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Summary

The goal of this master’s thesis is to understand Linnik’s theorem, which gives us an upper

bound for the first prime number in an arithmetic progression. We will analyze and compare

two distinct methods: the classical approach and the pretentious approach. The first one

relies on zeros of Dirichlet L-functions. The second one is based on Halász’s theorem and

distance functions. It was developped by Granville annd Soundarajan.

Keywords: Linnik, zeros of Dirichlet L-functions, pretentiousness, Halász’s

theorem.
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Sommaire

Le but de ce mémoire est de comprendre le théorème de Linnik. Il nous donne une borne

supérieure pour le premier nombre premier dans une progression arithmétique. Nous allons

analyser et comparer deux méthodes distinctes: la classique et la prétentieuse. La première

est basée sur les zéros des fonctions L de Dirichlet. La seconde méthode repose sur le

théorème de Halász ainsi que sur la distance entre deux fonctions. Cette approche a été

développée par Granville et Soundarajan.

Mots clés: Linnik, zéros des fonctions L de Dircihlet, théorie prétentieuse des

nombres, théorème de Halász.
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Introduction

0.1. Background and motivation

A prime number is an integer greater than one which cannot be obtained by multiplying

two strictly smaller integers. Euclid was the first one to demonstrate the infinitude of

primes. He was a Greek mathematician who lived around 300 BC. His proof was published

in Elements (Book IX, Proposition 20). He supposed, on the contrary, that there were only

k <∞ primes. He demonstrated there would always be at least a (k + 1)-th prime number.

Hence, there are infinitely many of them.

Although Euclid was the first one to publish a proof, many mathematicians demon-

strated the infinitude of primes. Euler’s proof relies on the Fundamental Theorem of

Arithmetic, which states that every integer has a unique prime factorization. He used

the fact that the harmonic series diverges to prove that
∑

p prime 1/p diverges as well.

Paul Erdös [21] gave a third proof that also relies on the Fundamental Theorem of

Arithmetic. However, he also used square-free integers. In 1950, Hillel Furstenberg gave

a new proof using point-set topology. Other recent proofs were given by Pinasco, Whang, etc.

In 1644, Mengoli tried to understand the sum of
∑∞

n=1
1
n2 . In 1733, Euler was able to

approximate the value of the sum up to 20 decimals. Unfortunately, the convergence of this

series is very slow. In 1735, in order to find the exact value, Euler began to study infinite

sums. He defined, for s > 1:

ζ(s) =
∞∑
n=1

1

ns
.



He also demonstrated that

ζ(s) =
∞∏
i=1

1

1− p−si
.

In 1755, Euler stated an interesting hypothesis: for a positive integer d, there are

infinitely many primes of the form 1 + nd for a non-negative integer n. In 1765, Legendre

conjectured that for any two positive coprime integers a and d there are infinitely many

primes of the form a + nd, where n is a non-negative integer. Notice that Legendre’s

conjecture is a generalization of Euler’s hypothesis. In 1808, Legendre believed he had

proven it. Unfortunately, his proof relied on a false lemma. It said that for any two integers

m and n relatively coprime and k odd prime numbers not dividing n, there exists at least

one integer j between one and the k-th prime, denoted pk, such that −m+jn is not divisible

by any of those k numbers. Thus, Legendre’s conjecture remained unproven for many years.

In 1837, Dirichlet proved Legendre’s conjecture assuming n was a prime number. A year

later, he was able to prove it for every n. Legendre’s conjecture became Dirichlet’s theorem.

Furthermore, in 1841, Dirichlet was able to generalize his proof to complex numbers for

which the real part and the imaginary part are both integers. These numbers are called

Gaussian integers. Dirichlet’s demonstration linked Gauss’ theory to Euler’s ideas, because

it used modular arithmetic and analytic number theory. It was a fairly difficult proof which

required Complex Analysis and Cauchy’s Residue Theorem. Selberg was the first one to

find give an elementary1 demonstration in 1950.

Once Dirichlet’s theorem was proved, the next natural question was to count the number

of primes p up to x. We denote this by π(x). In 1791, Legendre conjectured that π(x) can

be approximated by
x

A log x+B
.

However, he did not specify the values of the two constants A and B. In 1808, he stated

that A = 1 and B = −1.08366. Gauss also considered this problem at the age of fifteen.

Eventually, Gauss conjectured the sequence of primes up to x has density x/ log x.

1In number theory, an elementary proof suggests we are not using Complex Analysis or Cauchy’s Residue

Theorem.
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This yields the following function:

li(x) =

∫ x

0

dt

log t
,

which is asymptotic to x/ log x. Indeed, using integration by parts, we have

li(x) =
x

log x

(
1 +

1

log x
+

2!

log2 x
+

3!

log3 x
+ ...+O

(
1

logk+1(x)

))
which means

lim
x→∞

li(x)

x/ log(x)
= lim

x→∞

(
1 +

1

log x
+

2!

log2 x
+

3!

log3 x
+ ...+O

(
1

logk+1(x)

))
= 1.

In two papers, published in 1848 and 1850, Chebychev tried to prove what will eventually

become the asymptotic law of the distribution of prime numbers:

lim
x→∞

π(x)

x/ ln(x)
= 1.

He was able to demonstrate a weaker version. He proved that if the limit above exists, then

it is necessarily equal to one. Moreover, he showed the ratio is bounded above and below

by two explicitly given constants near 1, for all sufficiently large x.

Another crucial development in the distribution of primes was given by Riemann in 1859.

In his memoir On the Number of Primes Less Than a Given Magnitude, Riemann explained

the link between the distribution of prime numbers and the zeros of the analytically

extended Riemann zeta function. He also suggested that it would be possible to use complex

analysis to approximate π(x).

Using the ideas outlined by Riemann, Hadamard and de la Vallée Poussin independently

proved the law of the distribution of prime numbers in 1896. The two proofs used complex

analysis. The crucial step was that ζ(s) 6= 0 for s = 1 + it, when t 6= 0.

3



Thus, the approximation

π(x) ∼ x

ln(x)
(x→∞)2

became the Prime Number Theorem. The initial demonstration used Complex Analysis.

Elementary proofs were given by Selberg and Erdös in 1949 and 1950 respectively.

One of the next natural questions is to count the number of primes p ≤ x in an arithmetic

progression. Thus, we define

π(x; q,a) = #{p ≤ x|p ≡ a mod q}.

Eventually, de la Vallée Poussin showed that

π(x; q,a) ∼ x

φ(q) log x
for q fixed, (x→∞). (0.1.1)

A quantitative version of de la Vallée Poussin’s proof implies that

π(x; q,a) ∼ x

φ(q) log x
for q ≤ (log x)1−ε, (x→∞). (0.1.2)

Next, Walfisz and Siegel were able to demonstrate

π(x; q,a) ∼ x

φ(q) log x
for x ≥ exp(qε), (x→∞). (0.1.3)

Notice that in (0.1.3) and (0.1.2), both x and q are allowed to go to infinity.

One of the next natural questions was to ask how big is the first prime in an arithmetic

progression [1]. Here is a well known approximation:

π(x; q,a) =
li(x)

φ(q)
+O(

√
x log x). 3 (0.1.4)

Many experts were quick to notice that for any positive integers m,q such that (m,q) = 1,

the least prime p congruent to m mod q, denoted P (m,q), is not very large.

Let

L(s,χ) =
∞∑
n=1

χ(n)

ns
.

2The reader not familiar with this notation may want to look at section 2.1.

3The reader not comfortable with this notation may want to look at the second section of Chapter 2.
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L(s,χ) is called a Dirichlet L-function and χ(n) is a complex-valued completely multiplica-

tive function. It is called a Dirichlet character. Its proprieties will be further explained in

Chapter 1: Prerequisites. Nevertheless, the Generalized Riemann Hypothesis states that

any non-trivial zero of L(s,χ) is on the line <(s) = 1
2
.

If we assume the Generalized Riemann Hypothesis holds, we can conclude from (0.1.4)

that

P (a,q) = O(φ2(q) log4(q)).

Indeed, we need
x

φ(q) log x
≥
√
x log x.

However, this is true if and only if

x ≥ φ(q)2 log4 x.

However, it is conjectured that P (a,q) � q1+ε [19]. By comparison, (0.1.3) gives the weak

bound P (q,a)� eq
ε
.

Before Linnik, the best unconditional lower bounds for the first prime p in an arithmetic

progression were extremely distant from the conditional ones. Linnik was able to prove the

following [23]:

Theorem 0.1.1 (Linnik’s theorem). There are effective and computable constants c,L ≥ 1

such that whenever (a,q) = 1, there exists a prime p ≤ cqL congruent to a mod q.

As soon as Linnik published his paper, the constant L, now known as Linnik’s constant,

was numerically estimated by several other mathematicians. Here is a table containing

some of the progress made through the years.The core of this memoir will be understanding

Linnik’s theorem. We will not try to find the best value possible for L.

5



Tab. 0.1. Approximation of L over the years

L ≤ Author Year of publication

10,000 Pan 1957

10,000 Pan 1957

5448 Pan 1958

630 Jutila 1971

550 Jutila 1970

168 Chen 1977

36 Graham 1977

20 Graham 1981

16 Wang 1986

13.5 Chen and Liu 1989

8 Heath-Brown 1990

5.5 Heath-Brown 1992

5.18 Xylouris 2009

5 Xylouris 2011

Moreover, suppose c0 > 0 is a computable constant for which L(σ + it, χ) 6= 0 when

σ ≥ 1 − c0
log q

, |t| ≤ 1. In an article written by Heath-Brown [2], it is stated that for a

constant c0 > 0 and an integer q, both large enough, we can deduce P (a,q) � q12/5+ε, for

any ε > 0, by excluding a certain type of zeros.4 The demonstration is based on zero density

estimates developped by Huxley and Jutila.

4These zeros are called Siegel zeros (exceptional zeros). They will be explained in detail later.
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0.2. Overview of Linnik’s life

Yuri Vladimirovich Linnik was born in 1915 in Ukraine. His mother was a school

teacher. His father, Vladimir Pavlovitch, got a job at the State Institute of Optics in

1926 before eventually being elected to the USSR Academy of Sciences. It is safe to

say science was always a part of Linnik’s life. After getting a high school diploma, he

worked as a lab assistant for over a year before deciding to pursue his education. He

studied physics for about three years in Leningrad before transferring to the state university

to learn more about mathematics. His supervisor for his doctorate was Vladimir Tartakovski.

Unfortunately, World War II changed everything. In the winter of 1939-1940, Linnik was

forced to serve in the Soviet Army. It was only in the spring of 1940, after being discharged,

that he was able to submit his thesis. He worked on the Representation of Big Numbers by

Positive Ternary Quadratic Form. It was very well received by the academic community.

However, his career took the back seat because of the German troops approaching the

city. He joined the People’s Guard to help defend it. Unfortunately, in September 1941,

the enemies started a siege that lasted more than 872 days. Millions of people starved to

death. Linnik would probably have been one of them had he not been sent to Kazan where

the USSR Academy of Sciences had been moved to because of the war. In 1944, after the

siege, he returned home and was appointed as professor of mathematics at Leningrad State

University. From that point on, he dedicated his career to organizing the chair of probability

theory and founding the famous Leningrad School of Probability and Mathematical Statistics.

He also worked on number theory and statistics.

He introduced ergodic methods in his first work on the analytic theory of quadratic

forms. In a 1941 paper, he introduced the large sieve method in number theory. He wanted

to sieve out many residue classes mod p from a set of integers, possibly increasing with

p. The goal was to verify Vinogradov’s hypothesis about the size of the smallest quadratic

non-residue modulo p.

7



Many mathematicians helped expand this new theory: Selberg (1950), Alfréd Rényi

(1950), Klaus Roth (1965), Enrico Bombieri (1965), Harold Davenport and Heini Halberstam

(1966). The large sieve method led Linnik to study Dirichlet L-functions. Density theorems

had been used from the 1930s to study primes and Linnik generalized these theorems

to L-functions. Using this, Linnik constructed a series of papers in which he showed

exceptional arithmetical consequences, including a variant of the Goldbach Conjecture. [4]

Furthermore, in 1950, he merged probability and number theory. He is the first

notable mathematician to use number theoretic tools to solve probability problems. It is

how the Behren-Fisher problem was demonstrated. In 1973, the authors of the Russian

Mathematical Survey wrote:

“In 1948-49, Linnik obtained results which contained, in principle, a complete solution

to two central problems in the theory of the summation of variables forming a Markov

chain. One of these, raised by Markov, the creator of the theory of chains, was: to find

the conditions for the application of the integral limit theorem to the case of a singular

chain. The first papers on this were written by Markov and Bernstein. Linnik substantially

improved and developed the methods of his predecessors and gave an almost definitive

solution of the problem for an inhomogeneous chain with an arbitrary finite number of

events. The second problem concerned the conditions under which the local limit theorem

for lattice type variables forming a chain holds. An important feature of the method used

in this paper, which was largely responsible for its success, is the use of arguments from the

study of trigonometric sums in the theory of numbers.” [4]

Linnik is the co-author of Characterisation Problems in Mathematical Statistics which

appeared in Russian in 1972. During his very productive career, he received many prestigious

awards: State Prize (1947), Lenin Prize (1970) and an honorary doctorate by the University

of Paris. He also held important positions. First of all, he was elected as the first president

of the Leningrad Mathematical Society in 1959 before being elected to the Leningrad City

Council six years later. He also wrote two volumes on number theory in the 80’s: The ergodic

method and L-functions and L-functions and the dispersion method. A volume has also been

published of his work on probability theory (1981) and on mathematical statistics (1982).

8



0.3. Structure of this memoir

The main goal of this memoir is to understand the value of the least prime in an

arithmetic progression. In 1944, Linnik showed there exists constants c,L > 0 such that the

least prime in the arithmetic progression a+ nd is strictly bounded by cdL.

To do so, we will understand two different proofs of the theorem: the classical proof and

a new, innovative, proof which is said to be pretentious. After giving a short introduction,

a few basic analytic number theory results will be explained.

The second section will give an introduction to pretentious number theory: how and

why it was developped, the distance function, etc.

The third section will explain a few results in sieve theory: the Fundamental Theorems

of Sieves and Selberg’s sieve.

In the fourth section, a summary of the two different methods will be given: the classical

approach and the pretentious approach.

The fifth section will give a detailed proof of the three principles: zero-free region,

log-free zero-density estimate and the exceptional zero repulsion.

The sixth section and seventh section will give complete demonstrations of Linnik’s

theorem using the classical and the pretentious approach. We will also explain how to

deduce Linnik’s theorem from the two respective methods.

The last section is an appendix which states results taken as black boxes.

9





Chapter 1

Prerequisites

1.1. Notation

Throughout this memoir, we will use the following asymptotic notation:

• f(x) ∼ g(x) (x→ x0) is equivalent to saying limx→x0
f(x)
g(x)

= 1.

• f(x) = O(g(x)) if there exists c > 0 and X > 0 such that |f(x)| ≤ c|g(x)| for every

x ∈ X. This symbol is usually used for error terms. We can also write f(x)� g(x)

to bound quantities.

• f(x) � g(x) if f(x) � g(x) and g(x) � f(x). It means f is proportionate to g.

Thus, the two functions have the same growth.

1.2. Convolution of two functions

The uniqueness of the prime factorization of any natural number yields many interesting

questions. We might want to understand the arithmetic function f : N → C associating a

positive integer to its number of distinct prime factors.



A function is multiplicative if f(mn) = f(m)f(n) when (m,n) = 1. If the equality

holds for any m,n ∈ N, then it is completely multiplicative. There are many examples of

multiplicative functions. Here are a few ones:

1.The Möbius function,

µ(n) =

 (−1)r if n is square free and has r prime divisors,

0 otherwise.

2. The Euler totient function,

φ(n) = #{1 ≤ a ≤ n : (a,q) = 1}.

3. The k-th divisor function,

τk(n) = #{(d1,d2,...,dk) ∈ Nk : d1d2 · · · dk = n}.

Now, suppose we would like to create new arithmetic functions using existing ones. As-

sume we have two arithmetic functions f,g : N → C. We define their Dirichlet convolution

f ∗ g : N→ C by

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
d|n

f(d)g(n/d).

For instance, with k = 2, we can see

τ2(n) = τ(n) =
∑
d|n

1 = (1 ∗ 1)(n).

Convolutions are commutative, associative and if f and g are multiplicative, then so is f ∗ g.

The unit of the convolution is the function:

1(n) =

 1 if n = 1,

0 if n > 1.

Hence, for any multiplicative function f , there exists a unique multiplicative function g such

that (f ∗ g)(n) = 1(n). We say that g is its Dirichlet inverse. For instance, the constant

function 1 has Dirichlet inverse µ(n).

12



Here is another way of writing this:

∑
d|n

µ(d) =

 1 if n = 1,

0 if n > 1.

As a direct consequence, if f = g ∗ 1, then g = µ ∗ f. This is called the Möbius Inversion

Formula.

Now, if we wish to study the distribution of primes, the Von Mangolt function Λ will be

very useful:

Λ(n) =

 log p if n = pk for some prime p and some integer k ≥ 1,

0 otherwise.

We can easily see log n = (Λ ∗ 1)(n), which means Λ = µ ∗ log by the Möbius Inversion

Formula.

1.2.1. Dirichlet L-series

To every arithmetic function, we associate its Dirichlet series

L(s,f) =
∞∑
n=1

f(s)

ns
,

defined for every s ∈ C for which the series converges. The most famous example is the

Riemann zeta function

ζ(s) = L(s,1) =
∞∑
n=1

1

ns
.

It can sometimes be useful to consider the shifted version of a Dirichlet series1:

Ly(s,f) =
∑

min{p|n}>y

f(n)

ns
.

When f(n) = χ(n), we get

Ly(s,χ) =
∑

min{p|n}>y

χ(n)

ns
.

1For instance, it is used in the proof of the Prime Number Theorem.
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The first thing we need to study are the values of s for which the series converges. Suppose we

let f(n) = an and s = σ+it. Dirichlet series have domain of convergence that are half planes:

• If L(σ0 + it0,f) converges absolutely, then L(s,f) converges absolutely for each s ∈ C

with <(s) ≥ σ0.

• If L(σ0 + it0,f) converges, then L(s,f) converges for each s ∈ C with <(s) > σ0.

Now, we can define the abscissa of convergence σc(L) of a Dirichlet series:

σc(L) = inf{σ ∈ R : exists t ∈ R such that L(σ + it,f) converges.}

The abscissa of absolute converge σa(L) can be defined in a similar way:

σa(L) = inf{σ ∈ R : L(σ,f) converges absolutely.}

Another interesting concept is the possibility to bound σa(L) using σc(L) :

σc(L) ≤ σa(L) ≤ σc(L) + 1.

However, it can sometimes be difficult to determine whether

∞∑
n=1

f(n)

ns

converges absolutely or not. Suppose f(n) is a multiplicative function. Assuming this, L(s,f)

converges absolutely if and only if the series∑
p prime
k≥1.

f(pk)

pks

converges absolutely. In that case, we can also write

∞∑
n=1

f(n)

ns
=
∏

p prime

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

If f(mn) = f(m)f(n) for every m,n, then

∞∑
n=1

f(n)

ns
=
∏

p prime

(
1− f(p)

ps

)−1
.
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An interesting property of Dirichlet series is that they can be analytically or mero-

morphically continued to the left of their half-plane of convergence. This can be done in

many ways, but usually we use the information given by the partial sums of their coefficients.

