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Sommaire

Les provisions techniques (ou � réserves �) constituent habituellement l’un des plus

importants passifs au bilan d’un assureur IARD (Incendie, Accidents et Risques Divers).

Conséquemment, il est crucial pour les assureurs de les estimer avec précision. En outre, un

assureur IARD opère généralement dans plusieurs lignes d’affaires dont les risques ne sont pas

parfaitement dépendants. Il en résulte un � bénéfice de diversification � qu’il est primordial

de considérer pour son effet sur les réserves et le capital. Il est donc essentiel de prendre en

compte la dépendance entre lignes d’affaires dans l’estimation des réserves.

L’objectif de cette thèse est de développer de nouvelles approches d’évaluation des

réserves pour des portefeuilles d’assurance avec lignes d’affaires dépendantes. Pour ce faire,

nous explorons la technique de choc commun, une méthode populaire de modélisation de la

dépendance qui offre plusieurs avantages, tels qu’une structure de dépendance explicite, une

facilité d’interprétation et une construction parcimonieuse des matrices de corrélation. Afin

de rendre les méthodes utiles à la pratique, nous incorporons au modèle des caractéristiques

réalistes et souhaitables.

Motivés par la richesse de la famille de distributions de probabilité Tweedie, laquelle

recoupe les distributions Poisson, amma et bien d’autres, nous introduisons un cadre commun

de choc Tweedie avec dépendance entre lignes d’affaires. Les propriétés attrayantes de ce

cadre sont étudiées, y compris la flexibilité de ses marges, ses moments ayant une forme

analytique et sa capacité d’inclure des masses à 0.

Pour surmonter la complexité de la structure distributionnelle Tweedie, nous utilisons

une approche bayésienne dans l’estimation des paramètres du modèle, que nous appliquons

à un ensemble de données réelles. Nous formulons des remarques sur les caractéristiques

pratiques de notre cadre.

Les données sur les provisions techniques pour sinistres sont asymétriques par nature.
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C’est-à-dire, les montants de réclamations qu’on retrouve dans différentes cases d’un même

triangle et entre différents triangles peuvent varier considérablement. Ceci s’explique

car, habituellement, le nombre de sinistres est plus élevé dans les premières périodes de

développement. Nous tenons compte explicitement de cette caractéristique dans nos modèles

de chocs communs en y incluant un ajustement parcimonieux. Des illustrations utilisant des

données théoriques (simulées) et réelles sont présentées.

Enfin, dans la dernière partie de cette thèse, nous élaborons un cadre dynamique avec

des facteurs évolutifs tenant compte des tendances de développement des sinistres pouvant

changer avec le temps. Une dépendance entre années civiles est introduite à l’aide de chocs

communs. Nous formulons également une méthode d’estimation adaptée à la structure des

données de provisionnement des sinistres, que nous illustrons à l’aide de données réelles.

Mots clés: réserves stochastiques, triangles de développement, choc commun,

modélisation évolutive, réservation robotisée, distribution Tweedie, estimation bayésienne,

données asymétriques, filtrage de Kalman, filtre particulaire.
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Summary

Outstanding claims liability is usually one of the largest liabilities on the balance

sheet of a general insurer. Therefore, it is critical for insurers to accurately estimate their

outstanding claims. Furthermore, a general insurer typically operates in multiple business

lines whose risks are not perfectly dependent. This results in “diversification benefits”, the

consideration of which is crucial due to their effects on the aggregate reserves and capital.

It is then essential to consider the dependence across business lines in the estimation of

outstanding claims.

The goal of this thesis is to develop new approaches to assess outstanding claims

for portfolios of dependent lines. We explore the common shock technique for model

developments, a very popular dependence modelling technique with distinctive strengths,

such as explicit dependence structure, ease of interpretation, and parsimonious construction

of correlation matrices. We also aim to enhance the practicality of our approaches by

incorporating realistic and desirable model features.

Motivated by the richness of the Tweedie distribution family which covers Poisson

distributions, gamma distributions and many more, we introduce a common shock Tweedie

framework with dependence across business lines. Desirable properties of this framework are

studied, including its marginal flexibility, tractable moments, and ability to handle masses at

0.

To overcome the complex distributional structure of the Tweedie framework, we

formulate a Bayesian approach for model estimation and perform a real data illustration.

Remarks on practical features of the framework are drawn.

Loss reserving data possesses an unbalanced nature, that is, claims from different

positions within and between loss triangles can vary widely as more claims typically develop

in early development periods. We account for this feature explicitly in common shock models
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with a parsimonious common shock adjustment. Theoretical and real data illustrations are

performed using the multivariate Tweedie framework.

Finally, in the last part of this thesis, we develop a dynamic framework with

evolutionary factors to account for claims development patterns that change over time.

Calendar year dependence is introduced using common shocks. We also formulate an

estimation approach that is tailored to the structure of loss reserving data and perform a

real data illustration.

Keywords: stochastic reserving, loss triangles, common shock, evolutionary modelling,

robotic reserving, Tweedie family of distributions, Bayesian estimation, unbalanced data,

Kalman filtering, particle filtering.
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CHAPTER 1

Introduction

1.1 Loss reserving background

In general insurance (also known as non-life insurance, or property and casualty (P&C)

insurance), there is typically a delay between the occurrence of an insured event, its reporting

and the actual payments of claims. This delay can be driven by various reasons such as delays

in reporting claims, administrative delays, investigations and legal proceedings. It can also

be the nature of some policies that pay losses over a long period of time such as workers

compensation insurance. A typical time line of a claim is given in Figure 1.1, replicating

that in Taylor (2000). A claim occurs due to an accident within the insured period. The

company, however, is not aware of this claim until it is reported. After the processing period,

payments are made. At some point, the insurer considers the claim complete and closes the

file. Further information may arrive and the claim is reopened, which is then followed by

more payments until the file is completely closed.

Figure 1.1: Time line of a claim
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An insurer is obligated to pay outstanding claims in accordance with the terms of the

policies for which they have already earned premiums. To sustain financial stability, it is then

essential for them to set aside sufficient reserves for these claims. This is also often enforced

by regulators to maintain the soundness of the financial system. Outstanding claims liability

is typically one of the largest liabilities on the balance sheet of a general insurer, see for

example, Alai and Wüthrich (2009); Heberle and Thomas (2016); Saluz and Gisler (2014).

It can indeed be a number of times larger than the annual profit of the insurer (Taylor and

Ashe, 1983). Thus it is essential to estimate outstanding claims accurately because any errors

in the estimation of outstanding claims can have serious consequences on the emerging profit

and solvency of the insurer.

Loss reserving methodologies have been available for many decades. Traditional

methods include the chain ladder and the Bornhuetter-Ferguson techniques which apply a

set of relatively simple algorithms to observed data to project outstanding claims. These

traditional methods have gained their popularity due to their simplicity. However, outputs

obtained from these algorithms are only single point (central) estimates of outstanding

claims liabilities while the nature of outstanding claims is stochastic. To get a protection

against downside movements, the insurer often holds a safety or risk margin related to the

variability of outstanding claims liability. The uncertainty is often of more interest than

the mean estimate itself in good risk management practice (Shi et al., 2012). Indeed, this

is also a regulatory requirement in many countries (Gismondi et al., 2012). For example,

the general prudential standards (GPS) 340 in Australia requires insurers to hold a risk

margin for their outstanding claims liabilities. The risk margin is defined as the maximum

of a half of the standard deviation, and the difference between VaR75% and the central

estimate of outstanding claims liability. Solvency II in Europe requires insurers to quantify

their outstanding claims uncertainties using standard deviations of their total outstanding

claims over a one-year-basis. For solvency purposes, the VaR99.5% of the distribution of total

outstanding claims is also an input in the calculation of risk-based capital in both of these

frameworks.

Traditionally, actuaries add margins separately to the central estimate of outstanding

claims obtained from deterministic methods if and when needed. These margins may be

results of scenario and sensitivity testing and are not validated statistically. Over time, there

has been a growing need to allow for uncertainty in a more consistent manner. This has

motivated the development of various stochastic modelling techniques over the last three
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decades (for excellent reviews of stochastic models, see Taylor, 2000; Wüthrich and Merz,

2008). Early models typically focus on the estimation of outstanding claims liability for a

single business line or segment. Over time, more advanced models have been introduced.

These include more realistic data features such as dependence across business segments, or

changes in claims development patterns. These models can also include desirable features

such as flexibility, ease of communication and application. These features will be discussed

in detail in the following subsections.

1.1.1 Dependency across segments

An insurer typically operates in multiple business segments, the number of which can be

up to 100 in some cases (Avanzi, Taylor and Wong, 2018). These segments can be business

lines or subsets of these. Dependency across different business segments is an important

characteristic of claims for a typical general insurer. As defined in Avanzi, Taylor and Wong

(2016) using non-technical terms, it typically is the situation where the experience of one

segment varies in sympathy with that of other segments. This experience can arise from

many causes. At the very least, some segments share the same reporting procedure (Shi

and Frees, 2011; De Jong, 2012) hence any changes in the operational system can affect

these segments simultaneously. Similarly, legislative changes can also have impacts on some

segments such as the same business line in different geographical locations. There can also

be claim causing events such as hailstorms that give rise to claims in multiple business lines

(for example, motor line and property line).

Since the 1980s, various univariate stochastic models have been developed in the

literature (see Taylor, 2000; England and Verrall, 2002; Wüthrich and Merz, 2008). These

models typically focus on assessing outstanding claims liability in a single business segment.

The total liability on the portfolio level is then obtained by aggregating liabilities from

individual segments. This is also referred to as the “silo” approach (Ajne, 1994; Shi and

Frees, 2011).

With the existence of dependence across segments, the “silo” approach does not allow

cross-borrowing of information across segments, which can result in sub-optimal central

estimates of outstanding claims liabilities. The issue of “additivity” also arises for the “silo”

approach. This refers to the problem where summary statistics on the aggregate level are not
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statistically equivalent to the sums of the corresponding statistics on an individual level. This

occurs to many measures of uncertainty, including quantiles and standard deviations, the two

measures that are commonly used in reserving. These two measures are indeed only additive

in cases of co-monotonicity, also known as perfectly positive dependence. While business

segments have dependence to some extent, it is quite rare to observe cases of co-monotonicity

(Kirschner et al., 2002). Due to the lack of a perfectly positive dependence structure across

segments, the volatility of claims on the aggregate portfolio level is reduced compared to

the aggregation of volatility on the individual segment level. This reduction often is known

as a “diversification benefit” (Shi and Frees, 2011; De Jong, 2012; Côté et al., 2016;Avanzi,

Taylor, Vu and Wong, 2016).

It is worth re-emphasising that the problem of “additivity” shall not be taken lightly

because, as mentioned in the previous section, measures of uncertainty associated with the

central estimate are often of great interest. At the very least, a simple addition of uncertainty

measures will result in an over-estimation of risk margin and risk-based capital. Even if

a certain degree of prudence is recommended, insurers should have as correct reserves as

possible, not as large reserves as possible (Ajne, 1994). This is to ensure that capital is

used parsimoniously while meeting solvency expectations (Avanzi, Taylor and Wong, 2016).

Indeed, many insurance regulatory frameworks enable insurers to enjoy their diversification

benefits in assessing the risk margins for their outstanding claims liabilities, as well as risk

capitals for their consolidated operations (Avanzi, Taylor and Wong, 2016).

In the aggregation of outstanding claims liabilities, information regarding their

dependencies can be added separately after outstanding claims estimates are obtained for

individual segments using the “silo” approach. Alternatively, outstanding claims from

individual segments and their dependence structure can be assessed simultaneously in a more

consistent manner. This also allows a cross-borrowing of information across segments which

can improve the accuracy of the overall estimation (Shi et al., 2012). Some multivariate

approaches, such as common shock approaches, capture the dependence structure in a

transparent and parsimonious manner. This enhances the ease of interpretation and

communication of the models used.
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1.1.2 Realistic and desirable model features

It is essential for insurers to estimate their outstanding claims liabilities accurately

because of their significant impacts on emerging profits as well as the capital utilisation

of insurers, as also discussed in Section 1.1. To accomplish this, it is then important to

consider and incorporate data features, especially significant ones, in modelling. One of such

features is the dependency across segments which is discussed in the previous section. It

is also typical to observe claim activity (i.e. the development of claims over time, which

can refer to the reporting, payments or settlements of claims) reaching a peak within a few

years after the accident period, then declining as the time lag extends. We can call this the

unbalanced nature of claims data. Any potential impacts of this particular behaviour of claim

activity on any models should be examined. Insurers occasionally experience claims of 0’s

or negative values in their outstanding claims data due to, for example, salvage recoveries,

or payment from third parties (De Alba, 2006; Kunkler, 2006). This particular feature can

result in modelling difficulties as many distributions do not have support for non-positive

values. Models construction should also be mindful of this feature. Another common feature

of reserving data is changes in claims development pattern (i.e. the pattern that claims from

the same accident period develop over time) across accident periods. This feature will be

discussed in detail in the subsequent section.

At the same time, while it is important to consider realistic data features, it is also

desirable to incorporate features that enhance the flexibility and practicality of models. It

is often desirable for models to have flexible choices of marginals, also known as marginal

flexibility, so that they can be applicable in more scenarios. Moments tractability may also be

desirable in some cases as it allows the mean and variance of outstanding losses to be obtained

in closed-form. This is particularly beneficial when their calculation is computationally

expensive. It is also desirable for models to be parsimonious because loss reserving data

is typically of small sample size. Other desirable features also include ease of interpretation

of the dependence structure and disciplined construction of correlation matrices. As the

demand for more frequent liability valuations has been increasing, it can also be desirable to

have repetitive reserving jobs automated. This can be achieved using evolutionary reserving.

More detail regarding this is given in the next section.
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1.1.3 Changing claim activity and robotic reserving

Outstanding claims valuation is a predictive modelling activity whose purpose is to use

historical data to forecast future outstanding claims. It is, however, not at all unusual to

observe changes in claim activity. For example, insurers can improve the administering of

claims over time to enhance efficiency, hence gradually shorten the administrative delays. A

legislative change such as the recent reform for Auto Bodily Injury covers in New South Wales,

Australia (State Insurance Regulatory Authority, 2018) results in faster claims resolution,

hence reduces payment delays.

When changes occur, the projection of future claims is unfortunately no longer

straightforward (Renshaw, 1989; Zehnwirth, 1994; Ghezzi, 2001; Taylor et al., 2003). Models

with the assumption that claim activity is stable over time will experience failure. Actuaries

have to make a lot of judgements to remove or reduce the effects of these changes if these

models are used. These judgements can be time consuming to make and also difficult to justify

(Sims, 2012). Actuaries may also want to revise the algebraic structure of the model which

then results in a discontinuity in the sequence of estimates of outstanding claims liability

(Taylor et al., 2003).

An elegant and plausible solution for these cases is to accommodate changes directly

in the models by allowing parameters to evolve over time (De Jong and Zehnwirth, 1983;

Zehnwirth, 1994; Gluck and Venter, 2009; Taylor et al., 2003). This is not the same as simply

randomising parameters, but letting them evolve in a recursive manner. Filtering processes

are usually used for the estimation of evolving parameters in these models. A filtering process

is a real-time device that recursively updates parameters in the current period using estimates

from the previous period without the need to redo all calculations or keep track of previous

information (De Jong and Zehnwirth, 1983). This estimation gives more weight to more recent

data, hence is more responsive to recent changes (Taylor, 2000; Alpuim and Ribeiro, 2003)

and reduces reliance on arbitrary model judgements. A clear picture historical experience

with any changes can then be obtained and the sequence of estimates derived from these

models are smooth over time (Sims, 2012).

There has also been an increasing demand from insurers for more frequent liability

valuations, such as on a quarterly or even monthly basis (Taylor and McGuire, 2008; Sims,

2014). Many insurers have large portfolios of many segments, making the valuation of

6
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outstanding claims liabilities rather time consuming. Repetitive reserving jobs that do

not require substantial actuarial judgements can then be automated using reserving robots.

Evolutionary models and filtering processes can be used to construct these robots as they

allow reserving estimates to be continually updated with new information.

1.2 Research motivation

The aim of our research is to develop reserving methodologies that incorporate realistic

as well as desirable features. As mentioned in Section 1.1, it is important to accurately

evaluate outstanding claims liabilities because of their significant impacts on the emerging

profits as well as the capital of insurers. By allowing for realistic features in the models, the

valuation can be improved. In addition, the practicality of models can also be enhanced by

incorporating desirable features such as flexibility and tractability.

1.2.1 Multivariate reserving and common shock approaches

Insurers typically operate in multiple segments whose risks are not co-monotonic.

This allows them to enjoy diversification benefits when they set their risk margins for

outstanding claims liabilities, as well as risk-based capital (Section 1.1.1). The importance

and various benefits of multivariate reserving have motivated the development of stochastic

reserving models with dependence in the literature (see for example, Schmidt, 2006; Merz

and Wüthrich, 2009a; De Jong, 2012; Zhang and Dukic, 2013; Merz et al., 2013; Shi, 2014).

There are three main groups of existing parametric models: models using copulas, models

using multivariate distributions with specific marginals, and models using common shock

approaches.

Copulas are very popular dependence modelling tools not only in reserving but also

in many other actuarial areas. Various applications of copulas in reserving can be found

in Shi and Frees (2011); De Jong (2012); Zhang and Dukic (2013); Abdallah et al. (2015);

Côté et al. (2016), just to name a few. The popularity of copulas comes from their modelling

flexibility by allowing different types of marginals to be used with a wide range of dependence

structures. Besides copulas, alternative multivariate distributional approaches have been

considered for some specific choices of marginal distributions such as multivariate log-normal

7
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models in Shi et al. (2012) and Merz et al. (2013), and the multivariate gamma model in Vu

(2013). The last group of models utilises common shock approaches to capture dependence

within or across segments. Some of these models use hierarchical Bayesian model structures

which have randomised parameters to capture dependence across related variables. Examples

include Abdallah et al. (2016); Wüthrich (2010); Salzmann and Wüthrich (2012); Shi et al.

(2012). Other models are constructed using multivariate reduction techniques where the

decomposition of claim observations contains a component that represents common effects.

Examples of these models are Vu (2013); Avanzi, Taylor and Wong (2018).

In insurance, common shock approaches have been well known tools for dependence

modelling (Lindskog and McNeil, 2003) and are also called random effect approaches in the

literature. They are typically used to capture structural dependence, that is, structural co-

movements that are due to known relationships which can be accounted for in a modelling

framework (International Actuarial Association, 2004). As their names suggest, common

shock approaches use common random factors to capture drivers of dependence across related

variables. As a result, these drivers can be identified, as well as monitored if needed.

The transparent dependence structures in common shock models can then be interpreted

more easily. This is indeed one of the four desirable properties of multivariate distributions

considered in Joe (1997, Chapter 4) which include:

– interpretability,

– closure under the taking of marginals, meaning that the multivariate marginals belong

to the same family (this is important if, in modelling, we need to first choose appropriate

univariate marginals, then bivariate and sequentially to higher-order marginals),

– flexible and wide range of dependence,

– density and cumulative distribution function in closed-form (if not, they are

computationally feasible to work with).

Furthermore, the construction of correlation matrices can also be put at ease. Correlation

matrices are tools extensively used by practitioners to specify dependence in the aggregation

of outstanding claims liabilities or risk-based capital. Explicit dependence structures captured

using common shock approaches allow correlation matrices to be specified in a more

disciplined and parsimonious manner (Avanzi, Taylor and Wong, 2018).
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1.2.2 Areas of development with common shock approaches

Common shock approaches provide various benefits for modelling dependency across

segments. However, it is also very desirable for models to have marginal flexibility to

enhance their applicability. This is a feature that has contributed to the popularity of

copulas in various fields. The exponential dispersion family (EDF), and its Tweedie subclass

in particular, receive our attention in this thesis. The Tweedie subclass is a very rich

family of distributions which covers various symmetric and non-symmetric, light-tailed and

heavy-tailed distributions (Jorgensen, 1997). Some notable members of the Tweedie family

include Poisson distributions and Tweedie’s compound Poisson distributions. The former

are frequently used in loss reserving and well known in stochastic models that underlie the

traditional chain ladder algorithm. The latter have probability mass at 0 hence are applicable

in many data sets which contain 0’s. They are also considered golden distributions in actuarial

risk theory (Kaas et al., 2008).

The many benefits of common shock approaches and the rich Tweedie family of

distributions motivate the development of a common shock Tweedie framework for reserving.

In this particular construction of the dependence structure, moments, including the mean

and variance can be obtained in closed-form. This is a desirable property when the valuation

of such quantities are computationally expensive. This framework as well as its various

theoretical benefits is the focus of Chapter 31.

The Tweedie family of distributions, however, has quite a complex density. This issue

further escalates in a multivariate framework. To overcome this issue, we formulate a Bayesian

approach for model estimation in Chapter 41. An illustration using real data from Schedule

P in the United States (available in Zhang and Dukic, 2013) is provided, and remarks on

applications of the framework are also drawn.

In most (if not all) reserving data sets, there is a significant variation in claim activity

for different lengths of delay. In particular, it often reaches a peak in some early years,

then dies out as the delay increases. Furthermore, claim activities across segments are

not identical. Some segments such as Auto Property Damage are called short-tailed with

typically shorter delays in claim activity. Other segments, for example Auto Bodily Injury

1An abbreviated version of results in Chapters 3 and 4 has been published in Avanzi, B., Taylor, G., Vu,
P.A., Wong, B., 2016. Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach.
Insurance: Mathematics and Economics 71, 63–78.
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covers, are long-tailed with longer delays. In Chapter 52, we analyse this feature and its

impact on common shock models in detail. We then account for this feature explicitly

with a parsimonious solution used in the development of a modified common shock Tweedie

framework for unbalanced data. An illustration is performed using real data from a Canadian

insurance company (available in Côté et al., 2016).

In addition to the many data features described above, insurers also typically observe

changes in claim activity over time, as also mentioned in Chapter 1.1.3. This very common

but also very important feature has motivated the development of evolutionary models which

capture these changes naturally through evolving parameters. Evolutionary models also have

many other benefits as also mentioned in Chapter 1.1.3. The first appearance of evolutionary

models in the loss reserving literature dates back to the early 1980s with the work of De Jong

and Zehnwirth (1983). This model, as well as the majority of existing evolutionary models,

including Verrall (1989, 1994); Ntzoufras and Dellaportas (2002); Atherino et al. (2010);

De Jong (2006) are based on the assumption of Gaussian distributed claims (usually on the

log-scale). This specific assumption for claims distribution allows Kalman filtering to be

used, an optimal closed-form filtering algorithm for these cases. All of these models focus

on a single segment of business. Shi et al. (2012) briefly touched on evolutionary modelling

by allowing only calendar factor to evolve in a multivariate log-normal model for multiple

business segments. This factor is not updated sequentially but in a traditional hierarchical

Bayesian structure.

As also mentioned previously, the EDF has been a very popular family of distributions

used in outstanding claims modelling. The applications of this family are usually performed

in the framework of generalised linear models (GLMs). Indeed, applications of GLMs in loss

reserving have appeared since the early 1990s and have gained great popularity ever since

(Taylor and Sullivan, 2016). Their popularity, in both theory and practice, comes from their

ability to allow the exploration and estimation of multiple trends within the data without

many subjective judgements. Traditional GLMs in reserving are static with deterministic

models which assume stable claims experience over time. A natural step toward evolutionary

reserving is to let these parameters evolve. This is what we call evolutionary GLM approaches.

Recognising the popularity of GLMs and the EDF in outstanding claims modelling, Taylor

and McGuire (2009) developed a univariate evolutionary GLM framework for a single segment

2An abbreviated version of results in Chapter 5 has been submitted and is under review in Avanzi, B.,
Taylor, G., Vu, P.A., Wong, B., 2018. On unbalanced data and common shock models in stochastic loss
reserving.
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and use an adaptive filter for random factors estimation. This model relaxes the Gaussian

assumption for claims in the models mentioned in the previous paragraph. The adaptive

filter used is tractable in special cases of the EDF with conjugate prior distributions. Sims

(2011) then considered a particle filter, a simulation-based filter, for the same framework.

In Chapter 6, we will further explore the evolutionary reserving area. We aim to

incorporate dependence across segments using common shocks while utilising the rich GLM

structure to develop a multivariate evolutionary GLM framework. Our focus is also placed

on the formulation of a particle filtering approach that provides real-time updates of random

factors in this evolutionary framework. This filtering approach is specifically tailored to the

structure of loss reserving data. An illustration is performed using real data from a Canadian

insurance company (available in Côté et al., 2016). This framework offers many benefits from

using common shocks for dependence modelling, rich GLM structure for marginal modelling,

as well as various benefits of an evolutionary approach. It is also worth noting that it

enables the development of reserving robots which automate repetitive reserving jobs. This

is particularly useful in various practical cases where outstanding claims valuation is required

on a regular basis for large portfolios of many segments.

1.3 Thesis outline

The rest of this thesis is organised as follows. Chapter 2 provides a review of the existing

literature in loss reserving and other relevant areas. This is followed by an introduction of a

multivariate Tweedie framework in Chapter 3. An analysis of the theoretical properties

of this framework is also provided in this chapter. The estimation and applications of

this framework on simulated and real data sets are given in Chapter 4. In Chapter 5 we

consider the unbalanced nature of loss reserving data, and account for this feature explicitly

in common shock models in a parsimonious manner. Chapter 6 introduces a multivariate

evolutionary GLM framework to account for claims development patterns that change over

time, and formulates an estimation approach that is tailored to the structure of loss reserving

data. Finally, Chapter 7 concludes with a summary of contributions and areas for future

development.

11



CHAPTER 2

Literature review

In this chapter, we review the existing literature in loss reserving and other relevant

areas. The outstanding claims data representation, which is in the famous format of loss

triangles, and notations used are introduced in Section 2.1. Traditional reserving methods

are reviewed in Section 2.2. These are deterministic techniques that produce a single mean

(central) estimate of outstanding claims liability. While deterministic methods are simple

and computationally inexpensive, they do not provide indicators of uncertainty associated

with the single mean estimate of outstanding claims. Stochastic models aim to overcome

this limitation and allow insurers to better monitor their solvency and fulfil regulatory

requirements. These models are reviewed in Section 2.3 with a focus on an important and

also very popular type of models that use the EDF and its Tweedie sub-family. Section 2.4

focuses on multivariate loss reserving models for multiple business segments. These models

aim to consider the dependence structure across segments in the valuation, hence allow for

diversification benefits in the aggregation of outstanding claims liabilities. Common shock

approaches are one of the dependence modelling tools used in these models. They have

many interesting and desirable properties, including explicit dependence structure, ease of

interpretation, parsimonious and disciplined construction of correlation matrices. Common

shock models are also reviewed in this section. General insurers typically observe changes in

their claims development patterns over time. This feature can be captured naturally using

evolutionary models with evolving parameters. These models are reviewed in Section 2.5.

Section 2.6 summarises the literature review and identifies areas for development.



CHAPTER 2. LITERATURE REVIEW

2.1 Data and notations

In aggregate loss reserving, outstanding claims are recorded in a triangular format,

which is called a loss triangle. The general format of a loss triangle is given in Figure 2.1.

The index i, i ∈ {1, ..., I}, on the vertical axis of the triangle represents accident period i

of the claims, i.e. the period when insured events occur. The index j, j ∈ {1, ..., J} (with

I = J) on the horizontal axis represents development period j, i.e. the period when claims

are developed, where the development can refer to the reporting, payments, or settlements

of claims depending on the information that the loss triangle represents (see also below).

A company typically has multiple business lines/segments, each with a corresponding loss

triangle. A loss triangle can also be generalised to a loss trapezium with I 6= J . For the

sake of notation simplification, we use the loss triangle format for model developments in this

thesis. However, all techniques applied to loss triangles can also be applied to loss trapeziums.

 
 

Development period  j Accident 

period i 

1 

2 

. 

. 

. 

I 

1 2 .        .       . J 

Observed ��,�
(�)

 

To be predicted ��,�
(�)

 

Figure 2.1: Loss triangle representation of data

Incremental claims, denoted by Y , are the total amount (or number) of newly developed

claims. Notation Y
(n)
i,j , n ∈ {1, ..., N} represents the total incremental claims that correspond

to accidents in accident period i, developed in development period j and in business segment

n. These claims are hence made in calendar period t = i + j − 1, t ∈ {1, ..., I + J − 1}.

Correspondingly, all claims that are on the same diagonal of a loss triangle are made within

the same calendar period. The shaded triangle of observed claims in Figure 2.1 is referred
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to as the upper triangle and the non-shaded triangle of claims to be predicted in the same

figure is referred to as the lower triangle.

Loss triangles can be used to record different types of information. Recall the time

line of a claim in Chapter 1. When loss triangles record claims between their accident dates

and reporting dates, we have incurred-but-not-reported (IBNR) triangles. Triangles can also

record incurred-but-not-enough-reported (IBNER) claims which are reported but not settled.

Claims between their accident/reporting dates and payment dates can also be recorded using

paid loss triangles.

Figure 1.1: Time line of a claim

In the latest calendar period t = I, all incremental claims in the upper triangles are

observed. The set of these observed claims is denoted by Y U ,

Y U =
{
Y

(n)
i,j ; i ∈ {1, ..., I}, j ∈ {1, ..., I − i+ 1}, n ∈ {1, ..., N}

}
. (2.1)

Incremental claims in the lower triangles are outstanding claims to be predicted at the latest

calendar period I, denoted by Y L,

Y L =
{
Y

(n)
i,j ; i ∈ {1, ..., I}, j ∈ {I − i+ 2, ..., J}, n ∈ {1, ..., N}

}
. (2.2)

A loss triangle can also record cumulative claims instead of incremental claims.

Cumulative claims X
(n)
i,j are defined as the total claims for accident period i aggregated

to development period j in segment n. That is,

X
(n)
i,j =

j∑
m=1

Y
(n)
i,m . (2.3)

Notations XU and XL then denote the observed cumulative claims in upper triangles and
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outstanding cumulative claims to be predicted in lower triangle, respectively.

The primary goal of a loss reserving model is to use historical claim information in

upper triangle(s) Y U (or XU ) to predict outstanding claims in lower triangle(s) Y L (or

XL).

2.2 Deterministic reserving techniques

Traditionally forecasts of outstanding claims are obtained using deterministic loss

reserving models. These are conventional methods that provide simplicity to outstanding

claims modelling and have also been used as the bases for the development of many stochastic

models. In these classical models, deterministic algorithms are applied to obtain a single

central estimate of the outstanding claims liability. They do not consider the stochastic

nature of the liability. For an excellent review of deterministic loss reserving techniques, see

Taylor (2000). In this thesis, we review three popular deterministic methods: the chain ladder

method in Section 2.2.1, the Bornhuetter-Ferguson method in Section 2.2.2 and the Berquist-

Sherman method in Section 2.2.3. Note that this section focuses on reserving techniques for

one single business segment (i.e. one loss triangle), hence the superscript (n) is dropped from

the associated notations.

2.2.1 Chain ladder algorithm

The chain ladder algorithm is the most popular deterministic technique used to predict

outstanding claims (Wüthrich and Merz, 2008, Chapter 2). It has been used for many years

as a self-explaining algorithm which was not derived from a stochastic model (Mack, 1993).

The chain ladder algorithm is based on the modelling of development factors (also

known as age-to-age factors) of cumulative claims. Development factors, denoted by dj , j ∈

{1, ..., J − 1}, are defined such that

dj =

I−j∑
i=1

Xi,j+1

I−j∑
i=1

Xi,j

. (2.4)
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The outstanding cumulative claims Xi,j with i+ j > I + 1 can then be calculated by

Xi,j = Xi,I−i+1dI−i+1...dj−1, (2.5)

and the ultimate claimsXi,J , defined as the total claims from accident period i to be developed

by the end of the last development period J , by

Xi,J = Xi,I−i+1

J−1∏
j=I−i+1

dj , 2 ≤ i ≤ I. (2.6)

Total outstanding claims for accident period i is then given by

Xi,I−i+1

 J−1∏
j=I−i+1

dj − 1

 . (2.7)

The popularity of the chain ladder algorithm comes from its simplicity and it is known

as a heuristic algorithm that is distribution-free, meaning that it works with almost no

assumptions (Taylor, 2011; Miranda et al., 2012). This algorithm, however, comes with

a number of drawbacks. As mentioned in Mack (1993), variations in immature accident

periods may result in misleading outstanding claims estimates. The algorithm is also based

on the assumption that claims development patterns are similar across accident periods.

Despite its limitations, the chain ladder algorithm remains a very popular deterministic

algorithm. Many stochastic models have been studied to provide theoretical justifications to

this algorithm, the first and very popular of which include the Poisson model in Hachemeister

and Stanard (1975) and the distribution free model in Mack (1993). Other studies of

stochastic models underlying the chain ladder also include Renshaw and Verrall (1998);

Verrall (2000); Hess and Schmidt (2002); Taylor (2011).

2.2.2 Bornhuetter-Ferguson algorithm

The Bornhuetter-Ferguson algorithm was developed by Bornhuetter and Ferguson

(1972). This algorithm is also one of the most commonly used techniques in practice for

highly leveraged lines (Alai et al., 2009). While the chain ladder algorithm uses development

factors to forecast ultimate claims, the Bornhuetter-Ferguson algorithm uses the expected

ultimate claims provided by experts to forecast the total outstanding claims (Schmidt and
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Zocher, 2008).

In the Bornhuetter-Ferguson algorithm, the cumulative outstanding claims Xi,j+m with

1 ≤ j ≤ J − 1, 1 ≤ m ≤ J − j are calculated by

Xi,j+m = Xi,j + (d̃j+m − d̃j)αi, (2.8)

where d̃j , j ∈ {1, ..., J}, d̃J = 1 is the cumulative proportion of the expected ultimate claims

αi that is developed up to development period j. Factors d̃j can be estimated using a number

of techniques including the chain ladder algorithm (Wüthrich and Merz, 2008, Chapter 2).

This then results in the total outstanding claims for accident period i

(1− d̃I−i+1)αi. (2.9)

While the chain ladder estimates are completely driven by data, the Bornhuetter-

Ferguson estimates incorporate both observations and expert knowledge. It is considered

more robust than the chain ladder method, especially against instability in the proportions

of ultimate claims paid in early development periods (Alai et al., 2009). This is particularly

the case when only a small proportion of losses are developed in early years, which is a

common observation in long tailed classes of business.

2.2.3 Berquist-Sherman technique

The impacts of structural changes in claim activities on the valuation of outstanding

claims liabilities have been recognised since the 1970s. These changes invalidate the

assumption of consistent claims development patterns across accident periods in popular

methods such as the chain ladder algorithm. Berquist and Sherman (1977) developed a

procedure to address these issues in the estimation of reserves, often known as the Berquist-

Sherman technique. A comprehensive explanation of this technique can be found in Friedland

(2010).

In the Berquist-Sherman technique, the first step is to gather data and search for

problematic areas. Two possible treatments can then be performed on these areas: data

selection and rearrangement, and data adjustment.
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The data selection and rearrangement treatment aims to obtain data that is relatively

unaffected by a given problem. This can be done using substitute types or forms of data. For

example, an insurer can use quarterly accident data to substitute yearly accident data when

the growth rate of earned exposures changes rapidly and causes distortions in development

factors. Alternatively, relatively unaffected data can be obtained by subdividing the loss

experience into more homogeneous groups of exposures and/or types of claims. This is

particularly useful for cases where major changes have occurred in the composition of business.

If the data selection and arrangement approach is not successful, data adjustment

can be used. Two types of adjustments can be considered. The first adjustment applies

to the triangle of reported claims where the trend in claims severity is adjusted based on

judgement. This is then used together with claims count to adjust the ultimate claims. The

second adjustment applies to the triangle of paid claims. It involves analysing changes in the

claims development pattern and using this pattern to adjust the paid claims triangle. These

adjustments aim to achieve some level of consistency in the data. Standard development

methods can then be applied to adjusted triangles project future claims.

The Berquist-Sherman technique is known as the first classical approach that allows

for updates in claim activities over time. Because many adjustments and assumptions are

involved in this approach, it should be done with an appropriate degree of caution (Ghezzi,

2001).

2.3 Univariate stochastic reserving models

This section reviews stochastic reserving models for a single business segment. These

are models which have stochastic assumptions for claims in loss triangles. The motivation

for stochastic loss reserving methods is explained in Section 2.3.1. An important class of

stochastic models is GLMs which is built on the EDF, and in many cases, its Tweedie sub-

family. Some of the theory of the EDF and its Tweedie sub-family is provided in Section

2.3.2. The GLM reserving framework is reviewed in Section 2.3.3. Models using the Tweedie

family are reviewed in Section 2.3.4. This section focuses on reserving techniques for one

single business segment, hence the superscript (n) is dropped from the associated notations.
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2.3.1 Motivation for stochastic reserving

The popularity of deterministic loss reserving techniques comes from their simplicity.

However, it is also essential for an insurer to assess the uncertainty associated with the single

point estimate of their outstanding claims liability.

The need for stochastic loss reserving methods has been recognised since the very early

1980s, see for example, Taylor and Ashe (1983) and De Jong and Zehnwirth (1983). Because

the outstanding claims liability is one of the largest liabilities on the balance sheet of an insurer

(Alai and Wüthrich, 2009; Heberle and Thomas, 2016; Saluz and Gisler, 2014; Abdallah

et al., 2015), a failure to consider its stochastic nature can lead to serious consequences

on profits as well as insolvency issues (Taylor and Ashe, 1983). Quantifying the variability

of total outstanding claims is also a compulsory regulatory requirement in many countries.

For example, the GPS 340 of the Australian Prudential Regulation Authority (APRA) in

Australia requires insurers to hold risk margins for their outstanding claims besides the central

estimates. A risk margin is defined as the maximum of a half of the standard deviation, and

the difference between VaR75% and the central estimate of outstanding claims, i.e.

Risk margin[Y ] = max

{
VaR75%[Y ]− E[Y ];

1

2
SD[Y ]

}
, (2.10)

where Y is a random variable which represents the total outstanding claims in this equation.

Solvency II in Europe also requires insurers to obtain the standard deviations of their

projected total outstanding claims over a one-year horizon. These requirements aim to

enhance the ability of insurers to meet their liabilities.

When deterministic approaches are used, risk margins can be added separately to the

central estimates when needed. The development of stochastic modelling techniques has

increased over the last three decades to fulfil the growing need to allow for uncertainty in

a more consistent manner. Excellent reviews of various stochastic models can be found in

Taylor (2000) and Wüthrich and Merz (2008). These models take into account the stochastic

behaviour of outstanding claims, allowing both the mean estimate and the prediction

uncertainty of a total outstanding claims liability to be obtained. Insurers not only can

fulfil regulatory requirements, but also develop a good risk management practice through

having a complete picture of the volatility of their outstanding claims liability (Shi et al.,

2012).
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There are two main strands of research in stochastic loss reserving: non-parametric

modelling approaches and parametric modelling approaches (Shi et al., 2012; Abdallah

et al., 2015). Non-parametric modelling approaches use distribution-free set-ups to estimate

outstanding claims and associated prediction uncertainty. Parametric modelling approaches,

on the other hand, use distributional assumptions. As a result, different quantities of interest

can be inferred from the predictive distribution of outstanding claims, for example, the

mean, the variance, and various quantiles. In this thesis, we focus on parametric modelling

approaches to utilise this benefit. However, it is also worth noting that parametric models

can be subject to over-fitting, and one needs to be aware of parameter uncertainty when

working with these models.

2.3.2 Theory of exponential dispersion family and Tweedie family

GLMs are a rich class of models populated by McCullagh and Nelder (1989). It can be

considered as a generalisation of traditional linear models, with various applications in many

areas of insurance (De Jong et al., 2008; Frees et al., 2014, 2016). One of these areas is in loss

reserving (De Jong et al., 2008; Taylor and McGuire, 2016). A typical GLM framework has

three components: a systematic component, a random component and the link between these

components. The systematic component is a linear predictor Aγ. The stochastic component

then specifies the dispersion or variance around the mean of the distribution. Finally, the

link component is a function that relates the linear predictor in the systematic component

with the mean of the distribution.

GLMs are mainly built on distributional assumptions of the EDF, a very rich family of

distributions. We provide a review of the theory of the EDF in Section 2.3.2.1. The Tweedie

family, a major and particularly attractive subclass of the EDF is further reviewed in Section

2.3.2.2.

2.3.2.1 Exponential dispersion family

This section follows the comprehensive review of the EDF in Jorgensen (1997). As

mentioned in Jorgensen (1997, Chapter 3), there are two representations of an EDF density:

the additive form and the reproductive form. In this section, we provide a summary of these

two forms.
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1. Definition

Assume that we have a variable Ỹ that has an additive exponential dispersion

distribution Ỹ ∼ EDF∗(θ, ϑ). The parameter ϑ is called the index parameter. The

parameter θ is called the canonical parameter which belongs to the canonical domain

{θ ∈ R : κ(θ) <∞}, (2.11)

where κ(.) is the unit cumulant function of the distribution defined such that

κ(θ) =

∫
eθỹdFỹ(ỹ). (2.12)

The corresponding variable Y = Ỹ /ϑ ∼ EDF(µ, φ) is called a reproductive exponential

dispersion variable. The parameter µ is called the location parameter, or the mean

parameter with

µ = κ′(θ), (2.13)

where κ′(.) is the first derivative of the unit cumulant function κ(.). The parameter φ

is the dispersion parameter and is related to the index parameter by

φ =
1

ϑ
. (2.14)

Overall we have a transformation that provides a duality between the two forms

Ỹ ∼ EDF∗(θ, ϑ)⇔ Y ∼ EDF(µ, φ). (2.15)

2. Densities

The density of a variable in the additive form Ỹ ∼ EDF∗(θ, ϑ), if defined, is

fỸ (Ỹ ; θ, ϑ) = v∗(Ỹ ;ϑ) exp{θỸ − ϑκ(θ)}, (2.16)

where v∗(Ỹ ;ϑ) is the density of the measure that defines the distribution.

Similarly we have the density for the corresponding variable in the reproductive form
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Y ∼ EDF∗(µ, φ) as

fY (y; θ, ϑ) = v(y;ϑ) exp{ϑ(θy − κ(θ))}, (2.17)

where v(Ỹ ;ϑ) is the density of the corresponding measure that defines the distribution.

3. Cumulant generating function, mean and variance

The cumulant generating function of a variable in the additive form Ỹ ∼ EDF∗(θ, ϑ) is

K∗
Ỹ

(l; θ, ϑ) = ϑ{κ(θ + l)− κ(θ)}. (2.18)

The mean and variance of Ỹ are given by

E[Ỹ ] = ϑκ′(θ), (2.19)

V ar[Ỹ ] = ϑV (κ′(θ)), (2.20)

where V (.) is the unit variance function defined by

V (µ) = κ′′
(
(κ′)−1(µ)

)
= κ′′ (θ) , (2.21)

with κ′′(.) being the second derivative and (κ′)−1(.) being the inverse of the first

derivative of the unit cumulant function κ(.).

The cumulant generating function of the corresponding variable in the reproductive

form Y = Ỹ /ϑ ∼ EDF(µ, φ) is

KY (l; θ, ϑ) = ϑ{κ(θ + l/ϑ)− κ(θ)}. (2.22)

The expressions of the mean and variance of Y are somewhat more straightforward

with

E[Y ] = µ, (2.23)

V ar[Y ] = φV (µ). (2.24)

4. Convolution formula
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The additive representation of the EDF has a convenient convolution formula. Consider

independent random variables Ỹ1, ..., Ỹn where

Ỹm ∼ EDF∗(θ, ϑm), (2.25)

then

Ỹ1 + ...+ Ỹn ∼ EDF∗(θ, ϑ1 + ...+ ϑn). (2.26)

Using the duality transformation, the corresponding convolution formula can be

obtained for the reproductive representation. Consider independent random variables

Y1, ..., Yn where

Ym ∼ EDF

(
µ,

φ

wm

)
, (2.27)

then
1

w1 + ...+ wn

n∑
m=1

wm.Ym ∼ EDF

(
µ,

φ

w1 + ...+ wn

)
. (2.28)

2.3.2.2 Tweedie family

The Tweedie family of distributions is a major subclass of the EDF. It consists of various

symmetric and non-symmetric, light-tailed and heavy-tailed distributions (Alai et al., 2016;

Jorgensen, 1997). This family is distinctively defined with a special relationship between the

univariate variance function and the mean function

V (µ) = µp, p ∈ (−∞, 0] ∩ [1,∞), (2.29)

where p is the power parameter (Jorgensen, 1997, Chapter 4). The value of the power

parameter p identifies the corresponding distribution of the Tweedie family. For example,

p = 0 corresponds to normal distributions, p = 1 corresponds to Poisson distributions, p = 2

corresponds to gamma distributions, 1 < p < 2 corresponds to compound Poisson-gamma

distributions (i.e. a Poisson sum of gamma random variables), and p = 3 corresponds to

inverse Gaussian distributions. These members of the Tweedie family are very commonly used

distributions of the EDF. A full list of distributions with their corresponding p parameters

can be found in Jorgensen (1997, Chapter 4).

As a subclass of the EDF, the Tweedie family also has two representations and general
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properties of the EDF listed in Section 2.3.2.1. We denote by Tweedie∗p(θ, ϑ) the additive

representation and Tweediep(µ, φ) the reproductive representation. The canonical parameter

θ of the additive Tweedie form belongs to the domain

R, p = 0, 1,

[0,∞), p < 0,

(−∞, 0), 1 < p ≤ 2,

(−∞, 0], 2 < p <∞.

(2.30)

The unit cumulant function of the Tweedie family, as expressed in Jorgensen (1997), is

κ(θ) =


exp(θ), p = 1,

− log(−θ), p = 2,

1

2− p
[θ(1− p)]

p−2
p−1 , p /∈ (0, 1] ∪ [2].

(2.31)

The relationship between the additive form and the reproductive form of the Tweedie

family, as also provided in Jorgensen (1997, Chapter 4), is

Tweedie∗p(θ, ϑ) = Tweediep
(
ϑκ′(θ), ϑ1−p) = Tweediep (µ, φ) . (2.32)

This relationship can be used to convert one Tweedie representation to another and specify

relationships between parameters of these two forms. This duality is driven by the duality

transformation of the EDF, as well as the closure under the scale transformation property of

the Tweedie family. This property is shown in Jorgensen (1997, Chapter 4) as

ξ.Tweediep(µ, φ) = Tweediep(ξµ, ξ
2−pφ), (2.33)

and is unique to the Tweedie sub-class but not the entire EDF.

2.3.3 GLM framework

The first applications of GLMs in loss reserving can be found in Renshaw (1994);

Renshaw and Verrall (1998). Since then, GLMs have gained their popularity in the literature

as well as in practice. As explained in Taylor and Sullivan (2016), GLMs allow the exploration
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and estimation of multiple trends within the data without many subjective judgements.

Consequently, cell-specific effects can be estimated for all cells in loss triangles. Missing

values can also be accommodated in a robust manner. Overall, great model generality and

flexibility can be achieved with the use of GLMs. Many comprehensive reviews of GLMs in

loss reserving can be found in Taylor (2000); England and Verrall (2006); Wüthrich and Merz

(2008); Taylor and McGuire (2016).

There are two main types of GLM frameworks for loss reserving, known as recursive

models and non-recursive models (Taylor, 2011; Taylor and McGuire, 2016). These two types

of models are studied in great detail in Taylor (2011). The results show that they are very

different, especially in terms of stochastic independence. Similar results specific to over-

dispersed Poisson (ODP) models within the GLM framework are also shown in Mack and

Venter (2000).

Recursive models, also known as EDF Mack models, are parametric versions of the

Mack’s stochastic chain ladder model in Mack (1993). In these models, claims are assumed

to be independent across accident periods, and defined recursively within a single accident

period as

Yi,j+1|Xi,j ∼ EDF(θi,j , φi,j). (2.34)

We also assume

E[Xi,j+1|Xi,j ] = djXi,j , (2.35)

which is built on the chain ladder algorithm in Section 2.2.1. Taylor (2011) showed that

estimates from the chain ladder algorithm in Section 2.2.1 are indeed the maximum likelihood

and minimum variance estimates in a wide range of EDF Mack models.

The second type of GLMs are non-recursive models, also called EDF cross-classified

models. These are the focus of our literature review and developments in later chapters.

These models typically assume that incremental claims Yi,j are independent and

Yi,j ∼ EDF(θi,j , φi,j). (2.36)

Subsequently they have densities

fYi,j (yi,j ; θi,j , φi,j) = v (yi,j , φi,j) exp

{
yi,jθi,j − κ(θi,j)

φi,j

}
, (2.37)
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which is the reproductive representation of the EDF in Equation (2.17) with the index

parameter ϑ replaced by the dispersion parameter φ.

A common mean structure used in cross-classified models is

E[Yi,j ] = µi,j = κ′(θi,j) = αiβj . (2.38)

This is an example of a multiplicative mean structure which is a product of accident period

effect αi and development period effect βj . A log-link function can be used to have a linear

predictor on the log scale. For example, we have for Equation (2.38),

log(µi,j) = ai + bj , (2.39)

where ai = log(αi) and bj = log(βj). This specific mean structure is also called a chain-ladder

structure in the literature (England and Verrall, 2002) as it has one parameter for each row

and one parameter for each column. In this mean structure, the patterns of claim activities

are specified by the development factors βj (or bj). As these factors are not row-specific,

claim patterns are assumed to be similar across accident periods.

An alternative mean structure to the above is

E[Yi,j ] = ηt=i+j−1βj , (2.40)

where ηt is the effect of calendar period t. This is known as the separation method and was

developed in Taylor (1977).

Another type of mean structure that has been used in loss reserving is the gamma

curve, also known as the Hoerl curve. A detailed review of the Hoerl curve can be found

in Zehnwirth (1989). It is based on the observation that claim activity typically reaches a

peak in early development periods then dies out monotonically and eventually exponentially

as the delay j increases. This shape is similar to the density curve of a gamma distribution

(Zehnwirth, 1989; England and Verrall, 2002). The Hoerl curve mean structure on the log-link

can be presented as

log(µi,j) = ai + ri log(j) + sij, (2.41)

where ai, ri and si are parameters for accident period i. The development curve is captured

by ri log(j) + sij. Assuming similar claims development patterns across all accident periods,
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the above mean structure is simplified to

log(µi,j) = ai + r log(j) + sj. (2.42)

Instead of having one parameter for each development period, the Hoerl curve only

utilises two parameters r and s to generate the claims development pattern. In this curve

development period j is treated as a continuous covariate. This improves model parsimony

as less parameters are used. It also smooths out fluctuations in observed data, hence

makes the models more robust (Zehnwirth, 1989). In addition, the Hoerl curve enables

extrapolation beyond the range of observed development period (England and Verrall, 2002).

This is typically useful for long-tailed or new business segments with insufficient data in late

development lags. Various applications of the Hoerl curve in loss reserving models can be

found in, for example, De Jong and Zehnwirth (1983), Wright (1990), England and Verrall

(2001), Taylor and McGuire (2009) and Sims (2011).

So far we have only mentioned the log-link function used for various types of mean

structures of GLMs. This shall not be a constraint in model calibration and different link

functions can be chosen subject to specific data features and other factors of consideration

such as tractability and goodness-of-fit (Taylor and Sullivan, 2016).

Utilising the theory of the EDF in Section 2.3.2.1, we also have the variance of Yi,j in

Equation (2.36) specified as

V ar[Yi,j ] = φi,jκ
′′(θi,j) = φi,jV (µi,j). (2.43)

2.3.4 Models using the Tweedie family

The Tweedie family and its various specific members have been used in many loss

reserving models. These include ODP distributions, normal distributions (which are often

used for log-transformed data), Tweedie’s compound Poisson distributions and gamma

distributions. These models are reviewed in this section.
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2.3.4.1 Over-dispersed Poisson models

ODP models have been very popular stochastic models in the loss reserving literature.

It is well-known that the maximum likelihood estimates of outstanding claims from these

models recover the estimates of the chain ladder algorithm, see for example, Hachemeister

and Stanard (1975); Mack (1991); Renshaw and Verrall (1998); Mack and Venter (2000);

England and Verrall (2002); Schmidt (2002); Taylor (2009), and many more.

The first Poisson model was introduced in Hachemeister and Stanard (1975), full details

of which can be found in for example, Wüthrich and Merz (2008, Chapter 2). Renshaw and

Verrall (1998) then provided an extension of this Poisson model to account for over-dispersion

using the GLM framework. ODP models relax the mean-variance restriction in standard

Poisson models, allowing them to be more suitable for insurance claims which typically have

large dispersions.

In an ODP model with a multiplicative mean structure, incremental claims Yi,j are

assumed to be independent, the dispersion parameter is non cell-specific (i.e. φi,j = φ), and

Yiof,j
φ
∼ Poisson

(
αiβj
φ

)
, (2.44)

which then implies

E[Yi,j ] = αiβj , (2.45)

V ar[Yi,j ] = φαiβj . (2.46)

Poisson models are recovered by setting φ = 1.

The relationship between the above ODP model and the traditional chain-ladder

algorithm has been studied extensively in Renshaw and Verrall (1998); Mack and Venter

(2000); Verrall (2000); Schmidt (2002); Taylor (2009, 2011), just to name a few. Taylor (2011)

showed that the maximum likelihood estimates from ODP models are not only estimates of the

chain ladder algorithm, but also minimum-variance unbiased estimates when the dispersion

parameter φ is non cell-specific as specified in the above model. However, Verrall (2000)

emphasised that it is not necessary to view chain-ladder estimates as estimates from ODP

models as there certainly exists other formulations which can provide the same estimates.
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In a Bayesian setting with some prior distributions for unknown parameters αi, βj , φ

of ODP models, England et al. (2012) showed that the estimates of reserves are also the

same as those from the chain ladder algorithm when the prior distributions are uniform

and log-link functions are used. In cases where gamma prior distributions are used, the

estimates of reserves are somewhat similar to estimates obtained from the Bornhuetter-

Ferguson algorithm. In particular, these estimates are calculated using a combination of some

prior knowledge of the total ultimate claims αi, and development factors βj calculated using

claims experience. Similar results on Bayesian ODP models are also provided in England and

Verrall (2002) and Wüthrich and Merz (2008, Chapter 4).

2.3.4.2 Gamma models

Gamma distributions, members of the Tweedie family with p = 2, have also been

occasionally visited in the loss reserving literature. The first gamma model was introduced

in Mack (1991). This model specifies each claim cell using an individual risk model

Yi,j =

wi,j∑
m=0

mẎi,j , (2.47)

where wi,j is the deterministic number of claims in loss cell (i, j) and mẎi,j is the severity of

the mth individual claim in this cell. Individual severities mẎi,j are independent and identical

gamma variables. The number of claims wi,j can act as a unique exposure weight for cell (i, j).

It then follows from properties of gamma distributions that Yi,j has a gamma distribution

with parameters being functions of wi,j and parameters of mẎi,j .

The model in Mack (1991) can also be represented using the GLM framework in Section

2.3.3 (Renshaw and Verrall, 1998; England and Verrall, 1999). In this GLM structure, we

have

E[Yi,j ] = αiβj , (2.48)

V ar[Yi,j ] = φ(αiβj)
2, (2.49)

with a log-link. Discussions on gamma models can also be found in England and Verrall

(2001, 2002).
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2.3.4.3 Tweedie’s compound Poisson models

Other distributions of the Tweedie family that have attracted attention in the

reserving literature are Tweedie’s compound Poisson distributions with 1 < p < 2. These

distributions are typically interpreted as compound Poisson distributions with gamma

distributed severities. This formulation represents a collective risk model specification

for total claims in a single loss cell. This makes them interesting because it is similar

to the formulation used in pricing (England and Verrall, 2002). In addition, Tweedie’s

compound Poisson distributions can handle masses at 0 while many other distributions

cannot. Incremental claims of size 0 can be encountered in loss reserving data due to various

reasons, for example, repayments from reinsurers, or total cancellation of outstanding claims.

Tweedie’s compound Poisson models can be particularly useful in such cases.

The first Tweedie’s compound Poisson reserving model was introduced in Wüthrich

(2003). It specifies

Yi,j =

Wi,j∑
m=0

mẎi,j , (2.50)

where Wi,j is a Poisson distributed claim count and mẎi,j is the gamma distributed severity

of the mth individual claim. The gamma model by Mack (1991) reviewed in Section 2.3.4.2

is a special case of this model with deterministic claim counts. This specification can be

reformulated using the GLM framework (Section 2.3.3) with

E[Yi,j ] = αiβj , (2.51)

V ar[Yi,j ] = φi (αiβj)
p , 1 < p < 2. (2.52)

Parameters of the models, including the power parameter p, are estimated using maximum

likelihood estimation.

Peters et al. (2009) simplified φi = φ in the above model and used Bayesian inference

for parameter estimation. They showed that the model error inherited from fixing p can have

significant impacts on the prediction error of reserve estimates.

Boucher and Davidov (2011) used a double generalised linear model with Tweedie’s

compound Poisson distributions to model the mean as well as the dispersion of outstanding
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claims. In this model, dispersions φi,j are cell-specific and have linear structures on the log-

scale. Restricted maximum likelihood estimation is used with an approximation applied to

linear parameters in the specification of dispersions φi,j .

Another popular model is Wright (1990) which follows the specification in Equation

(2.50). Claim frequencies Wi,j are Poisson distributed while claim severities mẎi,j have the

means and variances of gamma distributions but are not gamma distributed. Renshaw (1996)

and England and Verrall (2002) showed that this model can be simplified and represented

using the GLM framework. In this model, the mean and variance are specified such that

E[Yi,j ] = exp (ÿi,j + ai + ri log(j) + sij + h(i+ j)) , (2.53)

V ar[Yi,j ] = φi,jE[Yi,j ]. (2.54)

The above mean structure is similar to the Hoerl curve in Equation (2.41) with an additional

cell-specific term ÿi,j and an inflation term h(i+j). It is worth noting that the above variance

structure is more similar to that of ODP models than of Tweedie models.

2.3.4.4 (Log-)Normal models

There have also been a number of appearances of (log-)normal distributions in loss

reserving. see, for example De Alba (2006); Wüthrich and Merz (2008). Even though log-

normal distributions are not members of the Tweedie family, normal distributions are (with

p = 0). Log-transformed claims can be assumed to have normal distributions with

E[log(Yi,j)] = ai + bj , (2.55)

V ar[log(Yi,j)] = φi,j . (2.56)

De Alba (2006) developed a translated log-normal model with a constant translation term

to handle masses at negative values. Bayesian inference was used to estimate the translation

term as well as other parameters of this model.
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2.3.4.5 Tweedie family models

While specific members of the Tweedie family of distributions have been visited

frequently in the literature (see also Sections 2.3.4.1–2.3.4.4), the whole Tweedie family has

made some occasional appearances. The first research that considered this whole family

in detail is perhaps Alai and Wüthrich (2009). In this paper, incremental claims Yi,j are

assumed to have distributions from the Tweedie family with the same power parameter p

and dispersion parameters simplified as

φi,j = φ, (2.57)

for the sake of simplifying the analysis. A multiplicative mean structure is used

E[Yi,j ] = κ′(θi,j) = αiβj , (2.58)

with a canonical link based on Equation (2.31) so that

θi,j =


log(αiβj), p = 1,

(αiβj)
1−p

1− p
, p 6= 1.

(2.59)

The variance specification then follows that of the Tweedie family with

V ar[Yi,j ] = φ (µi,j)
p . (2.60)

Maximum likelihood estimation is used to obtain estimators of αi and βj . Pearson

residuals are then used to estimate the dispersion parameter

φ̂ =

(
(I + 1)(I + 2)

2
− 2I − 1

) ∑
i+j≤I

(Yi,j − µ̂i,j)2

V (µ̂i,j)
, (2.61)

where µ̂i,j are fitted mean values calculated using parameter estimates α̂i and β̂j

Alai and Wüthrich (2009) assessed the sensitivity of reserves estimates and their mean

square error of predictions with respect to p. This sensitivity test was carried out by using

Taylor approximations to express these quantities as functions of p. They showed that reserves

estimates are relatively insensitive to p while their mean square error of predictions vary quite
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significantly.

Tweedie models with multiplicative mean structures specified as above are also referred

to as cross-classified Tweedie models in Taylor (2009). Taylor (2009) showed that maximum

likelihood estimates from cross-classified Tweedie models are generally not equivalent to the

chain ladder estimates except for ODP models.

Negative claims can be occasionally observed in loss triangles due to, for example,

salvage recoveries, or payment from third parties. Many models for incremental claims,

including the many members of the Tweedie family of distributions mentioned so far, are

unable to handle negative observations due to their lack of support for negative masses.

Exceptions are Gaussian distributions with p = 0. A remarkably small area of literature has

been devoted for the treatment of negative payments a single business line, not necessarily

on the Tweedie family. The existing methods include a three-parameter-log-normal model in

De Alba (2006) and a mixture model in Kunkler (2006).

2.4 Multivariate reserving models

In this section, we review reserving models for multiple business segments with

dependence. Section 2.4.1 explains the motivation for dependence modelling in reserving

models. Three types of multivariate models are then reviewed: copula models (Section

2.4.2), multivariate models with specific marginals (Section 2.4.3), and common shock models

(Section 2.4.4).

2.4.1 Motivation for multivariate reserving

A general insurance company typically operates in multiple business lines/segments

whose risks are dependent to some extent. For example, a temporary change in the internal

operations of the company can speed up the processing of claims in all segments, or an adverse

weather event can result in simultaneous claims for different lines or segments. In this section

we will examine the impacts of dependency across business segments on the estimation of

reserves and their associated predictive variabilities.

33



CHAPTER 2. LITERATURE REVIEW

A common approach for outstanding claims valuation is called the “silo” approach

(Ajne, 1994). In this approach, reserves and their predictive variabilities are assessed for each

individual business line or segment (also called silo). The reserves estimate and its predictive

variability on the portfolio level are then obtained by aggregating the corresponding estimates

from the silos with some adjustments if required.

A quantity of great interest is the central estimate of outstanding claims on the portfolio

level, also known as the reserves estimate. Theoretically, the calculation of the aggregate

central estimate using the “silo” approach is unaffected by the dependencies across business

segments given the estimates are optimal. This is due to the additivity property of expected

values where

E[Y1 + Y2] = E[Y1] + E[Y2], (2.62)

with Y1, Y2 being any two random variables. However, as mentioned in Shi et al. (2012),

jointly modelling claims from all individual segments allows a cross-borrowing of information

which can improve the accuracy of outstanding claims valuation. In other words, the optimal

total central estimate obtained from the joint modelling of claims from multiple segments

may not be the same as the sum of the optimal central estimates in the “silo” approach.

Insurers are also interested in some measures of the variabilities associated with the

central estimates of their outstanding claims liabilities for risk management and regulatory

purposes (see also Section 2.3.1). Two common measures are (i) standard deviations, and,

(ii) quantiles, which are formally required by regulators. Solvency II in Europe requires

insurers to provide the standard deviations of their total outstanding claims liabilities over a

one-year horizon. The APRA’s GPS 340 in Australia requires insurers to hold risk margins

specified using central estimates, VaR75%, and standard deviations of their outstanding claims

(Equation (2.10)). The VaR99.5% of total outstanding claims are inputs in the assessment

of solvency capital under Solvency II as well as APRA’s GPS 110. Standard deviations are

known to be sub-additive (see for example, Embrechts et al., 2005, Joshi and Paterson, 2013,

Miller, 2013), i.e.

SD[Y1 + Y2] ≤ SD[Y1] + SD[Y2]. (2.63)

On the other hand, quantiles are known to be non-sub-additive. When the “silo”
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approach is applied, the standard deviation or quantiles on the portfolio level are obtained

by simply aggregating the corresponding measures from each silo. These results are not likely

to be the same as the measures obtained directly on the aggregate portfolio due to the non-

additivity feature of these measures. Hence, they may not reflect truly on the risk level of

the portfolio.

A well-known benefit of considering the dependency across business segments in the

valuation of the aggregate outstanding claims liability are diversification benefits, see for

example, Shi and Frees (2011); De Jong (2012); Côté et al. (2016);Avanzi, Taylor and Wong

(2016). Diversification benefits, as defined in Avanzi, Taylor and Wong (2016), are the

benefits arising when the risk associated with a collection of segments is less than the sum

of their individual risks. By considering the accurate dependence structure across business

segments and allowing for diversification benefits, the predictive variabilities of reserves can be

correctly assessed. This can lead to a reduction in risk margins and capital that insurers have

to hold. As mentioned in Ajne (1994), even if a certain degree of prudence is recommended,

insurers should have as correct reserves as possible, not as large reserves as possible. This is

to ensure that capital is used parsimoniously while meeting solvency expectations (Avanzi,

Taylor and Wong, 2016).

The benefits mentioned above have motivated the development of stochastic loss

reserving methods for multiple segments with dependence, see for example, Schmidt (2006);

Merz and Wüthrich (2009b); Zhang and Dukic (2013); Abdallah et al. (2015); Shi (2014),

and many more. Methodologies used in this area of the literature can be classified into

two main types: parametric models and non-parametric models (Shi et al., 2012) which

are multivariate extensions in the two strands of research mentioned in Section 2.3.1.

Some well known multivariate non-parametric models include multivariate chain ladder

models (Braun, 2004; Merz and Wüthrich, 2008; Zhang, 2010), multivariate additive models

(Schmidt, 2006; Hess et al., 2006; Merz and Wüthrich, 2009b) and a multivariate model

which combines multivariate chain ladder and multivariate additive loss reserving models

(Merz and Wüthrich, 2009a). In this thesis, we focus on parametric models. A review of

relevant existing models is provided in subsections below.
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2.4.2 Copula models

Copulas are very well-known multivariate modelling tools in the literature as well

as practice due to their modelling flexibility. Their applications can be found in various

fields including statistics, finance and insurance. Some of the theory of copulas is provided

in Section 2.4.2.1 covering the definition, as well as a description of two popular copula

subclasses: elliptical copulas and Archimedean copulas. Sections 2.4.2.2 and 2.4.2.3 review

the applications of elliptical copulas and Archimedean copulas in reserving, respectively. A

general copula reserving framework is reviewed in Section 2.4.2.4.

2.4.2.1 Theory of copulas

The foundation for many applications of copulas is the Sklar’s theorem. This theorem

(see for example, Embrechts et al., 2005; Zhang and Dukic, 2013) establishes the existence of

a unique copula function C : [0, 1]N → [0, 1] for a random variable vector Y = (Y1, ..., YN )′

such that

FY (y) = C(FY1(y1), . . . , FYN (yN )), (2.64)

where FY (.) is the joint distribution of (Y1, ..., YN )′

FY (y) = Pr(Y1 ≤ y1, ..., YN ≤ yN ). (2.65)

In brief, a copula translates the dependence between variables into the dependence on the

transformation of these random variables into the uniform scale, also called the cumulative

distribution transformation. Under standard smoothness conditions, Equation (2.64) can be

differentiated to give

fY (y) = c(FY1(y1), ..., FYN (yN ))
N∏
n=1

fYn(yn), (2.66)

where

c(u1, ..., uN ) =
∂NC(u1, ..., uN )

∂u1...∂uN
, (2.67)

with un = FYn(yn). This means that marginal densities and the dependence structure can

be separated. Using a copula, we can combine various marginal distributions with a variety

of copulas with different dependence structures. This offers great flexibility for modelling.
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There are two popular families of copulas which are the elliptical copula family and the

Archimedean family. Elliptical copulas are copulas of elliptical distributions. The elliptical

family of distributions is a very rich family of symmetric distributions, including normal

distributions and t distributions. Following the definition in Shi and Frees (2011), a random

variable vector Y has a multivariate elliptical distribution with the location parameter 0, the

dispersion matrix ΣY and the density

fY (y) =
1

|ΣY |1/2
ḟ

(
1

2
y′Σ−1

Y y

)
, (2.68)

where ḟ(.) is called the density generator function. The dispersion matrix ΣY captures

the association among individual variables Y1, ..., YN , all of which follow univariate elliptical

distributions. The corresponding elliptical copula is then defined using the Sklar’s theorem

in Equation (2.64)

C(u1, ..., uN ) = FY

(
F−1
Y1

(u1), ..., F−1
YN

(uN )
)

(2.69)

with the density

c(u1, ..., uN ) = fY

(
F−1
Y1

(u1), ..., F−1
YN

(uN )
) N∏
n=1

1

fYn
(
F−1
Yn

(un)
) . (2.70)

A comprehensive review of elliptical distributions, their properties and elliptical copulas can

be found in Embrechts et al. (2003, 2005). A review of applications of elliptical distributions

in insurance is provided in Landsman and Valdez (2003).

An Archimedean copula, as defined in, for example Embrechts et al. (2005); Zhang and

Dukic (2013); Abdallah et al. (2015), is specified such that

C(u1, u2, ..., uN ) = ϕ−1 (ϕ(u1) + ...+ ϕ(uN )) , (2.71)

where function ϕ(.) is the generator of the copula. This generator function is convex, non-

decreasing with the domain (0, 1], the range [0,∞) and ϕ(1) = 0. The copula density is then

given by

c(u1, ..., uN ) = ϕ(N)
(
ϕ−1(u1) + ...+ ϕ−1(uN )

) N∏
n=1

(
ϕ−1

)′
(un), (2.72)

37



CHAPTER 2. LITERATURE REVIEW

where ϕ(N)(.) is the N th derivative, and ϕ−1(.) is the inverse function of the generator

function. The density c(.) exists if and only if ϕ(N−1)(.) exists and is absolutely continuous

on (0,∞) (Abdallah et al., 2015).

Another important concept of Archimedean copulas is nested Archimedean copulas.

Following the definition in Côté et al. (2016), we say that a (N + 1)- variate copula CN is

fully nested with generators ϕ1, ..., ϕN if it is recursively defined for all (u1, ..., uN ) by

C1(u1, u2) = ϕ−1
1 [ϕ1(u1) + ϕ1(u2)] , (2.73)

C2(u1, u2, u3) = ϕ−1
2

[
ϕ2(u3) + ϕ2

(
C(1)(u1, u2)

)]
, (2.74)

... =
...

CN (u1, ..., uN+1) = ϕ−1
N

[
ϕN (uN+1) + ϕN

(
C(N−1)(u1, ..., uN )

)]
, (2.75)

where ϕ−1
1 , ..., ϕ−1

N are strictly monotone and ϕn+1(ϕ−1
n (.)) has strictly monotone derivatives

for all n ∈ {1, ..., N − 1}. Nested Archimedean copula structures allow different dependence

structures to be incorporated into the modelling of multi-dimensional data.

Some popular members of the Archimedean family include Clayton copulas, Gumbel

copulas and Frank copulas. Reviews of Archimedean copulas can be found in Nelsen (1999);

Embrechts et al. (2003, 2005) and Durante and Sempi (2010).

2.4.2.2 Elliptical copula models

In this section we review multivariate reserving models that use elliptical copulas. A

special case of elliptical copulas, namely Gaussian copulas, have received some attention due

to their tractability and their ease of interpretation of dependence structures.

Shi and Frees (2011) provided a copula regression model for cell-wise dependence, i.e.

the dependence between loss cells that are in the same position across business segments. In

this model, all cells in the same position are first collected into a vector

Yi,j =


Y

(1)
i,j

...

Y
(N)
i,j

 . (2.76)
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Individual claim cells Y
(n)
i,j are modelled using the GLM framework with the chain ladder

mean structure as described in Section 2.3.3. In particular, the means of loss cells E[Y
(n)
i,j ]

are specified using some link functions and the linear predictor

ai + bj . (2.77)

The two distributions chosen for demonstration are log-normal distributions (with a log-link)

and gamma distributions (with an inverse link). The copula chosen for demonstration in this

paper is an elliptical copula. The copula specification is similar to that described in Section

2.4.2.1 with the dispersion matrix specified as

ΣYi,j =


σ(1,1) σ(1,2) . . . σ(1,N)

σ(2,1) σ(2,2) . . . σ(2,N)

...
...

. . .
...

σ(N,1) σ(N,2) . . . σ(N,N)

 , (2.78)

where σ(m,n) specifies the association between individual cells Y
(m)
i,j and Y

(n)
i,j for all i and

j. Maximum likelihood estimation is then used to estimate parameters of the marginal

distributions and the copula used in the model.

Two examples of Gaussian copula models in loss reserving are De Jong (2012) and

Shi (2014). The model in De Jong (2012) captures calendar period dependence within and

across business segments while Shi (2014) generalised this model to also allow for cell-wise

dependence. In these models, claims in the same calendar period from all loss triangles are

first collected into a vector

Yt =


Y

(1)
1,t

Y
(1)

2,t−1

...

Y
(N)
t,1

 . (2.79)

Using the Sklar’s theorem stated in Equation (2.64) with a multivariate Gaussian dependence

structure, these models can be represented as

FYt(Yt) = C ((IN ⊗ 1t)Ut + (IN ⊗ It)Zt) , (2.80)

where 1t is a vector of 1’s of length t, It, IN are identity matrices of dimension t × t and
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N×N , respectively. A tensor product of any matrices U and Z, denoted by U⊗Z is defined,

see, for example in Taylor (2018), such that

U ⊗ Z =


u11Z u12Z . . . u1nZ

u21Z u22Z . . . u2nZ
...

...
. . .

...

um1Z um2Z . . . umnZ

 (2.81)

where uij denotes the (i, j) element of U .

We have the calendar period dependence deduced by

Ut =


U

(1)
t

...

U
(N)
t

 ∼ Normal (0,ΣU ) , (2.82)

and cell-wise dependence deduced by

Zi,j =


Z

(1)
i,j

...

Z
(N)
i,j

 ∼ Normal (0,ΣZ) . (2.83)

Dispersion matrices ΣU and ΣZ are covariance matrices of Ut and Z, respectively. They are

specified such that standard normal marginals are obtained for (IN ⊗ 1t)Ut + (IN ⊗ It)Zt.

With ΣZ = IN we obtain the model in De Jong (2012) where no cell-wise dependence is

assumed. In brief, the percentile of Yt is mapped to the percentile of the standard normal

variables vector (IN ⊗ 1t)Ut + (IN ⊗ It)Zt in these models.

Shi (2014) used Tweedie’s compound Poisson distributions with the chain-ladder mean

structure for marginal modelling. This is similar to the univariate Tweedie model reviewed

in Section 2.3.4.5. Maximum likelihood estimation is used in both models for parameters

estimation. While Tweedie’s compound Poisson distributions are chosen for demonstration,

other marginal distributions can also be used.
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2.4.2.3 Archimedean copula models

Archimedean copula models in the literature include Abdallah et al. (2015) and Côté

et al. (2016). The former model considers two business segments with a hierarchical structure

while the later extends it to more dimensions using a nested Archimedean structure.

