise is that it breaks down the equality condition
and hence comes with a trade-o↵ - A higher amount of random noise reduces the
condition number more (make it better conditioned) but pushes the output of the
newly instantiated student network away from the predictions of the old teacher
network.

To that end, we propose a simple extension to the noise addition procedure
which ensures that the output of the student and the teacher networks remain
the same while taking care of the preconditioning aspect. Let us say that we had
the weight matrix Wm⇥n which we expanded into Um⇥p using the Net2WiderNet
transformation (where p > n). U would have some columns of W replicated. Let
us say that the ith column was replicated j times. Then, we would generate a noise
matrix of small random values of size m⇥ j. The columns from this noise matrix
would be added to columns that were replicated from ith column of the input matrix
W. The noise matrix is generated such that for any row in the matrix, the sum
of elements in that row of the noise matrix is 0. It can be shown mathematically
that this transformation gives the exact same output as the case of no noise. We
have to employ this procedure to make sure that the random noise we add sums up
to 0. Since the given noise is random, it eliminates the correlation between rows
and columns of the expanded weight matrix. Since the noise sums up to 0, it does
ensure that the output of the student network is the same as that of the teacher
network.

How do we generate a matrix of random values where the sum of values along
each row is 0? We describe a technique to generate a vector of random numbers
such that the values sum up to 1 and then we can use the technique multiple times
to sample multiple rows to form the matrix. Let us say we want to generate a
vector of random values of length k such that the values sum to 1. We first sample
k � 1 random points in the range (0, 1). Note that all these k � 1 values will be
smaller than 1 and larger than 0. We added the numbers 0 and 1 to this sequence
and sort the sequence in the ascending order. This gives us a sorted sequence of
k + 1 points where each point lies in the range [0, 1] with the first value being
0 and the last value being 1. We take pairwise di↵erence of values between the
adjacent points i.e. (second value - first value), (third value - second value) and so
on. Summing up this sequence of values would give us (last value - first value) as

84

all the other terms would cancel out. Since the first value is 0 and the last value
is 1, the sum of the sequence of resulting k points is 1. From this sequence of
numbers, we can subtract 1/k to each of them and the resulting sequence would
exactly sum up to 0. These steps are also described in Algorithm 2. Additionally,
we scale the noise so that it is in the same range as the magnitude of the weights
of the teacher network. Scaling the noise does not change the sum of the noise
elements as both the positive and the negative elements get scaled by the same
amount and still cancel each other. We use this strategy while using the expansion
step.

Algorithm 2 Generating a random-valued vector of length k where the values
sum to 0
1: procedure Generator(k)
2: Sample k � 1 random points in the range (0, 1).
3: Add values 0 and 1 to the sequence of sampled values.
4: Sort the sequence and create a new sequence by subtracting the pairwise

values from the sorted sequence.
5: The resulting sequence of k values will sum to 1 (described in the text).
6: From each of the values, subtract 1/k to ensure that the resulting sequence

of random values sums up to 0.

5.4.4 Unified Model

We now describe how we combine the catastrophic forgetting solution (GEM)
and the capacity expansion solution (functional transformations) to come up with
a more suitable model for lifelong learning. Given a task distribution, we randomly
initialize a model, reset the episodic memory to be empty and start training the
model on the first task (simplest task). Once a task is learned, the model starts
training on the subsequent, more di�cult tasks. When we are training the model
on the lth task, the episodic memory already has some examples corresponding to
the first l � 1 tasks. The current task gradient is projected with respect to the
previous task gradients to ensure that it does not increase the loss associated with
any of the examples in the episodic memory. The projected GEM Gradient is used
to update the weights of the model (GEM Update). The model is trained on the
current task for a fixed number of iterations. The last m training examples from
the current task are stored in the episodic memory for use in the subsequent tasks.
In general, the m examples can be selected with some more sophisticated strategy
though Lopez-Paz and Ranzato (2017) reports, and we validate, that using just the
last m samples works well in practice.

85

If the model completes learning the current task (i.e. achieves a threshold
amount of accuracy after training), the model can start training on the next task.
If the model fails to learn the current task, and has not been expanded so far,
the model is expanded to a larger model and is allowed to train further on the
current task. Once the expanded model is trained, it is re-evaluated to check if it
has learned the task. If it has, the model progresses to the next task, otherwise,
the training procedure is terminated. Irrespective of how much is the current task
accuracy, the model is evaluated on all the tasks - to measure its previous task
accuracy and future task accuracy.

