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RÉSUMÉ

En synthèse d’images, déterminer la couleur d’une surface au pixel d’une image

doit considérer toutes les sources de lumière de la scène pour évaluer leur contribution

lumineuse sur la surface en question. Cette évaluation de la visibilité et en l’occurrence

de la radiance incidente des sources de lumière est très coûteuse. Elle n’est généralement

pas traitée pour chaque source de lumière en rendu temps-réel. Une ville en pleine nuit

est un exemple de telle scène comportant une grande quantité de sources de lumière pour

lesquelles les rendus temps-réel modernes ne peuvent pas évaluer la visibilité de toutes

les sources de lumière individuelles.

Nous présentons une technique exploitant la cohérence spatiale des villes et la co-

hérence temporelle des rendus temps-réel pour accélérer le calcul de la visibilité des

sources de lumière. Notre technique de visibilité profite des bloqueurs naturels et pré-

dominants de la ville pour rapidement réduire la liste de sources de lumière à évaluer et

ainsi, accélérer le calcul de la visibilité en assumant des bloqueurs sous forme de boîtes

alignées majoritairement selon certains axes dominants. Pour garantir la propagation des

occultations, nous fusionnons les bloqueurs adjacents dans un seul et même bloqueur

conservateur en termes d’occultations.

Notre technique relie la visibilité de la caméra avec la visibilité des surfaces pour

réduire le nombre d’évaluations à effectuer à chaque rendu, et ne calcule la visibilité

que pour les surfaces visibles du point de vue de la caméra. Finalement, nous intégrons

la technique de visibilité avec une technique de rendu réaliste, Lightcuts [26], qui a été

mise à jour sur GPU dans un scénario de rendu temps-réel.

Même si notre technique ne permettra pas d’atteindre le temps-réel en général dans

une scène complexe, elle réduit suffisamment les contraintes pour espérer y arriver un

jour.

Mots clés: Visibilité, rendu temps-réel, villes, CHC, Lightcuts, GPU



ABSTRACT

In image synthesis, to determine the final color of a surface at a specific image pixel,

we must consider all potential light sources and evaluate if they contribute to the illumi-

nation. Since such evaluation is slow, real-time renderers traditionally do not evaluate

each light source, and instead preemptively choose locally important light sources for

which to evaluate visibility. A city at night is such a scene containing many light sources

for which modern real-time renderers cannot allow themselves to evaluate every light

source at every frame.

We present a technique exploiting spatial coherency in cities and temporal coherency

of real-time walkthroughs to reduce visibility evaluations in such scenes. Our technique

uses the natural and predominant occluders of a city to efficiently reduce the number of

light sources to evaluate. To further accelerate the evaluation we project the bounding

boxes of buildings instead of their detailed model (these boxes should be oriented mostly

along a few directions), and fuse adjacent occluders on an occlusion plane to form larger

conservative occluders.

Our technique also integrates results from camera visibility to further reduce the

number of visibility evaluations executed per frame, and evaluates visible light sources

for facades visible from the point of view of the camera. Finally, we integrate an offline

rendering technique, Lightcuts [26], by adapting it to real-time GPU rendering to further

save on rendering time.

Even though our technique does not achieve real-time frame rates in a complex scene,

it reduces the complexity of the problem enough so that we can hope to achieve such

frame rates one day.

Keywords: Visibility, real-time rendering, city, CHC, Lightcuts, GPU
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CHAPTER 1

INTRODUCTION

1.1 Motivation

When we look at big-budget video games over the last twenty years, we can clearly

see the progression in image quality that the industry has achieved. There are many fac-

tors that enabled such a visual evolution, and we will take a look at a few of them to

compare how they have evolved differently during that period of time.

Geometrical complexity in video game scenes has exploded over the last years. Not

only have graphic cards become faster, but they have also become much more adapted to

treating large quantities of triangles in less than 30ms (real time). With such power, we

now render immense scenes, with stronger occlusion techniques to efficiently determine

what we actually see. We even add complexity to certain surfaces through on-the-fly

tessellation.

Surface detail is another area where we have seen much progress. We have evolved

from static single-color surfaces to textured surfaces, and increasingly detailed rendering

algorithms. The rendering quality in video games has evolved to the point that only a

trained eye can make the difference between a real digital photo of a wood table or a

real-time rendering of one. We have transitioned recently to physically-based materials,

giving the games’ surfaces, like textiles, properties observed in real-life objects.

Light sources inject depth and complexity in our images from a different stand-

point than geometry. Lighting, geometry and material combine to produce an image that

we recognize and compare to real-life experiences. Sometimes a single light source is

enough to achieve realism, such as the sun in a clear day. Other times, such as in a city at

night, we need many more light sources to achieve realism. Whereas previous lighting



and geometry achievements had evolved a lot, the scale reached by the number of light

sources is much more limited. In recent video games, such as DOOM (2016), we can

find ourselves with a maximum of 256 light sources to shade a single pixel [10]. Such a

limit is much too restrictive for a city scene that can be composed of hundreds of thou-

sands of light sources. The reason behind this slower evolution is the inherent impact

that light sources have on time spent to evaluate a surface’s color. With the most naive

algorithm, we would need to sum the incident radiance from all light sources to compute

the pixel color, bringing up the complexity from an n frame time to an n×m frame time

for a scene with m light sources.

Such a limit is the motivation behind our research. However, building a pipeline

that scales well with many light sources is a daunting task, which comes with many

challenges. This can explain why fewer researchers have taken up these challenges. We

will present in this document our solution and the simplifications that we introduced to

achieve our rendering times.

1.2 Rendering a City at Night

As introduced in the previous section, the geometric complexity and number of light

sources in a scene have a multiplicative impact on rendering time. One of the most dif-

ficult scenes that we can imagine with that respect is a city at night. Such a scene is

composed of many buildings, each building containing many exterior and interior light

sources, on top of all street lampposts, traffic lights, lit advertising signs, car headlights

and taillights, mirror-like reflective windows, etc. Figure 1.1 shows a photograph of Lon-

don at night which presents even more different light sources coupled with architectural

complexity, such as circular buildings.

In addition to complexity, the viewpoint may change much of the visible portion of

the city. For example, at street level we mostly see buildings along the street and taller

buildings from neighboring streets. However, if we are flying over the city, the scale

of what is visible changes completely, leading to close to visibility of half of the entire

scene (the building self-occludes two to three of its facades/top) of all buildings. Further
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Figure 1.1 – A photograph of London at night showing many different light sources and
unique architectural designs. Image from Pexel [2].

in this document, we present and analyze multiple viewpoints to study scaling for our

developed algorithm.

A key aspect of our research is that although the camera viewpoint changes the vis-

ible geometry rendered, the camera position does not affect the light sources that shine

directly on a building facade. Similarly, light that directly reflects specularly on a surface

is constrained by the city occlusions and reflective cone, assuming a cone-like specular

lobe. 1Such properties let us devise a specific visibility technique taking advantage of the

2.5D nature of city buildings while letting the camera move freely in 3D.

1.3 Contributions

To tackle the complexity of rendering a city at night we have developed a pipeline that

evaluates camera visibility, identifies the relevant light sources for the visible objects, and

finally renders them with the incident illumination from their respective light sources

at appropriate cluster levels. The pipeline can be subdivided in three distinct steps,

described in the following sections.

1. Although we do not study the case of specular reflections in this thesis, the fundamentals of our
technique remain valid for such a case and are further discussed in the potential future work.
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1.3.1 Coherent Hierarchical Culling (CHC)

CHC [5] is a CPU-based occlusion technique used to determine, through GPU occlu-

sion queries, objects visible to the camera. CHC is integrated in our pipeline to achieve

the first culling of geometry. CHC receives the bounding volume hierarchy (BVH) of

our 3D scene along with details about the current camera settings, and then evaluates

recursively which nodes in the BVH are potentially visible. While calculating visibility

of each node, the technique evaluates an estimate of how many of the pixels the node

covers are visible in the final image, and stores this information into the BVH tree. We

stop the traversal of the BVH when an analyzed node is not visible or covers fewer pixels

than a user-defined visibility threshold.

1.3.2 Facade-Cluster Visibility (FCV)

FCV is our developed visibility technique that evaluates which light sources an object

can see in the city. Our technique builds view cells by traversing the BVH nodes from

the root until the node’s potentially covered pixels is greater than a user-defined visibility

threshold. Then, for each view cell, we compute the visibility, according to each cardinal

axis, of our precomputed light tree, and assign the visibility result to every object in it.

1.3.3 GPU-based Lightcuts

We adapted the Lightcuts [26] algorithm to a real-time scenario, encoded as a GPU

fragment shader. Lightcuts is a many-lights technique that estimates the incident radi-

ance of all the light sources in the scene by traversing its light tree, a binary tree built by

clustering together similar light sources until a single node is left. Since GPU shaders

are not well adapted to recursion, central in traversing the light tree in the Lightcuts al-

gorithm, we modify the structure of the light tree to linearize its evaluation. Finally we

make additional changes in the traversal and clustering functions to improve the speed

of the algorithm.
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1.4 Outline

In the document we present next the state-of-the-art techniques that tackle challenges

or similar problems that we face in our technique. These techniques helped inspire us

to develop our method, and are the foundation of this thesis. Then, we detail each step

of our algorithm, more precisely our Lightcuts GPU adaptation and our Facade-Cluster

visibility technique, and discuss our achieved results. Finally, we present interesting

potential future work and conclude the thesis.
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CHAPTER 2

STATE OF THE ART

In this chapter we introduce three families of techniques, i.e., visibility, real-time

rendering, and many-lights. Each one covers a distinct step in our developed pipeline; it

is followed by a summary of advantages and disadvantages of their most notable tech-

niques.

2.1 General Concepts

Frustum culling is the use of the camera’s view frustum to cull geometry. When

simulating a camera in a rendering engine, the field of view of the camera defines a

region of space that may appear in the rendered image. The region is called the view

frustum. Typically, cameras in 3D space have a pyramidal frustum which can be defined

by six planes. Frustum culling tests if the geometry we want to draw in the image falls

inside these six planes. As can be seen in Figure 2.1, geometry fully outside the planes

is culled since it cannot be seen by the camera.

view frustum

near plane

far plane

camera

culled

visible

Figure 2.1 – A 2D slice of a camera and its view frustum. Geometry fully outside of
the frustum, red in the figure, is culled since it will not be directly visible from the point
of view of the camera. Geometry inside or partially inside the view frustum, green and
yellow in the figure, is not culled since it could be visible in the rendered image.



A bounding box (BB) is a box defined to enclose an object in a scene. The box being

a simple object to define let us conservatively test the visibility of the enclosed object

without having to evaluate its potentially complex structure or shape. In this thesis,

we only use axis-aligned bounding boxes (AABB) to simplify the computation of our

facade-cluster visibility.

A bounding volume hierarchy (BVH), is a binary tree structure over a set of geomet-

ric objects in the scene. Every leaf in the BVH represents an object, and the root contains

all the objects. The BVH is constructed by repeatedly building and grouping the smallest

bounding volume (surface area of a box rather than actual volume) with two nodes. In

our technique, the structure is used to quickly traverse the hierarchy of the scene objects

to compute visibility. For example, when testing the visibility of a light source, if a BVH

node does not occlude the light source, we are guaranteed that the node’s children will

not either.

A
B C

A

B C

Figure 2.2 – An example of a bounding volume hierarchy. The root of the tree contains
all objects, and each leaf represents a single object. Figure from Wikipedia [1].

A mipmap is a precomputed sequence of the same image, each smaller than the pre-

vious one by a power of two. This mipmapping process is used to increase performance

when sampling texture images while rendering. Nearby and large objects can sample

higher resolution images, while far away and small objects, for which a pixel in the

image can cover many texels (pixels in the texture image) can sample lower resolution

images. This provides a more efficient way of down-filtering than computing the average

value by sampling all the texels each pixel covers. As can be seen in Figure 2.3, the cost

of a mipmap is a 1
3 increase in texture memory size.
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Figure 2.3 – The mipmap of an image is shown. By separating the red, green and blue
channels of the image, we can easily notice the 1

3 increase in memory size. Image from
Wikipedia [3].

Another significant concept for this thesis is that the communication between CPU

and GPU hardware is asynchronous. To tell the GPU what to execute, the CPU needs

to send it commands and data. When it receives those commands, the GPU executes

them in the order they were sent. The present command displays the content of an image

buffer to the screen, and a frame is the time duration in-between two present commands.