The hierarchical Archimedean copula model in Abdallah et al. (2015) aims to capture

calendar year dependence within and between two business segments. Appropriate marginal

distributions are first used to fit the data. Cumulative distribution values of claims in the

same calendar period t, i.e. F
Y

(n)
i,t−i+1

(y
(n)
i,t−i+1) = u

(n)
i,t−i+1, are then collected into a vector



u
(1)
1,t

...

u
(1)
t,1

u
(2)
1,t

...

u
(2)
t,1


. (2.84)

Two levels of Archimedean copulas are then used on this vector

C2 = C2

(
u

(1)
1,t , ..., u

(1)
t,1 , u

(2)
1,t , ..., u

(2)
t,1

)
(2.85)

= C2

(
C1,1

(
u

(1)
1,t , ..., u

(1)
t,1

)
, C1,2

(
u

(2)
1,t , ..., u

(2)
t,1

))
(2.86)

= ϕ−1
2

(
ϕ2

(
ϕ−1

1,1

[
ϕ1,1

(
u

(1)
1,t

)
+ ...+ ϕ1,1

(
u

(1)
t,1

)])
+ ϕ2

(
ϕ−1

1,2

[
ϕ1,2

(
u

(2)
1,t

)
+ ...+ ϕ1,2

(
u

(2)
t,1

)]))
,

(2.87)

where C1,1, C1,2 and ϕ1,1, ϕ1,2 are Archimedean copulas and their corresponding generators

applied subset (1) and (2) respectively on the first level of dependence, C2 is an Archimedean

copula and ϕ2 is its generator applied to the second level of dependence.

This model applies the nested Archimedean copulas concept described in Section 2.4.2.1

to a two-level dependence structure. In Abdallah et al. (2015), the first level of dependence,

level 1, is the dependence between claims within a single calendar period in a single business

segment. It is assumed that the dependence within a calendar period is identical across all

calendar periods with identical copulas C1,n, n = 1, 2. The second level of dependence, level

2, is the dependence across business segments. A copula C2 with its generator ϕ2 is applied
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on top of the first level of dependence, as shown in Equation (2.87).

Côté et al. (2016) extended the above structure to a multi-dimensional dependence

structure. Their model was applied on a portfolio of six business segments with cell-wise

dependence. Rank based methods were used for copulas fitting. These included analysing

the dependence structure using standardised ranks of residuals obtained from marginal GLM

fitting and using empirical copulas on these standardised ranks to select, fit and validate

copulas used.

2.4.2.4 General copula framework

The previous two sections review models that use specific families of copulas. In this

section, we describe a general copula framework that does not have any specification on the

copulas used. This framework is described in Shi and Frees (2011); Zhang and Dukic (2013)

and Shi (2017). While the first two references look at the dependence across segments within

a single company, the last one assesses the dependence across loss triangles from various

companies.

In the general copula framework, various choices can be used for marginal modelling and

dependence modelling. Common choices of marginal distributions typically include GLMs (a

review of which is provided in Section 2.3.3). Other choices also include non-linear growth

models Zhang and Dukic (2013) and semi-parametric smoothing models Zhang and Dukic

(2013); Shi (2017). The dependence structure is flexible as any copulas can be used. The

application of copulas on the marginals follows the Sklar’s theorem in Equation (2.64).

Unlike other copula models described in Sections 2.4.2.2 and 2.4.2.3, Bayesian inference

are used in Zhang and Dukic (2013) and Shi (2017) for parameter estimation. These

applications are motivated by rapid advancements in Markov chain Monte Carlo (MCMC)

techniques and convenience in the generation of full distributions of outstanding claims.

2.4.3 Multivariate models with specific marginals

Besides copulas, multivariate distributions with specific marginals have also been used

occasionally in multivariate reserving models. We review this type of models within this

section.
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2.4.3.1 Multivariate log-normal models

There are two well-known multivariate log-normal models in the literature developed

by Shi et al. (2012) and Merz et al. (2013). As their names suggest, individual claims are

assumed to follow log-normal distributions. These two models, however, are significantly

different in terms of their structures as well as their dependence properties.

The multivariate log-normal model in Shi et al. (2012) focuses on modelling incremental

claims Y
(n)
i,j with cell-wise dependence and calendar period dependence. This model uses a

multivariate log-normal assumption on a vector of incremental claims from the same position

across triangles

Yi,j =


Y

(1)
i,j

...

Y
(N)
i,j

 , (2.88)

with the multivariate density

fYi,j (yi,j)

=
1

(2π)N/2|Σ̃|1/2
(

N∏
n=1

y
(n)
i,j

) exp

(
1

2
(log yi,j − θi,j)′Σ̃−1(log yi,j − θi,j)

)
, (2.89)

where

θi,j =


θ

(1)
i,j

...

θ
(N)
i,j

 , Σ̃ =


σ̃(1,1) · · · σ̃(1,N)

...
. . .

...

σ̃(N,1) · · · σ̃(N,N)

 , (2.90)

specify the parameters of the multivariate distribution. The covariances between log(Y
(n)
i,j )

from any pair of loss triangles m, n is denoted as σ̃(m,n).

The mean structure in this model is a chain-ladder structure with an additional term

for calendar period effect

θ
(n)
i,j = a

(n)
i + b

(n)
j + ht=i+j−1, (2.91)

where ht is the random calendar period effect common to all cells in the same calendar period

t across all business segments. This random effect can have a time series specification such
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as a random walk

ht = ht−1 + hεt, hεt ∼ Normal(0, σ2
hε

), (2.92)

or an Auto-regressive (AR) process

ht = hτ.ht−1 + hεt, hεt ∼ Normal(0, σ2
hε

), (2.93)

where hτ is a coefficient of the AR(1) process. This structure allows an evolution of the factor

ht over time. Bayesian inference is used for model estimation.

In Merz et al. (2013), the multivariate normal assumption is used on log-link ratios of

cumulative claims defined such that

D
(n)
i,j = log

(
X

(n)
i,j

X
(n)
i,j−1

)
. (2.94)

This in turn implies a log-normal distributional assumption on cumulative claims X
(n)
i,j . The

recursive specification structure of this model is a chain ladder type (Mack, 1993). The

dependence from all possible dimensions and sources within and between loss triangles is

considered in this model. All log-link ratio variables are first collected into a vector

Di,j =


D

(1)
i,j

...

D
(N)
i,j

 , Di =


Di,1

...

Di,J

 , D =


D1

...

DI

 . (2.95)

The vector D is then assumed to have a multivariate normal distribution with mean δ and

variance ΣD. Bayesian inference is used with a multivariate normal specification for the

prior distribution of δ. In this specification, the mean of δ is ∆ and the variance is Σδ. The

posterior density is then given by

fD(D) =
1

(2π)Ñ/2|ΣD|1/2
exp

{
−1

2
(D − δ)′Σ−1

D (D − δ)

}
× 1

(2π)Nδ/2|Σδ|1/2
exp

{
−1

2
(δ −∆)′Σ−1

δ (δ −∆)

}
, (2.96)

where Ñ denotes the total number of observations in the data set, and Nδ the length of

δ. Closed-form estimates of reserves and their corresponding uncertainty estimate are also

provided in Merz et al. (2013).
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2.4.3.2 Multivariate gamma model

Vu (2013) developed a multivariate gamma model for outstanding claims with cell-

wise dependence across business segments. The multivariate gamma distribution used in this

model was developed using the multivariate reduction technique in Mathai and Moschopoulos

(1991) and studied further by Furman (2008). This technique is explained in detail in Section

2.4.4.2.

In this model, incremental claims are specified such that

Y
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)−1
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j , (2.97)

Ui,j ∼ Gamma

(
1

φ̃
,

1

α̃φ̃

)
, (2.98)

Z
(n)
i,j ∼ Gamma

(
1

φ̈(n)
,

1

α̈
(n)
i β̈

(n)
j φ̈(n)

)
, (2.99)

where the first parameters of the above distributions are called shape parameters, and the

second parameters are called rate parameters. It follows that the vector Yi,j = (Y
(1)
i,j , ..., Y

(n)
i,j )′

has a multivariate gamma distribution with marginal distributions

Y
(n)
i,j ∼ Gamma

(
1

φ̈(n)
+

1

φ̃
,

1

α̈
(n)
i β̈

(n)
j φ̈(n)

)
. (2.100)

In this model, the incremental claim Y
(n)
i,j in each loss triangle is the sum of two components: a

systematic component Ui,j and an idiosyncratic component Z
(n)
i,j . The systematic component

induces the cell-wise dependence across triangles. This is a typical common shock model

structure (more details of which are provided in Section 2.4.4). Bayesian inference is then

used for model estimation.

2.4.4 Common shock models

In insurance, common shock approaches have been quite well known dependence

modelling tools (Lindskog and McNeil, 2003). According to the International Actuarial

Association (2004) report, common shock approaches are typically used to capture structural

dependence (i.e. structural co-movements that are due to known relationships which can be
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accounted for in a modelling framework). Hence such models provide ease of interpretation

for the dependence structure. Many of such models also allow correlation matrices to be

constructed in a parsimonious and disciplined manner.

These approaches have been occasionally used in the literature. Two main types of

common shock modelling techniques used are models using random factors, and models using

multivariate reduction techniques. These two types of models are reviewed in Section 2.4.4.1

and 2.4.4.2.

2.4.4.1 Models using random factors

A group of common shock models randomise model factors to introduce dependence.

They are also referred to as also Bayesian models in the literature by Wüthrich (2010);

Salzmann and Wüthrich (2012). These models are hierarchical with randomised factors

constituting different levels in the hierarchy. This is a typical Bayesian structure, however,

in these models, random factors are selectively chosen and specified to capture specific

dependence sources.

A number of random factor models have been introduced to the literature. In the

literature area for one single business segment, Bayesian models were considered in Wüthrich

(2010) and Salzmann and Wüthrich (2012) for calendar period dependence. De Alba and

Nieto-Barajas (2008) considered a Bayesian model with a correlated latent process to capture

dependence within an accident period.

Two multivariate log-normal models reviewed in Section 2.4.3.1 also use random factors

to capture dependence. In Shi et al. (2012), a modified chain ladder mean structure is used

with

θ
(n)
i,j = a

(n)
i + b

(n)
j + ht=i+j−1, (2.91)

where ht is an additional random effect term that deduces dependency across cells within the

same calendar period within and across triangles. This factor can be specified using a time

series process, such as an AR(1) process

ht = hτ · ht−1 + hεt, hεt ∼ Normal(0, σ2
hε

). (2.93)

The serial correlation between ht and ht−1 in this structure further captures the dependence
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across calendar periods. In Merz et al. (2013), the vector of log-link development ratios D

is assumed to have a multivariate normal distribution with mean δ and variance ΣD. The

mean vector δ is then assumed to have a multivariate normal distribution with mean ∆ and

variance Σδ. This hierarchy introduces a layer of dependency in the model.

Abdallah et al. (2016) developed a bivariate Sarmanov model for two business segments

with dependence. This was based on a bivariate Sarmanov distribution introduced in Ting Lee

(1996). In this model, claim cells Y
(1)
i,j from the first loss triangle are specified with log-normal

distributions

Y
(1)
i,j |η

(1)
t ∼ Log-normal

(
θ

(1)
i,j η

(1)
t , σ̃2

)
, (2.101)

where η
(1)
t is a random calendar period factor that captures dependence across cells within

the calendar period t in business segment (1), σ̃2 is the variance parameter of the log-normal

distribution, and θ
(1)
i,j is specified such that

θ
(1)
i,j = a

(1)
i + b

(1)
j . (2.102)

The random factor η
(1)
t is assumed to have a normal distribution

η
(1)
t ∼ Normal(e, k2), (2.103)

where e and k2 are parameters of the distribution.

Claim cells Y
(2)
i,j from the second business segment are assumed to have gamma

distributions

Y
(2)
i,j |η

(2)
t ∼ Gamma

(
1

φ(2)
,

η
(2)
t

exp(θ
(2)
i,j )φ(2)

)
, (2.104)

where η
(2)
t is a random calendar period factor that captures the dependence across cells within

the calendar period t in business segment (2), 1
φ(2)

is the shape parameter and
η
(2)
t

exp(θ
(2)
i,j )φ(2)

is

the rate parameter with

θ
(2)
i,j = a

(2)
i + b

(2)
j . (2.105)
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A gamma distribution is then used to model the random calendar period factor

η
(2)
t ∼ Gamma(ẽ, k̃), (2.106)

where ẽ and k̃ are parameters of the distribution.

A distribution from the Sarmanov family of bivariate distributions is then used to model

the joint distribution of η
(1)
t and η

(2)
t , which is expressed as

f
η
(1)
t ,η

(2)
t

(
η

(1)
t , η

(2)
t

)
= f

η
(1)
t

(
η

(1)
t

)
f
η
(2)
t

(
η

(2)
t

) [
1 + ξϕ̃1

(
η

(1)
t

)
ϕ̃2

(
η

(2)
t

)]
, (2.107)

where ξ is a real number that satisfies the condition

1 + ξϕ̃1

(
η

(1)
t

)
ϕ̃2

(
η

(2)
t

)
≥ 0 for all θ

(1)
t , θ

(2)
t , (2.108)

and ϕ̃1 (.) and ϕ̃2 (.) are functions to be specified. Given the choices of distribution for θ
(1)
t

and θ
(2)
t , we have

ϕ̃1

(
η

(1)
t

)
= exp

(
η

(1)
t

)
− exp

(
−e+

k2

2

)
, (2.109)

ϕ̃2

(
η

(2)
t

)
= exp

(
η

(2)
t

)
−
(

1 + k̃
)−ẽ

. (2.110)

With the choice of conjugate prior distributions for random factors as specified, closed-form

expected values and variances can be obtained. The above structure can be modified for

accident period dependence and development period dependence.

2.4.4.2 Models using multivariate reduction technique

The multivariate reduction technique is an appealing technique for constructing

multivariate distributions, see for example Johnson et al. (1997, 2002); Karlis (2003); Furman

(2008); Furman and Landsman (2010). In this technique, dependent variables are created

as functions of a number of common independent variables. Mathematically, we have

independent random variables Ỹn, n = 0, ..., N with distributions FỸn , n = 0, ..., N . Random

variables Yn, n = 1, ..., N are constructed such that

Yn = g̃(Ỹ0, Ỹn), (2.111)
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where g̃(.) is a specified function. In this expression, Ỹ0 is the common shock, and Ỹn is

the idiosyncratic component. The common shock component then deduces the dependence

across Yn, n = 1, ..., N . We are particularly interested in the choice of the function g where

the closure under the taking of marginals property can be satisfied. These are cases where

Yn all have the same type of distribution. This is also one of the four desirable properties

of multivariate distributions considered by Joe (1997, Chapter 4). These properties are also

listed in Chapter 1. The joint density of Yn, n = 1, ..., N is then a multivariate density

with the corresponding marginal density of Yn. It is worth noting that there is often no

unique definition of multivariate distributions for most marginal distributions, except for

the multivariate normal distribution which is is clearly defined (Johnson et al., 2002). This

technique has been used to construct many multivariate distributions, including a multivariate

Poisson distribution (see for example, Karlis, 2003), a multivariate gamma distribution (see

for example, Mathai and Moschopoulos, 1991), and a multivariate Tweedie distribution

(Furman and Landsman, 2010).

Common shock models using the multivariate reduction technique have been used in

various insurance contexts. These include mortality modelling (Alai et al., 2013, 2016), capital

modelling (Furman and Landsman, 2010), claim counts modelling (Meyers, 2007; Shi and

Valdez, 2014). A strong advantage of models constructed using this technique is the ability

to provide a disciplined construction of correlation matrices using a significantly smaller

number of parameters (Avanzi, Taylor and Wong, 2018). This is particularly beneficial when

one works on a portfolio of a large number of sub-portfolios, which can be up to 100 in some

real life cases.

Vu (2013) introduced a multivariate gamma loss reserving model using the multivariate

reduction technique (see also Section 2.4.3.2). The copula models in De Jong (2012) and Shi

(2014) can also considered to be of the “common shock” type, however, as shown in Equation

(2.80), the additive common shock structure applies on the cumulative transformation of

variables. The effects of common shock on dependence, however, are studied extensively and

illustrated numerically in both papers.

A general common shock loss reserving framework is introduced in Avanzi, Taylor and

Wong (2018). In this framework, incremental claim cells Y
(n)
i,j are specified such that

Y
(n)
i,j = Uλ

(n)
i,j · Uπ(i,j)

+ Ũλ
(n)
i,j · Ũπ(n)

(i,j)

+ Zλ
(n)
i,j · Z

(n)
i,j (2.112)
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where Uπ(i,j)
, Ũ

π
(n)
(i,j)

, Z
(n)
i,j are independent random variables, representing common shock

for set π(i,j) of claims from all business segments, common shock for set π
(n)
(i,j) of claims

from business segment (n) and idiosyncratic component, respectively. Sets π(i,j) and

π
(n)
(i,j) are subsets of claims that common shocks have effects on. For example, π(i,j) =

{Y (1)
i,1 , ..., Y

(N)
i,I−i+1} gives a set of claims from accident period i from all business segments.

Hence the model applied to this set captures accident period dependence through the

use of the common shock term Uπ(i,j)
. Scaling factors, denoted by Uλ

(n)
i,j , Ũλ

(n)
i,j , Zλ

(n)
i,j ,

scale the effects of common shocks and idiosyncratic components so that they contribute

proportionately to observed claim values. We can set Zλ
(n)
i,j = 1 without loss of generality.

In most (if not all) reserving data sets, there is a large variation in claim activity for

different lengths of delay. In particular, it often reaches a peak in some early years, then

dies out as the delay increases. It is mentioned in Avanzi, Taylor and Wong (2018) that

the construction of common shock models should be mindful of this feature. In particular,

it is desirable to ensure that the common shocks contribute proportionately to the claims

observed in different positions within a loss triangle.

2.5 Evolutionary reserving models

The focus of this section is on evolutionary reserving models. These are models that

allow parameters to evolve over time, hence naturally incorporate changes in circumstances.

Section 2.5.1 explains the motivation for evolutionary modelling, covering various benefits

of these models. Two main types of models are then reviewed: Gaussian models and non-

Gaussian models. Some of the theory of Gaussian models and their well-known estimation

technique, Kalman filtering, is provided in Section 2.5.2. Gaussian loss reserving models

are then reviewed in Section 2.5.3. Some of the theory of non-Gaussian models and particle

filtering techniques used for estimation is provided in Section 2.5.4. Section 2.5.5 then reviews

non-Gaussian reserving models.

To the best of our knowledge, all of the existing work on evolutionary modelling in

the literature is for one single segment, except the model developed by Shi et al. (2012) in

which multiple segments are considered. Hence, for ease of notation, the segment index (n)

is dropped in this section. For the only case when multiple business segments are considered,

the index is added back.
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2.5.1 Motivation for evolutionary reserving

Insurers frequently encounter changes in their claims development patterns over time

(Ghezzi, 2001; Renshaw, 1989; Gluck and Venter, 2009). This can be due to various reasons,

such as legislative changes, or changes to the internal operations of insurers. For example,

insurers can improve the administering of claims over time to enhance efficiency, hence

gradually shorten the administrative delays. A legislative change such as the recent reform for

Auto Bodily Injury covers in New South Wales (Australia) results in faster claims resolution

(State Insurance Regulatory Authority, 2018), hence reduces payment delays. For another

example, we provide in Figure 2.2 plots of loss ratios for ten accident years from 1988 to

1997 from the Commercial Auto line of an American insurer. Loss ratios are calculated as

incremental claims standardised using total premium earned in the corresponding accident

year. The data is provided in the Schedule P and used for illustration in Shi and Frees

(2011). Changes in claim activity across accident periods are quite evident in this figure

with variation in the development patterns across accident years. The top two values in

each accident period are highlighted and presented in Figure 2.3 to identify the peaks in the

development patterns. It can be observed that the peak in the claims development shifts

between development years 1, 2 and 3 over time.
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Figure 2.2: Loss ratios in the Commercial Auto line of an American insurer (Schedule P)
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Figure 2.3: Loss triangle with top two values in each accident period highlighted (first eight
accident periods)

Changes in claims development patterns can have various impacts on the analysis

and prediction of outstanding claims (see for example, Fleming and Mayer, 1988; Ghezzi,

2001; Zehnwirth, 1994; Taylor and McGuire, 2009; Gluck and Venter, 2009; Alpuim and

Ribeiro, 2003; Dong and Chan, 2013). As mentioned in Section 2.1, outstanding claims

modelling typically involves using past information in upper triangles to predict outstanding

claims in lower triangles. When changes in development patterns have taken place, it is no

longer straightforward to project future trends (Zehnwirth, 1994; Ghezzi, 2001; Sims, 2012).

Reserving methods that are based on the assumption of similar claim activities across accident

periods, such as the traditional chain ladder algorithm, are no longer appropriate. In some

cases, actuaries have to make a lot of judgements to remove or reduce the effects of these

changes on traditional reserving methods. An example of this procedure is the Berquist-

Sherman technique described in Section 2.2.3. These judgements are often difficult and time

consuming to make, as well as to justify to management and peer reviewers (Sims, 2012). In

other cases, when the model selected using earlier data no longer fits more recent data, there

may be a need to revise its algebraic structure. This will result in a fundamental discontinuity

in the sequence of estimates such as the central estimates of outstanding claims (Taylor et al.,

2003).

A solution for this issue is to accommodate changes directly in the model structures

by allowing parameters to evolve in a recursive manner (De Jong and Zehnwirth, 1983;

Zehnwirth, 1994; Taylor et al., 2003). These models are known as evolutionary models.

Other names for these models also include state space models (Alpuim and Ribeiro, 2003;

Chukhrova and Johannssen, 2017), adaptive models (Taylor and McGuire, 2009), and robotic

models (McGuire, 2007). With this type of model structure, changes are incorporated more
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naturally as parameters are updated over time given the arrival of new data. More weight is

also given to recent data, allowing these models to provide better projections of future claims

(Zehnwirth, 1994; Taylor, 2000; Alpuim and Ribeiro, 2003). By having changes recognised

gradually, a clear picture of changes in the historical experience can be obtained, and estimates

derived from these models are also smooth over time (Taylor et al., 2003; Sims, 2012).

Evolutionary models are also considered an elegant and plausible solution by Zehnwirth

(1994) and Gluck and Venter (2009). They not only can provide a better fit to the data,

but also are more parsimonious. Instead of estimating parameters separately using scarce

information for immature accident periods, these parameters can be projected recursively

using the previous ones (Gluck and Venter, 2009). This also reduces the reliance on

arbitrary modelling judgements. Trends in the data can be captured using a simplistic but

explicit evolutionary structure, enhancing model interpretation and reducing the need for

unrecognised parameters (Zehnwirth, 1994).

There has been an increasing recognition for the need for robotic reserving in the

insurance industry (McGuire, 2007; Taylor and McGuire, 2008; Sims, 2014). This need

typically arises as more insurers wish to assess their outstanding claims liabilities on a

more frequent basis such as quarterly or monthly. These insurers often have large portfolios

of many segments which makes the task very time consuming. It is also observed that

many segments do not experience dramatic changes from one period to another, making the

valuation job rather repetitive (McGuire, 2007). Robotic reserving, or automated reserving, is

then considered a plausible solution (Taylor and McGuire, 2008). They can perform repetitive

valuation jobs for many business segments while actuaries can have more time to spend on

segments that require more substantial judgements. Evolutionary models incorporate changes

naturally in the model structures. Many evolutionary models are developed with filtering

processes, a real-time device that updates existing estimates without the need to redo all

calculations or keep track of all previous information (De Jong and Zehnwirth, 1983). Hence

they can be used in the construction of reserving robots.

Evolutionary models have appeared in the loss reserving literature since as early as

the 1980s. Evolutionary models are also a very common type of models used in time series

analysis with a wide range of applications in engineering, physics, economics, and many more.

They are often called hidden Markov models (Doucet and Johansen, 2011), or state space

models (Durbin and Koopman, 2012) in these areas. These models typically assume that the
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development over time of the system under study is determined by an unobserved series of

dynamic factors (Durbin and Koopman, 2012, Chapter 1). The latent/unobserved factors are

called states, and the relationships between system observations and these states are specified

in these models.

State space models can be categorised into two groups based on the underlying

distributional assumption used: Gaussian models and non-Gaussian models. In these models,

the estimation of underlying factors is also important as the techniques used are not as

straightforward as those used for static models with deterministic factors/parameters. We

also review the estimation techniques for state space models in the subsequent sections.

2.5.2 Theory of Gaussian models and Kalman filtering

The focus of this section is on linear Gaussian state space models. The observation

equation which specifies the relationship between a vector of observations Yt and a vector of

underlying states/random factors γt is

Yt = Atγt + ςt, ςt ∼ Normal(0,Ht), (2.113)

where At is a specified matrix and Ht is the covariance matrix of the disturbance term ςt.

The underlying states vector γt evolves over time according to a state equation

γt+1 = Rtγt + St · γεt+1, γεt+1 ∼ Normal(0,Qt), (2.114)

where Rt and St are specified matrices, Qt is the covariance matrix of the disturbance term

γεt+1. We also have the disturbances ςt and γεt being independent. The above structure is

called a linear Gaussian state space structure due to the linearity and Gaussian assumptions

specified in both equations.

In the above specification, the underlying states γt are to be estimated, as well as the

covariance matrices Ht and Qt. The matrices At, Rt, St can either be specified, or estimated

depending on the model specifications. The underlying states γt can be estimated recursively

using observations obtained at each time step. This on-line estimation procedure is referred

to as filtering. Underlying parameters, however, are estimated in a separate procedure. The

estimation of states and parameters are reviewed in Section 2.5.2.1 and 2.5.2.2, respectively.
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2.5.2.1 Kalman filtering and back smoothing for state estimation

Filtering is a real-time device that updates estimates of states recursively upon the

arrival of new observations without the need to redo all calculations or keep track of all

previous information. For linear Gaussian state space models, an optimal filtering algorithm

can be obtained in closed-form, which is known as the Kalman filter. The Kalman filter

estimates the states with minimised errors using the available information of the observation

process as well as prior knowledge about the system (Durbin and Koopman, 2012). The

tractability of the Kalman filter has motivated the popularity of Gaussian state space models

in various fields.

The Kalman filtering procedure is summarised in Figure 2.4. In a Kalman filter, there

are two sets of equations: measurement update equations and time update equations (Welch

and Bishop, 1995; Durbin and Koopman, 2012). The measurement update equations are

responsible for updating the current state using current observations, also known as the

filtering step. The output of this step is the filtered distribution γt|Yt. However, because

of Gaussian specifications for Yt and γt+1 in Equation (2.113) and Equation (2.114), the

distribution of γt|Yt is also Gaussian. It is then sufficient to estimate the mean and the

covariance of this distribution

γ̂t|t = E[γt|Yt], (2.115)

P̂t|t = V ar[γt|Yt]. (2.116)

The time update equations aim to estimate the distribution of states in the next period using

current information γt+1|Yt, also known as the one-step prediction step. As this distribution

is also Gaussian, it is sufficient to estimate its mean and variance

γ̂t+1|t = E[γt+1|Yt], (2.117)

P̂t+1|t = V ar[γt+1|Yt]. (2.118)

In the Kalman filter, the means and variances of states in the filtering step as well as the

one-step ahead prediction step are obtained recursively. The whole history is not required to

be kept and reprocessed every time new observations arrive.
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Figure 2.4: A diagram of the Kalman filter

The Kalman filter, however, is suboptimal for estimating the sequence of states. This

is because it only uses new information at each time period to provide filtered estimates

of states instead of the available trajectory of observations in later periods. The Kalman

smoother is used to overcome this limitation. The Kalman smoother provides the backward

recursive estimation of underlying states given all available observations. It is typically run

after the Kalman filter is completed and all filtered estimates of states have been obtained.
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Estimates of underlying states from the Kalman smoother are usually called smoothed states

and are given as

γ̂t|T = E[γt|YT ], (2.119)

= γ̂t|t + P̂t|tR
′
t+1P̂

−1
t+1|t

(
γ̂t+1|T − γ̂t+1|t

)
, (2.120)

where γ̂t|t, γ̂t+1|t, P̂t|t, P̂t+1|t are estimates from the Kalman filter. The smoother initialises

at t = T with the estimate of γ̂T |T from the Kalman filter.

2.5.2.2 Parameter estimation

The Kalman filter described in Section 2.5.2.1 is applied to estimate the underlying

states γt conditional on known parameters Ht, Qt, and possibly, At, Rt, St. A very common

method to estimate these parameters used in conjunction with the Kalman filter is maximum

likelihood estimation. A comprehensive review of this estimation technique is provided in

Durbin and Koopman (2012, Chapter 7).

With the use of linear Gaussian distributional assumptions for states γt and

observations Yt, the likelihood function can be obtained in closed-form with the unknown

parameters (denoted by Θ). In particular,

log fY1:T
(Y1:T ; Θ) =

T∑
t=1

log fYt|Yt−1
(yt|Yt−1; Θ) (2.121)

= −TÑ
2

log(2π)

− 1

2

T∑
t=1

(
log |AtP̂t|t−1A

′
t +Ht|+

(
yt −Atγ̂t|t−1

)′ (
AtP̂t|t−1A

′
t +Ht

)−1 (
yt −Atγ̂t|t−1

))
,

(2.122)

where Ñ is the number of observations in each vector Yt. The above log-likelihood function

comes from

Yt|Yt−1 ∼ Normal
(
Atγ̂t|t−1,AtP̂t|t−1A

′
t +Ht

)
. (2.123)

The log likelihood function can then be maximised to obtain estimates of unknown

parameters.

57



CHAPTER 2. LITERATURE REVIEW

2.5.3 Univariate Gaussian models

The majority of evolutionary reserving models in the literature are Gaussian models,

which can be applied to data on the log-scale. This ultimately implies a log-normal

assumption on claims on the original scale. A good review of Gaussian models, as well

as non-Gaussian models in reserving can be found in Chukhrova and Johannssen (2017).

The very first model introduced to the literature is De Jong and Zehnwirth (1983). A

typical Gaussian state space model structure is used in this model. The Hoerl curve (see also

Section 2.3.3) is used for observations specification

log(Yi,j) = ai + log(j) + j + ς̃i,j , ς̃i,j ∼ Normal(0, σ2
ς̃ ), (2.124)

and the state equation is specified as

ai = ai−1 + aεi, aεi ∼ Normal(0, σ2
aε). (2.125)

The underlying state that evolves in this model is the accident period factor ai. The

above structure can be more complex with more polynomial terms added. The Kalman

filter is applied for state estimation, and maximum likelihood estimation is used to estimate

parameters. The filter is applied on the row-wise flow of data. This means that states are

estimated recursively for each row using estimates from the previous row.

Verrall (1989) introduced a Gaussian model with the chain-ladder mean structure

log(Yi,j) = ai + bj + ς̃i,j , ς̃i,j ∼ Normal(0, σ2
ς̃ ), (2.126)

where the underlying states were specified such that

ai = ai−1 + aεi, aεi ∼ Normal(0, σ2
aε), (2.127)

bj = bj−1 + bεj , aεj ∼ Normal(0, σ2
aε). (2.128)

In this model the Kalman filter is also used to estimate the underlying states ai and

bj . The filter is applied with a diagonal-wise flow of data. This means that factors in

each diagonal (calendar period) are estimated recursively using estimates from the previous

diagonal (calendar period). A similar model structure is used in Verrall (1994) where the
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only underlying random factor is bj . The Kalman filter is applied with the row-wise flow of

data in this model.

Ntzoufras and Dellaportas (2002) also developed an evolutionary model which is similar

to the model in Verrall (1989). They used Bayesian inference to estimate the underlying states

ai and bj as well as the unknown parameters. This is a hierarchical Bayesian framework where

underlying states are treated as unknown parameters, the distributions of which are driven

by unknown parameters on the upper level in the hierarchy. This approach is known as the

off-line estimation of states where they are not recursively updated upon the arrival of new

data but are estimated all at once using all observed information.

Another Gaussian model is developed in Atherino et al. (2010). In this model, claim

cells are stacked together by rows to form a univariate time series with missing values

representing claims in the lower triangle. Each claim cell is assumed to have the following

structure

log(Yt) = ãt + b̃t + Ãtγ̃ + ς̃t, ς̃t ∼ Normal(0, σ2
ς̃ ), (2.129)

where t is position of the observation in the series, Ãtγ̃ is the linear predictor with fixed

effects, and ãt, b̃t are random factors specified such that

ãt = ãt−1 + ãεt, ãεt ∼ Normal(0, σ2
ãε

), (2.130)

b̃t = −
J−1∑
j=1

b̃t+1−j + b̃εt, b̃εt ∼ Normal(0, σ2

b̃ε
). (2.131)

In this structure, the claims development pattern is captured using seasonal effects via

the term b̃t. Two methods are considered to calculate the mean square error of the total

outstanding claims: block method and cumulating method. The block method uses the

Kalman filtering algorithm to obtain the covariance matrix for all observations (including

missing values), which is then used to calculate the mean square error of total outstanding

claims. The cumulating method treats cumulated unobserved claims as separate states in

the model, then obtains the estimates and the mean square errors of these states using the

Kalman filter. However, when the cumulating method is used, the log-transformation cannot

be applied hence the Gaussian assumption applies directly on claims on the original scale

Yi,j .
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De Jong (2006) introduced a number of evolutionary models with parameters evolution

in various dimensions, including by development period, accident period and calendar period.

These models are applied on log-link ratios

Di,j = log

(
Xi,j

Xi,j−1

)
. (2.132)

A model with development period evolution is represented such that

Di,j = b̈j + b̃j(Dεi,j + b̃τj · Dεi,j−1), Dεi,j ∼ Normal(0, σ2
Dε

), (2.133)

where b̈j is the mean component, and the noise component is composed of two parts: the

current noise term Dεi,j and the previous noise term Dεi,j−1 carried over with an adjustment

coefficient b̃τj . The whole noise component is adjusted by a coefficient b̃j .

With a similar time series approach, a model with the evolution in the accident period

direction is introduced using

Di,j = d̈i,j + b̃j · Dεi,j , Dεi,j ∼ Normal(0, σ2
Dε

), (2.134)

d̈i+1,j = d̈i,j + d̈τj · d̈εi+1,j , d̈εi+1,j ∼ Normal(0, σ2
Dε

), (2.135)

where the evolutionary factor is d̈i+1,j which evolves from one accident period to another. It

is also the mean of the log-link ratio Di,j . Two coefficient terms for the disturbances in the

observation Di,j and the state d̈i,j specifications are b̃j and d̈τj , respectively.

The evolution in the calendar period dimension can also be captured in a similar manner

with

Di,j = b̈j + b̃j(öt=i+j−1 + Dεi,j), Dεi,j ∼ Normal(0, σ2
Dε

), (2.136)

öt+1 = öt + öτ · öεt+1, öεt+1 ∼ Normal(0, σ2
oε), (2.137)

where the evolving state is the calendar period factor öt. The column specific term in the

mean structure of Di,j is b̈j . The noise component is denoted by Dεi,j which is adjusted by a

coefficient b̃j . The observation equation also involves a calendar period term öt which evolves

from one calendar period to another in a random walk. The noise in this random walk is

adjusted by the coefficient öτ . The Kalman filter is used for state estimation in these models.
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Shi et al. (2012) also considered evolutionary calendar factors in their reserving model

for multiple business segments. This model is described in detail in Section 2.4.3.1. In this

model, claims follow multivariate log-normal distributions with a modified chain ladder mean

structure with an additional term for calendar period effects. These calendar period effects

evolve over time in a random walk

ht = ht−1 + hεt, hεt ∼ Normal(0, σ2
hε

), (2.92)

or an AR(1) process

ht = hτ · ht−1 + hεt, hεt ∼ Normal(0, σ2
hε

). (2.93)

Calendar period factors are common shocks and they deduce the calendar period dependence

within and across segments. Hierarchical Bayesian estimation is used where these calendar

period factors are treated as unknown parameters. Similar to Ntzoufras and Dellaportas

(2002), this estimation is also off-line.

2.5.4 Theory of non-Gaussian models and particle filtering

The Kalman filter provides an optimal tractable recursive estimation of states in linear

Gaussian models. The tractability of the Kalman filter is particularly attractive and this

explains the popularity of Gaussian models not only in the reserving field but also many

other fields such as engineering, physics and medicine. Linear Gaussian models typically rely

on the linearity and Gaussian assumptions of states and observations, as shown in Equation

(2.113) and Equation (2.114). Relaxing these assumptions result in non-linear and/or non-

Gaussian state space models.

A general state space model can be introduced with

Yt ∼ fYt|γt(Yt|γt), (2.138)

γt ∼ fγt|γt−1
(γt|γt−1), (2.139)

where fYt|γt(Yt|γt) and fγt|γt−1
(γt|γt−1) are specified densities. Either one or both of these

distributions can be non-Gaussian.
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A subclass of non-Gaussian models is EDF state space models (Durbin and Koopman,

2012). In a typical EDF state space model, observations Yt follow a distribution from the

EDF

fYt(yt|θt,φt) = v (yt,φt) exp

{
ytθt − κ(θt)

φt

}
, (2.140)

where the canonical parameter θt is called the signal in state space models and specified such

that

θt = Atγt, (2.141)

with γt being the evolving states. When the state specification is linear with the Gaussian

assumption, i.e.

γt+1 = Rtγt + St · γεt+1, γεt+1 ∼ Normal(0,Qt) (2.142)

we have a model with linear Gaussian signals (Durbin and Koopman, 2012).

Non-Gaussian models provide much more flexibility in terms of model structure and

distributional assumptions used. These models, however, lose their estimation tractability

as the Kalman filter is no longer an optimal filtering algorithm. Section 2.5.4.1 reviews

particle filtering, a very popular simulation-based filtering method for non-Gaussian models.

Parameter estimation techniques are reviewed in Section 2.5.4.2.

2.5.4.1 Particle filtering

Various filtering methods have been considered for non-linear and/or non-Gaussian

models since the optimal filters for these model are no longer tractable. A number of

filters have been developed which approximate the famous Kalman filter for Gaussian

models. The approximation can be done in various ways, including linearising the state and

observation equations (also known as the extended Kalman filter), applying a transformation

to observations and states to bring them closer to Gaussian systems, performing the mode

approximation to obtain approximating linear Gaussian models (also known as the mode

estimation method). A comprehensive review of these methods can be found in Durbin and

Koopman (2012, Chapter 10).
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Particle filters are procedures introduced to solve filtering problems in non-linear and/or

non-Gaussian state space models using Monte Carlo algorithms, to be precise, sequential

Monte Carlo algorithms. Ever since they were introduced in the 1990s, they have become

very popular estimation tools for these models. Particle filtering has seen a quite extensive

area of research and is still receiving attention. Excellent reviews can be found in Doucet et al.

(2001), Cappé et al. (2007), Fearnhead (2008), Doucet and Johansen (2011), and Creal (2012),

just to name a few. The purpose of particle filters is the same as that of the Kalman filter:

to sequentially update the filtered distribution of states γt|Yt and the predictive distribution

of states γt+1|Yt upon the arrival of new observations. Because these distributions are no

longer linear Gaussian, sequential Monte Carlo algorithms are used to approximate them.

The summary of particle filtering provided in this section follows Cappé et al. (2007) and

Creal (2012).

Recall that we want to approximate, or estimate important statistics of the filtering

distribution fγ0:t|Y1:t
. Consider any function g̃(.) of states γ0:t, which can be a mean function

or a variance function. We have

E [g̃(γ0:t)] =

∫
g̃(γ0:t)fγ0:t|Y1:t

(γ0:t|y1:t)dγ0:t, (2.143)

≈ 1

M

M∑
m=1

g̃
(
γ

(m)
0:t

)
, (2.144)

where M is the number of samples drawn from the distribution fγ0:t|Y1:t
. In brief, we can

approximate the expected value using a sample average with γ
(m)
0:t being drawn from its

distribution. However, this distribution can be very difficult, or in many cases, impossible to

draw sample from. We look for an alternative distribution f̃γ0:t|Y1:t
(γ0:t|y1:t) which is close to

fγ0:t|Y1:t
in some sense and easier to simulate from. The expected value can be rewritten as

E [g̃(γ0:t)] =

∫
g̃(γ0:t)

fγ0:t|Y1:t
(γ0:t|y1:t)

f̃γ0:t|Y1:t
(γ0:t|y1:t)

f̃γ0:t|Y1:t
(γ0:t|y1:t)dγ0:t, (2.145)

=

∫
g̃(γ0:t)ωtf̃γ0:t|Y1:t

(γ0:t|y1:t)dγ0:t, (2.146)

≈
M∑
m=1

ω
(m)
t∑N

m=1 ω
(m)
t

g̃
(
γ

(m)
0:t

)
, (2.147)
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where ωt is called the importance weight and is defined such that

ωt =
fγ0:t|Y1:t

(γ0:t|y1:t)

f̃γ0:t|Y1:t
(γ0:t|y1:t)

. (2.148)

Since samples are drawn from the approximating distribution f̃γ0:t|Y1:t
(γ0:t|y1:t), a correction

needs to be made so that the obtained estimate is an unbiased estimator of E [g̃(γt)]. This

correction involves re-weighting the samples with weights ωt, resulting in a weighted average

of samples as shown in Equation (2.147).

Since new observations arrives at each time point, it can be desirable to avoid

recalculating the weights for the whole state vector γ0:t at each t. This can be done with a

recursive decomposition of the filtering distribution

f̃γ0:t|Y1:t
(γ0:t|y1:t) = f̃γ0:t−1|Y1:t−1

(γ0:t−1|y1:t−1)f̃γt|γ0:t−1,Y1:t
(γt|γ0:t−1,y1:t). (2.149)

The importance weights can then be calculated recursively

ωt =
fγ0:t−1|Y1:t−1

(γ0:t−1|y1:t−1)

f̃γ0:t−1|Y1:t−1
(γ0:t−1|y1:t−1)

×
fYt|γt(yt|γt)fγt|γt−1

(γt|γt−1)

f̃γt|γt−1,Y1:t
(γt|γt−1,y1:t)

, (2.150)

= ωt−1

fYt|γt(yt|γt)fγt|γt−1
(γt|γt−1)

f̃γt|γt−1,Y1:t
(γt|γt−1,y1:t)

, (2.151)

where fYt|γt(yt|γt) and fγt|γt−1
(γt|γt−1) are specified in Equation (2.138) and Equation

(2.139) of the state space model.

Particle filtering applies the concept of the sequential Monte Carlo described above.

Samples drawn from the proposal distributions are often called particles. A particle filtering

algorithm can be formulated as follows based on the review in Doucet and Johansen (2011).

Sequential Monte Carlo particle filter

Step 1. Initialisation: At t = 0, for m = 1, ...,M , draw

γ
(m)
0 ∼ f̃γ0(γ0), (2.152)

and calculate the importance weight

ω
(m)
0 =

fγ0(γ
(m)
0 )

f̃γ0(γ
(m)
0 )

. (2.153)
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Step 2. Set t = t+ 1.

For m = 1, ...,M , draw

γ
(m)
t ∼ f̃γt|γt−1,Y1:t

(γt|γt−1,y1:t). (2.154)

Step 3. For m = 1, ...,M , compute the importance weights

ω
(m)
t = ωt−1

fYt|γt(yt|γ
(m)
t )fγt|γt−1

(γ
(m)
t |γ(m)

t−1 )

f̃γt|γt−1,Y1:t
(γ

(m)
t |γ(m)

t−1 ,y1:t)
. (2.155)

If the proposal distribution used is

f̃γt|γt−1,Y1:t
(γ

(m)
t |γ(m)

t−1 ,y1:t) = fγt|γt−1
(γ

(m)
t |γ(m)

t−1 ), (2.156)

then the importance weights are simplified to

ω
(m)
t = ωt−1fYt|γt(yt|γ

(m)
t ). (2.157)

Normalise the importance weights

ω̃
(m)
t =

ω
(m)
t∑M

m=1 ω
(m)
t

. (2.158)

Step 4. Re-sample M particles with probabilities {ω̃(m)
t }Mm=1, and set ω

(m)
t =

1

M
for m =

1, ...,M .

Step 5. Repeat steps 2-4 until t = T .

The particle filtering algorithm presented above is the classical algorithm. Various

modifications and improvements have been made to this algorithm to improve the efficiency

and accuracy of the filtering process.

A fundamental difficulty with particle filtering is particle degeneracy, see for example,

Doucet and Johansen (2011); Li et al. (2014); Arulampalam et al. (2002). This refers to a

situation where all but a few particles have negligible weights after a number of iterations.

Indeed, this issue has been proven in Doucet et al. (2000) to be an inherent default of the

sequential Monte Carlo algorithms used in particle filtering. In particular, it has been shown
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that the variance of the importance weights increases over time. Consequently, the majority

of particles have normalised weights very close to 0 after a few time steps.

As the degeneracy issue of sequential Monte Carlo algorithms is unavoidable, re-

sampling is incorporated into the particle filtering algorithm to mitigate it. In this step,

the particles with significant weights are multiplied while those with negligible weights are

abandoned. However, the diversity of the particles deteriorates significantly as a consequence

of this re-sampling scheme. This is because only a small number of particles that have large

weights are likely to be drawn and the resultant sample will only contain repeated copies of

these particles. This problem has the same effect as the degeneracy issue without re-sampling

mentioned previously. It is also referred to in the literature as the weight degeneracy, or

particle impoverishment issue (Li et al., 2014; Arulampalam et al., 2002). Many advanced

particle filters have been developed which aim to address this issue. A review of these

techniques can be found in Li et al. (2014).

2.5.4.2 Parameter estimation

Various parameter estimation techniques have been considered for non-Gaussian state

space models. They can be classified into two groups: off-line estimation methods and on-line

estimate methods (Kantas et al., 2009). Off-line estimation methods refer to the estimation

of parameters using all observations at once. On-line estimation methods, on the other hand,

often integrate the estimation of parameters with the filtering of states. Hence parameters

are updated recursively in the same manner as the filtering of states upon the arrival of new

observations. The particle filtering approaches that provide on-line estimation of states and

parameters are also called particle learning (Lopes and Tsay, 2011).

A simplistic off-line estimation method is maximum likelihood estimation. The

likelihood function can be updated recursively as a by-product of the filtering process. As

with the likelihood function of a Gaussian model, we can write the likelihood function as

fY1:T
(Y1:T ; Θ) = fY0(y0; Θ)

T∏
t=1

fYt|Y1:t−1
(yt|y1:t−1; Θ), (2.159)
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with

fYt|Y1:t−1
(yt|y1:t−1; Θ) =

∫
fYt|γt(yt|γt; Θ)fγt|Y1:t−1

(γt|Y1:t−1; Θ)dγt ≈
1

M

M∑
m=1

ω
(m)
t ,

(2.160)

where ω
(m)
t is the importance weight calculated in Step 3 of the particle filtering algorithm

in Section 2.5.4.1. The likelihood can then be maximised using numerical methods to obtain

parameter estimates (Durbin and Koopman, 2012).

On-line estimation, or particle learning methods allow parameters to be updated in the

filtering process as new observations arrive. These parameters, however, are static, meaning

that they are fixed and do not change over time in the same way that states do. Hence, they

need to be treated differently (Carvalho et al., 2010).

A well-known particle learning technique in the literature is developed in Liu and West

(2001), which is often called the Liu and West filter. In this filter, artificial dynamic noise is

added to the static parameters with controlled variance inflation. This allows parameters to

be treated as evolving “states” in the filter. The filter can be described as follows.

Liu and West filter (Liu and West, 2001)

Step 1. Initialisation: At t = 0, for m = 1, ...,M , draw parameters from their prior densities

Θ
(m)
0 ∼ f̃Θ0(Θ

(m)
0 ), (2.161)

states from their initial distribution

γ
(m)
0 ∼ f̃γ0(γ0; Θ

(m)
t ), (2.162)

and calculate the importance weights

ω
(m)
0 =

fγ0(γ
(m)
0 ; Θ

(m)
t )

f̃γ0(γ
(m)
0 ; Θ

(m)
t )

. (2.163)
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Step 2. For m = 1, ...,M , compute

Θ̂
(m)
t = ξΘ

(m)
t−1 + (1− ξ) 1

M

M∑
m=1

Θ
(m)
t−1, (2.164)

where ξ is the shrinkage coefficient. Also compute

γ̂
(m)
t = E[γt|γ(m)

t−1 ,Θ
(m)
t−1]. (2.165)

Step 3. For m = 1, ...,M , compute the look-ahead importance weights

ω
(m)
t = ω

(m)
t−1fYt|γt(yt|γ̂

(m)
t ; Θ̂

(m)
t ). (2.166)

Normalise the importance weights

ω̃
(m)
t =

ω
(m)
t∑M

m=1 ω
(m)
t

. (2.167)

Step 4. Re-sample M particles {γ(m)
t−1 ; Θ̂

(m)
t }Mm=1 with probabilities {ω̂(m)

t }Mm=1.

Step 5. For m = 1, ...,M , draw

Θ
(m)
t ∼ Normal(Θ̂

(m)
t , (1− ξ2)ΣΘt−1), (2.168)

where ΣΘt−1 is the covariance matrix of {Θ(m)
t−1}Mm=1.

Also sample

γ
(m)
t ∼ fγt|γt−1

(γt|γ(m)
t−1 ; Θ

(m)
t ). (2.169)

Step 6. For m = 1, ...,M , calculate the importance weights

ω
(m)
t =

fYt|γt(yt|γ
(m)
t ; Θ

(m)
t )

fYt|γt(yt|γ̂
(m)
t ; Θ̂

(m)
t )

. (2.170)

Normalise the importance weights

ω̃
(m)
t =

ω
(m)
t∑M

m=1 ω
(m)
t

. (2.171)
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Step 7. Repeat steps 2-6 until t = T .

In the Liu and West algorithm, the re-sampling step is done prior to the filtering step.

This is to improve the efficiency in the selection of particles by using information in the

subsequent period. This aims to reduce the particle degeneracy issue mentioned at the end

of Section 2.5.4.1.

2.5.5 Univariate non-Gaussian models

There have been some non-Gaussian models introduced in the reserving literature.

These models focus on single business segments.

Taylor and McGuire (2009) developed a framework with a focus on some specific

members of the EDF. Specific examples are provided for models with gamma distributions

and ODP distributions. A modified Hoerl curve is used for the mean structure with a log-link

log(µi,j) = ai + ri log(j) + sij + r̃i min(j, 16), (2.172)

where a different development level pass the development period 16 is allowed through the

additional factors r̃min(j, 16). Note that this mean structure is tailored to the specific data

set used for illustration in the paper. All coefficients of the curve, including ai, ri, si, r̃i are

accident period-specific factors and they evolve as we proceed from one accident period to

another. A filter called the second-order Bayesian revision is then used to give closed-form

filtered estimates of these random factors.

The second-order Bayesian revision technique was developed in Taylor (2008) to

provide closed-form solutions to state space models that use the EDF with conjugate prior

specifications. This technique aims at a group of distributions from the EDF which can

produce linear signals using their canonical link functions

θt = ai + ri log(j) + sij + r̃i min(j, 16). (2.173)

The revision can be considered a “replica” of the Kalman filter for Gaussian models. With

the use of canonical links or conjugate canonical links, a second-order Taylor series can be

applied to approximate the filtered distribution of interest. For the special case of a Gaussian

model, the second-order Bayesian approximation is exactly equal to the Kalman filter. It
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is also noted in Taylor (2008) and Taylor and McGuire (2009) that this approach is only

analytically tractable in a limited set of distributions with canonical or conjugate canonical

links.

Sims (2011) developed a particle filtering algorithm for the non-Gaussian state space

model in Taylor and McGuire (2009) to utilise the developments in MCMC and improve

the flexibility in the choice of models (where the canonical link/conjugate canonical link

requirement is relaxed). The particle filtering procedure used in Sims (2011) is the standard

sequential Monte Carlo particle filtering algorithm described in Section 2.5.4.1. In this particle

filter, parameters are estimated before running the filter using an initial residual analysis.

Sims (2011) experienced the degeneracy issue, and also observed that the particle filter used

could not always keep track of the changes in claim activity over time.

Dong and Chan (2013) developed an evolutionary framework using the generalised

beta family of distributions. This is a class of distributions consisting of both light-tailed and

heavy-tailed distributions such as gamma distributions, Weibull distributions, and Pareto

distributions. In this framework, each individual claim cell Yi,j is assumed to follow a

distribution from the generalised beta family. The chain ladder mean structure is then used

ai + bj . (2.174)

These factors of the mean structure are then assumed to follow AR(1) processes. Off-line

estimation is used to estimate those factors as well as other unknown parameters of the

framework, i.e. all parameters are estimated at once using all observations. The estimation

is performed using Bayesian inference.

2.6 Literature summary and areas for development

We provide a summary of the literature review in Section 2.6.1. Areas for development

are then identified and provided in Section 2.6.2.
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2.6.1 Literature summary

Loss reserving is a topic of significant importance to insurers as the valuation

of outstanding claims is crucial for their financial stability and fulfilment of regulatory

requirements. It is an area of research that has been receiving increasing attention, as shown

(briefly) in this chapter.

Traditionally, deterministic reserving methods are used. They produce single mean

estimates of the outstanding claims liabilities. Three traditional methods are reviewed in

Section 2.2, including the well-known chain ladder algorithm (Section 2.2.1), the Bornhuetter-

Ferguson algorithm (Section 2.2.2), and the Berquist-Sherman technique (Section 2.2.3).

Estimates from the chain ladder algorithm are purely driven by the data, while the

Bornhuetter-Ferguson algorithm incorporates some expert knowledge into the estimation.

When there are changes in claim activity over time, the Berquist-Sherman technique can be

used.

While deterministic methods are simple and convenient to apply, they do not provide

estimates of uncertainty associated with the single mean estimates of outstanding claims.

This can have significant consequences on the financial stability as well as solvency of an

insurer, as explained in Section 2.3.1. This has motivated the development of stochastic

models, which are the focus of Section 2.3. An important and popular type of stochastic

models is developed using the EDF, and in most cases, its Tweedie sub-family. Many models

have been introduced to the literature which use members from this family, including ODP

distributions, gamma distributions, Tweedie’s compound Poisson distributions, and others.

Some of the theory of the EDF and the Tweedie sub-family is given in Section 2.3.2 which

covers the definition, as well as many interesting properties of the family. The extensive use

of this family in the reserving literature is shown in the review in Section 2.3.3 which is on

the GLM framework and Section 2.3.4 which is on Tweedie models.

The focus of Section 2.4 is on multivariate reserving models. A general insurance

company often operates in multiple business segments whose risks are dependent to some

extent, but not monotonically. In the valuation of the outstanding claims liability on the

aggregate level, it is important to consider the dependence structure amongst business

segments to account for diversification benefits, and to also satisfy regulatory requirements.

These are explained in detail in Section 2.4.1. These motivate the development of multivariate
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models for reserving. Three types of models are reviewed: copula models, multivariate models

with specific marginals, and common shock models. The copula modelling approach is a

very popular multivariate reserving approach due to its flexibility in marginal modelling and

dependence modelling. The extensive use of copulas in the reserving literature is summarised

in Section 2.4.2. Besides copulas, multivariate models with specific marginals have also been

used and are described in Section 2.4.3. Common shock approaches have also been considered

for multivariate outstanding claims modelling. Common shock models have many distinctive

strengths, including explicit dependence structures, ease of interpretation, and parsimonious

and discipline construction of correlation matrices. These models are reviewed in Section

2.4.4.

Section 2.5 explores another segment of the reserving literature which focuses on

evolutionary modelling. Insurers typically experience changes in claims activity over time.

Evolutionary models with evolving factors are a parsimonious and elegant solution that allows

changes to be incorporated naturally in such cases. The benefits of evolutionary models are

described in detail in Section 2.5.1. Evolutionary models can be classified into two groups

based on the distributional assumptions used: Gaussian models and non-Gaussian models.

Some of the theory of Gaussian models is given in Section 2.5.2. This section also provides

a description of the Kalman filter, a recursive algorithm that estimates evolving factors

sequentially upon the arrival of new observations. Gaussian evolutionary models in the

reserving field are reviewed in Section 2.5.3. Some of the theory of non-Gaussian models is

provided in Section 2.5.4, together with particle filters, popular simulation based algorithms

that estimate evolving factors recursively. A review of non-Gaussian reserving models is

provided in Section 2.5.5.

2.6.2 Areas for development

The aim of our research is to develop models that incorporate realistic data features

as well as desirable model features. This can improve the accuracy in the valuation of

outstanding claims liabilities and enhance the practicality of models.

Insurers typically operate in multiple segments and it is essential to consider the

dependence across segments in the valuation of outstanding claims on the portfolio level.

This allows insurers to assess their diversification benefits appropriately. Insurers can
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then set more accurate aggregate reserves and capital (see also Section 2.4.1). While

searching for dependence modelling techniques, we draw our attention to common shock

approaches. Common shock approaches are very popular dependence modelling tools with

various strengths (Lindskog and McNeil, 2003). These approaches typically use common

random factors to capture the drivers of dependence across related variables. This allows

these drivers to be identified and monitored if needed. The explicit dependence structures

from these approaches also enhance the ease of interpretation, which is one of the four

desirable properties of multivariate models considered in Joe (1997, Chapter 4). These

properties are also listed in Chapter 1. In addition, correlation matrices, which are tools used

extensively by practitioners to specify the dependency in their portfolios, can be constructed

in a parsimonious and disciplined manner (Avanzi, Taylor and Wong, 2018). Common shock

approaches have made their various appearances in the literature, as also described in Section

2.4.4.

It has been noted that the EDF and more specifically, its Tweedie sub-family, have been

used quite extensively in the loss reserving literature, either in univariate models (Section 2.3),

multivariate models (Section 2.4), or evolutionary models (Section 2.5). The Tweedie family is

a very rich family of distributions that covers many commonly known distributions including

Poisson distributions, Tweedie’s compound Poisson distributions, gamma distributions, and

many more (Jorgensen, 1997; Alai et al., 2016). This motivates the development of a common

shock Tweedie framework which can possess many strengths of common shock models, as well

as the marginal flexibility of the Tweedie family of distributions. This development will be

considered in Chapter 3.

The Tweedie family of distributions, however, has quite a complex density. This issue

can further escalate in a multivariate framework. An appropriate estimation approach also

needs to be considered if a common shock Tweedie framework is developed. We will address

this problem in Chapter 4.

Many reserving data sets contain some variation in claim activity between different

lengths of delay. In particular, it often reaches a peak in some early years, then dies out as

the delay increases. Furthermore, claim activities across segments are not identical. Some

segments such as Auto Property Damage have shorter delays in claim activity while segments

such as Auto Bodily Injury covers have longer delays. This particular data feature can have

impacts on common shock models (Avanzi, Taylor and Wong, 2018). We also aim to consider
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the impacts of this feature in further detail and propose a solution to address them in Chapter

5.

Varying claim activity over time is another feature of reserving data typically

encountered by insurers. This very common and important feature has motivated the

development of evolutionary models which capture these changes naturally through evolving

parameters (De Jong and Zehnwirth, 1983; Zehnwirth, 1994; Taylor et al., 2003). A number of

evolutionary models have been considered for a single business segment (see also Section 2.5).

This motivates us to develop a multivariate GLM evolutionary framework using a common

shock approach to incorporate the dependence across segments. Inspired by the richness and

popularity of GLMs and the EDF in reserving (Section 2.3.3), we can consider a natural

extension of the traditional GLMs by letting their parameters evolve. We are also motivated

to formulate filtering approaches that provide real-time updates of random factors for this

evolutionary framework. This development will be the focus of Chapter 6.
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A multivariate Tweedie framework - Theory
1

3.1 Introduction

In actuarial applications, common shock approaches have been very popular dependence

modelling tools (Lindskog and McNeil, 2003). They are typically used to capture structural

dependence that are due to known relationships which can be accounted for in a modelling

framework (International Actuarial Association, 2004). A review of their applications in

reserving is provided in Section 2.4.4. Common shock approaches have a number of properties

that are particularly useful in modelling. With explicit dependence structures, common shock

models offer ease of interpretation. The drivers of dependence can be identified and monitored

if needed. Furthermore, the construction of correlation matrices can be put at ease using

common shock models. Correlation matrices are tools used extensively by practitioners to

specify dependence in the aggregation of outstanding claims liabilities and risk-based capital.

Common shock approaches allow correlation matrices to be specified in a disciplined and

parsimonious manner (Avanzi, Taylor and Wong, 2018). This is particularly beneficial for a

portfolio of a large number of business lines or segments, which can be up to 100 in many

cases.

It is also desirable for a framework to possess marginal modelling flexibility, a feature

that has contributed to the popularity of copulas in many fields. This has attracted us

to the Tweedie family of distributions. The Tweedie family is a major subclass of the

1An abbreviated version of results in Chapters 3 and 4 has been published in Avanzi, B., Taylor, G., Vu,
P.A., Wong, B., 2016. Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach.
Insurance: Mathematics and Economics 71, 63–78.
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EDF, consisting of symmetric and non-symmetric, light-tailed and heavy-tailed distributions

(Alai et al., 2016; Jorgensen, 1997). This class and its members are frequently used in loss

reserving including univariate models, to multivariate models and evolutionary models (see

also Chapter 2). Some notable members of the Tweedie family include Poisson distributions

and Tweedie’s compound Poisson distributions. The former are frequently used in loss

reserving and well known in stochastic models that underlie the traditional chain ladder

algorithm (Section 2.3.4.1). The latter have probability mass at 0 hence are applicable in

many data sets which contain 0’s (Section 2.3.4.3). A recapitulation of properties of the

Tweedie family of distributions is provided in Section 2.3.2.2.

In the search for approaches to model realistic data features while offering desirable

modelling features, we have been inspired to develop a common shock Tweedie framework.

This framework can inherit many benefits of common shock approaches and the Tweedie

family of distributions mentioned above. With these many benefits, this development can

accomplish the overall research aim of developing models that offer great practicality and

accurate valuation of outstanding claims.

This section focuses on the theoretical development of the common shock Tweedie

framework. The theoretical framework is described in Section 3.2. Section 3.3 provides a

detailed analysis of moments driven from the framework. Remarks on theoretical model

properties are given in Section 3.4.

3.2 Framework development

In this section we develop a common shock Tweedie framework for claims from multiple

segments of business. The framework structure is provided in Section 3.2.1 with more detail

on the parametrisation in Section 3.2.2.

3.2.1 Structure

Furman and Landsman (2010) developed a multivariate Tweedie distribution using a

common shock approach. This is the ideal tool that we can use to develop our framework.

Recall from Section 2.4 that a number of multivariate models have been developed to capture

cell-wise dependence across loss cells coming from the same accident period and development
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period across triangles. These models include Shi and Frees (2011); Côté et al. (2016); Zhang

et al. (2012); Shi et al. (2012); Shi (2014). Our framework aims to capture this dependence

structure as well. While this dependence structure cannot be interpreted using systematic

factors such as calendar year dependence or accident year dependence mentioned in Section

2.4, it can be used to simply capture correlated noise as we will also demonstrate in the real

data illustration in Chapter 4.

In a preliminary step, claims are standardised using a common unit of exposure, such

as the number of policies, or total premium received for each accident year. This is to ensure

consistency across accident periods within and across segments. Standardised claims Y
(n)
i,j

from the i-th accident period and j-th development period across all business segments are

then collected into a vector

Yi,j =


Y

(1)
i,j

Y
(2)
i,j

...

Y
(N)
i,j

 . (3.1)

Following the definition of the multivariate Tweedie distribution in Furman and

Landsman (2010), each element of the above vector is assumed to be a sum of two components

Y
(n)
i,j =

θ̃

θ̈
(n)
i,j

Ui,j + Z
(n)
i,j , (3.2)

where Ui,j is referred to as the “common shock”, Z
(n)
i,j is referred to as the “idiosyncratic

effect”, θ̃ and θ̈ are the canonical parameters, ϑ̃ and ϑ̈
(n)
i,j are the index parameters of Ui,j

and Z
(n)
i,j , respectively. In this framework, all cell-wise claims that are in the same position

(i, j) share a common stochastic component Ui,j . The dependence across all cell-wise claims is

introduced explicitly using this common shock. It can also be observed from this construction

that the effect of the common shock Ui,j to each loss cell Y
(n)
i,j is scaled by the factor θ̃/θ̈

(n)
i,j .

This scaling factor aims to adjust effects of the common shock to different business segments.

Unique cell effects are captured by the idiosyncratic component Z
(n)
i,j .

The two components are assumed to be independent and have additive Tweedie
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specifications, denoted by Tweedie∗,

Ui,j ∼ Tweedie∗p(θ̃, ϑ̃), (3.3)

Z
(n)
i,j ∼ Tweedie∗p(θ̈

(n)
i,j , ϑ̈

(n)
i,j ), (3.4)

where p is the power parameter of these additive Tweedie distributions. The definition

of additive Tweedie distributions as well as other properties of the Tweedie family of

distributions are provided in Section 2.3.2.2.

With the particular construction specified as above, following Furman and Landsman

(2010), the marginal distribution of Y
(n)
i,j is

Y
(n)
i,j ∼


Tweedie∗1(θ̃, ϑ̃+ ϑ̈

(n)
i,j ), p = 1,

Tweedie∗p

θ̈(n)
i,j , ϑ̃

(
θ̃

θ̈
(n)
i,j

) p−2
p−1

+ ϑ̈
(n)
i,j

 , p 6= 1.
(3.5)

The marginal densities in this multivariate model are then Tweedie distributions. Hence this

construction provides distributional tractability. This closure under the taking of marginals,

together with ease of interpretation of the dependence structure, are also two of the four

desirable properties of a multivariate model considered in Joe (1997, Chapter 4) (also listed

in Chapter 1). However, it is worth noting that a common power parameter p is required for

the common shock components Ui,j , the idiosyncratic components Z
(n)
i,j , as well as all the claim

observations Y
(n)
i,j . This is a necessary requirement for the multivariate Tweedie framework

to have the closure property under the taking of margins. However, this can become a

limitation when dealing with common shock and idiosyncratic effects with drastically different

properties, or a large number of business segments with a large variation in claim activities.

As mentioned earlier, while the cell-wise dependence structure cannot be interpreted using

systematic factors such as calendar year dependence or accident year dependence mentioned

in Section 2.4, it can be used to simply capture correlated noise as we will also demonstrate

in the real data illustration in Chapter 4. In such cases, the common shocks in the proposed

framework are drivers of the correlated noises observed in the data.
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The multivariate density of the vector Yi,j is then

fYi,j

(
y

(1)
i,j , ..., y

(N)
i,j

)
=

∫ min

(
θ̈
(1)
i,j

θ̃
y
(1)
i,j ,...,

θ̈
(N)
i,j

θ̃
y
(N)
i,j

)
0

f∗Ui,j (ui,j)
N∏
n=1

f∗
Z

(n)
i,j

(
y

(n)
i,j −

θ̃

θ̈
(n)
i,j

ui,j

)
dui,j ,

(3.6)

where f∗. (.) is the additive Tweedie density. It is straightforward that the multivariate density

is the probability density of the convolutions of pairs of independent random variables Ui,j

and Z
(n)
i,j for claims in position (i, j). The common shock variable Ui,j is common across all

these convolutions.

3.2.2 Parametrisation

In this section, model parametrisation is considered in more detail. One of the

properties of the Tweedie family and the EDF in general, is the availability of two

representations, the additive form and the reproductive form, as summarised in Section 2.3.2.

The general framework introduced in the previous section utilises the additive representation

in the original multivariate Tweedie distribution by Furman and Landsman (2010). However,

the reproductive representation has a location parameter and a dispersion parameter that

specify the mean and the dispersion of the distribution. This form is easier to interpret

and more convenient to work within the loss reserving context. This has been shown in the

representation of all existing EDF and Tweedie models in the literature (Section 2.3.3 and

2.3.4). Therefore, we consider the reproductive representation for further parametrisation.

In the model parametrisation, we consider two separate cases: p 6= 1 in Section 3.2.2.1

and p = 1 in Section 3.2.2.2 which is the case of common shock ODP models.

3.2.2.1 Case 1: p 6= 1

Model parametrisation is performed on the reproductive Tweedie representation for

the case p 6= 1. In the marginal reproductive representation equivalent to the additive
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representation in Equations 3.3 and 3.4, we have

Ui,j ∼ Tweediep(α̃, φ̃), (3.7)

Z
(n)
i,j ∼ Tweediep(α̈

(n)
i β̈

(n)
j , φ̈

(n)
i,j ), (3.8)

where α̃ and α̈
(n)
i β̈

(n)
j are the location parameters and φ̃ and φ̈

(n)
i,j are the dispersion

parameters. Parameter α̈
(n)
i is the accident period parameter, and β̈

(n)
j is the development

period parameter. To ensure the estimates of α̈
(n)
i , β̈

(n)
j are unique for each n, we set

α̈
(n)
1 = 1, n = 1, ..., N . After performing an appropriate claims standardisation, it can be

further assumed that φ̈
(n)
i,j = φ̈(n). This simplification is commonly used in univariate Tweedie

reserving models to simplify model calibration (see also Section 2.3.4). It corresponds to the

simplification ϑ̈
(n)
i,j = ϑ̈(n) in the additive form. As noted in Boucher and Davidov (2011),

it is justified to have column-specific dispersion parameters, i.e. φ̈
(n)
j , and these dispersion

parameters and the p parameter are dependent. However, for the sake of simplifying the model

calibration, as mentioned in Alai and Wüthrich (2009) and performed in many existing models

in Section 2.3.4, we have chosen the above simplification. Note also that this simplification

is not needed to carry out analyses on theoretical properties of the model.

Using the duality between the additive form and the reproductive form of a Tweedie

distribution (Section 2.3.2.2), the relationships between parameters of the additive and

reproductive representations are given by

α̃ = ϑ̃
(
θ̃(1− p)

) 1
1−p

, (3.9)

α̈
(n)
i β̈

(n)
j = ϑ̈(n)

(
θ̈

(n)
i,j (1− p

) 1
1−p

, (3.10)

φ̃ = ϑ̃1−p, (3.11)

φ̈(n) = (ϑ̈(n))1−p. (3.12)

With the duality transformation, we also obtain

Y
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j . (3.13)

In this expression, the effect of the common shock Ui,j is scaled by a product of a ratio of

dispersion parameters φ̃ and φ̈(n), and a ratio of mean parameters α̃ and α̈
(n)
i β̈

(n)
j .

Using the relationship between the additive and reproductive representations of the
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Tweedie family specified in Equation (2.32) in Section 2.3.2.2, the marginal distribution of

Y
(n)
i,j is given by

Y
(n)
i,j ∼ Tweediep

α̈(n)
i β̈

(n)
j

( α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

 , φ̈(n)

( α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

1−p .

(3.14)

The multivariate density in the reproductive representation is then

fYi,j

(
y

(1)
i,j , ..., y

(N)
i,j

)
=

∫ Bi,j

0
fUi,j (ui,j)

N∏
n=1

f
Z

(n)
i,j

y(n)
i,j −

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
ui,j

 dui,j ,

(3.15)

where

Bi,j = min

( α̈(1)
i β̈

(1)
j

α̃

)1−p
φ̃

φ̈(1)
y

(1)
i,j , ...,

(
α̈

(N)
i β̈

(N)
j

α̃

)1−p
φ̃

φ̈(N)
y

(N)
i,j

, (3.16)

and where f.(.) is the Tweedie density in reproductive form.

A special case which is a multivariate gamma model can be obtained by letting p = 2.

Using the equivalent gamma distribution notations we have

Ui,j ∼ Tweedie2(α̃, φ̃) = Gamma

(
1

φ̃
,

1

α̃φ̃

)
, (3.17)

Z
(n)
i,j ∼ Tweedie2(α̈

(n)
i β̈

(n)
j , φ̈(n)) = Gamma

(
1

φ̈(n)
,

1

α̈
(n)
i β̈

(n)
j φ̈(n)

)
. (3.18)

and

Y
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)−1
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j , (3.19)

∼ Tweedie

α̈(n)
i β̈

(n)
j

[
φ̈(n)

φ̃
+ 1

]
, φ̈(n)

[
φ̈(n)

φ̃
+ 1

]−1
 , (3.20)

= Gamma

(
1

φ̈(n)
+

1

φ̃
,

1

α
(n)
i β̈

(n)
j φ̈(n)

)
. (3.21)

This is the common shock gamma model developed in Vu (2013) (Section 2.4.3.2).
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3.2.2.2 Case 2: p = 1

By letting p = 1, we arrive at common shock ODP models where

Ui,j ∼ ODP
(
α̃, φ̃

)
, (3.22)

Z
(n)
i,j ∼ ODP

(
α̈

(n)
i β̈

(n)
j , φ̈

(n)
i,j

)
, (3.23)

or equivalently,

Ui,j

φ̃
∼ Poisson

(
α̃

φ̃

)
, (3.24)

Z
(n)
i,j

φ̈
(n)
i,j

∼ Poisson

(
α̈

(n)
i β̈

(n)
j

φ̈
(n)
i,j

)
, (3.25)

where

α̃

φ̃
= ϑ̃ exp(θ̃), (3.26)

α̈
(n)
i β̈

(n)
j

φ̈
(n)
i,j

= ϑ̈
(n)
i,j exp(θ̃). (3.27)

Parameters φ̃ and φ̈
(n)
i,j are also called over-dispersion parameters. As with the general

case, it can be further assumed that φ̈
(n)
i,j = φ̈(n) to simplify the analysis.

Incremental claims are then assumed to be

Y
(n)
i,j =

φ̈(n)

φ̃
Ui,j + Z

(n)
i,j . (3.28)

The effect of the common shock Ui,j to each loss cell is scaled by a factor which is a ratio of

dispersion parameters φ̈(n)/φ̃. Consequently the marginal distribution of each loss cell is

Y
(n)
i,j ∼ ODP

(
φ̈(n)

φ̃
α̃+ α̈

(n)
i β̈

(n)
j , φ̈(n)

)
. (3.29)

The multivariate mass function of Yi,j is then given by

fYi,j

(
y

(1)
i,j , ..., y

(N)
i,j

)
=

Bi,j∑
ui,j=0

pUi,j (ui,j)

N∏
n=1

p
Z

(n)
i,j

(
y

(n)
i,j −

φ̈(n)

φ̃
ui,j

)
, (3.30)
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where

Bi,j = min

(
φ̃

φ̈(1)
y

(1)
i,j , ...,

φ̃

φ̈(N)
y

(N)
i,j

)
. (3.31)

The multivariate Tweedie distribution used in this new framework generalises the

multivariate Poisson distribution in Kocherlakota and Kocherlakota (1992). In this original

distribution, unit dispersions are used, i.e. φ̃ = φ̈(n) = 1. In this chapter, we relax this

assumption to also allow for over-dispersion.

A summary of model parametrisation is provided in Table 3.1.

