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SOMMAIRE

Le but de cette étude est d’élucider le comportement à long terme du cycle d’activité mag-

nétique solaire, en particulier l’origine physique des épisodes prolongés d’activité fortement

réduite ou amplifiée (Grand Minima et Maxima). Les principales questions abordées dans ce

mémoire sont les suivantes: Les Grand Minima / Maxima relèvent-ils d’un processus stochas-

tique? Sont-ils associés à des modes dynamo distincts? Est-ce que leur déclenchement peut

être représenté par un processus de Poisson? Quels sont les mécanismes physiques à l’origine

de ces événements irréguliers? Comment la dynamo sort-elle de ces modes extrêmes? Quel

est le mécanisme qui favorise l’aggrégation des Grand Minima? Quel est le mécanisme re-

sponsable du changement de parité lors de ces événements extrêmes? Les réponses à ces

questions sont recherchées via une approche de modélisation numérique basée sur un mod-

èle hybride de la dynamo solaire Babcock Leighton. Les séries temporelles résultantes de

l’activité solaire simulée et les statistiques de Grand Minima et Maxima sont comparées

à leurs homologues déduits des reconstructions cosmogéniques de l’activité solaire passée

basée sur les radionucléides cosmogéniques. On constate qu’avec différentes combinaisons de

valeurs de paramètres dans des intervals raisonables, il est possible de reproduire un com-

portement solaire à long terme en accord avec les données des radionucléides cosmogéniques.

Mots-clés: Activité Solaire, Dynamo Solaire, Climat Spatial, Grand Minimum / Maximum
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SUMMARY

The purpose of this study is to shed some light on the long-term behavior of the solar mag-

netic activity cycle, in particular the physical origins of the extended episodes of strongly sup-

pressed or enhanced activity (so-called Grand Minima and Maxima). The primary questions

that are tackled in this thesis are as follows: Is the occurrence of Grand Minima/Maxima

a stochastic process? Are they associated with distinct dynamo modes? Is their triggering

due to a Poisson-like processes? What are the physical mechanisms that cause these irreg-

ular events? How does the dynamo enter and exit from these extreme modes? What is the

underlining mechanism that makes Grand Minima cluster? What is the mechanism which

is responsible from parity change during these extreme events? Answers to these questions

are sought via a modelling approach based on a hybrid Babcock Leighton solar dynamo

model. The resulting simulated solar activity time series and the statistics of Grand Minima

and Maxima are compared to their counterparts inferred from reconstructions of the past

solar activity based on cosmogenic radionuclides. With different combination parameter val-

ues within a reasonable range, it is possible to reproduce solar-like long-term behavior in

agreement with radionuclide data.

Keywords: Solar Activity, Solar Dynamo, Space Climate, Grand Minimum/Maximum
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the parameter α0 and ηc, while other parameters are kept fixed (K = 0.30,

B0 = 200 G, BQ = 150 G, ηt = 1012 cm2s−1). The effect of core diffusivity over
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seated toroidal field as a function of time. Here, BQ > 150 G and the dynamo
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A.22 From top to bottom: PSSN, surface radial field, total magnetic energy, deep-

seated toroidal field as a function of time. In this run, ηc is increased by

a factor of 10 which resulted in a non solar-like behavior with attempts of
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A.23 From top to bottom: PSSN, surface radial field, total magnetic energy, deep-
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threshold for the BL mechanism to pick up, the primary dynamo number K

is also augmented (K = 0.40, α0 = −12 cm s−1, B0 = 200 G, BQ = 150 G,
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A.25 From top to bottom: PSSN, surface radial field, total magnetic energy, deep-

seated toroidal field as a function of time. In this run, ηc is increased by
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compared to the case presented in Fig. A.23 (K = 0.40, α0 = −12 cm s−1,

B0 = 200 G, BQ = 150 G, ηc = 1010 cm2s−1, ηt = 1012 cm2s−1). . . . . . . . . . . . . . A-xxiii

A.26 From top to bottom:PSSN, surface radial field, total magnetic energy, deep-

seated toroidal field as a function of time. In this run, ηc is increased by a

factor of 20 in Fig. A.25, which leads to a decrease in the mean magnetic
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A.27 From top to bottom: PSSN, surface radial field, total magnetic energy, deep-
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A.28 From top to bottom:PSSN, surface radial field, total magnetic energy, deep-

seated toroidal field as a function of time. In this run, ηt is increased by

a factor of 5 (but still < 1012cm2) compared to Fig. A.27 and the dynamo

action starts to become more solar-like. The interior toroidal field is more

confined in lower latitudes and the mean cycle length appears to be a little
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A.29 From top to bottom:PSSN, surface radial field, total magnetic energy, deep-

seated toroidal field as a function of time. In this run, ηt is slightly smaller

than the reference value (1012 cm2s−1). The overall cycle amplitude and

the mean magnetic energy are decreased compared to Fig. A.28 (K = 0.40,

α0 = −12 cm s−1, B0 = 200 G, BQ = 150 G, ηc = 108 cm2s−1, ηt = 1011.8
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A.30 From top to bottom:PSSN, surface radial field, total magnetic energy, deep-

seated toroidal field as a function of time. Here, ηt is slightly smaller than

the reference value (1012 cm2s−1) but larger then the case in Fig. A.29.

Also, K is slightly reduced. Notice how the overall cycle amplitude and the

mean magnetic energy decreases compared to Fig. A.29 due to an increase

in turbulence. The dynamo enters Grand Minima more frequently and their

mean duration is longer (K = 0.30, α0 = −12 cm s−1, B0 = 200 G, BQ = 150

G, ηc = 108 cm2s−1, ηt = 1011.9 cm2s−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-xxviii

A.31 In this solution, the mean duration of Grand Minima is often too long and the
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with cosmogenic isotope records.This simulation spends 40.5 % of its time in

a Grand Minimum state and 6.3 % in a Grand Maximum state which is not
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A.32 Duration histograms for Grand Minima (blue) and Grand Maxima (red)

constructed from the time series in Fig. A.31. 73 Grand Minima and 68

Grand Maxima are estimated. The mean durations for Grand Minima and

Grand Maxima are 392.7 years and 108.2 years respectively, much longer than

the cosmogenic isotope data exhibits (K = 0.30,α0 = −12 cm s−1, B0 = 200

G, BQ = 150 G ηc = 108 cm2s−1, ηt = 1012 cm2s−1). . . . . . . . . . . . . . . . . . . . . . . . . . A-xxx

A.33 Waiting time distributions between two consecutive Grand Minima (right)

/Grand Maxima (left) constructed from the time series in Fig. A.31. While

the WTD for Grand Minima is in good accordance with an exponential

distribution indicating a random process, the WTD for Grand Maxima is

better depicted with a power-law, hinting for some memory effects (K =

0.30,α0 = −12 cm s−1, B0 = 200 G, BQ = 150 G ηc = 108 cm2s−1, ηt = 1012
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A.34 In this solution, the mean duration of Grand Minima is often too short. This

simulation spends about 8 % of its time in a Grand Minimum state and 48.6

% in a Grand Maximum state which is far from being solar-like. (K = 0.35

cm s−1, α0 = −12 cm s−1, B0 = 210 G, BQ = 120 G, ηc = 108 cm2s−1,

ηt = 1011.8 cm2s−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-xxxi

A.35 Duration histograms for Grand Minima (blue) and Grand Maxima (red)

constructed from the time series in Fig. A.34. The mean durations for Grand
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Chapter 1

INTRODUCTION

Following the light of the Sun, I left

the Old World.

Christopher Columbus

In Sun-like stars, the convective envelope below the photosphere is where small and large-

scale plasma flows are able to self-sustain the global dynamo which is thought to be the origin

of all magnetic activity in such stellar objects (Parker, 1955). Hence understanding the solar

magnetic cycle by studying the solar dynamo has been one of the central issues in modern

solar physics, ever since early sunspot observations revealed this intriguing fairly regular,

cyclic behavior of the Sun. The sunspot measurements continue to be used as the most

common direct indicator of solar activity. Nevertheless, indirect proxies have been widely

utilized to understand mechanisms related to long-term modulations. Although we have

400 years of continuous direct observations and indirect sunspot data reconstructions, the

complete picture of mechanisms that are behind this quasi-periodic behavior still remain a

puzzle for solar physicists. The first section of this introductory chapter briefly reviews our

current knowledge regarding the characteristics of the Sun and its magnetism. §1.2 gives an

overview of the various concepts central in the theory of the solar dynamo, mostly focusing

on dynamo mechanisms that are being explored in our analysis. §1.3 introduces the long-

term solar variability which is at the heart of this work. Finally, basic features of the dynamo

model we use in this study are presented. Chapter 2 contains the research article in which

our simulation results are being presented and interpreted in detail.

1.1. Characteristics of the Sun

Although it is a seemingly ordinary star of G2V spectral type, destined to take its place

among white dwarf stars in the Universe after becoming a red giant in about 5 billion years,

our Sun has a vital significance for our extraordinary planet, being the primary source of

energy for life, responsible for the regulation of the space climate in the solar system and



space weather. It is also a variable star and this variability is, among other things, observed

by the changes in number of sunspots, in the total and spectral solar irradiances (Fig. 1.1),

by the varying charged particle flux from the Sun, frequency of eruptive phenomena and by

the modulation of high energy galactic cosmic ray intensity (Usoskin, 2017).

Consisting mainly of Hydrogen (74%) and Helium (24%), the interior of the Sun is divided

into several regions where different physical mechanisms dominate. The core of the Sun

which extends out to about 0.25R⊙ is the furnace where nuclear fusion reactions take place.

The radiative zone transports the thermal energy of the core to about 0.7R⊙ by radiative

diffusion. Exceeding this radius, the density and temperature sufficiently drop to create an

increased opacity caused by partial recombination of Helium and Hydrogen. From 0.7R⊙

to the surface, there lies the turbulent convection zone where the magnetic field responsible

for the solar cycle is generated (Fan, 2009). The convection zone is separated from the

radiative zone by the tachocline, which is a thin transition zone between the solid rotation

of the radiative zone and the differential rotation of the convection zone. It is still a subject

of investigation as to what extent the tachocline is essential for magnetic field generation

(Strugarek et al., 2016), although this region plays a central role in the regeneration of the

large-scale magnetic field of the Sun and solar-like stars (Guerrero et al., 2016).

The Sun rotates every 25 days at the equator and takes progressively longer to rotate at

higher latitudes, up to 35 days at the poles. In recent years, the internal profile of the solar

differential rotation was pinned down by helioseismology with good accuracy down to about

0.5R⊙. Measurements of the meridional flow can also be made by various modern techniques

including direct Doppler imaging, local helioseismology, and feature tracking (Hathaway and

Upton, 2014). The poleward component of this flow residing at the surface is observed to

be about 20 m/s and, in the convection zone where the density is much higher, the return

flow toward the equator is found to be moving at a much slower speed (around 1 to 2 m/s)

carrying material from the mid-latitudes (Fig. 1.2). The rate of meridional circulation is

similar to that of the sunspot activity with the rising and falling of sunspots, i.e. the solar

cycle period is set primarily by the circulation time of the meridional flow (Charbonneau,

2010).

1.1.1. Solar Magnetic Cycle

The Sun shows surface magnetic activity on various scales and magnitudes varying across

its surface. Its polar field is 5–10 G (0.0005–0.001 T), whereas the field is typically 3,000

G (0.3 T) in sunspots and 10–100 G (0.001–0.01 T) in solar prominences (Williams, 2013).

The magnetic field also varies in time. The quasi-periodic 11-year solar cycle is the most

prominent variation in which the number and size of sunspots rises and falls over time, and

it is very central to solar physics.
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Fig. 1.1. This image of the Sun combines three images with different emission
temperatures. Here red, green and dark blue show respectively the 304Å emis-
sion (50,000K) by He II in the chromosphere, the 211Å emission (2,000,000K)
by Fe XIV in the corona and the 171Å emission (6,000K) by Fe IX in the
corona (Source: https://sdo.gsfc.nasa.gov/data/).

The Sun’s magnetic field is understood to be generated by a combination of magneto-

hydrodynamical inductive processes taking place primarily in the solar convection zone. It

was Hale (1919) who first measured the Zeeman splitting in the spectra of sunspots, made a

connection between magnetic fields and sunspots, and found out that the sunspot cycle pe-

riod is about 22 years, covering two polar reversals of the solar magnetic dipole field. Hale’s

famous polarity laws also established the existence of a well-organized magnetic flux system

in the solar interior as the source of sunspots (Fig. 1.3); the indicators of magnetic activity.

Sunspots (Fig. 1.3), visible as dark patches on the Sun’s photosphere, are slightly cooler

(3,800 K) than the photosphere (5,777 K). Consequently, they look darker as the regions

of the photosphere around them are relatively brighter and hotter. They correspond to

concentrated magnetic fields where the convective transport of heat is inhibited from the

solar interior to the surface. At a typical solar minimum, few sunspots are visible, and

occasionally none can be seen at all. As the solar cycle progresses towards its maximum,
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Fig. 1.2. Profiles of solar differential rotation and meridional circulation de-
duced from helioseismology as shown in Fig. 6 in Karak et al. (2015). Frames
(a) and (b) show the angular velocity and the specific angular momentum in-
creasing linearly from blue to pink, with ranges of (a) 300–460 nHz and (b)
0–1.4 Mm2s−1. They are based on global helioseismic RLS inversions of GONG
data from 1996 (Howe et al., 2000; Schou et al., 2002). (c) Mean colatitudinal
velocity vθ in the northern hemisphere inferred from time-distance helioseismic
inversions of SDO/HMI data from 2010–2012 (Zhao et al., 2013). Red and blue
areas indicate poleward and equatorward flow respectively with a saturation
level for the color table of ±15 m s−1.

Fig. 1.3. Features of sunspots. Left: Sunspots have two parts: the darkest
part which is called the central umbra, where the magnetic field is approxi-
mately vertical to the Sun’s surface and the surrounding lighter area (penum-
bra), with a more inclined magnetic field. Right: Coronal loops observed in
UV wavelength by TRACE. They are resulted from twisted magnetic flux ris-
ing through the solar interior to the surface, populating both active and quite
regions on the photosphere. Source: NASA.

sunspots tend to form closer to the solar equator, a phenomenon known as Spörer’s law. The

largest sunspots can be tens of thousands of kilometers across (Solov’ev and Kirichek, 2014).
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Detailed observations of sunspots have been carried out since the beginning of the 1800s and

show that sunspots do not appear periodically at random locations over the surface of the

Sun but are concentrated in two latitude bands on either side of the equator as shown in

the well-known butterfly diagram (Figures 1.4 and 1.5). Sunspots are widely recognized to

be tracers of the internal magnetic field, although there is a number of other solar activity

indicators that also vary in relation with the sunspots including the 10.7 cm radio flux, the

total solar irradiance, flares, coronal mass ejections, geomagnetic activity, galactic cosmic

ray fluxes, and radioisotopes in tree rings and ice cores (Hathaway, 2015).

Fig. 1.4. Time-latitude butterfly diagram drawn by Annie S.D. Maunder and
E. Walter Maunder. The longitude-averaged sunspot data goes from 1875 to
1913, covering solar cycles 11 (partially) through 14. The horizontal axis shows
the time whereas the vertical one is for the latitude, with equator being in the
middle. Each small black vertical segment covers the latitude range of sunspot
pairs on a given day. Source: Annie Maunder, a Pioneer of Solar Astronomy,
High Altitude Observatory web page: https://www2.hao.ucar.edu/news/2018-
jun/annie-maunder-pioneer-solar-astronomy.

The periodic behavior of the solar magnetic variability is described with the 22-year

sunspot cycle, demonstrating polar reversals every 11 years - a phenomenon known as the

Hale cycle. This cyclic behavior originates from an oscillatory exchange of energy between

toroidal and poloidal solar magnetic fields. At solar-cycle maximum, the external poloidal

dipolar magnetic field is near its minimum strength, but an internal toroidal dipolar field,

generated through differential rotation within the tachocline, is near its maximum strength.

During this period, magnetic buoyancy within the convective zone forces the emergence

of toroidal magnetic field lines through the photospher which emerge as pairs of sunspots

that are approximately aligned in the East–West direction, with a small tilt angle obeying
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Joy’s Law. The two members of each pair also carry opposite magnetic polarities. Their

disintegration during the declining phase of the solar cycle builds up the poloidal field for

the next cycle. As sunpots start to diminish both in number and in intensity, the internal

toroidal field reduces to its minimum strength while the poloidal field peaks to its maximum

strength. Sunspots are restricted to latitudinal bands approximately between −30◦ and 30◦.

They emerge as pairs with opposite polarity closer and closer to the equator throughout a

cycle, peaking in coverage at about ±15◦ of latitude (Hathaway, 2015).

Sunspots typically appear in groups embedded in larger, topologically complex, magnet-

ically bipolar regions, whose local magnetic polarity they share in most cases. The bipolar

regions are also roughly oriented in the East–West direction (the direction of solar rotation)

and their polarities obey the same set of polarity rules. Their member sunspots maintain

the same magnetic orientation in each hemisphere during an 11-year activity cycle, having

the opposite magnetic orientation in the Northern and Southern hemispheres. Furthermore,

the magnetic orientation of the bipolar regions reverses from one cycle to the next. As a

consequence of these rules, the pattern of magnetic orientations repeats itself with a period

of two activity cycles having polarity reversal from one cycle to the other, i.e. the magnetic

cycle of the Sun has a duration of about 22 years (Solanki et al., 2004). Another systematic

property of bipolar regions is their deviation from a precise East–West orientation: on both

hemispheres, the more Westward located polarity (leading with respect to the direction of

rotation) is nearer the equator than the following polarity. On average, the corresponding tilt

angle with respect to the East–West direction, γ, is proportional to the mean heliographic

latitude, λ, of the bipolar region: γ = 0.5λ (Joy’s law). Larger bipolar regions obey the

polarity rules and Joy’s law more strictly than smaller regions (without sunspots), which are

probably more strongly affected by disturbances and deformation of the underlying magnetic

structure by convective motions (Dasi-Espuig et al., 2010; McClintock and Norton, 2013).

With the rise of the next 11-year sunspot cycle, differential rotation converts magnetic

energy back from the poloidal to the toroidal field, but with a polarity that is opposite to

the previous cycle. This process carries on perpetually, and each 11-year sunspot cycle leads

to a change in the overall polarity of the Sun’s large-scale magnetic field. The magnetic

field observed at the solar surface, a small part of which continues beyond the solar corona

and permeates inter-planetary space, is produced by a dynamo process operating in the

solar interior (Solanki et al., 2004; Hood and Hughes, 2011; Charbonneau, 2013). The field

emerging at the surface in the form of bipolar regions embracing wide ranges of size and

magnetic flux is a partial manifestation of what is going on in the interior. The solar cycle

is magnetic in nature and is generated by magnetohydrodynamical (MHD) processes within

the Sun. §1.4 discusses the relevant MHD mechanisms and solar dynamo models.

