
1 

 

Education as a Moderator of the Relationship Between Episodic Memory and Amyloid 

Load in Normal Aging 

 

Maude Joannette, PhD candidate,1-2 Christian Bocti, MD,3-4 Pénélope Sévigny Dupont, PhD 

candidate,1-2 Marie Maxime Lavallée, PhD candidate,1-2 Jim Nikelski, PhD,5 Guillaume T. Vallet, 

PhD,6 Howard Chertkow, MD,5, 7 Sven Joubert, PhD1-2 

 
1 Département de psychologie, Université de Montréal, Montréal, Québec, Canada 

2 Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montréal, 

Québec, Canada 
3 Service de neurologie, Département de médecine, Université de Sherbrooke, Sherbrooke, 

Québec, Canada 
4 Research Center on Aging and Memory Clinic, CIUSSS Estrie-CHUS, Sherbrooke, Québec, 

Canada 
5 Lady Davis Institute for Medical Research, McGill University 

6 Université Clermont Auvergne, Laboratoire de Psychologie Sociale et Cognitive (CNRS, 

UMR6024) 

7 Department of Neurology and Neurosurgery, McGill University 

 

Address correspondence to: Maude Joannette, PhD Candidate, Centre de recherche de l’Institut 

universitaire de gériatrie de Montréal (CRIUGM), 4545 chemin Queen-Mary, Montréal, Québec, 

H3W 1W4, Canada. E-mail: maude.joannette@umontreal.ca 

 

 

 

 

  



2 

 

Abstract 

 

The current study explored whether education, a proxy of cognitive reserve, modifies the 

association between episodic memory (EM) performance and βeta-amyloid load (Aβ), a biomarker 

of Alzheimer’s disease, in a cohort of cognitively normal older adults. One hundred and four 

participants (mean age 73.3 years) evenly spread out in three bands of education were recruited. 

Participants underwent neuropsychological assessment, structural MRI as well as PET imaging to 

quantify Aβ load. Moderation analyses and the Johnson–Neyman technique were carried out to 

examine the interaction of education with Aβ load to predict EM performance. Linear regressions 

were then performed within each group of education to better illustrate the interaction effect (all 

analyses were controlled for age and sex). The interaction between education and Aβ load was 

significant (p < .05) for years of education, reaching a cutoff point of 13.5 years, above which the 

relationship between Aβ load and EM was no longer significant. Similarly, significant associations 

were found between Aβ and EM among participants with secondary (p < .01) and preuniversity 

education (p < .01), but not with a university degree (p = .253). EM performance is associated with 

Aβ load in cognitively normal older individuals, and this relationship is moderated by educational 

attainment.  
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The current state of the literature tends to demonstrate a subtle but significant impact of amyloid 

load (Aβ), one of the main Alzheimer's disease (AD) changes, on neuropsychological performances 

of older adults in a period of life where cognition is still clinically normal (1, 2). More specifically, 

a greater effect of Aβ is found in regard to episodic memory (EM) (3). AD is also characterized by 

a large and progressive deficit in verbal learning, which remains predominant throughout the 

disease course (4). EM decline is recognized as one of the first clinical signs of AD and thus the 

best cognitive predictor of future conversion to the disease (5, 6). 

Aβ begins to accumulate before the first clinical signs of AD and is associated with an 

increased risk for future cognitive decline (7, 8). Although some older individuals have a significant 

amount of Aβ pathology, their cognitive performances are still within normal limits (9). The 

concept of cognitive reserve (CR) has thereby been proposed to account for the discrepancy 

between the level of brain pathologies, such as Aβ load, and expected clinical manifestations 

generally associated with it (10). Education is one of the most studied proxies of CR and has been 

widely recognized as a moderator of cognitive changes associated with an underlying pathology, 

such as AD (11, 12). Indeed, this capacity to withstand brain damage is largely studied in cases of 

patients with AD to account for the fact that at equal level of cognitive performance, higher-

educated patients present more aggregation of Aβ than less-educated patients (13). CR, as 

measured by level of education, is also known to moderate cognitive changes observed in normal 

aging (10, 14). Older adults who benefits from a higher education tend to show a slower rate of 

cognitive decline over time compare to those with lower level of education (15). 

