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Summary: Causal inference methods have been developed for longitudinal observational study designs where

confounding is thought to occur over time. In particular, one may estimate and contrast the population mean

counterfactual outcome under specific exposure patterns. In such contexts, confounders of the longitudinal treatment-

outcome association are generally identified using domain-specific knowledge. However, this may leave an analyst with

a large set of potential confounders that may hinder estimation. Previous approaches to data-adaptive model selection

for this type of causal parameter were limited to the single time-point setting. We develop a longitudinal extension of

a collaborative targeted minimum loss-based estimation (C-TMLE) algorithm that can be applied to perform variable

selection in the models for the probability of treatment with the goal of improving the estimation of the population

mean counterfactual outcome under a fixed exposure pattern. We investigate the properties of this method through a

simulation study, comparing it to G-Computation and inverse probability of treatment weighting. We then apply the

method in a real data example to evaluate the safety of trimester-specific exposure to inhaled corticosteroids during

pregnancy in women with mild asthma. The data for this study were obtained from the linkage of electronic health

databases in the province of Quebec, Canada. The C-TMLE covariate selection approach allowed for a reduction of

the set of potential confounders, which included baseline and longitudinal variables.

Key words: Collaborative double robustness; saturated marginal structural model; TMLE.

This paper has been submitted for consideration for publication in Biometrics



Longitudinal model selection with C-TMLE 1

1. Introduction

Causal inference methods have been developed for longitudinal observational study designs

where confounding is thought to occur over time (Robins et al., 2000). In particular, several

methods estimate the expected counterfactual outcome under a fixed exposure regime (a

saturated marginal structural model Robins et al. 2000), including inverse probability of

treatment weighting (IPTW; Robins et al. 2000) and targeted minimum loss-based estima-

tion (TMLE; van der Laan and Rubin 2006; van der Laan and Gruber 2010). For a study

design where information is only collected at discrete time points, identifiability of this

parameter depends on the sequential ignorable treatment assignment assumption (Robins,

1998). Sequential ignorability is equivalent to the assumption that, at every time point,

treatment is essentially randomly assigned conditional on past measured information.

In such contexts, variables thought to satisfy sequential ignorability are generally iden-

tified using domain-specific knowledge (Robins, 2001; Hernán et al., 2002). However, this

may leave an analyst with a large set of potential confounders that may hinder estima-

tion (VanderWeele and Shpitser, 2011; Schnitzer et al., 2016). Various methods have been

developed to perform variable or model selection with the goal of improving estimation

of the causal parameter of interest (e.g. Crainiceanu et al. 2008; van der Laan and Gruber

2010; De Luna et al. 2011; Wang et al. 2012; Vansteelandt et al. 2012; Wilson and Reich

2014; Belloni et al. 2014). However, these methods have largely focused on the setting where

treatment is defined at a single time point. Machine learning methods have been used for the

estimation of the treatment model(s) in both longitudinal and non-longitudinal settings (e.g.

Neugebauer et al. 2007; Petersen et al. 2007; Ertefaie et al. 2017; Shortreed and Ertefaie 2017;

Benkeser et al. 2017; Schnitzer and Cefalu 2018). Recently, Shi et al. (2018) proposed using

the Dantzig selector based on the A-learning estimating function for high-dimensional co-

variate selection in dynamic treatment regimes.
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Collaborative targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber

2010; Gruber and van der Laan 2011; Ju et al. 2017) is a data-adaptive procedure that,

given an initial outcome model fit, constructs a targeted estimator by sequentially selecting

covariates into the model for treatment. The selection is made based on a loss function

criterion placed on the updated outcome model fit. Cross-validation is then used to determine

at what step the sequential selection terminates. By design, this procedure prioritizes the

selection of terms to reduce bias in the estimation of the target parameter while avoiding

terms that disproportionately increase the estimation variance. In this paper, we demonstrate

a novel extension of the single time point implementation of C-TMLE to the longitudinal

case for the estimation of the expected counterfactual outcome under fixed exposure regimen.

To ease understanding, we present the methodology in the context of a simplified example

where treatment and covariate information is collected at two time points and the outcome

measured at a third time point.

Our illustrative application involves drug safety during pregnancy. Asthma is a highly

prevalent chronic condition affecting pregnant women that can impact the health of the

mother and fetus (Murphy et al., 2011). The current standard of asthma treatment during

pregnancy is to continue medication because poorly controlled symptoms pose an acute

risk to the fetus and mother. However, many women with mild asthma stop taking med-

ication entirely due to the fear of increased risk to the pregnancy. Such women are indi-

cated to receive a low dose of inhaled corticosteroids (ICS; 0-250µg in Fluticasone equiva-

lent) (National Asthma Education and Prevention Program expert panel, 2005) versus none.

Our study evaluates the safety of taking low dose ICS during pregnancy for women with mild

asthma. While similar questions have been investigated using cohort data (Cossette et al.,

2013), a formal causal approach has yet to be taken. A particular challenge in this context is

to contrast treatment regimes in a population eligible for either option. In reality, treatment
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can vary over time due to fluctuating symptom severity and pregnancy complications. Pre-

vious work did not properly account for time-varying confounders (variables that can affect

future treatment and outcome) that are also influenced by previous treatment (Robins et al.,

2000). We investigate whether performing model selection with our proposed method changes

the study conclusion relative to several existing causal inference methods.

2. The delivery cohort dataset and structure

Our dataset is a cohort of singleton deliveries, defined as live or stillborn births occurring

past 20 weeks of gestation. It was constructed from a linkage of the Régie de l’assurance-

maladie du Québec andMaintenance et Exploitation des Données pour l’Étude de la Clientèle

Hospitalière databases. The former resource contains information on all medical services used

and medication prescriptions filled by Quebec residents on the public drug insurance plan.