While the study of solar activity has been the primary issue in the Solar Astrophysics

community, the solar cycle also inspired some researchers to search for similar cyclic behaviors

8



Fig. 1.5. A synoptic magnetogram showing the longitudinally-averaged so-
lar radial field on the surface as a function of time and latitude. The
blue parts (yellow) represent the entering (exiting) field lines on the sur-
face of the Sun. Compared to Fig.1.4, this figure provides more infor-
mation concerning the surface magnetic field including polarity reversals.
http://solarscience.msfc.nasa.gov/images/magbfly.jpg

in other main-sequence stars, especially those with solar-like masses. Ca H & K emissions

from singly-ionized calcium in the lower chromosphere due to magnetic heating is a proven

proxy for magnetic flux in the Sun and in solar analogs, and shows that the Sun is not the

only star with a periodic magnetic cycle (Egeland et al., 2017) (see Fig. 1.6).

Besides the 22-year Hale cycle covering polarity reversals, the spectral analysis of different

data sets hint to the existence of few other long-term cycles such as the Gleissberg cycle (80-

100yrs) (Beer, Tobias, and Weiss, 1998; Usoskin et al., 2016b; Beer, Tobias, and Weiss, 2018).

We will also have a closer look at these solar quasi-periodicities in the following section.

1.2. Reconstruction of the past solar activity with cosmogenic

isotopes

The Sun’s magnetic activity and the associated changes in its extended atmosphere evolve

on time scales that range from minutes to billions of years. Both the instrumental direct

records and the much longer interval of paleoclimate records are important in understanding

short and long-term solar behavior as geochronology methods allow the quantification of

environmental, climatic and solar variability over time.

There are a variety of proxies of solar activity that are based on direct measurements.

Besides the most well-known sunspot number series, measurements of solar irradiance, au-

rora occurrences, etc. are also direct solar proxies. They are usually more reliable for the

recent times, having a temporal resolutions of weeks to years. However, as systematic solar
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Fig. 1.6. Calibrated composite MWO (red) + SSS (blue) time series for the
Sun and three solar analogs as shown in Fig.4.5 in Egeland (2017). This figure
illustrates the range of mean values, amplitudes, and patterns of variability in
samples studied by Egeland (2017). The Sun is an approximately regular, low
amplitude variable star compared to HD 76151 and HD 20630 whose variability
is significantly more complicated than that of the Sun, which can be reasonably
well described by a mean amplitude and local minimum/maximum. Also,
notice that HD 9562 appears to have a few clear low-activity phases resembling
the Maunder Minimum similar to the Sun.

observations are only limited to the past four centuries or so, researchers studying the Sun

and Heliosphere felt the necessity for different, indirect solar proxies to acquire information

about the Sun’s distant past and its long-term patterns. Dating techniques based on ra-

dionuclides imprinted with information from the heliosphere came up as a highly promising

way, although with their own systematic difficulties.

Basically, the indirect proxies are the parameters which can be measured nowadays but

present different effects of solar magnetic activity in the past. They can be viewed as the

signatures of terrestial effects induced by variable solar-magnetic activity, that is stored

in natural archives. Essentially, these effects can be divided in two: nuclear (like used in

cosmogenic isotopes) or chemical (nitrate method), both caused by high energy cosmic rays
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Fig. 1.7. Comparison of solar activity time series deduced from various direct
and indirect proxies. This is reproduction of Fig. 11.10 of Schrijver and Siscoe
(2010), /p.319/. All proxies show some common features. 10Be is the only one
that has the potential to be extended over 10,000 years.

entering in the earth’s atmosphere (Usoskin, 2017). Here, our focus will be on the nuclear

effects and the reconstruction method with cosmogenic isotopes 10Be and 14C which are the

two commonly used radionuclides in solar studies.

Cosmogenic nuclides such as 3H, 10Be, 14C, 26Al and 36Cl are due to the bombardment

of the upper few kilometres of the Earth’s atmosphere and surface by cosmic rays, with the

maximum production being in the upper troposphere/stratosphere. 10Be and 14C production

rates are the main regular precursors of solar activity on long-term scales but cannot resolve

the details of individual solar cycles. An important advantage of the cosmogenic data is
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that primary archiving is done naturally in a similar manner throughout the ages and these

archives are measured nowadays in labs using modern techniques such as Accelerator Mass

Spectrometry (AMS).
14C is measured in independently-dated tree rings and participates in the complex car-

bon cycle, which doesn’t include spatial and short-term variability of cosmogenic isotope

production. For the relatively stable climate of the Holocene, it provides a useful tool for

studying past solar activity, but for the glacial and deglaciation epochs, is limited due to

drastic climate and ocean ventilation changes. Additionally, it cannot be used after the

end of the nineteenth century because of the extensive burning of fossil fuels diluting the

atmospheric (14)CO2 concentration with respect to the preindustrial epoch (the Suess effect)

and atmospheric nuclear tests which nearly doubled the radiocarbon concentration (Usoskin,

2017).

The other solar activity proxy 10Be is measured in stratified polar ice cores in Greenland

and Antarctica (see, e.g. Beer et al., 1990; Raisbeck et al., 1990; Yiou et al., 1997; Berggren

et al., 2009) but the details of its atmospheric transport lacks a reliable quantitative model

that can relate the measured isotope concentration in ice to the atmospheric production, 3D

atmospheric-circulation models are currently being developed for more accurate reconstruc-

tions (Usoskin, 2017).

The 10Be and 14C data show the presence of an eleven year cycle that is anti-correlated

with solar activity. A close analysis of the data shows many other remarkable features (Beer,

Tobias, and Weiss, 1998; Beer, 2000; Wagner et al., 2001). For instance, these reconstructions

revealed that the Maunder Minimum is not an isolated event and that other such minima in

solar activity appear in the records. These suppressed activity epochs in data stretch back

about 11,000 years (Wagner et al., 2001) and reoccur with a mean period of approximately

200 years (Usoskin, 2017). These reconstructions also demonstrate that the solar dynamo

went through several Grand Maxima in the past. There are several other solar proxies as

shown in Fig. 1.7 that allow us to trace the solar magnetic variability, but none of them can

be stretched as far in the past as cosmogenic isotope data.

Although the temporal resolution of this method can distinguish the individual cycles

(see Fig.1.7) for about the last 500 years, it degrades as we go further in the past. This

data also offers a limited amount of events covering the Holocene epoch (∼ 11,000 years).

Nevertheless, the analysis still has some statistical significance and it does give important

clues about long-term solar variability and the occurrences of these extreme epochs such as

they tend to cluster, or whether Grand Minimum can be followed by a Grand Maximum

or vice versa. Another significant result from the analysis of the 10Be record during the

Maunder Minimum is the persistence of cyclic behaviour (Beer, Tobias, and Weiss, 1998;

Poluianov, Usoskin, and Kovaltsov, 2014). This would seem to indicate that a cyclic magnetic

variability continues to operate throughout this period of reduced activity, even if sunspots
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Fig. 1.8. Reconstructed sunspot activity (decadal means smoothed with a
1-2-2-2-1 trapezoidal filter) throughout the Holocene as shown in Fig. 17 in
Usoskin (2008). This time series is reconstructed from 14C by Usoskin, Solanki,
and Kovaltsov (2007) using geomagnetic data in Yang, Odah, and Shaw (2000).
Blue and red areas denote Grand Minima and Maxima, respectively.

were largely not visible at the solar surface. The analysis of the 14C record, which stretches

back approximately 11,000 years in Fig. 1.8, provides supporting evidence for modulation of

the regular activity. This data clearly shows recurrent Grand Minima/Maxima.

Now, we will examine these radio nuclides closely, to have a better sense of how they

carry information about the past solar activity.

1.2.1. Production, transport and deposition of 10Be and 14C

As briefly mentioned above, high energy cosmic rays entering the Earth’s atmosphere are

responsible for the production of cosmogenic radionuclides. The crucial link here between

these cosmic rays and the solar activity is that the cosmic ray flux is modulated by the

solar magnetic field via the solar wind and the frozen-in solar magnetic field during their

heliospheric trajectory. The intensity of modulation depends on solar activity and therefore,

cosmic ray flux and the ensuing cosmogenic isotope production depends on solar activity.
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Fig. 1.9. Energy spectrum of the primary cosmic ray proton flux at the top of
the atmosphere as a function of the solar modulation parameter Φ. Φ = 0 MeV
corresponds to a completely inactive Sun (i.e. if there was no solar magnetic
activity), Φ = 850 MeV to a rather active one (Fig. 1 in Beer (2000)).

These high energy rays modulated by the heliosphere cause nuclear spallation reactions as

they enter the atmosphere, leading to the production of these isotopes.

Cosmogenic radionuclei are produced continuously by the interaction of cosmic ray par-

ticles with the atmosphere. The primary galactic cosmic rays consist of protons (87%),

Helium nuclei (12%), and heavier elements (1%). Fig. 1.9 demonstrates the effect of solar

modulation on the energy spectrum of primary protons. Modulation of the differential en-

ergy spectrum of galactic cosmic rays by solar activity takes place within a radius of about

100 AU around the Sun. During active times, increased number of coronal mass ejections

cause large distortions in the interplanetary magnetic field, which in turn result in enhanced

scatter of galactic cosmic rays away from the inner parts of the heliosphere. Consequently,

the net flux reaching the top of the atmosphere is reduced especially at the low energy end

of the spectrum. This process has been parametrized using the solar activity parameter

Φ. A value of Φ = 0 MeV corresponds to no solar modulation (i.e. quiet Sun) and refers

the estimated interstellar spectrum, while Φ = 850 MeV corresponds to a rather active Sun

(Beer, 2000) (see Fig. 1.9).
10Be, is produced as a result of nuclear fission spallation of atmospheric N and O dur-

ing the cosmic ray-induced atmospheric cascade. The production is defined mostly by the

multiplicity of the nucleic components, which increases with the energy of primary cosmic
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rays, although there exist a small contribution from photo-nuclear reactions. Maximum pro-

duction occurs at an altitude of 10-15 km and most of the global 10Be is produced in the

stratosphere (55-70%) and the rest in the troposphere. Useful for long-term studies of solar

activities because its half-life is around 1.5 × 106 years, it is often measured in stratified ice

cores (Muscheler and Heikkilä, 2011; Beer, 2000; Usoskin, 2017).
14C is more unstable with its half-life of about 5730 years. It is widely used for paleoclima-

tology, quaternary geology, archeology etc. The present day radiocarbon calibration curve,

based on a dendrochronological scale, uninterruptedly covers the whole Holocene (from the

present back to 50,000BP) and provides another solid quantitative basis for studying solar

activity variations on the multi-millennial timescale (Beer, 2000).

Soon after their production, these radionuclides get attached to atmospheric aerosols

and hence follow their fate. After complicated transport and mixing in the atmosphere,

the cosmogenic isotopes are stored in the natural archives such as polar ice, trees, marine

sediments etc. This process is also affected by changes in the geomagnetic field and climate.

After residing approximately 2 years in the atmosphere, 10Be is deposited at Earth’s surface

including in ice caps and ice cores (Beer, 2000). 14C is stored in tree rings after about 30

years in the atmosphere (Stuiver, 1994), reaching the lower troposphere by rain and snow

(Usoskin, 2017).
10Be produced in the troposphere is mostly deposited locally, in the polar regions, while

stratosphere 10Be can be partly or completely mixed (Beer, Tobias, and Weiss, 2018). In

addition, because of the seasonal (usually Spring) intrusion of stratospheric air into the tropo-

sphere at mid-latitudes, there is an additional contribution of stratospheric 10Be. Therefore,

the measured 10Be concentration (flux) in polar ice is modulated not only by production but

also by climate/precipitation effects. However, comparisons between Greenland and Antarc-

tica 10Be series, and between 10Be and 14C data suggest that the Beryllium data mostly

depicts production variations (solar signal) on top of which some meteorological effects can

be superposed (Beer, 2000; Usoskin, 2017; Beer, Tobias, and Weiss, 2018).

Upon production, cosmogenic radiocarbon gets rapidly oxidized to carbon dioxide and

participate in the carbon cycle of interrelated systems, carried between atmosphere,biosphere

and ocean. Due its long residence time in the atmosphere, 14C becomes locally mixed with the

other atmospheric compounds and involved in an exchange with the upper level layer of the

ocean. The measured 14C change over time comes from the biosphere (trees), which receives

radiocarbon from the atmosphere. Therefore, the processes involved are quite complicated.

However, using the carbon cycle model and assuming that all its parameters are constant

in time, the production rate can be evaluated from the measured 14C data. This model is

well validated for the Holocene epoch as there is no indication for a considerable oceanic

change or other natural variability of the carbon cycle. However, during the last glaciation

and deglaciation there were dramatic changes in the carbon cycle, especially due to ocean
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ventilation. Apart from this, the lack of independent information about the carbon cycle

parameters hinders qualitative estimation of solar activity from 14C before the Holocene

epoch (Beer, McCracken, and von Steiger, 2012). Additionally, 14C data cannot be easily

used for the last century, primarily because of the extensive burning of fossil fuels. This

situation is also known as the Suess effect. The extensively produced greenhouse gas CO2

dilutes the atmospheric (14)CO2 concentration with respect to the pre-industrial epoch. For

this reason, the measured 14C cannot be straightforwardly translated into the production

rate and after the late 19th century, a special correction is needed as fossil fuel burning

adds about an order of magnitude to the amplitude of the 11-year cycle. Moreover, this

correction has a spatial and temporal dependence due to the fact that the use of fossil fuels

is highly nonuniform around the globe while the cosmogenic production of 14C is roughly

homogeneous (Usoskin, 2017).

In summary, the production rate of cosmogenic isotopes can vary as it is affected by

different factors such as variations of the cosmic-ray flux on a geological timescale due to

the changing galactic background, the slowly changing geomagnetic field and modulation of

cosmic rays in the heliosphere by solar magnetic activity. All slow changes in cosmogenic

isotope data are ascribed to climatic changes and geomagnetic variations, while short-term

fluctuations are believed to be of solar origin. Variations of the second type make past solar

activity reconstructions possible.

1.2.2. Physical basis of the reconstruction method

The key concept that enters the solar activity reconstructions via cosmogenic nuclide

records is the solar modulation potential Φ, i.e. the measure of fluctuations in the open

solar magnetic field which carries information regarding the changes on the photospheric

magnetic field and cycle amplitude. The information imprinted in cosmogenic isotopes via

modulated galactic cosmic rays (GCR) helps us understand the long-term behaviour of the

solar magnetic field over the Holocene epoch. As simple as it sounds, the reconstruction must

step all the way from the open solar flux to sunspot number; this is a complex endeavour that

entails elaborate physical models that takes different phenomena affecting the information

stored in the natural archives into consideration.

The process starts with GCRs approaching the vicinity of the Solar system. The flux of

these highly energetic, fully ionized nuclei is considered roughly constant. Before entering

in Earth’s atmosphere and magnetic field, they go through a complicated transport in the

heliosphere, and their path and energy are modulated by the open solar flux. Fig. 1.10

shows the most striking feature in GCR modulation, i.e. its 11-year cycle, which is in inverse

relation to the solar cycle, with a delay ranging from a month to two years with respect

to the sunspots. The short-term fluctuations driven by interplanetary transients caused by

solar eruptive events can also be observed (Usoskin, 2017).
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Fig. 1.10. Inverse correlation between cosmic rays and sunspot activity (Fig.
4 in Usoskin (2017)).

After entering in Earth’s atmosphere, energetic GCR particles lead to an atmospheric

cascade. They suffer from ionization energy losses in the upper layers and gradually deceler-

ate while colliding with nuclei in the atmosphere, producing primary and secondary particles

as a result of nuclear interactions (Beer, 2000). As reviewed in Usoskin (2017), computa-

tion of isotope production is straightforward, provided a model of the atmospheric cascade

is available. Cosmogenic isotopes are a by-product of the hadronic branch of the cascade

triggered by the modulated GCR flux. Therefore, in order to evaluate the GCR flux from

the cosmogenic isotope data, it is essential to compute the physics of cascade development

via Monte Carlo numerical methods.

Geomagnetic shielding is another important aspect of the cosmogenic radioisotope

method. Radiocarbon is globally mixed in the atmosphere before deposition and its pro-

duction is heavily affected by fluctuations in the geomagnetic dipole moment (Beer, 2000;

Usoskin, 2017; Beer, Tobias, and Weiss, 2018). The information that these radionuclides

carry on solar variability is also affected by the geomagnetic field. Hence before analyzing

the data, changes in the geomagnetic field should be carefully subtracted. Diligent spectral

analysis is well known to be able to pull out well-defined frequencies from chaotic time-series

considering geomagnetic variability (see, e.g. Tobias, Weiss, and Kirk, 1995).

Climatic variability may also lead to some modulation, but it is inconclusive on whether

changes in climate could produce comparable effects in both ice core and tree ring data. In

any case, these indirect proxy data provide strong support for the hypothesis that the solar

dynamo cycle is modulated, with expected terrestrial effects that are quite diverse for these
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Fig. 1.11. Diagram showing the processes involved in the formation and de-
position of cosmogenic isotopes used as indirect solar proxies (Fig. 7 in Usoskin
(2017)).

isotopes. Comparing them can help in separating solar and climatic effects (Tobias, 2002;

Beer, 2000). Fig. 1.11 summarizes all the elements playing a role in this process.

Due to a wide range of methods and results of solar-activity reconstruction, it is crucially

important to verify them. The major source of errors in solar activity reconstructions is

related to uncertainties that are responsible for the variations in the paleomagnetic data.

These errors are much less significant for the last millenium but increasingly start to effect

the statistics for the earlier times (Beer, 2000; Usoskin, 2017).

The validity of models used during reconstructions have been confirmed by independent

data on measurements of 44Ti stony meteorites. The reconstruction essentially depends on

the temporal changes of the geomagnetic dipole field as well as on the modulation potential Φ

(Usoskin et al., 2006) (see also Fig.1.9). To refine the reconstructions, a deeper understanding

of the effects of symmetry and morphology of the field on the solar wind is needed (Beer,

Tobias, and Weiss, 2018).