Nevertheless, whether educational attainment may help withstand the effect of Aβ 

deposition on cognitive functioning among cognitively intact older adults is still unclear, more 

specifically regarding EM. For instance, in postmortem studies, EM performance was reported to 

be associated to the count of neuritic plaques in nondemented older participants, but this association 
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was found to be weaker in higher-educated than in lower-educated individuals (16). In contrast, in 

vivo studies showed that education interacted with Aβ to predict global cognitive functioning (17) 

but not EM (17-19). However, these previous studies were conducted, for the most part, with highly 

educated older individuals. This more restrictive sample regarding educational level of the general 

population may have masked the potential moderating effect of this latter proxy of CR. The nature 

of the relationship between EM, Aβ load and education in normal aging remains a question of great 

interest since this cognitive function seems particularly vulnerable to Aβ accumulation (2, 3). 

The present study takes place in the ongoing efforts to better characterize the preclinical 

phase of AD by examining potential reserve factors, such as educational attainment, that may 

contribute to differential neuropsychological performances associated with the underlying Aβ 

changes. Thus, the aim of the study was to determine whether education, a surrogate of CR, can 

moderate the effect of Aβ, as measured using in vivo PET imaging with 11C-Pittsburgh Compound 

B (PiB) (20), on EM in normal aging. Furthermore, this question was investigated through the 

recruitment of an equivalent number of participants in three bands of education. Our main 

hypothesis was that the association between Aβ load and EM would be weaker among cognitively 

intact older individuals with higher education compared to their peers with lower education.   

 

Methods 

Participants 

In this cross-sectional study, 104 cognitively normal older individuals (aged 65 and older; mean 

age 73.3  years), without significant memory complaints nor significant cognitive impairment, that 

is, mild cognitive impairment (MCI) or dementia, were recruited in this study. Exclusion criteria 

included a history of neurological and/or traumatic brain injury, psychiatric disorders including 

untreated past or current severe depression and anxiety, untreated illnesses that may cause cognitive 
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impairment (eg, diabetes, metabolic or endocrine condition, etc.), alcohol or drug abuse during life, 

anesthesia in the last 6 months and uncorrected visual or hearing problems. Participants were 

recruited from a pool of participants at the Centre de recherche de l’Institut universitaire de gériatrie 

de Montréal (CRIUGM) and through advertising. Cognitive testing and MRI imaging were 

performed at the CRIUGM and PET imaging at the Montreal Neurological Institute (MNI). This 

study protocol was reviewed and approved by local research ethic boards. All participants provided 

written informed consent prior to their participation in the study. 

 

Neuropsychological Tests 

The following screening procedure allowed to confirm the absence of significant memory 

complaints as well as cognitive impairment (MCI or dementia). The Conversations and 

Movies/Books subtests of the Self-Evaluation Questionnaire (21), which are associated with 

objective memory deficits in MCI (22), were administered (inclusion score> –2 SD). A visual 

recognition memory test (DMS-48, 2 minutes delay (23)) and a verbal memory test (Logical 

Memory (24)) were used to screen for objective memory deficits (inclusion score> –1.5 SD on at 

least one of these tests). The Montreal Cognitive Assessment (MoCA) (25) was also administered 

to all participants, in which a score of >23/30 is considered as an inclusion criterion (26). To 

exclude significant depressive symptomatology, participants had to score <11/30 on the Geriatric 

Depression Scale (GDS) (27). 

A large body of evidence shows that delayed recall scores in EM tests are among the earliest 

cognitive changes observed in preclinical AD and are predictive of future conversion to AD (6). 

Thus, delayed recall scores were used to compute an EM measure. To ensure internal validity of 

our EM composite score, we performed a correlational matrix between our measures of delayed 

recall. This analysis allowed to determine which of these measures best intercorrelated. Delayed 
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recalls of the Rey Auditory Verbal Learning Test (RAVLT) (28) and Logical Memory (24) were 

selected based on a medium effect size correlation of r = .31 (p < .001) (29). The EM composite 

score was then computed by converting raw scores into z-scores based on the mean and standard 

deviations of the whole sample and averaging the z-scores of those two memory tests. The RAVLT 

was initially chosen over other word-list learning tests because it is free of a semantic learning 

context (ie, semantic categories). Indeed, the latter often results in ceiling effects in more educated 

individuals (30). Similarly, the sensitivity of the Logical Memory test shows a high level of 

accuracy in discriminating between cognitively healthy older individuals and those with very mild 

AD (31). 

In addition, all participants underwent neuropsychological testing assessing a range of 

cognitive functions including processing speed, attention, working memory, executive functions, 

language/semantics and visuospatial abilities. Global intellectual ability (IQ) was also assessed as 

part of the cognitive assessment (32). 