83



CHAPTER 3. A MULTIVARIATE TWEEDIE FRAMEWORK - THEORY

p
A

d
d

it
iv

e
fo

rm
R

ep
ro

d
u

ct
iv

e
fo

rm
/P

oi
ss

on
n

ot
at

io
n

p
6=

1

Y
(n

)
i,
j

=
θ̃

θ̈(n
)

i,
j

U
i,
j

+
Z

(n
)

i,
j

Y
(n

)
i,
j

=

(
α̃

α̈
(n

)
i
β̈

(n
)

j

) 1−p
φ̈

(n
)

φ̃
U
i,
j

+
Z

(n
)

i,
j

Y
(n

)
i,
j
∼

T
w

ee
d

ie
∗ p

  θ̈(n
)

i,
j
,ϑ̃

( θ̃

θ̈(n
)

i,
j

)p−2 p−1
+
ϑ̈

(n
)

i,
j

 
Y

(n
)

i,
j
∼

T
w

ee
d

ie
p

  α̈(n
)

i
β̈

(n
)

j

 (
α̃

α̈
(n

)
i
β̈

(n
)

j

) 2−p
φ̈

(n
)

φ̃
+

1

  ,φ̈
(n

)

 (
α̃

α̈
(n

)
i
β̈

(n
)

j

) 2−p
φ̈

(n
)

φ̃
+

1

 1
−
p
 

U
i,
j
∼

T
w

ee
d

ie
∗ p

( θ̃,
ϑ̃
)

U
i,
j
∼

T
w

ee
d

ie
p
(α̃
,φ̃

)

Z
(n

)
i,
j
∼

T
w

ee
d

ie
∗ p

( θ̈(n
)

i,
j
,ϑ̈

(n
)

i,
j

)
Z

(n
)

i,
j
∼

T
w

ee
d

ie
p
(α̈

(n
)

i
β̈

(n
)

j
,φ̈

(n
) )

R
el

at
io

n
sh

ip
s

b
et

w
ee

n
p

ar
am

et
er

s:

ϑ̈
(n

)
i,
j

=
ϑ̈

(n
) ,

α̃
=
ϑ̃
( θ̃(

1
−
p
))1 1

−
p
,

α̈
(n

)
i
β̈

(n
)

j
=
ϑ̈

(n
)
( θ̈(n

)
i,
j

(1
−
p
))1 p−1

,
φ̃

=
ϑ̃

1
−
p
,

φ̈
(n

)
=

(ϑ̈
(n

) )
1
−
p

p
=

1

Y
(n

)
i,
j

=
U
i,
j

+
Z

(n
)

i,
j

Y
(n

)
i,
j

=
U
i,
j

+
Z

(n
)

i,
j

Y
(n

)
i,
j
∼

T
w

ee
d

ie
∗ 1

( θ̃,
ϑ̃

+
ϑ̈

(n
)

i,
j

)
Y

(n
)

i,
j
∼

P
oi

ss
on
( α̃

+
α̈

(n
)

i
β̈

(n
)

j

)
U
i,
j
∼

T
w

ee
d

ie
∗ 1

( θ̃,
ϑ
)

U
i,
j
∼

P
oi

ss
on

(α̃
)

Z
(n

)
i,
j
∼

T
w

ee
d

ie
∗ 1

( θ̃,
ϑ

(n
)

i,
j

)
Z

(n
)

i,
j
∼

P
oi

ss
on
( α̈

(n
)

i
β̈

(n
)

j

)
E

x
te

n
si

on
to

O
D

P
:

Y
(n

)
i,
j

=
φ̈

(n
)

φ̃
U
i,
j

+
Z

(n
)

i,
j
,

Y
(n

)
i,
j
∼

O
D

P

( φ̈
(n

)

φ̃
α̃

+
α̈

(n
)

i
β̈

(n
)

j
,φ̈

(n
))

U
i,
j
∼

O
D

P
( α̃
,φ̃
) ,

Z
(n

)
i,
j
∼

O
D

P
( α̈

(n
)

i
β̈

(n
)

j
,φ̈

(n
))

R
el

at
io

n
sh

ip
s

b
et

w
ee

n
p

ar
am

et
er

s:

P
oi

ss
on

:
α̃

=
ϑ̃

ex
p

(θ̃
),

α̈
(n

)
i
β̈

(n
)

j
=
ϑ̈

(n
)

i,
j

ex
p

(θ̃
)

O
D

P
:
α̃ φ̃

=
ϑ̃

ex
p

(θ̃
),

α̈
(n

)
i
β̈

(n
)

j

φ̈
(n

)
=
ϑ̈

(n
)

i,
j

ex
p

(θ̃
)

T
ab

le
3.

1:
S

u
m

m
ar

y
ta

b
le

of
m

o
d

el
p

ar
am

et
ri

sa
ti

on
fo

r
th

e
m

u
lt

iv
ar

ia
te

T
w

ee
d

ie
fr

a
m

ew
o
rk

84



CHAPTER 3. A MULTIVARIATE TWEEDIE FRAMEWORK - THEORY

3.3 Analysis of moments

The Tweedie framework developed in the previous section has a strong advantage of

allowing moments of each claim cell Y
(n)
i,j , and consequently, moments of the total sum of

outstanding claims to be obtained in closed-form. In this section, we provide an analysis of

moments obtained from the framework. Section 3.3.1 gives general expressions for moment-

and cumulant-generating functions for individual claim cells Y
(n)
i,j . In Section 3.3.2, closed-

form expressions of the mean, variance, and covariance of Y
(n)
i,j —the main moments and

cumulants of interest in loss reserving—are provided. Closed-form expressions of the mean

and variance of the total outstanding claims in the claims portfolio are given in Section 3.3.3.

3.3.1 Moment- and cumulant-generating functions

The moment generating function of ODP models with p = 1 can be obtained using

properties of Poisson distributions. Moment-generating functions of the common shock Ui,j

and the idiosyncratic component Z
(n)
i,j for the non-Poisson case with p 6= 1 are provided in

Furman and Landsman (2010) using the additive representation. Using parameters in the

reproductive representation as represented in the previous section, the moment generating

function of each component is then given by

MUi,j (t) =


exp

(
φ̃

1
1−p

[
κ

(
α̃1−p

φ̃(1− p)
+ t

)
− κ

(
α̃1−p

φ̃(1− p)

)])
, p 6= 1,

exp

(
α̃

φ̃
(exp(φ̃t)− 1)

)
, p = 1,

(3.32)

M
Z

(n)
i,j

(t) =


exp

(φ̈(n)
) 1

1−p

κ

(
α̈

(n)
i β̈

(n)
j

)1−p

φ̈(n)(1− p)
+ t

− κ

(
α̈

(n)
i β̈

(n)
j

)1−p

φ̈(n)(1− p)



 , p 6= 1,

exp

(
α̈

(n)
i β̈

(n)
j

φ̈(n)
(exp(φ̈(n)t)− 1)

)
, p = 1.,

(3.33)
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where κ(.) is the corresponding unit cumulant function of the variables defined in Section

2.3.2.2 as

κ(θ) =


exp(θ), p = 1,

− log(−θ), p = 2,

1

2− p
[θ(1− p)]

p−2
p−1 , p /∈ (0, 1] ∪ [2].

(2.31)

The mth cumulants of Ui,j and Z
(n)
i,j , denoted by K

(m)
Ui,j

and K
(m)

Z
(n)
i,j

, can be derived from the

moment generating functions

K
(m)
Ui,j

=
∂m logMUi,j (t)

∂tm

∣∣∣∣
t=0

=


φ̃

1
1−pκ(m)

(
α̃1−p

φ̃(1− p)

)
, p 6= 1,

φ̃m−1α̃, p = 1,

(3.34)

K
(m)

Z
(n)
i,j

=
∂m logM

Z
(n)
i,j

(t)

∂tm

∣∣∣∣
t=0

=


(
φ̈(n)

) 1
1−p

κ(m)


(
α̈

(n)
i β̈

(n)
j

)1−p

φ̈(n)(1− p)

 , p 6= 1,

α̈
(n)
i β̈

(n)
j

(
φ̈(n)

)m−1
, p = 1,

(3.35)

where κ(m)(.) is the mth derivative of the unit cumulant function.

As a result of the independence between these two components, the moment-generating

function of the incremental claims Y
(n)
i,j is given by

M
Y

(n)
i,j

(t) =



exp

φ̃ 1
1−p

κ
 α̃1−p

φ̃(1− p)
+

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
t

− κ( α̃1−p

φ̃(1− p)

)
× exp

(φ̈(n)
) 1

1−p

κ

(
α̈

(n)
i β̈

(n)
j

)1−p

φ̈(n)(1− p)
+ t

− κ

(
α̈

(n)
i β̈

(n)
j

)1−p

φ̈(n)(1− p)



 , p 6= 1,

exp

(
α̃

φ̃
(exp(φ̈(n)t)− 1) +

α̈
(n)
i β̈

(n)
j

φ̈(n)
(exp(φ̈(n)t)− 1)

)
, p = 1.

(3.36)

Consequently, moments of Y
(n)
i,j can be expressed in a general form as

E
[(
Y

(n)
i,j

)m]
=

m∑
r=0

(
m

r

)( α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃

r

E
[
U ri,j
]
E

[(
Z

(n)
i,j

)m−r]
, (3.37)
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and cumulants of Y
(n)
i,j are

K
(m)

Y
(n)
i,j

=



( α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃

m

φ̃
1

1−pκ(m)

(
α̃1−p

φ̃(1− p)

)

+
(
φ̈(n)

) 1
1−p

κ(m)


(
α̈

(n)
i β̈

(n)
j

)1−p

φ̈(n)(1− p)

 , p 6= 1,

α̃

φ̃
(φ̈(n))m + α̈

(n)
i β̈

(n)
j

(
φ̈(n)

)m−1
, p = 1.

(3.38)

3.3.2 Analysis of mean, variance and covariance

Utilising the formulas of moments and cumulants given in Section 3.3, closed-form

expressions of any moments and cumulants can be obtained. We provide an analysis of the

mean, variance and covariance of Y
(n)
i,j , which are the main moments and cumulants of interest

in loss reserving.

Using the moments formula in Equation (3.37), the mean of Y
(n)
i,j is given by

E[Y
(n)
i,j ] = α̈

(n)
i β̈

(n)
j

( α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

 , (3.39)

=

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
α̃+ α̈

(n)
i β̈

(n)
j . (3.40)

The mean of Y
(n)
i,j is also the location parameter of its marginal distribution.

The common shock structure provides a convenient interpretation to the effect of

dependence on the mean of the marginal claim cells. As shown in Equation (3.40), the first

part comes from the common shock Ui,j and the second part comes from the idiosyncratic

component Z
(n)
i,j . The mean α̈

(n)
i β̈

(n)
j of idiosyncratic component Z

(n)
i,j incorporates the

accident period effect α̈
(n)
i and the development period effect β̈

(n)
j . This is the total expected

claim in cell (i, j) in the nth loss triangle assuming business segments are independent. The

common shock effect Ui,j introduces an expected additional claims level α. This effect on

each of the business segment is scaled by a scaling factor as given in framework specification

in Equation (3.13).

The variance of Y
(n)
i,j can also be derived using the general cumulant formula in Equation
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(3.38)

V ar[Y
(n)
i,j ] = φ̈(n)

(
α̈

(n)
i β̈

(n)
j

)p ( α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

 , (3.41)

=

( α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃

2

φ̃α̃p + φ̈(n)
(
α̈

(n)
i β̈

(n)
j

)p
. (3.42)

The variance can also be obtained using the mean parameter and the dispersion parameter of

the marginal density of Y
(n)
i,j in Equation (3.14). The over-dispersion impact of the common

shocks is, again, clearly identifiable. Similar to the mean, the variance of Y
(n)
i,j can also be

computed as the sum of variances of two components Ui,j and Z
(n)
i,j as shown in Equation

(3.42). This is due to the independence between these components in the model construction.

This suggests that the dependence due to a stochastic factor Ui,j can increase the variance

of the outstanding claims Y
(n)
i,j . As shown in Equation (3.42), the variance of common shock

Ui,j , after being scaled for each line of business, is added to the existing variance coming

from the unique idiosyncratic component Z
(n)
i,j . We can relate this to practical situations in

which different business segments have a positive dependence structure, and factors causing

claims volatility to increase in one business segment can likely increase claims volatility in

other segments.

The covariance between corresponding cells can be given by

Cov[Y
(n)
i,j , Y

(m)
i,j ] =

α̃2−p(
α̈

(n)
i β̈

(n)
j α̈

(m)
i β̈

(m)
j

)1−p
φ̈(n)φ̈(m)

φ̃
, m 6= n. (3.43)

This comes directly from the construction of the model in which the common shock term

is the generator of dependence across segments of business. In particular, the covariance is

calculated as the product of the variance of the common shock Ui,j and its scaling factors

in each individual business segment. This transparent introduction of dependence allows an

explicit expression of the covariance to be obtained. This covariance is null when α = 0.

3.3.3 Mean and variance of the sum

The common shock structure in the common shock Tweedie framework also allows us

to obtain closed-form expressions for cumulants of the sum of claims. Because all cell-wise

claims Y
(n)
i,j in the same position (i, j) share a common shock component Ui,j , the sum of
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these claims can be given by

N∑
n=1

Y
(n)
i,j =

 N∑
n=1

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃

Ui,j +

N∑
n=1

Z
(n)
i,j . (3.44)

Due to the independence between the common shock Ui,j and the idiosyncratic

components Z
(n)
i,j , any cumulant of

N∑
n=1

Y
(n)
i,j (when it is defined), can be calculated as the

sum of corresponding cumulants of Ui,j and Z
(n)
i,j with appropriate scaling factors. Two

special cumulants, the mean and variance, of the sum
N∑
n=1

Y
(n)
i,j (when they are defined) can

be obtained in closed-form as

E

[
N∑
n=1

Y
(n)
i,j

]
=

 N∑
n=1

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃

 α̃+

N∑
n=1

α̈
(n)
i β̈

(n)
j , (3.45)

V ar

[
N∑
n=1

Y
(n)
i,j

]
=

 N∑
n=1

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃

2

φ̃α̃p +
N∑
n=1

φ̈(n)
(
α̈

(n)
i β̈

(n)
j

)p
. (3.46)

The sum of all claims in all loss triangles of a company can be calculated by aggregating

all sums of cell-wise claims
N∑
n=1

Y
(n)
i,j for all i and j. Using the independence between claims

from different positions within a loss triangle, any cumulant of the sum of all claims in the

portfolio can be obtained as the sum of corresponding cumulants of
N∑
n=1

Y
(n)
i,j for all i and j.

3.4 Remarks on theoretical properties

In this chapter we have introduced a common shock Tweedie framework. Some remarks

on theoretical properties of the framework are provided in this section. These include explicit

dependence structure through the use of a common shock approach, marginal flexibility

and closure under the taking of marginals through the use of the rich Tweedie family of

distributions, ability to handle masses at 0, closed-form moments as well as notes on the

performance of the framework on unbalanced data.
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3.4.1 Explicit dependence structure

In the Tweedie framework developed in this chapter, dependence across segments is

introduced with the help of an easily identifiable and explicit common shock structure.

This structure is seamlessly applicable on more than two dimensions. It can also provide

ease of interpretation for the dependence structure and a simplified tractable specification of

correlation matrices. This is particularly beneficial when dealing with a portfolio of numerous

segments, which can be up to 100 in some cases (Avanzi, Taylor and Wong, 2018). The

dependence captured in this framework is the cell-wise dependence across segments. This

type of dependency is also considered in, for example, Shi and Frees (2011); Côté et al.

(2016); Zhang et al. (2012); Shi et al. (2012); Shi (2014).

3.4.2 Marginal flexibility and closure under the taking of marginals

This multivariate Tweedie framework provides flexible marginal modelling with a

flexible selection of power parameter p. This is a significant improvement over existing

multivariate models such as multivariate Poisson and multivariate gamma frameworks with

restricted p values. This can improve the suitability of the framework for a larger variety of

data sets.

It is also worth noting that a common power parameter p is required for all segments

of business in implementing the framework. This allows the multivariate Tweedie framework

to have the closure property under the taking of margins, one of the four desirable properties

of multivariate distributions considered in Joe (1997, Chapter 4). These properties are also

listed in Chapter 1. However, this can become a limitation when dealing with a large number

of business segments with a large variation in claim activities.

3.4.3 Ability to handle masses at 0

The Tweedie family is a rich family of distributions which also contains the Tweedie’s

compound Poison-gamma distribution. This is a well-known distribution with the ability

to handle masses at 0. It follows that the common shock Tweedie framework also has this

ability. This can be particularly beneficial in cases which have 0’s in observations.

90



CHAPTER 3. A MULTIVARIATE TWEEDIE FRAMEWORK - THEORY

3.4.4 Closed-form moments

One can utilise the benefit of having closed-form moments and cumulants to obtain

some prediction statistics including the mean and the standard deviation of the sum of

outstanding claims. This moments tractability allows the forecast of total outstanding claims

to be obtained more easily and conveniently.

3.4.5 Parametrisation and unbalanced data

In the construction of the model, the most simple parametrisation is used for the

common shock component Ui,j with canonical parameter θ̃ and index parameter ϑ̃. This

is chosen for the sake of simplicity. These parameters can be modified to vary across

development years, accident years and/or calendar years.

This simplified assumption can lead to an unsatisfactory performance of the model for

unbalanced data that involves different lines of business with different development durations.

This limitation can be overcome by specifying column-specific or volume-related parameters

for the common shock Ui,j .
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CHAPTER 4

A multivariate Tweedie framework - Estimation and

applications
1

4.1 Introduction

In Chapter 3, we have introduced a common shock Tweedie framework which has the

many desirable theoretical properties of common shock modelling approaches as well as the

rich Tweedie family of distributions. The Tweedie family, however, has quite a complex

density (Joe, 1997). This complexity can further escalate in a multivariate framework. An

appropriate estimation approach also needs to be considered to improve the practicality of

this framework.

In the current literature, a number of estimation approaches have been considered

for some special cases of common shock Tweedie distributions. For example, Karlis (2003)

developed an expectation-maximisation approach for common shock Poisson distributions

(special cases of common shock Tweedie distributions with p = 1), Tsionas (2004) developed a

Bayesian framework with a Gibbs algorithm for common shock gamma distributions (special

cases of common shock Tweedie distributions with p = 2). The only existing estimation

method that has been used for general common shock Tweedie distributions in the literature

is the method of moments, see for example, Alai et al. (2016) and Furman and Landsman

(2010). However, due to the small sample size often encountered in loss reserving, this method

1An abbreviated version of results in Chapters 3 and 4 has been published in Avanzi, B., Taylor, G., Vu,
P.A., Wong, B., 2016. Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach.
Insurance: Mathematics and Economics 71, 63–78.
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is not suitable for our framework.

Besides bootstrapping, Bayesian inference is a popular choice for loss reserving data

due to it its ability to account for parameter uncertainty when providing a prediction of

outstanding losses (Meyers and Shi, 2011). In the loss reserving literature, there has also

been an increasing interest in Bayesian methods; see, for example, De Alba (2002); England

and Verrall (2006); Meyers (2009); Shi et al. (2012); Zhang and Dukic (2013). This is a result

of high-speed computers and advancements in Monte Carlo methods (Verrall et al., 2012).

These profound developments in Monte Carlo methods, see for example, Brooks et al. (2011);

Kroese et al. (2011), allow Bayesian inference to be more appropriate for complex models. In

addition, a Bayesian set up allows one to incorporate expert opinions using prior distributions

(Shi et al., 2012). Bayesian forecasting also incorporates all currently available information

into the prediction of outstanding claims (Salzmann et al., 2012; Zhang et al., 2012). We are

motivated by these benefits to provide a Bayesian set up for the parameter estimation of the

multivariate Tweedie framework.

A description of the Bayesian inference used for estimation is given in Section 4.2.

Illustrations using simulated data are given in Section 4.3. The development is also illustrated

using a real data set from a P&C insurer in the United States in Section 4.4. Remarks on the

implementation of the framework are drawn from these illustrations and provided in Section

4.5.

4.2 Bayesian inference for estimation

In this section, a Bayesian set up for the multivariate Tweedie framework is formulated.

This Bayesian inference is used to estimate all unknown parameters in the common shock

Tweedie framework except for the power parameter p. We propose the use of a Tweedie

log-likelihood profile approach to estimate the power parameter p and to use this estimate

in the Bayesian inference. This can significantly improve the stability of the algorithm,

especially when the parameter vector is large. The conventional Bayesian inference with

only one single step of estimation using the multivariate Tweedie density also suffers from

instability due to a large number of parameters that need to be estimated at once. In addition,

the multivariate Tweedie density of claims in this framework, as given in Equation (3.15),

involves an integration over the common shock component that can take time to compute.
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This results in a rather inefficient Bayesian inference for estimation.

To improve the efficiency of estimation, a two-stage procedure is proposed which is

a non-conventional Bayesian procedure. The idea comes from the closure under the taking

of marginals property of common shock Tweedie distributions, as mentioned in the remark

in Section 3.4.2. Even though it is assumed that pair-wise claim cells follow a multivariate

Tweedie distribution, each claim Y
(n)
i,j still has its own marginal Tweedie distribution with

specified location and dispersion parameters given in Equation (3.14). In the marginal

estimation stage, this property is utilised and the likelihood is evaluated using marginal

densities of Y
(n)
i,j for all i, j and n. In the specification of the marginal distribution of Y

(n)
i,j ,

the two parameters of the common shock α̃ and φ̃ always appear in a ratio which we denote

by Λ

Λ =
α̃2−p

φ̃
. (4.1)

As a result, there is parameter redundancy if these parameters are included as separate

estimands in the marginal estimation stage. Therefore, instead of estimating both α̃ and

φ̃, only the newly defined parameter Λ is estimated in the first stage. The second stage is

the multivariate estimation stage in which α̃ and φ̃ are estimated separately conditioning on

parameters estimated in the first stage.

In a Bayesian set up, one needs to specify prior distributions and the likelihood

function of the framework in use. Details of these are provided in Section 4.2.1 and Section

4.2.2. An MCMC algorithm is then specified for the Bayesian inference. A Metropolis-

Hastings algorithm is chosen due to its ability to work with posterior densities that are in

unrecognisable forms. Details of this algorithm are provided in Section 4.2.3. Section 4.2.4

then provides a description of the procedure used to obtain the predictive distribution of

outstanding claims as well as other quantities of interest.

A variety of Bayesian computational packages can be readily applied for special cases

of the multivariate Tweedie framework including multivariate ODP models (i.e. p = 1) and

multivariate gamma models (i.e. p = 2). These tools are developed in a number of software,

for example, WinBUGS and R. However, there are no existing computational tools that are

ready for use for the general multivariate Tweedie framework. Hence the focus is placed on

the estimation of the general framework with p 6= 1. Of course, the developments for the

p 6= 1 case can be adapted to the p = 1 case.
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4.2.1 Selection of prior distributions

Prior distributions can be chosen informatively using prior knowledge (Koop, 2003).

They can also be uninformative and assign equal possibilities to all values in the feasible set

of parameter values. However, it is worth noting that more informative prior distributions

can result in faster convergence (Congdon, 2010, Chapter 1). It is also mentioned in Brooks

et al. (2011, Chapter 23) that in highly parametrised models, somewhat informative prior

distributions are necessary.

For our framework, a preliminary analysis can be performed for each segment separately

and results can be used to specify more informative prior distributions. Recall from the

specification of the framework that each claim cell Y
(n)
i,j is the sum of a common shock

component Ui,j and an idiosyncratic component Z
(n)
i,j . Each claim cell Y

(n)
i,j also follows

a Tweedie marginal distribution. A naive analysis can be performed, assuming that Y
(n)
i,j

has a marginal distribution with the chain ladder mean structure. This is indeed the

univariate Tweedie model developed in Alai and Wüthrich (2009); Peters et al. (2009) and

Wüthrich (2003) (see also Section 2.3.4.5). Maximum likelihood estimates of parameters in

this univariate model can give guidance for the selection of informative prior distributions.

We can analyse the level of dependence across segments of business to choose informative

prior distributions for the location parameter α̃ of the common shock Ui,j . Analyses are done

heuristically for φ̃ and α̃, hence relatively uninformative prior distributions are recommended

for these parameters.

4.2.2 Specification of likelihood functions and posterior distributions

We estimate the parameters of the multivariate Tweedie framework using a two step

approach. The first step in the estimation is the marginal estimation step. In this step,

all parameters can be estimated, except α̃ and φ̃. However, this estimation step allows us

to estimate Λ, which is a function of α̃ and φ̃ as defined in Equation (4.1). The posterior

distribution of the parameter vector in step utilises the marginal densities of Y
(n)
i,j and is given

by

fΘ|Y U (Θ|Y U ) ∝

 N∏
n=1

I∏
i=1

I−i+1∏
j=1

f
Y

(n)
i,j

(
y

(n)
i,j |Θ

) fΛ(Λ)fα̈(α̈)fβ̈(β̈)fφ̈(φ̈), (4.2)
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where

Θ =


Λ

α̈

β̈

φ̈

 , α̈i =


α̈

(1)
i

α̈
(2)
i

...

α̈
(N)
i

 , α̈ =


α̈1

α̈2

...

α̈I

 , β̈j =


β̈

(1)
j

β̈
(2)
j

...

β̈
(N)
j

 , β̈ =


β̈1

β̈2

...

β̈J

 , φ̈ =


φ̈(1)

φ̈(2)

...

φ̈(N)

 .

(4.3)

From the model structure in Equation (3.14), we have that all claims Y
(n)
i,j are

independent conditional on common shock. Hence, the joint likelihood can be written as

a product of two separate parts: a product of density of claims conditional on common

shock, and the density of common shock. In this stage stage, the likelihood obtained is the

first part of the joint likelihood. However, since the common shock is not observed, we work

with the joint likelihood directly in the second stage.

In the second step of the estimation process, α̃ and φ̃ are estimated. The multivariate

density needs to be used because α̃ and φ̃ have separate roles in the multivariate density.

To avoid instability in the MCMC when dealing with the multivariate density, all other

parameters are held fixed at their marginal estimates. A restriction is also implied on α̃ and

φ̃ using the estimate of Λ. The posterior distribution of the parameter vector is given by

fα̃|Y U ,Θ(α̃|Y U ,Θ) ∝

 I∏
i=1

I−i+1∏
j=1

fYi,j (Yi,j |α̃,Θ)

 fα̃(α̃). (4.4)

The posterior distributions in Equations (4.2) and (4.4) are not in recognisable forms. Hence

the Metropolis algorithm is used to simulate from these distributions. The Metropolis

algorithm is a special case of the Metropolis-Hastings algorithm with symmetrical proposal

density. Summary statistics including the median and standard deviation are then calculated

using samples drawn from these posterior distributions.

4.2.3 Metropolis algorithm

The Metropolis-Hastings algorithm is a popular MCMC method used in Bayesian

inference to create posterior simulators for a wide range of models, especially when posterior

distributions are not in recognisable forms (Koop, 2003, Chapter 5). There have been a
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number of applications of the Metropolis-Hastings algorithm in the loss reserving literature

such as Meyers (2009) and Peters et al. (2009). We consider a special case of the Metropolis-

Hastings algorithm, the Metropolis algorithm, in the evaluation of posterior distributions

in our Bayesian inference. This algorithm has symmetric proposal densities, hence is less

computationally expensive than the traditional Metropolis-Hastings algorithm.

Recall that the goal of our marginal estimation step is to obtain fΘ|Y U (Θ|Y U ). The

Metropolis algorithm used for this valuation then proceeds as follows based on the general

review in Brooks et al. (2011).

Metropolis algorithm

Step 1. Specify initial values of parameters Θ(0).

Step 2. Draw Θ∗ ∼ f̃.|Θ(.|Θ(t−1)), where f̃.|Θ(.|Θ(t−1)) is called a proposal distribution,

which is symmetric. A choice for the proposal distribution f̃.|Θ(.|Θ(t−1)) can be

Normal(Θ(t−1),ΣΘ) where ΣΘ is the covariance matrix of the parameter vector Θ

and it needs to be adjusted such that the acceptance rate is within a certain range.

This process of choosing ΣΘ is also called “tuning”. When a normal distribution is

used for for the proposal distribution, the Metropolis algorithm is also called random

walk Metropolis algorithm.

Step 3. Compute the acceptance ratio

MR =
fΘ|Y U (Θ∗|Y U )f̃.|Θ(Θ(t−1)|Θ∗)

fΘ|Y U (Θ(t−1)|Y U )f̃.|Θ(Θ∗|Θ(t−1))
=

fΘ|Y U (Θ∗|Y U )

fΘ|Y U (Θ(t−1)|Y U )
, (4.5)

as f̃.|Θ(Θ(t−1)|Θ∗) = f̃.|Θ(Θ∗|Θ(t−1)) due the symmetry of the proposal distribution.

Step 4. Draw u ∼ Uniform(0, 1).

Step 5. Decide on the next value of the parameter vector:

Θ(t) =


Θ∗, if u < MR,

Θ(t−1), otherwise.

(4.6)

As a rule of thumb, the optimal acceptance probability is 0.234 for a vector of

parameters and is 0.44 for a single parameter (Brooks et al., 2011, Chapter 4). However,
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a rate that is neither too low nor too high can generally be accepted (Brooks et al., 2011).

To achieve the desired acceptance rate, tuning of the variance of the proposal distribution

is required. This can be performed manually using trial runs. Alternatively, this tuning

process can also be done automatically using an adaptive Metropolis-Hastings algorithm

with a coerced acceptance rate (see, for instance,Vihola, 2012). A similar algorithm can

be written for the posterior density in the multivariate estimation step simply by using the

relevant parameters and densities.

Using the Metropolis algorithm, posterior draws of parameters in the model are

obtained. A burn-in period might be required to remove the initial unstable portion of

the chain. We also need to thin the chain by keeping every mth draw to break the serial

dependence between draws (Kruschke, 2011, Chapter 23). The thinned draws are then used

to compute the posterior median, standard deviation and credibility interval for parameters

in the model.

4.2.4 Predictive distribution of outstanding claims

Given the sample draws from the posterior distributions, one can then proceed to make

the prediction of outstanding claims in the lower loss triangles. To generate the mth sample

of outstanding claims, the mth draw from the thinned simulation draws of parameters is used.

This includes the mth draw of Θ in the marginal estimation and mth draw of α̃ and φ̃ in the

multivariate estimation. Outstanding claims in the lower triangles are then calculated using

Y
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j . (4.7)

where

Ui,j ∼ Tweediep(α̃, φ̃), (4.8)

Z
(n)
i,j ∼ Tweediep(α̈

(n)
i β̈

(n)
j , φ̈(n)), (4.9)

for 1 < i ≤ I, I − i+ 2 ≤ j ≤ J, 1 ≤ n ≤ N .

The predictive distribution of the total outstanding claims can then be obtained using

simulated samples of outstanding claims. The distribution of total claims can be calculated

for each accident period, each loss triangle, and the aggregate portfolio. Summary statistics
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such as the mean, variance and quantiles can also be obtained.

4.3 Simulation illustrations

Two simulated data sets are used to assess the effectiveness of the estimation approach.

The first data set is generated from a multivariate Tweedie distribution with parameters

chosen to replicate an empirical data set. It contains two standardised triangles of loss ratios

with ten accident periods and ten development periods. Recall that loss ratios are calculated

as incremental claims standardised using total premiums earned for the corresponding

accident period. This data set is presented in Table 4.12 and Table 4.13 in Appendix 4.A.1.

A subset of the Tweedie family of distributions, Tweedie’s compound Poisson

distributions with 1 < p < 2, is a useful subset of distributions in loss reserving with the

ability to accommodate masses at 0; see, for example, Alai and Wüthrich (2009); Boucher

and Davidov (2011); Wüthrich (2003). The second simulation illustration is performed on a

simulated data set with an observation of 0 to assess the performance of the estimation in

presence of 0’s. This data set is presented in Table 4.15 and Table 4.16 in Appendix 4.A.1.

4.3.1 Estimation of power parameter p

To find the power parameter p of the model, a univariate Tweedie GLM log-likelihood

profile for the combined data set of two loss triangles is set up in which the log-likelihood

function is written as a function of power parameter p. The mean structure of incremental

claim Y
(n)
i,j in this log-likelihood profile is given by

a
(1)
i 1{n=1} + b

(1)
j 1{n=1} + a

(2)
i 1{n=2} + b

(2)
j 1{n=2}, (4.10)

where a
(n)
i and b

(n)
j are coefficients in the GLM regression and 1{.} is the indicator function.

The power parameter p is found numerically by testing a range of values for p on the Tweedie

GLM log-likelihood profile of the data set. When there exists at least one observation of 0 in

the data set, the range of the power parameter p is restricted to (1, 2). The value of p that

provides the highest likelihood is selected. The 95% confidence interval (CI) of the estimate is

also obtained using a χ2
1 distribution approximation to the likelihood. The estimation results

for simulated data set 1 and simulated data set 2 are provided in Table 4.1.
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Simulated data set True value Estimate 95% CI

1 1.32 1.36 (1.21, 1.56)
2 1.32 1.24 (1.14, 1.37)

Table 4.1: Estimates of power parameter p with 95% confidence intervals for two simulated
data sets

This analysis has an underlying assumption of independence between lines. However, it

can provide a reasonable estimation for parameter p as shown in Table 4.1. Bayesian inference

is then performed conditioning on these estimates of p. While fixing the power parameter

p in the Bayesian framework is rather an adhoc procedure, it can significantly improve the

stability and convergence of the MCMC.

4.3.2 Marginal estimation

The marginal estimation step allows us to estimate all parameters except α̃ and φ̃. We

apply a log transformation on the parameters to avoid any issues with the positive constraint

of parameters. Prior distributions are chosen using information from the marginal maximum

likelihood estimation as described in Section 4.2.1. Standard deviations of the proposal

distributions in the random walk Metropolis algorithm are chosen so that the acceptance

rate is reasonably close to 0.234. For both simulated data sets, 150,000 simulations are run

and the first 50,000 iterations are discarded as the burn-in period. After this burn-in period,

the MCMC approaches the stationary state. We provide sample paths of parameters in the

simulated data set 1 in Figure 4.1 for illustration. We then use every 5th iteration to thin

the sample.
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Figure 4.1: MCMC sample paths of some parameters

Estimation results for simulated data set 1 and simulated data set 2 are given in

Table 4.14 and Table 4.17 in Appendix 4.A.1, respectively. The results represented include

the posterior medians, standard deviations and 90% confidence intervals of the posterior

distributions of parameters. Parameter estimates used are posterior medians due to the

positive skewness of posterior distributions. The posterior medians are also closer to the

true parameter values than the posterior means. The results show that the true values of
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parameters are reasonably close to their estimates and they all lie within the corresponding

confidence intervals.

4.3.3 Multivariate estimation

This step is used to estimate α̃ and φ̃ conditioning on estimates of all other parameters.

An estimate of Λ is used to imply a restriction on α̃ and φ̃. In particular, only α̃ is estimated

and φ̃ is computed as a function of α̃ and Λ. For both simulated data sets, 30,000 iterations

are used with the first 10,000 iterations discarded as the burn-in period. Estimates of α̃ and

φ̃ are provided in Table 4.14 for simulated data set 1 and Table 4.17 for simulated data set 2

in Appendix 4.A.1. Actual values of parameters are also reasonably close to their estimates

and they all fall within their corresponding 90% confidence interval.

Both simulation illustrations show that the calibration approach is reasonably accurate.

It will be used to fit the model to a real data set in the subsequent section.

4.4 Illustration using real data

This section provides an illustration using real data. This data set consists of two

business lines: Personal Auto line (denoted by (1)) and Commercial Auto line (denoted by

(2)) and is collected for the period 1988-1997. It belongs to Pennsylvania National Insurance

Group (Schedule P), and was used for an illustration in Zhang and Dukic (2013). The data

set is provided in Tables 4.18 and 4.19 in Appendix 4.A.2.

4.4.1 Preliminary data analysis

A preliminary analysis is conducted on this data set. The first step of the analysis is to

standardise incremental claims using the total premium earned in the corresponding accident

year. This results in two triangles of loss ratios. Incremental loss ratios are converted into

cumulative loss ratios whose plots are provided in Figure 4.2. It can be observed that the

development patterns are quite similar for all years in the Personal Auto line. However,

some volatility in claim activities are observed in the Commercial Auto line. In both lines

of business, claims development tends to reach maturity at the end of the 10 year period,
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suggesting that these are both short-tailed lines.
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Figure 4.2: Cumulative loss ratios in real data from the Schedule P

4.4.1.1 Estimation of power parameter p

The power parameter p is estimated using a Tweedie GLM log-likelihood profile. This

analysis is performed for each line of business, as well as for the combined portfolio of both

lines. The mean structure of incremental claim Y
(n)
i,j in this log-likelihood profile is given by

a
(1)
i 1{n=1} + b

(1)
j 1{n=1} + a

(2)
i 1{n=2} + b

(2)
j 1{n=2}, (4.11)

Their estimates and confidence intervals are both provided in Table 4.2.

Line p̂ 95% CI

Personal Auto 1.15 (1.07, 1.40)
Commercial Auto 1.39 (1.24, 1.63)
Both lines 1.32 (1.21, 1.47)

Table 4.2: Estimates of power parameter p and their 95% confidence intervals

As required in the multivariate Tweedie framework, all lines of business need to have

the same power parameter p. It can be observed from Table 4.2 that the estimate of p that

provides the best fit to the combined portfolio is 1.32. This value is within the confidence
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interval of the estimates from the two individual lines. Hence it will be used in the model

fitting. Note that the above results are based on the assumption of segment-specific dispersion

parameters φ(n). As mentioned in Boucher and Davidov (2011), a different specification (such

as column-specific) of dispersion parameters can result in a different outcome due to the

dependence between the power parameter p and the dispersion parameter φ of a Tweedie

distribution. The outcome might even be more favourable where the power parameters p

could be more similar across the two lines. However, for the sake of simplification for the

calibration, we only consider segment-specific dispersion φ(n). This is an acceptable option

as the individual power parameters p are all within the confidence interval of the chosen

common power parameter p.

4.4.1.2 Exploratory dependence analysis

As pointed out in Avanzi, Taylor and Wong (2016), careful modelling is needed before

committing to any measure of correlation. Hence a careful examination of the dependence

structure is carried out.

The dependence across lines of business is first assessed by analysing the residuals after

removing accident year and development year trends. This is performed by applying the

GLM framework to both lines independently. To get the most accurate results, the GLM

framework used for each line is a Tweedie dispersion with the power parameter p that provides

the best fit to that line. In particular, a Tweedie distribution with power parameter p = 1.15

and a Tweedie distribution with power parameter p = 1.39 are used for the Personal Auto

line and the Commercial Auto line respectively. GLM Pearson residuals are computed using

the formula

Y
(n)
i,j − µ

(n)
i,j(

µ
(n)
i,j

)p . (4.12)

Cell-wise correlations and their p-values are then calculated on the residuals. Hypothesis tests

of the Pearson’s correlation and the Spearman’s correlation are performed using asymptotic

t distributions. The p-value of the Kendall’s correlation is calculated using a normal

approximation. Results are provided in Table 4.3.
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Pearson Spearman Kendall

0.3879 (0.0034) 0.3752 (0.0050) 0.2538 (0.0062)

Table 4.3: Correlation coefficients between cell-wise GLM residuals and their corresponding
p-values

It can be observed that the correlation coefficients are quite strong and significant.

This can also be compared with Kendall’s correlation coefficient of 0.271 from log-normal

marginal fitting in Zhang and Dukic (2013).

The strong positive correlation coefficients may come from some calendar year effects

that have impact on both lines simultaneously. To further investigate this, another GLM

analysis is performed with a mean structure that also includes fixed calendar year effects h
(n)
t

a
(n)
i + b

(n)
j + h

(n)
t=i+j−1. (4.13)

The optimal power parameters for this particular mean structure are p = 1.08 for Personal

Auto line and p = 1.34 for Commercial Auto line. Correlation coefficients between GLM

Pearson residuals are given in Table 4.4. The correlation coefficients have reduced, however,

they are still quite strong and significant at 5%.

Pearson Spearman Kendall

0.295 (0.0287) 0.3413 (0.0111) 0.2256 (0.0150)

Table 4.4: Correlation coefficients between cell-wise GLM residuals and their corresponding
p-values after removing calendar year trend

Heat maps are also plotted for residuals from both lines of business. Residuals are

calculated as the ratios of observed values to GLM fitted values. These are presented in

Figure 4.3. An examination and comparison of these heat maps show some non-randomness

in the residuals with similar patterns. The most obvious feature is that accident years 1 and 2

both exhibit behaviour different from that of other accident years. Specifically, accident year 1

is characterized by low payments in development years 4 and 5, with compensating payments

acceleration in development years 6-10, and accident year 2 is characterized by low payments

in development years 6-9. Consequently, a decision could be made whether these systematic

deviations represent a signal that needs to be modelled or whether these are simply correlated

noise. If these deviations were to be treated as a signal, an augmented model allowing these

deviations as fixed effects could be considered. As a result, these additional features would
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be allowed for in the forecast of outstanding claims. By allowing more fixed effects in the

model, the correlation coefficients between lines of business could be significantly reduced.

However, there is no obvious physical interpretation of these systematic deviations, hence it is

equally possible that they are simply correlated noise. For illustration purposes, all variations

are considered as correlated noise and the multivariate Tweedie framework is applied to this

data set. In this application, the correlated noise is interpreted as being driven by cell-wise

common shocks in the multivariate Tweedie framework. However, it is worth noting that

there can be other possible modelling approaches to capture features represented in this data

set.

Figure 4.3: Heat maps of ratios of observed values to GLM fitted values (top: Personal Auto
line, bottom: Commercial Auto line)
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4.4.2 Bayesian inference and estimation results

Median SD 90% CI Median SD 90% CI

α̈
(1)
2 1.0203 0.0928 (0.8727; 1.1816) α̈

(2)
2 1.1468 0.1200 (0.9694; 1.3567)

α̈
(1)
3 0.9316 0.0844 (0.8023; 1.0796) α̈

(2)
3 1.1306 0.1176 (0.9581; 1.3390)

α̈
(1)
4 1.0220 0.0947 (0.8685; 1.1841) α̈

(2)
4 0.8999 0.0966 (0.7598; 1.0727)

α̈
(1)
5 1.0479 0.0979 (0.8966; 1.2208) α̈

(2)
5 1.0157 0.1066 (0.8564; 1.2036)

α̈
(1)
6 1.1024 0.1021 (0.9458; 1.2837) α̈

(2)
6 1.1413 0.1262 (0.9546; 1.3704)

α̈
(1)
7 1.0089 0.0979 (0.8578; 1.1802) α̈

(2)
7 1.3633 0.1456 (1.1518; 1.6222)

α̈
(1)
8 1.0028 0.1009 (0.8515; 1.1808) α̈

(2)
8 1.4040 0.1634 (1.1638; 1.6974)

α̈
(1)
9 1.2071 0.1323 (1.0050; 1.4402) α̈

(2)
9 1.5176 0.1921 (1.2371; 1.8635)

α̈
(1)
10 1.1863 0.1679 (0.9340; 1.4898) α̈

(2)
10 1.5957 0.3030 (1.2073; 2.1689)

β̈
(1)
1 0.2334 0.0178 (0.2064; 0.2652) β̈

(2)
1 0.1311 0.0116 (0.1123; 0.1503)

β̈
(1)
2 0.2369 0.0178 (0.2098; 0.2680) β̈

(2)
2 0.1680 0.0142 (0.1448; 0.1914)

β̈
(1)
3 0.1343 0.0109 (0.1172; 0.1533) β̈

(2)
3 0.1153 0.0109 (0.0975; 0.1335)

β̈
(1)
4 0.0779 0.0074 (0.0664; 0.0907) β̈

(2)
4 0.0922 0.0092 (0.0776; 0.1077)

β̈
(1)
5 0.0405 0.0047 (0.0334; 0.0487) β̈

(2)
5 0.0593 0.0071 (0.0485; 0.0720)

β̈
(1)
6 0.0186 0.0030 (0.0141; 0.0239) β̈

(2)
6 0.0232 0.0040 (0.0171; 0.0303)

β̈
(1)
7 0.0066 0.0017 (0.0042; 0.0096) β̈

(2)
7 0.0176 0.0034 (0.0124; 0.0236)

β̈
(1)
8 0.0043 0.0015 (0.0023; 0.0071) β̈

(2)
8 0.0065 0.0021 (0.0036; 0.0105)

β̈
(1)
9 0.0039 0.0016 (0.0020; 0.0072) β̈

(2)
9 0.0027 0.0013 (0.0014; 0.0054)

β̈
(1)
10 0.0005 0.0004 (0.0002; 0.0016) β̈

(2)
10 0.0001 0.0001 (0.0001; 0.0003)

φ̈(1) 0.0058 0.0014 (0.0040; 0.0085) φ̈(2) 0.0076 0.0019 (0.0054; 0.0114)
Λ 0.8127 0.6487 (0.0986; 2.1341)

Table 4.5: Posterior statistics of parameters from marginal estimation

For the marginal estimation, 300,000 iterations are run and the first 150,000 iterations

are discarded as a burn-in sample. We then thin the sample to reduce the sequential

dependence between each iteration in use. The posterior statistics of parameters obtained

from these draws are given in Table 4.5.

We then use the multivariate estimation procedure to estimate α̃ and φ̃. Estimates of

α̃ and φ̃ are provided in Table 4.6.

Median SD 90% CI

α̃ 0.0041 0.0047 (0.0011; 0.0157)

φ̃ 0.0293 0.0197 (0.0117; 0.0731)

Table 4.6: Posterior statistics of parameters from multivariate estimation
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4.4.3 Goodness-of-fit analysis and comparisons

We assess the marginal and multivariate goodness-of-fit. This is then compared with

the goodness-of-fit of a common shock normal model (p = 0) and a common shock gamma

model (p = 2) in Vu (2013).

Quantile-quantile (QQ) plots of Pearson residuals are used to assess the marginal

goodness of fit. These are provided in Figure 4.4. These plots suggest that the multivariate

Tweedie framework with p = 1.32 provides a good fit to the data.
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Figure 4.4: QQ plots of residuals from common shock Tweedie model (p = 1.32)

To assess the multivariate goodness of fit, a plot of empirical copula of observed values

is compared with a plot empirical copula of one set of back-fitted values. These plots are

given in Figure 4.5. This figure shows that the positive dependence structure in the data is

captured by the model quite well.

A multivariate Gaussian model and a multivariate gamma are also fitted to the data

set (which are special cases of the multivariate Tweedie framework with p = 0 and p = 2).

The calibration of these models also follows the Bayesian procedure proposed for the general

multivariate Tweedie framework. QQ plots are made for residuals from the two special cases,

and provided in Figures 4.6 and 4.7. It can be observed that the marginal goodness-of-fit of

the multivariate normal model and the multivariate gamma model is not as satisfactory as
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that of the multivariate Tweedie framework, especially in the tails. This further indicates the

advantage of having flexible power parameter p over restricting it to some special members

of the Tweedie family.
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Figure 4.5: Plots of empirical copulas for observed values and back-fitted values from common
shock Tweedie model (p = 1.32)
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Figure 4.6: QQ plots of residuals from the common shock normal model (p = 0)
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Figure 4.7: QQ plots of residuals from the common shock gamma model (p = 2)

Empirical copula plots are also provided for back-fitted values from the multivariate

normal model and the multivariate gamma model in Figure 4.8. In comparison with empirical

copula plots in Figure 4.5, it can be observed that the multivariate Tweedie framework

provides a closer fit to the dependence structure present in this data set.
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Figure 4.8: Plot of empirical copula of back-fitted values from the common shock normal
model (left) and the common shock gamma model (right)
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4.4.4 Outstanding claims forecast

Year
Personal Auto Commercial Auto Both lines

Mean SD Mean SD Mean SD

2 67.44 59.64 20.21 21.30 87.65 70.72
3 361.23 186.29 209.11 127.79 570.35 244.59
4 747.07 288.92 472.89 202.02 1,219.96 386.17
5 1,417.86 430.06 1,441.71 429.71 2,859.57 662.39
6 3,555.91 821.73 3,301.36 774.04 6,857.27 1,224.53
7 8,306.58 1,536.38 9,095.14 1,644.76 17,401.72 2,375.35
8 16,000.76 2,489.37 16,304.02 2,509.34 32,304.78 3,678.74
9 27,541.14 3,714.87 23,708.28 3,463.91 51,249.42 5,190.42
10 45,677.21 6,623.84 34,340.32 6,547.81 80,017.53 9,562.36

Table 4.7: Outstanding claims statistics by accident period (numbers are in $1,000’s)

Using the posterior parameter samples from the Bayesian inference, a predictive

distribution of outstanding claims can be obtained. 30,000 sets of lower loss triangles are

simulated using 30,000 posterior parameter samples. Table 4.7 summarises claims forecasts

by accident period for each line of business and the total portfolio. Results represented

include the mean and standard deviation of total claims from each accident period.
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Figure 4.9: Kernel densities of predictive distributions of total outstanding claims in each
line of business and in the aggregate portfolio (in $1,000’s)
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The predictive distributions of total outstanding claims for each line of business and

the total portfolio can also be obtained. Their kernel densities are represented in Figure 4.9.

Table 4.8 summarises estimation statistics of the projected total outstanding claims. Results

represented include the mean, variance, VaR75% and VaR95% calculated directly from the

MCMC samples. We can observe that the sum of the standard deviations of total claims from

each line is larger than the standard deviation of the total claims portfolio. This suggests a

diversification benefit due to the lack of a perfectively positive dependence structure between

the two lines. This can be supported by the Pearson’s correlation of 0.1212 between the total

sum of claims from the two lines, obtained from pairs of total outstanding claims from each

line in the set of 30,000 simulated lower loss triangles.

Personal Auto Commercial Auto Both lines

Mean 103,675.21 88,893.05 192,568.26
SD 9,372.74 9,028.83 13,779.84
VaR75% 109,765.72 94,542.25 201,636.91
VaR95% 119,584.51 104,657.06 215,961.11

Table 4.8: Summary statistics of outstanding claims distributions (numbers are in $1,000’s)

In assessing diversification benefits, it is also useful to look at diversification benefits

obtained for risk margins. Risk margins are often held by insurers as a regulatory requirement

to provide some protection against unexpected volatility from the central estimates. We follow

the definition of risk margins used in the regulatory system in Australia (also mentioned in

Chapter 2) with a slight modification to also include a flexible quantile specification

Risk marginχ%[Y ] = max

{
VaRχ%[Y ]− E[Y ];

1

2
SD[Y ]

}
. (4.14)

Using results from Table 4.8, risk margins calculated using VaR75% and VaR95%, as well as

an indicator of diversification benefits are provided in Table 4.9. Diversification benefits are

calculated as

DB =

(
Risk marginχ%[Y1] + Risk marginχ%[Y2]

)
− Risk marginχ%[Y1 + Y2]

Risk marginχ%[Y1] + Risk marginχ%[Y2]
× 100%. (4.15)

This is to show the level of reduction in the total variation (indicated using the risk margins)

that can be obtained as a result of the allowance of dependence across segments. Quite

significant diversification benefits of approximately 22.8% and 26.1% can be observed for

Risk margin75% and Risk margin95%, respectively in this data set.
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Personal Auto Commercial Auto Both lines DB

Risk margin75% 6,090.51 5,649.20 9,068.65 22.8%
Risk margin95% 15,909.30 15,764.01 23,392.85 26.1%

Table 4.9: Risk margin (in 1,000’s) and diversification benefits statistics

The bell-shaped curves in Figure 4.9 suggest that a Gaussian distribution would fit the

aggregate outstanding liabilities relatively well. However, the goodness of fit comparisons in

Section 4.4.3 indicate otherwise. For comparison, loss reserves prediction using a multivariate

normal distribution is still obtained. Summary statistics of outstanding liabilities from this

model calibration are provided in Table 4.10. This can be compared with results from the

multivariate Tweedie framework with p = 1.32 in Table 4.8.

The comparison indicates that even though the distributions of total outstanding claims

have bell-shaped curves, an appropriate choice of marginal distribution at the cell level is still

of importance, as it defines which distribution is maximised in order to get parameters. This

changes the prediction results, including the means, standard deviations and quantiles of

outstanding liabilities.

Personal Auto Commercial Auto Both lines

Mean 101,548.13 84,966.69 186,514.82
SD 9,793.32 9,831.62 14,271.80
VaR75% 108,081.21 91,180.29 195,729.32
VaR95% 117,697.14 100,769.71 209,902.82

Table 4.10: Summary statistics of outstanding claims distributions from the multivariate
normal model (numbers are in 1,000’s)

Such a nicely shaped distribution as a final result is, in fact, not surprising. This

is even in the case of heavily skewed individual cells. A similar example can be found in

Taylor (2000, Chapter 11). One might very well be able to estimate (moderate) quantiles of

the aggregate by means of a Gaussian approximation. However, this cannot be determined

before all calculations are made and Figure 4.9 is produced.

4.4.5 The use of closed-form moments

To utilise the benefit of having closed-form moments and cumulants, one can also obtain

prediction statistics including the mean and standard deviation using the results in Section
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3.3 from Chapter 3. Recall from Section 3.3.3 that the mean and variance of the total sum

of claims can be obtained in closed-form conditioning on known parameter values. That is,

when there is a consideration of parameter uncertainty in a Bayesian framework, the mean

and the variance of the sum of all claims given in Section 3.3.3 are random variables. In this

Bayesian inference, parameter uncertainty also needs to be incorporated into the estimation.

The mean and variance, allowing for parameter uncertainty, can be computed using the law

of total expectation and the law of total variance

E
[∑

Y
(n)
i,j

]
= E

[
E
[∑

Y
(n)
i,j |Θ, α̃

]]
, (4.16)

V ar
[∑

Y
(n)
i,j

]
= V ar

[
E
[∑

Y
(n)
i,j |Θ, α̃

]]
+ E

[
V ar

[∑
Y

(n)
i,j |Θ, α̃

]]
, (4.17)

where E
[∑

Y
(n)
i,j |Θ, α̃

]
and V ar

[∑
Y

(n)
i,j |Θ, α̃

]
can be calculated using their analytical forms.

Being able to obtain the mean of outstanding claims in closed-form also allows us to

compute quantiles of interest using the control variate method. This method is well-known for

producing estimates with lower standard error, see for example, Glasserman (2003); Givens

and Hoeting (2005); Kroese et al. (2011).

Table 4.11 summarises estimation statistics of total outstanding claims forecast. Results

represented include the mean, variance, VaR75% and VaR95% calculated using the closed-

form conditional mean and variance as mentioned above. VaR estimates computed using

the control variate method are also provided. It can be observed that sample mean and

variance estimates of total outstanding claims are very close to the estimates obtained using

conditional mean and variance in analytical form. The sample VaR75% and VaR95% estimates

are also very close to the corresponding control variate estimates.

Personal Auto Commercial Auto Both lines

Mean 104,012.00 88,270.82 192,282.82
SD 9,845.48 8,559.48 13,971.95
VaR75% 110,218.22 93,815.78 201,360.63
VaR95% 120,540.94 102,878.18 215,699.59

Table 4.11: Summary statistics of outstanding claims distributions calculated using closed-
form moments (numbers are in 1,000’s)

The MCMC used produces very low standard errors and uses minimal computational

time. However, in cases where MCMC cannot provide adequate accuracy or efficiency, one

could further utilise the benefit of having closed-form cumulants to obtain prediction statistics
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including the mean and the standard deviation of the sum of outstanding claims.

4.5 Remarks on applications of the framework

In this chapter, Bayesian inference is used to develop an estimation procedure for the

multivariate Tweedie framework. The following remarks on practical model properties are

drawn from the analysis and results of illustrations in the previous sections.

4.5.1 Marginal flexibility and closure under the taking of marginals

This multivariate Tweedie framework provides a framework for modelling outstanding

claims with a flexible selection of power parameter p. This can improve model practicality

as it can be applied to a larger variety of data sets. As seen in the illustration with real

data, this framework allows the optimal estimate of p to be used, which can provide a

much better marginal and multivariate goodness-of-fit compared to multivariate models with

specific marginal choices such as multivariate normal models. However, it is also worth

noting that a limitation of the framework comes from the requirement of using the same

power parameter p as well as the same common shock for all business segments.

4.5.2 Ability to handle masses at 0

The Tweedie family is a rich family that consists of Tweedie’s compound Poison-gamma

distributions. These are well-known distributions with the ability to handle masses at 0.

This gives the multivariate Tweedie framework a significant benefit over models with other

marginal choices, such as gamma distributions. Simulation illustration 2 in Section 4.3 further

confirms that the estimation procedure does not have any issue when it is applied on data

sets that contain 0’s.

4.5.3 Closed-form moments

The proposed framework has an advantage of having moments in closed-form. However,

due to the complexity of the marginal and multivariate Tweedie densities, Bayesian inference

with an MCMC procedure is used for model estimation. Parameter error is also incorporated
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naturally in the results through the specification of prior distributions in the Bayesian

inference. This comes in with a cost where moments (allowing for parameter error) are

no longer obtained in analytical form. However, the benefit of having theoretical moments

in closed form can still be exploited to an extent to obtain prediction statistics of the sum

of outstanding claims. In particular, the mean and the variance of the sum of all claims

given in Section 3.3.3 are random variables conditional on parameters. The unconditional

mean and variance can be computed using the law of total expectation and the law of total

variance. The control variate method can be used to calculate the unconditional quantiles.

The use of these calculations can enhance the efficiency of MCMC, especially when it is too

computationally expensive.

4.5.4 Dependence structure

A cell-wise dependence structure is proposed following a branch of literature, as also

mentioned in Chapter 3. While this dependence structure cannot be interpreted using

systematic factors such as calendar year dependence or accident year dependence, it can

be used to capture simply correlated noise, as also demonstrated in Section 4.4.1.2. In such

cases, the common shocks in the multivariate Tweedie framework are drivers of the cell-wise

correlated noise across triangles. It is also worth noting that correlation coefficients, measures

used to capture dependence, are dependent of the models used as raised in Avanzi, Taylor

and Wong (2016). In the events where calendar year factors, or accident year factors affect

claims from multiple segments simultaneously, these events can be modelled exclusively using

data segmentation or deterministic effects. The dependence structure in the remainder of the

data can then be modelled using the proposed cell-wise Tweedie framework if appropriate.

Nevertheless, future research could explore other dependence structures such as calendar year

dependence using the proposed framework to utilise its many advantages.

4.A Appendices

4.A.1 Simulated data sets and estimation results
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4.A.2 Empirical data set

This data set is drawn from Zhang and Dukic (2013).

Year Premium 1 2 3 4 5 6 7 8 9 10

1 62,467 16,864 15,508 9,341 3,537 1,853 1,184 500 308 338 50
2 59,821 14,528 17,727 8,747 4,149 2,252 715 325 261 255
3 62,968 14,241 13,763 7,512 5,207 2,068 1,674 219 421
4 64,453 14,765 14,323 8,426 6,513 3,144 1,067 913
5 71,185 16,395 17,038 9,826 6,381 4,037 1,839
6 82,793 18,136 21,582 13,415 8,519 4,583
7 100,826 24,727 24,037 15,181 7,105
8 98,358 24,749 24,501 11,830
9 76,653 23,063 21,035
10 71,326 20,083

Table 4.18: Personal Auto line (in 1,000s)

Year Premium 1 2 3 4 5 6 7 8 9 10

1 42,847 5,407 9,015 4,641 3,384 1,695 1,262 1,425 373 241 6
2 38,829 6,279 8,725 6,172 4,494 2,110 919 447 202 69
3 43,001 7,256 8,667 4,778 4,262 2,884 1,427 889 493
4 41,840 5,028 5,317 4,697 3,795 2,871 1,100 657
5 44,525 5,721 6,097 6,389 3,802 4,306 862
6 50,923 7,413 9,385 7,772 5,850 3,383
7 56,601 10,868 12,337 7,966 8,531
8 54,609 10,143 14,193 8,070
9 47,204 9,596 12,235
10 42,412 9,076

Table 4.19: Commercial Auto line (in 1,000s)
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CHAPTER 5

Unbalanced data and common shock models
2

5.1 Introduction

In loss reserving data, it is often observed that claim activity typically declines towards

the right side of a triangle. In addition, different business segments can also have different

claim activities, or claims development patterns where some are longer-tailed than others.

In brief, a significant variation can be observed across loss cells within a single loss triangle,

as well as across multiple triangles. For an illustration, we provide in Figure 5.1 the plots

of incremental loss ratios for the accident year 2003 from the Bodily Injury line and the

Accident Benefits line of a Canadian insurance company. This data set is available in Côté

et al. (2016). Loss ratios are incremental claims standardised using the total premium earned

for the corresponding accident period (see also Chapters 2 and 4). The variation across loss

ratios within a single line and across lines is quite evident in this figure. Due to this feature,

reserving data can be referred to as “unbalanced data”.

Common shock approaches are useful dependence modelling tools with many benefits

as also mentioned in Chapters 1, 2 and 3. A common shock model, however, can create

problems in the absence of careful modelling. Because loss reserving data typically has an

unbalanced nature, when a common shock model is applied to multiple claim cells within

a triangle and/or across triangles, it may be desirable to ensure that the magnitude of the

common shock does not contribute disproportionately to the total observation. In brief, one

2An abbreviated version of results in Chapter 5 has been submitted and is under review in Avanzi, B.,
Taylor, G., Vu, P.A., Wong, B., 2018. On unbalanced data and common shock models in stochastic loss
reserving.
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may wish to confine the relation of the common shock to total observations over the entire

range of the triangles. A solution to such problem is to introduce parameters which specify

the magnitude of the common shock proportion relative to the observation in each claim cell.

This however can create over-fitting problems for a loss reserving portfolio which is often of

a very small sample size. Hence there is a need to find a parsimonious approach that allows

common shock models to be applied more appropriately to unbalanced data. This is the

motivation for this chapter.

0.
00

0.
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15

Development year

Lo
ss
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Bodily Injury
Accident Benefits

Figure 5.1: Plots of loss ratios for accident year 2003 of a Canadian insurance company

Section 5.2 investigates issues stemming from unbalanced data for common shock

models. A solution to this issue is introduced in Section 5.3 which is used to modify

the multivariate Tweedie framework developed in Chapters 3 and 4 for unbalanced data.

Simulation illustrations are provided in Section 5.4, including an illustration with unbalanced

data, and a comparison of the performances of the previously developed common shock

Tweedie framework and the modified Tweedie framework on unbalanced data. An illustration

using real data is provided in Section 5.5. Section 5.6 gives remarks on the performance of

the proposed approach on unbalanced data.

5.2 Challenges for common shock models

In this section we examine some issues that one needs to be aware of when applying

common shock models in the presence of unbalanced reserving data. These include the need
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to balance common shock contributions to total observations over the entire range of the

triangles, maintain model parsimony and preserve distributional tractability in some cases.

Many multivariate models in the literature with different types of dependence can be

generalised using the common shock framework in Avanzi, Taylor and Wong (2018) (see also

the review in Section 2.4.4). In this framework, incremental claim cells Y
(n)
i,j are specified

such that

Y
(n)
i,j = Uλ

(n)
i,j · Uπ(i,j)

+ Ũλ
(n)
i,j · Ũπ(n)

(i,j)

+ Z
(n)
i,j , (5.1)

where Uπ(i,j)
, Ũ

π
(n)
(i,j)

, Z
(n)
i,j are independent stochastic variates, representing the common

shock for set π(i,j) of claims from all business segments, the common shock for set π
(n)
(i,j)

of claims from business segment (n) and the idiosyncratic component, respectively. Set

π(i,j) is the subset of claims that the common shock Uπ(i,j)
has effects on. For example,

π(i,j) = {Y (1)
i,1 , ..., Y

(1)
i,I−i+1} gives a set of all claims from accident period i. In this case

the common shock Uπ(i,j)
introduces accident period dependence across business segments.

Similarly, if π
(n)
(i,j) = {Y (n)

1,j , ..., Y
(n)
I,j }, the common shock term Ũ

π
(n)
(i,j)

captures development

period dependence within business segment n. Scaling factors, denoted by Uλ
(n)
i,j , Ũλ

(n)
i,j , scale

the effects of common shocks so that they contribute proportionately to the total observation

Y
(n)
i,j .

5.2.1 Balancing common shock proportions in loss triangles

For illustration, we use a real data set from a Canadian insurance company provided in

Côté et al. (2016). This data set contains losses from 6 segments of business over the period

2003-2012. The two loss triangles chosen for illustration of the model are from Auto Insurance

in Ontario. One triangle is for Bodily Injury coverage (denoted by (1)), and the other is for

Accident Benefits excluding disability income (denoted by (2)). Incremental losses are given

in Table 5.15 and 5.16 in Appendix 5.A.3. Claims are standardised using premium earned in

the corresponding accident years.

5.2.1.1 Variation in claim activity within a single triangle

Within a single loss triangle, we can observe quite significant variation in claim

observations within various dimensions. Variations can occur across accident periods (i.e.
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within the same column in a loss triangle) due to changes in business volume, however this

variation can often be removed by standardising claims using a common unit of exposure.

We show in Figure 5.2 the heat map of incremental loss ratios from the Bodily Injury line.

The loss ratios are observations standardised using the total premium earned in each accident

period, hence the variation across rows is relatively small. However, significant variation is

observed across development periods (i.e. within the same row in the loss triangle). As

observed in Figure 5.2, more claims are paid within periods 2-5, and less in the first period

as well as the last few periods.

Figure 5.2: Heat map of loss ratios - Bodily Injury line

Consider a special case of the general common shock framework in Equation (5.1) with

only dependence within a segment (i.e. Uπ(i,j)
= 0),

Y
(n)
i,j = Ũλ

(n)
i,j · Ũπ(n)

(i,j)

+ Z
(n)
i,j . (5.2)

Consequently, the contribution of the common shock to the total expected observation is

Ũλ
(n)
i,j E

[
Ũ
π

(n)
(i,j)

]
Ũλ

(n)
i,j E

[
Ũ
π

(n)
(i,j)

]
+ E

[
Z

(n)
i,j

] . (5.3)

If we set Ũλ
(n)
i,j = 1, setting E

[
Ũ
π

(n)
(i,j)

]
such that it is comparable to a large cell, E

[
Z

(n)
i,j

]
will

dominate smaller cells (with smaller E
[
Z

(n)
i,j

]
) with common shock, whereas a comparability

to a small cell will diminish the relative effects of common shock in larger cells (with large

E
[
Z

(n)
i,j

]
).
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The above simplification of the scale factor may not create a major issue for development

period dependence (i.e. π
(n)
(i,j) = {Y (n)

1,j , ..., Y
(n)
I,j }) because claims within a development lag

(across accident periods) often have similar sizes. However, the above issue can be quite

noticeable for accident period dependence and calendar period dependence (i.e. π
(n)
(i,j) =

{Y (n)
i,1 , ..., Y

(n)
i,J−i+1} and π

(n)
(i,j) = {Y (n)

1,t , ..., Y
(n)
I,t−i+1} ) because claim observations within either

of these dimensions can vary quite significantly, as also observed in the heat map in Figure

5.2.

Consider an illustrative example of accident period dependence where the expected

value of common shock in each row is set to 5% of the total actual observation in the first

development period of the corresponding row

E

[
Ũ
π

(n)
(i,j)

]
= 5%× E[Y

(n)
i,1 ]. (5.4)

The contributions of common shocks in all cells within the loss triangle are shown using a

heat map in Figure 5.3. The observed colour pattern is somewhat opposite to that in Figure

5.2. Without scaling factors (i.e. Ũλ
(n)
i,j = 1), common shock proportions are significantly

understated in the middle region of the triangle where claim observations are high and

overstated in the tail region where observations are low.

Figure 5.3: Heat map of common shock proportions - Bodily Injury line

5.2.1.2 Variation in claim activity across triangles

Variation in claim activity can also be observed in a portfolio of dependent segments

which have various tail lengths. One often does not expect dependence across such lines, for
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example, an Auto Property Damage line is often independent of a Workers Compensation

line. However, lines with different tail lengths can still have some association. One of such

examples is a portfolio of Auto Property Damage line and Auto Bodily Injury line in Australia.

These two lines are usually dependent due to their overlap in insured events. One also often

observes that the Auto Bodily Injury line is much longer-tailed than the Auto Property

Damage line. Another example is the two business lines Bodily Injury and Accident Benefits

in the data set in Côté et al. (2016) that are being considered for illustration. The heat map

of loss ratios for the Accident Benefit line is provided in Figure 5.4. As observed from Figure

5.2 and Figure 5.4, the Accident Benefit line is shorter tailed than the Bodily Injury line as

the majority of claims are paid within the first 3-4 years and much less are paid in the last

4-5 years. In addition to the variation across development periods within a single triangle,

variation can also be observed for observations within the same development period across

triangles.

Figure 5.4: Heat map of loss ratios - Accident Benefit line

We consider a special case of the common shock model in Equation (5.1) for dependence

across segments only (i.e. Ũ
π

(n)
(i,j)

= 0),

Y
(n)
i,j = Uλ

(n)
i,j · Uπ(i,j)

+ Z
(n)
i,j . (5.5)

The contribution of the common shock to the total expected observation is then given by

Uλ
(n)
i,j E

[
Uπ(i,j)

]
Uλ

(n)
i,j E

[
Uπ(i,j)

]
+ E

[
Z

(n)
i,j

] . (5.6)
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By setting the scaling parameter Uλ
(n)
i,j = 1, a disproportion in common shock contributions

can be observed within and across business lines which is similar to the observation in the

case of dependence within a single segment in the previous section.

Consider an illustrative example of accident period dependence across segments (i.e.

π(i,j) = {Y (1)
i,1 , ..., Y

(1)
i,I−i+1, Y

(2)
i,1 , ..., Y

(2)
i,I−i+1}) where the expected common shock is set to 5%

of total claims observed in the first accident period of the Bodily Injury line (1)

E
[
Uπ(i,j)

]
= 5%× E[Y

(1)
i,1 ]. (5.7)

Heat maps of common shock contributions to the total observations in the two lines are given

in Figure 5.3 and 5.5. The common shock proportions are significantly low in the first 4-5

development years (including development year 1) in the Accident Benefits line.

Figure 5.5: Heat map of common shock proportions - Accident Benefit line

Quite significant variations in common shock proportions can be observed within and

across segments in the absence of careful modelling as a result of the unbalanced nature

of reserving data. Overall, common shock contributions are understated in regions where

the total observations are high, and vice versa. One may wish to confine the relation of

the common shock to total observations over the entire range of the triangles. The most

obvious solution to this is to have cell-specific scaling factors, as also specified in the general

framework in Equation (5.1).
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5.2.2 Maintaining model parsimony

Scaling factors Ũλ
(n)
i,j play useful roles in scaling the within-triangle common shock

effects Ũ
π

(n)
(i,j)

such that their contributions are proportional to the total observations Y
(n)
i,j .

However, this implies that I×J×N new parameters are required with one parameter for each

cell in the upper and lower triangles. Given that claim observations often vary significantly in

size across development periods, simplifying Ũλ
(n)
i,j = Ũλ

(n)
j can fulfil the purpose of balancing

common shock proportions while reducing the required number of parameters. However, this

still results in J new parameters, or J ×N new parameters for N loss triangles.

Similarly, scaling factors Uλ
(n)
i,j can be used to scale the between-triangles common

shocks Uπ(i,j)
such that their contributions are proportional to the total observations. This

results in I × J ×N new parameters with one parameter for each cell in the upper and lower

triangles. With the simplification Uλ
(n)
i,j = Uλ

(n)
j , there are still J ×N new parameters to be

estimated.

Loss triangles data is usually known to have a small sample size. While having scaling

factors, either cell-specific factors or column-specific factors, can mitigate the impact of the

unbalanced nature of reserving data, it also adds a lot more parameters to the model. If

this solution is pursued, it can result in over-fitting where the number of parameters to be

estimated is larger than the number of observations.

5.2.3 Obtaining distributional tractability

To further complicate the parametrisation, on some occasions, scaling factors Uλ
(n)
i,j

and Ũλ
(n)
i,j also need to be specified such that the total observation Y

(n)
i,j follows a specific

distribution (Avanzi, Taylor and Wong, 2018), which we refers to as distributional tractability

or closure under the taking of marginals.

Consider an example of the common shock Tweedie framework developed in Chapters

3 and 4. This framework is developed for cell-wise dependence across business segments (i.e.

π(i,j) = {Y (1)
i,j , ..., Y

(N)
i,j }). Recall that we have the specification

Y
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j . (3.13)
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The common shock Ui,j and idiosyncratic component Z
(n)
i,j are assumed to be independent

and have Tweedie distributions

Ui,j ∼ Tweediep(α̃, φ̃), (3.7)

Z
(n)
i,j ∼ Tweediep(α̈

(n)
i β̈

(n)
j , φ̈(n)), (3.8)

where α̃ and α̈
(n)
i β̈

(n)
j are location (mean) parameters, φ̃ and φ̈(n) are dispersion parameters,

and p is the power parameter of the Tweedie distributions. Fitting this into the general

common shock framework we have the scaling factor

Uλ
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
, (5.8)

and the across-triangle common shock effect Uπ(i,j)
is simplified to the notation Ui,j . The

most simple parametrisation is used for the common shock component Ui,j with parameters α̃

and φ̃, as also stated in the remark in Section 3.4.5. It follows from the closure under addition

property of the Tweedie family of distributions, as proved in Jorgensen (1997, Chapter 3)

and reviewed in Section 2.3.2.2, that the specification of the scaling factor in Equation (5.8)

is needed to ensure Y
(n)
i,j has a Tweedie distribution.

Recall from Section 3.3.2 that the mean expression can be written by

E
[
Y

(n)
i,j

]
=

(
α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
α̈

(n)
i β̈

(n)
j + α̈

(n)
i β̈

(n)
j , (5.9)

where the first term in the summation is the contribution from the common shock and

the second term is the contribution from the idiosyncratic component. The contribution of

common shock to the expected total observation is then

(
α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃(
α̃

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

. (5.10)

The following observation can be made pending on the value of the power parameter p:

– If p < 2: Within a single segment of business, as the development period factor β̈
(n)
j

typically reaches a peak then decreases as the lag j increases, the above ratio increases.
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As a result, the proportion of common shock is understated in early development

lags, and overstated in late development lags (Avanzi, Taylor and Wong, 2018). For

a portfolio of segments with varying tail lengths, the common shock also contributes

disproportionately, as explained in Section 5.2.1.2. The larger the discrepancy between

β̈
(n)
j and β̈

(m)
i , the larger the variation in the common shock contributions.

– If p > 2: The opposite observation is made for this case. A larger variation in common

shock proportions is still observed as the difference between development factors β̈
(n)
j

and β̈
(m)
i become more significant.

– If p = 2: In this special case, the common shock contributions are simplified to

φ̈(n)

φ̃

φ̈(n)

φ̃
+ 1

, (5.11)

which are now independent of accident and development period factors. The common

shock contributes proportionately to total observations over the entire range of the

triangles.

The above analyses and examples show that the choices of scaling factors Uλ
(n)
i,j and

Ũλ
(n)
i,j are subject to many constraints. To accurately capture the dependence structure, these

parameters are required to balance the common shock proportions within all cells over the

entire range of the triangles. However, this can result in over-fitting, which can be a quite

critical issue in loss reserving due to small sample size data. Furthermore, the specification of

these parameters may be restricted in some cases for the purpose of preserving distributional

tractability. It is then the aim of this chapter to find a solution that compromises between

these conflicting issues.

5.3 A multivariate Tweedie approach to unbalanced data

In this section, we propose a solution that compromises between conflicting challenges

encountered by common shock models when they are applied to reserving data due to the

unbalanced feature of the data. Section 5.3.1 describes the general approach which involves

careful parametrisation and is used to develop a modified common shock Tweedie framework

for unbalanced data in Section 5.3.2. Estimation approach for this modified multivariate
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Tweedie framework is then given in Section 5.3.3.

5.3.1 General approach

Recall the general common shock framework in Avanzi, Taylor and Wong (2018)

Y
(n)
i,j = Uλ

(n)
i,j · Uπ(i,j)

+ Ũλ
(n)
i,j · Ũπ(n)

(i,j)

+ Z
(n)
i,j . (5.1)

As illustrated in the previous section, to ensure proportionate contributions of the common

shocks to the total observations within and across loss triangles, it may be desirable for

scaling factors of the common shocks Uλ
(n)
i,j and Ũλ

(n)
i,j to be cell-specific, or column-specific

at the very least. This, however, can create an over-fitting problem.

