
Université de Montréal

Improved Training of Generative Models

par Anirudh Goyal

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

July, 2018

c© Anirudh Goyal, 2018.

Résumé

Cette thèse explore deux idées différentes:
— Une méhode améliorée d’entrâınement de réseaux de neurones

récurrents. Communément, l’entrâınement des réseaux de neurones récur-
rents se fait à l’aide d’une méthode connue sous le nom de ‘teacher forcing’.
Cette méthode consiste à utiliser les valeurs de la séquence observée en tant
qu’entrées du réseau pendant la phase d’entrâınement, alors que l’on utilise
la séquence des valeurs prédites par le modèle lors de la phase de généra-
tion. Nous présentons ici un algorithme appelé ‘professor forcing’ qui utilise
l’adaptation de domaine adversaire pour encourager la dynamique du ré-
seau récurrent à être la même lors de la phase d’entrâınement et lors de la
phase de génération. Ce travail a été accepté a la session de posters de la
conférence NIPS 2016.

— Un nouveau modèle pour l’entrâınement de modèles génératifs. Un
obstacle connu lors de l’entrâınement de modèles graphiques non orientés
avec variables latentes, tels que les machines de Boltzmann, est que la pro-
cédure d’entrâınement par maximum de vraisemblance necéssite une châıne
de Markov pour échantillonner. Or le temps de mixage de la châıne de Mar-
kov dans la boucle interne de l’entrâınement peut être très long. Dans cette
thèse, nous proposons d’abord l’idée qu’il suffit de découper localement la
fonction dénergie de sorte que son gradient pointe dans la bonne direction
(cest-a-dire vers la génération des données). Cela correspond à une nou-
velle procédure d’apprentissage qui s’éloigne d’abord des données en suivant
l’opérateur de transition du modèle, et qui ensuite entrâıne cet opérateur à
revenir en arrière à chaque étape, en revenant vers les données. Ce travail a
été accepté en tant que poster à la conference NIPS 2017.

Dans le premier chap̂ıtre, je présente quelques notions élémentaires sur les mo-
dèles génératifs (en particulier les modèles graphiques orientés et non orientés). Je
montre en quoi la méthode proposée dans le chap̂ıtre 3 est liée à ces modèles.

Dans le deuxième chap̂ıtre, je décris notre méthode proposée (appelée ‘professor
forcing’) pour améliorer l’entrâınement des réseaux de neurones récurrents.

Dans le troisième chap̂ıtre, je décris notre méthode proposée pour entrâıner un
modèle génératif en paramétrant directement un opérateur de transition.

Mots clés : modèles génératifs, réseaux de neurones récurrents.

ii

Summary

This thesis explores ideas along 2 different directions:
— Improved Training of Recurrent Neural Networks - Recurrent Neu-

ral Networks are trained using teacher forcing which works by supplying
observed sequence values as inputs during training, and using the network’s
own one-step ahead predictions to do multi-step sampling. We introduce the
Professor Forcing algorithm, which uses adversarial domain adaptation to
encourage the dynamics of the recurrent network to be the same when trai-
ning the network and when sampling from the network over multiple time
steps. This work was accepted as a conference poster at NIPS 2016.

— Training iterative generative models A recognized obstacle to training
undirected graphical models with latent variables such as Boltzmann ma-
chines is that the maximum likelihood training procedure requires sampling
from Monte-Carlo Markov chains which may not mix well, in the inner loop
of training, for each example. In this thesis, we first propose the idea that it
is sufficient to locally carve the energy function everywhere so that its gra-
dient points in the right direction (i.e., towards generating the data). This
corresponds to a new learning procedure that first walks away from data
points by following the model transition operator and then trains that ope-
rator to walk backwards for each of these steps, back towards the training
example. This work was accepted as a conference poster at NIPS 2017.

Chapter One is dedicated to background knowledge about generative models.
This covers directed and undirectored graphical models and how the proposed me-
thod in Chapter 3 are related to these. In the following chapter, I will describe our
proposed method to improve training of recurrent neural networks using Professor
Forcing Goyal et al. [2016]. The third chapter describes the Variational Walkback
[Goyal et al., 2017a] algorithm. This is an algorithm for training an iterative gene-
rative model by directly learns a parameterized transition operator.

Keywords: unsupervised learning, generative models, recurrent neural net-
works

iii

Table des matières

Résumé . ii

Summary . iii

Contents . iv

List of Figures . vii

List of Tables . xi

List of Abbreviations . xii

Acknowledgments . xiv

1 Introduction . 1
1.1 Generative Modelling . 1
1.2 What is a stochastic process ? . 2
1.3 What is a Markov chain ? . 2

1.3.1 What is a stationary distribution of a Markov chain ? 2
1.3.2 Reversibility of a markov chain 3
1.3.3 Sufficient statistic . 3

1.4 What is Markov Chain Monte Carlo ? 4
1.5 Latent variable models . 4
1.6 Graphical Model . 5
1.7 Directed and Undirected Graphical Models 5
1.8 What is a energy function ? . 6
1.9 Energy Based Models . 7

1.9.1 Maximum Likelihood Training of Undirected Graphical Models 7
1.10 Variational Autoencoder . 8

1.10.1 The approximate inference model 8
1.10.2 Generative Model of the VAE 9
1.10.3 Reparametrization Trick . 9
1.10.4 Variational Inference and Learning 10

1.11 Learning a Transition Operator . 11
1.11.1 Denoising Autoencoders . 11

iv

1.11.2 Walkback Training for Denoising Autoencoders 12
1.11.3 Generative Stochastic Networks 12
1.11.4 Non Equillibrium Thermodynamics 13

2 Professor Forcing: A New way of Training RNN’s 14
2.1 Introduction . 15
2.2 Proposed Approach: Professor Forcing 17

2.2.1 Definitions and Notation . 17
2.2.2 Training Objective . 18

2.3 Related Work . 19
2.4 Experiments . 20

2.4.1 Networks Architecture and Professor Forcing Setup 20
2.4.2 Character-Level Language Modeling 22
2.4.3 Sequential MNIST . 23
2.4.4 Handwriting Generation . 24
2.4.5 Music Synthesis on Raw Waveforms 25
2.4.6 Negative Results on Shorter Sequences 28

2.5 Conclusion . 28

3 Variational Walkback: Learning a Transition Operator as a Sto-
chastic Recurrent Net . 29
3.1 Variational Walkback - Connections to Directed and Undirected

Graphical Models . 30
3.2 Introduction . 33
3.3 The Variational Walkback Training Process 35
3.4 Variational Derivation of Walkback 38

3.4.1 Tightness of the variational lower bound 40
3.4.2 Estimating log likelihood via importance sampling 42
3.4.3 VW transition operators and their convergence 42

3.5 Related Work . 43
3.6 Experiments . 44
3.7 Discussion and Future Work . 46
3.8 VW transition operators and their convergence 47
3.9 Additional Results . 47
3.10 VW on Toy Datasets . 48
3.11 VW chains . 48
3.12 Walkback Procedure Details . 49
3.13 Higher Lower Bound: not always better samples 54
3.14 Reversibility of transition operator 54
3.15 Some Minor Points . 55

v

3.16 Inception Scores on CIFAR . 55

4 Conclusion . 64

Bibliography . 67

vi

Table des figures

2.1 Figure 1: Architecture of the Professor Forcing - Learn correct one-
step predictions such as to to obtain the same kind of recurrent
neural network dynamics whether in open loop (teacher forcing)
mode or in closed loop (generative) mode. An open loop genera-
tor that does one-step-ahead prediction correctly. Recursively com-
posing these outputs does multi-step prediction (closed-loop) and
can generate new sequences. This is achieved by train a classifier to
distinguish open loop (teacher forcing) vs. closed loop (free running)
dynamics, as a function of the sequence of hidden states and outputs.
Optimize the closed loop generator to fool the classifier. Optimize
the open loop generator with teacher forcing. The closed loop and
open loop generators share all parameters 21

2.2 Figure 2: Penn Treebank Likelihood Curves in terms of the number of
iterations. Training Negative Log-Likelihood (left). Validation BPC
(Right) . 23

2.3 Figure 3: T-SNE visualization of hidden states, left: with teacher for-
cing, right: with professor forcing. Red dots correspond to teacher
forcing hidden states, while the gold dots correspond to free run-
ning mode. At t = 500, the closed-loop and open-loop hidden states
clearly occupy distinct regions with teacher forcing, meaning that
the network enters a hidden state region during sampling distinct
from the region seen during teacher forcing training. With professor
forcing, these regions now largely overlap. We computed 30 T-SNEs
for Teacher Forcing and 30 T-SNEs for Professor Forcing and found
that the mean centroid distance was reduced from 3000.0 to 1800.0,
a 40% relative reduction. The mean distance from a hidden state
in the training network to a hidden state in the sampling network
was reduced from 22.8 with Teacher Forcing to 16.4 with Professor
Forcing (vocal synthesis). 24

2.4 Figure 4: Samples with Teacher Forcing (left) and Professor Forcing
(right). 25

vii

2.5 Figure 5: Handwriting samples with teacher forcing (top) and pro-
fessor forcing (bottom). Note that in both cases the model is only
trained on observed sequences of length 50 steps (a few letters) but
is used to do conditional generation for 1000 steps. 26

2.6 Figure 6: Left: training likelihood curves. Right: validation likelihood
curves. 26

2.7 Figure 7: Human evaluator ratings for vocal synthesis samples (hi-
gher is better). The height of the bar is the mean of the ratings and
the error bar shows the spread of one standard deviation. 27

3.1 Variational WalkBack framework. The generative process is repre-
sented in the blue arrows with the sequence of pTt

(st−1|st) transi-
tions. The destructive forward process starts at a datapoint (from
qT0

(s0)) and gradually heats it through applications of qTt
(st|st−1).

Larger temperatures on the right correspond to a flatter distribution,
so the whole destructive forward process maps the data distribution
to a Gaussian and the creation process operates in reverse. 35

3.2 Generating MNIST-like samples using a Bernoulli likelihood in the
transition operator. Left: VW iteratively generates images starting
from a noise prior. For intermediate steps we display samples and
for the final step (right hand side image) we display the transition
operator’s mean. 44

3.3 VW inpainting in CelebA images. Images on the left are the ground
truth images corrupted for their bottom half (which is the starting
point of the chain). The goal is to fill in the bottom half of each face
image given an observed top half of an image (drawn from test set).
Images on the right show the inpainted lower halves for all these
images. 48

3.4 VW samples on MNIST using Gaussian noise in the transition opera-
tor. The model is trained with 30 steps of walking away, and samples
are generated using 30 annealing steps. 49

3.5 VW samples on CelebA dataset using Gaussian noise in the tran-
sition operator. Model is trained using 30 steps to walk away and
samples are generated using 30 annealing steps. 50

3.6 VW samples on Cifar10 using Gaussian noise in the transition ope-
rator. Model is trained using 30 steps to walk away and samples are
generated using 30 annealing steps. 51

3.7 VW samples on SVHN dataset using Gaussian noise in the transition
operator. Model is trained using 30 steps to walk away and samples
are generated using 30 annealing steps. 52

viii

3.8 The proposed modeling framework trained on 2-d swiss roll data.
This algorithm was trained on 2D swiss roll for 30 annealing steps
using annealing schedule increasing temperator by 1.1 each time. We
have shown every 5th sample (ordering is row wise, and within each
row it is column-wise. 53

3.9 The proposed modeling framework trained on circle data. This al-
gorithm was trained on circle for 30 annealing time steps using an-
nealing schedule increasing temperature by factor 1.1 each time. We
have shown every 5th sample (ordering is row wise, and within each
row it is column-wise. 53

3.10 VW sample chain (vertically, going down) starting from pure noise.
Model trained using K = 30 steps to walk away and samples are
generated using 30 steps of annealing. The figure shows every 3rd
sample of the chain in each column. 56

3.11 VW sample chain. Each coloumn above corresponds to one sampling
chain. We have shown every 10th sample. We applied the transition
operator for 5000 time-steps at temperature = 1, to demonstrate
that even over very long chain, the transition operator continues to
generate good samples. 57

3.12 VW sample chain. Each column above corresponds to one sampling
chain. We have shown every 10th sample. We applied the transition
operator for 5000 time-steps at temperature = 1, to demonstrate
that even over very long chain, the transition operator continues to
generate good samples. 58

3.13 VW sample chain. Each column above corresponds to one sampling
chain. We have shown every 10th sample. We applied the transition
operator for 5000 time-steps temperature = 1. 59

3.14 VW sample chain. Each column above corresponds to one sampling
chain. We have shown every 10th sample. We applied the transition
operator for 5000 time-steps at temperature = 1, to demonstrate
that even over very long chain, the transition operator continues to
generate good samples. 60

3.15 VW sample chain. Each column above corresponds to one sampling
chain. We have shown every 10th sample. We applied the transition
operator for 5000 time-steps at temperature = 1, to demonstrate
that even over very long chain, the transition operator continues to
generate good samples. 61

3.16 VW sample chain. Each column above corresponds to one sampling
chain. We have shown every 10th sample. We applied the transition
operator for 5000 time-steps at temperature = 1, to demonstrate
that even over very long chain, the transition operator continues to
generate good samples. 62

ix

3.17 Samples from two VW models (left and right) which have a higher
lower bound than the one whose samples are shown in Figure 5
(and comparable but slightly better importance sampling estimators
of the log-likelihood): yet, the generated samples are clearly not as
good, suggesting that either the bound is sometimes not tight enough
or that the log-likelihood is not always a clear indicator of sample
quality. 63

x

Liste des tableaux

2.1 Test set negative log-likelihood evaluations 25
2.2 Human Evaluation Study Results for Handwriting 26

3.1 Comparative log-likelihoods estimated by importance sampling. . . 45

xi

List of Abbreviations

VAE Variational Auto-Encoder

GAN Generative Adversarial Networks

RNN Recurrent Neural Networks

VW Variational Walkback

XE Cross Entropy

xii

To my grandfather !

xiii

Acknowledgments

I am extremely grateful for an amazing set of family, friends and advisors wi-

thout whom my work would not be possible.

