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Résumé 

La résistance aux antimicrobiens (pharmacorésistance) est une crise sanitaire qui menace nos 

moyens pour contrôler les infections bactériennes. Nos progrès dans la médecine dépendent de 

nos habiletés à combattre les infections avec des antibiotiques. Ainsi, il est nécessaire de 

comprendre le mécanisme entourant l’évolution de la résistance aux antibiotiques. Prédire les 

trajectoires évolutives de la pharmacorésistance demeure une tâche ardue et urgente. 

Actuellement, notre capacité à prédire les voies d’évolution bactérienne vers la 

pharmacorésistance est limitée. Il implique de combler plusieurs contraintes sur différents 

niveaux d’organisation biologique – des propriétés moléculaires des protéines, l’aptitude des 

organismes et à la dynamique des populations microbiennes.  

Dans ce mémoire, je développe un nouveau modèle multiscalaire pour l’évolution 

microbienne qui intègre principalement la génétique des populations avec la biophysique. Mon 

système modèle est la ß-lactamase qui concède une résistance contre une large gamme 

d’antibiotiques ß-lactamines. Tout d’abord, je détermine le paysage d’aptitude de la ß-

lactamase en utilisant le balayage mutationnel profond (DMS), un nouvel outil pour tester 

expérimentalement l’aptitude d’environ 5000 variantes de la ß-lactamase. Ensuite j’intègre ces 

données expérimentales dans mon modèle computationnel d’évolution microbienne pour 

étudier les voies évolutives envers la pharmacorésistance.  

Dans le premier chapitre, je développe un modèle évolutionniste déterministe combinant la 

dynamique des populations et les effets biochimiques des mutations pour capturer les effets de 

la sélection purificatrice avec l’ampicilline. En raison des informations limitées qu’un modèle 

déterministe peut fournier, dans le deuxième chapitre, je bâtis sur le modèle initial en 

développant un modèle stochastique de l’évolution microbienne. Ce modèle mis à jour vise à 

déterminer les mutations qui pourraient être enrichies lors d’un traitement antibiotique. 

J’étudie également les régimes pour atténuer l’émergence de la résistance. Dans le troisième 

chapitre, je construis expérimentalement avec le DMS, le paysage d’aptitude de TEM-1 

(Temoneira-1), une enzyme de la ß-lactamase pour déterminer son niveau de résistance et sa 

dépendance envers céfotaxime. 
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Abstract 
Antimicrobial resistance is an emerging health crisis that threatens our ability to control 

bacterial infections. Advances in medical treatments depend on the ability to fight infections 

with antibiotics. Thus, there is a need to understand the mechanism surrounding the evolution 

of antibiotic resistance. Predicting the evolutionary trajectories to drug resistance remains a 

daunting task and is urgently needed. Currently, our aptitude to predict pathways in bacterial 

evolution to drug resistance is limited. It entails bridging several constraints on various levels 

of biological organization—from molecular properties of proteins to organismal fitness, to 

microbial population dynamics.  

 

In this memoir, I develop a new multi-scale framework for microbial evolution that integrates 

principally population genetics with biophysics. My model system is beta-lactamase that 

provides broad-spectrum resistance against beta-lactam antibiotics. First, I determine the 

fitness landscape of ß‐lactamase using deep mutational scanning, a novel tool to 

experimentally assay the fitness of around 5000 variants of beta-lactamase. Then, I integrate 

this experimental fitness landscape data into my computational model of microbial evolution 

to study the evolutionary pathways to drug resistance.  

 

In the first chapter, I develop a deterministic evolutionary model combining population 

dynamics and the biochemical effects of mutations to capture the effects of purifying selection 

under selection with ampicillin. Due to the limited information that a deterministic model can 

provide, in the second chapter, I build upon the initial model to develop a stochastic model of 

microbial evolution. This updated model aims to determine mutations that might be enriched 

during antibiotic treatment. I investigate the landscape of fitness cost against resistance level. I 

also investigate drug regimens to alleviate the rise of resistance. In the third chapter, I 

experimentally determine with DMS the fitness landscape of TEM-1 (Temoneira-1), a ß-

lactamase enzyme, to study its resistance level and its dose-dependence for cefotaxime. 
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Chapter 1: Introduction 
The discovery of antibiotics is one of the most important medical advances that lead to the 

reduction of human mortality and morbidity (Andersson et al., 2010). Antibiotic resistance can 

be described as the ability of microorganisms to survive the drugs designed to eradicate them 

(Ventola, 2015). Our understanding of the mechanisms behind the evolution of resistance 

remains incomplete. As such, the emergence of multiple drug resistance in patients has proven 

difficult to efficiently treat (Higgins, 2007). One possible treatment to alleviate resistance is to 

reduce the use of antibiotics (Melnyk et al., 2015). This strategy exploits the fitness cost 

imposed by the evolution of resistance-conferring mutations to purge them out of a population. 

Thus, the existing approaches to mitigate resistance depend on our understanding of the 

evolution of resistance.  

 

To gain a better understanding of the evolution of antimicrobial resistance, we developed a 

stochastic evolutionary model to study the dynamics of resistance-conferring mutations. The 

stochastic evolutionary model is built by combining theories from biophysics, such as epistasis 

(Serohijos and Shakhnovich., 2014), and from population genetics, such as effective 

population size (Charlesworth, 2009). This theoretical model provides valuable insight into the 

evolutionary pathways to drug resistance. The emergence of resistance is often described as a 

pathway. This pathway to resistance consists of a set of mutations fixing in a population, 

leading to resistance (Hall, 2002). Evolutionary pathways are commonly studied by 

constructing the appropriate fitness landscapes of resistance. Consequently, an accurate 

construction of the fitness landscape of resistance is critical to increase the accuracy of our 

models and to study the emergence of resistance.    

 

One of the new methods to construct the fitness landscapes of proteins that confer resistance is 

deep mutational scanning (Fowler and Fields, 2014). This technique combines library 

mutagenesis, selection, and next-generation sequencing to assay several thousands of 

mutational variants. The fitness landscapes constructed from the deep mutational scan can be 

used with our theoretical models to study the emergence of resistance. In this chapter, we 
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introduce the concepts of the emergence of antibiotic resistance and how to study the 

pathways to resistance on fitness landscapes. We also introduce experimental approaches to 

determine fitness landscapes of resistance.  

 

1. Antibiotic resistance 

1.1 Emergence of antibiotic resistance  

Antimicrobial resistance has become an emerging problem in healthcare and is among the 

major causes of mortality and morbidity in clinical settings throughout the world (Guo, 2012). 

Because of antibiotic-resistant strains, there are fewer antibiotics that can effectively treat 

infections (Maharjan, 2017). The emergence of antibiotic-resistant strains is partially due to 

the widespread use of antibiotics in healthcare and agriculture industries (Chang et al., 2015). 

This increased exposure to antibiotics constitutes a strong and persistent selective pressure for 

the evolution of resistant strains in a population (Andersson, 2010).  

 

There are also multiple other mechanisms that could lead to the emergence of resistance in a 

population. The emergence of antibiotic resistance can occur from de novo mutations or other 

types of genetic changes. The most common mutations for resistance alter antibiotic targets or 

increase drug efflux rates, but mutations have also been observed to affect gene amplification 

and to reduce the expression of the antibiotic target (Melnyk et al., 2015). Another important 

mechanism for a bacterium to acquire resistance is through horizontal gene transfer (HGT) of 

resistance cassettes between microbes (Sundqvist, 2014, Melnyk et al, 2015). HGT 

mechanisms include drug modification enzymes, antibiotic target protection, replacement of 

drug targets, and acquisition of new efflux pumps to clear out the drugs (Andersson and 

Hughes, 2010, Robicsek et al., 2006). The most common mechanisms for acquiring resistance 

are presented in Figure 1.   
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Figure 1. Mechanisms of resistance acquisition.   
An antibiotic resistance gene (pink) can be transferred by horizontal gene transfer to 
another strain by multiple paths: cell-to-cell conjugation, the transformation of DNA, 
phage-mediated transduction. Resistance mutations can also arise de novo in the new 
organism. (Adapted from Andersson and Hughes, 2010)  

 

1.2 TEM-1 beta-lactamase  

Beta-lactam antibiotics, such as penicillin – the first antibiotic developed, were commonly 

used to treat bacterial infections. This treatment proved to be efficient until bacteria developed 

resistance to first-generation beta-lactams antibiotics (Kong et al., 2011). Bacteria developed 

resistance against beta-lactam antibiotics by producing beta-lactamases. TEM-1, the first beta-

lactamase enzyme identified, degrade these antibiotics by hydrolyzing the beta-lactam ring 

found in numerous beta-lactams (Cooksey, 1990). Thus, TEM-1 can provide a broad-spectrum 
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resistance against beta-lactams. To counteract the growing problem of TEM-1 producing 

bacteria, newer beta-lactams antibiotics were developed (Shaik et al., 2015). However, 

antibiotic resistance emerged against these alternative antibiotics with the appearance of 

modified beta-lactamases (Shaik et al., 2015). The development of novel antibiotics gave rise 

to TEM variants with different amino acid sequences that confer different resistance 

phenotypes (Salverda, 2010). TEM-3, one of the first derivatives of TEM-1, had a single 

amino acid substitution and is carried by a plasmid which encodes a gene responsible for a 

new ceftazidime resistance (Shaik et al., 2015). These derivates of TEM-1 likely evolved long 

ago, but they emerged when faced against these new drugs. Due to a large number of beta-

lactam antibiotics, beta-lactamases cover a wide spectrum of resistance and confers good 

resistance against second, third, and fourth-generation of beta-lactamase inhibitors. Because of 

the current extensive knowledge and detailed description of the natural evolution of TEM 

alleles, TEM-1 has been a frequent target to study the emergence of antibiotic resistance.  

 

1.3 Fitness cost of resistance-conferring mutations 

Although there have been numerous interpretations of fitness, fitness is generally understood 

as the ability of organisms to survive and reproduce in their environment. Surviving organisms 

reproduce and contribute to the gene pool of subsequent generations. Consequently, fitness is 

a measure of an organism’s reproductive abilities and reflects its adaptive capabilities in a 

specific environment. Following that definition, the fitness of a resistant mutation determines 

its survival in a population under selective pressure (Orr, 2009). Resistance level is the fitness 

of a protein under prevailing antibiotic selection environments (Melnyk et al., 2015). 

Acquisition of a resistance mutation might increase the resistance level, but it can also impose 

a fitness cost on the organism (Sundqvist, 2014). Fitness cost is defined as the reduced 

competitive ability of a mutant in the absence of antibiotics (Vogwill et al., 2015). Many 

antibiotics target important biological processes, and resistance to them imposes large 

energetic burdens and metabolic costs that reduce competitive ability against antibiotic-

sensitive strains (Andersen, 2006; Melnyk, 2015). Because of fitness cost, strains that contain 

resistant mutations may be depleted in the population when the antibiotic is not present.  
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It is believed that antibiotic-susceptible strains will competitively eliminate the resistant 

strains in selection-free environments unless the resistant ones acquire mutations that can 

compensate for this fitness cost (Maharjan et al, 2017). This fitness loss by the resistant 

mutants is reflected by numerous changes in functional roles, such as reduced growth rate, 

reduced transmission rate, higher clearance rate, or decreased invasiveness in the absence of 

antibiotics (Schulz, 2010). Therefore, resistant mutations are more likely to persist in the 

absence of antibiotic pressure if they suffer little or no fitness cost. Mutant strains that do not 

pay a cost or very little cost for their resistance have a higher chance to replace other resistant 

strains (Johnsen, 2009). Thus, determining the extent of fitness cost and how to modulate it are 

key to determine the strategies to alleviate the emergence of resistance (Schuzl, 2010).  

 

1.4 Current approaches to alleviate antibiotic resistance 

There are several potential strategies to address drug resistance, such as multidrug therapy. 

Multidrug therapy consists of prescribing a combination of different drugs to a patient when 

resistance has emerged (Perron et al., 2012). Another approach is by exploiting fitness cost 

(Sundqvist, 2014). The magnitude of fitness cost is one of the primary factors that increases 

the development of resistance, but it can also decrease resistance when antibiotic is absent 

(Guo, 2012). Fitness cost can be exploited to introduce competition between antibiotic-

susceptible strains and resistant strains (Lipsitch et al., 2000). Antibiotic-susceptible strains are 

free from fitness costs and therefore can potentially outcompete resistant strains in a selection-

free environment. Exploiting fitness cost by reducing antibiotic use is a viable approach to 

alleviate resistance.  

 

Nevertheless, reducing antibiotic use once resistance has emerged, has not always been 

effective at alleviating resistance (Sundqvist, 2010). There are two main hypotheses for the 

persistence of resistant strains in the absence of antibiotics – genetic linkage, and pleiotropic 

cost (Andersson, 2010).  

1. Genetic linkage is the co-occurrence of resistance genes and other compensatory genes 

that lead to genetic co-selection. This prevents the elimination of resistance. 
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Compensatory mutations counteract the effects of fitness costs incurred by resistance 

mutations. The presence of compensatory mutations might prevent genetic reversions 

of the resistant genes. Both the resistance genotype and the compensatory genotype 

individually may confer an overall lower fitness than the combined genotype. 

Therefore, the resistant-compensated genotype cannot revert back the wild-type 

genotype (Schulz, 2014).  

2. Pleiotropic cost is defined as the effects of ancestor genes on the fitness of resistant 

mutants (Melnyk et al., 2015). Resistance mutations have highly variable pleiotropic 

costs. Therefore, they may inherit a fitness that is indistinguishable from their 

antibiotic sensitive ancestor and become “no-cost” mutations. (Andersson, 2003, 

Melnyk, 2015). These mutations will persist in an antibiotic-free environment as there 

is no selective pressure against them.  

 

Fitness cost remains a crucial factor in preventing and reverting resistance development. 

Newer antibiotics could exploit fitness cost by targeting strains for which resistance 

mechanisms confer a high fitness cost and a low compensation system (Andersson, 2010). 

There is a need to better understand the biological mechanisms behind fitness cost and how to 

incorporate them in our quantitative models of antibiotic resistance evolution. 

 

2. Pathways to resistance on fitness landscapes 

2.1 Hierarchy of constraints on the pathways to drug resistance 

Mutational pathways to adaptation, including antibiotic resistance, are influenced by numerous 

constraints at distinct levels of biological organization, as presented in Figure 2. However, 

there is an incomplete understanding of the pathways to antibiotic resistance as these 

constraints are traditionally studied separately (Serohijos et al., 2014; Harms and Thornton., 

2013; Wilke et al., 2012). The mutational pathways to resistance are defined by the mapping 

between microbial fitness and the molecular properties of the target gene. This mapping is 

referred to as the fitness landscape. 
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Figure 2. Hierarchy of constraints in evolution.   
Combining fitness with the biophysical properties of macromolecules will better shape 
the genotype-phenotype map (fitness landscape). A. Effect of sequence variation on the 
phenotype. B. The relationship between biophysical traits and fitness effects of the 
organism. C. The effects of mutations are regulated by biological networks. D. Fitness 
landscape built on biophysical properties. E. Importance of population genetics in the 
construction of fitness landscapes, such as the selection coefficient and the probability of 
fixation. (Adapted from Bershtein et al., 2016).  

 

2.2 Fitness Landscapes and the Genotype-Phenotype relationship 

The genotype-phenotype map, referenced as the fitness landscape, visualizes the relationship 

between genotype and reproductive success (Visser et al., 2014). This landscape may be 

represented as a function, where the x-y planes are genotypes and the z-axis is fitness. The 



 

8 

fitness could be any measure of reproductive success (e.g. growth rates) or any phenotypes 

(e.g. drug resistance). Such maps define feasible combinations of mutations (“the mutational 

pathways”) towards drug resistance (Hartl, 2014).  These evolutionary pathways are dictated 

by the molecular mechanisms revealed by the landscape. A sample fitness landscape with the 

evolutionary pathways for the evolution of cancer is presented in Figure 3.  

 

Consequently, evolutionary pathways are represented as walks on the fitness landscape. Walks 

around the map represent evolution with small changes to fitness, and climbs on top of fitness 

peaks represent adaptation and increased fitness (Visser et al., 2014; Wright, 1932). A 

landscape based on resistance can be used to predict paths to fitter genotype or resistance 

(Weinreich, 2006). However, apart from knowing the fitness landscape, several other 

constraints that affect the mutational pathways to drug resistance need to be taken into 

consideration. These include epistasis and the population dynamics of the evolving microbial 

population. Previous theoretical evolutionary models have considered the importance of 

accounting for these constraints, and have been successfully implemented to study evolution. 

Therefore, the inclusion of these parameters is not a novelty in the field of evolutionary 

models. However, these approaches have not been used to study emergence of antibiotic 

resistanc. Current evolutionary models will be further discussed in section 2.5.  
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Figure 3. Evolutionary pathways on the fitness landscapes.   
Evolutionary pathways of resistant mutations are influenced by the shape and 
accessibility of fitness peaks on the landscape. The vertical axis represents the fitness level 
of all genotypes. A. A specific set of mutations is allowed to climb to peak A or B which 
confers resistance. B. A different set of mutations which are constrained by biophysical 
traits or population genetics are only allowed to move to peak B or C. C. A change in 
selective pressure such as a different antibiotic, shifts the fitness landscape and new 
resistance peaks are formed. Although all pathways in A, B, and C reach resistance, they 
are constrained to take a different set of mutations (pathways) to reach a fitness peak. 
(Adapted from Lipinski et al., 2016).   
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2.3 Epistatic constraints on the pathways to drug resistance  

Protein biophysics properties such as folding stability, solubility, and maintenance of 

functions, impose constraints on the evolutionary pathways leading to drug resistance 

(Serohijos and Shakhnovich, 2014). However, predicting and reproducing the pathways to 

resistance is much more complex due to molecular epistatic constraints. Epistasis is broadly 

defined as the composition of a genotype and the influence that this specific genetic 

background has on a set of alleles (Phillips, 2008). Consequently, the phenotypic effect of a 

mutation at one genetic site can change, depending on which alleles are present at other sites. 