A parsimonious solution to this problem is to specify the scaling factor for the within-

segment common shock Ũ
π

(n)
(i,j)

as

Ũλ
(n)
i,j ∝

∏
i,j

E

[
Z

(n)
i,j 1

π
(n)
(i,j)

] 1

#

(
π
(n)
(i,j)

)
, (5.12)

where #
(
π

(n)
(i,j)

)
is the number of observations in the set π

(n)
(i,j). In simple words, Ũλ

(n)
i,j is

proportional to the geometric average of E[Z
(n)
i,j ] of claims Y

(n)
i,j in the set π

(n)
(i,j) on which the

common shock Ũ
π

(n)
(i,j)

is applied. The geometric average is used to reasonably account for

the skewness in the values of E[Z
(n)
i,j ] within the set π

(n)
(i,j). This skewness is a result of the

unbalanced nature of loss triangles.

Similarly, we can have the scaling factor for across-segment common shock Ũ
π

(n)
(i,j)

specified as

Uλ
(n)
i,j ∝

∏
i,j,n

E
[
Z

(n)
i,j 1π(i,j)

] 1

#(π(i,j))
, (5.13)

where #
(
π(i,j)

)
is the number of observations in the set π(i,j). That is, the scaling factor

Uλ
(n)
i,j is proportional to the geometric average of of E[Z

(n)
i,j ] of all claims Y

(n)
i,j in the set π(i,j)

on which the common shock term Ũ
π

(n)
(i,j)

is applied.

These specifications do not provide a complete balance of common shock proportions
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across cells because the effect of each individual cell is taken to the power of 1

#
(
π

(n)
(i,j)

) or

1
#(π(i,j))

. However, it can reduce the imbalance in common shock proportions to a certain

extent. Importantly, it reduces the number of parameters required for scaling common shock

components from I × J ×N (or 2×N × J if scaling factors are column-specific) to N + 1 (N

parameters to specify Ũλ
(n)
i,j and one parameter to specify Uλ

(n)
i,j ).

Further restrictions may apply in the specification of Uλ
(n)
i,j and Ũλ

(n)
i,j for other purposes,

such as distributional tractability (see also the previous section). The above specifications

may be modified differently depending on the situation. This will be illustrated using the

multivariate Tweedie framework in the section below.

5.3.2 Application to the multivariate Tweedie framework

In this application, we focus on the general case p 6= 1. The application to the

special case p = 1 is similar with some straightforward modifications in the specification

of distributions.

Recall the following specification of the multivariate Tweedie framework introduced in

Chapters 3 and 4

Y
(n)
i,j =

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j . (3.13)

The common shock Ui,j and idiosyncratic component Z
(n)
i,j are assumed to be independent

and have Tweedie distributions

Ui,j ∼ Tweediep(α̃, φ̃), (3.7)

Z
(n)
i,j ∼ Tweediep(α̈

(n)
i β̈

(n)
j , φ̈(n)). (3.8)

Applying the solution proposed in the previous section, we can set the scaling factor of the

common shock proportional to

∏
i,j,n

E
[
Z

(n)
i,j 1π(i,j)

] 1

#(π(i,j))
=

(∏
n

α̈
(n)
i β̈

(n)
j

) 1
N

≈

(∏
n

β̈
(n)
j

) 1
N

, (5.14)

where π(i,j) = {Y (1)
i,j , ..., Y

(N)
i,j } as the framework is used to capture cell-wise dependence. The
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simplification that removes accident period factors is used because we can quite reasonably

expect limited variation across accident periods as a result of claims standardisation, assuming

no significant changes occur across accident periods.

It can be observed that to maintain the same specification as in Equation (5.8)

for distributional tractability, while satisfying Equation (5.14) to balancing common shock

proportions, we can replace α̃ with

α̃j = ζ
N

√
β̈

(1)
j ...β̈

(N)
j , (5.15)

where ζ is a constant to be estimated. The parameter α̃j is also the location parameter of

the common shock Ui,j .

The multivariate Tweedie framework modified for unbalanced data can then be

represented as

Y
(n)
i,j + ξ(n) =

(
α̃j

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
Ui,j + Z

(n)
i,j , (5.16)

where

Ui,j ∼ Tweediep(α̃j , φ̃), α̃j = ζ
N

√
β̈

(1)
j ...β̈

(N)
j , (5.17)

Z
(n)
i,j ∼ Tweediep(α̈

(n)
i β̈

(n)
j , φ̈(n)). (5.18)

To ensure the estimates of α̈
(n)
i , β̈

(n)
j are unique for each n, we use a constraint α̈

(n)
1 = 1, n =

1, ..., N .

Another new feature introduced to the framework is the treatment of negative claims

ξ(n) =


0 if min{Y (n)

i,j , ∀i, j} ≥ 0,

≥ −min{Y (n)
i,j } if min{Y (n)

i,j , ∀i, j} < 0,

(5.19)

which is a translation factor. The translation is only needed for a loss triangle if it contains at

least one negative observation and it is bounded below by the smallest negative observation.

Note that in this case, while its lower bound is deterministic, the actual value of ξ(n) still has

to be estimated. As mentioned in Chapter 2, negative claims can be occasionally observed in

loss triangles due to, for example, salvage recoveries, or payment from third parties. Many
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models for incremental claims are unable to handle negative observations due to their lack

of support for negative masses. Note that Gaussian distributions, members of the Tweedie

family of distributions with p = 0 can handle negative claims. However restricting the

marginal specification to Gaussian distributions for any data set with negative observations

is not always ideal as loss distributions can be asymmetric and heavier tailed. This motivates

the new development to treat negative payments in multivariate loss reserving data. The

generalisation of this treatment to the overall common shock framework in Avanzi, Taylor

and Wong (2018) is straightforward.

The marginal density is given by

Y
(n)
i,j + ξ(n)

∼ Tweediep

α̈(n)
i β̈

(n)
j

( α̃j

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

 , φ̈(n)

( α̃j

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

1−p ,

(5.20)

where the first parameter is the location parameter and also the mean of Y
(n)
i,j + ξ(n), and the

second parameter is the dispersion parameter.

It also follows that the vector of translated cell-wise claims

ξYi,j =


Y

(1)
i,j + ξ(1)

Y
(2)
i,j + ξ(2)

...

Y
(N)
i,j + ξ(N)

 , (5.21)

has a multivariate Tweedie distribution with the multivariate density

f
ξYi,j

(
y

(1)
i,j + ξ(1), ..., y

(N)
i,j + ξ(N)

)
=

∫
ξBi,j

0
fUi,j (ui,j)

N∏
n=1

f
Z

(n)
i,j

y(n)
i,j + ξ(n) −

(
α̃

α̈
(n)
i β̈

(n)
j

)1−p
φ̈(n)

φ̃
ui,j

 dui,j , (5.22)

where

ξBi,j = min

( α̈(1)
i β̈

(1)
j

α̃

)1−p
φ̃

φ̈(1)

(
y

(1)
i,j + ξ(1)

)
, ...,

(
α̈

(N)
i β̈

(N)
j

α̃

)1−p
φ̃

φ̈(N)

(
y

(N)
i,j + ξ(N)

).
(5.23)
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The common shock proportion in this framework is given by

(
α̃j

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃(
α̃j

α̈
(n)
i β̈

(n)
j

)2−p
φ̈(n)

φ̃
+ 1

=

ζ N

√
β̈

(1)
j ...β̈

(N)
j

α̈
(n)
i β̈

(n)
j

2−p

φ̈(n)

φ̃ζ N

√
β̈

(1)
j ...β̈

(N)
j

α̈
(n)
i β̈

(n)
j

2−p

φ̈(n)

φ̃
+ 1

. (5.24)

This does not provide a perfect balance of common shock proportions because the balancing

effect of β̈
(n)
j is reduced by a factor N

√
β̈

(n)
j . However it still provides quite a significant

improvement over the original framework. This will be illustrated in a simulation illustration

in Section 5.4.

As mentioned in Section 5.2.3, the common shock gamma model does not suffer from

issues of unbalanced data. Hence in a portfolio for which a gamma dispersion is appropriate,

a multivariate gamma model can be a good candidate.

5.3.3 Estimation of the modified multivariate Tweedie framework

As with the estimation for the original common shock Tweedie framework in Chapter

4, Bayesian inference is also used to estimate parameters in the new Tweedie framework

modified for unbalanced data. We also take a step further to incorporate the estimation of

the power parameter p and translation parameters ξ(n) into the Bayesian set-up to account

for their parameter uncertainty. This is to formalise the estimation of these parameters as

they are often estimated heuristically in practice.

A two step estimation procedure is used for estimation, similar to that in Chapter 4.

The first stage is the estimation of all parameters except parameters ζ and φ̃ of the common

shock. This stage, however, gives the estimate of the ratio

Λζ =
ζ2−p

φ̃
(5.25)

of these parameters, as can observed from Equation (5.20) with the specification α̃j =

ζ N

√
β̈

(1)
j ...β̈

(N)
j . This is then followed by the multivariate stage that estimates ζ and

φ̃ conditional on estimates of other parameters from the first stage. The motivation

for this procedure comes from properties of the multivariate Tweedie framework. Cell-
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wise observations in this framework follow a multivariate Tweedie distribution, and each

observation itself also has a marginal Tweedie distribution. In addition, the multivariate

density has an integral calculation, as shown in Equation (5.22). This can prolong the

estimation of the posterior density, making the tuning and convergence of MCMC much

more difficult.

A Bayesian set-up requires the specifications of the likelihood functions, prior densities

and a MCMC algorithm to approximate the posterior densities if they are not in recognisable

forms. The likelihood functions follow Equation (5.20) for the first stage and Equation (5.22)

for the second stage. Prior densities can be chosen to be informative or uninformative.

Uninformative priors assign equal possibilities to all values in the feasible set of parameter

values, whereas informative priors convey some prior preference for certain values of the

parameters. Some guidance for the selection of informative prior densities can be found in

Section 4.2.1 of the original framework. Regarding the prior densities for p and ξ(n), some

constraints need to be taken into account. In particular, p is not defined in (0, 1), and ξ(n)

has a lower bound as per its specification in Equation (5.19).

Putting together the likelihood and prior specifications, the posterior density in the

first stage is given by

fΘ|Y U (Θ|Y U ) ∝

∏
i,j,n

f
Y

(n)
i,j +ξ(n)

(
y

(n)
i,j + ξ(n)|Θ

) fp(p)fξ(ξ)fΛζ (Λζ)fα̈(α̈)fβ̈(β̈)fφ̈(φ̈),

(5.26)

where

α̈i =


α̈

(1)
i

α̈
(2)
i

...

α̈
(N)
i

 , α̈ =


α̈1

α̈2

...

α̈I

 , β̈j =


β̈

(1)
j

β̈
(2)
j

...

β̈
(N)
j

 , β̈ =


β̈1

β̈2

...

β̈J

 , (5.27)
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ξ =


ξ(1)

ξ(2)

...

ξ(N)

 , φ̈ =


φ̈(1)

φ̈(2)

...

φ̈(N)

 , Θ =



p

ξ

Λζ

α̈

β̈

φ̈


. (5.28)

Conditioning on parameter estimates from this stage, the posterior density for the

multivariate estimation is given by

fζ|Y U ,Θ(ζ|Y U ,Θ) ∝

∏
i,j

f
ξYi,j (ξyi,j |ζ,Θ)

 fζ(ζ). (5.29)

The posterior densities in both stages are not in recognisable forms, hence MCMC

is required for the evaluation. As with the original Tweedie framework in Chapter 4,

random walk Metropolis algorithms are used for marginal estimation and multivariate

estimation. Proposal densities are chosen (tuned) so that the acceptance probabilities are

within desirable ranges. Details are given in Section 4.2.3. It is also worth noting that the

use of vectorisation in model implementation can significantly improve the computational

speed if the implementation is performed in R. This is one of the main strengths of R that

has been noted in the literature (Lafaye de Micheaux et al., 2013, Chapter 5). Observations

and the corresponding distributional specifications should be vectorised when appropriate

and programming loops should be avoided as much as possible to improve the computational

speed.

5.4 Simulation illustrations

Two illustrations are performed on two data sets. The first illustration, provided in

Section 5.4.1, is to assess the accuracy of the estimation procedure. The second illustration,

provided in Section 5.4.2, is to compare the performance of the modified multivariate Tweedie

framework and the common shock Tweedie framework in Chapters 3 and 4 on a portfolio of

two segments with varying tail lengths.
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Figure 5.6: MCMC sample paths of some parameters

5.4.1 An illustration with unbalanced data and negative claims

A data set consisting of two triangles, one of which has a negative claim observation, is

simulated. The two loss triangles are represented in Table 5.10 and 5.11 in Appendix 5.A.1.

The marginal fitting is first performed. Parameters are transformed using the log

transformation, and uniform prior densities are used. 200,000 simulations are run and 100,000
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simulations are discarded as the burn-in period. The sample chain is thinned by accepting

every 5th iteration to reduce the serial dependence between iterations. MCMC paths of some

parameters are given in Figure 5.6. A similar procedure is performed for the multivariate

estimation. The estimates of ζ and φ̃ are obtained from this step. Parameter estimates are

provided in Table 5.12 in Appendix 5.A.1. The results show that the estimation procedure

is reasonably accurate as the true parameter values are all within the confidence intervals of

their estimates.

5.4.2 A comparison of performances of the multivariate Tweedie

framework with and without modification for unbalanced data

A natural question arises regarding the performance of the multivariate Tweedie

approach for unbalanced data compared to the original multivariate Tweedie approach

introduced in Chapters 3 and 4. To be able to assess their performances more accurately,

this comparison is performed on an illustrated data set whose underlying model is known.

True common shock contributions are also known and these serve as the benchmark for the

comparison.

To not put any particular framework at a disadvantage, the synthetic data used for this

illustration is simulated from a mixture of models. We deliberately select a (extreme) data

set to which neither of the frameworks is properly adapted. In particular, two loss triangles

of ten development lags and ten accident periods are generated such that the dependence is

strong in the first four development lags, and a lot weaker in the last six lags. The common

shock components are generated with column-specific mean parameters α̃j = ζj

√
β̈

(1)
j β̈

(2)
j

with ζj = 0.5 for 1 ≤ j ≤ 4, and ζj = 0.02 for 5 ≤ j ≤ 10. The second segment is also

simulated to be longer-tailed than the first. The two loss triangles are presented in Table

5.13 and 5.14 in Appendix 5.A.2.

Heat maps of ratios of fitted common shock proportions to true proportions are given

in Figure 5.7 for triangle 1, and Figure 5.8 for triangle 2. Fitted values are calculated using

parameter estimates and true values are calculated using true parameter values.

The modified Tweedie framework provides a very good fit in the first four development

lags. The goodness of fit is considerably less satisfactory in the later development lags when

the actual common shock proportion drops. However, it can be observed that the fitted
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common shocks still contribute somewhat proportionately to the total expected observations

in the later lags. The original common shock Tweedie model provides a poor goodness-

of-fit overall, especially in early development lags. The proportions of common shock are

underestimated in early development lags and overestimated in later lags.

Figure 5.7: Heat maps of ratios of fitted common shock proportions to true proportions for
triangle 1 (top: Tweedie framework modified for unbalanced data, bottom: original common
shock Tweedie framework)

Overall the modified Tweedie framework does not eliminate the issues of unbalanced

data across development periods, however there is a reduction. The fitting is quite good in

early development lags, but is unsatisfactory in later lags. The use of the geometric average of

column factors across multiple triangles may contribute to this performance as the geometric

average may not be close to some individual column factors if the development patterns are

too different. However, it is worth emphasising that the example used has quite an extreme

variation in common shock proportions across development lags, and one should not expect

such radical variation in practice. In addition, the poor performance also arises from the
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discrepancy between the modified model with a constant scaling term ζ and the true model

generating the data (with column specific scaling term ζj). With this specification, it is not

surprising that the earlier (large) development periods dominate the estimation of ζ. We do

not expect good results because of model misspecification, but we can arrive at two main

conclusions: the modified framework out-performs the original framework; and the common

shock proportions are mis-estimated in the higher development periods, where amounts are

small and do not contribute significantly to total liability.

Figure 5.8: Heat maps of ratios of fitted common shock proportions to true proportions for
triangle 2 (top: Tweedie framework modified for unbalanced data, bottom: original common
shock Tweedie framework)

5.5 Illustration with real data

The data used for illustration is a set of two triangles from the Bodily Injury line (1)

and the Accident Benefit line (2) from a Canadian insurance company provided in Côté et al.
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(2016). These two triangles have also been used for illustrations in Section 5.2 and their

details can be found therein.

5.5.1 Preliminary analysis

A preliminary analysis is performed to assess the suitability of this data set. This

includes the assessment of the tails, as well as the dependence structure.

5.5.1.1 Analysis of the tails

Plots of loss ratios are provided in Figure 5.9. It can be observed from these plots the

Bodily Injury line has longer claims development than the Accident Benefits line. This is

also observed earlier in the heat maps of loss ratios in Section 5.2.
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Figure 5.9: Incremental loss ratios in real data from a Canadian insurer

Tail lengths of the two business lines are assessed using chain ladder development

factors. Recall the definition of chain ladder development factors from Section 2.2.1

d
(n)
j =

I−j∑
i=1

X
(n)
i,j+1

I−j∑
i=1

X
(n)
i,j

, (2.4)
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where X
(n)
i,j are cumulative claims. Results are given in Table 5.1. It can be observed that

the development factors of the Bodily Injury line dominate those of the Accident Benefits

line for all development lags, except in the final year. This blip may be a false signal due

to the truncation of data at the last development period and only one single observation is

made in this final year. Hence the Bodily Injury line is convincingly longer-tailed than the

Accident Benefits line.

Year (j) 1 2 3 4 5 6 7 8 9

d
(1)
j 8.1617 1.8968 1.4521 1.2652 1.1249 1.0624 1.0225 1.0254 1.0092

d
(2)
j 2.5844 1.3584 1.1708 1.1140 1.0481 1.0305 1.0137 1.0057 1.0118

Table 5.1: Claims development factors for each development period

5.5.1.2 Exploratory dependence analysis

A heuristic dependence analysis is performed by fitting to each line a Tweedie GLM

with a log-link and the chain ladder mean structure

a
(n)
i + b

(n)
j . (5.30)

This is to remove fixed accident period and development period effects. The best power

parameters p chosen for the two lines with the above mean structure by assessing the

respective likelihood profiles are 1.07 and 1.34. Correlations between GLM Pearson residuals

of the two lines are given in Table 5.2, where the residuals are calculated using

Y
(n)
i,j − µ

(n)
i,j(

µ
(n)
i,j

)p . (5.31)

The dependence between residuals is strong and significant after allowing for fixed accident

period and development period effects.

Pearson Spearman Kendall

0.3659 (0.0060) 0.3480 (0.0096) 0.2525 (0.0065)

Table 5.2: Correlation coefficients between cell-wise GLM residuals and their corresponding
p-values

To examine whether this strong correlation comes from calendar year effects that can
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impact both lines simultaneously, we also perform another GLM analysis with an additional

fixed calendar year effect in the mean structure

a
(n)
i + b

(n)
j + h

(n)
t . (5.32)

With this particular mean structure, the best power parameters p chosen for the two lines are

1.05 and 1.25, respectively. It is worth noting that the power parameter estimates p change

as the model structure changes. Correlations between GLM Pearson residuals of the two

lines are then given in Table 5.3. The correlation coefficients have been reduced, however,

not very significantly.

Pearson Spearman Kendall

0.3416 (0.0107) 0.3250 (0.0159) 0.2202 (0.0176)

Table 5.3: Correlation coefficients between cell-wise GLM residuals and their corresponding
p-values after removing fixed calendar year effects

Figure 5.10: Heat maps of ratios of observed values to GLM fitted values (top: Bodily Injury
line, bottom: Accident Benefits)
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Heat maps of residuals from the GLM analysis with the mean structure specified in

Equation (5.32) are given in Figure 5.10. Residuals are calculated as ratios of observed

values to GLM fitted values. There are some common cell-wise patterns that are quite

obvious from the heat maps, for example, low payments in development year 7 compensated

by accelerated payments in periods 8-9 in the first accident year, payment dips in accident

year 4 and development lag 2, similar development patterns in accident periods 7 and 8.

This suggests some cell-wise dependence between the two business lines. Results from the

preliminary analysis shows that this data set is suitable for illustration of the model. In this

illustration, the common shocks in the multivariate Tweedie approach are used as drivers of

the correlated noise observed in the data.

5.5.2 Estimation results

Bayesian inference is used for estimation. The marginal fitting is first performed.

400,000 simulations are run and 300,000 simulations are discarded as the burn-in period.

The sample chain is thinned by accepting every 5th iteration to reduce the serial dependence

between iterations. The multivariate fitting is then performed with 90,000 simulations and

the first 30,000 are discarded as the burn-in period. The chain is then thinned by selecting

every 3th iteration. Summary statistics are then computed on these posterior samples. The

results are given in Table 5.4 and 5.5. Note that the value of p used in our framework is

estimated to be 1.8290. This is different from the estimates obtained in the preliminary

analysis as the multivariate Tweedie framework used is different from the GLM structure

used earlier.
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Median SD 90% CI Median SD 90% CI

α̈
(1)
2 0.6390 0.0875 (0.5120; 0.7970 ) α̈

(2)
2 0.7770 0.1119 (0.6230; 0.9830)

α̈
(1)
3 0.9010 0.1026 (0.7510; 1.0860) α̈

(2)
3 1.0050 0.1508 (0.7860; 1.2770)

α̈
(1)
4 0.7340 0.1207 (0.5710; 0.9610) α̈

(2)
4 1.3690 0.1773 (1.1220; 1.6980)

α̈
(1)
5 0.9680 0.1461 (0.7650; 1.2390) α̈

(2)
5 0.9980 0.1390 (0.8010;1.2550)

α̈
(1)
6 0.8260 0.1149 (0.6580; 1.0310) α̈

(2)
6 1.4150 0.2656 (1.0520; 1.9120)

α̈
(1)
7 1.2260 0.1464 (1.0140; 1.4880) α̈

(2)
7 1.5060 0.1727 (1.2560; 1.8240)

α̈
(1)
8 0.8510 0.1276 (0.6760; 1.0940) α̈

(2)
8 1.2390 0.2478 (0.9200; 1.7170)

α̈
(1)
9 0.7230 0.0772 (0.6060; 0.8600 ) α̈

(2)
9 1.2450 0.2061 (0.9440; 1.6230)

α̈
(1)
10 0.2200 0.0592 (0.1480; 0.3360) α̈

(2)
10 1.7260 0.3244 (1.2560; 2.3350)

β̈
(1)
1 0.0160 0.0022 (0.0130; 0.0200) β̈

(2)
1 0.0590 0.0080 (0.0470; 0.0740)

β̈
(1)
2 0.1430 0.0192 (0.1140; 0.1770) β̈

(2)
2 0.1050 0.0139 (0.0840; 0.1300)

β̈
(1)
3 0.1270 0.0136 (0.1060; 0.1510 ) β̈

(2)
3 0.0670 0.0095 (0.0530; 0.0840)

β̈
(1)
4 0.0930 0.0111 (0.0760; 0.1120) β̈

(2)
4 0.0310 0.0040 (0.0250; 0.0390)

β̈
(1)
5 0.1190 0.0153 (0.0970; 0.1470) β̈

(2)
5 0.0300 0.0032 (0.0250; 0.0350)

β̈
(1)
6 0.0510 0.0088 (0.0380; 0.0670) β̈

(2)
6 0.0160 0.0019 (0.0130; 0.0190)

β̈
(1)
7 0.0400 0.0065 (0.0310; 0.0520) β̈

(2)
7 0.0150 0.0018 (0.0120; 0.0180 )

β̈
(1)
8 0.0100 0.0010 (0.0090; 0.0120) β̈

(2)
8 0.0050 0.0008 (0.0040; 0.0070)

β̈
(1)
9 0.0200 0.0040 (0.0140; 0.0270) β̈

(2)
9 0.0020 0.0003 (0.0020; 0.0030 )

β̈
(1)
10 0.0050 0.0008 (0.0040; 0.0060) β̈

(2)
10 0.0030 0.0004 (0.0020; 0.0030 )

φ̈(1) 0.1400 0.0372 (0.0900; 0.2120) φ̈(2) 0.1580 0.0431 (0.1030; 0.2430)
Λ 0.3240 0.0732 (0.2220; 0.4610) p 1.8290 0.0660 (1.7120; 1.9260)

Table 5.4: Posterior statistics of parameters from marginal estimation

Median SD 90% CI

ζ 1.0080 4.6868 (0.0570; 17.2280)

φ̃ 3.0910 0.9413 (1.8920; 5.0220)

Table 5.5: Posterior statistics of parameters from multivariate estimation

5.5.3 Goodness-of-fit analysis

Marginal and multivariate goodness-of-fits are assessed. Marginal goodness-of-fit is

assessed using QQ plots of residuals in Figure 5.11. The plot shows that the fit is quite

off in the right tail of the Bodily Injury line, and slightly off in both tails of the Accident

Benefit line. The goodness of fit in other regions, however, is quite good. This may be a

result of the restriction of using the same power parameter p for both lines. However, the

multivariate Tweedie framework still provides marginal flexibility with flexible choices of p.

For comparison, similar QQ plots are performed for a common shock normal model in Figure
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5.12. It can be observed that the Tweedie marginals provide a much better fit compared to

the normal marginals (with power parameter p = 0).
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Figure 5.11: QQ plots of residuals from common shock Tweedie model (p = 1.829)
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Figure 5.12: QQ plots of residuals from common shock normal model

Multivariate goodness-of-fit is assessed by comparing the empirical copula of real data
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with an empirical copula of back fitted data. Because of the use of a Bayesian inference,

various sets of back fitted data can be generated. A path is randomly chosen for illustration.

Plots of empirical copulas are presented in Figure 5.13. It can be observed that the model

can capture the general positive dependence structure in the data.
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Figure 5.13: Plots of empirical copulas for observed values and back-fitted values

5.5.4 Common shock proportions

Predictive distributions of outstanding claim observations in the lower triangles can

be calculated using the predictive Bayesian inference. Using parameter estimates, the

contributions of common shock within each cell in the two triangles are calculated and given

in Table 5.6 and 5.7. It can be observed that there is only a very mild variation in the

common shock proportions within and across triangles.
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Year 1 2 3 4 5 6 7 8 9 10

1 4.8% 4.2% 4.1% 4.0% 3.9% 3.9% 4.0% 4.1% 3.6% 4.2%
2 5.2% 4.6% 4.4% 4.3% 4.2% 4.2% 4.3% 4.4% 3.9% 4.5%
3 4.9% 4.3% 4.2% 4.0% 3.9% 4.0% 4.1% 4.2% 3.7% 4.2%
4 5.1% 4.5% 4.3% 4.2% 4.1% 4.2% 4.2% 4.3% 3.8% 4.4%
5 4.9% 4.3% 4.1% 4.0% 3.9% 4.0% 4.0% 4.1% 3.6% 4.2%
6 5.0% 4.4% 4.2% 4.1% 4.0% 4.1% 4.1% 4.2% 3.7% 4.3%
7 4.7% 4.1% 4.0% 3.8% 3.7% 3.8% 3.9% 4.0% 3.5% 4.0%
8 5.0% 4.3% 4.2% 4.1% 4.0% 4.1% 4.1% 4.2% 3.7% 4.3%
9 5.1% 4.5% 4.3% 4.2% 4.1% 4.2% 4.2% 4.3% 3.8% 4.4%
10 6.2% 5.4% 5.3% 5.1% 5.0% 5.1% 5.1% 5.2% 4.6% 5.3%

Table 5.6: Proportions of common shock to the expected total observations calculated using
parameter estimates - Bodily Injury

Year 1 2 3 4 5 6 7 8 9 10

1 4.4% 5.0% 5.1% 5.3% 5.4% 5.4% 5.3% 5.2% 5.9% 5.1%
2 4.6% 5.2% 5.3% 5.5% 5.7% 5.6% 5.5% 5.4% 6.1% 5.3%
3 4.4% 5.0% 5.1% 5.3% 5.4% 5.3% 5.3% 5.1% 5.9% 5.1%
4 4.2% 4.7% 4.9% 5.1% 5.2% 5.1% 5.0% 4.9% 5.6% 4.8%
5 4.4% 5.0% 5.1% 5.3% 5.4% 5.4% 5.3% 5.2% 5.9% 5.1%
6 4.1% 4.7% 4.8% 5.0% 5.1% 5.1% 5.0% 4.9% 5.5% 4.8%
7 4.1% 4.7% 4.8% 5.0% 5.1% 5.0% 4.9% 4.8% 5.5% 4.7%
8 4.2% 4.8% 5.0% 5.1% 5.3% 5.2% 5.1% 5.0% 5.7% 4.9%
9 4.2% 4.8% 5.0% 5.1% 5.3% 5.2% 5.1% 5.0% 5.7% 4.9%
10 4.0% 4.6% 4.7% 4.9% 5.0% 4.9% 4.8% 4.7% 5.4% 4.6%

Table 5.7: Proportions of common shock to the expected total observations calculated using
parameter estimates - Accident Benefits

5.5.5 Outstanding claims forecast

To obtain the distributions of the outstanding claims, posterior samples of parameters

from the Bayesian inference are used to project claims in lower triangles. This projection

utilises the specification in Equations (5.16), (5.17) and (5.18) in Section 5.3. This gives a

set of samples of future claims in the lower triangles. Using this set, summary statistics

of the total outstanding claims distributions are given in Table 5.8 and kernel densities

of outstanding claims are given in Figure 5.14. Summary statistics provided include

the posterior mean, standard deviation, VaR75% and VaR95% of the distribution of total

outstanding claims for each line, as well as for both lines.
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Figure 5.14: Kernel densities of predictive distributions of total outstanding claims in each
line of business and in the aggregate portfolio

Bodily Injury Accident Benefits Both lines

Mean 165,185.92 108,465.81 273,651.73
SD 22,720.88 18,554.65 30,538.83
VaR75% 179,057.18 120,100.43 293,061.56
VaR95% 205,752.20 141,426.24 326,177.22

Table 5.8: Summary statistics of outstanding claims distributions

The two business lines do not have a comonotonic dependence structure, and this allows

the insurer to gain some diversification benefits when they set their risk margins. Recall the

definitions of risk margins and diversification benefits from Section 4.4.4

Risk marginχ%[Y ] = max

{
VaRχ%[Y ]− E[Y ];

1

2
SD[Y ]

}
, (4.14)

DB =

(
Risk marginχ%[Y1] + Risk marginχ%[Y2]

)
− Risk marginχ%[Y1 + Y2]

Risk marginχ%[Y1] + Risk marginχ%[Y2]
× 100%. (4.15)

Risk Margin75% and Risk Margin95%, as well as associated diversification benefits are provided

in Table 5.9. It can then be observed that quite significant diversification benefits can be

gained as a result of allowing for (non-comonotonic) dependence across business lines.
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Bodily Injury Accident Benefits Both lines DB

Risk Margin75% 13,871.26 11,634.61 19,409.83 23.9%
Risk Margin95% 40,566.28 32,960.43 52,525.49 28.6%

Table 5.9: Risk margin and diversification benefits statistics

5.6 Remarks on unbalanced data and the proposed treatment

The application of common shock approaches to reserving data requires careful

modelling. This is due to a number of challenges that arise from the unbalanced nature of

reserving data. In particular, it is desirable to use scaling factors to adjust the contributions

of the common shock proportionately to the total observations over the entire range of the

triangles. However, it is also important to maintain model parsimony and distributional

tractability in some cases.

In this chapter we propose a solution that compromises between the conflicting

problems mentioned above. This solution involves using careful parametrisation to develop a

common shock Tweedie framework. This framework is the modification of the common shock

Tweedie framework developed in Chapters 3 and 4 for unbalanced data. The illustrations

show a significant improvement in the performance of the modified framework. While the

proposed solution does not provide a complete balance of common shock contributions over

the entire range of the triangles, it reduces the disproportion in these contributions quite

significantly. Model parsimony and distributional tractability are still maintained with this

solution.
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5.A Appendices

5.A.1 Simulated data set 1 and estimation results

Year 1 2 3 4 5 6 7 8 9 10

1 85.57 43.18 20.58 13.40 4.40 2.34 1.86 0.55 0.28 0.15
2 78.22 28.65 12.74 5.08 6.97 2.82 1.50 0.07 -0.01
3 85.90 36.58 22.21 14.29 2.23 3.31 0.82 1.86
4 67.86 36.94 16.01 11.23 5.54 4.68 1.40
5 83.45 33.30 21.24 10.80 4.32 3.04
6 63.85 39.38 24.71 2.84 7.77
7 78.80 31.17 16.96 8.27
8 90.32 36.19 13.56
9 97.94 35.43
10 58.14

Table 5.10: Simulated triangle 1 (data set 1)

Year 1 2 3 4 5 6 7 8 9 10

1 24.12 38.93 45.70 43.19 16.04 8.70 4.78 1.83 1.45 1.66
2 21.04 40.05 35.83 19.93 15.27 11.21 6.84 2.81 1.12
3 23.98 38.59 40.73 47.22 22.01 10.36 3.49 3.53
4 26.34 42.48 57.27 29.72 24.03 12.11 1.86
5 29.46 33.18 44.63 39.51 25.97 11.60
6 23.67 48.70 49.66 20.12 21.34
7 29.10 36.51 50.52 43.98
8 30.58 53.40 49.21
9 31.16 50.48
10 31.04

Table 5.11: Simulated triangle 2 (data set 1)
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5.A.2 Simulated data set 2

Year 1 2 3 4 5 6 7 8 9 10

1 47.16 36.33 18.58 10.63 3.93 0.38 0.45 0.00 0.00 0.13
2 102.30 49.12 18.47 17.05 3.30 1.70 1.77 1.04 0.00
3 101.87 56.91 14.75 24.29 1.46 1.15 0.83 0.17
4 97.09 35.96 27.80 10.86 3.93 3.71 0.43
5 107.07 34.34 20.49 19.73 6.65 1.70
6 107.10 66.55 27.03 17.09 2.38
7 123.60 37.41 32.77 15.53
8 107.03 50.50 18.30
9 105.93 42.02
10 109.09

Table 5.13: Simulated triangle 1 (data set 2)

Year 1 2 3 4 5 6 7 8 9 10

1 19.61 45.29 44.23 28.82 24.48 3.15 3.23 3.30 1.94 0.73
2 33.52 41.13 39.33 41.78 22.46 8.69 2.09 4.85 1.88
3 24.39 43.40 34.06 59.94 22.00 13.90 5.54 1.62
4 27.78 37.03 41.41 31.12 31.73 5.92 7.69
5 24.46 41.96 36.55 23.42 20.88 9.61
6 26.36 38.68 58.52 36.25 27.15
7 30.05 36.18 52.14 41.98
8 30.32 53.54 52.87
9 42.37 42.25
10 46.49

Table 5.14: Simulated triangle 2 (data set 2)

5.A.3 Empirical data set

This data set is drawn from Côté et al. (2016).
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CHAPTER 6

A multivariate evolutionary GLM framework

6.1 Introduction

The overall aim of our research is to develop models that incorporate realistic and

desirable model features. This is to improve the valuation of outstanding claims as well as the

practicality of models. Many features are incorporated and considered in the developments

in the previous chapters, including the dependency across segments, marginal flexibility,

explicit dependence structures, tractable moments, and the unbalanced nature of reserving

data. Additionally, insurers also typically experience changes in claims activity over time

and this complicates the prediction of future outstanding claims (see also Sections 1.1.3 and

2.5.1). In such cases, the assumption of similar claims development patterns across accident

periods in static models (i.e. models with deterministic parameters such as those in the

previous chapters) is often invalidated. Actuarial judgements or changes in the algebraic

model structures are often required (De Jong and Zehnwirth, 1983; Taylor et al., 2003; Gluck

and Venter, 2009; Sims, 2012).

An elegant and plausible solution for modelling portfolios with changing claim activities

are evolutionary models (De Jong and Zehnwirth, 1983; Zehnwirth, 1994; Gluck and Venter,

2009; Taylor and McGuire, 2009). These models incorporate the changes naturally to

produce smooth estimates of outstanding claims liabilities over time without many subjective

judgements (Sims, 2012). Model factors are not simply randomised, but change over time in

a recursive manner. In addition, evolutionary models are usually accompanied by filtering

processes, real-time devices that enable the adaptation of changes in the estimation of model
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factors. More weight is given to more recent information in these processes, hence the

estimation and prediction for immature accident periods can be performed more accurately

with less reliance on judgements (Taylor, 2000; Alpuim and Ribeiro, 2003). Evolutionary

models can also be used to construct reserving robots which automate repetitive valuation

jobs. They are particularly useful, or even essential, when the valuation for portfolios of a

large number of segments are required on a frequent basis such as quarterly or even monthly.

These many benefits of evolutionary models are covered in detail in Sections 1.1.3 and 2.5.1.

A number of evolutionary models have been introduced in the reserving literature, which

mainly focus on a single business segment. A review of these models is provided in Section

2.5.

In the loss reserving literature, the EDF and its sub-class, the Tweedie family of

distributions, have been used frequently in univariate as well as multivariate models (see

also the literature review in Chapter 2). Models using the EDF are usually specified using

the GLM framework which allows a flexible incorporation of covariates. Hence a natural

step toward evolutionary modelling is to allow parameters/covariates in the GLM framework

to evolve. As also mentioned in the previous chapters, the dependency amongst business

segments can exist due to various reasons such as legislative changes, or common calendar

period factors. Common shock approaches are a candidate for dependence modelling in

reserving with many benefits (see also Section 2.4.4). These inspire the development of a

multivariate evolutionary GLM framework in this chapter with the use of a common shock

approach for dependence modelling. We are also motivated to formulate filtering approaches

that provide recursive real-time updates of random factors in this framework without using

the whole history of information.

The structure and specifications of the multivariate evolutionary GLM framework

are described in Section 6.2. Filtering processes and parameter estimation that take into

consideration features of reserving data are provided in Section 6.3. Two filters are introduced

in this section: a particle filter for the evolutionary GLM framework, and a dual Kalman filter

for Gaussian cases. Simulation illustrations are given in Section 6.4. An illustration using

real data from a Canadian insurer is provided in Section 6.5. Remarks on properties and the

estimation of the framework are then given in Section 6.6.
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6.2 Framework development

In this section we introduce a multivariate evolutionary GLM framework in which

parameters evolve over time. Section 6.2.1 provides the structure and specifications of the

framework. The state space matrix representation of the framework is provided in Section

6.2.2. A special case of the framework, Gaussian models, are described in Section 6.2.3.

6.2.1 Structure and specifications

As with a typical state space model (see Section 2.5), the multivariate evolutionary

GLM framework also has two components: the observation component and the state

component. The observation component specifies the relation between observations and

latent random factors. The state component specifies the evolution/dynamics of random

factors.

6.2.1.1 Observation component

We assume that the incremental claim Y
(n)
i,j follows a distribution from the EDF

Y
(n)
i,j ∼ EDF

(
θ

(n)
i,j , φ

(n)
)
, (6.1)

with the density

f
Y

(n)
i,j

(
y

(n)
i,j ; θ

(n)
i,j , φ

(n)
)

= v
(
y

(n)
i,j , φ

(n)
)

exp

y
(n)
i,j θ

(n)
i,j − κ

(
θ

(n)
i,j

)
φ(n)

 , (6.2)

where θ
(n)
i,j is the canonical parameter, φ(n) is the dispersion parameter, κ(.) is the unit

cumulant function, and v(.) is a specified function which corresponds to the distribution

used.

It then follows that

E[Y
(n)
i,j ] = µ

(n)
i,j = κ′

(
θ

(n)
i,j

)
, (6.3)

V ar[Y
(n)
i,j ] = φ(n)κ′′

(
θ

(n)
i,j

)
. (6.4)
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When κ′′
(
θ

(n)
i,j

)
=
(
µ

(n)
i,j

)p
we have a distribution from the Tweedie sub-family with the

power parameter p.

We use a modified Hoerl curve with a calendar period effect to specify the mean

structure. There are various benefits of using the Hoerl curve. These include parsimonious

modelling, robustness against fluctuations in observations, and extrapolation beyond the

range of the observed development period. A review of its many benefits as well as its

applications in reserving can be found in Section 2.3.3. The Hoerl curve has been used to

specify the mean structures in many evolutionary reserving models (see Section 2.5). It is

a smoothing curve used to approximate the claims development pattern, hence it allows a

systematic change in the development pattern over time as its parameters change.

We have the following Hoerl curve mean structure with a log-link

log(µ
(n)
i,j ) = a

(n)
i + r

(n)
i log(j) + s

(n)
i j + h

(n),
t=i+j−1 (6.5)

where a
(n)
i is the accident period effect, r

(n)
i and s

(n)
i are parameters of the Hoerl curve

that specifies the development pattern, and h
(n)
t is the calendar period effect. Factors

a
(n)
i , r

(n)
i , s

(n)
i are accident period-dependent, and factor h

(n)
t is calendar period-dependent.

They are all evolutionary and they evolve within their respective dimension. It is worth

noting that the above mean structure as well as the link function can be modified to suit the

data set under study.

6.2.1.2 State component

In the multivariate evolutionary GLM framework, factors a
(n)
i , r

(n)
i , s

(n)
i and h

(n)
t are

random and they evolve over time. Their evolution can be specified using time series processes

such as Autoregressive-Moving-Average (ARMA) or AR processes. For simplicity, we use

random walk processes for states evolution

a
(n)
i = a

(n)
i−1 + aε

(n)
i , aε

(n)
i ∼ Normal

(
0, σ2

aε(n)

)
, (6.6)

r
(n)
i = r

(n)
i−1 + rε

(n)
i , rε

(n)
i ∼ Normal

(
0, σ2

rε(n)

)
, (6.7)

s
(n)
i = s

(n)
i−1 + sε

(n)
i , sε

(n)
i ∼ Normal

(
0, σ2

sε(n)

)
, (6.8)

where σ2
aε(n)

, σ2
rε(n)

, σ2
sε(n)

are variances of the disturbance terms in the evolution that often
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need to be estimated.

In many cases, the dependence across business segments arises from some calendar

period factors that affect claims in the same calendar period within and across segments

simultaneously (Shi et al., 2012; De Jong, 2012; Wüthrich, 2010). For example, a legislative

change in a particular calendar period can speed up the claims settlement processes in all

business segments. A subset of the existing literature on multivariate reserving focuses on

modelling calendar period dependence (see also the review in Section 2.4). We specify the

evolution of the calendar period factor to also allow for this source of dependence

h
(n)
t = h

(n)
t−1 + hε

(n)
t + ελ

(n).hε̃t, (6.9)

hε
(n)
t ∼ Normal

(
0, σ2

hε(n)

)
, (6.10)

hε̃t ∼ Normal
(
0, σ2

hε̃

)
. (6.11)

There are two sources of disturbance in this evolution: the segment-specific disturbance hε
(n)
t

and the common shock disturbance hε̃t. The variances of these terms, σ2

hε(n)
and σ2

hε̃
, often

need to be estimated.

The calendar period dependence is deduced by the common shock term hε̃t. This term

can represent any changes in the calendar period t that affect all segments simultaneously.

The effects of this common shock on each segment, however, are usually not uniform as

some segments may be more heavily affected than others. In addition, the calendar factors

in different segments may vary in size, or in other words, have an unbalanced nature. It

is then desirable to use the scaling factors ελ
(n). These factors aim to adjust the effects of

the common shock on individual segments so that they are consistent with practitioners’

experience. They are also used to mitigate issues of unbalanced data. This means ensuring

that the contributions of the common shock to the calendar factors from individual segments

are proportionate to the size of these factors themselves, as also discussed in Chapter 5.

The evolution of model factors in a single segment can be summarised in Figure 6.1.

This figure shows two groups of factors: a
(n)
i , r

(n)
i , s

(n)
i (in black) which evolve with accident

period i (black arrows), and h
(n)
t (in red) which evolves with calendar period t (red arrows).

In the first accident period, all calendar factors h
(n)
1 , ..., h

(n)
I are present and their evolution

within the first row follows Equation (6.9). These factors are mapped one to one with calendar

factors in the second accident period h
(n)
2 , .., h

(n)
I . This is because all claims within the same
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diagonal are affected by the same calendar factor.

The model structure can be modified to capture other types of dependence such as

accident period dependence, development period dependence, or a combination of these types.

Different time series processes can also be used to specify the evolution of model factors.
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Figure 6.1: Evolution of factors in the multivariate evolutionary GLM framework

6.2.2 State space matrix representation

Evolutionary models are often presented using matrices for convenience in the model

set-up and estimation (Section 2.5.2 and 2.5.4). We present a matrix representation of the

above framework in this section.

6.2.2.1 Observation component

We consider each accident period as a time period when new observations arrive. The

vector of observations at each time period is then a vector of all claims in the same accident

162



CHAPTER 6. A MULTIVARIATE EVOLUTIONARY GLM FRAMEWORK

period within and across triangles

Yi =



Y
(1)
i,1

...

Y
(1)
i,I−i+1

Y
(2)
i,1

...

Y
(N)
i,I−i+1


. (6.12)

This vector has the distribution

Yi ∼ EDF (θi,φ) , (6.13)

where

θi =



θ
(1)
i,1

...

θ
(1)
i,I−i+1

θ
(2)
i,1

...

θ
(N)
i,I−i+1


, φ =



φ(1)

...

φ(1)

φ(2)

...

φ(N)



 (I − i+ 1) rows

. (6.14)

Using properties of the EDF, the mean structure is specified such that

E[Yi] = µi = κ′ (θi) , (6.15)

with a log-link that relates it to a linear predictor

log (µi) = Aiγi +EiψI . (6.16)

In this structure we specify

γ
(n)
i =


a

(n)
i

r
(n)
i

s
(n)
i

 , γi =


γ

(1)
i

...

γ
(N)
i

 , (6.17)
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ψ
(n)
I =


h

(n)
1

...

h
(n)
I

 , ψI =


ψ

(1)
I
...

ψ
(N)
I

 , (6.18)

A
(n)
i =


1 log(1) 1

1 log(2) 2
...

...
...

1 log(I − i+ 1) I − i+ 1

 , Ai =


A

(1)
i 0 . . . 0

0 A
(2)
i . . . 0

...
...

. . .
...

0 0 . . . A
(N)
i

 , (6.19)

E
(n)
i =


0 . . . 0 1 0 . . . 0

0 . . . 0 0 1 . . . 0
...

. . .
...

...
...

. . .
...

︸ ︷︷ ︸
(i− 1) cols

0 . . . 0 ︸ ︷︷ ︸
(I − i+ 1) cols

0 0 . . . 1




(I − i+ 1) rows , Ei =


E

(1)
i 0 . . . 0

0 E
(2)
i . . . 0

...
...

. . .
...

0 0 . . . E
(N)
i

 .

(6.20)

6.2.2.2 State component

We now present the evolution of random factors using matrices. From the model

structure, the evolution of γi can be represented as

γi = γi−1 + γεi, γεi ∼ Normal(0,Qγε), (6.21)

where

γε
(n)
i =


aε

(n)
i

rε
(n)
i

sε
(n)
i

 , γεi =


γε

(1)
i

...

γε
(N)
i

 , (6.22)

Q(n)
γε =


σ2
aε(n)

0 0

0 σ2
rε(n)

0

0 0 σ2
sε(n)

 , Qγε =


Q

(1)
γε 0 . . . 0

0 Q
(2)
γε . . . 0

...
...

. . .
...

0 0 . . . Q
(N)
γε

 . (6.23)
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For calendar factors, we have

ψt = Rt−1ψt−1 + St−1 · hεt, hεt ∼ Normal(0,Q
hε) (6.24)

where

ψ
(n)
t =


h

(n)
1

...

h
(n)
t

 , ψt =


ψ

(1)
t

...

ψ
(N)
t

 , (6.25)

hεt =


hε

(1)
t

...

hε
(N)
t

hε̃t

 , Q
hε =


σ2

hε(1)
. . . 0 0

...
. . .

...
...

0 . . . σ2

hε(N) 0

0 . . . 0 σ2
hε̃

 , (6.26)

R
(n)
t−1 =



1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

︸ ︷︷ ︸
(t− 1) cols

0 0 . . . 1




t rows , Rt−1 =


R

(1)
t−1 0 . . . 0

0 R
(2)
t−1 . . . 0

...
...

. . .
...

0 0 . . . R
(N)
t−1

 , (6.27)

S
(n)
t−1 =


0
...

0

1




t rows , ελ̃

(n) =


0
...

0

ελ
(n)




t rows (6.28)

St−1 =


S

(1)
t−1 0 . . . 0 ελ̃

(1)

0 S
(2)
t−1 . . . 0 ελ̃

(2)

...
...

. . .
...

...

0 0 . . . S
(N)
t−1 ελ̃

(N)

 . (6.29)
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6.2.3 Special cases: Gaussian models

In Gaussian models which are special cases of the multivariate evolutionary GLM

framework, Gaussian assumptions are applied on random factors and observations (where

the observations can be either on the original scale or the log scale). The observations

equation can be written as

Yi = Aiγi +EiψI + ςi, ςi∼Normal(0,Hi), (6.30)

where

ςi =



ς
(1)
i,1

...

ς
(1)
i,I−i+1

ς
(2)
i,1

...

ς
(N)
i,I−i+1


, (6.31)

H
(n)
i =


σ2
ς(n)

0 . . . 0

0 σ2
ς(n)

. . . 0
...

...
. . .

...

︸ ︷︷ ︸
(I − i+ 1) cols

0 0 . . . σ2
ς(n)

 , Hi =


H

(1)
i 0 . . . 0

0 H
(2)
i . . . 0

...
...

. . .
...

0 0 . . . H
(N)
i

 . (6.32)

The evolution of random factors is specified in the same way as in the general framework,

γi = γi−1 + γεi, γεi ∼ Normal(0,Qγε), (6.33)

ψt = Rt−1ψt−1 + St−1 · hεt, hεt ∼ Normal(0,Q
hε). (6.34)

6.3 Estimation

In this section we discuss the estimation of random factors as well as unknown

parameters in the framework. The random factors include γi (for ∀i) and ψI , and the
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unknown parameters are specified using a vector

Θ = {φ (Hi), Qγε, Qhε, ελ
(1), ..., ελ

(N)}. (6.35)

We consider the on-line estimation of random factors which recursively updates the factors

estimates upon the arrival of new observations (for a description of on-line estimation in

state space models, see also Section 2.5.4.2). The recursive estimation of random factors and

parameters is also called the filtering process, and the estimates of factors and parameters

from this process are often called filtered estimates.

Section 6.3.1 describes a particle learning approach for the multivariate evolutionary

GLM framework. This approach is simulation-based and incorporates the on-line estimation

of parameters into the filtering of random factors. When Gaussian models are used, a closed-

form filter can be used for the estimation of random factors which is called a dual Kalman

filter. This filter is described in Section 6.3.2.

6.3.1 Particle learning approach

Particle learning approaches are extensions of the traditional particle filtering to also

incorporate the estimation of parameters. They are also called on-line estimation approaches

as they update parameters in a sequential manner upon the arrival of new observations (Lopes

and Tsay, 2011). This is in contrast to off-line estimation approaches where the estimation

of parameters is performed after all observations have been received (Kantas et al., 2009).

By providing continuing updates of parameters, particle learning approaches allow them to

be traced and used in a timely manner. There have been a number of particle learning

approaches developed in the literature. For our framework, we use the Liu and West filter

by Liu and West (2001). This is a very popular filter that has been used in various fields

including physics, engineering, and more. A review of particle filtering, parameter estimation

techniques and the Liu and West filter can be found in Sections 2.5.4.1 and 2.5.4.2.

In the Liu and West filter, the estimates of random factors as well as parameters are

updated at each time step using new observations. While random factors evolve over time,

parameters are indeed static. To allow them to be updated in the same manner as random

factors, artificial dynamics are added to their specification in a specific way. If this step was

not included, parameter estimates obtained in the previous time period would be outdated
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as new observations arrive. As a result, the number of significant samples would deteriorate,

which is also called the degeneracy problem (Andrieu et al., 2012; Kantas et al., 2015).

In the multivariate evolutionary GLM framework that we introduced in section 6.2 the

random factors are γi (which contains accident and development effects), and ψI which is

a vector of random calendar effects. These factors, however, evolve in different dimensions

as shown in Figure 6.1. Factors γi evolve by accident periods, while h
(n)
t evolves from one

calendar period to another. This two dimensional evolution of factors is unconventional as

a traditional state space model typically considers the evolution in a single time dimension.

This makes the filtering of random factors as well as unknown parameters not as straight

forward as it in a standard model.

To address this problem, we treat calendar factors in the same way as parameters

in the filtering process. This is because all calendar factors are already present when we

initiate the estimation/filter from the first accident period. These factors do not evolve as

we proceed to subsequent accident periods. Hence, their nature is static as the filter runs

within the dimension of accident periods. This is the same as the nature of parameters in

the framework.

By having a Bayesian inference for parameter estimation, parameter errors can also be

assessed. The prior distribution of parameters at the initialisation fΘ1(Θ
(m)
1 ) can be chosen

to reflect the level of knowledge of these parameters. Modifying the Liu and West filter

for our framework to also incorporate the estimation of calendar factors, we can proceed as

follows.

Particle learning algorithm

Step 1. Initialisation: At i = 1, for m = 1, ...,M , draw parameters from their prior densities

Θ
(m)
1 ∼ fΘ1(Θ

(m)
1 ). (6.36)

Draw calendar factors ψ
(m)
I,1 using their specification

ψ
(m)
t,1 = Rt−1ψ

(m)
t−1,1 + S

(m)
t−1 · hεt, hεt ∼ Normal(0,Q(m)

hε
). (6.37)

where S
(m)
t−1 and Q

(m)
hε are specified using Θ

(m)
1 . The vector ψ

(m)
I,1 represents the mth

sample of all calendar factors at time 1.
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Draw initial samples of other factors

γ
(m)
1 ∼ fγ1(γ1; Θ

(m)
1 ). (6.38)

Calculate the importance weights

ω
(m)
1 = fY1|γ1,ψI ,Θ1

(y1|γ(m)
1 ;ψ

(m)
I,1 ,Θ

(m)
1 ). (6.39)

For i = 2, ..., I and m = 1, ...,M :

Step 2. Compute

Θ̂
(m)
i = ξΘ

(m)
i−1 + (1− ξ) 1

M

M∑
m=1

Θ
(m)
i−1, (6.40)

ψ̂
(m)
I,i = ξψ

(m)
I,i−1 + (1− ξ) 1

M

M∑
m=1

ψ
(m)
I,i−1, (6.41)

where ξ is a shrinkage coefficient. The vector ψ̂
(m)
I,i represents the mth look-ahead

sample of all calendar factors at time i.

Also compute

γ̂
(m)
i = E[γi|γ(m)

i−1 ,Θ
(m)
i−1]. (6.42)

Step 3. Compute the look-ahead importance weights

ω
(m)
i = ω

(m)
i−1fYi|γi,ψI ,Θi

(yi|γ̂(m)
i , ψ̂

(m)
I,i ; Θ̂

(m)
i ). (6.43)

Normalise the importance weights

ω̃
(m)
i =

ω
(m)
i∑M

m=1 ω
(m)
i

. (6.44)

Step 4. Re-sample M particles {γ(m)
i−1 , ψ̂

(m)
I,i ; Θ̂

(m)
i }Mm=1 with probabilities {ω̂(m)

i }Mm=1.
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Step 5. Draw

Θ
(m)
i ∼ Normal(Θ̂

(m)
i , (1− ξ2)Σ̂Θi−1), (6.45)

ψ
(m)
I,i ∼ Normal(ψ̂

(m)
I,i , (1− ξ

2)Σ̂ψI,i−1
), (6.46)

where Σ̂Θi−1 is the sample covariance matrix of {Θ(m)
i−1}Mm=1, and Σ̂ψI,i−1

is the sample

covariance matrix of {ψ(m)
I,i−1}Mm=1.

Also sample

γ
(m)
i ∼ fγi|γi−1

(γi|γ(m)
i−1 ; Θ

(m)
i ). (6.47)

Step 6. Calculate the importance weights

ω
(m)
i =

fYi|γi,ψI ,Θi
(yi|γ(m)

i ,ψ
(m)
I,i ; Θ

(m)
i )

fYi|γi,ψI ,Θi
(yi|γ̂(m)

i , ψ̂
(m)
I,i ; Θ̂

(m)
i )

. (6.48)

Normalise the importance weights

ω̃
(m)
i =

ω
(m)
i∑M

m=1 ω
(m)
i

. (6.49)

Step 7. Repeat steps 2-6 until i = I.

6.3.2 Dual Kalman filtering approach for Gaussian models

For Gaussian models, a (modified) Kalman filter can be used to recursively estimate

random factors. As mentioned in the previous section, due to the calendar period factors

ht which behave differently to other factors, the traditional Kalman filter cannot be applied

without adjustments. Using a similar treatment as with the one in the particle learning

approach, we also consider calendar factors as static parameters to be updated beyond the

first accident period. A modified version of the Kalman filter in the literature that fits well

to this purpose is called the dual Kalman filter. It was developed by Nelson and Stear (1976)

and has been used to provide sequential estimates of dynamic factors as well as static factors

or parameters of Gaussian models in various fields, including civil engineering (Azam et al.,

2015), vehicle systems (Wenzel et al., 2006), science (Gove and Hollinger, 2006), and others.
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The dual Kalman filter involves two filters that run in parallel, one for static factors, and

one for random factors. The information from one filter flows into the other for continuing

updates. Applying a dual Kalman filter to Gaussian cases of our framework, we can proceed

as follows.

Dual Kalman filter algorithm

Step 1. Initialisation: At i = 1, obtain initial estimates of calendar factors

ψ̂I,1|0 = E[ψI,1], (6.50)

hP̂1|0 = Cov[ψI,1]. (6.51)

These can be obtained by simulating N samples of ψI,1 using their specification

ψt,1 = Rt−1ψt−1,1 + St−1 · hεt, hεt ∼ Normal(0,Q
hε), (6.52)

and calculating the sample mean and covariance matrix using these samples.

Also obtain initial estimates of other factors

γ̂1|0 = γ̂0|0 = E[γ1], (6.53)

γP̂1|0 = Cov[γ1], (6.54)

which can be chosen using static GLM analyses and preliminary analyses of data.

For i = 1, ..., I:

Step 2. (Measurement update/filtering for calendar factors)

Calculate the Kalman gain for calendar factors

hGi = hP̂i|i−1 ·E′i
(
Ei · hP̂i|i−1 ·E′i +Hi

)−1
. (6.55)

Update estimates of calendar factors, including the mean and the error covariance

matrix

ψ̂I,i|i = E[ψI,i|Yi] = ψ̂I,i|i−1 + hGi

(
Yi −Ai · γ̂i−1|i−1 −Ei · ψ̂I,i|i−1

)
, (6.56)

hP̂i|i = Cov[ψI,i|Yi] = hP̂i|i−1 − hGi ·Ei · hP̂i|i−1. (6.57)
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Step 3. (Measurement update/filtering for other factors)

Calculate the Kalman gain for other factors

γGi = γP̂i|i−1 ·A′i
(
Ai · γP̂i|i−1 ·A′i +Hi

)−1
. (6.58)

Update estimates of other factors, including the mean and the error covariance matrix

γ̂i|i = E[γi|Yi] = γ̂i|i−1 + γGi

(
Yi −Ai · γ̂i|i−1 −Ei · ψ̂I,i|i

)
, (6.59)

γP̂i|i = Cov[γi|Yi] = γP̂i|i−1 − γGi ·Ai · γP̂i|i−1. (6.60)

Step 4. (Time update/prediction of calendar factors)

Project the calendar factors ahead

ψ̂I,i+1|i = E[ψI,i+1|Yi] = ψ̂I,i|i, (6.61)

and project the error covariance of these factors

hP̂i+1|i = Cov[ψI,i+1|Yi] = hP̂i|i +Q
hI
ε, (6.62)

where Q
hI
ε is the artificial dynamics added to the covariance specification. It can be

chosen to reflect the level of uncertainty regarding the estimates of calendar factors.

Greater uncertainty can be accompanied by a larger artificial noise.

Step 5. (Time update/prediction of other factors) Project other factors ahead

γ̂i+1|i = E[γi+1|Yi] = γ̂i|i, (6.63)

and project their error covariance ahead

γP̂i+1|i = Cov[γi+1|Yi] = γP̂i|i +Qγε. (6.64)

Step 6. Repeat step 2-5 until i = I.

The above algorithm is conditional on known values of parameters Θ. Maximum

likelihood estimation can be used to estimate these parameters. The log likelihood function
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can be written as

log fY1:I
(Y1:I ; Θ) =

I∑
i=1

log fYi|Yi−1
(yi|yi−1; Θ) (6.65)

= −I
2(I + 1)

4
log(2π)− 1

2

I∑
i=1

(
log |Ai · γP̂i|i−1 ·A′i +Ei · hP̂i|i−1 ·E′i +Hi|+(

yi −Ai · γ̂i|i−1 −Ei · ψ̂I,i|i−1

)′ (
Ai · γP̂i|i−1 ·A′i +Ei · hP̂i|i−1 ·E′i +Hi

)−1

×
(
yi −Ai · γ̂i|i−1 −Ei · ψ̂I,i|i−1

))
, (6.66)

which can be maximised numerically to provide the maximum likelihood estimate of Θ. When

maximum likelihood estimation is used for parameter estimation, bootstrapping is needed to

assess the parameter uncertainty in the projection of future claims.

It is also desirable to use all available information to estimate random factors. This is

accomplished using the Kalman back smoother after the dual Kalman filter is complete,

ψ̂I,i|I = E[ψI,i|I |YI ] = ψ̂I,i|i + hP̂i|i · hP̂−1
i+1|i

(
ψ̂I,i+1|I − ψ̂I,i+1|i

)
, (6.67)

γ̂i|I = E[γi|YI ] = γ̂i|i + γP̂i|i · γP̂−1
i+1|i

(
γ̂i+1|I − γ̂i+1|i

)
. (6.68)

The estimates obtained from the back smoother are also called smoothed estimates.

6.4 Simulation illustrations

In this section we provide two illustrations using simulated data, one for a Gaussian

model with the dual Kalman filter (Section 6.4.1), and one for the multivariate evolutionary

GLM framework with the particle learning approach (Section 6.4.2). The aims of these

illustration are to assess performance of the estimation and to draw any remarks on practical

applications of the framework.

6.4.1 Gaussian model illustration

We first perform a simulation illustration for the case of a Gaussian model. The

simulated data set used for illustration consists of two 15 × 15 triangles that are given in

Tables 6.9 and 6.10 in Appendix 6.A.1. The data is simulated from log-normal distributions,
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hence the log transformation is applied before a Gaussian evolutionary model is fitted. The

dual Kalman filter and smoother with maximum likelihood estimation described in Section

6.3.2 is used to provided smoothed estimates of random factors and unknown parameters.

The dual Kalman filter is initialised using estimates from static GLM analysis.

6.4.1.1 Random factors estimation

Estimates of random factors are provided in Table 6.11 in Appendix 6.A.1. We provide

plots of fitting ratios in Figure 6.2. The fitting ratios are calculated as ratios of true values

to smoothed values. It is noted that each development pattern is fitted with a Hoerl curve

(also known as the gamma curve) orchestrated by two parameters r
(n)
i and s

(n)
i . Therefore,

the most direct way to assess the goodness-of-fit for the development pattern is to consider

the fitting ratios of the mean and variance of the Hoerl curve calculated using these two

parameters. In particular, the mean of the Hoerl curve for accident period i and segment n

is calculated by

r
(n)
i − 1

−s(n)
i

, (6.69)

and the variance by

r
(n)
i − 1(
s

(n)
i

)2 . (6.70)

It can be observed from Figure 6.2 that the fitting is quite satisfactory for accident

period factors a
(n)
i . The fitting of calendar factors h

(n)
t also seems reasonable. The estimates

of the means and the variances of the Hoerl curves are also quite close to their true values.

However, the estimates of the means and the variances of the Hoerl curves are less accurate in

immature accident periods. There is evidence of compensation between estimates of random

factors, particularly between accident factors and calendar factors. In particular, accident

period factors a
(n)
i are consistently underestimated, and this mis-estimation is absorbed into

the estimates of calendar factors h
(n)
t , resulting in an overestimation. However, it is worth

noting that the filter/smoother can still capture the relative over time movements in these

factors reasonably well, indicated by relatively straight lines in the fitting plots in Figure 6.2.

To assess the calendar period dependence driven by common shocks, we calculate

the Pearson correlation coefficient between actual calendar factors h
(1)
t and h

(2)
t , and the
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correlation coefficient between their smoothed estimates from the dual Kalman smoother.

The Pearson correlation coefficient between the smoothed estimates is 0.8992 with the 95%

confidence interval (0.7174; 0.9663). The true Pearson correlation coefficient is 0.7579 which

lies well within this interval. Hence the filter and smoother can capture the dependence quite

well.
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Figure 6.2: Fitted ratios of random factors in the Gaussian model illustration (true values to
smoothed estimates)
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6.4.1.2 Parameter estimation

True value Estimate 90% CI

σ2
ς(1)

0.0200 0.0155 (0.0133; 0.0430)

σ2
aε(1)

0.0100 0.0043 (0.0041; 0.0121)

σ2
rε(1)

0.0050 0.0018 (0.0017; 0.0026)

σ2
sε(1)

0.0010 0.0003 (0.0003; 0.0004)

σ2

hε(1)
0.0050 0.0017 (0.0017; 0.0018)

ελ
(1) 0.6000 0.5185 (0.5106; 0.5453)

σ2
ς(2)

0.0200 0.0126 (0.0119; 0.0428)

σ2
aε(2)

0.0050 0.0020 (0.0018; 0.0088)

σ2
rε(2)

0.0020 0.0006 (0.0006; 0.0008)

σ2
sε(2)

0.0005 0.0001 (0.0001; 0.0002)

σ2

hε(2)
0.0050 0.0017 (0.0017; 0.0018)

ελ
(2) 0.8000 0.7657 (0.7640; 0.7811)

σ2
hε̃

0.0050 0.0017 (0.0017; 0.0018)

Table 6.1: Maximum likelihood estimates of parameters in the Gaussian model illustration

Parameter estimates are provided in Table 6.1. The results show that many parameters

are not within their estimated CIs. While the variance terms σ2
ς(n)

all lie within their

respective CIs, they tend to fall on the lower side of their intervals. Other variance terms,

however, fall either on the upper side within their respective CIs, or outside their CIs. This

suggests a compensation across these terms. The model contains latent random factors which

are not observed. The noises in the observations and random factors altogether contribute to

the overall volatility that we observe in the data. The estimation may not be able to clearly

distinguish between the two latent sources of disturbance and this explains the compensation

in the estimation results.

176



CHAPTER 6. A MULTIVARIATE EVOLUTIONARY GLM FRAMEWORK

6.4.1.3 Goodness-of-fit analysis
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Figure 6.3: Tracking of claims development patterns for some accident years in the Gaussian
model illustration

We examine the performance of the dual Kalman filter/smoother by looking at how

closely the smoothed claims patterns track the actual patterns. Examples of this tracking

are given for accident years 2 and 3 in Figure 6.3. There are significant changes in the claims

development patterns from year 1 to year 2, and from year 2 to year 3, as shown in this

figure. However, these changes are tracked quite closely by the Kalman smoother.

Heat maps of residuals are given in Figure 6.4. The residuals are calculated as ratios of

observed values (on the log-scale) to smoothed values. The heat maps show that the overall

fit is very good. The fit is slightly off in the tail of triangle 1, which may be a result of the

initialisation where estimates chosen to initialise the filter are static GLM estimates which are

not true values. However, the goodness-of-fit improves as the filter proceeds to later accident

years. In addition, as triangle 1 is simulated to be shorter tailed than triangle 2, the values

observed in the last few development periods are very small which can also magnify the error
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ratios.

Figure 6.4: Heat maps ratios of observed values (on the log-scale) to smoothed values in the
Gaussian model illustration (top: triangle 1, bottom: triangle 2)

We perform 100 simulations from the same set of parameters, and the results obtained

are quite similar across all these simulations. The overall goodness-of-fit is very good, and

estimates of random factors are also reasonably accurate. However, parameter estimates are

not often accurate.

6.4.2 Evolutionary GLM approach illustration

A simulation illustration is performed for the evolutionary GLM framework to assess

the performance of the particle learning estimation approach. The simulated data used

for this illustration consists of two 15 × 15 triangles given in Table 6.12 and Table 6.13 in

Appendix 6.A.2. The data is simulated from the Tweedie sub-family of the EDF. The particle
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learning approach developed in Section 6.3.1 is used to estimate random factors and unknown

parameters. We use 50,000 particles for each time period and initialise the filter using static

GLM estimates.

6.4.2.1 Random factors estimation

Estimates of random factors are provided in Table 6.14 in Appendix 6.A.2. We provide

plots of fitting ratios in Figure 6.5, which are calculated as ratios of true values to filtered

values. The fitting ratios of the means and variances of the Hoerl curves are also given in this

figure. It can be observed from Figure 6.5 that the fitting is good for accident period factors

a
(n)
i . The estimates of the means and variances of the Hoerl curves are also quite close

to their actual values. Estimates of calendar factor h
(n)
t are consistently lower than their

true values, however the deviations remain within 20% of actual values. The compensation

between random factors is again evident in this illustration. Accident period factors a
(n)
i

are consistently underestimated, and this is compensated by an overestimation of calendar

period factors.

As with the illustration for a Gaussian model, estimates in this illustration are also

sensitive to values used to initialise the particle filter. Estimates from the corresponding

static GLM fitting also show to be a reasonable choice for the initialisation.

To assess the calendar period dependence driven by common shocks, we calculate

the Pearson correlation coefficient between actual calendar factors h
(1)
t and h

(2)
t , and the

correlation coefficient between the estimates of these factors obtained from the particle

filter. The Pearson correlation coefficient between the filtered estimates is 0.7520 with a

95% confidence interval (0.3900; 0.9127). The actual Pearson correlation coefficient is 0.4634

which lies well within this interval.
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Figure 6.5: Fitted ratios of random factors in the GLM framework illustration (true values
to filtered estimates)

6.4.2.2 Parameter estimation

Parameter estimates are provided in Table 6.2. The results show that the true values

of many parameters fall out of their respective confidence intervals, even though they appear

to be closer to their estimates compared to the results in the Gaussian illustration.
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The narrow CIs that we observe in the results are mainly due to the degeneracy issue

of the particle filter used (see also a discussion on this issue in Section 2.5.4.1). Particle

degeneracy refers to the situation where all but a few particles have negligible weights. As

a result, the re-sampling step in the particle learning algorithm focuses on multiplying the

few particles with significant weights and abandons the majority of particles with negligible

weights. The resultant sample then has a very low diversity of particles. This consequently

results in smaller confidence intervals of parameter estimates in the particle learning (Rios

and Lopes, 2013). This problem is often encountered not only in particle learning but also

in particle filtering in general, see for example, Doucet et al. (2000); Andrieu et al. (2005);

Carvalho et al. (2010); Creal (2012). Using informative prior distributions for parameters

and initial values for random factors can help reduce this problem. This illustration also has

a large vector of observations at each time period (up to 30 in the first period). This high

dimension of observations makes the likelihood function very steep and it further contributes

to the degeneracy problem (see, for example, Wang et al., 2017; Li et al., 2014).

True value Estimate 90% CI

φ(1) 0.4000 0.4308 (0.4308; 0.4309)

σ2
aε(1)

0.0100 0.0075 (0.0075; 0.0075)

σ2
rε(1)

0.0050 0.0051 (0.0051; 0.0051)

σ2
sε(1)

0.0010 0.0021 (0.0021; 0.0021)

σ2

hε(1)
0.0050 0.0037 (0.0036; 0.0037)

ελ
(1) 0.6000 0.5676 (0.5674; 0.5677)

p(1) 1.2700 1.3915 (1.3911; 1.3923)

φ(2) 0.5000 0.5777 (0.5771; 0.5788)

σ2
aε(2)

0.0050 0.0050 (0.0050; 0.0050)

σ2
rε(2)

0.0020 0.0020 (0.0020; 0.0020)

σ2
sε(2)

0.0005 0.0002 (0.0002; 0.0002)

σ2

hε(2)
0.0050 0.0042 (0.0042; 0.0042)

ελ
(2) 0.8000 0.6327 (0.6324; 0.6329)

p(2) 1.3500 1.4264 (1.4263; 1.4265)

σ2
hε̃

0.0050 0.0092 (0.0092; 0.0093)

Table 6.2: Particle learning estimates of parameters in the GLM approach illustration

As shown in Table 6.2, there appears to be some compensation between variance

terms in this illustration as well. The dispersion parameters of the observations,

including φ(1), φ(2), p(1), p(2) are overestimated, while variance terms of random factors are
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underestimated. This is similar to the results that we observed in the previous illustration of

a Gaussian model.

6.4.2.3 Goodness-of-fit analysis

We examine the performance of the particle filter by assessing how the filtered claim

patterns closely track the observed patterns. Examples of this tracking for accident years

7 and 12 are given in Figure 6.6. There are significant changes in the claims development

patterns from year 6 to year 7, and from year 11 to year 12, as shown in this figure. However,

the particle filter is able to track these changes quite closely.
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Figure 6.6: Tracking of claims development patterns for some accident years in the GLM
framework illustration

Heat maps of residuals are given in Figure 6.7. Residuals are calculated as the ratios

of observed values to filtered values. The heat maps show that the overall fit is good. The

goodness-of-fit is slightly off in the tail of triangle 1, as a result of the initialisation where

the initial values chosen to start the filter are static GLM estimates. However, the goodness-
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of-fit improves as the filter proceeds to later accident years. In addition, as triangle 1 is

simulated to be shorter tailed than triangle 2, values observed in the last few development

periods are very small which may also magnify the error ratios. The overall goodness-of-fit

in this illustration is slightly worse than the goodness-of-fit in the Gaussian illustration in

the previous section. This is likely due to the fact that the particle filter is simulation-based

while the dual Kalman filter is the optimal filter obtained in closed-form.

Figure 6.7: Heat maps of ratios of observed values to filtered values in the GLM framework
illustration (top: triangle 1, bottom: triangle 2)

We perform 100 simulations from the same set of parameters, and the results obtained

are quite similar across all these simulations. The overall goodness-of-fit is very good, and

estimates of random factors are also reasonably accurate. However, parameter estimates

are not accurate. Some compensations across random factors, and across variances of the

observations and random factors are also observed.
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6.5 Real data illustration

The data set used for this illustration is from Côté et al. (2016), a description of which

is also provided in Section 5.5. The two triangles chosen for illustration in this chapter are

from the Accident Benefits covers of the Auto Insurance line in Ontario. One triangle is for

Accident Benefits excluding Disability Income (denoted by (1)), and the other is for Accident

Benefits with Disability Income only (denoted by (2)). Incremental losses are given in Table

6.15 and 6.16 in Appendix 6.A.3. Claims are standardised using the total premium earned

in the corresponding accident years.