I’m grateful to Prof. Yoshua Bengio for accepting me as a graduate student,

for encouraging me to have the right intuitions, and approaching the problem from

different perspectives. His guidance has been very important in illuminating the

importance of random exploration for research, and in my understanding of, how

brains do credit assignment through time.

I’d also like to thank Rosemary Nan Ke, Alex Lamb and Benjamin Scellier for

supporting me. They have played a very unique role in my graduate life.

To my many friends, co-authors, co-workers, and colleagues (random order):

Adriana Romero, Alessandro Sordoni, Amjad Almahairi, Asja Fischer, Anna Huang,

Ahmed Touati, Akram Erraqabi, Arnaud Bergeron, Bart van Merrienboer, Ben

Poole, Benjamin Scellier, Caglar Gulcehre, Cesar Laurent, Daniel Jiwoong Im, Da-

vid Krueger, David Warde-Farley, Devon Hjelm, Dmitriy Serdyuk, Dzmitry Bah-

danau, Faruk Ahmed, Francesco Visin, Frederic Bastien, Gabriel Huang, Gaetan

Marceau Caron, Guillaume Alain, Harm de Vries, Ishmael Belghazi, Krishna Kumar

Singh, Iulian Vlad Serban, Joao Felipe Santos, Jonathan Binas, Jorg Bornschein,

Jose Sotelo, Junyoung Chung, Joseph Paul Cohen, Marcin Moczulski, Mathieu

Germain, Mehdi Mirza, Mohammad Pezeshski, Myriam Cote, Negar Rostamza-

deh, Olexa Bilaniuk, Pascal Lamblin, Pierre-Luc Carrier, Philemon Brakel, Shawn

Tan, Simon Lefrancois, Sina Honari, Soroush Mehri, Sungjin Ahn, Tim Cooijmans,

Vincent Dumoulin ; Thank you for everything you do.

Thanks Celine Begin for all her patience during the thesis submission process

xiv

and for her organizational help during my studies.

I would like to thank my undergrad research advisor Prof. C.V Jawahar, for

accepting me as a research assitant, and teaching me how to do research. Thanks

to Dr. Shailesh Kumar, for advising me during my final year of the undergrad. He

helped to encourage me to think more, thanks to all his brainstorming sessions. I

learned the importance of having good intuitions from him. I would like to thank

Dr. Rahul Sukthankar, for showing faith in me when I was most uncertain about

my future. Without him, I would not be able to come to MILA. Thanks to Dr. Ray

Kurzweil for giving me a chance to intern in his team. He fueled up my curiosity

to understand how the brain works. Thanks to all of you.

I also want to express an extra thanks to my current collaborators: Dr. Hugo

Larochelle, Professor Sergey Levine, Professor Konrad Kording, Dr. Matthew Bot-

vinick. Finally, the work reported in this thesis would not have been possible wi-

thout the financial support from: Ubisoft, Google, Samsung, IBM, NSERC, Calcul

Quebec, Compute Canada, the Canada Research Chairs and CIFAR.
Finally, I would like to thank my parents, my grandparents, and other members

of my family.

xv

1 Introduction

1.1 Generative Modelling

Given a data distribution X, a generative model refers to classes of models

that model the distribution of data P (X) so that samples can be drawn from

the approximating distribution. This is different from discriminative models that

models P (Y |X) for distributions Y and X. Generative models are an important

class of models for several reasons. One reason is that learning generative models

can help to capture the salient features in the data, this can in turn help with

many other tasks. Some examples of these tasks are classification, semi-supervised

learning, denoising, impainting, structured predication and exploration in Reinfor-

cement Learning. One other important reason is that learning generative models

does not require human labor to hand annotate the data with labels. Hence, we

have access to lot more unsupervised data (data without labels): if we can learn a

good generative model from these and capture the salient features, this can help

other tasks as we have mentioned earlier.

Given access to a set of samples from an unknown target distribution, a ge-

nerative model provides a mechanism for producing samples from the distribution

learned by the model. A generative model assumes data is created by a particular

distribution which is defined by a set of parameters or non-parametric variants and

it approximates that underlying distribution with particular algorithms. This gives

the ability of generating new data and not only classify it from existing data..

Suppose you are a small child being asked ”What is a bicycle ?”. You can draw

it onto a paper showing a primitive bicycle. This is a generative process. This is

not a real bicycle, what you draw, but still a bicylce. This is a trace that we have

a generative model in our heads. However, when we ask you ”Which one is the

bicycle ?”, you are still able to point it versus a car. This is a classification process

that we mimic by discriminative modelling.

1

1.2 What is a stochastic process ?

A stochastic process is simply a collection of random variables indexed by time

{Xu, u ∈ I}, where I is the index set. The set of all times we wish to define the

particular process under consideration. At every new unit of time, the random

variables could assume one of many possible values, and each sequence of these

values has a probability associated with it. While we cannot know the exact path

that those random variables will follow, we can make inferences about the path it

might take based on those probabilities.

The index set I will be either a discrete or a continuous set. If it is discrete (e.g.

I = {0, 1, 2, ...}) then we say that X is a discrete-time stochastic process. If it is

continuous then we say X is a continuous-time stochastic process.

1.3 What is a Markov chain ?

A stochastic process is said to be a Markov Chain if it has the Markov Property.

For any s, i0, ..., in1 ∈ S and any n ≥ 1.

P (Xn = s|X0 = i0..........Xn−1 = in−1) = P (Xn = s|Xn−1 = in−1)

Here, we say that the distribution of Xn given the entire past of the process

only depends on the immediate past. Note that we are not saying that, for example

X5 and X1 are independent. They are not. However, given X4, for example, X5 is

conditionally independent of X1. Graphically, we may imagine being on a particle

jumping around in the state space as time goes on to form a (random) sample

path. The Markov property is that the distribution of where I go to next depends

only on where I am now, not on where I have been. This property is a reasonable

assumption for many (though certainly not all) real-world processes.

1.3.1 What is a stationary distribution of a Markov chain ?

A stochastic process is stationary if for any points i1.....in and m ≥ 0 the joint

distribution of Xi1Xin is the same as the joint distribution of Xi1+m
.......Xin+m

.

So stationary refers to stationary in time. In particular, for a stationary process,

the distribution of Xn is the same for all n.

2

So why do we care if our Markov chain is stationary ? Well, if it were stationary

and we knew what the distribution of each Xn was then we would know a lot

because we would know the long run proportion of time that the Markov chain

was in any state. For example, suppose that the process was stationary and we

knew that P (Xn = 2) = 1
10

for every n. Then over 1000 time periods we should

expect that roughly 100 of those time periods was spent in state 2, and over N

time periods roughly N
10

of those time periods was spent in state 2. As N went to

infinity, the proportion of time spent in state 2 will converge to 1/10 (this can be

proved rigorously by some form of the Strong Law of Large Numbers). One of the

attractive features of Markov chains is that we can often make them asymptotically

stationary (for n sufficiently large) and there is a nice and neat characterization of

the distribution of Xn when it is stationary.

1.3.2 Reversibility of a markov chain

AMarkov chain is reversible if its transition probability is reversible with respect

to its initial distribution. Reversibility implies stationarity, but not vice versa. A

reversible Markov chain has the same laws running forward or backward in time,

that is, for any i and k the distributions of (Xi+1, ..., Xi+k) and (Xi+k, ..., Xi+1) are

the same.

Here is a nice hypothesis test that might be a good way to explain it. The

hypothesis test is as follows: If I show you a movie of a time series of a stochastic

process. Then I ask you: Is time going forwards in the movie or am I playing the

movie backwards ? If you are not able to distinguish between the two, than the

process is a reversible process.

1.3.3 Sufficient statistic

Sufficient statistics provide a summary of the data, and are often useful for

learning tasks. A statistic is any function T (X) of the data X. if θ parametrizes

the class of underlying data-generating distributions, then for any statistic, we have

the Markov chain θ → X → T (X) i.e. θ⊥T (X)|X and data processing inequality

tells us that I(θ, T (X)) ≤ I(θ,X). A statistic is sufficient for a parameter θ if

θ⊥X|T (X), i.e. we also have the Markov chain → T (X) → X. In words, once we

know T (X), the remaining randomness in X does not depend on θ. This implies

3

p(X|T (X)).

1.4 What is Markov Chain Monte Carlo ?

Monte Carlo methods are computational algorithms (simply sets of instructions)

which randomly sample from some process under study. They are a way of estima-

ting something which is too difficult or time consuming to find deterministically.

They’re basically a form of computer simulation of some mathematical or physi-

cal process. Monte Carlo integration works great on a high-dimensional functions

by taking a random sample of points of the function and calculating some type

of average at these various points. By increasing the sample size, the law of large

numbers tells us we can increase the accuracy of our approximation by covering

more and more of the function.

These two concepts can be put together to solve some difficult problems in areas

such as Bayesian inference, computational biology, etc where multi-dimensional

integrals need to be calculated to solve common problems. The idea is to construct

a Markov Chain which converges to the desired probability distribution after a

number of steps. We want to generate random draws from a target distribution.

We then identify a way to construct a ’nice’ Markov chain such that its equilibrium

probability distribution is our target distribution of interest. If we can construct

such a chain then we arbitrarily start from some point and iterate the Markov chain

many times. Eventually, the draws we generate would appear as if they are coming

from our target distribution.

1.5 Latent variable models

A latent variable model is a model that contains latent i.e unobserved variables.

Given a data distribution, there might be very complex interdependencies between

the dimensions. Modelling all of these interdependencies is costly, and makes trai-

ning much harder in a high dimensional data space. A simple way to make this

4

easier is to assume there is a (low-dimensional) latent variable z that induces glo-

bal structure on the samples, thus freeing us from modelling complex interactions

among the observed random variables in order to capture high level structure, since

the observed random variables are conditionally independent given the latent va-

riables. For example, to generate a natural image, the latent variable might encode

hidden causes behind the image such as the object categories, their positions and

orientations, etc., and then a generator only needs to decode this high level infor-

mation into a set of pixels that visually represents it. The variable z is referred to as

latent because we never see these variables in the training data, only the observed

random variables x are seen. To deduce our model latent z corresponding to an

observed x we need to perform inference. If we assume that the model is parame-

terized by θ, we would like to train the model such that on average, the samples

produced by the model by sampling from a prior over z, p(z), would match the

data distribution. Formally, this would maximize p(x) =
∫
p(x|z;)p(z)dz which is

referred to as the maximum likelihood training principle for latent variable models.

1.6 Graphical Model

A graphical model is a probabilistic model for which a graph expresses the

conditional dependence structure between random variables.

1.7 Directed and Undirected Graphical Models

Directed versions of such generative models can synthesize new sensory data

through a sampling process which often converts a simple distribution over latent

variables, modelling causes in the sensory data, into complex distributions over the

data itself. They can also analyze sensory data by computing the posterior distribu-

tion over latent variables given sensory data. An early instantiation of this idea was

the Helmholtz machine [Dayan et al., 1995b], in which the analysis was performed

by a recognition model and the synthesis was performed by a separate generative

model, and the two were trained together to maximize the marginal probability of

5

the data. More recent work on directed generative modelling using a small number

of generative steps involves variational auto-encoders (VAEs) [Kingma and Welling,

2013, Rezende et al., 2014], while non-probabilistic approaches to training include

generative adversarial networks (GANs) [Goodfellow et al., 2014]. In the probabi-

listic VAE approach however, it can be difficult to learn very deep models, with

multiple layers of abstraction intervening between latent causes and sensory data.

The credit assignment problem stands as a major impediment to learning such deep

models as it can be difficult to optimize parameters controlling latent variables far

removed from the data.

A parallel strand of generative modeling, through undirected probabilistic mo-

dels, involves modelling the data as the stationary distribution of a stochastic pro-

cess (e.g. various Boltzmann machines [Salakhutdinov and Hinton, 2009]). Sam-

pling under this method corresponds to a potentially powerful iterative process of

repeatedly applying a fixed stochastic operator that can gradually turn simple ini-

tial distributions over data into complex stationary distributions over data. However

a key impediment to this approach is the mixing time problem: if the stationary dis-

tribution has multiple modes, the sampling process can take a long time to mix, or

reach the stationary distribution, due to the excessive time sampling methods can

take to jump between modes. Moreover, these models are also difficult to train, as

solving the credit assignment problem also involves sampling from the model, in or-

der to match the model’s stationary distribution to the data distribution. Thus the

mixing time problem contributes to the difficulty of the credit assignment difficult

in undirected models.

1.8 What is a energy function ?

The role of energy function in generative models is the same as that of proba-

bility. It is a property of the system in current configuration. Every configuration

of variables correspond to an energy value.

6

1.9 Energy Based Models

Learning any distribution over data involves two fundamental problems:

— Model must place probability mass where the data is located.

— Model must avoid probability mass where the data is not located.

Probability modes of the model distribution where there is no data are known as

spurious modes, and a fundamental goal of learning is to hunt down these spurious

modes and remove them. In this thesis, we proposed a fundamental way of hunting

down these spurious modes.