Since the CPU and GPU are normally not synchronized, the CPU often starts its new

frame while the GPU is still rendering the previous one.

In a best-case scenario, the CPU continually sends commands to the GPU before the

GPU runs out of commands to execute. This keeps the CPU and the GPU fully occupied.

However, depending on the computation duration of the commands sent by the CPU and

the speed at which they are sent to the GPU, there are two other possible scenarios.

First, if the GPU runs out of commands to execute, it will go idle in a state we call GPU

starvation, waiting for the next command. Second, if the CPU needs to fetch the results

of a command on the GPU, it must wait until the command has been executed on GPU.

Then, when both the CPU and the GPU are synchronized, the CPU can read the results.

This synchronization process often results in GPU starvation as the CPU may not be able

to issue other commands while waiting for these results.

A hardware occlusion query (HOQ), NVIDIA’s occlusion query in particular, is a
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GPU visibility query made available by GPU manufacturers to test if an element sent

to the GPU would be visible at the current stage of the rendered image. To use such a

query, the user sends the mesh to test to the GPU and sets it to execute a HOQ. When

the GPU processes the mesh, it rasterizes it and records how many pixels pass (succeed,

i.e., are determined visible) the depth test. The HOQ returns this number (the number of

pixels considered visible) but the query does not change the depth buffer and does not

execute the fragment shader (which calculates and modifies the color of the pixel). On

the CPU, to recover this number of pixels, we need to check the state of the query and

wait until the GPU sets the query’s flag to the finished state. This waiting period on the

CPU is one of the major drawbacks of HOQ, as waiting on the CPU for the result of a

test before sending the next task can lead to the GPU pipeline being delayed as it also

has to wait for the CPU. This drawback can cost many milliseconds over the course of

a frame in real-time rendering pipelines where time is vital. An example of such CPU

stall, shown in Figure 2.4, is presented by Bittner et al. [5] with their solution.

Figure 2.4 – Qi, Ri, and Ci respectively represent querying, rendering, and culling an
object i. An example of CPU stall and GPU starvation (top) followed by a solution
where objects 4 and 6 are assumed to be visible (V) and are rendered without waiting
for their query results, while object 5 is evaluated as invisible (I) and is culled (bottom).
Although the results for both objects are retrieved too late to be useful in the current
frame, they are saved and used in the next frame. Figure from Bittner et al. [5].

To work around this CPU stall problem, we can send multiple queries at the same

time if they are not dependent on previous results. We can also group together multiple

queries by sending their meshes together in the same query. Sending multiple indepen-

dent queries keeps the GPU working on the next queries while the CPU analyzes the
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results of a previous query, adding if necessary new queries to the GPU. However, keep-

ing multiple queries in the GPU pipeline is not always possible, as we will eventually

have to wait for the results of our latest query or dependent queries. Sending grouped

queries can help culling larger parts of the scene at once if no fragment is visible, but

it can also lead to "wasted" queries if there are visible pixels, as we cannot know from

which parts of the mesh visible pixels come from. If this information is needed, we must

subdivide the previously sent grouped query into multiple independent queries and test

them individually.

2.2 Visibility

Visibility techniques are traditionally used to determine which object is the closest in

a given direction from a given point. In our technique we have two different cases where

a visibility test is needed. Firstly, we must determine which objects are visible from

the camera. Secondly, we must evaluate which light sources shine on visible objects.

Cohen-Or et al. [8] compiled a very good survey on visibility techniques, even though

it is starting to date by now. We classify algorithms in two categories. Point-based

techniques perform visibility computations based on a point of view, while from-region

techniques evaluate visibility from an entire view cell. The first visibility evaluation can

be performed efficiently by both categories of techniques, while our second evaluation

tremendously benefits from from-region techniques, as we would otherwise need to do

a point-based visibility evaluation for each pixel.

2.2.1 Point-based Visibility

Point-based techniques evaluate visibility from a single point of view, and are well

adapted to process visibility from a pin-hole camera. Traditionally, a depth buffer is a 2D

texture assigned in the GPU to store depth of previously rendered objects for the current

image. The depth buffer is used pixel by pixel to test whether objects are farther away

than those currently stored in it. Although it is used by default in most rendering engines

and GPU APIs, the depth buffer achieves no culling if objects are sent in order from the
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farthest to the closest, relative to the camera, as each object will appear consequently

closer than the previous ones (if we ignore the exception illustrated in Figure 2.5), re-

sulting in wasted depth tests and overdraws. The number of overdraws that could happen

in an image is in direct relation to the efficiency of a point-based visibility algorithm, as

evaluation of pixel color can be a costly operation.

Figure 2.5 – Cyclically overlapping polygons will always occlude one another no matter
the order they are being treated. They must be subdivided if one is to skip depth testing.
Image from Wikipedia [4].

Coorg and Teller [9] develop a real-time occlusion culling technique that exploits

large occluders, which are frequent in urban and architectural models, to quickly and

significantly reduce the potentially visible set (PVS). The authors build a visibility oracle

that uses runtime table lookups and preprocessing to compute a subset of the supporting

and separating planes (see Figure 2.6), formed by an arbitrary occluder and an occludee’s

axis-aligned bounding box. This subset of planes gives an exact test for full occlusion

and a conservative test for partial occlusion. The authors also develop a simple eval-

uation that detects a subset of nearby large occluders relative to the current viewpoint.

Since it would be too costly to evaluate the possible visual interactions, even with a re-

duced subset of occluders, the authors build a kD-tree with the scene’s geometry and

instead apply the visibility tests on the tree nodes, traversing the nodes while they are

visible. The nodes are kept in cache as long as they are involved in visibility calculation.
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By doing so, their technique benefits from temporal coherency when changing the point

of view.
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Figure 2.6 – Supporting and separating planes.

Their method performs quick visibility evaluations, but does not support occluder

fusion. Such a fusion is vital in presence of many small occluders, as the sum of their

projected occlusions can cumulatively hide occludees that were considered visible from

their individual projections, as presented in Figure 2.7. The performance of occlusion

planes using pre-2000 graphics hardware gives an idea how modern hardware can benefit

from such an occlusion method.

Greene et al. [15] build a hierarchy over the depth buffer into a Hierarchical Z-Buffer.

Similarly to a mipmap, the technique recursively clusters together 2× 2 pixels of the

depth buffer. Their algorithm thus builds a depth pyramid that can conservatively cull

fragments by choosing the largest value (furthest depth) of 2× 2 pixels recursively. To

take advantage of the depth pyramid they build an octree hierarchy over the scene’s ge-

ometry and traverse it from top to bottom, testing each node with the depth pyramid and

stopping early the traversal when the node is evaluated as hidden. The technique suffers

from the same problems that the basic depth buffer has, notably that sending geometry

from back to front order makes the technique useless, and so it must be combined with

some ordering of the geometry before sending it to be rendered.
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Figure 2.7 – An occluder smaller than a view cell has a vanishing occlusion area that does
not fully occlude further than a specific distance. Fusion of occluders represents better
the occlusion area but it is much more expensive to evaluate. Figure from Cohen-Or et
al. [8].

Bittner et al. [5] introduce the Coherent Hierarchical Culling (CHC) technique. It

uses HOQs to determine what is visible from the camera’s point of view. To alleviate

problems of HOQ, CHC reduces the number of queries sent to the GPU and prioritizes

the order of sent queries. Through their pipeline optimizations they achieve real-time

rendering and are found to be generally faster than frustum culling evaluated on CPU.

The main concepts they implement are presented below.

Grouped queries. CHC builds a bounding volume hierarchy (BVH) over the scene

to benefit from multiple concepts in their algorithm. The first usage of the BVH is to

query clusters of objects instead of querying each individual object (both clusters and

individual objects will be referred to as nodes). As presented before, the concept of

grouped queries is beneficial to culling large parts of the scene at once.

Conservative visibility. Instead of querying every node at every frame, CHC as-

sumes that once a node is determined visible, it will remain so for a user-defined number

of subsequent frames. This way, only a portion of the visible nodes are queried again at

every frame. This is typically valid for walkthroughs where the camera moves forward

at a regular speed, like in a video game. To keep queries for visible nodes distributed

throughout the frames, CHC adds a random jitter to the frame number where visible

nodes must be queried again. In practice, this jitter helps keep the frame rate more sta-
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ble. Nodes that were invisible during the last frame are queried during the traversal of

the BVH and their results are evaluated in the same frame. However, nodes that were

visible during the last frame are queried at the end of the traversal and their results are

only evaluated during the next frame.

Reduction of state changes. Changing the GPU from a state where it is render-

ing objects normally to a state where it is executing queries takes a noteworthy time.

Therefore, CHC introduces queues for rendering (r-queue), querying previously invisi-

ble nodes (i-queue), and querying previously visible nodes (v-queue). When traversing

the BVH, invisible nodes to be tested are sent into the i-queue. When the i-queue reaches

a size preset by the user or when the BVH traversal needs the results of the i-queue in

order to continue, CHC switches the state of the GPU to querying and sends each query

in the i-queue individually. This batching of queries reduces the number of state changes

by an order of magnitude.

Estimating coherency of visibility. The visibility history of a node has a strong

coherency with its probability to become visible at the next frame. That probability

is used to choose previously invisible nodes that should be grouped together in future

frames. This idea further reduces queries by creating groups of nodes that are not likely

to become visible and for which a grouped query has more potential to be successful.

The technique has been refined by Mattausch et al. [19] as CHC++ to be generally

faster. To improve upon CHC, they include the use of queues to batch their queries and

draw calls, refine their grouped queries to reduce the number required for previously

invisible nodes, and apply a jitter on the number of frames where a node is considered

visible without reevaluation to better spread the number of queries sent to each frame.

CHC and CHC++ manage to make use of hardware occlusion queries in a real-time

scenario while reducing potential problems that come with them. The integration of

temporal coherency into the visibility technique lets it stay conservative while reducing

the number of visibility tests performed at each frame, and further reinforces that real-

time rendering can benefit from such integration.

Gomez et al. [14] improve the scalability of large virtual worlds by adapting the

CHC++ occlusion culling to their tiling scheme. By instantiating the bounding volume
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hierarchy (BVH) of tiles during occlusion queries, they remove the necessity for a pre-

computed global scene structure. They render the tiles from closest to farthest from the

camera, and compute visibility inside a tile by traversing its BVH instance with CHC++.

2.2.2 From-region Visibility

As discussed above, our algorithm must evaluate which light sources shine on sur-

faces visible from the camera. While both point-based and from-region techniques can

find the answer to this question, from-region techniques are generally much faster since

the higher cost to evaluate visibility for a region can be spread over multiple frames, as

long as the camera stays in the region. A point-based method is generally still necessary

as a secondary pass, but on a much smaller set of objects. The two techniques presented

here support occluder fusion, which is essential in our algorithm, as our view cells can be

larger than occluders. The problem with view cells larger than occluders stems from the

fact that the supporting planes between them will necessarily meet behind the occluder,

which will render an occluder useless further on (see Figure 2.7). Since we cluster fa-

cades and buildings into a single representative facade, and evaluate visibility for it, our

algorithm contains many of such exceptions. Therefore, we only look at from-region

techniques that support occluder fusion.

Schaufler et al. [24] introduce a volumetric visibility evaluation through the use of

voxels to represent occluders and visible space. Their technique discretizes the scene

in voxels that are either fully opaque (fully inside an object) or otherwise considered

empty. They group together neighboring opaque voxels into effective blockers. They

then build a shaft from the view cell to the blockers and extend it behind the blockers.

Every voxel is then described as either fully inside, partially inside, or fully outside the

shaft. To achieve occluder fusion they not only merge opaque voxels together but also

extend blockers into previously fully occluded voxels (see Figure 2.8).

The technique is first presented with a 3D octree and is then transitioned into a 2.5D

structure, taking advantage of a simpler representation available for terrains and cities.

Their 2.5D representation determines a voxel occluded if it is included in a shaft up to

its maximum height, but only considers conservatively the voxel as an occluder up to
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Figure 2.8 – A 2D example of blocker extensions. Figure from Schaufler et al. [24].

its minimum height. The authors also study how to extend blockers while maximizing

their subtended solid angle; they have designed the following simple method. Extend

the blocker along a first axis, reduce the length on the axis to half, extend along an

orthogonal axis, and finally extend again along the first axis. This simple method gives

the same results as more complex blocker extension techniques that they tried, since

more benefit came from having the occluder fusion in itself compared to optimizing the

subtended solid angle.