The mutations, in this case, depend on the evolutionary background of the population, and 

epistasis can greatly influence evolution in populations. Therefore, for some of the resistance-

conferring mutations, they are dependent on the genetic background from which they arise. 

Importantly, epistasis suggests that the order of mutations in the evolutionary pathway is 

crucial, and the effects of mutations are not always simply additive (Weinreich, 2006). The 

ruggedness and curvature of the fitness landscape influence epistatic effects on the pathways; 

therefore, the population may need to traverse low fitness valleys to reach fitness peaks. 

Consequently, accurately identifying the role of molecular epistasis in evolution is critical to 

determine the potential pathways taken by populations on the fitness landscape (Breen et al., 

2013).  

 

2.4 Population dynamics constraints on the pathways to resistance 

Population size is another major constraint on the types of mutational pathways that can arise 

in the evolution of antimicrobial resistance. Population size (Ne) is a core concept in both 

evolutionary biology and population genetics as it tunes the balance between selection and 

mutational drift (Charlesworth, 2009). The force of selection is proportional to the population 

size. In large populations, mutations with slightly beneficial or deleterious effects can reach 

fixation or escape genetic drift, thus allowing the mutants to outcompete the wild-type. In 

small populations, only mutations with strong selection coefficients will fix in the population, 

as the effects of genetic drift are significantly more intense.  In the case where there is only a 

single individual in a population (Ne=1), there is no competition and there is no selection. All 
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mutations, deleterious or beneficial, can be fixed. The role of population size in the probability 

of fixation is formalized by the classic Kimura formula, shown in Figure 2E, derived for the 

simple case of a monoclonal population (Kimura, 1968).  

 

In general, the following forces need to be considered for the evolution of a biological system:  

i. Natural selection is the process in which alleles for fitter organisms become more 

frequent in a population as they survive and reproduce, consequently transmitting their 

alleles to the next generation (Andrews, 2010). The selection coefficient s is often used 

to quantify the differences in fitness between different genotypes (Hartl et al., 2007).  

ii. Mutation is the process in which new alleles appear in the genome. Mutations can 

either be deleterious, beneficial, or neutral. Deleterious mutations result in the death or 

deformation of the organism, while beneficial mutations profit the organism by making 

it fitter. Mutations are not necessarily a binary process, but instead cover a wide 

distribution as there exist other mutations, such as neutral mutations (Eyre-Walker et 

al., 2007).  

iii. Genetic drift is the process in which allele frequency is changed due to random 

sampling. Genetic drift has a higher impact on smaller population size, as the involved 

allele is either lost or fixed in the population at a faster rate (Kliman et al., 2008). The 

level of variability in a population and the effect of selection relative to drift can be 

determined through the effective population size. (Charlesworth, 2009).  

 

2.5 Current development of theoretical evolutionary models 

Presently, there exist numerous evolutionary models integrating the various molecular, 

biophysical and population dynamics constraints to provide valuable insight into the process 

of evolution. Sailer and Harms developed an evolutionary model considering epistatic 

constraints (Sailer and Harms, 2017). They studied the role of high-order epistasis by creating 

a model that would remove epistasis from fitness landscapes. They generated two sets of 

evolutionary pathways, ones from the fitness landscapes with epistasis, and ones from their 

computational fitness landscapes without epistasis. Using their model, they determined that 

the accessibility and probability of evolutionary trajectories were affected by the magnitude of 
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epistasis, not the order itself. Interestingly, these findings were contrary to previous 

experimental work performed by Weinreich (2006). Nonetheless, they arrived at the same 

conclusion from their simulations that epistasis and interactions between mutations strongly 

shape the evolutionary trajectories on fitness landscapes.  

 

Another model has been developed by Meyer and Wilke, integrating protein structure and 

sequence variation constraints (Meyer and Wilke, 2013). Their model was used to identify 

resistance sites in neuraminidase under oseltamivir selection. They demonstrated that using 

structural information with protein sequences can be a powerful predictive tool to identify 

sites of interest in resistance. They observed that the accuracy of their model for specific 

proteins improved significantly by considering the biophysical aspect of solvent exposure. 

Their model provided additional accurate evolutionary information on the resistance mutation 

sites.  

 

There also exist other evolutionary models integrating multiple constraints simultaneously. 

The model combining protein biophysics and population dynamics constraints (Serohijos and 

Shakhnovic, 2014) was used to determine the effects of selection for protein folding stability 

on the patterns of evolutionary forces in coding regions. In a similar fashion, a model 

combining population genetics with simple biophysical protein folding (Wylie and 

Shaknovich, 2011) was used to study the interplay between biophysical and population genetic 

forces on the shape of the distribution of fitness effects.  

 

Therefore, although there exist a few evolutionary models combining the various molecular 

and population genetics constraints, we aim to integrate these parameters as a novel approach 

to specifically elucidate the emergence of resistance on fitness landscapes.  

3. Stochastic evolutionary models of population genetics 

Our ability to study the genetics of populations depends on our capacity to accurately 

construct models that capture the essential biological features of populations. A deterministic 

model of evolution was implemented by Dieckmann and Law in 1996. They identified a 

deterministic approximation of the stochastic evolutionary process and demonstrated that 
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evolutionary dynamics can be represented as directed random walks on adaptive landscapes. 

From their model, they showed that evolutionary paths are equivalent to hill-climbs on 

landscapes (Dieckmann and Law, 1996). However, their models provide limited insight into 

the process of mutant selection in a population, as advantageous mutations will always fix in a 

deterministic model (Nowak, 2006). This is not always the case in nature. In stochastic 

models, beneficial mutations are not always guaranteed to reach fixation, and there is always a 

risk of extinction for the mutant. Stochastic models can, therefore, provide additional 

understanding of actual population evolution.  

 

There are two primary stochastic population genetic models used throughout most studies: The 

Wright-Fisher model and the Moran model. The Wright-Fisher model represents a population 

of non-overlapping generations while the Moran model represents a population of overlapping 

generations (Wakeley, 2008). A population is said to evolve under the Moran process if it 

satisfies three conditions: the population remains at a constant size N; generations can overlap; 

and at discrete time intervals, two individuals are chosen randomly to undergo the birth-death 

process (Nowak, 2006). The model of interest to this memoir is the Moran model. It can 

replicate the effects of neutral drift, and the probabilistic dynamics of two alleles competing 

for dominance at populations of finite size (Wakeley, 2008). Studies implementing the 

stochastic Moran process to elucidate evolutionary dynamics has already been published 

previously (Muirhead and Wakeley, 2009; Harper and Fryer, 2016). Their Moran model 

approaches provide the means of modeling a wide variety of fitness schemes. They 

demonstrated that the Moran model is not strongly dependent on approximations, and 

therefore this stochastic process can be applied to study evolution requiring population 

parameters such as selection and effective population size. Thus, we will be using these 

principles in constructing our stochastic evolutionary model. It will be used to study the 

emergence of resistance in populations. Our Moran model based on population parameters 

will be further described in Chapter 4.  
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4. Experimental approach to determine fitness changes 

4.1 Distribution of Fitness Effects  

Antibiotic pressure imposes changes on a population and selects for diverse types of mutants 

in a population, such as resistant mutants. The Distribution of Fitness Effects (DFE) is defined 

as the spectrum of changes on the fitness of an organism upon genetic perturbations (Eyre-

Walker, 2007). The DFE can be used to study the range of mutations observed in a selective 

environment (Martinez et al., 2000). The DFE is mainly composed of three mutations: 

beneficial, neutral, and deleterious. Beneficial mutations in the DFE are of special interest as 

they can potentially confer resistance.  

 

Beneficial mutations are the rarest ones, but they also have the highest impact on the fitness of 

the organism (Silander et al., 2007). When these mutations are selected for fixation, they 

contribute substantially to adaptive evolution and reduce genetic diversity (Eyre-Walker, 

2006). The small number of beneficial mutations shapes the DFE into an exponential tail (Orr, 

2003). The DFE becomes increasingly like an exponential distribution as the population 

evolves, and strongly advantageous mutations are selected for fixation (Sanjuan et al., 2004, 

Eyre-Walker et al., 2007). The exponential tail of the DFE for beneficial mutation is 

represented in Figure 4. The spectrum of selective effects defined by the DFE is critical to 

determine the type and frequency of mutations fixing in the population. Due to its importance, 

there are multiple experimental methods to quantify the DFE, such as deep mutational scan –  

defined in the next section.  
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Figure 4. Distribution of fitness effects of new mutations.   
The population (represented by the black arrow) starts at a state of low fitness and 
evolves to a state of high fitness. As the DFE remains constant through evolution, the DFE 
for advantageous mutations available to the population becomes exponential towards the 
right-hand tail of the distribution. (Adapted from Eyre-Walker, 2007).   

 

4.2 Deep mutational scan 

Deep mutational scanning (DMS) is a new high-throughput approach to comprehensively 

measure a fitness landscape. It combines saturation mutagenesis, selection, and high-

throughput DNA sequencing to assay the functional effects of several thousands of mutations 

on a protein (Fowler et al., 2010; Fowler et al., 2014). DMS can be used to produce a high-

resolution, fine-scale map of protein sequence-function relationships (Fowler et al., 2014). The 

framework for a DMS is presented in Figure 5. This approach generates large-scale 

mutagenesis datasets containing a functional score for each mutation variant. A large dataset 

of mutations renders the task of profiling their functional effects on proteins much more 

manageable and eases the prediction of mutation progression. By performing DMS in the 

presence of a drug, it is possible to generate a nearly complete map of resistance to the specific 

drug (Fowler et al., 2010). The map is useful to guide the development of drug treatments to 

alleviate the emergence of resistance.  
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Figure 5. Overview of deep mutational scanning.   
Deep mutational scanning can be used to assess the functional consequences of all 
mutant variations in a protein. A comprehensive mutagenesis library of a protein of interest 
is constructed. The library is subjected to high-throughput selection or screen for function. 
Variants are counted via deep sequencing. Fitness landscapes are built from the normalized 
functional score obtained from sequencing. (Adapted from Wrenbeck et al., 2017).     



 

17 

Chapter 2: Problem and Specific Aims 

Problem 

Understanding the emergence of resistance in microorganisms is an urgent problem in 

medicine and public health. Due to resistance, the inefficacy of first-line and second-line 

antibiotic treatments is forcing healthcare specialists to use stronger drugs that may potentially 

be toxic to patients (Ventola, 2015). The rise of resistance prevents the effective treatment of 

common infectious diseases caused by bacteria, parasites, viruses, and fungi, resulting in 

prolonged illness, or even death. Therefore, there is a need to predict and identify the 

emergence of resistance. Currently, determining the first passage time of resistance by 

analyzing the evolutionary trajectories on fitness landscapes might be possible, as 

demonstrated by numerous groups (Hartl, 2014; Palmer et al., 2013; Poelwijk et al., 2007; 

Martinez et al., 2007; Rodrigues et al., 2016). Here, we define the first passage time of 

resistance as the event where the stochastic process of evolution encounters its first resistance-

conferring mutation. The emergence of resistance is often described as a specific series of 

mutations an organism acquires. If we can retrace those trajectories, we could potentially 

identify the first mutations arising in resistance.   

 

There are only a few studies that combine biophysics and population genetics to study 

evolution (Wylie and Shakhnovich, 2011; Serohijos and Shakhnovic, 2014). These approaches 

have certain limitations due to the robustness of genotype-phenotype relationships and 

quantitative disagreements between models and experiments. Although these limitations 

hamper model accuracy and predictivity, solving these limitations is outside the scope of this 

memoir. Nonetheless, these models provide valuable approximations to study evolution, but 

they have not been applied to study the emergence of resistance. Consequently, the application 

of evolutionary models and theories to the resistance problem is largely unknown. The role 

and contribution of molecular biophysics and population genetics to the emergence of 

resistance remains unclear. Therefore, elucidating their role would be greatly beneficial to our 

capacity to fight resistance. Integrating both distinct and non-interacting disciplines could 

provide a better understanding of the evolutionary trajectories to resistance. In this memoir, 
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we are using concepts from theoretical evolutionary studies to investigate the real-world crisis 

of drug resistance. 

 

Aims 

In this memoir, we will combine techniques from biophysics and biochemistry with principles 

from evolutionary biology and population genetics to develop a framework to study drug 

resistance. This framework will combine theory and experiment to predict the near-term 

evolution of resistance against β-lactamase enzymes, the primary targets of several antibiotics. 

One of the core concepts borrowed from previous evolutionary models is the principle that 

fitness landscapes (genotype-phenotype mapping) and evolutionary pathways can be used to 

study the progress of a population towards resistance. Therefore, we aim to use fitness 

landscapes with the evolutionary models derived from population genetics to construct the 

framework of a new multiscale evolutionary model used to predict the emergence of 

resistance. The models can also be used to further establish the link between experimental 

fitness landscapes and theoretical evolutionary models. 

 

1. The first objective is to develop an evolutionary model that integrates principally 

population genetics constraints. We first determine the possibility to relay the initial 

passage time to resistance acquisition on the fitness landscape. More importantly, we 

seek to integrate the theoretical work on evolution to experimental results of fitness 

landscapes.  

2. The second objective consists of determining the contribution of fitness cost on the 

survivability – the ability to remain alive, of resistant mutants. Using the 

evolutionary model developed in the first objective, we study the role and the clinical 

relevance of fitness cost in resistance. We determine the relationship and dependency 

between fitness cost and resistance level.  

3. The third objective is to determine the fitness landscape of TEM-1 under 

cefotaxime selection. By constructing the fitness landscape of TEM-1, we can study 

the resistance level and dose-dependence for cefotaxime. Cefotaxime is a β-lactam 
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antibiotic and is part of the third-generation class of cephalosporins. It is often used to 

treat penicillin and penicillin-derivate resistance (Ma et al., 2002). Therefore, our 

fitness landscape can be used to test the evolutionary model and to study the 

emergence of cefotaxime resistance in TEM-1.  

The development of a multi-scale framework for microbial evolution will provide insight 

into the quantitative relationship between the biochemical properties of the target gene, 

selection regimes, population dynamics, and, more importantly, the first passage time to 

drug resistance. 
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Chapter 3: A deterministic evolutionary model for 

purifying selection 

In this chapter, we determine the potential pathways for the emergence of resistance in TEM-1 

β-lactamase. We relate the biochemical effects of mutation on target genes with the population 

demography and the selection regime (drug dosage) experienced by the bacteria. We propose a 

deterministic evolutionary model of additive fitness. We use the model to investigate the 

underlying molecular mechanism for the emergence of resistance. We determine if the 

selection coefficients of resistant mutants are sufficient to recapitulate the beneficial mutations 

observed in the literature. Using the model, we found that in the context of purifying selection, 

comprehensive fitness landscapes capture a large fraction of enriched mutations retrieved from 

the literature. Nonetheless, our deterministic model of additive fitness does not fully capture 

the pathways to resistance. 

 

Methodology 

Fitness landscape of TEM-1 β-lactamase under Amp selection 

Our deterministic evolutionary model requires fitness landscapes as input. To construct the 

comprehensive fitness landscape of TEM-1 β-lactamase under ampicillin (Amp) selection, we 

used the DMS dataset from Stiffler et al. (2015). Their dataset consists of the relative fitness 

effects for all single amino acid mutations in TEM-1 under selection for several concentrations 

of Amp. To generate this dataset, they constructed a whole-gene saturation mutagenesis 

library of TEM-1. Their library was screened on a growth and survival basis in different 

selection conditions, followed by next-gen sequencing. The relative fitness for each TEM-1 

variant is defined as: 

  (Eq. 1) 
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where the relative fitness 𝐹𝐹𝑖𝑖𝑎𝑎 of each amino acid mutation a at each position i is determined as 

the logarithm in the allele counts (N) between the selected population (𝑁𝑁𝑖𝑖
𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠) and the 

unselected population (𝑁𝑁𝑖𝑖
𝑎𝑎,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢), relative to the wild-type allele. Their DMS of TEM-1 under 

Amp selection is presented in Figure 6. 

 

 
Figure 6. Comprehensive fitness landscape of β-lactamase under Amp selection. 
Each DMS represent the relative fitness of mutants in specific Amp selection conditions. 
Each row represents a TEM-1 position, and each column is one of the twenty possible 
amino acid mutation. Beneficial mutations are highlighted in yellow while deleterious 
mutations are highlighted in blue. We use the 2500 μg/mL Amp set for our simulations. 
(Adapted from Stiffler et al., 2015).  
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Deterministic evolutionary model algorithm for purifying selection 

The model consists of a computational workflow to replicate evolutionary pathways on a 

fitness landscape. We simulated the evolution of the TEM-1 library under constant selection at 

2500 μg/mL Amp. The effective population size Ne was set to 106 individual cells. The model 

replicates purifying selection as we iteratively remove deleterious alleles from the pool of 

available mutations. An initial protein variant with low fitness is selected as the starting point 

for the simulations and is defined as 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Another mutation is then randomly selected 

from the dataset as a mutational attempt and is defined as 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. To determine if the 

mutation was fixed and retained, we calculated its selection coefficient with Eq. 2: 

  (Eq. 2) 

where the fitness for the initial strain is 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and the fitness for the new mutant is 

 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. As the model assumes simple additivity of fitness effects, it does not take epistasis 

into consideration.  