5.4.5 Analysis of the computational and memory cost of
the proposed model

As noted in section 5.1, an important desideratum in lifelong learning models
is that the computational and the memory costs of the model should ideally grow
sublinearly as the model is trained on new tasks. In the context of our proposed
model, the computational and memory costs can change in the following ways:

1. The Net2Net component expands the model. In this case, the expanded
model would take more resources (both in terms of parameters and time)
than the earlier model. We note that the expansion step does not happen for
every new task and is performed only when the model’s capacity saturates.
This is in contrast to approaches like Rusu et al. (2016) where a new copy
of the network is added every time a new task is introduced thus increasing
both the parameters and the compute time linearly with the number of tasks.
In our case, the frequency of expansion is sublinear in the number of tasks.

2. The GEM model stores some examples (in a bu↵er) from the previous tasks
and performs gradient computation with respect to those examples, along
with the gradient computation for the current examples. As noted in sec-
tion 5.4.1, we could keep the bu↵er size to be fixed and replace some examples
from the previous tasks as new examples are observed while making sure that
all the tasks are represented through examples in the bu↵er. In practice, we
found that storing a few examples per task is su�cient to get benefit from
the GEM model (as also observed by Lopez-Paz and Ranzato (2017)), mak-
ing the memory footprint negligible. As noted earlier, future work could
look at some systematic ways of selecting the examples from the bu↵er thus
reducing the computational overhead.

One beneficial side e↵ect of using Net2Net expansion is the zero-shot knowledge
transfer that further amortizes the cost of training a newly initialized larger model

86

- either from a smaller, pre-trained model or from dataset corresponding to the
tasks encountered so far.

5.5 Experiments

5.5.1 Models

For each task distribution, we consider a standard recurrent (LSTM) model
operating in the lifelong learning setting. We consider the di↵erent aspects of
training a lifelong learning system and describe how the model variants can account
for these aspects. We start with an LSTM model with hidden state size of 128 and
refer to this model as the small-Lstm model. This model has su�cient capacity to
learn the first few tasks. We start training the (small-Lstm) model as described
in section 5.3.4. To avoid catastrophic forgetting, we could additionally use the
GEM update when training the model. The resulting model is referred to as the
small-Lstm-Gem model. After learning some tasks, the model would have used up
all its capacity (since it is retaining the knowledge of the previous tasks as well). In
this case, we could expand the model’s capacity using the Net2Net transformation
and the model with this capability is referred to as the small-Lstm-Gem-Net2Net
model. This is the model we propose. Alternatively, we could have started the
training with a larger model (large-Lstm model) and could have used the GEM
update (large-Lstm-Gem model) to counter forgetting. The strategy of always
starting training with a large network would not work in practice because in the
lifelong learning setting we do not know what network would be su�ciently large
to learn all the tasks beforehand. If we start with a very large model, we would
need a lot more computational resources to train the model and the model would
be very prone to over-fitting. Our proposed model (small-Lstm-Gem-Net2Net) gets
around this problem by increasing the capacity on the fly as and when needed. For
the large-Lstm model family, we set the size of the hidden layer to be 256. Our
empirical analysis shows that it is possible to expand the models to a size much
larger than their current size without interfering with the GEM update.

For the performance on the current task, large-Lstm model can be treated as
the gold standard since this model has the largest capacity among all the models
considered. Unlike the models which use the GEM Update, this model does not
have to “use” some of its capacity for retaining the knowledge of the previous tasks.
For the performance on the previous tasks (catastrophic forgetting), we consider the
large-Lstm-Gem model as the gold standard as this model has the largest capacity
among all the models and is specifically designed to counter catastrophic forgetting.

87

While we do not have a gold standard for the Future Task Accuracy, both large-
Lstm-Gem and large-Lstm are reasonable models to compare with. Overall, we
have three di↵erent gold standards for three setups (and metrics) and we compare
our proposed model to these di↵erent gold standards (each specialized for a specific
use-case).

5.5.2 Hyper Parameters

All the models are implemented using PyTorch 0.4.1 (Paszke et al., 2017). Adam
optimizer (Kingma and Ba, 2014) is used with a learning rate of 0.001. We used
one layer LSTM models with hidden dimensions of size 128 and 256. Net2Net is
used to expand LSTM models of size 128 to 256. For the GEM model, we keep one
minibatch (10 examples) of data per task for obtaining the projected gradients.
We follow the guidelines and hyperparameter configurations as specified in the
respective papers for both GEM and Net2Net models.