6.5.1 Preliminary analysis

A preliminary analysis is performed to assess the suitability of the data set. This

includes an assessment of any changes in the development patterns as well as the dependence

across the two lines.

6.5.1.1 Analysis of development patterns
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Figure 6.8: Cumulative loss ratios in real data from a Canadian insurer
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Plots of loss ratios are provided in Figure 6.8. For each loss triangle, the top two values

in each accident period are also highlighted to identify the peak in the development pattern.

These are provided in Figure 6.9 for accident periods 1-8.

Plots of loss ratios show variations in claims development patterns over time. In

the Accident Benefits excluding Disability Income line, the peak in the claims development

pattern shifts across development periods 1-2 and 2-3. Hence it is desirable for the model to

be able to capture this feature. In the Accident Benefits with Disability Income only line,

the peak in the development shifts from development periods 1-2 in the first two accident

periods to periods 2-3 onwards. It can be tempting to model the first two accident periods

separately using a static modelling approach. However, using an evolutionary model can

allow the changes in the prediction of claims to be smoothed out over time. In addition, it

can be observed that the level of variation between claims in development periods 1 and 3

within the same accident period has also varied over time. This indicates some variation in

the development patterns besides the peaks.

Figure 6.9: Loss triangles with top two values highlighted for each accident period (top:
Accident Benefits excluding Disability Income, bottom: Accident Benefits - Disability Income
only)
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6.5.1.2 Exploratory dependence analysis

A heuristic dependence analysis is performed by fitting to each line a Tweedie GLM

with the log-link and a modified Hoerl curve with additional covariates for the first two

development periods

a
(n)
i + r(n) log(j) + s(n)j + b

(n)
1 1{j=1} + b

(n)
2 1{j=2}. (6.71)

As the peak in the development pattern shifts across development periods 1, 2 and 3, adding

the two covariates for the first two development periods can improve the goodness-of-fit of

the Hoerl curve. Such modification is quite common in the applications of the Hoerl curve

(England and Verrall, 2001). This static GLM fitting aims to remove fixed accident period

and development period effects.

Pearson Spearman Kendall

0.2599 (0.0554) 0.3087 (0.0222) 0.2256 (0.0150)

Table 6.3: Correlation coefficients between cell-wise GLM residuals and their corresponding
p-values

Correlation coefficients between pair-wise GLM Pearson residuals of the two lines are

provided in Table 6.3, where the residuals are calculated using

Y
(n)
i,j − µ

(n)
i,j(

µ
(n)
i,j

)p . (6.72)

All coefficients are quite strong, however the Pearson coefficient is not significant at 5%.

Another GLM analysis is also performed with the chain ladder mean structure. The

Pearson correlation coefficient of residuals from this GLM analysis, however, is significant.

This further illustrates the conclusion in Avanzi, Taylor and Wong (2016) that correlation

coefficients are dependent on the methodology used. From these results, it is then reasonable

to conclude that there may be dependence retained in the data set after removing fixed

accident year and development year effects.
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Figure 6.10: Heat maps of ratios of observed values to GLM fitted values (top: Accident
Benefits (excluding DI), bottom: Accident Benefits (DI only)

To further explore the dependence across the two lines, we analyse heat maps of GLM

residuals in Figure 6.10. The residuals in the heat maps are calculated as the ratios of observed

values to GLM fitted values. We can observe some common patterns in the calendar year

dimension, suggesting that the correlation coefficients results in Table 6.3 may be attributed

to calendar year dependence. For clearer illustrations, plots of residuals for the last three

calendar years (the last three diagonals in the heat maps) are provided in Figure 6.11. This

figure shows clear evidence of calendar year dependence.
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Figure 6.11: Plots of ratios of observed values to GLM fitted values for the last 3 calendar
years

We look at residuals by calendar years to find another trace of calendar year trend and

dependence. The residual for each calendar year is calculated as the difference between the

sum of observed values and the sum of fitted values for all cells in that year, standardised

using the sum of fitted values. Plots of calendar year residuals for the two lines are given

in Figure 6.12. Clear evidence of calendar year dependence is observed from this figure. In

particular, there are some sympathetic movements in the calendar year trends from both lines

such as in calendar periods 1-2, 4-5, 7-9. This suggests some common effects that impact

both lines, as well as idiosyncratic effects within individual lines. The Pearson correlation

coefficient between the calendar year residuals from the two lines is 0.6976 (p-value 0.0249),

which is strong and significant.
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Figure 6.12: Plots of GLM residuals by calendar years

The exploratory dependence analysis shows some evidence of calendar year dependence

across the two lines. Hence this data set is suitable for illustrating the multivariate

evolutionary GLM framework.

6.5.2 Model used and estimation results

A multivariate evolutionary GLM is fitted to the data set. Instead of using a generic

distribution from the EDF, we focus on distributions from the Tweedie sub-family of the

EDF. This is because the Tweedie family is a major subclass of the EDF which covers the

majority of commonly used distributions (Jorgensen, 1997; Alai et al., 2013;Avanzi, Taylor,

Vu and Wong, 2016). In addition, the selection of a specific distribution from the Tweedie

family simplifies conveniently to the estimation of the power parameter p. For this data set,

different Tweedie distributions with different power parameters p are used, providing flexible

dispersion modelling for the two lines.

The mean structure used is

a
(n)
i + r

(n)
i log(j) + s

(n)
i j + b

(n)
i,1 1{j=1} + b

(n)
i,2 1{j=2} + h

(n)
t , (6.73)

where a
(n)
i , r

(n)
i , s

(n)
i , b

(n)
i,1 , b

(n)
i,2 , h

(n)
t are random factors that have random walk evolution
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within their respective time dimension.

n i a
(n)
i r

(n)
i s

(n)
i b

(n)
i,1 b

(n)
i,2 h

(n)
i

(1)

1 -2.0093 1.3115 -0.6984 0.5553 0.2005 0.0000
2 -2.0142 1.2026 -0.7005 0.0362 0.1557 -0.0028
3 -2.0479 1.9093 -0.8420 0.2509 0.2237 0.0068
4 -2.0474 1.9407 -0.8349 0.0359 0.1674 0.1814
5 -2.0153 1.9509 -0.8733 0.5484 0.4951 -0.0153
6 -1.8899 2.1597 -0.9237 0.5494 0.6518 -0.1817
7 -1.9436 2.1534 -0.8723 0.6715 0.8886 -0.1791
8 -1.9963 2.0434 -0.8846 0.7631 0.7925 -0.2023
9 -2.0942 1.8848 -0.8674 0.2985 0.3903 -0.2185
10 -2.0660 1.9685 -0.9101 0.1290 0.3581 -0.2548

(2)

1 -3.6999 1.9821 -0.8779 0.9202 0.2526 0.0000
2 -3.6618 2.1940 -0.9283 0.6658 0.1919 0.0322
3 -3.6864 2.0891 -0.8281 0.6168 0.2896 -0.0561
4 -3.6632 2.2922 -0.8690 0.4334 0.1267 0.0855
5 -3.6485 2.1814 -0.8517 0.3686 0.4682 0.2618
6 -3.6084 2.1829 -0.7584 0.4518 0.4729 -0.2053
7 -3.6036 2.0957 -0.7528 0.5783 0.5821 -0.3378
8 -3.6202 1.9516 -0.7664 0.5515 0.5776 -0.2683
9 -3.5940 1.9978 -0.8600 0.3277 0.3639 -0.2342
10 -3.6191 2.0065 -0.8329 -0.0011 0.2890 -0.1454

Table 6.4: Random factor estimates in real data illustration

We use 50,000 particles for each time step and initialise the filter using static GLM

estimates with the above mean structure. We also examine the change in claims development

pattern over time and perform a number of trial runs to select somewhat informative prior

distributions for parameters which can reduce the degeneracy issue. The filtered estimates

of random factors are given in Table 6.4. Parameter estimates are given in Table 6.5.
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n = 1 n = 2

Estimate 90% CI Estimate 90% CI

φ(n) 0.0069 (0.0063; 0.0073) 0.0071 (0.0062; 0.0083)

p(n) 1.2509 (1.2425; 1.2685) 1.3592 (1.3490; 1.3692)

σ2
aε(n)

0.0048 (0.0043; 0.0053) 0.0035 (0.0032; 0.0040)

σ2
rε(n)

0.0497 (0.0476; 0.0520) 0.0778 (0.0753; 0.0818)

σ2
sε(n)

0.0078 (0.0074; 0.0083) 0.0151 (0.0138; 0.0172)

σ2

b,1
ε(n)

0.2057 (0.2002; 0.2131) 0.2058 (0.1942; 0.2131)

σ2

b,2
ε(n)

0.1313 (0.1257; 0.1353) 0.1180 (0.1021; 0.1301)

σ2

hε(n)
0.0755 (0.0723; 0.0797) 0.1079 (0.0981; 0.1376)

ελ
(n) 0.7135 (0.6698; 0.7743) 0.6614 (0.6192; 0.7408)

σ2
hε̃

0.1114 (0.1060; 0.1209)

Table 6.5: Parameter estimates in real data illustration

6.5.3 Goodness-of-fit analysis

The tracking of claims development patterns is provided in Figures 6.13 and 6.14. These

plots show that the particle filter can track changes in claim activity quite reasonably well

overall, especially in the last few years. There are also quite dramatic changes in the claims

development pattern in some years, for example, from year 1 to 2, year 2 to 3, which are

captured well by the model. Changes within the period from year 3 to 6 are quite rapid,

which are captured by the model to some extent but not fully.

Heat maps of residuals are provided in Figure 6.15. The residuals in these heat maps

are calculated as the ratios of observed values to fitted values. It can be observed that the

goodness-of-fit is better than that of the traditional static GLM in Figure 6.12. The goodness-

of-fit is noticeably better in early development years, especially the first two years. This is

particularly useful for claims projection as early development years contribute significantly

more to the total claims.
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Figure 6.13: Tracking of claims development patterns in real data illustration (accident years
1-4)
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Figure 6.14: Tracking of claims development patterns in real data illustration (accident years
5-9)
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Figure 6.15: Heat maps of ratios of observed values to fitted values (top: Accident Benefits
(excluding DI), bottom: Accident Benefits (DI only)

Plots of residuals in three dimensions: accident years, development years and calendar

years are provided in Figure 6.16. Residuals in these plots are calculated as the average of

fitted ratios of observed values to fitted values within each year in their respective dimension.

The goodness-of-fit seems to deteriorate in later development years. This is due to the lack

of available information for these late development lags. In addition, the use of the Hoerl

curve to smooth out the whole development pattern may also attribute to this poor fit.

Furthermore, observed values in these years are low, which can can also magnify the error

ratios. The goodness-of-fit seems reasonable for accident year and calendar year residuals.

The goodness-of-fit for calendar years 6 and 8 of Accident Benefits (DI only) is slightly worse.

From examining Figures 6.13 and 6.14, the rapid change in the development pattern from

year 3 to 5 seems to have contributed to this deviation.
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Figure 6.16: Plots of residuals by accident year, development year and calendar year

Using parameter estimates in Table 6.5, the Pearson correlation coefficient between

calendar period factors h
(1)
t and h

(2)
t is 0.3133. The correlation coefficient between the filtered

estimates of these factors is 0.7537 with 95% CI (0.2362; 0.9381). This estimate is quite

close to the coefficient between calendar year residuals from the two lines in the preliminary

analysis.
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Figure 6.17: Residuals by calendar year

There is no clear evidence of calendar year dependence in the heat maps in Figure 6.15.
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To further look for any trace of calendar year dependence, we plot calendar year residuals

for the two lines in Figure 6.17. The residuals in this figure are calculated as the difference

between the sum of observed values and the sum of fitted values for all claims in the same

calendar year, standardised using the sum of fitted values. By comparing this figure with

Figure 6.12, it can be observed that the clear positive dependence is no longer apparent. The

Pearson correlation coefficient reduces to 0.1400 (p-value 0.6996), which is much weaker than

0.6976 and is also insignificant. Hence we can conclude that the model has captured the

calendar year dependence quite well.

The goodness-of-fit in this illustration is not as good as the goodness-of-fit in the

simulation illustration in Section 6.4.2. This is expected as the synthetic data set is simulated

from a theoretical model, whereas the underlying model that generates the real data set is

unknown. This is to say that there may be other factors in the data that are yet to be

considered and captured in the model.

Before we close, we would also like to compare the results of our approach with the

particle filtering results in the univariate evolutionary model by Sims (2012). It is observed

that our results are more satisfactory than the results for univariate evolutionary models

in Sims (2011), see also Section 2.5.5. Sims (2011) used the standard sequential Monte

Carlo particle filter with the variances of the disturbance terms chosen by an initial residual

analysis. Sims (2011) noted that the particle filter could not always keep track of the

changes, and it also suffered from the degeneracy issue. The approach that we proposed,

however, is an advancement of the traditional particle filter to also incorporate parameter

estimation. This allows the variances of the disturbance terms to be updated upon the

arrival of new observations. This could explain the better performance of our particle filter

in tracking changes. In addition, the particle filter used in this chapter is a modification of the

auxiliary particle filter. This filter typically places the re-sampling ahead of the evaluation

step whereas the reverse order is typically performed in the traditional particle filter (see

also the review in Doucet and Johansen, 2011). The re-sampling step utilises the importance

weights calculated using the look-ahead-likelihood. This aims to reduce the degeneracy issue

(Doucet and Johansen, 2011; Creal, 2012; Cappé et al., 2007). However, it is also noted

that the degeneracy issue still exists to some extent in our filter, as shown in the parameter

estimation of the simulation illustration in Section 6.4.2. The particle degeneracy problem is

not as severe in this real data illustration perhaps because the dimension of observations is

smaller (only up to 20 in the first time period whereas it is 30 in the simulation illustration).
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6.5.4 Outstanding claims forecast

To forecast outstanding claims in the lower triangles, we utilise particles from the

filtering for the upper triangles. These particles are samples of random factors and

parameters. They are used to project future claims using the framework specification in

Section 6.2. A set of samples of future claims can then be obtained, which is used to calculate

summary statistics for the total outstanding claims liability.

The means and standard deviations of the total outstanding claims by accident years

for each line of business and the total portfolio are summarised in Table 6.6. Summary

statistics of the total outstanding claims distributions are given in Table 6.7 and their kernel

densities are given in Figure 6.18. The summary statistics provided include the posterior

means, standard deviations, VaR75% and VaR95% of the distributions of total outstanding

claims for each line, as well as the total portfolio.

Year
AB (excluding DI) AB (DI only) Both lines

Mean SD Mean SD Mean SD

1 187.49 193.56 38.30 44.31 225.79 197.85
2 579.92 361.71 216.96 142.92 796.89 388.72
3 1,448.14 698.41 526.54 299.49 1,974.68 764.69
4 2,299.10 1,117.06 940.59 446.71 3,239.70 1,188.88
5 5,504.30 2,482.17 3,695.25 1,644.89 9,199.55 2,806.42
6 13,128.14 5,506.59 5,456.64 2,618.54 18,584.78 6,155.75
7 17,550.89 8,319.55 6,530.34 3,742.70 24,081.23 9,194.94
8 19,898.82 11,057.94 7,026.08 6,163.77 26,924.90 12,297.21
9 31,035.09 20,539.99 14,891.23 24,332.31 45,926.32 32,660.82

Table 6.6: Outstanding claims statistics by accident year

AB (excluding DI) AB (DI only) Both lines

Mean 91,631.90 39,321.94 130,953.84
SD 28,960.41 26,251.88 40,495.76
VaR75% 106,307.33 44,375.00 147,631.89
VaR95% 143,964.73 75,211.60 198,509.08

Table 6.7: Summary statistics of outstanding claims distributions
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Figure 6.18: Kernel densities of predictive distributions of total outstanding claims in each
line of business and in the aggregate portfolio

The two lines, however, do not have a comonotonic dependence structure, and this

allows the insurer to gain a diversification benefit when they set their risk margins. Recall

the definitions of risk margins and diversification benefits from Section 4.4.4

Risk marginχ%[Y ] = max

{
VaRχ%[Y ]− E[Y ];

1

2
SD[Y ]

}
, (4.14)

DB =

(
Risk marginχ%[Y1] + Risk marginχ%[Y2]

)
− Risk marginχ%[Y1 + Y2]

Risk marginχ%[Y1] + Risk marginχ%[Y2]
× 100%. (4.15)

The Risk Margin75% and Risk Margin95%, as well as their corresponding diversification

benefits are provided in Table 6.8. It can then be observed that quite significant diversification

benefits can be gained as a result of allowing for (non-comonotonic) dependence across lines

in the valuation of the total outstanding claims liability.

AB (excluding DI) AB (DI only) Both lines DB

Risk Margin75% 14,675.43 13,125.94 20,247.88 27.2%
Risk Margin95% 52,332.83 35,889.66 67,555.24 23.4%

Table 6.8: Risk margin and diversification benefits statistics
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6.6 Remarks on framework properties and applications

We have introduced a multivariate evolutionary GLM framework with great flexibility

and formulated filters that recursively update factors upon the arrival of new observations. In

this section we provide some remarks on the properties of the framework and its applications.

These include modelling flexibility, the dimension within which the filters are run, potential

compensation effects in the estimation results, some caution in initialising the filters, and the

use of smoothing.

6.6.1 Modelling flexibility

The framework introduced in this chapter provides great modelling flexibility. Various

distributions from the EDF can be used with very flexible mean structures. The numerical

illustrations in this chapter use the Tweedie subclass of the EDF. This allows model

uncertainty to be considered conveniently through the estimation of the power parameter

p.

We specify special random walk evolution for random factors. This can be modified

easily by using more complex time series processes. However, it is worth noting that a more

complex structure will increase the number of parameters in the model. This may not be

desirable given the typically small sample size of reserving data. A preliminary analysis of

the data and expert opinions can help select appropriate specifications for the evolution.

The dependence across segments is captured using a common shock approach in this

framework. Common shock approaches provide many benefits, such as an explicit dependence

structure and ease of interpretation (see also Chapters 1 and 2). We specifically target the

calendar period dependence in the specification of our framework. This, however, can be

modified easily to incorporate other sources of dependence such as common accident period

effects, and common development period effects.

6.6.2 Dimension of filters

The particle filter and the dual Kalman filter that we introduce in this chapter are

accident-period-based. It means that they proceed from one accident period to another.
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This is to utilise the greater availability of data in the first accident period, which helps

initialise the filters more accurately. However, given that new information typically arrives

by calendar periods, it can be for better risk management purposes to have the filters run

by calendar periods. This, however, creates some additional complications due to the lack

of data for initialisation. In addition, this diagonal flow of the filters also misaligns with

the dimension within which accident period factors and development factors typically evolve.

The technique that we use to filter calendar factors in accident-period-based filters can be

modified to address the latter.

6.6.3 Compensations across random factors and variances of disturbance

terms

The simulation illustrations in Section 6.4 show a decent overall goodness-of-fit. This is

evident in the heat maps of actual to fitted values in this section. However, there is evidence

of some compensation in the estimation: a compensation between variance terms, and a

compensation between random factors.

Variance terms are unknown parameters that need to be estimated in the framework.

These include dispersion parameters of the observations, and variances of disturbance terms

in the evolution of random factors. While the framework has two components: observations

and random factors, random factors are latent and only the total volatility is observed.

This may cause a mis-allocation across variance terms. This issue is unlikely to distort the

projection of claims if it is handled with caution. For example, observed rapid changes in

claims development patterns should be appropriately recognised with large variance estimates

of development factors. As long as the overall goodness-of-fit is reasonable, the compensation

across component volatilities should not have material impacts on the projection of future

claims because the total volatility of future claims is the subject of interest. A careful

examination of data features as well as any expert opinions can help select more informative

starting values and prior distributions of variance parameters. It is also worth noting that

while it is desirable for prior distributions of parameters to have large variances, these prior

distributions should not be too vague to avoid particle degeneracy issues. Trial runs may

be required to select the optimal variances for these prior distributions. This task is quite

similar in nature to the “tuning” process of the traditional Metropolis-Hastings algorithm of

Bayesian inference.
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Compensation can also occur across random factors: accident period factors,

development period factors and calendar period factors. As shown in Figure 6.2 and 6.5

of the simulation illustrations, compensation across accident period factors and calendar

period factors is the most prominent. The relatively stable fitting ratios in these figures,

however, demonstrate a consistent mis-allocation between these factors. This issue is not

only specific to evolutionary models but is also very common in models that consider all three

factors (Zehnwirth, 1994; Taylor, 2000; Barnett and Zehnwirth, 2000; Brydon and Verrall,

2009; Gluck and Venter, 2009; Venter et al., 2017). Due to the collinearity between these

factors, they can largely offset to give an overall reasonable fit. Experienced practitioners also

tend to be more interested in the combination of these factors rather than their individual

trends (Venter et al., 2017). As the ultimate goal of any valuation task is to forecast

outstanding claims, a question is then raised regarding the impacts of this mis-allocation

on the accurateness of claims projection. McGuire et al. (2018) showed that extrapolating

future trends of these factors using their corresponding estimates from the past would produce

reasonably accurate future claims experience. This works well for cases with constant calendar

year trends. When the trends are not constant, one should proceed with caution and some

reasonableness checks of the trends can be useful.

6.6.4 Particle degeneracy issue and initialisation of the particle filter

Particle degeneracy can be a potential issue in the application of the particle learning

approach. This is the situation when the set of samples contains repeated copies of a few

particles with significant weights, hence the diversity of particles is significantly low (see

also the discussion on this in Section 2.5.4.1). While this problem is unavoidable in particle

learning and particle filtering in general (see for example, see for example, Doucet et al., 2000;

Andrieu et al., 2005; Carvalho et al., 2010; Creal, 2012), it can be more severe for data of

a high dimension, or when uninformative priors for parameters and initial values of random

factors are used (Wang et al., 2017; Li et al., 2014). A consequence of this problem is the

underestimation of parameter errors and observation errors. One should be mindful of this

issue when applying the particle learning approach. A careful selection of priors and initial

values may be required to reduce this issue.

In the selection of initial values for the filters, it may be useful to use GLM estimates

for random factors. A number of trial runs may be required to determine the appropriate
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starting values of parameters as well as their prior distributions.

6.6.5 Smoothing

It is often desirable to perform back smoothing following filtering to obtain estimates

using all available information. Back smoothing is a lot easier to accomplish for Gaussian

models because of the availability of the estimates in closed-form. For non-Gaussian models,

particle smoothing can be used, however, it is not an easy task due to particle degeneracy

(Doucet and Johansen, 2011). This problem is further escalated in the particle learning

algorithm in Section 6.3.1 as parameters are also incorporated in the on-line estimation. We

do not perform particle smoothing for the evolutionary GLM framework, except for Gaussian

cases where the Kalman smoother can be readily applied. Further research could further

investigate this aspect, especially with regard to addressing the degeneracy problem.

6.A Appendices

6.A.1 Simulated data set 1 and estimation results
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n i a
(n)
i r

(n)
i s

(n)
i h

(n)
i

True Estimate True Estimate True Estimate True Estimate

(1)

1 6.9947 7.0167 1.6359 1.6529 -0.8251 -0.8246 0.5000 0.4500
2 6.8641 6.8959 1.5157 1.5883 -0.8461 -0.8614 0.4994 0.4486
3 6.7749 6.8469 1.4596 1.6042 -0.8198 -0.8476 0.4983 0.4472
4 6.8542 6.8484 1.5136 1.6380 -0.8145 -0.8359 0.4966 0.4460
5 6.8415 6.7906 1.5659 1.6063 -0.8725 -0.8570 0.4965 0.4447
6 6.7952 6.7901 1.6813 1.6750 -0.8167 -0.8120 0.4966 0.4437
7 6.7427 6.7203 1.6303 1.6500 -0.8279 -0.8242 0.4943 0.4427
8 6.6634 6.7123 1.6671 1.6296 -0.8539 -0.8305 0.5037 0.4420
9 6.7226 6.7797 1.6943 1.6602 -0.8145 -0.8097 0.5140 0.4414
10 6.5345 6.7336 1.6630 1.6479 -0.7961 -0.8142 0.5236 0.4410
11 6.4229 6.5946 1.5842 1.5735 -0.8452 -0.8506 0.5164 0.4404
12 6.3549 6.5436 1.5084 1.5487 -0.8547 -0.8626 0.5125 0.4399
13 6.5337 6.5954 1.5677 1.5628 -0.7860 -0.8564 0.5201 0.4395
14 6.4938 6.6432 1.6236 1.5835 -0.7700 -0.8487 0.5280 0.4394
15 6.4094 6.6221 1.5665 1.5835 -0.7463 -0.8500 0.5318 0.4394

(2)

1 7.0454 6.9475 2.0693 2.1165 -0.3817 -0.3690 0.5000 0.4500
2 6.9772 6.9574 2.0261 2.1017 -0.3516 -0.3645 0.5097 0.4507
3 6.7969 6.9628 2.0704 2.1020 -0.3242 -0.3431 0.5175 0.4513
4 6.8370 6.9530 2.0286 2.0908 -0.3076 -0.3323 0.5171 0.4517
5 6.8698 6.9679 2.0191 2.0734 -0.3108 -0.3349 0.5127 0.4520
6 6.9182 6.9927 2.0681 2.0702 -0.3193 -0.3297 0.5122 0.4524
7 6.9022 7.0095 2.0371 2.0665 -0.3152 -0.3309 0.5080 0.4528
8 6.8453 7.0013 2.1274 2.0691 -0.3460 -0.3294 0.5088 0.4530
9 6.8523 6.9778 2.1398 2.0612 -0.3203 -0.3347 0.5168 0.4532
10 7.0142 6.9933 2.0757 2.0465 -0.3846 -0.3446 0.5257 0.4537
11 7.0037 7.0529 2.0768 2.0630 -0.3419 -0.3356 0.5319 0.4542
12 7.0128 7.0758 2.0799 2.0749 -0.3349 -0.3305 0.5378 0.4547
13 7.0317 7.1187 2.1660 2.0908 -0.3208 -0.3224 0.5312 0.4551
14 7.0509 7.1231 2.1437 2.0916 -0.3374 -0.3218 0.5297 0.4554
15 7.0849 7.1081 2.1988 2.0916 -0.3068 -0.3228 0.5293 0.4557

Table 6.11: Random factor estimates (data set 1)

6.A.2 Simulated data set 2 and estimation results
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n i a
(n)
i r

(n)
i s

(n)
i h

(n)
i

True Estimate True Estimate True Estimate True Estimate

(1)

1 6.9830 6.9434 1.5955 1.7118 -0.7850 -0.7965 0.5000 0.4500
2 6.8905 6.9085 1.5986 1.7002 -0.8064 -0.8266 0.5023 0.4481
3 7.0009 6.9989 1.6360 1.6632 -0.8222 -0.8160 0.5030 0.4417
4 6.9880 7.0861 1.5933 1.6074 -0.8155 -0.8175 0.5044 0.4379
5 7.0329 7.0630 1.6335 1.6829 -0.8312 -0.8429 0.5111 0.4302
6 7.0457 7.1332 1.6793 1.7175 -0.8375 -0.8576 0.5217 0.4236
7 7.0402 7.2059 1.6851 1.7497 -0.7905 -0.8304 0.5356 0.4286
8 7.0322 7.1696 1.7397 1.7738 -0.7953 -0.8217 0.5334 0.4304
9 7.0264 7.1542 1.8041 1.8150 -0.8248 -0.8370 0.5267 0.4144
10 7.0400 7.0915 1.8931 1.8493 -0.8340 -0.8126 0.5353 0.4458
11 6.9343 7.0847 1.9495 1.9501 -0.8087 -0.8291 0.5380 0.4430
12 6.7371 6.9144 1.9621 1.9714 -0.8504 -0.8871 0.5337 0.4644
13 6.5899 6.7457 2.0376 2.0315 -0.8852 -0.9303 0.5283 0.4621
14 6.6038 6.6860 2.0236 2.0380 -0.9016 -0.9332 0.5284 0.4576
15 6.4945 6.6808 2.0333 2.0421 -0.8839 -0.9370 0.5349 0.4689

(2)

1 6.8839 6.9921 1.9463 1.8302 -0.4366 -0.4132 0.5000 0.4500
2 6.9029 6.9835 1.9466 1.9113 -0.4371 -0.4282 0.5013 0.4490
3 7.0123 6.9676 1.9224 2.0187 -0.4437 -0.4514 0.4982 0.4517
4 7.1320 7.2572 1.9728 1.9782 -0.4274 -0.4353 0.5052 0.4398
5 7.0479 7.2527 1.9766 1.9529 -0.4586 -0.4675 0.5157 0.4297
6 7.1557 7.2514 1.9492 1.9416 -0.4740 -0.4712 0.5242 0.4314
7 7.3043 7.3410 1.9718 1.9777 -0.4841 -0.4782 0.5297 0.4285
8 7.4428 7.5354 1.9541 2.0351 -0.4506 -0.4811 0.5466 0.4251
9 7.3675 7.4923 1.9626 2.0190 -0.4497 -0.4814 0.5418 0.4281
10 7.4645 7.4848 1.9253 2.0159 -0.4764 -0.4970 0.5345 0.4574
11 7.4939 7.5738 1.9464 1.9828 -0.4691 -0.4909 0.5261 0.4360
12 7.4921 7.5815 1.9997 1.9813 -0.4427 -0.4679 0.5159 0.4631
13 7.5051 7.6527 2.0748 2.0262 -0.4515 -0.4767 0.5063 0.4661
14 7.3779 7.4958 2.1793 2.0874 -0.4452 -0.4833 0.4905 0.4492
15 7.3656 7.4958 2.1708 2.0822 -0.4737 -0.4825 0.4894 0.4387

Table 6.14: Random factor estimates (data set 2)

6.A.3 Empirical data set

This data set is drawn from Côté et al. (2016).
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CHAPTER 7

Conclusions

By considering and incorporating realistic and desirable model features, insurers can

accurately assess their outstanding claims liabilities in a convenient manner. Many of these

features include dependency across business segments, unbalanced nature of reserving data,

changes in claim activity over time, non-positive claim observations, marginal flexibly and

more.

An important aspect of reserving data is potential dependence across business segments

within a portfolio. By considering this feature, insurers can more accurately allow for

diversification benefits when they set risk margins for their outstanding claims liabilities

as well as risk-based capital. A number of multivariate reserving models have been

developed using copulas, multivariate distributions with specific marginals, and common

shocks. Common shock techniques are traditional dependence modelling tools with various

applications not only in insurance but also in many other areas. They are well known for

their ability to capture dependence drivers transparently with explicit dependence structures.

As a result, these drivers can be estimated, communicated, as well as monitored if needed.

The construction of correlation matrices can also be more parsimonious and disciplined.

This is particularly beneficial in practice as correlation matrices are a major tool used by

practitioners to present dependence across segments in their portfolios.

In this thesis we propose a number of developments in reserving that all draw from

common shock modelling techniques to utilise their many benefits. These developments

consider many realistic and desirable modelling features. A summary of contributions is

provided in Section 7.1, followed by limitations and areas for future research in Section 7.2.



CHAPTER 7. CONCLUSIONS

7.1 Summary of contributions

The overall aim of this thesis is to develop approaches that have realistic and desirable

features to improve the valuation of outstanding claims liability while still offering great

practicality.

In Chapter 3 (some of the results of which were published in Avanzi, Taylor, Vu and

Wong, 2016), we contribute to the existing literature with the development of a common shock

Tweedie framework which has many desirable properties. We consider the Tweedie family of

distributions, a very rich major sub-class of the EDF which covers various symmetric and non-

symmetric, light-tailed and heavy-tailed distributions (Alai et al., 2016; Alai and Wüthrich,

2009; Furman and Landsman, 2010; Jorgensen, 1997). This family is characterised by the

specification of a variance function µp, where values of the power parameter p identify the

corresponding member of the family and they can be anywhere in (−∞, 0]∩ [1,∞). We utilise

the richness of the Tweedie family and develop a multivariate Tweedie framework using a

common shock approach. While offering the various benefits of common shock approaches

as mentioned earlier, this framework also provides great marginal flexibility and as a result,

enhanced practicality. It is also a multivariate generalisation of ODP models which utilise

over-dispersed Poisson distributions of the Tweedie family with p = 1. The univariate ODP

models are well known stochastic models that underlie the famous chain-ladder algorithm.

The common shock Tweedie framework developed in Chapter 3 also provides other

desirable features besides marginal flexibility and explicit dependence structure with ease

of interpretation. In particular, the multivariate Tweedie’s compound Poisson cases of this

framework where p ∈ (1, 2) can handle claim observations of 0’s. These observations can be

encountered quite often in reserving data. We also provide closed-form moments, including

the mean and variance, of the sum of total outstanding claims liability in this chapter. These

results are particularly beneficial when the calculation of these quantities are computationally

expensive. For the sake of simplicity, the most simple parametrisation for the common shock

variable is assumed, which leads to some issues with the unbalanced nature of reserving data.

This issue is analysed and addressed in Chapter 5.

Chapter 4 focuses on the estimation and applications of the multivariate Tweedie

framework. The Tweedie family of distributions has a complex density. The complexity

is elevated in a multivariate framework. We overcome this issue with the formulation of
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an efficient Bayesian approach for model estimation. The performance of model estimation

was assessed using simulated data sets, and illustrated using a real data set from Schedule

P (available in Zhang and Dukic, 2013). The benefit of marginal flexibility offered by

the framework is emphasised in the illustration with real data. This property allows the

multivariate Tweedie framework to provide a good fit to the data set compared to some

special members of the family with specific power parameters p. The Bayesian estimation

with efficient MCMC algorithms reduces the need to use closed-form cumulants of the sum of

outstanding claims. However, we can still take the advantage of having tractable cumulants

of outstanding claims to efficiently compute the mean and the variance of total outstanding

losses.

We propose the multivariate Tweedie approach for outstanding claims liabilities

valuation with dependence. However, the development of this approach, as well as many

remarks and considerations on the theoretical and practical properties, could be applied in

other contexts where additive background systematic risks exist such as mortality modelling

(Alai et al., 2016), capital modelling (Furman and Landsman, 2010), and so forth.

While common shock approaches have many benefits, they may create problems when

applied to reserving data without careful modelling. This is particularly the case when claim

activity varies quite significantly within a single triangle, and also across triangles. It typically

reaches a peak in some early periods, then dies out as the delay increases. Furthermore,

different segments can have different claims experience as some can be longer-tailed than

others. We refer to this characteristic as the unbalanced nature of reserving data. It is then

desirable to use scaling factors to adjust the common shock contributions proportionately to

the total observations over the entire range of the triangles. However, an excessive use of

scaling factors can result in over-parametrisation. In some cases such as the common shock

Tweedie framework developed in earlier chapters, there may also be a desire to maintain

distributional tractability. In Chapter 5, we propose an approach which compromises the

various conflicting problems arising from the unbalanced nature of reserving data. This

approach involves using careful and parsimonious parametrisation to develop a common shock

Tweedie framework modified for unbalanced data. Numerical illustrations show a substantial

improvement in the performance of the framework modified for unbalanced data, compared

to the original framework in Chapters 3 and 4.

It can also be quite common to observe negative entries in loss triangles due to for
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example, salvage recoveries and payment from third parties. This data feature, however, can

create difficulties for many models which do not offer support for negative claims. In Chapter

5, we also incorporate a translation factor to account for this feature in the modified common

shock Tweedie framework. This translation factor is estimated via Bayesian inference that

so that their uncertainty can be formally assessed in the valuation of outstanding claims

liabilities.

Insurers typically experience changes in their claim experience over time, making

the application of static models with deterministic parameters no longer straightforward.

We capture this common data feature in a multivariate evolutionary GLM framework in

Chapter 6. This framework utilises the very popular and rich GLM class, hence provides

great flexibility in marginal modelling and mean structure. We extend the traditional GLM

framework in loss reserving on two fronts. Firstly, we allow parameters of the traditional GLM

framework to evolve, hence enable changes in claim experience to be captured naturally in

an elegant manner. This helps provide a clear picture of the historical experience. Secondly,

we introduce dependence across segments using a common shock approach with an explicit

and easy-to-interpret dependence structure.

Together with the development of the multivariate evolutionary GLM framework, we

also contribute to the literature with the formulation of two filters in Chapter 6: a particle

filter with parameters learning for the general framework, and a dual Kalman filter for the

special case of Gaussian models. These filters are real-time devices that recursively update

random factors and parameters upon the arrival of new information. It gives more weight to

more recent data, hence provides a more accurate projection of future claims. In the special

structure of reserving data with three different time dimensions, the application of a standard

filter is not straightforward. We take into account this difficulty in the development of our

filters. However, there can be compensation between random factors, and across variance

parameters. A careful selection of initial values is required to reduce this as well as the

numerical instability of the filters.

7.2 Limitations and areas for future research

In this thesis, common shock techniques are used to develop approaches that provide

many realistic and desirable properties such as marginal flexibility, unbalanced data
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treatment, and evolutionary structure. However, these approaches are still bound to some

limitations which could give some directions for future research. Frameworks developed in

this thesis are applied to loss reserving, however, general approaches and considerations could

still be considered in other fields. These limitations and areas for future research are provided

in detail below.

The common shock Tweedie framework in Chapters 3 and 4 offers an advantage of

marginal flexibility through flexible choices of power parameter p. This is demonstrated in

the illustration using real data in Chapter 4 where this flexibility provides a much better

goodness-of-fit compared to cases where the parameter p is fixed. However, all marginal

distributions are required to belong to the Tweedie family with the same p. While this is

to maintain closure under the taking of marginals, one of the four desirable properties of

multivariate distributions in Joe (1997, Chapter 4), it restricts the marginal flexibility of

the framework. Claims from all business segments are required to have the same dispersion

which can be violated in cases where some segments have diverse properties. Furthermore,

the multivariate Tweedie framework captures cell-wise dependence across triangles. Future

research could consider modifying this dependence structure to capture other sources of

dependence such as development period dependence, calendar period dependence, or accident

period dependence.

Our research raises some potential issues of common shock models when they are

applied to reserving data that has an unbalanced nature. These issues, however, might

appear whenever common shock models are applied to heterogeneous data. These can include

mortality data for different group ages, or capital modelling for different types of risks. A

solution to these issues is proposed in Chapter 5, which could be extended to solve similar

problems in other contexts. While this solution can reduce the problems of unbalanced data

quite substantially, a complete balance in common shock proportions cannot be achieved.

Future research could consider a better solution to this problem. Other multivariate models

with explicit dependence structures such as mixture models could also be considered as they

might be more applicable to unbalanced data.

To capture changes in claim activity over time, we propose a multivariate evolutionary

GLM framework in Chapter 6. This framework specifies calendar period dependence and

random walk evolution for random factors, which could be modified to provide more complex

structures. The filters formulated are accident period-based as they proceed from one accident
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period to another. This is to utilise the benefit of having more available data in the first

accident period for initialisation. However, as data arrives by calendar years, one could

consider the formulation of calendar period-based filters. The development of a particle

back smoothing algorithm to obtain optimal estimates of random factors using all available

information could also be an area of development for future research.

The particle learning approach used for estimation of random factors can experience

the degeneracy issue when it is applied on high-dimensional data. While informative initial

values and priors can be used to reduce this problem to some extent, it can still be quite

severe for high-dimensional data sets of many large triangles. This problem is quite well

known for particle learning and particle filtering in general. Some advanced particle filters

have been formulated to overcome the problem of particle degeneracy which could be used

in further research. These filters, however, are often known to have significant additional

computational requirements hence they need to be evaluated carefully before they are used

for future developments.

The evolutionary framework and filters that we develop can be used to build reserving

robots which can automate repetitive reserving jobs. This is particularly useful, and even

essential, as the demand for more frequent outstanding claims valuation has been increasing.

Future research could further into the complete construction of reserving robots, which might

involve more detailed selection of initial values, disturbance variances, model selection and

blending of results from different models. However, as shown in the numerical illustrations

of the evolutionary framework, compensation across factors can occur in automated models.

Future research could further look into this issue and should be mindful of it in developing

and applying these models.

The developments in this thesis provide great marginal flexibility. Chapters 3 and 4

focus on the Tweedie family of distribution, while Chapter 6 considers the EDF with the

flexible GLM structure. However, the EDF and its Tweedie subclass, are relatively light-

tailed. Other families of heavier tailed distributions could be considered in the future, such

as the generalised beta distribution family of second kind.

Despite many distinctive strengths, common shock approaches proposed in this thesis

can only capture positive dependence structures. Negative dependences can be observed in

practice which may invalidate the applications of proposed approaches. In such cases, other

dependence modelling approaches such as copulas (for example, Shi and Frees, 2011; De Jong,
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2012) and mixture approaches (for example Lee and Lin, 2012; Willmot and Woo, 2015) could

be considered.
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Cappé, O., Godsill, S.J., Moulines, E., 2007. An overview of existing methods and recent

advances in sequential Monte Carlo, in: Proceedings of the IEEE, pp. 899–924.

Carvalho, C.M., Johannes, M.S., Lopes, H.F., Polson, N.G., et al., 2010. Particle learning

and smoothing. Statistical Science 25, 88–106.

Chukhrova, N., Johannssen, A., 2017. State space models and the Kalman-filter in stochastic

claims reserving: Forecasting, filtering and smoothing. Risks 5, 30.

Congdon, P.D., 2010. Applied Bayesian hierarchical methods. Chapman & Hall.
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Salzmann, R., Wüthrich, M.V., 2012. Modeling accounting year dependence in runoff

triangles. European Actuarial Journal 2, 227–242.
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APPENDIX A

R codes

A.1 R codes for Chapter 4

A.1.1 Simulation illustration 1

library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(rootSolve)
library(LaplacesDemon)

########## Simulation ##########
ralpha1 = c(1, 1.03625 , 0.94456 , 1.02627 , 1.05796 , 1.11404 , 1.02149 , 1.01978 ,

1.21930 , 1.199152)
ralpha2 = c(1, 1.19566 , 1.17375 , 0.95060 , 1.05491 , 1.18730 , 1.40939 , 1.45048 ,

1.56165 , 1.66456)

rbeta1 = c(0.23426 , 0.23756 , 0.13488 , 0.07877 , 0.04121 ,0.01899 , 0.00719 ,
0.00506 , 0.00344 , 0.00089)

rbeta2 = c(0.12952 , 0.16514 , 0.11326 , 0.09096 , 0.05887 , 0.02342 , 0.01951 ,
0.00517 , 0.00323 , 0.00015)

rphi1 = 0.00486
rphi2 = 0.00616

ralphatil = 0.006
rphitil = 0.06640

sp =1.32

stau=(sp -2)/(sp -1)

#Generate loss triangles
loss1 = matrix(NA , ncol=10, nrow =10)
loss2 = matrix(NA , ncol=10, nrow =10)

r1 = rtweedie (150,mu=ralphatil ,phi=rphitil ,xi=sp)
r2 = r1[!r1==0]

random_w = matrix(NA, nrow=10,ncol =10)
loss1 = matrix(NA , nrow=10,ncol =10)
loss2 = matrix(NA , nrow=10, ncol =10)
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for(i in 1:1){
for (j in 1:(10-i+1)){
random_w[i,j] = r2[j]
loss1[i,j] = (ralphatil/(( ralpha1[i]*rbeta1[j])))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j], phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil/(( ralpha2[i]*rbeta2[j])))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j], phi = rphi2 ,xi=sp)
}}

for (i in 2:10){
for (j in 1:(10-i+1)){
random_w[i,j] = r2[10*(i-1)-sum (0:(i-2))+j]
loss1[i,j] = (ralphatil/(( ralpha1[i]*rbeta1[j])))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil/(( ralpha2[i]*rbeta2[j])))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

########## Premliminary analysis ###########
plot(loss1[1,],type = "l",lwd=1,ylim=c(0 ,0.3))
for(i in 2:10){
lines(loss1[i,],lwd=1)
}

plot(loss2[1,],type = "l",lwd=1,ylim=c(0 ,0.3))
for(i in 2:10){
lines(loss2[i,],lwd=1)
}

########### Find p###########
vloss1 = as.vector(t(loss1))
vloss2 = as.vector(t(loss2))

#Set up llh profile for each line
i = rep(1:10 , each =10)
j = rep(1:10 , 10)

ci.vec = seq(1,4,by =0.01)

llh1 = rep(0,length(ci.vec))
llh2 = llh1

for (t in 1: length(ci.vec)){
out1 <- glm(vloss1~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vloss2~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp2 <- summary(out2)$dispersion
mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

#Set up llh profile for both lines combined
i1 = c(rep (1:10, each =10),rep (11:20 , each =10))
j1 = c(rep (1:10 ,10),rep (11:20 ,10))
cbine=c(vloss1 ,vloss2)
allh = rep(0, length(ci.vec))

for (t in 1: length(ci.vec)){
outa <- glm(cbine~as.factor(i1) + as.factor(j1), fam=tweedie(var.power=ci.vec

[t]))
disp <- summary(outa)$dispersion
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mu <- fitted(outa)
den <- dtweedie(outa$y, mu = mu , phi = disp , power = ci.vec[t])
allh[t] <- sum(log(den))
}

#Find p that maximises llh
ci1 = ci.vec[which.max(llh1)]

ci2 = ci.vec[which.max(llh2)]

aci = ci.vec[which.max(allh)]

#Find CI for p
outci1 = rep(0,length(llh1))
for (k in 1: length(llh1)){
if (isTRUE (2*abs(llh1[k]-max(llh1)) <= 3.84)) {
outci1[k] = ci.vec[k]
}
else{
outci1[k] = 0
}
}

ci1low = outci1 [11]
ci1hi = outci1 [73]

outci2 = rep(0,length(llh2))
for (k in 1: length(llh2)){
if (isTRUE (2*abs(llh2[k]-max(llh2)) <= 3.84)) {
outci2[k] = ci.vec[k]
}
else{
outci2[k] = 0
}
}

ci2low = outci2 [5]
ci2hi = outci2 [58]

outaci = rep(0,length(allh))
for (k in 1: length(allh)){
if (isTRUE (2*abs(allh[k]-max(allh)) <= 3.84)) {
outaci[k] = ci.vec[k]
}
else{
outaci[k] = 0
}
}

acilow = outaci [11]
acihi = outaci [56]

##Ln L profile plot
plot(ci.vec ,llh1 , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(ci1 , max(llh1), pch=15, cex =1)
points(aci , llh1 [34], pch=18, cex =1)
abline(v=ci1low)
abline(v=ci1hi)

plot(ci.vec ,llh2 , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(ci2 , max(llh2), pch=15, cex =1)
points(aci , llh2 [34], pch=18, cex =1)
abline(v=ci2low)
abline(v=ci2hi)

plot(ci.vec ,allh , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(aci , max(allh), pch=15, cex =1)
abline(v=acilow)
abline(v=acihi)

#Results
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pest = rbind(c(ci1 ,ci1low ,ci1hi), c(ci2 ,ci2low ,ci2hi), c(aci ,acilow ,acihi))

########## Choose initial values and get information for prior distributions
selection ##########

#Estimate alpha and beta
solvefn <- function(x,data){
F2 <- x[1]*sum(x[10:18]^(2 - aci)) - as.numeric(crossprod(data [2,1:9],x

[10:18]^(1 - aci)))
F3 <- x[2]*sum(x[10:17]^(2 - aci)) - as.numeric(crossprod(data [3,1:8],x

[10:17]^(1 - aci)))
F4 <- x[3]*sum(x[10:16]^(2 - aci)) - as.numeric(crossprod(data [4,1:7],x

[10:16]^(1 - aci)))
F5 <- x[4]*sum(x[10:15]^(2 - aci)) - as.numeric(crossprod(data [5,1:6],x

[10:15]^(1 - aci)))
F6 <- x[5]*sum(x[10:14]^(2 - aci)) - as.numeric(crossprod(data [6,1:5],x

[10:14]^(1 - aci)))
F7 <- x[6]*sum(x[10:13]^(2 - aci)) - as.numeric(crossprod(data [7,1:4],x

[10:13]^(1 - aci)))
F8 <- x[7]*sum(x[10:12]^(2 - aci)) - as.numeric(crossprod(data [8,1:3],x

[10:12]^(1 - aci)))
F9 <- x[8]*sum(x[10:11]^(2 - aci)) - as.numeric(crossprod(data [9,1:2],x

[10:11]^(1 - aci)))
F10 <- x[9]*sum(x[10:10]^(2 - aci)) - as.numeric(crossprod(data [10,1],x

[10:10]^(1 - aci)))

F11 <- x[10]*sum(c(1,x[1:9]) ^(2-aci)) - as.numeric(crossprod(data[,1],c(1,x
[1:9]) ^(1-aci)))

F12 <- x[11]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:9,2],c(1,
x[1:8]) ^(1-aci)))

F13 <- x[12]*sum(c(1,x[1:7]) ^(2-aci)) - as.numeric(crossprod(data [1:8,3],c(1,
x[1:7]) ^(1-aci)))

F14 <- x[13]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:7,4],c(1,
x[1:6]) ^(1-aci)))

F15 <- x[14]*sum(c(1,x[1:5]) ^(2-aci)) - as.numeric(crossprod(data [1:6,5],c(1,
x[1:5]) ^(1-aci)))

F16 <- x[15]*sum(c(1,x[1:4]) ^(2-aci)) - as.numeric(crossprod(data [1:5,6],c(1,
x[1:4]) ^(1-aci)))

F17 <- x[16]*sum(c(1,x[1:3]) ^(2-aci)) - as.numeric(crossprod(data [1:4,7],c(1,
x[1:3]) ^(1-aci)))

F18 <- x[17]*sum(c(1,x[1:2]) ^(2-aci)) - as.numeric(crossprod(data [1:3,8],c(1,
x[1:2]) ^(1-aci)))

F19 <- x[18]*sum(c(1,x[1:1]) ^(2-aci)) - as.numeric(crossprod(data [1:2,9],c(1,
x[1:1]) ^(1-aci)))

F20 <-x[19]*sum (1^(2- aci)) - as.numeric(crossprod(data [1,10] ,1^(1- aci)))

c(F2=F2 ,F3=F3 ,F4=F4 ,F5=F5 ,F6=F6 ,F7=F7 ,F8=F8 ,F9=F9 ,F10=F10 ,
F11=F11 ,F12=F12 ,F13=F13 ,F14=F14 ,F15=F15 ,F16=F16 ,F17=F17 ,F18=F18 ,F19=F19 ,F20=

F20)
}

ss1 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(loss1 ,na.rm=T)),
data=loss1)

ss2 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(loss2 ,na.rm=T)),
data=loss2)

#Estimate phi1 and phi2
alphaest1 = c(1,ss1$root [1:9])
betaest1 = ss1$root [10:19]
resid1= matrix(NA,nrow=10,ncol =10)

for (i in 1:10){
for(j in 1:(10-i+1)){
resid1[i,j] = (loss1[i,j]-alphaest1[i]*betaest1[j])^2/(( alphaest1[i]*betaest1

[j])^aci)
}
}
phi1est = sum(resid1 ,na.rm=T)/45

alphaest2 = c(1,ss2$root [1:9])
betaest2 = ss2$root [10:19]
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resid2= matrix(NA,nrow=10,ncol =10)
for (i in 1:10){
for(j in 1:(10-i+1)){
resid2[i,j] = (loss2[i,j]-alphaest2[i]*betaest2[j])^2/(( alphaest2[i]*betaest2

[j])^aci)
}
}
phi2est = sum(resid2 ,na.rm=T)/45

#Estimate alphatil and betatil - by trials
betatilest = 0.009
alphatilest =0.003
minyest=matrix(NA ,nrow=10,ncol =10)
for (i in 1:10){
for (j in 1:(10-i+1)){
minyest[i,j] <- min (((( alphatilest/(alphaest1[i]*betaest1[j]))^(1-aci)*(

phi1est/betatilest)))*alphatilest ,((( alphatilest/(alphaest2[i]*betaest2[j
]))^(1-aci)*(phi2est/betatilest)))*alphatilest)

}}

lambdaest = alphatilest ^(2-aci)/betatilest

########## Marginal estimatio ###########

#Posterior function
model1 <- function(parm ,data){
alpha1 <- exp(parm [1:9])
beta1 <-exp(parm [10:19])
alpha2 <-exp(parm [20:28])
beta2 <-exp(parm [29:38])
phi1 <- exp(parm [39])
phi2 <-exp(parm [40])
lambda <- exp(parm [41])

alpha1.prior <- sum(dunif(log(alpha1),min=-0.5,max=1.5,log=T))
beta1.prior <- sum(dunif(log(beta1 [1:2]) ,min=-2.5,max=-0.5,log=T)) +sum(dunif

(log(beta1 [3]),min=-3,max=-1,log=T)) +sum(dunif(log(beta1 [4:5]) ,min=-4,max
=-2,log=T)) +sum(dunif(log(beta1 [6]),min=-5,max=-3,log=T))+sum(dunif(log(
beta1 [7:8]) ,min=-6,max=-4,log=T))+sum(dunif(log(beta1 [9]),min=-6.5,max
=-4.5,log=T)) +sum(dunif(log(beta1 [10]) ,min=-7.5,max=-5,log=T))

alpha2.prior <- sum(dunif(log(alpha2),min=-0.5,max=1.5,log=T))
beta2.prior <- sum(dunif(log(beta2 [1:3]) ,min=-3,max=-1,log=T)) +sum(dunif(log

(beta2 [4:5]) ,min=-4,max=-2,log=T)) +sum(dunif(log(beta2 [6]),min=-5,max=-3,
log=T))+sum(dunif(log(beta2 [7]),min=-5.5,max=-3.5,log=T)) +sum(dunif(log(
beta2 [8]),min=-6,max=-4,log=T))+sum(dunif(log(beta2 [9]),min=-6.5,max=-4.5,
log=T))+sum(dunif(log(beta2 [10]),min=-9.5,max=-7.5,log=T))

phi1.prior <- dunif(log(phi1),min=-7,max=-3,log=T)
phi2.prior <- dunif(log(phi2),min=-7,max=-3,log=T)

lambda.prior <- dunif(log(lambda),min=-3,max=1,log=T)

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

l <- matrix(NA , nrow=10, ncol =10)
loss1 <- data$loss1
loss2 <-data$loss2

for (i in 1:10){
for (j in 1:(10-i+1)){
A1=alphaf1[i]*beta1[j]*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)
B1 = phi1*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)^{(1-aci)}

A2=alphaf2[i]*beta2[j]*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)
B2 = phi2*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)^{(1-aci)}

l[i,j] = log(dtweedie(loss1[i,j],xi=aci ,mu=A1 ,phi=B1))+log(dtweedie(loss2[i,j
],xi=aci ,mu=A2 ,phi=B2))

}}
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LL <- sum(l, na.rm=T)
LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.

prior+lambda.prior

list(LP = LP, Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda),
parm=parm)

}

#Prepare for MCMC
data=list(loss1=loss1 ,loss2=loss2)
init <- log(c(alphaest1 [2:10] , betaest1 ,alphaest2 [2:10] , betaest2 ,phi1est ,

phi2est ,lambdaest))
lower = c(rep(-0.5,9),rep(-2.5,2) ,-3,rep(-4,2) ,-5,rep(-6,2) ,-6.5,-7.5,rep

(-0.5,9),rep(-3,3),rep(-4,2),rep(-5,1) ,-5.5,-6,-6.5,-9.5,-7,-7,-3)
upper = c(rep (1.5 ,9),rep(-0.5,2) ,-1,rep(-2,2) ,-3, rep(-4,2) ,-4.5,-5, rep

(1.5 ,9),rep(-1,3),rep(-2,2),rep(-3,1) ,-3.5,-4,-4.5,-7.5,-3,-3,1)
std = c(0.0187 , 0.0210 , 0.0234 , 0.0210 , 0.0217 , 0.0218 , 0.0241 , 0.0261 ,

0.0308 , 0.0239 , 0.0218 , 0.0243 , 0.0217 , 0.0285 , 0.0330 , 0.0458 , 0.0477 ,
0.0643 , 0.0873 , 0.0250 , 0.0277 , 0.0276 , 0.0280 , 0.0281 , 0.0281 , 0.0336 ,
0.0350 , 0.0315 , 0.0230 , 0.0238 , 0.0236 , 0.0254 , 0.0352 , 0.0352 , 0.0389 ,
0.0655 , 0.0624 , 0.0919 , 0.0533 , 0.0535 , 0.2165)

Iterations =150000
Status =1000
Thinning =5
LogFile = ""
cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , Iterations , length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- init

#Run MCMC
set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- rtruncnorm (1,mean = Mo0[["parm"]],sd = std , a = lower , b=upper)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alpha <- Mo1[["LP"]] - Mo0[["LP"]] + log(dtruncnorm(Mo0[["parm"]], mean =

prop , sd = std , a = lower , b = upper)) - log(dtruncnorm(prop , mean=Mo0[[
"parm"]], sd = std , a = lower , b = upper))

if((is.finite(log.alpha)) && (!inherits(Mo1 , "try -error")) && ((is.finite(
Mo1[["Monitor"]]))) && (log.u < log.alpha)) {

Mo0 <- Mo1
Acceptance <- Acceptance + 1}

Mon[iter ,] <- Mo0[["Monitor"]]

#Thin samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["parm"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}
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cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#Plot sample paths
thinnedplot = matrix(NA,nrow =15000 , ncol =41)
freq = 30

for(n in 1:150000){
if(n%%freq == 0){
tp.iter <- floor(n / freq)
thinnedplot[tp.iter ,] <- Mon[n ,2:42]}
}

xticks <- seq(0, 150000 , 30000)
xuse <-seq(0,5000, 1000)
layout(matrix(c(1,1,2,2,3,3,4,4,5,5,6,6,0,7,7,0), 4, 4, byrow=TRUE))
par(mar=c(2.5 ,2.5 ,2.5 ,2.5))

plot(( thinnedplot [1:5000 ,1]) ,type="l",main=expression(paste(alpha [2]^(1))),
ylab="",xlab="Iteration", xaxt = "n")

axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,20]) ,type="l",main=expression(paste(alpha [2]^(2))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,10]) ,type="l",main=expression(paste(beta [1]^(1))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,29]) ,type="l",main=expression(paste(beta [1]^(2))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,39]) ,type="l",main=expression(paste(phi ^(1))),ylab="

",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,40]) ,type="l",main=expression(paste(phi ^(2))),ylab="

",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,41]) ,type="l",main=expression(paste(Lambda)),ylab=""

,xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)

#Summary statistics for marginal estimation
true = c(ralpha1 [2:10] , rbeta1 ,ralpha2 [2:10] , rbeta2 ,rphi1 ,rphi2 ,ralphatil ^(2-

aci)/rphitil)
used = exp(thinned [10000:30000 ,])
mean = apply(used ,2,median ,na.rm=T)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,41)
uCI = rep (0,41)
for (i in 1:41){
lCI[i] = quantile(used[,i],p=0.05)
uCI[i] = quantile(used[,i],p=0.95)
}
bothline = cbind(true ,mean ,st.dev ,lCI ,uCI)

########## Multivariate estimation (adaptive Metropolis)###########

#Use parameter estimates from marginal estimation
alpha1 <- mean [1:9]
beta1 <- mean [10:19]
alpha2 <- mean [20:28]
beta2 <- mean [29:38]
phi1 <- mean [39]
phi2 <- mean [40]
lambda <- mean [41]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

#Posterior function
model2 <- function(parm ,data){
alpha <- exp(parm)
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beta <- alpha ^(2-aci)/lambda

alpha.prior <- dunif(log(alpha),min=-7,max=-4,log=T)

l <- matrix(NA, nrow=10, ncol =10)
loss1 <- data$loss1
loss2 <- data$loss2
miny <- matrix(NA,nrow=10,ncol =10)
prior = c(alpha.prior)

if(all(is.finite(prior))){
for (i in 1:10){
for (j in 1:(10-i+1)){
miny[i,j] <- min((loss1[i,j]/((alpha/(alphaf1[i]*beta1[j]))^(1-aci)*(phi1/

beta))), (loss2[i,j]/((alpha/(alphaf2[i]*beta2[j]))^(1-aci)*(phi2/beta))))

if (miny[i,j]<=1e -200000000){
l[i,j]=log(dtweedie(loss1[i,j],xi=aci , mu=alphaf1[i]*beta1[j], phi = phi1))+

log(dtweedie(loss2[i,j],xi=aci , mu=alphaf2[i]*beta2[j], phi = phi2))
}
else {
f<- function(z){
dtweedie(loss1[i,j]-(alpha/(alphaf1[i]*beta1[j]))^(1-aci)*(phi1/beta)*z,xi=

aci , mu=alphaf1[i]*beta1[j], phi = phi1)*dtweedie(loss2[i,j]-(alpha/(
alphaf2[i]*beta2[j]))^(1-aci)*(phi2/beta)*z,xi=aci , mu=alphaf2[i]*beta2[j
], phi = phi2)*dtweedie(z,xi=aci , mu=alpha , phi = beta)

}
llh <- try(integrate(f,lower=1e -2000000000 , upper=miny[i,j]),silent=T)
if(inherits(llh , 'try -error ') ){
l[i,j] <- log(0)
}
else{
l[i,j] <- log(llh$value)}}
}}}

LL <- sum(l, na.rm=T)
LP <- LL + alpha.prior

list(LP = LP, Monitor = c(LP, alpha ,beta), parm=parm)
}

#Prepare for MCMC
ainit <- -5.116

Iterations =30000
Status =100
Thinning =5
alpha.star =0.2
Periodicity =1
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

aAcceptance <- 0
aMo0 <- model2(ainit , data)
aMon <- matrix(NA,nrow=Iterations ,ncol=length(aMo0[["Monitor"]]))
adimension <- length(ainit)
athinned <- matrix(NA, floor(Iterations/Thinning)+1,length(ainit)+1)
athinned [1,] <- ainit
aScaleF <- 0.0001/sqrt(adimension)
aVarCov <- matrix(0, adimension , adimension)
diag(aVarCov) <- rep(aScaleF , adimension)
aS <- t(chol(aVarCov))

#Run MCMC
set.seed (11)

for (aiter in 1: Iterations) {
if(aiter %% Status == 0) cat("Iteration: ", aiter , sep="")
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#Adaptive Metropolis
aU <- rnorm(adimension)
aprop <- as.vector(aMo0[["parm"]] + aS %*% aU)
aMo1 <- try(model2(aprop , data), silent=TRUE)

alog.u <- log(runif (1))
alog.alpha <- aMo1[["LP"]] - aMo0[["LP"]]
if((is.finite(alog.alpha)) && (!inherits(aMo1 , "try -error")) && ((is.finite(

aMo1[["Monitor"]]))) && (alog.u < alog.alpha)) {
aMo0 <- aMo1
aAcceptance <- aAcceptance + 1}

aMon[aiter ,] <- aMo0[["Monitor"]]

if({ aiter >= 2} & {aiter %% Periodicity == 0}) {
aeta <- min(1, adimension*aiter ^(-2/3))
aVarCov.test <- aS %*% (diag(adimension) + aeta*(min(1, exp(alog.alpha)) -

alpha.star) * aU %*% t(aU) / sqrt(sum(aU^2))) %*% t(aS)
if(!all(is.finite(aVarCov.test))) {aVarCov.test <- aVarCov}
if(!is.symmetric.matrix(aVarCov.test)){aVarCov.test <- as.symmetric.matrix(

aVarCov.test)}
if(is.positive.definite(aVarCov.test)){ aS.z <- try(t(chol(aVarCov)), silent=

TRUE)
if(!inherits(aS.z, "try -error")) {
aVarCov <- aVarCov.test
aS <- aS.z}}}

#Thin samples
if(aiter %% Thinning == 0) {
at.iter <- floor(aiter / Thinning) + 1
athinned[at.iter ,] <- aMo0[["Monitor"]][2:3]}

if(aiter %% Status == 0){
cat(", LP:", round(aMo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(aAcceptance/aiter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#MCMC trace plots
par(mfrow=c(2,1))
axticks <- seq(0, 30000, 10000)
axuse <-seq (0 ,30000 ,10000)

par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
plot((aMon [1:30000 ,2]) ,type="l",main=expression(paste("Sample path for ",

alpha)),ylab="",xlab="", xaxt = "n",ylim=c(0 ,0.02))
axis(side=1,at=axuse , labels=axticks)
plot((aMon [1:30000 ,3]) ,type="l",main=expression(paste("Sample path for ",

beta)),ylab="",xlab="", xaxt = "n",ylim=c(0.015 ,0.15))
axis(side=1,at=axuse , labels=axticks)

#Summary statistics for multivariate estimation
aused = cbind(athinned [2000:6000 ,1:2])
atrue = c(ralphatil ,rphitil)
amean = apply(aused ,2,median ,na.rm=T)
astd = apply(aused ,2,sd,na.rm=T)
alCI = rep(0,2)
auCI = rep(0,2)
for (i in 1:2){
alCI[i] = quantile(aused[,i],p=0.05)
auCI[i] = quantile(aused[,i],p=0.95)
}
abothline = cbind(atrue ,amean ,astd ,alCI ,auCI)

A.1.2 Simulation illustration 2
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library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(rootSolve)
library(LaplacesDemon)

########## Simulation ##########
ralpha1 = c(1, 1.0362 , 0.9445 , 1.0262 , 1.0579 , 1.1140 , 1.0214 , 1.0197 ,

1.2193 , 1.1991)
ralpha2 = c(1, 1.1956 , 1.1737 , 0.9506 , 1.0549 , 1.1873 , 1.4093 , 1.4504 ,

1.5616 , 1.6645)

rbeta1 = c(0.2342 , 0.2375 , 0.1348 , 0.0787 , 0.0412 ,0.0189 , 0.0071 , 0.0050 ,
0.0034 , 0.0009)

rbeta2 = c(0.1295 , 0.1651 , 0.1132 , 0.0909 , 0.0588 ,0.0234 , 0.0195 , 0.0051 ,
0.0032 , 0.0002)

rphi1 = 0.020
rphi2 = 0.012

ralphatil = 0.0360
rphitil = 0.1

sp =1.32

stau=(sp -2)/(sp -1)

#Generate loss triangles
loss1 = matrix(NA , ncol=10, nrow =10)
loss2 = matrix(NA , ncol=10, nrow =10)

set.seed (8)
r1 = rtweedie (55,mu=ralphatil ,phi=rphitil ,xi=sp)

random_w = matrix(NA, nrow=10,ncol =10)
loss1 = matrix(NA , nrow=10,ncol =10)
loss2 = matrix(NA , nrow=10, ncol =10)

for(i in 1:1){
for (j in 1:(10-i+1)){
random_w[i,j] = r1[j]
loss1[i,j] = (ralphatil/(( ralpha1[i]*rbeta1[j])))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j], phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil/(( ralpha2[i]*rbeta2[j])))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j], phi = rphi2 ,xi=sp)
}}

for (i in 2:10){
for (j in 1:(10-i+1)){
random_w[i,j] = r1[10*(i-1)-sum (0:(i-2))+j]
loss1[i,j] = (ralphatil/(( ralpha1[i]*rbeta1[j])))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil/(( ralpha2[i]*rbeta2[j])))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

########## Premliminary analysis ###########
plot(loss1[1,],type = "l",lwd=1,ylim=c(0 ,0.3))
for(i in 2:10){
lines(loss1[i,],lwd=1)
}

plot(loss2[1,],type = "l",lwd=1,ylim=c(0 ,0.3))
for(i in 2:10){
lines(loss2[i,],lwd=1)
}

########### Find p###########
vloss1 = as.vector(t(loss1))
vloss2 = as.vector(t(loss2))
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#Set up llh profile for each line
i = rep(1:10 , each =10)
j = rep(1:10 , 10)

ci.vec = seq(1,2,by =0.01)

llh1 = rep(0,length(ci.vec))
llh2 = llh1

for (t in 1: length(ci.vec)){
out1 <- glm(vloss1~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vloss2~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp2 <- summary(out2)$dispersion
mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

#Set up llh profile for both lines combined
i1 = c(rep (1:10, each =10),rep (11:20 , each =10))
j1 = c(rep (1:10 ,10),rep (11:20 ,10))
cbine=c(vloss1 ,vloss2)
allh = rep(0, length(ci.vec))

for (t in 1: length(ci.vec)){
outa <- glm(cbine~as.factor(i1) + as.factor(j1), fam=tweedie(var.power=ci.vec

[t]))
disp <- summary(outa)$dispersion
mu <- fitted(outa)
den <- dtweedie(outa$y, mu = mu , phi = disp , power = ci.vec[t])
allh[t] <- sum(log(den))
}

#Find p that maximises llh
ci1 = ci.vec[which.max(llh1)]

ci2 = ci.vec[which.max(llh2)]

aci = ci.vec[which.max(allh)]

#Find CI for p
outci1 = rep(0,length(llh1))
for (k in 1: length(llh1)){
if (isTRUE (2*abs(llh1[k]-max(llh1)) <= 3.84)) {
outci1[k] = ci.vec[k]
}
else{
outci1[k] = 0
}
}

ci1low = outci1 [14]
ci1hi = outci1 [39]

outci2 = rep(0,length(llh2))
for (k in 1: length(llh2)){
if (isTRUE (2*abs(llh2[k]-max(llh2)) <= 3.84)) {
outci2[k] = ci.vec[k]
}
else{
outci2[k] = 0
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}
}

ci2low = outci2 [24]
ci2hi = outci2 [87]

outaci = rep(0,length(allh))
for (k in 1: length(allh)){
if (isTRUE (2*abs(allh[k]-max(allh)) <= 3.84)) {
outaci[k] = ci.vec[k]
}
else{
outaci[k] = 0
}
}

acilow = outaci [15]
acihi = outaci [38]

##Ln L profile plot
plot(ci.vec ,llh1 , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(ci1 , max(llh1), pch=15, cex =1)
points(aci , llh1 [34], pch=18, cex =1)
abline(v=ci1low)
abline(v=ci1hi)

plot(ci.vec ,llh2 , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(ci2 , max(llh2), pch=15, cex =1)
points(aci , llh2 [34], pch=18, cex =1)
abline(v=ci2low)
abline(v=ci2hi)

plot(ci.vec ,allh , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(aci , max(allh), pch=15, cex =1)
abline(v=acilow)
abline(v=acihi)

#Results
pest = rbind(c(ci1 ,ci1low ,ci1hi), c(ci2 ,ci2low ,ci2hi), c(aci ,acilow ,acihi))

########## Choose initial values and get information for prior distributions
selection ##########

#Estimate alpha and beta
solvefn <- function(x,data){
F2 <- x[1]*sum(x[10:18]^(2 - aci)) - as.numeric(crossprod(data [2,1:9],x

[10:18]^(1 - aci)))
F3 <- x[2]*sum(x[10:17]^(2 - aci)) - as.numeric(crossprod(data [3,1:8],x

[10:17]^(1 - aci)))
F4 <- x[3]*sum(x[10:16]^(2 - aci)) - as.numeric(crossprod(data [4,1:7],x

[10:16]^(1 - aci)))
F5 <- x[4]*sum(x[10:15]^(2 - aci)) - as.numeric(crossprod(data [5,1:6],x

[10:15]^(1 - aci)))
F6 <- x[5]*sum(x[10:14]^(2 - aci)) - as.numeric(crossprod(data [6,1:5],x

[10:14]^(1 - aci)))
F7 <- x[6]*sum(x[10:13]^(2 - aci)) - as.numeric(crossprod(data [7,1:4],x

[10:13]^(1 - aci)))
F8 <- x[7]*sum(x[10:12]^(2 - aci)) - as.numeric(crossprod(data [8,1:3],x

[10:12]^(1 - aci)))
F9 <- x[8]*sum(x[10:11]^(2 - aci)) - as.numeric(crossprod(data [9,1:2],x

[10:11]^(1 - aci)))
F10 <- x[9]*sum(x[10:10]^(2 - aci)) - as.numeric(crossprod(data [10,1],x

[10:10]^(1 - aci)))

F11 <- x[10]*sum(c(1,x[1:9]) ^(2-aci)) - as.numeric(crossprod(data[,1],c(1,x
[1:9]) ^(1-aci)))

F12 <- x[11]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:9,2],c(1,
x[1:8]) ^(1-aci)))

F13 <- x[12]*sum(c(1,x[1:7]) ^(2-aci)) - as.numeric(crossprod(data [1:8,3],c(1,
x[1:7]) ^(1-aci)))

F14 <- x[13]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:7,4],c(1,
x[1:6]) ^(1-aci)))
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F15 <- x[14]*sum(c(1,x[1:5]) ^(2-aci)) - as.numeric(crossprod(data [1:6,5],c(1,
x[1:5]) ^(1-aci)))

F16 <- x[15]*sum(c(1,x[1:4]) ^(2-aci)) - as.numeric(crossprod(data [1:5,6],c(1,
x[1:4]) ^(1-aci)))

F17 <- x[16]*sum(c(1,x[1:3]) ^(2-aci)) - as.numeric(crossprod(data [1:4,7],c(1,
x[1:3]) ^(1-aci)))

F18 <- x[17]*sum(c(1,x[1:2]) ^(2-aci)) - as.numeric(crossprod(data [1:3,8],c(1,
x[1:2]) ^(1-aci)))

F19 <- x[18]*sum(c(1,x[1:1]) ^(2-aci)) - as.numeric(crossprod(data [1:2,9],c(1,
x[1:1]) ^(1-aci)))

F20 <-x[19]*sum (1^(2- aci)) - as.numeric(crossprod(data [1,10] ,1^(1- aci)))

c(F2=F2 ,F3=F3 ,F4=F4 ,F5=F5 ,F6=F6 ,F7=F7 ,F8=F8 ,F9=F9 ,F10=F10 ,
F11=F11 ,F12=F12 ,F13=F13 ,F14=F14 ,F15=F15 ,F16=F16 ,F17=F17 ,F18=F18 ,F19=F19 ,F20=

F20)
}

ss1 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(loss1 ,na.rm=T)),
data=loss1)

ss2 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(loss2 ,na.rm=T)),
data=loss2)

#Estimate phi1 and phi2
alphaest1 = c(1,ss1$root [1:9])
betaest1 = ss1$root [10:19]
resid1= matrix(NA,nrow=10,ncol =10)

for (i in 1:10){
for(j in 1:(10-i+1)){
resid1[i,j] = (loss1[i,j]-alphaest1[i]*betaest1[j])^2/(( alphaest1[i]*betaest1

[j])^aci)
}
}
phi1est = sum(resid1 ,na.rm=T)/45

alphaest2 = c(1,ss2$root [1:9])
betaest2 = ss2$root [10:19]
resid2= matrix(NA,nrow=10,ncol =10)
for (i in 1:10){
for(j in 1:(10-i+1)){
resid2[i,j] = (loss2[i,j]-alphaest2[i]*betaest2[j])^2/(( alphaest2[i]*betaest2

[j])^aci)
}
}
phi2est = sum(resid2 ,na.rm=T)/45

#Estimate alpha and beta
betatilest = 0.009
alphatilest =0.003
minyest=matrix(NA ,nrow=10,ncol =10)
for (i in 1:10){
for (j in 1:(10-i+1)){
minyest[i,j] <- min (((( alphatilest/(alphaest1[i]*betaest1[j]))^(1-aci)*(

phi1est/betatilest)))*alphatilest ,((( alphatilest/(alphaest2[i]*betaest2[j
]))^(1-aci)*(phi2est/betatilest)))*alphatilest)