1.3. Solar Activity Over Multi-Millennia

As reviewed in the previous sections, despite its common characteristics carried through

over time, the solar cycle can drastically vary from one cycle to another both in amplitude

and duration. The early records of sunspots indicate that the Sun went through a period

of inactivity in the late 17th century (between 1645-1715) covering multiple solar cycles.
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This long quiet period is known as the Maunder Minimum (MM) and the lack of sunspots

during this epoch is well documented in a variety of data sets covering different naked-eye

sunspot observations, the telescopic solar observations, auroral sightings at high latitudes and

cosmogenic radionuclide data (Usoskin et al., 2015; Poluianov, Usoskin, and Kovaltsov, 2014;

Miyahara et al., 2006; Ribes and Nesme-Ribes, 1993). This well-known and still puzzling

period of solar inactivity also corresponds to the final, deeper phase of a climatic period called

the "Little Ice Age" on Earth. The MM is considered an example of occasionally occurring

Grand Minima (Miyahara et al., 2006) and there is strong evidence from cosmogenic isotope

data that the Sun has gone through similar periods of inactivity in the more distant past.

Another, more recent but less dramatic example for such an epoch is the Dalton Minimum

(DM) at the turn of the 19th century, which is another period of reduced solar activity

covering 3 magnetic cycles.

As another example of an extreme feature of solar variability, there are also highly en-

hanced activity periods namely Grand Maximum. Grand Maxima occur when several solar

cycles exhibit greater cycle amplitude than the average level for decades or even centuries.

Solar cycles still occur during these grand solar maximum periods but the intensity of those

cycles is much greater. The only Grand Maximum observed during the telescopic era is the

Modern Maximum which began with Solar Cycle 15 in 1914, reached a maximum in Cycle

19 during the late 1950s and, came to an end in Cycle 23 in 2000 as Cycle 24 is recorded as

a very low-activity cycle.

Fig. 1.12 demonstrates one most recent solar activity time series reconstructed from 14C

data (presented in Usoskin et al. (2016b)), covering the last 9,000 years. This sunspot

series was prepared with the new reconstruction of the geomagnetic dipole field moment,

GMAG.9k. Usoskin et al. (2016b) identified 20 Grand Minima and 14 Grand Maxima, most

of which were listed in previous studies as well (see, e.g. Usoskin, Solanki, and Kovaltsov,

2007; Inceoglu et al., 2015) and showed that the Grand Minima and Maxima occurred in-

termittently, with clustering near highs and lows of the Hallstatt cycle (≃ 2,400 years). The

threshold cycle amplitude values determined for Grand Minima and Grand Maxima are in

principle based on sunspot distribution histograms as shown in Fig. 1.13. Here, the two ends

of the histogram exceeding the normal distribution fit indicate the sunspot threshold values.

1.3.1. Grand Minima

A Grand Minimum is a distinct type of period when the solar magnetic activity is signif-

icantly reduced. Grand Minima are thought to correspond to a special state of the dynamo

(Sokoloff and Nesme-Ribes, 1994; Miyahara et al., 2006; Moss et al., 2008; Käpylä et al.,

2016) and these special periods challenge the solar-dynamo theory, as there is no agreement

on how they occur and which mechanisms exactly affect their duration and the frequency of

their occurrences.
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Fig. 1.12. Sunspot activity (decadal means, smoothed with a 1-2-2-2-1 trape-
zoidal filter) throughout the Holocene, reconstructed from 14C as shown in Fig.
20 in Usoskin (2017)). Blue and red symbols denote Grand Minima and Max-
ima, respectively.

Fig. 1.13. Histogram of sunspot-numbers for the series shown in Fig. 1.8.
Hatched areas correspond to directly-observed sunspots after 1610. The curve
represents the best fit normal distribution (Fig. 5 in Usoskin, Solanki, and
Kovaltsov (2007)).

The presence of Grand Minima in the solar activity on long-term scales has been shown

multiple times by different studies (e.g. Solanki et al., 2004; Usoskin, Solanki, and Kovaltsov,
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Fig. 1.14. The duration histogram of Grand Minima prepared with the time-
series shown in Fig. 1.12. The distribution shows a hint of a bimodal structure,
which would indicate two classes of Grand Minimum (Fig. 22 in Usoskin
(2017)).

2007; Steinhilber et al., 2012; Inceoglu et al., 2015), using the radioisotope data of 14C in

tree rings and 10Be in ice cores.

These studies agree that the duration distribution of Grand Minimum has a bimodal

structure indicating two classes of Grand Minimum as shown in Fig. 1.14: either of a short

(30–90 years) duration similar to the Maunder minimum, or a rather long one (>100 years),

similar to the Spörer minimum, in agreement with earlier conclusions (Stuiver and Braziunas,

1989). The mean duration varies between 70-80 year depending on studies. Furthermore,

the nature of the occurrence of such events according to waiting time distribution (WTD)

analysis (see Fig. 1.15) hints that Grand Minima occur randomly, independent from each

other, as the WTD seems to better fit to an exponential distribution (Usoskin, Solanki, and

Kovaltsov, 2007; Usoskin, 2008, 2017). However, the number of samples in the radionuclide

data is not sufficient for more robust statistics.

A Grand Minimum, when interpreted as an epoch of radical reduction of the solar cycle

amplitude, can be reproduced even using relatively simple solar dynamo models that involve

differential rotation and the helicity of convective flows as drivers for the dynamo waves

responsible for the cyclic activity, including nonlinearities (see, e.g. Brandenburg et al.,

1989; Jennings and Weiss, 1991; Olemskoy and Kitchatinov, 2013). The dynamo model

which is used in this study (introduced in §1.7 and §2.2) is one such model that is capable

of mimicking such epochs. It is usually much harder to reproduce Grand Minimum-like

events with full MHD simulations. Nevertheless, there are a few models that succeeded at

generating such solar-like long-term variations (see, e.g. Augustson et al., 2015). There is a

rich literature, full of attempts to explain Grand Minimum as an unusual behavior of the

solar dynamo/cycle (see, e.g. Moss et al., 2008; Charbonneau, 2010; Karak and Choudhuri,
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Fig. 1.15. Probability density (left panel) and cumulative (right panel) dis-
tribution of the waiting time between two subsequent Grand Minima for the
series shown in Fig. 1.8. The histogram (left) and circles (right) represent the
observed distribution, while solid and dotted lines demonstrate best fit power
law and exponential approximations, respectively (Fig. 6 in Usoskin, Solanki,
and Kovaltsov (2007)).

2011; Choudhuri and Karak, 2012; Olemskoy, Choudhuri, and Kitchatinov, 2013; Hazra,

Passos, and Nandy, 2014), which we will look into in §1.6.

Now we shall get to know the most famous one, the Maunder Minimum more closely.

1.3.1.1. The Maunder Minimum

One known example of a quiescent period in the telescopic era is doubtlessly the Maunder

Minimum (MM) during which the solar activity as recorded in sunspot data is at least of an

order of magnitude lower than that present during normal solar cycles. Despite severe dearth

of sunspots, the Maunder minimum (MM) cannot however be considered as an epoch with

total absence of sunspots (Ribes and Nesme-Ribes, 1993), as the sunspot number becomes

relatively large towards the end of it (1698-1712; observed by La Hire) (Usoskin et al.,

2015). Fig. 1.16 demonstrates the increasing number of sunspots and the strong hemispheric

asymmetry during the second half of MM.

According to Poluianov, Usoskin, and Kovaltsov (2014), the cycle amplitude measured

in the cosmogenic isotope 10Be during the Maunder Minimum is comparable to that during

the recent epoch of high solar activity. The partial absence of the cyclic sunspot activity

gives an intuitive expectation that such suppressed activity would culminate in much smaller

variations in cosmogenic isotope data. Time series and wavelet analysis (Frick et al., 1997;

Beer, Tobias, and Weiss, 1998; Poluianov, Usoskin, and Kovaltsov, 2014) confirms the pres-

ence of cyclic behavior of solar activity during the second half of the Maunder Minimum
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Fig. 1.16. Butterfly diagram for sunspots showing the hemispheric asymme-
try during the second half of the Maunder Minimum (Ribes and Nesme-Ribes,
1993).

with a slight change in cycle length exceeding the nominal 11-year value. This increase of

the cycle length is thought to be due to the phase shift between the activity before and

after the Maunder minimum (Sokoloff and Nesme-Ribes, 1994). It is harder to resolve the

cycle period in 14C data, as radiocarbon takes part in the global carbon cycle, which leads

to significant attenuation and phase shift of the 11-year cycle signal in the measured 14C

(Bard et al., 1997). As a result of this attenuation, individual cycles can hardly be resolved

in 14C data, even for the recent times covering the Maunder Minimum. On the other hand,
10Be data provides a much clearer idea about the cyclic behavior although it gets harder to

resolve the timescales for the distant past in the deeper end of an ice core compressed by the

bulk of ice-mass above it.

For the MM, the Schwabe cycles were determined (Fligge, Solanki, and Beer, 1999) with

the amplitude being comparable to that of recent high cycles (Beer, Tobias, and Weiss, 1998;

Berggren et al., 2009). It is also demonstrated that the 11-year cycle in the 10Be data may be

out of phase with sunspot numbers (Usoskin, Mursula, and Kovaltsov, 2001), contrary to the

normal anti-phase relation, although the reason is still to be clarified. Owens, Usoskin, and

Lockwood (2012) and Wang and Sheeley (2013) claim that it might be due to the changing

role of different mechanisms acting during the formation of the heliospheric magnetic flux. In

any case, it has been shown that, modulated GCRs in the heliosphere may exhibit a normal

11-year cycle via the cosmogenic-isotope proxy (as shown inFig. 1.17) even when the Sun

itself shows hardly any sunspot cycle (Poluianov, Usoskin, and Kovaltsov, 2014).
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Fig. 1.17. Band-pass filtered (8 – 15 years FFT band-pass filter with rect-
angular window) of cosmogenic 10Be measured in the Greenland Dye-3 (A),
NGRIP ice cores (B) and raw 14C data (C) shown in Fig. 2 in Poluianov,
Usoskin, and Kovaltsov (2014). The vertical hatched area denotes the Maun-
der Minimum. This data shows that the amplitude of the cycles is comparable
to that during the regular cycles, hence MM was not a period of complete
inactivity.

Another striking feature of the MM is that, the solar magnetic activity depicts asymmetric

behavior as the Sun emerged from this Grand Minimum, with sunspots only appearing in

the northern solar hemisphere for a couple of solar cycles (Ribes and Nesme-Ribes, 1993;

Sokoloff and Nesme-Ribes, 1994) as observations of sunspots in the late 17th century also

indicate. After these two cycles, the Sun appeared to recuperate its dipolar symmetry and

Hale’s polarity laws is recovered (Watari, 1996). There is a clear distinction between the

last cycle of the MM and the first cycle after the MM observed in the symmetry properties
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of the hemispheric sunspot distribution on the photosphere as shown in Fig. 1.16. The

butterfly diagram of this epoch (Ribes and Nesme-Ribes, 1993) shows an activity wave

in the south hemisphere and it becomes approximately symmetric with respect to the solar

equator in the last cycle once again. The recovery from a dramatic N-S asymmetry is usually

considered as the end of the Maunder minimum. A dynamo interpretation of this asymmetry

is possible (Sokoloff and Nesme-Ribes, 1994). During the last cycle of the Maunder minimum,

the dynamo wave propagates through the Southern hemisphere only, while the dynamo

waves becomes roughly N-S symmetric after the end of the minimum. The magnetic field

configuration at the end of the Maunder minimum can be considered as being almost equally

constituted by dipolar and quadrupolar dynamo components. Dynamo waves propagating in

one (randomly, Northern) hemisphere were obtained in the numerical simulations of Jennings

and Weiss (1991), while a general idea about the link between Grand Minima and North-

South asymmetry of dynamo solutions was suggested by Brandenburg et al. (1989). We will

elaborate more on hemispheric asymmetry and dipolar and quadrupolar dynamo components

related to our dynamo solutions on §1.5 where the parity issue is examined.

All these findings regarding the MM coincide with the fact that low sunspot activity does

not necessarily imply strong heliospheric fields and that the relation between solar activity

and cosmogenic isotope production is nonlinear.

1.3.2. Grand Maxima

Grand Maxima are known as transient epochs of peculiarly high magnetic activity. Nev-

ertheless, the definition of Grand Maximum is not as robust as the definition of Grand

Minimum and is more sensitive to other parameters such as geomagnetic field data or overall

normalization (Usoskin et al., 2016a). The one prominent example of this sort of event is the

Modern Maximum (1940-2009 approximately), accidentally coinciding with the space era.

The existence of the Modern Maximum is confirmed with its various, precise and detailed

in-situ and remote observation of the Sun, interplanetary medium and geosphere (Clette

et al., 2014; Usoskin, 2017).

In Clette et al. (2014), the strong anti-correlation between the number of spotless days

over each sunspot cycle minimum and the amplitude of the adjoining cycles (as shown in

Fig. 1.18) is presented as an indicator of the uniqueness of the Modern Grand Maximum on

the centennial time scale, as the uninterrupted series of low spotless day counts (less than 400

days) during the last 6 cycles stands out. Fig. 1.19 (blue dashed line) also demonstrates the

trend that leads to a higher activity epoch. The reality of the Modern Grand Maximum was

also independently confirmed by Ziȩba and Nieckarz (2014) who have shown, by studying

active versus passive (spotless) days that cycles 17-23 were more active, compared to cycles

8-15. Although uncertainties in sunspot numbers during the 18th and 19th centuries (see

discussion in §1.2.1) make it a bit unclear on the centennial time scale, data on cosmogenic
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Fig. 1.18. Cycle-to-cycle variation of the total number of spotless days from
cycle 6 to 24, for which daily sunspot numbers are available (red curve). The
SN series is over-plotted with a reversed scale to highlight the strong anti-
correlation between this indicator and the amplitude of the solar cycle. The
count for the cycle 23-24 minimum is similar to the late 19th century. The
first value for the cycle 5-6 minimum (Dalton minimum) is much larger (Fig.
64 in Clette et al. (2014)).

isotopes (Usoskin, Mursula, and Kovaltsov, 2003; Solanki et al., 2004; Inceoglu et al., 2015)

imply that such high activity episodes occur quite seldom. However, as it seems, after the

very weak solar minimum in 2008-2009 (see, e.g. Gibson, Zhao, and Fisk, 2011), solar activity

returns to its normal moderate level in cycle 24. Thus, the high activity episode known as

the Modern Grand Maximum is over.

Keeping all the systematic uncertainties related to the reconstructions via cosmogenic

isotopes in mind, a total of 23 Grand Maxima have been identified with a total duration of

around 1400 years clustering near highs of the Hallstatt cycle. According to these estimations,

the Sun spends around 9-12% of its time in a hyperactive state (Usoskin et al., 2016b). The

distribution of the waiting time between consecutive Grand Maxima points at a deviation

from exponential law (Usoskin, 2017) and most of the reconstructed Grand Maxima (about

70%) are not longer than 50 years (Barnard et al., 2011). Note, that the Modern Grand

Maximum is over now and we are living in an epoch of moderate or even weak solar activity.

There are few dynamo models proposed for the Grand Maximum as well (see,e.g. Kitchatinov

and Olemskoy, 2016). It is still a subject of investigation whether Grand Maxima correspond

to a special state of solar dynamo or rather to a tail of the regular mode (Usoskin, 2017).

1.3.3. Quasi-periodicities and characteristic times

Previous studies have applied Fourier analysis to both the 10Be and 14C records in order

to pick out various periodicities (Beer, 2000; McCracken, 2013). Reconstructions based on
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Fig. 1.19. Comparison of the original and corrected/recalibrated SN and GN
series over the entire interval 1749 - 2013, showing the limited difference in
maximum cycle amplitudes between the 20th century and previous centuries
after the new corrections. In order to better visualize the trends, dashed lines
connect the highest maxima of the 18th and 20th century, for each series of
the corresponding color (Fig. 63 in Clette et al. (2014)).

cosmogenic radio nuclides as well as direct observations of solar magnetic activity, argue that

the solar dynamo has operated similarly to the present day for at least the past 10,000 yrs.

The persistence of the 87-yr Gleissberg cycle throughout supermodulation events suggests

that the Hale and Schwabe cycles continue independently of the modulational mechanism

for activity. We further analyze the behaviour of the solar activity during the Spörer and

Maunder Minima. Such Grand Minima recur with the characteristic de Vries period of

approximately 210 yr but their incidence is modulated by the Hallstatt cycle with a charac-

teristic period of around 2,400 yr (Usoskin et al., 2016b; Beer, Tobias, and Weiss, 2018).

Tab. 1. I. Table listing a summary of important solar quasi-periodicities and
their duration.

Quasi-periodicity Cycle duration (yr) Reference
Schwabe ∼ 11 (Hale, 1919)
Hale ∼ 22 (Hale, 1919)
Gleissberg 60-120 (Gleissberg, 1939)
De Vries/Suess ∼ 210 (Suess, 1980)
Hallstatt ∼ 2400 (Vasiliev and Dergachev, 2002)

The origins of the quasi-periodicities shown in Table 1. I, especially long-term ones are

not yet well-understood.

27



1.4. Modelling the Solar Dynamo

Solar-type stars build magnetic fields by tapping the energy of magnetized fluid motions

and the sustainment of their large-scale magnetic fields is maintained by a dynamo mecha-

nism. In rotating stars like the Sun, convection transports energy and momentum producing

shearing flows and circular bulk motions to sustain the magnetic energy. In the meantime,

dissipative forces continuously diffuse the field while the dynamo action regenerates it. In

other words, the evolution of stellar magnetic fields is an interplay between the resistive de-

cay and hydrodynamical induction of the magnetic field (Charbonneau, 2010, 2013). Hence,

it is crucially important to model the solar magnetic cycle that cyclically alternates magnetic

polarities about every 11 years as a magnetohydrodynamical process.

Nevertheless, as the post-telescopic observations and cosmogenic isotope data suggest,

the solar magnetic cycle is far from being strictly cyclic, depicting short and long-term vari-

abilities. Short-term variability includes the 154-day periodicity, quasi-biennial variations,

and double-peaked maxima, whereas long-term variability refer to Grand Minimum and

Grand Maximum events, the Gleissberg cycle, etc.(Hathaway, 2015). This variable nature

of the Sun challenges the dynamo theories in multiple ways. Here, we will summarize the

fundamentals of the solar dynamo processes drawing from multitude of excellent reviews

including Solanki et al. (2004); Charbonneau (2010) and Cameron and Schüssler (2017), as

well as the main physical mechanisms behind dynamo action and mainstream solar dynamo

theories. Although there is a rich variety of solar dynamo models combining physical mech-

anisms supported by observations, our primary focus will be solar cycle models based on

flux transport and active region decay, as the model we use in this study belongs to this

class. Before looking into this specific kind of dynamo model, let’s begin with the essential

ingredients of solar/stellar dynamo modelling.

1.4.1. Basic concepts

Nowadays it is widely accepted that a magnetohydrodynamic dynamo is indeed responsi-

ble for generating and maintaining the magnetic field of the Sun in the solar convection zone

and neighboring layers, converting the existing toroidal field to poloidal field and vice versa.

