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Sommaire

Comme les domaines d’application des systèmes d’intelligence artificielle ainsi que les tâches

associées ne cessent de se diversifier, les algorithmes d’apprentissage automatique et en par-

ticulier les modèles d’apprentissage profond et les bases de données requises au fonctionne-

ment de ces derniers grossissent continuellement. Certains algorithmes permettent de mettre

à l’échelle les nombreux calculs en sollicitant la parallélisation des données. Par contre, ces

algorithmes requièrent qu’une grande quantité de données soit échangée afin de s’assurer que

les connaissances partagées entre les cellules de calculs soient précises.

Dans les travaux suivants, différents niveaux de communication entre des modèles

d’apprentissage profond sont étudiés, en particulier l’effet sur la performance de ceux-ci.

La première approche présentée se concentre sur la décentralisation des multiples calculs

faits en parallèle avec les algorithmes du gradient stochastique synchrone ou asynchrone. Il

s’avère qu’une communication simplifiée qui consiste à permettre aux modèles d’échanger

des sorties à petite bande passante peut se montrer bénéfique. Dans le chapitre suivant, le

protocole de communication est modifié légèrement afin d’y communiquer des instructions

pour l’entraînement. En effet, cela est étudié dans un environnement simplifié où un modèle

préentraîné, tel un professeur, peut personnaliser l’entraînement d’un modèle initialisé

aléatoirement afin d’accélérer l’apprentissage. Finalement, une voie de communication

où deux modèles d’apprentissage profond peuvent s’échanger un langage spécifiquement

fabriqué est analysée tout en lui permettant d’être optimisé de différentes manières.

Mots-clés : Apprentissage automatique, apprentissage profond, communication, langage,

professeur, étudiant, optimisation, gradient
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Summary

As artificial intelligence systems spread to more diverse and larger tasks in many domains, the

machine learning algorithms, and in particular the deep learning models and the databases

required to train them are getting bigger themselves. Some algorithms do allow for some

scaling of large computations by leveraging data parallelism. However, they often require a

large amount of data to be exchanged in order to ensure the shared knowledge throughout

the compute nodes is accurate.

In this work, the effect of different levels of communications between deep learning

models is studied, in particular how it affects performance. The first approach studied looks

at decentralizing the numerous computations that are done in parallel in training procedures

such as synchronous and asynchronous stochastic gradient descent. In this setting, a sim-

plified communication that consists of exchanging low bandwidth outputs between compute

nodes can be beneficial. In the following chapter, the communication protocol is slightly

modified to further include training instructions. Indeed, this is studied in a simplified setup

where a pre-trained model, analogous to a teacher, can customize a randomly initialized

model’s training procedure to accelerate learning. Finally, a communication channel where

two deep learning models can exchange a purposefully crafted language is explored while

allowing for different ways of optimizing that language.

Keywords: Machine learning, deep learning, communication, language, teacher, student,

optimization, gradients
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Introduction

This thesis presents my research during the completion of my Master’s degree at the Univer-

sité de Montréal at Mila under the supervision of Professor Yoshua Bengio. This work was

done in the field of computer science and more specifically of artificial intelligence and with

the collaboration of postdoctoral researcher Min Lin at Mila.

This thesis is structured in such a way to introduce the machine learning basics in the

first chapter to be able to follow the work detailed in the subsequent ones. Chapters 2, 3 and

4 detail different experiments to study how useful having a communication channel between

deep learning models can be.



Chapter 1

Machine Learning Basics

In this chapter, a review of the basics of machine learning required to follow the work

described in the following chapters is made. This does not serve as a full review of machine

learning nor deep learning. Should the reader be interested in an in-depth review of the

background material and trends in machine learning and more specifically in deep learning,

the Deep Learning book [16] is an excellent alternative.

1.1. Introduction

Machine learning is the greater family of creating functions from data, leveraging the

computing abilities and algorithms of computer science. In addition to computer science, it

is at the intersection of multiple fields of research, in particular, probability and statistics,

information theory, optimization, linear algebra and linguistics.

Recent breakthroughs in artificial intelligence such as the highly publicized Alpha Go

successes [32], leverage different components of the machine learning family. One in particu-

lar, reinforcement learning is not covered throughout this document. The interested readers

can learn more about it from [34], which a second edition is currently in the works.

1.2. Tasks

Although the field of machine learning and its potential applications are expanding

rapidly, most of them can be boiled down to a couple categories of tasks. This section

serves as a brief introduction to the most common tasks that leverage machine learning

algorithms.



1.2.1. Supervised learning tasks

Supervised learning tasks can be generally seen as tasks where the objective is to make a

prediction as to what an input corresponds to. Conceptually, models try to figure out what is

the relationship between the input data and an associated value or label. Generally speaking,

the objective is to build models such that for similar input, it makes similar predictions in

the hopes of being able to make an appropriate prediction for new data. In other words,

supervised learning tasks aim to understand the relationship between the data and some

other value or attribute of the data. Provided with a dataset with training samples, the

difficulty lies in establishing what consists of a similarity.

1.2.1.1. Classification

A typical classification task consists of making a prediction regarding which class or

group a given input associates with. Examples of such task includes predicting if an image

is one of a cat or a dog, or given a wine sample predict if it is a red or white wine. Other

advanced tasks such as auto-correcting mistyped words on a cellphone keyboard or even

facial recognition software all correspond to a form of classification task. Apart from some

cases of multi-label classification, the general objective of the machine learning model in this

task is to predict which one of the possible M classes corresponds to that input.

Datasets used for classification tasks consist of the input data as well as the corresponding

label for each of the data samples. The goal is then to make a prediction on the label of

a new data point. To design a classification algorithm or model, it is often mandatory to

know ahead of time the possible labels or classes that the data may represent, i.e. will these

pictures be exclusively of either dogs or cats? In addition, the loss function used to train

machine learning models for supervised learning tasks is the cross-entropy loss between the

model’s probabilistic prediction and the label distribution of the training data.

Given training data Dtrain = {(x(1), y(1)), . . . , (x(i), y(i)), . . . , (x(N), y(N))}, where x ∈

Rd, y ∈ {1, 2, . . . , C} and fθ(x(i)) =
[
P (y(i) = 1|x(i)), P (y(i) = 2|x(i)), . . . , P (y(i) = C|x(i))

]
,

the global cross-entropy objective can be defined as,

L(fθ(x
(i)), y(i)) = −

C∑
j=1

1{y(i)=j} log fθ(x
(i))j (1.2.1)
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1.2.1.2. Regression

Similarly to classification, regression tasks can be seen as making a prediction of value

for a given input. However, instead of selecting one of the possible groups to associate a

given input to, the goal is to estimate a real value. An intuitive example to understand the

regression is to consider estimating the value of a house. A real estate agent acts similarly

to a machine learning model in a regression task where given all the information of the

neighborhood and characteristics of a house, it tries to determine a good market price to list

the house on the market. Variants of regression include predicting the amount of acceleration

an autonomous vehicle requires or even the price a user may be ready to pay online for an

item given its user profile.

The datasets for regression are similar to classification tasks but where a real value is

associated with each of the data samples. The loss function generally used in regression tasks

is the mean-square error (MSE), as it allows for computing losses between real numbers.

Given training data Dtrain = {(x(1), y(1)), . . . , (x(i), y(i)), . . . , (x(N), y(N))}, where x ∈

Rd, y ∈ R and fθ(x(i)) = ŷ(i), the MSE objective can be defined as,

L(fθ(x
(i)), y(i)) =

1

2
(y(i) − fθ(x(i)))2 (1.2.2)

1.2.2. Unsupervised learning tasks

Unlike supervised learning tasks, unsupervised learning focuses on the actual data itself

rather than its relationship with a corresponding label or value. There is a wide array of

unsupervised learning tasks, but most of them try to estimate, in some way, the underlying

distribution of the data. In general, a key distinction from supervised learning datasets is

the absence of labels.

1.2.2.1. Clustering

Conceptually, clustering is a task about discovering boundaries throughout the data in

order to regroup similar data points into groups, or clusters. The number of clusters is

usually required to be known in advance. There is an analogy to be made between clustering

and classification, only the former is in a situation where it is not known in advance what
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classes the data correspond to. An example of clustering tasks include grouping users based

on their online activity in order to better predict their purchases.

1.2.2.2. Density estimation

Rather than focus on a function of the data, density estimation aims at discovering or

approximating the underlying function that is behind the data. This function is commonly

called the probability density function. In other words, the goal is to find the distribution

from which the data was created. If successful, the recovered function is a powerful tool that

can be used to replace the original data or even create new data from the same distribution.

Density modelling can further be understood as a way of compressing all the data on hand

into a machine learning model.

These tasks are pretty general and depend on what the intended purpose is once the

density has been successfully modelled by a machine learning model. For example, modelling

the insurance claims of a set of car insurance policies allows an insurance company to analyze

the risks they are exposed to. Given that model, it can further determine an appropriate

pricing for a new customer. The key here is the intent of doing something else with the

density estimation but where on its own, it doesn’t really do anything.

1.2.2.3. Generative models

Density estimation usually requires to explicitly have a parameterized model of a family of

density functions. On the contrary, generative models usually have an implicit model of the

density distribution of the data. The objective is to be able to then sample that distribution

in order to get some additional data samples. An example of tasks using generative models

would be to create additional artwork given some paintings of a deceased artist. By modelling

the distribution of the known paintings of an artist, it could be possible, in theory, to then

generate new paintings that correspond to that artist’s characteristics.

1.3. Optimization and evaluation

In order to solve any of the previously mentioned tasks in machine learning, a mathe-

matical framework of the problem needs to be formulated. Once that problem is formulated

as an optimization problem, some algorithms can be used to minimize or maximize the ob-

jective. Throughout the different tasks, the one recurring approach is to define the objective
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to minimize as a loss function. That loss function is what defines the task a model will be

trained to do.

Given a function f with parameters θ and a training dataset Dtrain, the global objective

J(θ) can be defined as,

J(θ) = R̂(fθ, Dtrain) =
1

|Dtrain|

|Dtrain|∑
i=1

L(fθ(x
(i)), y(i)) (1.3.1)

The ultimate goal of the optimization procedure is to find the parameters θ that minimize

J(θ), the empirical risk, over the entire training data. The solution to the optimization

problem can be written as θ∗ = argmin
θ

J(θ).

However, this is not easily accomplished, in particular given the complexity of the tasks

that are now explored in the machine learning community. Indeed, especially with the deep

learning models, the resulting loss function to minimize is simply not tractable. This means

the possibility of solving the optimization problem analytically is out of the question.

1.3.1. Evaluating a machine learning algorithm

The true intent behind using machine learning models is often not to minimize/maximize

the actual loss used in training. Indeed, this mathematical formulation of the true goal

is a surrogate loss that can be easily optimized because most of the time, the real mea-

sure/objective is not.

A key example of this is the classification task. The actual objective of doing classification

is to minimize the number of errors a model makes on a new data sample it never trained

one, i.e. generalization error. However, for the gradient optimization algorithms to work,

the mathematical formulation of the objective must be continuous and differentiable, where

the generalization error may not always be.

1.3.2. Gradient optimization

Given the complex nature of the loss functions used throughout , rather than finding

analytically the solution, an iterative method can be used. If analytically solvable, the

optimization procedure would have called for finding where the ∇θJ(θ) = 0 , where the

gradients of the objective with regards to the parameters θ are zero. An intuitive alternative
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to circumvent the need to solve this is to consider an iterative solution, called gradient

descent/ascent [9].

1.3.2.1. Stochastic Gradient Descent

The gradient descent procedure can be conceptually understood as hiking down a moun-

tain, where we do not know the actual path down. An intuitive way to go about reaching

the bottom of a mountain would be at each step, to look for the angle of the mountain and

take a step in the direction that goes downhill. If the mountain is convex such that there

are no valleys that restrict access to the bottom of it, this approach is guaranteed to allow

you to reach the bottom of the mountain.

This is in fact exactly minimizing the empirical risk through gradient descent. Iteratively,

at each step, the direction that goes downhill will be computed and then a step will be made

in that direction. The direction of the mountain will be given by the gradient ∇θJ(θ).

To mitigate risks of getting stuck in local minima during the optimization, rather than

computing the gradient based on the full training state, noisy estimates of the gradients can

be computed by randomly selecting a subset of the data. This approach is commonly called

minibatch stochastic gradient descent, where a minibatch of size m represents a randomly

selected subset of the data. The gradient estimate can therefore be defined as,

∇̂θJ(θ) =
1

m

m∑
i=1

∇θL(fθ(x
(i)), y(i)) (1.3.2)

In the most extreme case where m = 1, the gradient can be estimated with a single

sample from the data. A stripped-down version of minibatch SGD and its training algorithm

is described in algorithm 1.

