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Sommaire

Des progrès considérables ont été réalisés en robotique mobile au cours des dernières

décennies et ces robots sont maintenant capables d’effectuer des tâches qu’on croyait au-

paravant impossibles. Un facteur critique qui a permis aux robots d’accomplir ces diverses

tâches difficiles est leur capacité à déterminer où ils se trouvent dans un environnement

donné (localisation). On parvient à une automatisation plus poussée en laissant le robot

choisir ses propres actions au lieu de faire appel à un téléopérateur humain. Cependant, la

détermination précise de la pose (position + orientation) du robot et l’adaptation de cette

capacité à des environnements plus vastes constituent depuis longtemps un défi dans le do-

maine de la robotique mobile. Les approches traditionnelles à cette tâche de " localisation

active " utilisent un critère théorique de l’information pour la sélection des actions ainsi que

des modèles perceptuels faits à la main.

Avec une augmentation constante des capacités de calcul disponibles au cours des trois

dernières décennies, l’algorithme back-propagation a trouvé son utilisation dans des réseaux

neuronaux beaucoup plus profonds et dans de nombreuses applications. En l’absence de

données labellisées, le paradigme de l’apprentissage par le renforcement (RL) a récemment

connu beaucoup de succès en ce qu’il apprend en interagissant avec l’environnement. Cepen-

dant, il n’est pas pratique pour un algorithme RL d’apprendre raisonnablement bien à partir

de l’expérience limitée du monde réel. C’est pourquoi il est courant d’entraîner l’agent dans

un simulateur puis de transférer efficacement l’apprentissage dans de vrais robots.

Dans cette thèse, nous proposons une méthode différentiable de bout en bout afin d’ap-

prendre à choisir des mesures informatives pour la localisation de robots, qui peut être

entraînée entièrement en simulation et ensuite transférée sur le robot réel sans aucun ajus-

tement. Pour ce faire, on s’appuie sur les progrès récents de l’apprentissage profond et des

paradigmes d’apprentissage de renforcement, combinés aux techniques de randomisation des
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domaine. Le système est composé de deux modules d’apprentissage : un réseau neuronal

convolutionnel pour la perception, et un module de planification utilisant l’apprentissage

profond par renforcement. Nous utilisons une approche multi-échelles dans le modèle per-

ceptuel puisque la sélection d’action à l’aide de l’apprentissage par renforcement nécessite

une précision de la position inférieure à la précision nécessaire au contrôle du robot. Nous

démontrons que le système résultant surpasse les approches traditionnelles, en termes de

perception et de planification. Nous démontrons également la robustesse de notre approche

vis-à-vis différentes configurations de cartes et d’autres facteurs de nuisance par l’utilisa-

tion de la randomisation de domaine au cours de l’entraînement. Le code a été publié :

https://github.com/montrealrobotics/dal et est compatible avec le framework OpenAI gym,

ainsi qu’avec le simulateur Gazebo.

Mots clés : Localisation, Apprentissage profond, Apprentissage par renforcement, Lo-

calisation active, Robotique
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Summary

Mobile robots have made significant advances in recent decades and are now able to

perform tasks that were once thought to be impossible. One critical factor that has enabled

robots to perform these various challenging tasks is their ability to determine where they

are located in a given environment (localization). Further automation is achieved by letting

the robot choose its own actions instead of a human teleoperating it. However, determining

its pose (position + orientation) precisely and scaling this capability to larger environments

has been a long-standing challenge in the field of mobile robotics. Traditional approaches to

this task of active localization use an information-theoretic criterion for action selection and

hand-crafted perceptual models.

With a steady rise in available computation in the last three decades, the back-propagation

algorithm found its use in much deeper neural networks and in numerous applications. When

labelled data is not available, the paradigm of reinforcement learning (RL) is used, where it

learns by interacting with the environment. However, it is impractical for most RL algorithms

to learn reasonably well from just the limited real world experience. Hence, it is common

practice to train the RL based models in a simulator and efficiently transfer (without any

significant loss of performance) these trained models into real robots.

In this thesis, we propose an end-to-end differentiable method for learning to take in-

formative actions for robot localization that is trainable entirely in simulation and then

transferable onto real robot hardware with zero refinement. This is achieved by leveraging

recent advancements in deep learning and reinforcement learning combined with domain

randomization techniques. The system is composed of two learned modules: a convolu-

tional neural network for perception, and a deep reinforcement learned planning module.

We leverage a multi-scale approach in the perceptual model since the accuracy needed to

take actions using reinforcement learning is much less than the accuracy needed for robot
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control. We demonstrate that the resulting system outperforms traditional approaches for

either perception or planning. We also demonstrate our approach’s robustness to different

map configurations and other nuisance parameters through the use of domain randomization

in training. The code has been released: https://github.com/montrealrobotics/dal and is

compatible with the OpenAI gym framework, as well as the Gazebo simulator.

Key words: Localization, Deep Learning, Reinforcement Learning, Active Localization,

Robotics
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Chapitre 1

Introduction

Mobile robots have the capability to advance humanity by automating various tasks,

including some tasks that humans cannot do. Examples of mobile robots range from a

simple automated floor cleaning robot to a Mars rover, from a remote controlled toy car to

a fully autonomous vehicle. At the core of this entire field of mobile robotics is the task of

localization [73]: the robot should know its current location (relative to the environment it is

operating upon) to be able to perform any downstream task. For example, for an autonomous

car to navigate to its destination, it should precisely know its location to further plan the

path to its destination. This localization task is performed by the robot by collecting sensor

data and comparing it against its model of the environment (usually called a map). A robot’s

ability to localize is therefore dependent on where in the environment that sensor data is

taken, since some parts might be more unique and easy to disambiguate. Active localization

[55], which is the focus of this thesis, deals with choosing actions (where should the robot

move next?) to be able to collect the data to allow it to accurately determine its current

location.

The traditional methods for a robot to determine its location involve probabilistically

fusing sequences of sensor data over time [15]. This is typically done in a recursive filtering

framework which requires a motion model (model of the movement of the robot in space

given actuation commands) and a measurement model (model of how the sensor data ob-

tained relates to the robot state being estimated). This framework of fusing motion and

measurement models in an iterative fashion is called Markov Localization [15]

Traditional methods for localization are “passive” (agnostic to how actions are selected).

They provide a recursive framework for updating an approximation of the posterior of the



state belief as new measurements arrive. In the case of traditional Markov Localization (ML),

this is usually done by some type of discretization of the state space, such as a fixed grid [16],

or by maintaining a set of particles (state hypotheses) as is done in Adaptive Monte Carlo

Localization (AMCL) [74]. While these methods have seen widespread success in practice,

they are still fundamentally limited since the map representation is hand-engineered and

specifically tailored for the given on-board robot sensor. A common example is the pairing

of the occupancy grid map [11] with the laser scanner since the measurement likelihood can

be computed efficiently and in closed form with scan matching [54]. However, this choice

of representation can be sub-optimal and inflexible. Furthermore, sensor parameters such

as error covariances tend to be hand-tuned for performance, which is time consuming and

error-inducing.

Machine Learning (and Deep Learning (DL) in particular) approaches are able to learn

from available data, and consequently often have better generalization capabilities [52] as

they do not over-fit to any set of rigid rules. However, the goal of this work is more ambitious

than just learning from data: we do not want to perform any training on the real robots

(because it is expensive and very time consuming). Domain randomization (DR) [75] deals

with adding various noises to a simulator to help a learned model (deep neural network)

generalize to real environments when just trained on a simulator. This ability to transfer

models from a simulator to real environments is one of the core components of transfer

learning [56]. It is referred to as zero-shot transfer when no further training is done in

real environments. In this thesis, we leverage recent advances in DL combined with DR

techniques (sec-4.2.4) to mitigate the issues of rigidity inherent in the classical methods (sec-

3.3). We demonstrate the effectiveness (in terms of localization performance and robustness:

chapter-5) of our method with thorough experimental results on a simulator and on real

robots.

While these techniques help us in solving the passive localization problem (we are not

selecting the actions that are taken by the robot), our overall goal in this thesis is to solve the

problem of active localization (where we are selecting the actions). Active variants of ML and

AMCL are classical ways to solve the active localization problem [7, 72, 3, 14, 39]. These

methods typically leverage an information-theoretic [67] measure to evaluate the benefit

of visiting unseen poses. We describe each of these methods in detail in sec-2.3. Again,
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these hand-tuned heuristics tend to lead to over-fitting of a particular algorithm to a specific

robot-sensor-environment setup.