Finally, they apply their technique to block-based and building-based PVS, and find

that the building-based method managed to better reduce the PVS. The technique achieves

great performance in visibility tests, but suffers from the memory requirement of its

voxel representation of the scene.

Durand et al. [13] present their extended projections to solve visibility for view cells.

An extended projection is defined as the projection of an occluder or occludee onto a

common projection plane perpendicular to the view direction. The projection is done by

intersecting the occlusion area built from the view cell and the occluder to the current

projection plane. The occlusion area defined by the interior of the supporting planes

behind the occluder is intersected with the projection plane and gives a 2D (in case

of 3D visibility) area that represents the area of the projection plane occluded by the

occluder from the view cell. A potential occludee is projected in the same way with the
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only difference being that the projection plane is located between the view cell and the

potential occludee. A potential occludee is then determined potentially visible (or not

fully occluded) where its extended projection is not overlapping the extended projections

of occluders.

Figure 2.9 – To project an occluder onto a plane from their view cell, Durand et al. [13]
compute the intersection of the projections from each corner of the view cell. The figure
on the left shows such an example, while the figure on the right shows how they build
their Extended Depth Map with rasterization. Image from Durand et al. [13].

To reduce the loss of contributions from occluders smaller than the view cell, the

authors propose occluder fusion on the plane, coupled with reprojection of occluders

onto further planes. They first discretize the plane into a pixel-based representation

called an Extended Depth Map. Figure 2.9 presents how they build the Extended Depth

Map by executing projections from the four corners of a flattened view cell. Reprojection

of occluders is done by intersecting the occlusion area of their extended projection with a

further projection plane, as shown in Figure 2.10b. The authors also show that supporting

planes do not handle 3D visibility as well as supporting lines handle 2D visibility. To

project occluders for 3D visibility they instead execute twice the 2D visibility and apply

a cartesian product between the two. Occluder fusion is achieved since the discretized

plane is reprojected onto further planes, grouping together pixels representing occluders.
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Figure 2.10 – (a) The 3D projection is the cartesian product of two 2D projections. (b) If
projection plane 2 is used for re-projection, the occlusion of group 1 of occluders is not
taken into account and is instead reprojected from projection plane 1. The occluded-area
cone of one cube shows that its projection would be void since it vanishes in front of
projection plane 2. Figure from Durand et al. [13].

2.3 Real-time Rendering Techniques

Techniques presented here are frequently used by the video-game industry to accel-

erate the rendering speed of each frame. These techniques are very specialized and thus,

come with downsides.

On the subject of cities at night, Chandler et al. [7] implement a method to proce-

durally generate window lighting and building interior effects for real-time rendering.

Their method is completely implemented in a fragment shader stage which lets it benefit

from the parallel computation of the GPU. To generate a building interior they randomly

choose a room interior from a list of choices and apply their procedural window lighting

to it. They do so by simulating the placement of window curtains and by reducing the

intensity of the light source in the room accordingly. Figure 2.11 presents their results

when varying the percentage of rooms covered by window curtains and enabling lighting

with the presence of interior mapping.
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Figure 2.11 – Simulation of window curtain placement and window lighting. The city is
rendered with window lighting (top row) and interior room mapping (bottom row). The
percentage of curtains opened is controlled by a parameter thres. Note that the lit rooms
do not contribute to lighting outside their room.

2.3.1 Deferred Rendering

Traditional rendering techniques (from now on referenced as the forward rendering

technique) send the scene’s geometry to the GPU to be rasterized and tested against the

depth buffer, and then shaded when visible. Forward rendering with the use of the depth

buffer guarantees that we render only the visible parts (relative to the current depth buffer

and subject to its resolution) of the sent geometry. It removes the necessity of sending

the geometry from furthest to closest to the GPU, which in turn removes the necessity

of ordering the geometry and the dilemma of ordering cyclically overlapping polygons,

presented in Figure 2.5, as each pixel is evaluated individually for the depth test.

Deferred rendering changes the usual pipeline to separate the depth test from the

shading of the pixel. First introduced by Deering et al. [12] and later refined by Saito

and Takahashi [23], a deferred rendering pipeline has two main passes. The scene’s ge-

ometry is first sent to be tested against the depth buffer. Each pixel passing the depth

test then saves its shading information into one or multiple buffers for the second pass.

Figure 2.12 shows an example of what information is generally saved in such buffers.

Once all geometry has been through the first pass, each pixel then goes through shad-

ing using the latest shading information saved for it. The separation of the traditional

pipeline in two passes has the drawback that it is harder to implement transparency as
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partially transparent objects must be processed after the opaque objects have been tested

and shaded. The technique also uses more memory than forward rendering, as we must

store the shading information in GPU buffers to transfer it between the two passes. Fi-

nally, the separation of the shading pass reduces the number of shaded pixels in a single

frame to exactly the number of occupied pixels, and leads to better performance for

scenes with multiple light sources, which is a bottleneck for shading-heavy processing.

Figure 2.12 – Example buffers used for deferred shading. The diffuse buffer contains the
surface color, the specular buffer contains the surface’s specular component, the normal
buffer contains the surface normal, and the depth buffer contains the depth of the object
inside the projection space. Image from van Oosten [25].

2.3.2 Tiled and Clustered Shading

As scenes became more realistic over the years, so did the number of light sources

in them. This is also true for simulating global illumination effects using virtual point

lights (VPLs). The need to support more light sources in the same frame grew as previous

shading pipelines’ performance scaled linearly with the number of light sources. Even

though deferred shading reduces the number of shaded pixels per frame compared to

forward shading, every pixel still has to test which light sources apply to its content.

Tiled and clustered techniques aim to reduce the number of times we execute those tests

by grouping pixels together.
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Tiled shading, introduced by Harada et al. [16], groups pixels in a regular 2D grid of

smaller dimension than the image resolution. Each group tests visibility of the scene’s

light sources and saves the IDs of those light sources that affect at least one pixel in the

group. Once all light sources have been evaluated, the pipeline can execute the deferred

shading pass and instead of testing all light sources, each pixel only tests the light sources

that were not culled for their group.

Clustered shading, introduced by Olsson et al. [20], extends tiled shading to 3D by

grouping pixels into cells. The technique is similar to tiled shading in the way that it

culls light sources by group, with the difference that pixels in 2D tiles are also sepa-

rated by their depth. The view-space is subdivided in depth according to a logarithmic

distribution to build cells close to cubes.

Tiled and clustered shadings have the potential to cull light sources for multiple pix-

els at once with the cost of a failed culling test for each light source that affects a cell.

The techniques do not change the processing speed of each light source, and therefore

do not change the maximum number of light sources that a single pixel can process in

a frame. However, they change the number of unique light sources that can contribute

to lighting in the same frame, as two different cells can contain the maximum number

of light sources but are not forced to contain the same light sources. Neither technique

investigate the acceleration in light processing and evaluation, such as in many-lights

techniques.

2.4 Many-lights Techniques

In realistic offline rendering, scenes with thousands of light sources are frequent,

as one method to approximate global illumination places virtual point lights (VPLs)

at every reflection point along light paths first traced from the scene’s original light

sources. These VPLs are then used to estimate global illumination by evaluating direct

illumination on a surface point with all light sources and VPLs. In this way, each VPL

represents indirect lighting from a single light path’s bounce. Many-lights techniques are

designed to optimize the evaluation of such scenes; they have been studied extensively.
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We present here two groups of many-lights techniques that tackle the problem from

different perspectives. Even though each group can be presented in the perspective of

the other, and sometimes referenced each other, they remain distinct on how the methods

process their data.

2.4.1 Matrix Sampling

Matrix sampling techniques encode the rendering of an image as a matrix, with each

row representing a pixel, and each column representing a light source. The final image

could be computed by summing the contributions of all columns together, thus calculat-

ing the illumination for each pixel from all light sources.

Introduced by Hasan et al. [17], Matrix Row-Column Sampling (MRCS) is the first

method that represents the rendering equation [18] with such a matrix. The method

samples the sparse matrix to estimate the sum over the columns. The algorithm, graph-

ically presented in Figure 2.13, starts by rendering randomly selected rows (a row is a

pixel with all light sources taken into account individually) using shadow maps on GPU.

Then, it assembles the sampled rows into a representative matrix that is partitioned into

clustered-reduced columns (columns represent the scene with the illuminance of a single

light source). The algorithm then picks a representative column inside each cluster, and

renders the whole column. Finally, the algorithm computes a weighted sum of the ren-

dered columns to generate the image. The quality of the result depends heavily on the

number of sampled rows and columns, as it determines the quality of the clusters. Con-

sidering how the technique clusters light sources, it achieves good results with global

light sources (such as the sun) but requires too many samples to effectively reconstruct

the illumination of local light sources (such as indirect lighting).

Ou and Pellacini introduce LightSlice [21], an algorithm that further extends the

concept of MRCS by grouping similar pixels before trying to resolve the matrix. Where

MRCS randomly picked rows, LightSlice groups similar rows of the matrix into slices.

The algorithm, presented visually in Figure 2.14, determines similarity through geomet-

ric proximity of rows (pixels). The slices are then sampled individually by rendering

a representative row inside each slice. Similarly to MRCS, LightSlice then clusters
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Figure 2.13 – Overview of the Matrix Row-Column Sampling algorithm. Figure from
Hasan et al. [17].

columns based on the results of all representative rows. However, they refine column

clusters again per slice, based on the results of its own representative row and the neigh-

boring slices’ representative rows. Finally, LightSlice renders each slice (equivalent to

a group of pixels) by rendering a representative column for each column cluster and ap-

plies a weighted sum for all representative columns of the slice. The algorithm suffers

from memory usage, as up to 14GB of memory is required to store the data for 800

slices in a scene of 300,000 VPLs. It also suffers from its clustering stage, as its number

of clusters is a user-defined value and the efficiency of the algorithm is dependent on

choosing the right number of slices for a scene. Furthermore, in addition to the already

high memory requirements of the technique, a real-time adaptation could not hope to

dynamically evaluate and refine the number of slices and clusters.

Figure 2.14 – Overview of the LightSlice algorithm. Figure from Ou and Pellacini [21].
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2.4.2 Lightcuts

Introduced by Walter et al., Lightcuts [26] is a many-lights technique that focuses on

building a binary tree on the scene’s light sources, the light tree, traversing it for each in-

dividual surface point until the worst potential illumination error is under a user-defined

error threshold. The method finally shades the surface point with all the light clusters and

light sources that were not subdivided in the light tree. Figure 2.15 presents an overview

of the technique with different cuts through a sample tree. The authors approximate di-

rect illumination of a surface point x by a cluster C by using the representative material,

geometric term and visibility term of the entire cluster:

LC(x,ω) = ∑
i∈C

Mi(x,ω)Gi(x)Vi(x)Ii

≈M j(x,ω)G j(x)Vj(x) ∑
i∈C

Ii .
(2.1)

Figure 2.15 – A scene is shown with its light tree, and three sample cuts through it. The
colored regions show where each cut manages to keep its error small. Image from Walter
et al. [26].

24



To build the best light clusters, they devise a similarity metric that clusters light

sources that are most similar in their material, geometric term, and visibility term, and

construct the light tree using a greedy bottom-up clustering. Equation 2.2 presents the

metric in which IC represents the summed intensity of the cluster, αC the diagonal length

of the cluster’s bounding box, βC the half-angle of the cluster’s bounding cone, and c

the diagonal length of the scene’s bounding box for oriented lights or zero otherwise.

The resulting clusters have an intensity equal to the sum of both its children and a po-

sition that is chosen randomly between its immediate children based on their respective

intensity.

IC(α2
C+ c2(1− cosβC)

2) (2.2)

When traversing the light tree for a surface point, the method starts at the root of the

tree and subdivides clusters until a satisfying cut is achieved. To determine when to

stop subdividing clusters, the method compares the estimated illumination of the cut

to the upper bound illumination, and stops when the relative difference between them

(presented as the relative error) is lower than the user-defined threshold. The cluster

with the worst individual relative error is subdivided and the summed error is calculated

again. This repeats until the summed relative error of the cut meets the user threshold.

The upper bound of a cluster’s illumination is evaluated for each term of the cluster (see

the approximation of Equation 2.1) in the following way.