5.5.3 Results

Figure 5.2 shows the trend of the current task accuracy for the di↵erent models
on the three task distributions. In these plots, a higher curve corresponds to
the model that has higher accuracy on the current task and models which learn
more tasks are spread out more along the x-axis. We compare the performance
of the proposed model small-Lstm-Gem-Net2Net with the gold standard large-
Lstm model. We additionally compare with large-Lstm-Gem model as both this
model and the proposed model are constrained to use some of their capacity on
the previous tasks. Hence it provides a more realistic estimate of the strength
of the proposed model. It also allows us to study the e↵ect of the GEM Update
on the model’s e↵ective capacity (in terms of the number of tasks cleared). The
blue dotted line corresponds to the expansion step when the model is not able to
learn the current task and had to expand. This shows that using the capacity
expansion technique from Net2Net enables learning on newer tasks. We highlight
that before expansion, the proposed model small-Lstm-Gem-Net2Net had a much
smaller capacity (128 hidden dims) as compared to the other two models which
started with a much larger capacity (256 hidden dims). This explains why the
larger models have much better performance in the initial stages. Post expansion,
the proposed model overtakes the GEM based model in all the cases (in terms of
the number of tasks solved). We can observe that in all the cases, the large-Lstm
model outperforms the large-Lstm-Gem model, which suggests that using the Gem
Update comes at the cost of reducing the capacity for the current task. Using
capacity expansion techniques with GEM enables the model to account for this

88

loss of capacity.

Figure 5.2 – Current Task Accuracy for the di↵erent models on the three “task distributions”
(Copy, Associative Recall, and SSMNIST respectively). On the x-axis, we plot the index of the
task on which the model is training currently and on the y-axis, we plot the accuracy of the
model on that task. Higher curves have higher current task accuracy and curves extending more
have completed more tasks. For all the three “task distributions”, our proposed small-Lstm-Gem-
Net2Net model clears either more levels or same number of levels as the large-Lstm-Gem model.
Before the blue dotted line, the proposed model is of much smaller capacity (hidden size of 128)
as compare to other two models which have a larger hidden size (256). Hence the larger models
have better accuracy initially. Capacity expansion technique allows our proposed model to clear
more tasks than it would have cleared otherwise.

Figure 5.3 – Previous Task Accuracy for the di↵erent models on the three task distributions
(Copy, Associative Recall, and SSMNIST respectively). Di↵erent bars represent di↵erent models
and on the y-axis, we plot the average previous task accuracy (averaged for all the tasks that
the model learned). Higher bars have better accuracy on the previously seen tasks and are more
robust to catastrophic forgetting. For all the three task distributions, the proposed models are
very close in performance to the large-Lstm-Gem models and much better than the large-Lstm
models.

Figure 5.3 shows the trend of the previous task accuracy for the di↵erent mod-
els. A higher bar corresponds to better accuracy on the previous tasks (more
resilience to catastrophic forgetting). We compare the performance of the pro-
posed model small-Lstm-Gem-Net2Net with the gold standard model large-Lstm-
Gem. We additionally compare with the large-Lstm model to demonstrate that
GEM Update is essential to have a good performance on the previous tasks. The
most important observation is the relative performance of the proposed small-
Lstm-Gem-Net2Net model and the large-Lstm-Gem model. The small-Lstm-Gem-
Net2Net model started as a smaller model, consistently learned more tasks than

89

Figure 5.4 – Future Task Accuracy for the di↵erent models on the three task distributions
(Copy, Associative Recall, and SSMNIST respectively). Di↵erent bars represent di↵erent models
and on the y-axis, we plot the average future task accuracy (averaged for all the tasks that the
model learned). Higher bars have better accuracy on the previously unseen tasks and are more
beneficial for achieving knowledge transfer to future tasks. Even though the proposed model does
not have any component for specifically generalizing to the future tasks, we expect the proposed
model to generalize at least as well as the large-Lstm-Gem model and comparable to large-Lstm.
Interestingly, our model outperforms the large-Lstm model for Copy task and is always better
than (or as good as) the large-Lstm-Gem model.

large-Lstm-Gem model and is still almost as good as large-Lstm-Gem model in
terms of Previous Task Accuracy. This shows that the proposed model is very
robust to catastrophic forgetting while being very good at learning the current
task. We also observe that for all the three “task distributions”, the models using
the GEM update are more resilient to catastrophic forgetting as compared to the
models without the GEM Update.

Figure 5.4 shows the trend of the future task accuracy for di↵erent models. A
higher bar corresponds to better accuracy on the future (unseen) tasks. Since we
do not have any gold standard for this setup, we consider both large-Lstm-Gem
and large-Lstm models as they both are reasonable models to compare with. The
general trend is that our proposed model is quite close to the reference models for
2 out of 3 tasks. Note that both the larger models started training with a much
larger capacity and further, the large-Lstm model is not constrained by the GEM
Update and hence the maximum amount of e↵ective capacity. This could be one
reason why the model can outperform our proposed model for one of the tasks.