There are several, credible pieces of the puzzle which aim to explain different processes in

the dynamo loop. Yet, the details of how this dynamo operates still remain ill-understood

and there is no strong consensus unifying different propositions (Charbonneau, 2013).

The underlining principle behind dynamo action, first pointed by Sir Joseph Larmor

in 1919 (Cameron, 2016) is the inductive action of fluid motions coupled with differential

rotation. His idea was widely recognized as one of a few possible explanations for the origin

of this magnetic field, thus opening the path to contemporary solar cycle modelling. Alfvén’s

development of magnetohydrodynamics (MHD) in 1942 provided us with a concrete physical
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theory to expand on Larmor’s idea. Larmor’s suggestion also fitted nicely with Hale’s polarity

laws, in that the inferred equatorial antisymmetry of the solar internal toroidal fields is

precisely what one would expect from the shearing of a large-scale poloidal magnetic field by

an axisymmetric and equatorially symmetric differential rotation pervading the solar interior.

According to MHD theory, we can treat the plasma as a electrically conducting fluid and

use Ohm’s Law to combine Maxwell’s equations into a single MHD induction equation, for

non-relativistic, quasi-neutral plasmas in which the length scales of interest are much larger

than collisional mean-free-path of electrons and the electron/ion gyration radius:

∂B
∂t

= ∇ × (u × B − η∇ × B) (1.4.1)

where η = c2/4πσe is the magnetic diffusivity (σe being the electrical conductivity), and

with the magnetic field being still subject to the divergence-free condition ∇ · B = 0. An

evolution equation for the flow field u must also be provided. If we develop the outside curl

and use vector identities, eq. 1.4.1 gives:

(

∂

∂t
+ u · ∇

)

B = (B · ∇)u − B(∇ · u) + η∇2B (1.4.2)

where the term on the left is the advection of the magnetic field by the flow u, on the right

the first term is the amplification of the field by shear, the second term is the amplification

of the field by compression and the last term is the dissipation of the field through diffusion.

Differential rotation can amplify the field via the shear term (B · ∇)u. This shearing effect

of differential rotation is also known as the Ω-effect. Eq. 1.4.2 well summarizes the inductive

and dissipative terms that play crucial roles in the sustainment of the large-scale magnetic

fields.

The MHD induction equation (eq. 1.4.1) is the basis for Parker’s axisymmetric kinematic

dynamo model in which plasma flows can generate toroidal (φ̂ direction) and poloidal (r̂, θ̂

plane) fields (Parker, 1955). Parker showed that, with the induction equation, it is possible

to generate a toroidal field with a purely poloidal field acted upon by rotational shearing.

However, in order to close the dynamo loop, another mechanism must transform the toroidal

field back to a poloidal field. Parker’s solution to this problem was a process through which

updrafts/downdrafts acquire cyclonicity via the action of the Coriolis force, i.e. frozen-in

B acquires a twist, leading to a non-axisymmetric flow necessary to circumvent the anti-

dynamo theorem of Cowling (1933) and generate a poloidal field to produce a global cycle.

Parker’s dynamo equations also provide wave-like solutions, which features the propagation

of dynamo action. His groundbreaking idea was quickly followed by the development of

mean-field electrodynamics, which rapidly settled as the theoretical base for solar dynamo

modeling.
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We know from the sunspot butterfly diagram, Hale’s polarity law, the shape of the solar

corona at and around solar activity minimum and synoptic magnetograms that, the large-

scale solar magnetic field can be approximated as axisymmetric about the Sun’s rotation

axis, as well as antisymmetric about the equatorial plane. Given these circumstances we can

express the large-scale field as the sum of a toroidal component in the longitudinal direction

and a poloidal component in the latitudinal direction, the latter being expressed in terms

of a toroidal vector potential (Charbonneau, 2010). Hence, the most general axisymmetric

magnetic field can be written in spherical polar coordinates (r, θ, φ) as:

B(r, θ, φ) = ∇ × A(r, θ, φ)eφ + B(r, θ, φ)eφ (1.4.3)

The decomposition expressed in eq. 1.4.3 satisfies the solenoidal constraint ∇ · B = 0. In-

serting these into the MHD induction equation (eq. 1.4.1) produces two (coupled) evolution

equations for A and B, the latter simply given by the φ-component of eq. (1.4.1), and the

former, under the Coulomb gauge ∇ · A = 0, by

∂(Aeφ)
∂t

+ (u · ∇)(Aeφ) = η∇2(Aeφ) (1.4.4)

But what are the physical mechanisms that generate each of these magnetic field com-

ponents from the another?

1.4.2. Dynamo models of the Solar cycle

A dynamo mechanism operating in the lower part of the solar convection zone is generally

considered to be the source of the Sun’s magnetic field. Most current models place the

dynamo at the interface between the convection zone and the radiative core, a layer marked

by convective overshooting and a strong radial shear in the Sun’s differential rotation (Solanki

et al., 2004). As pointed earlier, currently there is no standard model for the solar dynamo.

Basically, a proposed model needs to respect key observational constraints while embodying

plausible mechanisms for the regeneration of poloidal and toroidal magnetic field components.

Hence, we need to divide magnetic field regeneration mechanisms in two, considering the

conversion from pre-existing toroidal to poloidal and from poloidal to toroidal components.

The toroidal field residing in the solar convection zone is revealed to be the source of

sunspot groups by the systematic observations of the solar surface (Hale, 1919). This East-

West oriented field is generated by shearing of a preceding poloidal field by the differential

rotation of the Sun (Babcock and Babcock, 1955). The poloidal field in question is a dipole

field aligned with the rotation axis in stellar/terrestial objects. Once the toroidal field is

generated, the poloidal field is reproduced from the toroidal field by the turbulent flows

and/or magnetic buoyancy upwelling in the convection zone, closing the second half of a

dynamo cycle. This interaction and co-action between the toroidal and poloidal components
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of the solar magnetic field leads to a 22-year magnetic cycle and an 11-year cycle of sunspot

activity (Cameron and Schüssler, 2017). Therefore, physical mechanisms which lead to the

generation of a toroidal field from a pre-existing poloidal component P ⇒ T , and a poloidal

field from a pre-existing toroidal component T ⇒ P must be taken into consideration during

modelling. Furthermore, the solar poloidal magnetic component flips polarity near sunspot

cycle maximum (as seen in the magnetogram shown in Fig. 1.5), when internal toroidal field

T is thought to have its peak value, whereas the poloidal component P peaks at time of

sunspot minimum. This cyclic regeneration of the Sun’s full large-scale field can thus be

thought of as a temporal sequence from P (+) ⇒ T (−) ⇒ P (−) ⇒ T (+) ⇒ P (+) ⇒ ...,

where the + and − refer to the signs of the poloidal and toroidal components, as established

observationally (Solanki et al., 2004; Charbonneau, 2010).

While P ⇒ T conversion is explained with a rotational shearing mechanism, there exist

various candidates proposed for the T ⇒ P conversion. Some noteworthy examples are

cyclonic convection (Parker, 1955) and the surface decay of bipolar magnetic regions (Bab-

cock, 1961), now known as the Babcock-Leighton (BL) mechanism. After the development

of Helioseismology, there have been other attempts to explain T ⇒ P mechanism such as

helical waves along thin magnetic flux tubes (Schmitt, 1987; Ossendrijver, 2000), and shear

instabilities in the tachocline (Dikpati and Gilman, 2001a). The common point of all these

cases is that the frozen-in magnetic field threading inductive plasma flows becomes twisted

through the effect of the Coriolis force, and rotational influence is enforced on the inductive

flows, which overcome Cowling’s anti-dynamo theorem by breaking the axisymmetry of the

field (Charbonneau, 2013).

Ultimately, understanding the operation of the solar dynamo giving rise to such a mag-

netic cycle is connected to unravelling how differential rotation, turbulent convection, and

meridional flows co-function. Helioseismological observations bring new constraints on dif-

ferential rotation and meridional flows covering almost the entire CZ (see Fig.1.2). Hence,

the quest for modelling the solar dynamo is challenged by the lack of measurements of the

solar interior and in order to generate credible models, it is essential to have some constraints

on the deep, internal magnetic fields as well.

From the existing observational constraints so far, we know that a reliable model should

reproduce the basic features of the solar cycle such as: cyclic polarity reversals with around

an 11-year half-period, the equatorward migration of the sunspot-generating deep toroidal

field and its inferred strength, the poleward migration of the diffuse surface field, the ob-

served phase lag between poloidal and toroidal components, the polar field strength, ob-

served antisymmetric parity and the predominantly negative (positive) magnetic helicity in

the Northern (Southern) solar hemisphere. As the complexity level of a model increases, it

may also exhibit more sophisticated features like phase locking, the Waldmeier Rule (anticor-

relation rule between cycle amplitude and duration), the Gnevyshev–Ohl Rule (alternation
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Fig. 1.20. Illustration showing where α and Ω effects reside in different classes
of dynamo models. From left to right, an overshootlayer dynamo, an inter-
face dynamo and a flux transport dynamo are demonstrated in the form of
quadrants from a meridional cut, in Fig. 9 of Solanki, Inhester, and Schüssler
(2006).

of higher-than-average and lower-than-average cycle amplitudes) and occasional epochs of

suppressed amplitude and of high-level activity over many cycles a.k.a. Grand Minima and

Grand Maxima (Charbonneau, 2010).

Despite its many virtues, conventional αΩ-dynamo operating in the bulk of the convection

zone has difficulties in reproducing the latitudinal migration of the sunspot zone since the

radial rotational shear is much smaller than the latitudinal shear in the convection zone and

dynamo waves propagate along isolines of angular velocity (Yoshimura, 1975; Kitchatinov,

2002; Brandenburg, 2005). Moreover, in such models, Parker’s turbulent α-effect of cyclonic

convection, cannot act efficiently upon such strong fields. Some of the various possible models

for overcoming these problems can be classified into the following three types as summarized

in Solanki, Inhester, and Schüssler (2006) (for detailed reviews, see Ossendrijver (2005);

Rüdiger and Hollerbach (2004); Schüssler and Schmitt (2004)):

• overshoot layer dynamos: the α-effect is restricted to the overshoot region, when

turbulence is weaker,

• interface dynamos: the Ω-effect is dominant in the overshoot region while a typical

α-effect operates in the convection zone and strong magnetic fields build up only

in underlying convectively stable layers, the coupling element of both regions being

magnetic diffusion,

• flux transport dynamos: the radial transport of magnetic flux into the overshoot layer

and the latitudinal migration of the magnetic field are dominated by advection by a

large-scale meridional flow.

The basic ingredients of these three classes of models are illustrated in Fig. 1.20. Perhaps

the most studied cases of flux transport dynamos are the Babcock-Leighton dynamo models
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(Wang and Sheeley, 1991; Dikpati et al., 2005; Charbonneau, 2010), based on the principle

mechanism suggested by Babcock (1961) and Leighton (1969), in their early models of the

solar cycle. The key idea in these models is the regeneration of the large scale dipole field via

the decay of bipolar active regions. The meridional field from the azimuthal field component

is thought to originate from the twist enforced by the Coriolis force on azimuthal flux tubes

rising through the upper layers of the convection zone. The apparent indicator of this twisting

effect is the latitudinal tilt of active regions at the photosphere. While the radial shearing

in the tachocline governs the Ω-effect, it is hypothesized that the generated poloidal field is

transported by a large-scale meridional circulation in the convective envelope, a combination

of the observed polewards surface flow and a conjectured equatorwards subsurface return

flow (Choudhuri, Schussler, and Dikpati, 1995; Dikpati and Charbonneau, 1999; Nandy and

Choudhuri, 2001; Solanki, Inhester, and Schüssler, 2006).

The flux transport by a meridional flow idea has been integrated in some models of

overshoot-layer dynamos (see Dikpati and Gilman, 2001a) and interface dynamos (see Dik-

pati et al., 2005) as well. We will not heavily examine each of the cases listed above,

but instead will have a more general look at the advection-dominated dynamos with Bab-

cock–Leighton (BL) mechanism for regeneration of a poloidal magnetic field, originally pro-

posed by Choudhuri, Schussler, and Dikpati (1995) and Durney (1995).

1.4.2.1. The Kinematic Approach

There are basically two possible approaches to the solar dynamo problem; one of which

is via direct numerical simulations (DNS) in which all the MHD equations are solved numer-

ically, the other being the kinematic approach, in which the velocity field is specified from

the beginning and one solves only eq. 1.4.1 for the evolution of the large-scale magnetic field.

In general, DNS considers the Lorentz forces associated with the growing magnetic field

which basically acts on the inductive flows once they get stronger and gain dynamical sig-

nificance. This results in the decrease of the exponential growth characterizing supercritical

linear solutions and even it makes the growth stop, opposing the driving fluid motions (Char-

bonneau, 2013). This phenomenon is called the backreaction of the Lorentz Force and models

that take this physical effect into consideration, uses the dynamical approach.

On the other hand, as physically relevant as it is, adding this effect to a model can be

complicated. Indeed in that case the Reynolds stresses powering the large-scale flows in the

solar convective envelope should then also be modelled (Charbonneau, 2013), and obviously

numerical simulations with the dynamic approach use more computation time. Therefore,

some simplification without eliminating the central mechanisms responsible for sustaining

the cyclic dynamo behavior can be beneficial to focus on the effects of certain mechanisms

while dealing with relatively less parameters.

33



This is where the kinematic approach comes in, which implies a major simplification

of the MHD equations. Basically, in this approach, the flow (velocity) field u is specified

a priori, hence the only equation left to be solved during computation is the induction

equation (eq. 1.4.1) which becomes truly linear in B (Charbonneau, 2013). Helioseismological

observations (Thompson et al., 1996) have provided us with new measurements of differential

rotation throughout the interior, and the meridional circulation in the outer half of the

solar convection zone with good precision. These measurements revealed that the kinematic

approximation is still a good working assumption at least for the differential rotation part of

the mean flow u, given the low amplitude of observed torsional oscillations in the convective

envelope and the lack of significant cycle-related changes in the internal solar differential

rotation (Charbonneau, 2010).

The model used in this study embraces the kinematic approach, which uses steady

parametrized large-scale flow fields compatible with surface and helioseismology observa-

tions (see §1.7).

1.4.2.2. Mean-field theory

The mean-field theory is based on the idea that, under certain conditions, small-scale

turbulence in the solar convective zone can produce large-scale magnetic fields. The dynamo

models based on this principle remain among the prevalent scenarios to explain dynamo

action in the solar/stellar interiors. The key building block on which mean field theory

rests is the two scale approach, which consists in a decomposition of the field variables into

mean and fluctuating parts (Charbonneau, 2013). This was first achieved by Steenbeck and

Krause (1966), who reformulated Parker’s idea by decomposing the fields and flows into

average (〈B〉; 〈u〉) and fluctuating (B′; u′) components. These two-component fields and

flows are inserted into the induction equation eq. (1.4.1) and averaged in such a way that

〈B′〉 and 〈u′〉 vanish, leaving the following new form:

∂B
∂t

= ∇ × (〈u〉 × 〈B〉 + 〈u′ × B′〉 − η∇ × B) (1.4.5)

where the turbulent electromotive force 〈u′ × B′〉 is expressed through a truncated series

expansion in terms of the large-scale magnetic field:

〈u′ × B′〉 ≡ α〈B〉 + β∇ × B, (1.4.6)

thus achieving closure. The essential toroidal-to-poloidal process is contained in the α

tensor, where Parker’s helical twisting mechanism can be expressed in a tensorial form. The

Ω-effect contained in β plays the role of an enchanced "turbulent diffusivity". The simplest

and most commonly used implementation of kinematic mean-field dynamo models reduces
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these tensors to scalar quantities under near-homogeneous and near-isotropic conditions.In

an axisymmetric formulation, eq. (1.4.1) can be decomposed into two parts: eq. (1.4.1)

concerning the time evolution of the purely toroidal magnetic field B and the poloidal vector

magnetic potential A. Transforming those expressions into a non-dimensional form reveals

three dimensionless numbers which govern the axisymmetric mean-field dynamo models:

Cα =
αLSR⊙

ηt

, (1.4.7)

CΩ =
Ω0R

2
⊙

ηt

, (1.4.8)

Rm =
u0R

ηt

(1.4.9)

where Cα and CΩ are the dynamo numbers. In the context of large-scale astrophysical

magnetic fields, the importance of the α mechanism in eq. (1.4.7) is immediately evident as

it acts as an inductive mechanism and makes it possible to drive a mean current parallel to

the mean toroidal field, which, in turn will regenerate a poloidal field thereby closing the

dynamo loop. The third term, Rm, is a dimensionless magnetic Reynolds number, which

measures how effective the advection due to meridional circulation is in the transport of A

and B components in meridional planes compared to diffusion (Charbonneau, 2013).

For simplicity of notation, we continue to use η for the total magnetic diffusivity, retaining

the possibility of variation with depth and with the understanding that within the convective

envelope this now includes the (dominant) contribution from the β term of the mean-field

theory.

1.4.2.3. Solar Flux Transport dynamos (FTD)

After the first attempts of combining flux emergence and surface transport (Wang and

Sheeley, 1991), helioseismology revealed new constraints on the internal structure of the

velocity field, i.e., the large-scale, axisymmetric meridional flow and the differential rotation

revealed by Thompson et al. (2003), which led to the idea of the flux-transport dynamo

(Wang, Nash, and Sheeley, 1989; Choudhuri, Schussler, and Dikpati, 1995; Dikpati and

Charbonneau, 1999; Küker, Rüdiger, and Schultz, 2001; Hotta and Yokoyama, 2010). This

scenario was developed to successfully explain some features of the solar activity such as the

equatorward migration of sunspots and the poleward migration of the surface field (Hotta

and Yokoyama, 2010).

Flux transports model of the solar cycle are commonly constructed by solving eq. (1.4.3)

and decomposing it in a set of coupled partial differential equations for the magnetic field’s

axisymmetric toroidal and poloidal components. One key component of such dynamos is the
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meridional circulation, which is thought to manifest itself in turbulent, stratified rotating

convection due to an imbalance between Reynolds stresses and buoyancy forces (Charbon-

neau, 2010). Assuming that there are no source terms exterior to the domain boundaries, we

consider the inductive action of a steady, axisymmetric flow on an axisymmetric magnetic

field on large spatial scales. We write the mean velocity field in the following form:

u = Ω(r, θ)r sin θeφ +

[

ur(r,θ)er + uθ(r,θ)eθ

]

, (1.4.10)

where Ω(r, θ) is the angular, differential velocity and [ur(r,θ)er + uθ(r,θ)eθ] is the velocity of

the meridional circulation um. Substituting eq. 1.4.3 and eq. 1.4.10 in eq. 1.4.1 we obtain two

equations describing the time evolution of poloidal and toroidal components of the magnetic

field:

∂Aφ

∂t
= −

1
̟

(um · ∇)(̟Aφ) + η

(

∇2 −
1

̟2

)

Aφ, (1.4.11)

∂Bφ

∂t
= −̟(uP · ∇)

(

Bφ

̟

)

+ η

(

∇2 −
1

̟2

)

Bφ + ̟(∇ × (Aeφ)) · ∇Ω +
1
̟

∂̟B

∂r

∂η

∂r
− B∇ · um.