 

We calculated the probability of fixation (𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓) for the mutational attempt using Kimura’s 

formula: 

  (Eq. 3) 

Where s is the selection coefficient for the mutational attempt, and Ne is the effective 

population size. We determine if the mutation was fixed by comparing 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 to a random 

number generated between 0 and 1. If 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 is larger than the random number, then the 

mutation is fixed. The fitness of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is updated to the fitness of the new mutant. If 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 is 

smaller than the random number, then the mutation is discarded, and the iteration moves to the 

next mutational attempt. Although Ne inherently accounts for the stochasticity of evolution, we 

used the 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 step to ensure that only strongly beneficial mutations are fixed in the population, 

thus maintaining the additive fitness characteristic of our model. A schema of the full 

algorithm is shown in Figure 7. The evolutionary process is repeated until convergence where 

the percentage increase in relative fitness between fixed mutations is smaller than 5%, or until 
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a total of 1000 mutational attempts have been performed. As there is only a pool of 4997 

mutations available and the model assumes additivity of fitness effects, 1000 mutational 

attempts were deemed sufficient for the model to capture the dynamics of evolution.  

 

The algorithm keeps track of several variables for each trajectory: the fitness values of each 

mutational attempt; all fixed mutations occurring in a pathway; and the selection coefficient of 

each fixed mutation. The evolutionary model was written in Python, and simulations were 

performed on an iMac, version 10.12.6 with 3.2 GHz Intel Core i5, and 16GB memory.  

 

 
 

Figure 7. Algorithm for the deterministic evolutionary model.   
With the available fitness landscape, we build the model of microbial evolution that 
replicates bacterial population dynamics to study the emergence of resistance. We calculate 
the selection coefficient and the probability of fixation as defined by Kimura, to determine 
which mutations are fixed in our simulations. Beneficial mutations will have a higher 
probability to fix than a deleterious mutation. We use the algorithm to simulate 106 
evolutionary trajectories to study the emergence of resistance.   

 



 

24 

Analysis of the evolutionary trajectories 

The population dynamics simulations generate 106 pathways, each with their set of fixed 

mutations. In our model, each step of an evolutionary trajectory/pathway is defined by the 

selection coefficient of its fixed mutations. Therefore, we calculated the overall mean and 

median trajectory of all the pathways in the simulations to determine if they recapitulate the 

evolutionary behavior. In case the mean and median did not recapitulate the evolutionary 

behavior, we clustered the trajectories to determine their different evolutionary behaviors. We 

determined an optimal sample size to perform cluster analysis. The sample size can be used to 

estimate the overall behavior of the pathways. The sample size (n) is defined as:  

  (Eq. 4) 

Where z is the z-score for the confidence level, p is the sample proportion, and M is the margin 

error. To ensure that we capture the behavior of the pathways, we set the confidence interval at 

95% with a z-score at 1.96; p at 0.5 to ensure the largest sample size calculation, and M at 0.01 

for a margin of error of 1%. Using these parameters, we obtained a sample size of 9604 

pathways. For the cluster analysis, we randomly sampled 10,000 pathways from the complete 

set. The sampled trajectories are grouped using the kml package (Genollini C. et al., 2015). 

The kml algorithm was set to generate a number of clusters to optimally represent the 

evolutionary pathways. We calculated the centroid and the standard deviation for each cluster. 

We performed the sampling and clustering five times, and the average centroid and standard 

deviation are used to assign all 106 evolutionary trajectories to their respective cluster. The 

analysis was performed with R 3.3.0 (R Core Team, 2013).  

 

Comparison of fixed mutations from simulation with mutations enriched 

from clinical isolates and experimental laboratory evolution 

The mutations from clinical isolates and laboratory evolution under purifying selection are 

described in Table 1. The sets of enriched mutations under Amp selection in laboratory 

evolution are obtained from Bershtein et al. (2008), and the clinical isolates mutations under 

Amp selection were obtained from Hall (2002), Matagne et al. (1998), Salverda et al. (2010); 
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Brown et al. (2010); and Imtiaz et al. (1994). The mutations from the literature were compared 

against mutations observed in our simulations.  

 

Clinical isolates Clinical isolates (cont.) Enriched mutations 
A42G A184V N52D 
I47V T188I N52S 
M69L I208M E63A 
M69V E240K K111E 
G92S R241H K111R 
M96I R244S R120G 

E104K R244C E147G 
S130G R244T H153R 
R164C T265M M182T 
R164H S268G L201P 
R164S R275L I208L 
W165R R275Q I208V 
M182T N276D K288R 
A184V   

 

Table I. Clinical isolates and enriched mutations for TEM-1 under Amp 
selection.  
The mutations were sampled from the literature on TEM-1 resistance. Clinical isolates 
represent mutations that were observed in a clinical setting, while the enriched mutations 
correspond to mutations that were observed in laboratory evolution. The mutations are used 
to compare against our results from the simulations. The mutations are presented in 
alphabetical order.  

 

Results 

Evolution trajectories form clusters 

We build a deterministic evolutionary model of additive fitness. The model generates distinct 

evolutionary trajectories. We observe that the majority of the trajectories reach resistance 

fitness within ten mutational attempts or less. By analyzing the dispersion of the trajectories, 
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we observe that the overall mean and median of the trajectories reach an optimum with 

diminishing returns in fitness, as shown in Figure 8A. Therefore, the average and median of 

the evolutionary trajectories do not reflect the complex evolutionary dynamics, as they do not 

account for different growth behaviors.   

 

Instead, the evolutionary trajectories form distinct clusters. We use K-means clustering to 

group the pathways. We identify three cluster centroids from the evolutionary trajectories. The 

first cluster represents ~43% of the pathways and corresponds to “fast” adaptation whereby 

resistance was acquired using only one mutation (Figure 8B, red). The second cluster 

represents ~29% of the pathways and corresponds to “intermediate” adaptation whereby 

resistance was acquired in two mutations (Figure 8B, blue). The third cluster represents ~28% 

of the pathways and corresponds to “slow” adaptation whereby resistance was acquired in 

three or more mutations (Figure 8B, green).  

 

Next, we investigate the selection coefficient of the mutation or their combination for the three 

clusters (Figure 8C). We define a mutational "step" as a fixed mutation. Trajectories in the 

fast adaptation cluster required only one step in average to reach resistance. The first step in 

the fast adaptation cluster (Cluster #1) is dominated by mutations with high selection 

coefficients that confer large fitness gains. Subsequent mutational steps confer minimal gains 

in fitness as the trajectories already reached a fitness plateau. For the intermediate adaptation 

cluster (Cluster #2), the first and second steps cover a broader and wider range of selection 

coefficients compared to Cluster #1. Thus, their density is lower compared to the fast 

adaptation cluster as they are not grouped around the same selection coefficients. The slow 

adaptation cluster is characterized by a high number of mutational steps that cover a broad 

range of selection coefficients. 
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Figure 8. Trajectories from the deterministic evolutionary model form three distinct clusters.   
The population dynamics simulation was performed for 106 trajectories. Each trajectory could go through 1000 mutation 
attempts. Shown are the first 10 mutation attempts from each trajectory. The mean (A. red) and median (A. blue) of the 
evolutionary trajectories are not sufficient to recapitulate the adaptive behavior of the population dynamics simulations. The 
evolution trajectories behave in a clustering trend at high concentration of Amp (2500 μg/mL) and high population size (106). 
The most populated cluster (B. red) includes 43% of the trajectories in which 1 mutation attempt is sufficient to confer resistance 
during adaptation. 29% of trajectories (B. blue) require at least 2 mutation attempts, and 28% require (B. green) 3 attempts or 
more. The density of selection coefficients at each mutation attempts was graphed, with each color representing a different 
mutation step. C. Cluster 1, the fast growth is dominated by a large selection coefficient at the first mutation and lower selection 
coefficients for subsequent steps. For the other clusters, there is a slow crawl to resistance. The specific pathway to resistance is 
dictated by the selection coefficient of their mutations.  
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Comparison with clinical isolates and with laboratory evolution 

As each evolution trajectory is defined by a sequence of fixed mutations, we seek to determine 

which mutations are selected more frequently. Beneficial mutations that confer resistance 

should occur at high frequency. Therefore, we determine the correlation between mutations at 

high occurrence in the fast adaptation cluster, and mutations observed in clinical isolates and 

laboratory evolution. We want to determine if comprehensive fitness landscapes combined 

with our model can capture the resistance mutations reported in the literature. 

 

 

 
Figure 9. Clinical isolates and enriched mutations observed in the fast adaptation 
cluster.   
The natural log occurrence of each mutation during the population dynamics simulations 
is graphed with the clinical isolates (red) and enriched mutations (green). We rank-ordered 
the TEM-1 mutations by their occurrence in the simulations. A. For cluster 1, at its first 
step, the enriched mutations are seen in high occurrence. B. For the second step, if 
resistance was not reached within the first step, the resistance mutation occurs at the second 
step. As adaptation progresses, the pool of available mutations that confer resistance 
diminishes as fitness is already at a maximum plateau. Ergo, step 3 (C), and 4 (D) show the 
low occurrence of clinical isolates and enriched mutations as they already occurred in step 
1 and 2. We observe that mutants with a high occurrence count from the simulations are not 
necessarily conferring resistance. Currently, we cannot recapitulate mutations observed in 
clinical isolates.   
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For the first step, we observe that the occurrence rate per mutation is distributed into two 

segments: high occurrence and low or no occurrence, as shown in Figure 9A. The separation 

is due to the density of the selection coefficients. As only a few mutations can confer high 

fitness, the same mutations are selected at the first step of the simulations. We compare the 

high occurrence mutations against mutations reported from directed evolution and clinical 

isolates. The p-values reported from the two-sided Kolmogorov-Smirnov test (KS test) 

showed a significant relationship between high occurrence mutations at the first step and 

laboratory evolution mutations (p = 0,001) (Bershtein et al., 2008). We observed no 

relationship with clinical isolates (p = 0,4). 

 

In the second step, fewer mutations are fixed at high occurrence, since the pool of available 

mutations is diminished (Figure 9B). The enriched mutations are still observed at a higher rate 

than the clinical isolates. There is a significant relationship between enriched mutations and 

high occurrence mutations (p=0,0003), and, to a lesser extent, between clinical isolates and 

high occurrence mutations (p=0,05). In the third step, we observe that enriched mutations and 

clinical isolates occur at a lower frequency, and are more disparate, as shown in Figure 9C. 

We did not observe any significant relationship between enriched mutations and high 

occurrence mutations (p = 0,2), and neither for clinical isolates (p = 0,5). For the last step in 

the fast adaptation cluster, only a few mutations are available mutations as the pool of 

potential mutations has run out. This is reflected in the low occurrence rate of mutations, as 

shown in Figure 9D. The enriched mutations and the clinical isolates are not reported in any 

of the mutations, and there is no relationship for either case (p = 1).  
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Table II. The p-values for enriched mutations and clinical isolates were calculated 
with a two-sided KS-test in the first cluster.    
We use the test to determine whether the samples were drawn from the same 
distribution. We set the rank-ordered occurrence rate of mutations in the simulations as the 
reference probability distribution. The occurrence rates of enriched mutations observed 
from laboratory evolution (Bershtein et al., 2008), and clinical isolates (Salverda et al., 
2010) are assigned as sample sets, and we determine if there is a correlation between the 
reference and sample datasets. The p-values returned in step 1 and step 2 are significant for 
the enriched mutations. From the table, it is possible to determine that the enriched 
mutations observed in high frequency at step 1, and 2 are not random. Mutations from 
clinical isolates from ampicillin and all other selection agents observed were not 
recapitulated in any of the high occurrence mutations, except for step 2 of ampicillin. From 
step 4, the mutations observed are due to random chance. The purifying selection 
simulations are more accurate to recapitulate the enriched mutations.    

Discussion 

In this chapter, we seek to determine the potential pathways for the emergence of resistance by 

relating the biochemical effects of mutation on target genes, population demography, and 

single drug dosage. Our model shows that there is possibly pervasive epistasis in clinical 

isolates and mutants from laboratory evolution as we cannot fully recapitulate them in our 

single-step simulations. If there was no epistasis involved in clinical isolates mutants from 

laboratory evolution, our model should be able to recapitulate all first mutations arising in 

resistance. Therefore, we hypothesize that this behavior is due to the dependency of each 

mutation to its genetic background. Thus, simple and additive models of fitness such as our 

deterministic model cannot fully capture the evolutionary pathways as they do not consider the 

underlying epistatic networks involved in evolution. Nonetheless, in the context of purifying 

selection, comprehensive fitness landscapes capture a large fraction of enriched mutations, but 

only for selection in short-term evolution (Gupta and Adami, 2016). To summarize, we 
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develop an evolutionary model based on additive fitness to determine the pathways to drug 

resistance. We construct a comprehensive fitness landscape of TEM-1 under Amp selection 

from published DMS. By starting the simulations with a protein variant with low fitness, we 

allow competition between all mutants and perform adaptive walks on the fitness landscapes 

to study purifying selection and resistance.  

 

Evolutionary trajectories follow three distinct growth rates 

We constructed 106 evolutionary trajectories under high Amp concentration (2500 μg/mL) and 

at large population size (Ne = 106). Each trajectory represents a specific sequence of fixed 

mutations to reach resistance. The average and median of all evolutionary pathways do not 

reflect the evolutionary dynamics and dispersion of the pathways as they do not account for 

different growth rates. Instead, the pathways form three distinct clusters with different 

behaviors: fast adaptation, intermediate adaptation, and slow adaptation. The three clusters 

highlight the uniqueness of each pathway during purifying selection. The clustering behavior 

should be expected as proteins sharing mutations with common biochemical traits are shown 

to evolve parallelly, and often with the repeated acquisition of the same mutations (Harms and 

Thornton, 2013).  

 

The fast adaptation cluster is populated by pathways which require in average only one 

mutation attempt to reach resistance. These pathways select and fix “blockbuster mutations” 

that confer high fitness gains. Blockbuster mutations or first-step mutations (the early 

mutations occurring in an evolutionary trajectory) are key mutations in an evolutionary 

pathway. They have been shown to cause extensive changes in gene expression and 

significantly impact the landscape’s shape for subsequent mutations (Rodriguez-Verdugo et 

al., 2015). These pathways contain first steps which are dominated by mutations with large 

selection coefficients, with subsequent steps contributing minimal fitness gains. This behavior 

is not observed in the other two clusters. The intermediate adaptation cluster is characterized 

by a climb to resistance, requiring in average two mutational attempts as it lacks “blockbuster 

mutations” in the first step, but is present in the second step. In average, the initial two steps 

work in complementation to reach resistance. The slow adaptation cluster has a different 
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behavior. None of the pathways contain a “blockbuster mutation” conferring significant fitness 

gains. Instead, they crawl slowly to resistance as their mutations do not have high selection 

coefficients. These simulations are accurate for evolution where genetic variation within a 

population is primarily supplied by mutations. Consequently, the model replicates mutation-

driven evolution (Ueda et al., 2017).  

 

Blockbuster mutations dictate the trajectories’ behavior 

As our simulations begin from a TEM-1 variant with low fitness, any mutation fixed initially 

will be beneficial and increase the overall fitness of TEM-1. The model will always favor 

beneficial mutations over deleterious mutations. Thus, reaching resistance is much faster with 

our current model, as only a few mutational attempts are required in most pathways. The 

increase in fitness diminishes the pool of available mutations since mutations conferring a 

lower fitness will not fix in the current model. This behavior is explained by the dynamic 

mutation-selection balance concept: an excess of strongly beneficial mutations will push a 

population towards higher fitness, and simultaneously, the available pool of beneficial 

mutation is depleted by adaptation (Goyal et al., 2012). Therefore, after the “blockbuster 

mutation”, the number of available mutations that can increase the overall fitness of TEM-1 in 

Amp selection is much smaller. These initial mutations dictate the remaining available 

mutations for subsequent selection (Rodriguez-Verdugo et al., 2015; Harms and Thornton, 

2013).  

 

Clinical isolates are not recapitulated in the additive fitness model 

We analyze the sequence of mutations of the fast adaptation cluster to study the effects of 

“blockbuster mutations” occurring in the first evolutionary steps. We compare the high 

occurrence mutations from the fast adaptation cluster to the resistance mutations observed in 

clinical isolates for Amp selection. We observe no statistically significant relationship between 

clinical isolates and high occurrence mutations. Due to pervasive epistasis, our evolutionary 

model cannot efficiently recapitulate the mutations observed in clinical isolates under Amp 

selection. The current evolutionary model and DMS do not account for the background on 
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which a mutation came from. It assumes the same genetic background for all beneficial or 

deleterious mutations, but Mackay (2014) has demonstrated that including epistatic constraints 

could greatly increase an evolutionary model’s accuracy. Also, some resistance-conferring 

mutations are dependent on other mutations to fix in a population. For example, it was shown 

that mutations E104K, M182T and G238S in TEM-1 would not be considered strongly 

beneficial individually. However, when mutation E104K emerges conjointly in the population 

with mutations M182T and G238S, this TEM-1 derivative is significantly resistant to 

cefotaxime compared to the WT strain (Salverda et al., 2017). The model does not recapitulate 

such effects. Also, these results could be explained in terms of differences in experimental 

settings. A resistance mutation could reduce survivability in a real-world setting (clinical 

isolates), but not necessarily in a laboratory evolution experiment (Maharjan and Ferenci, 

2017). These variabilities are important caveats to consider in the model. Thus, using the 

deterministic model, we could not identify mutations from clinical isolates under Amp 

selection.  