We also consider the heatmap plots where we plot the accuracy of di↵erent
models (for di↵erent “task distributions”) as they are trained and evaluated on
di↵erent tasks. As pointed out in section 5.3.4, the aggregated metrics (current task
accuracy, previous task accuracy, etc) are not su�cient to compare the performance
of di↵erent models and fine-grained analysis is useful for having a holistic view. We
observe that for the large-Lstm model, the large values are concentrated along the
diagonal while for the small-Lstm-Gem-Net2Net and the large-Lstm-Gem models,
the high values are concentrated in the lower diagonal region indicating that the two
models are quite resilient to catastrophic forgetting. Additionally, note that while

90

(a) Copy Task

(b) SSMNIST Task

Figure 5.5 – Accuracy of the di↵erent models (small-Lstm-Gem-Net2Net, large-Lstm-Gem and
large-Lstm respectively) as they are trained and evaluated on di↵erent tasks for the Copy and the
SSMNIST task distributions. On the x-axis, we show the task on which the model is trained and
on the y-axis, we show the accuracy corresponding to the di↵erent tasks on which the model is
evaluated. We observe that for the large-Lstm model, the high accuracy values are concentrated
along the diagonal which indicates that the model does not perform well on the previous task.
In the case of both small-Lstm-Gem-Net2Net and large-Lstm-Gem models, the high values are
in the lower diagonal region indicating that the two models are quite resilient to catastrophic
forgetting.

91

the large-Lstm-Gem model appears to be more resilient to catastrophic forgetting,
the small-Lstm-Gem-Net2Net model consistently clears more tasks. Note that even
though we are evaluating the models for all the tasks in the benchmark, we are
restricting the heatmap to only show evaluation results for the highest task index
that the model could solve. This results in square-shaped heatmaps which are
easier to analyze.

It is important to note that we are using a single proposed model (small-Lstm-
Gem-Net2Net) and comparing it with gold-standard models in 3 di↵erent contexts
- performance on the current task, performance on the backward tasks and perfor-
mance on the future tasks. Our model can provide strong performance on all three
tasks by countering catastrophic forgetting and by using capacity expansion.

5.6 Conclusion

In this chapter, we study the problem of capacity saturation and catastrophic
forgetting in lifelong learning in the context of sequential supervised learning. We
propose to unify Gradient Episodic Memory (a catastrophic forgetting alleviation
approach) and Net2Net (a capacity expansion approach) to develop a model that
is more suitable for lifelong learning. We also propose a curriculum based eval-
uation benchmark where the models are trained on a task with increasing levels
of di�culty. This enables us to sidestep some of the challenges that arise when
studying lifelong learning. We conduct experiments on the proposed benchmark
tasks and show that the proposed model is better suited for the lifelong learning
setting as compared to the two individual models. As future work, we would want
to address the computational overhead associated with the GEM Update step. One
potential solution called Averaged GEM has been recently proposed by Chaudhry
et al. (2019).

92

6 Discussions and Future
Work

In this final chapter, we summarize the contributions of this thesis and discuss
some possible future research directions based on this thesis’s work.

6.1 Summary of Contributions

This thesis focused on the challenges in training Recurrent Neural Networks
(RNNs). Specifically, we attempted to tackle the following three fundamental chal-
lenges that arise when training RNNs in single-task and multi-task settings:

— Vanishing gradients: When training RNNs with very long sequences, gra-
dients vanish for two reasons: recurrent matrix multiplication (due to the
linear chain dependencies on previous hidden states) and saturating activa-
tion functions. In Chapter 3, we proposed a recurrent architecture called
TARDIS which is basically an LSTM with dynamic skip connections (aka
wormhole connections) to the previous hidden states. These dynamic skip
connections create tree-structured dependencies to previous hidden states
rather than linear chain dependencies created in a vanilla LSTM. This helps
in better gradient flow in very long sequences. Chapter 4 proposes another
recurrent architecture called Non-saturating Recurrent Unit (NRU). NRUs
replace recurrent multiplicative updates with recurrent additive updates and
does not have any saturating activation function. Thus NRUs have signifi-
cantly better gradient flow when compared to other state-of-the-art recurrent
architectures.