They bound the maximum for the visibility term to the value of 1 as it would be too

costly to evaluate even a rough approximation of visibility. The geometric term is depen-

dent of the light source type: The upper bound of a directional light source is set to the

value of 1, an omnidirectional (point) light source evaluates 1
‖yi−x‖2 which represents the

squared minimum distance between the light cluster’s bounding box and surface point x,

and an oriented light evaluates max(cosφi,0)
‖yi−x‖2 which also requires finding the smallest angle

φ , in relation to the direction of the light, from the cluster’s bounding box to the surface

point. The material term is equal to the Bidirectional Reflectance Distribution Function

(BRDF) times the cosine of the angle between the cluster’s representative position and
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the surface point. Similarly to the geometric term, to evaluate the upper bound of the

cosine, we must find the minimal angle θ , in relation to the inverse of the surface normal

between the surface point and the cluster’s bounding box.

Lightcuts presents a simple algorithm that scales well with an increasing number of

light sources. It differs from other many-lights techniques in the way that visibility is

evaluated independently at the time of shading and is not evaluated during tree traversal.

While the technique suffers from poor approximation in heavily occluded scenes, it per-

forms particularly well with scenes in free space, that do not contain many occlusions,

as it very closely bounds the error of the cut.

As an extension to Lightcuts, Walter et al. present Multidimensional Lightcuts [28],

which lets the technique evaluate additional dimensions (such as time, volume, and cam-

era aperture). The extended technique introduces the product graph, which builds a hi-

erarchy over gather points, the graph tree, in addition to building the light tree. For each

pixel the method generates a set of gather points, which are then built into the gather

tree, and couples it with the light tree. The dual tree represents the association of every

gather node with every light node and its traversal selects the appropriate light clusters

for the gather points present in the current cut. The technique manages to sample multi-

ple dimensions effectively, but does not take advantage of the similarity of neighboring

pixels. Furthermore, the technique suffers from a slow-down on pixels that do not take

advantage of the gather tree and its dual traversal.

Davidovič et al. [11] implement the Lightcuts algorithm on GPU, and find that its

memory usage is too high for the limited availability on GPU hardware. They present

a progressive algorithm using instead a fixed amount of memory, but do not tackle the

inadequacy of the Lightcuts algorithm in regard to GPU traversal.

Bus et al. [6] make the observation that Lightcuts and Multidimensional Lightcuts

cluster light sources for every pixel when two similar pixels could use the same light

clustering. Similarly, they also observe that LightSlice’s point clusters (slices) only use

the geometric information for clustering and do not adapt to the illumination, possibly

introducing artifacts. Their method, Illuminationcut, uses illumination-aware clustering

for all pairs of a point and a VPL.
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Figure 2.16 – Approximate images rendered as the first phase of the Illuminationcut
method. The results are used as upper bounds for the second phase clustering. Image
from Bus et al. [6].

The technique clusters the points (pixels) in an octree for which the first levels are

subdivided according to the surface normal, and clusters the light sources into a light tree

of the same structure as presented in Lightcuts. This lets them cluster together surfaces

that are in close proximity and that contain similar surface orientations. An approxi-

mate image is then rendered by selecting pairs of point-VPL that satisfy the following

criteria: The maximum of the enclosing radii of the individual clusters must be 1
10 of

the distance between the point and the VPL, and the VPL’s light cone aperture must be

below 20◦. Figure 2.16 presents an example of the results of this first phase of their

method. They then traverse the light and point trees, using the approximate image as

an upper bound. Similarly to the Lightcuts algorithm, they use the light clusters in the

light tree to approximate the shading of all the light sources inside it, and add a visibility

estimation via a shadow test on the representative cluster. Illuminationcut takes advan-

tage of the spatial coherency of scenes by clustering nearby pixels into dynamic groups.

The technique, however, imposes hard constraints on the construction of its upper bound

reference image. Since the reference images are built with only the nearby light sources

that are nearby and well oriented towards the surface, they do not catch the potential

illumination that many far away light sources could sum up to.
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CHAPTER 3

LIGHTCUTS GPU ADAPTATION

As presented before, Lightcuts [26] is a many-lights technique that works in two

steps. First, in a preprocess, a binary tree is built with the scene’s light sources, called

the light tree. The light tree is built in a greedy bottom-up fashion, clustering the most

similar light sources until a single representative cluster remains. Then, to render a

surface point, the light tree is traversed top-down, subdividing nodes that have the largest

relative error until the maximum individual relative error of each node in the cut is under

a user-defined ratio of the estimated total illumination. At every step of the subdivision,

the current set of nodes currently selected in the light tree is referred to as the cut.

We propose moving the second step of the Lightcuts algorithm, i.e., refining the cut,

on GPU hardware into the fragment shader stage. GPU has long been used in real-

time rendering to shade pixels because it is efficient in executing calculations on vectors

and matrices. Most of the GPU efficiency comes from its parallel architecture, which

evaluates multiple pixels at the same time. However, it imposes that each parallel pro-

cess must execute the same code (with potentially different starting values, variables,

and some exceptions). Moving the light tree traversal on GPU benefits from the par-

allelism and speed of the hardware, but imposes that we adapt the algorithm to satisfy

special hardware specifications. One such specification is the absence of support for

recursive functions in GPU shading languages, such as GLSL (OpenGL Shading Lan-

guage). Branching statements are another one, since all processes currently running on

GPU must execute the same assembly code. Branching statements such as if-else and

switch-case are a known potential slowdown for a GPU shader as, if one GPU process

enters a different branch than other parallel processes, both branches will be executed

on all processes, with a flag making sure that processes that should not have entered the

branch do not modify their final values.

To integrate the algorithm into GPU, we modify some of its mechanics while keeping

the advantages of clusters and partial subdivisions of the light tree. In order to reduce



the number of branching statements on GPU, we modify the light tree’s structure and the

error evaluation necessary to make the cut.

3.1 The Light Tree

The light tree is a binary tree with a total of 2n− 1 nodes for a scene containing

n light sources. A cut containing only leaf nodes must execute n− 1 subdivisions, if

starting from the root of the light tree. In a parallel execution on GPU, each process

computes a cut for a unique pixel and each light tree subdivision executes a branching

statement. Since every completed process must wait until the slowest one is also com-

pleted before returning its result, a pixel requiring complete subdivision of the light tree

imposes its execution time onto all other processes executing in parallel. Furthermore,

since all other processes would have completed refining the cut for their pixel, they can-

not profit from the extra execution time available and thus waste computations while

waiting unknowingly.

We propose modifying the binary nature of the light tree to a varying number of

children. By letting spatial coherency of a city direct the number of children under

each node, we reduce the maximum depth of the tree and the number of subdivisions

(branchings) needed to reach leaf nodes. By reducing the depth of the tree, we also

reduce the variance in the number of subdivisions for all processes. Each subdivision

adds substantially more nodes to the cut, adding potentially more details per subdivision

than with a binary tree. Although processes that would have required fewer subdivisions

may end up with more nodes in their cut, the added nodes give more details and still

represent a reduction in wasted time due to less waiting for incompleted processes. Thus,

the method is more conservative.

By making each tree node contain a varying number of children, we create a light tree

that can better adapt to the city’s natural layout. Our clustering method starts with the

smallest objects in our scene containing light sources, in our case light emanating from

apartments through windows. It moves up the object hierarchy of the scene, clustering all

the light sources of children nodes at every step. For instance, the representative cluster
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of a building floor would contain the light sources shining through all the windows on the

floor, and a city block would contain all the light sources from every building within it.

Figure 3.1 presents the conceptual difference between the Lightcuts’ clustering method

and our revision.
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Figure 3.1 – We build the light tree for a building facade containing five floors and three
light sources on each floor according to (a) the Lightcuts method, and (b) our revised
method. The clustering of the Lightcuts method builds the light tree by clustering the
most similar light sources in a binary tree, resulting in a larger depth and a larger num-
ber of subdivisions necessary to achieve a cut. Our revised clustering structure clusters
light sources together according to the special city-like object hierarchy, resulting in a
shallower tree and fewer subdivisions to achieve a cut.

Furthermore, traversing the light tree is a recursive operation that cannot be effi-

ciently implemented as if it would be done on CPU, directly on GPU. To alleviate the

problem of recursion we linearize the light tree before sending it to the GPU. Our lin-

earization goes depth first through the tree and saves each node in an array. To be able to

skip the sub-trees of clusters, we store, for each node, the number of nodes in their sub-

tree. Then, we can skip a node’s sub-tree by advancing the array index by its sub-tree
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size. Table 3.I shows the structure stored on GPU for each node in our revised light tree.

Data Type Description
Light Representative light�

3D vector

�

Position�

3D vector

�

Radiance�

3D vector

�

Direction�

Float

�

Cone opening angle
AABB Axis aligned bounding box�

3D vector

�

Minimum position�

3D vector

�

Maximum position
Integer Number of nodes in sub-tree

Table 3.I – Node structure of our revised light tree.

3.2 Refining the Cut

At the start of an evaluation, a cut is composed of the node at the root of our light tree.

The Lightcuts technique refines the cut by subdividing the node with the largest relative

error until the summed relative error of all the nodes in the cut is under a user-defined

threshold. The relative error is computed by comparing the estimated radiance and the

upper-bound radiance of the current cut for a surface point to shade. The estimates

are evaluated with Equation 2.1, with the material, geometric term, and visibility term

computed with independent upper bounds.

To reduce redundant evaluations, Lightcuts keeps each node of the cut in a list or-

dered by its relative error, and reorders the list at every subdivision. Since maintaining

an ordered list on GPU requires a large number of branching statements, which, as pre-

sented previously, slows down evaluation, we tried replacing the order list with a traver-

sal of the list to choose the node with the largest error. This did not lead to satisfactory

performance.

To better integrate the Lightcuts algorithm to GPU, we replace the summed error

evaluation with individual tests at each node. By evaluating nodes independently, we lose

the guarantee of a maximum relative error threshold per pixel, but we benefit from faster

independent node subdivisions. To estimate the relative error of a cluster, the Lightcuts
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method evaluates the maximum potential contribution of each node, its radiance upper

bound, and compares it against the estimated radiance of the cluster.

We find that this test fails to subdivide clusters when its representative light source is

positioned at the best potential position to evaluate its upper bound. Since both the upper

bound and the estimate use the same position, there is no difference between the two.

Figure 3.2 shows resulting artifacts. This indicates there is no benefit to subdividing the

cluster when in fact the cluster is not guaranteed to properly estimate the radiance of its

children.

Figure 3.2 – Left: A relative error threshold depending on the comparison of the upper
bound radiance of a cluster and the estimated radiance of the same cluster can lead to
artifacts, appearing here as brighter disks on the building facades, when both use similar
positions to evaluate the geometric term and the material term. Right: Our subdivision
does not suffer from such artifacts as we subdivide as long as the error bound has a
radiance over the user-defined threshold.

We propose comparing the upper-bound value to a user-defined threshold value, such

as 1
255 in sRGB color space, and to subdivide clusters until their radiance falls under the

threshold. Although the sum of all cluster errors for a pixel can exceed the threshold,

we find that in practice, the quality is quite close to the fully subdivided result. This

modification achieves a significant speedup, which is further detailed in Chapter 5.
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3.3 Additional Modifications

Building the light tree is a very expensive operation, as we have to cluster all the

scene’s light sources according to a similarity metric that evaluates their summed in-

tensity, cone of orientations, and bounding box. Since in a real-time scenario we could

change a light’s intensity, we have facilitated the construction of the light tree by using

the city’s natural hierarchy to replace the previously mentioned similarity metric. Using

the city’s spatial coherency, we cluster light sources together when they are contained in

the same object, starting from the leaves and moving up in the hierarchy of the city until

we have only one representative cluster.