(1.4.12)

where ̟ = r sin θ and the terms including um ( with its components ur and uθ) correspond

to advective flow by the meridional circulation. Although equations (1.4.11) − (1.4.12) lack

the necessary source terms that sustain the large-scale magnetic field, they lay the basis of

an αΩ dynamo model with flux transport and summarize how toroidal and poloidal fields

feed each other and sustain the continuity of the dynamo loop. The third ∇Ω term on the

the right hand side, however, is a source term, in that it can lead to the growth of B as long

as A does not decay away.

Meridional circulation is one of the fundamental dynamo ingredients (see Fig. 1.24) which

has an essential role in transporting the magnetic flux generated. The poleward flow at

the surface neighboring the active region belts has been measured helioseismically down to

r/R⊙ = 0.85 and obeying mass conservation, an equatorward return flow is logically required.

The cycle period of the dynamo loop is determined by the flow velocity of this meridional

plasma-field movement to a great extend (Karak et al., 2015).

For a dynamo model to be classified as a flux transport dynamo, the equatorward prop-

agation speed of the deep-seated toroidal field needs to be comparable to the propagation

speed of the dynamo wave, where the circulation-dominated magnetic field transport leads.

In this case, the cycle period is primarily determined by the circulation’s turnover time as

it is not heavily affected by the value of the turbulent diffusivity.
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Fig. 1.21. A cartoon ex-

plaining how the flux trans-

port dynamo works. The

diagram shows a single

meridional quadrant, with

the rotation axis coinciding

with the left boundary and

the meridional flow confined

to the convection zone and

upper tachocline (Fig. 1 in

Choudhuri (2015)).

On the other hand, if the circulation speed is

low, it can lead to a Doppler shift in the dy-

namo wave, creating a small change in the cy-

cle period (Charbonneau, 2013). Re-assessing

sunspot records within the context of FTD

models have a potential to provide more in-

sight into cycle properties such as amplitude

and cycle variation, and extreme events like

Grand Minima (Karak et al., 2015), which

mold long-term solar variability.

1.4.2.4. Babcock-Leighton Mechanism (BL)

Babcock-Leighton dynamos are character-

ized by the generation of a poloidal field

through the decay and dispersal of tilted bipo-

lar active regions (sunspots), which agrees

best with the surface observations and by the

generation of a toroidal field through the ob-

served differential rotation (see Fig.1.22 and

1.23).

It all started with Babcock (1961) propos-

ing a scenario describing the cyclic behavior

of the solar dynamo in terms of a consistent

physical approach based on bipolar active re-

gions. In this scenario, the existing poloidal magnetic field represented by the global dipole

is twisted by differential rotation resulting in loops of azimuthal field rising due to magnetic

buoyancy and eventually tilted sunspot groups and bipolar magnetic regions (BMRs) with

the leading sunspots closer to the equator than the following sunspots as they break through

the surface. The tilting angle is observed to increase with latitude. BMR tilts go through a

preferential cancellation of leading-polarity magnetic flux across the equator, leaving a net

polarity flux on each hemisphere, eventually spreading over the hemisphere and migrating

poleward. This phenomenon leads to the reversal of the global dipole field which in turn

becomes the source of the (reversed) toroidal field of the next activity cycle, thus leading to

a 22-year magnetic cycle. The mathematical form of Babcock’s idea is eventually developed

by Leighton (1969) as two coupled partial differential equations (both in time and latitude),

representing the toroidal and poloidal components of the azimuthally averaged (axisymmet-

ric) magnetic field. Additionally, in terms of a diffusion model, Leighton (1969) included
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to be in the range 150 – 450 km2s−1, placing the solar dynamo in the ‘high-diffusivity’ regime.

Together with the inference of a high turbulent diffusivity, all these relevant observational

results obtained since 1969, concerning the poleward meridional flow at the surface and the

measurement of the differential rotation in the convection zone by helioseismology, provide

us with constraints to build more realistic dynamo models of the solar cycle.

1.5. Parity

The solar global field has a distinct parity with a dominantly dipolar configuration, i.e.,

antisymmetric about the equator. Polar fields almost always have different signs between

hemispheres, even though they show a weak, but significant North–South asymmetry in

phase and amplitude, which may be due to the inhomogeneous formation of magnetically

complex sunspot groups (Roy, 1977). In this regard, parity is also a measure of hemispheric

asymmetry, both in the poloidal and toroidal components of the large-scale field. As illus-

trated in Fig. 1.24, for instance, the antisymmetric mode or the odd-parity (P = −1) for the

toroidal field (Bφ) refers to a dipole whereas the even-parity (P = 1) is associated with a

quadrupolar mode where Bφ is symmetric about the equator. Analysis of sunspot cycle data

by Hathaway et al. (1996) puts forward that the solar hemispheres are magnetically coupled

in a particular parity mode, which is nearly always antisymmetric for the toroidal field, as

described by Hale’s polarity law.

Additionally, another interesting feature of the sunspot data as shown in Fig. 1.16 is

that the distribution of sunspots when exiting from the Maunder Minimum is asymmetric

through the hemispheres, largely accumulated in the Southern Hemisphere for about three

magnetic cycles. As the Sun comes of out this period, the large-scale solar magnetic field

becomes dominantly dipolar once again. Here, the modulation is thought to be linked with

changes in parity (symmetry) (Ribes and Nesme-Ribes, 1993).

One focus of investigation has been to try to understand how dynamo processes lead to a

particular parity mode in the Sun and the results from different solar dynamo models differ in

details. Some studies have suggested that the α-effect around the base of the convection zone

leads to the production of the large-scale dipolar magnetic field, pointing out that circulation

dominated solar dynamo models with the BL mechanism for producing the poloidal field near

the surface may not give the observed magnetic configuration with the expected parity (see

Dikpati and Gilman, 2001b; Bonanno et al., 2002). In their circulation dominated models,

Dikpati and Gilman (2001b) as well as Bonanno et al. (2002) solved the dynamo equations

in the full sphere and concluded that an α-effect mimicking the BL mechanism concentrated

near the solar surface excites a quadrupolar mode in which the toroidal field is symmetric

across the equator, which is being the opposite of what is observed. Only when the α-effect

is placed near the bottom of the CZ, is a dipolar parity established, in agreement with the

observations.
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Fig. 1.24. Illustration of the different parity configurations from Fig. 1 of
Hotta and Yokoyama (2010). Panel (a) shows the poloidal fields (line) for a
dipole and a quadrupole field and the corresponding vector potentials. Panel
(b) shows the toroidal field for a dipole and a quadrupole.

However, Chatterjee, Nandy, and Choudhuri (2004) do not agree with this conclusion

as they demonstrated that the dipolar parity is the preferred parity if the diffusivity of

the poloidal component is sufficiently high in circulation dominated BL models, even when

the helical effect is concentrated near the solar surface. Hence the exact necessity of the

α-effect in producing the solar dipole field is still inconclusive. The parity of the stellar

global magnetic field seems to depend on which field component (toroidal or poloidal), is

more coupled by the turbulent diffusivity between the hemispheres and further systematic

parameter studies are needed to understand the parity issue (Hotta and Yokoyama, 2010).

Our simulation results agree with those of Chatterjee, Nandy, and Choudhuri (2004),who

generated a solar-like dipolar magnetic configuration with BL mechanism operating near the

surface. However, the secondary source term - the turbulent α-effect close to the base of the

convection zone (0.70−0.85R⊙) by itself produces only a quadrupolar or symmetric toroidal

field with no active regions, in other words no dipolar field. §2.4.2 elaborates on the parity

issue and how these two dynamo mechanisms with different parities interact during Grand

Minima/Maxima.

1.6. Grand Minima Scenarios

One of the unsolved pieces of the solar dynamo puzzle is the occurrence of Grand Min-

ima whose existence poses a challenge to the solar dynamo modelling (§1.4). There is a

rich literature on the subject including a variety of hypothesis, with none being completely

satisfactory. Yet, there are a few leading ideas that can roughly be categorized in two classes.

One plausible explanation for Grand Minima is the modulation of the cycle amplitude

in an extreme way by the dynamo mechanisms generating the cycle. Scenarios based on

amplitude modulation involve nonlinear magnetic back-reaction of the Lorentz force on the
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plasma flows, which causes amplitude variations on timescales longer than the main cycle

period (see, e.g. Tobias, 1997; Pipin, 1999; Küker, Arlt, and Rüdiger, 1999; Moss and Brooke,

2000). In such non-kinematic models including this backreaction, the regular cyclic behavior

continues, but the cycle amplitude periodically falls below the threshold necessary for the

formation of the strong toroidal magnetic flux ropes that will rise through the convective

envelope to produce sunspots at the surface (Charbonneau, Blais-Laurier, and St-Jean, 2004).

This scenario is also thought to arise due to the interaction between two co-existing dynamo

modes of opposite parity with respect to the equatorial plane (Sokoloff and Nesme-Ribes,

1994; Tobias, 1997; Beer, Tobias, and Weiss, 1998; Charbonneau, 2005).

The second type of scenarios in which this backreaction of the Lorentz force is not taken

into account is based on intermittency, i.e. a transition between a regular cycle and unusu-

ally supressed epoch with a magnetic field too weak for sunspot formation (Charbonneau,

Blais-Laurier, and St-Jean, 2004). Alternation between these two distinct states happens

irregularly and can be the result of stochasticities inherent to the dynamo model or by ex-

ternal random noise (Platt, Spiegel, and Tresser, 1993). Intermittent behavior has been seen

in various solar dynamo models (see, e.g. Schmitt, Schuessler, and Ferriz-Mas, 1996; Moss

and Brooke, 2000; Ossendrijver, 2000; Charbonneau, 2001; Ossendrijver and Covas, 2003).

The different models demonstrate that solutions can display both types of modulation

in different parameter regimes and with the existing data, it is still not possible to make

a clear distinction between these two types of explanations. Reconstructions made with

cosmogenic isotope records across the Maunder Minimum (Beer, Tobias, and Weiss, 1998;

Poluianov, Usoskin, and Kovaltsov, 2014) demonstrate sustained cyclic activity (see Fig.

1.17) that could be explained by amplitude modulation. From another point of view, the

observed random occurence of Grand Minima and the variability of their durations are the

features more easily reproduced in intermittency-based models. The distinction is expected

to become clearer once the nonlinear relationship between sunspot formation and the total

strength of the dynamo-generated internal magnetic field is better understood.

Another essential aspect to consider in modelling Grand Minima is whether the dynamo

model is self-exited or not. An αΩ dynamo model is self-excited, while a model based on the

BL mechanism or flux tube instabilities for poloidal field regeneration is not. The crucial

difference is that in a non-self-excited model, if the primary dynamo cannot sustain itself at

very low magnetic field strengths, a secondary inductive mechanism must be implemented to

restart it again, which is the case for the model used in this study. Many solar cycle models,

whether self-excited or not, achieve the production of long-term variability, including Grand

Minima and Maxima, through forced stochastic fluctuations of the dynamo source terms.

Additionally, in proper parameter intervals, the distribution of Grand Minima duration and

42



waiting times constructed from simulation outputs are in approximate agreement with ra-

dioisotope records, showing exponential behavior with a memoryless, random trigger. Here

follows several dynamo model cases categorized by their specific behaviors.

In self-excited nonlinear solar dynamo models without a lower operating threshold on the

field strength/sunspot formation (see, e.g. Passos and Lopes, 2012; Cameron and Schüssler,

2017), amplification remains possible even if the magnetic field falls to very low levels. A

stochastic forcing (e.g. by the turbulent electromotive force) can push the dynamo solu-

tion into the subcritical regime and later back into the supercritical regime. This type of

amplitude modulation scenario is called on-off intermittency (Platt, Spiegel, and Tresser,

1993). It offers a simple explanation for Grand Minima but the operation of the dynamo

must be maintained close to the critical regime all the time. An example of this type is the

stochastically-forced, 2D kinematic axisymmetric mean field-like dynamo model of Kitchati-

nov and Olemskoy (2012) that runs in the mildly supercritical regime, so that Grand Minima

occurs through on-off intermittency. This model also includes a non-local surface source term

capturing the BL mechanism without adapting a lower field strength threshold on its poloidal

source term. For similar cases, see also Ossendrijver and Hoyng (1996); Moss et al. (2008);

Usoskin, Sokoloff, and Moss (2009).

In the case of non-self-excited nonlinear dynamo models of the solar cycle in which source

terms are subjected to a lower operating threshold on the magnetic field regeneration (e.g.

BL-type models), a different and more dynamical intemittency scenario known as in-out

intermittency is at play. Here the criticality threshold is defined with a bifurcation point

and the cycle amplitude is characterized by a finite basin of attraction (Devaney, 1989;

Charbonneau, 2013). In such a scenario, initial solutions starting above or below the limits

of the basin converge to B = 0, causing the cyclic activity to shut down. The recovery from

this situation necessitates another inductive term that can bring the dynamo back to its

operation regime. The desired situation can be achieved by magnetic noise or a turbulent

α-effect. The kinematic 2D mean-field-like model of Passos et al. (2014) is an example of this

sort using the BL mechanism for poloidal field reproduction, a solar-like differential rotation,

a quadrupolar meridional flow and a turbulent α-effect to boost the primary dynamo in

the absence of the BL source term (see, also Choudhuri and Karak, 2012; Olemskoy and

Kitchatinov, 2013).

There is also a non-kinematic version of self-excited dynamos which includes nonlinear

magnetic backreaction on large-scale flows during the regeneration of the poloidal component

from an existing toroidal field. This mechanism is characterized by the magnetic Prandtl

number which characterizes the ratio of momentum diffusivity (viscosity) and magnetic dif-

fusivity. In the low Prandtl number regime, such models can produce extreme amplitude

modulation such as those characterizing Grand Minima and Maxima. There is a variety of
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models falling under this category (see, e.g. Pipin, 1999; Kitchatinov et al., 1999; Brooke,

Moss, and Phillips, 2002; Bushby, 2006).

Finally, there are higher-level, 3D global magnetohydrodynamical simulations of turbu-

lent convection zone and dynamo action embodying many dynamo mechanisms and their

joint operation is capable of reproducing both extreme amplitude modulation and intermit-

tency (see, e.g. Augustson et al., 2015; Käpylä et al., 2016).

Among the different types presented above, our model (Lemerle and Charbonneau, 2017)

can be categorized as a kinematic non-self-excited dynamo model sharing similarities with

Passos et al. (2014). The initial condition is a dipole and it is the preferred solution, although

the parity is free to evolve in the simulations. Therefore, we would except to observe an in-out

type intermittent behavior. However, stochastic and deterministic effects due to nonlinear

coupling of two dynamo mechanisms in the kinematic model also leads to surprising effects

that are discussed more in depth in the paper presented in Chapter 2 (Ölçek et al. 2018,

submitted).

1.7. The 2X2D Hybrid Babcock-Leighton Solar Dynamo Model

The Lemerle and Charbonneau (2017) model from which we started is actually made

up of two sub-simulations and it is calibrated using real magnetographic data for activity

cycle 21. It is called 2 × 2D because it is based on the coupling of a surface flux transport

(SFT) simulation with a mean-field-like interior dynamo model. In other words, it couples

a two-dimensional simulation on a spherical surface, to a two-dimensional simulation on

a meridional plane, each simulation providing the source term required by the other. As

summarized in Lemerle and Charbonneau (2017), the numerical implementation proposed

for carrying out this BL scheme is in principle straightforward:

1. New bipolar magnetic regions are continuously injected into the STF (see Fig. 1.25)

at times, latitudes and longitudes. Fluxes and polarity are generated at the solar

surface through a (probabilistic) flux emergence algorithm based on the strength and

spatial distribution of the deep-seated magnetic fields in the FTD.

2. The surface transport equation is solved on the solar spherical surface and generates

the expected cancellation, decay, transport and specific features typically observed in

surface magnetograms.

3. The flux transport dynamo equation is solved in the meridional plane, using the

evolving results of the surface simulation as a time-dependent upper boundary con-

dition on the poloidal field. Shearing by differential rotation eventually builds up

strong toroidal magnetic fields deep in the convection zone;

4. The dynamo loop is closed by allowing this deep-seated magnetic structure to generate

the emergences and returns back to the beginning of this sequence.
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Fig. 1.26. Time-latitude butterfly diagram and pseuso sunspot number as a
function of time. This is a simulation result from the original version of the
model with the BL mechanism depicting a Dalton-like Grand Minimum in the
first two rows. After a while, the dynamo action does not sustain and dies off
as shown in the last two rows (Fig. 10 in Lemerle and Charbonneau (2017)).

1. turbulent diffusion at the surface and in the convection zone,

2. poleward meridional flow at the surface and an equatorward return flow transporting

the toroidal flux,

3. latitudinal differential rotation and the near-surface layer of radial rotational shear

and

4. flux emergence in the form of tilted bipolar magnetic regions treated as a source term

for the radial surface field.

Besides these principal features of the original model, we also needed an additional source

to elevate the magnetic energy when it is too low for the BL mechanism to operate. This

additional inductive mechanism is chosen to be the most likely candidate used in such cases:

the turbulent α-effect. Any other source of small-scale magnetic perturbation may do the

job. Fig. 1.26 demonstrate the behavior of the model without this secondary effect and how

the dynamo can go into a grand minimum state without coming out of it. This situation,
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α(r,θ; B) =
α0

1 + (B/B0)2
f(r,θ) (1.7.1)

where α0 is the amplification parameter of the α-effect, B0 is the threshold value for the

magnetic toroidal field and the f function expresses other dependencies to r and Bφ. This

remains an extreme oversimplification of the complex interaction between the flow and the

field that is known to characterize MHD turbulence, but it is widely used in solar dynamo

modelling (Charbonneau, 2010). Therefore, this effect is integrated into the model and it will

be elaborated more upon in §2.2.2. We present an in-depth analysis to explore the effects of

different values of α0 as well as other parameters influencing the behavior of the model one

by one in the Annex.

