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Abstract

We propose a class of decisive collective choice rules that rely on an exogenous linear ordering

to partition the majority relation into two acyclic relations. The first relation is used to obtain

a shortlist of the feasible alternatives while the second is used to make a final choice.

In combination with faithfulness to the underlying majority relation, rules in this class

are characterized by two desirable rationality properties: Sen’s expansion consistency and a

version of Manzini and Mariotti’s weak WARP. The rules also satisfy natural adaptations of

Arrow’s independence of irrelevant alternatives and May’s positive responsiveness.
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1 Introduction

In many collective choice settings, rules that recommend more than one alternative are inappropri-

ate. When it comes to selecting a political leader or a public policy, for instance, it is essential to be

decisive. May (1952) shows that majority voting is the only reasonable way to decide between two

alternatives.1 With more alternatives, no rule that is faithful to the majority opinion can choose

rationally. The root of the problem is the well-known Condorcet (1785) paradox: the majority

relation may involve cycles. Arrow (1951) shows that the problem persists even with rules that

are not majoritarian: barring dictatorship, there is no way to make rational and Pareto-efficient

choices that satisfy the independence of irrelevant alternatives (IIA). We take Arrow’s result as

good reason not to give up on majority voting. The goal, as we see it, is to design collective choice

rules that are decisive, faithful to the majority view, and as rational as possible.

We propose a class of rules that not only meet these objectives but also exhibit a number of

other desirable features—including adaptations of Arrow’s IIA and May’s positive responsiveness.

Not least among the virtues of these rules is their simplicity. Each uses a linear ordering to partition

the majority relation into two acyclic relations. Then, as in Manzini and Mariotti’s (2007) rational

shortlist methods, the first relation is used to pare down the set of feasible alternatives before the

second is used to make a final choice. While the linear orderings used by our rules are exogenous

in principle, many choice settings suggest a natural way to order the alternatives.

2 The problem

Given a finite universe of social alternatives X, let X = 2X \ {∅} denote the set of agendas and

T the set of tournaments on X.2 We interpret each tournament T ∈ T to be the majority

relation induced by an underlying profile of agent preferences over X (McGarvey, 1953). Given a

tournament T and an agenda A, the problem is to recommend one alternative in A.

Our object of interest is a choice rule, that is, a mapping f : T ×X → X such that f(T ;A) ∈ A

for each T ∈ T and A ∈ X . For each tournament T ∈ T , f(T ; ·) : X → X defines a choice function.

We require that our choice rules be faithful to each tournament T ∈ T :

Faithfulness. For all T ∈ T and a, b ∈ X, aTb implies f(T ; {a, b}) = a.

To put it differently, we require binary choices to be consistent with majority rule.

Given a binary relation R on X, let max(R;A) = {a ∈ A | @b ∈ A : bRa} denote the set of

maximal elements of R in A. Let P denote the set of linear orderings on X.3 A choice function

f(T ; ·) is rational if there is some linear ordering P ∈ P such that {f(T ;A)} = max(P ;A) for all

1In the sequel, we assume that the majority relation is decisive. This assumption is fairly innocuous for large
electorates; and it is automatically satisfied when voter preferences are strict and the number of voters is odd.

2A tournament T is an asymmetric (@a, b : aTb and bTa) and total (∀a, b : aTb, bTa, or a = b) binary relation.
3A linear ordering P is an asymmetric, total and transitive (∀a, b, c : aPbPc⇒ aPc) binary relation.
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agendas A ∈ X . If f is faithful, then f(T ; ·) cannot be rational unless T is a linear ordering. The

question is whether there are faithful choice rules for which the choice function f(T ; ·) is rational

when the tournament T is a linear ordering and not too irrational otherwise.

Some of the simplest faithful choice rules rely on an exogenous linear ordering P ∈ P . The idea

is to give an edge to alternatives that are ranked higher by P and thus guarantee a single-valued

choice when the alternatives are difficult to distinguish (as they are in a Condorcet cycle).

One natural approach uses P as a tie-breaking device to make a selection from a Condorcet-

consistent choice correspondence, that is, a mapping F : T ×X → X such that, for all T ∈ T and

A ∈ X : (i) F (T ;A) ⊆ A; and (ii) F (T ;A) = {a} if aTb for all b ∈ A \ {a}.4 Formally, the choice

rule FP generated by the choice correspondence F and the tie-breaking device P ∈ P is defined,

for all T ∈ T and A ∈ X , by {FP (T ;A)} = max(P ;F (T ;A)).