The latter resource includes data from acute care hospitalizations. The derived database

contains all singleton deliveries in the province of Quebec, Canada between the years 1998-

2008 for women 6 45 years with at least one asthma diagnosis and at least one asthma

medication prescribed in the year before or during pregnancy. For inclusion, these women also

had to be covered by the Quebec public drug insurance plan in the year prior to and during

pregnancy (Cossette et al., 2013). Women taking theophylline, cromoglycate, nedocromil,

ketotifen, or long-acting β2-agonists without an ICS were excluded. A subsetted cohort of

women with mild asthma in the year prior to pregnancy was created (totaling 5881 deliveries).

For simplicity, the cohort was restricted to each woman’s first delivery (n = 5048).

For this investigation, we structured the data to contain two trimester-specific exposure

times. The dataset contains the following information about each subject:

• Pre-pregnancy covariates (L0) measured in the year prior to pregnancy, including maternal

characteristics (age at delivery, receiving social assistance, rural residence, and usage of
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beta-blockers), chronic maternal diseases (hypertension, diabetes, cystic fibrosis of the

pancreas, antiphospholipid syndrome, and cyanotic heart disease), and asthma control-

related variables (not controlled, use of short-acting β2-agonist, use of leukotriene receptor

antagonist, use of oral corticosteroids, use of intranasal corticosteroids, at least one hospi-

talization for asthma, and at least one emergency room visit for asthma),

• No exposure to ICS (A0 = 0) or low-dose ICS (6 250µg in Fluticasone equivalent daily;

A0 = 1) at the beginning of the first trimester,

• Covariates measured during the first trimester (L1), including chronic maternal diseases,

pathologies related to pregnancy (gestational diabetes, maternal infection, anemia, vaginal

bleeding, placental complications, placental abruption, and usage of beta-blockers), and

asthma control-related variables,

• Exposure status at the beginning of the second trimester (A1 = {0, 1}), and

• Three binary fetal growth outcomes (Y ), analyzed separately: low birth weight (LBW; <

2,500 g), premature birth (delivery before 37 weeks gestation), and small for gestational

age (SGA; below the 10th percentile) (Cossette et al., 2013). These outcomes are measured

at delivery, which can occur in the second or third trimester.

We are interested in estimating the mean outcome under exposure versus no exposure to low-

dose ICS at the beginning of the first two trimesters. The algorithm developed in the next

section aims to select covariates into a model predicting exposure with the goal of minimizing

empirical risk based on a loss function that specifically relates to the target parameter.

3. Methods

3.1 Identifiability of the target parameter

We observe randomly sampled longitudinal data O = (L0, A0, L1, A1, Y ) ∼ P0 where Lt

are covariates, At is a treatment indicator measured at times t = 0 and 1, and P0 is the
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true data-generating distribution, lying in some model M. Let Y be the outcome of interest,

measured at the end of pregnancy. Let Y a denote the counterfactual outcome under the fixed

treatment regime a and similarly let La0
1 represent the intermediate outcome under treatment

a0 at the first time point. Our goal is to estimate ψ = E(Y a), the marginal mean outcome

under treatment regime a. For instance, if we consider the regime a = (a0, a1) = (1, 1), then

ψ represents the expected mean outcome in the population had all mothers received a low

daily dose of ICS in the first and second trimesters.

Let Q2(l1) = E(Y a | L1 = l1) be the conditional expectation of the outcome under a

two time point fixed treatment regime (with an implicit dependence on a, the regime in

question) evaluated at some value l1. Let Q1(l0) = E(Y a | L0 = l0) be the conditional

expectation of the outcome after fixing exposure in the first time point to the treatment

a0 at the baseline covariate value l0. In this setting, the sequential ignorability assumption

(needed for identifiability) requires

Y a⊥⊥A1 | A0 = a0, L1 and Y a⊥⊥A0 | L0, (1)

meaning that under a fixed regime, the counterfactual outcome is independent of past

treatment conditional on the observed past prior to each treatment. This is often thought

of as measuring all risk factors that affect subsequent treatment (Robins et al., 2000). In

the example, such variables include indicators of asthma control during the first trimester

(hospitalization and complementary controller mediation) which may directly affect fetal

growth and subsequent treatment as well as being affected by the previous treatment taken.

We also require positivity which implies that for all values of a0 that are being considered,

P (A0 = a0 | L0) > 0 almost surely (i.e. for all possible combinations of baseline covariates,

all treatments must be possible at the first time point). Similarly, for all a of interest, we

require that P (A1 = a1 | L1, A0 = a0) > 0 almost surely (Bang and Robins, 2005). For

the asthma example, this essentially means that all subjects must be eligible to follow all
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possible treatment regimens at all time points. Note that if these probabilities are estimated

to be (close to) zero, then we have (near) practical positivity violations, which can hinder

estimation. An additional assumption is no interference, such that one subject’s treatment

will not affect another’s counterfactual outcome under a fixed treatment. No interference is

credible in this case because asthma and fetal growth are not infectious, nor were patient

interactions likely to otherwise affect outcomes. Finally, we must also assume consistency,

that the intervention of assigning treatment at a given time point corresponds with the

exposure classification. We can then write that we observe L1 = La0
1 when A0 = a0 and

Y = Y a when A1 = a.

Hence, we have that Q2(l1) = E(Y | A1 = a, L1 = l1) at the realization l1 and Q1(l0) =

E(Q2(l1) | A0 = a0, L0 = l0) at l0, so that both quantities are estimable from the data. And

since E(Y a) = E{Q1(L0)}, the parameter of interest is also identifiable (Bang and Robins,

2005; Petersen et al., 2013). Throughout, a subscript n will be used to denote an estimate

of a quantity. If we sequentially estimate the quantities Q2(l1) and Q1(l0), we can obtain a

plug-in estimator for E(Y a) by taking the mean over the values Q1,n(l0), i.e. the estimates

of Q1(l0) obtained for each subject (Bang and Robins, 2005).

Define g0(l0) = P (A0 = a0 | L0 = l0), the conditional probability of taking treatment a0 at

the beginning of the first trimester. Similarly, define g1(l1) = P (A1 = a1 | L1 = l1, A0 = a0)

as the conditional probability of taking a1 at the beginning of the second trimester. An

inverse probability of treatment weighted estimate for ψ can be taken as the sample average

of Y I(A1 = a)/{g0,n(L0)g1,n(L1)} (Robins et al., 2000) where I(·) is the indicator function.