— Capacity saturation and Catastrophic forgetting: When training RNNs
in the lifelong learning setting, where it would see a series of tasks, the per-
formance on the previous tasks might degrade while learning the current
task. This is known as catastrophic forgetting. Catastrophic forgetting could
happen for two reasons: (i) while trying to find the optimal parameter con-
figuration for the current task, the model could move away from the optimal
parameter configuration for the previous tasks, (ii) Since we are using a
finite capacity parametric model, the network would unlearn some previ-
ous task to learn the current task if there is not enough capacity to learn

93

more tasks. This second issue is known as Capacity saturation. While much
of the existing work studies catastrophic forgetting in isolation, Chapter 5
stresses that we should study both capacity saturation and catastrophic for-
getting together. We specifically propose a new way to train RNNs which
incorporates solutions for solving both capacity saturation (Net2Net) and
catastrophic forgetting (GEM).

6.2 Future Directions

6.2.1 Better Recurrent Architectures

The search for a fully expressive recurrent neural network with no vanishing
and exploding problem is not yet over. This thesis proposes few ways to improve
the current recurrent architectures and more research is needed to design an ideal
recurrent neural network. The work proposed in this thesis sets up the groundwork
by introducing architectural changes to improve RNNs and should be followed up
by investigating how to improve the learning algorithm itself.

6.2.2 Exploding gradients

NRUs mitigate the problem of vanishing gradients by using non-saturating ac-
tivations but they can still su↵er from exploding gradients. Unlike vanishing gra-
dients, exploding gradients can be controlled by gradient clipping. Our initial
exploration of gradient clipping with NRUs shows that it is not a principled so-
lution to have a stable training dynamics and more research is needed to devise
better ways of handling exploding gradients. While most of the literature is focused
on vanishing gradients, we hypothesise that it is easier to work in the exploding
gradients regime than the vanishing gradients regime. We conjecture that once
the gradient vanishes, there is no hope in learning those long-term dependencies.
NRUs and ReLU RNNs could be good starting points for research on exploding
gradients.

6.2.3 Do we really need recurrent architectures?

Recently introduced Transformer architecture (Vaswani et al., 2017) is shown to
be superior to the recurrent architectures on several NLP tasks (Liu et al., 2019a,b).
Transformer is essentially a feed-forward neural network with self-attention mech-
anism. This raises the critical question: do we really need recurrent architectures?

94

In one of our recent work (Sankar et al., 2019), we show that we need both atten-
tion and recurrence to model sequential problems. One potential research direction
is to combine the benefits on Transformers and RNNs by designing a hybrid se-
quence modeling architecture. Some of the recent e↵orts in this direction includes
Transformer-XL (Dai et al., 2019) and Universal Transformers (Dehghani et al.,
2019). Another important research initiative would be to design very deep RNNs
to compete with the benefits that Transformers gain through their depth. While
training very deep LSTMs would have vanishing gradient issues, deep NRUs should
reduce the vanishing gradient issue and would be the ideal architecture for this task.

6.2.4 Recurrent Neural Networks for Reinforcement Learn-
ing

Learning long-term credit assignment is one of the fundamental problems in Re-
inforcement Learning (RL) (Sutton and Barto, 1998). RNNs are primarily used to
handle the partial observability in RL (Heess et al., 2015) though RNNs can be seen
as the architectural solution for handling long-term credit assignment. However,
dependencies in a typical RL task could be in the order of thousands of time steps.
Hence we need recurrent architectures which can model really long-term depen-
dencies. NRUs can be considered as the first step towards such powerful recurrent
architectures. Our initial experiments show that NRUs can model dependencies
of length of order 2000 in the copy task. One immediate step would be to apply
NRUs on standard RL tasks with very long dependencies.

6.2.5 Reinforcement Learning for Recurrent Neural Net-
works

While the previous subsection suggested using RNNs to model long-term credit
assignment problem in RL, we can also transfer the knowledge from the RL litera-
ture on the long-term credit assignment problem to learning long-term dependencies
in RNNs. One potential research direction is to look at eligibility traces (Sutton and
Barto, 1998) in RL and derive equivalent algorithms for training RNNs. In chapter
3, we used REINFORCE to compute approximate gradients for non-di↵erentiable
components of TARDIS architecture. A possible extension is to design better ways
of computing approximate gradients using RL.

95

6.3 Conclusion

In this thesis, we discussed some of the fundamental challenges in training Re-
current Neural Networks. This includes the problems of vanishing gradients, catas-
trophic forgetting, and capacity saturation. The thesis has made some progress in
each of these problems by proposing new architectures and training algorithms. As
we highlighted in the introduction, any improvement to training RNNs should have
a significant impact in several real-world sequential problems. We strongly believe
that the proposed architectures and algorithms would show such impact.

96

Bibliography

R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert Gate: Lifelong Learning
with a Network of Experts. ArXiv e-prints, November 2016.