Another approach uses P to define a succession of binary elimination votes that, in turn, de-

termine the choice from each agenda. For any agenda A = {a1, ..., am} ∈ X , label the alternatives

so that a1P...Pam. Then, define w0(T ;A) = am and, for k = 1, ...,m− 1, recursively define

wk(T ;A) =

{
wk−1(T ;A) if wk−1(T ;A)Tam−k,

am−k otherwise.

The first vote eliminates am or am−1. At any subsequent vote, the winner wk−1(T ;A) from the

previous vote is put up against the next alternative am−k from the list. The successive elimination

rule sP induced by P ∈ P is defined, for all T ∈ T and A ∈ X , by sP (T ;A) = wm−1(T ;A).

Both of these approaches lead to choice rules that are lacking in basic features of rationality:

Example 1 (Selection from the uncovered set). The uncovered set choice correspondence

UC : T × X → X (Landau, 1951; Fishburn, 1977; Miller, 1977) is defined, for all T ∈ T and

A ∈ X , by UC(T ;A) = {a ∈ A | ∀b ∈ A \ {a} : (i) aTb or (ii) aTcTb for some c ∈ A}.
Clearly, UC is Condorcet-consistent. For X = {1, 2, 3, 4, 5}, consider the tournament T below:

1

5 2

34 T

For the linear ordering P = 1, ..., 5 (with the alternatives listed in decreasing order of P, i.e.,

4In Fishburn (1977), Condorcet-consistent choice correspondences are called C1 social choice functions.
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1P2P3P4P5), it follows that:

UCP (T ; {1, 2, 3, 4}) = 2 = UCP (T ; {2, 5}) but UCP (T ; {1, 2, 3, 4, 5}) = 1.

Thus, alternative 2 is chosen from {1, 2, 3, 4} and {2, 5} but not their union.5,6 Moreover,

UCP (T ; {1, 2}) = 2 = UCP (T ; {1, 2, 3, 4}) but UCP (T ; {1, 2, 4}) = 1.

So, 2 is chosen over 1 from {1, 2} and {1, 2, 3, 4} but not the intermediate agenda {1, 2, 4}.7

Example 2 (Successive elimination). For X = {1, 2, 3, 4}, consider the tournament T below:

1 2

4 3T

For the successive elimination procedure induced by the linear ordering P = 1, ..., 4:

sP (T ; {1, 4}) = sP (T ; {1, 2, 3}) = 1 but sP (T ; {1, 2, 3, 4}) = 2.

So, 1 is chosen from the agendas {1, 4} and {1, 2, 3} but not their union. Moreover,

sP (T ; {1, 2}) = sP (T ; {1, 2, 3, 4}) = 2 but sP (T ; {1, 2, 3}) = 1.

Thus, 2 is chosen over 1 from {1, 2} and {1, 2, 3, 4} but not the intermediate agenda {1, 2, 3}.8

The rationality properties violated by the choice rules from Examples 1 and 2 are the following:

Expansion Consistency. For all T ∈ T and A,B ∈ X :

f(T ;A) = f(T ;B) implies f(T ;A ∪B) = f(T ;A) = f(T ;B).

5This is true even though the uncovered set correspondence UC satisfies UC(T ;A)∩UC(T ;B) ⊆ UC(T ;A∪B)
for all A,B ∈ X . In fact, Moulin (1986) offers a characterization of UC based on that property.

6 The same choice pattern can also arise if we start with the top cycle correspondence TC (as defined in Section
4 below). If we modify T so that 4T ′1, TCP (T ′; {1, 2, 3, 4}) = 2 = TCP (T ′; {2, 5}) but TCP (T ′; {1, 2, 3, 4, 5}) = 1.

7To see that this choice pattern cannot arise if we start with TC, suppose TCP (T ;A) = a = TCP (T ; {a, b})
and TCP (T ;B) = b for {a, b} ⊆ B ⊆ A. Since TCP (T ; {a, b}) = a and TCP (T ;B) = b, bPa. Since a ∈ TC(T ;A)
and b = c1T...T cn = a for some c1, ..., cn ∈ B, b ∈ TC(T ;A). Since bPa, this contradicts TCP (T ;A) = a.