 

Enriched mutations from directed evolution are recapitulated in the 

additive fitness model  

In the context of enriched mutations in directed evolution, comprehensive fitness landscapes 

capture a large fraction of the adaptive effects. Consequently, we observe a strong relationship 

between high occurrence mutations in the fast adaptation cluster and enriched mutations in the 

first two mutational steps (p < 0.001). Subsequently, there was no relationship in the third and 

fourth steps (p > 0.05). Therefore, the highly occurrent “blockbuster mutations” in our 

simulations recapitulate the enriched mutations from directed evolution (Bershtein et al., 

2008). 

 

There are two possible explanations for the correlation between enriched mutations and the 

“blockbuster mutations” in the first two steps. The “blockbuster mutations” are significant due 

to their order in the evolutionary pathways (Rodriguez-Verdugo et al., 2015; Shah et al., 

2015). If the first step is an enriched mutation, there is a lower chance of fixing another 

enriched mutation in the second step. In the other scenario, if an enriched mutation is not fixed 
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in the first step, it will be fixed in the second step. Therefore, with our current evolutionary 

model of additive fitness, we can determine the first passage time of drug resistance in a 

laboratory setting by identifying the first mutations arising under purifying selection.  

 

Summary of the deterministic evolutionary model 

To summarize, we observe pervasive epistasis in mutations from clinical isolates, and our 

model of additive fitness cannot fully capture these pathways due to these molecular 

biophysical constraints. Nonetheless, in the context of purifying selection, comprehensive 

fitness landscapes built from DMS capture a large fraction the mutations that are enriched for 

resistance. Using our evolutionary model, there is a possibility to predict which mutations 

would arise first under purifying selection. Identifying the first fixed mutation is primordial to 

set the background for subsequent mutations (Shah et al., 2015). Currently, our model is only 

accurate for purifying selection of single amino-acid mutagenesis. Due to the prevalence of 

epistasis during adaptation, it will be necessary to extend our model beyond single point 

mutations. With a complete evolutionary model and fitness landscape, we could potentially 

recapitulate the pathways observed in clinical isolates.  
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Chapter 4: Adaptive selection stochastic evolution model 

From the previous chapter, we acknowledge the importance of the first fixed mutation in the 

evolutionary pathways to resistance. In the initial deterministic model, we only included the 

resistance level of TEM-1 against Amp and analyzed the emergence of resistance as a 

pathway. Thus, we could not accurately identify the clinical isolates mutations. In this chapter, 

we focus specifically on identifying resistance-conferring single point mutations. We update 

our initial model by including fitness cost and implement the Moran process. Here, we define 

fitness cost as the fitness of the bacteria with a mutation in the absence of antibiotics. The 

mapping of resistance level against fitness cost presented in Figure 10, can provide valuable 

insight into their inter-dependence on the emergence of resistance. Therefore, we include 

fitness cost in our new model to determine its role in the emergence of resistance but to study 

resistance-conferring single point mutations while in-treatment. Using the stochastic model, 

we found that fitness cost could play a role in alleviating the emergence of resistance. 

Although the model could not accurately identify all resistance-conferring mutations, it 

provides valuable insight into the development of treatments against the emergence of 

resistance.  
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Figure 10. Resistance level against fitness cost mapping.   
The x-axis corresponds to fitness effects in an environment without antibiotics while the 
y-axis corresponds to fitness effects in a cfx selection environment. Further studying the 
mapping will provide insight into the relationship between resistance level and fitness cost 
in the emergence of resistance. Fitness cost and resistance level values were obtained from 
Stiffler et al. (2015).  

 

Methodology 

We utilize the Moran process in our stochastic evolutionary model for its ability to simulate 

neutral drift in a finite population. The Moran model requires a fixed population of size N 

composed of two types of individuals: A and B, where A could represent WT strains, and B 

could represent resistance-conferring mutants. Both A and B reproduce at the same rate. At a 

specific time step, two individuals are selected randomly, one for reproduction and one for 

elimination, as shown in Figure 11.  
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Figure 11. Moran model: a stochastic evolutionary model.   
The Moran model represents the birth-death process to study selection in a finite 
population. In the first step, one individual is chosen for reproduction, and one is chosen for 
death. The individual selected for reproduction replaces the individual selected for death, as 
such, the population size remains constant throughout (Adapted from Nowak, 2006).   

 

The constant birth-death process at each time step ensures that the population size remains 

constant. Therefore, the only stochastic variable in the model is the number of individuals A, 

denoted by i, and the number of individuals B denoted by N – i.  

 

At any given time step, there are four possible scenarios that could happen:  

1. An individual A is selected for both birth and death. The variable i remains the same in 

this case as the number of A individuals does not change. This event has a probability 

(i/N)2 of occurring since each A individual in the population has a 1/N chance of being 

selected.  

2. An individual B is selected for both birth and death. The variable i also remains the 

same in this case as the number of B individuals does not change. This event has a 

probability [(N-i)/N]2 of occurring since each B individual would have an (N-i)/N 

chance of being selected. 
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3. An individual A is chosen for birth, and an individual B is chosen for death. The 

variable i has changed to i + 1 as there is one more A individual in the population. This 

event has a probability i(N – i)/N2 of occurring.  

4. An individual A is chosen for death, and an individual B is chosen for birth. The 

variable i has changed to i + 1 as there is one less A individual in the population. This 

event has a probability i(N – i)/N2 of occurring. 

The stochastic matrix, P = [pij], of size (N + 1) x (N + 1), represents the probabilities of 

moving from the state i to any other of the three states: i, i + 1, or i – 1. The previously 

described scenarios determine the four possible transitions in the matrix. The defining 

property of the birth-death processes is that in any of the step, the state variable i can only 

change by one until it reaches either absorbing states.  

 

There are two absorbing states in the Moran model, defined by i = 0, and i = N. The transient 

states are defined by i = 1, …, N – 1. The birth-death process remains in the transient states 

until it reaches an absorbing state. Once the process reaches either of the two absorbing states, 

it will remain there indefinitely. The birth-death process of the Moran model is presented in 

Figure 12. Given enough time, the whole population will consist of either individual A or B as 

coexistence is not possible (Nowak, 2006). Therefore, the Moran model can provide valuable 

insight into the mechanisms of the emergence of resistance as it can replicate the competition 

between a resistance-conferring mutation and wild-type strains.  
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Figure 12. The Moran model consists of a birth-death process.   
The Moran model is a birth-death process. A mutant can change by one at most, thus the 
state variable (i) can either remain unchanged or move to i-1 or i+1. There are two 
absorbing states, either i = 0 and i = N. Whenever an individual reaches an absorbing state, 
further changes in the population cannot occur unless a mutation is included. (Adapted 
from Nowak, 2006).   

 

Tau-leaping to solve stochastic evolutionary models 

The Moran process is used as a stochastic model to study the evolutionary dynamics of a 

population at a constant size. It can perform numerous neutral evolutionary steps before any 

significant changes in the population are observed. In probability theory, tau-leaping (τ-

leaping) is an approximate method to efficiently simulate large stochastic systems (Gillespie, 

2001). The basic tau-leaping method as described by Gillespie consists of three main steps: 

1. Select a value for τ, the time step, that satisfies the Leap Condition. Satisfying the leap 

condition consists of identifying a temporal leap by τ which will result in a state 

change λ which is effectively infinitesimal.  

2. Calculate the Poisson approximation to determine the net change in state λ, which is 

the number of times each event occurs during the determined interval. 

3. Complete the leap by replacing time t with t + τ, and x by x + λ, where x is the current 

state.  
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It is important to satisfy the leap condition with a tau that allows many events to occur. This 

results in a leap in the system, instead of a single step-event (Gillespie, 2001). By using a 

Poisson approximation, the tau-leaping method can leap over many fast events and 

approximate the stochastic behavior of the system (Cao et al., 2007). The tau-leaping method 

is used to simulate the numerous neutral steps in the Moran process. This significantly 

accelerates the simulations as we only analyze the time points where relevant changes in the 

population occurred (Cao et al., 2007). Thus, we use the adaptive tau-leaping solver to 

approximate the evolutionary trajectories from the Moran model.  

 

Tau-Leaping Stochastic Solver 

To solve the Moran process with tau-leaping, we used the R package, Adaptivetau – Tau-

Leaping Stochastic Simulation (Johnson, 2016). The adaptivetau package implements both an 

exact solution and an approximate solution known as the “adaptive tau-leaping algorithm” to 

simulate the Moran process. We employed the approximate solution in our simulations to 

increase simulation speed while maintaining reasonable accuracy.  

 

Stochastic evolutionary model algorithm for adaptive selection  

For our stochastic evolutionary model, we set A to the number of mutants and B to the 

numbers of WT strains. The model returns the fraction of mutants in a population as a function 

of the total population size (A/N). Our algorithm requires four different inputs: N, f0, s, and t, 

where N is the effective population size, f0 is the fraction of mutants composing the 

population, s is the selection coefficient, and t is the total amount of time in hours for which 

the tau-leaping should be performed. The algorithm determines the drift rate for fixation of a 

mutant. Then, it returns the fraction of the population that is mutant after t hours.  

 

For the total amount of t hours required, we perform the adaptive tau-leaping 100 times for 

every hour, and the average fraction of mutants is recorded for each hour. The algorithm for 

the stochastic evolutionary model is presented in Figure 13. 
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As we are modeling the Moran process, we set two critical values as the absorbing values:  

X1 = 1/N for the lower boundary, and X2 = 1-1/N for the upper boundary. Therefore, we 

implement three cases when calculating the fraction of mutants in a population. The first case 

is for fractions below the lower boundary; the second case is for fractions above the upper 

boundary, and the third case is for fractions within the boundaries. For the first case, if the 

reported fraction is lower than X1, we move the population near the lower boundary with a 

right-continuous transition matrix of +1. For the second case, if the fraction is higher than X2, 

we move the population near the upper boundary condition with a left-continuous matrix of -1. 

When the fraction of the population is within the conditions of the third case, we perform the 

Moran process with a transition matrix of -1 and +1. 
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Figure 13. Algorithm for the stochastic evolutionary model.   
We improve on the initial model of microbial evolution by implementing the stochastic 
evolutionary process of the Moran model. We simulate the growth of each TEM-1 mutants 
by allowing competition with WT strains only. We use the adaptive tau-leaping stochastic 
solver to replicate the evolutionary process of the Moran model and to accelerate 
simulation speeds.  

 

Fitness landscape of TEM-1 β-lactamase under cefotaxime selection 

The algorithm for the Moran process was written in R 3.3.3 (R Core Team, 2013). The model 

requires two fitness landscapes: one with the antibiotic selection and one without selection. 

The two landscapes are referred to as resistance level (RL) and fitness cost (FC), respectively. 

The antibiotic used in the resistance level is cefotaxime (cfx). Cefotaxime is a β-lactam 

antibiotic and is part of the third-generation class of cephalosporins. It is often used to treat 

penicillin and penicillin-derivate resistance (Ma et al., 2002). In this case, cfx is used, as TEM-

1 does not have resistance against this new antibiotic. Thus, we can study how TEM-1 will 

gain resistance specifically against it. The DMS at 0,2 μg/ml cfx selection is used to represent 
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RL. The DMS without antibiotic selection (0 μg/ml cfx) is used to represent FC. Both datasets 

are obtained from Stiffler et al., (2015) and are presented in Figure 14.  

  

 
Figure 14. Comprehensive fitness landscape of TEM-1 under cefotaxime selection. 
Each row represents a TEM-1 position, and each column is one of the twenty possible 
amino acid mutation. Beneficial mutations are highlighted in yellow while deleterious 
mutations are highlighted in blue. The fitness landscape is used in our stochastic 
evolutionary model. For our simulations, the 0 μg/mL is used as the fitness cost dataset, 
while the 0,2 μg/mL is used as the resistance level dataset. Both datasets are represented as 
relative fitness effects, calculated with Eq. 1. (Adapted from Stiffler et al., 2015).   

 

Adaptive evolution simulations 

Using the Moran model, we want to determine which TEM-1 mutants would outcompete the 

WT strain in an oscillating environment and adapt to possibly confer resistance. Thus, we 

allowed competition only between the WT strain and each individual TEM-1 mutant and 
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determined if the mutant could propagate in the population. We determined the composition of 

each of the 4997 TEM-1 mutants in a population by simulating its growth. The effective 

population size N is set to 107. Each mutant is assigned a starting fraction of 1/N. We used an 

oscillating treatment to simulate the effects of antibiotics during treatment. Each mutant is 

simulated in an oscillating treatment for 48 h. For the first 24 h, we use the fitness effects from 

the RL dataset, and then for the next 24 h, we use the fitness effects from the FC dataset. The 

final fraction of mutants is recorded after 48 h. As we wished to simulate the dose application 

of antibiotics during treatment, we converted the number of generations to hours. The script 

for the simulations was written in Python, and simulations were performed on an iMac, 

version 10.12.6 with 3,2 GHz Intel Core i5, and 16GB memory. The algorithm outputs a 

matrix where each row is the growth behavior of a mutant and each column represents the 

time. Each cell in the matrix is the fraction of mutant observed in the population. 

 

Evolution trajectory analysis  

To determine if the pathways were grouped depending on their growth rates, all evolutionary 

pathways are clustered with the kmlShape R package (Genolini et al, 2016). The package 

clusters longitudinal data using shape-respecting distance. The kmlShape algorithm was set to 

generate the optimal number of clusters with the designated sample of trajectories. To 

optimize clustering run times, the sample size is set to a minimum of 2500 trajectories as 

calculated with a confidence level of 95%. The centroid of each cluster is used as a reference 

to assign the complete set of 4997 evolutionary trajectories.  

 

Model analysis 

Model analysis is performed in R and Python. We calculated a mutant’s probability of survival 

through its fraction in the population. We stipulated that the higher the fraction, the higher the 

probability for the mutant to fix in a population. When a mutant composes at least 50% of its 

population, the mutant has a higher probability of surviving over the WT strain. If the mutant 

reaches the 50% threshold, we assumed that it will eventually take over its population. This 

threshold is referred to as the fixation threshold in our model. Although a more stringent 
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criterion of 95%, similar to the one applied by Cowperthwaite et al. (2006) could be used to 

determine fixed mutations in our simulations, it would be impractical as we are simulating 

competition between the WT strain and one mutant strain only. These simulations are only 

intended to serve as an approximation of which TEM-1 mutants could provide resistance 

against cfx. Therefore, when a TEM-1 mutant overtook a population and consisted of at least 

50% of the population at the end of the simulations, we assumed that the mutation would 

eventually fix if given enough time. Although this is not always the case due to the stochastic 

behavior of evolution and genetic drift, we assumed this low fixation threshold to include as 

many mutants as possible to supplement our analysis. Finally, the clinical isolates and 

laboratory evolution mutants under cfx selection are obtained from Salverda et al. (2010) and 

are presented in Table 3. These mutants are compared against the mutants from our 

simulations that reach above the fixation threshold for a higher probability of survival.  
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Table III. Clinical isolates and laboratory evolution mutations for TEM-1 under 
Cfx selection.   
The mutations were sampled from the literature on TEM-1 resistance (Salverda et al., 
2010). The table is used to compare against our results from the simulations to determine if 
the stochastic model could accurately identify mutations observed in the literature. The 
mutations are presented in alphabetical order.  

 

Oscillating treatment with different conditions 

Using the stochastic evolutionary model, we tested multiple time constants to determine an 

optimal regimen against resistance. We simulated the evolutionary trajectories of the 4997 
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TEM-1 mutants for 48 h with different oscillating time constants: 4 h, 6 h, 8 h, and 12 h. The 

algorithm outputs the evolutionary trajectories and final fraction for each mutant depending on 

the time constant used.  

 

To determine the role of fitness cost in the emergence of resistance, all simulations were 

repeated without FC. All FC values were set to null for the simulations. We performed the 

simulations for 48 h with the same population size, starting mutant fractions, and time 

constants.  

 

Finally, we performed the simulations for a total of 120 h to generate the phase-space of 

resistance at a constant concentration with different time constants. The phase-space 

represents all the possible states of the simulations by combining all the time constants used in 

the model. The phase-space provided us with a better understanding of the dependence of time 

and fitness effects on the emergence of resistance.  

 

Results 

Adaptive selection under cefotaxime selection form clusters 

In this chapter, we build a stochastic evolutionary model using the comprehensive fitness 

landscape of TEM-1 under cfx selection. Contrary to the first model of additive fitness, we 

simulate the evolutionary trajectories of single-site mutants alone. We only allow competition 

between a mutant strain and the WT strain. Competing each mutant against WT allows us to 

determine which mutants would emerge from a population and would possibly confer 

resistance. We do not allow competition between all the mutants. The trajectories of the 

mutants are simulated for a total of 48 h: 24 h in the resistance level regime, followed by 24 h 

in the fitness cost regime. Consequently, the evolutionary pathways of each mutant are 

dictated by the fitness effects of resistance level and fitness cost.  
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We observe that the trajectories form three distinct clusters as shown in Figure 15A. We 

identify three cluster centroids that recapitulate the pathways. The first cluster represents 95% 

of the pathways and correspond to weakly beneficial mutations and are characterized by poor 

growth in their population (Figure 15A, red). This group represents all the mutants without a 

significant impact on their population after 48 h. Their fitness effects in either regime are too 

weak. The second cluster represents 3% of the pathways and corresponds to the mutants which 

reached the fixation threshold within the first 24 h (Figure 15A, blue). The third cluster 

represents 2% of the pathways and corresponds to mutants which reached the fixation 

threshold after the change in environments (Figure 15A, green).  