Suppose f : N→ C is such that∑
n≤x

f(n) = cx+ E(x)

with c ∈ C and

|E(x)| ≤Mxθ (x ≥ 1)

where θ ∈ [0,1), c ∈ C and M ≥ 1. Then,

L(s,f) =
∞∑
n=1

f(n)

ns

has a meromorphic continuation to the half plane <(s) > θ using the formula

L(s,f) =
cs

s− 1
+ s

∫ ∞
1

E(x)

xs+1
dx.

Using this, we can see that ζ(s) can be meromorphically continued to the half-plane <(s) > 0

with a simple pole at s = 1 of residue 1 by the formula

ζ(s) =
s

s− 1
− s

∫ ∞
1

{u}
us+1

du.

Hence, the asymptotic behavior of f determines the analytic behavior of L(s, f). We can

easily see that the converse is also true. It suffices to apply Perron’s inversion formula:

Let f : N→ C be an arithmetic function with

|f(n)| � nα logA(n)

for some constants α,A ≥ 0. For x,T ≥ 2 and c ≥ α + 1 + 1/ log x, we have∑
n≤x

f(n) =
1

2πi

∫
<(s)=c
|=(s)|≤T

L(s,f)
xs

s
ds+O

(
xc(log x)A+1

T
+ xα(log x)A

)
.
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Now, one of the key ideas of this master’s thesis will be to study the zeros of

L(s,χ) =
∞∑
n=1

χ(n)

ns
.

Thus, the next step is to understand in details the proprieties of χ(n).

1.3. Dirichlet characters

It is possible to rewrite the counting function π(x; q,a) using 1n≡a mod q. Hence,

π(x; q,a) = #{p ≤ x|p ≡ a mod q}

=
∑
p≤x

1p≡a mod q.

We will decompose the former in terms of Dirichlet characters. Indeed, we have

1n≡a mod q =
1

φ(q)

∑
χ mod q

χ̄(a)χ(n). (1.3.1)

In order to study primes in arithmetic progressions, we must explain the proprieties of

Dirichlet characters.

Let q be an integer. A Dirichlet character mod q is a completely multiplicative function

χ : Z→ C such that

• χ is q-periodic, which means χ(n+ q) = χ(n) ∀n ∈ N;

• χ(n) 6= 0 iff (n,q) = 1.

Here is an equivalent way of writing this. There is a homomorphism χ̃(n) : (Z/qZ)∗ → C

such that

χ̃(n) =

 χ̃(n mod q) if (n,q) = 1,

0 otherwise.

We will now discuss character theory on abelian groups (G, ·). Let Ĝ denote its |G|

characters. We know that Ĝ forms a group with respect to the usual multiplication of

complex-valued functions. Thus, we can define the group homomorphism χ : G → C \ {0}.
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Furthermore, Ĝ is a group with identity element 1G which equals the trivial character of

value one. This element is the principal character. All the other elements of the group are

called non-principal characters.

Now, we may notice that |G| = Ĝ. If G is cyclic, say, G = Z/dZ, then every character is

determined by its value at one so χ(1) has to be a d-th root of unity. However, if G is not

cyclic, we can write it as the direct product of cyclic groups:

G ∼= Z/d1Z× Z/d2Z× ...× Z/dkZ.

The next lemma allows us to conclude |G| = Ĝ when G is not cyclic:

Lemma 1.3.1. If (G, · ), (G1, · ) and (G2, · ) are abelian groups such that G = G1 × G2,

then the function

ρ : Ĝ1 × Ĝ2 → Ĝ

(χ1, χ2)→ ρχ1,χ2

where

ρχ1,χ2(g1,g2) = χ1(g1)χ2(g2),

is a group isomorphism.

Another important aspect of character theory is the existence of two orthogonality

relations:

For every g ∈ G,

1

|G|
∑
g∈G

χ(g) =

 1 if χ = 1,

0 otherwise.

For χ ∈ Ĝ,

1

|G|
∑
χ∈Ĝ

χ(g) =

 1 if g = 1,

0 otherwise.
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Let’s see how to get (1.3.1) using the two relations above:

We can assume (n,q) = (a,q) = 1, since otherwise the sum is 0 and then (1.3.1) holds

trivially. Now, we suppose a has a multiplicative inverse ā mod q. We now apply the second

orthogonality relation with g = nā. Notice that

χ(a)χ(g) = χ(ag) = χ(n).

So

χ(g) =
χ(n)

χ(a)
= χ(n)χ(a).

We know g = nā ≡ 1 mod q if and only if n ≡ a mod q, so we obtain the desired result.

The next two concepts we will work on are primitive characters and the conductor of

a character. Let q1|q. It is possible that a character mod q can actually be a character

mod q1 in disguise. The smallest such integer is called the conductor of χ. If g is the

smallest integer, then χ is said to be primitive of conductor q.

Here is a more formal definition:

The character χ1 mod q1 induces the character χ2 mod q2 if

χ2(n) =

 χ1(n) if (n,q2) = 1,

0 otherwise.

This means a Dirichlet character always induces itself. The conductor is the smallest

positive integer q1|q such that there exists a Dirichlet character χ1 mod q1 inducing χ.

Also, if the conductor of χ is q, then χ is called primitive.

Here are two ways of determining whether a Dirichlet character χ mod q is primitive or

not:

• The character χ is imprimitive if and only if there is some q1|q with 1 ≤ q1 < q and

χ(m) = χ(n) when m ≡ n mod q1 and (mn,q) = 1.

• The character χ is imprimitive if and only if there is some q1|q with 1 ≤ q1 < q and

χ(n) = 1 when n ≡ 1 mod q1 and (n,q) = 1.
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1.4. Dirichlet L-functions

Now, we have enough background to study the analytic proprieties of Dirichlet L-

functions. We can suppose χ is a primitive character of conductor q. If χ1 mod q1 is

imprimitive and is induced by χ mod q, we may write

L(s,χ1) = L(s,χ)
∏
p|q

(
1− χ(p)

ps

)
.

This means the theory of L−functions with primitive characters has a direct translation to

the theory of L-functions with a general character.

The first analytic propriety of Dirichlet L-functions is the functional equation. Let

ξ(s,χ) =

(
s(s− 1)

2

)1χ=1 ( q
π

) s+a
2

Γ

(
s+ a

2

)
L(s,χ)

with

a =

 1 if χ(−1) = 1,

0 if χ(−1) = −1,

where Γ is the gamma function. We define the following functional equation:

ξ(1− s,χ̄) =
ia
√
q

G(χ)
ξ(s,χ),

where

G(x) =

q∑
a=1

χ(a)e
2πia
q

and χ̄ is the multiplicative inverse of χ. ξ(s,χ) is an entire function. The functional equation

shows L(s,χ) has a symmetry around the line <(s) = 1/2.

The Euler representation of L(s,χ) means L(s,χ) 6= 0 for <(s) > 1. Hence, ξ(s,χ) does

not equal zero for <(s) > 1. Furthermore, by the functional equation, ξ(s,χ) does not vanish

for <(s) < 0.

The function Γ(s) is analytic on the complex plane except at the points 0, − 1, − 2, . . .

where it has simple poles. This means L(s,χ) = 0 when −2n, n ∈ N>0 for a = 0 and

−2n+ 1, n ∈ N>0 for a = 1. All these zeros are simple.
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They are called trivial zeros. All the other zeros are situated on the critical strip

{s ∈ C : 0 ≤ <(s) ≤ 1} and are non-trivial.

Experts have divided the non-trivial zeros into stripes. The most famous one was

named by Linnik himself, which he called the Siegel stripe [23]: 1 − c0
lnD
≤ σ ≤ 1. Here,

c0 is a small constant such that there are no zeros, except possibly one in the rectangle

1− c0
lnD
≤ σ ≤ 1, |t| ≤ D, where D is the modulus. This zero, if it exists, is called the Siegel

zero. Some mathematicians use the term exceptional zero instead. This will be further

explained at the beginning of Chapter 4: Summary of the different methods.

Throughout this memoir, the non-trivial zeros of L(s,χ) will be denoted by ρχ = βχ+iγχ.

The functional equation and the fact that L(s,χ) = L(s̄,χ̄) imply that if ρ is a trivial zero,

then so is 1− ρ̄.

Suppose we want to count the number of non-trivial zeros up to a given height. We will

then define

N(T,χ) = #{ρ ∈ C : 0 ≤ <(s) ≤ 1, |=(ρ)| ≤ T, L(ρ, χ) = 0},

where each zero ρ is counted with multiplicity. We may notice that when χ = 1, this

quantity counts the number of non-trivial zeros of ζ(s) in the rectangle above.

Usually, mathematicians want to find a good bound for N(T,χ). For example, it can be

shown that for T ≥ 0,

N(T,χ)

2
=

T

2π
log

(
qT

2πe

)
+O

(
log q(T + 2)

)
.

We now illustrate the importance of counting zeros of L(s,χ). Let

ψ(x;χ) =
∑
n≤x

Λ(n)χ(n).

By formula (5.65) in [19],

ψ(x,χ) = δxx−
∑

L(ρ,χ)=0
|γ|≤R

xρ − 1

ρ
+O

( x
T

log2(xq)
)
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where

δx =

 1 if χ = χ0,

0 otherwise.

Thus, we will see the above yields a formula for ψ(x,χ) in terms of the zeros of L(s,χ). This

formula will be key in the proof of Linnik’s theorem.
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Chapter 2

Pretentious number theory

2.1. How it all began

In 1859, Riemann published a nine page memoir in which he was able to prove that

questions on the distribution of zeros of ζ(s) are more or less equivalent to questions

on the distribution of primes. This man is recognized as the father of Analytic Num-

ber Theory. The methods he developed were pivotal in answering many arithmetic questions.

The theory of L-functions deals with multiplicative functions that are very special

and whose Dirichlet series have very rigid properties. A parallel theory of multiplicative

functions was pioneered in the second half of the twentieth century by Wirsing and Halász,

and was further developed by various other mathematicians, such as Delange, Daboussi,

Elliott, Erdős, Hall, Hildebrand, Montgomery-Vaughan and Tenenbaum, to name a few.

Their methods allowed them to handle very general multiplicative functions whose Dirichlet

series do not have as nice properties as Dirichlet L-functions.

Selberg’s and Erdös’ perspectives were also very inspiring. In 1948, Selberg gave an

elementary proof of the following formula:∑
p prime
p≤x

log2 p+
∑

p,q prime
pq≤x

log p log q = 2x log x+O(x). (2.1.1)

Due to its closeness to the Prime Number Theorem, it seemed impossible to demonstrate it

without the use of the zeros of ζ(s). However, Selberg was able to mute the influence of any

zero near the 1-line. Hence, it could be proved in an elementary way.



Using (2.1.1), Erdös was able to give a proof of the Prime Number Theorem. Not long

after that, Selberg also found a new demonstration.

In recent years, Granville and Soundararajan realized that a lot of this alternative

theory can be cast in a unified and conceptual way, using the concept of a multiplicative

function f mimicking the behaviour of another function g (we then say that f ‘pretends’ to

be g). They called their approach Pretentious Multiplicative Number Theory. Even though

the idea of multiplicative functions mimicking each other was implicit in the literature, the

attempt to systematically build a coherent theory out of it is novel and has opened up

new avenues, leading to exciting developments in number theory, such as in the study of

character sums [7] and of multiplicative functions in short intervals [6].

In 2009, Granville and Soundararajan attended a conference at Princeton University

given by Iwaniec. They were surprised to hear that Iwaniec, along with Friedlander, had

found a new proof of Linnik’s theorem without using zeros of L-functions. In light of this

new evidence, Granville and Soundararjan were convinced the new techniques they had

been working on could be used to prove every classical result. It was an enormous task.

First of all, they gave a new proof of Linnik’s theorem. Eventually, the two mathematicians

were able to retrieve all the results in Davenport’s book and in Bombieri’s large sieve book.

Unfortunately, their theory had two major flaws. The first one was that they were

unable to get a good error term for the Prime Number Theorem. This had a devastating

effect on everything else. For instance, it is impossible to prove the Bombieri-Vinogradov

theorem without having a good error term in the Prime Number Theorem. The second

flaw was the some steps in the original proof seemed to be “magical”. They did not have a

global understanding as to why their proofs worked.

These two problems were fixed by two other mathematicians. Koukoulopoulos was able

to obtain a strong version of the Prime Number Theorem. His result was just as precise as

the classical one.

24



The second issue was solved by Adam Harper when he gave a new proof of Halász’s

theorem. It made it much easier to understand the method Granville and Soundararjan had

developed.

At this point, Granville and Soundararjan believed they had built a strong theory

that could rival the classical theory. The pretentious approach to number theory does

not use zeros of ζ(s) or of any other L-function. It has great flexibility for a broad class

of functions. For many problems, it allows us to go further than with classical number theory.

2.2. Halász’s theorem

Halász’s theorem is at the core of pretentious number theory. To understand it, we must

define the notion of distance between two functions.

Intuitively, the distance between two functions f and g would be

D∗(f,g;x) =
∑
p≤x

|f(p)− g(p)|2

p
.

However, if f and g both have values on the unit circle, then |f(p)|2 = |g(p)|2 = 1. Using

this, notice that

|f(p)− g(p)|2 =
(
f(p)− g(p)

)(
f(p)− g(p)

)
= |f(p)|2 + |g(p)|2 − f(p)g(p)− f(p)g(p)

= 2− f(p)g(p)− f(p)g(p)

= 2 (1−<(fg)(p))

if f and g are real functions. We will use the later definition for reasons we explain below.

Definition 2.2.1. Suppose f(n), g(n) are two multiplicative functions vith values on the unit

circle. The distance between f and g is defined in the following way:

D2(f,g;x) =
∑
p≤x

1−<(fḡ)(p)

p
.
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Similarly, let

D2(f,g; [y,x]) =
∑
y<p≤x

1−<(fḡ)(p)

p
.

One of the key applications of the distance function is the triangle inequality:

D(f,g;x) + D(g,h;x) ≥ D(f,h;x). (2.2.1)

The next theorem, taken from [17], will give an alternative definition for D2(f,g; [y,z]):

Theorem 2.2.2. Let f be a completely multiplicative function such that |f | ≤ 1. Suppose

F (s) is its Dirichlet series. If s = σ + it, y ≥ 2 with σ > 1, then |Ly(s,f)| � 1 when

σ ≥ 1 + 1/ log y. However, when σ = 1 + 1/ log x ≤ 1 + 1/ log y, then

logFy(s) =
∑
y<p≤x

f(p)

p1+it
+O(1).

This theorem yields the following 3 +0 result:

D2(f,g; [y,x]) = log

∣∣∣∣Ly (1 +
1

log x
,f ḡ

)∣∣∣∣+O(1) (2.2.2)

We can now state a crucial theorem in pretentious number theory [22].

Theorem 2.2.3 (Halász). Suppose f(n) is a multiplicative function such that |f(n)| ≤ 1. If∣∣∣∣∣1x∑
n≤x

f(n)

∣∣∣∣∣ 6→ 0 as x→∞,

then there exists t ∈ R such that

D(f(n), nit,∞) <∞.

We thus see that if f has large partial sums, then it must be structured, in the sense

that it is nit-pretentious. The fact that multiplicative functions are structured is at the core

of pretentious number theory.

We can easily see how Theorem 2.2.3 fits into the proof of the Prime Number Theorem:

Prime Number Theorem is false ⇐⇒ 1

x

∑
n≤x

µ(n) 6→ 0 as x→∞

⇐⇒ D(µ(n), nit;∞) <∞ (Halász.)
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However,

D2(µ, nit;∞) =
∑
p prime

1−<(µ(p)pit)

p
=
∑
p prime

1−<(−p−it)
p

= D2(1,−nit;∞).

But since

D(µ, nit;∞) <∞,

then

D(1, n2it;∞) <∞.

Indeed, Using (2.2.1), we have

D(1, n2it;∞) ≤ D(1,−nit;∞) + D(−nit, n2it;∞)

= D(1,−nit;∞) + D(−1, nit;∞)

= D(1,−nit;∞) + D(1,−nit;∞)

= 2D(1,−nit;∞)

= 2D(µ, nit,∞).

This will imply

ζ(1 + 2it) =∞,

which is a contradiction unless t = 0. Note that D(µ,1;∞) = ∞ by Mertens’ theorem

(Theorem A.1.4) so this case cannot occur as well.

Another interesting idea is the link between exceptional zeros and pretentiousness. Sup-

pose β is an exceptional zero close to one. Thus,

L(β,χ) = 0 ⇐⇒ L(1,χ) =
∏
p

(
1 +

χ(p)

p
+ · · ·

)
� 1

log q
.

Roughly speaking, it is equivalent to saying χ(p) = −1 = µ(p). We can say, approximately,

that µ pretends to be χ. Hence, By Halász’s theorem,

D
(
µ, χ; [q, e

1
1−β ]
)
<∞.

However, not only the distance function is finite, but it is a small number.
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Now, suppose we have a function f such that f(pk) = 0 if p > x. Let us define s = c+ it

with c > 1 and c close to one. Suppose

F (s) =
∞∑
n=1

f(n)

ns
.

The link between the size of F (s) and the distance function will now be studied. Thus,

F (s) =
∑
n≥1

f(n)

ns

=
∏
p≤x

(
1 +

f(p)

ps
+
f(p2)

p2s
+ ...

)

≈ exp

(∑
p≤x

f(p)

pc
p−it

)

≈ exp

(∑
p≤x

f(p)

p
p−it

)

= exp

(
−
∑
p≤x

−f(p)

p
p−it

)

≈ log x exp

(∑
p≤x

1− f(p)p−it

p

)
.

So

|F (s)| = |F (c+ it)| ≈ (log x) exp
(
− D2(f(n), nit;x)

)
. (2.2.3)

Hence, the distance function helps understand the integrals in the classical theory. (i.e.

Perron’s formula.) It is crucial to understand the size of F (s). Its maximum, up to height

T , will occur when the distance between f and nit is minimal.

We will use (2.2.3) to define Mf (x,T ) :

Mf (x,T ) =
1

log x
max
|t|≤T
|F (c+ it)|

≈ exp

(
−min
|t|≤T

D2(f(n), nit;x)

)
� 1.

With this in mind, it is possible to define a second version of Halász’s theorem [22].

28



Theorem 2.2.4 (Halász’s theorem, encore). Let f be a multiplicative function on the unit

circle. Then,

1

x

∑
n≤x

f(n)�
(

1 + | logMf (x,T )|
)
Mf (x,T ) for T ≥ log x.

Moreover, we can use pretentious number theory to demonstrate exceptional zeros repel

each other. This will be a key element of this memoir.

Proof. Suppose ∑
n≤x

µ(n)χ(n) = o(x). (2.2.4)

By Halász’s first theorem, it means that

D(µ, χ;∞) =∞.

We want to get a lower bound for D(µ,χ;∞). However, we know

D(µ,χ;∞) =∞ ⇐⇒
∑
p≤x

1 + χ(p)

p
=∞,

which implies

|Ly(1 + 1/ log x)| � 1.

But

D2(µ, χ;x) =
∑
p≤x

1 + χ(p)

p
→∞ ⇐⇒

∑
p≤x

<(χ(p))

p
≥ − log log x+ ξ(x), (ξ(x)→∞)

⇐⇒ |Ly(1 + 1/ log x, χ)| � eξ(x)

log x
, (ξ(x)→∞).