3.2 Longitudinal targeted minimum loss-based estimation

Longitudinal TMLE (LTMLE) (van der Laan and Gruber, 2012) is a semiparametric esti-

mator that takes initial estimates of Q2(l1) and Q1(l0) and updates them to reduce excess

bias in the estimation of ψ resulting from the use of misspecified models or flexible learning
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algorithms with slower rates of convergence. The form of this update is designed to satisfy the

efficient influence function estimating equation (van der Laan and Rubin, 2006), resulting in

locally efficient and doubly robust estimation of ψ (van der Laan and Robins, 2003) (details

in the Web Appendix A). Below we give the algorithm for a binary outcome and fixed a

though it has been described elsewhere (van der Laan and Gruber, 2012).

Algorithm 1 LTMLE algorithm for two time points

1: Compute Q2,n(l1), the initial estimate of Q2(l1) = E(Y | A1 = a, L1 = l1), for each

subject at their realization l1.

2: Run intercept-free logistic regression Y ∼ ϵ2/{g0,n(L0)g1,n(L1)}+offset[logit{Q2,n(L1)}]

using subjects with A = a. Let ϵ̂2 be the coefficient estimate.

3: Set Q∗
2,n(l1) = expit

[
ϵ̂2/{g0,n(l0)g1,n(l1)}+ logit{Q2,n(l1)}

]
for each subject.

4: Compute Q1,n(l0), the initial estimate of Q1(l0), by regressing Q∗
2,n(L1) on A0 and L0

and making a prediction for each subject setting A0 = a0 .

5: Run intercept-free logistic regression Q∗
2,n(L1) ∼ ϵ̂1/{g0,n(L0)}+ offset[logit{Q1,n(L0)}]

using subjects with A0 = a0. Let ϵ̂1 be the coefficient estimate.

6: Set Q∗
1,n(l0) = expit

[
ϵ̂2/{g0,n(l0)}+ logit{Q1,n(l0)}

]
for all subjects.

7: Let ψn, the targeted estimate, be the sample mean of Q∗
1,n(L0) over all subjects.

This procedure results in semiparametric efficient estimation of ψ if both the estimation

of g and Q are consistent where g = (g0, g1) and Q = (Q2, Q1) are defined with respect to a

set of covariates that satisfies equation (1) (van der Laan and Gruber, 2012), i.e. sufficiently

controls for confounding. This estimator is also doubly robust, in the sense that if the estima-

tion of either g or Q is consistent, then the estimator is consistent for the target parameter.

The collaborative double robustness result (van der Laan and Gruber, 2010; Schnitzer et al.,

2016) shows that consistency can also be achieved when both sets of models are incorrectly

specified in a compatible way. We explain further in Section 3.3.
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There are several choices of loss functions to define the error (i.e. risk or lack of fit) of the

TMLE built from this procedure. One example is the logistic log-likelihood loss function,

defined as L(Q)(O) = L2(Q2)(O) + L1(Q1;Q2)(O) where

L2(Q2)(O) =− I(A1 = a)
[
Y log{Q2(L1)}+ (1− Y ) log{1−Q2(L1)}

]
(2)

L1(Q1;Q2)(O) =− I(A0 = a0)×[
Q2(L1) log{Q1(L0)}+ {1−Q2(L1)} log{1−Q1(L0)}

]
. (3)

The empirical error is obtained by evaluating L(Q∗
n)(o) for each subject’s observed val-

ues of O and then taking the mean. The loss functions have a sequential validity in the

sense that the expectation of L2(Q2)(O) is minimized at the true Q2(L1) and the expec-

tation of L1(Q1;Q2)(O) indexed by the true Q2 is minimized at the true Q1(L0). Both

have a quadratic dissimilarity such that the distance between the errors at the true and

candidate Q is quadratic, with the second loss component indexed at a fixed value of

Q2 (van der Laan and Gruber, 2010, Section 2.2).

3.3 Longitudinal collaborative double robustness

The general collaborative double robustness result (van der Laan and Gruber, 2010) states

that for doubly robust estimators with componentsQ and g and influence functionD(ψ,Q, g),

the treatment model must only condition on the error in the outcome model predictions in

order to obtain consistent estimation. Suppose that Qn and gn are estimators of Q and g,

respectively, but that Qn and gn converge componentwise in probability to some limits Q̃ and

g̃. We have that E{D(ψ, Q̃, g̃)(O)} = 0 when either Q̃ = Q or g̃ = g. In the two time point

case, given fixed but possibly misspecified estimates Qn = (Q2,n, Q1,n), we are interested

in determining the set of values of g = (g0, g1) that will lead to consistent estimation of

ψ. As in the general case, this corresponds to determining the form of estimates (g0,n, g1,n)
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which converge to g̃ = (g̃0, g̃1) such that E{D(ψ, Q̃, g̃)(O)} = 0. For more details about

convergence, please refer to Web Appendix A.

SinceE{D(ψ,Q, g̃)(O)} = 0 and by linearity of expectations, we can writeE{D(ψ, Q̃, g̃)(O)} =

E{D(ψ, Q̃, g̃)(O)−D(ψ,Q, g̃)(O)} (van der Laan and Gruber, 2010). For the two time point

case, we can rewrite the influence function (Web Appendix A, equation 1) as

D(ψ,Q, g)(O) =

{
I(A1 = a)

g1(L1)g0(L0)
Y − ψ

}
−
{

I(A1 = a)

g1(L1)g0(L0)
− I(A0 = a0)

g0(L0)

}
Q2(L1)

−
{
I(A0 = a0)

g0(L0)
− 1

}
Q1(L0)

Noting the linearity of D(ψ,Q, g) in the components of Q, we can also write

D(ψ, Q̃, g̃)(O)−D(ψ,Q, g̃)(O) =
I(A0 = a0)

g̃1(L1)g̃0(L0)

{
I(A1 = a1)− g̃1(L1)

}{
Q̃2(L1)−Q2(L1)

}
− 1

g̃0(L0)
{I(A0 = a0)− g̃0(L0)}

{
Q̃1(L0)−Q1(L0)