Furthermore, the Lightcuts technique uses a probabilistic function to choose the po-

sition of the representative light source in each cluster. The position is chosen randomly

from the two children light sources, with a weight proportional to their respective in-

tensity. This probabilistic method helps the light tree construction to remain unbiased

in a Monte Carlo sense, over the whole image. Following the previous changes to error

evaluation, we change the probabilistic method to a deterministic one, using the average

of the positions of children nodes weighted according to their intensity, similarly to Pa-

quette et al. [22]. We compute the cluster’s position xC using Equation 3.1, in which I

represents the intensity of the light source and i one of its child nodes.

xC =
∑i∈C xiIi

∑i∈C Ii
(3.1)

Through the adaptation of the Lightcuts technique to GPU hardware, we make the tech-

nique more suitable to a real-time rendering setup. Results in timings and visual accuracy

are presented and detailed in Chapter 5.
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CHAPTER 4

FACADE-CLUSTER VISIBILITY

Our Lightcuts GPU integration lets us shade a pixel once we have its fragment, all its

shading properties, and all the light sources that shine on its visible surface. Although

the deferred pass gives us the shading properties, we do not yet have the list of light

sources that shine on the geometry. If we were to shade each pixel with the full light

tree, the Lightcuts technique would assume complete visibility for all the light sources

of the scene as it does not provide visibility. Therefore, we need a prepass that computes

visibility of light sources for all visible geometry.

Doing so would be prohibitively expensive, as will be shown later in Chapter 5.

Therefore, we exploit image coherency to devise a from-region visibility technique that

we name Facade-Cluster Visibility (FCV), inspired by Durand et al. [13], to evaluate the

light sources visible from a view cell. This way, we compute the visible light sources

for a group of pixels at once. Furthermore, we compute the visibility of light sources

by traversing our light tree. This traversal inherently gives us a precut of the light tree,

which can be interpreted as a visibility cut. To compute the final image, we provide to

each visible object its precut, refine the final cut for each pixel on GPU, and shade each

pixel with the clusters present in it.

4.1 Building the View Cell

The first step to our technique is the construction of view cells for which we will

evaluate visibility. As presented in Chapter 2, CHC++ [19] is a visibility algorithm

that uses a bounding volume hierarchy (BVH) over the scene’s geometry, and hardware

occlusion queries (HOQs) to determine objects visible to the camera. Since we use

CHC++ in conjunction with deferred shading, we build the GPU buffers containing our

shading properties during visibility evaluation of our scene. By doing so, we benefit

from HOQ support, which returns each object’s pixel coverage, i.e., the number of pixels



where it falls in front of the current depth buffer. This value is not accurate as it only

reflects pixel coverage at the time of the test. Indeed, we update the depth buffer when

an object is evaluated as visible. If later in the processing of the ordered list of objects,

a new object B considered visible hides a previously visible object A, completely or

partially, the pixel coverage of object A is not accurate anymore. Therefore, such pixel

coverage can only be used as an upper-bound estimate of how many pixels the object

covers in the final image.

When retrieving the results of visibility tests from HOQs, we save the pixel coverage

for the tested BVH node. Doing so gives the BVH information on the estimated pixel

coverage of each of its clusters. To build view cells, we traverse the BVH, stopping only

at clusters with a pixel coverage larger than a user-defined threshold. Every cluster at

which we stop constitutes a view cell. This step produces dynamic view cells that have

similar pixel coverage but that may have much different sizes in the scene.

For each view cell constructed this way, we traverse its cluster and note for each

normal of its children objects, which of the six cardinal directions in 3D space (±X ,±Y ,

±Z) is the normal best represented by. More precisely, we choose the cardinal direction

with which the normal makes the largest dot product. Then, we divide the problem of

evaluating visibility for the view cell from all directions at the same time into up to six

individual visibility evaluations, one for each unique cardinal direction that we noted for

the view cell. We later associate the results of each visibility test for the view cell to

its cluster and children objects according to the direction of the visibility test and their

surface normals.

For instance, if an object A is represented by the front facade of a building and one

of its side facades, assuming both are represented by flat surfaces, we would note that

two cardinal directions, say +X for the front facade and −Z for the side facade, are

representative of the object’s normals. Later, we set the light-PVS of A as the union of

the divided visibility tests for A’s view cell for the cardinal directions +X and −Z. If,

instead, both facades were separated into objects A and B, then object A would only be

associated the light-PVS of direction +X and similarly B only the light-PVS of direction

−Z.
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A similar division of view cell visibility computations is also done by Durand et

al. [13] for their extended projections technique, upon which we base our visibility tech-

nique.

4.2 Visibility Algorithm

As presented in Chapter 2, Durand et al. [13] (Extended Projections) compute visi-

bility by intersecting the projections of occluders’ umbra and the projections of potential

occludees’ visibility region. Figure 4.1 presents a quick overview of the process. We

base our visibility algorithm on their theory and adapt their implementation to better suit

specificities of our problem, i.e., by evaluating visibility analytically instead of using ras-

terization, by integrating the light tree of our Lightcuts implementation, by representing

the 2.5D occluders with only their horizon on the projection plane, and by computing

the reprojection without using rasterization.
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Figure 4.1 – Left: The umbra region of an occluder is defined by the region behind
the occluder, in relation to the view cell, and in between its supporting planes. We
intersect the umbra region with our projection plane to define the projected occlusion
region of the occluder. Right: A visibility region is defined by the region between the
view cell and a potential occludee, and in between its supporting planes. We intersect the
visibility region with our projection plane, and if the projected visibility region (green)
is not completely covered by the projected umbra (red), it is considered at least partially
visible.
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4.2.1 Analytical Evaluation of Visibility

To achieve real-time performance, the original technique [13] uses rasterization to

intersect the umbra of occluders with the projection plane. We propose instead to keep

visibility computation on CPU.

4.2.2 Integrating the Light Tree

The original technique, Extended Projections, builds a BVH over the scene’s ge-

ometry to represent potential occludees and to test visibility of each node, starting at

the root. When the visibility test evaluates a node as completely occluded, the node is

pruned from the tree, otherwise it is traversed. In our problem, since our only potential

occludees are light sources of the scene, and since we have already computed a light tree

for the following shading pass using Lightcuts, we replace the BVH with our light tree.

With that change, while evaluating visibility, we actually compute a visibility precut of

the light tree, which contains every cluster that is fully visible from the point of view of

the view cell. We assign this precut to every object inside the view cell associated with

the tested direction.
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 pruned clusters
 visibility precut
 shading cut

Figure 4.2 – In our visibility algorithm, for each view cell, our light tree is first refined
by evaluating a visibility precut. Then, for each pixel, a second cut is computed from
the precut, further refining the light tree to acquire details relevant to the surface position
and normal.

Then, when shading a pixel, we traverse only the clusters present in its visibility pre-

cut to effectively execute a final cut, referred thereafter as a shading cut. As presented in
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Figure 4.2, since the shading cut refines the precut, the pruned clusters are not evaluated

during the shading cut and therefore are not used to shade the pixels using that precut.

To pass the information of the precut to the GPU, we build an array in GPU memory

that references the indices in the light tree array, for each view cell and for each cluster

inside the precut of that view cell. To link every object to their view cell precut, we

also build a 2D array in GPU memory that references, for each object, the first index of

their precut and the number of clusters in it. Finally, every pixel stores its object ID in a

texture during the G-buffer pass of the deferred pipeline. During the shading pass, each

pixel only needs to look up their object ID inside the per-object precut indices array,

fetch the clusters for their view cell in the visibility precut cluster list array, and execute

a shading cut for each cluster. Figure 4.3 presents the two dynamic arrays and how they

link their data.

visibility precut cluster list

2 3 6 0 1 6 1 7 8 ...

per-object precut indices

number of clusters

0 3 4 6 6

3 1 2 3 3

...

...

first index9

2

A B C D E ...F object

Figure 4.3 – To reference the visibility precut per object on GPU, we build a precut
cluster list that contains all the light tree indices for its precut clusters, for each unique
view cell (illustrated here with different colors). Each object only needs to reference
where its precut starts and the number of clusters in it. For instance, in the array above,
objects D and E both have the same precut, since they were computed in the same view
cell, starting at index 6 and containing 3 clusters. The two arrays are transferred to GPU
memory after visibility evaluation.

4.2.3 Occluder Representation on the Plane

To cull our light sources we must project occluders on the projection plane. While we

could use every object in our scene as an occluder, Coorg and Teller [9] observe that large

occluders in a city, such as buildings, produce most of the occlusion occurring at every
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point of view. Therefore, to reduce the size of our occluder list, we only use buildings

as occluders in our cities. We build a BVH over the buildings to group together nearby

buildings when projecting them onto the projection plane. Furthermore, we project the

bounding box of a BVH node onto the plane to reduce the complexity of the objects

projected. Projecting the bounding box of a BVH node implies that we consider it as

fully occluding. Since a BVH node could contain two buildings with a street in between

them or two buildings of different heights, it is not true that all BVH nodes are fully

occluding. To reduce potential errors, we start by grouping contiguous buildings before

growing our BVH with more distant buildings, thus reducing the number of partially

occlluding BVH nodes.

Using only buildings adds another benefit to our technique. Since we consider build-

ings as 2.5D objects from the ground updward, instead of projecting onto the projection

plane every edge of a bounding box of a set of buildings, we project only the top-most

visible edges of the box, i.e., those forming its horizon, thereafter referenced as the oc-

cluder horizon. Visibility with 2.5D occluders implies that a point of view can never

be lower than the bottom of an occluder, which reduces the precomputation of the hori-

zon edges for boxes to only two height categories: below or above the box’s height.

Figure 4.4 presents each category along their precomputed horizon edges and a sample

point of view.

To project an occluder onto a plane, we must compute the occluder’s horizon from

our view cell. As the horizon changes depending on where a point of view lies inside the

view cell, we build the horizon by selecting every edge that could form a horizon edge

for a point of view inside the view cell. Figure 4.5a presents a view cell and the occluder

horizon formed by regrouping the edges of underlying points of view.

Although a point of view and a box form either one or two horizon edges, as seen in

Figures 4.4 and 4.5a, a view cell with a box can form one to four edges. By forcing the

view cells and the bounding boxes in the scene to be axis-aligned, we reduce the maxi-

mum number of edges to three. To further reduce the complexity of visibility evaluation,

we conservatively reduce the horizon to a single edge, formed by its extremal vertices.

Figure 4.5b shows a view cell with the extremal vertices of its three-edge horizon in red
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Figure 4.4 – The vertices V that form the horizon for a single point of view can be pre-
computed. Left: A box, with the edges forming its horizon in red. Middle and Right:
Two height categories exist to determine horizon edges for 2.5D boxes. Each category is
presented with eight sets of vertices placed respectively in their section around the box,
seen from the top. Any point of view inside one section would define the box’s hori-
zon with the listed vertices in that particular order, for left-to-right. The set of vertices
forming the horizon on the left is highlighted in red for its respective point of view.

and the simplified horizon edge also traced in red. Figure 4.7 overlays our simplified

horizons on the city from a point of view.

This simplification has drawbacks when the occluder gets closer, as the lost occlu-

sion area is also getting larger. Fortunately, as we project occluders that are further away,

the lost occlusion area reduces too. Furthermore, this simplification conservatively rep-

resents the shifting horizon for a view cell. As Figure 4.6 shows, a view cell can contain

multiple points of view that see a much different horizon for the same box. While our

simplification (edge in red) does not optimally represent the occluder for all these points

of view, it is quick and efficient in creating a good approximation that is valid for any

point of view inside the view cell. At worst, something that could have been culled will

not be, but a secondary pass could test it again.

4.2.4 Visibility Evaluation

We alter Durand et al. [13]’s visibility test of the occluder and occludee coverage

on the plane to instead take into account the occluder horizon and the occludee horizon.

Since every occluder projected is between the view cell and the projection plane and
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Figure 4.5 – (a) The horizon of an axis-aligned box from a point of view contains either
one or two edges. From any view point in an axis-aligned view cell that does not overlap
the box, there can be one to three edges forming the horizon. (b) To reduce the complex-
ity of the horizon, especially for view cells, we replace all horizon edges with a single
edge, constructed from the two vertices at each end of the standard horizon edges.

since every potential occludee is behind the projection plane, we can assume that if an

occludee horizon is above an occluder horizon, than the occluder does not fully occlude

the potential occludee, and vice versa. Figure 4.7 presents the concept from a point of

view, showing that for fully occluding 2.5D buildings, each horizon of buildings achieves

complete coverage of any object behind it with a lower horizon.

Since GPU hardware is not adapted to visibility computations that contain many

branching statements, we decided to execute the computations on CPU, and transfer

the visibility data to GPU memory for the final shading pass. This modification of the

computations also lets us, unlike the original technique, use an infinite plane for projec-

tion and removes the need to rasterize occluders onto an image for reprojection. This

change of precision removes potential artifacts originating from the image resolution,

well known for the family of shadow mapping techniques.