One key aspect of SGD is that the gradients must be evaluated with the same value of θ

for the full minibatch. This is often one of the bottlenecks in the speed of training. As the

minibatch size increases, the accuracy of the gradient estimate increases, but so is the time

to compute it. Although GPU implementations have been able to parallelize some of these

computations to speed up training, other approaches have been proposed to further alleviate

the time constraint.
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Algorithm 1 Minibatch stochastic gradient descent

1: Given Dtrain = {(x(1), y(1)), . . . , (x(N), y(N))} the training dataset

2: Given fθ is a continuous and differentiable function

3: Initialize η as the step size

4: Initialize m as the size of the minibatch

5: while Not converged do

6: Randomly select m data samples from Dtrain

7: θ ← θ − η 1

m

m∑
i=1

∇θL(fθ(x
(i)), y(i))

8: end while

1.3.2.2. Synchronous and asynchronous SGD

Distributed SGD refers to the widely used approach of data parallelism with large neural

network models/datasets. The main concept is to split the data among different computation

nodes and allow them to be connected to a central controller. Each node always has the

same version of the model, and each is responsible to provide to the central controller the

changes to the parameters for its local data share. To create a single parameter update of

the global model, each of the node computes the gradients on their local minibatch of data

which comes from their local dataset partition. The gradients are then sent to the central

controller, where the gradients from all compute nodes are agglomerated to form the global

gradient estimator. The global gradient estimator is then sent back to all compute nodes, so

they can all update their local version of the model in the same manner. This ensures each

local model has the same version of the parameters as the others.

This method scales almost linearly with the number of computing nodes (up to a certain

amount of computing nodes [18]). The computational advantage of this approach comes

from the parallelism of the computation over multiple data partitions. The theoretical gains

for a dataset split into N partitions is 1
N
, because it is assumed each compute node can train

on their local share in parallel. Furthermore, asynchronous versions [5] of distributed SGD

have been developed to alleviate some of the computational needs of the approach. How-

ever, synchronous methods have shown some limitations to scalability, leading to alternative

methods such as co-distillation [1].
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Throughout this document, this distributed SGD approach is considered as an approach

leveraging communication between models because of the use of the central controller. In

fact, this is considered to be the most efficient in terms of computation gains/speedup. The

main aspect of distributed SGD that causes problem is the high bandwidth requirement

that derives from sharing the raw gradients. Given the size of the models used under this

approach are usually large, different computation nodes are physically separated, therefore

requiring a top-of-the-line network between compute nodes and the central controller.

1.4. Neural networks and deep learning

With machine learning being a subcategory of artificial intelligence, neural networks and

deep learning are a subgroup of techniques and training algorithms of machine learning.

They derive their name by the structural inspiration to the brain topology and how these

algorithms leverage the stacking of different layers of units.

All of the recent deep learning architecture base themselves on the linear combination of

multidimensional inputs and parameters. Given an input x = {x1, x2, . . . , xd} and param-

eters w ∈ Rd, b ∈ R, the most basic of models to approximate a function of x, the linear

combination, can be written as,

f(x) =
d∑
i=1

wi × xi + b (1.4.1)

This model alone could be applied to previously mentioned tasks like classification or

regression. In any of those two cases, f(x) would serve as an approximation of the label or

value y and it could be trained by minimizing the empirical risk using minibatch gradient

descent.

1.4.1. Perceptron

The ancestor of neural networks is the Perceptron [28] which is a clever take on the linear

combination in order to apply it to a binary classification class. Consider a dataset for a

two group classification task with Dtrain = {(x(1), y(1)), . . . , (x(N), y(N))}, where x ∈ Rd, y ∈

{−1, 1} in addition to parameters w ∈ Rd, b ∈ R. To simplify the notation, all parameters

of a model can be grouped into a single variable θ = {w, b}.
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The perceptron defines the predicted class f(x) as the following,

f(x) =


1, if

d∑
i=1

wi × xi + b > 0

−1, otherwise
(1.4.2)

To minimize the empirical risk, the Perceptron used a creative loss function that allows

it to employ gradient optimization algorithms. Indeed, as previously discussed, directly

minimizing the number of errors on the training set is not feasible with SGD. However, the

Perceptron proposes to slightly modify the error count in order to allow for the gradient

computation. Denoting h(x) =
d∑
i=1

wi × xi + b, it can be expressed in the following manner,

L(fθ(x
(i)), y(i)) = 1{y(i)×fθ(x(i))≤0}(−y

(i) × h(x(i))) (1.4.3)

The loss function is therefore valued at 0 unless there is an error in the prediction, in which

case it is equal to the linear combination of the parameters and the input x. Without getting

into the details, this loss function can be plugged in the previously described optimization

algorithms to iteratively train θ.

1.4.2. Non-Linearity and activation functions

The Perceptron can be decomposed into two functions quite intuitively. Firstly, a linear

combination of the parameters, or weights and the input that gives h(x) =
d∑
i=1

wi × xi + b,

and the step function that gives the final output f(x) = sign(h(x)).

Similarly, any function could be applied to h in order to get an output. These functions

are called non-linearity or activation functions and are a key concept of allowing neural

Figure 1.1. Popular non-linearity functions used in neural networks.

(Left) Sigmoid, (Middle) Tanh and (Right) ReLU.
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networks to become high capacity models. Without the use of a non-linearity, the model

can only represent linear relationships. Although any function could be used as a non-

linearity, given the use of gradient optimization, it is required that it be differentiable almost

everywhere.

The ReLU [29], the sigmoid and tanh functions are the most common activation functions.

They serve different purposes, with the ReLU often used as a hidden layer activation, while

the sigmoid can be used to provide a value between 0 and 1, like a probability. The tanh

function used to be a popular hidden layer activation function, but it is mostly used now to

force values between −1 and 1. Theses non-linearities are plotted in Figure 1.1, and their

functions are as follows,

• ReLU: f(x) = max(0, x)

• Sigmoid: f(x) =
1

1 + e−x

• Tanh: f(x) = ex − e−x

ex + e−x

1.4.3. Feedforward Neural Network and Multi-Layer Perceptron

The linear combination described in equation 1.4.1 allows one to combine an array of

inputs x and parameters w and b into a single scalar. A natural way of expanding this is

by considering multiple values of parameters w and b. If indeed, instead of having a single

linear combination with a single set of w and b, there were k linear combinations with each

their corresponding parameters, f(x) could therefore become multidimensional. In addition,

much like the Perceptron, a non-linearity function could be applied to each of these.

For simplicity, a linear combination of the parameters and an array of inputs, in combina-

tion with a non-linearity, can be called a node or a unit. The analogy of the neural network

then comes from the visual representation where a single node is therefore connected to the

input array.

The combination of the k units or nodes is referred to as a layer, and the k scalar values

generated from the computations are called the outputs of the layer. In a way, this layer

is composed of k Perceptrons, allowing the model to have an input dimension of d and an

output size of k. The k outputs of the previously defined layer could be very well seen as an

input themselves and in fact, this is the key concept behind neural networks. Indeed, layers

can therefore be stacked on top of each other, where the output of a previous layer is the
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Figure 1.2. Visual representation of a multi-layer perceptron with a sin-

gle hidden layer with 6 units, input x ∈ R3 and a single output.

input to the next. When considering the whole set of nodes, the last layer is referred to as

the output layer, while all the others apart from the input are called hidden layers.

Names often given to these networks are the feedforward neural network and the Multi-

Layer Perceptron (MLP), as per their structural design. A visual representation of a single

hidden layer MLP can be seen in Figure 1.2.

Given enough memory to store all the parameters, these models can be built of arbitrarily

size, where both the number of units and the number of layers can be controlled. Having

multiple layers and numerous units allows for the output of the network to be a highly

complex function of the input. The MLP has an interesting property: provided with an

infinite number of hidden units, it is a universal function approximator [21]. In other words,

it can have enough complexity through the combinations of the input that any continuous

function can be reproduced.

1.4.4. Convolutional Neural Networks

Convolutional neural networks [27] (CNN or ConvNet) are a special type of neural net-

works especially designed to handle data such as images. CNNs have been shown to be

applicable not only to images but also to text [23] and even audio signals [35]. These models

are what popularized deep learning by their highly optimized implementation and impressive

performance on difficult image classification tasks such as ImageNet [12].
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The key concept behind CNNs is the parameter sharing aspect that allows for the same

computations to be made at different places of a layer. In comparison, an MLP layer needs

to have specific computations for all of the layer’s input dimensions. This is very useful

when applied to images because it allows the model to detect the same shapes and patterns

throughout the image. These models have the property of being shift and space equivariant,

which simply means that through the convolution operation of a layer, a shift in the input

will result in the same shift in the output.

It is important, however, to point out that this type of network can very well be, and is

most often, mixed with the MLP. In fact, the different types of networks are usually handled

as layers, where it doesn’t matter how a given output was obtained, as long as it can be

considered as an input to another layer. Multiple convolutional layers are often used to

extract features from images, only to be combined higher in the architecture with an MLP.

1.4.5. Recurrent Neural Networks

Another type of neural network called Recurrent Neural Networks (RNN) [31] are used

to handle sequential data such as time series or video. To handle the input changing over

time, RNNs have the characteristic of sharing parameters through time. Indeed, rather than

having a separate set of parameters for each time step, it uses the same parameters for each

time step.

Given an input x = {x1, . . . , xt, . . . , xT}, where xt ∈ Rd and parameters Wx ∈

Rd×m,Wh ∈ Rm×m,b ∈ Rm, it can be written as a recurrence, in the simplest case as,

ht = f(xt,ht−1) = Wx • xt +Wh • ht−1 + b (1.4.4)

With a hidden state ht computed for each time step, it can be used as an input to

another layer to generate an output. This is an example of the concept of layers that is

key to understand how neural networks are built. Furthermore, it can be easy to imagine

a wide array of combinations of inputs and outputs, especially given the added dimension

of time that is often associated with RNNs. The most widely used architectures for RNNs

are the long short-term memory [20] (LSTM) and gated recurrent units [10] (GRU). Both of

these models have shown to allow for longer dependencies between time steps to emerge by
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limiting the effects of the exploding and vanishing gradients, which have been described to

cause problems to the optimization procedure [6].

1.4.6. Unsupervised learning models

In this section, the most popular deep unsupervised learning models are detailed which

were also used in the subsequent chapters of this document.

1.4.6.1. Variational Auto-Encoder

The Variational Auto-Encoder [25] (VAE) is a model of the encoder-decoder type that

allows to both encode an input into features, but also generate samples. An encoder network

maps from the input space of x to z, the feature space, which can be of arbitrary size. The

true distribution of z given an input x can be denoted p(z|x) and the encoder’s model of

that distribution will be defined as q(z|x). It turns out by its training objective, q(z|x) will

be trained to become closer to its true posterior distribution p(z|x). This in turn makes it

possible to sample z ∼ q(z|x). Another network, the decoder, maps the sampled z back into

the input space as a generator. The output distribution of the reconstructed inputs can be

denoted p(x|z).

The key and the beauty to making this whole model work is the training objective which

is called the variational lower bound or evidence lower bound (ELBO). This bound to the

log-likelihood of the underlying distribution of the data p(x), can be maximized to create

meaningful features and a good sample generator. Using the above mentioned distributions,

it can be defined as,

L(q) = Eq(z|x)
[
log p(x, z)

]
+H

(
q(z|x)

)
= Eq(z|x)

[
log p(x|z)

]
−DKL

[
q(z|x)||p(z)

]
≤ log p(x)

(1.4.5)

Practically speaking, the left most objective, Eq(z|x)
[
log p(x|z)

]
is attributed to the de-

coder and is considered to be the reconstruction or prediction error. Indeed, it is trained

to increase its ability, given a sampled z ∼ q(z|x), to predict x. The rightmost part

DKL

[
q(z|x)||p(z)

]
, the Kullback-Leibler (KL) divergence, will make the features generated
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by the encoder closer to the prior distribution p(z) which is defined as a Gaussian distribu-

tion. This approach has the advantage, depending on the task on hand, to encode an input

into a distribution, rather than a simple deterministic mapping.