Unfortunately, this is a very difficult bound to demonstrate directly. It explains why we

will prove (2.2.4) using (2.2.1). We now suppose D(µ, χ;∞) <∞. By (2.2.1),

D(µ, χ;∞) + D(µ, ψ;∞) ≥ D(χ, ψ;∞).

If we let ψ = χ̄, we get

D(χ, χ̄;∞) <∞

which implies

D(1, χ2;∞) <∞.
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In general, D(χ, ψ;x) will be large if χ 6= ψ. Thus, if χ is a complex number, then χ 6= χ̄.

So

2D(1, χ;x) = D(µ,χ;x) + D(µ, χ̄;x)

≥ D(χ, χ̄;x)

= D(1,χ2;x) is big.

It yields a contradiction if L(1,χ2) is small. Indeed,

D2(1, χ;x) =
∑
p≤x

1− χ(p)

p
→∞ ⇐⇒

∑
p

<(χ2(p))

p
≤ log log x− %(x), (%(x)→∞)

⇐⇒ |Ly(1 + 1/ log x, χ)| � log x

e%(x)
, (%(x)→∞)

which is equivalent to showing |L(1,χ2)| has an upper bound. χ2 is an even character. Letting

χ∗ = χ2, we can bound L(1,χ2) = L(1,χ∗) by using the usual lower bounds on L(1,χ∗). �

In practice, we do not know what happens on χ(p) for small primes so it makes sense to

consider instead sums of the form ∑
y<p≤x

χ(p)

p
.

2.3. Auxiliary results

Here are a few theorems related to the previous section. They will be used when we will

prove Linnik’s theorem using the classical and the pretentious approach. All the results of

this section are taken directly from [17].

Theorem 2.3.1. Suppose χ mod q is a non principal character. If y ≥ 2, s = σ + it and

y ≥ q(|t|+ 100), then

L(j)
y (s,χ)� (log y)j

when σ > 1− 1/ log y.
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Theorem 2.3.2. Suppose χ is a Dirichlet character mod q and y ≥ q2(|t| + 1)4 + 38.

Then, there exists c > 0 such that if σ ≥ 1 − c/ log y, then Ly(s,χ) � 1 when χ is not real

or when t ≥ 1/ log y.

Here is another important lemma which proves D(1, µ(n)nit; [y,Y ])� 1.

Lemma 2.3.1. Let f be a multiplicative function of modulus |f | ≤ 1 and F be its Dirichlet

series. Fix t ∈ R, y ≥ 2 and assume σ → F (σ + it) is continuously differentiable for σ ≥ 1

with |F (j)
y (σ + it, f)| � (log y)j uniformly for j ∈ {0,1} and σ ≥ 1. If Y = y1/|Fy(1+it)|, then∑

y<p≤Y

1 + <(f(p)p−it)

p
= O(1)

and ∑
u<p≤v

<(f(p)p−it)

p
= O(1)

for v ≥ u ≥ Y.

Theorem 2.3.3. [Zero repulsion]

Let χ1 mod q1 and χ2 mod q2 be two real, non principal characters that are not induced by

the same character. If Ly(1,χ2) ≥ Ly(1,χ1) for a y ≥ max{q1,q2}, then Ly(1,χ2) � 1.

Proof. It is clear that Ly(1,χ2) � 1. Hence, to conclude Ly(1,χ2) � 1, it suffices to prove

Ly(1,χ2)� 1. But since Ly(1,χ2) ≥ Ly(1,χ1), then 1
Ly(1,χ2)

≤ 1
Ly(1,χ1)

. So we can write

Y2 = y1/Ly(1,χ2) ≤ y1/Ly(1,χ1) = Y1.

By the definition of the distance between two multiplicative functions and Lemma 2.3.1, we

have

D(χj,µ; [y, Yj])� 1.

Indeed, the numerator is real and thus we can apply Lemma 2.3.1 for j = 1,2. The next step

is to apply (2.2.1). It yields

D(χ1,χ2; [y, Y2]) ≤ D(χ1, µ; [y, Y2]) + D(µ, χ2; [y, Y2])� 1.
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We bound D2(χ1,χ2; [y, Y2]) using (2.2.2) :

D2(χ1,χ2; [y, Y2]) = 2
∑

y<p≤Y2

1− χ1(p)χ2(p)

p

= 2 log
log Y2
log y

− 2 logLy

(
1 +

1

log Y2
,χ

)
+O(1)

≥ 2 log
log Y2
log y

+O(1)

and so

O(1) ≥ 2 log
log Y2
log y

+O(1).

The only way this can be true is if

log
log Y2
log y

� 1,

i.e. log Y2 � log y. Putting the definition of Y2 in the inequality above, we get

log
(
y1/|Ly(1,χ2)|

)
� log y

=⇒ 1

|Ly(1,χ2)|
log y � log y

=⇒ 1� |Ly(1,χ2)|.

The fact that χ2 is real concludes the proof. �

Here is one last important theorem.

Theorem 2.3.4. Let χ mod q be a non-principal real character. If Q = q1/Lq(1,χ), then

D2(µ, χ; [y,z])� log z

logQ
+ y−1/ log q (q ≤ y ≤ z ≤ Q).
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Chapter 3

Introduction to sieve theory

3.1. Fundamental theorem of sieve methods

First of all, around 300 BC, Euclid proved there are infinitely many primes. Around

50 years later, Eratosthenes of Cyren established a method to calculate primes quickly. He

observed that if n ≥ 2 is composite, then there is a prime number p ≤
√
n that divides n.

Using this fact, Eratosthenes developed an algorithm to count the number of primes up to

x. All the integers who do no pass through it are exactly the primes up to x. Recall

π(x) = #{p prime : p ≤ x}.

The main application of Eratosthenes’ sieve is to give an approximation for π(x). By the

Prime Number Theorem, we know

π(x) ∼ x

log x
(x→∞).

We find it interesting to compare this approximation to the one obtained by Legendre. Notice

that if an integer n ≤ x is not divisible by any prime p ≤ x, then either n = 1 or n is a prime

number in [
√
x,x]. Thus,

π(x) = #{n ≤ x : p|n⇒ p >
√
x} − 1 + π(

√
x)

= #{n ≤ x : p|n⇒ p >
√
x}+O(

√
x).



We can now apply the Inclusion-Exclusion principle to rewrite #{n ≤ x : p|n ⇒ p >
√
x}.

So

#{n ≤ x : p|n⇒ p >
√
x} = #

( r⋂
i=1

{n ≤ x : pi 6 |n}
)

= #{n ≤ x} −#
( r⋃
i=1

{n ≤ x : pi|n}
)

= #{n ≤ x} −
r∑
i=1

#{n ≤ x : pi|n}+
r∑

1≤i<j≤r

#{n ≤ x : pipj|n} ± ...

= bxc −
r∑
i=1

⌊
x

pi

⌋
+

∑
1≤i<j≤r

⌊
x

pipj

⌋
± ...

It is tempting to use the above and the fact that bxc = x+O(1) to conclude that

#{n ≤ x : p|n⇒ p >
√
x} ≈ x

∏
p≤
√
x

(
1− 1

p

)
.

However, Mertens showed

∏
p≤
√
x

(
1− 1

p

)
=

e−γ

log
√
x

(
1 +O

(
1

log
√
x

))
,

where γ is the Euler-Mascheroni constant. Using this in the results above yields

π(x) ∼ 2e−γx

log x
(x→∞).

But since 2e−γ > 1, then the Prime Number Theorem shows the Eratosthene-Legendre sieve

overestimates π(x). Legendre tried to improve the result. Indeed, for any z ∈ [1,x], he

observed that integers that have all their prime factors greater than z contain the primes in

the interval (z,x]. Thus,

π(x) ≤ π(x) + #{n ≤ x : p|n⇒ p > z}

≤ z + #{n ≤ x : p|n⇒ p > z}
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The Inclusion-Exclusion principle and Merten’s theorem yield

#{n ≤ x : p|n⇒ p > z} =
∑

p|d⇒p≤z

µ(d)
⌊x
d

⌋
=

∑
p|d⇒p≤z

µ(d)
(x
d

+O(1)
)

= x
∏
p≤x

(
1− 1

p

)
+O

(
2π(z)

)
� x

log z
+ 2z.

This means

π(x)� x

log z
+ 2z.

Taking z = log x
2

, he obtained the following bound:

π(x)� x

log log x
.

Once again, it is not good enough. However, we can at least conclude that almost all

integers are composite asymptotically.

The Prime Number Theorem and the proprieties of ζ(s) allow us to know quite a lot of

the behavior of π(x). Sieves are therefore not very useful for this problem. However, they

are crucial when the theory of L-functions is unapplicable. Here are few examples [17]:

• Are there infinitely many pairs of integers (n, n+ 2) which are both prime?

• Can any even integer greater than 2 be written as the sum of two primes?

• Is there a prime number between two consecutive squares?

• There are infinitely many many integers n such that n2 + 1 has at most 2 prime

factors (Iwaniec, 1980).

Altough the first three examples are still open, the last result was demonstrated approxi-

mately four decades ago using sieve theory.
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We will now define some notation which can be applied to any sieving problem. Let A

be a finite set of integers. We assume z ≥ 1 is a real number. We now suppose

P (z) =
∏
p<z

p

and

S(A,z) = #{a ∈ A : (a, P (z)) = 1}.

Now, if we want to count the number of primes in the interval (m2, (m + 1)2), we need to

take A = {n ∈ (m2, (m+ 1)2)} and z = m+ 1 [17].

In general, the Möbius Inversion Formula allows us to write

S(A,z) =
∑
a∈A

∑
d|(a,P (z))

µ(d) =
∑
d|P (z)

µ(d)|Ad|

with

Ad = {a ∈ A : a ≡ 0 mod d}

and d ∈ Z.

For many sets A, we know |Ad| is asymptotically equal to g(d)X. Here, X is a positive

number that approximates |A|. Furthermore, g : N→ [0,1] is a multiplicative function such

that 0 ≤ g(p) < 1, because 0 ≤ |Ad| ≤ |A1|. We suppose rd is the remainder term for this

approximation. So

rd = |Ad| − g(d)X.

This allows us to write

|Ad| = g(d)X + rd.

Here, g represents the probability that an element of A is divisible by d. In practice, we

also assume g(p) ≤ min{c, k/p} for some parameters c > 1 and k > 0. We can suppose g is

multiplicative because Ad1 and Ad1 will be roughly independent when (d1,d2) = 1.
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Finally, if you have true independence, the probability that an element of A has no prime

factors strictly smaller than z is

V (z) =
∏
p<z

(1− g(p)).

Inserting the formula for |Ad| in the definition of S(A,z) yields

S(A,z) = X
∑
d|P (z)

µ(d)g(d) +
∑
d|P (z)

µ(d)rd = X V (z) +
∑
d|P (z)

µ(d)rd.

Taking into account only the first term gives

S(A, z) ≈ XV (z).

Unfortunately, this is not true most of the time because
∑

d|P (z) µ(d)rd has too many terms.

We will now describe a concept that will play a major role in this memoir. It is called

the sifting dimension κ. Conceptually, it represents the average value of pg(p) as p runs

through all the primes.

Let I be an interval on the real line. If A = {f(n) : n ∈ I}, then κ also corresponds to

the average number of congruence classes that we need to ‘remove’ modulo each prime in

order to extract primes (or products of primes) from the indexing set I. In this memoir, we

will only use κ = 0,1. Sieving problems become harder as κ grows.

As seen earlier, one of the main issue of the Eratosthenes-Legendre sieve is that the error

term has too many terms. Viggo Brun was the first mathematician to break new ground in

this problem. To do so, he used combinatorial concepts. The Inclusion-Exclusion gives us

the following formula:∑
d|P (z)

ω(d)≤2j+1

µ(d)|Ad| ≤ S(A,z) = |A| −
∑
p1<z

|Ap1 |+
∑

p2<p1<z

|Ap1p2| −
∑

p3<p2<p1<z

|Ap1p2p3| ± · · ·

= |A|+
∑
j≥1

(−1)j
∑

pj<...<p2<p1<z

|Ap1p2...pj |

≤
∑
d|P (z)
ω(d)≤2j

µ(d)|Ad|.
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Notice that

V (z) = 1 +
∑
j≥1

(−1)j
∑

pj<...<p1

g(p1p2 · · · pj).

We are eventually able to obtain the following approximation:

Theorem 3.1.1. Let z ≥ 1 and r = 3.6 log |V (z)|. Then,

S(A, z) = XV (z)

(
1 +O

(
1√
r

))
+O

 ∑
d|P (z)

d≤zr, ω(d)≤r

|rd|

 ,

where ω(n) =
∑

p|n 1.

The interested reader might look at the details of this proof in chapter 20 of [18].

However, the second error term can sometimes be hard to control. We will now introduce

a new method that will help diminish this issue. Buchstab noticed that

S(A,z) = |A| −
∑
p<z

S(Ap,p).

This identity can be used to develop new combinatorial sieves. To do so, we define the

following sets

Πj ⊂ {(p1, p2,..., pj) : z > p1 > p2 > ... > pj primes} (j ≥ 1)

such that

Π2j+1 ⊂ Π2j−1 × {p < z}2 (j ≥ 1)

and

Π2j+2 ⊂ Π2j × {p < z}2 (j ≥ 1).

Also, suppose

D+ = {1} ∪ {d = p1p2...pr > 1 : (p1,p2,...,pj) ∈ Πj, 1 ≤ j ≤ r, j odd}

and

D− = {1} ∪ {d = p1p2...pr > 1 : (p1,p2,...,pj) ∈ Πj, 1 ≤ j ≤ r, j even}.

38



Hence, applying Buchstab’s identity several times, we get

S(A,z) = |A| −
∑
p1<z

S(Ap1 ,p1)

≤ |A| −
∑
p1∈

∏
1

S(Ap1 ,z)

= |A| −
∑
p1∈

∏
1

|Ap1|+
∑
p2<p1
p1∈

∏
1

S(Ap1p2 ,z).

Repeating this step many times gives us

S(A,z) ≤
∑
d|P (z)

µ+(d)|Ad|,

where

µ+(d) =

 µ(d) d ∈ D+,

0 otherwise.

We will now state the Fundamental Theorem of Sieve Methods, which will be very useful in

this memoir. To do so, we take

Πj =
{

(p1,p2,...,pj) : z > p1 > · · · > pj, p1p2 · · · pj <
D

pβi
, 1 ≤ i ≤ j, i ≡ j mod 2

}
with an appropriate value of β, depending on the dimension of the sieve. This is called the

β-sieve and it is due to Rosser and Iwaniec. Indeed, if

βκ =
2

e
1
2κ − 1

+ 1 < 1 + 4κ,

then we can approximate S(A,z) asymptotically when z = Xo(1).

Theorem 3.1.2 (Fundamental Theorem of Sieves). Let A be a finite set of integers which

satisfies |Ad| = g(d)X + rd and

V (w)

V (w′)
=

∏
w≤p<w′

1

1− g(p)
≤ K

(
logw′

logw

)κ
(3/2 ≤ w ≤ w′)

for some κ > 0, K ≥ 1, z ≥ 1 and u ≥ ε > 0. Then,

S(A,z) = XV (z)
(

1 +O(e−u log u+Oκ,K,ε(u))
)

+O

∑
d|P (z)
d≤zu

|rd|

 .
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On the other hand, if

V (w)

V (w′)
≤
(

1 +
C1

logw

)(
logw′

logw

)κ
(3/2 ≤ w ≤ w′)

for C1 ≥ 0, then

S(A,z) ≥ XV (z)

8
+O

∑
d|P (z)

d≤zβκ

|rd|

 .

In 1930, Titchmarsh used Brun’s sieve to prove that if q < x1−ε, then the following result

holds [24]:

Theorem 3.1.3 (Brun–Titchmarsh). Let π(x; q,a) denote the number of primes p ≡ a

mod q such that p ≤ x. Then,

π(x; q,a)� x

φ(q) log x
.

This bound represents the true order of magnitude of π(x; q, a) in the whole range

q < x1−ε. A stronger version of the Brun-Titchmarsh inequality, proven by Montgomery

and Vaughan, if often used in modern litterature.

Theorem 3.1.4 (Brun–Titchmarsh, encore). Let π(x; q,a) denote the number of primes

p ≡ a mod q such that p ≤ x. Then,

π(x; q,a) ≤ 2x

φ(q) log(x/q)
.

3.2. Selberg’s sieve

We will now introduce Selberg’s sieve. This method will be useful because it will al-

low us to build mollifiers which will be fundamental in the classical proof of Linnik’s theorem.

Although the β- sieve uses optimization, it is implemented step by step. In Selberg’s

sieve, the weights are optimized globally. The Selberg sieve was developed in the 40’s.

Selberg replaced the values of the Möbius function which arise by a system of weights which

are then optimized to fit the given problem. It enables us to get better upper bounds on

S(A,z).
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Let {λn} be a sequence of real numbers with λ1 = 1. With that in mind, we can write

1(n,P (z))=1 ≤

 ∑
d|(n,P (z))

λd

2

=
∑

d|(n,P (z))

∑
d1,d2∈N
[d1,d2]=d

λd1λd2 .

Thus, if |Ad| = Xg(d) +Rd, then

S(A,z) ≤
∑

d1,d2|P (z)

λd1λd2|A[d1,d2]|

≤ X
∑

d1,d2|P (z)

λd1λd2g([d1,d2]) +
∑
d|P (z)

|r[d1,d2]µ+(d)|

= XG+R,

where µ+(d) =
∑

d1,d2∈N
[d1,d2]=d

λd1λd2 .

We choose a value of λd that will minimize the first term of the sum in order to get the

best bound possible. To make sure the error term is as small as possible, we compose the

following condition: λd = 0 when d >
√
D and |λd| ≤ 1. The next step is to find a way to

optimize

G =
∑

d1,d2|P (z)

λd1λd2g([d1,d2])

=
∑

di|P (z),di≤
√
D

i∈{1,2}

λd1λd2g([d1,d2])

with λ1 = 1. We know that

g((d1,d2))g([d1,d2]) = g(d1)g(d2)

because if pν1‖d1 and pν2‖d2, then we have pmax{ν1,ν2}‖[d1,d2].

We let P = {p prime : g(p) 6= 0} and Pz = P∩ (1,z). Also, we assume that all the λ′ds are

supported on

Dz =
{
d ≤
√
D : d|

∏
p∈Pz

p
}
.
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We may write

G =
∑

d1,d2∈Dz

λd1λd2
g(d1)g(d2)

g((d1,d2))
.

We will now define

h(n) =
∏
p|n

(
g(p)

1− g(p)

)
> 0,

which allows us to write 1/g(n) = (1 ∗ (1/h))(n) with n being a square-free integer for which

g(n) 6= 0. Thus,

G =
∑

d1,d2∈Dz

λd1λd2g(d1)g(d2)
∑

m|(d1,d2)

1

h(m)

=
∑
m∈Dz

1

h(m)

∑
di∈Dz,m|di
i∈{1,2}

λd1λd2g(d1)g(d2)

=
∑
m∈Dz

1

h(m)

 ∑
d∈Dz

d≡0 mod m

λdg(d)

2

.

We make the following change of variable

ξm =
∑
d∈Dz

d≡0 mod m

λdg(d).