Labelled data (datasets containing best actions for a given state) are not available in

this case which prevents us from using DL to overcome the problems associated with these

hand tuned heuristics. However, the paradigm of reinforcement learning (RL) enables us to

learn actions by interacting with the environment (either in simulator or in real world) and

by taking rewards from the environment after every action. Deep Reinforcement Learning

(DRL) (which uses deeper neural networks in RL paradigm, and hence it is sometimes

considered a particular form of DL) has seen an incredible recent success on some robotics

tasks such as manipulation [42] and navigation [86], albeit predominantly in simulation. In

order for a DRL agent to be trained in simulation and deployed on a real robot either

(1) the reality gap needs to be small (simulator should be very realistic, i.e, models

trained on a simulator should directly work in real environments) or is overcome with

training techniques such as Domain Randomization (DR) such that no refinement of

the policy is needed on the real robot (zero-shot transfer) or,

(2) the agent policy is fine-tuned on the real robot after primarily training in simulation.

The latter option reduces the burden on completeness and thoroughness of the simulator

and training regime, but fine-tuning on the robot can be difficult or impossible if the reward

is determined by leveraging ground truth parameters (like true localization) that are only

available in the simulator. In this work, we apply the framework of DRL to the task of

active localization and use it to train policies that transfer to a robot in real-world indoor

environments.

To summarize, in this work we leverage deep supervised learning and deep reinforcement

learning to build an end-to-end trainable system for active localization. A likelihood model

is pre-trained via supervised learning to tell us where the robot is likely to be present in the

environment given current observation and map of the environment. We use this likelihood

to update the robot’s belief about its current location in the environment. Furthermore,

we use this belief, current observation and map of the environment to train the robot (via

DRL) to take actions that help in minimizing the localization error. All these components

are differentiable, thus making both the likelihood and policy models trainable together. To

control the motion errors, we train a hierarchical network for likelihood prediction which

3



Fig. 1.1. Deep active localization (DAL) demonstrated in simulation. The first row
gives a birds eye view of the environment along with the robot’s true location and its believed
location. The red dot indicates the true pose of the robot and the blue dot indicates the
pose of where the robot believes it is. The second row shows the observation (scan image,
obtained from laser scan) from the robot’s true pose. The third row shows the output of
the likelihood model, which tells us where the robot is likely to be present given the current
observation and map of the environment. The fourth row shows the robot’s posterior belief
i.e, where the robot believes it is. The brighter white color denotes higher probability and
darker red color denote lesser probability of robot being in that location. At first, the robot
is uncertain of its pose relative to the given map, but as it executes actions it converges onto
a true location.

gives us the likely poses of the robot at a much finer resolution thus enabling us to correct

for the robot’s inevitable drift as it traverses the path towards its goal in the next time

step. While more thorough notations and details are given in chapter-2, figure-1.1 provides

a rough overview of how our method helps the robot in active localization and increases the

robot’s confidence over its location.

In summary we claim the following contributions:
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• We propose a multi-layer learned likelihood model which can be trained in simulation

from automatically labeled data and then refined in an end-to-end manner,

• We integrate this model into an end-to-end deep RL system that does both high-level

action selection and low-level robot control,

• We show that this method works for zero-shot transfer onto a real robot and outper-

forms classical methods.

Furthermore, we develop an automated processes for map generation, domain randomiza-

tion [76] and likelihood and policy model training, that, in combination with our open-source

openAI gym and Gazebo compatible code, allows for easy replication of our method and the

baselines.

We demonstrate the effectiveness of our methods via various sets of experiments in

chapter-5. After detailing the dataset generation and experimental setup, we compare our

algorithm with traditional approaches (cosine similarity, Markov localization) and other lear-

ning based approaches like ANL[9]. We also provide experimental results on robustness of

our approach (fig-5.5) and effectiveness of hierarchical models (fig-5.7). We also provide a

timing comparison of our approach with other approaches (table-5.1).

1.1. Prologue

This thesis is based on my paper "Deep Active Localization" [19] which was accepted

to the RA-L journal. Here, I summarize the contributions of every author in this work:

- I developed the neural network models, simulator on gazebo, custom gym environment,

interface with all the reinforcement learning algorithms we used, code for experiments on

turtlebot. I contributed to the automated dataset generation, ideation phase, brainstorming

sessions, manuscript and experiments on turtlebot.

- Dr. Keehong Seo played a key role by contributing to the results on JAY, development

of a custom simulator, code development on gazebo simulator and for real robot experiments,

densenet and resnet models, automated dataset generation, timely documentation and most

of the brainstorming sessions.

- Dhaivat and Vincent contributed to the experiments on turtlebot and in polishing the

manuscript.
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- Krishna and Liam contributed to the ideation phase, brainstorming sessions and ma-

nuscript.
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Chapitre 2

Robot Localization

In this chapter, we define the notations used and classical formulations of the robot

localization and active localization problems.

2.1. Localization

The problem of localization corresponds to determining the pose of a mobile robot in an

environment given the map of the environment and observations. In 2D, the pose (state), x

is defined as the position (x-y coordinates) and orientation (θ) of the robot w.r.t to a fixed

frame. The map M represents the position of obstacles or landmarks in the environment

the robot is operating in. The observation z is the sensor measurement (for example: scan

measurements from a Light Detection And Ranging "LiDAR" (LiDAR) sensor) taken from

its current pose x. There are various considerations in localization problems:

• Local vs Global vs Kidnapped: If we know the initial pose of robot, it is classified

as a local localization problem. If we do not make any assumptions about its initial

pose, it is classified as global localization. Kidnapped localization is when a robot

is removed from its current pose and dropped somewhere else in the environment

during operation. This is a very hard problem to solve [73].

• Passive vs Active: In passive localization, the robot is tele-operated whereas in

active localization, the robot has to choose its own actions to minimize the localization

error.

• Static vs Dynamic Environments: Depending on whether the obstacles in the

environment are fixed or moving, the localization problem can be classified into static

obstacle localization or dynamic obstacle localization respectively.



• Single Robot vs Multi-Robot: In a single-robot case, the robot updates the belief

of its pose based on its own observations. When there are multiple robots in the

environment, each robot can also benefit from the information shared/communicated

by other robots.

In this thesis, we will focus on active global localization for single robots in static en-

vironment although our algorithm is extendable to other paradigms like local or passive

localization or multi-robot setting. So, we assume that the obstacles in our environment are

static and we do not assume any knowledge of our robot’s initial pose. Thus, the goal is to

choose actions that minimize the error in localization. Even if the overall task is different

(for example, to navigate to a particular location in the environment), the robot is first

tasked with active localization to be able to efficiently solve any overall task [6]. Sometimes

it is possible to simultaneously solve multiple tasks like active localization and mapping [8].

Markov localization is a well known method used for solving passive localization, which can

also be used in active localization framework.

2.2. Markov Localization

Markov localization is a direct implementation of the recursive Bayes filter. The Bayes

filter is used for updating the pose of the robot based on new measurements. We first

introduce the notations used and then discuss the framework of recursive Bayes filter being

used for Markov Localization.

A state is any information about the robot and its environment. It is denoted by x. The

state at time t is denoted as xt. In the context of localization, the information about the

mapM of the environment is fixed and known prior to us. Henceforth, the state xt refers to

the information about pose (x, y, θ) of the robot w.r.t given map of the environment. An

observation (or measurement) is what the robot actually sees (through its sensors) from its

current pose. It can be a 2D scan or a 3D scan or a image etc. An observation at time step

t is denoted as zt. Control commands (or motion commands) at time step t are denoted as

ut. They could either be angular velocities of the wheels or high level commands like "go

forward", "turn left" etc..

The state x is considered to be complete i.e, it is a sufficient summary of all that happened

in the previous time steps. So, the state at time step t is only a function of the state at time
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step t− 1 and the motion command ut. Mathematically,

p(xt|x0:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut)

Similarly, the current observation zt only depends on the current pose of the robot xt. These

completeness assumptions are also referred to as Markov assumptions or Markov properties.

Hence, the name Markov Localization.

p(zt|x0:t, z1:t−1, u1:t) = p(zt|xt)

The probability distribution p(xt|xt−1, ut) is the state transition probability. p(zt|xt) is

called the measurement probability. Models of these distributions are also called motion

model and measurement model respectively. A belief distribution is a posterior probability

over state variables conditioned on the available data. Belief over a state variable xt is

denoted by bel(xt).

bel(xt) = p(xt|z1:t, u1:t)

The belief before incorporating the measurement zt is usually called as prediction (in our

context of Bayes filtering) and is denoted by bel(xt).

bel(xt) = p(xt|z1:t−1, u1:t, x0)

where, x0 is the initial pose of the robot. Calculating bel(xt) from bel(xt) is called measure-

ment or the correction update. Given the belief at previous time step bel(xt−1), the motion

command ut and the measurement zt (taken from xt), the belief at current time step bel(xt)

can be computed using the Bayes filter as follows: for all xt, we first predict the belief by

incorporating the motion command:

bel (xt) =

∫
p (xt|ut, xt−1) bel (xt−1) dx

Then, the posterior belief is computed by fusing the measurement model based on the latest

measurement zt and the predicted belief bel(xt) as follows:

bel (xt) = ηp (zt|xt) bel (xt)

This process of iteratively updating the belief by incorporating the motion model

and measurement model at every time step is referred to as recursive implementation
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of Bayes filter or Markov Localization. Please refer to fig-2.1 for a demonstration of

Markov localization incorporating all this theory in a 1-D case. However, the integral∫
p (xt|ut, xt−1) bel (xt−1) dx is intractable because of its continuous nature and hence we

approximate this recursive bayes filter algorithm via discretization (Sec-2.2.1) or by using

particles (Sec-2.2.2).