}
We have that the conditional expectation of the second component is zero when g̃0(L0) =

P [A0 = a0 | {Q̃1(L0)−Q1(L0)}]. The conditional expectation of the first component is zero

when we set g̃1(L1) = P [A1 = a1 | {Q̃2(L1)−Q2(L1)}/g̃0(L0), I(A0 = a0)]. Therefore, given

an estimator Qn = (Q2,n, Q1,n) consistent for (Q̃2, Q̃1), if we knew the value of the errors

Q̃1(l0) − Q1(l0) and Q̃2(l1) − Q2(l1), it would be sufficient to adjust for these errors in the

respective treatment models. This would produce consistent inference for any doubly robust

estimator. However, since this error is unknown, C-TMLE targets the reduction of the model

risk (i.e. improves the fit of Qn) by selecting variables into the treatment models that explain

the residual bias Q̃−Q. The longitudinal C-TMLE algorithm is presented in Section 3.4.

3.4 Collaborative selection for the treatment models

Suppose we have defined the error of estimates Qn and gn by specifying respective loss

functions. The concept behind C-TMLE (van der Laan and Gruber, 2010, Section 2.4) is that

the procedure must produce a sequence of targeted estimates represented by {Q∗,(k)
n , g

(k)
n ; k =

1, ..., K} such that the sequence is simultaneously decreasing in the empirical risk of both Q∗
n
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and gn. This is achieved by producing an initial estimate Qinit
n and then gradually increasing

the flexibility of the model for g, for instance by selecting covariates or non-linearities in a

greedy stepwise manner, where the error is evaluated on the Q∗
n resulting from the TMLE

update. The step k indexes the number of covariates or terms that have been added to

either treatment model. K is defined as the number of moves that results in all of the

covariates or terms added to the models. We assume that at some minimal step km 6 K, we

achieve consistent estimation where g
(km)
n converges to g̃(km) and Q

∗,(km)
n to Q̃∗,(km) such that

E[D{ψ, Q̃∗,(km), g̃(km)}(O)] = 0 (which relaxes the typical assumption that we need to include

all terms in the treatment models for consistent estimation). We also assume that models

past km also allow for consistent estimation (van der Laan and Gruber, 2010, Section 4).

The C-TMLE procedure uses an empirical risk function, evaluated through cross-validation,

to choose the index at which the estimator is selected. For this, we choose a penalized

loss function (Gruber and van der Laan, 2011) L(Q)(O) = L2(Q2)(O) + L1(Q1;Q2)(O) +

V ar{D(ψ,Q, g)(O)}/n where the penalty term is the variance of the efficient influence

function divided by the sample size (see Section 3.4.2 for more intuition). This penalty

term converges to zero, so that the loss function remains asymptotically valid.

3.4.1 Algorithm. A C-TMLE variable selection procedure in the setting with a single

treatment point has been described in Gruber and van der Laan (2011). We describe a

similar procedure for two treatment points for the estimation of ψ = E(Y a) (generalized

for larger numbers of time points in the Web Appendix B) which we call Collaborative

Longitudinal TMLE (C-LTMLE). We define the operation update(Qn, gn) as the procedure

that takes initial estimates Qn = (Q2,n, Q1,n) and updates them separately using the LTMLE

procedure with respect to gn = (g0,n, g1,n), returning the updated estimates Q∗
n = (Q∗

2,n, Q
∗
1,n)

as described in Section 3.2. Define “allowable moves” as the set of remaining additions of

covariates or terms to the existing models for g0 and g1. We restrict such moves by only
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allowing variables in L0 to be selected for g0, but any of L1 allowed into the model for g1.

Finally, define the notation g
(k−1)
n (m) as the probability of treatment estimates using the

models from step k− 1 after additional move m (that is, after adding a covariate or term to

either model according to move m).

Algorithm 2 C-LTMLE candidate building procedure

1: Initialize g
(0)
n and QB

n := Q
(init)
n ; and set Q

∗,(0)
n := update{Q(init)

n , g
(0)
n }; and l0 :=

mean(L{Q∗,(0)
n }).

2: for k = 1, ..., K where K is total number of allowable moves do

3: Select move m that results in the lowest error in the updated estimate

mean(L[update{QB
n , g

(k−1)
n (m)}]). Call this minimum error lk.

4: if lk > lk−1 then

5: Set QB
n := update{QB

n , g
(k−1)
n }, the new baseline estimate.

6: Select move m that results in the lowest error in the updated estimate

mean(L[update{QB
n , g

(k−1)
n (m)}]). Call this minimum error lk.

7: end if

8: Set g
(k)
n := g

(k−1)
n (m); Q

∗,(k)
n := update{QB

n , g
(k)
n (m)}.

9: end for

This procedure produces a sequence of targeted estimates Q
∗,(k)
n = (Q

∗,(k)
2,n , Q

∗,(k)
1,n ) with

corresponding g
(k)
n that are improving in fit by construction. Cross-validation of the full

procedure is used to select the step km,n, dependent on sample size, at which the procedure

should terminate. We thus obtain the final vector of predictions, Q
∗,(km,n)
2,n which is used to

produce an estimate of Q1 which is then updated with the final selected g
km,n

0,n to obtain

Q
∗,(km,n)
1,n . The C-LTMLE estimate ψCLTMLE

n is then computed as the mean of Q
∗,(km,n)
1,n over

all subjects. In the Web Appendix C, we provide intuition for why this procedure would be

likely to select covariates in a way that improves the estimation of the target parameter.
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3.4.2 Properties. With a valid loss function (with corresponding risk minimized at the

truth and possessing a quadratic dissimilarity), the cross-validation selector converges to

an oracle selector (which picks the Q
∗,(k)
n closest to the true Q with respect to the loss

function) at a rate of log(n)/n (van der Laan and Dudoit, 2003). A reduction in error of

Qn implies a less biased plug-in estimate. In C-TMLE, because we are selecting amongst

TMLEs targeting the same ψ with the same initial estimate Q
(init)
n , the cross-validation

selects the best update step indexed by k. Because overfit treatment models may result

in increased variance, the penalized loss function may select an index prior to km in finite

samples, which allows the procedure to trade off between reduced bias and variance. The

asymptotic linearity of C-TMLE, which is justified in van der Laan and Rose (2011, A.18),

relies on the convergence of the cross-validation selector to some step k between km and K.