8 The same choice patterns arise under the amendment procedure aP (Miller, p. 779; Moulin, 1986, p. 287).
Following our convention (that higher-ranked alternatives in P are more privileged), the linear ordering P = 1, 2, 3, 4
corresponds to the tree Γ4(4, 3, 2, 1) in Moulin. For the tournament T given in Example 2, the corresponding choice
function gives aP (T ;A) = sP (T ;A) for all A ∈ X .
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Weak WARP. For all T ∈ T , distinct a, b ∈ X, and A,B ∈ X such that {a, b} ⊆ B ⊆ A:

f(T ; {a, b}) = a = f(T ;A) implies f(T ;B) 6= b.

Expansion Consistency dates back to Sen (1971). Weak WARP was introduced by Manzini and

Mariotti (2007). Both properties weaken Samuelson’s (1938) weak axiom of revealed preference

(WARP), which requires f(T ;B) = a if f(T ;A) = a and a ∈ B ⊆ A. Since WARP characterizes

rational choice in our setting, it is incompatible with the requirement that f is faithful to T .

3 Two-stage majoritarian rules

We propose a class of choice rules that satisfy Faithfulness, Expansion Consistency and Weak

WARP. Like the rules from Examples 1 and 2, each relies on an exogenous linear ordering P ∈ P .

The function of P is to partition the given tournament T ∈ T into two acyclic binary relations

T ∩P and T \P . The first of these relations is used to obtain a preliminary shortlist of the feasible

alternatives in A ∈ X ; and the second is used to make a final choice. Formally, the two-stage

majoritarian choice rule fP based on P ∈ P is defined, for all T ∈ T and A ∈ X , by

{fP (T ;A)} = max(T \ P ; max(T ∩ P ;A)). (1)

For each tournament T ∈ T , the choice function fP (T ; ·) defines a rational shortlist method in

the sense of Manzini and Mariotti (2007). Formally, a choice function c : X → X is a rational

shortlist method if there is a pair of asymmetric binary relations (P1, P2) (called rationales) on

X such that {c(A)} = max(P2; max(P1;A)) for all A ∈ X . To ensure that choice is single-valued,

this model imposes non-trivial restrictions on the rationales (Lemma 2 of Dutta and Horan, 2015).

When the rationales are built by splitting the tournament T into acyclic relations using a linear

ordering P , these restrictions are satisfied regardless of T or P .

To see this, fix an agenda A ∈ X . Since the binary relation T ∩ P is acyclic, the shortlist

MA = max(T ∩ P ;A) must be nonempty. The single-valuedness of max(T \ P ;MA) then follows

from the acyclicity and totality of the binary relation T \ P on MA.

This argument holds as long as T ∩ P and T \ P are acyclic. Since P is also total, more can

be said. Letting P−1 = {(a, b) ∈ X2 | (b, a) ∈ P} denote the reverse ordering of P , {fP (T ;A)} =

max(T \ P ;MA) = max(T ∩ P−1;MA) = max(P−1; max(T ∩ P ;A)). If we interpret aPb as a

being “higher-ranked” than b, then the last formula states that fP (T ; ·) chooses the lowest-ranked

alternative that defeats all higher-ranked alternatives by majority. To illustrate:

Example 3 (Two-stage majoritarian rules). For P = 1, ..., 4, the tournament T from Example

2 gives rationales P1 = T ∩ P = {(1, 3), (1, 4), (2, 4)} and P2 = T \ P = {(2, 1), (3, 2), (4, 3)}.
To illustrate the resulting two-stage majoritarian rule fP , first consider the Condorcet cycle
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A = {1, 2, 3}. Since 1P13, alternative 3 is eliminated in the first stage, leaving the shortlist {1, 2}.
Since 2P21, alternative 1 is eliminated in the second stage, giving the final choice fP (T ;A) = 2.

Letting f−1P (T ;x) = {A ∈ X | f(T ;A) = x}, the same kind of reasoning establishes that:

f−1P (T ; 1) = {{1, 3}, {1, 4}} ,

f−1P (T ; 2) = {{2, 1}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}} ,

f−1P (T ; 3) = {{2, 3}, {2, 3, 4}} , and

f−1P (T ; 4) = {{3, 4}} .