4.2.5 Grouping and Reprojection

We have not yet described how we reproject the planes onto further planes and how

we group horizons to achieve occluder fusion. As can be seen in Figure 2.7, an occluder
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bounding box horizon

our simplified horizon

Figure 4.6 – When viewing an occluder within a view cell, shifting the position of a
point of view inside the view cell can alter the shape of the occluder. The three boxes
above show three sampled points of view of the same box. As can be noticed, although
our simplified horizon (in pink) loses some occlusion potential by being conservative, it
does so while maintaining much of the occlusion potential no matter the point of view
inside the view cell.

smaller than the view cell has a finite occlusion area. The fusion of smaller occlud-

ers can combine their occlusion areas to better represent their actual mutual occlusion.

Moreover, since our view cell can be much larger that our smaller buildings, we must

implement occluder fusion to catch all occlusions from our scene.

To achieve occluder fusion, we group occluder horizons, from now on referenced to

as nodes, in multiple tree hierarchies. When two nodes have their respective horizons

overlap along the X axis of the plane (the axis perpendicular to height), we group them

together into a new node, with a fix-height horizon. The height of the representative

node is determined by the minimum height of both underlying nodes. This way, if a

representative node’s horizon is higher than a tested occludee, we can guarantee that it

is occluded by the fusion of its underlying nodes. Figure 4.8 shows a node hierarchy of

horizons being grouped and the heights of newly formed groups. Each highest node in

the groups is that group’s root and is considered a sibling node to every other group root.

To test whether a potential occludee is visible or not, we project it onto the plane

42



Figure 4.7 – We project only the horizons of our occluders, the buildings, onto the pro-
jection plane to test for visibility. Here, a sample of horizons are highlighted in yellow
for a point of view, with our simplified horizon traced in pink.

and compare it to every potential horizon group. If the potential occludee overlaps a

horizon group in the X axis of the plane and if the occludee’s minimum height is lower

than the maximum height of the group, the group could hide the occludee, and needs to

be tested with it. When testing an occludee with a group, we first test the highest node,

i.e., the root, to see if it occludes the potential occludee. If the node occludes it, the

test ends with a full occlusion verdict. However, if the group does not fully occlude the

potential occludee, we traverse the node and test the potential occludee with the node’s

two children. This step is repeated until either all nodes of the group are tested against

the potential occludee or it is occluded. When we have finished testing with a group, if

the potential occludee is not occluded, we repeat the same steps with sibling groups until

either all potential groups have been tested or the occludee is evaluated as hidden.

The final step to achieve useful occluder fusion is the reprojection. Introduced by

Durand et al. [13], the reprojection step takes all the projections on the current projection

plane and reprojects them onto a projection plane further away. This lets us reuse the

previous projections and accumulate the projections onto every projection plane. The
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Figure 4.8 – Three steps are presented for grouping occluder horizons. The current nodes
and their hierarchy are presented under each horizon. The top nodes of each group are
siblings. (a) Occluders are projected as horizons on the plane where they overlap in X .
(b) The horizons are grouped in a conservative flat horizon at the lowest point. (c) Two
additional occluder horizons are projected on the plane. One horizon overlaps with the
previous group and is grouped with it, forming a new node, higher in the hierarchy, but
lower in height than its horizon. The other horizon does not overlap and builds its own
group containing only itself.

reprojection is a crucial step as we group occluders only once they are projected onto

the projection plane. This gives us the possibility to project small occluders on a nearby

plane, group them together, and reproject them onto a further plane while benefitting of

their combined occlusion.

Since their original method used rasterized images to represent occluders, their repro-

jection step applied a convolution based on the inverse result of the previous projection

plane and the projection of the new occluders. Since we do not use rasterization, we can

use a simpler solution. To reproject a projected horizon, we build the supporting lines

from the view cell to the horizon vertices, and intersect the lines with the next projection

plane. Then, if the node is not collapsed (a node is collapsed if its occlusion area has

collapsed), we trace the horizon edge on the new projection plane.

When reprojecting a group, we traverse it, starting from the root, and reproject every

node onto the new plane. While some groups may lose the nodes of smaller occluders

or subgroups, their hierarchy is kept the same. While traversing the group, if a node

is collapsed, we stop the traversal for this node and its children, but do not change the
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Figure 4.9 – To build the occlusion node structure, we project every occluder’s simplified
horizon onto projection plane 1 and build their occlusion nodes, which can be seen in
the node representation at the top. We then group every overlapping node into a larger
representative node. To reproject the occlusion nodes onto projection plane 2, we use the
supporting planes of each node to project them from projection plane 1. Nodes that have
their supporting planes meet before the new plane (collapsed nodes) are pruned from the
structure. Grouped occluders are kept even if their children nodes are pruned, as long as
they are not considered collapsed themselves.

reprojection of its parent nodes. Doing this, we reproject and keep the details of each

node until their independent reprojections are no longer valid. While we potentially lose

the details of independent projections, we keep the advantage of occluder fusion at a

low cost. However, since we do not have a perfectly defined representation of fusioned

occluders (we only compute a simple conservative fusion), we potentially lose occlusion

coverage when rejecting the reprojection of collapsed nodes. Figure 4.9 illustrates in 2D

how we reproject nodes and how collapsed nodes are pruned.

Overall, we have refined a technique to evaluate visibility for view cells. It optimizes

the projection of large occluders onto a common plane and evaluates visibility by testing

the horizon of occluders with potential occludees. Furthermore, we have developed a

new structure to conservatively fuse occluder horizons on the plane while keeping the

details of individual occluders as long as possible.
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CHAPTER 5

RESULTS AND IMPLEMENTATION

The goal of our research is the real-time rendering of a city scene at night, includ-

ing all the shading and shadow details of the light sources found in such a scene. To

achieve our goal, we implemented our visibility algorithm introduced in Chapter 4, con-

nected it to the CHC++ [19] algorithm, and rendered images with our revised version of

Lightcuts [26].

In this chapter, we introduce the procedural scene generator that we built to analyze

our research, we recap how the steps of our algorithm connect with each other, as well

as the optimizations that were added to the algorithm, we study the scaling and behavior

of our technique under different perspectives, and we discuss results that we achieved.

The results were obtained with an Nvidia Geforce GTX 1070 GPU, and an Intel Core

i5-3470 CPU. Rendering times were measured for an image of a 1200×900 resolution.

5.1 Scene

Since our algorithm depends on features of an underlying common structure for a

city, we built our own procedural city modeler, which generates blocks of buildings

inside a layout defined by our algorithm. The streets are laid out in a grid pattern and

provide visibility of many buildings at the same time when looking down along the

streets. Furthermore, we can offset the position of block rows by half a block, similar

to a regular offset brick pattern, creating street intersections with an H pattern for which

a point of view looking along the offset street sees much fewer buildings. Figure 5.1

shows our layout seen from above.

To illuminate our scene, at every window for every building facade, we add a spot

light source pointing in the direction normal to the window. All our light sources project

light in a cone with a 45◦opening from the normal and a linear falloff of intensity towards

its edge. We optimize the generation of the city to avoid light sources between adjacent



buildings. One of our tests is composed of 6× 6 blocks, each containing 44 buildings.

Each building is divided into four facades and a roof, with each facade divided in a pro-

cedural number of floors. Each floor is composed of five rectangles (further referenced

to as quads) representing walls and three quads representing windows. In total, this city

contains 978,652 triangles and 39,202 light sources.

Figure 5.1 – We build our street layout of our city to create multiple different points of
view that enable us to test how the algorithm scales with larger or smaller numbers of
visible buildings. Each block is composed of multiple buildings of varying heights, and
is separated by simple models of streets and sidewalks.

5.1.1 Impact of Different Points of View

When rendering a city, its structure and the camera’s point of view have a great

impact on the number of visible facades. Here we present multiple points of view, that

will be discussed further in the chapter when analyzing the performance and scaling of

our technique.

Table 5.I shows statistics for four points of view in the same procedural city. Each

point of view is chosen to increase by tenfold the number of triangles in the potentially

visible set (PVS). The poor performance in the first pass of our deferred pipeline is due to

the fact that our city is defined by a hierarchical structure, for which only the leaf nodes

are represented with geometry. In our case, every wall and window is defined by a quad

(two triangles forming a rectangle), and every floor on a single facade is composed of five

walls and three windows (the wireframe structure of the facade is shown in Figure 5.2).

Since every quad listed for render is sent to the graphics hardware one by one, every

visible floor of every visible facade generates nine draw calls.
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Facade

Floor

Windows

Figure 5.2 – The wireframe structure of a facade in our generated city. A facade is
composed of a procedural number of floors. Each floor is composed of three quads
representing windows and five quads representing walls.

The implementation of instanced draw calls would help to improve performance,

however, this was not done, since the specific focus of the research is on the visibility

technique and the implementation would require a lengthy modification of our CHC++

implementation. Figure 5.3 presents each point of view with only ambient illumination

on the surfaces.

Point of view Triangles in PVS Deferred first pass
Single facade 160 1.0 ms
Close-ended street 1 156 1.7 ms
Long linear street 14 260 9.2 ms
Bird’s eye view 100 112 54.3 ms

Table 5.I – Changing the point of view on the same city can drastically impact the ra-
tio of visible geometry. Four points of view are chosen with increasingly more visible
buildings; they are listed along with the time required to render them on GPU for the
first pass of our deferred pipeline. The scene contains 978,652 triangles.
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(a) Single facade (b) Close-ended street (c) Long linear street (d) Bird’s eye view

Figure 5.3 – The scene viewed from four different points of view.

5.2 Implementation

We implemented our technique defined in Chapter 4 on CPU using C++ and OpenGL

as graphics hardware API. Our CPU pipeline is not implemented using multi-threading

and so could be further optimized. This section provides a quick overview of our com-

plete pipeline, and presents a few additional optimizations that were implemented to

accelerate the technique.

5.2.1 Pipeline Summary

To render a frame with the final implementation of our visibility algorithm, we per-

form three major steps.

First, using the CHC++ [19] visibility algorithm on CPU, we render the scene from

the camera’s point of view. When traversing the BVH structure of the scene, for each

node, we save the visibility estimation returned by the HOQ as its maximum pixel cov-

erage. Furthermore, when rendering the visible geometry on GPU, we save the informa-

tion relevant for each pixel, such as the surface’s position, normal and color, in G-buffers

(textures of the size of the final image, saved on GPU).

Then, with the surfaces identified as visible by the CHC++ algorithm, we build

groups of similar pixel coverage with nearby facades. For each of these groups, we

build a view cell and evaluate the visibility of the light tree, i.e., a hierarchy of light

clusters over the scene’s light sources, against the occlusion created by the city’s build-

ings. This visibility evaluation prunes the nodes in the light tree that are not visible from

the view cell. After the pruning, the remaining nodes, called the visibility precut, are
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saved in a list that we store on GPU. These nodes are represented as orange nodes in

Figure 4.2.

Finally, for every pixel in the final render on GPU, we retrieve the pixel’s properties

in the G-buffers and the visibility precut associated with it. Each pixel executes a final

cut on the light sources previously evaluated as visible for its view cell. The last cut is

evaluated using our revised Lightcuts algorithm introduced in Chapter 3. The final pixel

color is computed by shading the surface with all the light sources in the final cut.

5.2.2 Optimizations

When implementing our visibility algorithm, we further optimized our technique to

accelerate visibility evaluations. The optimizations are detailed in this section and the

statistics are shown in Table 5.II.

First, as presented and discussed in Chapters 2 and 4, Coorg and Teller [9] note that

most of the occlusion present in an urban scene is generated from large occluders close

to the point of view. In a city scene, most of the occlusion comes from buildings, which

are great candidates to generate most of the occlusion by themselves. Therefore, we

restrict the occluder set used for visibility evaluations to only contain buildings in the

scene. As can be seen in the results, a significant speed-up (3×) is attained when only

using buildings as potential occluders.