We require that the candidates g
(k)
n and Q

∗,(k)
n , k > km allow for TMLE convergence at the

√
n-rate as described for LTMLE in the Web Appendix A. The specific form of the influence

function depends on the convergence of the selected g
(k)
n to conditional distribution g̃(k).

If g̃(k) = g the influence function of the C-LTMLE will not involve any contribution from

the estimation of Q and D(ψ,Q
∗,(k)
n , g

(k)
n ) will be oP (1/

√
n) in the L2(P ) norm. If not, the

influence function may include a component related to Q
∗,(k)
n (van der Laan and Rose, 2011,

A.18). In the simulation study and the example, we approximate the large-sample variance

of C-LTMLE using the efficient influence function evaluated with the largest (i.e. unselected)

model for g.

4. Simulation study

The performance of this estimator was assessed in a simple setting, a setting with a large

number of correlated covariates, and a setting with nonlinear terms and the potential for

practical positivity violations, respectively. For each data generation, 1000 independent

draws of identically distributed longitudinal data with binary treatments were generated
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with sample sizes n = {250, 500, 1000}. The full data-generation for the three settings is

given in the Web Appendix D and summarized below.

In all simulations, we contrast G-Computation (a plug-in estimator that uses the initial esti-

mates ofQ2 andQ1 without TMLE updates) (Bang and Robins, 2005), IPTW (Robins et al.,

2000), Longitudinal TMLE, and C-LTMLE (Section 3.4) implemented with logistic regres-

sions for simplicity. We also apply what we refer to as C-IPTW, which is the C-LTMLE

algorithm applied to a completely misspecified initial estimate Q2,n = En(Y |A0 = a0, A1 =

a1) from a model that does not adjust for any additional covariates. In this version of the

algorithm, the model estimating Q1,n = En(Q2,n | A0 = a0) is also fit without covariates

aside from treatment A0. C-IPTW was included to investigate how C-LTMLE might correct

for a severely misspecified outcome model. We present the root mean squared errors (rMSE),

mean bias, and Monte-Carlo standard errors (MC SE) for each estimator.

For variance estimation for C-IPTW and the TMLE methods, we applied the full-model

influence curve sandwich estimator and a targeted variance estimator (Tran, 2016) imple-

mented in the ltmle package, version 1.0-1 (Lendle et al., 2017). For G-Computation we

applied the nonparametric bootstrap. We computed the average of the estimated standard

errors SEIC , SETE, and SEB, respectively. For the first two approaches, the 95% confidence

intervals were computed as the point estimate ±1.96× SE and for the latter as the 5th and

95th percentiles of the bootstrap-resampled estimates. We present the percentage of interval

coverage across the simulations (%Cov) for each method. All computations were carried out

using R statistical software version 3.2.0 (R Development Core Team, 2011).

4.1 Simple setting

The twofold purpose of this first setting is to verify that the C-LTMLE algorithm is selecting

covariates in a manner consistent with the known variable selection recommendations in
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causal inference (face validity), and to contrast the performance of the alternative algorithms

in a familiar setting (Brookhart et al., 2006).

We independently sampled data O = (L0, A0, L1, A1, Y ) in sequence. The independent

Gaussian baseline covariates L0 = (IV0, R0,W0) included an instrument IV0 (that only

affected binary treatment choices A0 and A1), a variable R0 that is not a confounder but

affects the binary outcome Y , and a baseline confounder W0 (directly affecting A0, L1,

and Y ). The Gaussian covariates L1 = (IV1, R1,W1) at the next time point included an

instrument IV1 (only affecting treatment choice A1), a variable R1 that only affects the

outcome, and a time-dependent confounder W1 (affecting A1 and Y ) influenced by previous

treatment A0. The target parameter is the mean outcome under treatment, E{Y 1,1} = 0.286.

By design there is no potential for practical positivity violations, so one would expect an

optimal method to select the confounders and omit the instruments.

All of the models were specified on the full set of covariate histories. Table 1 gives the results

from each of the five evaluated methods. G-Computation, which was implemented with a

regression conditional on all covariates, was unbiased and outperformed all other methods

in terms of variance. IPTW conditional on all covariates maintained some bias and had the

largest MC SE. C-IPTW had half of the variance of IPTW and smaller bias for the larger

sample sizes. LTMLE was unbiased and had smaller variance than C-IPTW. C-LTMLE had

a MC SE that rivaled G-Computation and was also unbiased, outperforming LTMLE for

the smaller sample sizes. In terms of standard error estimation, the bootstrap performed

well for G-Computation. The influence curve method performed well for C-LTMLE but

underestimated the MC SE for LTMLE, and C-IPTW at smaller sample sizes. The targeted

estimator consistently overestimated the standard errors for C-IPTW, LTMLE, and C-

LTMLE, leading to confidence interval coverage around 99%, and underestimated for IPTW
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at n = 1, 000. In the Web Table 1, we show that the C-LTMLE selected the confounders

100% of the time for the larger sample size and non-confounders between 10-30% of the time.

[Table 1 about here.]

4.2 Correlated covariates

This scenario evaluates the performance of C-LTMLE with a large number of correlated

covariates. We generated 40 baseline multivariate Gaussian covariates with pairwise covari-

ances equal to 0.2 and variances equal to one. Ten of these covariates were confounders,

ten were also confounders but more strongly related to the treatment than the outcome,

ten were purely risk factors, and ten had no direct effects on either (noise). An additional

ten intermediate Gaussian covariates were then generated conditional on the baseline and

treatment A0; five of these were confounders, two were more strongly related to treatment,

and three only caused the outcome. We generated a binary outcome conditional on the

treatments and non-noise baseline and intermediate covariates. The true value of the target

parameter was E(Y 1,1) = 0.622.