 

Measure of CR 

Educational achievement was selected as a proxy of CR. Participants were evenly distributed into 

three groups based on their level of education: secondary school, CEGEP or its equivalent (a 

preuniversity program in Quebec) and university, each level leading to a specific diploma in 

Quebec educational system. Participants with secondary school education had between 9 and 11 

years of education, participants with preuniversity education had between 12 and 13 years of 

education, whereas participants with a university background had more than 13 years of education.  

Participants had to have a minimal number of 9 years of education, in order to exclude potential 

confounding factors such as a history of neurodevelopmental disorder. There was no maximum 

number of years of education. In each group, however, a diploma did not necessarily have to be 
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obtained for participants to be included. In addition to classifying participants into three bands of 

education, the number of years of formal education was also considered and examined as a 

continuous variable. The level of educational attainment and number of years of education were 

obtained via self-reported information. 

 

PiB-PET Imaging 

All Positron Emission Tomography (PET) imaging occurred, on average, 85.12 days (SD = 73.26) 

following neuropsychological assessment. PET data were acquired with an ECAT HR+ scanner 

(Siemens/CTI) in 3D imaging mode at the McConnell Brain Imaging Center of the MNI. The 

scanning session began 50 minutes prior to start of the actual scan during which time the PiB bolus 

was injected. After 50 minutes, during which time the participant rested comfortably, the 

participant was positioned in the scanner, and data acquisition was started, resulting in the 

acquisition of seven frames: 6  300 seconds, and 1  600 seconds. Each frame was comprised of 

63 axial slices with an in-plane resolution of 2.06  2.06 mm. Total time required for the entire 

scanning session was 90 minutes. PET data were reconstructed using filtered back projection and 

were corrected for photon attenuation, scattering and radioactive decay. The standardized uptake 

value ratio (SUVR) was computed to quantitatively characterize the binding of the radioactive 

tracer PiB to amyloid during PET scanning. This ratio provides a quantifiable measure of Aβ 

accumulation in each participant’s brain, which was used as a continuous variable in all subsequent 

statistical analyses. The SUVR was determined by normalizing the radioactivity concentration of 

the whole cortex using average gray matter of the cerebellum as the reference tissue, since this 

region is known to be unaffected by Aβ deposition (20). 
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Structural MRI Imaging 

The MR images were acquired at the Unité de Neuroimagerie Fonctionnelle (UNF) located at the 

CRIUGM on a 3T Trio Siemens Magnetic Resonance Imaging (MRI). High resolution anatomical 

images included T1-weighted magnetization and were obtained using an optimized MPRAGE 

protocol (TR = 2.3 seconds, TE = 2.94 ms, TI = 900 ms, flip angle = 9°, FOV = 256 × 240, voxel 

1 × 1 × 1.2 mm) using an eight-channel coil. This optimized MPRAGE protocol allowed the 

coregistration of PET to the MR image for each participant. The total acquisition time was 

approximately 30 minutes. 

 

Statistical Analysis 

One-tailed bivariate correlations were performed to examine associations between age on the one 

hand, and Aβ load and EM performance on the other hand. Education and its associations with Aβ 

load, EM performance and IQ were also explored. Similarly, a one-tailed bivariate correlation was 

carried out to verify the association between years of education and IQ. As for EM and education, 

a one-tailed partial correlation (controlled for age) was conducted. A partial correlation while 

controlling for age was used in order to assess the relationship between Aβ load and number of 

years of education. In fact, there are conflicting findings in the literature regarding the association 

between education and Aβ load. While some studies did not find a significant relationship between 

education and Aβ deposition (16, 33, 34), others have reported that greater cognitive engagement 

based on lifestyle factors, such as a higher level of education, is associated with a reduced level of 

Aβ load (35, 36). 

A stepwise multiple regression was performed to examine the independent associations of 

age, sex and Aβ with EM composite score. This descriptive model was used to better understand 
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the relationship between these variables and determine which one is most strongly associated with 

EM performance.  

Then, we performed a moderation analysis in which an interaction term was included 

(education  Aβ load) to assess whether Aβ load interacts differently with EM as a function of 

years of education. EM performance was introduced in the model as the dependent variable, Aβ 

load as the independent variable and the moderator was the number of years of education. Age and 

sex were included in the statistical model as covariates. This analysis allowed us to assess the effect 

of education when considered as a continuous variable (ie, number of years of education) and was 

performed using Model 1 in PROCESS macro 3.1 for SPSS (37). The Johnson–Neyman technique 

(37) was then applied in order to determine the regions of significance. This latter analysis 

identifies the values of the moderator (ie, number of years of education) for which the effect of Aβ 

load on EM transitions between being nonsignificant to statistically significant by probing the 

relationship between these two variables for all the possible values of the education variable.  