1.4.6.2. Generative Adversarial Networks

GANs, short for generative adversarial networks [17] revolutionized the world of genera-

tive models. Although numerous variants of the vanilla GAN have been proposed, this brief

section details the original version.

The main concept at the center of this type of model is the competition between two

components, the generator and the discriminator. Firstly, the generator with its parameters

θG, is a function of a noise vector z ∈ Rm, and outputs directly fake samples, i.e. GθG(z) = x′.

The discriminator, with its own set of parameters θD takes as input either the original data

x or the fake sample x′, and gives a single scalar score between 0 and 1 using a sigmoid

non-linearity on the output layer. The discriminator network is noted as DθD . Conceptually,

this score represents the confidence of the discriminator that the provided input (whether

real or fake) is a real sample.

The discriminator is trained in order to both increase the score of true data decreasing the

score of the fake data. In a way, it is learning to distinguish between the true distribution of

the data p(x), and the fake distribution of data q(x|z). The adversarial aspect of the model

derives from the way the generator is trained. Indeed, its objective is to compete with the

discriminator and generate samples that would be considered as true. In other words, it is

trained to fool the discriminator into thinking its samples are real.

Given samples x ∼ p(x) and x′ ∼ q(x|z) with z ∼ q(z), from the true data distribution

and generated samples, respectively, the global objective can be written as,

Ep(x)
[
logDθD(x)

]
+ Eq(x|z)

[
log(1−DθD(x

′))
]

(1.4.6)

Relating back to the adversarial aspect, the discriminator is trained to maximize this full

objective, while the generator will be trained to minimize it.
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1.4.6.3. Bidirectional Generative Adversarial Networks

One disadvantage of the GAN is that it doesn’t provide for a compressed representation

of the data. Unlike the VAE, it only build a model that allows to generate some samples.

Two similar models have been designed to leverage the adversarial aspect of GANs in order to

generate features out of input data. Although Adversarially Learning Inference [15] is similar

to Bidirectional Generative Adversarial Networks [13] (BiGAN), the latter are slightly more

straightforward to explain and was used in some experiments detailed in this document.

The key difference between GAN and BiGAN is the added encoder EθE(x) that is used

to map true data samples to the feature space. Previously, the discriminator was only fed

either the true image, or the generated samples from the generator. In BiGAN, the noise

vector and the encoded features are paired up along with their corresponding generated and

true data samples, respectively. Much like the traditional GAN framework, the pairs are

then considered as the fake and true data and fed to the discriminator.

Training of the generator and discriminator is the same as in the original GAN formu-

lation, while the encoder is also trained to minimize the objective. The authors of BiGAN

further argue that by using the proposed objective, the encoder learns to invert the generator.

1.5. Capacity and regularization

1.5.1. Controlling the capacity

The capacity of a model refers to its ability to represent a large space, or family, of

functions. Although abstract, it can conceptually be understood as a measure of how flexible

a model is. For example, a model such as a deep learning network with many parameters

has high capacity and is therefore known to be able to represent highly complex functions,

while a linear model has very low capacity since it can only represent linear relationships.

Capacity can often be controlled by the choice of machine learning algorithms, but even

within the configuration of a particular algorithm. It could seem intuitive to always aim

for the highest possible capacity when tackling a machine learning task, however there is an

important caveat and it relates to the objective being optimized. Given the training proce-

dures minimizes the empirical risk rather than the true evaluation objective, and although
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increased capacity should allow to reach the minimal training loss, it might not be ideal in

terms of generalization error.

1.5.2. Ensemble learning

Ensemble learning is a machine learning method that allows for combining a set of models

into a single one. A common approach, called model averaging, consists of fully training

variants of the same machine learning model on the same data and then combining them

when making a prediction. This has the effect of leveraging the diversity in the different

solutions that are proposed by the set of machine learning models. An early version of this

approach, called bootstrap aggregating (or bagging) [8], proposed to train models on different

subsets of the training data.

This is another type of algorithm that is considered to have a communication protocol.

At the time of inference or deployment of the ensemble of models, a communication occurs

since only a single prediction is made out of the ensemble. All the models which are part of

the ensemble therefore, in some way, do communicate in order to jointly make one prediction.

1.5.3. Regularization techniques

Regularization consists of limiting the capacity of the model such that optimizing the

training objective does not make performance on the evaluation objective worst.

1.5.3.1. Weight-decay

A widely used regularization approach is to impose some constraints on the different

parameter weights of neural networks. This is done by adding an additional objective to

the empirical risk J(θ). The additional objective to minimize can be the square norm of the

weight vectors. Since minimizing the norm of the vector goes against the main objective, it

is considered to be restricting the model as it pushes all of the parameters values towards 0.

Furthermore, the importance of this additional objective is controlled by a hyper-parameter

λ, where a larger value indicates a greater importance in comparison to the original empirical

risk.

Indeed, by considering the L1 or the L2 norm of the weight vectors, the global objective

can become any of the two objectives described below. Additionally, in some cases such as
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elastic net regularization [38] both the L1 and L2 norms may be combined to ensure proper

regularization of the network’s weights.

J1(θ) = J(θ) + λ1
∑
i

|θi| (1.5.1)

J2(θ) = J(θ) + λ2
∑
i

θ2i (1.5.2)

1.5.3.2. Dropout

The dropout [33] regularization approach is a very interesting and simple approach that

provides great regularization power. It consists of simply injecting noise to a layer by sam-

pling a binary mask on the input and hidden layers. For example, given x = {x1, x2, . . . , xd},

a binary mask of size d would be sampled from a Bernouilli distribution with probability p.

The amount of noise is controlled by the probability p, a hyper-parameter.

During training, the mask is sampled for each x that goes through a given layer of a

network and the corresponding dimensions of x that match the noisy mask are turned off.

During evaluation, the probability is set to 0 and inference is made on the full observations

for each layer. By sampling different masks at each layer, it has the effect of limiting the

number of pathways in the neural network. Furthermore, this approach has been compared

to training an ensemble of models [2] at a much less expensive resources cost.

1.5.3.3. Early stopping

A widely used method of monitoring the progress of the training procedure of a network

is to consider how it performs on the actual objective. For example, by monitoring the

generalization error of a network used for classification during training and stopping it when

the model no longer improves is a way of regularizing it. Indeed, by limiting the amount of

gradient optimization steps it makes, the number of functions that can be represented by

the network is limited.
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Chapter 2

Exchanging Outputs Between Models

Most implementations of large scale neural networks are trained using either synchronous

[11, 37] or asynchronous [5] gradient optimization procedures. Although both of these ap-

proaches have some great benefits and can achieve impressive results leveraging data par-

allelism, they require a great deal of both computing and networking resources to actually

achieve their theoretical optimal speedup. In this work, we propose to explore how removing

one of the main characteristics of these optimization procedures may affect performance.

Mainly, this work studies how decentralizing the computation onto multiple compute nodes

and allowing them to communicate between each other rather than to a central controller,

may reach similar performance. Part of the study includes what information can be com-

municated between the compute nodes, which includes low bandwidth outputs and hidden

layers activation.

2.1. Introduction

Previous work on allowing a model’s output to be used as training labels for another

one, known as distillation [19], have paved the way to leveraging a network’s outputs to

accelerate training in a teacher/student setup. More recently, [1] showed distillation could

be applied online during training on two large models in order to circumvent some of the

scaling issues of distributed synchronized SGD. Building on this, this work explores how this

expands to a full network of computation nodes that exchange outputs at different depths

of their respective architectures.

The current shift towards using synchronous and asynchronous gradient optimization as

deep learning models and datasets grow bigger entails high bandwidth requirements to trade



off the large local computations done at each node. In some cases where highly optimized

infrastructure and large computational power are available, distributed-SGD can drastically

reduce the time needed to train large deep learning models [18]. There are therefore large

gains of bandwidth to be made by decentralizing some of the computation.

Reconsidering a decentralized version of the distributed-SGD further allows for a recon-

sideration of future computational needs and possibilities. Using a decentralized computing

network could allow for increased stability and failure resistance as the whole progress of

training would not be dependent on the success of all the compute nodes. Such an ap-

proach could also lower the cost of training large deep learning models through the lack of a

requirement of highly optimized and efficient computing centers.

In a way, all of these potential advantages explored here could be extended to form

an internet of computing. One could indeed imagine a large network of low powered and

low bandwidth computing nodes exchanging information between them without the need to

centralize the communication, all working on the same objective.

An inspiration for studying the effects of decentralizing the communication between mod-

els comes from society and the way humans go about communicating with each other. There

is a parallel to be made with the way all humans exchange with each other directly when the

intent is to learn something. In particular, when the wide range of knowledge/data available

to the society to be known is considered, an analogy can be drawn regarding specialization

of the different members of society for different subsets. When called upon to solve a prob-

lem, the society unites to propose a solution. This work touches on parts of this analogy

throughout the way it trains, communicates and predicts.

As part of the decentralized and communicating network of computing nodes, different

components and parameters will be explored. In particular, which nodes can communicate,

what they communicate and how often they communicate with each other will be part of the

tested configurations of the computing group. Both supervised and unsupervised learning

tasks are used in order to analyze the effectiveness of the proposed approach. An overview

of the experimental setup is, however, required to show the different components at play.
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2.2. Method

2.2.1. Simulated nodes

In order to alleviate the engineering and computational needs often associated with using

a physical network of computing nodes, all experiments were done with models in a simulated

network of computing nodes on the same physical machine. What is meant by simulated is

that the computing nodes were not truly setup as a network of computing nodes but rather

all stored on the same physical machine. Using academic resources such as large clusters

of GPUs for relatively high computational needs is possible, but to require the exclusivity

and availability of more than 50-100 GPUs across multiple machines was simply not feasible.

Furthermore, having all the simulated nodes effectively on the same machine allowed to

simplify the implementation of the communication protocol between nodes.

Ultimately, the main limitation to both training speed and memory usage of the imple-

mentation was the number of nodes in the network. The approach chosen to be able to scale

up efficiently with the number of nodes was to have the training loops for the compute nodes

to be sequentially evaluated. Some significant operations such as the data management and

the communication protocol were implemented in parallel throughout all the compute nodes

in order to be able to shave off the sequential overhead. Given the appropriate resources,

all experiments could be extended relatively easily to a full network of parallel computing

nodes.

2.2.2. Data and experimental setup

2.2.2.1. Dataset

To test the effect of decentralized communication and to accommodate the practicality

of experiments, the dataset used was the CIFAR-10 dataset. This dataset consists of 50,000

colored images of size 32x32 used for training as well as a distinct set of 10,000 images of

the same size used as the test set. Each of the images represents 1 of the 10 different classes

uniformly split through both the training and test sets.

To reflect the decentralization of the data between computing nodes, the entire training

set was randomly split among the different computing nodes in the network. In other words,

given a network consisting of 25 nodes, each of the node has their own distinct, and exclusive,
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25th of the training data. Furthermore, the distribution of data among the computing nodes

was done independently of the classes. The fractional training data that each computing

node has access to is considered, and referred to, as the local training data.

In the actual implementation, given the simulated network of nodes, the dataset was

centralized to the physical machine used to hold all the models as it provided easier access

and simplified experimental design. In no way was any of the effective nodes using the

partition of another node’s training data. Much like the extension to physically distinct

computing nodes, the extension of the dataset setup could be done to be truly decentralized.

2.2.2.2. Model architecture

With the dataset this work focuses on, the logical choice of a model was to use Con-

volutional Neural Networks (CNNs). These models are widely used in the deep learning

community when the input are images, given their optimized GPU implementation but in

particular their structural characteristics. Such characteristics include parameter sharing

and their ability to be invariant to slight input transformations such as translations.

The size of the model and the details of the architecture of the CNNs used throughout

the experiences are not essential to the understanding of this work. For completeness, the

models were traditional CNNs with no pooling layers but rather strided convolutions. For

work in the unsupervised learning setting, if a decoder was necessary, the same structure as

the encoder was used. In general, the structural recommendations from the DCGAN [30]

architecture were followed.

2.2.2.3. Communication and network of nodes

In order to design the communication exchanges between compute nodes, one key aspect

to be thought of is how each of these computing nodes will communicate throughout training.

The first thing that needs to be considered is which node can communicate with each other.

There is, of course, a combinatorial way of designing sets of nodes that can communicate

with each other. To simplify this, let’s consider the analogy to human communication at

both extremes. On the one hand, there is how each of us communicates with a small set

of relatives, but there is also the opposite where we attend classes or conferences where the

same information is distributed to a much wider array of individuals.
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Implicit to these is the distinction between the broadcasting and the consumption of

information. One could therefore be broadcasting to a large number of nodes, e.g. giving

a talk at a conference, or to a small number of nodes, e.g. speaking to close relatives.