Table 2 gives the results of the five methods. All outcome models were specified using

logistic regression conditional on all 50 covariates. G-Computation had the least variance

overall but the greatest bias, resulting in poor coverage. IPTW was unbiased but had a much

greater MC SE than G-Computation. C-IPTW performed similarly to IPTW, though its MC

SE was smaller for n = 250. LTMLE and C-LTMLE were unbiased and C-LTMLE had lower

MC SE for the smaller samples. In terms of standard error estimation, the influence curve

method performed well for LTMLE and C-LTMLE, resulting in good coverage for the larger

sample sizes, though it underestimated the true standard error for C-IPTW. The targeted

method performed well for IPTW and overcovered slightly for LTMLE and C-LTMLE.

[Table 2 about here.]
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4.3 Continuous outcome with potential practical positivity violations

We extended the simulation study of (Bahamyirou et al., 2018) to the two time point setting.

The concept of this scenario is that there are interaction and squared terms between covari-

ates in the data-generating functions for the two treatments, but these nonlinearities are not

confounding the relationship between treatments and the continuous outcome. Furthermore,

the probabilities of treatment are close to zero when conditional on the true interactions

and squared terms, and far from zero when excluding the nonlinearities. Thus, excluding

these features should not affect consistency and will avoid practical positivity violations.

We consider that the analyst intends to use C-TMLE to select amongst main terms and

nonlinearities in ignorance of the consistency under a much smaller (main terms only)

treatment model. One would expect optimal performance using a method that a priori

excludes these nonlinearities. C-LTMLE would ideally be able to adaptively exclude them

and perform similarly.

We generated five baseline covariates: two instruments, one pure cause of the outcome

and intermediate confounders, and two confounders. At the second time point, we generated

two additional confounders. The treatment and outcome data-generating functions included

main terms, interactions, and squared terms though no nonlinearities were common between

the two. We implemented G-Computation, IPTW, LTMLE, and C-LTMLE including all

main, squared, and interaction terms (20 in L0 and 15 in L1). We also implemented IPTW

and LTMLE using just the main terms. C-IPTW and C-LTMLE selected from the full set

of possible terms (55 selection steps). To coincide with current practice, each probability of

treatment was truncated at 0.01 (Lendle et al., 2017).

Table 3 gives the results of each method in this scenario. The G-Computation fit using a

logistic regression that included all possible nonlinearities maintained a low bias and variance

for all sample sizes. In contrast, the IPTW that included the same terms had bias and MC
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SE that were one magnitude larger. When the IPTW included only the main terms, the

bias was nearly eliminated and the variance greatly reduced. LTMLE outperformed the

corresponding IPTW estimators in terms of variance when including all terms and just main

terms, respectively. The C-IPTW improved upon the estimation of IPTW, roughly quartering

the variance but maintaining the magnitude of bias. The C-LTMLE performed slightly better

in terms of bias and MC SE than the LTMLE with main terms for n = 250 but maintained its

bias as the sample size increased. The influence curve approach underestimated the standard

error of LTMLE with the full model, and overestimated that of LTMLE with main terms

only, resulting in good coverage for the latter. The targeted variance estimation method

performed well for IPTW with main terms. The bootstrap produced reasonable standard

error estimates for G-Computation. For other models, these standard error estimates did

not correspond to the MC SE on average. Confidence interval coverage was low overall due

to this issue and to estimation bias for all methods except LTMLE with main terms.

[Table 3 about here.]

5. Estimating the effect of inhaled corticosteroids during pregnancy

The C-LTMLE method described above was applied to estimate the effect of taking low daily

doses of ICS during pregnancy in women categorized with mild asthma in the year prior to

pregnancy. Mild asthma was categorized using an algorithm previously validated in this

population (Cossette et al., 2013). Women were considered exposed to low ICS daily doses

(< 250µg in Fluticasone equivalent) at the beginning of the first trimester (A0 = 1) if they

had begun a prescription by the beginning of pregnancy. As summarized in Section 2, there

are 18 baseline and 19 intermediate measured variables, leading to a total of 110 possible

covariate additions to the four treatment models. All three of the outcomes investigated

(LBW, premature birth, and SGA) are binary perinatal risk indicators. Therefore, we seek
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to estimate the marginal risk ratio under exposure to low-dose ICS at the beginning of both

trimesters versus neither, E(Y 1,1)/E(Y 0,0). This parameter is greater than 1 if adherence to

low daily doses of ICS increases the probability of the outcome and is therefore hazardous

to the fetus.

An additional complication in this dataset that was not previously mentioned is the

presence of censoring. We considered all women in the cohort who were not taking either

treatment category of interest (for instance, those taking higher daily doses) to be censored.

We indicate C0 = 1 if a woman is censored at the beginning of the first trimester (and C0 = 0

otherwise), and C1 = 1 if a woman is censored at the beginning of the second trimester

(C1 = 0 otherwise). In particular, if C0 = 1 then C1 = 1 for the same individual. We

therefore have the full observed dataset O = (L0, C0, A0, L1, C1, A1, Y ) where once censored,

all subsequent values of L,A and Y are considered to be missing. In order to adjust for

potentially informative censoring in addition to the confounded treatment, we must break

g into two components. In particular, we redefine g0 = gA,0 × gC,0 and g1 = gA,1 × gC,1

where now gA,0(l0) = P (A0 = a0 | L0 = l0, C0 = 0) and gA,1(l1) = P (A1 = a1 | L1 =

l1, A0 = a0, C1 = 0) are the treatment probabilities and gC,0(l0) = P (C0 = 0 | L0 = l0)

and gC,1(l1) = P (C1 = 0 | L1 = l1, A0 = a0, C0 = 0) are the censoring probabilities. In the

C-LTMLE algorithm, this allows for the possibility of adding the eligible covariates into both

the treatment and censoring models separately, increasing the number of possible additions

at every step. Otherwise, the procedure as described above remains unchanged.