1.8. Presentation of the Study

A research article is currently in draft form for the purpose of presenting the analysis

results throughout this Master’s project and we anticipate to submit the paper to the in-

ternational research Journal Solar Physics in September, 2018. An advanced draft of this

paper is included as Chapter 2 of this thesis. As the first author of the article, I performed

all the analysis and produced all the figures presented and performed and developed most

of the analysis codes. My research director Paul Charbonneau, who is the second author

of this paper, made major contributions to the text and provided guidance and insights on

all the analysis conducted. The article is being written by two of us. The third author

Alexandre Lemerle is the principle creator of the Babcock-Leighton model used in this study

and provided assistance in the addition of the turbulent α-effect. Gabriel Longpré and Flo-

rence Boileau, undergraduate summer interns, are included as co-authors of this paper as

they conducted a "proof-of-concept" exploratory calculations in the summer of 2016 under

the supervision of Paul Charbonneau. Throughout this study, after modifying the spatial

zone of the α-dynamo, I conducted a thorough exploration of the model parameter space,

performed a large set of very long simulations and analyzed their outputs in order to under-

stand the physical underpinning and statistics of Grand Minima/Maxima produced by the

model. Some additional results of this thesis work are also presented in the Annex to this

thesis.

Results from this project have been presented in various workshops and conferences in

Solar Astrophysics and Space Physics research: the Canadian Solar Workshop 2017 at Sta-

tion de Biologie des Laurentides (QC), Solar Heliospheric and Interplanetary Environment

(SHINE) Conference 2017 in St-Saveur (QC), NASA Heliophysics Summer School 2017 in
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Boulder (CO, USA), Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) Confer-

ence 2018 in Toronto (ON), SHINE 2018 in Orlando (FL, USA) as well as at Laboratory for

Atmospheric and Space Physics (LASP) in Boulder (CO, USA) as an invited speaker.
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Chapter 2

GRAND ACTIVITY MINIMA AND MAXIMA

THROUGH DUAL DYNAMOS

Deniz Ölçek1, Paul Charbonneau1, Alexandre Lemerle2,

Gabriel Longpré1, Florence Boileau1

2.1. abstract

Reconstructions of past solar activity based on cosmogenic radioisotopes have reavealed

that the Sun spends a significant fraction (∼ 20 %) of its time in aperiodically recurring

states of so-called Grand Minima or Grand Maxima, namely epochs of strongly supressed

and markedly above-average levels of magnetic activity, respectively. The physical origin of

these episodes is not yet understood. In this paper we present a dual dynamo model of the

solar cycle, combining a dominant dynamo based on differential rotation shear and surface

decay of bipolar active regions, and a weak, deep-seated turbulent dynamo. The resulting

dynamo simulations are found to exhibit the equivalent of observed Grand Minima and Max-

ima. By adjusting the magnitude and saturation level of the secondary turbulent dynamo,

we can reproduce well the duration and waiting time distributions of Grand Minima and

Maxima inferred from the cosmogenic isotope record. The exit from Grand Minima episodes

is typically characterized by strong hemispheric asymetries, in agreement with sunspot ob-

servations during the 1645–1715 Maunder Minimum. In these simulations, Grand Maxima

can be unambiguously identified as a distinct dual-dynamo state resulting from constructive

interference between the two dynamos mechanisms operating within the simulation. This

interaction leads to the autonomous production of long quasiperiodicities in the millenial

range, commensurate with the Halstatt cycle. Such quasiperiodic modulation, readily pro-

duced through dynamical backreaction on large-scale flows in non-kinematic dynamo models,

is quite uncommon in a purely kinematic solar cycle model such as the one developed herein.

1Département de Physique, Université de Montréal, C.P. 6128, Succ. A, Montréal, Québec, Canada.
2Collège de Bois-de-Boulogne, 10555 av. Bois-de-Boulogne, Montréal, QC, H4N 1L4.



We argue that these long periodicities are set by the long diffusion time of the magnetic field

accumulating in the stable layers underlying the turbulent convection zone.

2.2. Introduction

Governing space climate in the heliosphere and structuring the Earth’s upper atmospheric

layer and magnetosphere, the Sun is a magnetically active star showing cyclic magnetic activ-

ity with a primary quasi-periodicity of approximately 11 years. The 400-years sunspot record

reveals that the activity cycle is far from being strictly periodic and that it exhibits long-

term fluctuations (Hathaway, 2009) on decadal to at least centennial timescales. This long

term variability includes multi-decadal episodes of very low activity, during which sunspots

vanish almost completely, such as the 1645-1715 Maunder Minimum (Eddy, 1976; Ribes and

Nesme-Ribes, 1993), as well as sustained period of markedly above-average activity, such as

the 1940-2000 Modern Maximum (Usoskin, 2013).

The cosmogenic isotopes such as 10Be in ice cores and 14C in tree rings allow to investigate

long-term solar variability much farther into the past (Beer et al., 1990; Usoskin, Solanki, and

Kovaltsov, 2007; Knudsen et al., 2009; Steinhilber et al., 2012; Usoskin et al., 2016b). These

radioactive isotopes are being produced through spallation reactions triggered by the entry

of energetic cosmic rays in the Earth’s atmosphere. The cosmic ray flux at Earth’s orbit, in

turn, is modulated by the strength of the heliospheric magnetic field. Hence the production

rates of these isotopes show a strong inverse correlation with solar activity (Usoskin, 2017).

Solar activity reconstructions based on radioisotope data (e.g. Solanki et al., 2004; Usoskin,

Solanki, and Kovaltsov, 2007) shows that the Sun went through several Maunder Minimum-

like and Modern Maximum-like episodes throughout the Holocene epoch.

Different data sets and analysis suggest the existence of two types of Grand Minima,

the short Maunder-like Minima, and the long Spörer-like Minima, spanning over a century.

Overall, the Sun spends between 17% and 27% of its time in a Grand Minimum state,

and between 8% and 22% time in a Grand Maximum state (see Usoskin, Solanki, and

Kovaltsov, 2007; Inceoglu et al., 2015; Usoskin et al., 2016b). Analyses of waiting time

distribution (WTD) between Grand Minima/maxima have so far remained inconclusive, with

both exponential and power-law WTD providing equally acceptable fits to the various data

sets; the former being indicative of a stationary memoryless random process (e.g. Usoskin,

Solanki, and Kovaltsov, 2007), while the latter would imply a physical process with long-term

"memory" (Usoskin et al., 2014; Inceoglu et al., 2015). These analyses unfortunately have

limited statistical significance, due to the small number of Grand Minima and maxima events

present in the extant cosmogenic isotope record (see Usoskin, Solanki, and Kovaltsov, 2007;

Usoskin, 2017; Vecchio et al., 2017). Such reconstructions nonetheless provide important

information regarding the mode of operation of the solar dynamo.
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Broadly speaking, dynamo-based explanations of Grand Minima can be subdivided into

two main classes: extreme amplitude modulation and intermittency. Under the amplitude

modulation scenarios, the same cycle operates continuously, but with large modulation of the

internal field strength unfolding on timescales longer than the primary cycle. Whenever the

internal field strength falls below the threshold required for the generation and destabilization

of magnetic flux ropes, sunspot production ceases and a Grand Minimum ensues. Support

for this interpretation can be found in residual cyclic activity observed in the 10Be record

during the Maunder Minimum (Beer, Tobias, and Weiss, 1998; Ribes and Nesme-Ribes,

1993). Intermittency refers to nonlinearly or stochastically-driven transition between distinct

dynamo regimes, with at least one being characterized by internal magnetic field strength

too low to generate sunspots. Support for this class of explanations comes primarily from

the observed lack of characteristic timescales in the duration and inter-event waiting times

of Grand Minima and Maxima. Not surprisingly perhaps, over the years many different

Grand Minima/Maxima scenario have been proposed based on (relatively) simple mean-

field like dynamo models (see §4 in Charbonneau, 2010, and references therein); (Pipin and

Kosovichev, 2011; Passos et al., 2014; Karak et al., 2015). Grand-Minima-like events have

also been observed in a few global magnetohydrodynamical simulations of convection and

dynamo action (e.g. Augustson et al., 2015; Käpylä et al., 2016).

Recent modelling work carried out in the context of Babcock-Leighton dynamo models

suggests that the primary source of cycle fluctuations is associated with the scatter in tilt

angles of bipolar magnetic regions (BMRs), which directly translates into variability of the

surface dipole moment building up in the descending phase of sunspot cycles (e.g. Svalgaard,

Cliver, and Kamide, 2005; Cameron et al., 2010; Yeates and Muñoz-Jaramillo, 2013; Jiang

et al., 2014; Nagy et al., 2017). This idea finds strong support in the good precursor potential

of the surface dipole at solar minimum (see Petrovay, 2010, and references therein), and in

the observed impact of large active regions with extreme properties on the evolution of

surface magnetism (Wang and Sheeley, 1991; Yeates, Baker, and van Driel-Gesztelyi, 2015;

Cameron and Schüssler, 2017).

In this paper, we use the recently-developed hybrid 2x2D BL solar cycle model of Lemerle

and Charbonneau (2017) to investigate the circumstances under which fluctuations in emerg-

ing active region properties, including but not limited to tilt angle variability, can reproduce

the duration and frequency of Grand Minima and Maxima inferred from the cosmogenic iso-

tope record. The lower operating threshold of Babcock-Leighton dynamos, associated with a

minimal internal magnetic field strength required to generate BMR emergences, requires the

introduction of a secondary inductive mechanism to "kickstart" the dynamo once fallen into

an extended Grand Minimum. Towards this end, we introduce a turbulent α-effect in the

lower reaches of the convective envelope, as described in §2. The resulting hybrid dynamo

succeeds in producing solar-like Grand Minima, as exemplified by the case study presented

53



in §3, in which we also examine the statistical characterization of durations and inter-event

waiting time distributions for Grand Minima and Maxima. One interested feature of this hy-

brid model is the intermittent production of epochs of elevated magnetic energy and sunspot

emergences, which we can identify as Grand Maxima in the simulation, associated with a

distinct mode of dual dynamo operation. We briefly summarize in §5 results from a large

set of similar simulations aimed at examining the dependence of Grand Minima/Maxima

characteristics on parameters of the model. We conclude in §6 by summarizing our most

salient results, followed by a critical discussion of their relevance to our understanding of

long timescale variations in the magnetic activity of the real Sun.

2.3. A hybrid solar dynamo model

2.3.1. A 2X2D Babcock-Leighton dynamo

In this section, we first describe the principal elements of the solar cycle model of Lemerle

and Charbonneau (2017, hereafter LC17), on which the foregoing simulations are based (see

also Lemerle, Charbonneau, and Carignan-Dugas, 2015). The model is a kinematic mean-

field-like dynamo relying on differential rotation shear to generate the large-scale toroidal

magnetic component, and on the surface decay of bipolar magnetic regions (the so-called

Babcock-Leighton mechanism) to regenerate the poloidal large-scale magnetic component.

The Babcock-Leighton mechanism is observed to operate at the solar surface, and is often

argued to be the primary mechanism driving the reversal of the solar dipole (Charbonneau,

2010; Karak and Cameron, 2016; Cameron and Schüssler, 2012).

The solar interior and photospheric plasma is non-relativistic and collision-dominated.

Therefore, inductive effects of flows at large spatial scales are expected to be well-described

by the single-fluid magnetohydrodynamical induction equation:

∂B
∂t

= ∇ × (u × B − η∇ × B), (2.3.1)

with η being the net magnetic diffusivity, including contributions from unresolved scales of

fluid motions, in the present case granulation, supergranulation, and more generally small-

scale turbulent flows associated with thermally-driven convection. The large-scale flow u is

considered given and steady, and only includes contributions from differential rotation and

large-scale meridional flows.

Formulated in spherical polar coordinates (r,θ,φ), the originality of the LC17 model

lies in solving concurrently two coupled geometrically simplified forms of eq. (2.3.1), each

in two spatial dimensions. The first is a 2D flux transport dynamo (FTD) model (see,

e.g. Dikpati and Charbonneau, 1999; Karak et al., 2015) for the temporal evolution of an

axisymmetric (∂/∂φ ≡ 0) magnetic field described by a toroidal component B(r,θ,t)êφ, and a
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toroidal vector potential A(r,θ,t)êφ, the latter defining the poloidal component via ∇×(Aêφ).

Equation (2.3.1) then separates into

∂Aφ

∂t
= −

1
̟

(uP · ∇)(̟Aφ) + η

(

∇2 −
1

̟2

)

Aφ, (2.3.2)

∂Bφ

∂t
= −̟(uP · ∇)

(

Bφ

̟

)

+ η

(

∇2 −
1

̟2

)

Bφ + ̟(∇ × (Aêφ))∇Ω +
1
̟

∂̟B

∂r

∂η

∂r
− B∇ · uP .

(2.3.3)

The second component is a conventional surface flux transport (STF) model (see also

Wang, Lean, and Sheeley, 2002; Baumann et al., 2004; Lemerle, Charbonneau, and Carignan-

Dugas, 2015; Whitbread et al., 2017), in which the large-scale non-axisymmetric surface

radial magnetic component BR(θ,φ,t) evolves in response to advective transport by (ax-

isymmetric) surface differential rotation and meridional fluid motions, diffusive transport by

supergranular diffusion, and with the emergence of bipolar active regions acting as a source

(SBMR):

∂BR

∂t
= −

1
Rsinθ

∂

∂θ

[

uθ(R,θ)BR sin θ

]

− Ω(R,θ)
∂BR

∂φ

+
ηR

R2





1
sin θ

∂

∂θ



 sin θ
∂BR

∂θ



+
1

sin2 θ

∂2BR

∂φ2



−
1
τR

+ SBMR(θ, φ, t).

(2.3.4)

In this expression SBMR is a surface flux source term associated with the emergence of

individual bipolar magnetic regions. The full dynamo model is constructed by coupling

these FTD and STF modules; at a given time step, integrating the azimuthal average of

the STF-generated BR(θ,φ,t) yields a surface latitudinal distribution of vector potential

A(R,θ,t) providing a time-evolving upper boundary condition on A in the FTD model. This

boundary condition effectively acts as a source term on the RHS of eq. (2.3.2). The internal

distribution of magnetic fields in the FTD module at a given time step, in turn, is used to

construct an "emergence function" giving the probability of triggering a BMR emergence in

the STF module at that time step. A constant scaling factor (denoted K in what follows)

establishing the slope of the linear relationship between emergence probability and emergence

function value, acts as the dynamo number for the model. Properties of emerging BMRs

(magnetic flux, pole separation, tilt with respect to the E-W line, etc) are randomly drawn

from statistical distributions constructed from magnetographic observations spanning cycle

21 (see Appendix in Lemerle, Charbonneau, and Carignan-Dugas, 2015, for details).

Two nonlinearities are included in the model, both inspired by calculations of the stability,

rise and emergence of magnetic flux ropes under the thin flux tube approximation (see D’Silva
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and Howard, 1993; Caligari, Moreno-Insertis, and Schussler, 1995; Fan, 2009). The first is a

lower threshold on the emergence function, below which the emergence probability vanishes.

The second is a reduction, with increasing internal magnetic field strength, of the tilt angle

between the line segment joining the two poles of the BMR and the E-W direction (as

embodied in Joy’s Law. See, e.g. McClintock and Norton, 2013). The latter is the only

amplitude-limiting nonlinearity built into the model, and is parametrized by the algebraic

expression:

γ(θ; B) = γ0(θ)
1

1 + (B/Bq)2
, (2.3.5)

where γ is the tilt angle and the Bq = 500 G sets the (diffuse) field strength at which

reduction of the tilt sets in. See §4.2 in LC17 for further details. Critical in what follows,

the lower threshold on the emergence function implies that the dynamo is not self-excited;

should the internal field strength fall below this threshold for whatever reason, emergence of

BMRs ceases, and then so does regeneration of the poloidal component, thus breaking the

dynamo loop.

As detailed in LC17, the full coupled model involves 18 adjustable parameters, which

were formally optimized to yield the optimal fit to the observed spatiotemporal distribution

of BMR emergences in cycle 21. The resulting best-fit model reproduces many features of

the observed solar cycle, including some that were not used to constrain the optimization,

notably the observed latitudinal variation of the surface meridional flow, as well as the good

correlation between the surface dipole at the end of cycle n, and the peak amplitude of

(pseudo-)sunspot number time series of cycle n + 1.

Running the LC17 model under its optimal parameter settings reveals a behavior that is

quite interesting in the context of Grand Minima events; every once in a while, the emergence

algorithm will inject in the simulation a high flux BMR with peculiar tilt angles, either

disobeying Joy’s law (trailing pole closer to equator than leading pole), or even, in more

extreme cases, so-called anti-Hale polarity patterns, i.e., an ordering of polarity opposite to

that normally characterizing BMR emerging in a given hemisphere and cycle. These events

are rare, but have the potential to derail the build-up of the surface dipole (Nagy et al.,

2017), the sine qua non condition for the production of the subsequent cycle. Such "rogue"

BMRs are also observed occasionally on the Sun and it has been demonstrated that a strong

BMR emergence with atypical properties can affect strongly the amplitude of the next cycle

and lead to episodes of unusually low/high activity (see Wang and Sheeley, 1991; Yeates,

Baker, and van Driel-Gesztelyi, 2015; Cameron and Schüssler, 2012).

Figure 2.1 shows a representative example of such an event where the dynamo completely

shuts off, for a reference run using the optimal parameter values established in LC17, with

dynamo number K = 0.48. The top panel shows a time-latitude diagram of the zonally-

averaged surface radial magnetic component (color scale), on which are superposed a few
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(e.g. Ossendrijver, 2000; Charbonneau, Blais-Laurier, and St-Jean, 2004; Hazra, Passos, and

Nandy, 2014; Passos et al., 2014; Sanchez, Fournier, and Aubert, 2014).