Mart́ın Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent
neural networks. In Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
pages 1120–1128, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geo↵rey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and
Yoshua Bengio. End-to-end attention-based large vocabulary speech recogni-
tion. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pages 4945–
4949, 2016. doi: 10.1109/ICASSP.2016.7472618. URL https://doi.org/10.

1109/ICASSP.2016.7472618.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is di�cult. Neural Networks, IEEE Transactions
on, 5(2):157–166, 1994.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curricu-
lum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48. ACM, 2009.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Man-
ning. A large annotated corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326, 2015.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka Jr, and Tom M Mitchell. Toward an architecture for never-ending
language learning. In AAAI, volume 5, page 3. Atlanta, 2010.

Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Ka-
hou, and Yoshua Bengio. Towards non-saturating recurrent units for modelling
long-term dependencies. In The Thirty-Third AAAI Conference on Artificial

97

Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019., pages 3280–3287, 2019. doi: 10.1609/aaai.
v33i01.33013280. URL https://doi.org/10.1609/aaai.v33i01.33013280.

A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr. Riemannian Walk
for Incremental Learning: Understanding Forgetting and Intransigence. arXiv
e-prints, January 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elho-
seiny. E�cient lifelong learning with A-GEM. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019. URL https://openreview.net/forum?id=Hkf2_sC5FX.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and Hui Jiang. Enhancing and
combining sequential and tree lstm for natural language inference. arXiv
preprint arXiv:1609.06038, 2016.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning
via knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading. arXiv preprint arXiv:1601.06733, 2016.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages 1724–1734, 2014. URL
http://aclweb.org/anthology/D/D14/D14-1179.pdf.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.
CoRR, abs/1412.3555, 2014. URL http://arxiv.org/abs/1412.3555.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recur-
rent neural networks. arXiv preprint arXiv:1609.01704, 2016.

Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron C. Courville. Recurrent
batch normalization. CoRR, abs/1603.09025, 2016. URL http://arxiv.org/

abs/1603.09025.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and
Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 2978–2988, 2019. URL https://www.

aclweb.org/anthology/P19-1285/.

98

Edwin D. de Jong. Incremental sequence learning. arXiv preprint
arXiv:1611.03068, 2016.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.
URL https://openreview.net/forum?id=HyzdRiR9Y7.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee,
2009.

William S Dorn. Duality in quadratic programming. Quarterly of Applied Mathe-
matics, 18(2):155–162, 1960.

T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar. Born
Again Neural Networks. ArXiv e-prints, May 2018.

Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to forget:
Continual prediction with LSTM. Neural Computation, 12(10):2451–2471,
2000. doi: 10.1162/089976600300015015. URL https://doi.org/10.1162/

089976600300015015.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber. Learning precise
timing with LSTM recurrent networks. J. Mach. Learn. Res., 3:115–143, 2002.
URL http://jmlr.org/papers/v3/gers02a.html.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwińska, Sergio G. Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, Adrià P. Badia, Karl M. Hermann, Yori Zwols,
Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil
Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing us-
ing a neural network with dynamic external memory. Nature, advance online
publication, October 2016. ISSN 0028-0836. doi: 10.1038/nature20101. URL
http://dx.doi.org/10.1038/nature20101.

Caglar Gulcehre, Sarath Chandar, Kyunghyun Cho, and Yoshua Bengio. Dynamic
neural turing machine with soft and hard addressing schemes. arXiv preprint
arXiv:1607.00036, 2016.

Çaglar Gülçehre, Sarath Chandar, and Yoshua Bengio. Memory augmented neural
networks with wormhole connections. CoRR, abs/1701.08718, 2017. URL
http://arxiv.org/abs/1701.08718.

99

Steven Gutstein, Olac Fuentes, and Eric Freudenthal. Knowledge transfer in
deep convolutional neural nets. International Journal on Artificial Intelligence
Tools, 17(03):555–567, 2008.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. In 2015 AAAI Fall Symposia, Arlington, Virginia, USA,
November 12-14, 2015, pages 29–37, 2015. URL http://www.aaai.org/ocs/

index.php/FSS/FSS15/paper/view/11673.

Nicolas Heess, Jonathan J. Hunt, Timothy P. Lillicrap, and David Silver. Memory-
based control with recurrent neural networks. CoRR, abs/1512.04455, 2015.
URL http://arxiv.org/abs/1512.04455.

Mikael Hena↵, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks
and long-memory tasks. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, 2016.