 

Figure 15. Trajectories from the stochastic evolutionary model form three distinct 
clusters.  
We simulated the growth behavior of all TEM-1 mutants for a total of 48 h. The 
environment was switched from selection to selection-free after 24 h. We clustered the 
trajectories as a time series to group trajectories with similar growth behavior. X-axis: Time 
in hours of the simulations. Y-axis: Fraction of mutants composing a population. A. Three 
distinct clusters are formed in our simulations. The pathways are grouped depending on 
their growth rate using Frechet’s clustering. B. The no growth cluster groups all mutants 
without significant fitness effects in either regime. C. This cluster groups all mutants with 
high fitness effects in the selection regime. The mutants reach the 50% threshold within the 
first 24 h hours. D. This cluster groups all mutants with high fitness effects on the fitness 
cost regime. The mutants reach the 50% threshold within 24 h following the change in 
environment.   
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From the initial simulations, we observe that the mutants are grouped by the behavior of their 

evolutionary pathways. We identify three groups: mutants with weak fitness effects in both 

regimes; mutants with strong fitness effects in the resistance level regime; and mutants with 

strong fitness effects on the fitness cost regime. In general, the mutants require only strong 

fitness effects in either resistance level or fitness cost to take over their population. The 

evolutionary trajectory of each mutant is determined by the fitness effects in either regime, as 

shown in the resistance level and fitness cost map. 

 

Resistance level against fitness cost mapping 

The mapping of resistance level against the fitness cost with the clusters is presented in Figure 

16. The first cluster of mutants is centered around neutral fitness effects due to minimal 

growth in their population. The second group of mutants is characterized by high fitness in the 

resistance level and are grouped along the y-axis. We observe that the high resistance level 

allows for some mutants to offset a negative fitness effect in the fitness cost regime. The third 

cluster is characterized by mutants with high fitness effects in the fitness cost regime and is 

grouped along the x-axis. We observe that the high fitness effects on the fitness cost regime 

can counterbalance the low resistance level. We notice that a high fitness effect in one regime 

can offset a negative fitness effect in the other, consequently giving more chances for mutants 

to emerge in a population. Thus, the mapping of mutants is dependent on the fitness effects of 

either regime.  



 

50 

 

Figure 16. Survival probability in oscillating antibiotic concentration depends on 
the trade-off between resistance level and fitness cost.   
Clustering the mutants on the resistance level against fitness cost mapping highlights the 
dependency of the mutants to the fitness effects of each regime. We can identify the 
relevant mutants of interest in the emergence of resistance whether we are interested in 
resistance level or fitness cost.   

 

Performing evolutionary simulations with different time constants of drug 

administration 

To identify optimal dosage regimens, we elucidate the role of the time constants in our 

evolutionary simulations. We determine the effects of different time constants on the 

evolutionary behavior of the mutants. We perform the simulations at four different time 

constants: 4 h, 6 h, 8 h, and 12 h. Each simulation is performed for a total of 48 h with an 

oscillation between resistance level and fitness cost at the specified time constant. The 

evolutionary trajectories of each mutant for the different oscillating tau are presented in 

Figure 17. We counted the number of mutants which reached the defined 50% threshold, at 

the 24 h and 48 h timepoint. The counts are presented in Figure 18. 
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Figure 17. Evolutionary trajectories using different time constants.   
We simulated the growth behavior of all TEM-1 mutants for a total of 48 h.  The 
environment was switched from selection to selection-free at the specific time constant for 
each, either at 4 h, 6 h, 8 h, or 12 h. X-axis: Time in hours of the simulations. The 
environment was switched from selection to selection-free depending on their tau. Y-axis: 
Fraction of mutants composing a population. Different time constants confer different 
evolutionary behaviors to the emergence of resistance.    
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Figure 18. Count of mutants reaching the 50% threshold after 24 h and 48 h.   
We count the number of mutants that reach the fixation threshold while competing 
against WT strains, and with a higher probability of survival, depending on the time 
constant used in the simulations. After 24 h, the counts between time constants seem all 
different, but given enough time, the different cycles reach a similar number of mutants. 
Stable oscillation at a specific time constant is not sufficient to purge resistant mutants from 
a population in our model.   

 

After 24 h, the simulations with the 8 h tau captured the highest numbers of mutants with 

increased probability of survival, while the 12 h tau had the fewest number of mutants to reach 

the same threshold. We observe that the resistance level regime is mainly responsible for the 

increase of mutants in their population. After 48 h, regardless of the tau used, all the 

simulations reached a similar number of mutants with a higher probability of fixation at an 

average of 102,2. Therefore, in our model, using different time constants in the simulations 

was not sufficient to alleviate the emergence of resistance, or to reduce the overall number of 

mutants with a higher probability of fixation. Interestingly, at the end of the simulations, we 

observe a set of common mutants between the different tau. The current stochastic model 

captures four of the five most common clinical isolates mutants under cfx selection in the 

literature: E104K, R164H, R164S, and G238S. 
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Determining the role of fitness cost in the evolutionary model 

We analyze the resistance level and the fitness cost of the clinical isolates to determine why 

the fifth most common clinical isolate, M182T, was not recapitulated in our model. We 

observe that the four clinical isolate mutants have high fitness effects in the resistance level, 

but negligible fitness cost effects (Table 4). This is not the case for M182T which has neutral 

fitness effects in both regimes.  Therefore, we want to determine the role of fitness cost in 

resistance-conferring mutations. 

 

 

 

Table IV. Resistance level and fitness cost of the most common mutations 
observed in clinical isolates.  
The most common mutations from clinical isolates (Salverda et al., 2010) have a high 
resistance level and a low fitness cost from the DMS datasets we are using. Mutation 
M182T is considered neutral compared to the other four mutations and thus does not 
emerge in our simulations.   

 

From the simulations, we observe that clinical isolates are dependent on the resistance level 

regime only. We seek to determine the mutants’ behavior if fitness cost was removed from the 

simulations. Thus, we set the fitness effects of mutations in the antibiotic-free regimen to null. 

The evolutionary trajectories without fitness cost are presented in Figure 19A. We observe a 

noticeable lack of growth or decline in the fitness cost regime due to the absence of selection. 

Also, the provided time was not large enough for the populations to drift to either absorbing 

states. Nonetheless, we obtain 4997 distinct evolutionary pathways from the simulations 

without fitness cost.  
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Figure 19. Evolutionary trajectories without fitness cost in the simulations.  
We simulated the growth behavior of all TEM-1 mutants for a total of 48 h. The 
environment was switched from selection to neutral drift after 24 h (Fitness cost values 
were set to null). Even without fitness cost, trajectories follow three different pathways. X-
axis: Time in hours of the simulations. The environment was switched from selection to 
selection-free after 24 h. Y-axis: Fraction of mutants composing a population. A. Three 
distinct clusters are formed in our simulations. The pathways are grouped depending on 
their growth rate. B. The no growth cluster groups all mutants without significant fitness 
effects in either regime. C. This clusters groups all mutants with high fitness effects in the 
selection regime. D. This clusters groups all mutants with intermediate fitness effects in the 
resistance level regime.  

 

We group the evolutionary pathways without fitness cost and identify three cluster centroids 

as shown in Figure 19A. We observe that the pathways form three distinct clusters. The first 

cluster represents 99% of the pathways and corresponds to the mutants that did not take over 

their populations after 48 h (Figure 19B). This group represents the great majority of mutants 

without a significant impact on their population. The second cluster represents 1% of the 

pathways and corresponds to mutants which fix in their population within the first 24 h of the 
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simulations (Figure 19C). The third cluster represents 1% of the pathways and corresponds to 

the mutants which reach the fixation threshold but at a slower rate (Figure 19D). These 

mutants are considered second-rate as they grow slower than the fast group. The slow growth 

is due to a lower average of fitness effects in the resistance level stage. The fast-growing 

group has a higher average of fitness effects in the resistance level compared to the slow-

growing group. Thus, removing fitness cost affects the different growth behaviors of mutants. 

We then determine the difference in mutant counts that reached the fixation threshold between 

the simulations with FC and without FC.  

 

We calculate the number of mutants with an increased probability of survival after 48 h of the 

oscillating regimen. We compare the counts from the simulations with and without fitness cost 

(Figure 20). For the simulations without fitness cost, the average number of mutants between 

all tau is 77,4 mutants with a variance of 9,3. For the simulations with fitness cost, the average 

number of mutants between all tau is 102,2 with a variance of 1,7. Thus, we observe a 

significant drop in overall mutant counts when fitness cost is not included in the simulations. 

Although the average number of mutants has changed, we seek to determine if the average 

fitness effects of mutants changed too. 
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Figure 20. Mutant count following 48 h evolutionary simulations with fitness cost 
(FC) and without FC.   
We count the number of mutants with a higher probability of survival, depending on 
their time constant, from our two simulations with FC and without FC. Fitness Cost 
increases the overall number of mutants. The simulations with FC have a higher average 
number of mutants than the simulations without FC. Fitness cost may play a role in 
maintaining resistant mutants in the population.  

 

To determine the influence of fitness cost on the overall quality of the mutants, we analyze the 

average fitness effects of the ones reaching the fixation threshold, as shown in Table 5. 

Interestingly, although we record a higher number of mutants for the simulations with fitness 

cost, we observe a lower overall average of fitness effects in the resistance level, at 0,40. 

Compared to the simulations without fitness cost, we observe a higher average of fitness 

effects in the resistance level, at 0,55.  
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Table V.  Average fitness effects for the stochastic simulations to study the effects 
of fitness cost.  
Simulations without fitness cost increased the average fitness effects of the resistance level, 
leading to mutants with higher resistance. Fitness cost reduces the average fitness effects 
seen in the resistance level regime, leading to an overall lower quality of resistance-
conferring mutants as the pool of available mutants is bigger.   

 

Survival probability of mutants and duration of antibiotic administration 

To determine the comprehensive effects of an oscillating treatment on a population, we 

construct the phase-space of resistance of TEM-1 under cfx selection. We combine the 

different tau in our model to simulate the evolutionary trajectories of mutants for a total of 120 

h. For example, the 4 h tau is combined with the 6 h and we performed the oscillating 

simulations for 120 h, with 4 h in the RL and 6 h in the FC. The 4 h tau is then combined with 

the 8 h tau, and we repeated the simulations. This process is performed for all the different tau. 

The phase-space provides us with important parameters to better understand the optimal 

combinations of tau to reduce the number of potentially resistance-conferring mutants 

reaching fixation. Each state in the phase-space corresponds to a specific combination of time 

constants. The phase-space of TEM-1 resistance to cfx is presented in Figure 21A, and we 

record the number of mutants which reached our defined fixation threshold for each state. To 

study the dependency of each state to the fitness effects of selection, we generate the mapping 

of the resistance level against the fitness cost of the mutants as shown in Figure 21B.  
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We observe that the tau in each regime dictates the final number of mutants with increased 

survivability. States combining a large tau at the resistance level with a smaller tau at the 

fitness cost, contain the highest number of mutants with an increased probability of survival. 

The higher number of mutations fixing increases the probability of having resistance-

conferring mutants in the population. The highest number of mutants is recorded for the 

simulations oscillating between resistance level for 24 h, and fitness cost for 4 h. 

Concurrently, the lowest number of mutants recorded is for the simulations oscillating 

between resistance level for 6 h and fitness cost for 12 h. We observe that the number of 

mutants in each state decrease as we increase the tau for fitness cost and decrease the tau for 

resistance level. This shift in behavior is also observed in the mapping of fitness effects. 

 

The states in the phase-space with the lowest number of mutants are characterized by high 

fitness effects in both the resistance level and fitness cost regimes. The high fitness effects in 

the fitness cost regime counteract the mutants with negative fitness effects in the resistance 

level regime in the simulations. Similarly, the high fitness effects in resistance level can 

neutralize the mutants with negative fitness effects on the fitness cost regime. As the tau shifts 

to higher fitness effects in resistance level regime and lower fitness effects in the fitness cost 

regime, the composition of each state is also shifted. The mutants that arise in these states are 

characterized by high fitness effects in the resistance level. This overwhelming positive effect 

for the resistance level enables mutants with negative fitness effects on the fitness cost regime 

to fix in the simulations. We observe that in these states, there are no mutants with negative 

fitness effects in resistance level. Therefore, there is a dependency on time constants and 

fitness effects for the emergence of resistant mutants in our phase-space of TEM-1 resistance 

to cfx. 
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Figure 21. Phase-space of TEM-1 resistance to cefotaxime.   
To construct the phase-space, simulations are performed by combining all the different time constants used. A. X-axis: 
Resistance level time constants. Y-axis: Fitness cost time constants. The phase-space of resistance of TEM-1 reveals a possible 
optimal treatment against the emergence of resistance by diminishing the overall count mutants in a population.  B. The 
mappings demonstrate the states in the phase-space with the lowest number of mutants are characterized by high fitness effects 
in both the resistance level and fitness cost regimes. The composition of each state is shifted, depending on the combination of 
tau used. Each type of mutant has a dependency on a specific combination of tau. 
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Discussion 

In this chapter, we further develop our initial evolutionary model, presented in Chapter 3. We 

seek to analyze evolutionary dynamics in finite populations by stochastic formulations. As the 

deterministic model of additive fitness cannot fully recapitulate the pathways observed in 

clinical isolates, we employ the stochastic Moran process to model our evolutionary dynamics 

(Nowak, 2006). We combine principally elements of population genetics in our model and 

specifically focus on identifying resistance-conferring single point mutations. In this context, 

instead of having all the mutants competing against each other, we only allow competition 

between a mutant strain and a WT strain. By doing so, we can identify the first passage time 

for the emergence of resistance by determining which mutations are viable to outcompete the 

WT strains in specific selective environments. Competition has been shown to be a potential 

key driver for selection of beneficial and deleterious mutations, as demonstrated by a previous 

dynamic evolutionary model (Osmond and de Mazancourt, 2013). We develop an 

evolutionary model that captures the probability of fixation of each mutant under different 

selection regimes. To summarize, we construct a comprehensive fitness landscape of TEM-1 

under cfx selection from published DMS. We develop an evolutionary model based on the 

stochastic Moran process to determine the probability of survival for each mutant. We use the 

model to study the effects and fitness cost on resistance-conferring mutations.  

 

We investigate the role of fitness cost in resistance and determine if it is possible to design 

optimal drug regimens as one of the strategies to alleviate resistance (Lee et al., 2013). In this 

context, we perform simulations with different time constants (tau) at constant drug 

concentration. Tau is an important parameter during antibiotic treatment as the total amount of 

time in a selective-environment determines the emergence of resistance (Paterson et al., 2016). 

To summarize, we use various oscillating treatments to determine an optimal drug dosage 

regimen. We construct the phase-space of resistance for TEM-1 under cfx resistance to further 

explore optimal dosage regimen. By using the stochastic model of evolution, we identify 

possible conditions to alleviate the effects of resistance. 
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Fitness effects dictate the mutants’ evolutionary trajectories  

The objective of the stochastic model is to recapitulate the growth behavior of each TEM-1 

mutant compared to WT. As there is no competition in our simulations, fixation of a mutant is 

dependent on the fitness effects alone (Ueda et al., 2017). The model favors mutants with 

positive resistance level or fitness cost, but it will not always dismiss mutants with negative 

fitness effects in either regime. In the previous model, a mutant with a strong selection 

coefficient could be supplanted by another mutant with a slightly more beneficial selection 

coefficient (Nowak, 2006).  

 

We constructed a total of 4997 evolutionary pathways under cfx selection. Each pathway 

represents the mutant’s growth in a population over time. The pathways form three distinct 

clusters: mutants with growth only in the resistance regime; mutants with growth only in the 

selection-free regime; and mutants without growth in either regime. The variance in behavior 

is based on the different fitness effects in the resistance level regime and the fitness cost 

regime (Andersson and Hughest, 2010). The mutants in the first cluster are characterized by 

high fitness effects in the resistance level and are resistant to cfx treatment. The second cluster 

groups all mutants with positive fitness effects on the fitness cost regime only. These mutants 

are susceptible to cfx selection and cannot confer resistance in the presence of cfx. Our results 

parallel previous experimental findings which demonstrated that mutants with positive fitness 

effects in the fitness cost regime are favored to reach fixation in a selection-free environment 

(Knöppel et al., 2017). As demonstrated in a previous computational study (Torella et al., 

2010), although these mutations do not confer resistance – in this case, cfx resistance, they 

could potentially lead to resistance to other antibiotics. The first two clusters represent key 

mutants which impact greatly their population and should be analyzed further in subsequent 

studies.  

 

Identification of resistant mutants from literature 

Next, we seek to determine if the fixed mutations returned from our evolutionary model are 

identified in the literature as clinical isolates. We define a mutant as resistant if its fraction 
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reached the designated fixation threshold. We stipulate that a mutant has a higher probability 

of surviving when it composes the majority of its population. Thus, the higher the fraction, the 

greater its probability to survive and possibly confer resistance. We compared all the mutants 

from our simulations against clinical isolates, as identified by Salverda et al. (2010).    

 

If we do not consider resistance mutations that were observed in the literature only once, our 

model identifies 30% of the clinical isolates reported in Table 3. Thus, our stochastic 

evolutionary model can recapitulate a portion of known resistant mutants. Similar to the first 

model, it still cannot accurately recapitulate all the clinical isolates from the literature. This 

might be due to the simulations being performed for each mutant individually. Consequently, 

the model cannot recapitulate the complete gene interaction network of clinical isolates where 

a specific sequence or combination of mutations confers resistance (Shao et al., 2008). 