Regarding consumption, attending a conference would allow for consumption from a large

array of different sources, while being exposed to close relatives would restrict that number.

To address this in the implementation, the communication between nodes was designed

such that a given node can broadcast to its p neighbours, p being controlled as a hyper-

parameter. As for the consumption, it is controlled implicitly by the dynamics of the network

resulting from the hyper-parameter p. For example, in a 25-node network if p is set to 24,

this means that a given node can broadcast to all other nodes, and every node can broadcast

to all other nodes. The set of nodes to which a given node can broadcast is considered to

be its neighbours. In a network of nodes with a much more restricted communication, e.g.

consider a 100-node network with p = 5, the constraint imposed in the implementation is

that for a node, its 5 neighbours must be adjacent. An illustrative way of understanding

this is by considering all nodes in a circle, with the neighbours being selected as the closest

nodes.

For simplicity, the communication pattern between nodes is considered fixed and p the

same for all nodes. A possible extension of this work consists of using more complex sets of

connections, e.g. each node has a random set of neighbours, fixed or changing.

In order to further control the communication between nodes, frequencies of broadcasting

and consumption were added as hyper-parameters. Simply put, for a given minibatch, the

broadcasting frequency can be seen as the likelihood to broadcast to it’s neighbours. As for

the consumption frequency, it can be seen as the likelihood of consuming data sent from the

other nodes rather than from its local training data. In addition, if a node is training on

data sent from another node, it is also exposed to the possibility of being broadcasted itself,

i.e. broadcasted data can be broadcasted to other nodes.

To implement data consumption from other nodes, each has their local training data in

addition to a consumption queue where all the data sent from other nodes is added to. This

consumption queue is analogous to an email inbox that will be receiving and storing all data

locally where it will be read from. All the components impacting the communication of a

single computation node can be effectively summarized in Algorithm 2.
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Algorithm 2 Consumption and Broadcasting training pseudo-code (for one node)
1: Initialize qlocal, qexternal as local training data queue and empty external data queue

2: Initialize pc, pb as consumption and broadcasting probabilities

3: Initialize communication channel to qexternal of the neighbours

4: while Training do

5: consume ∼ Bernouilli(pc)

6: broadcast ∼ Bernouilli(pb)

7: if consume then

8: data← pop qexternal

9: Do consumed data training objective step

10: else

11: data← pop qlocal

12: Do local training objective step

13: end if

14: if broadcast then

15: for all neighbours do

16: Put data in their qexternal

17: end for

18: end if

19: end while

2.2.2.4. Collective decision making

As communication during training was detailed in the previous section, another key

aspect is to consider how each of the computing nodes will communicate at test time. In

this line of work, all the nodes have a randomly initialized model and each has their own

subset of the data, but the focus remains on combining the knowledge from each of the nodes

and consider their total knowledge as a group. In addition to being aligned with the human

culture analogy previously described, traditional and centralized approaches leveraging data

parallelism usually aim to train a single model to make a single prediction at test/inference

time.
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Traditional ensemble methods such as bagging [8] that make accessible the full dataset

to each of the models combine predictions by averaging results or if applicable, by using a

voting scheme. Under the studied framework, the preferred approach was to employ a form

of weighted model averaging. The weighting is done at the level of the output probabilities.

For example, in the supervised setting, all nodes are presented with the data to make a

prediction on and they all provide their distribution over the possible answers, mainly, the

different classes along with their corresponding probabilities. The distributions are then

gathered for all nodes, the entropy is then computed for each of the per-model distribution,

and a single distribution is created by weighing each of them with their negative entropy.

The entropy used is the Shannon entropy, leveraging its relationship to uncertainty as a

confidence level for each node. The collective decision making algorithm is described in the

algorithm 3.

Algorithm 3 Collective decision making pseudo-code
1: Input x is received by every compute node

2: Each of the nodes compute their probability distributions yi = [yi1, y
i
2, . . . , y

i
C ]

3: Collect all yi’s and initialize sum of negative entropy s = 0

4: for All nodes and their corresponding yi do

5: Compute entropy as hi = −
∑

k y
i
k log y

i
k

6: Increment total sum of negative entropy s = s− hi

7: end for

8: for All nodes do

9: Compute normalized weight based on negative entropy as wi = −hi/s

10: end for

11: Compute single weighted distribution as y =
∑

iw
i × yi

12: Make a single class prediction as argmaxy

The prediction is therefore made out of the entropy weighted average distribution between

nodes. This work makes an important assumption at test time; that all nodes are reachable

in order to make a prediction. Although not explored here, future work on collective decision

making at a much larger scale should consider applying the same approach but from collecting

predictions from only a subset of the nodes rather than all the network nodes. If this
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framework were to be extended to a very large number of computing nodes such as the

internet of computing, requesting an answer from all nodes would simply not be feasible.

2.2.3. Supervised Setting

2.2.3.1. Training objective and evaluation

Regarding a single node along with its local training data, the supervised learning proce-

dure and objective are standard. The objective for each node is to minimize the cross-entropy

loss over all the local training data considering the corresponding label of each training image.

If there is a communication channel between two nodes and depending on what information

is communicated between the nodes, an additional training objective is considered; more on

this in section 2.2.3.2.

As for evaluation, the network of nodes aims to have a low generalization error, much like

all other traditional supervised learning tasks. In practice, the accuracy on the data left out

of the training procedure is used as a measure of generalization performance. Considering

that there is a full group of models rather than a single one to measure accuracy and that all

the nodes need to be evaluated as a whole, the same data is used to evaluate all the nodes.

The predictions on the data left out of the training procedure are made the same way as

described in section 2.2.2.4. A prediction is considered correct if the class associated with

the highest probability is the correct one.

The measure of accuracy over training steps will be adjusted to reflect the acceleration

potential of the approach. In other words, given that our implementation simulates a parallel

system, some operations can be assumed to be potentially executed in parallel. Given an

appropriate computation network, all training steps could be executed at the same time for

all compute nodes.

2.2.3.2. Information communicated between nodes

In order to avoid communicating directly the gradients between nodes or to a central

system as with the synchronous optimization algorithms, different outputs of each of the

models in the network of compute nodes can be exchanged at different depths of the archi-

tecture. Given a classification task on hand, neural networks compute label predictions for

each input as the highest level output. These label probabilities are a normalized version
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of what is commonly called logits, or class label scores. The normalization of these logits is

usually done with the softmax function.

An intuitive thing to share between compute nodes would be the class label for a training

sample. However, as previously described in distillation [19], additional information about

a model can be extracted in the logits and in turn, accelerate training of a secondary model

if used as training targets, in particular when the temperature of the logits is raised. The

modified logits can be normalized to create another predictive distribution of the labels and

are further referred here as soft-labels. The operation of normalizing the received logits into

soft-labels is detailed in equation 2.2.1.

Given the received logits [v1, v2, . . . , vC ] from another model for each of the C classes, and

with temperature τ , the soft-labels [y1, y2, . . . , yC ] to be used as targets can be computed as,

yi =
exp(vi/τ)∑
j exp(vj/τ)

(2.2.1)

As the temperature approaches zero, the soft-labels hardens and becomes more like a

one-hot vector of the predicted class label. In contrast, as temperature approaches infinity,

the soft-labels become uniform. See Figure 2.1 for effect of varying the temperature and

the resulting class probabilities. Conceptually, exchanging the soft-labels can be seen as

exchanging what a node thinks the answer is, as opposed to sending directly the answer, i.e.

the true label.

Whether the information communicated is the soft or true labels between nodes, both

of them can be used with the same additional training objective. Indeed, for the node on

Figure 2.1. Class probabilities resulting from normalizing the logits with

different temperature. The logits or class scores used, i.e. 1.0, 2.0, 4.0, 8.0

for the 4 classes, are the same across the different temperatures above.
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the receiving end of such information, they can be seen just like regular training data with

their corresponding labels. If the true label is exchanged, using the same training objective

as for the local training data is straightforward. As for the soft-labels, the slight difference

is simply to take into consideration the full probability distribution over the classes from the

sender as being the target label, as shown in equation 2.2.2.

Using y = [y1, y2, . . . , yC ] as the soft-labels or the true labels and fθ(x) as the predictive

probability distribution over the classes for a given input x, the cross-entropy loss originally

defined in equation 1.2.1 can be extended to consider the full probability distribution as,

L(fθ(x), y) = −
C∑
j=1

yj log fθ(x)j (2.2.2)

In addition to soft-labels and labels exchanged, exchanging high-level features between

nodes was tested. Conceptually, the highest hidden layer before the label prediction output is

an abstract representation of the image fed as input. This in itself makes it a good candidate

for information to be shared between the models. Much like sending labels, whether soft

or not, to another node, sending the features can be passed in the same way through the

communication channel.

As for the training objective of another node’s features, and given the features are trained

under no constraint apart from the main supervised training objective, an appropriate loss

function to use is the mean-squared error. Given features of an input x from models A and

B represented as hA = [hA1 , h
A
2 , . . . , h

A
m] and hB = [hB1 , h

B
2 , . . . , h

B
m], the MSE objective can

be defined as,

L(hA, hB) =
m∑
k=1

1

2
(hAk − hBk )2 (2.2.3)

A receiving node is therefore trained to match its top-level representation to its neigh-

bours’ by considering them as arrays of real values. From the group’s point of view, ex-

changing top-level features consists of ensuring all the nodes of the network extract similar

features from the same images.

2.2.4. Unsupervised Setting

A great way to test the effectiveness of the communication channel is to test it under an

unsupervised learning setting. Previously in the supervised setting, it was still possible for
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a computing node to communicate its true label corresponding with the training data. In

contrast, with the unsupervised task, no information apart from the training data themselves

is assumed to be available. This then becomes a question of how a model can send good

features to others in the computing network.

2.2.4.1. Training objective and evaluation

Much like in the supervised setting, all nodes train on their local data with their own

respective objective. In this case, their objective is to extract meaningful features out of

the images. Considering the intent is to communicate features, more on this in 2.2.4.2,

two families of unsupervised models that allow for encoding of an input into features were

explored:

(1) Variational Auto-Encoder (VAE) [25]

(2) Bidirectional Generative Adversarial Networks (BiGAN) [14]

Both of these allow for nodes to have their own local training objective and don’t influence

the general understanding of this work.

The VAE is comprised of an encoder and a decoder and is trained on the local data to

both ensure the features extracted lead to a reconstruction of the input and also make the

features themselves be similar to a Gaussian distribution. One key feature of the VAE is the

fact the learned features are distributional, as the encoder’s output corresponds to Gaussian

parameters µ and σ.

As for the BiGAN, it has three components. The generator is the same concept as in the

traditional GAN [17] framework, such that it generates fake samples out of sampled noise.

The added component to BiGAN is an encoder that maps from the input space to a feature

space. In addition, these features extracted from the real input (not from the generator’s

output) are paired with the input before being fed to the discriminator. The pair of features

and real input is considered as real, while the sampled noise along with the corresponding

generated samples are considered as fake for the discriminator. Much like in GAN, the

discriminator is trained to distinguish between the real and fake, trying to create a bigger

distance between the distributions of real and fake. On the other end, both generator and

encoder are trained to fool the discriminator by feeding them their outputs.
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Evaluating unsupervised learning is in itself a field of research, but for this line of work,

the focus was on leveraging the same collective decision making for evaluation as in supervised

learning. In order to do so, a linear classifier was added on top of encoders of each of the

computing node which was then trained on the full training data. Doing so allowed for

evaluating purely how effective was the exchange of communication between nodes regarding

the feature extraction process. Much like the supervised setting, the weighted predictive

distribution along with the accuracy on data left out of the training data was also utilized.

Unlike in the supervised setting, here the focus is mostly on performance rather than

actual acceleration.

2.2.4.2. Information communicated between nodes

In the unsupervised learning setting, there is no grounded information such as class

labels to be exchanged between nodes. Therefore, in this setting, the features are used as

information to be communicated. For a compute node on the receiving end of the sender,

this unsupervised task now becomes similar to a supervised task as it tries to reproduce

another model’s output. The hypothesis is that for a model, it is easier to learn through a

supervised objective than an unsupervised one.