In addition, in order to examine whether the moderation effect is solely due to education, 

IQ was added as a covariate in the moderation model. In a secondary set of analysis, we explored 

whether IQ could also moderate the relationship between performance in EM and Aβ load. 

Moderation analysis was carried out here as well with age and sex added to the model as covariates. 

Then, to better illustrate the interaction effect, multiple regression analyses (stepwise) were 

performed for each group of education with age, sex and Aβ load included in the models to 

determine which had an impact on EM performance. This analysis permitted the visualization of 

the relationship between Aβ load and EM performance as a function of educational attainment. 

Effect sizes were computed for each main analysis using SPSS 25. For all tests, p < .05 was 

considered significant. Assumption criteria were met for all analysis performed in this study. 
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Results 

Participants Characteristics 

A total of 104 cognitively normal older adults composed the whole sample of this study. Clinical 

and demographic characteristics are presented in Table 1. Aβ load was found to be positively 

correlated with age (r = .388, p < .001) within the entire group, indicating higher Aβ deposition at 

older ages, which is consistent with literature. Unsurprisingly, age was negatively correlated to EM 

performance (r = –.223, p < .05). As for the relation between education and IQ, a significant 

correlation was found (r = .440, p < .001). No association was found between years of education 

and EM performance (p = .118) which is a surprising result since higher education is generally 

associated with better memory performance (38). The association between education and Aβ load 

was also examined and the analysis revealed a marginal and negative correlation between years of 

education and Aβ load in our sample (r = –.186, p = .059). 

 

TABLE 1. Demographic Characteristics and General Cognitive Performance of all Participants 

Characteristics Range Mean (SD) 

Age (y) 65 - 93        73.30   (6.2) 

Women (no.) -              77   (74%) 

Education (y)   9 - 24        13.70   (3.2) 

Aβ load (SUVR) 1.04 - 2.03          1.24   (0.17) 

MoCA score 23 - 30        27.30   (2.0) 

IQ   78 - 138      104.90   (11.9) 
Note: N = 104; Aβ = βeta-amyloid; SUVR = Standardized uptake value ratio; MoCA = Montreal 

Cognitive Assessment. 

 

Association Between EM and Aβ Load 

EM performance was found to be associated solely with Aβ load, and not age or sex. The analysis 

revealed a significant regression equation (F (1, 102) = 20.51, p < .001, R2 = .167). This result 
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indicates that age and sex are not associated with EM performance when Aβ load is taken into 

account. 

 

Effect of the Number of Years of Education on the Association of EM and Aβ Load 

There was an interaction between the number of years of education and Aβ load to predict EM 

performance indicating the presence of a moderation effect; F (1, 98) = 4.3995, p < .05, R2 = .0344 

(Figure 1). More specifically, with each additional year of education, the effect of Aβ load on EM 

changed by 0.469 units. This result suggests that the association between Abeta and EM is stronger 

among those with lower education. This interaction was further explored in order to determine the 

specific threshold (years of education) above which Aβ load does not influence EM anymore. 

Results show that the relationship between Aβ load and EM ceases to be significant at 13.5 years 

of education and above (Figure 2). Furthermore, since IQ is related to educational attainment, we 

further controlled for IQ in the model. IQ did not influence the moderation effect of education on 

the relationship between Aβ burden and EM described above. The interaction remained statistically 

significant when IQ was included in the model as a covariate and the effect size remained similar 

(F (1, 97) = 4.7619, p < .05, R2 = .0340). When a moderation analysis was carried out with IQ, and 

not education, as a moderator of the relationship between EM performance and Aβ load (age and 

sex included as covariates), the interaction did not reach significance (p = .648). 
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Figure 1. Model of a significant moderation effect of education on the relationship between Aβ load and episodic 

memory. Illustration of the moderation model with the horizontal arrow indicating that Aβ load is significantly 

associated with episodic memory in cognitively normal older adults (p < .05). This association is significantly 

moderated by number of years of education (p < .05) indicated by the vertical arrow. 