Although we can’t use the model to study complete evolutionary pathways, this iteration of 

the model is better at studying the first passage time of resistance. Therefore, we should be 

able to identify the all-important first mutations of a pathway to resistance (Rodriguez-

Verdugo et al., 2015). Consequently, we postulate that the model has a higher accuracy than 

the deterministic model to study resistance-conferring single-point mutations.  

 

Fitness cost decreases the overall quality of resistant strains in our model’s 

population 

We then utilize the stochastic evolutionary model to study methods to alleviate resistance. We 

seek possibilities to reduce the number of mutants that could give rise to resistance. Initially, 

we concluded that fitness cost does not play an important role as its effects were negligible on 

the top common mutations from clinical isolates. This was accentuated by the fact that the 

effect of fitness cost can decrease for certain clinical isolates, rendering the effects neutral, as 

shown for fluoroquinolone resistance in Pseudomonas aeruginosa (Agnello et al, 2016). We 

believed that only the fitness effects of resistance level were of interest in the emergence of 

cfx resistance in TEM-1 since mutation M182T did not fix in our simulations due to neutral 

fitness effects in the resistance level. Thus, we seek to determine the relevance of fitness cost 

in our model.  
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We first test the model by removing the fitness cost regime from our simulations. By 

removing fitness cost, we seek to determine if there would be a change in the counts of 

mutants or the quality of the resistance-conferring mutants. When fitness cost is not included, 

we observe a sharp decrease in mutants that overtake their population. At first, we deemed this 

to be beneficial against resistance. If we remove fitness cost, there are fewer mutations and 

opportunities for resistance to emerge in a population. Thus, we initially stipulated that fitness 

cost effects do not purge the resistant mutants out of a population but could increase the 

overall number of mutants 

 

We then seek to determine the quality of the mutants with increased survivability – ability to 

remain alive. Indeed, fewer mutants arising in a population would be better if the mutants do 

not impart resistance. Interestingly, for the simulations with fitness cost, the average resistance 

level is lower compared to the average resistance level of the simulations without fitness cost. 

By removing fitness cost from the simulations, fewer mutants are fixed in the population, but 

the mutants are fitter in the antibiotic environment. Consequently, a higher chance of selecting 

a mutant that confers strong resistance to the antibiotic would also increase overall fitness 

(Roux et al., 2015). By considering fitness costs, newly emerging mutant could outcompete a 

highly resistant mutant in a population, potentially reducing the number of resistance-

conferring mutants in the gene pool. Competitive fitness assays have been used to show that 

fitter mutants would outcompete lesser fit mutants in selection-free environments (Melnyk et 

al., 2015). We stipulate that fitness cost decreases the overall quality of available resistance-

conferring mutations, therefore there is an increased likelihood to fix a mutant with weaker 

fitness and decreased resistance. These findings agree with a theory previously proposed for 

the reversibility of resistance, where compensatory mutations should eventually restore WT 

fitness in the absence of antibiotics (Schulz zur Wiesch et al., 2010). Therefore, fitness cost is 

an important parameter to consider when designing an optimal drug dosage regimen. 
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Time spent in the regime with only fitness cost is key to alleviating 

resistance 

To design an optimal drug dosage regimen, we construct the phase-space of TEM-1 resistance 

against cfx to study the effects of different tau and to determine the role of time of 

administration in the emergence of resistance (Lee et al., 2013; Paterson et al., 2016). The 

phase-space gives us a better understanding of the compensation system for resistance level 

and fitness cost while in-treatment. From each state of the phase-space, we observed that less 

time spent in the resistance level regime lowers the odds of gaining resistant mutants. 

Similarly, allowing more time in the fitness cost regime would lead to fewer resistant mutants 

arising. Therefore, we concluded that the best treatment against the emergence of cfx 

resistance in TEM-1 is a combination of a small tau in the resistance level regime and a high 

tau in the fitness cost regime. We can exploit this time-dependent behavior to potentially 

identify an optimal treatment to reduce the emergence of resistance in a population. Exploiting 

time of administration has been shown to diminish the emergence of resistance, although this 

was only tested on a localized setting and the fluctuations were in months instead of days or 

hours (Takesue et al., 2010). However, it is important to note that this kind of treatment could 

potentially lead to the emergence of other antibiotic-susceptible strains as we are still allowing 

the evolution of other mutants (Salvatore et al., 2016). Therefore, further studies in identifying 

an evolutionary balance against resistance will be necessary. 

 

Summary of the stochastic evolutionary model 

To summarize, we implement the stochastic Moran process in our evolutionary model to study 

the emergence of resistance. Even with the Moran model, we still cannot capture the full range 

of mutants from clinical isolates and laboratory evolution. This is expected as our model 

replicates the growth behavior for individual mutants only and it takes into consideration 

epistatic constraints. Although the stochastic model has proven to be moderately effective in 

the identification exercise, its accuracy still depends on the quality of the input dataset. 

Accuracy and balance of a dataset are key factors for optimal predictions (Vihinen, 2012). 

Nevertheless, we conclude that the stochastic model performs better than the deterministic one 
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to identify the first passage time of resistance. Therefore, we use the model to design optimal 

drug dosage regimens to alleviate the emergence of resistance. First, we determine that fitness 

cost might have a role in alleviating resistance by potentially allowing antibiotic-susceptible 

strains to fix in a population, thus diminishing the number of resistance-conferring mutations 

in the gene pool. Finally, we exploit fitness cost effects to design an optimal drug dosage 

regimen that would consist of a long fitness cost regime combined with a small resistance 

level regime. Thus, from our initial results, we determine that the stochastic evolutionary 

model could be used as a framework to study the emergence of resistance.  
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Chapter 5: Fitness landscape of TEM-1 for cefotaxime 

In the previous chapters, we developed evolutionary models to identify the emergence of 

resistance. The stochastic model’s accuracy still depends on the quality of the input dataset. 

Therefore, we seek to construct our fitness landscapes of TEM-1 to test our evolutionary 

models and to study the emergence of resistance. In this chapter, we determine the fitness 

landscape of TEM-1 under cfx selection. We first construct large-scale mutagenesis datasets 

of TEM-1. The comprehensive mutagenesis libraries are then used in competitive selection 

assays. As there is currently no dataset with the desired coverage for TEM-1 resistance to cfx, 

we perform the selection assays for a wide range of cfx concentrations. Also, we perform a 

continuous selection experiment where the library was first submitted to a selective 

environment and then switched to a selection-free environment, similar to the theoretical 

model developed by Ashcroft et al. (2014). Finally, following the selection assays, we use 

deep sequencing to determine the variants present in our libraries. Our experimental 

landscapes are then used in our stochastic evolutionary model to determine if we can analyze 

mutants’ evolutionary behaviors with our own experimental dataset. Using our experimental 

approach with one of the TEM-1 subgroup, we found that our fitness landscapes were still 

incomplete. Thus, we need to optimize our approach before we can use our experimental 

fitness landscapes in our evolutionary models.  

 

Methodology 

TEM-1 WT recovery 

The TEM-1 β-lactamase plasmid was obtained from the Whitehead group on Addgene 

(pSALECTNK-TEM1 (S70A, D179G), Plasmid catalog #81163). The plasmid was sent in an 

agar slab of DH5α bacteria. To rescue the plasmid, the bacteria were grown overnight at 37°C 

in 3 mL of LB with chloramphenicol (working concentration at 34 mg/mL). The plasmid 

encodes the TEM-1 sequence from H26 to W290. Two mutations are incorporated into the 

sequence: S70A and D179G. As we require the WT strain of TEM-1 to construct our fitness 
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landscapes, we recovered the WT strain through site-directed mutagenesis (QuikChange II 

Site-Directed Mutagenesis Kit, catalog # 200523). We designed two oligonucleotide primers 

with appropriate GC content percentage (40% to 60%) and melting temperature (Tm below 

72°C).  The primers used to revert the sites to WT are A70S (AGC), and G179D (GAT). The 

Agilent QuikChange protocol was used (Appendix 1). Sequences were confirmed by Sanger 

sequencing at IRIC.  

 

TEM-1 library primers design 

We used an in-house script to prepare the library primers for our comprehensive mutagenesis. 

The primers are used to substitute all 20 amino acids at every position of TEM-1. The script 

replicates saturation mutagenesis. The technique consists of randomizing a set of codons to 

produce all possible amino acids. The script requires the nucleotide sequence of TEM-1 and 

generates the library primers, replacing the targeted amino acid with an NNK degenerate 

codon. The NNK degenerate codon is used to create all our mutagenesis primers. All library 

primers have a G-C% content between 40% and 60%, a Tm between 53°C and 65°C, and a 

length between 27 and 40 bp. If possible, the NNK degenerate codon is located in the middle 

of the primer. To ensure a complete coverage of the TEM-1 coding region with the Illumina 

NextSeq 500 sequencing, we divided the TEM-1 coding sequence into four tiles (amino acid 

positions 25-91 (Tile 1), 92-156 (Tile 2), 157-222 (Tile 3), and 223-290 (Tile 4)). Each tile is 

subjected to antibiotic selection and sample preparation for Illumina sequencing. The library 

primers are ordered from IDT (Integrated DNA Technologies) in duplicate 96 Deepwell 

plates.  

 

TEM-1 comprehensive whole-gene saturation mutagenesis library 

Nicking Mutagenesis: comprehensive single-site saturation mutagenesis 

Deep mutational scan (DMS) is a new method to assess the effects of thousands of mutant 

variations on a protein function through massively parallel functional screens and counting via 

deep sequencing (Fowler, 2014). To generate a DMS of a protein and construct its fitness 
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landscape, a high-quality mutational library of the query protein is required (Wrenbeck et al., 

2016). There are several approaches to generate a comprehensive mutagenesis library. 

Currently, the most commonly used method is PFunkel. PFunkel offers the best library 

coverage, mutational efficiency, and control over the number of mutations introduced 

(Firnberg, 2012). However, PFunkel is limited by the requirement of an uracil-containing 

ssDNA template (dU-ssDNA). The main issue with dU-ssDNA is the highly variable yield of 

mutagenesis libraries. Therefore, we utilize the method introduced by Wrenbeck et al. (2016): 

plasmid-based one-pot saturation mutagenesis. This methodology is based on the versatility of 

nicking mutagenesis to generate comprehensive single-site saturation mutagenesis libraries. 

Nicking mutagenesis does not rely on dU-ssDNA and therefore has a higher yield reliability 

compared to PFunkel (Wrenbeck, 2016). Another key advantage of the nicking mutagenesis 

methodology is the possibility to prepare a comprehensive mutagenesis library in a single day. 

 

Nicking mutagenesis is a flexible methodology that can be performed on any plasmid double-

stranded DNA (dsDNA) if it contains a 7-bp BbvCl restriction site. Nicking mutagenesis can 

generate the comprehensive single-site saturation mutagenesis library for any protein as long 

as it contains the restriction site. The restriction site is recognized by a pair of endonucleases, 

Nt.BbvCl and Nb.BbvCl, that each nick the same site on the dsDNA. This nicking is 

primordial to successively create and degrade a wild-type ssDNA template to introduce the 

mutagenesis primers. The methodology is divided into four major steps, as shown in Figure 

22. The generated library is then used in selection assays to construct the fitness landscapes of 

the protein of interest.  
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Figure 22. Nicking mutagenesis to construct a mutagenesis library.   
1. The dsDNA plasmid is nicked via a strand-specific site by Nt.BbvCl to create a 
ssDNA template. The nicked strand is then selectively digested by exonuclease III. 2. To 
synthesize the mutant strand, the DNA template is thermal-cycled with mutagenic oligos at 
a low primer-to-template ratio to ensure appropriate annealing of each primer to each 
template. The primer is extended around the circular DNA template with high-fidelity 
Phusion DNA polymerase. Taq DNA ligase finally closes the new strand to form a 
heteroduplex dsDNA with a mismatch at the targeted mutational site. 3. Nb.BvCl, the 
opposite-strand nicking endonuclease, creates a nick in the template strand which is 
degraded by exonuclease III. A ssDNA with the mutated site is created. 4. A secondary 
primer is added and synthesizes the complementary mutant strand to resolve the 
heteroduplex and have a dsDNA which encodes a single point mutation. (Adapted from 
Wrenbeck et al., 2016)    

 

The main steps of our protocol to generate our TEM-1 mutagenesis libraries are presented 

here: 

1. 0.76pmol of the recovered TEM-1 WT plasmid is used as the template for the library.  

2. The plasmid contains the 7-bp BbvCI recognition site that is first nicked by Nt. BbvCI 

to generate the ssDNA template. The nicked strand is selectively digested by ExoIII 

(exonuclease III).  

3. The designed mutagenic primers are then added at a 1:100 ratio with the template to 

synthesize the mutant strands by thermal cycling. The primer is extended around the 

circular ssDNA template with HF Phusion DNA polymerase (high-fidelity Phusion 

DNA polymerase).  
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4. Taq DNA ligase is added to the PCR cycle to close the new mutant strand to form a 

dsDNA plasmid with a mismatch at the mutational site.  

5. The WT template strand is nicked then by Nb.BbvCI, the opposite-strand nicking 

endonuclease, and degraded by ExoIII to create a ssDNA of the mutant strand.  

6. A secondary primer is added to synthesize a complementary mutant strand to yield 

mutagenized dsDNA.  

7. The plasmids are transformed into XL-1 Blue competent cells (Agilent) in square 

BioAssay dishes containing LB with tetracycline and chloramphenicol. The libraries 

are then incubated overnight at 37°C overnight.  

8. The libraries are scraped from the square dishes and conserved into 1.5mL glycerol 

stocks in -80°C.  

The exact experimental protocol is presented in Appendix 2.  

 

TEM-1 library selection assays 

To determine the appropriate cfx concentrations to use in the selection assays, we performed 

growth rates experiments of TEM-1 WT. The WT strain was grown overnight in selective 

media (LB + Chl + Tet) until saturation at 37°C. A MicroWell 96-Well Microplate was 

prepared with the different concentrations to assess. Wells contained concentrations of either 

0,06225, 0,125, 0,25, 0.5, 1, 2, 4, 8, 16, and 32 μg/mL cfx. The overnight culture is diluted 

into each well to obtain a starting OD600 of 0,1. The cultures were then grown at 37°C with 

constant shaking at 225rpm for 24 h. Growth for all the wells was monitored at every hour in 

the Tecan Spark. Following our initial growth rate assays on TEM-1 WT strains, we 

determined that our libraries should be grown in sub-MIC cfx concentrations.  

 

For cfx selection assays of the TEM-1 mutagenesis libraries, we diluted each library in pre-

warmed LB until OD600 = 0.1. Each culture was transferred to growth tubes that contained LB 

at concentrations of 0, 0,02, 0,2, 1, or 4 μg/mL cfx. The colonies were grown at 37°C with 

constant shaking at 225rpm for approximately 4 h. OD600 was monitored for all tubes at every 

hour. The tubes are then transferred to ice to immediately stop growth, washed of antibiotics 
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by centrifugation and resuspended in non-selective LB. The plasmids were purified by 

miniprep and prepared for Illumina sequencing.  

 

TEM-1 Illumina sequencing 

For each concentration, all plasmid samples at t = 0 h and t = 4 h were prepared for Illumina 

sequencing by PCR, as performed by Kowalsky et al., (2015). The adaptor sequences for 

Illumina sequencing were added in one single PCR round. The adaptor sequences add the 

annealing site for the Illumina paired-end sequencing primers and a 6 bp barcode for multiplex 

sequencing. The barcodes are generated from the RPI-series primers obtained from Kowalsky 

et al. (2015). They are partially derived from the Illumina RNA TruSeq preparation kit. The 

samples were purified by gel purification before being sequenced to confirm adequate 

annealing of all primers. NGS was performed at IRIC’s Genomics Platform on an Illumina 

NextSeq 500. Sequences were cycled by paired-end read with a maximum pairing of 2 x 155nt 

for each with a sequencing depth of 4 million reads per sample. The protocol to prepare the 

sequences for NGS is presented in Appendix 3.  

 

NGS analysis 

The NGS analysis consists of a set of custom Python scripts. The scripts are used to extract the 

single mutants and wild-type sequences from the R1 and R2 fastq files. First, the R1 and R2 

files are merged with USEARCH’s fastq_mergepairs command. The consensus nucleotide 

sequence between R1 and R2 with the highest quality score is selected. Reads with sequencing 

errors or no nucleotides detected (N’s) are dismissed from the initial parsing. The nucleotide 

sequence is then translated to its amino acid sequence. WT sequences and sequences with 

single amino acid changes are kept to construct the fitness landscapes of TEM-1 under cfx 

selection.  The relative fitness effects for each mutant is calculated with Eq. 1. The dataset is 

then formatted appropriately in a CSV file to use in our stochastic evolutionary model.  
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 (Eq. 1) 

Where the relative fitness 𝐹𝐹𝑖𝑖𝑎𝑎 of each amino acid mutation a at each position i is determined as 

the logarithm in the allele counts (N) between the selected population (𝑁𝑁𝑖𝑖
𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠) and the 

unselected population (𝑁𝑁𝑖𝑖
𝑎𝑎,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢), relative to the wild-type allele. 

 

Results 

To determine the efficiency of our experimental approach, we construct a partial TEM-1 

fitness landscape with the first subgroup of our mutagenesis library (Tile 1). This allows us to 

test out our experimental approach with one of the TEM-1 subgroups before performing it on 

all 4 subgroups.  