By definition, any two-stage majoritarian rule fP satisfies Faithfulness. Since the choice func-

tion fP (T ; ·) is a rational shortlist method for each T ∈ T , Manzini and Mariotti’s characterization

implies that fP also satisfies Expansion Consistency and Weak WARP.

These same properties are satisfied by other choice rules (like the rule in Example 4 below).

What distinguishes two-stage majoritarian rules is a strong version of Weak WARP that applies

across tournaments. This property relies on Dutta and Horan’s taxonomy of WARP violations

that are consistent with Weak WARP. Formally, a choice function c : X → X exhibits an 〈a, b〉
reversal for a, b ∈ X if c(B) = b and c(A) = a for some A,B ∈ X such that {a, b} ⊆ B ⊆ A. In

turn, c exhibits an 〈a, b〉 switch if c(B) = b and c(B ∪ {a}) /∈ {a, b} for some B ∈ X .

According to WARP, the addition of alternatives can never cause the decision maker to “re-

verse” her choice to a previously unchosen alternative a. Likewise, the addition of a new alternative

a cannot lead her to “switch” from b to a third alternative. While the combination of Expansion

Consistency and Weak WARP permits these patterns of choice, it does so only in one direction.

For a given tournament T , 〈a, b〉 reversals preclude 〈b, a〉 reversals; and 〈a, b〉 switches preclude

〈b, a〉 switches.9 The next property extends these requirements across tournaments:

Inter-Tournament Weak WARP. For all T, T ′ ∈ T and a, b ∈ X:

(i) If f(T ; ·) exhibits an 〈a, b〉 reversal, then f(T ′; ·) exhibits no 〈b, a〉 reversals; and,

(ii) If f(T ; ·) exhibits an 〈a, b〉 switch, then f(T ′; ·) exhibits no 〈b, a〉 switches.

For any tournament T ∈ T , requirement (i) implies that f(T ; ·) cannot exhibit both 〈a, b〉 and

〈b, a〉 reversals for any pair of alternatives a, b ∈ X. Cherepanov et al. (2013, Proposition A.5)

show that this property (which they call Irreversibility) is equivalent to Weak WARP.10

In combination with Faithfulness and Expansion Consistency, Inter-Tournament Weak WARP

characterizes two-stage majoritarian rules. To state our result formally:

Theorem. A choice rule f : T × X → X is a two-stage majoritarian choice rule if and only if

it satisfies Faithfulness, Expansion Consistency and Inter-Tournament Weak WARP.

9Horan (2016) uses similar “one-way” properties to characterize some special classes of rational shortlist methods.
10When it is restricted to a fixed tournament T ∈ T , requirement (ii) is implied by Expansion Consistency.
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Proof. Since the necessity of the axioms is straightforward, we only establish sufficiency. The

result is immediate if |X| ≤ 2. So, suppose |X| ≥ 3 without loss of generality.

Following Dutta and Horan, first define binary relations P T
2 and P T

1 on X such that, for all

a, b ∈ X: bP T
2 a if f(T ; ·) exhibits an 〈a, b〉 reversal; and aP T

1 b if f(T ; ·) exhibits an 〈a, b〉 switch.

Since f satisfies Faithfulness, Expansion Consistency, and Weak WARP (by the observation in

the main text), P T
1 ⊆ T and P T

2 ⊆ T (by Proposition 1 of Dutta and Horan).

Step 1. Given aTbTcTa and aT ′cT ′bT ′a, f(T ; {a, b, c}) = c implies f(T ′; {a, b, c}) = a.

Since f is faithful, f(T ; {a, b, c}) = c implies bP T
2 c and aP T

1 b. By part (i) of Inter-Tournament

Weak WARP, bP T
2 c rules out f(T ′; {a, b, c}) = b. Otherwise, cP T ′

2 b. Similarly, by part (ii) of

Inter-Tournament Weak WARP, aP T
1 b rules out f(T ′; {a, b, c}) = c. Otherwise, bP T ′

1 a.�

Next, define the binary relation R on X such that, for all a, b ∈ X: aRb if there is some T ′ ∈ T
and c ∈ X such that aT ′cT ′bT ′a and f(T ′; {a, b, c}) = a. We write aIb if neither aRb nor bRa.

The following observations will be useful: by Step 1, (1) aRb implies that there are T, T ′ ∈ T
such that bP T ′

2 a and aP T
1 b; and so, by Inter-Tournament Weak WARP, (2) R is asymmetric.