There is however, more flexibility as to what the training objective can be for the features

exchanged. In particular when a VAE is used, the features are distributional and character-

ized as a Gaussian distribution. As the goal is to have models with a similar representation

for the same input, an objective such as the Kullback-Leibler (KL) divergence between two

Gaussian distributions can be leveraged. Indeed, minimizing the KL divergence, between

the sender’s and the receiver’s features can be seen as pulling the latter features distribution

towards the former’s. As for the experiments with the BiGAN, much like in the supervised

case, the mean-squared error was used as the training objective was used for the feature

matching.

2.3. Results

To evaluate how successful this approach is at decentralizing the computation efficiently,

different configurations of the network of nodes were explored. Almost all of the configu-

rations and parameters of the network of nodes tested were in the supervised setting. The
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rationale behind this is that both unsupervised and supervised learning tasks in this setting

share very similar aspects, in particular when the compute nodes exchanging features under

the supervised task. It is expected that the most successful configuration under the super-

vised setting should transfer to the unsupervised task, especially given the dataset is the

same and the models are similar in size and structure.

For this work, the most meaningful hyper-parameters of the network of nodes configu-

ration are the content being communicated (logits, true labels, features), the temperature,

if applicable, at which the sent logits are raised to, the frequency of broadcasting and con-

sumption, the number of nodes as well as the number of neighbours each compute node has.

Although not detailed here, other hyper-parameters were tuned outside of the communica-

tion scope. In particular, the scaling factor for the additional loss, the model size and the

learning rate were explored, but varying these did not change how the other factors affected

the results.

2.3.1. Communication and network configuration

2.3.1.1. Number of nodes and neighbours

The overall assessment is that the more the better. However there is an important caveat

to this in the resulting size of the local training data partition that is associated with each

computing node. Collective accuracy levels did not increase past 20 nodes, to the point where

using 30 and 50 nodes performed the same but jumping to 100 nodes caused the performance

to decrease. Given the experiments were performed on CIFAR-10, which is a relatively small

dataset, the observed lack of improvement can be explained with the resulting small amount

of training data available to each node. Indeed, as the number of nodes reached 100, signs

of over-fitting were noticeable, e.g. training loss on the local training data rapidly collapsed

to zero.

Regarding the number of neighbours, at least in the supervised setting, increasing the

number of connections in the graph always helped until a fully connected network was ob-

tained and achieved the best performance. This meant that increasing the level of diversity in

communications for each of the compute nodes further increased generalization performance.
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2.3.1.2. Frequency of broadcasting and consumption

Although multiple scenarios of consumption frequency were explored, the best performing

and logical was to allow each node to consume one sample from its local training data queue

for each sample consumed from the rest of the network. Effectively, in a 10-node network,

each node is consuming on average 50% of its actual training data from its private share,

while the other 50% is split among the other 9 nodes, therefore 5.6% of each other nodes’

private share.

The frequency of broadcasting was constructed in a way that allows for an equilibrium

in the number of samples available for consumption. In other words, some scenarios could

cause individual nodes to receive too much data from the others to the point where extra

data received would need to be dealt with, i.e. flush older or ignore more recent. Instead,

the focus was on ensuring the broadcasting frequency allows the consumption to be stable.

On the other end, a too high consumption scenario could arise where each node consumes

as much from its private share as from each other nodes, making it just like training on the

full dataset. When considering all samples consumed, this would make a single node consume

more from others by a factor equal to the number of neighbours. Conceptually, however,

this doesn’t align well with the human analogy previously described. Therefore, consumption

probabilities were set to 0.5 for all nodes.

2.3.1.3. Content of communication

If the information exchanged between compute nodes are logits, better performance re-

sults from lowering the temperature, i.e. hardened outputs. An intuitive extension to sharing

logits with low temperature is to share the actual ground truth labels. Although in slight

contradiction with the findings in [19], these results are confirmed by the observation that

exchanging the true labels of the training data performs even better.

The fact that exchanging the true labels performs better than close to zero temperature

can be easily explained by the fact that some models make prediction errors on the training

set. In other words, with a small temperature that reproduces hardened outputs, a node

still has a chance to make an error on the prediction, while the true label is always correct.

When making a prediction error, that node sends an incorrect target to another node, and it
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will negatively affect performance compared to sending the actual true label. Sharing logits

later in training was briefly experimented but no significant difference was noticeable.

Broadcasting the top-level features of each compute node performed very badly when

compared to the other information communicated.

2.3.2. Supervised learning

The tables 2.1 and 2.2 show the performance of a single node as well as 10 nodes based

on changing the outputs communicated between the compute nodes (logits, true labels,

features). Also included in the tables are results for the 20 nodes exchanging true labels as it

was the best-performing configuration. All the models in the tables have the same size and

are trained with Adam [24] with default learning rates. Both average accuracy of the whole

group and collective decision accuracy are denoted as either Avg acc. or Coll. decision in the

tables, respectively. The results further reflect all the previously mentioned configuration

and the best of each setting, in particular fully connected communications throughout the

network of nodes.

The table 2.1 showcases the performance that configurations can achieve after 5,000

training steps. These training steps can be considered as wall-time for a parallel implemen-

tation. In other words, each of the nodes of the network has trained for 5,000 training steps.

Both training on either local data or broadcasted data from other nodes were considered as a

training step. It can be noticed that sharing the logits (or soft-labels) with collective decision

achieves similar performance to a single node operating on its own with all the training data

available, with both achieving 84.5% and 84.8%. In general, leveraging a unified prediction

through collective decision making rather than measuring the average accuracy across all

nodes allowed a gain of at least 5% in all configurations, but this increase in performance

is expected when using any ensemble method [8]. This isn’t true, however, for one of the

baselines, where all nodes are trained independently. Indeed, only a marginal increase can

be noticed using the collective decision. For 10 nodes, sharing the features performed poorly

as it only reached 80.1% accuracy with the collective decision, while sharing the true labels

reached 86.8%, the best of all 10 nodes configurations.

The overall best performing approach was 20 nodes communicating their true labels from

the training data with 87.7%. However, exchanging true labels is basically the same as a
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Configuration Avg acc. Coll. decision

1 node – No sharing 84.5 N.A.

10 nodes – No sharing 71.1 72.9

10 nodes – Sharing logits 79.0 84.8

10 nodes – Sharing true labels 81.8 86.8

10 nodes – Sharing features 72.0 80.1

20 nodes – Sharing true labels – 87.7

Table 2.1. Validation accuracy (%) after 5,000 training steps

Configuration Avg acc. Coll. decision

1 node – No sharing 5,900 N.A.

10 nodes – No sharing >13,000 >13,000

10 nodes – Sharing logits >13,000 5,300

10 nodes – Sharing true labels 12,800 3,100

10 nodes – Sharing features >13,000 >13,000

20 nodes – Sharing true labels – 2,700

Table 2.2. Training steps until reach 85% accuracy

traditional ensemble method, only with a weighted dataset resulting from the communication

with other nodes rather than having access to all the data. It can be further seen that any

of the approaches with a communication protocol outperforms greatly the isolated network

of 10 compute nodes, where after 5,000 steps, the accuracy reaches 71.1% and 72.9% for

average accuracy and collective decision, respectively.

As for table 2.2, the intent is to show the potential speedup of these approaches when

considering the parallelism in play. Making the 10 nodes share logits did not seem to provide

much of an acceleration in training when compared to a single node, with both reaching 85%

accuracy at 5,300 and 5,900 steps, respectively. There was, however, a speedup of over

215% (5,900 vs 2,700) for reaching 85% accuracy when considering the 20 nodes sharing

true labels vs the single node. Sharing the features and the network of nodes without any

communications both did not reach 85% accuracy and therefore were not shown in the table.

34



2.3.3. Unsupervised learning

Unfortunately, the low performance of features broadcasting in the supervised setting was

translated into this new setting, even when considering both the BiGAN and VAE models.

It turns out for the unsupervised learning task, having communications between the nodes

impacted negatively performance while non-communicating nodes performed slightly better

on a downstream classification task, in particular when using the collective decision approach.

Table 2.3 details the accuracy of the linear classifier trained on top of the extracted features.

The linear classifiers were fully trained using early stopping on a validation set at different

stages of the unsupervised learning. Ultimately, the best performing linear classifier on the

validation set throughout training was selected and the test set performance is reported.

Configuration Avg acc. Coll. decision

VAE

1 node – No sharing 41.8 N.A.

10 nodes – No communication 41.6 45.2

10 nodes – Full communication 41.5 42.7

BiGAN

1 node – No sharing 46.9 N.A.

10 nodes – No communication 44.5 49.9

10 nodes – Full communication 44.3 46.2

Table 2.3. Test set accuracy (%) of linear classifier over learned features.

The results showed for the fully communicated network show worst performance than the

network of nodes without any communications. It is to be noted, however, that the collective

decision approach performed greatly, even for the non-communicating nodes, which is in line

with the observation in supervised learning. All approaches could not beat the single node

with the average accuracy of the classifiers, but when combined to make a single prediction,

it performed better. In particular, for both VAE and BiGAN, the collective decision in the

no-communication setting allowed for at least 3% increase when compared to the single node.

Again, this kind of jump in performance is to be expected when using ensemble methods.
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Using the KL-Divergence as the feature training objective for the communicated infor-

mation seemed to help slightly performance when compared to the single node. Indeed, the

collective decision with the communication was able to achieve 42.7%, which is 0.9% over

the single node, while in the BiGAN setting with mean-squared error, it was 0.7% under

that same baseline.

2.4. Discussion and conclusion

The main observation in the supervised setting to be made is that exchanging the true

labels performs better than letting the nodes communicate outputs such as the logits or

top-level features by a significant margin. As for the unsupervised setting, it was clear that

sharing the features seemed to only impact negatively performance. There are, however,

still potential uses for the proposed approach to be made in some specific circumstances or

setups.

In a scenario where the true label would not be available to be exchanged, e.g. either semi-

supervised setting or lost partial data, it was shown that having the compute nodes broadcast

their prediction on their data could make the whole group achieve similar performance to

what a single model could achieve. This is especially true in a situation where the predictions

are known to be good. These results could be interpolated to a scenario where having a single

model is simply not feasible and instead of leveraging a distributed SGD implementation that

requires the models to exchange the large number of parameter gradients, it could simply

exchange the logits between them.

Although exchanging true labels did not provide a linear acceleration with the number

of nodes, in very large networks of compute nodes of over 256, it was shown in [1] that

distributed SGD implementations did not scale up well. Extending the proposed approach

to sharing true labels between a much larger network of nodes could still show some speedup.

To show the gains of such very large scale network of communicating nodes is left for further

work. By further considering why the true labels perform better than logits, this approach

could potentially be better if the predictive accuracy of the broadcasting node was better

than the consuming node. The better model or node could be replacing the true labels

directly and therefore removing the need to broadcast them. An extension of this setting is

further described in Chapter 3.
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Chapter 3

Increased Utility Through Selection Of Training Data

Training deep learning models with stochastic gradient descent requires randomly selecting

samples from the training data. During training of a neural network, it can be anticipated

that some samples will be more or less effective in the training of the model and those can

be seen as harder or easier, respectively. In this work, it is proposed to allow a student

network, randomly initialized, to communicate with a fully trained network, the teacher, to

try and leverage the latter’s expertise by instructing the student about which of the training

data are harder. To identify the difficult examples, rather than simply sending away model

outputs or labels as in Chapter 2, the teacher considers the predictions from the student

to evaluate which of the training samples are good training candidates. It is demonstrated

that by measuring the distance between the predictions of the teacher and the student, it

can be used as a proxy of difficulty to select samples for the student and therefore accelerate

training when compared to randomly sampling training data. This is done by leveraging

previous results from Chapter 2 in addition to [19]’s work on distillation. Furthermore,

it will be shown that using the teacher predictions as training targets for the student can

further increase convergence speed.

3.1. Introduction

Graduate students often seek shortcuts when studying for a final exam. Instead of going

through all of the content, they wish to optimize their grade while not having to go over all

the course content. They sometimes do so by their high level of laziness, but more often these

shortcuts are taken because the student already understands well a given section of the course

material. The student can therefore afford to skip some exercises listed for a chapter, as he



trusts his understanding developed through previous experience. Another way a graduate

student accelerates his training is by leveraging a professor’s role and accessibility. He can

reach out to a professor who uses his experience to recommend either exercises or additional

readings in a way that is beneficial for the student’s learning.

By maintaining this analogy of a graduate student, a randomly initialized neural network

and its traditional stochastic gradient descent training can be seen as a highly inefficient

training procedure. For that randomly initialized neural network, the student, going through

all training samples certainly has some inefficiencies since it might already have mastered

the content of the dataset associated with that sample.