}}

lambdaest = alphatilest ^(2-aci)/betatilest

########### Marginal estimatio ###########

#Posterior function
model1 <- function(parm ,data){
alpha1 <- exp(parm [1:9])
beta1 <-exp(parm [10:19])
alpha2 <-exp(parm [20:28])
beta2 <-exp(parm [29:38])
phi1 <- exp(parm [39])
phi2 <-exp(parm [40])
lambda <- exp(parm [41])
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alpha1.prior <- sum(dunif(log(alpha1),min=-0.5,max=1.5,log=T))
beta1.prior <- sum(dunif(log(beta1 [1:2]) ,min=-2.5,max=-0.5,log=T)) +sum(dunif

(log(beta1 [3]),min=-3,max=-1,log=T)) +sum(dunif(log(beta1 [4:5]) ,min=-4,max
=-2,log=T)) +sum(dunif(log(beta1 [6]),min=-5,max=-3,log=T))+sum(dunif(log(
beta1 [7:8]) ,min=-6,max=-4,log=T))+sum(dunif(log(beta1 [9]),min=-6.2,max
=-4.2,log=T)) +sum(dunif(log(beta1 [10]) ,min=-8,max=-4,log=T))

alpha2.prior <- sum(dunif(log(alpha2),min=-0.4,max=0.7,log=T))
beta2.prior <- sum(dunif(log(beta2 [1]),min=-3.5,max=-1.9,log=T)) + sum(dunif(

log(beta2 [2:3]) , min=-2.7, max =-0.8))+sum(dunif(log(beta2 [4:5]) ,min=-3.2,
max=-2.2,log=T)) +sum(dunif(log(beta2 [6]),min=-4.2,max=-2.5,log=T))+sum(
dunif(log(beta2 [7]),min=-4.5,max=-2.5,log=T)) +sum(dunif(log(beta2 [8]),min
=-6,max=-4,log=T))+sum(dunif(log(beta2 [9]),min=-6.5,max=-4.5,log=T))+sum(
dunif(log(beta2 [10]),min=-9.5,max=-5.5,log=T))

phi1.prior <- dunif(log(phi1),min=-4,max=0,log=T)
phi2.prior <- dunif(log(phi2),min=-4.6,max=-0.5,log=T)

lambda.prior <- dunif(log(lambda),min=-5,max=3,log=T)

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

l <- matrix(NA , nrow=10, ncol =10)
loss1 <- data$loss1
loss2 <-data$loss2

for (i in 1:10){
for (j in 1:(10-i+1)){
A1=alphaf1[i]*beta1[j]*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)
B1 = phi1*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)^{(1-aci)}

A2=alphaf2[i]*beta2[j]*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)
B2 = phi2*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)^{(1-aci)}

l[i,j] = log(dtweedie(loss1[i,j],xi=aci ,mu=A1 ,phi=B1))+log(dtweedie(loss2[i,j
],xi=aci ,mu=A2 ,phi=B2))

}}

LL <- sum(l, na.rm=T)
LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.

prior+lambda.prior

list(LP = LP, Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda),
parm=parm)

}

#Preparing for MCMC
data=list(loss1=loss1 ,loss2=loss2)
init <- c(0.036 , -0.057, 0.026, 0.056, 0.108, 0.021, 0.020, 0.198,

0.182 , -1.452, -1.438, -2.004, -2.542, -3.189, -3.969, -4.948, -5.298,
-5.684, -7.013, 0.179, 0.160, -0.051, 0.053, 0.172, 0.343, 0.372,
0.446 , 0.510, -2.044, -1.801, -2.179, -2.398, -2.834, -3.755, -3.937,
-5.279, -5.745, -8.517, -3.912, -4.423, -0.357)

lower = c(rep(-0.5,9),rep(-2.5,2) ,-3,rep(-4,2) ,-5,rep(-6,2) ,-6.2,-8,rep
(-0.4,9) ,-3.5,rep(-2.7,2),rep(-3.2,2) ,-4.2,-4.5,-6,-6.5,-9.5,-4,-4.6,-5)

upper = c(rep (1.5 ,9),rep(-0.5,2) ,-1,rep(-2,2) ,-3, rep(-4,2) ,-4.2,-4, rep
(0.7 ,9) ,-1.9,rep(-0.8,2),rep(-2.2,2) ,-2.5,-2.5,-4,-4.5,-5.5,0,-0.5,3)

std = c( 0.04057 , 0.0400 , 0.0434 , 0.045, 0.0457 , 0.043, 0.0431 , 0.0481 ,
0.0508 , 0.0359 , 0.0358 ,0.0353 , 0.0447 , 0.0485 , 0.065, 0.075, 0.0857 ,
0.0903 , 0.15, 0.0340 , 0.0367 , 0.0366 ,0.037 , 0.0371 , 0.0341 , 0.0416 ,
0.0420 , 0.0355 , 0.0300 , 0.0318 , 0.0316 , 0.0314 , 0.0442 ,0.0442 , 0.0409 ,
0.0655 , 0.070 , 0.75, 0.0553 , 0.0555 , 0.3) -0.007

Iterations =150000
Status =1000
Thinning =5
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()
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Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , Iterations , length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- init

#Run MCMC
set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- rtruncnorm (1,mean = Mo0[["parm"]],sd = std , a = lower , b=upper)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alpha <- Mo1[["LP"]] - Mo0[["LP"]] + log(dtruncnorm(Mo0[["parm"]], mean =

prop , sd = std , a = lower , b = upper)) - log(dtruncnorm(prop , mean=Mo0[[
"parm"]], sd = std , a = lower , b = upper))

if((is.finite(log.alpha)) && (!inherits(Mo1 , "try -error")) && ((is.finite(
Mo1[["Monitor"]]))) && (log.u < log.alpha)) {

Mo0 <- Mo1
Acceptance <- Acceptance + 1}

Mon[iter ,] <- Mo0[["Monitor"]]

#Thin samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["parm"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#Plot sample paths
thinnedplot = matrix(NA,nrow =15000 , ncol =41)
freq = 30

for(n in 1:150000){
if(n%%freq == 0){
tp.iter <- floor(n / freq)
thinnedplot[tp.iter ,] <- Mon[n ,2:42]}
}

xticks <- seq(0, 150000 , 30000)
xuse <-seq(0,5000, 1000)
layout(matrix(c(1,1,2,2,3,3,4,4,5,5,6,6,0,7,7,0), 4, 4, byrow=TRUE))
par(mar=c(2.5 ,2.5 ,2.5 ,2.5))

plot(( thinnedplot [1:5000 ,1]) ,type="l",main=expression(paste(alpha [2]^(1))),
ylab="",xlab="Iteration", xaxt = "n")

axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,20]) ,type="l",main=expression(paste(alpha [2]^(2))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,10]) ,type="l",main=expression(paste(beta [1]^(1))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,29]) ,type="l",main=expression(paste(beta [1]^(2))),

ylab="",xlab="Iteration", xaxt = "n")
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axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,39]) ,type="l",main=expression(paste(phi ^(1))),ylab="

",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,40]) ,type="l",main=expression(paste(phi ^(2))),ylab="

",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,41]) ,type="l",main=expression(paste(Lambda)),ylab=""

,xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)

#Summary statistics for marginal estimation
true = c(ralpha1 [2:10] , rbeta1 ,ralpha2 [2:10] , rbeta2 ,rphi1 ,rphi2 ,ralphatil ^(2-

aci)/rphitil)
used = exp(thinned [10000:30000 ,])
mean = apply(used ,2,median ,na.rm=T)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,41)
uCI = rep (0,41)
for (i in 1:41){
lCI[i] = quantile(used[,i],p=0.05)
uCI[i] = quantile(used[,i],p=0.95)
}
bothline = cbind(true ,mean ,st.dev ,lCI ,uCI)

########## Multivariate estimation (adaptive Metropolis)###########

#Use parameter estimates from marginal estimation
alpha1 <- mean [1:9]
beta1 <- mean [10:19]
alpha2 <- mean [20:28]
beta2 <- mean [29:38]
phi1 <- mean [39]
phi2 <- mean [40]
lambda <- mean [41]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

#Posterior function
model2 <- function(parm ,data){
alpha <- exp(parm)
beta <- alpha ^(2-aci)/lambda

alpha.prior <- dunif(log(alpha),min=-7,max=-4,log=T)

l <- matrix(NA , nrow=10, ncol =10)
loss1 <- data$loss1
loss2 <- data$loss2
miny <- matrix(NA,nrow=10,ncol =10)
prior = c(alpha.prior)

if(all(is.finite(prior))){
for (i in 1:10){
for (j in 1:(10-i+1)){
miny[i,j] <- min((loss1[i,j]/((alpha/(alphaf1[i]*beta1[j]))^(1-aci)*(phi1/

beta))), (loss2[i,j]/((alpha/(alphaf2[i]*beta2[j]))^(1-aci)*(phi2/beta))))

if (miny[i,j]<=1e -200000000){
l[i,j]=log(dtweedie(loss1[i,j],xi=aci , mu=alphaf1[i]*beta1[j], phi = phi1))+

log(dtweedie(loss2[i,j],xi=aci , mu=alphaf2[i]*beta2[j], phi = phi2))
}
else {
f<- function(z){
dtweedie(loss1[i,j]-(alpha/(alphaf1[i]*beta1[j]))^(1-aci)*(phi1/beta)*z,xi=

aci , mu=alphaf1[i]*beta1[j], phi = phi1)*dtweedie(loss2[i,j]-(alpha/(
alphaf2[i]*beta2[j]))^(1-aci)*(phi2/beta)*z,xi=aci , mu=alphaf2[i]*beta2[j
], phi = phi2)*dtweedie(z,xi=aci , mu=alpha , phi = beta)

}
llh <- try(integrate(f,lower=1e -2000000000 , upper=miny[i,j]),silent=T)
if(inherits(llh , 'try -error ') ){

242



APPENDIX A. R CODES

l[i,j] <- log(0)
}
else{
l[i,j] <- log(llh$value)}}
}}}

LL <- sum(l, na.rm=T)
LP <- LL + alpha.prior

list(LP = LP, Monitor = c(LP, alpha ,beta), parm=parm)
}

#Prepare for MCMC
ainit <- -3.324

Iterations =30000
Status =100
Thinning =5
alpha.star =0.2
Periodicity =1
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

aAcceptance <- 0
aMo0 <- model2(ainit , data)
aMon <- matrix(NA,nrow=Iterations ,ncol=length(aMo0[["Monitor"]]))
adimension <- length(ainit)
athinned <- matrix(NA, floor(Iterations/Thinning)+1,length(ainit)+1)
athinned [1,] <- ainit
aScaleF <- 0.0001/sqrt(adimension)
aVarCov <- matrix(0, adimension , adimension)
diag(aVarCov) <- rep(aScaleF , adimension)
aS <- t(chol(aVarCov))

#Run MCMC
set.seed (11)

for (aiter in 1: Iterations) {
if(aiter %% Status == 0) cat("Iteration: ", aiter , sep="")

#Adaptive Metropolis
aU <- rnorm(adimension)
aprop <- as.vector(aMo0[["parm"]] + aS %*% aU)
aMo1 <- try(model2(aprop , data), silent=TRUE)

alog.u <- log(runif (1))
alog.alpha <- aMo1[["LP"]] - aMo0[["LP"]]
if((is.finite(alog.alpha)) && (!inherits(aMo1 , "try -error")) && ((is.finite(

aMo1[["Monitor"]]))) && (alog.u < alog.alpha)) {
aMo0 <- aMo1
aAcceptance <- aAcceptance + 1}

aMon[aiter ,] <- aMo0[["Monitor"]]

if({aiter >= 2} & {aiter %% Periodicity == 0}) {
aeta <- min(1, adimension*aiter ^(-2/3))
aVarCov.test <- aS %*% (diag(adimension) + aeta*(min(1, exp(alog.alpha)) -

alpha.star) * aU %*% t(aU) / sqrt(sum(aU^2))) %*% t(aS)
if(!all(is.finite(aVarCov.test))) {aVarCov.test <- aVarCov}
if(!is.symmetric.matrix(aVarCov.test)){aVarCov.test <- as.symmetric.matrix(

aVarCov.test)}
if(is.positive.definite(aVarCov.test)){ aS.z <- try(t(chol(aVarCov)), silent=

TRUE)
if(!inherits(aS.z, "try -error")) {
aVarCov <- aVarCov.test
aS <- aS.z}}}

#Thin samples
if(aiter %% Thinning == 0) {
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at.iter <- floor(aiter / Thinning) + 1
athinned[at.iter ,] <- aMo0[["Monitor"]][2:3]}

if(aiter %% Status == 0){
cat(", LP:", round(aMo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(aAcceptance/aiter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#MCMC trace plots
par(mfrow=c(2,1))
axticks <- seq(0, 30000, 10000)
axuse <-seq (0 ,30000 ,10000)

par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
plot((aMon [1:30000 ,2]) ,type="l",main=expression(paste("Sample path for ",

alpha)),ylab="",xlab="", xaxt = "n",ylim=c(0 ,0.02))
axis(side=1,at=axuse , labels=axticks)
plot((aMon [1:30000 ,3]) ,type="l",main=expression(paste("Sample path for ",

beta)),ylab="",xlab="", xaxt = "n",ylim=c(0.015 ,0.15))
axis(side=1,at=axuse , labels=axticks)

#Summary statistics for multivariate estimation
aused = cbind(athinned [2000:6000 ,1:2])
atrue = c(ralphatil ,rphitil)
amean = apply(aused ,2,median ,na.rm=T)
astd = apply(aused ,2,sd,na.rm=T)
alCI = rep(0,2)
auCI = rep(0,2)
for (i in 1:2){
alCI[i] = quantile(aused[,i],p=0.05)
auCI[i] = quantile(aused[,i],p=0.95)
}
abothline = cbind(atrue ,amean ,astd ,alCI ,auCI)

A.1.3 Real data illustration

library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(rootSolve)
library(LaplacesDemon)
library(xtable)
library(ChainLadder)

########### Import data ##########
pa = read.csv("pa.csv",header=TRUE)
ca = read.csv("ca.csv",header=TRUE)

st_pa = matrix(NA , nrow=10, ncol =10)
st_ca = matrix(NA , nrow=10, ncol =10)

#Standardise loss cells
for (i in 1:10){
for (j in 1:(10-i+1)){
st_pa[i,j] = pa[i,j+2]/pa[i,2]
st_ca[i,j] = ca[i,j+2]/ca[i,2]
}
}

########### Preliminary analysis - plot development ###########

#Plot development trends
cst_pa = incr2cum(st_pa)
cst_ca = incr2cum(st_ca)
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axticks <- seq(1, 10, 1)
axuse <-seq(1,10,1)
par(mfrow=c(1,2))

plot(cst_pa[1,], ylim=c(0 ,0.82),type = "l",lwd=1, main=expression(paste("
Personal auto line")),xlab="Development year",ylab="Loss ratio",xaxt="n")

for(i in 2:10){
lines(cst_pa[i,],lwd=1)
}
for(i in 1:10){
points(cst_pa[i,],pch =20)
}
axis(side=1,at=axuse , labels=axticks)

plot(cst_ca[1,],ylim = c(0 ,0.76),type = "l",lwd=1, main=expression(paste("
Commercial auto line")), xlab="Development year",ylab="Loss ratio",xaxt="n
")

for(i in 2:10){
lines(cst_ca[i,],lwd=1)
}
for(i in 1:10){
points(cst_ca[i,],pch =20)
}
axis(side=1,at=axuse , labels=axticks)

########## Preliminary analysis - analyse dependence using GLM (without
calendar year factor)##########

stpa = as.vector(t(st_pa))
stca = as.vector(t(st_ca))

stpa = (stpa[!is.na(stpa)])
stca = stca[!is.na(stca)]

#Set up llh profile to find p
i = rep (1:10 ,10:1)
j <- sequence (10:1)

ci.vec = seq(1,4,by =0.01)

pallh = rep(0,length(ci.vec))
callh = pallh

for (t in 1: length(ci.vec)){
outpa <- glm(stpa~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[t

]))
disp1 <- summary(outpa)$dispersion
mu1 <- fitted(outpa)
den1 <- dtweedie(outpa$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
pallh[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
outca <- glm(stca~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[t

]))
disp2 <- summary(outca)$dispersion
mu2 <- fitted(outca)
den2 <- dtweedie(outca$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
callh[t] <- sum(log(den2))
}

i1 = c(i,i+10)
j1 = c(j,j+10)
cbine=c(stpa ,stca)
allh = rep(0, length(ci.vec))

for (t in 1: length(ci.vec)){
outa <- glm(cbine~as.factor(i1) + as.factor(j1), fam=tweedie(var.power=ci.vec

[t]))
disp <- summary(outa)$dispersion
mu <- fitted(outa)
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den <- dtweedie(outa$y, mu = mu , phi = disp , power = ci.vec[t])
allh[t] <- sum(log(den))
}

paci = ci.vec[which.max(pallh)]
caci = ci.vec[which.max(callh)]
aci = ci.vec[which.max(allh)]

#Find CI for p
outpaci = rep(0,length(pallh))
for (k in 1: length(pallh)){
if (isTRUE (2*abs(pallh[k]-max(pallh)) <= 3.84)) {
outpaci[k] = ci.vec[k]
}
else{
outpaci[k] = 0
}
}

pacilow = outpaci [8]
pacihi = outpaci [41]

outcaci = rep(0,length(callh))
for (k in 1: length(callh)){
if (isTRUE (2*abs(callh[k]-max(callh)) <= 3.84)) {
outcaci[k] = ci.vec[k]
}
else{
outcaci[k] = 0
}
}

cacilow = outcaci [25]
cacihi = outcaci [64]

outaci = rep(0,length(allh))
for (k in 1: length(allh)){
if (isTRUE (2*abs(allh[k]-max(allh)) <= 3.84)) {
outaci[k] = ci.vec[k]
}
else{
outaci[k] = 0
}
}

acilow = outaci [22]
acihi = outaci [48]

#Ln L profile plot
plot(ci.vec ,pallh , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(paci , max(pallh), pch=15, cex =1)
points(aci , pallh [26], pch=18, cex =1)
abline(v=pacilow)
abline(v=pacihi)

plot(ci.vec ,callh , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(caci , max(callh), pch=15, cex =1)
points(aci , callh [26], pch=18, cex =1)
abline(v=cacilow)
abline(v=cacihi)

plot(ci.vec ,allh , type="l", xlim = c(0.9 ,4.1), xlab="p", ylab="logL")
points(aci , max(allh), pch=15, cex =1)
abline(v=acilow)
abline(v=acihi)

#Results
pest = rbind(c(paci ,pacilow ,pacihi), c(caci ,cacilow ,cacihi), c(aci ,acilow ,

acihi))

#GLM fitting with the best p
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paglm <- glm(stpa ~ as.factor(i)+as.factor(j), family=tweedie(var.power=paci ,
link.power =0),control = list( epsilon =1e-09, trace=FALSE))

caglm <- glm(stca ~ as.factor(i)+as.factor(j), family=tweedie(var.power=caci ,
link.power =0),control = list( epsilon =1e-09, trace=FALSE))

allglm <-glm(cbine ~ factor(i1)+factor(j1), family=tweedie(var.power=aci ,link
.power =0),control = list( epsilon =1e-09, trace=FALSE))

#QQ plots
qqnorm(residuals(paglm , type="pearson"))
qqline(residuals(paglm , type="pearson"))

qqnorm(residuals(caglm , type="pearson"))
qqline(residuals(caglm , type="pearson"))

qqnorm(residuals(allglm , type="pearson"))
qqline(residuals(allglm , type="pearson"))

#Residuals analysis
res_pa = resid(paglm ,"pearson")
res_ca = resid(caglm ,"pearson")

peartest = cor.test(res_pa,res_ca,method=c("pearson"), conf.level =0.95)
speatest = cor.test(res_pa,res_ca,method=c("spearman"), conf.level =0.95)
kendtest = cor.test(res_pa,res_ca,method=c("kendall"), conf.level =0.95)
cort = rbind(c(peartest$estimate ,speatest$estimate ,kendtest$estimate),c(

peartest$p.value ,speatest$p.value ,kendtest$p.value))

########## Preliminary analysis - analyse dependence using GLM (without
calendar year factor)##########

#Set up llh profile to find p
k <- c(seq(1,10),seq(2,10),seq(3,10),seq(4,10), seq(5,10), seq(6,10), seq

(7,10), seq (8,10), seq (9,10), 10)

pallh2 = rep(0,length(ci.vec))
callh2 = pallh2

for (t in 1: length(ci.vec)){
outpa2 <- glm(stpa~as.factor(i) + as.factor(j) + as.factor(k), fam=tweedie(

var.power=ci.vec[t]))
disp12 <- summary(outpa2)$dispersion
mu12 <- fitted(outpa2)
den12 <- dtweedie(outpa2$y, mu = mu12 , phi = disp12 , power = ci.vec[t])
pallh2[t] <- sum(log(den12))
}

for (t in 1: length(ci.vec)){
outca2 <- glm(stca~as.factor(i) + as.factor(j)+ as.factor(k), fam=tweedie(var

.power=ci.vec[t]))
disp22 <- summary(outca2)$dispersion
mu22 <- fitted(outca2)
den22 <- dtweedie(outca2$y, mu = mu22 , phi = disp22 , power = ci.vec[t])
callh2[t] <- sum(log(den22))
}

paci2 = ci.vec[which.max(pallh2)]
caci2 = ci.vec[which.max(callh2)]

#GLM fitting with the best p
paglm2 <- glm(stpa ~ as.factor(i)+as.factor(j)+ as.factor(k), family=tweedie(

var.power=paci2 ,link.power =0),control = list( epsilon =1e-09, trace=FALSE))
caglm2 <- glm(stca ~ as.factor(i)+as.factor(j)+ as.factor(k), family=tweedie(

var.power=caci2 ,link.power =0),control = list( epsilon =1e-09, trace=FALSE))

#Residual analysis
res_pa2 = resid(paglm2 ,"pearson")
res_ca2 = resid(caglm2 ,"pearson")

peartest2 = cor.test(res_pa2 ,res_ca2 ,method=c("pearson"), conf.level =0.95)
speatest2 = cor.test(res_pa2 ,res_ca2 ,method=c("spearman"), conf.level =0.95)
kendtest2 = cor.test(res_pa2 ,res_ca2 ,method=c("kendall"), conf.level =0.95)
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cort2 = rbind(c(peartest2$estimate ,speatest2$estimate ,kendtest2$estimate),c(
peartest2$p.value ,speatest2$p.value ,kendtest2$p.value))

#Heat maps of residuals - export to csv file
Var1 = j
Var2 = rep (10:1 ,10:1)
fitpa2 = stpa/fitted(paglm2)
fitca2 = stca/fitted(caglm2)

ratcalpa <- data.frame(Var1 ,Var2 ,fitpa2)
ratcalca <- data.frame(Var1 ,Var2 ,fitca2)

#write.csv(ratcalpa ," respaglm.csv")
#write.csv(ratcalca ," rescaglm.csv")

########## Choose initial values and get information for prior distributions
selection ##########

#Estimate alpha and beta
solvefn <- function(x,data){
F2 <- x[1]*sum(x[10:18]^(2 - aci)) - as.numeric(crossprod(data [2,1:9],x

[10:18]^(1 - aci)))
F3 <- x[2]*sum(x[10:17]^(2 - aci)) - as.numeric(crossprod(data [3,1:8],x

[10:17]^(1 - aci)))
F4 <- x[3]*sum(x[10:16]^(2 - aci)) - as.numeric(crossprod(data [4,1:7],x

[10:16]^(1 - aci)))
F5 <- x[4]*sum(x[10:15]^(2 - aci)) - as.numeric(crossprod(data [5,1:6],x

[10:15]^(1 - aci)))
F6 <- x[5]*sum(x[10:14]^(2 - aci)) - as.numeric(crossprod(data [6,1:5],x

[10:14]^(1 - aci)))
F7 <- x[6]*sum(x[10:13]^(2 - aci)) - as.numeric(crossprod(data [7,1:4],x

[10:13]^(1 - aci)))
F8 <- x[7]*sum(x[10:12]^(2 - aci)) - as.numeric(crossprod(data [8,1:3],x

[10:12]^(1 - aci)))
F9 <- x[8]*sum(x[10:11]^(2 - aci)) - as.numeric(crossprod(data [9,1:2],x

[10:11]^(1 - aci)))
F10 <- x[9]*sum(x[10:10]^(2 - aci)) - as.numeric(crossprod(data [10,1],x

[10:10]^(1 - aci)))

F11 <- x[10]*sum(c(1,x[1:9]) ^(2-aci)) - as.numeric(crossprod(data[,1],c(1,x
[1:9]) ^(1-aci)))

F12 <- x[11]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:9,2],c(1,
x[1:8]) ^(1-aci)))

F13 <- x[12]*sum(c(1,x[1:7]) ^(2-aci)) - as.numeric(crossprod(data [1:8,3],c(1,
x[1:7]) ^(1-aci)))

F14 <- x[13]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:7,4],c(1,
x[1:6]) ^(1-aci)))

F15 <- x[14]*sum(c(1,x[1:5]) ^(2-aci)) - as.numeric(crossprod(data [1:6,5],c(1,
x[1:5]) ^(1-aci)))

F16 <- x[15]*sum(c(1,x[1:4]) ^(2-aci)) - as.numeric(crossprod(data [1:5,6],c(1,
x[1:4]) ^(1-aci)))

F17 <- x[16]*sum(c(1,x[1:3]) ^(2-aci)) - as.numeric(crossprod(data [1:4,7],c(1,
x[1:3]) ^(1-aci)))

F18 <- x[17]*sum(c(1,x[1:2]) ^(2-aci)) - as.numeric(crossprod(data [1:3,8],c(1,
x[1:2]) ^(1-aci)))

F19 <- x[18]*sum(c(1,x[1:1]) ^(2-aci)) - as.numeric(crossprod(data [1:2,9],c(1,
x[1:1]) ^(1-aci)))

F20 <-x[19]*sum (1^(2- aci)) - as.numeric(crossprod(data [1,10] ,1^(1- aci)))

c(F2=F2 ,F3=F3 ,F4=F4 ,F5=F5 ,F6=F6 ,F7=F7 ,F8=F8 ,F9=F9 ,F10=F10 ,
F11=F11 ,F12=F12 ,F13=F13 ,F14=F14 ,F15=F15 ,F16=F16 ,F17=F17 ,F18=F18 ,F19=F19 ,F20=

F20)
}

ss1 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(st_pa ,na.rm=T)),
data=st_pa)

ss2 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(st_ca ,na.rm=T)),
data=st_ca)

#Estimate phi1 and phi2
alphaest1 = c(1,ss1$root [1:9])
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betaest1 = ss1$root [10:19]
resid1= matrix(NA,nrow=10,ncol =10)

for (i in 1:10){
for(j in 1:(10-i+1)){
resid1[i,j] = (st_pa[i,j]-alphaest1[i]*betaest1[j])^2/(( alphaest1[i]*betaest1

[j])^aci)
}
}
phi1est = sum(resid1 ,na.rm=T)/45

alphaest2 = c(1,ss2$root [1:9])
betaest2 = ss2$root [10:19]
resid2= matrix(NA,nrow=10,ncol =10)
for (i in 1:10){
for(j in 1:(10-i+1)){
resid2[i,j] = (st_ca[i,j]-alphaest2[i]*betaest2[j])^2/(( alphaest2[i]*betaest2

[j])^aci)
}
}
phi2est = sum(resid2 ,na.rm=T)/45

#Estimate alpha and beta
betatilest = 0.24
alphatilest =0.0005
minyest=matrix(NA ,nrow=10,ncol =10)
for (i in 1:10){
for (j in 1:(10-i+1)){
minyest[i,j] <- min (((( alphatilest/(alphaest1[i]*betaest1[j]))^(1-aci)*(

phi1est/betatilest)))*alphatilest ,((( alphatilest/(alphaest2[i]*betaest2[j
]))^(1-aci)*(phi2est/betatilest)))*alphatilest)

}}

lambdaest = alphatilest ^(2-aci)/betatilest

########### Marginal estimatio ###########

#Posterior function
model1 <- function(parm ,data){
alpha1 <- exp(parm [1:9])
beta1 <-exp(parm [10:19])
alpha2 <-exp(parm [20:28])
beta2 <-exp(parm [29:38])
phi1 <- exp(parm [39])
phi2 <-exp(parm [40])
lambda <- exp(parm [41])

alpha1.prior <- sum(dunif(log(alpha1),min=-0.5,max=1.5,log=T))
beta1.prior <- sum(dunif(log(beta1 [1:2]) ,min=-2.5,max=-0.5,log=T)) +sum(dunif

(log(beta1 [3]),min=-3,max=-1,log=T)) +sum(dunif(log(beta1 [4:5]) ,min=-4,max
=-2,log=T)) +sum(dunif(log(beta1 [6]),min=-5,max=-3,log=T))+sum(dunif(log(
beta1 [7]),min=-6,max=-4,log=T))+sum(dunif(log(beta1 [8:9]) ,min=-6.5,max
=-4.5,log=T)) +sum(dunif(log(beta1 [10]) ,min=-8.5,max=-6,log=T))

alpha2.prior <- sum(dunif(log(alpha2),min=-0.5,max=1.5,log=T))
beta2.prior <- sum(dunif(log(beta2 [1:2]) ,min=-3,max=-1,log=T))+sum(dunif(log(

beta1 [3]),min=-3.5,max=-1.5,log=T)) +sum(dunif(log(beta2 [4:5]) ,min=-4,max
=-2,log=T)) +sum(dunif(log(beta2 [6:7]) ,min=-5,max=-3,log=T)) +sum(dunif(
log(beta2 [8]),min=-6,max=-4,log=T))+sum(dunif(log(beta2 [9]),min=-6.7,max
=-4.7,log=T))+sum(dunif(log(beta2 [10]) ,min=-10,max=-7.8,log=T))

phi1.prior <- dunif(log(phi1),min=-7,max=-3,log=T)
phi2.prior <- dunif(log(phi2),min=-7,max=-3,log=T)

lambda.prior <- dunif(log(lambda),min=-3,max=1,log=T)

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

l <- matrix(NA , nrow=10, ncol =10)
loss1 <- data$loss1
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loss2 <-data$loss2

for (i in 1:10){
for (j in 1:(10-i+1)){
A1=alphaf1[i]*beta1[j]*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)
B1 = phi1*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)^{(1-aci)}

A2=alphaf2[i]*beta2[j]*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)
B2 = phi2*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)^{(1-aci)}

l[i,j] = log(dtweedie(loss1[i,j],xi=aci ,mu=A1 ,phi=B1))+log(dtweedie(loss2[i,j
],xi=aci ,mu=A2 ,phi=B2))

}}

LL <- sum(l, na.rm=T)
LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.

prior+lambda.prior

list(LP = LP, Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda),
parm=parm)

}

#Prepare for MCMC
data=list(loss1=st_pa,loss2=st_ca)
init <- c(0.020 , -0.084, 0.007, 0.036, 0.085, -0.002, -0.002, 0.183, 0.169,

-1.436, -1.419, -1.987, -2.528, -3.168, -3.959, -4.956, -5.338, -5.390,
-7.086, 0.168, 0.150, -0.064, 0.040, 0.155, 0.332, 0.359, 0.440, 0.510,
-2.041, -1.795, -2.172, -2.386, -2.821, -3.757, -4.069, -4.970, -5.752,
-8.762, -5.300, -5.050, -0.524)

lower = c(rep(-0.5,9),rep(-2.5,2) ,-3,rep(-4,2) ,-5,-6,rep(-6.5,2) ,-8.5,rep
(-0.5,9),rep(-3,2) ,-3.5,rep(-4,2),rep(-5,2) ,-6,-6.7,-10,-7,-7,-3)

upper = c(rep (1.5 ,9),rep(-0.5,2) ,-1,rep(-2,2) ,-3, -4,rep(-4.5,2) ,-6, rep
(1.5 ,9),rep(-1,2) ,-1.5,rep(-2,2),rep(-3,2) ,-4,-4.7,-7.8,-3,-3,1)

std = c( 0.0307 , 0.0300 , 0.0304 , 0.030, 0.0307 , 0.0338 , 0.0331 , 0.0321 ,
0.0378 , 0.0269 , 0.0268 ,0.0283 , 0.0317 , 0.0345 , 0.0410 , 0.0558 , 0.0657 ,
0.0783 , 0.0953 , 0.0300 , 0.0287 , 0.0286 ,0.030 , 0.0321 , 0.0321 , 0.0356 ,
0.0400 , 0.0425 , 0.0300 , 0.0308 , 0.0336 , 0.0334 , 0.0432 ,0.0472 , 0.0529 ,
0.0795 , 0.0784 , 0.0859 , 0.0623 , 0.0625 , 0.3035) -0.004

Iterations =300000
Status =1000
Thinning =5
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , Iterations , length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- init

#Run MCMC
set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- rtruncnorm (1,mean = Mo0[["parm"]],sd = std , a = lower , b=upper)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alpha <- Mo1[["LP"]] - Mo0[["LP"]] + log(dtruncnorm(Mo0[["parm"]], mean =

prop , sd = std , a = lower , b = upper)) - log(dtruncnorm(prop , mean=Mo0[[
"parm"]], sd = std , a = lower , b = upper))

if((is.finite(log.alpha)) && (!inherits(Mo1 , "try -error")) && ((is.finite(
Mo1[["Monitor"]]))) && (log.u < log.alpha)) {
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Mo0 <- Mo1
Acceptance <- Acceptance + 1}

Mon[iter ,] <- Mo0[["Monitor"]]

#Thin samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["parm"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#Plot sample paths
par(mfrow=c(3,2))
for (i in 2:42){
plot(Mon [2: Iterations ,i],type="l")
}

#Summary statistics for marginal estimation
used = exp(thinned [30001:60000 ,])
mean = apply(used ,2,median ,na.rm=T)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,41)
uCI = rep (0,41)
for (i in 1:41){
lCI[i] = quantile(used[,i],p=0.05)
uCI[i] = quantile(used[,i],p=0.95)
}
bothline = cbind(mean ,st.dev ,lCI ,uCI)

########## Multivariate estimation (adaptive Metropolis)###########

#Use parameter estimates from marginal estimation
alpha1 <- mean [1:9]
beta1 <- mean [10:19]
alpha2 <- mean [20:28]
beta2 <- mean [29:38]
phi1 <- mean [39]
phi2 <- mean [40]
lambda <- mean [41]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

#Posterior function
model2 <- function(parm ,data){
alpha <- exp(parm)
beta <- alpha ^(2-aci)/lambda

alpha.prior <- dunif(log(alpha),min=-7,max=-4,log=T)

l <- matrix(NA , nrow=10, ncol =10)
loss1 <- data$loss1
loss2 <- data$loss2
miny <- matrix(NA,nrow=10,ncol =10)
prior = c(alpha.prior)

if(all(is.finite(prior))){
for (i in 1:10){
for (j in 1:(10-i+1)){
miny[i,j] <- min((loss1[i,j]/((alpha/(alphaf1[i]*beta1[j]))^(1-aci)*(phi1/

beta))), (loss2[i,j]/((alpha/(alphaf2[i]*beta2[j]))^(1-aci)*(phi2/beta))))

if (miny[i,j]<=1e -200000000){
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l[i,j]=log(dtweedie(loss1[i,j],xi=aci , mu=alphaf1[i]*beta1[j], phi = phi1))+
log(dtweedie(loss2[i,j],xi=aci , mu=alphaf2[i]*beta2[j], phi = phi2))

}
else {
f<- function(z){
dtweedie(loss1[i,j]-(alpha/(alphaf1[i]*beta1[j]))^(1-aci)*(phi1/beta)*z,xi=

aci , mu=alphaf1[i]*beta1[j], phi = phi1)*dtweedie(loss2[i,j]-(alpha/(
alphaf2[i]*beta2[j]))^(1-aci)*(phi2/beta)*z,xi=aci , mu=alphaf2[i]*beta2[j
], phi = phi2)*dtweedie(z,xi=aci , mu=alpha , phi = beta)

}
llh <- try(integrate(f,lower=1e -2000000000 , upper=miny[i,j]),silent=T)
if(inherits(llh , 'try -error ') ){
l[i,j] <- log(0)
}
else{
l[i,j] <- log(llh$value)}}
}}}

LL <- sum(l, na.rm=T)
LP <- LL + alpha.prior

list(LP = LP, Monitor = c(LP, alpha ,beta), parm=parm)
}

#Prepare for MCMC
ainit <- -7
Iterations =100000
Status =100
Thinning =3
alpha.star =0.30
Periodicity =1
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

aAcceptance <- 0
aMo0 <- model2(ainit , data)
aMon <- matrix(NA,nrow=Iterations ,ncol=length(aMo0[["Monitor"]]))
adimension <- length(ainit)
athinned <- matrix(NA, floor(Iterations/Thinning)+1,length(ainit)+1)
athinned [1,] <- ainit
aScaleF <- 0.0001/sqrt(adimension)
aVarCov <- matrix(0, adimension , adimension)
diag(aVarCov) <- rep(aScaleF , adimension)
aS <- t(chol(aVarCov))

#Run MCMC
set.seed (11)

for (aiter in 1: Iterations) {
if(aiter %% Status == 0) cat("Iteration: ", aiter , sep="")

#Adaptive Metropolis
aU <- rnorm(adimension)
aprop <- as.vector(aMo0[["parm"]] + aS %*% aU)
aMo1 <- try(model2(aprop , data), silent=TRUE)

alog.u <- log(runif (1))
alog.alpha <- aMo1[["LP"]] - aMo0[["LP"]]
if((is.finite(alog.alpha)) && (!inherits(aMo1 , "try -error")) && ((is.finite(

aMo1[["Monitor"]]))) && (alog.u < alog.alpha)) {
aMo0 <- aMo1
aAcceptance <- aAcceptance + 1}

aMon[aiter ,] <- aMo0[["Monitor"]]

if({aiter >= 2} & {aiter %% Periodicity == 0}) {
aeta <- min(1, adimension*aiter ^(-2/3))
aVarCov.test <- aS %*% (diag(adimension) + aeta*(min(1, exp(alog.alpha)) -

alpha.star) * aU %*% t(aU) / sqrt(sum(aU^2))) %*% t(aS)
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if(!all(is.finite(aVarCov.test))) {aVarCov.test <- aVarCov}
if(!is.symmetric.matrix(aVarCov.test)){aVarCov.test <- as.symmetric.matrix(

aVarCov.test)}
if(is.positive.definite(aVarCov.test)){ aS.z <- try(t(chol(aVarCov)), silent=

TRUE)
if(!inherits(aS.z, "try -error")) {
aVarCov <- aVarCov.test
aS <- aS.z}}}

#Thin samples
if(aiter %% Thinning == 0) {
at.iter <- floor(aiter / Thinning) + 1
athinned[at.iter ,] <- aMo0[["Monitor"]][2:3]}

if(aiter %% Status == 0){
cat(", LP:", round(aMo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(aAcceptance/aiter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#MCMC trace plots
par(mfrow=c(2,1))
plot( log(aMon [2:( aiter -1) ,2]),type="l")
plot( log(aMon [2:( aiter -1) ,3]),type="l")

#Results
aused = (athinned [(nrow(athinned) -30000+1):nrow(athinned) ,])
amean = apply(aused ,2,median ,na.rm=T)
asd = apply(aused ,2,sd ,na.rm=T)
alCI = rep(0,2)
auCI = rep(0,2)
for (i in 1:2){
alCI[i] = quantile(aused[,i],p=0.05)
auCI[i] = quantile(aused[,i],p=0.95)

}
abothline = cbind(amean ,asd ,alCI ,auCI)

########## Goodness of fit test ##########

#Marginal fit
fittedmarginal1 = matrix(NA,nrow=10,ncol =10)
fittedmarginal2 = matrix(NA,nrow=10,ncol =10)
pres1 = matrix(NA ,nrow=10,ncol =10)
pres2 = matrix(NA ,nrow=10,ncol =10)

for (i in 1:10){
for (j in 1:(10-i+1)){
B1 = phi1*((phi1/(( alphaf1[i]*beta1[j])^((2-aci))))*lambda +1)^{(1-aci)}
B2 = phi2*((phi2/(( alphaf2[i]*beta2[j])^((2-aci))))*lambda +1)^{(1-aci)}

fittedmarginal1[i,j]= alphaf1[i]*beta1[j]*((phi1/(( alphaf1[i]*beta1[j])^((2-
aci))))*lambda +1)

pres1[i,j] = (st_pa[i,j]-fittedmarginal1[i,j])/sqrt(fittedmarginal1[i,j]^aci*
B1)

fittedmarginal2[i,j]= alphaf2[i]*beta2[j]*((phi2/(( alphaf2[i]*beta2[j])^((2-
aci))))*lambda +1)

pres2[i,j] = (st_ca[i,j]-fittedmarginal2[i,j])/sqrt(fittedmarginal2[i,j]^aci*
B2)

}
}

mtresid1=as.vector(pres1)
mtresid1=mtresid1[!is.na(mtresid1)]

mtresid2=as.vector(pres2)
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mtresid2=mtresid2[!is.na(mtresid2)]

par(mfrow=c(1,2))
qqnorm(mtresid1 ,font.main = 1,main="Personal auto line")
qqline(mtresid1)

qqnorm(mtresid2 ,font.main = 1,main="Commercial auto line")
qqline(mtresid2)

#Multivariate fit
modelgof <- function(parm){
alpha1 <- parm [1:9]
beta1 <-parm [10:19]
alpha2 <-parm [20:28]
beta2 <-parm [29:38]
phi1 <- parm [39]
phi2 <-parm [40]
alphatil <- parm [41]
betatil <- parm [42]
alphaf1 = c(1,alpha1)
alphaf2 = c(1,alpha2)

frandom = matrix(NA ,ncol=10,nrow =10)
fpa = matrix(NA ,ncol=10,nrow =10)
fca = matrix(NA ,ncol=10,nrow =10)

for (i in 1:10){
for (j in 1:(10-i+1)){
frandom[i,j] = rtweedie(1,mu=alphatil ,phi=betatil ,xi=aci)
fpa[i,j] = (( alphatil/(( alphaf1[i]*beta1[j])))^(1-aci)*(phi1/betatil)*frandom

[i,j]+ rtweedie(1,mu=alphaf1[i]*beta1[j],phi=phi1 ,xi=aci))*pa[i,2]
fca[i,j] = (( alphatil/(( alphaf2[i]*beta2[j])))^(1-aci)*(phi2/betatil)*frandom

[i,j]+ rtweedie(1,mu=alphaf2[i]*beta2[j],phi=phi2 ,xi=aci))*ca[i,2]
}
}

list (vfpa = as.vector(t(fpa)), vfca = as.vector(t(fca)))
}

para = cbind(used [,1:40], aused)
N = nrow(para)
gof_sfpa = matrix(NA ,nrow=N,ncol =100)
gof_sfca = matrix(NA ,nrow=N,ncol =100)

set.seed (11)
for (n in 1:N){
mtest = modelgof(para[n,])
gof_sfpa[n,] = mtest[["vfpa"]]
gof_sfca[n,] = mtest[["vfca"]]
}

par(mfrow=c(1,2), mai = c(0.8, 0.75, 0.5, 0.1))
plot(ecdf(stpa)(stpa),ecdf(stca)(stca),xlab="Personal auto",ylab="Commercial

auto",pch=1,main="Observed data",font.main = 1)
plot(ecdf(gof_sfpa [10000 ,])(gof_sfpa [10000 ,]),ecdf(gof_sfca [10000 ,])(gof_sfca

[10000 ,]),pch=1,main="Fitted data",xlab="Personal auto",ylab="Commercial
auto",font.main = 1)

########## Claims forecast ##########

#Function to forecast future claims
modelp <- function(parm){
alpha1 <- (parm [1:9])
beta1 <-(parm [10:19])
alpha2 <-(parm [20:28])
beta2 <-(parm [29:38])
phi1 <- (parm [39])
phi2 <-(parm [40])
alphatil <- (parm [41])
betatil <- (parm [42])
alphaf1 = c(1,alpha1)
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alphaf2 = c(1,alpha2)

frandom = matrix(NA ,ncol=10,nrow =10)
fpa = matrix(NA ,ncol=10,nrow =10)
fca = matrix(NA ,ncol=10,nrow =10)
ftotal = matrix(NA,ncol=10,nrow =10)

fpaacc = c(0 ,10)
fcaacc = c(0 ,10)
fttacc = c(0 ,10)

for (i in 2:10){
for (j in (10-i+2) :10){
frandom[i,j] = rtweedie(1,mu=alphatil ,phi=betatil ,xi=aci)

fpa[i,j] = (( alphatil/(( alphaf1[i]*beta1[j])))^(1-aci)*(phi1/betatil)*frandom
[i,j]+ rtweedie(1,mu=alphaf1[i]*beta1[j],phi=phi1 ,xi=aci))*pa[i,2]

fca[i,j] = (( alphatil/(( alphaf2[i]*beta2[j])))^(1-aci)*(phi2/betatil)*frandom
[i,j]+ rtweedie(1,mu=alphaf2[i]*beta2[j],phi=phi2 ,xi=aci))*ca[i,2]

ftotal[i,j] = fpa[i,j] + fca[i,j]
}

fpaacc[i] = sum(fpa[i,], na.rm=T)
fcaacc[i] = sum(fca[i,],na.rm=T)
fttacc[i] = fpaacc[i]+ fcaacc[i]
}

ttpa = sum(fpaacc , na.rm=T)
ttca = sum(fcaacc , na.rm=T)
tt = ttpa+ttca

list (t = c(ttpa , ttca , tt), vfpa = as.vector(t(fpa)), vfca = as.vector(t(fca
)), vftotal = as.vector(t(ftotal)), fpaacc = fpaacc , fcaacc = fcaacc ,
fttacc = fttacc)

}

#Run simulation
para = cbind(used [,1:40], aused)
N = nrow(para)
stt = matrix(NA ,nrow=N,ncol =15)

sfpa = matrix(NA,nrow=N,ncol =100)
sfca = matrix(NA,nrow=N,ncol =100)
sftotal = matrix(NA ,nrow=N,ncol =100)

sfpaacc = matrix(NA ,nrow=N,ncol =10)
sfcaacc = matrix(NA ,nrow=N,ncol =10)
sfttacc = matrix(NA ,nrow=N,ncol =10)

cat("Simulation started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

set.seed (11)
for (n in 1:N){
mpredict = modelp(para[n,])
stt[n,] = mpredict [["t"]]
sfpa[n,] = mpredict [["vfpa"]]
sfca[n,] = mpredict [["vfca"]]
sftotal[n,] = mpredict [["vftotal"]]
sfpaacc[n,] = mpredict [["fpaacc"]]
sfcaacc[n,] = mpredict [["fcaacc"]]
sfttacc[n,] = mpredict [["fttacc"]]
}

cat("Simulation ended on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

#summarise results
mean_stt = colMeans(stt[,1:3],na.rm=T)
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sd_stt = apply(stt[,1:3],2,sd,na.rm=T)
var75 = c(0,0,0)
var95 = c(0,0,0)

for (i in 1:3){
var75[i] = quantile(stt[,i],p=0.75)
var95[i] = quantile(stt[,i],p=0.95)
}
summarytable = rbind(mean_stt ,sd_stt ,var75 ,var95)

paaccmean = colMeans(sfpaacc)
paaccsd = apply(sfpaacc ,2,sd ,na.rm=T)

caaccmean = colMeans(sfcaacc)
caaccsd = apply(sfcaacc ,2,sd ,na.rm=T)

ttaccmean = colMeans(sfttacc)
ttaccsd = apply(sfttacc ,2,sd ,na.rm=T)

accidentyrsummary = cbind(paaccmean ,paaccsd ,caaccmean ,caaccsd ,ttaccmean ,
ttaccsd)

xtable(accidentyrsummary)

library(EnvStats)

par(mfrow=c(1,1))
plot (density(stt[,1]), ylim=c(0,6e-05),xlim=c(55000 ,275000) ,xlab="Total

unpaid losses (in 1,000's)",main="",lwd=3)
lines (density(stt[,2]), lty=2,lwd=3)
lines (density(stt[,3]), lty=3,lwd=3)
legend("top", legend = c("Personal auto", "Commercial auto", "Total"),
lty = 1:3,lwd=3, bty = "n",
title = "")
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A.2 R codes for Chapter 5

A.2.1 Simulation illustration 1

library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(LaplacesDemon)
library(tmvtnorm)
library(MHadaptive)
########## Simulation ##########
ralpha1 = c(1, 1.03, 1.19, 1.12, 1.15, 1.16, 1.12, 1.14, 1.21, 1.19)
ralpha2 = c(1, 1.19, 1.17, 1.15, 1.15, 1.20, 1.40, 1.45, 1.56, 1.66)

rbeta1 = c(60 ,20 ,10 ,5 ,2.5 ,1.25 ,0.6 ,0.3 ,0.15 ,0.15)
rbeta2 = c(10,20,25,20,15,8,3,2,1,1)

rphi1 = 0.5
rphi2 = 0.7

rzeta =0.5
ralphatil = sqrt(rbeta1 [1:10]*rbeta2)*rzeta
rphitil = 0.6

sp=1.3

stau=(sp -2)/(sp -1)

#Generate loss triangles
random_w = matrix(NA, nrow=10,ncol =10)
usloss1 = matrix(NA , nrow=10,ncol =10)
usloss2 = matrix(NA , nrow=10, ncol =10)

set.seed (48)
for(i in 1:10){
for (j in 1:(10-i+1)){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
usloss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
usloss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

radj = 0.01
loss1=usloss1 -radj
loss2 = usloss2

########## Premliminary analysis ###########
plot(loss1[1,],type = "l",lwd=1,ylim=c(0,max(loss1 ,na.rm=T)*1.1))
for(i in 2:10){
lines(loss1[i,],lwd=1)
}

plot(loss2[1,],type = "l",lwd=1,ylim=c(0,max(loss2 ,na.rm=T)*1.1))
for(i in 2:10){
lines(loss2[i,],lwd=1)
}

#GLM analysis
vloss1 = as.vector(t(loss1))+radj
vloss2 = as.vector(t(loss2))

#Set up llh profile for each line
i = rep(1:10 , each =10)
j = rep(1:10 , 10)

ci.vec = seq(1,2,by =0.01)

257



APPENDIX A. R CODES

llh1 = rep(0,length(ci.vec))
llh2 = llh1

for (t in 1: length(ci.vec)){
out1 <- glm(vloss1~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vloss2~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp2 <- summary(out2)$dispersion
mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

#Set up llh profile for both lines combined
i1 = c(rep (1:10, each =10),rep (11:20 , each =10))
j1 = c(rep (1:10 ,10),rep (11:20 ,10))
cbine=c(vloss1 ,vloss2)
allh = rep(0, length(ci.vec))

for (t in 1: length(ci.vec)){
outa <- glm(cbine~as.factor(i1) + as.factor(j1), fam=tweedie(var.power=ci.vec

[t]))
disp <- summary(outa)$dispersion
mu <- fitted(outa)
den <- dtweedie(outa$y, mu = mu , phi = disp , power = ci.vec[t])
allh[t] <- sum(log(den))
}

#Find p that maximises llh
ci1 = ci.vec[which.max(llh1)]
ci2 = ci.vec[which.max(llh2)]
aci = ci.vec[which.max(allh)]

#power parameter to be used later
paglm <- glm(vloss1 ~ as.factor(i)+as.factor(j), family=tweedie(var.power=ci1

,link.power =0),control = list( epsilon =1e-09, trace=FALSE))
caglm <- glm(vloss2 ~ as.factor(i)+as.factor(j), family=tweedie(var.power=ci2

,link.power =0),control = list( epsilon =1e-09, trace=FALSE))

res1 = resid(paglm ,"pearson")
res2 = resid(caglm ,"pearson")

########## Marginal estimation ##########

#Posterior function
llhfunc <- function(pars ,data){
alpha1 <- exp(pars [1:9])
beta1 <-exp(pars [10:19])
alpha2 <-exp(pars [20:28])
beta2 <-exp(pars [29:38])
phi1 <- exp(pars [39])
phi2 <-exp(pars [40])
lambda <- exp(pars [41])
adj <- exp(pars [42])
p <- exp(pars [43])

alpha1.prior <- sum(dunif(log(alpha1), min=lower [1:9], max=upper [1:9], log=T)
)

beta1.prior <- sum(dunif(log(beta1), min=lower [10:19] , max=upper [10:19] , log=
T))

alpha2.prior <- sum(dunif(log(alpha2), min=lower [20:28] , max=upper [20:28] ,
log=T))

beta2.prior <- sum(dunif(log(beta2), min=lower [29:38] , max=upper [29:38] , log=
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T))

phi1.prior <- dunif(log(phi1),min=lower [39],max=upper [39],log=T)
phi2.prior <- dunif(log(phi2),min=lower [40],max=upper [40],log=T)
lambda.prior <- dunif(log(lambda),min=lower [41],max=upper [41],log=T)
adj.prior <- dunif(log(adj),min=lower [42],max=upper [42],log=T)
p.prior <- dunif(log(p),min=lower [43],max=upper [43],log=T)

alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

loss1 <- data [1:10 ,]
loss2 <-data [11:20 ,]

meancommon1 = matrix(0,nrow=10,ncol =10)
scaledcommon1 = matrix(0,nrow=10,ncol =10)
A1 = matrix(NA ,nrow=10,ncol =10)
B1 = matrix(NA ,nrow=10,ncol =10)

meancommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi1 ,10),nrow=10,byrow=T)

A1 = meancommon1 + (alphaf1%o%beta1)
scaledcommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi1 ,10),nrow=10,byrow=T)
B1 = phi1*(scaledcommon1 + 1)^(1-p)

meancommon2 = matrix(0,nrow=10,ncol =10)
scaledcommon2 = matrix(0,nrow=10,ncol =10)
A2 = matrix(NA ,nrow=10,ncol =10)
B2 = matrix(NA ,nrow=10,ncol =10)

meancommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi2 ,10),nrow=10,byrow=T)

A2 = meancommon2 + (alphaf2%o%beta2)
scaledcommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi2 ,10),nrow=10,byrow=T)
B2 = phi2*(scaledcommon2 + 1)^(1-p)

vecloss1na = c(t(loss1))
vecloss1 = vecloss1na[!is.na(vecloss1na)]
vecA1na = c(t(A1))
vecA1 = vecA1na[!is.na(vecloss1na)]
vecB1na = c(t(B1))
vecB1 = vecB1na[!is.na(vecloss1na)]

vecloss2na = c(t(loss2))
vecloss2 = vecloss2na[!is.na(vecloss2na)]
vecA2na = c(t(A2))
vecA2 = vecA2na[!is.na(vecloss2na)]
vecB2na = c(t(B2))
vecB2 = vecB2na[!is.na(vecloss2na)]

if ((any(vecloss1+adj <0)==T)|!is.finite(p.prior)){LL = -100000000}
else{
LL = sum(log(dtweedie(vecloss1+adj ,xi=p,mu=vecA1 ,phi=vecB1)))+sum(log(

dtweedie(vecloss2 ,xi=p, mu=vecA2 , phi=vecB2)))}

LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.
prior+lambda.prior+p.prior+adj.prior

list(Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda ,adj ,p),pars=
pars ,LP=LP)

}

#Use adaptive MCMC to get estimates for covariance of proposal density
model1 <- function(pars ,data){
LP = llhfunc(pars , data)$LP
return(LP)
}
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data = rbind(loss1 ,loss2)
init <- c(0.0296 , 0.1740 , 0.1133 , 0.1398 , 0.1484 , 0.1133 , 0.1310 , 0.1906 ,

0.1740 , 4.0943 , 2.9957 , 2.3026 , 1.6094 ,0.9163 , 0.2231 , -0.5108, -1.2040,
-1.8971, -1.8971, 0.1740 , 0.1570 , 0.1398 , 0.1398 , 0.1823 , 0.3365 ,
0.3716 , 0.4447 , 0.5068 , 2.3026 , 2.9957 , 3.2189 , 2.9957 , 2.7081 ,
2.0794 , 1.0986 , 0.6931 , 0.0000 , 0.0000 , -0.6931, -0.3567, 0.0118 ,
-4.6052, 0.2624)

lower = c(rep(-0.2,9), 2.0000 , 0.9957 , 0.3026 , -0.3906, -1.0837, -0.5000,
-2.5108, -3.2040, -3.8971, -3.8971, rep(-0.2,9), 0.3026 , 0.9957 , 1.2189 ,
0.9957 , 0.7081 , 1.0000 , -0.9014, -1.3069, -2.0000, -2.0000, -2.6931,
-1.0000, -2.0000, -4.6052, 0)

upper = c(rep (1.5 ,9), 6.0943 , 4.9957 , 4.3026 , 3.6094 , 2.9163 , 2.2231 , 1.4892 ,
0.7960 , 0.1029 , 0.1029 , rep (1.5 ,9), 4.3026 , 4.9957 , 5.2189 , 4.9957 ,

4.7081 , 4.0794 , 3.0986 , 2.6931 , 2.0000 , 2.0000 , 1.3069 , 1.6433 , 3.7000 ,
3.0000 , 0.6931)

std = (upper -lower)*0.01

par_names=paste(c(rep("alpha1" ,9),rep("beta1" ,10),rep("alpha2" ,9),rep("beta2"
,5),"phi1","phi2","phitil","adjustment","p"),c(seq (1:9) ,seq (1:10) ,seq (1:9)
,seq (1:5) ,0,0,0,0,0))

set.seed (1)
mh_test <- Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = diag(std),iterations = 70000 , burn_in =
30000)

set.seed (1)
mh_test1 <-Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = mh_test$prop_sigma*0.001, iterations =
50000, burn_in = 10000)

write.csv(mh_test1$prop_sigma , file="cov_matrix.csv")

par(mfrow=c(3,2))
for(i in 1:43){plot(mh_test1$trace[,i],type="l")}

#Posterior function 2
model1 <- function(pars ,data){
llh = llhfunc(pars ,data)
list(Monitor = c(llh$LP, llh$alpha1 , llh$beta1 ,llh$alpha2 ,llh$beta2 ,llh$phi1 ,

llh$phi2 ,llh$lambda ,llh$adj ,llh$p),pars=llh$pars ,LP=llh$LP)
}

#Run MCMC
std = as.matrix(read.csv("cov_matrix.csv",header=T))[ ,2:44]*0.24

Iterations =200000
Status =1000
Thinning =5
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , nrow=Iterations , ncol=length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- init

set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- mvrnorm(1,mu = Mo0[["pars"]],Sigma=std)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alpha <- Mo1[["LP"]] - Mo0[["LP"]] + log(dmvnorm(Mo0[["pars"]], mean =
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prop , sigma=std)) - log(dmvnorm(prop , mean=Mo0[["pars"]], sigma=std))
if((is.finite(log.alpha)) && (!inherits(Mo1 , "try -error")) && ((is.finite(

Mo1[["Monitor"]]))) && (log.u < log.alpha)) {
Mo0 <- Mo1
Acceptance <- Acceptance + 1}

Mon[iter ,] <- Mo0[["Monitor"]]

#Thin Samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["pars"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#Plot sample paths
thinnedplot = matrix(NA,nrow =5000 , ncol =43)
freq = 8

for(n in 1:40000){
if(n%%freq == 0){
tp.iter <- floor(n / freq)
thinnedplot[tp.iter ,] <- thinned[n ,1:43]
}
}

xticks <- seq(0, 200000 , 50000)
xuse <-seq(0,5000, 1250)
layout(matrix(c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,0,9,9,0), 5, 4, byrow=TRUE))
par(mar=c(2.5 ,2.5 ,2.5 ,2.5))

plot(( thinnedplot [1:5000 ,1]) ,type="l",main=expression(paste(alphatil [2]^(1)))
,ylab="",xlab="Iteration", xaxt = "n")

axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,10]) ,type="l",main=expression(paste(phitil [1]^(1))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,20]) ,type="l",main=expression(paste(alphatil [2]^(2))

),ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,29]) ,type="l",main=expression(paste(phitil [1]^(2))),

ylab="",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,39]) ,type="l",main=expression(paste(phi ^(1))),ylab="

",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,40]) ,type="l",main=expression(paste(phi ^(2))),ylab="

",xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,41]) ,type="l",main=expression(paste(Lambda)),ylab=""

,xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,42]) ,type="l",main=expression(paste(xi^(1))),ylab=""

,xlab="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)
plot(( thinnedplot [1:5000 ,43]) ,type="l",main=expression(paste(p)),ylab="",xlab

="Iteration", xaxt = "n")
axis(side=1,at=xuse , labels=xticks)

#Summary statistics for marginal estimation
true=exp(c(ralpha1 [2:10] , rbeta1 ,ralpha2 [2:10] , rbeta2 ,rphi1 ,rphi2 ,rzeta ^(2-p)/

rphitil ,radj ,sp))
used = exp(thinned [20001:40000 ,])
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median = round(apply ((used) ,2,median ,na.rm = T) ,3)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,43)
uCI = rep (0,43)
for (i in 1:43){
lCI[i] = round(quantile(used[,i],p=0.05) ,3)
uCI[i] = round(quantile(used[,i],p=0.95) ,3)
}
bothline = cbind ((true),median ,st.dev ,(lCI) ,(uCI))

########## Multivariate estimation (adaptive Metropolis)###########

#Use parameter estimates from marginal estimation
alpha1 <- median [1:9]
beta1 <- median [10:19]
alpha2 <- median [20:28]
beta2 <- median [29:38]
phi1 <- median [39]
phi2 <- median [40]
lambda <- median [41]
adj <- median [42]
p<- median [43]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)
alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

#Posterior function
model2 <- function(pars ,data){
zeta <- exp(pars)
phitil <- zeta^(2-p)/lambda

alphatilmean = (sqrt(beta1*beta2))^(2-p)*zeta
zeta.prior <- dunif(log(zeta),min=-3,max=1,log=T)

l1 <- matrix(NA , nrow=10, ncol =10)
miny <- matrix(NA, nrow=10, ncol =10)
loss1 <- data [1:10 ,]
loss2 <- data [11:20 ,]

if(all(is.finite(zeta.prior))){
for (i in 1:10){
for (j in 1:(10-i+1)){
miny[i,j] <- min ((( loss1[i,j]+adj)/(( alphatilmean[j]/(alphaf1[i]*beta1[j]))

^(1-p)*(phi1/phitil))), (loss2[i,j]/(( alphatilmean[j]/(alphaf2[i]*beta2[j
]))^(1-p)*(phi2/phitil))))

if (miny[i,j]<=1e -200000000){
l1[i,j]=log(dtweedie(loss1[i,j]+adj ,xi=p, mu=alphaf1[i]*beta1[j], phi = phi1)

)+log(dtweedie(loss2[i,j],xi=p, mu=alphaf2[i]*beta2[j], phi = phi2))
}
else {
f<- function(z){
dtweedie(loss1[i,j]+adj -( alphatilmean[j]/(alphaf1[i]*beta1[j]))^(1-p)*(phi1/

phitil)*z,xi=p, mu=alphaf1[i]*beta1[j], phi = phi1)*dtweedie(loss2[i,j]-(
alphatilmean[j]/(alphaf2[i]*beta2[j]))^(1-p)*(phi2/phitil)*z,xi=p, mu=
alphaf2[i]*beta2[j], phi = phi2)*dtweedie(z,xi=p, mu=alphatilmean[j], phi
= phitil)

}
llh <- try(integrate(f,lower=1e -2000000000 , upper=miny[i,j]),silent=T)
if(inherits(llh , 'try -error ')){
l1[i,j] <- log (0)
}
else{
l1[i,j] <- log(llh$value)}}
}}}

LL <- sum(l1, na.rm=T)
LP <- LL + zeta.prior

list(LP = LP, Monitor = c(LP, zeta ,phitil), pars=pars)
}
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#Prepare for MCMC
ainit <- -0.7

Iterations =200000
Status =1000
Thinning =5
alpha.star =0.3
Periodicity =1
LogFile=""

cat("MCMC started on ", date(), "\n", sep="")
time1 <- proc.time()

aAcceptance <- 0
aMo0 <- model2(ainit , data)
aMon <- matrix(NA,nrow=Iterations ,ncol=length(aMo0[["Monitor"]]))
adimension <- length(ainit)
athinned <- matrix(NA, floor(Iterations/Thinning)+1,2)
athinned [1,] <- aMo0[["Monitor"]][2:3]
aScaleF <- 0.0001/sqrt(adimension)
aVarCov <- matrix(0, adimension , adimension)
diag(aVarCov) <- rep(aScaleF , adimension)
aS <- t(chol(aVarCov))

set.seed (11)
for (aiter in 1: Iterations) {
if(aiter %% Status == 0) cat("Iteration: ", aiter , sep="")

#Adaptive Metropolis
aU <- rnorm(adimension)
aprop <- as.vector(aMo0[["parm"]] + aS %*% aU)
aMo1 <- try(model2(aprop , data), silent=TRUE)

alog.u <- log(runif (1))
alog.alpha <- aMo1[["LP"]] - aMo0[["LP"]]
if((is.finite(alog.alpha)) && (!inherits(aMo1 , "try -error")) && ((is.finite(

aMo1[["Monitor"]]))) && (alog.u < alog.alpha)) {
aMo0 <- aMo1
aAcceptance <- aAcceptance + 1}

aMon[aiter ,] <- aMo0[["Monitor"]]

if({ aiter >= 2} & {aiter %% Periodicity == 0}) {
aeta <- min(1, adimension*aiter ^(-2/3))
aVarCov.test <- aS %*% (diag(adimension) + aeta*(min(1, exp(alog.alpha)) -

alpha.star) * aU %*% t(aU) / sqrt(sum(aU^2))) %*% t(aS)
if(!all(is.finite(aVarCov.test))) {aVarCov.test <- aVarCov}
if(!is.symmetric.matrix(aVarCov.test)){aVarCov.test <- as.symmetric.matrix(

aVarCov.test)}
if(is.positive.definite(aVarCov.test)){ aS.z <- try(t(chol(aVarCov)), silent=

TRUE)
if(!inherits(aS.z, "try -error")) {
aVarCov <- aVarCov.test
aS <- aS.z}}}

#Thin samples
if(aiter %% Thinning == 0) {
at.iter <- floor(aiter / Thinning) + 1
athinned[at.iter ,] <- aMo0[["Monitor"]][2:3]}

if(aiter %% Status == 0){
cat(", LP:", round(aMo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(aAcceptance/aiter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#MCMC trace plots
par(mfrow=c(2,1))
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plot(athinned [2:at.iter ,1],type="l")
plot(athinned [2:at.iter ,2],type="l")

#Summary statistics for multivariate estimation
aused = (athinned [20001:40000 ,])
amean = round(apply(( aused),2,median ,na.rm = T) ,3)
astd = apply(aused ,2,sd,na.rm=T)
alCI = rep(0,2)
auCI = rep(0,2)
for (i in 1:2){
alCI[i] = round(quantile(aused[,i],p=0.05) ,3)
auCI[i] = round(quantile(aused[,i],p=0.95) ,3)
}
abothline = cbind(c(rzeta ,rphitil),amean ,astd ,alCI ,auCI)

A.2.2 Simulation illustration 2 (comparison)

A.2.2.1 Multivariate Tweedie model without treatment for unbalanced data

library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(tmvtnorm)
library(MHadaptive)

########## Simulation ###########
ralpha1 = c(1, 1.03, 1.19, 1.12, 1.15, 1.16, 1.12, 1.14, 1.21, 1.19)
ralpha2 = c(1, 1.19, 1.17, 1.15, 1.15, 1.20, 1.40, 1.45, 1.56, 1.66)

rbeta1 = c(60 ,20 ,10 ,5 ,2.5 ,1.25 ,0.6 ,0.3 ,0.15 ,0.15)
rbeta2 = c(10,20,25,20,15,8,3,2,1,1)

rphi1 = 0.9
rphi2 = 0.7

rzeta =0.5
ralphatil = c(sqrt(rbeta1 [1:4]*rbeta2 [1:4])*rzeta ,sqrt(rbeta1 [5:10]*rbeta2

[5:10])*0.02)
rphitil = 0.6

sp=1.3

stau=(sp -2)/(sp -1)

#Generate loss triangles
set.seed (2)
random_w = matrix(NA, nrow=10,ncol =10)
loss1 = matrix(NA, nrow=10,ncol =10)
loss2 = matrix(NA, nrow=10, ncol =10)

for(i in 1:6){
for (j in 1:4){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
loss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}
for (j in 5:(10-i+1)){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
loss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

for(i in 7:10){
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for (j in 1:(10-i+1)){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
loss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

########## Premliminary analysis ###########
plot(loss1[1,],type = "l",lwd=1,ylim=c(0,max(loss1 ,na.rm=T)*1.1))
for(i in 2:10){
lines(loss1[i,],lwd=1)
}

plot(loss2[1,],type = "l",lwd=1,ylim=c(0,max(loss2 ,na.rm=T)*1.1))
for(i in 2:10){
lines(loss2[i,],lwd=1)
}

#GLM analysis
vloss1 = as.vector(t(loss1))
vloss2 = as.vector(t(loss2))

#Set up llh profile for each line
i = rep(1:10 , each =10)
j = rep(1:10 , 10)

ci.vec = seq(1,2,by =0.01)

llh1 = rep(0,length(ci.vec))
llh2 = llh1

for (t in 1: length(ci.vec)){
out1 <- glm(vloss1~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vloss2~as.factor(i) + as.factor(j), fam=tweedie(var.power=ci.vec[

t]))
disp2 <- summary(out2)$dispersion
mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

#Set up llh profile for both lines combined
i1 = c(rep (1:10, each =10),rep (11:20 , each =10))
j1 = c(rep (1:10 ,10),rep (11:20 ,10))
cbine=c(vloss1 ,vloss2)
allh = rep(0, length(ci.vec))

for (t in 1: length(ci.vec)){
outa <- glm(cbine~as.factor(i1) + as.factor(j1), fam=tweedie(var.power=ci.vec

[t]))
disp <- summary(outa)$dispersion
mu <- fitted(outa)
den <- dtweedie(outa$y, mu = mu , phi = disp , power = ci.vec[t])
allh[t] <- sum(log(den))
}

#Find p that maximises llh
ci1 = ci.vec[which.max(llh1)]
ci2 = ci.vec[which.max(llh2)]
aci = ci.vec[which.max(allh)]

#power parameter to be used later
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p = aci
paglm <- glm(vloss1 ~ as.factor(i)+as.factor(j), family=tweedie(var.power=ci1

,link.power =0),control = list( epsilon =1e-09, trace=FALSE))
caglm <- glm(vloss2 ~ as.factor(i)+as.factor(j), family=tweedie(var.power=ci2

,link.power =0),control = list( epsilon =1e-09, trace=FALSE))

res1 = resid(paglm ,"pearson")
res2 = resid(caglm ,"pearson")

########## Marginal estimation ##########

#Posterior function
llhfunc <- function(pars ,data){
alpha1 <- exp(pars [1:9])
beta1 <-exp(pars [10:19])
alpha2 <-exp(pars [20:28])
beta2 <-exp(pars [29:38])
phi1 <- exp(pars [39])
phi2 <-exp(pars [40])
lambda <- exp(pars [41])
p <- exp(pars [42])

alpha1.prior <- sum(dunif(log(alpha1), min=lower [1:9], max=upper [1:9], log=T)
)

beta1.prior <- sum(dunif(log(beta1), min=lower [10:19] , max=upper [10:19] , log=
T))

alpha2.prior <- sum(dunif(log(alpha2), min=lower [20:28] , max=upper [20:28] ,
log=T))

beta2.prior <- sum(dunif(log(beta2), min=lower [29:38] , max=upper [29:38] , log=
T))

phi1.prior <- dunif(log(phi1),min=lower [39],max=upper [39],log=T)
phi2.prior <- dunif(log(phi2),min=lower [40],max=upper [40],log=T)
lambda.prior <- dunif(log(lambda),min=lower [41],max=upper [41],log=T)
p.prior <- dunif(log(p),min=lower [42],max=upper [42],log=T)

alphatilmean = rep(lambda ,10)

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

loss1 <- data [1:10 ,]
loss2 <-data [11:20 ,]

meancommon1 = matrix(0,nrow=10,ncol =10)
scalecommon1 = matrix(0,nrow=10,ncol =10)
A1 = matrix(NA,nrow=10,ncol =10)
B1 = matrix(NA,nrow=10,ncol =10)

meancommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi1 ,10),nrow=10,byrow=T)

A1 = meancommon1 + (alphaf1%o%beta1)
scalecommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi1 ,10),nrow=10,byrow=T)
B1 = phi1*(scalecommon1 + 1)^(1-p)

meancommon2 = matrix(0,nrow=10,ncol =10)
scalecommon2 = matrix(0,nrow=10,ncol =10)
A2 = matrix(NA,nrow=10,ncol =10)
B2 = matrix(NA,nrow=10,ncol =10)

meancommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi2 ,10),nrow=10, byrow=T)

A2 = meancommon2 + (alphaf2%o%beta2)
scalecommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi2 ,10),nrow=10, byrow=T)
B2 = phi2*(scalecommon2 + 1)^(1-p)

vecloss1na = c(t(loss1))
vecloss1 = vecloss1na[!is.na(vecloss1na)]
vecA1na = c(t(A1))
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vecA1 = vecA1na[!is.na(vecloss1na)]
vecB1na = c(t(B1))
vecB1 = vecB1na[!is.na(vecloss1na)]

vecloss2na = c(t(loss2))
vecloss2 = vecloss2na[!is.na(vecloss2na)]
vecA2na = c(t(A2))
vecA2 = vecA2na[!is.na(vecloss2na)]
vecB2na = c(t(B2))
vecB2 = vecB2na[!is.na(vecloss2na)]

if (!is.finite(p.prior)){LL = -100000000}
else{
LL = sum(log(dtweedie(vecloss1 ,xi=p,mu=vecA1 ,phi=vecB1)))+sum(log(dtweedie(

vecloss2 ,xi=p, mu=vecA2 , phi=vecB2)))}

LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.
prior+lambda.prior+p.prior

list(Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda ,p),pars=pars
,LP=LP)

}

#Use adaptive MCMC to get estimates for covariance of proposal density
model1 <- function(pars ,data){
LP = llhfunc(pars , data)$LP
return(LP)
}

data = rbind(loss1 ,loss2)
init <- c(0.0296 , 0.1740 , 0.1133 , 0.1398 , 0.1484 , 0.1133 , 0.1310 ,

0.1906 , 0.1740 , 4.0943 , 2.9957 , 2.3026 , 1.6094 , 0.9163 , 0.2231 ,
-0.5108, -1.2040, -1.8971, -1.8971, 0.1740 , 0.1570 , 0.1398 , 0.1398 ,
0.1823 , 0.3365 , 0.3716 , 0.4447 , 0.5068 , 2.3026 , 2.9957 , 3.2189 ,
2.9957 , 2.7081 , 2.0794 , 1.0986 , 0.6931 , 0.0000 , 0.0000 , -0.1054,
-0.3567, 0.0256 , 0.2624)

lower = c(rep(-0.5,9) ,2.0943, 0.9957 , 0.3026 , -0.3906, -1.0837, -1.7769,
-2.5108, -3.2040, -3.8971, -3.8971, rep(-0.5,9) ,0.3026, 0.9957 , 1.2189 ,
0.9957 , 0.7081 , 0.0794 , -0.9014, -1.3069, -2.0000, -2.0000, -2.1054,