 

 

 

Figure 2. Relationship between composite episodic memory z-scores (y-axis) and Aβ load scores (x-axis) among 

cognitively normal older adults with < or ≥ 13.5 years of education. 
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Association Between EM and Aβ Load by Groups of Education 

Relationships between Aβ load and EM performance as a function of educational attainment are 

illustrated in Figure 3. Performance in EM was significantly and uniquely associated with the level 

of Aβ load in participants with secondary education (F (1, 32) = 10.59, p < .01, R2 = .249, 

 = - 0.499) and in participants with preuniversity education (F (1, 33) = 12.68, p < .01, R2 = .278, 

 = -0.527). As for the group of participants with university education, no association was found 

between EM and all three variables, ie, Aβ deposition, age and sex (p > .05,  = 0.116). 
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Figure 3. Moderation effect of education on the relationship between episodic memory (y-axis) and Aβ load (x-axis). 

Episodic memory scores and Aβ load are expressed as unstandardized residuals. Data points are thus adjusted for age 

and sex. 
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Discussion 

In this study, we examined the relationship between CR, EM and Aβ pathology among a group of 

cognitively normal older adults (without SMI, MCI or dementia). We aimed to determine whether 

educational attainment could modify the negative association between EM performance and Aβ 

load, which reflects an Alzheimer change in the brain. First, our results corroborate a growing body 

of evidence showing that Aβ load has a significant deleterious impact on EM in cognitively normal 

older adults (2, 3, 18). This is in keeping with the fact that EM decline is the hallmark of AD (5).  

Education was found to moderate the relationship between Aβ load and EM performance, 

a result which has been found in previous postmortem studies (16, 39). In our study, Aβ load only 

had an impact on EM performance in cognitively intact older participants in the secondary and 

preuniversity groups, but not in the university group. Furthermore, the adverse effect of Aβ load 

on EM performance was shown to become nonsignificant at or above 13.5 years of education, a 

value which corresponds to the transition between preuniversity programs and university. In 

summary, these results suggest that education has a protective effect on EM against 

pathophysiological mechanisms associated with amyloid load present in healthy older adults. Thus, 

individuals with higher educational attainment, that is, a university degree, are better able to 

compensate for the accumulation of Aβ deposition by maintaining a more stable memory 

performance. This is consistent with the notion of CR, which is based mainly on evidence showing 

that there can be a marked discrepancy between clinical symptoms and brain disease severity in 

patients with AD as a function of education. In other words, individuals with higher education can 

better compensate the effects of advancing AD brain pathology (10, 13). The current study now 

extends these findings to an asymptomatic, cognitively healthy older population. It suggests that 

education can moderate the effect of accumulating Aβ load, reflecting AD changes, even in older 

individuals who do not present with MCI or full-blown dementia. 
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Thus, the tempering effect of education on the relationship between brain Aβ pathology and 

EM can be interpreted in terms of CR. Indeed, it can be viewed as an active process characterized 

by a reduced vulnerability to cognitive impairment due to the use of alternative strategies (40). This 

capacity to cope with pathology to maintain normal cognitive performances is now described in 

terms of a greater resilience in face of neuropathological processes (41). In other words, differences 

in cognitive processes, more precisely, in cognitive capacity, efficiency and flexibility, would 

explain this heightened ability in highly educated older individuals to withstand the adverse effects 

of neuropathological processes observed in AD and maintain optimal cognitive functioning. These 

cognitive processes are thought to be modified through life experiences (40). As such, education is 

considered to be an early and midlife experience-based cognitive enrichment which promotes 

lifelong brain health (42) and is thought to enable a more efficient way of processing information 

(43). Consequently, education is one of the most well-documented proxies of CR and has been 

shown to play an important role in reducing the risk of developing AD as well as in delaying the 

onset of clinical symptoms (11, 44). Accordingly, education is associated with greater cognitive 

efficiency both in normal aging and in the presence of brain pathology, such as AD pathology (45). 

Moreover, it has been shown that intellectual learning throughout life, including education and 

occupation, had a bigger contribution on cognitive functioning later in life, than current ongoing 

intellectual activity in older individuals (46). 

Even though education is acquired, it may also rely on preexisting intrinsic characteristics, 

such as innate intellectual capacity. It is thus conceivable that the moderating effect of education 

on the relation between Aβ load and EM may be explained by underlying intellectual abilities (ie, 

IQ). Our results, however, do not support this claim. In fact, results showed that although IQ was 

significantly correlated with education in our group, it did not moderate the relation between Aβ 

load and EM performance. In addition, the moderating effect of education on the relation between 
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Aβ load and EM performance remained significant even when IQ was controlled for in the analysis. 