We contrasted the results of G-Computation, IPTW, LTMLE, and C-LTMLE, run sepa-

rately for a = (1, 1) and a = (0, 0), for the estimation of the marginal risk ratio. For each

of the three outcomes, G-Computation, LTMLE and C-LTMLE used the same outcome

model, fit with a main terms logistic regression. Treatment probabilities were truncated to

lie between (0.01,0.99) in all cases. The variances of LTMLE and C-LTMLE were calculated
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using the standard sandwich estimator which uses the efficient influence function with the full

(unselected) treatment models and the functional delta method (van der Laan and Gruber,

2012). At the time of writing, the targeted variance estimation method was not available for

saturated contrasts in the ltmle package. The variances of G-Computation and IPTW were

calculated using the nonparametric bootstrap with 1,000 resamples. All calculations were

carried out in R statistical software version 3.1.3 (R Development Core Team, 2011).

The results for the three outcomes and four methods are presented in Table 4. The risk

ratio estimates, 95% confidence intervals, and standard errors (SE) are reported. The number

of variables selected by C-LTMLE are reported for each exposure category. Truncation

was found to be necessary for IPTW and LTMLE, and likely beneficial for C-LTMLE,

due to the otherwise large weights. Similarly to related analyses of low dose versus no

ICS (Cossette et al., 2013), all three outcomes had risk ratios that were close to one with

confidence intervals that contained the null. The usage of C-TMLE only slightly altered

the risk ratios compared to LTMLE. In terms of computation time on a local server, G-

Computation (with bootstrapping) took 720 seconds, IPTW (with bootstrapping) took 1450

seconds, LTMLE took 1 second, and the C-LTMLE cross-validation procedure took 8670

seconds. We comment on the credibility of the causal assumptions in the Web Appendix E.

[Table 4 about here.]

6. Discussion

In this paper, we developed a collaborative longitudinal targeted minimum loss-based esti-

mation (C-LTMLE) approach for time-varying treatments. This method sequentially selects

terms to be included in the treatment (and/or censoring) models that are used in the TMLE

update steps. This selection is decided by a penalized loss function for the updated nested

conditional expectations of the outcome. Related work for dynamic treatment regimes by
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Shi et al. (2018) involves a high-dimensional covariate selection method constrained by a

doubly-robust estimating equation that involves the product of the errors of the estimated

time-specific probability of treatment and nested outcome expectation. Rather than using

cross-validation to select the tuning parameter as we do, their method uses a doubly robust

Bayesian information criterion. Another difference is that TMLE methods do not require any

assumed model structure for the treatment(s) or outcome, though they still require regularity

conditions and minimal convergence rates.

Our procedure can be adapted for non-saturated marginal structural models using Pooled

Longitudinal TMLE (Petersen et al., 2013). Since selection steps in the given procedure

require testing all possible additions to each treatment model, the computational complexity

is a concern for a large number of time points. One may potentially adapt the a priori variable

ordering in Ju et al. (2017) to the longitudinal setting to reduce computational time.

In the simulation study, C-LTMLE performed better than other semiparametric methods,

but worse than the fully parametric (slightly misspecified) G-Computation for n < 1, 000, in

terms of standard error and bias in the three scenarios. In the first simulation, we observed

that C-LTMLE selected covariates in a way that roughly corresponded to common knowledge

in causal inference, selecting true confounders 100% of the time for larger sample sizes

and including instruments and pure causes of the outcome at similar rates around 10-30%.

More empirical investigation may be required to better understand how C-TMLE prioritizes

covariates in practice. In the third scenario, C-LTMLE was able to greatly reduce the bias and

variance compared to the LTMLE that included all unnecessary nonlinear terms. However,

the residual bias did not decrease as the sample size increased, though the Monte Carlo

variance did. Variance estimation for C-LTMLE was done using both the standard influence

curve approach and a robust targeted method (Tran, 2016), evaluated with the full model

for g. The influence curve approach performed well for C-LTMLE under the two larger
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sample sizes investigated and the targeted approach overestimated in the simple setting

with few covariates (as it did for LTMLE). Neither approach performed well in the presence

of positivity violations. For C-LTMLE, this was likely because the cross-validation selector

omitted true terms in the g-model, resulting in an influence function that depended on the

estimation of Q. Future work is needed to investigate post-selection issues in C-TMLE and

variance estimation under misspecification.

The application involved the estimation of the perinatal safety of taking a low dose of

inhaled corticosteroids (ICS) in the first two trimesters of pregnancy in women with mild

asthma. Missing outcome data required that censoring models be added to the C-LTMLE

procedure. No methods suggested that there is an effect on low birth weight, having a

preterm birth, or delivering a baby with a weight in the lowest 10th percentile. The C-

LTMLE slightly shifted the point estimates for the two latter outcomes but this did not

change the interpretation. The sandwich variance estimate for C-LTMLE was greater than

the bootstrapped estimate for the G-Computation and much less than that of IPTW.

By introducing our Longitudinal C-TMLE approach, we hope to stimulate development

and discussion of variable selection methods for saturated and unsaturated marginal struc-

tural models. Without variable or model selection approaches, fitting the required models

may prove challenging in areas where the number of potential time-varying confounders is

large. The improvement of such techniques is likely to facilitate the adoption of longitudinal

causal inference methods in substantive research areas.

Acknowledgements

The authors would like to thank Lucie Blais (Université de Montréal) for providing the
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Table 1
Simple scenario simulation study results. Root mean squared error, mean bias, Monte Carlo standard error, and

estimated standard error and coverage. SEIC is calculated from the influence curve; SETE is the TMLE estimate of
the standard error from the ltmle package. All models are specified on the full sets of covariate histories. True value

E(Y 1,1) = 0.286.