1.9.1 Maximum Likelihood Training of Undirected Graphi-

cal Models

Let v denote the vector of visible units which takes as value an observed data

exampled and h denote the vector of hidden random variables, with the full state

of the model being s = (v,h). Let pθ denote the model distribution, with joint

energy function Eθ and parameter vector θ:

pθ(s) :=
e−Eθ(s)

Zθ

, (1.1)

where Zθ is the partition function

Zθ :=

∫
e−Eθ(s)ds. (1.2)

Let pD be the unknown training distribution, from which a sample D is typically

drawn to obtain the training set. The maximum likelihood parameter gradient is

Ev∼pD

[
−
∂ log pθ(v)

∂θ

]
= Ev∼pD,h∼pθ(h|v)

[
∂Eθ(v,h)

∂θ

]
− Es∼pθ(s)

[
∂Eθ(s)

∂θ

]
(1.3)

which is zero when training has converged, with expected energy gradients in the

positive phase (under pD(v)pθ(h|v)) matching those under the negative phase (un-

der pθ(s)). Training thus consists in matching the shape of two distributions, as

captured by the sufficient statistics: the positive phase distribution pθ(h|v)pD(v)

(influenced by the data, via the visible) and the negative phase distribution pθ(h|v)

(where the model is free-running and generating configurations by itself).

7

A recognized obstacle to training undirected graphical models with latent va-

riables such as Boltzmann machines is that the maximum likelihood training proce-

dure requires sampling from Monte-Carlo Markov chains which may not mix well,

in the inner loop of training.

1.10 Variational Autoencoder

The Variational Autoencoder (VAE) Kingma and Welling [2013] is a neural

network-based approach to latent variable modeling where the richly-structured

dependencies found in the data are disentangled into the relatively simple depen-

dencies between a set of latent variables. Formally, let x be a random real-valued

vector representing the observed data and let z be a random real-valued vector

representing the latent variables that reflect the principle directions of variation in

the input data.

1.10.1 The approximate inference model

In general, inference in directed graphical models with latent variables is in-

tractable. Variational Autoencoders deal this issue by using a learned approximate

posterior distribution qφ(z|x) parameterized by another neural network φ called

encoder network g(z). The choice of approximate inference model is crucial in va-

riational inference. The family of approximate posterior distributions should be rich

enough, so that it could contain the true posterior distribution. Finding a way to

better approximate posterior distribution is a hot research area. One possible solu-

tion towards improving the approximate distribution is using normalizing flows

Rezende and Mohamed [2015]. It basically describes the transformation of a proba-

bility distribution through a sequence of invertible mappings. Now, the idea is you

start with a valid probability distribution in the beginning like normal distribution

and you apply these transformations, and at the end of this, you obtain a valid

probability distribution.

8

1.10.2 Generative Model of the VAE

We specify the generative model over the pair (x, z) as pθ(x, z) = pθ(x|z)pθ(z),

where pθ(z) is the prior distribution over the latent variables and pθ(x|z) is the

conditional likelihood of the data given the latents. θ represents the generative

model parameters. As is typical in the VAE framework, we assume a standard

Normal (Gaussian) prior distribution over z: pθ(z) = N (z|0, I). For real-valued

data such as natural images, by far the most common conditional likelihood is

the Gaussian distribution: p(x|z) = N (x|µθ(z), diag(σ
2
θ)), where the mean µx(z) is

a nonlinear function of the latent variables specified by a neural network, which

following autoencoder terminology, we refer to as the decoder network f(x).

Most of applications on real-valued data use a multivariate Gaussian with dia-

gonal co-variance matrix as the conditional likelihood of the data given the latent

variables, which corresponds to minimizing element wise reconstruction penalty.

One problem with this is that, the element-wise distance metrics are a poor fit for

human notions of similarity.

It is straightforward to see that having a more powerful p(x|z) would boost the

generative power of VAE’s. This idea has been explored while applying VAE’s to

sequences, where the decoding distribution p(x|z) is a RNN with strong autore-

gressive dependencies i.e p(x|z) =
∏

i p(xi|z, x<i)

However, it has been empirically observed that it is difficult to take use of latent

variables in VAE’s when you have a strong decoder network like an autoregressive

model as a decoder network, p(x|z). Since, early in the training, your approximate

inference model would be weak i.e it would carry little information about x i.e your

data points, so what happens in practice is that model sets qφ(z|x) to the prior so

that to avoid paying any KL cost i.e DKL(q(z|x)||p(z)).

1.10.3 Reparametrization Trick

One interesting thing to think about is, how to propagate gradients from the

decoder network to the encoder network. Since, normally if z is sampled from

the encoder network, you can’t easily pass the gradients through this sampling

procedure. With real valued z, we can exploit a reparameterization trick Kingma

and Welling [2013] to propagate the gradient from the decoder network to the

encoder network. Instead of sampling directly from qφ(z|x), z is computed as a

9

deterministic function of x and some noise term ǫ ∈ N (0, I) such that z has the

desired distribution. For instance, if

qφ(z|x) = N (µφ(x), diag(σ
2
φ(x))) (1.4)

then we would express z as

z = µφ(x) + σφ(x) ∗ ǫ (1.5)

1.10.4 Variational Inference and Learning

Let x be a set of observed variables, z be a set of latent variables and let p(x, z)

be their joint distribution. Given a set of examples in a dataset X1, X2, X3......XN ,

we want to maximize the marginal likelihood of the parameters i.e to maximize

log(p(X)) =
N∑

n=1

log(p(Xi)) (1.6)

but in general, this marginal likelihood is intractable to compute for generative

models parametrized by neural networks. A solution is to introduce an inference

network qφ(z) defined over latent variables and instead optimize the variational

lower bound on the marginal log likelihood of each observation in the training

dataset.

log(p(X)) ≤ Eq(z|x)[log(p(x, z))− log(q(z|x))] = L(x, θ) (1.7)

where θ indicates the parameters of p and q models.

L(x, θ) = log(p(X))−DKL(q(z|x)||p(z|x)) (1.8)

Since the KL divergence is non negative, it is clear that L(x, θ) is a lower bound

on the marginal log likelihood of X i.e log(p(X)).

There are various ways to optimize the lower bound L(x, θ) for continuous z

it can be done efficiently using a trick called reparametrization trick of q(z|x),

described above.

As can be seen from equation (1.3), maximizing L(x, θ) w.r.t. θ will also maxi-

mize log p(x) and minimize DKL(q(z|x)||p(z|x)). The closer DKL(q(z|x)||p(z|x)) is

10

to 0, the closer L(x, θ) will be to log(p(x)), and the better an approximation to our

optimization objective L(x, θ) is to our true objective log(p(x)). Also, minimization

of DKL(q(z|x)||p(z|x)) can be a goal in itself, if we are interested in using q(z|x)

for inference after optimization. In any case, the divergence DKL(q(z|x)||p(z|x)) is

a function of our parameters through both the inference model and the generative

model, and increasing the flexibility of either is generally helpful towards our objec-

tive. We will discuss later how we can increase the flexibility of both the inference

model and the generative model.

1.11 Learning a Transition Operator

A transition operator maps the previous-state distribution to a next-state distri-

bution, and is implemented by a stochastic transformation which from the previous

state of a Markov chain generates the next state.

1.11.1 Denoising Autoencoders

Denoising Autoencoders transform the problem of learning the true data distri-

bution P (X) as a supervised learning problem, which is a relatively easier problem

to solve. The basic approach is as follows: given a data example X, obtain a cor-

rupted version X̃ by sampling from some corruption distribution C(X̃|X). For ex.

we take a clean image, X, and add random white noise to produce X̃.

We then use supervised learning methods to train a function to reconstruct, as

accurately as possible, any X from the data set given only a noisy version X̃. The

reconstruction distribution P (X|X̃) may often be much easier to learn than the

data distribution P(X), because P (X|X̃) tends to be dominated by a single or few

major modes.

But how does learning the reconstruction distribution help us solve our origi-

nal problem of modeling P(X) ? The two problems are clearly related, because if

we knew everything about P(X), then with our knowledge of the C(X̃|X) would

allow us to precisely specify the optimal reconstruction function via Bayes rule:

P (X|X̃) = C(X̃|X)P (X)
z

where z is a normalizing constant that does not depend

on X. As one might hope, the relation is also true in the opposite direction: once

11

we pick a method of adding noise, C(X̃|X), knowledge of the corresponding re-

construction distribution P (X|(X̃) is sufficient to recover the density of the data

P(X).

1.11.2 Walkback Training for Denoising Autoencoders

One issue with using trained DAEs as generative models is that the region

visited during training by a traditional DAE is limited to a close neighborhood

of the true data distribution. Sampling in high-dimensional spaces using a simple

local corruption process (such as Gaussian noise) suggests that if the corruption is

too local, the DAEs behavior far from the training examples can create spurious

modes in the regions insufficiently visited during training.

Walkback training exploits the knowledge of the currently learned model P (X|X̃)

to define the corruption, so as to pick values of X̃ that would be obtained by fol-

lowing the generative chain: wherever the model would go if we sampled using the

generative Markov chain starting at a training example X. In this way, walkback

training can hunt down the spurious modes of the generative model and results in

faster training.

1.11.3 Generative Stochastic Networks

The Generative Stochastic Networks (GSN) algorithm proposed by Bengio et al.

[2013b] learns a transition operator by iteratively injecting noise and minimizing the

reconstruction error after a number of transition operator steps starting at a data

point, and back-propagating through all these steps. One thing in common is the

idea of using the walkback intuition instead of isotropic noise in order to converge

more efficiently. GSN training involves the minimization of overall reconstruction

error (from the input data point x to the sampled reconstruction many steps later).

This will tend to blur the learned distribution. Instead, the proposed algorithm

in this thesis, minimizes reconstruction error one step at a time along the walk-

away trajectory. In addition, the GSNs require back-propagating through all the

iterated steps, like the DRAW algorithm (Gregor et al., 2015). Instead the proposed

algorithm only requires back-propagating through a single step at a time of the

transition operator. This should make it easier to train because we avoid having to

optimize a highly non-linear transformation obtained by the composition of many

12

transition operator steps.

1.11.4 Non Equillibrium Thermodynamics

Deep Unsupervised Learning using Nonequilibrium Thermodynamics (NET)

introduces another way to train a generative model. They used an iterative diffusion

process that slowly destroy the structure of the true data distribution. And then

they learn a generator network (parameterized as neural network) to learn the

reverse process that restructures the data from the unstructured noise. Learning is

accomplished by maximizing a lower bound on the log-likelihood with a proposal

distribution q used as diffusion process.

With NET, the destructive process corresponds to a fixed, finite time diffusion

process in data space. In NET, since the diffusion process is fixed and therefore

has no knowledge of the generative process, it is not at all clear that diffusion

efficiently seeks out and thereby enables removal of the spurious modes of the

reverse, generative process.

13

2
Professor Forcing: A New
way of Training RNN’s

Professor Forcing: A New Algorithm for Training Recurrent Net-

works. Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron Courville

and Yoshua Bengio

This chapter presents a joint work with Alex Lamb, Ying Zhang, Saizhang

Zhang, Aaron Courville, and Yoshua Bengio. It was published at Advances in Neu-

ral Information Processing Systems 29 (NIPS 2016) (Conference Track).

Contribution: I came up with the idea in a discussion with Alex Lamb. I

was responsible for writing the initial version of the code, and having the proof

of concept that the idea works. I did char level language modelling experiments

on PTB and speech modelling experiments. Handwriting generation experiments

were done by Alex Lamb. MNIST experiments were done by both Alex and me.

Prof. Yoshua Bengio wrote the introduction as well as method description. Alex

and me wrote the experimental section. Saizhang Zhang drew the figure associated

in the paper. Ying Zhang did experiments on speech recognition but they are not

included in this paper.

Affiliation

— Anirudh Goyal, MILA, University of Montreal

— Alex Lamb, MILA, University of Montreal

— Ying Zhang, MILA, University of Montreal

— Saizheng Zhang, MILA, University of Montreal

— Aaron C. Courville, University of Montreal

— Yoshua Bengio, MILA, University of Montreal

14

2.1 Introduction

Recurrent neural networks (RNNs) have become to be the generative models

of choice for sequential data with impressive results in language modeling [Miko-

lov, 2010, Mikolov and Zweig, 2012], speech recognition [Bahdanau et al., 2015,

Chorowski et al., 2015], Machine Translation [Cho et al., 2014b, Sutskever et al.,

2014, Bahdanau et al., 2014], handwriting generation [Graves, 2013], image caption

generation [Xu et al., 2015, Chen and Lawrence Zitnick, 2015], etc.

The RNN models the data via a fully-observed directed graphical model: it

decomposes the distribution over the discrete time sequence y1, y2, . . . yT into an

ordered product of conditional distributions over tokens

P (y1, y2, . . . yT) = P (y1)
T∏

t=1

P (yt | y1, . . . yt−1).

By far the most popular training strategy is via the maximum likelihood prin-

ciple. In the RNN literature, this form of training is also known as teacher for-

cing [Williams and Zipser, 1989], due to the use of the ground-truth samples yt

being fed back into the model to be conditioned on for the prediction of later

outputs. These fed back samples force the RNN to stay close to the ground-truth

sequence.

When using the RNN for prediction, the ground-truth sequence is not avai-

lable conditioning and we sample from the joint distribution over the sequence by

sampling each yt from its conditional distribution given the previously generated

samples. Unfortunately, this procedure can result in problems in generation as small

prediction error compound in the conditioning context. This can lead to poor pre-

diction performance as the RNN’s conditioning context (the sequence of previously

generated samples) diverge from sequences seen during training.

Recently, [Bengio et al., 2015a] proposed to remedy that issue by mixing two

kinds of inputs during training: those from the ground-truth training sequence

and those generated from the model. However, when the model generates several

consecutive yt’s, it is not clear anymore that the correct target (in terms of its

distribution) remains the one in the ground truth sequence. This is mitigated in

various ways, by making the self-generated subsequences short and annealing the

probability of using self-generated vs ground truth samples. However, as remarked

15

by Huszár [2015], scheduled sampling yields a biased estimator, in that even as

the number of examples and the capacity go to infinity, this procedure may not

converge to the correct model. It is however good to note that experiments with

scheduled sampling clearly showed some improvements in terms of the robustness

of the generated sequences, suggesting that something indeed needs to be fixed

(or replaced) with maximum-likelihood (or teacher forcing) training of generative

RNNs.