-2.1054, -2.0000, 0.00001)
upper = c(rep (1.5 ,9) ,6.0943, 4.9957 , 4.3026 , 3.6094 , 2.9163 , 2.2231 , 1.4892 ,

0.7960 , 0.1029 , 0.1029 , rep (1.5 ,9) ,4.3026, 4.9957 , 5.2189 , 4.9957 , 4.7081 ,
4.0794 , 3.0986 , 2.6931 , 2.0000 , 2.0000 , 1.8946 , 1.6433 , 4.0000 , log
(1.999999999))

std = (upper -lower)*0.007

par_names=paste(c(rep("alpha1" ,9),rep("beta1" ,10),rep("alpha2" ,9),rep("beta2"
,5),"phi1","phi2","phitil","p"),c(seq (1:9) ,seq (1:10) ,seq (1:9) ,seq (1:5)
,0,0,0,0))

set.seed (1)
mh_test <- Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = diag(std),iterations = 60000 , burn_in =
20000)

set.seed (1)
mh_test1 <-Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = mh_test$prop_sigma*0.001, iterations =
45000, burn_in = 15000)

write.csv(mh_test$prop_sigma , file="cov_matrix.csv")

par(mfrow=c(3,2))
for(i in 1:42){plot(mh_test1$trace[,i],type="l")}

#Posterior function 2
model1 <- function(pars ,data){
llh = llhfunc(pars ,data)
list(Monitor = c(llh$LP, llh$alpha1 , llh$beta1 ,llh$alpha2 ,llh$beta2 ,llh$phi1 ,

llh$phi2 ,llh$lambda ,llh$p),pars=llh$pars ,LP=llh$LP)
}

#Run MCMC
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std = as.matrix(read.csv("cov_matrix.csv",header=T))[ ,2:43]*0.22

Iterations =200000
Status =1000
Thinning =5
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , nrow=Iterations , ncol=length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- exp(init)

set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- mvrnorm(1,mu = Mo0[["pars"]],Sigma=std)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alphatil <- Mo1[["LP"]] - Mo0[["LP"]] + log(dmvnorm(Mo0[["pars"]], mean =

prop , sigma=std)) - log(dmvnorm(prop , mean=Mo0[["pars"]], sigma=std))
if((is.finite(log.alphatil)) && (!inherits(Mo1 , "try -error")) && ((is.finite

(Mo1[["Monitor"]]))) && (log.u < log.alphatil)) {
Mo0 <- Mo1
Acceptance <- Acceptance + 1}

Mon[iter ,] <- Mo0[["Monitor"]]

#Thin Samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["pars"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()
save.image ()

#MCMC trace plots
par(mfrow=c(3,2))
for (i in 1:42) {
plot(thinned [2:40000 ,i],type="l")
}

#Summary statistics for marginal estimation
true=exp(init)
used = exp(thinned [20001:40000 ,])
median = round(apply ((used) ,2,median ,na.rm = T) ,3)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,42)
uCI = rep (0,42)
for (i in 1:42){
lCI[i] = round(quantile(used[,i],p=0.025) ,3)
uCI[i] = round(quantile(used[,i],p=0.975) ,3)
}

bothline = cbind ((true),median ,(lCI) ,(uCI))
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#compare common shock proportion
alpha1 <- median [1:9]
beta1 <- median [10:19]
alpha2 <- median [20:28]
beta2 <- median [29:38]
phi1 <- median [39]
phi2 <- median [40]
lambda <- median [41]
p<- median [42]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)
alphatilmean = rep(lambda ,10)

ratio1 = matrix(NA,nrow=10,ncol =10)
ratio2 = matrix(NA,nrow=10,ncol =10)

trueratio1 = matrix(NA ,nrow=10,ncol =10)
trueratio2 = matrix(NA ,nrow=10,ncol =10)

for(i in 1:10){
for(j in 1:(10-i+1)){
ratio1[i,j] = (alphatilmean[j]*(phi1)/(( alphaf1[i]*beta1[j])^(1-p)))/((

alphatilmean[j]*(phi1)/(( alphaf1[i]*beta1[j])^(1-p)))+alphaf1[i]*beta1[j])
*100

ratio2[i,j] = (alphatilmean[j]*(phi2)/(( alphaf2[i]*beta2[j])^(1-p)))/((
alphatilmean[j]*(phi2)/(( alphaf2[i]*beta2[j])^(1-p)))+alphaf2[i]*beta2[j])
*100

trueratio1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil
)*ralphatil[j]/(( ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/
rphitil)*ralphatil[j]+ ralpha1[i]*rbeta1[j])*100

trueratio2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil
)*ralphatil[j]/(( ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/
rphitil)*ralphatil[j]+ ralpha2[i]*rbeta2[j])*100

}
}

A.2.2.2 Multivariate Tweedie model with treatment for unbalanced data

library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(tmvtnorm)
library(MHadaptive)

########## Simulation ###########
ralpha1 = c(1, 1.03, 1.19, 1.12, 1.15, 1.16, 1.12, 1.14, 1.21, 1.19)
ralpha2 = c(1, 1.19, 1.17, 1.15, 1.15, 1.20, 1.40, 1.45, 1.56, 1.66)

rbeta1 = c(60 ,20 ,10 ,5 ,2.5 ,1.25 ,0.6 ,0.3 ,0.15 ,0.15)
rbeta2 = c(10,20,25,20,15,8,3,2,1,1)

rphi1 = 0.9
rphi2 = 0.7

rzeta =0.5
ralphatil = c(sqrt(rbeta1 [1:4]*rbeta2 [1:4])*rzeta ,sqrt(rbeta1 [5:10]*rbeta2

[5:10])*0.02)
rphitil = 0.6

sp=1.3

stau=(sp -2)/(sp -1)

#Generate loss triangles
set.seed (2)
random_w = matrix(NA, nrow=10,ncol =10)
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loss1 = matrix(NA , nrow=10,ncol =10)
loss2 = matrix(NA , nrow=10, ncol =10)

for(i in 1:6){
for (j in 1:4){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
loss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}
for (j in 5:(10-i+1)){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
loss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

for(i in 7:10){
for (j in 1:(10-i+1)){
random_w[i,j] = rtweedie(1,mu=ralphatil[j],phi=rphitil ,xi=sp)
loss1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha1[i]*rbeta1[j],phi = rphi1 ,xi=sp)
loss2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil)*

random_w[i,j]+ rtweedie(1,mu=ralpha2[i]*rbeta2[j],phi = rphi2 ,xi=sp)
}}

########## Marginal estimation ##########

#Posterior function 1
llhfunc <- function(pars ,data){
alpha1 <- exp(pars [1:9])
beta1 <-exp(pars [10:19])
alpha2 <-exp(pars [20:28])
beta2 <-exp(pars [29:38])
phi1 <- exp(pars [39])
phi2 <-exp(pars [40])
lambda <- exp(pars [41])
p <- exp(pars [42])

alpha1.prior <- sum(dunif(log(alpha1), min=lower [1:9], max=upper [1:9], log=T)
)

beta1.prior <- sum(dunif(log(beta1), min=lower [10:19] , max=upper [10:19] , log=
T))

alpha2.prior <- sum(dunif(log(alpha2), min=lower [20:28] , max=upper [20:28] ,
log=T))

beta2.prior <- sum(dunif(log(beta2), min=lower [29:38] , max=upper [29:38] , log=
T))

phi1.prior <- dunif(log(phi1),min=lower [39],max=upper [39],log=T)
phi2.prior <- dunif(log(phi2),min=lower [40],max=upper [40],log=T)
lambda.prior <- dunif(log(lambda),min=lower [41],max=upper [41],log=T)
p.prior <- dunif(log(p),min=lower [42],max=upper [42],log=T)

alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

loss1 <- data [1:10 ,]
loss2 <-data [11:20 ,]

meancommon1 = matrix(0,nrow=10,ncol =10)
scalecommon1 = matrix(0,nrow=10,ncol =10)
A1 = matrix(NA ,nrow=10,ncol =10)
B1 = matrix(NA ,nrow=10,ncol =10)

meancommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi1 ,10),nrow=10,byrow=T)
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A1 = meancommon1 + (alphaf1%o%beta1)
scalecommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi1 ,10),nrow=10,byrow=T)
B1 = phi1*(scalecommon1 + 1)^(1-p)

meancommon2 = matrix(0,nrow=10,ncol =10)
scalecommon2 = matrix(0,nrow=10,ncol =10)
A2 = matrix(NA ,nrow=10,ncol =10)
B2 = matrix(NA ,nrow=10,ncol =10)

meancommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi2 ,10),nrow=10,byrow=T)

A2 = meancommon2 + (alphaf2%o%beta2)
scalecommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi2 ,10),nrow=10,byrow=T)
B2 = phi2*(scalecommon2 + 1)^(1-p)

vecloss1na = c(t(loss1))
vecloss1 = vecloss1na[!is.na(vecloss1na)]
vecA1na = c(t(A1))
vecA1 = vecA1na[!is.na(vecloss1na)]
vecB1na = c(t(B1))
vecB1 = vecB1na[!is.na(vecloss1na)]

vecloss2na = c(t(loss2))
vecloss2 = vecloss2na[!is.na(vecloss2na)]
vecA2na = c(t(A2))
vecA2 = vecA2na[!is.na(vecloss2na)]
vecB2na = c(t(B2))
vecB2 = vecB2na[!is.na(vecloss2na)]

if (!is.finite(p.prior)){LL = -100000000}
else{
LL = sum(log(dtweedie(vecloss1 ,xi=p,mu=vecA1 ,phi=vecB1)))+sum(log(dtweedie(

vecloss2 ,xi=p, mu=vecA2 , phi=vecB2)))}

LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.
prior+lambda.prior+p.prior

list(Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda ,p),pars=pars
,LP=LP)

}

#Use adaptive MCMC to get estimates for covariance of proposal density
model1 <- function(pars ,data){
LP = llhfunc(pars , data)$LP
return(LP)
}

data = rbind(loss1 ,loss2)
init <- c(0.0296 , 0.1740 , 0.1133 , 0.1398 , 0.1484 , 0.1133 , 0.1310 ,

0.1906 , 0.1740 , 4.0943 , 2.9957 , 2.3026 , 1.6094 , 0.9163 , 0.2231 ,
-0.5108, -1.2040, -1.8971, -1.8971, 0.1740 , 0.1570 , 0.1398 , 0.1398 ,
0.1823 , 0.3365 , 0.3716 , 0.4447 , 0.5068 , 2.3026 , 2.9957 , 3.2189 ,
2.9957 , 2.7081 , 2.0794 , 1.0986 , 0.6931 , 0.0000 , 0.0000 , -0.1054,
-0.3567, 0.0256 , 0.2624)

lower = c(rep(-0.5,9) ,2.0943, 0.9957 , 0.3026 , -0.3906, -1.0837, -1.7769,
-2.5108, -3.2040, -3.8971, -3.8971, rep(-0.5,9) ,0.3026, 0.9957 , 1.2189 ,
0.9957 , 0.7081 , 0.0794 , -0.9014, -1.3069, -2.0000, -2.0000, -2.1054,

-2.1054, -2.0000, 0.00001)
upper = c(rep (1.5 ,9) ,6.0943, 4.9957 , 4.3026 , 3.6094 , 2.9163 , 2.2231 , 1.4892 ,

0.7960 , 0.1029 , 0.1029 , rep (1.5 ,9) ,4.3026, 4.9957 , 5.2189 , 4.9957 , 4.7081 ,
4.0794 , 3.0986 , 2.6931 , 2.0000 , 2.0000 , 1.8946 , 1.6433 , 4.0000 , log
(1.999999999))

std = (upper -lower)*0.01

par_names=paste(c(rep("alpha1" ,9),rep("beta1" ,10),rep("alpha2" ,9),rep("beta2"
,5),"phi1","phi2","phitil","p"),c(seq (1:9) ,seq (1:10) ,seq (1:9) ,seq (1:5)
,0,0,0,0))

set.seed (1)
mh_test <- Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=
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rbind(loss1 ,loss2),prop_sigma = diag(std),iterations = 50000)
set.seed (1)
mh_test1 <-Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = mh_test$prop_sigma*0.001, iterations =
60000 , burn_in = 10000)

write.csv(mh_test1$prop_sigma , file="cov_matrix.csv")

par(mfrow=c(3,2))
for(i in 1:42){plot(mh_test1$trace[,i],type="l")}

#Posterior function 2
model1 <- function(pars ,data){
llh = llhfunc(pars ,data)
list(Monitor = c(llh$LP, llh$alpha1 , llh$beta1 ,llh$alpha2 ,llh$beta2 ,llh$phi1 ,

llh$phi2 ,llh$lambda ,llh$p),pars=llh$pars ,LP=llh$LP)
}

#Run MCMC
std = as.matrix(read.csv("cov_matrix.csv",header=T))[ ,2:43]*0.25

Iterations =200000
Status =1000
Thinning =5
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , nrow=Iterations , ncol=length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- exp(init)

set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- mvrnorm(1,mu = Mo0[["pars"]],Sigma=std)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alphatiltil <- Mo1[["LP"]] - Mo0[["LP"]] + log(dmvnorm(Mo0[["pars"]],

mean = prop , sigma=std)) - log(dmvnorm(prop , mean=Mo0[["pars"]], sigma=std
))

if((is.finite(log.alphatiltil)) && (!inherits(Mo1 , "try -error")) && ((is.
finite(Mo1[["Monitor"]]))) && (log.u < log.alphatiltil)) {

Mo0 <- Mo1
Acceptance <- Acceptance + 1}

Mon[iter ,] <- Mo0[["Monitor"]]

#Thin Samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["pars"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()
save.image ()
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#MCMC trace plots
par(mfrow=c(3,2))
for (i in 1:42) {
plot(thinned [2:40000 ,i],type="l")
}

#Summary statistics for marginal estimation
true=exp(init)
used = exp(thinned [20001:40000 ,])
median = round(apply ((used) ,2,median ,na.rm = T) ,3)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,42)
uCI = rep (0,42)
for (i in 1:42){
lCI[i] = round(quantile(used[,i],p=0.025) ,3)
uCI[i] = round(quantile(used[,i],p=0.975) ,3)
}

bothline = cbind ((true),median ,(lCI) ,(uCI))

#compare common shock proportion
alpha1 <- (median [1:9])
beta1 <- (median [10:19])
alpha2 <- (median [20:28])
beta2 <- (median [29:38])
phi1 <- (median [39])
phi2 <- (median [40])
lambda <- median [41]
p<- median [42]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)
alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

ratio1 = matrix(NA,nrow=10,ncol =10)
ratio2 = matrix(NA,nrow=10,ncol =10)

trueratio1 = matrix(NA ,nrow=10,ncol =10)
trueratio2 = matrix(NA ,nrow=10,ncol =10)

for(i in 1:10){
for(j in 1:(10-i+1)){
ratio1[i,j] = (alphatilmean[j]*(phi1)/(( alphaf1[i]*beta1[j])^(1-p)))/((

alphatilmean[j]*(phi1)/(( alphaf1[i]*beta1[j])^(1-p)))+alphaf1[i]*beta1[j])
*100

ratio2[i,j] = (alphatilmean[j]*(phi2)/(( alphaf2[i]*beta2[j])^(1-p)))/((
alphatilmean[j]*(phi2)/(( alphaf2[i]*beta2[j])^(1-p)))+alphaf2[i]*beta2[j])
*100

trueratio1[i,j] = (ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/rphitil
)*ralphatil[j]/(( ralphatil[j]/(ralpha1[i]*rbeta1[j]))^(1-sp)*(rphi1/
rphitil)*ralphatil[j]+ ralpha1[i]*rbeta1[j])*100

trueratio2[i,j] = (ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/rphitil
)*ralphatil[j]/(( ralphatil[j]/(ralpha2[i]*rbeta2[j]))^(1-sp)*(rphi2/
rphitil)*ralphatil[j]+ ralpha2[i]*rbeta2[j])*100

}
}

A.2.3 Real data illustration

library(tweedie)
library(MASS)
library(statmod)
library(truncnorm)
library(rootSolve)
library(LaplacesDemon)
library(xtable)
library(ChainLadder)
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library(tmvtnorm)
library(MHadaptive)

########### Import data ##########
dloss1 = as.matrix(read.csv("line1.csv",header=TRUE))
dloss2 = as.matrix(read.csv("line2.csv",header=TRUE))

loss1=matrix(NA ,nrow=10,ncol =10)
loss2=matrix(NA ,nrow=10,ncol =10)

for (i in 1:10){
for(j in 1:(10-i+1)){

loss1[i,j] = dloss1[i,j+1]
loss2[i,j] = dloss2[i,j+1]
}
}

prem1 = c(85421 ,98579 ,103062 ,108412 ,111176 ,112050 ,112577 ,113707 ,126442 ,
130484)

prem2 = c(116491 ,111467 ,107241 ,105687 ,105923 ,111487 ,113268 ,21606 ,110610 ,
104304)

########### Preliminary analysis - plot development ###########

#Plot development trends
par(mar=c(4,4,1,1))
axticks <- seq(1, 10, 1)
axuse <-seq(1,10,1)

plot(loss1[1,],type = "l",lwd=1,lty=1,ylim=c(0,max(loss1 ,na.rm=T)*1.1),xlab="
Development year",xaxt="n", ylab="Loss ratio")

points(loss1[1,], pch =1)
lines(loss2[1,],type = "l",lty=2)
points(loss2[1,], pch =2)

axis(side=1,at=axuse , labels=axticks)
legend("topright", legend = c( "Bodily Injury", "Accident Benefits"),
lty = 1:2,lwd=1, bty = "n",pch=1:2,
title = "")

########## Preliminary analysis - analyse dependence using GLM (without
calendar year factor)##########

vloss1 = as.vector(t(loss1))
vloss2 = as.vector(t(loss2))

vloss1 = vloss1[!is.na(vloss1)]
vloss2 = vloss2[!is.na(vloss2)]

#Set up llh profile to find p
i = rep (1:10 ,10:1)
j <- sequence (10:1)

ci.vec = seq (1.01 ,1.99 ,by =0.01)

llh1 = rep(0,length(ci.vec))
llh2 = llh1

for (t in 1: length(ci.vec)){
out1 <- glm(vloss1~as.factor(j) + as.factor(i) -1, fam=tweedie(var.power=ci.

vec[t]))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vloss2~as.factor(j) + as.factor(i) -1, fam=tweedie(var.power=ci.

vec[t]))
disp2 <- summary(out2)$dispersion
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mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

i1 = c(i,i+10)
j1 = c(j,j+10)
cbine=c(vloss1 ,vloss2)
allh = rep(0, length(ci.vec))

for (t in 1: length(ci.vec)){
outa <- glm(cbine~as.factor(j1) + as.factor(i1) -1, fam=tweedie(var.power=ci.

vec[t]))
disp <- summary(outa)$dispersion
mu <- fitted(outa)
den <- dtweedie(outa$y, mu = mu , phi = disp , power = ci.vec[t])
allh[t] <- sum(log(den))
}

ci1 = ci.vec[which.max(llh1)]
ci2 = ci.vec[which.max(llh2)]
aci = ci.vec[which.max(allh)]
p=aci

#CI for p
outci1 = rep(0,length(llh1))
for (k in 1: length(llh1)){
if (isTRUE (2*abs(llh1[k]-max(llh1)) <= 3.84)) {
outci1[k] = ci.vec[k]
}
else{
outci1[k] = 0
}
}

ci1low = outci1 [2]
ci1hi = outci1 [36]

outci2 = rep(0,length(llh2))
for (k in 1: length(llh2)){
if (isTRUE (2*abs(llh2[k]-max(llh2)) <= 3.84)) {
outci2[k] = ci.vec[k]
}
else{
outci2[k] = 0
}
}

ci2low = outci2 [5]
ci2hi = outci2 [41]

outaci = rep(0,length(allh))
for (k in 1: length(allh)){
if (isTRUE (2*abs(allh[k]-max(allh)) <= 3.84)) {
outaci[k] = ci.vec[k]
}
else{
outaci[k] = 0
}
}

acilow = outaci [8]
acihi = outaci [27]

##Ln L profile plot
plot(ci.vec ,llh1 , type="l", xlim = c(1,2), xlab="p", ylab="logL")
points(ci1 , max(llh1), pch=15, cex =1)
points(aci , llh1[which.max(allh)], pch=18, cex =1)
abline(v=ci1low)
abline(v=ci1hi)

275



APPENDIX A. R CODES

plot(ci.vec ,llh2 , type="l", xlim = c(1,2), xlab="p", ylab="logL")
points(ci2 , max(llh2), pch=15, cex =1)
points(aci , llh2[which.max(allh)], pch=18, cex =1)
abline(v=ci2low)
abline(v=ci2hi)

plot(ci.vec ,allh , type="l", xlim = c(1,2), xlab="p", ylab="logL")
points(aci , max(allh), pch=15, cex =1)
abline(v=acilow)
abline(v=acihi)

#GLM fitting with the best p
paglm <- glm(vloss1 ~ as.factor(j)+as.factor(i), family=tweedie(var.power=ci1

,link.power =0),control = list( epsilon =1e-09, trace=FALSE))
caglm <- glm(vloss2 ~ as.factor(j)+as.factor(i), family=tweedie(var.power=ci2

,link.power =0),control = list( epsilon =1e-09, trace=FALSE))
allglm <-glm(cbine ~ factor(i1)+factor(j1) -1, family=tweedie(var.power=aci ,

link.power =0),control = list( epsilon =1e-09, trace=FALSE))

#QQ plots
qqnorm(residuals(paglm , type="pearson"))
qqline(residuals(paglm , type="pearson"))

qqnorm(residuals(caglm , type="pearson"))
qqline(residuals(caglm , type="pearson"))

qqnorm(residuals(allglm , type="pearson"))
qqline(residuals(allglm , type="pearson"))

#Residuals analysis
res1 = resid(paglm ,"pearson")
res2 = resid(caglm ,"pearson")

peartest = cor.test(res1 ,res2 ,method=c("pearson"), conf.level =0.95)
speatest = cor.test(res1 ,res2 ,method=c("spearman"), conf.level =0.95)
kendtest = cor.test(res1 ,res2 ,method=c("kendall"), conf.level =0.95)
cort = rbind(c(peartest$estimate ,speatest$estimate ,kendtest$estimate),c(

peartest$p.value ,speatest$p.value ,kendtest$p.value))

########## Preliminary analysis - analyse dependence using GLM (without
calendar year factor)##########

#Set up llh profile to find p
k <- c(seq(1,10),seq(2,10),seq(3,10),seq(4,10), seq(5,10), seq(6,10), seq

(7,10), seq (8,10), seq (9,10), 10)

llh1ca = rep(0,length(ci.vec))
llh2ca = llh1ca

for (t in 1: length(ci.vec)){
outpa2 <- glm(vloss1~as.factor(i) + as.factor(j) + as.factor(k), fam=tweedie(

var.power=ci.vec[t]))
disp12 <- summary(outpa2)$dispersion
mu12 <- fitted(outpa2)
den12 <- dtweedie(outpa2$y, mu = mu12 , phi = disp12 , power = ci.vec[t])
llh1ca[t] <- sum(log(den12))
}

for (t in 1: length(ci.vec)){
outca2 <- glm(vloss2~as.factor(i) + as.factor(j)+ as.factor(k), fam=tweedie(

var.power=ci.vec[t]))
disp22 <- summary(outca2)$dispersion
mu22 <- fitted(outca2)
den22 <- dtweedie(outca2$y, mu = mu22 , phi = disp22 , power = ci.vec[t])
llh2ca[t] <- sum(log(den22))
}

ci1ca = ci.vec[which.max(llh1ca)]
ci2ca = ci.vec[which.max(llh2ca)]
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#GLM fitting with the best p
paglm2 <- glm(vloss1 ~ as.factor(i)+as.factor(j)+ as.factor(k), family=

tweedie(var.power=ci1ca ,link.power =0),control = list( epsilon =1e-09, trace
=FALSE))

caglm2 <- glm(vloss2 ~ as.factor(i)+as.factor(j)+ as.factor(k), family=
tweedie(var.power=ci2ca ,link.power =0),control = list( epsilon =1e-09, trace
=FALSE))

#Residual analysis
res_pa2 = resid(paglm2 ,"pearson")
res_ca2 = resid(caglm2 ,"pearson")

peartest2 = cor.test(res_pa2 ,res_ca2 ,method=c("pearson"), conf.level =0.95)
speatest2 = cor.test(res_pa2 ,res_ca2 ,method=c("spearman"), conf.level =0.95)
kendtest2 = cor.test(res_pa2 ,res_ca2 ,method=c("kendall"), conf.level =0.95)
cort2 = rbind(c(peartest2$estimate ,speatest2$estimate ,kendtest2$estimate),c(

peartest2$p.value ,speatest2$p.value ,kendtest2$p.value))

#Heat maps of residuals - export to csv file
Var1 = j
Var2 = rep (10:1 ,10:1)
fitpa2 = vloss1/fitted(paglm2)
fitca2 = vloss2/fitted(caglm2)

ratcalpa <- data.frame(Var1 ,Var2 ,fitpa2)
ratcalca <- data.frame(Var1 ,Var2 ,fitca2)

#write.csv(ratcalpa ," respaglm.csv")
#write.csv(ratcalca ," rescaglm.csv")

########## Choose initial values and get information for prior distributions
selection ##########

#Estimate alpha and beta
solvefn <- function(x,data){
F2 <- x[1]*sum(x[10:18]^(2 - aci)) - as.numeric(crossprod(data [2,1:9],x

[10:18]^(1 - aci)))
F3 <- x[2]*sum(x[10:17]^(2 - aci)) - as.numeric(crossprod(data [3,1:8],x

[10:17]^(1 - aci)))
F4 <- x[3]*sum(x[10:16]^(2 - aci)) - as.numeric(crossprod(data [4,1:7],x

[10:16]^(1 - aci)))
F5 <- x[4]*sum(x[10:15]^(2 - aci)) - as.numeric(crossprod(data [5,1:6],x

[10:15]^(1 - aci)))
F6 <- x[5]*sum(x[10:14]^(2 - aci)) - as.numeric(crossprod(data [6,1:5],x

[10:14]^(1 - aci)))
F7 <- x[6]*sum(x[10:13]^(2 - aci)) - as.numeric(crossprod(data [7,1:4],x

[10:13]^(1 - aci)))
F8 <- x[7]*sum(x[10:12]^(2 - aci)) - as.numeric(crossprod(data [8,1:3],x

[10:12]^(1 - aci)))
F9 <- x[8]*sum(x[10:11]^(2 - aci)) - as.numeric(crossprod(data [9,1:2],x

[10:11]^(1 - aci)))
F10 <- x[9]*sum(x[10:10]^(2 - aci)) - as.numeric(crossprod(data [10,1],x

[10:10]^(1 - aci)))

F11 <- x[10]*sum(c(1,x[1:9]) ^(2-aci)) - as.numeric(crossprod(data[,1],c(1,x
[1:9]) ^(1-aci)))

F12 <- x[11]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:9,2],c(1,
x[1:8]) ^(1-aci)))

F13 <- x[12]*sum(c(1,x[1:7]) ^(2-aci)) - as.numeric(crossprod(data [1:8,3],c(1,
x[1:7]) ^(1-aci)))

F14 <- x[13]*sum(c(1,x[1:8]) ^(2-aci)) - as.numeric(crossprod(data [1:7,4],c(1,
x[1:6]) ^(1-aci)))

F15 <- x[14]*sum(c(1,x[1:5]) ^(2-aci)) - as.numeric(crossprod(data [1:6,5],c(1,
x[1:5]) ^(1-aci)))

F16 <- x[15]*sum(c(1,x[1:4]) ^(2-aci)) - as.numeric(crossprod(data [1:5,6],c(1,
x[1:4]) ^(1-aci)))

F17 <- x[16]*sum(c(1,x[1:3]) ^(2-aci)) - as.numeric(crossprod(data [1:4,7],c(1,
x[1:3]) ^(1-aci)))

F18 <- x[17]*sum(c(1,x[1:2]) ^(2-aci)) - as.numeric(crossprod(data [1:3,8],c(1,
x[1:2]) ^(1-aci)))

F19 <- x[18]*sum(c(1,x[1:1]) ^(2-aci)) - as.numeric(crossprod(data [1:2,9],c(1,
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x[1:1]) ^(1-aci)))
F20 <-x[19]*sum (1^(2- aci)) - as.numeric(crossprod(data [1,10] ,1^(1- aci)))

c(F2=F2 ,F3=F3 ,F4=F4 ,F5=F5 ,F6=F6 ,F7=F7 ,F8=F8 ,F9=F9 ,F10=F10 ,
F11=F11 ,F12=F12 ,F13=F13 ,F14=F14 ,F15=F15 ,F16=F16 ,F17=F17 ,F18=F18 ,F19=F19 ,F20=

F20)
}

ss1 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(loss1 ,na.rm=T)),
data=loss1)

ss2 <- multiroot(f = solvefn , start = c(rep(1,9),colMeans(loss2 ,na.rm=T)),
data=loss2)

#Estimate phi1 and phi2
alphaest1 = c(1,ss1$root [1:9])
betaest1 = ss1$root [10:19]
resid1= matrix(NA,nrow=10,ncol =10)

for (i in 1:10){
for(j in 1:(10-i+1)){
resid1[i,j] = (loss1[i,j]-alphaest1[i]*betaest1[j])^2/(( alphaest1[i]*betaest1

[j])^aci)
}
}
phi1est = sum(resid1 ,na.rm=T)/45

alphaest2 = c(1,ss2$root [1:9])
betaest2 = ss2$root [10:19]
resid2= matrix(NA,nrow=10,ncol =10)
for (i in 1:10){
for(j in 1:(10-i+1)){
resid2[i,j] = (loss2[i,j]-alphaest2[i]*betaest2[j])^2/(( alphaest2[i]*betaest2

[j])^aci)
}
}
phi2est = sum(resid2 ,na.rm=T)/45

#Estimate alpha and beta
betatilest = 0.24
alphatilest =0.0005
minyest=matrix(NA ,nrow=10,ncol =10)
for (i in 1:10){
for (j in 1:(10-i+1)){
minyest[i,j] <- min (((( alphatilest/(alphaest1[i]*betaest1[j]))^(1-aci)*(

phi1est/betatilest)))*alphatilest ,((( alphatilest/(alphaest2[i]*betaest2[j
]))^(1-aci)*(phi2est/betatilest)))*alphatilest)

}}

########### Marginal estimatio ###########

#Posterior function
llhfunc <- function(pars ,data){
alpha1 <- exp(pars [1:9])
beta1 <-exp(pars [10:19])
alpha2 <-exp(pars [20:28])
beta2 <-exp(pars [29:38])
phi1 <- exp(pars [39])
phi2 <-exp(pars [40])
lambda <- exp(pars [41])
p <- exp(pars [42])

alpha1.prior <- sum(dunif(log(alpha1), min=lower [1:9], max=upper [1:9], log=T)
)

beta1.prior <- sum(dunif(log(beta1), min=lower [10:19] , max=upper [10:19] , log=
T))

alpha2.prior <- sum(dunif(log(alpha2), min=lower [20:28] , max=upper [20:28] ,
log=T))

beta2.prior <- sum(dunif(log(beta2), min=lower [29:38] , max=upper [29:38] , log=
T))

phi1.prior <- dunif(log(phi1),min=lower [39],max=upper [39],log=T)
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phi2.prior <- dunif(log(phi2),min=lower [40],max=upper [40],log=T)
lambda.prior <- dunif(log(lambda),min=lower [41],max=upper [41],log=T)
p.prior <- dunif(log(p),min=lower [42],max=upper [42],log=T)

alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

loss1 <- data [1:10 ,]
loss2 <-data [11:20 ,]

meancommon1 = matrix(0,nrow=10,ncol =10)
scalecommon1 = matrix(0,nrow=10,ncol =10)
A1 = matrix(NA ,nrow=10,ncol =10)
B1 = matrix(NA ,nrow=10,ncol =10)

meancommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi1 ,10),nrow=10,byrow=T)

A1 = meancommon1 + (alphaf1%o%beta1)
scalecommon1 [1:10 ,1:10] = (( alphaf1%o%beta1 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi1 ,10),nrow=10,byrow=T)
B1 = phi1*(scalecommon1 + 1)^(1-p)

meancommon2 = matrix(0,nrow=10,ncol =10)
scalecommon2 = matrix(0,nrow=10,ncol =10)
A2 = matrix(NA ,nrow=10,ncol =10)
B2 = matrix(NA ,nrow=10,ncol =10)

meancommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-1))*matrix(rep(
alphatilmean*phi2 ,10),nrow=10,byrow=T)

A2 = meancommon2 + (alphaf2%o%beta2)
scalecommon2 [1:10 ,1:10] = (( alphaf2%o%beta2 [1:10]) ^(p-2))*matrix(rep(

alphatilmean*phi2 ,10),nrow=10,byrow=T)
B2 = phi2*(scalecommon2 + 1)^(1-p)

vecloss1na = c(t(loss1))
vecloss1 = vecloss1na[!is.na(vecloss1na)]
vecA1na = c(t(A1))
vecA1 = vecA1na[!is.na(vecloss1na)]
vecB1na = c(t(B1))
vecB1 = vecB1na[!is.na(vecloss1na)]

vecloss2na = c(t(loss2))
vecloss2 = vecloss2na[!is.na(vecloss2na)]
vecA2na = c(t(A2))
vecA2 = vecA2na[!is.na(vecloss2na)]
vecB2na = c(t(B2))
vecB2 = vecB2na[!is.na(vecloss2na)]

if (!is.finite(p.prior)){LL = -100000000}
else{
LL = sum(log(dtweedie(vecloss1 ,xi=p,mu=vecA1 ,phi=vecB1)))+sum(log(dtweedie(

vecloss2 ,xi=p, mu=vecA2 , phi=vecB2)))}

LP <- LL + alpha1.prior+beta1.prior+alpha2.prior+beta2.prior+phi1.prior+phi2.
prior+lambda.prior+p.prior

list(Monitor = c(LP, alpha1 , beta1 ,alpha2 ,beta2 ,phi1 ,phi2 ,lambda ,p),pars=pars
,LP=LP)

}

#Use adaptive MCMC to get estimates for covariance of proposal density
model1 <- function(pars ,data){
LP = llhfunc(pars , data)$LP
return(LP)
}

data = rbind(loss1 ,loss2)
lower = c(log(ss1$root)[1:9] -1.2 , log(ss1$root)[10:19] -1 , log(ss2$root)

[1:9] -1.2 , log(ss2$root)[10:19] -1.5 , rep(-5,3),log (1.1))
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upper = c(log(ss1$root)[1:9]+1.5 , log(ss1$root)[10:19]+1 , log(ss2$root)
[1:9]+1.5 , log(ss2$root)[10:19]+1.2 ,0 ,1 ,0 , log (1.95))

init=c((lower [1:38]+ upper [1:38])/2,-1,-1,0,log (1.2))
std = (upper -lower)/50

par_names=paste(c(rep("alpha1" ,9),rep("beta1" ,10),rep("alpha2" ,9),rep("beta2"
,5),"phi1","phi2","phitil","p"),c(seq (1:9) ,seq (1:10) ,seq (1:9) ,seq (1:5)
,0,0,0,0))

set.seed (1)
mh_test <- Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = diag(std),iterations = 60000 , burn_in =
20000)

set.seed (1)
mh_test1 <-Metro_Hastings(li_func=model1 , pars=init ,par_names=list(),data=

rbind(loss1 ,loss2),prop_sigma = mh_test$prop_sigma*0.00001 , iterations =
70000 , burn_in = 40000)

write.csv(mh_test1$prop_sigma , file="cov_matrix.csv")

par(mfrow=c(3,2))
for(i in 1:42){plot(mh_test1$trace[,i],type="l")}

#Posterior function
model1 <- function(pars ,data){
llh = llhfunc(pars ,data)
list(Monitor = c(llh$LP, llh$alpha1 , llh$beta1 ,llh$alpha2 ,llh$beta2 ,llh$phi1 ,

llh$phi2 ,llh$lambda ,llh$p),pars=llh$pars ,LP=llh$LP)
}

#Run MCMC
lower = c(log(ss1$root)[1:9] -1.2 , log(ss1$root)[10:19] -1 , log(ss2$root)

[1:9] -1.2 , log(ss2$root)[10:19] -1.5 , rep(-5,3),log (1.1))
upper = c(log(ss1$root)[1:9]+1.5 , log(ss1$root)[10:19]+1 , log(ss2$root)

[1:9]+1.5 , log(ss2$root)[10:19]+1.2 ,0 ,1 ,0 , log (1.95))
init=c((lower [1:38]+ upper [1:38])/2,-1,-1,-1.5,log (1.2))
std = as.matrix(read.csv("cov_matrix.csv",header=T))[ ,2:43]*0.15

Iterations =400000
Status =1000
Thinning =5
LogFile=""

cat("MCMC started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

Acceptance <- 0
Mo0 <- model1(init , data)
Mon <- matrix(NA , nrow=Iterations , ncol=length(Mo0[["Monitor"]]), byrow=TRUE)
dimension <- length(init)
thinned <- matrix(NA , floor(Iterations/Thinning)+1,length(init))
thinned [1,] <- exp(init)

set.seed (11)
for (iter in 1: Iterations) {

if(iter %% Status == 0) cat("Iteration: ", iter , sep="")

#Metropolis algorithm
prop <- mvrnorm(1,mu = Mo0[["pars"]],Sigma=std)
Mo1 <- try(model1(prop , data), silent=TRUE)

log.u <- log(runif (1))
log.alphatiltil <- Mo1[["LP"]] - Mo0[["LP"]] + log(dmvnorm(Mo0[["pars"]],

mean = prop , sigma=std)) - log(dmvnorm(prop , mean=Mo0[["pars"]], sigma=std
))

if((is.finite(log.alphatiltil)) && (!inherits(Mo1 , "try -error")) && ((is.
finite(Mo1[["Monitor"]]))) && (log.u < log.alphatiltil)) {

Mo0 <- Mo1
Acceptance <- Acceptance + 1}
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Mon[iter ,] <- Mo0[["Monitor"]]

#Thin Samples
if(iter %% Thinning == 0) {
t.iter <- floor(iter / Thinning) + 1
thinned[t.iter ,] <- Mo0[["pars"]]}

#Show tracking
if(iter %% Status == 0){
cat(", LP:", round(Mo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(Acceptance/iter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()
save.image ()

#MCMC trace plots
par(mfrow=c(3,2))
for (i in 1:42) {
plot(thinned [2:t.iter ,i],type="l")
}

#Summary statistics for marginal estimation
used = exp(thinned [60001:80000 ,])
median = round(apply ((used) ,2,median ,na.rm = T) ,3)
st.dev = apply(used ,2,sd,na.rm=T)
lCI = rep (0,42)
uCI = rep (0,42)
for (i in 1:42){
lCI[i] = round(quantile(used[,i],p=0.05) ,3)
uCI[i] = round(quantile(used[,i],p=0.95) ,3)
}

bothline = cbind(median ,st.dev ,(lCI) ,(uCI))

########## Multivariate estimation (adaptive Metropolis)###########

#Use parameter estimates from marginal estimation
alpha1 <- median [1:9]
beta1 <- median [10:19]
alpha2 <- median [20:28]
beta2 <- median [29:38]
phi1 <- median [39]
phi2 <- median [40]
lambda <- median [41]
p<- median [42]
alphaf1 <-c(1,alpha1)
alphaf2 <-c(1,alpha2)

#Posterior function
model2 <- function(pars ,data){
zeta <- exp(pars)
phitil <- zeta^(2-p)/lambda

alphatilmean = (sqrt(beta1*beta2))^(2-p)*zeta
zeta.prior <- dunif(log(zeta),min=-3,max=1,log=T)

l1 <- matrix(NA, nrow=10, ncol =10)
miny <- matrix(NA, nrow=10, ncol =10)
loss1 <- data [1:10 ,]
loss2 <- data [11:20 ,]

if(all(is.finite(zeta.prior))){
for (i in 1:10){
for (j in 1:(10-i+1)){
miny[i,j] <- min((loss1[i,j]/(( alphatilmean[j]/(alphaf1[i]*beta1[j]))^(1-p)*(

phi1/phitil))), (loss2[i,j]/(( alphatilmean[j]/(alphaf2[i]*beta2[j]))^(1-p)
*(phi2/phitil))))

if (miny[i,j]<=1e -200000000){
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l1[i,j]=log(dtweedie(loss1[i,j],xi=p, mu=alphaf1[i]*beta1[j], phi = phi1))+
log(dtweedie(loss2[i,j],xi=p, mu=alphaf2[i]*beta2[j], phi = phi2))

}
else {
f<- function(z){
dtweedie(loss1[i,j]-( alphatilmean[j]/(alphaf1[i]*beta1[j]))^(1-p)*(phi1/

phitil)*z,xi=p, mu=alphaf1[i]*beta1[j], phi = phi1)*dtweedie(loss2[i,j]-(
alphatilmean[j]/(alphaf2[i]*beta2[j]))^(1-p)*(phi2/phitil)*z,xi=p, mu=
alphaf2[i]*beta2[j], phi = phi2)*dtweedie(z,xi=p, mu=alphatilmean[j], phi
= phitil)

}
llh <- try(integrate(f,lower=1e -2000000000 , upper=miny[i,j]),silent=T)
if(inherits(llh , 'try -error ')){
l1[i,j] <- log (0)
}
else{
l1[i,j] <- log(llh$value)}}
}}}

LL <- sum(l1 , na.rm=T)
LP <- LL + zeta.prior

list(LP = LP, Monitor = c(LP, zeta ,phitil), pars=pars)
}

#Prepare for MCMC
ainit <- log(1)

Iterations =90000
Status =1000
Thinning =3
alpha.star =0.44
Periodicity =1
LogFile=""

cat("MCMC started on ", date(), "\n", sep="")
time1 <- proc.time()

aAcceptance <- 0
aMo0 <- model2(ainit , data)
aMon <- matrix(NA,nrow=Iterations ,ncol=length(aMo0[["Monitor"]]))
adimension <- length(ainit)
athinned <- matrix(NA, floor(Iterations/Thinning)+1,2)
athinned [1,] <- aMo0[["Monitor"]][2:3]
aScaleF <- 0.0001/sqrt(adimension)
aVarCov <- matrix(0, adimension , adimension)
diag(aVarCov) <- rep(aScaleF , adimension)
aS <- t(chol(aVarCov))

set.seed (11)
for (aiter in 1: Iterations) {
if(aiter %% Status == 0) cat("Iteration: ", aiter , sep="")

#Adaptive Metropolis
aU <- rnorm(adimension)
aprop <- as.vector(aMo0[["pars"]] + aS %*% aU)
aMo1 <- try(model2(aprop , data), silent=TRUE)

alog.u <- log(runif (1))
alog.alpha <- aMo1[["LP"]] - aMo0[["LP"]]
if((is.finite(alog.alpha)) && (!inherits(aMo1 , "try -error")) && ((is.finite(

aMo1[["Monitor"]]))) && (alog.u < alog.alpha)) {
aMo0 <- aMo1
aAcceptance <- aAcceptance + 1}

aMon[aiter ,] <- aMo0[["Monitor"]]

if({ aiter >= 2} & {aiter %% Periodicity == 0}) {
aeta <- min(1, adimension*aiter ^(-2/3))
aVarCov.test <- aS %*% (diag(adimension) + aeta*(min(1, exp(alog.alpha)) -

alpha.star) * aU %*% t(aU) / sqrt(sum(aU^2))) %*% t(aS)
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if(!all(is.finite(aVarCov.test))) {aVarCov.test <- aVarCov}
if(!is.symmetric.matrix(aVarCov.test)){aVarCov.test <- as.symmetric.matrix(

aVarCov.test)}
if(is.positive.definite(aVarCov.test)){ aS.z <- try(t(chol(aVarCov)), silent=

TRUE)
if(!inherits(aS.z, "try -error")) {
aVarCov <- aVarCov.test
aS <- aS.z}}}

#Thin samples
if(aiter %% Thinning == 0) {
at.iter <- floor(aiter / Thinning) + 1
athinned[at.iter ,] <- aMo0[["Monitor"]][2:3]}

if(aiter %% Status == 0){
cat(", LP:", round(aMo0[["LP"]], 2), sep = "", file = LogFile , append = TRUE)
cat(", Acceptance rate:", round(aAcceptance/aiter , 2), "\n", sep = "", file =

LogFile , append = TRUE)}
}

cat("MCMC ended on ", date(), "\n", sep="")
time1 <- proc.time()

#MCMC trace plots
par(mfrow=c(2,1))
plot(athinned [2:at.iter ,1],type="l")
plot(athinned [2:at.iter ,2],type="l")

#Summary statistics for multivariate estimation
aused = (athinned [10002:30001 ,])
amean = round(apply(( aused),2,median ,na.rm = T) ,3)
astd = apply(aused ,2,sd,na.rm=T)
alCI = rep(0,2)
auCI = rep(0,2)
for (i in 1:2){
alCI[i] = round(quantile(aused[,i],p=0.05) ,3)
auCI[i] = round(quantile(aused[,i],p=0.95) ,3)
}
abothline = cbind(amean ,astd ,alCI ,auCI)

########## Goodness of fit test ##########

#Marginal fit
fittedmarginal1 = matrix(NA,nrow=10,ncol =10)
fittedmarginal2 = matrix(NA,nrow=10,ncol =10)
pres1 = matrix(NA ,nrow=10,ncol =10)
pres2 = matrix(NA ,nrow=10,ncol =10)

alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

for (i in 1:10){
for (j in 1:(10-i+1)){
B1 = phi1*((phi1/(( alphaf1[i]*beta1[j])^(2-p)))*alphatilmean[j]+1)^{1-p}

B2 = phi2*((phi2/(( alphaf2[i]*beta2[j])^(2-p)))*alphatilmean[j]+1)^{1-p}

fittedmarginal1[i,j]= alphaf1[i]*beta1[j]*((phi1/(( alphaf1[i]*beta1[j])^(2-p))
)*alphatilmean[j]+1)

pres1[i,j] = (loss1[i,j]-fittedmarginal1[i,j])/sqrt(fittedmarginal1[i,j]^p*B1
)

fittedmarginal2[i,j]= alphaf2[i]*beta2[j]*((phi2/(( alphaf2[i]*beta2[j])^(2-p))
)*alphatilmean[j]+1)

pres2[i,j] = (loss2[i,j]-fittedmarginal2[i,j])/sqrt(fittedmarginal2[i,j]^p*B2
)

}
}

mtresid1=as.vector(pres1)
mtresid1=mtresid1[!is.na(mtresid1)]
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mtresid2=as.vector(pres2)
mtresid2=mtresid2[!is.na(mtresid2)]

par(mfrow=c(1,2))
qqnorm(mtresid1 ,font.main = 1,main="Bodily Injury line")
qqline(mtresid1)

qqnorm(mtresid2 ,font.main = 1,main="Accident Benefits line")
qqline(mtresid2)

#Multivariate fit
modelgof <- function(parm){
alpha1 <- parm [1:9]
beta1 <-parm [10:19]
alpha2 <-parm [20:28]
beta2 <-parm [29:38]
phi1 <- parm [39]
phi2 <-parm [40]
p<- parm [41]
lambda <- parm [42]
phitil <- parm [43]
alphaf1 = c(1,alpha1)
alphaf2 = c(1,alpha2)
alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

frandom = matrix(NA ,ncol=10,nrow =10)
fpa = matrix(NA ,ncol=10,nrow =10)
fca = matrix(NA ,ncol=10,nrow =10)

for (i in 1:10){
for (j in 1:(10-i+1)){
frandom[i,j] = rtweedie(1,mu=alphatilmean[j],phi=phitil ,xi=p)
fpa[i,j] = (( alphatilmean[j]/(( alphaf1[i]*beta1[j])))^(1-p)*(phi1/phitil)*

frandom[i,j]+ rtweedie(1,mu=alphaf1[i]*beta1[j],phi=phi1 ,xi=p))
fca[i,j] = (( alphatilmean[j]/(( alphaf2[i]*beta2[j])))^(1-p)*(phi2/phitil)*

frandom[i,j]+ rtweedie(1,mu=alphaf2[i]*beta2[j],phi=phi2 ,xi=p))
}}

list (t = c(ttpa ,ttca ,tt), vfpa = as.vector(t(fpa)), vfca = as.vector(t(fca))
, vftotal = as.vector(t(ftotal)))

}

para = cbind(used [,1:40], used[,42],aused)
N = nrow(para)
gof_sfpa = matrix(NA ,nrow=N,ncol =100)
gof_sfca = matrix(NA ,nrow=N,ncol =100)

set.seed (11)
for (n in 1:N){
mtest = modelgof(para[n,])
gof_sfpa[n,] = mtest[["vfpa"]]
gof_sfca[n,] = mtest[["vfca"]]
}

par(mfrow=c(1,2), mai = c(0.8, 0.75, 0.5, 0.1))
plot(ecdf(vloss1)(vloss1),ecdf(vloss2)(vloss2),xlab="Bodily Injury",ylab="

Accident Benefits",main="Observed data",font.main = 1)
plot(ecdf(gof_sfpa [10000 ,])(gof_sfpa [10000 ,]),ecdf(gof_sfca [10000 ,])(gof_sfca

[10000 ,]),main="Fitted data",xlab="Bodily Injury",ylab="Accident Benefits"
,font.main = 1)

########## Claims forecast ##########

#Function to forecast future claims
modelp <- function(parm){
alpha1 <- parm [1:9]
beta1 <-parm [10:19]
alpha2 <-parm [20:28]
beta2 <-parm [29:38]
phi1 <- parm [39]
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phi2 <-parm [40]
p<- parm [41]
lambda <- parm [42]
phitil <- parm [43]
alphaf1 = c(1,alpha1)
alphaf2 = c(1,alpha2)
alphatilmean = (sqrt(beta1*beta2))^(2-p)*lambda

frandom = matrix(NA ,ncol=10,nrow =10)
fpa = matrix(NA ,ncol=10,nrow =10)
fca = matrix(NA ,ncol=10,nrow =10)
ftotal = matrix(NA,ncol=10,nrow =10)

fpaacc = c(0 ,10)
fcaacc = c(0 ,10)
fttacc = c(0 ,10)

for (i in 2:10){
for (j in (10-i+2) :10){
frandom[i,j] = rtweedie(1,mu=alphatilmean[j],phi=phitil ,xi=p)

fpa[i,j] = ((( alphatilmean[j]/(( alphaf1[i]*beta1[j])))^(1-p)*(phi1/phitil)*
frandom[i,j]+ rtweedie(1,mu=alphaf1[i]*beta1[j],phi=phi1 ,xi=p)))*prem1[i]

fca[i,j] = ((( alphatilmean[j]/(( alphaf2[i]*beta2[j])))^(1-p)*(phi2/phitil)*
frandom[i,j]+ rtweedie(1,mu=alphaf2[i]*beta2[j],phi=phi2 ,xi=p)))*prem2[i]

ftotal[i,j] = fpa[i,j] + fca[i,j]
}

fpaacc[i] = sum(fpa[i,], na.rm=T)
fcaacc[i] = sum(fca[i,],na.rm=T)
fttacc[i] = fpaacc[i]+ fcaacc[i]
}

ttpa = sum(fpaacc , na.rm=T)
ttca = sum(fcaacc , na.rm=T)
tt = ttpa+ttca

list (t = c(ttpa , ttca , tt), vfpa = as.vector(t(fpa)), vfca = as.vector(t(fca
)), vftotal = as.vector(t(ftotal)), fpaacc = fpaacc , fcaacc = fcaacc ,
fttacc = fttacc)

}

#Run simulation
para = cbind(used [,1:40], used[,42],aused)
N = nrow(para)
stt = matrix(NA ,nrow=N,ncol =15)

sfpa = matrix(NA,nrow=N,ncol =100)
sfca = matrix(NA,nrow=N,ncol =100)
sftotal = matrix(NA ,nrow=N,ncol =100)

sfpaacc = matrix(NA ,nrow=N,ncol =10)
sfcaacc = matrix(NA ,nrow=N,ncol =10)
sfttacc = matrix(NA ,nrow=N,ncol =10)

cat("Simulation started on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

set.seed (11)
for (n in 1:N){
mpredict = modelp(para[n,])
stt[n,] = mpredict [["t"]]
sfpa[n,] = mpredict [["vfpa"]]
sfca[n,] = mpredict [["vfca"]]
sftotal[n,] = mpredict [["vftotal"]]
sfpaacc[n,] = mpredict [["fpaacc"]]
sfcaacc[n,] = mpredict [["fcaacc"]]
sfttacc[n,] = mpredict [["fttacc"]]
}
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cat("Simulation ended on", date(), "\n", sep="")
time1 <- proc.time()
LDcall <- match.call()

#summarise results
mean_stt = colMeans(stt[,1:3],na.rm=T)
sd_stt = apply(stt[,1:3],2,sd,na.rm=T)
var75 = c(0,0,0)
var95 = c(0,0,0)

for (i in 1:3){
var75[i] = quantile(stt[,i],p=0.75)
var95[i] = quantile(stt[,i],p=0.95)
}

paaccmean = colMeans(sfpaacc)
paaccsd = apply(sfpaacc ,2,sd ,na.rm=T)

caaccmean = colMeans(sfcaacc)
caaccsd = apply(sfcaacc ,2,sd ,na.rm=T)

ttaccmean = colMeans(sfttacc)
ttaccsd = apply(sfttacc ,2,sd ,na.rm=T)

accidentyrsummary = cbind(paaccmean ,paaccsd ,caaccmean ,caaccsd ,ttaccmean ,
ttaccsd)

xtable(accidentyrsummary)

summarytable = rbind(mean_stt ,sd_stt ,var75 ,var95)

library(EnvStats)

par(mfrow=c(1,1))
plot (density(stt[,1]), ylim=c(0 ,2.5e-05),xlim=c(40000 ,500000) ,xlab="Total

unpaid losses",main="",lwd =3)
lines (density(stt[,2]), lty=2,lwd=3)
lines (density(stt[,3]), lty=3,lwd=3)
legend("top", legend = c("Bodily Injury", "Accient Benefits", "Total"),
lty = 1:3,lwd=3, bty = "n",
title = "")

#Common shock proportions
ratio1 = matrix(NA,nrow=10,ncol =10)
ratio2 = matrix(NA,nrow=10,ncol =10)

for(i in 1:10){
for(j in 1:10){
ratio1[i,j] = (alphatilmean[j]*(phi1)/(( alphaf1[i]*beta1[j])^(1-p)))/((

alphatilmean[j]*(phi1)/(( alphaf1[i]*beta1[j])^(1-p)))+alphaf1[i]*beta1[j])
*100

ratio2[i,j] = (alphatilmean[j]*(phi2)/(( alphaf2[i]*beta2[j])^(1-p)))/((
alphatilmean[j]*(phi2)/(( alphaf2[i]*beta2[j])^(1-p)))+alphaf2[i]*beta2[j])
*100

}
}
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A.3 R codes for Chapter 6

A.3.1 Gaussian model illustration

library(magic)
library(MASS)
library(matlib)

########## Simulate triangles ##########
I=15

#Parameters
lambda1 = 0.6
lambda2 = 0.8

phi1= 0.02
phi2= 0.02

gamma1sd = c(0.01 ,0.005 ,0.001)
gamma2sd = c(0.005 ,0.002 ,0.0005)
psisd = c(0.005 ,0.005 ,0.005)

coeff =1

#Initialisation
set.seed (4175)
y_kf = list()
a_kf = list()
h_kf = list()
e_kf = list()
gamma_kf=list()
psi_kf = list()

vector.h1 = rep(0,I)
vector.h2 = rep(0,I)
vector.h1[1] = 0.5
vector.h2[1] = 0.5

commonshock = rnorm(I-1,mean=0,sd=psisd [1])
for (i in 2:I){
vector.h1[i] = vector.h1[i-1]+ lambda1*commonshock[i-1] + rnorm(1,mean=0,sd=

psisd [2])
vector.h2[i] = vector.h2[i-1]+ lambda2*commonshock[i-1] + rnorm(1,mean=0,sd=

psisd [3])
}

a1_0 = 7
r1_0 = 1.5
s1_0 = -0.8

a2_0 = 7
r2_0 = 2
s2_0 = -0.4

gamma .0 = c(a1_0,r1_0,s1_0,a2_0,r2_0,s2_0)
q_kf = diag(c(gamma1sd ,gamma2sd))

psi.1 = c(vector.h1 ,vector.h2)

gamma = gamma .0+c(mvrnorm(1,mu=rep(0,3),Sigma=q_kf [1:3 ,1:3]),mvrnorm(1,mu=rep
(0,3),Sigma=q_kf[4:6 ,4:6]))

gamma_kf[[1]] = gamma

an = matrix(0,nrow=(I),ncol =3)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=1,to=I)))
an[,3] = c((seq(from=1,to=(I))))

A = cbind(adiag(an ,an))
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a_kf [[1]] = A

E = diag(2*I)
e_kf [[1]] = E

H = diag(c(rep(phi1 ,I),rep(phi2 ,I)))
h_kf [[1]] = H

y1 = A%*%(gamma)+ E%*%psi.1 + as.matrix(mvrnorm(1,mu = rep(0,2*I),Sigma=H))
y_kf [[1]] = y1

line1 = matrix(NA ,nrow=I,ncol=I)
line2 = matrix(NA ,nrow=I,ncol=I)
line1 [1,] = y1[1:I]
line2 [1,] = y1[(I+1):(2*I)]

vector.a1 = rep(NA,I)
vector.a1[1] = gamma [1]
vector.r1 = rep(NA,I)
vector.r1[1] = gamma [2]
vector.s1 = rep(NA,I)
vector.s1[1] = gamma [3]
vector.a2 = rep(NA,I)
vector.a2[1] = gamma [4]
vector.r2 = rep(NA,I)
vector.r2[1] = gamma [5]
vector.s2 = rep(NA,I)
vector.s2[1] = gamma [6]

for (i in 2:I) {
#State simulation
gamma=gamma+as.matrix(mvrnorm(n=1,mu=rep(0,6),Sigma = q_kf))
gamma_kf[[i]] = gamma

#Observation simulation
an = matrix(0,nrow=(I+1-i),ncol =3)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=1,to=(I+1-i))))
an[,3] = c((seq(from=1,to=(I-i+1))))

A = adiag(an ,an)

H = diag(c(rep(phi1 ,(I-i+1)),rep(phi2 ,(I-i+1))))
en = matrix(0,nrow =(15-i+1),ncol=i-1)
en = cbind(en ,diag(15-i+1))
E = adiag(en ,en)

yn = A%*%gamma+ E%*%psi.1 + as.matrix(mvrnorm(n=1,mu=rep(0,(I+1-i)*2),Sigma =
H))

line1[i,1:(I-i+1)] = yn[1:(I-i+1)]
line2[i,1:(I-i+1)] = yn[(I-i+2):length(yn)]

y_kf[[i]] = yn
a_kf[[i]] = A
e_kf[[i]] = E
h_kf[[i]] = H

vector.a1[i] = gamma [1]
vector.r1[i] = gamma [2]
vector.s1[i] = gamma [3]
vector.a2[i] = gamma [4]
vector.r2[i] = gamma [5]
vector.s2[i] = gamma [6]
}

i=I+1

an = matrix(0,nrow=(I+1-i),ncol =3)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=1,to=(I+1-i))))
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an[,3] = c((seq(from=1,to=(I-i+1))))
A = adiag(an,an)

en = matrix(0,nrow =(15-i+1),ncol=i-1)
en = cbind(en ,diag(15-i+1))
E = adiag(en,en)

a_kf[[i]] = A
e_kf[[i]] = E

par(mfrow=c(4,2))
plot(vector.a1,type="l")
plot(vector.a2,type="l")
plot(vector.r1,type="l")
plot(vector.s1,type="l")
plot(vector.r2,type="l")
plot(vector.s2,type="l")
plot(vector.h1,type="l")
plot(vector.h2,type="l")

########## Preliminary analysis - development plots ##########
line1exp = exp(line1)
line2exp = exp(line2)

par(mfrow=c(1,1))
plot(line1exp [1,],type = "l",lwd=1, ylim=c(min(line1exp ,na.rm=T),max(line1exp

,na.rm=T)))
for (i in 2:I){
lines(line1exp[i,],lwd=1)
}

plot(line2exp [1,],type = "l",lwd=1, ylim=c(min(line2exp ,na.rm=T),max(line2exp
,na.rm=T)))

for (i in 2:I){
lines(line2exp[i,],lwd=1)
}

########## Preliminary analysis - GLM analysis to pick initial values
##########

vline1 = as.vector(t(line1))
vline1 = vline1[!is.na(vline1)]
vline2 = as.vector(t(line2))
vline2 = vline2[!is.na(vline2)]

#First accident year
j= seq(1:I)
i=rep(1,I)
out1 <- lm(line1 [1,]~ i + log(j) + (j))
out2 <- lm(line2 [1,]~ i + log(j) + (j))

#All accident years
j1= c(c(1:15) ,c(1:14) ,c(1:13) ,c(1:12) ,c(1:11) ,c(1:10) ,c(1:9) ,c(1:8) ,c(1:7) ,c

(1:6),c(1:5),c(1:4),c(1:3),c(1:2) ,1)
i1=rep (1:I,I:1)

out1all <- lm(vline1~ as.factor(i1) + log(j1) + (j1))
out2all <- lm(vline2~ as.factor(i1) + log(j1) + (j1))

length = seq(from=I,to=1)
Var1 = sequence(length)
Var2 = rep(I:1,I:1)
line1frame <- data.frame(Var1 ,Var2 ,vline1)
line2frame <- data.frame(Var1 ,Var2 ,vline2)

########## Parameter estimation -MLE with Kalman filtering ##########
#Likelihood function
llhfunction <- function(parsq){
par = exp(parsq)

h_kf_e = list()
llh_v = rep(NA ,I)
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f.t = list()
v.t = list()
q.t = list()
gamma.t = list()
gamma.filter = list()
q.filter = list()
psi.t = list()
psi.filter = list()
qpsi.t = list()
qpsi.filter = list()
g.t = list()
gpsi.t = list()
y.fit = list()

q.1 = diag(c(par [3:8]))
q.t[[1]] = q.1

sim.cal = matrix(NA ,nrow =10000 , ncol=I*2)
sim.cal[,1] = rep (0.45 ,10000)
sim.cal[,16] = rep (0.45 ,10000)

set.seed (4178)
for(n in 1:10000){
commonshock.e = rnorm(I-1,mean=0,sd=par [9])
for (i in 2:I){
sim.cal[n,i] = sim.cal[n,i-1]+ par [12]*commonshock.e[i-1] + rnorm(1,mean=0,sd=

par [10])
sim.cal[n,I+i] = sim.cal[n,I+i-1]+ par [13]*commonshock.e[i-1] + rnorm(1,mean

=0,sd=par [11])
}
}

gamma.t[[1]] = c(out1all$coefficients [1] -0.45, out1all$coefficients [16],
out1all$coefficients [17], out2all$coefficients [1] -0.45, out2all$coefficients
[16], out2all$coefficients [17])

psi.t[[1]] = colMeans(sim.cal)
qpsi.t[[1]] = cov(sim.cal)

gamma.vector=matrix(NA ,nrow=I,ncol =6)
psi.vector = matrix(NA ,nrow=I,ncol =2)

for (i in 1:(I)){
h_kf_e[[i]] = diag(c(rep(par[1],(I-i+1)),rep(par[2],(I-i+1))))

#Measurement update for calendar factors
gpsi.t[[i]] = qpsi.t[[i]]%*%t(e_kf[[i]])%*%inv(e_kf[[i]]%*%qpsi.t[[i]]%*%t(e_

kf[[i]])+h_kf_e[[i]])
if (i==1){
psi.filter [[i]] = psi.t[[i]] + gpsi.t[[i]]%*%(y_kf[[i]]-a_kf[[i]]%*%gamma.t[[

i]]-e_kf[[i]]%*%psi.t[[i]])}
else{
psi.filter [[i]] = psi.t[[i]] + gpsi.t[[i]]%*%(y_kf[[i]]-a_kf[[i]]%*%gamma.

filter [[i-1]]-e_kf[[i]]%*%psi.t[[i]])}
qpsi.filter [[i]] = qpsi.t[[i]] - gpsi.t[[i]]%*%e_kf[[i]]%*%qpsi.t[[i]]

#Measurement update for states
g.t[[i]] = q.t[[i]]%*%t(a_kf[[i]])%*%inv(a_kf[[i]]%*%q.t[[i]]%*%t(a_kf[[i]])+

h_kf_e[[i]])
gamma.filter [[i]] = gamma.t[[i]] + g.t[[i]]%*%(y_kf[[i]]-a_kf[[i]]%*%gamma.t

[[i]]-e_kf[[i]]%*%psi.filter [[i]])
q.filter [[i]] = q.t[[i]] - g.t[[i]]%*%a_kf[[i]]%*%q.t[[i]]

#Time update for calendar factors
psi.t[[i+1]] = psi.filter [[i]]
qpsi.t[[i+1]] = qpsi.filter [[i]] + qpsi.t[[1]]*0.5

#Time update for states
gamma.t[[i+1]] = gamma.filter [[i]]
q.t[[i+1]] = q.filter [[i]] + q.1
f.t[[i]] = a_kf[[i]]%*%q.t[[i]]%*%t(a_kf[[i]]) + e_kf[[i]]%*%qpsi.t[[i]]%*%t(

e_kf[[i]]) + h_kf_e[[i]]
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v.t[[i]] = y_kf[[i]] - a_kf[[i]]%*%gamma.t[[i]] - e_kf[[i]]%*%psi.t[[i]]

y.fit[[i]] = a_kf[[i]]%*%gamma.filter [[i]] + e_kf[[i]]%*%psi.filter [[i]]

gamma.vector[i,1] = gamma.filter [[i]][1]
gamma.vector[i,2] = gamma.filter [[i]][2]
gamma.vector[i,3] = gamma.filter [[i]][3]
gamma.vector[i,4] = gamma.filter [[i]][4]
gamma.vector[i,5] = gamma.filter [[i]][5]
gamma.vector[i,6] = gamma.filter [[i]][6]
psi.vector[i,1] = psi.filter [[i]][i]
psi.vector[i,2] = psi.filter [[i]][I+i]

llh_v[i] = -length(y_kf[[i]])*0.5*(log(2*pi)) - 0.5*(log(det(f.t[[i]]))+t(v.t
[[i]])%*%inv(f.t[[i]])%*%v.t[[i]])}

llh = -sum(llh_v)
list(llh = llh , y.fit=y.fit ,gamma.t=gamma.t,q.t=q.t,qpsi.filter=qpsi.filter ,

qpsi.t=qpsi.t,gamma.filter = gamma.filter , q.filter=q.filter ,psi.t = psi.t
, psi.filter=psi.filter ,gamma.vector=gamma.vector ,psi.vector=psi.vector)

}

#Estimate parameters
llh_func <- function(parsq){
llh = llhfunction(parsq)$llh
return(llh)
}

par_est_init = c(-3.91, -3.91, -4.61, -5.30, -6.91, -5.30, -6.21, -7.60,
-5.30, -5.30, -5.30, -0.51, -0.22)

set.seed (4157)
mstep = optim(par_est_init*1.2,llh_func ,method="BFGS",hessian = T,control=

list(trace=T,abstol =1e-5))
fisher_info <- try(solve(-mstep$hessian),silent=T)
prop_sigma <-try((sqrt(diag(fisher_info))),silent=T)

#Results
upper <- try(mstep$par + 1.96*prop_sigma ,silent=T)
lower <- try(mstep$par - 1.96*prop_sigma ,silent=T)
true = log(c(phi1 ,phi2 ,gamma1sd ,gamma2sd ,psisd ,lambda1 ,lambda2))
results = cbind(true ,mstep$par ,lower ,upper)

########## States estimation using Kalman filtering ##########
function_fit <- function(parsq){
fit = llhfunction(parsq)
list(y.fit=fit$y.fit ,gamma.t=fit$gamma.t,q.t=fit$q.t,qpsi.filter=fit$qpsi.

filter ,qpsi.t=fit$qpsi.t,gamma.filter =fit$gamma.filter , q.filter=fit$q.
filter ,psi.t = fit$psi.t, psi.filter=fit$psi.filter ,gamma.vector=fit$gamma
.vector ,psi.vector=fit$psi.vector)}

par_fit = function_fit(mstep$par)

########## States estimation using Kalman smoothing ##########
psi.smooth = matrix(NA ,I,28)
psi.smooth[I,] = par_fit$psi.filter [[I]][c(-1,-16)]

gamma.smooth = matrix(NA ,I,6)
gamma.smooth[I,] = par_fit$gamma.filter [[I]]
y.smooth = list()

y.smooth.fit =a_kf[[I]]%*%gamma.smooth[I,] + e_kf[[I]]%*%c(0.45 ,psi.smooth[I
,1:14] ,0.45 , psi.smooth[I ,15:28])

y.smooth [[I]] = y.smooth.fit
for (i in (I-1) :1){
psi.smooth[i,] = par_fit$psi.filter [[i]][c(-1,-16)] + par_fit$qpsi.filter [[i

]][c(-1,-16),c(-1,-16)]%*%inv(par_fit$qpsi.t[[i+1]][c(-1,-16),c(-1,-16)])%
*%(psi.smooth[i+1,]-par_fit$psi.t[[i+1]][c(-1,-16)])

gamma.smooth[i,] = par_fit$gamma.filter [[i]] + par_fit$q.filter [[i]]%*%inv(
par_fit$q.t[[i+1]])%*%(gamma.smooth[i+1,]-par_fit$gamma.t[[i+1]])

y.smooth.fit =a_kf[[i]]%*%gamma.smooth[i,] + e_kf[[i]]%*%c(0.45 ,psi.smooth[i
,1:14] ,0.45 , psi.smooth[i ,15:28])
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y.smooth [[i]] = y.smooth.fit
}

########## Summarise results ##########
state_est = array(0,c(12,I,3))
state_est[1,,] = cbind(par_fit$gamma.vector [1:I,1], vector.a1[1:I],gamma.

smooth [,1])
state_est[2,,] = cbind(par_fit$gamma.vector [1:I,2], vector.r1[1:I],gamma.

smooth [,2])
state_est[3,,] = cbind(par_fit$gamma.vector [1:I,3], vector.s1[1:I],gamma.

smooth [,3])
state_est[4,,] = cbind(par_fit$gamma.vector [1:I,4], vector.a1[1:I],gamma.

smooth [,4])
state_est[5,,] = cbind(par_fit$gamma.vector [1:I,5], vector.r2[1:I],gamma.

smooth [,5])
state_est[6,,] = cbind(par_fit$gamma.vector [1:I,6], vector.s2[1:I],gamma.

smooth [,6])
state_est[7,,] = cbind(par_fit$psi.vector [1:I,1], vector.h1[1:I],c(0.45, psi.

smooth [1 ,1:14]))
state_est[8,,] = cbind(par_fit$psi.vector [1:I,2], vector.h2[1:I],c(0.45, psi.

smooth [1 ,15:28]))
#Mean of Hoerl curve
state_est[9,,] = cbind((par_fit$gamma.vector [,2]-1)/(-par_fit$gamma.vector

[,3]) ,(vector.r1 -1)/(-vector.s1) ,(gamma.smooth [,2]-1)/(-gamma.smooth [,3]))
state_est[10,,] = cbind((par_fit$gamma.vector [,5]-1)/(-par_fit$gamma.vector

[,6]) ,(vector.r2 -1)/(-vector.s2) ,(gamma.smooth [,5]-1)/(-gamma.smooth [,6]))
#Variance of Hoerl curve
state_est[11,,] = cbind((par_fit$gamma.vector [,2]-1)/(par_fit$gamma.vector

[ ,3]^2) ,(vector.r1 -1)/(vector.s1^2) ,(gamma.smooth [,2]-1)/(gamma.smooth
[ ,3]^2))

state_est[12,,] = cbind((par_fit$gamma.vector [,5]-1)/(par_fit$gamma.vector
[ ,6]^2) ,(vector.r2 -1)/(vector.s2^2) ,(gamma.smooth [,5]-1)/(gamma.smooth
[ ,6]^2))

#Plot the difference ratio
difference_plot = matrix(NA ,I,12)
for(i in 1:12){
difference_plot[,i] = (state_est[i,,3])/state_est[i,,2]
}

par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
par(mfrow=c(4,2))
axticks <- seq(1, 15, 1)
axuse <-seq(1,15,1)
plot(difference_plot[,1],type="l",lty=1,main=expression(paste(a[i]^(1))),ylim

=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,1],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,2],type="l",lty=1,main=expression(paste(a[i]^(2))),ylim

=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,2],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,9],type="l",lty=1,main=expression(paste ((r[i]^(1) -1)/(-

s[i]^(1)))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,9],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,10],type="l",lty=1,main=expression(paste ((r[i]^(2) -1)/

(-s[i]^(2)))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,10],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,11],type="l",lty=1,main=expression(paste ((r[i]^(1) -1)/

((s[i]^(1))^2))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,11],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,12],type="l",lty=1,main=expression(paste ((r[i]^(2) -1)/

((s[i]^(2))^2))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,12],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,7],type="l",lty=1,main=expression(paste(h[t]^(1))),ylim

=c(0.5 ,1.5),xlab="i",ylab='\n')
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points(difference_plot[,7],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,8],type="l",lty=1,main=expression(paste(h[t]^(2))),ylim

=c(0.5 ,1.5),xlab="t",ylab='\n')
points(difference_plot[,8],pch =19)
axis(side=1,at=axuse , labels=axticks)

#Prepare data for heatmap
res1 = matrix(NA,nrow=I,ncol=I)
res2 = matrix(NA,nrow=I,ncol=I)
for (i in 1:I){
for (m in 1:(I-i+1)){
res1[i,m] = y_kf[[i]][m]/y.smooth [[i]][m]
res2[i,m] = y_kf[[i]][(I-i+1)+m]/y.smooth [[i]][(I-i+1)+m]
}}

res1 = as.vector(res1)
res1 = res1[!is.na(res1)]
res2 = as.vector(res2)
res2 = res2[!is.na(res2)]

length = seq(from=I,to=1)
Var2 = c(c(15:1) ,c(15:2) ,c(15:3) ,c(15:4) ,c(15:5) ,c(15:6) ,c(15:7) ,c(15:8) ,c

(15:9) ,c(15:10) ,c(15:11) ,c(15:12) ,c(15:13) ,c(15:14) ,15)
Var1 = rep (1:I,I:1)

heatmap1 <- data.frame(Var1 ,Var2 ,res1)
heatmap2 <- data.frame(Var1 ,Var2 ,res2)