Overall, these results indicate that rather than intellectual ability, acquired experience acts as a 

protective factor against AD pathology in normal aging. Therefore, cognitive enrichment based on 

life experiences appears to be the determining factor in increasing CR within the context of normal 

aging. 

As mentioned previously, a postmortem study did find a moderating effect of education on 

the association between EM and Aβ deposition in nondemented individuals (16). Other groups, 

however, did not find this association in normal aging (17-19). In our view, this may be due to the 

fact that the vast majority of studies recruited highly educated participants. For instance, in the 

above-mentioned articles which studied the role of education on the relation between Aβ deposition 

and EM performance, mean education was, respectively, 15.5 (2.7) years (17) and 18.29 (3.59) 

years (19). As suggested by our own results, recruiting only highly educated participants may mask 

the relation between brain pathology and memory ability. Indeed, the relation between Aβ load and 

EM performance was not significant in the university group while it was in the secondary and 

preuniversity groups. One of the strengths of our study is that we recruited an equivalent number 

of participants across different education bands, providing a more accurate picture of the general 

population. Therefore, particularly within the context of studying CR, but more generally in the 

context of studying the relation between brain biomarkers and cognition in cognitively intact 

populations, we highlight the importance of avoiding the pitfall of not recruiting only highly 

educated participants. 

Moreover, other proxies of CR have also been found to moderate the impact of Aβ load on 

cognition. For instance, in a group of older individuals with intact cognition, a weaker association 

between cognitive functioning and level of Aβ load was found in participants with higher CR, 

measured with the estimated verbal IQ from the American National Adult Reading Test, compared 
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to a group with lower CR (33, 47). Similar results have also been found using the Extended Range 

Vocabulary Test (ERVT) as a surrogate of CR (19), in a cognitively normal older population. These 

findings further support the concept of CR, whereby certain individuals are able to maintain 

optimal cognitive functioning despite accumulating brain pathology. These results as a whole 

suggest a protective effect of CR against the subtle cognitive decline associated with elevated Aβ 

in normal aging. There are some discrepancies, however, between the above-mentioned studies 

which found that estimated verbal IQ had a protective effect against Aβ, and our own study which 

found that IQ did not moderate the relationship between Aβ load and memory performance. Further 

studies will need to investigate the relation between intellectual abilities and cognitive decline in 

aging. 

There are some limitations which need to be pointed out in this study. First, education is a 

self-reported measure, and it has been suggested that in order to better operationalize this variable, 

the degree of literacy may represent a better surrogate of CR (48). Nevertheless, education remains 

the most widely reported surrogate of CR. Second, the group size remains relatively small 

compared to other studies. This is compensated by the fact that we recruited participants across a 

broader spectrum of educational achievement and by using more specific and sensitive 

neuropsychological tests. Finally, the results are cross-sectional in nature, so the current results do 

not have any prognostic value regarding the future risk of developing AD. However, a longitudinal 

follow-up will allow monitoring cognitive changes amongst older individuals with significant 

amyloid burden recruited in this cohort. 

Future work should investigate other proxies of CR in relation to Aβ deposition among 

older individuals with normal cognition. For instance, measures of occupational attainment, 

engagement in cognitively demanding activities and bilingualism are also recognized to impart CR 

(45, 49). Investigating the tripartite relationship between Aβ, cognitive function and other proxies 
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of CR could further shed light on how these factors differ from education and how they interact to 

predict cognitive performance in the presence of Aβ deposition. It will also be interesting to 

investigate more dynamic measures of CR such as engagement in cognitively demanding lifestyle 

activities, as opposed to education which is described as a static measure. Indeed, education is 

typically acquired in a fixed period of early and middle life, while dynamic measures of CR may 

be acquired during the course of life (19). Lastly, in order to gain more insights on the reserve 

concept, another interesting avenue of research would be to examine the deleterious effects of 

factors such as history of affective disorder, vascular burden, stress or sleep disorders on the 

interaction between CR and Aβ. 

This study as a whole provides novel evidence concerning the protective role of education 

against Aβ deposition in cognitively normal older adults. It is critical at this stage to identify 

modifiable protective factors in the preclinical stage of AD, which may help reducing the risk or 

delaying the onset of AD. Reducing cognitive inactivity throughout life, including low educational 

attainment, could have significant impact on the prevalence of AD (50). Previous research has 

highlighted the role of CR in autopsy studies or in patients with full-blown dementia, but the current 

study contributes to a new endeavor aimed at studying CR in healthy asymptomatic older 

individuals with AD pathology using in vivo biomarkers. 
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