 

TEM-1 selection assays 

We analyze the growth assays of WT to determine the appropriate cfx concentrations to use in 

our selection assays. We observe growth of WT strains at cfx concentrations lower than 4 

μg/mL, which corresponds to sub-MIC concentrations (Olofsson et al., 2005). Growth is 

unaffected in samples containing 0,5 μg/mL or less. At cfx concentrations higher than 4 

μg/mL, no significant growth was detected for WT. Therefore, we perform our selection 

assays at cfx concentrations of 4, 1, 0,2, 0,02 and 0 μg/mL. The growth assays are presented in 

Figure 23. We observe regular growth for our libraries containing 0,02 μg/mL cfx or less. 

Growth was hampered on the samples containing 0,2 μg/mL cfx or more. For the NGS 

analysis, we use samples from Tile 1 at 0 μg/mL (C0) and at 0,2 μg/mL (C02), extracted after 

3 h 30. An additional sample was taken at time 0 h (T0). This sample is used in our 

calculations of relative fitness effects.  
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Figure 23. TEM-1 selection assays for WT and libraries  
We perform an initial growth experiment to determine cfx concentrations which did not 
hamper growth. The concentrations identified also had to be sufficiently high to exert 
selective pressure. A. We perform the growth assays for a total of 24 h with a WT strain of 
TEM-1, ranging from 32 μg/mL to 0 μg/mL cfx. We observe that for concentrations higher 
than 4 μg/mL cfx, samples had difficulty growing (n=3). B. Selection assays on Tile 1 of 
our TEM-1 libraries were performed for 4,5 h. Samples were taken after 3,5 h.  

 

NGS analysis 

Following NGS, we obtain a total of 1 552 603 reads for Tile 1 at T0. For the selection assay 

samples, we obtain a total of 3 618 985 reads and 1 535 999 reads for C0 and C02, 

respectively. After filtering all trimmed paired-end sequences and merging the sequences with 

USEARCH’s fastq_mergepairs command, we obtain a final number of 937,766 reads,  

2 111 323 reads, and 864 689 reads for T0, C0, and C02 respectively. From the extracted 

sequences, we determine the number of sequences that are only one mutation away from the 

WT. As shown in Figure 24A, a significant amount of sequences, around 50% of them, have 

more than one mutation and are removed from the analysis. From Figure 24B, we observe we 

do not have a complete coverage of Tile 1 as there is a considerable amount of missing 

mutations, most notably at sites V31, P62, S70, and L91. Thus, our whole-gene saturation 

mutagenesis library for Tile 1 does not cover all possible mutations. We generate the partial 

distribution of relative fitness effects of TEM-1 with and without selection in Figure 24C. We 
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observe that both distributions are primarily composed of mutations with positive fitness 

effects, and a large fraction of them have neutral or near-neutral effects.  

 

 

Figure 24. NGS analysis of TEM-1 under cfx selection.   
Post-analysis from the sequencing results returned from IRIC. Samples for analysis are 
the T0, C0, and C02, respectively, from top to bottom. A. We determined the number of 
mutants with a specific number of mutations away from the WT. Only WT and single-site 
mutants are of interest in the construction of the TEM-1 fitness landscape. B. We 
determined the total number of different single mutations observed to ensure complete 
coverage of our library. This is not the case due to several missing key mutations. C. We 
calculate the relative fitness effects of two datasets, one without selection (top) and one 
with (bottom), as defined by Eq. 1 where samples at t = 0 h are assigned as the 𝑁𝑁𝑖𝑖

𝑎𝑎,𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠and 
samples at t = 5 h are assigned as the 𝑁𝑁𝑖𝑖

𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠.   

 

To ensure that the two TEM-1 fitness landscapes are different. We calculate the Pearson 

correlation between our fitness landscapes, as shown in Figure 25. We observe a strong 

correlation (0,739) between the two experimental fitness landscapes. Finally, we observe no 
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correlation (0,06) between our fitness landscape of TEM-1 under cfx selection and the 

reference fitness landscape of TEM-1 under similar selective conditions (Stiffler et al., 2015). 

 

 

Figure 25. Correlation between experimental fitness landscapes.   
We use the Pearson correlation to determine if there is a significant relationship between 
our experimental DMS. We calculate the log enrichment for each mutant. A. We determine 
the correlation between the DMS with selection and without selection. There is a strong 
correlation between the two datasets as the dynamic range is not sufficient to differentiate 
the allele frequency to calculate the log enrichment. The correlation we observe between 
the two datasets is from the T0 dataset used to calculate the relative fitness effects when 
using Equation 1. B. We observe no correlation between our datasets and the reference 
dataset from Stiffler et al. (2015).   

 

Simulations with our own dataset 

Using our experimental fitness landscapes, we want to determine if we could accurately 

simulate the evolutionary behavior of TEM-1 during a continuous selection assay. We perform 

a selection experiment in which our Tile 1 mutagenesis library is initially in a selective 

environment and then switched to a selection-free environment. Tile 1 was submitted to 4 h of 

selection regime at 0,2 μg/mL cfx and switched to an environment without selection for the 

next 4 h. Samples were taken at 0 h, 4 h, and 8 h. We construct the experimental fitness 
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landscapes specific to the continuous experiments, where the change in environment is 

immediate and there is no interruption in the selection assays. The fitness landscapes are 

presented in Figure 26. The single selection assays are used in our simulations.  

 

 

Figure 26. DMS datasets of TEM-1 from our continuous experiments and single 
selection assays.   
DMS obtained from our selection assays. The continuous DMS were obtained from the 
on/off experiments while the single selection assays were obtained from the libraries 
subjected to a single selective environment. Each row represents a TEM-1 position, and 
each column is one of the twenty possible amino acid mutations. Beneficial mutations are 
highlighted in yellow while deleterious mutations are highlighted in blue. The DMS from 
the single selection assays will be used in our simulation to assess whether it is possible to 
replicate the results obtained from the continuous experiments.    

 

We perform the simulations with our stochastic evolutionary model. The same conditions are 

used than in previous simulations, the only difference is the tau and total time t used. To 

replicate the experimental conditions from the continuous assay, we set the tau to 4 h, and the t 
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to 8 h. Thus, the simulations are performed for 8 h only. We use the C0 dataset as the fitness 

cost regime and the C02 dataset as the resistance level regime. The fraction of mutants is 

recorded after 8 h. We generate a total of 1260 evolutionary pathways for all TEM-1 mutants 

in Tile 1. Finally, we compare the derived probability of survival obtained from the stochastic 

simulations against the relative fitness effects from our continuous assays.  

 

We observe no correlation between the two experimental fitness effects and the derived 

probability of survival (-0,01), as shown in Figure 27. A mutant with a high probability of 

survival in our simulations does not have a large relative fitness effect in our continuous 

experiments. We compare the two datasets by rank-ordering the most beneficial mutations and 

most deleterious mutations. We observe no match between the mutants from the simulations 

and the experiments, as shown in Table 6. 
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Figure 27. Correlation between relative fitness effects and probability of survival. 
We use the Pearson correlation to determine if there is a significant relationship between 
relative fitness effects from our experimental DMS, and the fraction of mutants from our 
simulations. From our simulations, we observe no correlation between the probability of 
survival and the relative fitness effects.  
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Table VI.  Mutation comparison between simulation and experiments.   
We compare the mutations count from the end of the simulations against the relative 
fitness from experiments. From the simulations, we observe that a mutant that has obtained 
a high probability of survivability is not reflected in its fitness effects obtained from the 
experiments. There is no correlation between the two.   
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Discussion 

In this chapter, we perform DMS of TEM-1 at different cfx concentrations. Our DMS generate 

large-scale mutagenesis datasets of TEM-1 for each of its mutation variants under selective 

conditions. We use a methodology that is based on the nicking mutagenesis protocol proposed 

by Wrenbeck et al. in 2016, and the selection assay protocol proposed by Stiffler et al., in 

2015. We construct the fitness landscapes to profile the functional effects of TEM-1 under cfx 

selection. As we want to compare our fitness landscapes with Stiffler et al. (2015) TEM-1 

fitness landscapes, we focus our initial analysis on two of our fitness landscapes: TEM-1 

without selection, and TEM-1 with 0,2 μg/mL cfx selection. We also include experimental 

datasets sampled from a continuous selection assay. Our experimental fitness landscapes are 

then used in our stochastic evolutionary model to determine if we can predict mutants’ 

evolutionary behaviors under selective pressure. We observe that our initial TEM-1 fitness 

landscapes are still incomplete and thus cannot be used in our evolutionary models.  

 

Our TEM-1 fitness landscape is incomplete 

Following NGS, our DMS contained a large number of mutants with more than one amino 

acid mutation in their sequence. We also have a considerable number of missing mutations. 

The source of multi-site mutants could originate from our experimental approach. The design 

of our saturation mutagenesis primers might not have been optimized for the nicking 

mutagenesis method. This combination of multi-site mutants and missing mutations 

significantly diminishes the overall size of our dataset and therefore, the quality of our fitness 

landscapes. 

 

Our fitness landscapes are also skewed towards mutations of positive fitness effects. A 

substantial portion of our mutations is observed to be beneficial. This is contrary to the fact 

that a majority of mutations are neutral or near neutral. Only a small fraction of mutations are 

deleterious, and an even smaller amount of mutations are beneficial (Loewe, 2010). The 

fitness landscape with overall positive fitness effects can be explained by the difference in 

allele frequency and the small dynamics range observed in our samples. Consequently, the 
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difference in allele frequency between the two timepoints to calculate the relative fitness 

effects is not significant enough to observe a diverse range of fitness effects. If the range was 

larger, we would be able to observe a wide distribution of fitness effects. 

 

Our TEM-1 fitness landscape does not cover a large dynamic range 

The small dynamic range of allele frequencies observed in our DMS is one of the main 

explanations behind the strong correlation observed between our experimental fitness 

landscapes of TEM-1. The small dynamic range makes it difficult to differentiate the allele 

frequencies in mutants after selection. Although there is a significant difference in OD600 

measurements between the two samples, the difference in OD might be explained by the WT 

strains growing at a much faster rate than their mutant counterparts. The mutants could be 

growing at a slower rate, thus 4 h is not sufficient to allow for us to detect mutant growth and 

quantify it.  

 

Therefore, it is expected that there would also be no correlation between our experimental 

fitness landscape and the reference fitness landscape. The main difference is that their libraries 

were allowed to grow overnight until saturation. This also means that their libraries 

experienced significant fitness cost effects. Although this would ensure a dynamic range large 

enough to observe the differences in allele frequencies, it biases the DMS to fitness cost 

effects. In our DMS, we stop the growth of our colonies immediately following the selection 

assays. They are not allowed to grow overnight. This ensures that our samples are free from 

fitness cost effects, but it also means we have a lower allele count frequency in our DMS. The 

lack of correlation could also be explained by the overall positive fitness effects observed in 

our mutations. Mutants with negative relative fitness only compose around 10% of our fitness 

landscape, whereas the reference fitness landscape is composed of 50% of mutants with 

negative relative fitness. Thus, there is an overrepresentation of mutants with positive fitness 

effects in our fitness landscape. The lack of dynamic range and the overrepresentation of 

positive fitness effects will bias our evolutionary simulations. 
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No correlation between our fitness landscapes following simulations 

We performed simulations with our experimental fitness landscapes to determine if we could 

recapitulate the mutants observed in our continuous experiments. From our experiments and 

simulations, there does not seem to be a correlation between survival probability and fitness 

effects. Neither the most beneficial or most deleterious mutations from the continuous 

experiments are identified in the simulations. These conclusions are expected as our DMS 

does not cover the necessary dynamic range required to make accurate observations. 

 

Issues to solve for the TEM-1 fitness landscape 

These simulations demonstrate the reliance of the model on the quality and reliability of 

fitness landscapes. There are still a few key issues to solve before generating our own fitness 

landscape suitable to use in our evolutionary model:  

• Ensure that our libraries fully cover the required sequence map.  

• Ensure that our libraries also have a sufficiently large frequency of different alleles.  

• Ensure that our DMS covers a wide dynamic range without having the samples 

submitted to fitness cost effects. This is the most complicated issue to solve now. 

 
It is key to determine the dynamic range of the whole library that is being tested, and not just 

of WT itself. Solving these issues will move us closer to generate an accurate fitness landscape 

to study resistance and fitness cost.  
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Chapter 6: General discussion 
In this memoir, we study the mechanism surrounding the evolution of antibiotic resistance. 

We attempt to identify the potential ways to alleviate resistance by first developing a 

deterministic evolutionary model of additive fitness. The model combines population 

dynamics and the biochemical effects of mutations to capture the effects of purifying selection 

under selection with Amp. We further develop the initial model by implementing the Moran 

process. The stochastic model of microbial evolution aims to determine mutations that might 

be enriched during antibiotic treatment. Here, we compare the difference between the 

stochastic and deterministic models.  

 

Stochastic model vs deterministic model 

We first construct a deterministic evolutionary model by having all TEM-1 mutants compete 

against each other in the same environment. Then, we further develop on the initial model by 

implementing the Moran process for stochastic evolution. With the stochastic model, we aim 

to determine the evolutionary trajectories of individual mutants. The Moran model does not 

incorporate competition between multiple mutants, instead, the mutants only compete against 

the WT strain. One of the key advantages of the Moran model is that a beneficial mutation is 

not always guaranteed to reach fixation. There is always a risk of extinction for the mutant. In 

a deterministic model, given enough time, an advantageous mutation, regardless of how small 

the advantage over its competitor, will always fix in a population (Nowak, 2006). Thus, the 

stochastic model provides valuable insight into the process of mutant selection in a population.  

 

In the context of adaptive selection, contrary to the deterministic model, our stochastic model 

can accurately capture a large portion of the relevant mutants identified from clinical isolates 

and laboratory evolution experiments. The stochastic model potentially has a higher accuracy 

than the deterministic one if the data is accurate and reliable (Vihinen, 2012). This model can 

be used to further study the role of fitness cost in resistance while in treatment, and to design 

optimal dosage regimen to alleviate the effects of resistance.  
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Fitness cost and its role in alleviating resistance 

Many resistance-conferring mutations in bacteria impose a fitness cost to the carrying 

organism to maintain the mutation (Melnyk et al, 2015). Based on this observation, it’s 

suggested that one of the best treatments to alleviate resistance, is to stop or reduce the usage 

of antibiotics (Maharjan et al., 2017). This approach has not always proven to be efficient. 

Clinical studies have demonstrated that, in some cases, despite the absence of antibiotics, the 

resistant bacteria remained abundant in the population (Sundqvist et al., 2010) or even 

increased in frequency (Arason et al., 2002). The known examples for this are for E. coli 

against trimethoprim-containing drugs, and Streptococcus pneumonia against penicillin. Other 

groups reported the expected behavior of a decrease of resistant bacteria in the population 

(Gottesman, 2009). It was also observed that the reduced use of antibiotics rarely succeeds in 

completely eliminating resistant strains (Enne, 2010). Therefore, it remains unclear how 

fitness cost affects antibiotic resistance. We use the model to study the effects of fitness costs 

in resistance and to determine if it is possible to exploit fitness cost to alleviate resistance.  

 

Using the stochastic model, we seek to design an optimal drug dosage regimen that could 

alleviate the emergence of resistance. we first determine the importance of fitness cost and its 

role in the emergence of resistance. From the simulations performed the DMS of TEM-1 

under cfx selection, we identify one potential key role of fitness cost while in-treatment. 

Although fitness cost cannot eliminate the resistant strains from the population, it reintroduces 

potentially antibiotic-susceptible strains back in the pool of available mutants. As there is 

more competition against the resistant strains in the population, this diminishes their overall 

survival probability. Although the effect is not substantial, it is a crucial step to study potential 

methods to alleviate resistance.  

 

Phase-space of resistance to design an optimal drug dosage regimen  

To determine the possibility to alleviate drug resistance, we construct the phase-space of 

TEM-1 resistance against cfx. We combine different time constants for the resistance level 

regime and the fitness cost regime for the duration of an antibiotic therapy. Each state in the 
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phase-space is used to design an optimal dosage regimen to decrease the number of potentially 

resistant mutants. By exploiting the effects of fitness cost, we identify a potential oscillating 

regimen that alleviates the emergence of resistance. Thus, the model can be used for novel 

drugs to design a prescribed regimen to delay the onset of resistance in patients.   

 

Limitations in our current evolutionary models 

There are a few shortcomings to the stochastic evolutionary model: 

• Currently, the model does not account for extinction in its calculation of survival 

probability. It will always assume there is either one surviving mutant or WT strain. 

Most of the evolutionary experiments calculate growth rate. This is satisfactory to 

simulate adaptive selection but to accurately model extinction, the data must also 

incorporate death rate. This is not the case for the current datasets we are using. 

• The models do not emphasize important biophysical constraints such as epistasis 

(Serohijos et al. 2014) and protein stability (Dasmeh et al. 2014). For example, the 

model currently assumes that neither deleterious or beneficial mutations perturb 

protein stability. We have considered mitigating epistatic effects in our evolutionary 

models by only analyzing the first-step mutations to resistance. Therefore, these 

biophysical constraints are important to fully implement in subsequent versions of the 

evolutionary models. 

• In the context of antibiotic resistance, the model does not take into consideration 

compensatory mutations. These mutations can arise after resistance to alleviate the 

fitness costs of resistance (Schulz et al., 2010). As such, the model only analyzes 

single-site mutations to determine the emergence of first-time resistance.  