2.2.1. Grid Based Markov Localization

In a grid based localization technique, the belief over the entire space is represented as a

3D tensor. The values in the 3D tensor represent the probability of the robot being in that

pose (x, y, θ). The posterior belief is approximated as a histogram filter over this discrete

representation:

bel(xt) = pk,t

where each probability pk,t is defined over a grid cell xk. Thus, the recursive Bayes filter can

be extended to this discrete case as follows: For all k,

pk,t =
∑

i p (Xt = xk|ut, Xt−1 = xi) pi,t−1

pk,t = ηp (zt|Xt = xk) pk,t

This framework of discretized recursive Bayes filter is the primary motivation for this thesis.

We will go on to show later that learning the measurement model p(zt|Xt = xk) via domain

randomization can enable us to accurately localize despite noises in both the motion and

measurement models.

2.2.2. Particle Filter Based Markov Localization

Particle filter based localization is a non-parametric approximation of the Bayes filter

[74]. The goal is to represent the posterior belief bel(xt) with a set of random state samples

drawn from the posterior. These samples are called particles. A particle set is represented

with Xt and each particle by x[i]t . Mathematically, for m particles:

Xt = x
[1]
t , x

[2]
t , ...x

[m]
t

Each particle represents a full state. For the case of localization, a full state would just

mean its pose (x,y,θ). The goal is to make these samples represent a true posterior belief.
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(a) In a global localization problem, we don’t know the initial pose of the robot. So, the belief is initialized
as a uniform distribution.

(b) The robot observes a door. So, the likelihood model p(z|x) predicts that the robot is likely to be present
infront of any door. Multiplying this likelihood with our prior belief (which is uniform) gives us the posterior
belief bel(x). So, the robot now believes that it is infront of a door, but is not sure of which door it is.

(c) When the robot moves towards right, due to noises in the motion model p(xt|xt−1,ut), the variance of
the belief bel(x) slightly increases and the peak reduces. In the context of Markov localization, this is also
referred to as predicted belief bel(x).

Fig. 2.1. Demonstration of Markov Localization, adapted from [73]

x
[m]
t ∼ p(xt|z1:t, u1:t, x0)
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(d) The robot now takes an observation z again and it observes the door again. So, similar to fig-1(b), the
output of the likelihood model p(z|x) will be same, where it predicts that the robot is likely to be present
infront of any door. However, if we now multiply this with the predicted belief obtained in fig-1(c), we get a
corrected belief which has a peak infront of the second door, where the robot actually is.

(e) When the robot moves again, the robot becomes slightly inconfident of its pose again due to noise in the
motion model, but, the maximum likelihood estimate of its belief bel(x) is same as its true location which
indicates that the robot has localizaed well.

Fig. 2.1. Demonstration of Markov localization, adapted from [73]

Particles from time step t− 1 to time step t can be transformed using a Bayes filter. At

first, a proposal distribution is obtained by transforming every particle x[i]t−1 using the state

transition distribution:

x
[i]
t ∼ p(xt|ut, x[i]t−1)

This is similar to b̄el(xt). Now, to obtain the posterior distribution bel(xt), each of these

particles has to be resampled (importance sampling [30]) with replacement [59]. The im-

portance factor of every particle is computed as the likelihood of the current observation zt

based on its believed pose x[i]t :

w
[i]
t = p(zt|x[i]t )
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2.3. Active Localization

In the Markov localization methods discussed so far, we assumed that the control com-

mands ut are given to the robot. The control commands for a mobile robot usually refer to

the angular velocities of the two front wheels. The problem of active localization, which is

the main focus of this thesis, deals with finding these control commands ut such that the

localization error is minimized. More precisely, we define the problem statement as follows:

Problem. (Active Localization) Assuming that the agent is placed at some random point

in the map, find the sequence of control inputs, u1:T that allow it to maximally disambiguate

its pose within the map.

Active localization solutions usually take the form:

u∗1:T = argmax
u1:T

f(bel(xT ),x∗)

where the function f quantifies the weight in the state belief posterior at the end of the

horizon T , bel(xT ) at the ground truth pose x∗.

Burgard et al. introduced active localization in their seminal work [7]. They demons-

trated that, rather than passively driving a robot around, picking actions that reduce the

expected localization uncertainty results in better localization. Using an entropy measure

characterized as a mixture-of-Gaussians, they demonstrate that the framework of Markov

localization [15] can be extended to action selection. This work was more of a proof-of-

concept, as the applicability of this method is confined to low-dimensional state-spaces,

where entropy computation can be carried out efficiently. Since then, several other ap-

proaches [12, 61, 46, 79, 13, 34] use a similar, information gain maximization cost for the

task of active localization or SLAM (Simultaneous Localization And Mapping [10, 5]).

Feder et al [12] chose the action which maximizes the information gain. Roy et al [61] also

argued that going along the high information paths helps in better localization even though

the time taken or distance traveled might be higher. Mariottini et al [46] also used an

entropy-based planning algorithm after computing SIFT (Scale Invariant Feature Transform

[45]) features (and disambiguate them using visual bag of words [43] and vocabulary tree

techniques). Valencia et al [79] tackled the problem of active SLAM in the pose SLAM

setting based on the information gain of a link (edge) in the pose graph.
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Kollar et al [36] used optimization methods to find the robot locations and then applied

reinforcement learning techniques to generate control commands. However, their approach

is limited to planning to explore with reinforcement learning given the belief of robot’s pose.

Forster et al [13] chose the motion trajectories that minimize the perceptual ambiguities

by deriving an expression for information gain in terms of camera parameters and other terms.

The framework introduced by Kim et al [34] accounts for SLAM localization uncertainty, area

coverage performance, and the identification of good candidate regions in the environment

for visual perception.
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Chapitre 3

Machine Learning Methods for Localization

3.1. Review of Deep Learning

Deep Learning is currently being used in a wide range of applications like recognizing hand

written digits [41], machine translation [4], language generation [60], playing board games

like chess [78], go [64], Hex [2], playing video games like Atari [50], starcraft [80], generating

realistic images [17], generating fake videos [35], facial recognition [81], object tracking

[24], predicting stock prices [51] and many others. Though most of these applications were

previously tackled with other statistical methods (like Support Vector Machines [77], decision

trees [58]) or domain-specific methods [45], deep learning has helped improve the accuracy,

has better generalization abilities [52] and has removed the dependency on domain specific

knowledge.

Deep learning, especially in the context of robotics, typically refers to the the process of

training deep neural networks to minimize an objective function corresponding to the given

training (input, target) data. The network is also expected to perform equally well on the

test set, which is not used during the training procedure. This is achieved by modifying the

parameters of the neural network based on the gradients of the objective function w.r.t these

parameters. This procedure is called gradient descent.

3.1.1. Mathematics of Deep Learning

A fully connected deep neural network (figure-3.2) consists of layers of neurons. The

first layer takes the input and is called the input layer, the final layer is the output layer

and all the other layers in between are called hidden layers. Each neuron (figure-3.1) takes



Fig. 3.1. A neuron, adapted from[53]

Fig. 3.2. A fully connected neural network with two hidden layers, adapted from [53]

in multiple inputs (which are outputs of the previous layer) and sums them by multiplying

each of its inputs with their corresponding weights. These weights are the parameters of our

neural network which adjust themselves to minimize the error function, which is typically a

function (like mean squared error) of the output of this neural network and the target output

over all the input samples.

Adopting the notation from [53], let wljk be the weight for the connection from the kth

neuron in the (l− 1)th layer to the jth neuron in the lth layer. Similarly, let blj be the bias of

jth neuron in the lth layer. Let alj be the activation of jth neuron in the lth layer. Let σ be
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(a) (b)

Fig. 3.3. Notations used

the sigmoid activation. Then, the output at alj is:

alj = σ

(∑
k

wljka
l−1
k + blj

)

This can be compactly written in vector form as:

al = σ
(
wlal−1 + bl

)
Let zl ≡ wlal−1 + bl and the cost (error) function be denoted as C. Mathematically, a

quadratic cost function can be written as:

C =
1

2n

∑
x

∥∥f(x)− aL(x)
∥∥2

where x are the inputs, f(x) are the corresponding target outputs and aLx are the correspon-

ding neural network outputs. and our goal is to reduce this cost function, which is typically

done by a method called gradient descent.