GCOMP IPTW C-IPTW LTMLE C-LTMLE

n = 250
rMSE 0.045 0.165 0.090 0.076 0.055
Mean Bias -0.002 -0.019 -0.036 -0.007 -0.005
MC SE 0.045 0.164 0.083 0.076 0.055
SEIC(%Cov) - - 0.069(78) 0.057(78) 0.057(91)
SETE(%Cov) - 0.213(93) 0.213(98) 0.160(99) 0.160(99)
SEB(%Cov) 0.044(94) - - - -

n = 500
rMSE 0.031 0.125 0.059 0.055 0.038
Mean Bias 0.001 -0.023 -0.012 -0.001 -0.001
MC SE 0.031 0.123 0.058 0.055 0.038
SEIC(%Cov) - - 0.052(87) 0.043(82) 0.043(95)
SETE(%Cov) - 0.122(91) 0.122(99) 0.090(99) 0.090(100)
SEB(%Cov) 0.031(95) - - - -

n = 1, 000
rMSE 0.022 0.107 0.037 0.041 0.026
Mean Bias -0.001 -0.018 -0.007 -0.003 -0.002
MC SE 0.022 0.106 0.037 0.040 0.026
SEIC(%Cov) - - 0.040(93) 0.033(83) 0.033(97)
SETE(%Cov) - 0.085(84) 0.085(99) 0.061(99) 0.061(100)
SEB(%Cov) 0.021(95) - - - -
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Table 2
Correlated covariates simulation study results. Root mean squared error, mean bias, Monte Carlo standard error,
and estimated standard error and coverage. SEIC is calculated from the influence curve; SETE is the TMLE

estimate of the standard error from the ltmle package. True value E(Y 1,1) = 0.622.

GCOMP IPTW C-IPTW LTMLE C-LTMLE

n = 250
rMSE 0.051 0.158 0.095 0.086 0.069
Mean Bias -0.025 -0.010 0.029 0.002 0.001
MC SE 0.044 0.158 0.090 0.086 0.069
SEIC(%Cov) - - 0.078(84) 0.064(79) 0.064(89)
SETE(%Cov) - 0.185(94) 0.185(99) 0.152(98) 0.152(98)
SEB(%Cov) 0.047(94) - - - -

n = 500
rMSE 0.039 0.065 0.073 0.051 0.045
Mean Bias -0.025 -0.004 0.007 -0.003 -0.004
MC SE 0.030 0.065 0.072 0.051 0.045
SEIC(%Cov) - - 0.053(83) 0.047(91) 0.047(95)
SETE(%Cov) - 0.066(95) 0.066(93) 0.056(96) 0.056(98)
SEB(%Cov) 0.031(87) - - - -

n = 1, 000
rMSE 0.031 0.037 0.051 0.033 0.030
Mean Bias -0.022 0.000 -0.006 0.003 0.000
MC SE 0.021 0.037 0.050 0.033 0.030
SEIC(%Cov) - - 0.036(82) 0.033(94) 0.033(95)
SETE(%Cov) - 0.040(96) 0.040(86) 0.035(97) 0.035(97)
SEB(%Cov) 0.021(83) - - - -
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Table 3
Continuous outcome with potential practical positivity violations simulation study results. All models are fit on the
full data, including main terms, first-order interactions, and squared terms with the exception of IPTWMT and

LTMLEMT which include models fit on the main terms only. The collaborative methods select from all main terms,
first-order interactions, and squared terms. Root mean squared error, mean bias, Monte Carlo standard error, and
mean estimated standard error were exceptionally calculated with 10% trimmed means due to outliers. SEIC is

calculated from the influence curve; SETE is the TMLE estimate of the standard error from the ltmle package. True
value E(Y 1,1) = 10.39.

GCOMP IPTW IPTWMT C-IPTW LTMLE LTMLEMT C-LTMLE

n = 250
rMSE 0.53 4.55 1.00 2.22 2.53 0.78 0.65
Mean Bias -0.32 -2.27 -0.15 2.13 1.32 -0.22 0.21
MC SE 0.44 4.26 0.99 0.77 2.37 0.74 0.66
SEIC(%Cov) - - - 0.99(43) 0.72(34) 0.98(92) 0.72(86)
SETE(%Cov) - 0.85(25) 1.04(90) 0.87(35) 0.56(32) 0.94(91) 0.56(82)
SEB(%Cov) 0.53(90) - - - - - -

n = 500
rMSE 0.45 4.42 0.74 2.15 1.62 0.53 0.56
Mean Bias -0.32 -2.90 -0.12 2.11 0.89 -0.10 0.26
MC SE 0.35 3.72 0.73 0.54 1.51 0.52 0.54
SEIC(%Cov) - - - 0.84(31) 0.50(43) 0.84(96) 0.50(82)
SETE(%Cov) - 0.71(21) 0.78(91) 0.71(22) 0.42(42) 0.80(93) 0.42(77)
SEB(%Cov) 0.38(82) - - - - - -

n = 1, 000
rMSE 0.36 4.12 0.55 2.13 1.20 0.40 0.50
Mean Bias -0.30 -3.29 -0.08 2.11 0.68 -0.09 0.27
MC SE 0.23 2.88 0.54 0.38 1.10 0.39 0.47
SEIC(%Cov) - - - 0.75(17) 0.37(47) 0.67(96) 0.37(80)
SETE(%Cov) - 0.59(20) 0.58(91) 0.58(10) 0.31(45) 0.64(94) 0.31(75)
SEB(%Cov) 0.27(79) - - - - - -
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Table 4
Application results for longitudinal C-LTMLE, LTMLE, IPTW, and G-Computation, implemented with logistic

regressions. The parameter estimated is E(Y 1,1)/E(Y 0,0). n = 5, 048

Outcome GCOMP IPTW LTMLE C-LTMLE

SGA
Estimate 1.02 1.02 1.05 1.02
SEIC 0.09 0.16 0.10 0.10
95% CI (0.87,1.21) (0.71,1.30) (0.86,1.25) (0.83,1.20)

n. vars selected {(1, 1), (0, 0)} - - - (0,0)

Premature
Estimate 1.00 0.91 0.94 0.97
SEIC 0.10 0.16 0.11 0.12
95% CI (0.81,1.22) (0.76,1.38) (0.72,1.16) (0.73,1.20)

n. vars selected {(1, 1), (0, 0)} - - - (35,35)
LBW

Estimate 1.11 1.07 1.10 1.13
SEIC 0.13 0.18 0.14 0.14

(95% CI) (0.90,1.41) (0.81,1.55) (0.83,1.38) (0.86,1.41)
n. vars selected {(1, 1), (0, 0)} - - - (31,0)