In this work, it is proposed to address these inefficiencies by maintaining a communica-

tion channel between the student network and a previously trained teacher network. This

communication channel will not only be used to transmit information but also instructions

regarding which training samples can accelerate performance. One of the findings leveraged

from previous work in Chapter 2 was that sharing the true labels resulted in better per-

formance than sharing the hardened soft-labels as supervised learning targets. A possible

explanation to this observation was that the model sending the soft-labels was simply not

accurate enough to use its predictions as the ground truth labels. This is where leveraging

a teacher and student analogy might prove itself useful.

The teacher will identify which examples can accelerate performance by using the predic-

tions of the student with different measures to quantify the difference to its own predictions.

The effect of varying the size of the database from which the teacher selects which samples

to train the student on will also be detailed. In this setup, the teacher has the possibility

of either sending the normal training data and the ground truth labels or it can send its

own set of predictions as the labels. The communication channel therefore includes both

the student sending its prediction to a teacher and receiving the samples along with the

appropriate target to use in its training procedure.

A successful acceleration in this simplified setup could be useful in a setup where training

the student on the original data is no longer feasible. In a sense, this could be used in semi-

supervised learning tasks on labels where the ground truth label is not available for part of

the training data.
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3.2. Method

3.2.1. Teacher/Student framework

There are two major components of the analogy teacher and student to consider. The

first is to consider that a teacher already knows the content of a course, or in the supervised

setting, it has a low generalization error. The second aspect to consider is much like the

teacher and student relationship in an academic setting, the teacher has the ability to evaluate

the student’s weaknesses and customize its training. More commonly, with its evaluation of

the student’s skills, he is able to identify which chapters or exercises are the most beneficial

for the student to learn the course content.

To incorporate these two components in a supervised learning experimental framework,

a model referred to as the teacher was trained until convergence with early stopping, by

monitoring its prediction accuracy on a validation set. A second model, the student, is

then randomly initialized and its training procedure begins. Throughout training of the

student, it will have access to the same data as the teacher, but in addition, it will be able to

leverage predictions of the teacher as targets. More details regarding the student’s training

are detailed in section 3.2.3.

3.2.2. Data and experimental setup

3.2.2.1. Dataset

A widely used dataset throughout the machine learning community that was used in this

work is the MNIST dataset [26]. It consists of 60,000 greyscale images of digits between

0 to 9 as well as an additional 10,000 images as the test set. Each of the images is 28x28

pixels which will be used as a single row of 784 pixels. This dataset allows for a simplified

experimental setup and does not require a specific model size or architecture in order to

show significant performance. Given the objective of this work is to show the acceleration

of training, an interesting aspect of using this dataset was the efficiency of training with the

MNIST dataset.

From the 60,000 training data samples, 10,000 were set aside to be used as validation

set in order to monitor the performance of the teacher for early stopping, as well as training

speed for the student.
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3.2.2.2. Model architecture

Both the teacher model and the student were constructed as networks with 2 fully con-

nected hidden layers with ReLU [29] in addition to a softmax output layer for each of the

10 classes in the MNIST dataset. The teacher was purposefully set up to have many more

hidden units at each layer than the student’s network, with 1,200 and 32 respectively. In ad-

dition, each hidden layer of the teacher was regularized using dropout [33], while the student

was not. The structure of both of these networks was intended to allow the teacher network

to acquire more knowledge through its greater capacity than the student model.

For both models, Adam [24] optimization with the default hyper-parameters was used and

both the student and teacher architecture were kept the same throughout the experiments.

Also, the parameters of the teacher network were trained and kept the same across all the

sets of the experiments in order to compare the different effect of student training.

3.2.3. Identifying difficult examples for the student

The interactions that are further described between the teacher and student models in

the proposed framework can be seen analogous as a student answering quizzes and sending

them to the teacher. In addition, rather than having the teacher provide feedback on all the

submitted quizzes, he only provides the feedback on some of them. This section covers how

the teacher selects which samples will be used to train the student, in addition to how they

will be used.

3.2.3.1. Evaluating the difficulty

Let’s assume the teacher has a set of training examples from which it needs to select

which one will be the most beneficial for the student and let’s further assume the ground

truth labels are not available. What is proposed here is to leverage the predictions that are

made from the student in comparison to the ones made by the teacher. In a way, considering

the teacher’s prediction as a proxy of the real labels, it can be identified quite easily if the

student is wrong. The goal of using them as a proxy is to be able to identify which training

samples are more difficult for the student, without requiring the ground truth labels.
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However, the intent is to leverage the totality of the probabilities associated with each of

the class predictions from the student. There is much more information that can be gathered

by considering the full predictive distribution than just its most likely outcome.

It is therefore proposed to measure the difference between both the teacher’s and student’s

predictive distributions as a proxy for difficulty. For a random variable Y , the class label, and

given probability distributions PY and QY , the teacher and student’s predictive distribution

for a given sample, respectively, the different metrics explored are the following.

Cross-entropy. The cross-entropy serves as a natural metric to measure the difficulty

of the training samples since it is the actual objective of supervised learning when PY is the

ground truth label. It measures how much the probability distribution QY differs from PY ,

where, for example, PY is the target. It is defined as,

H(PY , QY ) = −
∑
y

PY (y) logQY (y) (3.2.1)

Euclidean distance. Sometimes called the pairwise distance, it can be used to de-

termine the distance between the two distributions by leveraging the vector form of both

distributions. Unlike the cross-entropy, using the Euclidean distance will put an equal weight

to each of the class labels. Using the previously defined PY and QY , it can be defined as,

DE(PY , QY ) =
[∑

y

(PY (y)−QY (y))
2
]1/2

(3.2.2)

Out of the above-mentioned error measures, only the Euclidean distance can be

considered as a true distance since the cross-entropy is not symmetric. However, the term

distance will be used more loosely throughout this chapter to reflect any of these error

measures.

For a given set of training samples, such as a minibatch, once the teacher has both its

own set of predictions along with the student’s, it can compute any of the metrics for each

sample. A sample with a higher error will indicate current lower performance from the

student and therefore be considered as a harder example. Now equipped with the error of

each of the training samples, the teacher is able to select the most difficult ones and send

them back to the student.
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In order to fairly compare performance between a student exchanging with a teacher and

one without such communication, there must be some consideration of the computational

cost associated with this approach. In particular, the student still needs to compute the

predictions on the training samples to be able to communicate them with the teacher. In

addition, the cost of computing the distances is left to the teacher, but it could be assumed

that both of these models operate in parallel and in addition, calculating this is much cheaper

than doing a backward pass from the student.

3.2.3.2. Using soft-labels as student targets

In addition to selecting which samples will be beneficial to the student, it was important

to explore what target to provide to the student once these have been selected. This decision

comes down to selecting what information or outputs available from the teacher should be

used. Following work in Chapter 2, an intuitive thing to use are the ground truth labels since

it proved to perform better. However, it was proposed this observation occurred because the

models exchanging soft-labels did not have good generalization performance. Therefore,

using the predictions of the teacher as soft-labels will be considered as a possible target for

the student. With any of these approaches, no additional training objective is necessary.

They can both leverage the same cross-entropy objective, simply replacing the labels with

the soft-labels as detailed in equation 2.2.2.

3.2.3.3. Implementation details

Similarly to the analogy of quizzes, the teacher network manages the set of training sam-

ples by stacking the multiple minibatches sent by the student, along with their corresponding

predictions. The size of the stack was further important as it allows the teacher to select

from a larger set of training samples which ones are the most difficult.

For the implementation, a stack referred to as the teacher stack was created with a size

controlled by the hyper-parameter n, where n represents the number of minibatches it can

hold. Before pushing the student’s data to the stack, the teacher makes its predictions to be

later used to compute the distances.

Once the stack is full, the m highest scoring out of the n ∗ m samples are selected

by the teacher as the training data to send back to the student, where m is the batch size.

Conceptually, the teacher therefore compresses nminibatches into a single one for the student
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to train on. Although the student does a forward pass on the n ∗m samples, there is a gain

of (n − 1) ∗m backward passes. As the size of the stack increases, it is therefore expected

to show a greater acceleration, in terms of accuracy per backward passes. The number of

forward passes still needs to be considered, so the mentioned acceleration should take it into

consideration.

3.3. Results

In order to show any potential advantages with the proposed approach, it is necessary

to compare it with the most basic baseline, a student network training by itself without any

communication with the teacher and by using the ground truth labels. This baseline is in

essence, the same training procedure as the teacher network, or any randomly initialized

neural network, the only difference being their model size and regularization, as previously

described.

An additional baseline considered is filling up the teacher stack much like other ap-

proaches, but rather than making the teacher select any of the training samples with a

metric, simply select which ones to send randomly and send its prediction as soft-labels.

This allows to test the impact of actively selecting the samples. Throughout the different

configurations tested, all student models were trained by monitoring the validation accuracy

and were stopped after 20 epochs of no improvement. Batch size was 32, making the stack

of the teacher to choose the hardest examples from multiples of 32.

3.3.1. Convergence speed

3.3.1.1. Sample selection and defining student targets

The figure 3.1 shows the validation accuracy during training, and to show the potential

acceleration of this approach, by the number of parameter updates, or backward passes,

made by the student (in minibatches).

It can be seen in figure 3.1 on the left, that all three scenarios using a distance and a

teacher stack size of 2 minibatches reach about twice as fast the 96%-97% mark than the

baseline (in blue). Using the Euclidean distance (in red) performs slightly less well than the

two other configurations using the cross-entropy between teacher and student predictions as

a proxy of difficulty. Considering this, the cross-entropy was selected as the best distance
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to distinguish which examples to send to the student. The baseline of randomly selecting

soft-labels to send to the student (in yellow) performs worse than actively selecting based

on any of the above mentioned metrics. This can be interpreted as the increased complexity

of the communication channel was beneficial for the student’s training. Furthermore, using

the cross-entropy as a distance measure aligns perfectly with the supervised objective. If the

teacher’s predictions will be used as targets, measuring the difficulty of a sample can now be

computed directly with the loss.

Figure 3.1. Validation accuracy (%) per number of parameter updates

of the student network during training. Configurations of the students

include a baseline with no communication, (Left) stack size of two mini-

batches, with both cross-entropy and Euclidean distance as difficulty mea-

sure, in addition to comparing soft-labels and true-labels and randomly se-

lection. (Right) The best configuration from stack size two (cross-entropy

soft-labels), compared with teacher using a stack size of 5 minibatches

with soft-labels and true labels.

In the same figure on the left, it is shown when using a stack size of 2 minibatches, using

either the ground truth labels or the teacher’s soft-labels did not seem to affect the general

performance (in green and brown).

3.3.1.2. Teacher stack size

On the right side of figure 3.1, it can be seen that by increasing the size of the teacher

stack to 5 minibatches, to make the pool from which the teacher can select the samples

bigger, it helps performance. Either with soft or true labels (orange and purple), it greatly
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reduces the number of backward passes required when compared to both the baseline and

using a stack size of 2 minibatches with soft-labels and cross-entropy (in green). Furthermore,

using the teacher’s prediction as soft-labels for the student’s target (in orange) combine with

a stack size of 5 minibatches outperforms significantly the student training with directly

the true labels. In this work, when the true labels are communicated back to the student

as targets, it is important to consider that both student’s and teacher’s prediction are still

used for determining which examples are harder. Also, other sizes of teacher stack were

experimented ranging up to 100 minibatches. However, it did not provide any benefits from

scaling and an explanation put forward is the small dataset size. We leave to verify this

assumption for future work on much larger networks and datasets.

3.3.2. Generalization performance

Although the figure 3.1 shows convergence speed of the model, it must be considered

that peak performance on the validation set cannot be used to compare the generalization

performance of different configurations without being biased. To alleviate this, the table

3.1 shows the test set accuracy of the same configurations, using their best model based on

Configuration Accuracy Backward passes

Baseline 96.4 39,000

Teacher stack 2 minibatches

Cross-entropy – Soft-labels 96.9 25,000

Cross-entropy – True labels 96.5 18,700

Euclidean distance – Soft-labels 96.8 18,700

Random selection – Soft-labels 96.7 32,800

Teacher stack 5 minibatches

Cross-entropy – Soft-labels 96.8 13,700

Cross-entropy – True labels 96.8 9,100

Table 3.1. Test set accuracy (%) and number of backward passes for

that performance (or parameters updates) of various student configuration

based on validation set best scoring parameters. All of the optimization

hyper-parameters are the same for the different student networks.
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the peak validation accuracy parameter’s value. These results show that ultimately, all of

these approaches have very similar generalization performance. Indeed, all of the approaches

are within 0.5% of the baseline. There is, however, a considerable speedup to get to that

performance, in particular when using a bigger teacher stack size. The baseline reached that

performance in 39,000 updates/backward passes, while both approaches using a larger teacher

stack reached it in only 9,100 and 13,700 steps, for true labels and soft-labels, respectively.