Let δl denote the error of neurons at layer l. δlj ≡ ∂C
∂zlj

. Then, the error at the output

layer will be:

δLj =
∂C

∂aLj
σ′
(
zLj
)

which can be further simplified as follows:

δL = ∇aC � σ′
(
zL
)

δL =
(
aL − y

)
� σ′

(
zL
)

where, � is the element-wise product.
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Now, the errors for the previous layer can be obtained using:

δl =
((
wl+1

)T
δl+1

)
� σ′

(
zl
)

With these error terms, weights and biases of the network can be modified as follows:

∂C
∂bLj

= δlj

∂C
∂wljk

= al−1k δlj

While fully connected layers can solve lot of easy problems like MNIST image classifi-

cation, they fail to work for larger datasets as they can’t capture spatial information and

hence break when the images are slightly enlarged or rotated. Convolutional layers help

us in overcoming these problems by using learnable filters which are slid across the entire

input example to capture spatial relations or to identify a particular feature. For example,

a convolution equation can be written as: a1 = σ (b+ w ∗ a0) where a1 denotes the set of

output activations from one feature map, a0 is the set of input activations, and * is called a

convolution operation. Convolution layers are often used in conjunction with pooling layers

[53].

One of the contributions of this work is to train likelihood model p(z|x) where the input

is the mapM, observation (2D scan image) zt and the output is p(z|x) which is a 3D tensor.

So, we only use convolutional layers for this purpose. However standard convolutional neural

networks (CNNs) failed to give good performance, prompting us to use more robust networks

like Resnet and DenseNet which we detail below.

3.1.2. Resnet

For very deep networks (dozens or hundreds of layers), the gradient of the objective

function cannot be easily propagated to the initial layers of the network. It faces the problem

of vanishing gradients because of repeated multiplication of the gradient across every layer.

That is, the gradient value becomes infinitesimally small making it inconsequential in the

parameter update equation. The residual network (Resnet [21]) is first proposed in 2015 to

counter the vanishing gradient problem encountered during training of very deep networks.

Instead of fitting the parameters for F (x), they introduce "identity shortcut connection"

through which they fit the parameters for F (x) + x which solves the vanishing gradient

18



Fig. 3.4. A Resnet block, adapted from [22]

problem by just outputting an identity mapping from the Resnet block in the worst case

scenario. Highway networks [65],[66] and LSTM [25] also explore a similar idea of gating

"information" to counter the vanishing gradient problem. Results demonstrate that Resnet

performed better in static (non-time series) supervision tasks like image classification. It was

further improved upon by [23] where the gradients are allowed to flow to any other earlier

layers through the shortcut connections, and it was used successfully to train a 1001-layered

network. ResneXt [84] demonstrated further improvement by using split-transform-merge

paradigm similar to inception network [71].

3.1.3. DenseNet

To achieve better training accuracies, one of the key goals of deep networks is to facilitate

a better flow of information and gradients between the initial layers and final layers of the

network. Stochastic depth network [27] tries to achieve this by randomly dropping layers

during training. Fractal network [40] repeatedly combines several parallel layer sequences

with a different number of convolutional blocks to obtain a large nominal depth. However,

all these approaches just create a short path from initial layers to final layers. On the other
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Fig. 3.5. A sample densenet, adapted from [26]

hand, Densenet [26](fig-3.5) connects all the layers directly with each other. One important

difference to note here is that while Resnet (and its variants) combine features by adding

them, densenet combines features by concatenating them.

3.2. Deep Reinforcement Learning

Supervised learning applies only to the settings where labelled data are available and

the networks only need to learn a mapping from inputs to targets. Human brains do not

usually function this way. Humans learn by interacting with the environment. Reinforcement

learning (RL) deals exactly with this framework of "learning by interacting" where it learns

to map the situations to actions to achieve a predefined goal or to maximize a given reward

function. The rewards are often delayed which makes RL all the more challenging. Instead

of optimizing the immediate reward or a random trial and error search, the algorithm needs

to be intelligent enough to optimize the long-term rewards.
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Recent advances in reinforcement learning have enabled its widespread use in various

applications including various game playing agents [78] [80] [64], autonomous cars [33],

health care [18] among others. We leverage some of these advancements in this thesis,

specifically the algorithms related to policy gradients.

The Markov Decision Process (MDP)[57] is a mathematical framework for describing

the underlying reinforcement learning task. It is characterized by the state st, action at,

transition function P (st+1|st, at) and reward rt at every time step. Given a discount factor

γ ∈ [0,1), the goal of any RL algorithm is to optimize its policy π(a|s) to maximize the

return defined as: Gt = Rt + γRt+1 + ... over an initial distribution of states.

The RL algorithms can be classified into many types [69]: model-based vs model-free,

on-policy vs off-policy. More importantly, they can be classified based on the update rule:

policy-based [70] (or, policy gradient methods) which directly update the policy and value

based methods. We have used policy gradient methods to train our policy model and here,

we briefly explain the various policy gradient methods.

The objective is to choose a policy parameterized by θ that maximizes the objective

function J(θ) defined as:

J(θ)
.
= vπθ (s0)

where, v is the value function corresponding to policy πθ at the initial state s0. Policy

gradient methods involve updating a policy based on the reward obtained at every time step

or at the end of an episode. The goal is to update the current policy in such a way that the

overall reward is maximized. This is achieved by updating the policy in the direction of the

actions which give maximum reward. If the policy π is characterized by parameters θ then

the policy gradient update rule can be written as:

θt+1 = θt + α
Q̂(s,a)∇πθt(a|s)

πθt(a|s)

where, α can be seen as a learning rate parameter, and Q is the action-value function,

or simply the Q-function, which gives the total discounted return for taking action a from

state s. This can be re-written as:

θt+1 = θt + αQ̂(s,a) log∇πθt(a|s)
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3.2.1. REINFORCE

REINFORCE [82] is the simplest form of policy gradient algorithm, where the update

rule is exactly the same except that we need to use empirical estimates of Q(s,a) (obtained

via Monte-Carlo rollouts) instead of the actual Q-function which is not available to us. An

improvised version, also called "REINFORCE with baseline" uses the "advantage function"

A(s,a) instead of Q-function. The advantage function is defined as: A(s,a) = Q(s,a)−V (s).

Thus, the update rule becomes:

θt+1 = θt + αÂ(s,a) log∇πθt(a|s)

3.2.2. Actor Critic

Instead of using Monte Carlo rollouts for the Q-function (which only works in episodic

environments and are sample inefficient), Actor critic methods [37] use another neural net-

work (critic) to learn the Q-function. In most cases, actor and critic are just two different

fully connected heads of a same convolutional neural network.

3.2.3. Advantage Actor Critic

Actor critic still suffers from high variance of the gradient estimates. In order to reduce

the variance, a baseline function (independent of action; value function is the usual choice)

is subtracted from the Q-function, and the resulting function is called advantage function

[48] A(s,a) = Q(s,a) − V (s). Note that this is still unbiased since the expectation of the

advantage function will still give us the Q-function.

3.2.4. Trust Region Policy Optimization

The methods we have discussed so far suffer from either too large (catastrophic) or

too small (no improvement) gradient steps. Trust region policy optimization (TRPO)[62]

addresses this problem. While these other policy gradient methods are based on line search

optimization (gradient descent), TRPO is a trust region based optimization where maximum

allowed step size is first determined and then an optimal point is located within this trust

region. Mathematically, the parameters are updated as follows:
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θk+1 = arg maxθ L (θk, θ)

s.t. DKL (θ‖θk) ≤ δ

where, L (θk, θ) measures how the current policy πθ performs relative to the old policy πθk
on the data from the old policy:

L (θk, θ) = E
s,a∼πθk

[
πθ(a|s)
πθk(a|s)

Aπθk (s, a)

]
and, DKL (θ‖θk) measures the KL divergence between the current policy and the old policy

on the data from the old policy

DKL (θ‖θk) = E
s∼πθk

[DKL (πθ(·|s)‖πθk(·|s))]

where, the KL divergence between two probability distributions p(x) and q(x) is defined as:

DKL(p(x)‖q(x)) =
∑

x∈X p(x) ln p(x)
q(x)

3.2.5. ACKTR

Actor Critic based Kronecker-Factored Trust Region (ACKTR)[83] optimizes both the

actor and critic networks via the trust region method, but is much faster than TRPO because

it computes Kronecker-factored approximate curvature (K-FAC)[47] instead of expensive

conjugate gradients. On the other hand, it has much better sample complexity than actor-

critic because of its large gradient updates using natural gradients.

3.2.6. Proximal Policy Optimization

While TRPO and ACKTR solve the problem of size of gradient steps, they both use

complex second order updates which are computationally expensive. Proximal policy op-

timization (PPO)[63] addresses the same problem while still making first order gradient

updates. It does so by adding a penalty term to the objective function instead of using it as

a constraint. So, the parameter update equation is:

θk+1 = arg max
θ

max
s,a∼πθk

[L (s, a, θk, θ)]
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where,

L (s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip

(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε

)
Aπθk (s, a)

)
Even though it appears complex, it is essentially making sure that the current policy is not

very different from the old policy.