It yields ∑
m∈Dz

m≡0 mod d

ξmµ(m/d) =
∑
m∈Dz

m≡0 mod d

µ(m/d)
∑
f∈Dz

f≡0 mod m

λfg(f)

=
∑
m∈Dz

m≡0 mod d

λfg(f)
∑

m:d|m|f

µ(m/d)

= λdg(d).

This highlights the one-to-one correspondence between λd and ξm. Furthermore, since λd = 1,

we get ∑
m∈Dz

ξ(m)µ(m) = 1.

Assuming this, it will suffice to minimize

G =
∑
m∈Dz

ξ2m
h(m)

.
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Using Lagrange multipliers, the minimal value of G is obtained when ξm = cµ(m)h(m),m ∈

Dz, c constant. So

c =

(∑
m∈Dz

h(m)

)−1
.

This allows us to find the optimal value for λd:

λd =
1

g(d)

∑
m∈Dz

m≡0 mod d

ξmµ(m/d)

=
µ(d)

g(d)

∑
m∈Dz

m≡0 mod d
h(m)∑

m∈Dz h(m)
.

Moreover,

G =
∑
m∈Dz

c2µ2(m)h2(m)

h(m)
= c2

∑
m∈Dz

h(m) =

(∑
m∈Dz

h(m)

)−1
by the definition of c above. Furthermore, G and λd will allow us to build mollifiers. They

will help prove three principles on which the classical proof of Linnik’s theorem is based on.

Also, by the definition of λd above, we can easily see that |λd| ≤ 1. Finally, notice that

|µ+(d)| =

∣∣∣∣∣∣∣
∑

d1,d2∈N
[d1,d2]=d

λd1λd2

∣∣∣∣∣∣∣
≤

∑
d1,d2|P (z)
[d1,d2]=d

1

≤ τ3(d).

Putting everything together yields Selberg’s sieve.

Theorem 3.2.1 (Selberg’s sieve). Suppose A is a set of integers such that |Ad| = Xg(d)+Rd.

Assume D and z are positive real numbers. Let g be a multiplicative function with 0 ≤ g(p) <

1. If h(n) =
∏

p|n

(
g(p)

1−g(p)

)
, then

S(A,z) ≤ X

 ∑
s≤
√
D, s|P (z)

h(m)

−1 +
∑

d≤D, d|P (z)

τ3(d)|rd|.

Here is an application of Selberg’s sieve which will be useful in Chapter 5: proof of the

three principles.
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Theorem 3.2.2. Let

λd = θb = µ(d)ψ

(
log d

log z

)
,

where ψ ∈ C∞(R) such that

ψ(u) =

 1 if u ≤ logw
log z

,

0 if u ≥ 1,

and 0 ≤ ψ(u) ≤ 1 otherwise. Then, λd is the parameter λ(d) of a Selberg sieve with D =

{d ≤ R : µ2(d) = 1}.

We will give a heuristic explaination instead of a formal proof.

As defined previously,

λ(d) =
µ(d)

G

1

g(d)

∑
m≤R
d|m

h(m)µ2(d)

=
µ(d)∑

m≤R µ
2(m)h(m)

1

g(d)

∑
m′≤R/d

h(dm′)µ2(dm′)

because we supposed m = dm′. We know that dm′ being square-free is equivalent to d,m′

both being square-free with (d,m′) = 1. This means we can write

λ(d) =
µ(d)∑

m≤R µ
2(m)h(m)

h(d)

g(d)

∑
m′≤R/d
(m′,d)=1

h(m′)µ2(m′).

Furthermore, we have

h(m) ≈ τk(m)

m

so

h(p) =
g(p)

1− g(p)
≈ κ/p

1− κ/p
≈ κ

p
.

Hence, there exists a constant Ch such that∑
m≤R/d
(m,d)=1

µ2(m)h(m) ∼ Ch
g(d)

h(d)

(
log

R

d

)κ
.
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Putting everything together, we get

λ(d) =
µ(d)h(d)

g(d)

∑
m≤R/d
(m,d)=1

µ2(d)h(m)∑
m≤R µ

2(m)h(m)
≈ µ(d)

(log(R/d))κ

(logR)κ
.

This is equivalent to saying

λ(d) = µ(d)F

(
log d

logR

)
where

F (x) =

 (1− x)κ if 0 ≤ x < 1,

0 if x > 1.

This means

F

(
log d

logR

)
=

 (1− log d
logR

)κ if 0 ≤ log d < logR,

0 if log d > logR.

However, recall

λd = µ(d)ψ

(
log d

log z

)
,

where ψ ∈ C∞(R) such that

ψ(x) =

 1 if x ≤ logw
log z

,

0 if x ≥ 1,

and 0 ≤ ψ(x) ≤ 1 otherwise. Thus, we can choose

ψ(x) =


1 if x ≤ logw

log z
,

(1− x)κ if logw
log z

< x < 1,

0 if x ≥ 1,

So for every x ≥ 0, we have F (x+ logw/ log z) = ψ(x). This concludes our heuristic proof.
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Chapter 4

Summary of the different methods

4.1. Classical proof

The classical demonstration will be based on the three following principles [19].

4.1.1. Three principles

In this subsection, we will state the three principles and give an outline of their proofs.

Some steps will be skipped for now but will be further explained in Chapter 5: Proof of the

three principles.

Principle 1: [Zero free region]

There is a positive constant c1 such that
∏

χ mod q L(s,χ) has at most one real simple zero

that corresponds to a real Dirichlet character in the region

σ ≥ 1− c1
log(qT )

, |t| ≤ T.

Principle 2: [Log-free zero-density estimate]

There are positive constants c1, c2 such that if 1
2
≤ α ≤ 1 and T ≥ 1, then

Nq(α, T ) :=
∑

χ mod q

N(α, T,χ) ≤ c1(qT )c2(1−α)

where N(α, T,χ) is the number of zeros ρχ = βχ + iγχ counted with multiplicity in the

rectangle α < σ ≤ 1, |t| ≤ T and 1
2
≤ α ≤ 1.



Principle 3: [Exceptional zero repulsion]

There is a positive constant c3 such that, if the exceptional zero β1 exists, say L(β1,χ1) = 0

with

1− c1
log(qT )

≤ β1 < 1,

then the function
∏

χ mod q L(s,χ) has no other zeros in the region

σ ≥ 1− c3
| log(1− β1) log(qT )|

log(qT )
, |t| ≤ T.

The proof of Principle 1 is the standart zero-free region for Dirichlet L-functions. The

reader might want to look at Theorem 5.25 in Kowalski’s book [19].

Sketch of the proof of principle 2: Principle 2 will be proven using the constant

c = 47 but this method is capable of giving a much smaller constant by direct modifications.

• The first step will be to define a mollifier: λd. It is inspired by Selberg’s sieve.

• Defining

K(s,χ) =
∞∑
n=1

∑
d|n

λd

2

χ(n)

ns

and

Kx(s,χ) =
x∑

n=1

∑
d|n

λd

2

χ(n)

ns
,

we will prove |K(s,χ) −Kx(s,χ)| ≤ 1/2. For every ρ with L(ρ,χ) = 0, we will show

this implies ∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

χ(n)

nρ

∣∣∣∣∣∣ ≥ 1/2. (4.1.1)

Here, (4.1.1) will be our zero detector and w will be such that
∑

d|n λd = 0 when

1 < n ≤ w. Also, the value of x in the sum comes from the definition of Kx(s,χ).

• When χ = χ0, the Vinogradov zero-free region and the Huxley density estimate will

yield

N(α,T,χ0)� T 3(1−α). (4.1.2)

48



• Using (4.1.2), it will suffice to prove

R =
∑
χ 6=χ0

N(α,T, χ)� (qT )47(1−α) (4.1.3)

in order to conclude principle 2.

• The first step to prove (4.1.3) is to use (4.1.1) to get an upper bound for R. Thus,

R ≤ 2
∑

w<n≤x

∣∣∣∣∣∣
∑

d|n

λd

2∣∣∣∣∣∣
∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

χ(n)cχ(s)

ns

∣∣∣∣∣∣ (4.1.4)

where cχ(s) are numbers with norm one and S(χ) is the set of zeros of L(s,χ) in our

rectangle.

• We will show this implies

R2 ≤ 4UαV, (4.1.5)

where

Uα =
∑

w<n≤x

∑
d|n

λd

2

n1−2α

and

V =
∑
n

f(n)

∑
d|n

λd

2

n2α−1

∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)
χ(n)

ns

∣∣∣∣∣∣
2

,

where f is a non-negative function such that f(n) ≥ 1 for w < n ≤ x.

• A result by Granville, Koukoulopoulos and Maynard and partial summations will

allow us to prove

Uα � x2(1−α) (4.1.6)

for every 1/2 ≤ α ≤ 1. We will also demonstrate

V � R(qT )1−α. (4.1.7)

• Taking x = (qT )23, we will combine (4.1.5), (4.1.6) and (4.1.7) to get

R� (qT )47(1−α).

�
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Sketch of the proof of principle 3: We will use the method of zero detectors from

the previous proof on the function ζ(s)L(s+ δ1,χ1) rather than on ζ(s). Here, χ1 mod q is

the exceptional character associated to the exceptional zero of L(s,χ1), β1, which satisfies

δ1 = 1− β1 ≤ c1(log qT )−1.

However, the third principle will not be proven directly. The fact that
∏

χ mod q L(s,χ)

has no other zeros in the region

σ ≥ 1− log(c0/δ1 log qT )

92 log qT
, |t| ≤ T (4.1.8)

for an absolute constant c0 ≥ 2c1 will be enough to conclude the proof of principle 3. Here

is the strategy of the proof:

• Proving

1� x4(1−β1)δ1 log x (4.1.9)

yields (4.1.8) by isolating β1.

• We show (4.1.9) holds by proving

1� x4(1−β1)W (4.1.10)

and

W � δ1 log x, (4.1.11)

where

W =
∑

w<n≤x

ν(n)2ρ(n)

n

with ν(n) =
∑

b|n λb and ρ(n) =
∑

a|n
χ1(a)

aδ1
.

• In order to prove (4.1.10), we use zero-detecting polynomials to demonstrate∑
w<n≤x

|ν2(n)|ρ(n)

nβ
≥ 1

2
,

where ρ is a zero of L(s,χ). Applying Hölder’s inequality gives us

16

( ∑
w<n≤x

ν2(n)n1−2β

)2( ∑
w<n≤x

ν2(n)
ρ3(n)

n

)
W ≥ 1.

Also, by the proof of the second principle, we know∑
w<n≤x

ν2(n)n1−2β � x2(1−β).
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Combining everything gives us (4.1.10).

• In order to demonstrate (4.1.11), we will define W (s) =
∑∞

n=1
ν2(n)ρ(n)

ns
. Using Per-

ron’s formula, we are going to write W = ress=1W (s) log x
w

+ O
(

1
q

)
. Finding the

value of the residue and bounding W using sieves will give the desired result.

�

4.1.2. Results leading to the classical approach

We will now use these three principle to prove Linnik’s theorem. We will give an outline

of the proof of Linnik’s theorem using the classical method. It will be further explained

Chapter 6: Proof of the classical approach.

Once the three principles have been proved, Linnik’s theorem can be deduced from the

following theorem:

Theorem 4.1.1. Suppose η1 = c2
2 log q

and η2 = c3
| log(2δ1 log q)|

2 log q
. For x ≥ q4c2, then

ψ(x; q,a) =
x

φ(q)

(
1− χ1(a)

xβ1−1

β1
+O(cx−ηi/2)

)
.

Here we suppose the β1 term does not exist if there is no exceptional zero. Furthermore,

i = 2 if β1 exists and i = 1 otherwise.

Sketch of the proof of Theorem 4.1.1 .

• First of all, we need to find an approximation for ψ(x; q,a). To do so, we use the fact

that ψ(x; q,a) = 1
φ(q)

∑
χ mod q χ̄(a)ψ(x,χ). Formula (5.65) in [19] gives us

ψ(x,χ) = δxx−
∑

L(ρ,χ)=0
|γ|≤T

xρ − 1

ρ
+O

( x
T

log2(xq)
)
,

where

δx =

 1 if χ = χ0,

0 otherwise.

Putting everything together will yield

ψ(x; q,a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑

T=2m≤R

∑
L(ρ,χ)=0
T/2≤|γ|≤T

xρ

ρ
+O

(
x log x

R

)
.
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• From the above, we can easily see

ψ(x; q,a) =
x

φ(q)
− χ1(a)xβ1

β1
− ERc

where

ERc =
1

φ(q)

∑
χ mod q

χ̄(a)
∑

T=2m≤R

 ∑
L(ρ,χ)=0,ρ 6=β1
T/2≤|γ|≤T

xρ

ρ

+O

(
x log x

R

)
.

• It suffices to prove ERc � cx1−ηi/2

φ(q)
in order to conclude Theorem 4.1.1.

• To do so, we bound∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
2

T

√
xN∗q

(
1

2
, T

)
+

2 log x

T

∫ 1−ηi

1/2

N∗q (α,T )dα

using mainly the triangle inequality and summation by parts. Here, the ∗ symbol

means we are excluding the exceptional zero if it exists.

• The second principle will enable us to prove∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
4cx1−ηi/2

T
.

• Putting everything together gives us ERc � cx1−ηi/2

φ(q)
which is enough to conclude

Theorem 4.1.1.

�

We will explain how to deduce Linnik’s theorem from this in Chapter 6: Proof of Linnik’s

theorem using the classical approach.

4.2. Results leading to the pretentious approach

The classical approach requires in depth knowledge of the proprieties of Dirichlet L-

functions. The pretentious approach uses multiplicative theory. Although the details of the

proofs are very different, there are a lot of similarities at a conceptual and structural level.
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The classical proof of Linnik’s theorem is based on the principles we explained previously.

We will see how to obtain what we will call the Three pretentious principles. We will

compare the classical approach (c) with the pretentious approach (p).

(1) Principle 1

(c)
∏

χ L(s,χ) has at most one zero in

σ ≥ 1− c1
log qT

.

(p) There exists a character χ1 such that if χ 6= χ0, χ1, then Ly(s,χ) � 1, σ > 1, y ≥ q.

χ1 mod q is a real, non-principal Dirichlet character with Lq(1,χ) = min{Lq(1,χ) : χ

real and non-principal character mod q}. Here, clearly, χ1 will be the character

associated to a Siegel zero. It is an exceptional character. Let us define Cq = {χ :

χ 6= χ0, χ1 mod q}. Furthermore, we will see in the next section that one of the main

ideas of the proof is demonstrating

φ(q)
∑
y<p≤z

p≡a mod q

1

p
=
∑
y<p≤z

1 + χ1(ap)

p
− ERp +O(1)

where

ERp =

∫ z

y

∑
χ∈Cq

χ̄(a)
L
′
y

Ly

(
1 +

1

log u
,χ

)
du

u log2 u
.

This means the value of
∑

y<p≤z
p≡a mod q

1
p

depends on the value of our exceptional

character. Notice that the sum only runs on χ 6= χ0, χ1 so bounding ERp will be

fairly easy because it excludes the Siegel zero so there are no potential problems.

For every χ 6= χ0, χ1, then L(s,χ) � 1 for σ > 1, y ≥ q. This means that one has

constructed a “pretentious zero-free region”, which is equivalent to the first principle.
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(2) Principle 2

(c)

Nq(α, T ) =
∑

χ mod q

= N(α, T,χ) ≤ c(qT )c2(1−α)

for 1
2
≤ α ≤ 1 and T ≥ 1.

(p)

Lemma 4.2.1. If y ≥ q2 > 1 and 1 < σ ≤ 1 + 1
log y

, then

∑
χ mod q

∣∣∣∣∣∣∣
∑
n>y

P−(n)>y

µ(n)χ(n)

nσ

∣∣∣∣∣∣∣
2

� 1

(σ − 1)2 log2 y

and

∑
χ mod q
χ6=χ0

|L′y(σ,χ)|2 � log2 y.

Proof. In order to obtain the first estimate, orthogonality is employed. So

∑
χ mod q

∣∣∣∣∣∣∣
∑
n>y

P−(n)>y

µ(n)χ(n)

nσ

∣∣∣∣∣∣∣
2

= φ(q)
∑
n1>y

P−(n1)>y

µ(n1)

nσ1

∑
n2>y

P−(n1)>y,n1≡n2 mod q

µ(n2)

nσ2
.

By the Fundamental Theorem of Sieves (Theorem 3.1.2), the following set can

be approximated:

#{n ≤ x : n ≡ a mod q, P−(n) > y} � x

φ(q) log y

for x ≥ y ≥ q2. Now, by partial summation, we can see

∑
n2>y, P

−(n2)>y
n1≡n2 mod q

µ(n2)

nσ2
� 1

φ(q)(σ − 1) log y
. (4.2.1)
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Thus,

∑
χ mod q

∣∣∣∣∣∣∣
∑
n>y

P−(n)>y

µ(n)χ(n)

nσ

∣∣∣∣∣∣∣
2

= φ(q)
∑
n1>y

P−(n1)>y

µ(n1)

nσ1

∑
n2>y

P−(n1)>y,n1≡n2 mod q

µ(n2)

nσ2

� φ(q)
∑
n1>y

P−(n1)>y

µ(n1)

nσ1

(
1

φ(q)(σ − 1) log y

)

= φ(q)

(
1

(σ − 1) log y

)(
1

φ(q)(σ − 1) log y

)
=

(
1

(σ − 1) log y

)2

.

The last sum is approximated by taking q = 1 in (4.2.1).

The proof of the second estimate can be found in [17]. �

These last steps give us the second principle. One of the key ideas of the proof

of the classical second principle is to construct Dirichlet polynomials which serve

as zero detectors. Eventually, we get a bound for the number of zeros counted

with multiplicity in the rectangle α < σ ≤ 1, |t| ≤ T. In order words, it is known

that for 1
2
≤ σ ≤ 1− c

log qT
there is at most one exceptional zero. However, if we

let σ = 1 − C
log qT

, for c < C, the log-free zero density will show that #{χ that

have a zero in that region } = O(1).

To understand why Lemma 4.2.1 is analogous to a log-free zero-density estimate,

consider the trivial bound∣∣∣∣∣∣∣
∑
n>y

P−(n)>y

µ(n)χ(n)

nσ

∣∣∣∣∣∣∣ ≤
∑
n>y

P−(n)>y

1

nσ

≈ 1

(σ − 1) log y
.

The first sum above will be this big only if Ly(1,χ) is very small. To this end, let

N(δ) = #

{
χ :

∣∣∣∣∣∣∣
∑
n>y

P−(n)>y

µ(n)χ(n)

nσ

∣∣∣∣∣∣∣ ≥
δ

(σ − 1) log y

}
.
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Thus,

N(δ)

(
δ

(σ − 1) log y

)2

≤
∑

χ mod q

∣∣∣∣∣∣∣
∑
n>y

P−(n)>y

µ(n)χ(n)

nσ

∣∣∣∣∣∣∣
2

= O

(
1

(σ − 1) log y

)2

.

So

N(δ)� 1

δ2
.

There are a finite number of “bad characters”. This is meta equivalent to saying

there is a bound for the number of zeros, which is the second principle.