With this approach applied to a larger dataset, it is anticipated the scaling would be more

evident.

3.4. Conclusion and discussion

Throughout this work, it was shown that by designing a communication channel used for

training instructions between a teacher and a student network, it could allow for accelerated

training to reach the same level of generalization performance. Indeed, by allowing the

teacher network to compute a distance between its own predictions about a given sample

and the student’s, it can be used as a proxy of sample difficulty and help it train. Creating

a minibatch out of harder examples was shown to accelerate significantly convergence speed.

Through that process, the number of backward passes (or parameter updates) can be

efficiently reduced by the teacher instructing the student which data to train on. There

were further signs that increasing the pool of data from which the teacher can select difficult

samples from further increased the acceleration.

The approach presented implies the student has to make a prediction on all datapoints

the teacher wishes to consider. The focus was mostly on the fact that even by doing so,

there is a speedup because of the gains in backward passes. Other approaches where student

predictive ability could be predicted by the teacher would allow to relax that assumption.

Such an approach could provide itself useful in other settings such as where new data is

unlabelled but a trained model is available. It could therefore be used to train an additional

smaller model without the cost of acquiring labels for those new training samples. Another

possible extension of this work would be to consider this approach with a bigger network

of nodes. Much like work detailed in Chapter 2, using predictions from different compute

nodes that are experts on their own sets of data may show itself simpler and profitable to

transfer knowledge of their data partition.
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Chapter 4

Sharing Internal Representation Through Language

Language is the key to humans exchanging communications both diversely and imperfectly

between each other. This corresponds to the opposite of the communication protocol of train-

ing algorithms used in the machine learning community such as synchronous SGD, where it is

mandatory that the information communicated is precise. In the latter, the communication

requires high bandwidth by the high number of values and their corresponding high level

of precision. However, for some reason, humans can communicate how they perceive their

highly complex surroundings with a discrete language through a low bandwidth channel.

The language we use is specially crafted in order to allow us to communicate and exchange

with our peers. It is therefore of interest to study how a similar language could be useful for

deep learning models.

Contrary to work previously described in Chapters 2 and 3, rather than directly exchang-

ing model outputs or training samples, a language is purposefully created between models

where it will serve as a way to communicate internal representations. To study how effec-

tive such a language is, two models are set up and shown variants of the same input and

try to better understand the underlying original input. These two models will be able to

communicate, with different levels of complexity with a language. The language created is

low bandwidth, discrete and trained to have high mutual information with regards to the

partial observation of the broadcasting model. It will be demonstrated that allowing agents

to exchange information makes it easier for them to perform a classification task based on

their own internal representation.



4.1. Introduction

Training algorithms used for training large neural networks on massive datasets/tasks,

such as distributed synchronized gradient descent (SGD), do employ some language to com-

municate. Indeed, such an approach requires first that all models directly communicate

their noisy approximation of the gradients to a central system. Following that, they receive

another message containing the actual gradients to update their local parameters.

Such a language that shares gradients, although containing very useful information, has

the disadvantage of requiring lots of bandwidth simply given the sheer size of the models.

Unlike the gradients that are represented continuously by decimals (up to some precision),

the language we use daily as humans consists of selecting discrete words. Furthermore, this

discrete language that we use both in writing and speech has some very small bandwidth

requirements when compared to parameter gradient tensors. Given we can successfully

exchange excessively rich and complex concepts through this discrete language with our

peers, developing such a language between machine learning models is of interest.

Although the use of a continuous language with less bandwidth than gradients for dialogue

could very well convey more information than a discrete one, focusing on a discrete language

allows for a more interesting analysis, in particular with the analogy to human language.

Moving forward, not without the implementation difficulties that arise from working with

discrete sequences, the focus is on the use and development of a discrete language.

To evaluate how successful a model helps another by sending a message, this work

uses partial observations derived from a shared input. The objective is to help the other

model/agent understand better the underlying full observation behind its own partial obser-

vation. Different levels of communications are explored throughout the different experiments,

in particular one-way broadcasting, two-way broadcasting, in addition to allowing for some

feedback from the receiver of the message. It will be illustrated how the latter level of

complexity can be rewritten as a different objective tying both models’ objective together.

To discretize the outputs, the Gumbel-Softmax distribution is used to sample the messages

where over time, the temperature used is annealed to ensure the samples become discrete.

The message generation is trained through unsupervised learning and it is shown that hav-

ing communication does improve performance on a classification task using the previously

learned features.
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4.2. Method

4.2.1. Data

4.2.1.1. Partial observation setting

Let us assume a world with current state X and two agents A and B. One important

characteristic of the setup is that X is never fully observable by A nor B, but can rather

be understood as if an oracle could observe the current state of the world. In addition,

both A and B witness X at the same time, but from different angles, which makes them

see it differently. The partial observations of the world by agent A and B are therefore

denoted XA and XB, respectively. An analogy can be seen with how different individuals

have different perspectives on the shared world that they live in. The partial observation

setup used throughout this work was previously described in [4].

The goal of this setting is to consider how as humans we can quite easily communicate

about our environment, even though we don’t necessarily see it the same way as others that

we communicate with. Even though we don’t see things exactly the same way, we are able

to help each other better understand the underlying world we live in.

4.2.1.2. Dataset

To translate the partial observation setting into a machine learning task, a noisy mask can

be applied to training data for each agent and therefore generate two different observations

of the same original sample. When created, this mask is random, and when applied to an

image, it has the effect of inverting pixels selected by that mask. Doing so ensure that all

agents have different partial observations of the same original state of the world, or at least,

the probability of generating two identical masks given a considerable input size is extremely

unlikely. Throughout the experiments, the noise level was kept at 10% and to create the

mask, a Bernouilli distribution was sampled for each pixel with probability matching the

noise level. The mask was sampled before training for each agent and kept fixed, i.e. each

agent applies their mask on all the inputs, it doesn’t change during training.

The dataset used in this set of experiments was the MNIST dataset [26]. It consists

of 60,000 images, from which 50,000 are used for training and 10,000 as a validation set,

and another 10,000 are given as a test set. Handwritten digits from 0 to 9 represent the
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Figure 4.1. (Left) Original MNIST samples, (Middle & Right) show the

same samples modified by the noisy mask with 10% noise. Each pixel has

a probability of 10% to be inverted.

10 possible classes of the dataset. The images are of size 28x28, but are used as a single

row of 784 pixels due to model architecture. Some samples along with the resulting partial

observations can be seen in Figure 4.1.

4.2.2. Creating a meaningful language

4.2.2.1. Discretization

One key component of the human communication is the discretization of internal rep-

resentations into the discrete language that is used by so many of us. It was therefore

important to consider this and build a discrete language.

The language that is explored is to allow models to communicate bits, mainly 0’s and

1’s, or rather, a sequence of them. Using bits can be understood as using a language with

only a very limited vocabulary size and therefore restricting the number of possible mes-

sages. However, by allowing these sequences to be of considerable length, it allows for larger

capacity, e.g. for a sequence of only 16 bits, the number of possible messages is 216 which

equates to 65,536 possibilities.

Generating discrete sequences is known to carry its own set of problems when mixed in

the deep learning training procedures because of the backpropagation algorithm. For the

gradient descent procedure to work and in particular the chain rule to allow gradients to flow

down to the model parameters, all functions must be continuous. However, when making

discrete decisions, such as sampling a softmax distribution or taking the argmax of that same
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distribution, it stops any gradient from flowing back through that operation. In order to

leverage gradient optimization, it was necessary to explore alternatives.

To allow the training of the message generation from end-to-end with the main objective,

the Gumbel-Softmax [22] layer was selected. Employing the Gumbel-Softmax distribution

to sample the messages allows for the backpropagation to flow through the sampling process,

while ensuring, in the limit, that the samples generated are discrete. Any regular training

objective usually applied to continuous functions could therefore be used to optimize the

messages.

4.2.2.2. Vocabulary and message generation

In order to have the message as an output, different approaches could have been used.

At the time of this writing, the current approach used focuses mainly on generating the

message all at once rather than character by character. Furthermore, given the decision to

consider bits as the vocabulary, generating the full message at once is manageable. Indeed,

the highest layer of the message generator can be seen as having n heads, where n is the

length of the message, and each head has two output units, one for the 0 and the other

for 1. Each of the output units give a score for that token of the vocabulary and then the

Gumbel-Softmax function is applied to these scores to sample a message. In this simplified

setup, since only 0’s and 1’s can be used as characters, it keeps the size, in number of units,

of the output layer pretty reasonable. As for the rest of the message generator model, fully

connected hidden layers with rectified linear units were used.

The other possible approach is to use Recurrent Neural Network to replace this model.

With the current state of this work, some successful initial testing was done to ensure the

feasibility of the approach with an RNN in combination with the Gumbel-Softmax distri-

bution. However, in particular due to the training time and given the small size of the

vocabulary, there is not much gain to be made from moving to this type of model. However

for future work with larger vocabulary size, it will be necessary to employ some recurrent

connections in the message generator network. For future work, using a RNN could also

provide itself useful to allow messages of different lengths. Indeed, it could be used as a way

for the receiving model to handle different length messages from other models, or even to

generate different length messages to an array of models.
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Figure 4.2. Vector representation of a message generated of length 5

with vocabulary size of 2, and temperature of Gumbel-Softmax set at 4

(left) and 0.25 (right). For illustrative purposes, in this figure, the logits

and the underlying sample from the Gumbel distribution are the same for

the two temperatures.

Given the use of the Gumbel-Softmax layer as the final output layer, the message gen-

erated depends on the temperature used to smooth or harden the samples. As an example

of a possible message sent from one model to another, see Figure 4.2 for the vector repre-

sentation. The left corresponding to early in training with a high temperature which results

in smoother samples, and if applicable, allowing for a greater gradient to flow through. On

the right, the same input but as the temperature is annealed throughout training, the same

logits generate a more discrete message. The vector representation of the message can be

seen as a softened one-hot representation. If applicable, training would be done with the

softened version of the message, while testing would be done with the one-hot version of the

message. In particular, throughout training, the reconstruction of the images by using the

hard version of the message was successfully used as a way of ensuring appropriate training.

The algorithm 4 details the steps to generate both the partial observations but also the

messages in the previously described setup with two agents, A and B.

4.2.2.3. Training objective

One question that arises is how to train or optimize this language. An intuitive answer

proposed is that the messages sent should convey as much information possible about the

partial observations of the world each agent experiences. Thankfully, these concepts can

be tied to probability and information theory quite nicely by considering XA as the partial

observation of agent A and SA the message it sends to agent B as two random variables.

By maximizing the mutual information between these two random variables I(XA;SA), it

will ensure the message generated is a good replacement of the partial observation. If well
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Algorithm 4 Partial observation and message generation pseudo-code
1: Generate masks mA and mB based on the noise hyper-parameter

2: Initialize message generator networks fθA and fθB
3: while Training do

4: Sample minibatch of data from Dtrain

5: XA ← Invert pixels in minibatch based on mA

6: XB ← Invert pixels in minibatch based on mB

7: sA ← fθA(XA) . generate message from agent A

8: sB ← fθB(XB) . generate message from agent B

9: if Communication then

10: A sends sA to B

11: B sends sB to A

12: end if

13: end while

trained, the message will be a low bandwidth and informative representation of an agent’s

partial observation. This objective will serve as the base objective of developing a language

without any other task.

Considering both random variables XA and SA and their corresponding marginal distri-

butions pXA(xA) and pSA(sA) as well as the joint distribution pXA,SA(xA,sA). The mutual

information between the partial observation XA and the message SA is defined as,

I(XA;SA) = EXA,SA log
p(xA, sA)

p(xA)p(sA)
(4.2.1)

To maximize the quantity detailed above, we therefore need to make the joint distribution

p(xA, sA) differ greatly from the combination of the two marginals p(xA) and p(sA). In other

words, for samples xA and sA, the probability associated with that joint observation needs

to be high, while the product of both probabilities from their corresponding marginal must

be small. This relates to ensuring XA and SA are not independent.