3.2.7. Intrinsic reward setting

While all these metrics make intuitive sense, there is no empirical or theoretical evidence

to prove that one of these metrics is better than the other for a learning algorithm. So, we

let the algorithm learn it’s own reward function, adopting the approach from [85]. We train

a "intrinsic reward" network to output rewards at every time step. The parameters of this

network are optimized based on a standard policy loss used in any policy gradient method.

We have observed that this boosts the performance in some experiments.

θ: policy parameters

η: intrinsic reward parameters

rex = extrinsic reward from the environment

rinη = rinη (s,a): intrinsic reward estimated by η

Gex(st, at) =
∑∞

i=t γ
i−trexi

Gin(st, at) =
∑∞

i=t γ
i−trinη (s,a)

Gex+in(st, at) =
∑∞

i=t γ
i−t(rexi + λrinη (s,a))

Jex = Eθ[
∑∞

t=0 γ
trext ]

J in = Eθ[
∑∞

t=0 γ
tritη (st, at)]

Jex+in = Eθ[
∑∞

t=0 γ
t(rext + λritη (st, at))]

λ: relative weight of intrinsic reward

And, the gradient updates are as follows:

∆θ = α∇θJ
ex+in(θ)

∆η = βGex(st, at)
∇θ′πθ′(at|st)
πθ(at|st)

αλ
∞∑
i=t

γi−t∇ηr
in
η (si, ai)∇θlogπθ(at|st)

The reader can refer to [85] for the derivation of these gradient updates.
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3.3. Deep Learning and Reinforcement Learning for Localization

So far, we have seen formulations of classical localization (sec-2.1) and a brief overview of

deep learning (sec-3.1) and reinforcement learning (sec-3.2). In this section, we will see how

DL has been used for passive localization (sec-3.3.1) and RL for end-to-end active localization

(sec-3.3.2) in some of the previous works and compare them with our approach.

3.3.1. Passive Localization

Robot localization with learning-based methods has a long history. For example, in the

seminal work of Oore et. al. [55], the authors use a learning-based approach to predict sonar

readings from different locations in a map. More recently, approaches such as PoseNet [32]

and VLocNet [1] perform visual localization by training a convolutional neural network to

regress to scene coordinates, given an image [32] or a sequence of images [1]. Recently,

differentiable particle filters (DPFs) have also been proposed for global localization [29, 31].

However, such approaches need precisely annotated data to train a PoseNet, VLocnet, or a

DPF for each new environment that the robot is deployed in. In contrast, in our approach,

the likelihood model p(z|x) and the policy model π(a|s) transfers essentially zero-shot across

simulated environments, and from a simulator to the real-world.

3.3.2. Active Localization

Passive deep learning localization algorithms are not directly extendable to the active

localization domain in the same fashion because they tend not to output calibrated measures

of uncertainty. However, other learning-based methods have been built that are dedicated

specifically to this task, such as Active Neural Localization (ANL) [9].

ANL is the first known work to employ a learned model for active localization from

images [9]. Similar to our approach, their approach comprises two modules, a perceptual

model and a policy model, and can be trained end-to-end in a Bayesian framework. However,

the ANL work makes several assumptions that limit its ability: 1) to scale to realistic-sized

environments and 2) to be transferred to real robot hardware.

Specifically, the transition functions in ANL are assumed to be deterministic, an assump-

tion which does not apply well to real robot hardware. In practice, the robot will drift from

its grid centroids and at that point the performance of the method will degrade because
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there is no map data corresponding to off grid locations. In our method (DAL), this issue is

handled with a combination of techniques:

(1) A non-deterministic transition model is implemented in the simulator,

(2) We leverage a hierarchical likelihood estimation method that can estimate at a higher

resolution the true location of the robot in a grid cell and therefore compensate for

the drift over time,

(3) We have a low-level non-RL based feedback controller that executes these reference

actions, and

(4) We leverage domain randomization in the simulator to account for the possibility

that our simulated models are incorrect.

The scalability issue of ANL is related to the fact that a fixed resolution grid must be

overlayed over the entire map. As a result, as the map size increases then the number of

candidate grid locations as function of area will decrease and the distance that the robot

must travel between grid centroids will increase. In DAL, we address this issue again with the

hierarchical likelihood estimation approach, which decouples the resolution of the likelihood

resolution from the distance that the robot travels during each macro action selected by the

RL model.

Also of note is that in ANL, the perceptual model is not completely learned. The map-

ping from sensor input to a latent embedding is learned, but the measurement likelihood

is generated by computing the cosine similarity of these latent representations. This is in-

efficient in-terms of memory and computation, as every memory image has to be passed

through this perceptual model and stored even if the requirement is to compute likelihood

only at very few locations in the environment. In our approach, the entire likelihood model

is learned, and the input is just current observation and map of the environment.
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Chapitre 4

Learning to Actively Localize

In this chapter we present our algorithm for active localization (selecting actions for a ro-

bot to be able to disambiguate its pose in a known environment). We develop an end-to-end

differentiable system that is able to learn how to localize passively (through supervised lear-

ning) and simultaneously able to learn to take good actions for active localization (through

reinforcement learning). We represent the free space as a grid of candidate points for lo-

calization and high-level actions consist of moving from the centroid of a grid cell to a cell

infront of it, or to turn left or right (a discrete action space). Note that the space has been

divided into discrete grids to enable us to obtain the posterior belief using recursive Bayes

filter. However, we leverage a lower-level continuous feedback controller to ensure that the

robot does not drift from the fixed grid over time.

Fig. 4.1. JAY robot being tested in various environments



In the following subsections, we first give a detailed overview of the entire pipeline and

algorithm. We will then describe the data generation and training procedures for the likeli-

hood model and the hierarchical model with domain randomization techniques and then we

elaborate further on the reinforcement learning algorithm used. Further, in chapter-5, we

dive into details of dataset generation and experimental setup and compare our algorithm

with traditional approaches (cosine similarity, Markov localization) and other learning based

approaches like ANL [9]. We also provide experimental results on the robustness of our

approach (fig-5.5) and effectiveness of hierarchical models (fig-5.7).

4.1. System Overview

Our approach to solving the active localization problem is summarized in Fig. 4.2 and

Algorithm 1 1. For simplicity, we have shown two hierarchical levels in Fig. 4.2 since it is

appropriate for our setup, but further levels of hierarchy could be added following the same

approach(i.e., by providing: a measurement likelihood model, a planner, and a transition

function) At each level in the hierarchy, i, we define a grid representation of size N (i) ×

M (i) × Θ(i) which represents the state space X . The belief posterior is represented as a

matrix where bel(xt = [n,m,θ]) is the probability mass at location [m,n,θ].

In Fig. 4.2, we assume that the neural network models are already trained, for a descrip-

tion of the training procedure for the measurement likelihood models see Sec. 4.2.1 and for

the Reinforcement Learning (RL) policy see Sec. 4.3.1.

In this subsection we will define our problem precisely and outline the structure of our

proposed solution.

The robot is provided with a map, M as input. Each time a sensor input, zt is recei-

ved, it is converted to a 2D image and, combined with the M to form the input to the

network at level 0, f (0)(M,zt), which produces a coarse measurement likelihood, p(0)(zt|x).

The measurement likelihood is combined with the prior belief (via element-wise product) to

produce the belief posterior. The belief posterior is fed as input to the RL model. The other

inputs to the RL model are low dimensional map and low dimensional scan. It is important

for this procedure, in order to train efficiently that the input is relatively low dimensional.

1Conventions: superscripts x(i) denote levels in the hierarchy, subscripts denote time indices, and preceding
superscripts {r}x denote reference frames. In the absence of a frame it is assumed that the variable is in the
map fixed (global) frame.
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Fig. 4.2. Deep Active Localization: Our proposed method takes a map and sensor
data (laser scan) and generates control actions in an end-to-end differentiable framework
that includes learned perceptual modules (neural networks) at different scales and a learned
policy network that is trained with reinforcement learning (RL). We maintain a coarse low
dimensional pose estimate for RL, but then refine it to generate a higher precision pose
estimate that is used for robot control.

The RL policy is sampled to generate an action, at from the set { left, right, forward }.

This action produces a goal pose that is either the centroid of an adjacent cell at the same

orientation, or a pure rotation of ±2π/|Θ(0)|, where Θ(0) is the number of uniformly spaced

discrete angles being considered at level 0. The action and belief posterior are fed through

a noisy transition function to generate the belief prior at the next timestep:

b̄el
(0)

(xt+1 = [n,m,θ]) = T (0)(ak, bel(xt))

=


bel(0)(xt = [n,m,(θ − 2π/|Θ(0)|)] ak = left

bel(0)(xt = [n,m,(θ + 2π/|Θ(0)|)] ak = right

bel(0)(xt = [n+ ln cos(θ),m+ lm sin(θ),θ]) ak = fwd

(4.1.1)

where ln and lm are the distance between adjacent cell centroids in the N (0) and M (0)

directions respectively. For increased robustness, noise is injected into this transition model

to represent the fact that the cell transition is not deterministic.