Step 2. R is transitive.

Suppose xRyRz. Consider T ∈ T such that xTyTzTx. If f(T ; {x, y, z}) 6= x, yRx or zRy.

Since xRyRz, this contradicts the asymmetry of R. So, f(T ; {x, y, z}) = x and xRz.�

Step 3. There are exactly two distinct a, b ∈ X such that aIb; and a, bRc for all c ∈ X \ {a, b}.

First, suppose there are two pairs {x, y} and {z, w} (with x 6= z, w and z 6= x, y) such that xIy

and zIw. Consider T, T ′ ∈ T such that xTzTwTx and xT ′wT ′zT ′x. Since zIw, Step 1 implies

z, wRx. Next, consider T, T ′ ∈ T such that xTyTzTx and xT ′zT ′yT ′x. Then, x, yRz since xIy.

But, xRz and zRx contradicts the asymmetry of R. So, aIb for at most one pair {a, b}.
If there is no such pair, then R is a linear ordering (since it is asymmetric by observation (2)

after Step 1 and transitive by Step 2). Suppose aRb and bRc for all c ∈ X \ {a, b}. By Step 1,

there is some d ∈ X \ {a, b} such that dRb, which is a contradiction. So, there is exactly one pair

{a, b} such that aIb. By Step 1, it follows that a, bRc for all c ∈ X \ {a, b}.�

Step 4. For the pair {a, b} identified in Step 3 and any T ∈ T , neither aP T
1 b nor aP T

2 b.

If aP T
1 b, then f(T ;B) = b and f(T ;B ∪ {a}) = x /∈ {a, b} for some B ∈ X . So, xP T

2 b. By

Inter-Tournament Weak WARP and observation (1), this contradicts bRx.

If aP T
2 b, then f(T ;A) = a and f(T ;B) = b for some A,B ∈ X such that {a, b} ⊆ A ⊆ B. By

Expansion Consistency, f(T ;A′) = a where A′ = A ∪ {x ∈ B \ A : aTx}. Then, f(T ;A′ ∪ {x}) /∈
{x, a} for some x ∈ B \ A′. Otherwise, f(T ;B) ∈ (B \ A′) ∪ {a} 6= b by Expansion Consistency.

So, xP T
1 a. By Inter-Tournament Weak WARP and observation (1), this contradicts aRx.�

Given Steps 2-3, complete R into a linear order P by defining aPb and xPy if xRy for x, y ∈ X.
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Step 5. P T
1 ⊆ T ∩ P and P T

2 ⊆ T \ P .

First suppose xP T
1 y. By Step 4, {x, y} 6= {a, b}. By way of contradiction, suppose x T \ P y.

Since {x, y} 6= {a, b}, yRx. By observation (1), yP T ′
1 x for some T ′ ∈ T . Since xP T

1 y, this

contradicts Inter-Tournament Weak WARP. Next suppose xP T
2 y. By the same kind of reasoning:

if xT ∩ Py, then yP T ′
2 x for some T ′ ∈ T , which contradicts Inter-Tournament Weak WARP.�

Since f satisfies Expansion Consistency and Weak WARP, the characterization of Manzini

and Mariotti implies that f(T ; ·) is a rational shortlist method for each T ∈ T . Given Step 5,

Proposition 2 of Dutta and Horan then implies that (T ∩ P, T \ P ) is a minimal representation of

f(T ; ·) for each T ∈ T .11 Since P is a linear ordering, this completes the proof.�

4 Further remarks

4.1 Flexibility and Pareto sub-optimality

The top cycle correspondence TC : T × X → X (Good, 1971; Schwartz, 1972; Smith, 1973) is

defined by TC(T ;A) = {a ∈ A | ∀b ∈ A \ {a} : a = c1T...T cn = b for some c1, ..., cn ∈ A}.
For all T ∈ T and A ∈ X , the set of alternatives chosen by some two-stage majoritarian rule

coincides with the top cycle, that is, TC(T ;A) = {fP (T ;A) : P ∈ P}. In one direction, note that

fP (T ;A) = fP (T ;TC(T ;A)). In the other, fix a path a = a1T...Tam from a ∈ TC(T ;A) that

covers TC(T ;A). Then, fP (T ;A) = a for any linear ordering P ∈ P such that amP...Pa1. Since

TC(T ;A) = {sP (T ;A) : P ∈ P} as well (Miller, 1977), this means that two-stage majoritarian

rules provide the same flexibility to the designer as successive elimination rules (Example 2).