(3) Principle 3

(c) There exists c3 > 0 such that if L(β1,χ1) = 0 with 1− c1
log(qT )

≤ β1 < 1, then the

function
∏

χ mod q L(s,χ) has no other zeros in the region

σ ≥ 1− c3
| log(1− β1) log(qT )|

log(qT )
, |t| ≤ T.

(p) In the case of an exceptional character, we can sieve for primes using a sieve of

dimension o(1). The analogy is seen more clearly by examining the proof of the

third principle:

∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

ρ(n)
χ(n)

ns

∣∣∣∣∣∣ ≥ 1

2
.

We have ρ(n) ≈
∑

a|n
χ1(a)

aδ1
= (1 ∗ χ)(n). Also,

∑
d|n λd is our mollifier, which

annihilates the first terms of the series. Since χ(p) = −1 for most primes, ρ(n)

sieves out most primes, thus rendering the sifting dimension o(1). As we will

see in Chapter 7: Proof of Linnik’s theorem using the pretentious approach, it

is very similar to the third case of the pretentious proof, which will occur when

χ1(a) = 1 and Lq(1,χ1) ≤ L−0.99. Indeed, χ(p) = −1 for most primes in that case

too.
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Linnik’s theorem can be deduced from the third case by proving

S(X,
√
X; a,q) =

∑
n≤x,n≡amodq
p|n→p>y

(1 ∗ χ1)(n) > 0

with X = qL
0.49

. Here notice that the summation starts at y, so the first terms

have been sieved out. We also used (1 ∗χ)(n). The same idea is used for the two

proofs.

4.3. The pretentious approach

In this subsection, we will give an outline of the proof of Linnik’s theorem using the

pretentious method. Some steps will be skipped for now but will be further explained in

Chapter 7: Proof of Linnik’s theorem using the pretentious approach.

First of all, we define Cq = {χ 6= χ0, χ1 mod q}.

Linnik’s theorem, using this modern approach, can be deduced from a single theorem [17].

Theorem 4.3.1. Let q ≥ 4. If χ1 mod q is a real, non principal character with Lq(1,χ1) =

min{Lq(1,χ) : χ real and non principal character mod q}, then∑
y<p≤z

p≡a mod q

1

p
=

1

φ(q)

∑
y<p≤z

1 + χ1(ap)

p
+O

(
1

φ(q)

)
.

Once it has been demonstrated, Linnik’s theorem can be deduced from this. Three

different cases arise which will be explained later in Chapter 7: Proof of Linnik’s theorem

using the prententious approach.

57



Here are the main steps to prove Theorem 4.3.1.

• Suppose we have the following equality:

φ(q)
∑
y<p≤z

p≡a mod q

1

p
=
∑
y<p≤z

1 + χ1(ap)

p
+O(1)− ERp (4.3.1)

with

ERp =

∫ z

y

∑
χ∈Cq

χ̄(a)
L
′
y

Ly

(
1 +

1

log u
,χ

)
du

u log2 u
.

If this equality holds, Theorem 4.3.1 can be deduced by proving ERp � 1. It will be

done using the Fundamental Theorem of Calculus, Theorem 4.2.1, the Fundamental

Theorem of Sieves (Theorem 3.1.2), partial summation, pretentious zero free regions

on χ 6= χ0, χ1, Theorem 2.3.1, Cauchy-Schwartz, etc.

We will now try to demonstrate (4.3.1).

• To demonstrate (4.3.1), we start by using the definition of logLy

(
1 + 1

log z
, χ
)

=∑
p>y

χ(p)

p1+1/ log z +O(1).

• By Brun-Titchmarsh’s inequality (Theorem 3.1.4) and partial summation,∑
p>y

p≡a mod q

1

p1+1/ log y
= O

(
1

φ(q)

)
,

so∑
χ mod q

χ̄(a)

(
logLy

(
1 +

1

log z
, χ

)
− logLy

(
1 +

1

log y
, χ

))
= φ(q)

∑
y<p≤z

p≡a mod q

1

p
+O(1).

(4.3.2)

• Let A(y,z, χ) = logLy

(
1 + 1

log z
, χ
)
− logLy

(
1 + 1

log y
, χ
)
. We can split the right

hand side of (4.3.2) into∑
χ∈Cq

χ̄(a)A(y,z,χ) +
∑
χ 6∈Cq

χ̄(a)A(y,z, χ) (4.3.3)

• The first sum of right hand side of (4.3.3) can be evaluated using the Fundamental

Theorem of Calculus.

• The second sum of the right hand side of (4.3.3) can be obtained using Theorem

2.2.2.

• Combining everything yields Theorem (4.3.1). The details will be given later.
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Chapter 5

Proof of the three principles

In this section, we will give complete proofs of the three principles.

5.1. The first principle

Principle 1: (Zero free region)

There is a positive constant c1 such that
∏

χ mod q L(s,χ) has at most one zero in the region

σ ≥ 1− c1
log(qT )

, |t| ≤ T.

This is a classical result due to Landau. The interested reader can look in Iwaniec-

Kowalski’s book on Analytic Number Theory [19].

5.1.1. The second principle

Recall N(α,T,χ) is the number of zeros ρχ = βχ + iγχ counted with multiplicity in the

rectangle α < β ≤ 1, |γ| ≤ T and 1/2 ≤ α ≤ 1.

Theorem 5.1.1 (Log-free zero-density estimate). There are positive constants c1,c2 such

that for every 1
2
≤ α ≤ 1, T ≥ 1 and qT ≥ 64, then

Nq(α, T ) =
∑

χ mod q

N(α,T,χ) ≤ c(qT )c2(1−α).

We will demonstrate the second principle with c2 = 47, but this method can yield better

results by direct modifications. The main idea of this theorem is to build Dirichlet polyno-

mials which serve as zeros detectors because they assume large values at the zeros of L(s,χ).

To do so, a mollifier is constructed using sieving theory.



First of all, let

λd = θb = µ(d)ψ

(
log d

log z

)
, (5.1.1)

where ψ ∈ C∞(R) such that

ψ(u) =

 1 if u ≤ logw
log z

,

0 if u ≥ 1,

and 0 ≤ ψ(u) ≤ 1 otherwise. The definition above holds when 1 ≤ d ≤ z where 1 < w < z

and we set λd = 0 if d > z. We will use a result inspired by [25] which will be a key in the

classical proof of the second and third principle.

Theorem 5.1.2. Let λd and z be defined as in (5.1.1). Let g be a multiplicative function

such that 0 ≤ g(p) < 1. Then,

∑
d1,d2|P (z)

λd1λd2g([d1,d2])�
∏
p≤z

(1− g(p)).

Proof. The Monotonicity Principle (page 49 in [5]) allows us to assume that g(p) =

min{k/p,p− 1} for all primes p. We must show

∑
d1,d2|P (z)

λd1λd2g([d1,d2])�
1

logk z
.

We set φ(u) = euψ(u) and write φ using its Fourier Transform. We have

λd = µ(d)ψ

(
log d

log z

)
=

µ(d)

2πd1/ log z

∫
eiξ log d/ log zφ̂(ξ)dξ

=
µ(d)

2π

∫
elog(d

iξ/ log z)

d1/ log z
φ̂(ξ)dξ

=
µ(d)

2π

∫
diξ/ log z

d1/ log z
φ̂(ξ)dξ

=
1

2π

∫
µ(d)d(−1+iξ)/ log zφ̂(ξ)dξ.
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Hence,

S =
∑

d1,d2|P (z)

(
1

2π

∫
µ(d1)d1

(−1+iξ1)/ log zφ̂(ξ1)dξ1

)(
1

2π

∫
µ(d2)d2

(−1+iξ2)/ log zφ̂(ξ2)dξ2

)
g([d1,d2])

=
1

4π2

∫ ∫ ∑
d1,d2

µ(d1)µ(d2)g([d1,d2])d
(−1+ξ1)/ log z
1 d

(−1+ξ2)/ log z
2 φ̂(ξ1)φ̂(ξ2)dξ1dξ2.

=
1

4π2

∫ ∫ ∏
p

∑
d1=ν1
d2=ν2

µ(d1)µ(d2)g(pmax{ν1,ν2})p−ν1(−1+ξ1)/ log zp−ν2(−1+ξ2)/ log z


where ν1, ν2 ∈ {0,1} because of the definition of µ.

It is well-known [17] that if a function f(n) is multiplicative and converges absolutely,

then
∞∑
n=1

f(n) =
∏
p

(
1 + f(p) + f(p2) + · · ·

)
.

We will use the fact that µ, g,d1
(−1+iξ1)/ log z and d2

(−1+iξ2)/ log z are multiplicative. Further-

more, µ(pk) = 0 for k ≥ 2. This yields

S =
1

4π2

∫ ∫ ∏
p

(
1− g(p)p(−1+iξ1)/ log z − g(p)p(−1+iξ2)/ log z + g(p)p(−2+iξ1+iξ2)/ log z

)
φ̂(ξ1)φ̂(ξ2)dξ1dξ2.

We know ζ(s) =
∏

p

(
1− 1

ps

)−1
, which means ζk(s) =

∏
p

(
1− 1

ps

)−k
. Since g(p) = k/p for

all p large enough, then∣∣∣∣∣∏
p

(
1− g(p)p(−1+iξ1)/ log z − g(p)p(−1+iξ2)/ log z + g(p)p(−2+iξ1+iξ2)/ log z

)∣∣∣∣∣
�

∣∣∣∣∣∣∣
(1− p−1+ iξ1−1

log z
)(

1− p−1+
iξ2−1
log z
)(

1− p−1
−2−iξ1−iξ2

log z
)

k
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∏
p

(
1− 1

p1+
2+iξ1+iξ2

log z

)−k∏
p

(
1− 1

p1+
1−iξ1
log z

)k∏
p

(
1− 1

p1+
1−iξ2
log z

)k
∣∣∣∣∣∣

=

∣∣∣∣ζk (1 +
2 + iξ1 + iξ2

log z

)
ζ−k

(
1 +

1− iξ1
log z

)
ζ−k

(
1 +

1− iξ2
log z

)∣∣∣∣
The crucial observation is is that the Fourier transform of φ decays very rapidly. Indeed,

integration by parts yields

φ̂(ξ)� 1

(1 + |ξ|)A
,
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for any fixed A > 0. (Section 6 in [25].) This means that for any A > 0

S(g)�
∫ ∫ ∣∣∣∣ζk (1 +

2 + iξ1 + iξ2
log z

)
ζ−k

(
1 +

1− iξ1
log z

)
ζ−k

(
1 +

1− iξ2
log z

)∣∣∣∣ 1

(1 + |ξ1|)A
1

(1 + |ξ2|)A
dξ1dξ2

�
∫ ∫

(log z)3k
1

(1 + |ξ1|)A
1

(1 + |ξ2|)A
dξ1dξ2.

When max{|ξ1|, |ξ2|} ≥
√

log y, we use that the product of the zetas above is � (log z)2k.

Hence, this part of the integral is easily seen to be � 1
(log z)k

.

Thus, the mass of the integral is concentrated when ξ1 and ξ2 are both very small. The

integral over

max{|ξ1|, |ξ2|} ≥
√

log y

is � 1. Finally, when |ξ1|,|ξ2| ≤
√

log y, we use that ζ(s) ∼ 1/(s − 1) for s close to 1. It

allows us to conclude∣∣∣∣ζk (1 +
2 + iξ1 + iξ2

log z

)
ζ−k

(
1 +

1− iξ1
log z

)
ζ−k

(
1 +

1− iξ2
log z

)∣∣∣∣� |1 + iξ1|k|1 + iξ2|k

(log z)k|2 + iξ1 + iξ2|k
.

The main consequence is that this part of the integral is

� 1

(log z)k

∫ ∫
|1 + iξ1|−2|1 + iξ2|−2

|2 + iξ1 + iξ2|k

by taking A = k + 2. �

Now, suppose y = (qT )2, w = (qT )7 and z = (qT )8. With this in mind, we define the

following twisted series :

K(s,χ) =
∞∑
n=1

∑
d|n

λd

2

χ(n)

ns
.

Lemma 5.1.1. Suppose x = (qT )23 and qT ≥ 64. Let the partial sum of K(s,χ) up to n = x

be denoted Kx(s,χ). Then,

|K(s,χ)−Kx(s,χ)| ≤ 1

2
.

Proof.

|K(s,χ)−Kx(s,χ)| =

∣∣∣∣∣∣
∞∑
n=1

∑
d|n

λd

2

χ(n)

ns
−
∑

1≤n≤x

∑
d|n

λd

2

χ(n)

ns

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n>x

∑
d|n

λd

2

χ(n)

ns

∣∣∣∣∣∣
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By partial summation, if χ 6= χ0, then∣∣∣∣∣
∞∑
n=N

χ(n)

ns

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=N

(
n∑

m=N

χ(m)

)(
1

ns
− 1

(n+ 1)s

)∣∣∣∣∣
≤

∞∑
n=N

∣∣∣∣∣
n∑

m=N

χ(m)

∣∣∣∣∣
∣∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣∣
≤ q

∞∑
n=N

∣∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣∣
≤ 2q|s|

Nσ

because ∣∣∣∣s∫ n+1

n

dy

ys+1

∣∣∣∣ ≤ |s|∫ n+1

n

dy

yσ+1
.

This means ∣∣∣∣∣∑
n>x

χ(n)

ns

∣∣∣∣∣ ≤ 2q|s|
xσ

.

Hence, since m = [b,d] ≤ bd ≤ yz, we have

|K(s,χ)−Kx(s,χ)| ≤

∣∣∣∣∣∣
∑
n>x

(∑
d,b

λdλb

)∑
b,d|n

χ(n)

ns

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(∑

d,b

λdλb
[b,d]

) ∑
m>x/[b,d]

χ(m)

ms

∣∣∣∣∣∣
Notice that the last sum can be bounded by the result given on the previous page. Thus,

|K(s,χ)−Kx(s,χ)| ≤ 2q|s|yz
xσ

.

But since λd 6= 0 when d ≤ z, then d ≤ z. Also, |s| =
√
σ2 + T 2 and α < σ ≤ 1. Hence, for

T ≥ 1,

|s| ≤
√

1 + T 2

≤
√

3T 2 + T 2

= 2T.
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Furthermore, x−σ < x−α since α < σ ≤ 1. So

|K(s,χ)−Kx(s,χ)| ≤ 2yzq|s|
xσ

≤ 2yzq(2T )

xα

=
4qTyz

xα
.

In order to conclude this lemma, it is necessary to prove

4qTyz

xα
≤ 1

2

⇐⇒ 4qT (qT )2(qT )8x−α ≤ 1

2

⇐⇒ (qT )11x−α ≤ 1

8

⇐⇒ (qT )11((qT )23)−α ≤ 1

8

⇐⇒ (qT )11−23α ≤ 1

8
.

But α ≥ 1/2 implies −α ≤ −1
2

so 11− 23α ≤ 11− 23
2

= −1
2

This means

(qT )11−23α ≤ 1√
qT
≤ 1

8

i.e.

qT ≥ 64.

�

Corollary 5.1.2. Suppose ρ is a zero of L(s,χ). Then, for qT ≥ 64,∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

χ(n)

nρ

∣∣∣∣∣∣ ≥ 1

2
.

Proof. Recall

K(s,χ) =
∞∑
n=1

∑
d|n

λd

2

χ(n)

ns

and

L(s,χ) =
∞∑
n=1

χ(n)

ns
.
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Let m = [b,d]. We suppose that every n in the sum above can be written as n = tm. So

K(s,χ) =
∞∑

tm=1

∑
d|tm

λd

2

χ(tm)

(tm)s

=
∞∑

tm=1

∑
d|tm

λd

2

χ(t)χ(m)

tsms

=
∞∑
t=1

 ∞∑
m=1

∑
[b,d]

∑
=m

λdλb

 χ(m)

ms

 χ(t)

ts
.

This means it is possible to factor out L(s,χ) and write K(s,χ) = L(s,χ)M(s,χ) with

M(s,χ) =
∑
m

∑
[b,d]

∑
=m

λdλb

 χ(m)

ms
.

This factorization is useful because when L(ρ,χ) = 0, then K(ρ,χ) = 0. Hence, by the

previous lemma,

|K(ρ,χ)−Kx(ρ,χ)| = |0−Kx(ρ,χ)| = |Kx(ρ,χ)| ≤ 1

2
.

Notice that ∑
d|n

λd

2

=

 1 if n = 1,

0 if 1 < n ≤ w

=
∑
d|n

µ(d) = 0 if 1 < n ≤ w.

This allows us to write

|Kx(ρ,χ)| =

∣∣∣∣∣∣1 +
∑

w<n≤x

∑
d|n

λd

2

χ(n)

ρs

∣∣∣∣∣∣
≤ 1

2
,

which implies ∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

χ(n)

ρs

∣∣∣∣∣∣ ≥ 1

2

because if |1 + A| ≤ 1
2
, then |A| > 1

2
.

�
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This is the zero detector because for every ρ such that L(ρ,χ) = 0, then the value above

will be greater or equal to one half. However, it will be supposed that χ 6= χ0, because in

that case the zero detector will be different.

Let S(χ) be the set of zeros of L(s,χ), with multiplicity, in the designated rectangle.

Then,

R =
∑
χ 6=χ0

|S(χ)| =
∑
χ 6=χ0

N(α,T,χ).

In order to prove the second principle, a bound is needed for Nq(α,T ). Indeed,

Nq(α,T ) =
∑

χ mod q

N(α,T,χ)

= N(α,T, χ0) +
∑

χ 6=χ0 mod q

N(α,T,χ)

= N(α,T, χ0) +R.

i.e. We need to show

Nq(α, T ) = N(α,T, χ0) +R ≤ c(qT )47(1−α).

However, the first term of this sum, N(α,T,χ0), is equal to the number of zeros of the

Riemann zeta function in the rectangle. Equation (18.13) in [19] states

Nq(α,T )� (qT )12/5(1−α)(log qT )A

where A is an absolute constant. Therefore, the inequality given in the second principle is

new only for zeros near the line <(s) = 1, namely for α with

1− α� A logL
L

,

where L = log qT.

Hence, as stated in equation (18.16) in [19], we can use the Vinogradov zero-free region

(Theorem A.1.7 in appendix) and the Huxley Density Estimate (Theorem A.1.8 in appendix)

to conclude

N(α,T,χ0)� T 3(1−α).
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So, if we show

R� (qT )47(1−α),

then we will be able to conclude

Nq(α,T )� T 3(1−α) + (qT )47(1−α)

� (qT )47(1−α).

This is the desired result. Hence, to conclude the second principle, it is enough to prove

R� (qT )47(1−α).

Lemma 5.1.3. Let S(χ) be the set of zeros of L(s,χ) in the rectangle defined at the beginning

of this section. Then,

R2 ≤ 4UαV,

where

Uα =
∑

w<n≤x

∑
d|n

λd

2

n1−2α

and

V =
∑
n

f(n)

∑
d|n

λd

2

n2α−1

∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)
χ(n)

ns

∣∣∣∣∣∣
2

for numbers Cχ(s) with norm one and f a non-negative function such that f(n) ≥ 1 for

w < n ≤ x.