In this paper, we propose an alternative way of training RNNs which explicitly

seeks to make the generative behavior and the teacher-forced behavior match as

closely as possible. This is particularly important to allow the RNN to continue

generating robustly well beyond the length of the sequences it saw during training.

More generally, we argue that this approach helps to better model long-term de-

pendencies by using a training objective that is not solely focused on predicting

the next observation, one step at a time.

Our work provides the following contributions regarding this new training fra-

mework:

— We introduce a novel method for training generative RNNs called Profes-

sor Forcing, meant to improve long-term sequence sampling from recurrent

networks. We demonstrate this with human evaluation of sample quality by

performing a study with human evaluators.

— We find that Professor Forcing can act as a regularizer for recurrent net-

works. This is demonstrated by achieving improvements in test likelihood on

character-level Penn Treebank, Sequential MNIST Generation, and speech

synthesis. Interestingly, we also find that training performance can also be

improved, and we conjecture that it is because longer-term dependencies can

be more easily captured.

— When running an RNN in sampling mode, the region occupied by the hidden

states of the network diverges from the region occupied when doing teacher

forcing. We empirically study this phenomenon using T-SNEs and show that

it can be mitigated by using Professor Forcing.

— In some domains the sequences available at training time are shorter than

the sequences that we want to generate at test time. This is usually the case

in long-term forecasting tasks (climate modeling, econometrics). We show

how using Professor Forcing can be used to improve performance in this

16

setting. Note that scheduled sampling cannot be used for this task, because

it still uses the observed sequence as targets for the network.

2.2 Proposed Approach: Professor Forcing

The basic idea of Professor Forcing is simple: while we do want the generative

RNN to match the training data, we also want the behavior of the network (both

in its outputs and in the dynamics of its hidden states) to be indistinguishable

whether the network is trained with its inputs clamped to a training sequence

(teacher forcing mode) or whether its inputs are self-generated (free-running ge-

nerative mode). Because we can only compare the distribution of these sequences,

it makes sense to take advantage of the generative adversarial networks (GANs)

framework [Goodfellow et al., 2014] to achieve that second objective of matching

the two distributions over sequences (the one observed in teacher forcing mode vs

the one observed in free-running mode).

Hence, in addition to the generative RNN, we will train a second model, which

we call the discriminator, and that can also process variable length inputs. In the

experiments we use a bidirectional RNN architecture for the discriminator, so that

it can combine evidence at each time step t from the past of the behavior sequence

as well as from the future of that sequence.

2.2.1 Definitions and Notation

Let the training distribution provide (x,y) pairs of input and output sequences

(possibly there are no inputs at all). An output sequence y can also be generated by

the generator RNN when given an input sequence x, according to the sequence to

sequence model distribution Pθg(y|x). Let θg be the parameters of the generative

RNN and θd be the parameters of the discriminator. The discriminator is trained

as a probabilistic classifier that takes as input a behavior sequence derived from

the generative RNN’s activity (hiddens and outputs) when it either generates or is

constrained by a sequence y, possibly in the context of an input sequence x (often

but not necessarily of the same length). The behavior sequence is either the result

of running the generative RNN in teacher forcing mode (with y from a training

17

sequence with input x), or in free-running mode (with y self-generated according to

Pθg(y|x), with x from the training sequence). The function B(x,y,θg) outputs the

behavior sequence (chosen hidden states and output values) given the appropriate

data (where x always comes from the training data but y either comes from the

data or is self-generated). Let D() be the output of the discriminator, estimating

the probability that was produced in teacher-forcing mode, given that half of the

examples seen by the discriminator are generated in teacher forcing mode and half

are generated in the free-running mode.

Note that in the case where the generator RNN does not have any conditioning

input, the sequence x is empty. Note also that the generated output sequences

could have a different length then the conditioning sequence, depending of the task

at hand.

2.2.2 Training Objective

The discriminator parameters θd are trained as one would expect, i.e., to maxi-

mize the likelihood of correctly classifying a behavior sequence:

Cd(θd|θg) = E(x,y)∼data[− logD(B(x,y,θg),θd)+Ey∼Pθg (y|x)
[− log(1−D(B(x,y,θg),θd)]].

(2.1)

Practically, this is achieved with a variant of stochastic gradient descent with mi-

nibatches formed by combining N sequences obtained in teacher-forcing mode and

N sequences obtained in free-running mode, with y sampled from Pθg(y|x). Note

also that as θg changes, the task optimized by the discriminator changes too, and it

has to track the generator, as in other GAN setups, hence the notation Cd(θd|θg).

The generator RNN parameters θg are trained to (a) maximize the likelihood

of the data and (b) fool the discriminator. We considered two variants of the lat-

ter. The negative log-likelihood objective (a) is the usual teacher-forced training

criterion for RNNs:

NLL(θg) = E(x,y)∼data[− logPθg(y|x)]. (2.2)

Regarding (b) we consider a training objective that only tries to change the free-

running behavior so that it better matches the teacher-forced behavior, considering

18

the latter fixed:

Cf (θg|θd) = Ex∼data,y∼Pθg (y|x)
[− logD(B(x,y,θg),θd)]. (2.3)

In addition (and optionally), we can ask the teacher-forced behavior to be indis-

tinguishable from the free-running behavior:

Ct(θg|θd) = E(x,y)∼data[− log(1−D(B(x,y,θg),θd))]. (2.4)

In our experiments we either perform stochastic gradient steps on NLL + Cf or

on NLL+Cf +Ct to update the generative RNN parameters, while we always do

gradient steps on Cd to update the discriminator parameters.

2.3 Related Work

Professor Forcing is an adversarial method for learning generative models that

is closely related to Generative Adversarial Networks [Goodfellow et al., 2014]

and Adversarial Domain Adaptation Ajakan et al. [2014], Ganin et al. [2015]. Our

approach is similar to generative adversarial networks (GANs) because both use a

discriminative classifier to provide gradients for training a generative model. Ho-

wever, Professor Forcing is different because the classifier discriminates between

hidden states from sampling mode and teacher forcing mode, whereas the GAN’s

classifier discriminates between real samples and generated samples. One practical

advantage of Professor Forcing over GANs is that Professor Forcing can be used

to learn a generative model over discrete random variables without requiring to

approximate backpropagation through discrete spaces Bengio et al. [2013].

The Adversarial Domain Adaptation uses a classifier to discriminate between

the hidden states of the network with inputs from the source domain and the hidden

states of the network with inputs from the target domain. However this method was

not applied in the context of generative models, more specifically, was not applied

to the task of improving long-term generation from recurrent networks.

Alternative non-adversarial methods have been explored for improving long-

term generation from recurrent networks. The scheduled sampling method Bengio

19

et al. [2015a], which is closely related to SEARN [Daumé et al., 2009] and DAG-

GER Ross et al. [2010], involves randomly using the network’s predictions as its

inputs (as in sampling mode) with some probability that increases over the course

of training. This forces the network to be able to stay in a reasonable regime when

receiving the network’s predictions as inputs instead of observed inputs. While

Scheduled Sampling shows improvement on some tasks, it is not a consistent es-

timation strategy. This limitation arises because the outputs sampled from the

network could correspond to a distribution that is not consistent with the sequence

that the network is trained to generate. This issue is discussed in detail in Huszár

[2015]. A practical advantage of Scheduled Sampling over Professor Forcing is that

Scheduled Sampling does not require the additional overhead of having to train a

discriminator network.

Actor-critic methods have also been explored for improving modeling of long-

term dependencies in generative recurrent neural networks Goyal et al. [2017b],

Bahdanau et al. [2016].

Finally, the idea of matching the behavior of the model when it is generating

in a free-running way with its behavior when it is constrained by the observed

data (being clamped on the ”visible units”) is precisely that which one obtains

when zeroing the maximum likelihood gradient on undirected graphical models

with latent variables such as the Boltzmann machine. Training Boltzmann machines

amounts to matching the sufficient statistics (which summarize the behavior of the

model) in both ”teacher forced”(positive phase) and ”free-running”(negative phase)

modes.

2.4 Experiments

2.4.1 Networks Architecture and Professor Forcing Setup

The neural networks and Professor Forcing setup used in the experiments is

the following. The generative RNN has single hidden layer of gated recurrent units

(GRU), previously introduced by [Cho et al., 2014a] as a computationally cheaper

alternative to LSTM units [Hochreiter and Schmidhuber, 1997]. At each time step,

the generative RNN reads an element xt of the input sequence (if any) and an

20

GRU networks), one running forward in time on top of the input sequence , and

one running backwards in time, with the same input. The hidden states of these

two RNNs are concatenated at each time step and fed to a multi-layer neural

network shared across time (the same network is used for all time steps). That

MLP has three layers, each composing an affine transformation and a rectifier

(ReLU). Finally, the output layer composes an affine transformation and a sigmoid

that outputs D().

When the discriminator is too poor, the gradient it propagates into the ge-

nerator RNN could be detrimental. For this reason, we back-propagate from the

discriminator into the generator RNN only when the discriminator classification

accuracy is greater than 75%. On the other hand, when the discriminator is too

successful at identifying fake inputs, we found that it would also hurt to conti-

nue training it. So when its accuracy is greater than 99%, we do not update the

discriminator.

Both networks are trained by minibatch stochastic gradient descent with adap-

tive learning rates and momentum determined by the Adam algorithm [Kingma and

Ba, 2014]. All of our experiments were implemented using the Theano framework

[Al-Rfou et al., 2016].

2.4.2 Character-Level Language Modeling

We evaluate Professor Forcing on character-level language modeling on Penn-

Treebank corpus, which has an alphabet size of 50 and consists of 5059k characters

for training, 396k characters for validation and 446k characters for test. We divide

the training set into non-overlapping sequences with each length of 500. During

training, we monitor the negative log-likelihood (NLL) of the output sequences. The

final model are evaluated by bits-per-character (BPC) metric. The generative RNN

implements an 1 hidden layer GRU with 1024 hidden units. We use Adam algorithm

for optimization with a learning rate of 0.0001. We feed both the hidden states and

char level embeddings into the discriminator. All the layers in the discriminator

consists of 2048 hidden units. Output activation of the last layer is clipped between

-10 and 10. We see that training cost of Professor Forcing network decreases faster

compared to teacher forcing network. The training time of our model is 3 times more

as compared to teacher forcing, since our model includes sampling phase, as well as

22

Figure 2.3 – Figure 3: T-SNE visualization of hidden states, left: with teacher forcing, right:
with professor forcing. Red dots correspond to teacher forcing hidden states, while the gold dots
correspond to free running mode. At t = 500, the closed-loop and open-loop hidden states clearly
occupy distinct regions with teacher forcing, meaning that the network enters a hidden state region
during sampling distinct from the region seen during teacher forcing training. With professor
forcing, these regions now largely overlap. We computed 30 T-SNEs for Teacher Forcing and
30 T-SNEs for Professor Forcing and found that the mean centroid distance was reduced from
3000.0 to 1800.0, a 40% relative reduction. The mean distance from a hidden state in the training
network to a hidden state in the sampling network was reduced from 22.8 with Teacher Forcing
to 16.4 with Professor Forcing (vocal synthesis).

2.4.4 Handwriting Generation

With this task we wanted to investigate if Professor Forcing could be used to

perform domain adaptation from a training set with short sequences to sampling

much longer sequences. We train the Teacher Forcing model on only 50 steps of

text-conditioned handwriting (corresponding to a few letters) and then sample for

1000 time steps . We let the model learn a sequence of (x, y) coordinates together

with binary indicators of pen-up vs. pen-down, using the standard handwriting

IAM-OnDB dataset, which consists of 13,040 handwritten lines written by 500

writers Liwicki and Bunke [2005]. For our teacher forcing model, we use the open

source implementation Brebisson [2016] and use their hyperparameters which is

based on the model in Graves [2013]. For the professor forcing model, we sample

for 1000 time steps and run a separate discriminator on non-overlapping segments

of length 50 (the number of steps used in the teacher forcing model). For both

Teacher Forcing and Professor Forcing we sample with a bias of 0.5.

24

2.4.6 Negative Results on Shorter Sequences

On word level Penn Treebank we did not observe any difference between Tea-

cher Forcing and Professor Forcing. One possible explanation for this difference

is the increased importance of long-term dependencies in character-level language

modeling. Also, for speech synthesis, we did not observe any difference between

Teacher Forcing and Professor Forcing while training on sequences of length less

than 100.

2.5 Conclusion

The idea of matching behavior of a model when it is running on its own, making

predictions, generating samples, etc. vs when it is forced to be consistent with

observed data is an old and powerful one. In this paper we introduce Professor

Forcing, a novel instance of this idea when the model of interest is a recurrent

generative one, and which relies on training an auxiliary model, the discriminator

to spot the differences in behavior between these two modes of behavior. A major

motivation for this approach is that the discriminator can look at the statistics of

the behavior and not just at the single-step predictions, forcing the generator to

behave the same when it is constrained by the data and when it is left generating

outputs by itself for sequences that can be much longer than the training sequences.

This naturally produces better generalization over sequences that are much longer

than the training sequences, as we have found. We have also found that it helped

to generalize better in terms of one-step prediction (log-likelihood), even though we

are adding a possibly conflicting term to the log-likelihood training objective. This

suggests that it acts like a regularizer but a very interesting one because it can also

greatly speed up convergence in terms of number of training updates. We validated

the advantage of Professor Forcing over traditional teacher forcing on a variety

of sequential learning and generative tasks, with particularly impressive results

in acoustic generation, where the training sequences are much shorter (because of

memory constraints) than the length of the sequences we actually want to generate.