2.3.2. Adding a turbulent convective dynamo

The obvious candidate for a self-excited dynamo is turbulent induction associated with

cyclonic convection, as embodied in the classical α-effect (Parker, 1955; Krause and Raedler,

1980),(§3 in Charbonneau, 2014, and references therein). This introduces an additional

electromotive force (EMF) on the RHS of the induction equation (Eq. 2.3.1), of the form

〈u′×B′〉, where primes refer to small-scale flow and field fluctuations (unresolved on the scale

of u and B in Eq. 2.3.1), and the brackets denote averaging over an intermediate scales. For

nearly isotropic, nearly homogeneous and weakly nonlinear MHD turbulence, the turbulent

EMF can be expanded as

ǫ ≡ α〈B〉 + β∇ × B , (2.3.6)

where β amounts to a turbulent magnetic diffusivity, typically much larger than the micro-

scopic (Ohmic) magnetic diffusivity, and α is the celebrated α-effect of mean-field theory. If

rotational shear is assumed to dominate induction of the toroidal large-scale magnetic com-

ponent (the so-called αΩ dynamo approximation), then β simply replaces η in eqs. (2.3.2)–

(2.3.3), and eq. (2.3.2) picks up a source term on its RHS, of the form S = αB. This

can evidently lead to an exponential growth of the magnetic field, so it is common prac-

tice to introduce an ad hoc amplitude-limiting nonlinearity, often in the form of algebraic

α-quenching:

α(r,θ; B) =
αL(r,θ)

1 + (B/B0)2
, (2.3.7)

where B0 then sets the field strength at which the α-effect becomes quenched, and the

functional αL(r,θ) sets the spatial extent of the associated turbulent induction. In what

follows we use an α-effect concentrated in the bottom half of the convection zone, as defined

by the following spatial dependency:

αL(r,θ) = cos θ sin θ





α0R⊙

ηt







1 + erf





r − r1

d1











1 − erf





r − r2

d2







 , (2.3.8)

with r1 = 0.70R⊙, r2 = 0.85R⊙ and d1 = d2 = 0.050R⊙, erf(x) is the error function, and the

coefficient α0 sets the strength of the α-effect. In the dimensionless form of the governing

equations, this becomes subsumed in a secondary dynamo number Cα = α0R/ηt measuring

the strength of turbulent induction versus dissipation, ηt being the turbulent diffusivity value

within the convection zone. In what follows we consider negative values of the α-effect in

58





Babcock-Leighton mechanism. When the latter falls below threshold, here around t ≃ 100 yr,

the cycle soon stops, as on Fig. 2.1; but field induction by the weak turbulent α-effect

managed to bring the internal magnetic field back above the operating threshold of the

primary (dominant) Babcock-Leighton mechanism, so that "normal" cyclic behavior resumes

at t ≃ 290 yr, after a "failed restart" at t ≃ 180 yr.

Some relatively fine tuning of the strengths and operating thresholds of the two inductive

mechanisms is required to achieved the desired effect. If the turbulent α-effect is too strong,

it overwhelms the Babcock-Leighton mechanisms and the cyclic behavior is lost. Even for

the sample solution displayed on Figure 2.2, it occasionally leads to a surge of mid-latitude

activity, for example at t ≃ 20 and 320 yr. The effects of these (and other) parameter

variations are summarized in §2.6 below.

The bottom panel on Fig. 2.2 displays time series of magnetic energy integrated over

the solution domain. The blue curve correspond to the sample solution of the upper panels,

while the orange curve shows the behavior of a simulation with the α-effect set to zero,

but otherwise identical in its parameter settings. The exponential growth of the magnetic

field driven by the α-effect following shutdown of the primary Babcock-Leighton dynamo is

readily visible here. Note the two different slopes in the two quiescent intervals separated

by the failed restart; in the first, the dipolar mode is excited, while in the second it is

the more rapidly growing quadrupolar mode which brings the magnetic field back above

threshold. Note also how the simulation with the α-effect undergoes its first shutdown before

the pure Babcock-Leighton simulation, evidence again that the secondary α-effect dynamo is

altering the operation of the primary Babcock-Leighton dynamo, even under "normal" cyclic

operation.

Adjustable parameters in the reference LC17 solar cycle model, i.e., without a turbulent

α-effect, were formally optimized to minimize the difference between observed and simulated

butterfly diagrams. In order to retain the good fit to observations characterizing this refer-

ence simulation, our adopted strategy is to (1) retain all optimal values of LC17 for defining

parameters of the primary dynamo, allowing variations only within the error bounds result-

ing from the genetic algorithm-based optimization procedure; and (2) introduce as weak a

turbulent α-effect as possible, while strong enough to achieve restart of the primary dynamo.

Acting as the sole poloidal field regeneration mechanism, and for the differential rotation

and meridional circulation profile adopted in the LC17 model, the resulting turbulent αΩ

dynamo produces a steady magnetic field peaking at mid-latitudes in the bottom half of

the convection zone. In the linear regime the growth rates of the fundamental modes of

antisymmetric and symmetric equatorial parity are similar, with the latter dominating in

the nonlinearly saturated regime for Cα larger than about 0.28. Fig. 2.3 shows the growth

profile of the α-dynamo for various values of α0 as well as for two different (high and low) core

diffusivity values. All simulations are initialized with the same, very weak seed magnetic

60





P = −1 refering to a purely equatorially antisymmetric magnetic configuration, whereas

P = +1 indicates a purely symmetric configuration.

2.4. Case study: Distinct dynamo modes in a solar-like solution

With the α-effect now included as an additional inductive source, the LC17 model can

now reproduce a wide variery of dynamo behaviors, some including Grand Minima and/or

Grand Maxima, and others markedly non-solar. We first present and analyze in detail a

simulation with parameter values yielding patterns of Grand Maxima and Minima similar to

observational inferences based on cosmogenic radioisotopes. The defining parameter values

are identical to that of the reference solar solution presented in LC17, with the sole exception

of the (turbulent) envelope diffusivity ηt, for which a slightly reduced value is used, but still

well within the confidence interval returned by the optimization procedure. We extended

this simulation to 50,000 years, amounting to nearly 5000 activity cycles, in the course of

which occurred of order 102 Grand Minima and almost as many Grand Maxima. This "case

study" simulation is the focal point of this section, with the impact of parameter variations

on model behavior summarized afterwards in §2.6.

Fig. 2.4 shows a smoothed pseudo-sunspot number time series for this 50,000 years case

study simulation. In order to facilitate comparison with reconstructions based on cosmogenic

radioisotopes (e.g. Usoskin, Solanki, and Kovaltsov, 2007; Gleissberg, 1944; Mursula and

Ulich, 1998), we process our simulation data in a similar manner in order to extract secular

variations. A 10-yr cadence time series is first generated by constructing a modulation

envelope from cycle maxima, which is then interpolated on a fixed 10-yr step temporal grid.

A trapezoidal 1-2-2-2-1 smoothing filter is then applied to this time series, the result being

plotted as a solid line on Fig. 2.4. This smoothing will lead to a slight reduction in the

measured durations of Grand Minima. In some cases, such as on Fig. 2.2 two closely-spaced

Grand Minima separated by a brief "failed restart" will emerge as a single Grand Minimum.

The smoothing also precludes the reliable identification of Grand Minima or Maxima of

duration inferior to 30 years.

Again in a manner similar to the analysis of the radioisotope record, we construct on

Fig. 2.5 the histogram of decadal PSSN values, and fit it with a Gaussian (dashed line).

Usoskin, Solanki, and Kovaltsov (2007); Usoskin (2017) construct an equivalent histogram

from their radioisotope-based activity reconstruction, and choose the lower and upper points

of departure from Gaussian behavior as setting the two thresholds defining their Grand

Minima and Maxima. We follow this approach here, setting our lower threshold defining

Grand Minima
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Fig. 2.4. Smoothed pseudo sunspot number time series spanning 50,000 years,
for a solution with K = 0.32, α0 = −12 cm s−1, B0 = 210 G, BQ = 120 G,
ηc = 108 cm2s−1, ηt = 1011.8 cm2s−1). Starting from monthly PSSN values, a
modulation envelope is first constructed from cycle maxima and resampled on
a decadal cadence, and the resulting series smoothed with a trapezoidal 1-2-2-
2-1 filter. Blue and red areas denote Grand Minima and Maxima, respectively.
For ease of comparison, this plot was purposefully formatted to resemble the
reconstructed activity plot inferred from the cosmogenic radioisotope record,
as displayed in Fig. 3 of Usoskin, Solanki, and Kovaltsov (2007).
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or a few high-flux BMR emerging with a E-W tilt pattern deviating strongly from Joy’s Law

(see, Nagy et al., 2017). Recovery to "normal" cyclic behavior takes place through the agency

of the deep-seated turbulent α-effect dynamo, as exemplified on Fig. 2.2.

Under our modelling setup and parameter regime, a steady quadrupole is the fastest

growing mode for α-effect dynamo. As a consequence, the recovery from Grand Minima

begins with the buildup of quadrupolar internal magnetic field (see the fourth panel in

Fig. 2.6), transiting to a mixed-parity once the primary Babcock-Leighton dynamo begins

to reactivate, and recovering dipolar parity once normal primary dynamo operation has

resumed. The two Grand Minima on Figure 2.2 offer an example of this pattern, with

emergences starting to occur in the Northern hemisphere for a few decades before the failed

restart at t ≃ 170 yr, and true restart at t ≃ 290 yr. This stands in qualitative agreement

with sunspot observations during the Maunder Minimum (Ribes and Nesme-Ribes, 1993),

which are most readily interpreted as resulting from a mixed-parity dynamo state (Sokoloff

and Nesme-Ribes, 1994; Usoskin, Mursula, and Kovaltsov, 2000).

Parity modulation is most readily produced in nonlinear dynamo models including the

magnetic backreaction on differential rotation where the magnetic field backreacts on the

large-scale flow feeding the dynamo and it is a feature of a dynamical dynamo (see, e.g.

Tobias, 1997; Beer, Tobias, and Weiss, 1998; Küker, Arlt, and Rüdiger, 1999; Moss and

Brooke, 2000; Bushby, 2006). Here, in contrast, it materializes in a purely kinematic regime,

from the interaction of two dynamos mechanisms operating under distinct saturation levels.

In this regime of mixed parity, our solar cycle model can also transit to a dual-dynamo

state which is the model’s equivalent of Grand Maxima. Observationally, Grand Maxima are

harder to define than Grand Minima; in the case of the Maunder Grand Minimum, persistent

dearth of sunspots is a clear criteria, but for Grand Maxima "markedly above normal levels"

is quantitatively more ambiguous (Clette et al., 2014; Usoskin, 2017), the examplar being

the Modern Maximum (1940-2009 approximately). The reality of the Modern Maximum,

which is the only example directly verifiable with sunspot data, is considered established via

detailed observations of the Sun (Gibson, Zhao, and Fisk, 2011; Clette et al., 2014; Ziȩba

and Nieckarz, 2014; Usoskin et al., 2016a). Cosmogenic isotope data also reveals enhanced

activity during this period, as well as the existence of other similar events throughout the

Holocene (Usoskin, Mursula, and Kovaltsov, 2003; Solanki et al., 2004; Inceoglu et al., 2015).

Observationally, it remains unclear whether Grand Maxima correspond to a special state

of the solar dynamo, or rather to the upper amplitude of regular cyclic activity (Usoskin,

2017). In contrast, in our simulations Grand Maxima can be identified unambiguously on

the basis of the internal magnetic field configurations. This is detailed on Figure 2.6, which

closes in on a 300 yr segment of the case study simulation of §2.4, including a short Grand

Minimum followed, upon exit, by the onset of a Grand Maximum. During Grand Maxima,

the turbulent α-effect dynamo operates at elevated levels, almost on par with the
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2.5.1. Waiting Time Distributions (WTD)

The waiting time is defined as the time elapsed between two consecutive events. The

probability distribution of the waiting times for Grand Minima and Maxima are shown on

Figure 2.9. A stationary memoriless random (Poisson) process is expected to lead to an

exponential WTD, while departure from such a distribution may indicate non-stationary or

memory-bearing stochastic processes (Wheatland, 2000, 2003; Lepreti, Carbone, and Veltri,

2001; Usoskin, Solanki, and Kovaltsov, 2007; Solanki et al., 2004; Clauset, Shalizi, and New-

man, 2009; Inceoglu, Arlt, and Rempel, 2017). In particular, power-law WTDs are usually

indicative of scale-free temporal correlations. The black solid lines on Figure 2.9 are least-

squares fits to an exponential form, while the red line on the right panel is a power-law fit.

All histogram bins were used in these fits, the point being simply to ascertain the general

form of the two WTDs. Here an exponential fit yields an acceptable representation of the

Grand Minima WTD, while for the Grand Maxima WTD a power-law form yield a some-

what better fit, although from a strictly statistical point of view an exponential form cannot

be ruled out. Also statistically marginal but still noteworthy is the markedly elevated count

in the first bin of the Grand Minima WTD (note that the vertical axis is logarithmic), a

possible indication of mild clustering of events. These various properties are all qualitatively

similar with those charaterizing the corresponding distributions inferred from cosmogenic

isotope data (Usoskin, Solanki, and Kovaltsov, 2007).

Fig. 2.9. Probability density functions of waiting time distributions (WTD)
of Grand Minima (left) and Grand Maxima (right).

In our basic dynamo model, Grand Minima are triggered by one or more "rogue" active

region with high magnetic fluxes and tilts departing strongly from Joy’s Law (Wang and

Sheeley, 1991; Yeates, Baker, and van Driel-Gesztelyi, 2015; Nagy et al., 2017). Tilts are

ascribed to each emerging BMR by random draws from a stationary empirical distributions

built from cycle 21 magnetographic data (see Lemerle, Charbonneau, and Carignan-Dugas,

2015, Appendix, for details). Under these conditions an exponential WTD is in fact expected.

Exit from Grand Minima is a deterministic process, as it is set by the growth rate of the
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secondary turbulent dynamo, as well as the overall internal magnetic field distribution at

the time of onset. Event-to-event variations in the internal field distribution is ultimately

responsible for the relatively wide spread of Grand Minima durations characterizing our

simulations.

The non-exponential form of the Grand Maxima WTD is compatible with the idea that

the latter result from a mechanism that is not completely stochastic. We identified Grand

Maxima as resulting from a form of constructive interference between the primary dynamo

and the secondary turbulent dynamo. Changes in the internal distribution of magnetic fields,

in particularly at and below the base of the convection presumably driven by stochastic

effects, allow comparatively stronger quenching of the Babcock-Leighton mechanism, with

the inductive induction of the α-effect then becoming comparable, yielding a true dual-

dynamo. Support for this interpretation is found in the internal magnetic field distribution

(Figure 2.7), as well as in the varying equatorial parity in going from normal cyclic activity

to Grand Maxima state (Figure 2.6, bottom panel).

2.5.2. Quasi-Periodicity Analysis

Visual examination of Fig. 2.4 suggests that Grand Minima and Maxima do not recur

periodically, and that a Grand Minimum need not be necessarily followed by a Grand Max-

imum, and vice-versa. Nonetheless the presence of long periodicities or quasi-periodicities

cannot be ruled out on such a purely visual basis.

Figure 2.10 presents a Morlet wavelet analysis of the 50,000 yr smoothed PSSN time

series of Figure 2.4, performed using the WAIPY package (Calim Costa 2013). The right

frame shows a standard Fourier spectrum, as well as the Morlet spectrum resulting from

time integration of the Wavelet power distribution. Because the time series results from

1-2-2-2-1 smoothing of a series of decadal sampling, the primary 11-yr half-cycle is not

expected to show up with significant amplitude in these various spectra. The most striking

pattern in the Wavelet power distribution is observed in the period range of 1000–3000 years,

where intermittently recurring power structures are clearly visible, adding up to statistically

significant peaks in the time-integrated power spectra on the right.

With the existence of a recurring quasi-periodicity in the 1000-3000 yr range thus es-

tablished, a closer examination of Figure 2.4 reveals a tendency for groups of 3-4 extended

Grand Maxima to cluster with a commensurate spacing of 1000-3000 years, these clusters be-

ing separated by some 8000 years. This longer recurrence period corresponds, again roughly,

to the power structure at the longest periods accessible to the wavelet analysis of Fig. 2.10,

but a much longer simulation is required to firmly establish its quasi-period. This clustering

of Grand Maxima is consistent with the non-exponential form of their waiting time distri-

bution (viz. Fig. 2.9). There is again qualitative similarity with the cosmogenic radioitosope
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τ = (0.05 R⊙)2/ηc ≃ 3900 yr. One can conjecture that the buildup of this layer is triggered by

a cycle of particularly high amplitude, again resulting from stochasticity in MBR emergences,

pushing the system in the dual dynamo state persisting for a time of the order of the diffusive

decay time for the participating deep-seated magnetic layer. Support for this conjecture is

found in the fact that the power peaks at long periods in the wavelength transform shifts to

shorter periods as the core diffusivity is increased to ηc = 109 cm2 s−1, and vanish as as ηc

exceeds 1010 cm2 s−1.

2.6. Parameter Dependencies

The "case study" solution discussed in the preceding section was selected among a vast

number of simulations computed under different parameter regimes. The parameter being

varied, and their ranges of variations, are listed in Table 2. I. The first is the one free

parameter of the LC17 model, namely the dynamo number controlling the rate of BMR

emergences as a function of the internal magnetic field strength. The following three are

structural parameters of the basic LC17 model, and were only varied within the range allowed

by the optimization procedure. The last two characterize the strength and saturation field

strength for the turbulent α-effect. We have also explored varying the spatial distribution

for the α-effect, including a Northern Hemisphere positive α-effect distributed throughout

the convection zone. For the (limited) range of such solutions explored, non-solar behavior

invariably materializes in these cases.

The effects of changes in these parameter on the occurrence and characteristics of Grand

Minima and Maxima can be summarized as follows:

• As the primary dynamo number K increases, the primary dynamo spends more time

in "normal" cyclic operation, and the number of Grand Minima decreases. The BL-

dynamo operates at a high energy level and the frequency of Grand Maxima increases.

• At low K, the dynamo produces Grand Minima more frequently, operates at a low

energy level and Grand Maxima become very rare.

• The parameter α0 sets the overall magnitude of the alpha effect. Close to its critical

value(αcrit ≃ −9 cm s−1), turbulent induction cannot offset magnetic dissipation,

Tab. 2. I. Parametrized variables in the model.

Parameters Physical meaning Tested Interval Values in LC17
K primary dynamo number [0.15, 1.20] -
BQ threshold field for tilt quenching (G) [100, 500] -
log(ηc) diffusivity in the core(cm2s−1) [7, 11] 8.0±2.4

1.0

log(ηt) envelope turbulent diffusivity(cm2s−1) [11.0, 13.0] 12.0±0.2
0.4

B0 threshold toroidal field (G) [100, 1000] -
α0 secondary dynamo number(cm s−1) [-25, -9] -
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and the BL dynamo never restarts once it stops. Running significantly above critical

allows restart, but above ≃ −25 the turbulent dynamo dominates, and non-solar

behavior typically ensues.

• The parameter B0 is the toroidal magnetic field strength at which quenching of the

turbulent α-effect becomes important. The adopted algebraic quenching formula

(2.3.7) is entirely ad hoc. The key is to pick a value low enough that normal oper-

ation of the primary Babcock-Leighton dynamo strongly quenches the α-effect, but

still high enough to allow the α-effect to amplify the magnetic field back above the

emergence threshold of the Babcock-Leighton dynamo. This desired behavior materi-

alizes only in a fairly restricted range of quenching field strengths, otherwise non-solar

behavior again ensues. Within this range, lowering the threshold B0 lowers the over-

all magnetic energy during "normal" cyclic operation, and Grand Minima become

longer. On the other hand, increasing B0 leads to shorter and more frequent Grand

Minima.