It is well known that TC(T ;A) may contain alternatives that are Pareto dominated at prefer-

ence profiles consistent with T (provided that |A| ≥ 4).12 Given their flexibility, this means that

all two-stage majoritarian rules make Pareto sub-optimal choices for some T ∈ T and A ∈ X .

4.2 Connection to Arrow and May

Two-stage majoritarian rules satisfy natural adaptations of Arrow’s (1951) independence of irrel-

evant alternatives (IIA) and May’s (1953) positive responsiveness.13 To state the first property,

let T |A denote the restriction of the tournament T ∈ T to the agenda A ∈ X .

Choice IIA. For all T, T ′ ∈ T and A ∈ X : T |A = T ′|A implies f(T ;A) = f(T ′;A).

In other words, the majority view of infeasible alternatives cannot affect choice. Clearly, two-stage

majoritarian rules satisfy this property. Indeed, so do the rules from Examples 1 and 2.

11Dutta and Horan call a representation minimal if the two rationales neither overlap nor contradict one another.
12For an example, see Moulin (1986, p. 274).
13Our adaptation of these properties to the setting of choice rules follows Moulin (1986, pp. 278 and 285).
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For the second property, say that a binary relation R′ on X improves an alternative a ∈ X

relative to a binary relation R on X if, for all x, y ∈ X\{a}: (i) aRx⇒ aR′x; and (ii) xRy ⇔ xR′y.

T -Monotonicity. For all T, T ′ ∈ T and A ∈ X where T ′ improves a ∈ X relative to T :

f(T ;A) = a implies f(T ′;A) = a.

In words: improving the majority view of a chosen alternative can only reinforce its choice.

To see that two-stage majoritarian rules satisfy this property, recall that fP (T ;A) is the lowest-

ranked alternative in A that defeats all higher-ranked alternatives by majority. Improving fP (T ;A)

relative to T cannot change this: fP (T ;A) still defeats all higher-ranked alternatives; and every

alternative ranked below fP (T ;A) is still defeated by a higher-ranked alternative.

It is known that the rules from Example 2 and footnote 8 also satisfy T -Monotonicity.14 In

contrast, the rules from Example 1 do not. To illustrate, consider X = {1, 2, 3, 4} and the ordering

P = 4, 3, 2, 1. Then, UCP (T ;X) = 3 for the tournament T from Example 2 while UCP (T ′;X) = 4

for the tournament T ′ that improves 3 relative to 1.

4.3 Regarding the linear ordering P

Every two-stage majoritarian rule fP is monotonic with respect to the linear ordering P that

defines it. In other words, fP satisfies the following property:

P -Monotonicity. For all T ∈ T , A ∈ X , and P, P ′ ∈ P where P ′ improves a ∈ X relative to P :

fP (T ;A) = a implies fP ′(T ;A) = a.

This property justifies the interpretation that alternatives ranked higher by P are privileged. A

variation on the argument used to establish T -Monotonicity shows that two-stage majoritarian

rules satisfy P -Monotonicity. We note that the rules from Examples 1 and 2 (as well as the related

rules discussed in footnotes 6 and 8) satisfy a corresponding property.15

The linear ordering P plays a less intrusive role in two-stage majoritarian rules than it does

in these other rules. To elaborate, consider the successive elimination rules from Example 2. The

key insight is that the choice sP (T ;A) must defeat all higher-ranked alternatives in the agenda A.

When sP (T ;A) and fP (T ;A) differ, this means that fP (T ;A) must be ranked lower in terms of P

and, consequently, must be preferred over sP (T ;A) by a majority (according to T ).

The same reasoning shows that, for all T ∈ T and A ∈ X , the two-stage majoritarian rule fP

selects an alternative that is weakly preferred by majority over the alternatives selected by the

14See Moulin (1988) Exercise 9.4(c) (p. 250) for sP and the Corollary to Theorem 9.5 (p. 247) for aP . Horan
(2020) shows that a much broader range of binary trees (which he calls “simple agendas”) have the same feature.