28

3

Variational Walkback:
Learning a Transition
Operator as a Stochastic
Recurrent Net

Varitional Walkback: Learning a Transition Operator as a Stochas-

tic Recurrent Net. Anirudh Goyal, Rosemary Nan Ke, Surya Ganguli, Yoshua

Bengio

This chapter presents a joint work with Rosemary Nan Ke, Surya Ganguli and

Yoshua Bengio. It was published at Advances in Neural Information Processing

Systems 30 (NIPS 2017) (Conference Track).

Contribution: Prof. Yoshua Bengio got the original idea of Variational Walk-

back. I was responsible for writing the initial version of the code, and having the

proof of concept that the idea works. Prof. Surya Ganguli connected it to non-

equillibrium thermodynamics. Rosemary and I were responsible for showing that

the proposed method works on toy tasks, which proved to be very insightful for the

paper. I ran the code on all the real image datasets like MNIST, CIFAR, CelebA,

SVHN. Initial version of the paper was writen by me and Rosemary, which was

again rewritten by Prof. Yoshua, and which was again rewritten by Prof. Surya

Ganguli and Prof. Yoshua Bengio. I wrote the appendix, as well as experimental

section.

Affiliation

— Anirudh Goyal, MILA, University of Montreal

— Anirudh Goyal, MILA, University of Montreal

— Surya Ganguli, Stanford University

— Yoshua Bengio, MILA, University of Montreal

29

3.1 Variational Walkback - Connections to

Directed and Undirected Graphical Models

Directed versions of probabilistic generative models can synthesize new sensory

data through a sampling process which often converts a simple distribution over

latent variables, modelling causes in the sensory data, into complex distributions

over the data itself. They can also analyze sensory data by computing the poste-

rior distribution over latent variables given sensory data. An early instantiation

of this idea was the Helmholtz machine Dayan et al. [1995a], in which the ana-

lysis was performed by a recognition model and the synthesis was performed by

a separate generative model, and the two were trained together to maximize the

marginal probability of the data. More recent work on directed generative mo-

delling using a small number of generative steps involves variational auto-encoders

(VAEs) [Kingma and Welling, 2013, Rezende et al., 2014], while other approaches to

training include generative adversarial networks (GANs) [Goodfellow et al., 2014].

In the probabilistic VAE approach however, it can be difficult to learn very deep

models, with multiple layers of abstraction intervening between latent causes and

sensory data. The credit assignment problem stands as a major impediment to

learning such deep models as it can be difficult to optimize parameters controlling

latent variables far removed from the data.

A parallel strand of generative modeling, through undirected probabilistic mo-

dels, involves modelling the data as the stationary distribution of a stochastic pro-

cess (e.g. various Boltzmann machines [Salakhutdinov and Hinton, 2009]). Sam-

pling under this method corresponds to a potentially powerful iterative process of

repeatedly applying a fixed stochastic operator that can gradually turn simple ini-

tial distributions over data into complex stationary distributions over data. However

a key impediment to this approach is the mixing time problem: if the stationary dis-

tribution has multiple modes, the sampling process can take a long time to mix, or

reach the stationary distribution, due to the excessive time sampling methods can

take to jump between modes. Moreover, these models are also difficult to train, as

solving the credit assignment problem also involves sampling from the model, in or-

der to match the model’s stationary distribution to the data distribution. Thus the

mixing time problem contributes to the difficulty of the credit assignment difficult

in undirected models.

30

In this thesis, we fuse the best ideas from directed (i.e. feedforward) generative

models, and undirected (i.e. recurrent) generative models to provide novel methods

to attack both the mixing time problem and credit assignment problems. A key

insight is to note that in some sense, the analysis or recognition phase of directed

generative models corresponds to a destructive process in which complex structure

in the data distribution is replaced with a much simpler distribution over latent

variables. Conversely, the synthesis or generative phase corresponds to a process

of creation in which a simple distribution over latent variables is transformed into

a complex distribution over visible data. The denoising autoencoder (DAE), as

well as a more recent approach involving non-equilbirium thermodynamics (NET)

[Sohl-Dickstein et al., 2015] both perform unsupervised learning based on training

a creative process to reverse the effects of a process that destroys structure in data.

In particular in NET, the destructive process corresponds to a fixed, finite time

diffusion process in data space, which gradually turns a complex distribution over

data into a simple distribution over the same space. The creative process corres-

ponds to a feedforward neural network that is trained to reverse the flow of time in

this diffusion process. The result is a very deep neural network that can turn simple

distributions over data into the original complex data distribution. This method

circumvents the mixing time problem by not modeling the data distribution as the

stationary distribution of a stochastic process, but rather modeling it as the out-

come of a non-equilibrium finite time process, and demanding during training that

this process arrive at the data distribution in a limited time. Moreover, deep neural

networks generically suffer from a credit assignment problem, partially solved via

backpropagation. However, the NET approach circumvents the credit assignment

problem because the past of the destructive process provides training targets for

the future of the creation process ; thus each layer of the neural network reverses the

flow of time by one-step and backpropagation over multiple layers is not required.

However, in NET, it is not clear that the fixed diffusion operation provides

the best possible training targets for the generative neural network that underlies

the creative process. In NET, since the diffusion process is fixed and therefore

has no knowledge of the generative process, it is not at all clear that diffusion

efficiently seeks out and thereby enables removal of the spurious modes of the

reverse, generative process.

With this background in hand, we are now ready to describe the essential idea

31

underlying our contribution in this paper. We learn recurrent dynamical systems

by tying together the destruction and creation processes using the same stochastic

dynamical system. In particular, the destructive process corresponds to a transient

heating up of the dynamical system, which melts away structure in the model of

the data distribution. This heating enables the destructive process to efficiently

explore far away spurious modes of the generative process. The generative pro-

cess in turn involves a reverse cooling process. The recurrent dynamical system is

trained, via variational lower bound ideas that are employed in directed, or feed-

forward generative models. The learning algorithm, derived in a principled manner

via variational methods, trains the the cooling process to reverse the destruction

of structure induced by the heating process. Intuitively, the learning algorithm pu-

nishes data trajectories which walk away from data during the heating process,

and forces these trajectories to WalkBack to the data during the reverse cooling

process. Hence we call our learning algorithm the Variational WalkBack Algorithm.

This WalkBack intuition was already exploited in Bengio et al. [2013c] but without

the firm mathematical grounding presented here.

Before presenting our framework in detail, we present one final, and important

motivation for it, namely that it innovates in the rarely explored direction of directly

parameterizing the generative model via a transition operator, rather than via an

explicit probability function or energy function. This idea has already been discus-

sed in the context Generative Stochastic Networks (GSNs) [Bengio et al., 2013b], a

generalization of denoising auto-encoders (DAEs) [Vincent et al., 2008] which inter-

prets the auto-encoder as estimating the gradient of an energy function [Alain and

Bengio, 2014b] or as a transition operator [Bengio et al., 2013c]. From a machine

learning perspective, as reviewed below, this removes the constraint of detailed

balance, which is a constraint that is often invoked in stochastic processes which

model data distributions as their stationary distributions. Removing this constraint

yields access to a larger and potentially more powerful space of models. But more

importantly, in neural network implementations of stochastic transition operators,

the detailed balance constraint often translates into exact symmetry of the synaptic

weight matrix [Bengio et al., 2015b]. However, such an exact constraint is biolo-

gically implausible. By removing the need for detailed balance, we thereby also

remove one major impediment to biologically plausible generative modelling.

32

3.2 Introduction

A fundamental goal of unsupervised learning involves training generative models

that can understand sensory data and employ this understanding to generate, or

sample new data and make new inferences. In machine learning, the vast majority

of probabilistic generative models that can learn complex probability distributions

over data fall into one of two classes: (1) directed graphical models, correspon-

ding to a finite time feedforward generative process (e.g. variants of the Helmholtz

machine [Dayan et al., 1995b] like the Variational Auto-Encoder (VAE) [Kingma

and Welling, 2013, Rezende et al., 2014]), or (2) energy function based undirected

graphical models, corresponding to sampling from a stochastic process whose equi-

librium stationary distribution obeys detailed balance with respect to the energy

function (e.g. various Boltzmann machines [Salakhutdinov and Hinton, 2009]). This

detailed balance condition is highly restrictive: for example, energy-based undirec-

ted models corresponding to neural networks require symmetric weight matrices

and very specific computations which may not match well with what biological

neurons or analog hardware could compute.

In contrast, biological neural circuits are capable of powerful generative dyna-

mics enabling us to model the world and imagine new futures. Cortical computation

is highly recurrent and therefore its generative dynamics cannot simply map to the

purely feed-forward, finite time generative process of a directed model. Moreover,

the recurrent connectivity of biological circuits is not symmetric, and so their gene-

rative dynamics cannot correspond to sampling from an energy-based undirected

model.

Thus, the asymmetric biological neural circuits of our brain instantiate a type

of stochastic dynamics arising from the repeated application of a transition opera-

tor 1 whose stationary distribution over neural activity patterns is a non-equilibrium

distribution that does not obey detailed balance with respect to any energy func-

tion. Despite these fundamental properties of brain dynamics, machine learning

approaches to training generative models currently lack effective methods to model

complex data distributions through the repeated application a transition operator,

that is not indirectly specified through an energy function, but rather is directly

1. A transition operator maps the previous-state distribution to a next-state distribution, and
is implemented by a stochastic transformation which from the previous state of a Markov chain
generates the next state

33

parameterized in ways that are inconsistent with the existence of any energy func-

tion. Indeed the lack of such methods constitutes a glaring gap in the pantheon of

machine learning methods for training probabilistic generative models.

The fundamental goal of this paper is to provide a step to filling such a gap by

proposing a novel method to learn such directly parameterized transition operators,

thereby providing an empirical method to control the stationary distributions of

non-equilibrium stochastic processes that do not obey detailed balance, and match

these distributions to data. The basic idea underlying our training approach is to

start from a training example, and iteratively apply the transition operator while

gradually increasing the amount of noise being injected (i.e., temperature). This

heating process yields a trajectory that starts from the data manifold and walks

away from the data due to the heating and to the mismatch between the model

and the data distribution. Similarly to the update of a denoising autoencoder, we

then modify the parameters of the transition operator so as to make the reverse

of this heated trajectory more likely under a reverse cooling schedule. This encou-

rages the transition operator to generate stochastic trajectories that evolve towards

the data distribution, by learning to walk back the heated trajectories starting at

data points. This walkback idea had been introduced for generative stochastic net-

works (GSNs) and denoising autoencoders [Bengio et al., 2013d] as a heuristic, and

without annealing. Here, we derive the specific objective function for learning the

parameters through a principled variational lower bound, hence we call our training

method variational walkback (VW). Despite the fact that the training procedure

involves walking back a set of trajectories that last a finite, but variable number of

time-steps, we find empirically that this yields a transition operator that continues

to generate sensible samples for many more time-steps than are used to train, de-

monstrating that our finite time training procedure can sculpt the non-equilibrium

stationary distribution of the transition operator to match the data distribution.

We show how VW emerges naturally from a variational derivation, with the

need for annealing arising out of the objective of making the variational bound as

tight as possible. We then describe experimental results illustrating the soundness

of the proposed approach on the MNIST, CIFAR-10, SVHN and CelebA datasets.

Intriguingly, we find that our finite time VW training process involves modifications

of variational methods for training directed graphical models, while our potentially

asymptotically infinite generative sampling process corresponds to non-equilibrium

34

generalizations of energy based undirected models. Thus VW goes beyond the two

disparate model classes of undirected and directed graphical models, while simul-

taneously incorporating good ideas from each.

Figure 3.1 – Variational WalkBack framework. The generative process is represented in the blue
arrows with the sequence of pTt

(st−1|st) transitions. The destructive forward process starts at
a datapoint (from qT0

(s0)) and gradually heats it through applications of qTt
(st|st−1). Larger

temperatures on the right correspond to a flatter distribution, so the whole destructive forward
process maps the data distribution to a Gaussian and the creation process operates in reverse.

3.3 The Variational Walkback Training Process

Our goal is to learn a stochastic transition operator pT (s
′|s) such that its repea-

ted application yields samples from the data manifold. Here T reflects an underlying

temperature, which we will modify during the training process. The transition ope-

rator is further specified by other parameters which must be learned from data.

When K steps are chosen to generate a sample, the generative process has joint

probability p(sK0) = p(sK)
∏K

t=1 pTt
(st−1|st), where Tt is the temperature at step t.

We first give an intuitive description of our learning algorithm before deriving it

via variational methods in the next section. The basic idea, as illustrated in Fig. 3.1

and Algorithm 1 is to follow a walkback strategy similar to that introduced in Alain

and Bengio [2014a]. In particular, imagine a destructive process qTt+1
(st+1|st) (red

arrows in Fig. 3.1), which starts from a data point s0 = x, and evolves it stochas-

tically to obtain a trajectory s0, . . . , sK ≡ sK0 , i.e., q(s
K
0) = q(s0)

∏K
t=1 qTt

(st|st−1),

where q(s0) is the data distribution. Note that the p and q chains will share the

same parameters for the transition operator (one going backwards and one forward)

35

but they start from different priors for their first step: q(s0) is the data distribu-

tion while p(s0) is a flat factorized prior (e.g. Gaussian). The training procedure

trains the transition operator pT to make reverse transitions of the destructive pro-

cess more likely. For this reason we index time so the destructive process operates

forward in time, while the reverse generative process operates backwards in time,

with the data distribution occurring at t = 0. In particular, we need only train the

transition operator to reverse time by 1-step at each step, making it unnecessary

to solve a deep credit assignment problem by performing backpropagation through

time across multiple walk-back steps. Overall, the destructive process generates

trajectories that walk away from the data manifold, and the transition operator pT

learns to walkback these trajectories to sculpt the stationary distribution of pT at

T = 1 to match the data distribution.