Since each time the robot executes an action it will not arrive exactly at the centroid

of the adjacent cell due to dead reckoning error, we must account for the error accrued and

compensate for it. We refine our coarse measurement likelihood to predict where within the
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Algorithm 1 Deep Active Localization

1: procedure DAL(M, f (0), f (1), π)
2: Input:
3: M: Map of the environment
4: f (0): Trained likelihood model for level-0
5: f (1): Trained likelihood model for level-1
6: π: Trained policy model
7: while True do
8: Read LiDAR scan zt
9: Obtain high and low res scan images Sh and Sl
10: p(0)(zt|x)← f (0)(Mh, Sh) . Low-res likelihood
11: bel(0) ← p(0)(zt|x)� ¯bel(0) . Update belief
12: p(a|s)← π(bel(0),Ml, Sl) . Get action prob
13: a← sample(p(a|s)) . Sample an action
14: ct ← argmax(bel(0)) . Get current pose
15: gt ← get-next-pose(ct, a)
16: ¯bel(0) ← transition-belief(bel(0), a)
17: find top s cells in p(0)(zt|x)
18: for i ∈ [0,s] do
19: Mc, Sc ← crop(Mh, Sh, (ni,mi))
20: p(1)(zt|x)[blocki]← f (1)(Mc, Sc)

21: bel(1) ← p(1)(zt|x)� ¯bel(1) . High-res belief
22: c

(1)
t ← argmax(bel(1)) . Pose: max belief

23: u← control(c
(1)
t , gt)

cell our agent actually is to compute a correction. This offset within the cell is used to

calculate an offset for the next action so that the error with respect to the grid centroids

is bounded over time. To achieve this, we chose the “likely” cells from the coarse belief

bel(0)(x) and refine the measurement likelihood to determine a more precise estimate of the

location of the agent within the cell. This is used to calculate an offset to add to the relative

pose transformations between adjacent cells to calculate an actual reference location in the

robot frame, r: rxref . We use a standard tracking controller to generate control inputs, ut,

which are sent to the robot and a standard kino-dynamic transition model T (1)(u,bel(1)(x))

to dead-reckon towards the reference location..

4.2. Perception

The objectives of the perception system are:

(1) To provide a measurement likelihood to be used by RL agent, which is trainable in

an end-to-end manner,
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(2) To provide a refined estimate of pose to the inner loop controller so that the error

induced by dead reckoning may be bounded,

(3) To be fully trainable in simulation,

(4) Not to require any information other than the (possibly noisy) map at test time.

4.2.1. Learning Measurement Models

In typical robotics pipelines, the measurement likelihood is constructed using custom

metrics, based on models of the sensors in question. Inevitably, some elements of the mo-

del are imprecise. For example, covariances in visual odometry models are typically tuned

manually since closed-form solutions are difficult to obtain. Additionally, the Gaussian as-

sumption (e.g., in an extended kalman filter [28]) is clearly inappropriate for the task of

global localization, as evidenced by the prevalence of Monte Carlo based solutions [74].

In our setting, given a map of the environmentM and scan input zt, we want to learn

the likelihood of the robot’s pose at all candidate points on a multi-resolution grid.

Following the notation defined in Sec 4.1, the output of the likelihood model at time step

t is given by:

p(0)(zt|x) = f
(0)
φ (M,zt) (4.2.1)

where φ are the parameters of the neural network model.

4.2.1.1. Data Preprocessing

It is difficult for a neural network to learn from different dimensional inputs. Though

we can use different embeddings and concatenate at deeper layers, our experiments revealed

that this is not very efficient. So, as a pre-processing step, we convert the scan input zt

into a scan image Sh (h denotes high resolution) of the same size as the grid map. We

concatenate both the 2D scan image and the map of the environment and use it as input

to our neural network. During the training phase, we obtain the ground truth likelihood

p̃(0)(zt|x) by taking the cosine similarity or correlation of the current scan with the scans at

all other possible positions.
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4.2.1.2. Ground Truth Data Generation

We generate and store triplets of (scan-image Sh, map of the environment Mh, ground

truth likelihood p̃(0)(zt|x)) while randomly moving the robot in the simulator and randomly

resetting the initial pose after every T time steps and randomly resetting the environment

after every e such episodes. We train it on m such environments (maps). Training on these

triplets using Resnet-152 [22] or Densenet-121 [26] gave very good results in simulation but

did not transfer when these models are transferred to real robot in a real environment. This

demonstrates the need for domain randomization to achieve zero-shot transfer. See 4.2.4 for

further details.

4.2.2. Bayes’ Filter

We can now update the belief by taking element wise product of likelihood and the

previous belief over all the N ×M ×O grid cells

bel(0) = b̄el
(0) � p(0)(zk|x)

4.2.3. Hierarchical Likelihood Model

We estimate the robot pose on a coarse grid, which is sufficient for RL, but we require a

refined estimate for two reasons:

(1) It is possible that the coarse estimate is simply not precise enough, particularly in

very large maps

(2) Without a more precise estimate of the robot’s pose within a coarse grid cell, the

robot will gradually drift from the grid centroids as a result of dead reckoning.

Traditional approaches try to solve this problem using the cosine similarity technique (by

taking dot product of the current scan with the scan at multiple poses and then normalizing

the resultant tensor), but it has the drawback of being computationally very expensive as

the current scan information has to be compared with scan information at multiple poses.

Recent approaches like ANL[9] try to overcome this problem by using neural networks

to predict the likelihood in a 3D grid of dimensions N (1) ×M (1) × Θ(1), where the whole

environment is divided into N (1) rows,M (1) columns and Θ(1) orientations. Each of these grid

cells represent the likelihood of robot in that pose. But, this doesn’t alleviate the problem of
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decoupling the localization precision from the size of the map. With input being N ×M ×2,

and the output being N ×M × Θ, it is usually difficult and inefficient for a CNN to learn

this mapping.

In HLE (Hierarchical Likelihood Estimation), likelihood is first estimated at coarse reso-

lution (N (0) ×M (0) × O) and then each of these grid cells is expanded to further finer grid

cells (k × k) to get a full resolution map of size (N (1) ×M (1) ×Θ).

For the case of 2-level hierarchy, we have 2 neural networks f (0)(Mh,Sh) and f (1)(Mc, Sc)

at levels 0 and 1 respectively. The input for f (0) is high the resolution map Mh (which is a

processed version of mapM of the environment) (N0×M0), and scan image Sh (N0×M0)

which is obtained from the current LiDAR scan zt at the current pose. The likelihood output

p(0)(zt|x) = f (0)(Mh,Sh) is of shape N (0)×M (0)×Θ(0). The parameters of f (0) are optimized

by minimizing the mean squared error (MSE) between p(0)(zt|x) and ground truth likelihood

p̃(0)(zt|x) (which is at the same resolution of N (0) ×M (0) ×Θ(0)).

Grid cells corresponding to a maximum of c values from the coarse likelihood p(0)(zt|x)

are selected. For each of these grid cells, we crop a square patch from the high resolution

map and high resolution scan (optional) around the grid cell. Concatenation of the cropped

map and cropped scan is used as input for f (1). The network outputs a k × k block where

each cell in the block represents likelihood at finer resolution. Each of the cells in this block

is multiplied with corresponding likelihood of the grid cell at previous level p(0)(zt|x). For the

cells which are not in the top c values, the likelihood value at level-0 p(0)(zt|x) is normalized

and directly copied to each cell in the corresponding block in p(0)(zt|x). The parameters

of f (1) are optimized by minimizing the mean squared error (MSE) between p(1)(zt|x) and

ground truth likelihood p̃(1)(zt|x) (which is at the same resolution of N (1) ×M (1) ×Θ(1)).

During the training phase, we choose c to be close to the 0.5 - 1.0 times the total cells

(N ·M ·O) because otherwise small errors in p(0)(zk|x) leads to compounding or irrecoverable

errors in p(1)(zk|x) and the entire model would collapse. During the testing phase, it is

sufficient to just consider top one percent of the cells or even lesser as we are mostly concerned

about finer likelihoods only in the most likely cells from p(0)(zk|x)
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4.2.4. Domain Randomization

DR is the process of varying the parameters in a simulation environment during model

training in the hope that the resulting policy becomes more robust to errors in the simulation

(the reality gap) [76]. The hope is that when the agent is transferred from the simulator

to the real robot environment that the real world appears as if it is just another simulator

variation.