To do so, although approaches such as MINE [3] could be useful, the traditional GAN

objective can be leveraged quite elegantly. In particular, the role of the discriminator in a

GAN framework can be viewed as distinguishing between two distributions, i.e. making the

true sample and the generated ones far apart. Under that framework, the generator is used
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to do the opposite and make these two distributions closer, mainly controlling the generated

samples’ distribution. In our case, the two distributions we wish to make distinguishable is

the joint p(xA, sA) and the combination of the two marginals, p(xA) and p(sA). By making

them far apart, it increases the mutual information. Similarly to what was done in [7], it is

proposed to use the discriminator’s objective of a vanilla-GAN to achieve this. Additionally,

the generator is trained to further separate the two distributions rather than closer. Doing

so, the mutual information between XA and SA can be maximized, where [7] minimized it,

because p(sA) and p(sA|xA) are controlled by a generator model.

In addition, contrarily to the GAN framework where both the generator and the discrim-

inator are competing, our objectives are to generate SA and make it incorporate information

from XA. This therefore includes the generator in the optimization and makes it a max-max

problem as opposed to a min-max problem. The former, based on previous experience, is

much easier and stable to train.

Implementation-wise, similarly to the procedure proposed in the MINE framework [3],

a pair of xA and its corresponding (from the joint distribution) sA are considered as true

samples in the GAN framework. In addition, a new x′A is used to generate its corresponding

s′A. However the previous xA is paired with s′A to form the fake samples. The fake samples

represent two samples from the two marginal distributions, while the true samples are from

the joint distribution. Both (xA, sA) and (xA, s
′
A) are fed to the discriminator as both the

true samples and the fake samples, respectively.

4.2.2.4. Communicating the message with another model

One of the purposes of developing an informative message is to communicate it to another

agent or model. Hopefully, this message will be informative such that it will allow the agent

on the receiving end to understand better its own observation.

Considering the two agent setup, one of them is known as the teacher, agent A, while

the other is the student, agent B. The idea here is to develop an objective that ties both

agents into a global objective. Without any communications between them, a baseline can

be defined where each agent has only the training objective to have their message generation

be informative as described in 4.2.2.3.
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In order to add a communication objective, consider the desire for A to have SA, its

message, such that it provides few or no additional information than if we had known XA,

its partial observation, i.e. SA has all the information about XA. In addition, A should

hope that its message conveys lots of information regarding B’s partial observation XB.

Using information theory, the former quantity is the conditional entropy of SA given XA,

or H(SA|XA), while the latter is known as the mutual information between XB and SA, or

I(SA;XB).

In other words, the message from A is relatable for B, while still having lots of informa-

tion about its own observation. Putting these two concepts together, a global objective to

maximize that ties both agents together can be written as the following,

I(SA;XB)−H(SA|XA) (4.2.2)

Interestingly, equation 4.2.2 can be decomposed and rewritten to obtain the original

training objective defined in 4.2.2.3 along with an additional term. Indeed, by expanding

the mutual information term, it can be rewritten as,

H(SA)−H(SA|XB)−H(SA|XA) = I(SA;XA)−H(SA|XB) (4.2.3)

And finally, the conditional entropy term can be rewritten as,

H(SA|XB) = −
∑

sA∈SA,xb∈XB

p(sA, xB) log p(sa|xb) = ESA,XB
[
− log p(sA|xb)

]
(4.2.4)

Reassembling all the components, we get,

I(SA, XA) + ESA,XB
[
log p(sA|xb)

]
= Rinfo − Llikelihood (4.2.5)

The firm term Rinfo in equation 4.2.5 corresponds to the training objective originally

described in section 4.2.2.3, while the second term Llikelihood is actually a likelihood objective

on the receiving end of the messages. In other words, agent B tries to predict sA|XB, which

corresponds to the cross-entropy loss. For the implementation, a hyper-parameter was added

to control the importance of the likelihood loss in the global objective.

The objective on the receiving end can be analogous to how we try to build a model

of the people with whom we communicate. Given our own individual partial observation,

we increase the likelihood of a message from our language model based on what the others

say on their partial observation. Of course, for this analogy to make sense, both partial
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observations need to be related in some way, which is the case in the partial observation

setup described earlier.

4.2.2.5. Communication levels

To test the effectiveness of the new communication between models, it is proposed to

study different levels of communication. Each of them will be evaluated by having the agents

train a linear classifier on top of the last hidden layer of features before the message output

layer. The training of this linear classifier is separated from the main training objective, and

only applies to the classification task. The levels of communications will refer to the different

gradient sources for the objective defined in equation 4.2.5.

For simplicity, let’s consider the point of view of the student, or agent B. As previously

mentioned, the baseline consists of having the student train only its message generation based

on the maximization of the mutual information. The first level of communication consists

of having the student reproduce the message the teacher generated. This way, similarly to

work done in Chapters 2 and 3, a cross-entropy supervised learning objective is added for

the message received.

More formally, let’s consider sA = [s1A, s
2
A, . . . , s

T
A] as the message generated by the teacher

based on its observation ofXA from fθA(XA) and sB = [s1B, s
2
B, . . . , s

T
B] the message generated

by the student based on its own observation of XB from fθB(XB). From this initial level of

communication, the gradients from the likelihood term for the student can be computed as,

∇θBLlikelihood = −∇θB

[ T∑
t=1

stA log s
t
B

]
(4.2.6)

Under the formulation above, stA and stB are the real values associated to the probability

of activating the bit t in the message sampled from the Gumbel distribution. For more

information, refer to section 4.2.2.1 and figure 4.2.

By adding the objective ESA,XB
[
log p(sA|xb)

]
, since the expectation is over both SA and

XB, it means some gradients should flow back to the model that generated SA, which in

this case, is the teacher or agent A with fθA . However, for this level of communication,

no gradients are propagated back to the broadcaster of the message. This configuration is

referred to as the student is only receiving the message.
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The following level is to allow the gradients from the loss computed in equation 4.2.6

to flow back to the language generation model on the teacher side fθA . This means the

teacher will receive, in addition to maximizing I(SA, XA), a loss from the likelihood term

of the student. This communication has an effect on the student only by allowing the

teacher to modify its message generation based on the feedback. It doesn’t directly affect

the student’s message generation model fθB . This can be seen as the student sending feedback

to the teacher based on its understanding, and similarly, the gradients for the teacher can

be computed as,

∇θALlikelihood = −∇θA

[ T∑
t=1

stA log s
t
B

]
(4.2.7)

Finally, the last level of communication considered is to further allow the teacher to

reproduce the student’s language, in addition to allowing gradients to flow back to the

student, i.e. allow both of them to communicate and copy each other. In other words,

both student and teacher are sending their messages while receiving messages from the

other. Then, both of them compute their cross-entropy loss using the received message as

the target and their own generated message as the prediction. Their cross-entropy loss is

then sent back to the sender of the message, and the gradients flow back into the message

generation network of the sender.

Considering the total loss computed by the teacher and the student, the gradients from

the likelihood terms for the student then become,

∇θBLlikelihood = −∇θB

[ T∑
t=1

(stA log s
t
B + stB log stA)

]
(4.2.8)

To compare all of these approaches, the classification performance of the student will

be monitored throughout training. Conceptually, the different levels of communication rep-

resent how a model performs when it is either trained alone, on the receiving end of a

communication or communicating and receiving feedback from that communication.
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4.3. Results

The different levels of communication explained in the previous section can be analo-

gous to an increased complexity of the communication protocol between two agents. It is

therefore interesting to compare how increasing the complexity of that communication af-

fects performance, in particular in comparison to a scenario where the two agents do not

communicate.

Figure 4.3 shows performance over the validation set during training of the different levels

of communication with the length of the message at 32 characters with vocabulary size of

2 (exchanging bits). Both the teacher and the student network were trained at the same

time and each of them had their noisy mask kept the same for all the configurations, with

a noise level of 10%. Furthermore, the performance on the test set of the model parameters

according to the best validation set accuracy is shown in table 4.1. The temperature is set

to 4.0 at the start of the training and then annealed by a factor of 0.9 every 100 training

steps, but never brought lower than 0.5.

Figure 4.3. Validation accuracy (%) per training steps of the student net-

work during training based on different levels of communication. Results

show average of five runs with a noise level of 10%. One way communica-

tion configuration (orange) has weight of 0.01 to the cross-entropy term,

while the two-way communications (green and red) both have 0.005.
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Configuration Accuracy

Baseline 64.4

Student-receiving-only 65.7

Student-feedback-to-teacher 69.4

Both-feedback 71.4

Table 4.1. Test set accuracy (%) of the different communication level

approaches. Performance reported is the average of five runs at the highest

validation set accuracy for the student.

From the results, in can be noticed for all scenarios the performance is greater from the

start followed by an important decrease in performance. A hypothesis put forward is simply

the discretization of the messages. As training progresses, the temperature of the Gumbel-

Softmax layer is annealed gradually and over time, there is less and less information in the

hardened message. A possible approach to mitigate this would be to increase the size of the

message, allowing for the extra length in it to carry that lost information. This is, however,

left for future work.

The baseline approach without any communication and only the mutual information

training objective achieved 64.4% performance with a linear classifier on the test set. By

allowing the student to add a cross-entropy term on the received teacher message, it increased

slightly the student’s performance to 65.7% accuracy. More interestingly, by allowing the

cross-entropy error term of the student to flow back in the teacher’s message generation

model (green in 4.3), there is a considerable jump in test accuracy to 69.4%. This can be

seen as the teacher is customizing its language to reduce the predictive error of the student.

There is, however, a greater decrease in performance on the validation set than with the

other approaches. Finally, the scenario where both models try to predict the other model’s

message and allow the gradients to flow back shows even greater accuracy. Indeed, it allowed

the student to reach 71.4% accuracy on the test set.

Having a fixed temperature was also tried but did not provide any benefits apart from

stabilizing slightly the accuracy over training, but still without beating the peak performance

of the annealed temperature setting. Given the temperature seems to be causing some issues,
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future work could focus on removing the Gumbel temperature by moving towards other

approaches to deal with discrete sequences such as REINFORCE [36].

To mitigate the early peaking in performance, delaying the training of the linear classifier

until the messages were more discrete was also tried. However, it did not provide any gain

and was not able to reach the same level of accuracy. It did seem to stabilize slightly the

performance, but still was not able to match the peak performance of the no-delay approach.

4.4. Conclusion and discussion

It is interesting to point out in addition to work in Chapters 2 and 3, explicitly creating

a language trained with its own objective seems to show promising results. The increased

complexity from the communication allowed for greater performance in a shared partial

observation setting. Indeed, the best performing approach was to allow both models to

customize their language based on predictability from the other models.

These results show that making the joint distribution of the message and the partial

observation of the broadcaster differ greatly from both these marginal distributions can gen-

erate meaningful features. In addition, by adding a cross-entropy term on the receiver’s end

of the message, it was demonstrated that it can further increase performance, in particular

by allowing gradients on that loss to flow back to the sender.

Some future work using a RNN to handle the language between the two models is cur-

rently being done to further discretize the language used. Some interesting ways to expand

this work is to consider the training objective but with a large number of nodes. Previous

work with a large number of compute nodes seemed to have low performance when using

communication. However, having this explicit training objective tailored to the message

rather than automatically derived from the outputs as in previous Chapters might help

break the limitations previously noticed.
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Conclusion

In this thesis, a study of various communication channels between deep learning models was

presented. This was accomplished by viewing the communication channels with different ob-

jectives, ranging from low bandwidth outputs of a model to a language crafted and optimized

with the sole purpose of being communicated between two models.

It was shown these low bandwidth messages exchanged between compute nodes of a fully

decentralized computing network could speedup some of the training. It was pointed out this

approach could allow to give birth to an internet of computing given some further research in

the pooling of knowledge of the compute nodes. In addition, under a simplified setup of the

teacher and student type, a teacher could accelerate the student’s training by customizing

its training procedure. Indeed, by selecting which samples to train on, by considering both

the student’s and its own set of predictions, selecting the hardest samples to provide to the

student as training samples proved itself to increase convergence speed of the generalization

error. Finally, using two randomly initialized models that share a partial observation of

an input, it was shown that having a purposefully crafted discrete language can lead to

better generalization performance on the learned features. Although the language crafted

was mentioned being relatively restrictive, some promising results can pave the way for more

flexible language, which is key to extending this proposal to a large number of communicating

models.
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