Proof. Recall that R represents the number of zeros in our rectangle with χ 6= χ0. Another

way of counting R is to go through the set of zeros counted with multiplicity in our rectangle

for which we can detect a large polynomial. We then repeat this step for every χ. Thus, we

get

R =
∑
χ 6=χ0

N(α,T,χ)

≤ 2
∑
χ

∑
s∈S(χ)

∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

χ(n)

ns

∣∣∣∣∣∣
≤ 2

∑
w<n≤x

∣∣∣∣∣∣
∑

d|n

λd

2∣∣∣∣∣∣
∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)
χ(n)

ns

∣∣∣∣∣∣
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for some numbers cχ(s) with norm one. The last inequality is obtained by rearranging the

sums. Finally, Cauchy-Schwartz’s inequality will be applied. Indeed,

R2 ≤

2
∑

w<n≤x

∣∣∣∣∣∣
∑

d|n

λd

2∣∣∣∣∣∣
∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)
χ(n)

ns

∣∣∣∣∣∣
2

=

2
∑

w<n≤x

∣∣∣∣∣∣
∑

d|n

λd

n1/2−α

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

d|n

λd

nα−1/2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)
χ(n)

ns

∣∣∣∣∣∣
2

.

Thus, applying Cauchy-Schwartz yields

R2 ≤ 4

 ∑
w<n≤x

∑
d|n

λd

2

n1−2α

 ∑
w<n≤x

n2α−1

∑
d|n

λd

2 ∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)χ(s)

n2

∣∣∣∣∣∣
2 .

So

R2 ≤ 4Uα

 ∑
w<n≤x

n2α−1

∑
d|n

λd

2 ∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)χ(s)

n2

∣∣∣∣∣∣
2

≤ 4Uα
∑
n

f(n)

∑
d|n

λd

2

n2α−1

∣∣∣∣∣∣
∑
χ

∑
s∈S(χ)

cχ(s)
χ(n)

ns

∣∣∣∣∣∣
2

for numbers Cχ(s) with norm one and f a non-negative function such that f(n) ≥ 1 for

w < n ≤ x. �

Lemma 5.1.4. Let x = (qT )23, z = (qT )8, w = (qT )8 and 1/2 ≤ α ≤ 1. Then,

Uα � x2(1−α).

Proof. By Theorem 1.4 in an article written by Granville, Koukoulopoulos and Maynard

[25], we have

∑
w<n≤x

∑
d|n

λd

2

� x

log z
.
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Hence,

Uα =
∑

w<n≤x

∑
d|n

λd

2

n1−2α

≤
∑

w<n≤x

∑
d|n

λd

2

x1−2α

� x1−2α
x

log z

� x2(1−α).

�

The next step will be to find a good bound for V . To do so, we start by developing the

square and changing the order of summation. This yields

V ≤
∑
χ1

∑
χ2

∑
s1

∑
s2

|B(χ1χ̄2, s1 + s̄2 + 1− 2α)|

where

B(χ,s) =
∑
n

f(n)

∑
d|n

λd

2

χ(n)

ns
.

We suppose the function f is supported on [w/v, xv] and is continuous, bounded and piece-

wise monotonic. Thus, using summation by parts, we get∑
n≡α mod q

f(dn)

(dn)s
=
F (s)

dq
+O

(
|s|v
w

)
where

F (s) =

∫
f(ξ)

ξs
dξ.

The result above helps getting a good bound for V :

Theorem 5.1.3. Let S(χ) be the set of zeros of L(s,χ) in the rectangle defined at the begin-

ning of this section. Then,

V ≤
∑
χ

∑
s1∈S(χ)

∑
s2∈S(χ)

|F (s1 + s̄2 + 1− 2α)|
log y

+O

(
R2Tqvy2

w

)
.

Here, ∑
d|n

λd

2
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is a Selberg sieve. For this difficult proof, we refer to [25].

Corollary 5.1.5. Let S(χ) be the set of zeros of L(s,χ) in the rectangle defined at the

beginning of this section. Then,

V � log x

log y

∑
χ

∑
s1∈S(χ)

∑
s2∈S(χ)

1

(1 + |γ1 − γ2| log v)2
+
R2qvy2

w
.

Proof. We want to find a function f such that, for <(s) ≥ 1, we have

F (s)� (1 + |s− 1| log v)−2 log x. (5.1.2)

Indeed, we can take

f(ξ) =

 min
(

1− logw/ξ
log v

,1,1− log ξ/x
log v

)
if w/v ≤ ξ ≤ xv,

0 otherwise.

So

f(ξ) log v = log+(xv/ξ)− log+(w/ξ) + log+(w/vξ),

where f+ = max(0,f).

Since ∫ ∞
0

(log+ ξ)ξs−1dξ =
1

s2
,

we have

F (1− s) = f̂(s)

=

∫ ∞
0

f(ξ)ξs−1dξ

=
(xv)s − xs − ws + (w/v)s

s2 log v

=
(vs − 1)(xs − w2v−s)

s2 log v

� min

(
log x,

1

|s|2 log v

)
.

This allows us to conclude (5.1.2) holds. Also, for s = s1 + s̄2 + 1 − 2α, then |s − 1| =

|β1 + β2 − 2α + i(γ1 − γ2)| ≥ |γ1 − γ2|. Using Theorem 5.1.3 and (5.1.2) concludes the

proof. �

Before giving our bound for R, one last lemma is required.
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Lemma 5.1.6. Suppose χ mod q is a non-trivial character. Let 1/2 ≤ α ≤ 1, v ≥ 2 and

t ∈ R. If A is an absolute constant, then∑
L(ρ,χ)
β≥α

1

(1 + |γ − t| log v)2
� 1

2

(
1− α +

1

log v

)
log
(
Avq(|t|+ 1)

)
.

The proof is given in Lemma 18.3 of [19].

Theorem 5.1.4.

R� (qT )47(1−α).

Proof. We can easily see that 1 + log(v1−α) = 1 + (1− α) log v ≤ v1−α. Putting the result

of Lemma 5.1.6 in Corollary 5.1.5 , we may write

V � log x

log y

∑
χ

∑
s1∈S(χ)

1

2

(
1− α +

1

log v

)
logAvq(|γ2|+ 1) +

R2qvy2

w
,

where γ2 is defined as in Corollary 5.1.5. Let v = qT and recall the trivial bound R �

qT log qT. Thus, by Corollary 5.1.5 and Lemma 5.1.6,

V � Rv1−α
log x log vqT

log y log v
+
R2qvy2

w

� Rv1−α
log x

log y

log(qTqT )

log qT
+R(qT log qT )v

((qT )2)2

(qT )7

= Rv1−α
log x

log y

log((qT )2)

log qT
+Rv

log qT

(qT )2

� Rv1−α
log x

log y
+Rv

log qT

(qT )2
.

So we have

V � Rv1−α
log((qT )23)

log((qT )2)
+Rv1−α

log qT

(qT )2v−α

= Rv1−α
(

23

3
+

log(qT )vα

(qT )2

)
≤ Rv1−α

(
23

2
+

log(qT )v

(qT )2

)
= Rv1−α

(
23

2
+

log(qT )

(qT )

)
� Rv1−α.

But since

R2 ≤ 4UαV,
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then

R2 � 4x2(1−α)Rv1−α.

It means

R� ((qT )23)2(1−α)(qT )1−α = (qT )47(1−α).

�

5.2. The Third Principle

Theorem 5.2.1 (Exceptional zero repulsion). There is a positive constant c3 such that, if

the exceptional zero β1 exists, say L(β1,χ1) = 0 with

1− c1
log qT

≤ β1 < 1,

then the function
∏

χ mod q L(s,χ) has no other zeros in the region

σ ≥ 1− c3
| log[(1− β1) log(qT )]|

log qT
, |t| ≤ T.

Throughout this section, assume χ1 mod q is the exceptional character associated to the

exceptional zero β1 of L(s,χ1). We also suppose δ1 = 1 − β1 ≤ c1
log qT

. However, the third

principle will not be proven directly. It suffices to show
∏

χ mod q L(s,χ) has no other zeros

in the region

σ ≥ 1− log(c0/(δ1 log(qT )))

92 log qT
, |t| ≤ T (5.2.1)

for an absolute constant c0 ≥ 2c1. Assuming the last statement is true, it is easy to see there

is no other zero in the region given by principle 3. Hence, it is enough to prove (5.2.1). The

technique we used is very similar to the one employed in the proof of the second principle.

A zero detector is created using the function

ζ(s)L(s+ δ1, χ1) =
∞∑
n=1

1

ns

∞∑
m=1

(
χ1(m)

ms+δ1

)

=
∞∑
n=1

∑
a|n

χ1(a)

aδ1

 1

ns

=
∞∑
n=1

ρ(n)

ns
.
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Once again,
∑

d|n λd is used as mollifier. Thus, for any non-principal character χ, we define

the following twisted series:

K(s,χ) =
∞∑
n=1

∑
d|n

λd

2

ρ(n)
χ(n)

ns
.

Furthermore, recall the partial sum of K(s,χ) up to n = x, denoted by Kx(s,χ), is defined

as

Kx(s,χ) =
∑

1≤n≤x

∑
d|n

λd

2

ρ(n)
χ(n)

ns
.

Theorem 5.2.2. Let s = σ + it with σ ≥ 1/2 and |t| ≤ T . Then, for qT ≥ 64,

|K(s,χ)−Kx(s,χ)| ≤ 1

2
.

Proof.

|K(s,χ)−Kx(s,χ)| =

∣∣∣∣∣∣
∞∑
n=1

∑
d|n

λd

2

ρ(n)
χ(n)

ns
−
∑

1≤n≤x

∑
d|n

λd

2

ρ(n)
χ(n)

ns

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n>x

∑
d|n

λd

2

ρ(n)
χ(n)

ns

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n>x

χ(n)

∑
d|n

λd

2∑
a|n

χ1(a)

aδ1

 1

ns

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n>x

∑
d|n

λd

2

χ(n)

ns
(1 ∗ t)(n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n>x

∑
d|n

λd

2

(χ ∗ χt(n))(n)

ns

∣∣∣∣∣∣ ,
where t(n) = χ1(n)/nδ1 . We need to show this is bounded by 1

2
.

If χ = χ1, then χ2
1 = χ0. The function (χ1 ∗ χ2

1

Idδ1
) is small:

∑
n≤N

(
χ1 ∗

χ2
1

Idδ1

)
(n) =

∑
a≤A

χ1(a)
∑
b≤x/a

1

bδ1
+
∑
b≤x/A

1

bδ1

∑
A<a≤x/b

χ1(a).
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Furthermore, we can use the Euler- MacLaurin forrmula to bound
∑

b≤x/A
1
bδ1

. Indeed, for

s 6= 1,we have
n∑
k=1

1

ks
= ζ(s) +

1

1− s
n1−s +O

(
1

ns

)
,

which gives us ∑
b≤x/a

1

bδ1
≈ (N/a)δ1

1− δ1
.

Thus, ∑
n≤N

(
χ1 ∗

χ2
1

Idδ1

)
(n) =

∑
a≤A

χ1(a)
(N/a)δ1

1− δ1
+
∑
b≤x/A

1

bδ1

∑
A<a≤x/b

χ1(a)

≈ N δ1

1− δ1

∑
a≤A

χ1(a)

a1−δ1
+
∑
b≤x/A

1

bδ1

∑
A<a≤x/b

χ1(a)

We know 1− δ1 = β1 is a zero of L(s,χ1), so by the Pólya-Vinogradov inequality. (Theorem

A.1.7 in appendix), ∑
a≤A

χ1(a)

a1−δ1
= −

∑
a>A

χ1(a)

a1−δ1

is small. Also, we know
∑

A<a≤x/b χ1(a) is small using the Pólya-Vinogradov inequality.

(Theorem A.1.7 in appendix). Since the two terms are little, we can bound the sum of the

two terms by one half. �

Theorem 5.2.3. Let s = ρ be a zero of L(s,χ) which is different from β1. Then,∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

ρ(n)χ(n)

nρ

∣∣∣∣∣∣ ≥ 1

2
.

Proof. Since

K(s,χ) =
∞∑
n=1

∑
d|n

λd

2

ρ(n)
χ(n)

ns

and

L(s,χ) =
∞∑
n=1

χ(n)

ns
,

we can clearly factorize L(s,χ) in K(s,χ).
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Using the same techniques we used in the proof of Principle 2, we can write

K(s,χ) = L(s,χ)L(s+ δ1, χχ1)M(s,χ)

with

M(s,χ) =
∑
m

∑
[b,d]

∑
=m

λdλb

∏
p|m

(
ρ(p)− χ(p)

ps+2δ1

)
χ(m)

ms
.

Indeed, we have

K(s,χ) =
∑
m

∑
[b,d]

∑
=m

λdλb

 χ(m)

ms

∑
n

ρ(mn)χ(n)

ns
.

Using the definition of ρ(mn), we get∑
a

χ1(a)

aδ

∑
n≡0 mod a/(a,m)

χ(n)

ns
= L(s,χ)

∑
a

χ1(a)

aδ1
χ

(
a

(a,m)

)(
(a,m)

a

)s
= L(s,χ)

∑
c|m

χ1(c)

cδ1

∑
(a,c)=1

χ1χ(a)

as+δ1
with c = (a,m)

= L(s,χ)L(s+ δ1, χχ1)
∑
c|m

χ1(c)

cδ1

∏
p|c

(
1− χ1χ(p)

ps+δ1

)
.

This gives us the desired factorization because m is square-free. It follows that K(s,χ) is

holomorphic in the whole complex plane. Indeed, if χ = χ1, then the pole of L(s+ δ1, χ0) at

s = 1− δ1 = β1 cancels with the zero of L(s,χ). For s = ρ, a zero of L(s,χ) which is different

from β1 if χ = χ1, then by the factorization, we get K(ρ,χ) = 0. By Lemma 5.1.6,

|K(ρ,χ)−Kx(ρ,χ)| = |Kx(ρ,χ)| ≤ 1

2
.

Recall ∑
d|n

λd

2

=

 1 if n = 1,

0 if 1 < n ≤ w

=
∑
d|n

µ(d)

= 0 if 1 < n ≤ w.
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Since λ1 = θ1 = ρ(1) = 1, then

|Kx(ρ,χ)| =

∣∣∣∣∣∣1 +
∑

w<n≤x

∑
d|n

λd

2

ρ(n)
χ(n)

ns

∣∣∣∣∣∣ ≤ 1

2
.

So ∣∣∣∣∣∣
∑

w<n≤x

∑
d|n

λd

2

ρ(n)
χ(n)

ns

∣∣∣∣∣∣ ≥ 1

2
(5.2.2)

with ρ = β + iγ, β ≥ 1
2

and |γ| ≤ T . �

This inequality is our zero detector. Here, ρ(n) is small quite frequently. Furthermore,

to simplify the notation, we suppose ν(n) =
∑

d|n λd.

Lemma 5.2.1.

16

( ∑
w<n≤x

ν2(n)n1−2β

)2( ∑
w<n≤x

ν2(n)ρ3(n)n−1

)( ∑
w<n≤x

ν2(n)ρ(n)n−1

)
≥ 1.

Proof. It is enough to prove

4

( ∑
w<n≤x

ν2(n)n1−2β

)√ ∑
w<n≤x

ν2(n)ρ3(n)n−1
√ ∑

w<n≤x

ν2(n)ρ(n)n−1 ≥ 1.

However, we know that

4

( ∑
w<n≤x

ν2(n)n1−2β

)√ ∑
w<n≤x

ν2(n)ρ3(n)n−1
√ ∑

w<n≤x

ν2(n)ρ(n)n−1

= 4

( ∑
w<n≤x

ν2(n)n1−2β

)√ ∑
w<n≤x

(
ν(n)ρ3/2(n)n−1/2

)2√ ∑
w<n≤x

(
ν(n)ρ1/2(n)n−1/2

)2
≥ 4

( ∑
w<n≤x

ν2(n)n1−2β

) ∑
w<n≤x

(
ν(n)ρ3/2(n)n−1/2

) (
ν(n)ρ1/2(n)n−1/2

)
= 4

( ∑
w<n≤x

ν2(n)n1−2β

) ∑
w<n≤x

ν2(n)ρ2(n)n−1
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by applying Hölder’s inequality with p = q = 1/2 (Theorem A.1.5 in appendix). However,

we can write

4

( ∑
w<n≤x

ν2(n)n1−2β

) ∑
w<n≤x

ν2(n)ρ2(n)n−1 = 4
∑

w<n≤x

(
ν(n)n1/2−β)2 ∑

w<n≤x

(
ν(n)ρ(n)n−1/2

)2
≥ 4

( ∑
w<n≤x

ν(n)n−β+1/2ν(n)ρ(n)n−1/2

)2

=

(
2
∑

w<n≤x

ν2(n)ρ(n)n−β

)2

by applying Hölder’s inequality with p = q = 1/2 (Theorem A.1.5 in appendix). Finally,

applying (5.2.1) to the inequality above yields the desired result. �

Theorem 5.2.4. Let W =
∑

w<n≤x
ν2(n)ρ(n)

n
. Then,

x4(1−β)W � 1.

Proof. By Lemma 5.2.1,

16

( ∑
w<n≤x

ν2(n)n1−2β

)2( ∑
w<n≤x

ν2(n)
ρ3(n)

n

)
W ≥ 1.

However, from the proof of the second principle, for any 1/2 ≤ α ≤ 1,∑
w<n≤x

ν2(n)n1−2α � x2(1−α),

so it implies ( ∑
w<n≤x

ν2(n)n1−2β

)2

� (x2(1−β))2 = x4(1−β).

For the second term, we can estimate ρ3(n) by τ 3(n). Then, if we let P (x) =
∏

p≤x,∑
w<n≤x

ν2(n)
τ 3(n)

n
�

∑
d|P (x)

ν2(n)f(n)

n
,

where f(pk) = τ(pk)3 if p ≥ 11, and f(pk) = 1 for p ≤ 7. Opening the square and noting

that λ is supported on integers ≤ z yields that∑
w<n≤x

ν2(n)f(n)

n
�
∑
d1,d2

λd1λd2
[d1,d2]

∑
m|P (x)

f([d1,d2]m)

m
.
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The rightmost sum equals h([d1, d2])S, where S � (log x)8 and h is multiplicative with

h(p) ≤ min{8,p− 1}. Here, we use Theorem 5.1.2 to conclude∑
w<n≤x

ν2(n)
ρ3(n)

n
� 1.

Putting everything together yields

1 ≤ 16

( ∑
w<n≤x

ν2(n)n1−2β

)2( ∑
w<n≤x

ν2(n)
ρ3(n)

n

)
W

� x4(1−β)W.

�

Corollary 5.2.2.

W =
φ(q)

q
M(1)L(1 + δ1,χ1) log

x

w
+O

(
1

q

)
Proof. Recall

W =
∑

w<n≤x

ν(n)2ρ(n)

n
.

Suppose its sum goes to infinity instead of stopping at n = x. Let

W (s) : =
∞∑
n=1

ν(n)2ρ(n)

ns

=
∞∑
n=1

∑
d|n

λd

2

ρ(n)

ns

= L(s,χ0)L(s+ δ1, χ1)M(s, χ0)

However, this is equal to K(s,χ0) by the definition of K(s,χ) given above.

Contour integration yields a formula for W . Since W (s) is holomorphic everywhere

except at s = 1, then by Perron’s formula

W =
1

2πi

∫
<(s)=1/ log x

W (s+ 1)(xs − ws)
s

ds

= ress=1W (s) log
x

w
+O

(
1

q

)
.
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However, since it is a simple pole,

Res(W (s),1) = lim
s→1

(s− 1)W (s)

= lim
s→1

(s− 1)L(s,χ0)L(s+ δ1,χ1)M(s)

= lim
s→1

(s− 1)
∞∑
n=1

1(n,q)=1

ns
L(s+ δ1,χ1)M(s)

= lim
s→1

(s− 1)
∏
p-q

(
1− 1

ps

)−1
L(s+ δ1,χ1)M(s).