Second, when testing visibility of light clusters, our visibility algorithm compares the

projection of their bounding boxes on the current projection plane with the accumulated

horizon on the same plane. After testing the light sources, we reproject the horizon on the

projection plane defined by the next occluder. Light clusters that are found between the

current and next projection planes and that were not evaluated as occluded by the horizon

are considered visible. When light clusters’ bounding boxes intersect the projection

plane, we subdivide the clusters until their children find themselves either fully in front

or behind the projection plane. Many subdivisions are done over the course of one

frame as every group of facades for which we evaluate visibility starts with its precut

containing the root of the scene’s light tree. To reduce the number of subdivisions in

one frame, we cull clusters whose maximum potential irradiance is lower than a user-
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defined threshold. We evaluate the potential, similarly to the Lightcuts technique, by

evaluating Equation 2.1 and finding the upper bound of each term independently. Our

only difference with the Lightcuts evaluation is that we also apply an upper bound on

the diffuse term to 1. Since light sources have a 1
distance2 reduction in intensity, setting a

low-enough threshold should cull those that are too far away while not removing many

lighting details. As most lighting details come from either light sources that are close

with a strong intensity or far away light sources that are combined as a cluster with strong

intensity, our optimizations neglect mostly small lighting details.

Third, one of the most important optimizations present in the CHC++ [19] technique

is the temporal coherence of visibility evaluations. In the parameters of the technique,

the user can define the number of frames during which a visibility evaluation remains

valid. Keeping a visibility evaluation valid for multiple frames enables the algorithm

to spread the cost of multiple visibility evaluations over multiple frames, reducing the

number of evaluations executed in a particular one. We use the same concept and apply

it to our visibility evaluations, keeping the visibility precut in memory for a user-defined

number of frames. By doing so, we similarly benefit from spreading the computations

over multiple frames, while keeping memory usage low compared to precomputing the

visibility for the whole scene.

Table 5.II shows the impact of each optimization, along with its associated speed-up

(in %). The results are achieved by placing the camera at the point of view "Close-

Ended Street", described in Section 5.1.1. We also set our minimum potential irradiance

threshold at one quarter of one RGB (1
4×

1
255 ). We cull any light source or cluster whose

maximum potential irradiance is under our threshold. The temporal coherence keeps

the visibility results valid for 50 frames and the average frame time (in milliseconds) is

computed over 120 frames.

5.3 Results

We analyze below the performance of our algorithm and each of its steps. The test

setup consists of the camera positioned at the "Close-Ended Street" point of view pre-
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Optimization Frame time (ms) Speed-up (%)
No optimization 613.7 -
Buildings as occluders 205.2 299.1
Culling by irradiance 178.8 114.8
Temporal coherence 47.5 376.4

Table 5.II – Impact of the optimizations on the average frame time of our pipeline. Each
optimization is applied in addition to the previous ones (rows above in the table) and the
speed-up is computed against the previous average frame time.

sented in Figure 5.3. The shading pass used for analysis varies based on the different

steps, and is mentioned for each result.

We first present the culling achieved by the CHC++ algorithm. As the first step in our

algorithm, this visibility culling aims to reduce our potentially visible set (PVS) as much

as possible. Table 5.III shows, for different culling methods, how many triangles remain

in our PVS and the time spent building the G-buffers in the first pass of the deferred

pipeline. We use the CHC++ occlusion queries in our main pipeline, which has both

the advantage of using GPU hardware for visibility and keeping the PVS information on

CPU. The results do not take into account a possible future shading pass. The speed-up

(close to 10×) attained by using HOQs confirms the efficiency of the technique. We

believe that our choice of visibility technique is well justified by its performance and

the information it gives back to the CPU which we build upon, i.e., the estimated pixel

coverage of each tested BVH node.

Camera visibility technique Triangles in PVS Deferred first pass Speed-up
No visibility, no ordering 978,652 102.5 ms -
CHC++, CPU frustrum culling 41,664 11.3 ms 9.07×
CHC++, occlusion queries 2,312 1.1 ms 93.18×

Table 5.III – Impact of the visibility culling on the potentially visible set (PVS).

Then, we evaluate the efficiency of our Lightcuts GPU revision, presented in Chap-

ter 3. As the final step in our algorithm, the Lightcuts implementation receives the light

tree, which can be seen as a light-PVS.

Table 5.IV shows the efficiency of our GPU Lightcuts implementation using our
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revised light tree against a light tree built according to the original technique [26]. The

results highlight how our light tree is shallower compared to the original light tree and

how it contains almost 20,000 fewer inner nodes.

Light tree Node count Tree depth Full tree Culled tree Speed-up
Original light tree 78 560 16 1370.2 ms 136.6 ms -
Our light tree 58 944 5 1267.8 ms 67.5 ms 2.02×

Table 5.IV – Comparison of performances between the original and revised light trees.

The column "Full tree" shows the shading time when every pixel is given the root

of the light tree as its light-PVS. In this case, the time difference between both tests is

rather small (≈ 10%) compared to the total evaluation time, as the optimal structure for

smaller cuts of the original light tree does not compensate the additional subdivisions

imposed by the structure. Figure 5.4 compares both results and shows how similar the

final cut for both trees are.

Figure 5.4 – Left: Our revised light tree. Right: The original light tree. As can be
seen, both trees converge towards the same image when given the scene’s light tree as
light-PVS. Here, both images are completely identical.

The "Culled tree" column shows a more realistic scenario where visibility is evalu-

ated with the light tree and only visible clusters for each facade are contained in its light-

PVS. In this case, our light tree variation benefits from a significant speed-up (about half

the time), mainly due to the reduction of subdivisions necessary to make the cut. The

timing is evaluated by setting our error threshold to 3.921e-5, or one percent of one RGB

( 1
255 ×

1
100 ).
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Figure 5.5 shows the difference between shading by making a cut in our pruned light

trees or by using all the light sources in it. The error between the two images is at

most 2 RGB, which can be seen as brighter white regions on the street in Figure 5.5d.

Such a low error implies that when the error is enhanced for visualization, compression

errors due to the image format used in the comparison is increased as well. However, we

can still notice shading differences on the building facades, which highlights differences

between the choice of clusters in the cut and using only the scene’s light sources.

(a) Our revised cut (b) All light sources

(c) Error image (d) 128×Error image

Figure 5.5 – The scene rendered with our light tree pruned by visibility. (a) Shading
is performed by making a cut in the light-PVS. (b) Shading is performed with every
light source in the pruned tree. (c) Difference between the two images. (d) Difference
amplified by a factor of 128 to better illustrate where the small errors are distributed in
the image.

Finally, we present the performance of each sub-step in FCV, our visibility algorithm.
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For this comparison, we keep the same point of view in the scene, but set the error

threshold for the Lightcuts to 9.803e-4, or the quarter of one RGB. We also disable

temporal coherence in our visibility algorithm, to analyze the full visibility evaluation.

This evaluation is normally distributed over multiple frames, and consequently, does not

represent time spent in a regular frame.

Algorithm step Total time Self time Number of calls
1 Clusters visibility 130.7 ms 2.9 ms 1
2 Process visibility for element 127.8 ms 2.8 ms 17
3 Collect object indices 0.1 ms 0.1 ms 17
4 Prepare queues 18.5 ms 18.5 ms 53
5 Visibility evaluation 105.4 ms 0.1 ms 53
6 Evaluate clusters 96.8 ms 4.3 ms 379
7 Cull by potential test 19.8 ms 5.2 ms 56 646
8 Cluster upper bound 14.6 ms 14.6 ms 56 646
9 Last cull test 51.6 ms 42.2 ms 10 925
10 Project onto horizon 9.4 ms 9.4 ms 59 323
11 Early cull test 21.1 ms 15.7 ms 32 751
12 Project onto horizon 5.4 ms 5.4 ms 32 751
13 Reprojection 0.4 ms 0.4 ms 328
14 Projection 8.1 ms 8.1 ms 328

Table 5.V – Performance and number of calls for each step in our Facade Cluster Visi-
bility algorithm with no temporal coherency. The column Total time shows the total time
of the step added to the time of its hierarchical substeps. The column Self time presents
only the time step. The sum of the time in the Self time column is equal to the value in
first row of the Total time column. The column Number of calls presents the number of
times the step was executed.

Table 5.V shows each sub-step along its execution time, the execution time of its

children sub-steps, and the number of times the sub-steps were called in the frame. As

can be seen in Step 2, we compute visibility for 17 BVH clusters, and collect the IDs of

every surface in it to later assign it the visibility result. We subdivide these 17 clusters

in 53 visibility evaluations, one for each visible face of each evaluated cluster. The

average of 3.1 visible faces per cluster comes from the need to evaluate all four cardinal

directions for a cluster when one surface within it has a normal pointing up. In Step 4,

for each visibility evaluation, we pre-prune the light-PVS and the occluder list with the
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facade, culling every light or occluder that is fully behind the plane constructed from the

facade position and normal.

Each visibility evaluation then tries culling the light sources by comparing them with

the horizon built from the processed occluders. The original horizon is empty and is built

in Steps 13 and 14. Steps 6 to 14 are repeated until all light sources are either culled

or guaranteed to be visible. Furthermore, the projection plane at which the horizon is

built first starts at the facade plane and is moved to the next occluder in the visibility

evaluation’s ordered occluder list in Step 10. On average, each visibility evaluation

executes seven iterations before terminating. It is important to note that the average is

for the current point of view and can vary with different points of view. We discuss this

variance throughout Section 5.4.

Step 7 tests if every cluster or light source has the potential to illuminate the facade

with an intensity of more than the user-defined threshold. Of the 56,646 tests, 12,970 re-

sult in a culled light, with a cull efficiency of 22.9%. In Step 9, each light that is located

between the current projection plane and the next one undergoes its last potential cull

evaluation. In this test, we attempt to cull the light sources against the horizon, and sub-

divide partially occluded clusters, until they are either completely visible or completely

occluded. Of the 10,925 tests, 59,323 light sources are projected onto the horizon and

6,753 are extracted from the sub-tree of the tested nodes to be added to the list of visible

light sources. In Step 11, the last culling test, we evaluate all the light sources that are

behind the next projection plane by testing them against the current horizon. The light

sources are culled only if they are completely occluded, as we do not subdivide light

sources at this point. In the 32,751 tests executed for Step 11, 5,418 tests result in a

successful cull, with a cull efficiency of 16.5%.

If some light sources remain after attempting to cull them, in Step 13, we move the

projection plane to the nearest occluder along the plane normal and reproject the current

horizon onto it. Finally, in Step 14, we project every occluder that falls fully or partially

before the plane onto it, in order to build the horizon. As can be noticed in Table 5.V,

the projection and reprojection steps are executed an average of 6.2 times per evaluation

(328
53 ).
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The results shown in Table 5.V highlight the most costly operation in our visibility

technique, i.e., testing the visibility of light sources. Of the average 1.98 milliseconds

necessary to compute the visibility from a view cell in one direction, 1.82 ms are spent

for the evaluation of the light clusters. The rest of time is divided by the projection of

new occluders onto the projection plane (0.15 ms) and the reprojection of occluders from

the previous projection plane (0.01 ms). The cost of the evaluation of clusters is divided

between our three different tests to cull clusters. The Cull by potential test takes an

average of 0.37 ms, which is spent computing the upper bounds of each tested cluster’s

representative light source. The Early cull test and the Last cull test respectively take

0.4 ms and 0.97 ms. These last two tests spend most of their time projecting the clusters

onto the projection plane and testing coverage with the occluders projected onto it.

Finally, although the results are computed for our generated city, we should expect

similar results for varying cities of similar dimensions. We achieve interactive frame

rates in our city when using temporal coherency and believe that further research to op-

timize the technique, presented in Section 6.1, could achieve satisfying real-time results.

5.4 Scaling

When rendering a city, the position of the camera has a great impact on the number of

visible surfaces. Furthermore, a larger city contains many more potential occluders. In

this section, we present how our technique scales with such changes. We start by going

over every step in our pipeline and looking at how they each scale with different points

of view. Then, we analyze a single facade cluster visibility evaluation in progressively

larger cities, to study how the increase in occluders affects performance.

Table 5.VI compares the performance of our pipeline according to different points

of view. The four points of view we use, previously introduced in Table 5.I, contain

160, 1,156, 14,260 and 100,112 triangles in their potentially visible sets, representing a

tenfold increase in the visible geometry between each point of view. Notable in the table

is the nonlinear progression of time spent in the pipeline. Furthermore, a discrepancy

can be noticed in the total time of the pipeline compared to the summed up time of its
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steps. This difference comes from the fact that the shading step takes place on GPU

and enables us to start earlier the next frame on CPU. Finally, the discrepancy between

the shading times comes from the fact that the Long linear street point of view contains

significantly less screen coverage by buildings while also having a smaller average light-

PVS for those buildings compared to the Close-ended street point of view.