Because we choose qT to have the same parameters as pT , they have the same

transition operator but not the same joint over the whole sequence because of

differing initial distributions for each trajectory. We also choose to increase tem-

perature with time in the destructive process, following a temperature schedule

T1 ≤ · · · ≤ TK . Thus the forward destructive (reverse generative) process corres-

ponds to a heating (cooling) protocol. This training procedure is similar in spirit

to DAE’s [Vincent et al., 2008] or NET [Sohl-Dickstein et al., 2015] but with one

major difference: the destructive process in these works corresponds to the addi-

tion of random noise which knows nothing about the current generative process

during training. To understand why tying together destruction and creation may

be a good idea, consider the special case in which pT corresponds to a stochastic

process whose stationary distribution obeys detailed balance with respect to the

energy function of an undirected graphical model. Learning any such model in-

volves two fundamental goals: the model must place probability mass (i.e. lower

the energy function) where the data is located, and remove probability mass (i.e.

raise the energy function) elsewhere. Probability modes where there is no data are

known as spurious modes, and a fundamental goal of learning is to hunt down these

spurious modes and remove them. Making the destructive process identical to the

transition operator to be learned is motivated by the notion that the destructive

process should then efficiently explore the spurious modes of the current transi-

tion operator. The walkback training will then destroy these modes. In contrast,

in DAE’s and NET’s, since the destructive process corresponds to the addition

36

of unstructured noise that knows nothing about the generative process, it is not

clear that such an agnostic destructive process will efficiently seek out the spurious

modes of the reverse, generative process.

We chose the annealing schedule empirically to minimize training time. The

generative process starts by sampling a state sK from a broad Gaussian p∗(sK),

whose variance is initially equal to the total data variance σ2
max (but can be later

adapted to match the final samples from the inference trajectories). Then we sample

from pTmax
(sK−1|sK), where Tmax is a high enough temperature so that the resultant

injected noise can move the state across the whole domain of the data. The injected

noise to simulate temperature has variance linearly proportional to temperature.

Thus if σ2 is the equivalent noise injected by the transition operator pT at T = 1,

we choose Tmax = σ2
max

σ2 to achieve the goal of the first sample sK−1 being able to

move across the entire range of the data distribution. Then we successively cool

the temperature as we sample “previous” states st−1 according to pT (st−1|st), with

T reduced by a factor of 2 at each step, followed by n steps at temperature 1. This

cooling protocol requires the number of steps to be

K = log2 Tmax + n, (3.1)

in order to go from T = Tmax to T = 1 in K steps. We choose T from a random dis-

tribution. Thus the training procedure trains pT to rapidly transition from a simple

Gaussian distribution to the data distribution in a finite but variable number of

steps. Ideally, this training procedure should then indirectly create a transition

operator pT at T = 1 whose repeated iteration samples the data distribution with

a relatively rapid mixing time. Interestingly, this intuitive learning algorithm for a

recurrent dynamical system, formalized in Algorithm 1, can be derived in a princi-

pled manner from variational methods that are usually applied to directed graphical

models, as we see next.

37

Algorithm 1 VariationalWalkback(θ)
Train a generative model associated with a transition operator pT (s|s

′) at tempe-
rature T (temperature 1 for sampling from the actual model), parameterized by θ.
This transition operator injects noise of variance Tσ2 at each step, where σ2 is the
noise level at temperature 1.

Require: Transition operator pT (s|s
′) from which one can both sample and com-

pute the gradient of log pT (s|s
′) with respect to parameters θ, given s and s′.

Require: Precomputed σ2
max, initially data variance (or squared diameter).

Require: N1 > 1 the number of initial temperature-1 steps of q trajectory (or
ending a p trajectory).
repeat
Set p∗ to be a Gaussian with mean and variance of the data.

Tmax ←
σ2
max

σ2

Sample n as a uniform integer between 0 and N1

K ← ceil(log2 Tmax) + n
Sample x ∼ data (or equivalently sample a minibatch to parallelize computa-
tion and process each element of the minibatch independently)
Let s0 = (x) and initial temperature T = 1, initialize L = 0
for t = 1 to K do
Sample st ∼ pT (s|st−1)
Increment L ← L+ log pT (st−1|st)

Update parameters with log likelihood gradient ∂ log pT (st−1|st)
∂θ

If t > n, increase temperature with T ← 2T
end for
Increment L ← L+ log p∗(sK)
Update mean and variance of p∗ to match the accumulated 1st and 2nd moment
statistics of the samples of sK

until convergence monitoring L on a validation set and doing early stopping

3.4 Variational Derivation of Walkback

The marginal probability of a data point s0 at the end of the K-step generative

cooling process is

p(s0) =
∑

sK
1

dsK1 pT0
(s0|s1)

(
K∏

t=2

pTt
(st−1|st)

)
p∗(sK) (3.2)

where sK1 = (s1, s2, . . . , sK) and v = s0 is a visible variable in our generative

process, while the cooling trajectory that lead to it can be thought of as a latent,

38

hidden variable h = sK1 . Recall the decomposition of the marginal log-likelihood

via a variational lower bound,

ln p(v) ≡ ln
∑

h

p(v|h)p(h) =
∑

h

q(h|v) ln
p(v, h)

q(h|v)
︸ ︷︷ ︸

L

+DKL[q(h|v)||p(h|v)]. (3.3)

Here L is the variational lower bound which motivates the proposed training pro-

cedure, and q(h|v) is a variational approximation to p(h|v). Applying this decom-

position to v = s0 and h = sK1 , we find

ln p(s0) =
∑

sk
1

q(sk1|s0) ln
p(s0|s

k
1)p(s

k
1)

q(sk1|s0)
+DKL[q(s

k
1|s0) || p(s

k
1|s0)] (3.4)

Similarly to the EM algorithm, we aim to approximately maximize the log-likelihood

with a 2-step procedure. Let θp be the parameters of the generative model p and θq

be the parameters of the approximate inference procedure q. Before seeing the next

example we have θq = θp. Then in the first step we update θp towards maximizing

the variational bound L, for example by a stochastic gradient descent step. In the

second step, we update θq by setting θq ← θp, with the objective to reduce the KL

term in the above decomposition. See Sec. 3.4.1 below regarding conditions for the

tightness of the bound, which may not be perfect, yielding a possibly biased gra-

dient when we force the constraint θp = θq. We continue iterating this procedure,

with training examples s0. We can obtain an unbiased Monte-Carlo estimator of L

as follows from a single trajectory:

L(s0) ≈
K∑

t=1

ln
pTt

(st−1|st)

qTt
(st|st−1)

+ ln p∗(sK) (3.5)

with respect to pθ, where s
0 is sampled from the data distribution qT0

(s0), and the

single sequence sK1 is sampled from the heating process q(sK1 |s0). We are making

the reverse of heated trajectories more likely under the cooling process, leading to

Algorithm 1. Such variational bounds have been used successfully in many lear-

ning algorithms in the past, such as the VAE [Kingma and Welling, 2013], except

that they use an explicitly different set of parameters for p and q. Some VAE va-

riants [Kingma et al., 2016] however mix the p-parameters implicitly in forming q,

by using the likelihood gradient to iteratively form the approximate posterior.

39

3.4.1 Tightness of the variational lower bound

As seen in (3.4), the gap between L(s0) and ln p(s0) is controlled byDKL[q(s
k
1|s0)||p(s

k
1|s0)],

and is therefore tight when the distribution of the heated trajectory, starting from

a point s0, matches the posterior distribution of the cooled trajectory ending at

s0. Explicitly, this KL divergence is given by

DKL =
∑

sk
1

q(sk1|s0) ln
p(s0)

p∗(sK)

K∏

t=1

qTt
(st|st−1)

pTt
(st−1|st)

. (3.6)

As the heating process q unfolds forward in time, while the cooling process p un-

folds backwards in time, we introduce the time reversal of the transition operator

pT , denoted by pRT , as follows. Under repeated application of the transition opera-

tor pT , state s settles into a stationary distribution πT (s) at temperature T . The

probability of observing a transition st → st−1 under pT in its stationary state is

then pT (st−1|st)πT (st). The time-reversal pRT is the transition operator that makes

the reverse transition equally likely for all state pairs, and therefore obeys

PT (st−1|st)πT (st) = PR
T (st|st−1)πT (st−1) (3.7)

for all pairs of states st−1 and st. It is well known that pRT is a valid stochastic

transition operator and has the same stationary distribution πT (s) as pT . Further-

more, the process pT obeys detailed balance if and only if it is invariant under

time-reversal, so that pT = pRT .

To better understand the KL divergence in (3.6), at each temperature Tt, we use

relation (3.7) to replace the cooling process PTt
which occurs backwards in time

with its time-reversal, unfolding forward in time, at the expense of introducing

ratios of stationary probabilities. We also exploit the fact that q and p are the

same transition operator. With these substitutions in (3.6), we find

DKL =
∑

sk
1

q(sk1|s0) ln
K∏

t=1

pTt
(st|st−1)

pRTt
(st|st−1)

+
∑

sk
1

q(sk1|s0) ln
p(s0)

p∗(sK)

K∏

t=1

πTt
(st)

πTt
(st−1)

. (3.8)

The first term in (3.8) is simply the KL divergence between the distribution over

heated trajectories, and the time reversal of the cooled trajectories. Since the hea-

ting (q) and cooling (p) processes are tied, this KL divergence is 0 if and only if

pTt
= pRTt

for all t. This is equivalent to the transition operator pT obeying detailed

40

balance at all temperatures.

Now intuitively, the second term can be made small in the limit where K is

large and the temperature sequence is annealed slowly. To see why, note we can

write the ratio of probabilities in this term as,

p(s0)

πT1
(s0)

πT1
(s1)

πT2
(s1)
· · ·

πTK−1
(sK−1)

πTK−1
(sK)

πTK
(sK)

p∗(sK)
. (3.9)

which is similar in shape (but arising in a different context) to the product of

probability ratios computed for annealed importance sampling [Neal, 2001] and

reverse annealed importance sampling [Burda et al., 2014]. Here it is manifest that

we are comparing probabilities of states under slightly different distributions, so

all ratios ≈ 1. For example, under many steps, with slow annealing, the generative

process approximately reaches its stationary distribution, p(s0) ≈ πT1
(s0).

This slow annealing to go from p∗(sK) to p(s0) corresponds to the quasistatic li-

mit in statistical physics, where the work to perform is equal to the free energy diffe-

rence between states. To go faster, one must perform excess work, above and beyond

the free energy difference, dissipated as heat into the surrounding environment. By

writing distributions in terms of energies and free energies: πTt
(st) ∝ e−E(st)/Tt ,

p∗(sK) = e−[EK(sK)−FK], and p(s0) = e−[E0(s0)−F0], one can see that the second

term in the KL divergence is closely related to average heat dissipation in a finite

time heating process (see e.g. [Crooks, 2000]). This intriguing connection between

the size of the gap in a variational lower bound, and the excess heat dissipation

in a finite time heating process opens the door to exploiting a wealth of work in

statistical physics for finding optimal thermodynamic paths that minimize heat

dissipation [Schmiedl and Seifert, 2007, Sivak and Crooks, 2012, Gingrich et al.,

2016], which may provide new ideas to improve variational inference. In summary,

tightness of the variational bound can be achieved if: (1) The transition operator

of p approximately obeys detailed balance, and (2) the temperature annealing is

done slowly over many steps. And intriguingly, the magnitude of the looseness of

the bound is related to two physical quantities: (1) the degree of irreversiblity of

the transition operator p, as measured by the KL divergence between p and its time

reversal pR, and (2) is the physical work required to perform the heating trajectory.

To check, potential looseness of the variational lower bound, we can measure

the degree of irreversibility of pT by estimating the KL divergence

41

DKL(pT (s
′|s)πT (s) || pT (s|s

′)πT (s
′)), which is 0 if and only if pT obeys detailed

balance and is therefore time-reversal invariant. This quantity can be estimated by
1
K

∑K
t=1 ln

pT (st+1|st)
pT (st|st+1)

, where sK1 is a long sequence sampled by repeatedly applying

transition operator pT from a draw s1 ∼ πT . If this quantity is strongly positive

(negative) then forward transitions are more (less) likely than reverse transitions,

and the process pT is not time-reversal invariant. This estimated KL divergence

can be normalized by the corresponding entropy to get a relative value (with 3.6%

measured on a trained model, as detailed in Appendix).

3.4.2 Estimating log likelihood via importance sampling

We can derive an importance sampling estimate of the negative log-likelihood

by the following procedure. For each training example x, we sample a large number

of destructive paths (as in Algorithm 1). We then use the following formulation to

estimate the log-likelihood log p(x) via

logE
x∼pD,qT0 (x)qT1 (s1|s0(x,))(

∏K
t=2

qTt (st|st−1))

pT0

(s0 = x|s1)
(∏K

t=2 pTt
(st−1|st)

)
p∗(sK)

qT0
(x)qT1

(s1|s0 = x)
(∏K

t=2 qTt
(st|st−1)

)

(3.10)

3.4.3 VW transition operators and their convergence

The VW approach allows considerable freedom in choosing transition operators,

obviating the need for specifying them indirectly through an energy function. Here

we consider Bernoulli and isotropic Gaussian transition operators for binary and

real-valued data respectively. The form of the stochastic state update imitates a dis-

cretized version of the Langevin differential equation. The Bernoulli transition ope-

rator computes the element-wise probability as ρ = sigmoid((1−α)∗st−1+α∗Fρ(st−1)

Tt
).