Writing this product as a fraction, we obtain

Res(W,1) = lim
s→1

(s− 1)

∏
p prime

(
1− 1

ps

)−1
∏

p|q

(
1− 1

ps

)−1 L(s+ δ1,χ1)M(s)

= lim
s→1

(s− 1)
ζ(s)φ(q)

q
L(s+ δ1,χ1)M(s)

=
φ(q)

q
L(1 + δ1,χ1)M(1, χ0)

Putting this last result in the definition of W above gives the desired result. �

Theorem 5.2.5.

W � δ1 log x.

Proof. By the definition of W given in the proof of Corollary 5.2.2, it suffices to get a good

approximation for M(1,χ0) and L(1 + δ1, χ1). First of all, using Corrollary 5.5 in [5] and

Theorem 5.1.2, we get

M(1,χ0) =
∑

(m,q)=1

∑
[b,d]

∑
=m

λdλb

∏
p|m

(
ρ(p)− χ(p)

p1+2δ1

)
1

m

�
∏
p≤y
p-q

(
1− ρ(p)

p

)

=
q

φ(q)

∏
p≤y

(
1− ρ(p)

p

)
.
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To estimate L(1 + δ1,χ1), we use the fact that for x > y ≥ q2 and q large enough, then∑
y<p≤x

1 + χ1(p)

p
≤ 4δ1 log x.

The inequality above is stated as Lemma 18.4 in [19]. By partial summation,

L(1 + δ1, χ1)� δ1
∏
p≤y

(
1 +

ρ(p)

p

)
.

Putting everything together gives

W � φ(q)

q

q

φ(q)

∏
p≤y

(
1− ρ(p)

p

)
δ1
∏
p≤y

(
1 +

ρ(p)

p

)
log

x

w
+

1

q

= δ1
∏
p≤y

(
1− ρ2(p)

p2

)
log

x

w
+

1

q

� δ1 log x.

Notice that δ1 log x ≥ 1/q, because x > y ≤ q2 and q is big enough. �

Theorem 5.2.6. Suppose c1 is a small positive constant such that c0 ≥ 2c1. If χ1 mod q is

the exceptional character and β1 is the exceptional zero of L(s,χ1) which satisfies

δ1 = 1− β1 ≤
c1

log qT
,

then there is no other zero in the region

σ ≥ 1− log(c0/δ1 log qT )

92 log qT
, |t| ≤ T.

Proof. Recall W =
∑

w<n≤x
ν(n)ρ(n)

n
. Taking α = β1, we have

x4(1−β1)W � 1.

But, by Theorem 5.2.5,

W � δ1 log x.

Putting these results together yields

1� x4(1−β1)δ1 log x. (5.2.3)

Solving (5.2.3) for β1 concludes the proof. �
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Chapter 6

Proof of Linnik’s theorem using the clasical approach

In this section, we will give a complete proof of the main theorem which will allow us

to deduce Linnik’s theorem using the classical method. We assume that c,c1,c2,c3 are

the absolute constants from the three principles. Also, suppose β1 is the exceptional zero

if it exists. Recall that ρχ = βχ+iγχ is a zero of L(s,χ) with β ≥ 1/2, |T | ≤ R and R = x1/2c2 .

Linnik’s theorem can be deduced from the following theorem:

Theorem 6.0.1. Suppose η1 = c2
2 log q

and η2 = c3
| log(2δ1 log q)|

2 log q
. For x ≥ q4c2, then

ψ(x; q,a) =
x

φ(q)

(
1− χ1(a)

xβ1−1

β1
+O(cx−ηi/2)

)
.

Here we suppose that the β1 term does not exist if there is no exceptional zero. Furthermore,

i = 1 if β1 does not exist and i = 2 otherwise.

The purpose of this section is to prove the theorem above. First of all, we need to give

an approximation for ψ(x; q,a).

Lemma 6.0.1.

ψ(x; q,a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑

L(ρ,χ)=0

β≥ 1
2 ,|γ|≤T

xρ

ρ
+O

(
x log x

R

)
.

Proof. First of all, recall

ψ(x; q,a) =
1

φ(q)

∑
χ mod q

χ̄(a)ψ(x,χ).



Furthermore, by formula (5.65) in [19],

ψ(x,χ) = δxx−
∑

L(ρ,χ)=0
|γ|≤T

xρ − 1

ρ
+O

( x
T

log2(xq)
)

where 1 ≤ T ≤ x and

δx =

 1 if χ = χ0,

0 otherwise.

Thus, by restricting the summation of ψ(x; q,a) to the rectangle given at the beginning of

this section, we may get the following truncated formula:

ψ(x; q,a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑

L(ρ,χ)=0
β≥1/2,|γ|≤R

xρχ

ρχ
+O

(
x log x

R

)
.

�

Theorem 6.0.2. Suppose the exceptional zero β1, if it exists, is associated to the real char-

acter χ1. Then,

ψ(x; q,a) =
x

φ(q)
− χ1(a)xβ1

β1
− ERc ,

where

ERc =
1

φ(q)

∑
χ mod q

χ̄(a)
∑

T=2m≤R

 ∑
L(ρ,χ)=0,ρ 6=β1
T/2≤|γ|≤T

xρ

ρ

+O

(
x log x

R

)
.

If the exceptional zero does not exist, the second term is assumed to be zero.

Proof. We put the result obtained in Lemma 6.0.1 in the definition of ψ(x; q,a), we obtain

ψ(x; q,a) =
1

φ(q)

∑
χ mod q

χ̄(a)

δxx− ∑
L(ρ,χ)=0
|γ|≤R

xρ − 1

ρ
+O

( x
T

log2(xq)
)

=
1

φ(q)

∑
χ mod q

χ̄(a)δxx−
1

φ(q)

∑
χ mod q

|χ̄(a)|
∑

L(ρ,χ)=0
|γ|≤R

(
xρ − 1

ρ

)

+O

(
1

φ(q)

∑
χ mod q

|χ̄(a)| x
T

log2(xq)

)
.
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Hence, we can write

ψ(x; q,a) =
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑

L(ρ,χ)=0
|γ|≤R

xρ

ρ
+O

(
1

φ(q)

∑
χ mod q

|χ̄(a)| x
T

log2(xq)

)

=
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑

L(ρ,χ)=0
|γ|≤R,β≥1/2

xρ

ρ
+O

(
x log x

R

)

=
x

φ(q)
− 1

φ(q)

∑
χ mod q

χ̄(a)
∑

T=2m≤R

 ∑
L(ρ,χ)=0
T/2≤|γ|≤T

xρ

ρ

+O

(
x log x

R

)
.

�

In light of Theorem 6.0.2, it suffices to show there exist c > 0 such that

ERc �
cx1−ηi/2

φ(q)

in order to conclude Theorem 6.0.1. However, the value of ηi will change depending on

wheter the exceptional zero exists or not.

Lemma 6.0.2. Let 1 − ηi be the biggest number such that there are no zeros of L(s,χ) in

1− ηi ≤ σ ≤ 1. Suppose β1 is the an exceptional zero with Dirichlet character χ1 if it exists.

Then,

∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γχ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
2

T

√
xNq

(
1

2
,T

)
+

2 log x

T

∫ 1−ηi

1/2

Nq(α,T )xαdα.

Proof. ∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γχ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
∑

χ mod q

|χ̄(a)|

∣∣∣∣∣∣∣
∑

T/2≤|γχ|≤T
ρχ 6=β1

xβχ+iγχ

βχ + iγχ

∣∣∣∣∣∣∣
≤

∑
χ mod q

∑
T/2≤|γχ|≤T

ρχ 6=β1

∣∣∣∣ xβχ+iγχβχ + iγχ

∣∣∣∣ .
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But since |ρχ| ≥ |γχ| ≥ T/2,∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γχ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
2

T

∑
χ mod q

∑
|γχ|≤T
ρχ 6=β1

xβχ

= − 2

T

∫ 1−ηi

1/2

xαdNq(α,T ).

The last line is obtained by Theorem A.1.1 and A.1.2 in the appendix. Also, the star above

Nq(α,T ) means we are excluding the potential exceptional zero. Now, using integration by

parts with dv = dNq(α,T ) and u = xα, we get

− 2

T

∫ 1−ηi

1/2

xαdN∗q (α,T ) =
2

T

√
xN∗q

(
1

2
,T

)
− 2

T
x1−ηiN∗q (1− ηi,T ) +

2 log x

T

∫ 1−ηi

1/2

N∗q (α,T )xαdα.

But N∗q (1− ηi,T ) = 0 which implies

− 2

T

∫ 1−ηi

1/2

xαdN∗q (α,T ) =
2

T

√
xN∗q

(
1

2
,T

)
+

2 log x

T

∫ 1−ηi

1/2

N∗q (α,T )xαdα.

The desired result is obtained by combining everything. �

Lemma 6.0.3. Let 1 − ηi be the biggest number such that there are no zeros of L(s,χ) in

1− ηi ≤ σ ≤ 1. Then, ∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γχ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
4cx1−ηi/2

T
.

Proof. By Lemma 6.0.2,

K =

∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γχ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
2

T

√
xN∗q (1/2,T ) +

2 log x

T

∫ 1−ηi

1/2

N∗q (α,T )xαdα.

84



By the second principle,

Nq(α,T ) ≤ cq2c2(1−α).

So ∣∣∣∣∣∣
∑

χ 6=χ1 mod q

χ̄(a)
∑

T/2≤|γχ|≤T

xρχ

ρχ

∣∣∣∣∣∣ ≤ 2c

T

√
xqc2 +

2cx

T
log x

∫ 1−ηi

1/2

q2c2(1−α)

x1−α
dα

=
2c

T

√
xqc2 +

2cx log x

T

q2c2

x

∫ 1−ηi

1/2

(
x

q2c2

)α
dα

=
2c

T

√
xqc2 +

2c

T
log x

q2c2

log(xq−2c2)

(
x1−ηi

q2c2(1−ηi)
−
√
x

qc2

)
=

2c

T

√
xqc2 +

2c log x

T log(xq−2c2)

(
x1−ηiq2c2ηi −

√
xqc2

)
≤ 2c

T

√
xqc2 +

2c log x

T log(xq−2c2)
x1−ηiq2c2ηi − 2c

T

√
xqc2

=
2c log x

T log(xq−2c2)
x1−ηiq2c2ηi

≤ 4

T
cx1−ηi/2.

�

Theorem 6.0.3. Let c1, c3 be the two constant disribed in the three principles. Assume

η1 = c1
log qT

and η2 = c3
log 2δ1 log q

2 log q
. Then,

ERc �
cx1−ηi/2

φ(q)
,

with i = 1 if there is an exptional zero β1 and i = 2 otherwise.

Proof. Suppose there is no exceptional zero β1. Then, according to principle 1, there

is no zero in the region 1 − c1
log qT

≤ σ ≤ 1, which explains why η1 = c1
log qT

. If β1 exists,

then the third principle suggest there is no zero in the region c3
log 2δ1 log q

2 log q
≤ σ ≤ 1. Hence,

η2 = c3
log 2δ1 log q

2 log q
.

By Theorem 6.0.2, we have∣∣∣∣∣∣∣
∑

χ mod q

χ̄(a)
∑

T/2≤|γχ|≤T
ρχ 6=β1

xρχ

ρχ

∣∣∣∣∣∣∣ ≤
4cx1−ηi/2

T
.
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|ERc | =

∣∣∣∣∣∣∣
1

φ(q)

∑
χ mod q

χ̄(a)
∑

T=2m≤R

 ∑
L(ρ,χ)=0

T/2≤|γχ|≤T

xρχ

ρχ


∣∣∣∣∣∣∣+O

(
x log x

R

)

≤ 1

φ(q)

1

T

∑
T=2m≤R

4cx1−ηi/2

φ(q)
+O

(
x log x

R

)

� 4cx1−ηi/2

φ(q)
+
x log x

R
.

From the above, we can see that if

x log x

R
= x1−1/2c2 log x� cx1−ηi/2

φ(q)
,

then

ER �
cx1−ηi/2

φ(q)
.

We know this is true because either η1 = c1/2 log T or η2 = c3
log 2δ1 log q

2 log q
Thus,

ERc �
cx1−ηi/2

φ(q)
.

�

Using the definition of ψ(x; q,a) given in Theorem 6.0.2, we get∣∣∣∣ψ(x; q,a)− x

φ(q)
+
χ1(a)xβ1

β1

∣∣∣∣ = |ERc | = O

(
cx1−ηi/2

φ(q)

)
which means1

ψ(x; q,a) =
x

φ(q)
− χ1(a)xβ1

β1
+O

(
cx1−ηi/2

φ(q)

)
.

This yields Theorem 6.0.1.

1Here we assume the β1 term equals 0 if there is no exeptional zero.
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6.0.1. Deducing Linnik’s theorem

We will deduce Linnik’s theorem by proving ψ(x; q,a) > 0 for both cases.

Theorem 6.0.4 (Linnik’s theorem). Suppose Theorem 6.0.1 holds. Then,

ψ(x; q,a) > 0.

Proof.

Case 1: No exceptional zero β1

First of all, by Theorem 6.0.1, when there is no exceptional zero, we can write

ψ(x; q,a) =
x

φ(q)

(
1 +O(cx−η1/2)

)
and x−η1/2 = e−c

log x
log q is small enough if x ≥ qL for L large enough. Hence, ψ(x; q,a) > 0.

Case 2: an exceptional zero β1

• If χ1(a) = −1

By Theorem 6.0.1, we have

ψ(x; q,a) =
x

φ(q)

(
1− χ1(a)xβ1−1

β1
+O(cx−η2/2)

)
=

x

φ(q)

(
1 +

xβ1−1

β1
+O(cx−η2/2)

)
.

Here, as in the previous case, we can clearly see that the main term will be bigger

than the error term so ψ(x; q,a) > 0.

• If χ1(a) = 1

One again, by Theorem 6.0.1, when there is an exceptional zero β1, we have

ψ(x; q,a) =
x

φ(q)

(
1− χ1(a)xβ1−1

β1
+O(cx−η2/2)

)
=

x

φ(q)

(
1− xβ1−1

β1
+O(cx−η2/2)

)
.
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We need to demonstrate

1− xβ1−1

β1
+O(cx−η2/2) > 0.

We let β1 = 1− δ1. It suffices to show

1− x−δ

1− δ1
+O(cx−η2/2) > 0.

We know δ1 ≤ c1
2 log q

so we define δ1 = 1
2M1 log q

with M1 > 0. Furthermore, recall that

η2 = log(2δ1 log q)
2 log q

. Plugging δ1 in the definiton of η2 yields

η2 =
logM1

2 log q
.

Since x = qL, then

1− xβ1−1

β1
+O(cx−η2/2) = 1− q−Lδ1

1− δ1
+O(cq−η2L/2)

= 1− q
−L

2M1 log q

1− δ1
+O(cq

−L logM1
4 log q )

= 1− e−L/2M1

1− δ1
+O(e−L logM1/4)

=
q

−L
2M1 log q

1− δ1
+O(cq

−L logM1
4 log q )

= 1− e−L/2M1

1− δ1
+O

(
1

M
L/4
1

)
.

Thus,

1− δ1 − e−L/2M1

1− δ1
� 1− e−L/2M1 �

 L
2M1

if L
2M1
≤ 1

1 if L
2M1
≥ 1.

The main term clearly dominates the error term so ψ(x; q,a) > 0. Notice that L = 5 is

enough if M is large. �
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Chapter 7

Proof of Linnik’s theorem using the pretentious

approach

7.1. Proof of the pretentious approach

In this section, we will give a complete proof of Linnik’s theorem using the pretentious

method. The proof of Linnik’s theorem is divided into two parts. The first part deals

with the contribution of all but one Dirichlet characters. First, recall the definition of the

distance function:

Suppose f(n), g(n) are two multiplicative functions on the unit circle. Hence,

D2(f,g; [q,x]) =
∑
q<p≤x

1−<(fḡ)(p)

p
.

The following key result can now be obtained.

Theorem 7.1.1. Let q ≥ 4. Suppose χ1 (mod q) is a real non principal Dirichlet character

with Lq(1,χ1) = min{Lq(1,χ) : χ real and non principal character (mod q)}. Then,

∑
y<p≤z

p≡a(modq)

1

p
=

1

φ(q)

∑
y<≤z

1 + χ1(ap)

p
+O

(
1

φ(q)

)
,

where a is a fixed constant.

Linnik’s theorem is usually obtained by using log-free density estimates. As seen

previously, new advances allow us to use the theory of multiplicative functions instead.

Once the theorem above is established, we can deduce Linnik’s theorem from three cases.



We will explain them at the end of this section.

Before proving Theorem 7.1.1, a few results and lemmas will be established.

7.1.1. The main theorem

Lemma 7.1.1. Letting Cq = {χ mod q : χ 6= χ0, χ1}, then

φ(q)
∑
y<p≤z

p≡a mod q

1

p
=
∑
y<≤z

1 + χ1(ap)

p
+O(1)− ERp ,

where

ERp =

∫ z

y

∑
χ∈Cq

χ̄(a)
L
′
y

Ly

(
1 +

1

log u
,χ

)
du

u log2 u
.

Proof. First of all,

logFy(s) = log

(∏
p>y

(
1− f(p)

p2

)−1)
=
∑
p>y

f(p)

ps
+O(1)

for a multiplicative function f with |f | ≤ 1 and Dirichlet series F . This means

logLy

(
1 +

1

log z
,χ

)
=
∑
p>y

χ(p)

p1+1/ log z
+O(1).

Using this,

∑
χ mod q

χ̄(a) logLy

(
1 +

1

log z
,χ

)
=

∑
χ mod q

χ̄(a)

(∑
p>y

χ(p)

p1+1/ log z
+O(1)

)

=
∑

χ mod q

∑
p>y

χ(p)χ̄(a)

p1+1/ log z
+O

( ∑
χ mod q

|χ̄(a)|

)

= φ(q)
∑
p>y

p≡a mod q

1

p1+1/ log z
+O

( ∑
χ mod q

|χ̄(a)|

)
,

because ∑
χ mod q

χ(p)χ̄(a) = 0

unless p ≡ a mod q and in that case the sum is φ(q).
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Hence, ∑
χ mod q

χ̄(a)

(
logLy

(
1 +

1

log z
,χ

)
− logLy

(
1 +

1

log y
,χ

))

= φ(q)

 ∑
p>y

p≡a mod q

1

p1+1/ log z
−

∑
p>y

p≡a mod q

1

p1+1/ log y

+O

( ∑
χ mod q

|χ̄(a)|

)
.

Recall Brun-Titchmarsh’s inequality (Theorem 3.1.4). Combining this with partial summa-

tion gives us ∑
p>y

p≡a mod q

1

p1+1/ log y
= O

(
1

φ(q)

)
.

So

∑
p>y

p≡a mod q

φ(q)

p1+1/ log z
−

∑
p>y

p≡a mod q

φ(q)

p1+1/ log y
= φ(q)

∑
y<p≤z

p≡a mod q

1

p
+O(1).