• The model should also incorporate clonal interference and complex dynamics of 

selection in microbial evolution (Good et al., 2017) as we want to eventually model 

long-term adaptation in constant selection environments.  

• For optimal drug therapy design, the model doesn’t take into consideration the 

pharmacodynamics and pharmacokinetics of the antibiotics in question. The efflux rate 

of an antibiotic is key to determine the fitness cost effects of a resistance mutation, and 
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the different rates can affect persistence and dissemination of antibiotic resistance 

(Olivares et al., 2014). 

 

Improving the proposed model by considering these points would further increase accuracy 

and predictive power.  
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Chapter 7: Conclusions 
Despite the shared theme of population demography between biophysics and population 

genetics, the two are rarely integrated together to study microbial evolution. A few theoretical 

models implementing both fields have been utilized to study evolution, but none have been 

used to study the emergence of resistance. Consequently, the application of evolutionary 

models and theories to the resistance problem is largely unknown. Therefore, the role and 

contribution of molecular biophysics and population genetics to the emergence of resistance 

remains unclear. In this memoir, we implemented evolutionary models considering principally 

population genetics constraints. We used concepts from theoretical evolutionary studies to 

investigate the emergence of resistance. The evolutionary models that were developed in this 

memoir will be the base of the multiscale model for the prediction of microbial evolution to 

study resistance in a single unified model. Further integration of complex biophysical 

constraints such as protein folding, will contribute significantly to increase the predictive 

accuracy of our evolutionary models. Understanding these complex biophysical constraints 

has been part of the Serohijos group’s interest. Consequently, a significant amount of research 

in the group has been focused on elucidating epistasis using biophysical and population 

genetics approaches. This research resulted in two important findings on epistasis. It was 

determined that a significant amount of amino acid substitutions would have experienced 

epistasis due to simple selection for folding stability, accordingly linking epistasis to the 

strength of molecular selection (Dasmeh and Serohijos, 2018). Also, a proteome-wide scan in 

E. coli revealed that epistasis is stronger among highly expressed genes, therefore highlighting 

the combination of selection and epistasis in long-term evolution (Dasmeh et al., 2017). 

Combined with the recent advancements by the Serohijos group, the evolutionary perspective 

provided in this memoir will be an important foundation for research in antibiotic resistance. 

 

Finally, to summarize, we present three key conclusions from this memoir:  

1. We can identify the first passage time of resistance with our models, albeit with limited 

precision only. The accuracy of the prediction depends on the quality of the data.  
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2. We can design optimal drug regimens to mitigate the emergence of resistance, or to 

slow down resistance by exploiting fitness cost. This must be combined with 

diminished administration of antibiotics to obtain optimal results.  

3. There is a possibility to study evolutionary pathways of TEM-1 to cfx resistance by 

using fitness landscapes generated from deep mutational scan data. Currently, we can 

only reveal limited information on the pathways due to the epistatic constraints of the 

model. The complete identification of evolutionary pathways to resistance remains a 

daunting challenge that will require additional development of the model and 

experimental methodologies.  
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Appendix 1: TEM-1 WT Recovery Protocol 
Site-directed mutagenesis to recover WT pSALECTNK-TEM1 using the QuikChange 

kit 

 

0. DNA Template preparation. 

Use overnight culture to determine the concentration of plasmid DNA (after mini-prep).  

 

1. Phosphorylation of oligonucleotides. 

Primers must be phosphorylated at the 5’ end to eliminate the need for a separate 

phosphorylation step before direct ligation. Do the phosphorylation twice: once for the 

forward primer and once for the reverse primer.  

 

1. Prepare the following reaction mixture in a centrifuge tube: 
a. 250 pmol oligonucleotide of forward nucleotide (29bp) -> Need 4.8µg. The 

concentration of primer is at 996ng/µL, use 4.8µL to get 4.8µg (4800ng). 
b. 5uL 10X reaction buffer A for T4 polynucleotide kinase 
c. 4uL 10mM ATP 
d. 2uL T4 Polynucleotide Kinase 10U/µL 
e. NF-H2O to a final volume of 50µL 

 
2. Prepare the following reaction mixture in another centrifuge tube: 

a. 250 pmol oligonucleotide of MIDDLE reverse nucleotide (20bp) -> 3.3µg. 
The concentration of primer is at 4933ng/µL, use 6.7µL to get 3.3ug (3300ng). 

b. 5uL 10X reaction buffer A for T4 polynucleotide kinase 
c. 4uL 10mM ATP 
d. 2uL T4 Polynucleotide Kinase 10U/µL 
e. NF-H2O to a final volume of 50µL 

 
3. Incubate reaction at 37°C for 30 minutes 
4. Inactivate the T4 Polynucleotide kinase at 75°C for 10 minutes. Alternatively, PNK 

reaction can be purified using a spin column kit. 
5. The reaction products can be stored at -20°C or added directly to the mutagenesis 

reaction. Use 5µL of 5’-phosphorylated oligonucleotide (5µM) for mutagenesis 
reaction. 

 

  



 

ii 

2. PCR 

 

To add (up to 50uL) Component Final Conc 

10µL 5X Phusion HF Buffer 1X 

1µL 10mM dNTPs 200µM each 

5µL 
Phosphorylated Forward Primer 

Phosphorylated D179G correction primer 
0.5µM 

5µL 
Phosphorylated Reverse Primer 

MIDDLE reverse sequencing  
0.5µM 

XXXXX µL Template DNA  

0.5µL Phusion Hot Start DNA Polymerase 0.02U/µL 

2.5µL 5% DMSO  

16µL NF-H2O  

 

3. Cycling instructions for the mutagenesis reaction 

Forward sequence information from Thermo-Fisher Tm calculator: 

• Length: 29bp 
• MW: 8904.9 g/mol 
• Tm(°C): 77.0 

 

Reverse sequence information from Thermo-Fisher Tm calculator:  

• Length: 20bp 
• MW: 6028.0 g/mol 
• Tm(°C): 61.2 
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Suggested annealing temperature (°C): 68.0 

 

Cycle step Temp.  Time  Number of cycles 

Initial denaturation 98°C 30s 1 

Denaturation 

Annealing 

Extension 

98°C 

68°C 

72°C 

10s 

25s 

25s/kb -> 100s (since 

4kb) 

25 

Final extension 
72°C 

4°C 

7min 

hold 
1 

 

4. DpnI digestion of parental plasmid DNA 

After PCR, add directly to the mutagenesis reaction: 

• 1 uL of FastDigest DpnI enzyme directly to the mutagenesis reaction 
• Incubate at 37°C for 15 minutes. 

Determine the concentration of the PCR product -> ng/µL 

 

5. Ligation 

The PCR product is circularized using T4 DNA Ligase in a minute reaction. Transformation 

efficiency starts to decrease after 2 hours and is reduced by up to 75% if the reaction is 

allowed to proceed overnight at 25°C.  

 

Prepare 10uL of the ligation mix 

1. Take 10-20ng of PCR product from the mutagenesis reaction after DpnI digestion. 
This usually equals 1-5µL. Use the concentration determined from step 4. Do not 
use more than 5µL of PCR reaction mix for the 10uL ligation reaction. 

2. Add 2µL of 5X Rapid Ligation Buffer 
3. Adjust the reaction volume to 9.5µL of NF-H2O and mix 
4. Add 0.5 µL of T4 DNA Ligase and mix thoroughly 
5. Centrifuge briefly and incubate at room temperature (25°C) for 5 minutes 
6. Chill on ice, then transform or store at -20°C 

 

6. Transformation 
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Any standard E. coli strain that is suitable for DNA cloning can be used as a transformation 

host. Use electroporation. It is recommended to use 1µL of the purified ligation mix per 

50µL of electrocompetent E. coli cells.  

 

Follow the protocol for XL-1 blue transformation, use 1µL of XL-blue.  

 

 
Figure 28. Alignment between the recovered TEM-1 WT strain and the p-salectnk 
TEM-1 plasmid.  
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Appendix 2: Nicking mutagenesis protocol for TEM-1 
 

Mutagenesis Library Generation with Strain 127 (TEM-1 corrected WT) for Tile 1 

i. Make a mixture of NNN/NNK mutagenic oligos at a final concentration of 10µM  

- Use residues 0 to 66 (25 to 89), a total of 67 residues.  

- Prepare a clean 96 well-plate  

- Transfer 90µL NFH2O + 10µL of stock primer (C=100µM) for a final volume of 100µL of 

each primer at 10µM  

- Transfer 10µL from all columns of the 96 plate to the same column of a new plate. 

- Transfer all volume from each well of the combined column to an Eppendorf. This 

corresponds to the 10µM mutagenic oligo mixture.  

  

1. Phosphorylate oligos 

1. Make a mixture of oligos as described above. 

2. Into a PCR tube, add: 

a. 20µL 10µM mutagenic oligo mixture (for tile 1, 2, 3, 4, and correction = 5 

tubes) 

b. 2.4µL T4 PNK buffer 

c. 1µL 10mM ATP 

d. 1µL T4 PNK (10U/µL) 

 

3. In a separate PCR tube add: 

a. 18µL NFH2O 

b. 3µL T4 PNK buffer 

c. 7µL 100uM secondary primer (TEM-1 2nd-50nm-DS at 100µM) 

d. 1µL 10mM ATP 

e. 1µL T4 PNK (10U/µL) 

4. Incubate at 37°C for 1 hour. Wait to do the ssDNA template strand before doing the 

incubation 
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5. Store the phosphorylated oligos at -20°C. The day of mutagenesis, dilute 

phosphorylated oligos 1:4 (4µL + 12µL primer), and 2nd primer 1:20 in NFH2O (1µL 

primer + 19µL NFH2O) 

2. ssDNA Template Strand Preparation 

Prepare 5 tubes for 5 tiles. 

Add the following into PCR tube: 

• 0.76pmol Plasmid dsDNA -> need 2.013µg (strain 127) 

• 2µL 10X CutSmart Buffer 

• 1µL 1:10 diluted ExoIII (final concentration of 10U/µL), always dilute in 1X CutSmart 

Buffer (NEB) 

• 1µL Nt.BbvCI (10U/µL) 

• 1µL ExoI (20U/µL) 

• NFH2O to 20µL final volume  

PCR Program (Mut/SSTSP):  

- 37°C for 1 hour  

- 80°C for 20min  

- 5°C hold 

3. Comprehensive Codon Mutagenesis Strand 1 

Add the following into each tube (100µL final volume), to the PCR tube containing the 

ssDNA.  

• 26.7µL NFH20 

• 20µL 5X Phusion HF Buffer 

• 4.3µL 1:100 diluted phosphorylated mutagenic oligos 

• 20µL 50mM DTT 

• 1µL 50mM NAD+ 

• 2µL 10mM dNTPs 

• 1µL Phusion High Fidelity Polymerase (2U/µL) 

• 5µL Taq DNA Ligase (40U/µL) 
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PCR program (Mut/CCMS1) for a total of 2h45min  

1. 98°C for 2min  

2. 98°C for 30sec  

3. 55°C for 45sec  

4. 72°C for 7min  

- Repeat steps 2 to 4 for 15 cycles, and add additional 4.3uL of diluted oligos at beginning 

of cycles 6 (40min) and 11 (80min). The cycle is written on the machine.  

5. 45°C for 20min  

6. 5°C hold 

4. Column purification using a zymo clean and concentrate kit 

Step 0: Transfer the PCR content (100µL) to a clean 1.5mL Eppendorf tube.  

1. Add 5 volumes (500µL) of DNA binding buffer to each reaction and mix 

2. Transfer to a zymo-spin column in a collection tube 

3. Centrifuge at maximum speed (13,000) for 30 seconds and discard flow through 

4. Add 200µL of DNA wash buffer to the column (make sure not to mix around the DNA 

binding buffer and the DNA wash buffer) 

5. Centrifuge at max speed (13K) for 30 seconds and discard flow through.   

6. Repeat step 4 and 5. 

7. Add 17µL NFH2O directly to the column in a new clean 1.5mL microfuge tube 

and incubate at room temperature at 5 minutes 

8. Centrifuge at maximum speed (13K) for 1 minute in the centrifuge 

 

Extra 2.5uL of purified DNA to check the concentration to calculate the yield after the first 

purification. 

 

Can stop here and leave the purified DNA in the -20C freezer. 

 

5. Degrade Template Strand 

Then transfer 14µL of purified DNA product to a PCR tube, then add (20µL final volume) 

• 2µL 10X CutSmart buffer 
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• 2µL 1:50 diluted ExoIII 

• 1µL 1:10 Nb.BbvCI 

• 1µL ExoI 

 

PCR Program (Mut/DTS) for 80minutes:  

- 37°C for 60min  

- 80°C for 20min  

- 5°C hold 

6) Synthesize 2nd (complimentary) mutagenic strand 

To the PCR tube, add to a final volume of 100µL (use the same tube as in step 5): 

• 27.7µL NFH2O 

• 20µL 5X Phusion HF buffer 

• 3.3µL 1:20 diluted phosphorylated secondary primer 

• 20µL mM DTT 

• 1µL 50mM NAD+ 

• 2µL 10mM dNTPs 

• 1µL Phusion HF Polymerase 

• 5µL Taq DNA Ligase 

 

PCR program (Mut/SCMS)  

- 98°C for 30sec  

- 55°C for 45sec  

- 72°C for 10min  

- 45°C for 20min  

- 5°C hold 

7. DNA clean up 

Add into the PCR tube used in step 6: 

- 2µL of DpnI (enzyme) 

 

PCR program (Mut/DpnI) for 60minutes 
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8. Zymo clean and 2nd column purification.  

Use the Eppendorf which has the 102 µL of plasmid oligos. 

1. Add 5 volumes (500µL) of DNA binding buffer to each reaction and mix 

2. Transfer to a zymo-spin column in a collection tube 

3. Centrifuge at 13K speed for 30 s and discard flow-through 

4. Add 200µL of DNA wash buffer 

5. Centrifuge at 13K for 30 s and discard flow through 

6. Repeat 4 and 5 

7. Add 8µL of NFH2O directly to the column in a new 1.5mL microfuge tube and 

incubate for 5min at room temp.  

8. Centrifuge at 13K for 1min 

 

Extra 2.5µL of purified DNA to check the concentration to calculate the yield after the second 

purification. 

 

9. DNA Transformation 

Transformation steps to transfer mutated DNA to XL1-blue E.coli cells (Should also prepare 

dilution plates for sequencing to confirm your mutagenesis efficiency). 

- Use Gene Pulser Cuvette 0.1cm electrode to introduce plasmid. Both cuvettes need to 

be cold. 

- Thaw the XL-1 blue cells in ice.  

- Add 40µL of bacterial cells to the mutant(correct) to DNA sample (6µL).  

- For the electroporation (knock out the bacteria to introduce the plasmids), turn on and 

use Ec1 for XL1 which uses 0.1cm cuvettes 

- Transfer the bacteria+DNA mix to cuvettes into the middle lane (slot). Tap to 

equilibrate, and dry the bottom and metal sections before using the electroporation 

machine. 

- Prepare SOC medium (960µL) 
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- Insert the cuvette by the protruding slot in the machine. Press pulse and hold until 

beep. Add SOC directly and resuspend by mixing in the corners of the cuvette 

- Transfer to a tube to grow 

- Incubate at 225rpm and 37°C for 1 hour 

 

Plating XL1-blue + DNA plasmid (do 4 big plates for each tile) -> Tet + Chl 

• After recovery, bring the final volume of the transformation to 2mL with additional 

sterile media (add 1000µL of SOC medium). 

• Spread on the prepared large BioAssay dish. Serial dilution can be prepared to 

calculate transformation efficiencies.  

• Incubate overnight at 37°C. 

 

Recovering samples from O/N culture plate 

• The next day, scrape the plate using 5mL of LB. 

• Vortex the cell suspension  

• Extract the library plasmid dsDNA using a mini-prep kit (Qiagen recommended) of a 

1mL aliquot of the cell suspension. 

• Additional mini-preps can be done if large amounts of library DNA are required. 
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Appendix 3: NGS Sample Preparation for Tile 1 

 

PCR Combination Protocol for the preparation of NGS samples from Kowalsky et al., 2012. 

The protocol consists of adding all Illumina sequencing primers and barcoding index to the 

samples in a single step PCR reaction.  

Preparation for 1 sample (50µL): 

1. 10µL of 5X HF Phusion Buffer 

2. 1µL of dNTPs (10mM) 

3. 2.5µL (5uM) inner FWD primer (F1 primer T1 fwd complete) 

4. 2.5µL (5uM) inner REV primer (F1 primer T1 rev) 

5. 2.5µL (10uM) outer FWD primer (RPI_F)  

6. 2.5µL (10uM) outer REV primer (RPI_X)  

7. 0.5µL Phusion HF DNA Pol 

8. 10ng template plasmid 

9. NFH2O to 50µL (27.5µL) 

PCR combination program 

98ºC 30 seconds 1 time 

98ºC 

55ºC 

72ºC 

5 seconds 

15 seconds 

15 seconds 

Cycle: 25 times 

72ºC 10 minutes 1 time 

10ºC hold  
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Two primers are designed for the NGS sample preparation: a F1 primer which anneals to the 

5’ end of the sample and adds the Illumina Universal sequencing index to the front of the 

sample; and a R1 primer which anneals to the 3’ end of the sample and adds the barcoding 

index used to identify the samples when demultiplexing sequences. Following the PCR, 

samples are purified by gel extraction.  

 

 

Table VII.Primers used to prepare the Tile 1 samples for NGS.  
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