While the LiDAR sensor modality generally transfers better than vision (camera images)

from simulation to the real world scenario it is not without challenges since no sensor model is

perfect. Just training the likelihood models without any variability in the simulator results

in over-fitting and poor transfer. Since we do not have an exact recreation of the real

world environment within our simulator, our learned agent will have to generalize to a new

environment while simultaneously bridging the reality gap. Hence, it is important to account

for various real world irregularities while training on the simulator. In our data collection

pipeline, we randomized the following parameters:

• Thickness and length of obstacles to account for different types of obstacles in real

environment.

• Error in robot pose to account for the possibility that it is not exactly at the centroid

of a given cell.

• Temperature of softmax. It is important to normalize the ground truth likelihood

to keep it bounded for a machine learning system to be able to learn. Dividing each

element in p(0)(zt|x) with the sum of all elements in p(0)(zt|x) is a common way to

normalize, but that gives us mostly uniform output. Hence, we use softmax with

temperature which is defined as:

σ(p(0)(zt|x))n,m,θ =
eβp

(0)(zt|x)n,m,θ∑
n,m,θ e

βp(0)(zt|x)n,m,θ
(4.2.2)

We vary the temperature parameter β randomly within limits to make sure that it

is not biased towards overly-uniform or overly-sharp likelihood outputs

• Noise in the LiDAR scan: We train our network by adding Gaussian noise to every Li-

DAR scan point. Additionally, for every scan, we randomly set some of the incoming

data points within the scan to have the value of +∞.
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• There are errors in the actual map of the environment created using gmapping [20].

This map is preprocessed and used as an input to the likelihood model and RL model

for experiments on the real robot. Hence, it is important to ensure that some noise

(more erosion and dilation of the map) is added to the map during training phase

(on simulation) as well. However, note that the LiDAR readings will still come from

the unperturbed map.

4.3. Planning and Control

The multi-scale localization estimates are used for planning and control.

4.3.1. Reinforcement Learning

Following the traditional conventions in a Markov Decision Process [68], we denote the

state s ∈ Rd and the actions a ∈ Rda , the reward function r(s,a) and a deterministic transi-

tion model T = p(s′|s,a). In our case, the state (input to the RL model) is a concatenation

of belief map bel(xt) (N (0) ×M (0) × Θ(0)) and the input map of the environment M. We

formulate the MDP over high-level actions (left, right, and forward). The goal of any

RL algorithm is to optimize it’s policy π(a|s) to maximize the discounted return defined as:

Gt = Rt + γRt+1 + ... over initial distribution of states (which is assumed uniform here).

We use advantage actor critic (A2C) [49] algorithm to accomplish this task. The network

consists of two convolutional layers and an LSTM unit followed by 2 fully connected heads

for actor and critic. There are various choices for a reward function. We used belief at true

pose as our reward function since it is dense, well-behaved, and benefits from the availability

of true pose in the simulator. The empirical evidence for the choice is given in Fig-4.3. We

also benchmark the performance of Proximal Policy Optimization (PPO) [63] and ACKTR

[83] in our deep active localization framework.

4.3.2. Closed-Loop Control

After the high level actions (left, right, forward) are chosen by the RL model, it is

important to ensure that the robot reaches its goal position without deviating from the path.

Even a minor deviation in each time step results in compounding errors. So, the low level

actions (linear and angular velocities of the mobile robot) are given based on the current

pose and the goal pose. The current pose is obtained at much finer resolution using our
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Fig. 4.3. We trained 7 RL policy models with the following different rewards: 1) probability
mass of belief at true pose (bel gt), 2) decrease in the entropy of the belief (info gain), 3)
reward of +1 for a new pose in belief (bel new), 4) reward of +1 for a new true pose (expl),
5) negative entropy of belief (bel ent), 6) reward of +1 if Manhattan distance error is equal
to 0 (hit rate), 7) Manhattan distance error (dist).

hierarchical likelihood model. See the Sec. 4.2.3 for more details of hierarchical models.

Optionally, the HLE model can be used after every fixed number of time steps to correct for

the accumulated drift.

4.3.3. Zero-shot Transfer

The transferability of the perceptual model is enabled through the use of domain rando-

mization (DR) as discussed in Sec. 4.2.4. Another common use of DR is to randomize over

physical properties of the robot (i.e., dynamics). This is not necessary in our case since we

are performing RL at the planning level of abstraction and using a more traditional feedback

controller to execute the plans.
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Chapitre 5

Experimental Setup and Results

We demonstrate the efficacy of DAL by conducting several experiments in simulation and

on real robots in a diversity of environments. This section describes the experimental setup

and presents the results obtained, which demonstrate that DAL outperforms state-of-the-art

active localization approaches in terms of localization performance and robustness.

The real environments used for testing were simple and re-configurable. Using a SLAM

software (gmapping [20]) we then obtained maps as shown in Fig. 5.3.

5.1. Dataset Generation

Using the following algorithm, we generated a dataset to train the likelihood model to

estimate the measurement likelihood p(z|x). The algorithm generates random maps, sensor

data at some random poses as well as the target distributions at those poses.

(1) We use Kruskal’s algorithm to generate random maze-like environments at low re-

solution. The output is a square matrix with ones representing obstacles and zeros

representing free cells. The algorithm guarantees that all the open spaces are connec-

ted.

(2) Based on the grid map at low resolution generated above, we place obstacles (of

different sizes) at the cells in the high resolution. The algorithm then randomly

dilates and erodes the surfaces of obstacles in the map so that its texture becomes

more realistic.

(3) We place the robot at all the grid centers of low resolution map at all Θ(0) directions.

From each of those locations, we simulate a laser scan. So, we obtainM (0)×N (0)×Θ(0)

laser scans. We call this as scan matrix and it’s of dimensionM (0)×N (0)×Θ(0)×360.



Fig. 5.1. Random maps generated from Kruskal’s maze algorithm with some of the walls
pruned

Given a map, we precompute a range vector at each location with respect to the low-

resolution grids. A range vector in our experiment has the length of 360, representing

distances at each of 360 degrees.

(4) We now spawn the robot at 10 random locations and compute the cosine similarity of

the scan at the current pose with the scan at all possible poses to get a likelihood map.

With each of those likelihoods, we form a triplet of map, current scan, likelihood and

use these as the training set

The procedure was repeated for 10000 different maps. The noise added to this process is

described in 4.2.4 and 5.2

5.2. Training Likelihood and Policy Models

We first describe how we trained our likelihood model (LM) which was used in our real

robot experiments. We generated a dataset containing 10,000 maps with 10 scan inputs

for each map by following the procedure explained above. The dimension of ground truth

likelihood (GTL) was set to 33× 33× 8, i.e, 8 headings with 33 · 33 x and y locations.

Likelihood model was trained with a densenet201 model on this dataset. We applied the

following randomization for training LM:

38



• the temperature for softmax function was manually decreased over epochs from 1.0

to 0.1,

• input scan was randomly rotated in the range of ±2°,

• 100 randomly selected pixels were flipped (0↔ 1),

• and drop-out was applied in densenet with the rate of 0.1.

Likelihood model was trained first with 100,000 data instances over 16 epochs and adap-

ted to the map of the real environment in a simulator for 10,000 inputs.

The policy model π was trained on a simulator with randomly generated 2,000 maps,

with 20 episodes (each of length 24) for each map. Reward (equal to probability mass of

belief at true pose) was given at each time step.

5.3. Experimental Setup

To demonstrate the feasibility and robustness of our approach, we tested our trained like-

lihood and policy models on 2 mobile robots: JAY and Turtlebot and successfully localized

in two different environments.

5.3.1. Experiments on JAY

JAY (Rainbow Robotics) is cylinder-shaped with the radius of 0.30m, the height of 0.50m

and the weight of 46 kg before modification, whose CPU is IntelCore i7-8809G Processor. We

mounted an extra LiDAR A2M8 (Slamtec) on the top of the robot in the center to secure

360-degree view. The LiDAR provides 0 to 360 degree angular range, and 0.15 to 8.0 m

distance range, with 0.9 degree angular resolution, at the rate of 10 Hz.

The ROS navigation package including AMCL was manually initialized and used for

ground truth localization. DAL was running on a separate server equipped with 4 Nvidia

GTX-1080Ti GPUs and an Intel CPU E5-2630 v4 (2.1 GHz, 10 cores) to send velocity

commands to JAY over a 2.4 GHz WIFI channel.

With JAY deployed in the indoor environment shown as ‘env0’ in Fig. 5(a), we tested our

likelihood model. To compare the localization performance with some of existing methods

that run on grids, the experiments included the following methods.

• Trained likelihood model (LM): use the trained model for the sensor measurement

likelihood at each pose.
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(a) JAY with top-mounted 360-degree view
LiDAR

(b) Turtlebot with top-mounted 260-degree
view LiDAR

Fig. 5.2. Robots used in our experiments

• Cosine similarity (CS): use cosine similarity between the precomputed scan matrix

and the input scan for the sensor measurement likelihood.