Putting this in the previous equation,∑
χ mod q

χ̄(a)

(
logLy

(
1 +

1

log z
,χ

)
− logLy

(
1 +

1

log y
,χ

))
= φ(q)

∑
y<p≤z

p≡a mod q

1

p
+O(1).

We can now split the proof into two distinct cases: when χ 6∈ Cq and when χ ∈ Cq.

Case 1: when χ ∈ Cq
Here we have L(s,χ) � 1. By the Fundamental Theorem of Calculus,

logLy

(
1 +

1

log z
,χ

)
− logLy

(
1 +

1

log y
,χ

)
= −

∫ z

y

L
′
y

Ly

(
1 +

1

log u
,χ

)
du

u log2 u
.
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Case 2: when χ 6∈ Cq
When χ 6∈ {χ0, χ1}, we do not have L(s,χ) � 1. Also, since σ ≤ 1 + 1/ log y, Theorem 2.2.2

gives logFy(σ + it) =
∑

y<p≤x
f(p)
p1+it

+O(1). This means

logLy

(
1 +

1

log z

)
=
∑
y<p≤z

χ(p)

p
+O(1),

so

logLy

(
1 +

1

log z

)
− logLy

(
1 +

1

log y

)
=
∑
y<p≤z

χ(p)

p
−
∑
y<p≤y

χ(p)

p
+O(1)

=
∑
y<p≤z

χ(p)

p
+O(1).

Thus, combining Case 1 and Case 2, we get

φ(q)
∑
y<p≤z

p≡a mod q

1

p
=

∑
χ mod q

χ̄(a)

(
logLy

(
1 +

1

log z
,χ

)
− logLy

(
1 +

1

log y
,χ

))

=
∑
χ∈Cq

χ̄(a)

(
logLy

(
1 +

1

log z
,χ

)
− logLy

(
1 +

1

log y
,χ

))

+
∑
χ 6∈Cq

χ̄(a)

(
logLy

(
1 +

1

log z
,χ

)
− logLy

(
1 +

1

log y
,χ

))
.

Hence,

φ(q)
∑
y<p≤z

p≡a mod q

1

p
= −

∑
χ∈Cq

χ̄(a)

∫ z

y

L
′
y

Ly

(
1 +

1

log u
,χ

)
du

u log2 u
+
∑
χ 6∈Cq

χ̄(a)

( ∑
y<p≤z

χ(p)

p
+O(1)

)

= O(1)− ERp + (1 + χ1(ap))

( ∑
y<p≤z

1

p

)
+O(1)

=
∑
y<p≤z

1 + χ1(ap)

p
+O(1)− ERp .

�

In light of Lemma 7.1.1, it suffices to prove ERp � 1.
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Lemma 7.1.2.

ERp =

∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ)
du

u log2 u

+

∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y

(
1 +

1

log u
,χ

) ∑
n>y

P−(n)>y

µ(n)χ(n)

n1+1/ log yu log2 u
du

+

∫
y≤w≤u≤z

∑
χ∈Cq

χ̄(a)L
′

y(1 + / logw,χ)
L
′
y(1 + / log u,χ)

L2
y(1 + 1/ logw,χ)

du

u log2 u

dw

w log2w

Proof. The main idea is to use the Fundamental Theorem of Calculus.

1

Ly(1 + 1/ log u, χ)
=

1

Ly(1 + 1/ log y,χ)
+

∫ u

y

L′y
L2
y

(
1 +

1

logw
,χ

)
w

w log2w

= 1 +
∑
n>y

P−(n)>y

µ(n)χ(n)

n1+1/ log y
+

∫ y

y

L
′
y

L2
y

(
1 +

1

logw
,χ

)
dw

w log2w
.

Here, we must remember that

1

L(s,χ)
=
∑
n≥1

µ(n)χ(n)

ns
.

Since

ERp =

∫ z

y

∑
χ∈Cq

χ̄(a)
L
′
y

Ly

(
1 +

1

log u
,χ

)
du

u log2 u
,

it is possible to replace 1
Ly(1+1/ log u,χ)

in the definition above to get

ERp =

∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ)
du

u log2 u

+

∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y

(
1 +

1

log u
,χ

) ∑
n>y

P−(n)>y

µ(n)χ(n)

n1+1/ log yu log2 u
du

+

∫
y≤w≤u≤z

∑
χ∈Cq

χ̄(a)
L
′
y(1 + / log u,χ)

Ly(1 + 1/ logw,χ)

L
′
y(1 + / logw,χ)

Ly(1 + 1/ logw,χ)

du

u log2 u

dw

w log2w

which is the result we need. �

There are three sums in ERp and each one of them has to be � 1.

Corollary 7.1.3. ∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ)
du

u log2 u
� 1.
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Proof. Recall that Cq = {χ mod q : χ 6= χ0,χ1} and that χ1 is an non-principal character.

With that in mind, for u > y, we have σ = 1 + 1/ log u > 1 − 1/ log y. Thus, by Theorem

2.3.1, L
′
y(σ, χ)� log y.

Hence,∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ) =
∑

χ∈Cq ,χ1

χ̄(a)L
′

y(1 + 1/ log u,χ)− χ̄1(a)L
′

y(1 + 1/ log u,χ1).

But since Ljy(f,s)� (log y)j, we have

∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ) =
∑

χ∈Cq ,χ1

χ̄(a)L
′

y(1 + 1/ log u,χ) +O(log y)

=
∑
χ 6=χ0

χ̄(a)L
′

y(1 + 1/ log u,χ) +O(log y)

= φ(q)

 ∑
n>y,P−(n)>y
n≡a mod q

log n

nσ
−

∑
n>y

P−(n)>y

log n

nσ

+O(log y).

Now, applying the Fundamental Lemma of Sieves (Theorem 3.1.2) with yu = x1/3, we

can approximate the following set:

#{n ≤ x : P−(n) > y, n ≡ a mod q} =
#{n ≤ x : P−(n) > y}

φ(q)
+O

(
x1−1/ log y

φ(q) log y
+ x1/3

)
.

By partial summation and Theorem 2.3.1,∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ)� log y.

Finally, integration yields∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y(1 + 1/ log u,χ)
du

u log2 u
� log y

∫ ∞
y

du

u log2 u

= 1.

�

To bound ERp ’s last two terms, two important lemmas are needed.
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Lemma 7.1.4.

ERp � 1 +

∫ z

y

S

(
1 +

1

log u

)1/2

W

(
1 +

1

log y

)1/2
du

u log2 u

+

∫
y≤w≤z

S

(
1 +

1

log u

)1/2

S

(
1 +

1

logw

)1/2
du

u log2 u

dw

w log2w
,

where

S(σ) =
∑
χ∈Cq

|L′q(σ,χ)|2

and

W (β) =
∑
χ∈Cq

∣∣∣∣∣ ∑
n>y

P−(n)>y

µ(n)χ(n)

nβ

∣∣∣∣∣
2

.

Proof. We start by combining Lemma 7.1.2 and Corollary 7.1.3.

ERp = O(1) +

∫ z

y

∑
χ∈Cq

χ̄(a)L
′

y

(
1 +

1

log u
,χ

) ∑
n>y

P−(n)>y

µ(n)χ(n)

n1+1/ log y

du

u log2 u

+

∫
y≤w≤u≤z

∑
χ∈Cq

χ̄(a)L
′

y(1 + / log u,χ)
L
′
y(1 + / logw,χ)

L2
y(1 + 1/ logw,χ)

du

u log2 u

dw

w log2w
.

By taking the absolute values, we get

ERp � 1 +

∫ z

y

∑
χ∈Cq

∣∣∣∣∣L′y
(

1 +
1

log u
,χ

) ∣∣∣∣∣
∣∣∣∣∣ ∑

n>y

P−(n)>y

µ(n)χ(n)

n1+1/ log y

∣∣∣∣∣ du

ulog2u

+

∫
y≤w≤u≤z

∑
χ∈Cq

|L′y(1 + / log u,χ)|

∣∣∣∣∣ L
′
y(1 + / logw,χ)

L2
y(1 + 1/ logw,χ)

∣∣∣∣∣ du

u log2 u

dw

w log2w
.

The implicit zero-free region on Cq is used. Since |Ly(1 + 1/ logw, χ)| � 1 for χ ∈ Cq , then∣∣∣ 1
Ly(1+1/ logw,χ)

∣∣∣� 1. Thus,

ERp � 1 +

∫ z

y

∑
χ∈Cq

∣∣∣∣∣L′y
(

1 +
1

log u
,χ

) ∣∣∣∣∣
∣∣∣∣∣ ∑

n>y

P−(n)>y

µ(n)χ(n)

n1+1/ log y

∣∣∣∣∣ du

u log2 u

+

∫
y≤w≤u≤z

∑
χ∈Cq

∣∣∣∣∣L′y(1 + / log u,χ)

∣∣∣∣∣
∣∣∣∣∣L′y(1 + / logw,χ)

∣∣∣∣∣ du

u log2 u

dw

w log2w
.

Applying the Cauchy-Schwartz inequality concludes the proof. �
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Proof of theorem 7.1.1: By Lemma 7.1.1, it suffices to prove ERp � 1. Applying

Lemma 4.2.1 gives S(σ) � log2(y) and W (β) � 1/(β − 1)2 log2 y. Using these results

in Lemma 7.1.4 gives

ERp � 1 +

∫ z

y

S

(
1 +

1

log u

)1/2

W

(
1 +

1

log y

)1/2
du

u log u2

+

∫
y≤w≤u≤z

S

(
1 +

1

log u

)1/2

S

(
1 +

1

logw

)1/2
du

u log2 u

dw

w log2w

� 1 +

∫ z

y

(log2 y)1/2
(

1

(1 + 1/ log y − 1)2 log2 y

)1/2
du

u log2 u

+

∫ z

u=y

∫ u

w=y

log2 y
du

u log2 u

dw

w log2w

≤ 1 + log y

∫ ∞
y

du

u log2 u
+ log2 y

∫ ∞
u=y

∫ ∞
w=y

du

u log2 u

dw

w log2w

= 3.

�

Combining the two cases yields Theorem 6.0.1.

7.1.2. Deducing Linnik’s theorem using the pretentious approach

Case 1: χ1(a) = −1

Since χ1 is a Siegel zero, we have σ ≤ 1 + 1/ log y and thus it is possible to write∑
y<p≤z

χ1(p)

p
= logLy(σ,χ1) +O(1)

with σ = 1 + 1
log z

. Furthermore, by Lemma 2.3.1, for y ≥ q(|t| + 100) and σ > 1− 1/ log y,

we have Ljy(s,χ) � (log y)j because χ 6= χ0. Since j = 0, it is possible to bound

logLy(1 + 1/ log z, χ) ≤ O(1).

It implies
∑

y<p≤z
χ1(p)
p
≤ O(1). Assuming Theorem 7.1.1, elementary computation shows

1

φ(q)
D2(1, χ1(a)µχ1; [y,z]) =

1

φ(q)
D2(1,−µχ1; [y,z])

=
1

φ(q)
D2(1, χ1; [y,z])
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This means we can write

1

φ(q)
D2(1, χ1; [y,z]) =

1

φ(q)

∑
y<p≤z

1− χ1(p)

p

=
1

φ(q)

( ∑
y<p≤z

1

p
+O(1)

)

=
1

φ(q)

∑
y<p≤z

1

p
+O

(
1

φ(q)

)

=
1

φ(q)

(
log

(
log z

log y

)
+O(1)

)
.

Merten’s theorem will be applied twice (Theorem A.1.4). Now, letting z = qL and y = q2,

∑
p≤qL

1

p
= log(log qL) + γ +O

(
1

log qL

)

= logL+ log log q + γ +O

(
1

L log q

)
.

Also, ∑
p≤q2

1

p
= log(log q2) + γ +O

(
1

log q2

)

= log 2 + log log q + γ +O

(
1

2 log q

)
.

Hence, ∑
q2≤p≤qL

1

p
= logL− log 2 +O

(
1

2 log q
+

1

L log q

)
> logL+O(1).

This means ∑
q2<p≤qL

1 + χ1(ap)

p
= 2D2(1,χ1; [q2,qL]) ≥ logL+O(1),

which implies, by Theorem 7.1.1, ∑
y<p≤z
p≡amodq

1

p
≥ logL

φ(q)
> 0.
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Concretly, this means there exists a computable constant L ≥ 1 such that for q ≥ 3, (a,q) = 1,

there exists a prime p ≤ qL in a congruence class modulo q. This is exactly the statement

of Linnik’s theorem.

Case 2: χ1(a) = 1, Lq(1,χ1) ≥ L−0.99

Taking y = qL
0.99

and z = qL, it suffices to apply Theorem 2.3.1. Using this, we conclude∑
y<p≤z

χ1(p)

p
= O(1).

Thus, ∑
qL0.99<p<qL

1 + χ1(p)

p
=

∑
qL0.99<p<qL

1

p
+O(1)

=
∑
p<qL

1

p
−

∑
p<qL0.99

1

p
+O(1)

= log(L log q)− log(L0.99 log q) +O(1).

The last line is due to Merten’s theorem. It yields∑
qL0.99<p<qL

1 + χ1(p)

p
= logL+ log log q − log(L0.99)− log log q +O(1)

> 0.01 logL+O(1)

=
logL

100
+O(1).

If L is big enough, the logarithmic term will dominate the O(1) term. Hence, assuming

Theorem 7.1.1, ∑
qL

0.99
<p≤qL

p≡a(modq)

1

p
=

1

φ(q)

∑
qL0.99<p≤qL

1 + χ1(p)

p
+O

(
1

φ(q)

)

=
1

φ(q)

(
logL

100
+O(1)

)
+O

(
1

φ(q)

)
=

logL

100φ(q)
+O

(
1

φ(q)

)
> 0
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since the main term dominates the error term.

Case 3: χ1(a) = 1, Lq(1,χ1) ≤ L−0.99

Recall that χ1 is the exceptional character so it is real and non-principal. Thus, we can use

Theorem 2.3.4. Let Q = q
1

Lq(1,χ1) . Then,∑
qlogL<p≤qL0.49

1 + χ1(p)

p
� log qL

0.49

log q1/Lq(1,χ1)
+

1

L

=
L0.49 log q

1
Lq(1,χ1)

log q
+

1

L

= Lq(1,χ1)L
0.49 +

1

L

≤ L−0.99+0.49

≤ 1√
L
.

Since this bound is very small, it means that for most primes in this interval, 1 + χ1(p) = 0,

i.e. χ1(p) = −1. Now, suppose

S(X,y; a,q) =
∑

n≤x,n≡amodq
p|n→p>y

(1 ∗ χ1)(n).

Notice that

S(qL
0.49

,
√
qL0.49 ; a,q) =

∑
n≤qL0.49

,n≡amodq

p|n⇒p>
√

qL
0.49

(1 ∗ χ1)(n) > 0⇒ Linnik’s theorem.

The convolution above is used to pre-sift any prime p with χ1(p) = −1. As seen previously,

this is the majority of primes. Thus, it becomes a zero-dimensional sieve problem. The

following theorem will be very useful to prove the statement above. It is stated as Theorem

in Chapter 20 of [17] .
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Theorem 7.1.2. Let χ1 be a real, non principal character mod q and X = qL
0.49

. Suppose

(b,q) = 1, χ1(b) = 1, x ∈ [
√
X,X], 2 ≤ y ≤

√
X and u = log x

log y
. Then,

S(x,y; q,b) = (2 + ε)xL(1,χ1)
∏
`<y
a6|q

(
1− 1 + χ1(`)

l
+
χ1(`)

`2

)

where ε = O
(
e−u + 1

log x

)
Corollary 7.1.5. Let X = qL

0.49
. Then,

S(X,
√
X,q,a) > 0.

Proof. Let y = qlogL and b̄ be the inverse of b mod q. Recall P−(n) is the smallest prime

factor of p. The first step is to use Buchstab’s identity. Now, we can write

S(X,
√
X; q,a) = S(X,y; q,a)−

∑
y<p≤

√
X

∑
n≡a mod q

P−(n)=p

(1 ∗ χ1)(n)

= S(X,y; q,a)−
∑

y<p≤
√
X

j≥1

(1 ∗ χ1)(p
j)S(x/pj,p; q,p̄ja).

For j ≥ 2, we can use the fact that S(x/pj,p; q,p̄ja) ≤ x/pj. It means the contribution

is O(x/y). Any other term can be estimated using Theorem 7.1.2. Using the fact that

(1 ∗ χ1)(p) = 1 + χ1(p), we have

S(X,
√
X; q,a) =

2xL(1,χ1)(1 +O(L−1/2 + 1/ log x))

q

∏
`<qlogL

`-q

(
1− 1 + χ1(`)

`
+
χ1(`)

`2

)
.

Notice that the error term O(x/y) can be absorbed into the other error term. As stated in

Theorem 11.5 in [17], if χ is a non-principal real character mod q, then

L(1, χ)� 1
√
q log2 q

.

Hence, for L big enough, we have S(X,
√
X,q,a) > 0.

�
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Appendix A

Useful results

A.1. Appendix

In this section, a few results are stated.They are taken as black boxes.

Theorem A.1.1. Let α : [a,b]→ C be a step function with a partition P = {x0,x1,..., xn} of

[a,b] such that α is constant in each interval of the form (xj−1,xj), 1 ≤ j ≤ n. Let

αj =


α(a+)− α(a) if j = 0

α(x+j )− α(x−j ) if 1 ≤ j ≤ n− 1

α(b)− α(b−) if j = n.

If f : [a,b] → R is a function such that there is no x ∈ [a,b] for which both f and α are

simultaneously discontinuous from the right or from the left, then∫ b

a

f(x)dα(x) =
n∑
j=0

f(xj)αj.

Theorem A.1.2. (Summation by parts)

Suppose an is a sequence of complex numbers and f ∈ C1([a,b]). Also, let∑
n≤x

an = M(x) +R(x)

where M ∈ C1([a,b]) and R is the remainder term in the approximation of
∑

n≤x an by M(x).

If a ≤ y ≤ z ≤ b, then∑
y<n≤z

anf(n) =

∫ z

y

f(t)M ′(t)dt+R(z)f(z)−R(y)f(y)−
∫ z

y

R(t)f ′(t)dt.



Theorem A.1.3. (Pólya–Vinogradov inequality, 1918)

Let

S(χ) = max
m,n

∣∣∣∣∣ ∑
M<n<N+M

χ(n)

∣∣∣∣∣ .
Then, for any non principal character χ,

S(χ)� √q log q.

Theorem A.1.4. (Merten’s theorem)

∑
p≤x

1

p
= log log x+ γ +O

(
1

log x

)
,

where γ is the Euler-Mascheroni constant.

Theorem A.1.5. (Hölder)

Let p ≥ 1, q ≤ ∞ such that 1/p+ 1/q = 1. Then,

n∑
k=1

|xkyk| ≤

(
n∑
k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

.

Theorem A.1.6. (Plancherel)

Let

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

Then ∫ π

−π
|f(x)|2dx = 2π

∑
n∈Z

|cn|2.

Theorem A.1.7. (Vinogradov-Korobov, 1957)

There exists absolute constants γ, δ > 0 such that

ζ(σ + it) ≤ γ(log t)2/3.

Theorem A.1.8. (Huxley Density Estimate)

For any α > 5/6 and T ≥ 2, we have

N(α, T )� T
3(1−α)
3α−1 (logA)T ,

where A = 300
(α−5/6)2 .

A-ii
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