The Gaussian operator computes a conditional mean and standard deviation via

µ = (1 − α) ∗ st−1 + α ∗ Fµ(st−1) and σ = Tt log(1 + eFσ(st−1)). Here the F func-

tions can be arbitrary parametrized functions, such as a neural net and Tt is the

temperature at time step t.

A natural question is when will the finite time VW training process learn a tran-

sition operator whose stationary distribution matches the data distribution, so that

repeated sampling far beyond the training time continues to yield data samples. To

partially address this, we prove the following theorem: If p has enough capacity,

42

training data and training time, with slow enough annealing and a small departure

from reversibility so p can match q, then at convergence of VW training, the tran-

sition operator pT at T = 1 has the data generating distribution as its stationary

distribution. A proof can be found in the Appendix, but the essential intuition is

that if the finite time generative process converges to the data distribution at mul-

tiple different VW walkback time-steps, then it remains on the data distribution

for all future time at T = 1. We cannot always guarantee the preconditions of this

theorem but we find experimentally that its essential outcome holds in practice.

3.5 Related Work

A variety of learning algorithms can be cast in the framework of Fig. 3.1. For

ex. for directed graphical models like VAEs [Kingma and Welling, 2013, Rezende

et al., 2014], DBNs [Hinton et al., 2006], and Helmholtz machines in general, q

corresponds to a recognition model, transforming data to a latent space, while p

corresponds to a generative model that goes from latent to visible data in a finite

number of steps. None of these directed models are designed to learn transition

operators that can be iterated ad infinitum, as we do. Moreover, learning such

models involves a complex, deep credit assignment problem, limiting the number

unobserved latent layers that can be used to generate data. Similar issues of limited

trainable depth in a finite time feedforward generative process apply to Genera-

tive Adversarial Networks (GANs) [Goodfellow et al., 2014], which also further

eschew the goal of specifically assigning probabilities to data points. Our method

circumvents this deep credit assignment problem by providing training targets at

each time-step ; in essence each past time-step of the heated trajectory constitutes

a training target for the future output of the generative operator pT , thereby ob-

viating the need for backpropagation across multiple steps. Similarly, unlike VW,

Generative Stochastic Networks (GSN) [Bengio et al., 2014] and the DRAW [Gre-

gor et al., 2015] also require training iterative operators by backpropagating across

multiple computational steps.

VW is similar in spirit to DAE [Bengio et al., 2013d], and NET approaches [Sohl-

Dickstein et al., 2015] but it retains two crucial differences. First, in each of these

frameworks, q corresponds to a very simple destruction process in which Gaussian

43

and the Theano framework [Al-Rfou et al., 2016]. More details are in Appendix

and code for training and generation is at https://github.com/anirudh9119/

walkback_nips17. Table 3.1a shows the effect of longer annealing while Table 3.1b

compares the importance sampling log-likelihood estimates for VW with published

AIS values for existing models, and Table 3.2 compares with published NET results

on CIFAR.

Model Train LL Test LL

VW (5 steps, LB) 702 510

VW (10 steps, LB) 890 801

VW (15 step, LB) 1148 1018

VW (IS estimate) 1311 1243

(a) MNIST log-likehoods: VW Model using
a Gaussian noise with diagonal covariance,
and we applied lkboth the lower bound and
importance sampling (15 steps) estimates.

Model Train LL Test LL

VAE-50 (AIS) 1272 ± 6.7 991 ± 6.5

GAN-50 (AIS) 620 ± 31 627 ± 8.8

GMMN-50 (AIS) 571 ± 31 593 ± 8.6

VAE-10 (AIS) 780 ± 19 705 ± 7.4

GAN-10 (AIS) 318 ± 22 328 ± 5.5

GMMN-10 (AIS) 345 ± 20 346 ± 5.9

VW (IS estimate) 793 ± 2.1 712 ± 3.4

(b) MNIST log-likehoods. VW
with isotropic Gaussian output, im-
portance sampling estimates. Log-
likelihoods estimated by AIS repor-
ted in [Wu et al., 2016].

Table 3.1 – Comparative log-likelihoods estimated by importance sampling.

Model bits/dim ≤

NET [Sohl-Dickstein et al., 2015] 5.40

VW 4.40

Deep VAE < 4.54

DRAW [Gregor et al., 2015] < 4.13

ResNet VAE with IAF [Kingma et al., 2016] 3.11

Table 3.2 – Comparisons on CIFAR10, test set average number of bits/data dimension(lower is
better)

Image Generation. Figure 3, 5, 6, 7, 8 (see supplementary section) show

VW samples on each of the datasets. For MNIST, real-valued views of the data

are modeled. Image Inpainting. We clamped the bottom part of CelebA test

images (for each step during sampling), and ran it through the model. Figure 1

(see Supplementary section) shows the generated conditional samples.

45

3.7 Discussion and Future Work

We introduced a new approach to learning non-energy-based transition opera-

tors which inherits advantages from several previous generative models, including

a training objective that requires rapidly generating the data in a finite number of

steps (as in directed models), re-using the same parameters for each step (as in un-

directed models), directly parametrizing the generator (as in GANs and DAEs), and

using the model itself to quickly find its own spurious modes (the walk-back idea).

We also anchor the algorithm in a variational bound and show how its analysis

suggests to use the same process for the destruction, or inference, and creation, or

generation, and to use a cooling (heating) schedule during generation (inference).

Moreover, we connected the variational gap to physical notions like reversibility

and heat dissipation. We verified empirically that the model converges towards

an approximately reversible chain (see Appendix) making the variational bound

tighter. We also found that samples are of good quality, and better than previous

approaches at learning directly a transition operator (VAE, GSN and NET). Note

that when the data is discrete and we consider the q inference chain and p ge-

nerative sequence as two long sequences of latent states, VW avoids the need to

backpropagate (which is not possible for discrete states) or use REINFORCE to

obtain an update for the q parameters, thanks to sharing parameters between p

and q, but at the price of a biased estimator of the lower bound gradient.

A fundamental aspect of our approach is that we can train stochastic processes

that need not exactly obey detailed balance, yielding access to a larger and po-

tentially more powerful space of models. In particular, this enables us to relax

the weight symmetry constraint of undirected graphical models corresponding to

neural networks, yielding a more brain like iterative computation characteristic of

asymmetric biological neural circuits.

Many questions remain open to analyze and extend VW, in particular to incor-

porate latent layers. The state at each step would now include both visible x and

latent h components. Essentially the same procedure can be run, except for the

chain initialization, with s0 = (x,h0) where h0 a sample from the posterior distri-

bution of h given x. Overall, our work takes a step to filling a relatively open niche

in the machine learning literature on directly training non-energy-based iterative

stochastic operators, and we hope that the many possible extensions of this ap-

46

proach could lead to a rich new class of more powerful brain-like machine learning

models.

3.8 VW transition operators and their

convergence

If p has enough capacity, training data and training time, with slow enough

annealing and a small departure from reversibility so p can match q, then at conver-

gence of VW training, the transition operator pT at T = 1 has the data generating

distribution as its stationary distribution.

Démonstration. With these conditions p(sK+n
0) match q(sK+n

0), where q(s0) is the

data distribution. It means that p(s0) (the marginal at the last step of sampling)

is the data distribution when running the annealed (cooling) trajectory for K +

n steps, for n any integer between 0 and N1, where the last n + 1 steps are at

temperature 1. Since the last n steps are at temperature 1, they apply the same

transition operator. Consider any 2 consecutive sampling steps among these last

n steps. Both of these samples are coming from the same distribution (the data

distribution). It means that the temperature 1 transition operator leaves the data

distribution unchanged. This implies that the data distribution is an eigenvector of

the linear operator associated with the temperature 1 transition operator, or that

the data generating distribution is a stationary distribution of the temperature 1

transition operator.

3.9 Additional Results

Image inpainting samples from CelebA dataset are shown in Fig 3.3, where each

top sub-figure shows the masked image of a face (starting point of the chain), and

the bottom sub-figure shows the inpainted image. The images are drawn from the

test set.

47

3.13 Higher Lower Bound: not always better

samples

We have observed empirically that the variational lower bound does not ne-

cessarily correspond to sample quality. Among trained models, higher value of the

lower bound is not a clear indication of visually better looking samples. Our MNIST

samples shown in Fig 3.17 is an example of this phenomenon. A model with better

lower bound could give better reconstructions while not producing better generated

samples. This resonates with the finding of [Theis et al., 2016]

3.14 Reversibility of transition operator

We measured the degree of reversibility of pT by estimating the KL divergence

DKL(pT (s
′|s)πT (s) || pT (s|s

′)πT (s
′)), which is 0 if and only if pT obeys detailed

balance and is therefore time-reversal invariant by computing the Monte-Carlo

estimator 1
K

∑K
t=1 ln

pT (st+1|st)
pT (st|st+1)

, where sK1 is a long sequence sampled by repeatedly

applying transition operator pT from a draw s1 ∼ πT , i.e., taking samples after a

burn-in period (50 samples).

To get a sense of the magnitude of this reversibility measure, and because it

corresponds to an estimated KL divergence, we estimate the corresponding entropy

(of the forward trajectory) and use it as a normalizing denominator telling us how

much we depart from reversibility in nats relative to the number of nats of entropy.

To justify this, consider that the minimal code length required to code samples

from a distribution p is the entropy H(p). But suppose we evaluate those samples

from p using q instead to code them. Then the code length is H(p) + D(p||q).

So the fractional increase in code length due to having the wrong distribution is

D(p||q)/H(p), which is what we report here, with p being the forward transition

probability and q the backward transition probability.

To compute this quantity, we took our best model (in terms of best lower bound)

on MNIST, and ran it for 1000 time steps i.e (T = 1000), at a constant temperature.

We run the learned generative chain p for T time steps getting s0 → s1 →

s2 → · · · sT and computing log p(s0 → s1 → s2 → · · · sT)/p(sT → · · · → s2→ s1)

54

both under the same generative chain, divided by T to get the per-step average.

On the same set of runs, we compute 1/T ∗ log p(s0 → s1 → s2 → · · · sT) under

the same generative chain. This is an estimate of the entropy per unit time of the

chain. This is repeated multiple times to average over many runs and reduce the

variance of the estimator.

The obtained ratio (nats/nats) is 3.6%, which seems fairly low but also suggests

that the trained model is not perfectly reversible.

3.15 Some Minor Points

— In all the image experiments, we observed that by having different batch-

norm papemeters for different steps, actually improves the result considera-

bly. Having different batchnorm parameters was also necessery for making it

work on mixture on gaussian. The authors were not able to make it work on

MoG without different parameters. One possible way, could be to let optimi-

zer know that we are on different step by giving the temperature information

to the optimizer too.

— We observed better results while updating the parameters in online-mode,

as compared to batch mode. (i.e instead of accumulating gradients across

different steps, we update the parameters in an online fashion)

3.16 Inception Scores on CIFAR

We computed the inception scores using 50,000 samples generated by our model.

We compared the inception scores with [Salimans et al., 2016] as the baseline model.

55

Figure 3.17 – Samples from two VW models (left and right) which have a higher lower bound
than the one whose samples are shown in Figure 5 (and comparable but slightly better importance
sampling estimators of the log-likelihood): yet, the generated samples are clearly not as good,
suggesting that either the bound is sometimes not tight enough or that the log-likelihood is not
always a clear indicator of sample quality.

63

4 Conclusion

The idea of matching behavior of a model when it is running on its own, making

predictions, generating samples, etc. vs when it is forced to be consistent with

observed data is an old and powerful one. In chap 2, we introduce Professor Forcing,

an instance of this idea when the model of interest is a recurrent generative one,

and which relies on training an auxiliary model, the discriminator to spot the

differences in behavior between these two modes of behavior. A major motivation

for this approach is that the discriminator can look at the statistics of the behavior

and not just at the single-step predictions, forcing the generator to behave the same

when it is constrained by the data and when it is left generating outputs by itself

for sequences that can be much longer than the training sequences.

Future work would be to use the proposed method to model of the environ-

ment for reinforcement learning problems. Training control algorithms efficiently

from interactions with the environment is a central issue in reinforcement learning

(RL). Model-free RL methods, combined with deep neural networks, have achieved

impressive results across a wide range of domains Lillicrap et al. [2015], Mnih et al.

[2016], Silver et al. [2016]. However, existing model-free solutions lack sample ef-

ficiency, meaning that they require extensive interaction with the environment to

achieve these levels of performance. As long as it is possible to scale up the number

of available samples, progress can still be made. Increasing computational power,

for example, allows for parallelism across simulated environments Mnih et al. [2016].

However, when we seek to deploy RL algorithms in the real world, limited sample

efficiency can be problematic, since data is relatively slow and expensive to acquire.

Model-based methods in RL can mitigate this issue. These approaches learn an

unsupervised model of the underlying dynamics of the environment, which does

not necessarily require rewards, as the model observes and predicts state-to-state

transitions. Since states are generally high-dimensional, this form of unsupervised

learning provides a rich source of information to the learner. With a well-trained

model, the algorithm can then simulate the environment and look ahead to future

64

events to establish better value estimates. This allows the algorithm to explore

various possibilities and contingencies without requiring expensive interactions with

the environment. As a result, model-based methods can be more sample efficient

than their model-free counterparts, but often do not achieve the same asymptotic

performance Deisenroth and Rasmussen [2011], Nagabandi et al. [2017]. In complex

domains for which an exact simulator is not available to the agent, the performance

of model-based agents employing standard planning methods usually suffers from

model bias resulting from inaccurate function approximation Ross and Bagnell

[2012]. However, learning a world model involves taking a sample, its open-loop

predictions may diverge from the manifold of latent states the model has seen

during training. I think, the proposed method in chap 2, could be useful to mitigate

this issue.