Geo↵rey Hinton, Oriol Vinyals, and Je↵ Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,
Technische Universität München, page 91, 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

Sergey Io↵e and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015. URL http://arxiv.org/abs/1502.03167.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Sol-
jacic, and Yoshua Bengio. Gated orthogonal recurrent units: On learning to
forget. CoRR, abs/1706.02761, 2017a.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott A. Skirlo, Yann LeCun,
Max Tegmark, and Marin Soljacic. Tunable e�cient unitary neural networks
(EUNN) and their application to rnns. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, pages 1733–1741, 2017b.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical explo-
ration of recurrent network architectures. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, pages 2342–2350, 2015. URL http://proceedings.mlr.press/

v37/jozefowicz15.html.

100

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv
e-prints, December 2014.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis,
C. Clopath, D. Kumaran, and R. Hadsell. Overcoming catastrophic forgetting
in neural networks. ArXiv e-prints, December 2016.

Jan Koutnik, Klaus Gre↵, Faustino Gomez, and Juergen Schmidhuber. A clockwork
rnn. arXiv preprint arXiv:1402.3511, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., pages 1106–1114, 2012.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas
Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle,
Aaron Courville, et al. Zoneout: Regularizing rnns by randomly preserving
hidden activations. arXiv preprint arXiv:1606.01305, 2016.

César Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, and Yoshua Ben-
gio. Batch normalized recurrent neural networks. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shang-
hai, China, March 20-25, 2016, pages 2657–2661, 2016. doi: 10.1109/ICASSP.
2016.7472159. URL https://doi.org/10.1109/ICASSP.2016.7472159.

Quoc V. Le, Navdeep Jaitly, and Geo↵rey E. Hinton. A simple way to initialize
recurrent networks of rectified linear units. CoRR, abs/1504.00941, 2015.

Yann LeCun, Yoshua Bengio, and Geo↵rey E. Hinton. Deep learning. Nature, 521
(7553):436–444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.

1038/nature14539.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-
Tak Zhang. Overcoming catastrophic forgetting by incremental mo-
ment matching. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 4652–4662. Cur-
ran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7051-overcoming-catastrophic-forgetting-by-incremental-moment-matching.

pdf.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Confer-
ence on Computer Vision, pages 614–629. Springer, 2016.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez,
and Andrew D Bagdanov. Rotate your networks: Better weight consolidation
and less catastrophic forgetting. arXiv preprint arXiv:1802.02950, 2018.

101

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep
neural networks for natural language understanding. In Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4487–
4496, 2019a. URL https://www.aclweb.org/anthology/P19-1441/.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Improving multi-
task deep neural networks via knowledge distillation for natural language un-
derstanding. CoRR, abs/1904.09482, 2019b. URL http://arxiv.org/abs/

1904.09482.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark
for continuous object recognition. In Sergey Levine, Vincent Vanhoucke, and
Ken Goldberg, editors, Proceedings of the 1st Annual Conference on Robot
Learning, volume 78 of Proceedings of Machine Learning Research, pages 17–
26. PMLR, 13–15 Nov 2017. URL http://proceedings.mlr.press/v78/

lomonaco17a.html.

David Lopez-Paz and Marc Aurelio Ranzato. Gradient episodic mem-
ory for continual learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 6467–6476.
Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7225-gradient-episodic-memory-for-continual-learning.pdf.

Sergey Loyka. On singular value inequalities for the sum of two matrices. arXiv
preprint arXiv:1507.06630, 2015.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribu-
tion: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single
network to multiple tasks by learning to mask weights. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 67–82, 2018.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a
large annotated corpus of english: The penn treebank. Computational Lin-
guistics, 19(2):313–330, 1993.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning and
motivation, volume 24, pages 109–165. Elsevier, 1989.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Metric
learning for large scale image classification: Generalizing to new classes at
near-zero cost. In Computer Vision–ECCV 2012, pages 488–501. Springer,
2012.

102

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and
optimizing LSTM language models. CoRR, abs/1708.02182, 2017. URL
http://arxiv.org/abs/1708.02182.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink,
and J Cernocky. Subword language modeling with neural networks. preprint
(http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf), 2012.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief
networks. arXiv preprint arXiv:1402.0030, 2014.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Re-
current models of visual attention. In Advances in Neural Informa-
tion Processing Systems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 2204–2212, 2014. URL http://papers.nips.cc/paper/

5542-recurrent-models-of-visual-attention.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, pages 1928–1937, 2016.

Vinod Nair and Geo↵rey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on ma-
chine learning (ICML-10), pages 807–814, 2010.

Junier B. Oliva, Barnabás Póczos, and Je↵ G. Schneider. The statistical recurrent
unit. In Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 2671–2680,
2017.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to
construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026,
2013a.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the di�culty of training
recurrent neural networks. ICML (3), 28:1310–1318, 2013b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic di↵erentiation in pytorch. In NIPS-W, 2017.