First, the performance of the CHC++ technique depends on the performance of draw

calls on the GPU. Since our implementation does not execute instanced draw calls, the

performance of the technique is affected. Second, the technique’s performance also

depends on the number of visible surfaces at the same time. By changing our point

of view we increase by tenfold the number of simultaneously visible buildings, but by

using a bounding volume hierarchy over the scene, the CHC++ technique does not scale

as quickly.

Pipeline step
Point of view on city (relative to Figure 5.3)

(a) (b) (c) (d)
Complete pipeline 22.2 ms 48.7 ms 52.9 ms 142.8 ms

Camera visibility (CHC++) 1.9 ms 4.9 ms 20.3 ms 82.2 ms
Facade cluster visibility (FCV) 1.2 ms 6.4 ms 12.9 ms 73.4 ms
Shading (Lightcuts) 19.1 ms 38.4 ms 29.7 ms 56.1 ms

Number of visible facades 1 20 190 2185
FCV Evaluations per frame < 1 3 4 20
FCV Graphics memory usage < 0.1 MB 0.2 MB 0.4 MB 1.8 MB

Table 5.VI – Comparison of our technique’s performance across four points of view in
the same city.

Since our visibility technique executes on the geometry identified as visible by the

CHC++ technique, it also depends on the number of visible surfaces at the same time.

Furthermore, since our technique evaluates visibility according to each view cell con-

taining the grouped surfaces, its performance depends on their perspective view on the

city. By only changing the camera’s point of view, our technique only suffers in scaling

from the increase of simultaneously visible buildings. In this regard, the scaling iden-

tified in Table 5.VI is very similar to the scaling of the CHC++ technique, as it should

be.
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To better understand the scaling of our technique when the city itself changes, we

generate three cities of different sizes and analyze the changes in performance of our

technique in each case. Table 5.VII shows the associated performance of the cities when

the camera is positioned at the Close-ended street point of view. Each sub-step in our

technique is averaged for the visibility evaluation of a single element in the scene. The

sizes of the three cities were chosen with a twofold and threefold increase, respectively.

As can be noticed, although the increasing size of the city affects the performance of

our algorithm, it does so at a lesser degree. The use of a light tree to cull light sources

proves itself effective as the number of tests executed to cull light sources also does not

scale linearly with the number of light sources. Finally, we notice that the number of

light clusters that fall in the Last cull test is consistent for all the cities for the same point

of view. This demonstrates that essentially, the same number of light clusters are kept

visible until the last moment for each city.

Table 5.VI also highlights the low use of GPU memory by our algorithm, which was

one of the main goals in our implementation. We save graphics memory by building a

unique light tree for the scene, only saving the indices of the visible light clusters per

surface. We also present the average number of FCV evaluations executed in a frame

according to our previous setup of spreading evaluations over 50 frames. The FCV

performance in the table scales according to the average number of evaluations.

For our Lightcuts implementation, the scaling depends on the resolution of the screen,

the size of the cut for each surface, and the number of subdivisions necessary to achieve

that cut. Since we do not change the rendering resolution in any of our tests, we know

that performance differences between each point of view is a result of the different cuts

required to shade the scene. This technique too does not scale linearly, since it uses a

light tree to shade surfaces.

The average visibility distance for a point of view in the city depends on multiple

factors. By controlling the building heights in our procedural city, we can change the

average distance between the light sources and the surfaces they shine on. Furthermore,

a city with fewer buildings per area also increases the average view distance. The space

in each city where there is no building or occluder corresponds to buildings with no (0)
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City size
6×6 blocks 9×9 blocks 15×15 blocks

Triangles in scene 978 652 2 204 572 6 124 564
Light sources in scene 39 202 88 278 245 106

Algorithm step Average # of calls, Total time (ms)
1 Clusters visibility 1 8.2 1 11.4 1 18.1
2 Process visibility for element 1 8.1 1 11.0 1 17.2
3 Collect indices 1 0.0 1 0.0 1 0.0
4 Prepare queues 3 1.1 3 1.6 3 3.0
5 Visibility evaluation 3 6.7 3 9.1 3 13.7
6 Evaluate clusters 22 6.2 28 7.9 41 11.4
7 Cull by potential test 3332 1.3 4940 1.8 8719 3.4
8 Cluster upper bound 3332 0.9 4940 1.3 8719 2.5
9 Last cull test 642 3.3 685 3.8 641 3.5
10 Project onto horizon 3484 0.6 3826 0.6 3644 0.6
11 Early cull test 1926 1.5 2936 2.1 5669 3.8
12 Project onto horizon 1926 0.4 2936 0.5 5669 1.0
13 Reprojection 19 0.0 25 0.0 38 0.1
14 Projection 19 0.5 25 1.1 38 2.2

Table 5.VII – Comparison of the performance for a single visibility evaluation with our
FCV technique between increasingly larger cities.

floor.

Table 5.VIII shows the average frame time when rendering our city without temporal

coherence. Each result is obtained by placing the camera at the Long linear street point

of view. Our setup with no variance forces the height of all buildings at seven floors,

while our setup with variance selects, with equal probability, from one to seven floors for

each building, which gives the distribution of heights an average value and a variance of

4. The third setup keeps the same variation of building heights, but reduces the number

of FCV evaluations per frame to the same number as our setup without variance. We

reduce the number of FCV evaluations per frame by increasing the threshold of pixel

coverage required to build the view cells used in our technique.

Figure 5.6 shows the scaling of cities of different sizes when we change the variance

in them. We use the same variance as for Table 5.VIII but do not enforce an equal
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number of evaluations between both. The results are generated by placing the camera

at our Close-ended street point of view, and by setting the temporal coherence so that

visibility evaluations are kept for 50 frames.

Scene setup Frame time Notes
No variance 178.8 ms All buildings have 7 floors. 100 FCV eval-

uations per frame.
With variance 365.2 ms Buildings have 1 to 7 floors with equal

probability. 120 FCV evaluations per
frame.

Equal evaluations 317.9 ms Buildings have 1 to 7 floors with equal
probability. 100 FCV evaluations per
frame.

Table 5.VIII – Increasing the variance in building heights increases the average distance
light can travel in our scene, and thus reduces the efficiency of our technique. Both
setups are compared with the same number of FCV evaluations per frame and the same
pixel coverage threshold to build the view cells.

By culling light sources, our technique achieves a form of shadowing for the surfaces.

While it does not compute shadows per pixel, soft shadows can be seen on the building

facades. The quality of computed shadows depends on the choice of view cells. We can

increase shadow details by computing visibility for smaller view cells, but by doing so,

we also increase the number of FCV evaluations per frame.

Figure 5.7 shows two results of shadows on our buildings. The same buildings are

subdivided in different view cells for both images. On the left, the facades cannot be sub-

divided into smaller view cells. On the right, we let facades be subdivided into smaller

view cells. We study the building in the center of both images more precisely. In the

left image, since our visibility technique is conservative, the light sources seen from the

top floor of the building are also considered visible for lower floors. In the right image,

since we subdivide the view cell further, we can notice that each floor under the top-most

floor gets darker. Since the surrounding buildings offer more occlusion on these lower

floors, more light sources are pruned from their light tree. Furthermore, a sharp shadow

discontinuity can be noticed at the floor edges. When the view cell of a floor contains a

different light-PVS than an adjacent floor, a shading disparity appears at the edges.
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Figure 5.6 – Changing the variance in building heights affects the scaling of our tech-
nique. Both results are computed by generating procedural cities of varying sizes while
using the same degrees of variance as in Table 5.VIII.

Figure 5.7 – By changing the size of view cells, our technique can refine shadowing
details. On the left, we build view cells by forcing facades not to be subdivided into
smaller view cells. On the right, we subdivide view cells further. As can be noticed, the
subdivision of view cells gives better shadow details.
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CHAPTER 6

CONCLUSION

Rendering city scenes at night proves to be a challenge to modern real-time rendering

engines, as the time required to shade each pixel is dependent on the number of light

sources shining on the surface it contains.

One offline rendering technique to tackle such scenes is to build a hierarchy over the

light sources and to traverse it to determine a subset of light clusters and light sources

that represent, as closely as possible, the total illuminance that all the light sources would

add up to. This process can be done for each pixel in the image.

For real-time rendering, this process is too slow to produce an image. Since those

rendering engines normally tend to render 30 to 60 frames per second, each image can

take no more than 16.6 to 33.3 milliseconds to generate. Therefore, real-time rendering

engines normally limit drastically the number of light sources that can be used simulta-

neously in a scene.

In this thesis, we presented a new pipeline to render a city while taking into account

all its light sources. In a preprocess, we build a bounding volume hierarchy (BVH) of our

scene’s geometry, as well as a light tree over all the scene’s light sources. Our pipeline

benefits from the CHC++ [19] implementation of GPU occlusion queries to compute an

estimated pixel coverage of every node in our scene’s BVH. Then, our facade-cluster vis-

ibility (FCV) technique traverses the BVH and groups together visible nodes to satisfy a

user-defined threshold of pixel coverage. Each group is then converted into a view cell

for which we compute visibility of the scene’s light tree, pruning light tree nodes that

are not visible from the view cell. Finally, we shade each pixel’s surface with our Light-

cuts [26] GPU adaptation while starting the cut from the pruned light tree precomputed

for the view cell containing the surface.

Our contributions to the field are our new visibility technique, which is tailored to

evaluate visibility in dense city scenes with large occluders, and our adaptation of the

Lightcuts technique for real-time rendering on GPU. We achieved interactive frame rates



(7-50 frames per second, see Table 5.VI) while rendering our city at night with all light

sources found in it.

6.1 Future Work

Many optimizations and future work could be added to the technique to increase its

performance and accuracy.

As visibility evaluation for each view cell is independent and can be run simultane-

ously, implementing multithreading in our visibility technique is guaranteed to improve

the speed at which it prunes the light trees. We expect that such an implementation

could double the performance of our visibility computation and should be easy enough

to implement.

Instancing draw calls in our deferred pipeline could greatly improve performance,

but was not implemented because it would not affect our visibility technique. This fea-

ture in itself is easy to implement but would require a larger refactoring of our CHC++

implementation.

Our light tree currently only contains static light sources (e.g., windows and street

lights) found in the city scene. We could build a second light tree containing the moving

light sources (e.g., car headlights), and prune both light trees at the same time. Since

this tree would normally be much smaller than our static light tree, we believe we could

rebuild or rearrange it at every frame to keep it optimized for our technique.

By executing the visibility pruning of the light tree on CPU, we compute a precise

upper bound on the lighting that each surface in the view cell can receive. We believe

that the level of detail (LOD) for the geometry within those view cells could depend on

the maximum amount of light shining on them. Doing so would let us reduce details in

poorly lit alleys. However, since our facade-cluster visibility evaluation is executed after

the first pass of our deferred pipeline, this information could only be used for the next

frame(s). Furthermore, if a surface is poorly lit during a frame, but is well lit during the

next one (e.g., a car turning on its headlights), the lower LOD would be visible for one

frame, even though it is well lit. To allow such information to be used for the current
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frame would require to change the global pipeline of our technique.

In our facade-cluster visibility technique, since our occluders are 2.5D in nature, we

compute the horizon of the occluders viewed from the top of the view cell. Although

it guarantees that every light source visible from that view cell will not be culled, we

lose much of the lighting variations inside the view cell. While decreasing the size

and increasing the number of view cells would increase lighting details visible in the

image, it would also very quickly increase the number of visibility evaluations. Another

option would be to compute the height at which light sources and clusters are culled on

the view cell, and save this height in the view cell precut. By doing so, we could cull

clusters during the Lightcuts evaluation, as each pixel could compute its height in the

view cell.

Still in our FCV technique, we currently project the light clusters onto the projection

plane every time that we test them against the projected occluders. Since the supporting

planes of the clusters do not change over the frame, we could build them once and

reproject them with the occluders every time we move the projection plane. Such a

modification should be quick and slightly reduce the number of projections done per

frame. We believe it would approximately increase the performance of the visibility

evaluation by 5%.

Finally, our results did not prove efficient enough to be included into a real-time

rendering engine, but it achieved interactive frame rates and good scaling behavior for

large cities with many light sources. We believe that the visibility technique we presented

opens up new research ideas, and could be optimized to be useful in real-life scenarios,

such as video game engines or city design software.
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