#Plot the tracking of development pattern
par(mar=c(4,4,1,1))
par(mfrow=c(2,2))

plot(exp(y.smooth [[2]][1:(I-2+1) ]),type="l",main=expression("Triangle 1"),lty
=2,ylim=c(min(exp(y.smooth [[2]][1:(I-2+1) ]),line1exp [2,],exp(y.smooth
[[2 -1]][1:(I -2+2)]),na.rm=T),max(exp(y.smooth [[2]][1:(I-2+1) ]),line1exp
[2,],exp(y.smooth [[2 -1]][1:(I -2+2)]),na.rm=T)))

lines(line1exp [2,],lty=1)
lines(exp(y.smooth [[2 -1]][1:(I -2+2)]),lty=3)
points(exp(y.smooth [[2]][1:(I-2+1) ]),pch =2)
points(line1exp [2,],pch =1)
points(exp(y.smooth [[2 -1]][1:(I-2+2) ]),pch =3)
legend("topright", legend = c( "Year 2 observed", "Year 2 smoothed","Year 1

smoothed"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")

plot(exp(y.smooth [[2]][(I-2+2) :(2*(I-2+1))]),lty=2,type="l",main=expression("
Triangle 2"),ylim=c(min(exp(y.smooth [[2]][(I-2+2) :(2*(I-2+1))]),line2exp
[2,],exp(y.smooth [[2 -1]][(I -2+3) :(2*(I -2+2))]),na.rm=T),max(exp(y.smooth
[[2]][(I -2+2) :(2*(I -2+1))]),line2exp [2,],exp(y.smooth [[2 -1]][(I-2+3) :(2*(I
-2+2))]),na.rm=T)))

lines(line2exp [2,],lty=1)
lines(exp(y.smooth [[2 -1]][(I -2+3) :(2*(I -2+2))]),lty=3)
points(exp(y.smooth [[2]][(I-2+2) :(2*(I-2+1))]),pch =2)
points(line2exp [2,],pch =1)
points(exp(y.smooth [[2 -1]][(I-2+3) :(2*(I-2+2))]),pch =3)
legend("bottom", legend = c( "Year 2 observed", "Year 2 smoothed","Year 1

smoothed"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")

plot(exp(y.smooth [[3]][1:(I-3+1) ]),type="l",main=expression("Triangle 1"),lty
=2,ylim=c(min(exp(y.smooth [[3]][1:(I-3+1) ]),line1exp [3,],exp(y.smooth
[[3 -1]][1:(I -3+2)]),na.rm=T),max(exp(y.smooth [[3]][1:(I-3+1) ]),line1exp
[3,],exp(y.smooth [[3 -1]][1:(I -3+2)]),na.rm=T)))

lines(line1exp [3,],lty=1)
lines(exp(y.smooth [[3 -1]][1:(I -3+2)]),lty=3)
points(exp(y.smooth [[3]][1:(I-3+1) ]),pch =2)
points(line1exp [3,],pch =1)
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points(exp(y.smooth [[3 -1]][1:(I-3+2) ]),pch =3)
legend("topright", legend = c( "Year 3 observed", "Year 3 smoothed","Year 2

smoothed"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")

plot(exp(y.smooth [[3]][(I-3+2) :(2*(I-3+1))]),lty=2,type="l",main=expression("
Triangle 2"),ylim=c(min(exp(y.smooth [[3]][(I-3+2) :(2*(I-3+1))]),line2exp
[3,],exp(y.smooth [[3 -1]][(I -3+3) :(2*(I -3+2))]),na.rm=T),max(exp(y.smooth
[[3]][(I -3+2) :(2*(I -3+1))]),line2exp [3,],exp(y.smooth [[3 -1]][(I-3+3) :(2*(I
-3+2))]),na.rm=T)))

lines(line2exp [3,],lty=1)
lines(exp(y.smooth [[3 -1]][(I -3+3) :(2*(I -3+2))]),lty=3)
points(exp(y.smooth [[3]][(I-3+2) :(2*(I-3+1))]),pch =2)
points(line2exp [3,],pch =1)
points(exp(y.smooth [[3 -1]][(I-3+3) :(2*(I-3+2))]),pch =3)
legend("bottom", legend = c( "Year 3 observed", "Year 3 smoothed","Year 2

smoothed"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")

#Check fitted correlation
cor.test(vector.h1 ,vector.h2 ,method="pearson",conf.level = 0.95)
cor.test(par_fit$psi.vector[,1],par_fit$psi.vector[,2],method="pearson",conf.

level = 0.95)

A.3.2 Tweedie model illustration

library(magic)
library(MASS)
library(matlib)
library(tweedie)
library(statmod)

########## Simulate triangles ##########
I=15

#Parameters
lambda1 = 0.6
lambda2 = 0.8

phi1= 0.4
phi2= 0.5

p1= 1.27
p2= 1.35

gamma1sd = c(0.01 ,0.005 ,0.001)
gamma2sd = c(0.005 ,0.002 ,0.0005)
psisd = c(0.005 ,0.005 ,0.005)

coeff =1

#Initialisation
set.seed (1030)
y_kf = list()
a_kf = list()
h_kf = list()
e_kf = list()
gamma_kf=list()
psi_kf = list()
p_kf = list()

vector.h1 = rep(0,I)
vector.h2 = rep(0,I)
vector.h1[1] = 0.5
vector.h2[1] = 0.5

commonshock = rnorm(I-1,mean=0,sd=psisd [1])
for (i in 2:I){
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vector.h1[i] = vector.h1[i-1]+ lambda1*commonshock[i-1] + rnorm(1,mean=0,sd=
psisd [2])

vector.h2[i] = vector.h2[i-1]+ lambda2*commonshock[i-1] + rnorm(1,mean=0,sd=
psisd [3])

}

a1_0 = 7
r1_0 = 1.5
s1_0 = -0.8

a2_0 = 7
r2_0 = 2
s2_0 = -0.4

gamma .0 = c(a1_0,r1_0,s1_0,a2_0,r2_0,s2_0)
q_kf = diag(c(gamma1sd ,gamma2sd))

psi.1 = c(vector.h1 ,vector.h2)

gamma = gamma .0+c(mvrnorm(1,mu=rep(0,3),Sigma=q_kf [1:3 ,1:3]),mvrnorm(1,mu=rep
(0,3),Sigma=q_kf[4:6 ,4:6]))

gamma_kf[[1]] = gamma

an = matrix(0,nrow=(I),ncol =3)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=1,to=I)))
an[,3] = c((seq(from=1,to=(I))))

A = cbind(adiag(an ,an))
a_kf [[1]] = A

E = diag(2*I)
e_kf [[1]] = E

H = c(rep(phi1 ,I),rep(phi2 ,I))
h_kf [[1]] = H

p_kf [[1]] =c(rep(power1 ,I),rep(power2 ,I))

y1 = rep(NA ,2*I)
for (i in 1:(2*I)){
y1[i] = rtweedie(1,mu = exp(A[i,]%*%(gamma)+ E[i,]%*%psi .1),phi=H[i],xi = p_

kf [[1]][i])}

y_kf [[1]] = y1

line1 = matrix(NA ,nrow=I,ncol=I)
line2 = matrix(NA ,nrow=I,ncol=I)
line1 [1,] = y1[1:I]
line2 [1,] = y1[(I+1):(2*I)]

vector.a1 = rep(NA,I)
vector.a1[1] = gamma [1]
vector.r1 = rep(NA,I)
vector.r1[1] = gamma [2]
vector.s1 = rep(NA,I)
vector.s1[1] = gamma [3]
vector.a2 = rep(NA,I)
vector.a2[1] = gamma [4]
vector.r2 = rep(NA,I)
vector.r2[1] = gamma [5]
vector.s2 = rep(NA,I)
vector.s2[1] = gamma [6]

for (i in 2:I) {
#State simulation
gamma=gamma+as.matrix(mvrnorm(n=1,mu=rep(0,6),Sigma = q_kf))
gamma_kf[[i]] = gamma

#Observation simulation
an = matrix(0,nrow=(I+1-i),ncol =3)
an[1: nrow(an) ,1] = rep(1,nrow(an))
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an[,2] = c(log(seq(from=1,to=(I+1-i))))
an[,3] = c((seq(from=1,to=(I-i+1))))

A = adiag(an,an)

H = c(rep(phi1 ,(I-i+1)),rep(phi2 ,(I-i+1)))
en = matrix(0,nrow =(15-i+1),ncol=i-1)
en = cbind(en ,diag(15-i+1))
E = adiag(en,en)
power = c(rep(power1 ,(I-i+1)),rep(power2 ,(I-i+1)))

yn = rep(NA ,2*(I-i+1))

for (n in 1: length(yn)){
yn[n] = rtweedie(1,mu = exp(A[n,]%*%(gamma)+ E[n,]%*%psi .1),phi=H[n],xi =

power[n])}

line1[i,1:(I-i+1)] = yn[1:(I-i+1)]
line2[i,1:(I-i+1)] = yn[(I-i+2):length(yn)]

y_kf[[i]] = yn
a_kf[[i]] = A
e_kf[[i]] = E
h_kf[[i]] = H
p_kf[[i]] = power

vector.a1[i] = gamma [1]
vector.r1[i] = gamma [2]
vector.s1[i] = gamma [3]
vector.a2[i] = gamma [4]
vector.r2[i] = gamma [5]
vector.s2[i] = gamma [6]
}

par(mfrow=c(4,2))
plot(vector.a1,type="l")
plot(vector.a2,type="l")
plot(vector.r1,type="l")
plot(vector.s1,type="l")
plot(vector.r2,type="l")
plot(vector.s2,type="l")
plot(vector.h1,type="l")
plot(vector.h2,type="l")

########## Preliminary analysis - development plots ##########
par(mfrow=c(1,1))
plot(line1[1,],type = "l",lwd=1, ylim=c(min(line1 ,na.rm=T),max(line1 ,na.rm=T)

))
for (i in 2:I){
lines(line1[i,],lwd=1)
}

plot(line2[1,],type = "l",lwd=1, ylim=c(min(line2 ,na.rm=T),max(line2 ,na.rm=T)
))

for (i in 2:I){
lines(line2[i,],lwd=1)
}

########## Preliminary analysis - GLM analysis to pick initial values
##########

vline1 = as.vector(t(line1))
vline1 = vline1[!is.na(vline1)]
vline2 = as.vector(t(line2))
vline2 = vline2[!is.na(vline2)]

#All accident years - set up llh profile to find p
j= c(c(1:15) ,c(1:14) ,c(1:13) ,c(1:12) ,c(1:11) ,c(1:10) ,c(1:9),c(1:8),c(1:7),c

(1:6),c(1:5),c(1:4),c(1:3),c(1:2) ,1)
i=rep(1:I,I:1)
ci.vec = seq (1.05 ,1.95 ,by =0.01)
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llh1 = rep(0,length(ci.vec))
llh2 = llh1

for (t in 1: length(ci.vec)){
out1 <- glm(vline1~(as.factor(i) + log(j) + (j)), fam=tweedie(var.power=ci.

vec[t],link.power =0))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vline2~(as.factor(i) + log(j) + (j)), fam=tweedie(var.power=ci.

vec[t],link.power =0))
disp2 <- summary(out2)$dispersion
mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

ci1 = ci.vec[which.max(llh1)]
ci2 = ci.vec[which.max(llh2)]

#First accident year
i = rep(1,15)
j = c(1:15)
out1 <- glm(vline1 [1:15]~log(j) + (j), fam=tweedie(var.power=ci1 ,link.power

=0))
out2 <- glm(vline2 [1:15]~log(j) + (j), fam=tweedie(var.power=ci2 ,link.power

=0))

####### Particle filtering and parameter estimation
###############################

#Initialise filter
power1 = atanh (1.2 -2.01)
power2 = atanh (1.3 -2.01)
powerfunc = function(x){
tanh(x)+2.01
}

set.seed (1030)
N = 50000
theta_init = c(-0.916, -0.693, -4.605, -5.298, -6.908, -5.298, -6.215,

-7.601, -5.298, -5.298, -5.298, -0.511, -0.223, -1.127, -0.887)
a = 0.95
h = sqrt(1-a^2)
gamma.vector=matrix(NA ,nrow=I,ncol =6)
psi.vector = matrix(NA ,nrow=I,ncol =2)

theta = matrix(NA ,nrow=N,ncol =15)
theta= mvrnorm(N,theta_init ,Sigma = diag(abs(theta_init))*0.05)
thetaexp = exp(theta)
thetaexp [ ,14:15] = powerfunc(theta [ ,14:15])

gamma.filter = matrix(0,nrow=N,ncol =6)
psi.filter = matrix(0,nrow=N,ncol =30)
psi.filter [,1] = rep (0.45,N)
psi.filter [,16] = rep (0.45,N)

w1 = rep(0,N)

for (i in 1:N){
gamma.filter[i,] = mvrnorm(1,mu=c(out1$coefficients [1] -0.45, out1$coefficients

[2],out1$coefficients [3],out2$coefficients [1] -0.45, out2$coefficients [2],
out2$coefficients [3]),Sigma = diag(c(thetaexp[i ,3:8])))

for (j in 2:15){
commonshock.e = rnorm(1,mean=0,sd=thetaexp[i,9])
psi.filter[i,j] = psi.filter[i,j-1]+ thetaexp[i,12]*commonshock.e + rnorm(1,

mean=0,sd=thetaexp[i,10])
psi.filter[i,j+15] = psi.filter[i,15+j-1]+ thetaexp[i,13]*commonshock.e +
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rnorm(1,mean=0,sd=thetaexp[i ,11]) }

logmu1 = (exp(a_kf[[1]]%*%gamma.filter[i,] + e_kf[[1]]%*%psi.filter[i,]))

if (any(logmu1 ==0)|any(!is.finite(logmu1))) { w1[i] = -1e10}
else {
w1[i] = sum(log(dtweedie(y_kf [[1]][1:I],mu = logmu1 [1:I],phi = (thetaexp[i

,1]),power=thetaexp[i,14])))+sum(log(dtweedie(y_kf [[1]][(I+1) :(2*I)],mu =
logmu1 [(I+1) :(2*I)],phi = (thetaexp[i,2]),power=thetaexp[i,15])))

}}

w_norm = exp(w1)/sum(exp(w1))

k = sample (1:N, replace=T,size=N,prob=w_norm)
nlevels(as.factor(k))

gamma.filter = gamma.filter[k,1: ncol(gamma.filter)]
psi.filter = psi.filter[k,1: ncol(psi.filter)]
theta = theta[k,1: ncol(theta)]
thetaexp = exp(theta)
thetaexp [ ,14:15] = powerfunc(theta [ ,14:15])

gamma.vector [1,1] = colMeans(gamma.filter)[1]
gamma.vector [1,2] = colMeans(gamma.filter)[2]
gamma.vector [1,3] = colMeans(gamma.filter)[3]
gamma.vector [1,4] = colMeans(gamma.filter)[4]
gamma.vector [1,5] = colMeans(gamma.filter)[5]
gamma.vector [1,6] = colMeans(gamma.filter)[6]
psi.vector [1,1] = colMeans(psi.filter)[1]
psi.vector [1,2] = colMeans(psi.filter)[16]

y.fit = exp(a_kf[[1]]%*%colMeans(gamma.filter) + e_kf [[1]]%*%colMeans(psi.
filter))

line1fit = matrix(NA,nrow=I,ncol=I)
line2fit = matrix(NA,nrow=I,ncol=I)
line1fit [1,] = y.fit[1:I]
line2fit [1,] = y.fit[(I+1):(2*I)]

plot(line1fit [1,],type="l")
lines(line1 [1,])
plot(line2fit [1,],type="l")
lines(line2 [1,])

LogFile=""

#Run filter
for (i in 2:I){
cat("Time: ", i, "\n", sep = "")

#Project parameter and calendar factor values
thetahat = a*theta + rep((1-a)*apply(theta ,2,mean),each=nrow(theta))
thetahatexp = exp(thetahat)
thetahatexp [ ,14:15] = powerfunc(thetahat [ ,14:15])

psihat = a*psi.filter + rep((1-a)*apply(psi.filter ,2,mean),each=nrow(psi.
filter))

#Compute look -ahead importance weights
w = rep(0,N)
w_e = rep(0,N)

for (j in 1:N){
logmu = exp(a_kf[[i]]%*%gamma.filter[j,] + e_kf[[i]]%*%psihat[j,])
if (any(logmu ==0)|any(!is.finite(logmu))) {w[j] = -1e10}
else {
w_e[j] = sum(log(dtweedie(y_kf[[i]][1:(I-i+1)],mu = logmu [1:(I-i+1)],phi = (

thetahatexp[j,1]),power=thetahatexp[j,14])))+sum(log(dtweedie(y_kf[[i]][(I
-i+2):length(y_kf[[i]])],mu = logmu[(I-i+2):length(y_kf[[i]])],phi =
thetahatexp[j,2],power=thetahatexp[j,15])))

w[j] = w_e[j]+ log(w_norm[j])}}
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w_norm = exp(w)/sum(exp(w))

#Resample
k = sample (1:N, replace=T,size=N,prob=w_norm)

#Draw parameter and calendar factors with the resampled index
varest=apply(theta ,2,var)
theta1 = t(apply(thetahat[k,1:15] ,1, function(x){mvrnorm(1,x,diag(varest*(h^2)

))}))
thetaexp1 = exp(theta1)
thetaexp1 [ ,14:15] = powerfunc(theta1 [ ,14:15])

psivarest = apply(psi.filter ,2,var)
psi.filter1 = t(apply(psihat[k,1:30],1, function(x){mvrnorm(1,x,diag(psivarest

*(h^2)))}))

gamma.filter = gamma.filter[k,1: ncol(gamma.filter)]
gamma.filter1 = matrix(NA ,nrow=N,ncol = length(gamma_kf[[i]]))

#Calculate importance weights
w1 = rep(0,N)

for (j in 1:N){
gamma.filter1[j,] = gamma.filter[j,] + mvrnorm(n=1,mu=rep(0,6),Sigma = diag(

thetaexp1[j ,3:8]))
logmu1 = exp(a_kf[[i]]%*% gamma.filter1[j,]+ e_kf[[i]]%*%psi.filter1[j,])
if (any(logmu1 ==0)|any(!is.finite(logmu1))) { w1[j] = -1e10}
else {
w1[j] =sum(log(dtweedie(y_kf[[i]][1:(I-i+1)],mu = logmu1 [1:(I-i+1)],phi = (

thetaexp1[j,1]),power=thetaexp1[j ,14])))+sum(log(prod(dtweedie(y_kf[[i]][(
I-i+2):length(y_kf[[i]])],mu = logmu1 [(I-i+2):length(y_kf[[i]])],phi =
thetaexp1[j,2],power=thetaexp1[j ,15]))))-w_e[k][j]

}}

w_norm = exp(w1)/sum(exp(w1))

#Calculate filtered statistics and resample for next period
k = sample (1:N, replace=T,size=N,prob=w_norm)
cat(", level=",nlevels(as.factor(k)), "\n", sep = "", file = LogFile , append

= TRUE)

gamma.filter = gamma.filter1[k,1: ncol(gamma.filter1)]
psi.filter = psi.filter1[k,1: ncol(psi.filter1)]
theta = theta1[k,1: ncol(theta1)]
thetaexp = exp(theta)
thetaexp [ ,14:15] = powerfunc(theta [ ,14:15])

gamma.vector[i,1] = colMeans(gamma.filter)[1]
gamma.vector[i,2] = colMeans(gamma.filter)[2]
gamma.vector[i,3] = colMeans(gamma.filter)[3]
gamma.vector[i,4] = colMeans(gamma.filter)[4]
gamma.vector[i,5] = colMeans(gamma.filter)[5]
gamma.vector[i,6] = colMeans(gamma.filter)[6]
psi.vector[i,1] = colMeans(psi.filter)[i]
psi.vector[i,2] = colMeans(psi.filter)[15+i]

y.fit = exp(a_kf[[i]]%*%colMeans(gamma.filter)+ e_kf[[i]]%*%colMeans(psi.
filter))

line1fit[i,1:(I-i+1)] = y.fit [1:(I-i+1)]
line2fit[i,1:(I-i+1)] = y.fit[(I-i+2):length(y.fit)]

plot(line1fit[i,],type="l")
lines(line1[i,])
plot(line2fit[i,],type="l")
lines(line2[i,])
}

########## Summarise results ##########
state_est = array(0,c(12,I,2))
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state_est[1,,] = cbind(gamma.vector [1:I,1], vector.a1[1:I])
state_est[2,,] = cbind(gamma.vector [1:I,2], vector.r1[1:I])
state_est[3,,] = cbind(gamma.vector [1:I,3], vector.s1[1:I])
state_est[4,,] = cbind(gamma.vector [1:I,4], vector.a1[1:I])
state_est[5,,] = cbind(gamma.vector [1:I,5], vector.r2[1:I])
state_est[6,,] = cbind(gamma.vector [1:I,6], vector.s2[1:I])
state_est[7,,] = cbind(psi.vector [1:I,1], vector.h1[1:I])
state_est[8,,] = cbind(psi.vector [1:I,2], vector.h2[1:I])
#Mean of Hoerl curve
state_est[9,,] = cbind(( gamma.vector [,2]-1)/(-gamma.vector [,3]) ,(vector.r1 -1)

/(-vector.s1))
state_est[10,,] = cbind(( gamma.vector [,5]-1)/(-gamma.vector [,6]) ,(vector.r2

-1)/(-vector.s2))
#Variance of Hoerl curve
state_est[11,,] = cbind(( gamma.vector [,2]-1)/(gamma.vector [ ,3]^2) ,(vector.r1

-1)/(vector.s1^2))
state_est[12,,] = cbind(( gamma.vector [,5]-1)/(gamma.vector [ ,6]^2) ,(vector.r2

-1)/(vector.s2^2))

#Parameter estimates
true_par = c(phi1 ,phi2 ,gamma1sd ,gamma2sd ,psisd ,lambda1 ,lambda2 ,p1,p2)
parameterest = cbind(true_par ,apply(thetaexp ,2,mean),apply(thetaexp ,2,

quantile ,probs =0.05) ,apply(thetaexp ,2,quantile ,probs =0.95))

#Plot the difference ratio of states
difference_plot = matrix(NA ,I,12)
for(i in 1:12){
difference_plot[,i] = (state_est[i,,1])/state_est[i,,2]
}

par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
par(mfrow=c(4,2))
axticks <- seq(1, 15, 1)
axuse <-seq(1,15,1)
plot(difference_plot[,1],type="l",lty=1,main=expression(paste(a[i]^(1))),ylim

=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,1],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,2],type="l",lty=1,main=expression(paste(a[i]^(2))),ylim

=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,2],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,3],type="l",lty=1,main=expression(paste ((r[i]^(1) -1)/(-

s[i]^(1)))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,3],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,4],type="l",lty=1,main=expression(paste ((r[i]^(2) -1)/(-

s[i]^(2)))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,4],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,5],type="l",lty=1,main=expression(paste ((r[i]^(1) -1)/((

s[i]^(1))^2))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,5],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,6],type="l",lty=1,main=expression(paste ((r[i]^(2) -1)/((

s[i]^(2))^2))),ylim=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,6],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,7],type="l",lty=1,main=expression(paste(h[t]^(1))),ylim

=c(0.5 ,1.5),xlab="i",ylab='\n')
points(difference_plot[,7],pch =19)
axis(side=1,at=axuse , labels=axticks)
plot(difference_plot[,8],type="l",lty=1,main=expression(paste(h[t]^(2))),ylim

=c(0.5 ,1.5),xlab="t",ylab='\n')
points(difference_plot[,8],pch =19)
axis(side=1,at=axuse , labels=axticks)

#Prepare data for heatmap
res1 = line1/line1fit
res2 = line2/line2fit
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res1 = as.vector ((res1))
res2 = as.vector ((res2))
res1 = res1[!is.na(res1)]
res2 = res2[!is.na(res2)]

Var2 = c(c(15:1) ,c(15:2) ,c(15:3) ,c(15:4) ,c(15:5) ,c(15:6) ,c(15:7) ,c(15:8) ,c
(15:9) ,c(15:10) ,c(15:11) ,c(15:12) ,c(15:13) ,c(15:14) ,15)

Var1 = rep (1:I,I:1)

heatmap1 <- data.frame(Var1 ,Var2 ,res1)
heatmap2 <- data.frame(Var1 ,Var2 ,res2)

#Plot the tracking of development patterns
par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
par(mfrow=c(2,2))
plot(line1[7,],type="l",main=expression("Triangle 1"),ylim=c(min(line1[7,],

line1fit [7,], line1fit [7-1,],na.rm=T),max(line1[7,], line1fit [7,], line1fit
[7-1,],na.rm=T)))

lines(line1fit [7,],lty=2)
lines(line1fit [7-1,],lty=3)
points(line1[7,],pch =1)
points(line1fit [7,],pch =2)
points(line1fit [7-1,],pch =3)
legend("topright", legend = c( "Year 7 observed", "Year 7 filtered","Year 6

filtered"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")
plot(line2[7,],type="l",main=expression("Triangle 2"),ylim=c(min(line2[7,],

line2fit [7,], line2fit [7-1,],na.rm=T),max(line2[7,], line2fit [7,], line2fit
[7-1,],na.rm=T)))

lines(line2fit [7,],lty=2)
lines(line2fit [7-1,],lty=3)
points(line2[7,],pch =1)
points(line2fit [7,],pch =2)
points(line2fit [7-1,],pch =3)
legend("topright", legend = c( "Year 7 observed", "Year 7 filtered","Year 6

filtered"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")

plot(line1 [12,],type="l",main=expression("Triangle 1"),ylim=c(min(line1 [12,],
line1fit [12,], line1fit [12-1,],na.rm=T),max(line1 [12,], line1fit [12,],
line1fit [12-1,],na.rm=T)))

lines(line1fit [12,],lty=2)
lines(line1fit [12-1,],lty=3)
points(line1 [12,],pch =1)
points(line1fit [12,],pch =2)
points(line1fit [12-1,],pch =3)
legend("topright", legend = c( "Year 12 observed", "Year 12 filtered","Year

11 filtered"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")
plot(line2 [12,],type="l",main=expression("Triangle 2"),ylim=c(min(line2 [12,],

line2fit [12,], line2fit [12-1,],na.rm=T),max(line2 [12,], line2fit [12,],
line2fit [12-1,],na.rm=T)))

lines(line2fit [12,],lty=2)
lines(line2fit [12-1,],lty=3)
points(line2 [12,],pch =1)
points(line2fit [12,],pch =2)
points(line2fit [12-1,],pch =3)
legend("topright", legend = c( "Year 12 observed", "Year 12 filtered","Year

11 filtered"),
lty = 1:3,lwd=1, bty = "n",pch=1:3,
title = "")

#Check fitted correlation
cor.test(vector.h1 ,vector.h2 ,method="pearson",conf.level = 0.95)
cor.test(psi.vector[,1],psi.vector[,2],method="pearson",conf.level = 0.95)
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A.3.3 Real data illustration

library(magic)
library(MASS)
library(matlib)
library(tweedie)
library(statmod)

# library(nlme)
# library(ggplot2)
# library(xtable)
# library(numDeriv)
# library(dplyr)
# library(truncnorm)
# library(xtable)
# library(ChainLadder)
# library(base)
# library(settings)

########### Import data ##########
dline1 = as.matrix(read.csv("AB.csv",header=TRUE))
dline2 = as.matrix(read.csv("NonAB.csv",header=TRUE))

line1=matrix(NA ,nrow=10,ncol =10)
line2=matrix(NA ,nrow=10,ncol =10)

for (i in 1:10){
for(j in 1:(10-i+1)){
line1[i,j] = dline1[i,j+1]
line2[i,j] = dline2[i,j+1]
}
}

I=10

########### Preliminary analysis - plot development ###########
axticks <- seq(1, 10, 1)
axuse <-seq(1,10,1)
par(mfrow=c(1,2))

plot(line1[1,],type = "l",lwd=1,ylim=c(0,max(line1 ,na.rm=T)*1.1),xlab="
Development year",xaxt="n", main=expression(paste("Accident Benefits (
excluding DI)")),ylab="Loss ratio")

for(i in 2:10){
lines(line1[i,],lwd=1)
}
for(i in 1:10){
points(line1[i,],pch =20)
}
axis(side=1,at=axuse , labels=axticks)

plot(line2[1,],type = "l",lwd=1,ylim=c(0,max(line2 ,na.rm=T)*1.1),xlab="
Development year",xaxt="n", main=expression(paste("Accident Benefits (DI
only)")),ylab="Loss ratio")

for(i in 2:10){
lines(line2[i,],lwd=1)
}
for(i in 1:10){
points(line2[i,],pch =20)
}
axis(side=1,at=axuse , labels=axticks)

########## Preliminary analysis - analyse dependence using GLM ##########
vline1 = c(t(line1))
vline2 = c(t(line2))

#Set up llh profile
ci.vec = seq (1.01 ,2.99 ,by =0.01)
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llh1 = rep(0,length(ci.vec))
llh2 = llh1

i = rep(1:10 , each =10)
j = rep (1:10 ,10)
j1 = rep(c(1,2,rep(0,8)) ,10)

for (t in 1: length(ci.vec)){
out1 <- glm(vline1~as.factor(i) + as.factor(j1) + log(j) + j-1, fam=tweedie(

var.power=ci.vec[t],link.power =0))
disp1 <- summary(out1)$dispersion
mu1 <- fitted(out1)
den1 <- dtweedie(out1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2 <- glm(vline2~as.factor(i) + as.factor(j1)+ log(j) + j-1, fam=tweedie(

var.power=ci.vec[t],link.power =0))
disp2 <- summary(out2)$dispersion
mu2 <- fitted(out2)
den2 <- dtweedie(out2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2[t] <- sum(log(den2))
}

ci1 = ci.vec[which.max(llh1)]
ci2 = ci.vec[which.max(llh2)]

#Analyse residuals
out1 <- glm(vline1~as.factor(i) + as.factor(j1)+ log(j) + j -1, fam=tweedie(

var.power=ci1 ,link.power =0))
out2 <- glm(vline2~as.factor(i) + as.factor(j1)+ log(j) + j -1, fam=tweedie(

var.power=ci2 ,link.power =0))

residuals1 = residuals(out1 ,type="pearson")
residuals2 = residuals(out2 ,type="pearson")

tglmpearsoncoef = cor.test(residuals1 ,residuals2 ,method="pearson",conf.level
= 0.95)

tglmkendallcoef = cor.test(residuals1 ,residuals2 ,method="kendall",conf.level
= 0.95)

tglmspearmancoef = cor.test(residuals1 ,residuals2 ,method="spearman",conf.
level = 0.95)

#Prepare for heat maps of residuals
Var1 = c(seq (1:10) , seq (1:9) ,seq (1:8) ,seq (1:7) ,seq (1:6) ,seq (1:5) ,seq (1:4) ,seq

(1:3),seq (1:2) ,1)
Var2 = rep (10:1 ,10:1)
fitglm1 = vline1[!is.na(vline1)]/fitted(out1)
fitglm2 = vline2[!is.na(vline2)]/fitted(out2)

heatmap1 <- data.frame(Var1 ,Var2 ,fitglm1)
heatmap2 <- data.frame(Var1 ,Var2 ,fitglm1)

#Residuals by calendar years (all calendar years combined)
residuals1 = fitted(out1)
residuals2 = fitted(out2)

residuals1_cal = matrix(NA ,nrow=10, ncol =10)
residuals1_cal[1,1] = residuals1 [1]
residuals1_cal [2 ,1:2] = c(residuals1 [2], residuals1 [11])
residuals1_cal [3 ,1:3] = c(residuals1 [3], residuals1 [12], residuals1 [20])
residuals1_cal [4 ,1:4] = c(residuals1 [4], residuals1 [13], residuals1 [21],

residuals1 [28])
residuals1_cal [5 ,1:5] = c(residuals1 [5], residuals1 [14], residuals1 [22],

residuals1 [29], residuals1 [35])
residuals1_cal [6 ,1:6] = c(residuals1 [6], residuals1 [15], residuals1 [23],

residuals1 [30], residuals1 [36], residuals1 [41])
residuals1_cal [7 ,1:7] = c(residuals1 [7], residuals1 [16], residuals1 [24],

residuals1 [31], residuals1 [37], residuals1 [42], residuals1 [46])
residuals1_cal [8 ,1:8] = c(residuals1 [8], residuals1 [17], residuals1 [25],
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residuals1 [32], residuals1 [38], residuals1 [43], residuals1 [47], residuals1
[50])

residuals1_cal [9 ,1:9] = c(residuals1 [9], residuals1 [18], residuals1 [26],
residuals1 [33], residuals1 [39], residuals1 [44], residuals1 [48], residuals1
[51], residuals1 [53])

residuals1_cal [10 ,1:10] = c(residuals1 [10], residuals1 [19], residuals1 [27],
residuals1 [34], residuals1 [40], residuals1 [45], residuals1 [49], residuals1
[52], residuals1 [54], residuals1 [55])

residuals2_cal = matrix(NA ,nrow=10, ncol =10)
residuals2_cal[1,1] = residuals2 [1]
residuals2_cal [2 ,1:2] = c(residuals2 [2], residuals2 [11])
residuals2_cal [3 ,1:3] = c(residuals2 [3], residuals2 [12], residuals2 [20])
residuals2_cal [4 ,1:4] = c(residuals2 [4], residuals2 [13], residuals2 [21],

residuals2 [28])
residuals2_cal [5 ,1:5] = c(residuals2 [5], residuals2 [14], residuals2 [22],

residuals2 [29], residuals2 [35])
residuals2_cal [6 ,1:6] = c(residuals2 [6], residuals2 [15], residuals2 [23],

residuals2 [30], residuals2 [36], residuals2 [41])
residuals2_cal [7 ,1:7] = c(residuals2 [7], residuals2 [16], residuals2 [24],

residuals2 [31], residuals2 [37], residuals2 [42], residuals2 [46])
residuals2_cal [8 ,1:8] = c(residuals2 [8], residuals2 [17], residuals2 [25],

residuals2 [32], residuals2 [38], residuals2 [43], residuals2 [47], residuals2
[50])

residuals2_cal [9 ,1:9] = c(residuals2 [9], residuals2 [18], residuals2 [26],
residuals2 [33], residuals2 [39], residuals2 [44], residuals2 [48], residuals2
[51], residuals2 [53])

residuals2_cal [10 ,1:10] = c(residuals2 [10], residuals2 [19], residuals2 [27],
residuals2 [34], residuals2 [40], residuals2 [45], residuals2 [49], residuals2
[52], residuals2 [54], residuals2 [55])

sumcal1fit = rowSums(residuals1_cal ,na.rm=T)
sumcal2fit = rowSums(residuals2_cal ,na.rm=T)

calline1 = vline1[!is.na(vline1)]
calline2 = vline2[!is.na(vline2)]

line1_cal = matrix(NA ,nrow=10, ncol =10)
line1_cal[1,1] = calline1 [1]
line1_cal [2 ,1:2] = c(calline1 [2], calline1 [11])
line1_cal [3 ,1:3] = c(calline1 [3], calline1 [12], calline1 [20])
line1_cal [4 ,1:4] = c(calline1 [4], calline1 [13], calline1 [21], calline1 [28])
line1_cal [5 ,1:5] = c(calline1 [5], calline1 [14], calline1 [22], calline1 [29],

calline1 [35])
line1_cal [6 ,1:6] = c(calline1 [6], calline1 [15], calline1 [23], calline1 [30],

calline1 [36], calline1 [41])
line1_cal [7 ,1:7] = c(calline1 [7], calline1 [16], calline1 [24], calline1 [31],

calline1 [37], calline1 [42], calline1 [46])
line1_cal [8 ,1:8] = c(calline1 [8], calline1 [17], calline1 [25], calline1 [32],

calline1 [38], calline1 [43], calline1 [47], calline1 [50])
line1_cal [9 ,1:9] = c(calline1 [9], calline1 [18], calline1 [26], calline1 [33],

calline1 [39], calline1 [44], calline1 [48], calline1 [51], calline1 [53])
line1_cal [10 ,1:10] = c(calline1 [10], calline1 [19], calline1 [27], calline1 [34],

calline1 [40], calline1 [45], calline1 [49], calline1 [52], calline1 [54], calline1
[55])

line2_cal = matrix(NA ,nrow=10, ncol =10)
line2_cal[1,1] = calline2 [1]
line2_cal [2 ,1:2] = c(calline2 [2], calline2 [11])
line2_cal [3 ,1:3] = c(calline2 [3], calline2 [12], calline2 [20])
line2_cal [4 ,1:4] = c(calline2 [4], calline2 [13], calline2 [21], calline2 [28])
line2_cal [5 ,1:5] = c(calline2 [5], calline2 [14], calline2 [22], calline2 [29],

calline2 [35])
line2_cal [6 ,1:6] = c(calline2 [6], calline2 [15], calline2 [23], calline2 [30],

calline2 [36], calline2 [41])
line2_cal [7 ,1:7] = c(calline2 [7], calline2 [16], calline2 [24], calline2 [31],

calline2 [37], calline2 [42], calline2 [46])
line2_cal [8 ,1:8] = c(calline2 [8], calline2 [17], calline2 [25], calline2 [32],

calline2 [38], calline2 [43], calline2 [47], calline2 [50])
line2_cal [9 ,1:9] = c(calline2 [9], calline2 [18], calline2 [26], calline2 [33],
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calline2 [39], calline2 [44], calline2 [48], calline2 [51], calline2 [53])
line2_cal [10 ,1:10] = c(calline2 [10], calline2 [19], calline2 [27], calline2 [34],

calline2 [40], calline2 [45], calline2 [49], calline2 [52], calline2 [54], calline2
[55])

sumcal1obs = rowSums(line1_cal ,na.rm=T)
sumcal2obs = rowSums(line2_cal ,na.rm=T)

diff1nocal = (sumcal1obs -sumcal1fit)/sumcal1fit
diff2nocal = (sumcal2obs -sumcal2fit)/sumcal2fit

par(mar=c(4,4,1,1))
plot(diff1nocal ,type="l",ylim=c(min(diff1nocal ,diff2nocal),max(diff1nocal ,

diff2nocal)),ylab="Residuals",xlab="Calendar year")
lines(diff2nocal ,lty=2)
points(diff1nocal ,pch =20)
points(diff2nocal ,pch =20)
legend("top", legend = c("Accident Benefits (excluding DI)", "Accident

Benefits (DI only)"),
lty = 1:2,lwd=1, bty = "n",
title = "")

#Plot the last 3 CYs
residualsglm1_cal = matrix(NA ,nrow=10, ncol =10)
residualsglm1_cal[1,1] = fitglm1 [1]
residualsglm1_cal [2 ,1:2] = c(fitglm1 [2], fitglm1 [11])
residualsglm1_cal [3 ,1:3] = c(fitglm1 [3], fitglm1 [12], fitglm1 [20])
residualsglm1_cal [4 ,1:4] = c(fitglm1 [4], fitglm1 [13], fitglm1 [21], fitglm1 [28])
residualsglm1_cal [5 ,1:5] = c(fitglm1 [5], fitglm1 [14], fitglm1 [22], fitglm1 [29],

fitglm1 [35])
residualsglm1_cal [6 ,1:6] = c(fitglm1 [6], fitglm1 [15], fitglm1 [23], fitglm1 [30],

fitglm1 [36], fitglm1 [41])
residualsglm1_cal [7 ,1:7] = c(fitglm1 [7], fitglm1 [16], fitglm1 [24], fitglm1 [31],

fitglm1 [37], fitglm1 [42], fitglm1 [46])
residualsglm1_cal [8 ,1:8] = c(fitglm1 [8], fitglm1 [17], fitglm1 [25], fitglm1 [32],

fitglm1 [38], fitglm1 [43], fitglm1 [47], fitglm1 [50])
residualsglm1_cal [9 ,1:9] = c(fitglm1 [9], fitglm1 [18], fitglm1 [26], fitglm1 [33],

fitglm1 [39], fitglm1 [44], fitglm1 [48], fitglm1 [51], fitglm1 [53])
residualsglm1_cal [10 ,1:10] = c(fitglm1 [10], fitglm1 [19], fitglm1 [27], fitglm1

[34], fitglm1 [40], fitglm1 [45], fitglm1 [49], fitglm1 [52], fitglm1 [54], fitglm1
[55])

residualsglm2_cal = matrix(NA ,nrow=10, ncol =10)
residualsglm2_cal[1,1] = fitglm2 [1]
residualsglm2_cal [2 ,1:2] = c(fitglm2 [2], fitglm2 [11])
residualsglm2_cal [3 ,1:3] = c(fitglm2 [3], fitglm2 [12], fitglm2 [20])
residualsglm2_cal [4 ,1:4] = c(fitglm2 [4], fitglm2 [13], fitglm2 [21], fitglm2 [28])
residualsglm2_cal [5 ,1:5] = c(fitglm2 [5], fitglm2 [14], fitglm2 [22], fitglm2 [29],

fitglm2 [35])
residualsglm2_cal [6 ,1:6] = c(fitglm2 [6], fitglm2 [15], fitglm2 [23], fitglm2 [30],

fitglm2 [36], fitglm2 [41])
residualsglm2_cal [7 ,1:7] = c(fitglm2 [7], fitglm2 [16], fitglm2 [24], fitglm2 [31],

fitglm2 [37], fitglm2 [42], fitglm2 [46])
residualsglm2_cal [8 ,1:8] = c(fitglm2 [8], fitglm2 [17], fitglm2 [25], fitglm2 [32],

fitglm2 [38], fitglm2 [43], fitglm2 [47], fitglm2 [50])
residualsglm2_cal [9 ,1:9] = c(fitglm2 [9], fitglm2 [18], fitglm2 [26], fitglm2 [33],

fitglm2 [39], fitglm2 [44], fitglm2 [48], fitglm2 [51], fitglm2 [53])
residualsglm2_cal [10 ,1:10] = c(fitglm2 [10], fitglm2 [19], fitglm2 [27], fitglm2

[34], fitglm2 [40], fitglm2 [45], fitglm2 [49], fitglm2 [52], fitglm2 [54], fitglm2
[55])

par(mfrow=c(3,1))
par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
axticks <- seq(1, 10, 1)
axuse <-seq(1,10,1)
for(i in 8:10){
plot(residualsglm1_cal[i,1:i],type="l",ylim=c(min(residualsglm1_cal[i,1:i],

residualsglm2_cal[i,1:i],na.rm=T),max(residualsglm1_cal[i,1:i],
residualsglm2_cal[i,1:i],na.rm=T)),ylab="Residuals",xlab="Accident year")

lines(residualsglm2_cal[i,1:i],type="l",lty=2)

305



APPENDIX A. R CODES

points(residualsglm1_cal[i,1:i],pch =19)
points(residualsglm2_cal[i,1:i],pch =19)
legend("top", legend = c("Accident Benefits (excluding DI)", "Accident

Benefits (DI only)"),
lty = 1:2,lwd=1, bty = "n",
title = "")
axis(side=1,at=axuse , labels=axticks)
}

########## Additional preliminary analysis to choose initial values #########

#Year 1 glm
j = c(1:10)
j1 = c(1,2,rep(0,8))

ci.vec = seq (1.01 ,2.99 ,by =0.01)

llh1yr1 = rep(0,length(ci.vec))
llh2yr1 = llh1yr1

for (t in 1: length(ci.vec)){
out1yr1 <- glm(vline1 [1:10]~ log(j) + j + as.factor(j1), fam=tweedie(var.

power=ci.vec[t],link.power =0))
disp1 <- summary(out1yr1)$dispersion
mu1 <- fitted(out1yr1)
den1 <- dtweedie(out1yr1$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1yr1[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2yr1 <- glm(vline2 [1:10]~ log(j) + j + as.factor(j1), fam=tweedie(var.

power=ci.vec[t],link.power =0))
disp2 <- summary(out2yr1)$dispersion
mu2 <- fitted(out2yr1)
den2 <- dtweedie(out2yr1$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
llh2yr1[t] <- sum(log(den2))
}

ci1yr1 = ci.vec[which.max(llh1yr1)]
ci2yr1 = ci.vec[which.max(llh2yr1)]

out1yr1 <- glm(vline1 [1:10]~ log(j) + j + as.factor(j1), fam=tweedie(var.
power=ci1yr1 ,link.power =0))

out2yr1 <- glm(vline2 [1:10]~ log(j) + j + as.factor(j1), fam=tweedie(var.
power=ci2yr1 ,link.power =0))

#Year 2 glm
j = c(1:9)
j1 = c(1,2,rep(0,7))

ci.vec = seq (1.01 ,2.99 ,by =0.01)

llh1yr2 = rep(0,length(ci.vec))
llh2yr2 = llh1yr2

for (t in 1: length(ci.vec)){
out1yr2 <- glm(line1 [2 ,1:9]~ log(j) + j + as.factor(j1), fam=tweedie(var.

power=ci.vec[t],link.power =0))
disp1 <- summary(out1yr2)$dispersion
mu1 <- fitted(out1yr2)
den1 <- dtweedie(out1yr2$y, mu = mu1 , phi = disp1 , power = ci.vec[t])
llh1yr2[t] <- sum(log(den1))
}

for (t in 1: length(ci.vec)){
out2yr2 <- glm(line2 [2 ,1:9]~ log(j) + j + as.factor(j1), fam=tweedie(var.

power=ci.vec[t],link.power =0))
disp2 <- summary(out2yr2)$dispersion
mu2 <- fitted(out2yr2)
den2 <- dtweedie(out2yr2$y, mu = mu2 , phi = disp2 , power = ci.vec[t])
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llh2yr2[t] <- sum(log(den2))
}

ci1yr2 = ci.vec[which.max(llh1yr2)]
ci2yr2 = ci.vec[which.max(llh2yr2)]

out1yr2 <- glm(line1 [2 ,1:9]~ log(j) + j + as.factor(j1), fam=tweedie(var.
power=ci1yr2 ,link.power =0))

out2yr2 <- glm(line2 [2 ,1:9]~ log(j) + j + as.factor(j1), fam=tweedie(var.
power=ci2yr2 ,link.power =0))

########## Run particle filter ##########

#Set up matrices
y_kf = list()
a_kf = list()
h_kf = list()
e_kf = list()

e_kf [[1]] = diag(2*I)
y_kf [[1]] = c(line1[1,],line2 [1,])

an = matrix(0,nrow=(I),ncol =5)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=1,to=I)))
an[,3] = c((seq(from=1,to=(I))))
an[1:2 ,4:5] = diag (2)
a_kf [[1]] = cbind(adiag(an ,an))

for(i in 2:I){
en = matrix(0,nrow=(I-i+1),ncol=i-1)
en = cbind(en ,diag(I-i+1))
e_kf[[i]] = adiag(en ,en)

y_kf[[i]] = c(line1[i,1:(I-i+1)],line2[i,1:(I-i+1)])

if(i<I){
an = matrix(0,nrow=(I+1-i),ncol =5)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=1,to=(I+1-i))))
an[,3] = c((seq(from=1,to=(I-i+1))))
an[1:2 ,4:5] = diag (2)
A = adiag(an ,an)}

if(i==I){
A = matrix(NA ,nrow=2,ncol =10)
A[1,] = c(1,0,1,1,0,rep(0,5))
A[2,] = c(rep(0,5) ,1,0,1,1,0)
}
a_kf[[i]] = A}

#Initialise filter
a = 0.95
h = sqrt(1-a^2)
set.seed (2000)
N = 50000
gamma_list = list()
gamma.vector=matrix(NA ,nrow=I,ncol =10)
psi.vector = matrix(NA ,nrow=I,ncol =2)

phi1 = 0.005
phi2 = 0.005
a1sd = 0.004
r1sd = 0.05
s1sd = 0.01
a2sd =0.005
r2sd = 0.08
s2sd = 0.02
b11sd = 0.2
b21sd = 0.15
b12sd = 0.2
b22sd = 0.1
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commonsd = 0.12
h1sd = 0.08
h2sd = 0.07
lambda1 = 0.6
lambda2 = 0.6
power1 = atanh (1.2 -2.01)
power2 = atanh (1.3 -2.01)

powerfunc = function(x){
tanh(x)+2.01
}
theta_init = c(log(c(phi1 ,phi2 ,a1sd ,r1sd ,s1sd ,b11sd ,b21sd ,a2sd ,r2sd ,s2sd ,

b12sd ,b22sd ,commonsd ,h1sd ,h2sd)),log(c(lambda1 ,lambda2)),power1 ,power2)
varest_init = abs(c(log(c(phi1 ,phi2 ,a1sd ,r1sd ,s1sd ,b11sd ,b21sd ,a2sd ,r2sd ,s2sd

,b12sd ,b22sd ,commonsd ,h1sd ,h2sd))*0.01,log(c(lambda1 ,lambda2))*0.15, power1
*0.2, power2*0.2))

state_init = c( -2 ,1.3 , -0.7 ,0.56 ,0.15 , -3.7 ,2 , -0.88 ,0.93 ,0.28)

theta = matrix(NA ,nrow=N,ncol =19)
theta= mvrnorm(N,theta_init ,Sigma = diag(varest_init))
thetaexp = exp(theta)
thetaexp [ ,18:19] = powerfunc(theta [ ,18:19])

gamma.filter = matrix(0,nrow=N,ncol =10)
psi.filter = matrix(0,nrow=N,ncol =20)
psi.filter [,1] = rep(0,N)
psi.filter [,11] = rep(0,N)

w1 = rep(0,N)

for (i in 1:N){
gamma.filter[i,] = mvrnorm(1,mu=state_init ,Sigma = diag(thetaexp[i ,3:12]))
for (j in 2:10){
commonshock.e = rnorm(1,mean=0,sd=thetaexp[i,13])
psi.filter[i,j] = psi.filter[i,j-1]+ thetaexp[i,16]*commonshock.e + rnorm(1,

mean=0,sd=thetaexp[i,14])
psi.filter[i,j+10] = psi.filter[i,I+j-1]+ thetaexp[i,17]*commonshock.e + rnorm

(1,mean=0,sd=thetaexp[i,15]) }

logmu1 = (exp(a_kf[[1]]%*%gamma.filter[i,] + e_kf[[1]]%*%psi.filter[i,]))

if (any(logmu1 ==0)|any(!is.finite(logmu1))) { w1[i] = -1e10}
else {
w1[i] = sum(log(dtweedie(y_kf [[1]][1:I],mu = logmu1 [1:I],phi = (thetaexp[i

,1]),power=thetaexp[i,18])))+sum(log(dtweedie(y_kf [[1]][(I+1) :(2*I)],mu =
logmu1 [(I+1) :(2*I)],phi = (thetaexp[i,2]),power=thetaexp[i,19])))

}}

w_norm = exp(w1)/sum(exp(w1))

k = sample (1:N, replace=T,size=N,prob=w_norm)
nlevels(as.factor(k))

gamma.filter = gamma.filter[k,1: ncol(gamma.filter)]
gamma_list [[1]] = gamma.filter
psi.filter = psi.filter[k,1: ncol(psi.filter)]
theta = theta[k,1: ncol(theta)]
thetaexp = exp(theta)
thetaexp [ ,18:19] = powerfunc(theta [ ,18:19])

gamma.vector [1,1] = colMeans(gamma.filter)[1]
gamma.vector [1,2] = colMeans(gamma.filter)[2]
gamma.vector [1,3] = colMeans(gamma.filter)[3]
gamma.vector [1,4] = colMeans(gamma.filter)[4]
gamma.vector [1,5] = colMeans(gamma.filter)[5]
gamma.vector [1,6] = colMeans(gamma.filter)[6]
gamma.vector [1,7] = colMeans(gamma.filter)[7]
gamma.vector [1,8] = colMeans(gamma.filter)[8]
gamma.vector [1,9] = colMeans(gamma.filter)[9]
gamma.vector [1 ,10] = colMeans(gamma.filter)[10]
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psi.vector [1,1] = colMeans(psi.filter)[1]
psi.vector [1,2] = colMeans(psi.filter)[11]

y.fit = exp(a_kf [[1]]%*%colMeans(gamma.filter) + e_kf [[1]]%*%colMeans(psi.
filter))

line1fit = matrix(NA,nrow=I,ncol=I)
line2fit = matrix(NA,nrow=I,ncol=I)
line1fit [1,] = y.fit[1:I]
line2fit [1,] = y.fit[(I+1):(2*I)]

par(mfrow=c(2,1))
plot(line1fit [1,],type="l")
lines(line1[1,],lty=2)
plot(line2fit [1,],type="l")
lines(line2[1,],lty=2)

LogFile=""

#Run filter
for (i in 2:I){
cat(i, sep=" ")

#Project parameter and calendar factor values
thetahat = a*theta + rep((1-a)*apply(theta ,2,mean),each=nrow(theta))
thetahatexp = exp(thetahat)
thetahatexp [ ,18:19] = powerfunc(thetahat [ ,18:19])

psihat = a*psi.filter + rep((1-a)*apply(psi.filter ,2,mean),each=nrow(psi.
filter))

#Compute look -ahead importance weights
w = rep(0,N)
w_e = rep(0,N)

for (j in 1:N){
logmu = exp(a_kf[[i]]%*% ( gamma.filter[j,]) + e_kf[[i]]%*%psihat[j,])
if (any(logmu ==0)|any(!is.finite(logmu))) { w[j] = -1e10}
else {
w_e[j] = sum(log(dtweedie(y_kf[[i]][1:(I-i+1)],mu = logmu [1:(I-i+1)],phi = (

thetahatexp[j,1]),power=thetahatexp[j,18])))+sum(log(dtweedie(y_kf[[i]][(I
-i+2):length(y_kf[[i]])],mu = logmu[(I-i+2):length(y_kf[[i]])],phi =
thetahatexp[j,2],power=thetahatexp[j,19])))

w[j] = w_e[j]+ log(w_norm[j])}}

w_norm = exp(w)/sum(exp(w))

#Resample
k = sample (1:N, replace=T,size=N,prob=w_norm)

#Draw parameter and calendar factors with the resampled index
varest=apply(theta ,2,var)
theta1 = t(apply(thetahat[k,1:19] ,1, function(x){mvrnorm(1,x,diag(varest*(h^2)

))}))
thetaexp1 = exp(theta1)
thetaexp1 [ ,18:19] = powerfunc(theta1 [ ,18:19])

psivarest = apply(psi.filter ,2,var)
psi.filter1 = t(apply(psihat[k,1:20],1, function(x){mvrnorm(1,x,diag(psivarest

*(h^2)))}))

gamma.filter = gamma.filter[k,1: ncol(gamma.filter)]
gamma.filter1 = matrix(NA ,nrow=N,ncol = 10)

#Calculate importance weights
w1 = rep(0,N)

for (j in 1:N){
gamma.filter1[j,] = gamma.filter[j,] +mvrnorm(n=1,mu=rep(0,10),Sigma = diag(

thetaexp1[j ,3:12]))
logmu1 = exp(a_kf[[i]]%*% gamma.filter1[j,]+ e_kf[[i]]%*%psi.filter1[j,])
if (any(logmu1 ==0)|any(!is.finite(logmu1))) { w1[j] = -1e10}
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else {
w1[j] =sum(log(dtweedie(y_kf[[i]][1:(I-i+1)],mu = logmu1 [1:(I-i+1)],phi = (

thetaexp1[j,1]),power=thetaexp1[j ,18])))+sum(log(prod(dtweedie(y_kf[[i]][(
I-i+2):length(y_kf[[i]])],mu = logmu1 [(I-i+2):length(y_kf[[i]])],phi =
thetaexp1[j,2],power=thetaexp1[j ,19]))))-w_e[k][j]

}}

w_norm = exp(w1)/sum(exp(w1))

#Calculate filtered statistics and resample for next period
k = sample (1:N, replace=T,size=N,prob=w_norm)
cat(", level=",nlevels(as.factor(k)), "\n", sep = "", file = LogFile , append

= TRUE)

gamma.filter = gamma.filter1[k,1: ncol(gamma.filter1)]
psi.filter = psi.filter1[k,1: ncol(psi.filter1)]
theta = theta1[k,1: ncol(theta1)]
thetaexp = exp(theta)
thetaexp [ ,18:19] = powerfunc(theta [ ,18:19])

gamma_list[[i]] = gamma.filter
gamma.vector[i,1] = colMeans(gamma.filter)[1]
gamma.vector[i,2] = colMeans(gamma.filter)[2]
gamma.vector[i,3] = colMeans(gamma.filter)[3]
gamma.vector[i,4] = colMeans(gamma.filter)[4]
gamma.vector[i,5] = colMeans(gamma.filter)[5]
gamma.vector[i,6] = colMeans(gamma.filter)[6]
gamma.vector[i,7] = colMeans(gamma.filter)[7]
gamma.vector[i,8] = colMeans(gamma.filter)[8]
gamma.vector[i,9] = colMeans(gamma.filter)[9]
gamma.vector[i,10] = colMeans(gamma.filter)[10]
psi.vector[i,1] = colMeans(psi.filter)[1]
psi.vector[i,2] = colMeans(psi.filter)[10+i]

y.fit = exp(a_kf[[i]]%*%colMeans(gamma.filter)+ e_kf[[i]]%*%colMeans(psi.
filter))

line1fit[i,1:(I-i+1)] = y.fit [1:(I-i+1)]
line2fit[i,1:(I-i+1)] = y.fit[(I-i+2):length(y.fit)]

plot(line1fit[i,],type="l",ylim=c(min(line1fit[i,],line1[i,],line1fit[i-1,],
na.rm=T),max(line1fit[i,],line1fit[i-1,],line1[i,],na.rm=T)))

lines(line1[i,],lty=2)
lines(line1fit[i-1,],lty=3)

plot(line2fit[i,],type="l",ylim=c(min(line2fit[i,],line2[i,],line2fit[i-1,],
na.rm=T),max(line2fit[i,],line2fit[i-1,],line2[i,],na.rm=T)))

lines(line2[i,],lty=2)
lines(line2fit[i-1,],lty=3)
}

########## Summarise results and check goodness of fit ##########
state_est = cbind(gamma.vector ,psi.vector)

par(mfrow=c(3,2))
for(i in 1:12){
plot(state_est[,i],type="l",lty =1)
}

parameterest = cbind(apply(thetaexp ,2,mean),apply(thetaexp ,2,quantile ,probs
=0.05) ,apply(thetaexp ,2,quantile ,probs =0.95))

#Prepare data for heatmap
res1 = line1/line1fit
res2 = line2/line2fit
res1 = as.vector ((res1))
res2 = as.vector ((res2))
res1 = res1[!is.na(res1)]
res2 = res2[!is.na(res2)]

Var2 = c(c(10:1) ,c(10:2) ,c(10:3) ,c(10:4) ,c(10:5) ,c(10:6) ,c(10:7) ,c(10:8) ,c
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(10:9) ,10)
Var1 = rep (1:I,I:1)

heatmap1 <- data.frame(Var1 ,Var2 ,res1)
heatmap2 <- data.frame(Var1 ,Var2 ,res2)

#Plot the tracking of development patterns
par(mar=c(2.5 ,2.5 ,2.5 ,2.5))
par(mfrow=c(4,2))
plot(line1[1,],type="l",main=expression("Accident Benefits (excluding DI)"),

ylim=c(min(line1[1,], line1fit [1,],na.rm=T),max(line1[1,], line1fit [1,],na.
rm=T)))

lines(line1fit [1,],lty=2)
points(line1[1,],pch =1)
points(line1fit [1,],pch =2)
legend("topright", legend = c( "Year 1 observed", "Year 1 filtered"), lty =

1:2,lwd=1, bty = "n",pch=1:2, title = "")

plot(line2[1,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[1,], line2fit [1,],na.rm=T),max(line2[1,], line2fit [1,],na.rm=T)))

lines(line2fit [1,],lty=2)
points(line2[1,],pch =1)
points(line2fit [1,],pch =2)
legend("topright", legend = c( "Year 1 observed", "Year 1 filtered"), lty =

1:2,lwd=1, bty = "n",pch=1:2, title = "")

plot(line1[2,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[2,], line1fit [2,], line1fit [2-1,],na.rm=T),max(line1[2,],
line1fit [2,], line1fit [2-1,],na.rm=T)))

lines(line1fit [2,],lty=2)
lines(line1fit [2-1,],lty=3)
points(line1[2,],pch =1)
points(line1fit [2,],pch =2)
points(line1fit [2-1,],pch =3)
legend("topright", legend = c( "Year 2 observed", "Year 2 filtered","Year 1

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[2,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[2,], line2fit [2,], line2fit [2-1,],na.rm=T),max(line2[2,], line2fit
[2,], line2fit [2-1,],na.rm=T)))

lines(line2fit [2,],lty=2)
lines(line2fit [2-1,],lty=3)
points(line2[2,],pch =1)
points(line2fit [2,],pch =2)
points(line2fit [2-1,],pch =3)
legend("topright", legend = c( "Year 2 observed", "Year 2 filtered","Year 1

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line1[3,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[3,], line1fit [3,], line1fit [3-1,],na.rm=T),max(line1[3,],
line1fit [3,], line1fit [3-1,],na.rm=T)))

lines(line1fit [3,],lty=2)
lines(line1fit [3-1,],lty=3)
points(line1[3,],pch =1)
points(line1fit [3,],pch =2)
points(line1fit [3-1,],pch =3)
legend("topright", legend = c( "Year 3 observed", "Year 3 filtered","Year 2

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[3,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[3,], line2fit [3,], line2fit [3-1,],na.rm=T),max(line2[3,], line2fit
[3,], line2fit [3-1,],na.rm=T)))

lines(line2fit [3,],lty=2)
lines(line2fit [3-1,],lty=3)
points(line2[3,],pch =1)
points(line2fit [3,],pch =2)
points(line2fit [3-1,],pch =3)
legend("topright", legend = c( "Year 3 observed", "Year 3 filtered","Year 2

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")
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plot(line1[4,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[4,], line1fit [4,], line1fit [4-1,],na.rm=T),max(line1[4,],
line1fit [4,], line1fit [4-1,],na.rm=T)))

lines(line1fit [4,],lty=2)
lines(line1fit [4-1,],lty=3)
points(line1[4,],pch =1)
points(line1fit [4,],pch =2)
points(line1fit [4-1,],pch =3)
legend("topright", legend = c( "Year 4 observed", "Year 4 filtered","Year 3

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[4,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[4,], line2fit [4,], line2fit [4-1,],na.rm=T),max(line2[4,], line2fit
[4,], line2fit [4-1,],na.rm=T)))

lines(line2fit [4,],lty=2)
lines(line2fit [4-1,],lty=3)
points(line2[4,],pch =1)
points(line2fit [4,],pch =2)
points(line2fit [4-1,],pch =3)
legend("topright", legend = c( "Year 4 observed", "Year 4 filtered","Year 3

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

par(mfrow=c(5,2))
plot(line1[5,],type="l",main=expression("Accident Benefits (excluding DI)"),

ylim=c(min(line1[5,], line1fit [5,], line1fit [5-1,],na.rm=T),max(line1[5,],
line1fit [5,], line1fit [5-1,],na.rm=T)))

lines(line1fit [5,],lty=2)
lines(line1fit [5-1,],lty=3)
points(line1[5,],pch =1)
points(line1fit [5,],pch =2)
points(line1fit [5-1,],pch =3)
legend("topright", legend = c( "Year 5 observed", "Year 5 filtered","Year 4

filtered"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[5,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[5,], line2fit [5,], line2fit [5-1,],na.rm=T),max(line2[5,], line2fit
[5,], line2fit [5-1,],na.rm=T)))

lines(line2fit [5,],lty=2)
lines(line2fit [5-1,],lty=3)
points(line2[5,],pch =1)
points(line2fit [5,],pch =2)
points(line2fit [5-1,],pch =3)
legend("topright", legend = c( "Year 5 observed", "Year 5 filtered","Year 4

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line1[6,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[6,], line1fit [6,], line1fit [6-1,],na.rm=T),max(line1[6,],
line1fit [6,], line1fit [6-1,],na.rm=T)))

lines(line1fit [6,],lty=2)
lines(line1fit [6-1,],lty=3)
points(line1[6,],pch =1)
points(line1fit [6,],pch =2)
points(line1fit [6-1,],pch =3)
legend("topright", legend = c( "Year 6 observed", "Year 6 filtered","Year 5

filtered"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[6,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[6,], line2fit [6,], line2fit [6-1,],na.rm=T),max(line2[6,], line2fit
[6,], line2fit [6-1,],na.rm=T)))

lines(line2fit [6,],lty=2)
lines(line2fit [6-1,],lty=3)
points(line2[6,],pch =1)
points(line2fit [6,],pch =2)
points(line2fit [6-1,],pch =3)
legend("topright", legend = c( "Year 6 observed", "Year 6 filtered","Year 5

filtered"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line1[7,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[7,], line1fit [7,], line1fit [7-1,],na.rm=T),max(line1[7,],
line1fit [7,], line1fit [7-1,],na.rm=T)))
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lines(line1fit [7,],lty=2)
lines(line1fit [7-1,],lty=3)
points(line1[7,],pch =1)
points(line1fit [7,],pch =2)
points(line1fit [7-1,],pch =3)
legend("topright", legend = c( "Year 7 observed", "Year 7 filtered","Year 6

filtered"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[7,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[7,], line2fit [7,], line2fit [7-1,],na.rm=T),max(line2[7,], line2fit
[7,], line2fit [7-1,],na.rm=T)))

lines(line2fit [7,],lty=2)
lines(line2fit [7-1,],lty=3)
points(line2[7,],pch =1)
points(line2fit [7,],pch =2)
points(line2fit [7-1,],pch =3)
legend("topright", legend = c( "Year 7 observed", "Year 7 filtered","Year 6

filtered"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line1[8,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[8,], line1fit [8,], line1fit [8-1,],na.rm=T),max(line1[8,],
line1fit [8,], line1fit [8-1,],na.rm=T)))

lines(line1fit [8,],lty=2)
lines(line1fit [8-1,],lty=3)
points(line1[8,],pch =1)
points(line1fit [8,],pch =2)
points(line1fit [8-1,],pch =3)
legend("topright", legend = c( "Year 8 observed", "Year 8 filtered","Year 7

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[8,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[8,], line2fit [8,], line2fit [8-1,],na.rm=T),max(line2[8,], line2fit
[8,], line2fit [8-1,],na.rm=T)))

lines(line2fit [8,],lty=2)
lines(line2fit [8-1,],lty=3)
points(line2[8,],pch =1)
points(line2fit [8,],pch =2)
points(line2fit [8-1,],pch =3)
legend("topright", legend = c( "Year 8 observed", "Year 8 filtered","Year 7

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line1[9,],type="l",main=expression("Accident Benefits (excluding DI)"),
ylim=c(min(line1[9,], line1fit [9,], line1fit [9-1,],na.rm=T),max(line1[9,],
line1fit [9,], line1fit [9-1,],na.rm=T)))

lines(line1fit [9,],lty=2)
lines(line1fit [9-1,],lty=3)
points(line1[9,],pch =1)
points(line1fit [9,],pch =2)
points(line1fit [9-1,],pch =3)
legend("topright", legend = c( "Year 9 observed", "Year 9 filtered","Year 8

filtered"),lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(line2[9,],type="l",main=expression("Accident Benefits (DI only)"),ylim=c
(min(line2[9,], line2fit [9,], line2fit [9-1,],na.rm=T),max(line2[9,], line2fit
[9,], line2fit [9-1,],na.rm=T)))

lines(line2fit [9,],lty=2)
lines(line2fit [9-1,],lty=3)
points(line2[9,],pch =1)
points(line2fit [9,],pch =2)
points(line2fit [9-1,],pch =3)
legend("topright", legend = c( "Year 9 observed", "Year 9 filtered","Year 8

filtered"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

#Plot residuals by accident year , development year and calendar year
devratio1 = colMeans(line1/line1fit ,na.rm=T)
devratio2 = colMeans(line2/line2fit ,na.rm=T)
accratio1 = rowMeans(line1/line1fit ,na.rm=T)
accratio2 = rowMeans(line2/line2fit ,na.rm=T)

fitratio1_cal = matrix(NA ,nrow=10, ncol =10)

313



APPENDIX A. R CODES

fitratio2_cal = matrix(NA ,nrow=10, ncol =10)
for (t in 1:10){
for (i in 1:t){
fitratio1_cal[t,i] = line1[i,(t+1-i)]/line1fit[i,(t+1-i)]
fitratio2_cal[t,i] = line2[i,(t+1-i)]/line2fit[i,(t+1-i)]}}
calratio1 = rowMeans(fitratio1_cal ,na.rm=T)
calratio2 = rowMeans(fitratio2_cal ,na.rm=T)

par(mfrow=c(1,2))
plot(devratio1 ,ylim=c(0.4 ,1.8),type="l",xlab="Year", main=expression(paste("

Accident Benefits (excluding DI)")),ylab="Residuals")
lines(accratio1 ,lty=2)
lines(calratio1 ,lty=3)
points(devratio1 ,pch =1)
points(accratio1 ,pch =2)
points(calratio1 ,pch =3)
legend("topleft", legend = c( "Development year", "Accident year","Calendar

year"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

plot(devratio2 ,ylim=c(0.05 ,1.4) ,type="l",xlab="Year", main=expression(paste("
Accident Benefits (DI only)")),ylab="Residuals")

lines(accratio2 ,lty=2)
lines(calratio2 ,lty=3)
points(devratio2 ,pch =1)
points(accratio2 ,pch =2)
points(calratio2 ,pch =3)
legend("bottomleft", legend = c( "Development year", "Accident year","

Calendar year"), lty = 1:3,lwd=1, bty = "n",pch=1:3, title = "")

#Check fitted correlation coefficients
theoreticalcor = (0.7135*0.6614*0.1114)/(sqrt (0.7135*0.1114+0.0755)*sqrt

(0.6614*0.1114+0.1079))
samplecor = cor.test(psi.vector[,1],psi.vector [,2])

#Check residuals by calendar year
obscal1 = matrix(NA ,nrow=10, ncol =10)
obscal2 = matrix(NA ,nrow=10, ncol =10)
fitcal1 = matrix(NA ,nrow=10, ncol =10)
fitcal2 = matrix(NA ,nrow=10, ncol =10)

for (t in 1:10){
for (i in 1:t){
obscal1[t,i] = line1[i,(t+1-i)]
obscal2[t,i] = line2[i,(t+1-i)]
fitcal1[t,i] = line1fit[i,(t+1-i)]
fitcal2[t,i] = line2fit[i,(t+1-i)]
}
}

calratiodev1 = (rowSums(obscal1 ,na.rm=T)-rowSums(fitcal1 ,na.rm=T))/rowSums(
fitcal1 ,na.rm=T)

calratiodev2 = (rowSums(obscal2 ,na.rm=T)-rowSums(fitcal2 ,na.rm=T))/rowSums(
fitcal2 ,na.rm=T)

par(mar=c(4,4,1,1))
par(mfrow=c(1,1))
plot(calratiodev1 ,type="l",ylim=c(min(calratiodev1 ,calratiodev2),max(

calratiodev1 ,calratiodev2)),ylab="Residuals",xlab="Calendar year")
lines(calratiodev2 ,lty=2)
points(calratiodev1 ,pch =20)
points(calratiodev2 ,pch =20)
legend("topleft", legend = c("Accident Benefits (excluding DI)", "Accident

Benefits (DI only)"),lty = 1:2,lwd=1, bty = "n",title = "")
abline(h=0)

########## Forecast future outstanding claims ##########
#Set up matrices and prepare relevant information
prem = c(116491 , 111467 , 107241 , 105687 , 105923 , 111487 , 113268 , 121606 ,

110610 , 104304)
proj_theta = thetaexp
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proj_psi = matrix(NA,nrow=N,ncol =18)
est_cal = psi.filter
proj_gamma = gamma_list

proj_y = array(NA,c(N,18 ,9))
proj_a_kf = list()
proj_ay = array(NA,c(N,3,9))
proj_e_kf = list()
total = matrix(NA ,N,3)

for(i in 2:I){
en = matrix(0,nrow=(I-(I-i+1)),ncol=I-1)
en[1: nrow(en) ,1:nrow(en)] = diag(nrow(en))
E = adiag(en,en)
proj_e_kf[[i]] = E

an = matrix(0,nrow=(I-(I-i+1)),ncol =5)
an[1: nrow(an) ,1] = rep(1,nrow(an))
an[,2] = c(log(seq(from=(I-i+2),to=I)))
an[,3] = c((seq(from=(I-i+2),to=I)))
if(i==10){
an[1,5] = 1}
A = adiag(an,an)
proj_a_kf[[i]] = A}

#Project future calendar factors
set.seed (2000)
for (t in 1:N){
commonshock.e = rnorm(1,mean=0,sd=proj_theta[t,13])
proj_psi[t,1] = est_cal[t,10]+ proj_theta[t,16]*commonshock.e + rnorm(1,mean

=0,sd=proj_theta[t,14])
proj_psi[t,10] = est_cal[t,20]+ proj_theta[t,17]*commonshock.e + rnorm(1,mean

=0,sd=proj_theta[t,15])
for(i in 2:9){
commonshock.e = rnorm(1,mean=0,sd=proj_theta[t,13])
proj_psi[t,i] = proj_psi[t,i-1]+ proj_theta[i,16]*commonshock.e + rnorm(1,mean

=0,sd=proj_theta[i,14])
proj_psi[t,9+i] = proj_psi[t,i+8]+ proj_theta[i,17]*commonshock.e + rnorm(1,

mean=0,sd=proj_theta[i,15])}

#Project future claims
y.forecast = matrix(NA ,nrow=18,ncol =9)
for(i in 2:I){
logmu1 = (exp(proj_a_kf[[i]]%*%proj_gamma [[i]][t,] + proj_e_kf[[i]]%*%proj_

psi[t,]))
y.forecast1 = rep(NA ,2*(i-1))
phivector = c(rep(proj_theta[t,1],i-1),rep(proj_theta[t,2],i-1))
pvector = c(rep(proj_theta[t,18],i-1),rep(proj_theta[t,19],i-1))
for (n in 1: length(y.forecast1)){
y.forecast1[n] = rtweedie(1,mu = logmu1[n],phi=phivector[n],xi = pvector[n])}

y.forecast [1:(i-1),i-1] = y.forecast1 [1:( length(y.forecast1)/2)]*prem[i]
y.forecast[I:(I+i-2),i-1] = y.forecast1 [(( length(y.forecast1)/2)+1):length(y.

forecast1)]*prem[i]
}

proj_y[t,,] = y.forecast
proj_ay[t,1,] = apply(y.forecast [1:9,],2,sum ,na.rm=T)
proj_ay[t,2,] = apply(y.forecast [10:18,],2,sum ,na.rm=T)
proj_ay[t,3,] = apply(y.forecast ,2,sum ,na.rm=T)
total[t,1] = sum(y.forecast [1:9,],na.rm=T)
total[t,2] = sum(y.forecast [10:18,] ,na.rm=T)
total[t,3] = sum(y.forecast ,na.rm=T)}

#Predictive statistics
aytable = cbind(apply(proj_ay[,1,],2,mean),apply(proj_ay[,1,],2,sd),apply(

proj_ay[,2,],2,mean),apply(proj_ay[,2,],2,sd),apply(proj_ay[,3,],2,mean),
apply(proj_ay[,3,],2,sd))

totaltable = rbind(apply(total ,2,mean),apply(total ,2,sd),apply(total ,2,
quantile ,prob=c(0.75 ,0.95)))
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riskmargin = cbind(totaltable [3:4 ,1] - totaltable [1,1], totaltable [3:4 ,2] -
totaltable [1,2], totaltable [3:4 ,3] - totaltable [1,3])

#Distribution of total claims
library(EnvStats)
par(mfrow=c(1,1))
plot (density(total [ -2044 ,1]), ylim=c(0 ,3.6e-05),xlim=c(8500 ,360000) ,xlab="

Total unpaid losses",main="",lwd=3)
lines (density(total [ -2044 ,2]), lty=2,lwd=3)
lines (density(total [ -2044 ,3]), lty=3,lwd=3)
legend("top", legend = c("Accident Benefits (excluding DI)", "Accident

Benefits (DI only)", "Total"),lty = 1:3,lwd=3, bty = "n",title = "")
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