• Reinforcement Learning (RL): use the trained policy model π for sampling next

action.

• Active Markov Localization (AML): the robot virtually goes one step ahead along

each of the possible actions and select the one with the largest reward, defined as the

decrease in entropy.

• Random Action (RA): sample next action randomly with uniform probability.

The work that is most related to our own is ANL [9]. ANL was developed for visual

inputs where the perceptual model generates feature vectors which are compared via cosine

similarity with reference feature vectors generated from the map to build the measurement

likelihood. This is achieved in simulation through synthesizing views of the environment to

compare against. These images are included as part of the "map design". It is much more

laborious to manually generate these views in a real environment, it would require collecting

an image from every sample grid location in the map and storing them in a database.

Therefore, direct application of this method to a real robot setup is not possible.
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We argue that the fairest comparison with ANL is to consider the LiDAR returns as the

output of the perceptual model and to use cosine similarity to generate the measurement

likelihood. So in this context, we consider the CS+RL case to be the closest approximation

of the ANL method and is used for comparison.

For each test condition, it ran for 10 episodes of length 11. Fig. 3(a) shows the 10 initial

poses that were randomly sampled to be applied to all the tests.

A custom control law computed velocity command at each step to move JAY to the next

target pose by using the odometry feedback, where the target pose was computed from the

believed pose belxt and the action sampled from the policy.

(a) Sait map (b) Mila map

Fig. 5.3. The maps of the real environments in SAIT and Mila were generated by using a
SLAM algorithm, gmapping [20]. The map size was adjusted to 224×224 pixels each of size
0.04m × 0.04m. We randomly selected 10 poses on the map and used them repeatedly as
the starting poses for the 10 episodes of each test.

5.3.2. Results from JAY Experiment

We evaluated the test results using the following metrics:

i) Earth Mover’s or Wasserstein’s distanceW : It quantifies the error between our belief

map and true belief map (which has probability 1.0 at true pose and 0 everywhere

else)

W =
∑
x

p(x)D(x,x∗), (5.3.1)

where we define D to be the Manhattan distance between two poses.
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ii) estimated belief at true pose (This is also the reward that was used for training) p(x∗)

iii) hit rate, which is defined as the number of times maximum likelihood estimate of the

belief is exactly same as true pose.

Each test consists of 10 episodes; the mean and standard deviation over the 10 episodes

were then computed for each of 11 steps as plotted in 5.4 to illustrate how the metrics

changed during an episode in average.

From the results plotted in Fig. 5.4, we can clearly see that our trained likelihood model

performed much better than scan matching in all the metrics. This could be attributed to

the susceptibility of SM to noises such as inaccurate map and the robot being off the center

of a grid cell. Since we accounted for all these noises during training, our LM proved to

be robust. Our RL model performed as good as AML. In terms of time complexity, our

RL model is however multiple times faster than AML as we show in the time complexity

analysis (cf. Table 5.1). Even though hit rate is initially high and appears to have solved

the localization problem, the belief at ground truth pose is much less (on the order 1e-3) as

seen in the corresponding wasserstein distance and belief at true pose plots.

SM LM RL AML(+LM)
4x11x11 0.202 0.0531 0.00122 1.23
4x33x33 0.316 0.0518 0.00172 1.29
8x33x33 0.492 0.0866 0.00203 1.38
24x33x33 0.770 0.123 0.00194 1.47
Tab. 5.1. Time complexity analysis (in seconds)

To further justify our robustness claims of our trained LM, we modified the environment

by adding or moving some obstacles and ran the same experiment again. We tested it for

LM+RL versus CS+RL on 5 differently modified environments from ‘env1’ to ‘env5’ shown

in Fig. 5(a). We also tested again at the original environment ‘env0’. Each test was done

with the same 10 initial poses as above while the length of an episode was increased to 25.

Number of headings was fixed at 4.

5.3.3. Experiments on Turtlebot

We used Hukoyo Laser UST-20LX which outputs 1040 measurement ranges with detec-

tion angle of 260° and angular resolution of 0.25°. The netbook runs on Intel Core i3-4010U

processor with 4GB RAM. Our test environment is of size 9× 9 meters2 and is combination
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Fig. 5.4. Localization performance was evaluated in 8 headings and 33 × 33 grids with
JAY in the real environment. We compared our proposed likelihood model for 33×33 (LM),
cosine similarity (CS), active Markov localization (AML), random action (RA), and the
trained policy π with reinforcement learning (RL).

of 2 rooms as shown in 3(b). Similar results as that of JAY were observed (omitted for

brevity).

5.4. gym-dal

Most of the robotics research involves the extensive use of ROS and Gazebo environments

which are convenient but they are not ideal platform for implementing learning algorithms

especially reinforcement learning. To alleviate these problems, we are open sourcing our

gym environment. We hope that this will act as a testbed for active localization research.

Once trained on our simulator, the policies and the likelihood model learned are directly

transferable to real robot. We have also integrated the environment with various state of the

art RL algorithms [38] like PPO [63], A2C[49], ACKTR [83].

5.5. Hierarchical Likelihood models

We present the experimental results of our 2 novel hierarchical likelihood models. From

Fig. 6(a), we can observe that both weighted (where we multiply the likelihood of every cell
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(a) The original and the 5 modified environments

(b) Wasserstein distance between belief and true belief

Fig. 5.5. LM is tested in modified environments env1 to env5 and compared with the error
from the original environment env0. Error is measured in terms of Wasserstein distance
between belief and true belief.

at higher level with the corresponding likelihood at lower level) and un-weighted variants

of hierarchical likelihood model performed equally well and obtained convergence. In these

experiments, we used N (0) = 11, M (0) = 11, N (1) = 88, M (1) = 88, Θ(0) = 4, Θ(1) = 4,

k = 8. However, higher levels of hierarchy are very sensitive to hyper-parameters because

they are dependent on the performance of previous layers. The robustification studies of the

44



hierarchical model, a thorough empirical evaluation and making them insensitive to hyper

parameters are possible avenues for future research.

(a) loss at level-0 (b) loss at level-1

Fig. 5.6. blue: weighted HLE. red: unweighted HLE

Fig. 5.7. Wasserstein distance between DAL’s belief and ground truth belief at level-0 and
level-1 when HLE (hierarchical likelihood estimate) is used (red) and when it is not used
(blue). We can see that HLE (based on cosine similarity in this figure) indeed helps in
controlling the motion errors.
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Chapitre 6

Conclusion

In this work, we have started by formally defining the problem statements of localization

and active localization and discussed the traditional approaches to these problems. After

giving a thorough introduction to deep learning and reinforcement learning frameworks, we

have presented a learning-based approach to active localization from a known map within the

framework of the traditional method of Markov localization. Furthermore, to overcome the

problem of accumulating motion errors, we proposed multi-scale learned perceptual models

that are connected with an RL planner and inner loop controller in an end-to-end fashion. We

have demonstrated the effectiveness of the approach on real robot settings in two completely

different setups.

In future work, we would like to explore the removal of the reliance of the system on a high

fidelity map such as is generated by gmapping. Much more appealing would be, for example,

if the robot could localize on a hand drawn sketch or some much more easily obtained

representation. We are also exploring to extend our approach from active localization to

active SLAM setting, where the goal is also to construct the map the robot is operating

upon than to just localize itself. The other interesting avenue is to extend it to particle filter

setting instead of limiting it to grid based setting and further apply stein-based optimization

techniques[44] for learning the likelihood model.
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Annexe A

Les différentes parties et leur ordre d’apparition

In chapter-2, we introduce the notations used and classical formulations of passive and

active localization problems. More specifically, in sec-2.1, we introduce the precise definition

of the type of localization problem we are solving in this work. We then continued to

develop notations and markov localization framework in sec-2.2 and then defined the active

localization problem in sec-2.3 and the extension of markov localization to active setting in

sec-2.3.

In chapter-3, we introduced the relevant concepts in deep learning and reinforcement lear-

ning. In sec-3.1, we gave a brief introduction to deep learning followed by its detailed working

in sec-3.1.1 and relevant network architectures Resnet (sec-3.1.2) and densenet (sec-3.1.3).

We then introduced the paradigm of reinforcement learning and MDP in sec-3.2 and explai-

ned the policy gradient methods (sec-3.2.1,sec-3.2.2,sec-3.2.3,sec-3.2.4,sec-3.2.5,sec-3.2.6) and

intrinsic reward formulation (sec-3.2.7). We then discuss how DL and DRL can be used for

passive localization (sec-3.3.1) and active localization (sec-3.3.2).

In chapter-4, we dive into our method building upon the formulations built in earlier

chapters. In sec-4.1, we give an overview of our entire system followed by describing each

of the individual parts: perceptual system (sec-4.2) and policy model (sec-4.3) including the

application of domain randomization. Further, in chapter-5, we explain the experimental

setup and discuss the results
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