In chap 3, we introduced a new approach to learning non-energy-based transi-

tion operators which inherits advantages from several previous generative models,

including a training objective that requires rapidly generating the data in a finite

number of steps (as in directed models), re-using the same parameters for each

step (as in undirected models), directly parametrizing the generator (as in GANs

and DAEs), and using the model itself to quickly find its own spurious modes (the

walk-back idea).

A fundamental aspect of our approach is that we can train stochastic processes

that need not exactly obey detailed balance, yielding access to a larger and po-

tentially more powerful space of models. In particular, this enables us to relax the

weight symmetry constraint of undirected graphical models corresponding to neural

networks, yielding a more brain like iterative computation characteristic of asym-

metric biological neural circuits. This yields an intriguing connection to the neu-

robiology of dreams. As discussed in Bengio et al. [2015c], spike-timing dependent

plasticity (STDP), a plasticity rule found in the brain [Markram and Sakmann,

1995], to increasing the probability of configurations towards which the network

goes (i.e., remembering observed configurations), while reverse-STDP corresponds

to forgetting or unlearning the states towards which the model goes (which is what

happens with the VW update). If, as suggested, the neurobiological function of

sleep involves re-organizing memories and in particular unlearning spurious modes

through reverse-STDP, then the relative incoherence of dreams compared to reality

is qualitatively consistent with heated destructive dynamics of VW, compared to

65

the cooled transition operator in place during awake states.

In addition, consider energy-based models with energy terms of the form Eij =

wijfij(si, sj) linking unit i and unit j, like in Boltzmann machines or Hopfield nets.

Inspecting the gradient of the energy w.r.t. si shows that the push on si to reduce

the energy involves a term in wij as well as a term in wji. It means that updating

si depends not just on the weight of the synapse from j to i but also on the weight

of the synapse from i to j. This is called weight transport [Lillicrap et al., 2014]

and is not biologically plausible. In the case where fij = fji this leads to symme-

try of the weights, i.e., the weight matrix is a symmetric matrix. With VW, this

hard constraint goes away, although the training procedure itself may converge to-

wards more symmetry. This is consistent with both empirical observations [Vincent

et al., 2010] and theoretical analysis [Arora et al., 2015] of auto-encoders, for which

symmetric weights are associated with minimizing reconstruction error.

Many questions remain open to analyze and extend VW, in particular to incor-

porate latent layers. The state at each step would now include both visible x and

latent h components. Essentially the same procedure can be run, except for the

chain initialization, with s0 = (x,h0) where h0 a sample from the posterior distri-

bution of h given x. Another interesting direction is to replace the log-likelihood

objective at each step by a GAN-like objective, thus avoiding the need to inject

noise independently on each of the pixels, during each transition step, and allowing

latent variable sampling to inject the required high-level decisions associated with

the transition. Based on the earlier results from [Bengio et al., 2013a], sampling in

the latent space rather than in the pixel space should allow for better generative

models and even better mixing between modes [Bengio et al., 2013a].

Overall, our work takes a step to filling a relatively open niche in the machine

learning literature on directly training non-energy-based iterative stochastic opera-

tors, and we hope that the many possible extensions of this approach could lead to

a rich new class of more powerful brain-like machine learning models.

66

Bibliographie

H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand. Domain-

Adversarial Neural Networks. ArXiv e-prints, December 2014.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, and et al. Theano: A py-

thon framework for fast computation of mathematical expressions. CoRR,

abs/1605.02688, 2016. URL http://arxiv.org/abs/1605.02688.

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from

the data-generating distribution. J. Mach. Learn. Res., 15(1):3563–3593, January

2014a. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=2627435.

2750359.

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from

the data-generating distribution. Journal of Machine Learning Research, 15(1):

3563–3593, 2014b.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. Why are deep nets reversible: A

simple theory, with implications for training. CoRR, abs/1511.05653, 2015. URL

http://arxiv.org/abs/1511.05653.

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and

Y. Bengio. An Actor-Critic Algorithm for Sequence Prediction. ArXiv e-prints,

July 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yo-

shua Bengio. End-to-end attention-based large vocabulary speech recognition.

arXiv preprint arXiv:1508.04395, 2015.

67

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sam-

pling for sequence prediction with recurrent neural networks. In Advances in

Neural Information Processing Systems, pages 1171–1179, 2015a.

Y. Bengio, N. Léonard, and A. Courville. Estimating or Propagating Gradients

Through Stochastic Neurons for Conditional Computation. ArXiv e-prints, Au-

gust 2013.

Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Better mixing

via deep representations. In Proceedings of the 30th International Conference on

Machine Learning (ICML’13). ACM, 2013a. URL http://icml.cc/2013/.

Yoshua Bengio, Eric Thibodeau-Laufer, and Jason Yosinski. Deep generative sto-

chastic networks trainable by backprop. CoRR, abs/1306.1091, 2013b. URL

http://arxiv.org/abs/1306.1091.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoi-

sing auto-encoders as generative models. CoRR, abs/1305.6663, 2013c. URL

http://arxiv.org/abs/1305.6663.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoi-

sing auto-encoders as generative models. In NIPS’2013, arXiv:1305.6663, 2013d.

Yoshua Bengio, É ric Thibodeau-Laufer, Guillaume Alain, and Jason Yosinski.

Deep generative stochastic networks trainable by backprop. In Proceedings of the

31st International Conference on International Conference on Machine Learning

- Volume 32, ICML’14, pages II–226–II–234. JMLR.org, 2014. URL http://dl.

acm.org/citation.cfm?id=3044805.3044918.

Yoshua Bengio, Dong-Hyun Lee, Jörg Bornschein, and Zhouhan Lin. Towards

biologically plausible deep learning. CoRR, abs/1502.04156, 2015b. URL http:

//arxiv.org/abs/1502.04156.

Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhai Wu.

An objective function for STDP. CoRR, abs/1509.05936, 2015c. URL http:

//arxiv.org/abs/1509.05936.

68

Florian Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples

from noise through infusion training. CoRR, abs/1703.06975, 2017. URL http:

//arxiv.org/abs/1703.06975.

Alexandre Brebisson. Conditional handwriting generation in theano. https://

github.com/adbrebs/handwriting, 2016.

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Accurate and conservative

estimates of MRF log-likelihood using reverse annealing. CoRR, abs/1412.8566,

2014. URL http://arxiv.org/abs/1412.8566.

Xinlei Chen and C Lawrence Zitnick. Mind’s eye: A recurrent visual representa-

tion for image caption generation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2422–2431, 2015.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014a.

Kyunghyun Cho, Bart Van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using RNN encoder–decoder for statistical machine translation. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014b. Associa-

tion for Computational Linguistics. URL http://www.aclweb.org/anthology/

D14-1179.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and

Yoshua Bengio. Attention-based models for speech recognition. In Advances in

Neural Information Processing Systems, pages 577–585, 2015.

Gavin E Crooks. Path-ensemble averages in systems driven far from equilibrium.

Physical review E, 61(3):2361, 2000.

H. Daumé, III, J. Langford, and D. Marcu. Search-based Structured Prediction.

ArXiv e-prints, July 2009.

69

Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The

helmholtz machine. Neural Computation, 7(5):889–904, 1995a. doi: 10.1162/

neco.1995.7.5.889. URL https://doi.org/10.1162/neco.1995.7.5.889.

Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The

helmholtz machine. Neural Comput., 7(5):889–904, September 1995b. ISSN

0899-7667. doi: 10.1162/neco.1995.7.5.889. URL http://dx.doi.org/10.1162/

neco.1995.7.5.889.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient

approach to policy search. In Proceedings of the 28th International Conference

on machine learning (ICML-11), pages 465–472, 2011.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,

M. Marchand, and V. Lempitsky. Domain-Adversarial Training of Neural Net-

works. ArXiv e-prints, May 2015.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked

autoencoder for distribution estimation. arXiv preprint arXiv:1502.03509, 2015.

Todd R Gingrich, Grant M Rotskoff, Gavin E Crooks, and Phillip L Geissler. Near-

optimal protocols in complex nonequilibrium transformations. Proceedings of the

National Academy of Sciences, page 201606273, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron C.

Courville, and Yoshua Bengio. Professor forcing: A new algorithm

for training recurrent networks. In Advances in Neural Informa-

tion Processing Systems 29: Annual Conference on Neural Infor-

mation Processing Systems 2016, December 5-10, 2016, Barcelona,

Spain, pages 4601–4609, 2016. URL http://papers.nips.cc/paper/

6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.

Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio. Variatio-

nal walkback: Learning a transition operator as a stochastic recurrent net. In

70

Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,

CA, USA, pages 4395–4405, 2017a. URL http://papers.nips.cc/paper/

7026-variational-walkback-learning-a-transition-operator-as-a-stochastic-recurr

Anirudh Goyal, Nan Rosemary Ke, Alex Lamb, R. Devon Hjelm, Chris Pal, Joelle

Pineau, and Yoshua Bengio. Actual: Actor-critic under adversarial learning.

CoRR, abs/1711.04755, 2017b. URL http://arxiv.org/abs/1711.04755.

A. Graves. Generating Sequences With Recurrent Neural Networks. ArXiv e-prints,

August 2013.

Alex Graves. Generating sequences with recurrent neural networks. CoRR,

abs/1308.0850, 2013. URL http://arxiv.org/abs/1308.0850.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent

neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-

7667. doi: 10.1162/neco.2006.18.7.1527. URL http://dx.doi.org/10.1162/

neco.2006.18.7.1527.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.

9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

F. Huszár. How (not) to Train your Generative Model: Scheduled Sampling, Like-

lihood, Adversary ? ArXiv e-prints, November 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational in-

ference with inverse autoregressive flow. CoRR, abs/1606.04934, 2016. URL

http://arxiv.org/abs/1606.04934.

71

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images, 2009.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator.

2011.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman.

Random feedback weights support learning in deep neural networks. CoRR,

abs/1411.0247, 2014. URL http://arxiv.org/abs/1411.0247.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face at-

tributes in the wild. In Proceedings of the IEEE International Conference on

Computer Vision, pages 3730–3738, 2015.

M. Liwicki and H. Bunke. Iam-ondb - an on-line english sentence database acquired

from handwritten text on a whiteboard. In Eighth International Conference on

Document Analysis and Recognition (ICDAR’05), pages 956–961 Vol. 2, Aug

2005. doi: 10.1109/ICDAR.2005.132.

H. Markram and B. Sakmann. Action potentials propagating back into dendrites

triggers changes in efficacy. Soc. Neurosci. Abs, 21, 1995.

Tomas Mikolov. Recurrent neural network based language model. 2010.

Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network

language model. 2012.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In ICML, 2016.

Iain Murray and Ruslan R Salakhutdinov. Evaluating probabili-

ties under high-dimensional latent variable models. In D. Kol-

ler, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in

72

Neural Information Processing Systems 21, pages 1137–1144. Cur-

ran Associates, Inc., 2009. URL http://papers.nips.cc/paper/

3584-evaluating-probabilities-under-high-dimensional-latent-variable-models.

pdf.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural

network dynamics for model-based deep reinforcement learning with model-free

fine-tuning. arXiv preprint arXiv:1708.02596, 2017.

Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11

(2):125–139, April 2001. ISSN 0960-3174. doi: 10.1023/A:1008923215028. URL

http://dx.doi.org/10.1023/A:1008923215028.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. Reading digits in natural images with unsupervised feature learning.

In NIPS workshop on deep learning and unsupervised feature learning, volume

2011, page 5, 2011.

Tapani Raiko, Li Yao, Kyunghyun Cho, and Yoshua Bengio. Iterative neural auto-

regressive distribution estimator NADE-k. In Zoubin Ghahramani, Max Welling,

Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances

in Neural Information Processing Systems 27 (NIPS 2014), pages 325–333. Cur-

ran Associates, Inc., 2014.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with norma-

lizing flows. arXiv preprint arXiv:1505.05770, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082, 2014.

S. Ross, G. J. Gordon, and J. A. Bagnell. A Reduction of Imitation Learning and

Structured Prediction to No-Regret Online Learning. ArXiv e-prints, November

2010.

Stéphane Ross and J. Andrew Bagnell. Agnostic system identification for model-

based reinforcement learning. CoRR, abs/1203.1007, 2012.

73

Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial

Intelligence and Statistics, 2009.

Tim Salimans, Diederik P Kingma, and Max Welling. Markov chain monte carlo

and variational inference: Bridging the gap. arXiv preprint arXiv:1410.6460,

2014.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. CoRR, abs/1606.03498,

2016. URL http://arxiv.org/abs/1606.03498.

Tim Schmiedl and Udo Seifert. Optimal finite-time processes in stochastic thermo-

dynamics. Physical review letters, 98(10):108301, 2007.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484–489, 2016.

David A Sivak and Gavin E Crooks. Thermodynamic metrics and optimal paths.

Physical review letters, 108(19):190602, 2012.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Gan-

guli. Deep unsupervised learning using nonequilibrium thermodynamics. CoRR,

abs/1503.03585, 2015. URL http://arxiv.org/abs/1503.03585.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages

3104–3112, 2014.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative

models. ArXiv e-prints, November 2015.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative

models. In International Conference on Learning Representations, Apr 2016.

URL http://arxiv.org/abs/1511.01844.

A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent Neural

Networks. ArXiv e-prints, January 2016.

74

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th international conference on Machine learning, pages 1096–

1103. ACM, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-

tations in a deep network with a local denoising criterion. J. Mach. Learn.

Res., 11:3371–3408, December 2010. ISSN 1532-4435. URL http://dl.acm.

org/citation.cfm?id=1756006.1953039.

Ronald J Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger B. Grosse. On the quan-

titative analysis of decoder-based generative models. CoRR, abs/1611.04273,

2016. URL http://arxiv.org/abs/1611.04273.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Ri-

chard Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption

generation with visual attention. arXiv preprint arXiv:1502.03044, 2015.

75