• Increasing the core diffusivity ηc decreases the efficiency of the deep-seated α-effect

dynamo, and leads to longer quiescent episodes around the model’s critical operation

level when K is between 0.25 and 0.35.

2.7. Discussion and Conclusion

In this paper we have described the addition of a turbulent electromotive force, in the

form of the mean-field α-effect, into the kinematic 2 × 2D Babcock-Leighton solar cycle

model of Lemerle and Charbonneau (2017). This addition was motivated by the need to

"jumpstart" the Babcock-Leighton dynamo after the internal magnetic field falls below the

field strength threshold allowing the formation and emergence of bipolar magnetic regions.

In the resulting dual dynamo model, stochastic fluctuations in properties of emerging bipo-

lar magnetic regions can trigger extended periods of strongly reduced activity, the model’s

equivalent of Grand Minima, recovery to normal cyclic behavior being driven by the α-effect.

We also showed that interaction between the deep-seated, weak turbulent dynamo and the

surface Babcock-Leighton mechanism can generate a hybrid dynamo mode characterized by

extended periods of markedly above-average activity, which become the model’s equivalent

of Grand Maxima.

The many adjustable parameters in the Lemerle and Charbonneau (2017) models were

formally optimized to match the sunspot butterfly diagram, and these optimal values were

retained in most simulations reported upon in this paper. Two new parameters were intro-

duced to control the behavior of the turbulent α-effect: a dynamo number measuring its

strength, and a quenching field strength determining its saturation level. This secondary

dynamo number is set as low as possible so as to avoid perturbing the normal operation of

the primary Babcock-Leighton dynamo, the idea being that the secondary turbulent dynamo

73



makes a significant inductive contribution only when its Babcock-Leighton counterparts falls

below threshold. Straightforward as this may sound, it required a relatively fine tuning of

the saturation threshold for the α-effect. Nevertheless, after parameter tuning, the resulting

dual-dynamo model succeeded in generating irregularly occurring Grand Minima and Max-

ima, with distributions of durations and inter-event waiting times remarkably similar to the

corresponding distributions inferred from the cosmogenic isotope record.

Solar-like long timescale behavior does require here a relatively fine tuning of the pa-

rameters defining the strength and quenching of the α-effect. It is quite conceivable that

a more robust parameter set could be uncovered by repeating, with all parameters of our

dual dynamo model, the formal optimization procedure used in LC17. This being a very

computationally-intensive endeavour, we have opted to postpone it to a follow-up investiga-

tion, in the course of which a wider variety of spatial distributions for the turbulent α-effect

and meridional flow configurations will also be explored.

In the model, Grand Minima are triggered following the emergence of one or more high-

flux active regions having unusual tilt angles, derailing the buildup of the surface dipole and

leading to the subsequent shutdown of the primary cycle. This phenomenon is investigated

in detail in Nagy et al. (2017). Because active regions properties are drawn randomly from

stationary distributions of values built from observations, the onset of Grand Minima is

a truly memoriless random process, leading to an exponential distribution of inter-event

waiting time. Recovery from Grand Minima is achieved through the inductive action of the

low-amplitude turbulent α-effect, so that the mean duration of Grand Minima is set primarily

by the growth rate of the associated dynamo, itself determined by the adopted value for the

dynamo number: the higher this value, the shorter the mean duration of Grand Minima.

Because the secondary α-effect dynamo generates a steady, equatorially symetric magnetic

field in the parameter regime considered here, the exit from Grand Minima is characterized

by a mixed parity state, in qualitative agreement with sunspot observations in the second

half of the Maunder Minimum (Ribes and Nesme-Ribes, 1993).

Grand Maxima arise in the model as truly distinct a mixed-dynamo state of mixed par-

ity, in which both the deep-seated α-effect and surface Babcock-Leighton contribute more or

less equally to the regeneration of the poloidal large-scale magnetic field through a form of

constructive interference. Analyses of the simulation results reveal a non-exponential wait-

ing time distribution for such Grand Maxima events, suggesting that deterministic effects

operating on long timescales contribute to their temporal recurrence pattern. Detection of

spectral power in the 1000–3000 yr range, also recurring in the wavelet transform, supports

this idea. In our kinematic model, the only commensurate timescale is associated with mag-

netic dissipation in the stable, low magnetic diffusivity layer underlying the high diffusivity

"convection zone" at the base of which the α-effect is operating. This suggests that the
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slow dissipation of magnetic fields sometimes building up in this deep layer sets this long

timescale, over which the dominance of the deep-seated turbulent dynamo waxes and wanes.

We are not claiming that the specific hybrid dynamo model described here is a physi-

cally accurate representation of the real dynamo processes taking place in the solar interior.

However, our model does show that even in the kinematic regime, short-timescale random

fluctuations occurring naturally within the Babcock-Leighton mechanism can lead to system-

atic variations on very long timescales, including solar-like Grand Minima, Grand Maxima,

and quasi-periodicities in the millennia range, that resemble at least qualitatively inferred

solar behavior. The occurrence of long quasi-periodicities is particularly noteworthy, as this

is usually difficult to generate via stochastic driving alone, and is typically ascribed to deter-

ministic nonlinear magnetic backreaction of large-scale flows, particularly differential rotation

(see, e.g. Tobias, 1997; Beer, Tobias, and Weiss, 1998; Küker, Arlt, and Rüdiger, 1999; Moss

and Brooke, 2000; Bushby, 2006). Our results indicate that interaction between distinct

dynamo mechanisms can achieve the same effect, while generating statistical distributions of

Grand Minima and Maxima events consistent with solar activity reconstructions based on the

cosmogenic isotope record. Introduction of dynamical backreaction on differential rotation

is an obvious next step in further development of the model, as the aforecited non-kinematic

studies have shown that this can naturally lead to intermediate, Gleissberg-like centennial

quasiperiodicities, which our current model does not appear capable of generating.
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Chapter 3

CONCLUSION

In this study, the nature and the statistics of Grand Minimum and Maximum events by

studying the effects of various physical mechanisms have been explored. With the aid of a

kinematic solar dynamo model driven by BL and turbulent α-effect sources the characteristics

of long-term solar variability and dynamo processes behind them have been investigated.

3.1. Summary of the results

The first step of this project was to tackle a particular issue, namely the occasional

shut down of the dynamo action due to the randomness inherent in the emergence function,

characterizing the LC17 model. We demonstrate that a BL dynamo with a lower field

threshold on the sunspot formation requires a secondary inductive mechanism. In our case,

this boosting mechanism is selected to be turbulent induction, in the form of the α-effect

of mean-field electromagnetics (eq.1.7.1). The inclusion of this effect leads to the successful

re-start of cyclic activity and makes the exit from a grand minimum state possible. The short

and long-term behaviors of the model, which depend on the amplitude of this effect, along

with other tested parameters summarized in Table 2. I, are presented in the Annex, showing

how different combinations of these parameters can affect the duration and frequency of

Grand Minima and Maxima.

While our hybrid model can exhibit a wide variety of behaviors, it does include a parame-

ter regime in which the cyclic behavior is solar-like. This rather low-level, kinematic model is

capable of producing many features of the solar magnetic cycle as well as its multi-millenial

variations including Grand Minima, Grand Maxima and long-term quasi-periodicities similar

to the Sun. There appears to be three modes that the hybrid model can generate upon inclu-

sion of the secondary inductive mechanism modeled via α-effect: (1) Regular cyclic activity

during which the model is neither in a Grand Minimum nor a Grand Maximum state but

still exhibits short-term fluctuations where the BL dynamo dominates, (2) Grand Minima,

during which the BL dynamo shuts off and the α-dynamo starts re-building the magnetic



field for the BL mechanism to pick up once again, (3) Grand Maxima, during which both

the BL and α-dynamo contribute to field induction in a constructive manner.

The low-activity mode, i.e. Grand Minimum, is being triggered because of the stochastic

nature of the emergence function in the model (Nagy et al., 2017) and the inclusion of the

turbulent α-dynamo makes it possible to recover from such epochs. Due to the equatorially

symetric magnetic field that the α-dynamo generates during and at the exit of Grand Minima

in the model, we observe a mixed-parity, in accordance with sunspot onbservations indicating

a strong hemispheric asymmetry during the second half of the Maunder Minimum (Ribes

and Nesme-Ribes, 1993).

Grand Maxima in the model occur as a special mode of elevated sunspot number and

highly mixed parity in the large-scale internal magnetic field. During these periods, a BL

dynamo at the surface and a α-dynamo at the base of the convection zone operate jointly,

contributing more or less equally to the reconstruction of the poloidal field on large scales.

During their joint operation, there seems to be a regime in which they are able to create

enchanced activity phases without one of them taking over.

The model output presented in §2 spends 13.6% of its time in a Grand Minimum and

10.2% in a Grand Maximum state. The occurrence of Grand Minima follows an exponential

waiting time distribution, suggesting a memoryless process driven by the stochastic effects

(as discussed in §2.2.1). These results agree with 10Be and 14C data. The WTD analysis of

Grand Maxima, in contrast, hints for a deterministic effect playing a role in its occurrence,

i.e. a memory effect. As the WTD analysis conducted with reconstruction via cosmogenic

radionuclides is inconclusive, there is no firm observational conclusion with which to compare

our results regarding Grand Maxima in the model. They, however, seem to cluster as the

WTD suggests (§2.4.1) and our wavelet analysis (§2.4.3) shows that this clustering is related

to long-time scale quasi-periodicities, near the Hallstatt cycle (2,400 yr). This pattern has

also been pointed out by Usoskin et al. (2016b) in cosmogenic isotope data. The only

commensurate timescale in our kinematic dynamo model is related to magnetic dissipation

in the stable, low magnetic diffusivity layer below the high diffusivity "convection zone" at

the base of which the α-effect is operating. We argue that the slow dissipation of magnetic

fields, sometimes building up in this deeper layer sets this long timescale and is thought to

lead to these super-secular quasi-periodicities observed in the wavelet analysis. Furthermore,

the high-activity periods in the model show a mixed-parity state as a result of short-term

variations and the joint operation of two dynamo mechanisms, namely the BL dynamo and

the α-effect (§2.4.2).

We conclude that although it may not necessarily be an accurate representation of the

real Sun, it is encouraging to see even in the kinematic regime, that short-timescale ran-

dom fluctuations occurring naturally within the Babcock-Leighton mechanism along with

a secondary, symmetric dynamo mechanism can lead to variations on very long timescales,
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including solar-like Grand Minima, Grand Maxima, and quasi-periodicities in the millennial

range.

3.2. Future work

As a continuation of this work, many paths may be taken. Since it would be more

physically realistic to include the backreaction of the Lorentz force on the flows, a non-

kinematic version of this 2 × 2D model might offer interesting results to study the amplitude

modulation via this backreacktion mechanism.

Another compelling idea would be to use a multi-cellular meridional flow profile in-

stead of a single cell, as helioseismological measurements hint (Zhao et al., 2013). Although

Babcock–Leighton-type solar dynamo models operating with a steady, single-cell meridional

circulation in each hemisphere have been successful in reproducing many solar cycle features

so far, Helioseismology indicates that this may be an oversimplified picture (Belucz, Dikpati,

and Forgács-Dajka, 2015).

Furthermore, the analysis presented in this thesis may be repeated with a fluctuating

α-effect to study its impact as a mechanism of stochastic forcing in re-initiating the dynamo

action when the magnetic energy is too low to sustain the BMR production. Additionally,

a re-optimization of this dual-dynamo model, using the genetic algorithm-based procedure

developed by Lemerle, Charbonneau, and Carignan-Dugas (2015) and Lemerle and Charbon-

neau (2017) with new modifications will be a necessary, complementary step to be performed.

This re-optimization step on all the parameters included along with new ones would increase

the robustness of the simulation results.
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Appendix A

ANNEX

In this Annex, we present additional results from our set of simulation runs. §A.1 is dedicated

to the dependencies on the model parameters. Expanding on the summary presented in

§2.6, first we examine each of these parameters closely one at a time, then we introduce

a catalog of additional simulations (both solar-like and non-solar solutions), representative

of the various dynamo behaviors generated by the model. §A.2 includes two very long

(50,000 yr) simulation runs showing secular and super-secular variability in the model for

comparison with the case presented in §2.4-2.5. It also contains the duration histograms

and waiting time distribution analysis of Grand Minima/Maxima in these time series. §A.3

shows samples of typical Grand Minima and Maxima that our hybrid model can generate.

Finally, §A.4 includes a few wavelet analysis performed on different time series to explore

the effect of varying the core and envelope diffusivities on long-term quasi-periodicities in

the model.

A.1. Model Parameter Dependencies

The model parameters whose effects have been explored throughout different simulation

runs during this study are summarized in Table A. I. The behavior of the dynamo model

has been diverse exhibiting both solar-like and non-solar behavior. The solar-like regime is

limited within a relatively wide range of values for each of these parameters.

Tab. A. I. Parametrized variables in the model.

Parameters Interpretation Tested Interval Optimal Values
K primary dynamo number (dimensionless) [0.15, 1.20] -
B0 threshold toroidal field (G) [100, 1000] -
α0 secondary dynamo number (cm s−1) [-25, -9] -
BQ emergence/tilt quenching threshold field (G) [100, 500] -
log(ηc) diffusivity in the core (cm2s−1) [7, 11] 8.0±2.4

1.0

log(ηt) envelope turbulent diffusivity (cm2s−1) [11.0, 13.0] 12.0±0.2
0.4







Another feature that the model demonstrates is that, sometimes the BL dynamo goes

through failed restarts during a Grand Minimum episode like shown in Fig. A.6, although

the α-effect enhances the field strength until a point where the BL mechanism can pick up

and generate emergences, but the field strength may not be sufficient to go back to a normal

activity level. In these episodes, we observe low activity with a strong hemispheric asymmetry

where some emergences are present but only in one hemisphere in an alternating manner as

shown in Fig. 2.6 (in §2.3) and polarity oscillates from one hemisphere to the other in each

cycle as the BL mechanism tries to restart. This is a different kind of hemispheric asymmetry

than observed in the case of the Maunder Minimum in which there were emergences only in

the Southern Hemisphere towards the end of this episode.

In summary, if the BMR production stops, without α-effect, the field in both hemispheres

will slowly dissipate by diffusion. Hence the inclusion of this effect or a similar turbulent

mechanism to re-build the magnetic field is a necessity for exiting from Grand Minimum

episodes.

A.1.4. A Spatially wider α-effect

A negative α-effect in the Northern Hemisphere, such as used here, is believed to mate-

rialize only in the bottom 2/3 of the convection zone, while retaining the same latitudinal

dependency (Charbonneau, 2014). Here the radial extent of this dynamo mechanism is in-

creased by an order of 0.5R⊙. Hence, instead of the half bottom part of the convection

zone, during this exploration it operates at the 2/3 of it with r1 = 0.70R⊙, r2 = 0.90R⊙ and

d1 = d2 = 0.050R⊙.

This spatial expansion expectedly causes a decrease in α and provides stronger turbulent

induction for the same values of α0. This geometric adjustment leads to shorter Grand

Minima and Grand Maxima.

A.1.5. Parameter B0

The parameter B0 represents the toroidal magnetic field threshold value above which the

α-effect is suppressed. This cut-off is an ad hoc dependency to the field’s magnitude that

shuts down the α-dynamo when the field is strong, that is, when the BL dynamo is running

normally. This cut-off prevents the α-dynamo from disturbing the primary dynamo when

it operates in a regular regime. If B0 is too low, then the α-effect will stabilize under the

threshold for the production of BMRs, when the BL dynamo is stopped. However, if it is

too high, then the α-effect will be very active when the primary dynamo is running. This

can also lead to non-solar behaviors.
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A.1.9. Overall Model behavior

Here, various dynamo solutions are presented exploring a wide range of values for each of

the parameters introduced earlier, respecting the tested intervals that are determined during

the optimization of the model over cycle 21 (Lemerle, Charbonneau, and Carignan-Dugas,

2015; Lemerle and Charbonneau, 2017). All the solutions in this section are presented in the

same format. The top panel shows time series of pseudo-sunspot number (PSSN); the second

panel demonstrates time series of the radial field on the photosphere; the third panel is for

time series of total magnetic energy, and the bottom panel shows time-latitude diagram of

axisymmatric toroidal field at the core-envelope interface, r/R⊙ = 0.7.

This simulation catalog serves to illustrate the impact of changes in the primary dynamo

number K, the secondary dynamo α0, B0, BQ, ηc and ηt on the overall trend manifested in

the simulations, respectively.
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A.2. Very Long Simulation Runs

Here, two 50,000 yr simulation outputs (other than the one introduced in §2.3) are

presented to display the long-term effects that different combinations of parameters provide.

In Figs. A.31 and A.34, the threshold PSSN values are chosen according to the procedure

followed and described in §2.3. The two cases presented here are far from being solar-like

considering the percentage of time the simulations spend in in a Grand Minimum/Maximum

state and the mean durations of these epochs. However, the waiting time distributions hint

for a memoryless, Poisson-like process for the occurrence of Grand Minima and for some

memory effects for the case of Grand Maxima (see Figs.A.33 and A.36).
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A.3. Samples of Grand Minimum and Maximum

Fig. A.37. A typical Grand Minimum produced by the model, from the time
series in §2.3. From top to bottom: PSSN, surface radial field, total magnetic
energy, deep-seated toroidal field, parity as a function of time. Notice how the
surface radial field and interior toroidal field become dominantly quadrupolar
as the parity becomes close to 1 throughout the deep-phase of the Grand
Minimum (K = 0.32, α0 = −12 cm s−1, B0 = 210 G, BQ = 120 G, ηc = 108

cm2s−1, ηt = 1011.8 cm2s−1). A-xl





A.4. Wavelet Analysis

Performing Morlet wavelet analysis and constructing wavelet and Fourier spectra with

the help of the WAIPY package, we investigated secular and super-secular quasi-periodicities

that the model may be producing. Here are a few more examples complementary to the one

presented in Ölçek et al. (2018, submitted).

The composite figures including a period as a function of power and global wavelet

spectrum showing both Morlet, Fourier power spectra and 95% significance level for the

Morlet wavelet spectrum. While the Morlet analysis gives more precise spatial information,

the Fourier analysis offers precision in frequency. In the two cases shown in Figs. A.39

and A.40, all the parameters except the value of α0 differ from each other. Fig. A.39

demonstrates a case in which ηc has its lowest value and ηc has its largest within the interval

that the model is optimized. The result presented in Fig. A.40 is a similar case to the one

we closely examined in §2.3 except ηc is augmented one order of magnitude, to test the effect

of core diffusivity on long-term quasi-periodicities.
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