Jack W. Rae, Jonathan J. Hunt, Tim Harley, Ivo Danihelka, Andrew W.
Senior, Greg Wayne, Alex Graves, and Timothy P. Lillicrap. Scaling
memory-augmented neural networks with sparse reads and writes. CoRR,
abs/1610.09027, 2016.

103

Sylvestre-Alvise Rebu�, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. icarl: Incremental classifier and representation learning. In Proc.
CVPR, 2017.

Mark B Ring. Child: A first step towards continual learning. Machine Learning,
28(1):77–104, 1997.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
and Phil Blunsom. Reasoning about entailment with neural attention. arXiv
preprint arXiv:1509.06664, 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

Chinnadhurai Sankar, Sandeep Subramanian, Chris Pal, Sarath Chandar, and
Yoshua Bengio. Do neural dialog systems use the conversation history ef-
fectively? an empirical study. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pages 32–37, 2019. URL
https://www.aclweb.org/anthology/P19-1004/.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy
Lillicrap. One-shot learning with memory-augmented neural networks. arXiv
preprint arXiv:1605.06065, 2016.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout
without memory loss. arXiv preprint arXiv:1603.05118, 2016.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle
Pineau, Aaron C. Courville, and Yoshua Bengio. A hierarchical latent
variable encoder-decoder model for generating dialogues. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-
9, 2017, San Francisco, California, USA., pages 3295–3301, 2017. URL
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567.

J. Serrà, D. Suŕıs, M. Miron, and A. Karatzoglou. Overcoming catastrophic for-
getting with hard attention to the task. arXiv e-prints, January 2018.

Daniel L Silver and Robert E Mercer. The task rehearsal method of life-long learn-
ing: Overcoming impoverished data. In Conference of the Canadian Society
for Computational Studies of Intelligence, pages 90–101. Springer, 2002.

Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems:
Beyond learning algorithms. In AAAI Spring Symposium: Lifelong Machine
Learning, volume 13, page 05, 2013.

104

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. On training recurrent neural
networks for lifelong learning. Neural Computation, 2019.

Ray J Solomono↵. A system for incremental learning based on algorithmic proba-
bility. In Proceedings of the Sixth Israeli Conference on Artificial Intelligence,
Computer Vision and Pattern Recognition, pages 515–527, 1989.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end
memory networks. arXiv preprint arXiv:1503.08895, 2015.

Ilya Sutskever, James Martens, and Geo↵rey E Hinton. Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1017–1024, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In
6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018. URL https://openreview.net/forum?id=SJcKhk-Ab.

Sebastian Thrun. Explanation-based neural network learning. In Explanation-
Based Neural Network Learning, pages 19–48. Springer, 1996.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209.
Springer, 1998.

Sebastian Thrun. Explanation-based neural network learning: A lifelong learning
approach, volume 357. Springer Science & Business Media, 2012.

Endel Tulving. Chronesthesia: Conscious awareness of subjective time. 2002.

Jos van der Westhuizen and Joan Lasenby. The unreasonable e↵ectiveness of the
forget gate. CoRR, abs/1804.04849, 2018. URL http://arxiv.org/abs/

1804.04849.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all
you need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 De-
cember 2017, Long Beach, CA, USA, pages 5998–6008, 2017. URL http:

//papers.nips.cc/paper/7181-attention-is-all-you-need.

Oriol Vinyals and Quoc V. Le. A neural conversational model. CoRR,
abs/1506.05869, 2015. URL http://arxiv.org/abs/1506.05869.

105

Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogo-
nality and learning recurrent networks with long term dependencies. In Pro-
ceedings of the 34th International Conference on Machine Learning, ICML
2017, 2017.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Pro-
ceedings Of The International Conference on Representation Learning (ICLR
2015), 2015. In Press.

Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8:229–256, 1992.

Scott Wisdom, Thomas Powers, John R. Hershey, Jonathan Le Roux, and Les E.
Atlas. Full-capacity unitary recurrent neural networks. In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
4880–4888, 2016.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Je↵ Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cli↵ Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macdu↵ Hughes, and Jef-
frey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation. CoRR, abs/1609.08144, 2016. URL
http://arxiv.org/abs/1609.08144.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing ma-
chines. CoRR, abs/1505.00521, 2015.

F. Zenke, B. Poole, and S. Ganguli. Continual Learning Through Synaptic Intelli-
gence. arXiv e-prints, March 2017.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutńık, and Jürgen Schmid-
huber. Recurrent highway networks. arXiv preprint arXiv:1607.03474, 2016.

106