15For UCP and TCP , the claim is straightforward. For sP and aP , see Moulin (1988) Exercise 9.5 (p. 250). A
much broader class of binary trees introduced by Horan (2020) (called “priority agendas”) have the same feature.
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selection rule TCP (footnote 6) and the amendment rule aP (footnote 8). The same is true for the

selection rule UCP from Example 1 when differences in flexibility are taken into account: fP (T ;A)

is weakly preferred by a majority over UCP (T ;A) provided that fP (T ;A) ∈ UC(T ;A).

While the linear ordering P plays a less intrusive role for two-stage majoritarian rules than it

does for some other rules, it still has a significant impact on the outcome. Fortunately, there is a

natural (or, at least, conventional) way of ordering the alternatives in many choice settings. In the

committee setting, for instance, it is customary to use the preference of the chair as a tie-breaker

(Robert, 2011, p. 405). In the public policy setting, it is natural to rank competing policies in

terms of increasing cost or, in some cases, in terms of decreasing equity. Finally, in legislative

settings, it is conventional to order proposals either by the time at which that they were tabled or

by their degree of divergence from the status quo legislation (Rasch, 2000, p. 15).

4.4 Extensions

By dropping requirement (ii) of Inter-Tournament Weak WARP while maintaining the other prop-

erties in our Theorem, one obtains a broader class of choice rules. The main difference is that

each tournament T ∈ T is assigned its own binary relation PT , which must be acyclic but is not

necessarily a linear ordering. Given a collection of such relations P = {PT}T∈T , the choice rule

fP is then defined, for all T ∈ T and A ∈ X , by

{fP(T ;A)} = max(T \ PT ; max(T ∩ PT ;A)). (2)

As with two-stage majoritarian rules, each binary relation PT partitions the tournament T into

acyclic relations.16 The next example describes an interesting rule in this class.

Example 4. (A variation on two-stage majoritarian rules) Consider the choice rule gP

that, for any tournament T ∈ T and any agenda A = {a1, ..., am+1} ∈ X , is defined by

gP (T ;A) =

{
max(T ; {am, am+1}) if max(T ;A) ∈ {am, am+1},
fP (T ;A \ {am, am+1}) otherwise.

To elaborate, note that the rule fP selects the lowest-ranked alternative only if it is the Condorcet

winner in the agenda. The rule gP simply extends this to the second lowest-ranked alternative.

Clearly, gP satisfies Faithfulness, Expansion Consistency, requirement (i) of Inter-Tournament

Weak WARP, Choice IIA, T -Monotonicity, and P -Monotonicity. However, the rules gP and fP

16To establish the sufficiency of the axioms for such a representation, let PT = T \ PT
2 where PT

2 is the binary
relation defined in the proof of our theorem. Then, as in the proof of our theorem, Proposition 2 of Dutta and
Horan implies that (T ∩PT , T \PT ) is a minimal representation of f(T ; ·). Since f(T ; ·) is a choice function, T ∩PT

is acyclic. By part (i) of Inter-Tournament Weak WARP, T \PT = PT
2 is also acyclic. (If a1P

T
2 a2P

T
2 ...PT

2 anP
T
2 a1,

consider T ∈ T such that a1TanT...Ta2Ta1. If f(T ;A) = ai, then, ai+1P
T
2 ai, which contradicts aiP

T
2 ai+1.) For

an axiomatization of rational shortlist methods where both rationales are acyclic, see Houy (2008).

10



are distinct if |X| ≥ 3. In fact, fP is distinct from gP ′ for any linear ordering P ′ ∈ P . To see

this, consider the agenda A = {1, 2, 3} ⊆ X and tournaments T, T ′ ∈ T such that 1T2T3T1 and

1T ′3T ′2T ′1. Then, fP (T ;A) 6= fP (T ′;A) while gP ′(T ;A) = gP ′(T ′;A).

We note that the rules from Example 4 provide the same flexibility as two-stage majoritarian

rules: for all T ∈ T and A ∈ X , TC(T ;A) = {gP (T ;A) : P ∈ P}. So, like two-stage majoritarian

rules, they sometimes make Pareto sub-optimal choices. This raises the question of whether an

efficient choice rule can satisfy the kinds of requirements that we consider. A narrower question

is whether there exists a binary relation PT for each tournament T ∈ T such that fP(T ; ·) selects

within the uncovered set for every agenda A ∈ X .17 For this purpose, Manzini and Mariotti (2006,

Proposition 5) show that the transitivity of the first rationale T ∩ PT is sufficient.
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